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Preface

The idea of this book has been excogitated over the past few years from my 
own research endeavor to apply an integration of bioinformatics, genomic, 
and genetic approaches in the identification of genetic and biochemical 
markers in cardiopulmonary diseases. To this project I have brought my 
five years as director of the Gene Expression Profiling Core at The Johns 
Hopkins Center of Translational Respiratory Medicine, my three-year 
stint as a coordinator of the Affymetrix User Group monthly meeting 
at The Johns Hopkins University medical institutions and two years as a 
director of the Molecular Resource Core in the National Heart, Lung, and 
Blood Institute-funded Program Project Grant on Cytoskeletal Regulation 
of Lung Endothelial Pathobiology at the University of Chicago, as well as 
my experience in obtaining my R01 grant award and involvement in a suc-
cessful Specialized Centers of Clinically Oriented Research application on 
“Molecular Approaches to Ventilator-Associated Lung Injury,” directed 
by Dr. Joe G.N. Garcia, from the National Institutes of Health. The idea for 
this book further crystallized by listening to the enlightening advice at the 
System Biology Symposium held at the University of Chicago in October 
2005 from Dr. Phillip A. Sharp, professor of biology from Massachusetts 
Institute of Technology and a 1993 Nobel laureate (for discovering gene 
splicing). He pointed out that to be successful in the omics age, every bio-
logical or biomedical researcher should know some bioinformatics. I fully 
concurred with Dr. Sharp’s comments and developed a book proposal. Dr. 
Sunil Nair, a perceptive publisher from Taylor & Francis, was first to hand 
me a book contract, which I happily accepted.

Bioinformatics is emerging as an ever-evolving new branch of science in 
which computer tools are applied to collect, store, and analyze biological 
data to generate new biological information. Over the past few years, major 
progress in the field of molecular biology, coupled with rapid advances 
in genomic technologies, has led to an explosive growth in the biologi-
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cal information distributed in a variety of biological databases. Currently, 
genome resources from a number of species are available at the National 
Center of Biological Information Website (http://www.ncbi.nlm.nih.gov/
Genomes/index.html). This list is being expanded at an unprecedented 
pace. A challenge facing researchers today is how to piece together and 
analyze this plethora of data to make new biological discoveries and gain 
new unifying global biological insights. This led to the absolute require-
ment for biologists and medical researchers to obtain a reasonable amount 
of knowledge on computational biology (bioinformatics), i.e., applying 
computational approaches to facilitate the understanding of various bio-
logical processes such as a more global perspective in experimental design 
and the ability to capitalize on database mining — the process by which 
testable hypotheses are generated regarding the function or structure of a 
gene or protein of interest by identifying similar sequences in better char-
acterized organisms. Equally important is that computer gurus need to 
have some basic understanding of biological problems in order for them to 
efficiently execute their computer skills in the field of bioinformatics.

Biologists are usually not extensively trained with computer skills, and 
computer experts rarely have a biology background. One of the goals of 
this book is to bridge or shorten the knowledge gap between biologists 
and computer specialists to make better and more efficient application 
and development of bioinformatics.

This book will cover the most state-of-the-art bioinformatics applications 
a biologist needs to know. Part I will focus on genome and DNA sequence 
analysis with chapters on genome analysis, common DNA analysis tools, 
phylogenetics analysis and SNP and haplotype analysis. Part II will center 
on transcriptome and RNA sequence analysis, with chapters on microar-
ray, SAGE, regulation of gene expression, miRNA, and siRNA. Part III will 
present widely applied programs or tools in proteome, protein sequences, 
protein functions, and functional annotation of proteins in murine mod-
els, and Part IV will introduce the most useful basic biocomputing tools in 
chapter on the application of programming languages in biology, Website 
and database design, and interchanging data between Microsoft Excel and 
Access. Abbreviations, a selected glossary, and Websites for selected bioin-
formatics software are listed in the appendices for reference.

Our goal is to assimilate the most current bioinformatic knowledge and 
tools relevant to the omics age into one cohesive, concise, self-contained 
book accessible to biologists, to computer scientists, and to motivated non-
specialists with a strong desire to learn bioinformatics. The twenty-five 
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contributors to this book have been recruited from nine world-renowned 
institutions in six countries: Johns Hopkins University, University of Chi-
cago, Ohio State University, Georgetown University in the United States; 
the University of Toronto in Canada; the Swiss Institute of Bioinformatics 
in Switzerland; Okayama University in Japan; Wuhan University in China; 
and the International Centre for Genetic Engineering and Biotechnology 
in India. In each chapter, a theoretical introduction of the subject is fol-
lowed by the exemplar step-by-step tutorial to help readers both to have 
a good theoretical understanding and to master a practical application. 
Although all the chapters were contributed by experts in their respective 
fields, the book was written to be easily understood. Complex mathematic 
deductions and jargon were avoided or reduced to a minimum. Any nov-
ice, with a little computer knowledge, can learn bioinformatics from this 
book without difficulty. In the overview of each chapter, several authorita-
tive references were given, so that more experienced readers may explore 
the subject in depth and find new horizons. The target readers of this book 
are biologists but computer specialists may find a fruitful, comprehensive, 
and concise synopsis of biological problems to tackle in each chapter.

This book is the collective efforts of editorial staff and other individu-
als. I am deeply indebted to all contributing authors for their tremendous 
efforts to finish their work on time, and for their gracious tolerance of my 
repeated haggling for revisions. We are grateful to the editorial staff for 
their tireless and meticulous work on accuracy and detail. We want to 
thank several other unnamed people who have helped us along the way for 
their valuable guidance and innumerable improvement suggestions. We 
apologize to many colleagues whose work was not covered in this book 
due to space limitations.

We welcome any criticism and suggestions for improvement so that 
they may be incorporated into the next edition.

Shui Qing Ye
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matic tools and experimental approaches.
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�  <  Bioinformatics: A Practical Approach

Since the launch of the International Human Genome Project and offi-
cial whole-genome sequencing projects from other species, tremendous 
amounts of sequence data (>~3.3 million) have become available. In addi-
tion, large-scale technologies, such as microarray for gene expression 
detection and genome-wide association studies, also have speeded up the 
collection of sequences to the public databases. How to effectively display, 
align, and analyze genomic sequences to harness genomic power therefore 
becomes crucial in the postgenomic era. This chapter commences with 
Genome Browser in Section 1 and then introduces the Basic Local Align-
ment Search Tools (BLAST) in Section 2. In line with the format and style 
throughout this book, each section starts with a theoretical introduction 
in Part I, continues with a step-by-step tutorial in Part II, and ends with 
the presentation of sample data in Part III.

Section 1	 Genome Structure 
Analysis by Genome Browser
Part I	I ntroduction
1.  What Is Genome Browser?
Genome Browser is a tool that collates all relevant genomic sequence 
information in one location and provides a rapid, reliable, and simultane-
ous display of any requested portion of genomes at any scale in a graphi-
cal design. In addition, they provide the ability to search for markers and 
sequences, to extract annotations for specific regions or for the whole 
genome, and to act as a central starting point for genomic research.

2.  Multiple Genome Browser Sites
For the purpose of creating high-resolution graphical interface of spe-
cific segments in a known genomic DNA sequence obtained from whole-
genome sequencing projects, many genome browsers have been created 
with some unique and/or overlapping features. They include but are not 
limited to the following:

	 1.	UCSC genome browser (http://genome.ucsc.edu/): In this browser, 
data are organized along the genomic sequence backbone and 
aligned for quick search, data retrieval, and display. All the data 
are linked out to other databases, Web sites, and literature. In addi-
tion, data types, referred to as “annotation tracks,” are aligned on 
the genomic backbone framework. These tracks, including known 
genes, predicted genes, ESTs, mRNAs, gaps location, chromosomal 
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bands, comparative genomics, single-nucleotide polymorphisms 
(SNPs) and other variations, evolutionary conservation, microarray/
expression data, etc., are displayed to provide additional information 
about any given genomic region of interest. In this chapter, we will 
use specific examples and provide a step-by-step tutorial to explain 
some of the features in the browser and to retrieve sequences and 
map regions of interest.

	 2.	Ensembl genome browser (http://www.ensembl.org): It is a joint 
project between European Molecular Biology Laboratory (EMBL)-
European Bioinformatics Institute (EBI) and the Sanger Institute, 
which provides and maintains automated genome annotation on 
selected eukaryotic genomes and subsequent visualization. Each 
species supported by Ensembl has its own home page, which allows 
you to search the whole Ensembl database of genomic information or 
categories of information within it. From the species-specific home 
page, basic release information and statistics and a link to a clickable 
site map for further information and additional entry points into the 
Ensembl system are also available.

	 3.	VISTA (http://genome.lbl.gov): It is a comprehensive suite of pro-
grams and databases for comparative analysis of genomic sequences. 
Sequences or alignments can be uploaded as a plain text files in 
FASTA format, or their GenBank accession numbers, to the VISTA 
servers for the following analyses:

	 a.	 mVISTA: align and compare sequences (up to 100) from mul-
tiple species

	 b.	 rVISTA: combines transcription factor binding sites database 
search with a comparative sequence analysis

	 c.	 GenomeVISTA: compare your sequences with whole-genome 
assemblies

	 d.	 Phylo-VISTA: analyze multiple DNA sequence alignments of 
sequences from different species while considering their phylo-
genic relationships

	 e.	 Align whole genome: align and compare two finished or draft 
microbial genome assemblies up to 10 Mb long. VISTA can also 
be used to examine precomputed alignments of whole-genome 
assemblies through VISTA Browser.
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	 4.	NCBI MapViewer (http://www.ncbi.nlm.nih.gov/mapview/): It 
allows you to view and search for a subset of organisms in Entrez 
Genomes including archaea, bacteria, eukaryotae, viruses, viroids, 
and plasmids. Regions of interest can be retrieved by text queries 
(e.g., gene or marker name) or by sequence alignment (BLAST). 
Results can be viewed at the whole-genome level, and chromosome 
maps displayed and zoomed into progressively greater levels of detail, 
down to the sequence data for a region of interest. Multiple options 
exist to configure your display, download data, navigate to related 
data, and analyze supporting information. The number and types of 
available maps vary by organism. If multiple maps are available for 
a chromosome, it displays them aligned next to each other, based on 
shared marker and gene names, and for the sequence maps, based on 
a common sequence coordinate system.

	 5.	ECR Browser (http://ecrbrowser.dcode.org): It is a dynamic whole-
genome navigation tool for visualizing and studying evolution-
ary relationships between vertebrate and nonvertebrate genomes. 
The tool is constantly being updated to include the most recently 
available sequenced genomes (currently, human, dog, mouse, rat, 
chicken, frog, Fugu puffer fish, Tetraodon puffer fish, zebra fish, 
and six fruit flies). Evolutionary conserved regions (ECRs) that have 
been mapped within alignments of the genomes are presented in the 
graphical browser, where ECRs in relation to known genes that have 
been annotated in the base genome are depicted and color-coded. 
The “Grab ECR” feature allows users to rapidly extract sequences 
that correspond to any ECR, visualize underlying sequence align-
ments, and/or identify conserved transcription factor binding sites. 
In addition to accessing precomputed alignments for the available 
genomes, the ECR Browser can also be used as an alignment tool. 
It allows users to map submitted sequences to specific homologous 
positions within the genomes and to create a detailed alignment 
using the BlastZ alignment program.

	 6.	Combo (http://www.broad.mit.edu/annotation/argo/): It is a free, 
downloadable comparative genome browser that provides a dynamic 
view of whole-genome alignments along with their associated anno-
tations. Combo has two different visualization perspectives: (1) the 
perpendicular (dot plot) view provides a dot plot of genome align-
ments synchronized with a display of genome annotations along 
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each axis and (2) the parallel view displays two genome annotations 
horizontally, synchronized through a panel displaying local align-
ments as trapezoids. Users can zoom to any resolution, from whole 
chromosomes to individual bases. They can select, highlight, and 
view detailed information from specific alignments and annotations 
on multiple platforms.

3.  What Can UCSC Genome Browser Do?

A.  Basic Functionality of Genome Browser and BLAT Use  The UCSC 
Genome Bioinformatics home page (http://genome.ucsc.edu/) contains 
general information and news announcing new features and software or 
data changes. A list of features available is displayed on the top and on the 
left column of the navigation bars. From there you can simply start the 
“Text Search” through “Genomes” or “Genome Browser” or a “Sequence 
Search” through the Blast-Like Alignment Tool (BLAT) tool (Figure 1.1).

i.  Text Search  This function featured at UCSC can be gene name, gene 
symbol, chromosome number, chromosome region, keywords, marker 

The UCSC Home page: http://genome.ucsc.edu

navigate

Navigate

General
information

Specific information, new features, current status etc.

Figure 1.1.   The UCSC Genome Bioinformatics home page. General informa-
tion, news, software or data changes, as well as a list of available features are 
displayed.
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identification number, GenBank submitter name, and so on. Several 
options offered with the text search are clade, genome species, date of 
assembly, and image width. By default, the search is set to vertebrate, 
human, the most recent assembly (i.e., March 2006), and 620 pixels 
width, respectively (Figure 1.2A). All the options, including figure image 
and tracks, can be configured from the pull-down menus (Figure 1.2B). 
Depending on the text search term used, the results page may appear in a 
number of different records. Users have to select the one with the correct 
gene symbol or name from the results page before entering the browser. If 
there appear to be multiple entries that are likely to be splice variants, the 
nucleotide range indicated at the end of the link may serve as a reference.

The Genome Viewer section features the diagrammatic representation 
of the genome, which corresponds to the available annotation tracks, for 
quick data finding. Depending on the stage of the assembly, the actual track 
options will increase over time. Currently, UCSC has the following tracks: 
(1) Mapping and Sequencing Tracks; (2) Phenotype and Disease Associa-
tions; (3) Genes and Gene Prediction Tracks; (4) mRNA and EST Tracks; 
(5) Expression and Regulation; (6) Comparative Genomics, Variation, and 
Repeats; (7) ENCODE Regions and Genes; (8) ENCODE Transcript Lev-

The Genome Browser Gateway: text start search and its choices

text/ID
searches

2A

2B

Figure 1.2.  The Genome Browser Gateway: text search and its choices. 
Text search interface (panel A) and detailed start page choices (panel B) are 
illustrated.
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els; (9) ENCODE Chromatin Immunoprecipitation; (10) ENCODE Chro-
mosome, Chromatin, and DNA Structure; and ENCODE Comparative 
Genomics and ENCODE Variation (Figure 1.3). When the configuration 
is performed, the Genome Viewer display needs to be refreshed accord-
ingly. Additionally, UCSC Genome Browser uses the same interface and 
display for each of the species listed; therefore, the software works simi-
larly as well. However, different species will have different annotation 
tracks, again depending on the availability of data assembly.

To facilitate data viewing, the Genome Viewer page provides several 
options to make changes. You can use the buttons with the arrowhead 
indicators to walk left or right along the chromosome to the region of 
interest. The number of steps is proportional to the number of arrowheads 
(i.e., triple arrowheads for big steps and single ones for small steps). You 
can manipulate the image area up to ten-fold using the Zoom In/Zoom 

Overview of the wholeGenome Browser page

Genome viewer section

mRNA and EST tracks

Expression and regulation

Comparative genomics

Variation and repeats

Groups of data

Mapping and sequencing tracks

Genes and gene prediction tracks

Figure 1.3.  Overview of the Genome Browser page. Sample diagrammatic rep-
resentation of the genome corresponding to the available annotation tracks for 
quick data finding is illustrated.
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Out buttons. If you select Base under Zoom In option, it will show you 
the nucleotides level right away. Alternatively, you can indicate a specific 
genome coordinate position in the Position box. By subtracting or add-
ing certain base pairs of nucleotides to the coordinate position of the 5' 
or 3'   end, you can retrieve the extra sequences. Alternatively, you can 
simply use the text search strategy by typing in gene name, gene symbol, 
or ID, etc. Another handy feature is the Automatic Zoom and Recenter 
Action — by positioning the mouse over the nucleotide backbone track at 
the very top, the browser will automatically recenter the image where you 
clicked, and zoom in threefold (Figure 1.4).

There are some visual cues to help interpret the graphical display on the 
genome viewer section:

	 1.	Sequence tagged sites (STS) or SNPs are indicated by vertical tick 
marks.

	 2.	Coding region exons are the tallest (full size) boxes.

	 3.	The half-size boxes are 5'  and 3'  untranslated regions (UTRs).

Sample Genome Viewer

base position
STS markers

Known genes
RefSeq genes

GenBank seqs

repeats

17 species compared

SNPs

single species compared

View options

Figure 1.4.  Sample Genome Viewer image corresponding to Chr3:124,813,835-
125,085,839. View options and annotation features are highlighted by the 
arrows.
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	 4.	Direction of the transcription of this coding unit is indicated by the 
little arrowheads, i.e., if the arrowheads point to the left, the gene is 
transcribed from the 5' UTR on the right side to the 3' UTR on the 
left and vice versa.

	 5.	Degree of conservation is represented by the height of bars. Tall bars 
indicate the increased likelihood of an evolutionary relationship in 
that region (Figure 1.5).

For some tracks, colors have important meaning. For example, in the 
Known Genes track, the color Black indicates that there is a protein data 
bank (PDB) structure entry for this transcript. Dark blue corresponds to 
NCBI-Reviewed Sequence and light blue for Provisional Sequences. Types 
of SNPs are color-coded as well. If you are not sure about any specific 
representation, you can click on the label (hyperlink) of the track under 
each annotation for more descriptive information. Understanding these 
representations will help you to quickly grasp many of the features in any 
genomic region.

Other than viewing the genome display horizontally, the pull-down 
menu options for each individual track allow you to see data vertically. 
Several options, including Hide (completely removes the data from the 
image); Pack (each item is separate, but efficiently stacked); Squish (keep 
each item on a separate line, but the graphics are shrunk by 50% of their 
regular height); Dense (collapse all items into a single line), and Full (one 
item per line) are available even though by default, some tracks are On and 

Sample visual cues on the genome browser

Tick marks; a single location (STS, SNP)

Intron; <<< or >>> direction of transcription 

<exon exon exon<<< <<<<< 5' UTR3' UTR

>exon exon exon>>> >>>>> 3' UTR5' UTR

Conservation

Figure 1.5.  Sample visual cues on the Genome Browser. Various data objects 
representing sequence tagged sites (STS), simple nucleotide polymorphisms 
(SNPs), exons, 5' and 3' Untranslated Regions (UTR), direction of transcription, 
and the degree of conservation are illustrated.
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others are Hidden. However, whenever any changes are made, you need to 
click the Refresh button to reload the display. The UCSC Genome Browser 
retains whatever changes you made until you clear them.

Finally, to learn more about the object (e.g., known genes, conservation, 
or SNPs, etc.) you are researching, you can position the mouse over that 
line, click, and a new Web page will appear (Figure 1.6). Many important 
details, including sequences, microarray data, mRNA secondary struc-
ture, protein domain structure, homologues in other species, gene ontol-
ogy descriptions, mRNA descriptions and pathways, etc., are provided in 
the Page Index box. Again, not all the genes have the same levels of detail, 
and not every species has all the information.

ii.  Sequence Search  This function of the UCSC is called BLAST-Like Align-
ment Tool or BLAT. BLAT searches require an index of the sequences in 
the database consisting of all the possible unique 11-oligomer sequences in 
the genome (or 4-mers for protein sequences). Just as you can quickly scan 
a book index to find the correct word, BLAT scans the index for matching 
11-mers or 4-mers and builds the rest of the match out from there. BLAT 
works best with high identity and greater similarity (>95% and >21 bp in 
nucleotide and >80% and >20-mers in protein, respectively).

More details
and links 

Figure 1.6  Sample detailed viewer objects. A new Web page is opened when 
the object is clicked providing more details and links illustrated in the lower 
panel.
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BLAT can be used to: (1) find the genomic coordinates of mRNA or pro-
tein within a given assembly, (2) determine the exon/intron structure of 
a gene, (3) display a coding region within a full-length gene, (4) isolate an 
EST of special interest as its own tract, (5) search for gene family members, 
and (6) find human homologs of a query from another species, etc. Similar 
to the text search, there are a few parameters (genome, assembly, query 
type, sort output, and output type) on the BLAT Search Genome page that 
you can change or specify. If you select BLAT’S Guess under query type, 
the BLAT tool will automatically guess whether you have entered nucleo-
tides or amino acids, and retrieve data accordingly.

BLAT allows you to paste up to 25,000 bases, 10,000 amino acids, and 
up to a total of 25 sequences in the common FASTA format (i.e., start 
with the greater than symbol (>) followed by the gene identification num-
ber or reference protein accession number or any name followed by the 
sequences). Alternatively, you can upload your sequences using the File 
Upload function. The I’m Feeling Lucky button will take you to the posi-
tion of your best match right away, in the Genome Viewer (Figure 1.7).

submit

Choices

Paste one or
more sequences 

File upload

Figure 1.7  BLAT tool overview and interface. The choices for Blat search, 
sequence input text box and file upload functions are highlighted in arrows. A 
FASTA format (i.e., start with the greater than symbol [>] followed by gene iden-
tification number or reference protein accession number or any name followed 
by the sequences) is required as shown here.

C8105.indb   11 7/18/07   8:08:35 AM



12  <  Bioinformatics: A Practical Approach

BLAT results are sorted by query and descending order of score and 
are displayed either in the browser (hyperlink) or the PSL (ps Layout pro-
gram) format, which is a differently structured, text-based output. The 
Browser link will take you to the location of the match in the Genome 
Viewer. A new line with “YOUR SEQUENCE FROM BLAT SEARCH” 
will appear on the top, and the name of your query sequence will be high-
lighted on the genomic viewer. All the other graphical displays are similar 
to the result of text search as described. The DETAILS link will give you 
a new page with sequence information. If mRNA sequences are used to 
Blat genome, color-coded exon/intron structures can be identified, and 
nucleotide-for-nucleotide alignments displayed (Figure 1.8).

B.  Table Browser Use  Table Browser is a powerful tool for filtering, 
manipulating, and downloading data in a very customized and flex-
ible manner, which is not possible with the Genome Browser. The Table 
browser allows you to:

Browser

Details

Exons (Blue
and upper case) 

Figure 1.8  Sample BLAT search result and alignment details. BLAT results 
sorted by query and descending order of score are displayed here. Alignment 
details are available through the links.
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	 1.	Retrieve the DNA sequence data or annotation data underlying 
Genome Browser tracks for the entire genome, a specified coordinate 
range, or a set of accessions.

	 2.	Apply a filter to set constraints on field values included in the output.

	 3.	Generate a custom track and automatically add it to your session so 
that it can be graphically displayed in the Genome Browser.

	 4.	Conduct both structured and free-form SQL queries on the data.

	 5.	Combine queries on multiple tables or custom tracks through an 
intersection or union and generate a single set of output data.

	 6.	Display basic statistics calculated over a selected dataset.

	 7.	Display the schema for the table and list all other tables in the data-
base connected to the table.

	 8.	Organize the output data into several different formats for use in 
other applications, spreadsheets, or databases. Tasks such as obtain-
ing a list of all SNPs or nonsynonymous coding variations in a given 
gene and all the known genes located on a certain chromosome, etc., 
can be easily performed.

The Table Browser interface is similar to other interfaces in the Genome 
Browser and related tools. Options, including clade, genome, assembly, 
and which data table you wish to search in, need to be specified first. A 
data table consists of three components (group, track, and table). Cur-
rently, available options under group are the following: Mapping and 
Sequencing Tracks; Phenotype and Disease Associations; Genes and Gene 
Prediction Tracks; Expression and Regulation; mRNA and EST Tracks; 
Comparative Genomics; Variation and Repeats; ENCODE Regions and 
Genes; ENCODE Transcription Levels; ENCODE Chromatin Immuno-
precipitation; ENCODE Chromosome, Chromatin, and DNA Structure; 
ENCODE Comparative Genomics; ENCODE Variation; and All Tracks 
and All Tables. Once the group is specified, the track and table menus 
automatically change to show the tracks in that group and the tables in 
that track. The available numbers of tracks and tables are varied within 
each group. Some may have only one table for a track, and others have 
multiple tables. In addition, the querying options below each table’s menu 
are varied as well because some output format options and filtering options 
are appropriate only for certain types of table. If you have any questions 
about the type of data in the selected table, you can click the Describe 
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Table Schema button, which leads to a description page that explains the 
field names, an example value, data type, and definition of each field of the 
database table. If the database contains other tables that are related to the 
selected table by a field with shared values, those related tables are listed. 
If the selected table is the main table for a track, then the track description 
text is included (Figure 1.9).

In the Table Browser, you can search the entire genome, an ENCODE 
region, or a specific chromosomal location. ENCODE is a project led by 
the National Human Genome Research Institute (NGRHI) to identify and 
characterize all functional elements in human genome sequences. Either 
with a specific chromosome coordinate range (e.g., chr22:10000000-
20000000) in the textbox or with a gene name, the Table Browser will 
find the location for you. Alternatively, you can copy and paste in a list of 
names or accession numbers or upload a file.

As mentioned previously, one of the powerful features of the Table 
Browser is the ability to filter for different parameters of the fields in the 
table data on various criteria, because it is a form-based SQL query. You 
can also use the “free form query” to type in your own custom filter. How-
ever, knowing SQL is not essential to use this filter form. If there were 
more tables that the track was based on or related to, those will show up on 
this page and you can filter on those too. Similar to the Genome Browser, 
changes and choices made in the Table Browser will be “remembered” 
until further changes are made or cleared.

Choices of Genome
Choices of data table

Choices of output format

Choices of region to search

Choices of refine search

Figure 1.9  Sample Table Browser interface. A list of choices for genome, 
data table, region to search, refine search, and output format are highlighted in 
boxes.
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The intersection function of the Table Browser allows you to find if two 
datasets have any overlap. For example, you can find out if there is any 
chromosomal location overlap between the “known genes” dataset and 
the “simple repeats” dataset. You can specify the group, annotation track, 
and table that you wish to intersect with the table that you selected on 
the main page. You can choose complete, none or percentage overlap, and 
intersection or union. There are also options available regarding how you 
want to see the data with base-pair-wise intersections and complements. 
However, the intersection tool can be used only on positional tables con-
taining data associated with specific locations in the genome, such as 
mRNA alignments, gene predictions, cross-species alignments, and cus-
tom annotation tracks. Positional tables can be further subdivided into 
several categories based on the type of data they describe. For example, 
alignment data can be best described by using a block structure to rep-
resent each element. Other tables require only start and end coordinate 
data for each element. Some tables specify a translation start and end in 
addition to the transcription start and end. Some tables contain strand 
information, and others do not. Most tables, but not all, specify a name for 
each element. Based on the format of the data described by a table, differ-
ent query and output formatting options may be offered.

The last feature in the Table Browser is the correlation tool, which was 
added to the Table Browser in August 2005 and is still under development. 
It is available for data tables that contain genomic positions and computes 
a simple linear regression on the scores in two datasets. If a dataset does 
not contain a score for each base position, then the Table Browser assigns 
a score of 1 for each position covered by an item in the table, and 0 other-
wise. The Table Browser computes the linear regression quickly and then 
displays several graphs for visualizing the correlation, as well as sum-
mary statistics, including the correlation coefficient “r.” When datasets 
and parameters are chosen with some forethought, the correlation feature 
is a powerful tool to determine, for example, if there is any correlation 
between GC content and chromosome structure, or between certain types 
of genes and repeats between two datasets.

The Table Browser offers several choices to output your data. “All fields 
from selected table” and “Selected fields from primary and related tables” 
output formats provide you a tab-delineated text file that can be later used 
in a word processing or spreadsheet program. “Sequence” format provides 
you the DNA or protein sequence in a FASTA format. Gene Transfer For-
mat (GTF) and the Browser Extensible Data format (BED) provide database 
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formats to be used in other programs and databases. Custom Track output 
format creates an annotation track of your query in the Genome Browser 
and in the Table Browser, for further study. This newly created annotation 
track can be viewed and searched just as any other annotation track. We 
will focus more on how to create and use the custom annotation tracks in 
the next section. “Hyperlink to Genome Browser” output provides a list 
of hyperlinks of the data positions in the Genome Browser. A summary 
of the specified data is provided via the Summary/Statistics button, which 
provides a general idea of the number of genes you are working with.

The output file can be saved on your computer when a filename is 
entered in the Output File textbox; without the filename, the output is 
displayed in the browser. The exception is the custom track output, which 
automatically sends you to a separate browser page no matter what is in 
the textbox.

C.  Creating and Using Custom Track  The Genome Browser introduced 
previously provides aligned annotation tracks that have been computed 
at UCSC or have been provided by outside collaborators. However, cus-
tom annotation tracks can be created from the Table Browser searches or 
your own data, and be viewed and searched as any other standard annota-
tion track. Notably, custom tracks are only persistent for 8 h. Any Table 
Browser search you have created a custom track from needs to be redone 
after 8 h if you have not downloaded the file. More information about the 
custom-annotated track can be provided through a URL as well.

The Custom Track hyperlink on the UCSC home page allows you to 
create custom tracks of your own data. Detailed instructions on execut-
ing the task are provided in Displaying Your Own Annotations in the 
Genome Browser (http://genome.ucsc.edu/goldenPath/help/customTrack.
html). Many custom tracks have been created by members of the scientific 
community, who have made them available for public viewing and query-
ing from the UCSC Genome home page. The list of submitted data and 
contributors from custom tracks can be accessed from the following link: 
(http://genome.ucsc.edu/ goldenPath/customTracks/custTracks.html). We 
will provide a step-by-step tutorial in Part II of this chapter.

D.  Introduction to the Gene Sorter  Gene Sorter is a search tool that takes 
a gene of interest and lists other genes in the genome sorted by a simi-
larity type to a reference gene. Similar to other tools available at UCSC, 
you are given several choices including genome species, assembly, search 
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term (gene name, accession number, keyword, etc.), and by what crite-
ria you wish to seek for the precalculated similarity to the gene in ques-
tion. Options include similarity in expression patterns, protein homology 
(BLASTP), Pfam domain structure, gene distance, name, gene ontology 
similarity, and others.

Gene Sorter allows you to configure the display to add, subtract, and 
change data columns even though some columns of data are checked by 
default. Some data columns can be configured further for more detailed 
information. For example, under the expression data column, you can 
configure it to show all tissues or a selected set, or have the values absolute 
or as a ratio of the mean level of expression, or to change the colors to 
signify the level of expression. Similarly, you can hide all data columns, 
which would be useful if you wanted to choose specific columns and elim-
inate default or other previous choices. You can choose to show all data 
columns or, if you need to, return to the default columns. At the end, you 
can save the data column configurations you have chosen for future view-
ing (Figure 1.10).

A new feature (custom columns) that has been added is the ability to 
add columns of data that are user generated. A straightforward and simple 
instruction in the Help section (http://genome.ucsc.edu/goldenPath/help/

Display options

Results

Figure 1.10  Sample gene sorter interface. The UCSC homepage with gene 
sorter navigator bar, displayed options, and sample result are illustrated here.
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hgNearHelp.html) will guide you in uploading and formatting your cus-
tom column. The Gene Sorter tool allows you to filter every column of 
data, including those that you have chosen to display in the results and 
those you have not. For example, you could filter for only genes with gene 
names that have a specific text string or genes that have a certain mini-
mum or maximum level of expression. For many data column filters, you 
can paste in or upload a list of filters if you have a large filter list. Once you 
choose your filters, you can list the resulting genes by name in alphabeti-
cal order. Therefore, you can get an idea about how large your results list 
will be, decide if you need to tighten or loosen your filters, or make sure 
you are getting the genes you are expecting. All the filters can be saved for 
further application.

E.  In Silico PCR  It is a tool used to search a genomic sequence database 
with a pair of PCR primers. Similar to the BLAT algorithm, it uses an index-
ing strategy to facilitate the task. To execute the In Silico function, you first 
need to specify the genome and assembly using the drop-down menus. 
Currently, not all the genomes are available in this tool, but new ones are 
added all the time. A minimum of 15 oligonucleotide forward and reverse 
primers are needed to execute the search. This tool does not handle ambig-
uous bases, so it is not possible to use “N” to represent any nucleotide.

The output contains the location and position of the correspond-
ing genomic stretch, the predicted fragment size, the primer sequences 
submitted in capital letters, and a summary of the primer melting tem-
peratures (Figure 1.11).

F.  Other Utilities
Batch Coordinate Conversion (liftOver) — This program converts a 

large number of genome coordinate ranges between assemblies. It is 
useful for locating the position of a feature of interest in a different 
release of the same genome or (in some cases) in a genome assembly of 
another species. During the conversion process, portions of the genome 
in the coordinate range of the original assembly are aligned to the new 
assembly while preserving their order and orientation. In general, it is 
easier to achieve successful conversions with shorter sequences.

DNA Duster — This program removes formatting characters and 
other non-sequence-related characters from an input sequence. It 
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offers several configuration options for the output format, including 
spaces, line breaks, and translated protein, etc.

Protein Duster — Similar to DNA Duster, this program removes for-
matting characters and other non-sequence-related characters from 
an input sequence. However, the configuration options for the out-
put format offered are limited.

Phylogenetic Tree Gif Maker — This program creates a gif image from 
the phylogenetic tree specification given. It offers several configura-
tion options for branch lengths, normalized lengths, branch labels, 
legend, etc.

Part II	 Step-By-Step Tutorial

1.  Basic Functionality of Genome Browser and BLAT Use
Here, we demonstrate how to perform a basic text and sequence (BLAT) 
search to retrieve genomic, mRNA, and protein sequences, using the 
UCSC Genome Browser.

	 1.	Text search

Go to the UCSC home page (http://genome.ucsc.edu).•

Location Size Input primers

Genome choices and primer sequences

Summary of primers

Figure 1.11  Sample view of the “In Silico PCR” interface. Input interface for 
“In Silico PCR” function is shown on the top panel. A detail description of results 
with the reverse and forward primers in capital letters, the size, and sequences 
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Click either “Genome Browser” on the left or “Genomes” on the 
top of the navigation bar.

Select Vertebrate under Clade; Human under Genome; Mar. 
2006 under Assembly.

Enter “MIF” in textbox under “Position or Search Term”; keep 
default image width (620) and click “Submit.”

Note: You may configure image or tracks by clicking “Con-
figure Tracks and Display” button.
As mentioned, a genome position can be specified in differ-
ent ways. On this Genome Browser Gateway page, you can 
find a list of examples of valid position queries for the human 
genome. More information can be found in the User’s Guide 
(http://genome.ucsc.edu/goldenPath/help/hgTracksHelp.
html).

Select “MIF (NM_002415) at chr22:22566565-22567409 — mac-
rophage migration inhibitory factor” under Known Gene.

Click arrows to move left or right; click 1.5x, 3x, or 10x to zoom in 
or out; click “Base” to zoom in to the nucleotide level.

Note: MIF gene is in the forward direction (i.e., arrowheads 
pointing to the right indicating that the 5' is on the left-hand 
side and 3' is on the right-hand side).

Click “DNA” on the top of the navigation bar.
A “GET DNA for” page will appear providing options to 
retrieve regions of sequence.
Enter “1000” in both the textboxes to retrieve additional bases 
from upstream and downstream of the gene.
Select All uppercase and Mask repeats to lowercase.

Click “get DNA.”
A FASTA output returns with description on the header and 
sequences followed (total of 2845 bp, Figure 1.12).

Click the Back arrow on the Web browser to go back to the “Get 
DNA for” page.

Select Extended case/color options.
Select Toggle Case and Bold under Known Genes, Bold under 
SNPs, and Underline under RepeatMasker.
Enter “255” under SNPs and Red,

•

•

•

−

−

•

•

−

•
−

−

−

•
−

•

−
−

−
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Click “Submit.”
A FASTA output returns with description on the header and 
sequences follow (total of 2845 bp). The red color indicates 
the SNP location; Toggle case and bold indicates the exons’ 
location (total of three exons); and underline for the Repeat-
Masker (Figure 1.13).

Click Back arrow on the Web browser three times to return to 
the UCSC Genome Browser.

Click highlighted “MIF” under “UCSC Known Genes based on 
UniProt, RefSeq, and GeneBank mRNA.”

The “Human Gene MIF Description and Page Index” page 
will appear.
Select Sequence in the Page Index box.
Select “Genomic (chr22:22,566,565-22,567,409)” under 
sequence. To specify options for sequence retrieval region:

Select Promoter/upstream and enter 500 in the Bases box.
Select 5' UTR exons, CDS exons, 3' UTR exons, and 
introns.
Select Downstream and enter 500 in the Bases box.

−
−

•

•

−

−
−

−
−

−

Figure 1.12  Sample view of MIF gene search using the BLAT function. A 
FASTA output with description and sequences are illustrated.
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Select One FASTA record per gene.
To specify options for sequence formatting:

Select Exons in uppercase and everything else in lowercase.

Click “Submit.”
A FASTA output returns with description on the header and 
sequences follow (total of 1845 bp) (Figure 1.14).

	 2.	Sequence (BLAT) Search

From the UCSC home page, select “Blat” on the navigation bar.

Select Human under Genome; Mar. 2006 under Assembly; 
BLAT’s guess under Query type; Query, Score under Sort output, 
and Hyperlink under Output type.

−
−

−

•
−

•

•

Figure 1.13  Sample view of MIF gene search using the BLAT function and 
Extended case/color options. A FASTA output with sequences where SNPs are 
highlighted in red, exons are displayed in toggle case and bold, and RepeatMas-
ker underlined.
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Paste partial MIF sequence (i.e., exon1; see Sample Data below) 
to the textbox and click “Submit.”

Select the query output located on chr22 with the highest score 
(205) indicating the perfect match. At this point, you can:

	 1.	Select browser
A special track in the viewer with a new line says “YOUR 
SEQUENCE FROM BLAT SEARCH” will appear, and the 
name of your query sequence is highlighted on the left. 
Click the highlight name to a new page where all the fea-
tures described in the previous section can be configured. 
You need to select the refresh button to change the setting.

	 2.	Select details
The “Alignment of Your Seq and chr22:22566565-
22566714” page containing the query, genomic match in 
color cues and letter case (blue and uppercase for exon; 
black and lower case for intron), and side-by-side align-
ment, appears at the bottom (Figure 1.8).

•

•

−

−

Figure 1.14  Sample MIF gene search using the BLAT function and specific 
sequence retrieval option. A FASTA output of MIF DNA sequences plus 500 bp 
of 5' UTR is displayed. Uppercase indicates the exons and lowercase for every-
thing else as specified in the query input.
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2.  Table Browser Use
	 1.	Straightforward search for gene of interest.

From the UCSC home page, select “Table Browser” or “Tables” 
on navigation bar.

Select Vertebrate under Clade; Human under Genome; Mar. 2006 
under Assembly; Gene and gene prediction tracks under Group; 
Known genes under Tracks; Known genes under Table.

Select position under region and enter MIF in the textbox; 
click lookup.

A “Select Position” page with Known Genes listed will appear.
Select MIF (NM_002415) at chr22:22566565-22567409 – 
macrophage migration inhibitory factor.
The Table Browser page returns with the chr22:22566565-
22567409 filled in the position text box.

Select Sequence under Output format. Make sure filter, intersec-
tion, and correlation function are Off (i.e., only the “create” but-
ton appears).

Select “get output.”
 A “Select Sequence Type for Known Genes” page will appear. 
You can:

Select Genomic or protein or mRNA.
If you select “Genomic,” you have to specify the retrieval 
sequences from regions of interest. Check boxes for 5' 
UTR exons, CDS exons, 3' UTR exons, and introns.
Select One FASTA record per gene.
Select CDs (codings) in upper case and UTR in lowercase, 
under Sequence Formatting Options.
Select “Get Sequence.”
A FASTA output returns with description on the header 
and sequences follow (total of 845 bp) (Figure 1.15).

Click Back arrow on the Web page three times to return to 
the Table Browser page.

	 2.	Use filter function to search for specific sequences of gene of interest.

Select Genome under Region.

•

•

•

−
−

−

•

•
−

−
−

−
−

−
−

−

•
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Select Sequence under Output format. Make sure filter, inter-
section, and correlation function are Off (i.e., only the create 
button appears).

Select Summary/statistics.
A Known Genes (KnownGene) Summary Statistics table 
returns showing a total of 39,288 items (genes). Both filter 
and intersection functions are OFF.

Select Create next to Filter.
A “Filter on Fields from hg18.knownGene” page will 
appear. Filter for Chr22 by entering 22 in the text box 
under Chrom match.
Select Submit.
Select Summary/statistics.

A Known Genes (KnownGene) Summary Statistics table 
returns showing a total of 949 items (genes) with our fil-
tering approach (Figure 1.16).

•

•
−

•
−

−
−

−

>hg18_knownGene_NM_002415 range=chr22:22566565-22567409 
5'pad=0 3'pad=0 revComp=FALSE strand=+ 
repeatMasking=noneaccacagtggtgtccgagaagtcaggcacgtagctcag
cggcggccgcggcgcgtgcgtctgtgcctctgcgcgggtctcctggtccttctgcc
atcATGCCGATGTTCATCGTAAACACCAACGTGCCCCGCGCCTCCGTGCCGGACGG
GTTCCTCTCCGAGCTCACCCAGCAGCTGGCGCAGGCCACCGGCAAGCCCCCCCAGG
TTTGCCGGGAGGGGACAGGAAGAGGGGGGTGCCCACCGGACGAGGGGTTCCGCGCT
GGGAGCTGGGGAGGCGACTCCTGAACGGAGCTGGGGGGCGGGGCGGGGGGAGGACG
GTGGCTCGGGCCCGAAGTGGACGTTCGGGGCCCGACGAGGTCGCTGGGGCGGGCTG
ACCGCGCCCTTTCCTCGCAGTACATCGCGGTGCACGTGGTCCCGGACCAGCTCATG
GCCTTCGGCGGCTCCAGCGAGCCGTGCGCGCTCTGCAGCCTGCACAGCATCGGCAA
GATCGGCGGCGCGCAGAACCGCTCCTACAGCAAGCTGCTGTGCGGCCTGCTGGCCG
AGCGCCTGCGCATCAGCCCGGACAGGTACGCGGAGTCGCGGAGGGGCGGGGGAGGG
GCGGCGGCGCGCGGCCAGGCCCGGGACTGAGCCACCCGCTGAGTCCGGCCTCCTCC
CCCCGCAGGGTCTACATCAACTATTACGACATGAACGCGGCCAATGTGGGCTGGAA
CAACTCCACCTTCGCCTAAgagccgcagggacccacgctgtctgcgctggctccac
ccgggaacccgccgcacgctgtgttctaggcccgcccaccccaaccttctggtggg

gagaaataaacggtttagagact

Figure 1.15  Sample view of Table Browser search using the position of the 
gene. An overview of the query result for chr22:22566565-22567409. Options of 
sequence outputs and regions of retrieval are illustrated here. A sample of the 
sequences retrieved is displayed in FASTA format.
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Select the Back arrow on the Web page to return to Table 
Browser page.
Select Edit next to Filter to apply more filtering criteria if 
you want to further narrow down the list of genes.

	 3.	Use intersection function to search for specific sequences of gene 
of interest.

Keep Genome under Region.

Keep Sequence under Output format. Filter function is On (i.e., 
edit and clear buttons are shown).

A total of 949 items (genes) shown on the summary/statis-
tics table.

Select Create next to Intersection.
An “Intersect with Known Genes” page will appear.

Select Variation and Repeats under Group; Microsatellite 
under Track and tables will automatically show Microsat-
ellite (microsat).
Select All Known Genes records that have any overlap 
with Microsatellite.
Click “Submit.”

Select Summary/statistics.
A Known Genes (KnownGene) Summary Statistics table 
returns showing a total of nine items (genes) with our 
intersection approach (Figure 1.17).

3.  Creating and Using Custom Track
	 1.	To create custom tracks from the Table Browser search queries

Continue the setting from previous Table Browser settings (i.e., 
nine items after filtering and intersection).

Select Custom track under the Output format.

Select Get output.
A new format “Output knownGene as custom track” page 
will appear.
Enter MicrosatGenes under Name; Intersection Microsatel-
lite, KnownGenes under Description.
Select Pack from the menu under Visibility.

−

−

•

•

−

•
−

−

−

−
−

−

•

•

•
−

−

−
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Figure 1.17  Sample view of table browser search and intersection function. 
The known genes summary statistics tables before and after intersection func-
tion (while filter function is on) are illustrated.

Figure 1.16  Sample view of Table Browser search and filter function. The 
known genes summary statistics tables before and after the filter function are 
illustrated.
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Leave the URL blank because we do not have a Web page 
providing more information about the annotation track cre-
ated here.
Select Whole Gene under the Create one BED record per:
Select get custom track in file to download track file to desk-
top (Figure 1.18).

NOTE: Custom tracks are persistent only for 8 h.
Detailed description of BED (Browser Extensible Data) 
can be found at http://genome.ucsc.edu/goldenPath/help/
customTrack.html#BED

Select Get custom track in Genome Browser, and the custom 
track will appear in the Genome Browser.
Position the mouse over the string “Intersection microsatel-
lite KnownGenes” on the Genome Browser and select it.

The name (MicrosatGenes) we entered on the custom 
track header page will appear on the Genome Browser.

Select Manage custom tracks.
Click the hyperlink chr22 under Pos(ition).

−

−
−

−
−

−

−

−

−
−

Chr.
start Name

Chr.
end

Browser extensible data

Score Strand
Thick
start

Thick
end Color Blocks

Block
start (after 0) 

Block
size

Figure 1.18  Sample view of Table Browser search using “custom track” as 
one of the output formats. Configuration interface and display of the custom 
track in Table Browser using Browser Extensible Data format are illustrated and 
described in detail.
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All the nine items (genes) we retrieved are showing on 
the Browser in ticks spanning Chromosome 22. If you did 
not see it, double-check the genome region, which should 
be set at Chr22:19,543,292-46,000,000. A broader genome 
region ensures the view of all the items being displayed.
Hide all the tracks except for custom tracks (Base Posi-
tion “dense” and MicrosatGenes “dense”) and the Known 
Genes (pack) under Genes and Gene Prediction Tracks.
Note: Change dense to full under the MicrosatGenes of 
the Custom Tracks and see what happened (reveals one 
gene per data).

Select NM_004782 under Intersection Microsatellite Known-
Genes. A Custom Track: MicrosatGenes page will appear 
with descriptive information.
Select Position: chr22:19543292-19574108 will take you to the 
Genome Browser.

Our search (i.e., KnownGene + Microsatellite) identified 
the SNAP29 gene.

Positioning the mouse over SNAP29 and clicking will pro-
vide you with a more detailed description of this gene.

SNAP 29 (synaptosomal-associated protein 29) is a mem-
ber of the SNAP25 gene family. The protein encoded by 
this gene binds tightly to multiple syntaxins and is local-
ized to intracellular membrane structures rather than to 
the plasma membrane. Use of multiple polyadenylation 
sites has been noted for this gene (Figure 1.19).
You can continuously view and compare the rest of genes 
in our specialized search with other annotated data (i.e., 
position the mouse over each item and select) in the 
Genome Browser.

	 2.	To create custom tracks from your own data

From the UCSC home page select Genome Browser.

Select Manage custom tracks.
On the Manage Custom Tracks, select Add custom tracts.
Paste the input file (see Sample Data that follow) in the pasted 
URL or data text box.

−

−

−

−

−

−

−

−

−

•

•
−
−
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Selecting Submit will take you back to the Manage Custom 
Tracks page.
Select either Go to Genome Browser or Go to Table Browser 
To view your own track that you have just created (Figure 1.20 
and Figure 1.21).

Note: The input file you created for the custom track can 
be either pasted to the textbox or uploaded.
Formats of Annotation data supported by UCSC include: 
standard GFF GTF, PSL, BED, or WIG. GFF and GTF 
files must be tab delimited rather than space delimited to 
display correctly.
Chromosome references must be of the form chrN (the 
parsing of chromosome names is case sensitive).
You may include more than one dataset in your annota-
tion file; these need not be in the same format (see Sample 
Data 3).
More information about how to display your own annota-
tion in the genome browser can be found at http://genome.
ucsc.edu/goldenPath/help/ customTrack.html.

−

−

−

−

−

−

−

Open for 
details

compare

Figure 1.19  Sample view of the custom track displayed in Genomic Browser 
format.
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Build 1 

Build 2 & 3 

Figure 1.21  Sample view of displaying custom track in Genomic Browser.

Paste input data here

Figure 1.20  Sample view of the “build your own custom tracks.”
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4.  Gene Sorter
From UCSC home page, select “Gene Sorter” on the navigation bar.

Select Human under Genome; Mar. 2006 under Assembly.

Enter NM_002415 in the search textbox.

Select Protein Homology — BLASTP under Sort by.

The Gene Sorter takes the MIF gene and lists other genes in the 
genome sorted protein homology.

Click Configure button to change the parameters, including 
“choose columns of data to display” and “choose order of display 
columns,” etc.

Click Filter button to limit the search.

Position the mouse over each hyperlink for more description 
or results.

You have two output options (sequence and text).
Select sequence will take you to a format Get Sequence page. 
You can select sequence types, including protein, mRNA, 
upstream and downstream of promoter, and Genomic. 
Choose “Protein.” Clicking on “Get Sequence” will get you a 
FASTA-formatted text file of all the genes in your search.
Select Text will get you a tab-delimited file of all the genes 
and the column data you have chosen to display. You can save 
the file on your computer and view it in Excel or some other 
spreadsheet program.

5.  In Silico PCR
From the UCSC home page, click “In Silico PCR” on the naviga-
tion bar.

Select Human under Genome; Mar. 2006 under Assembly.

Paste CACAAAAGGCGGGACCACA in the Forward Primer text box.

Paste ACTGCGAGGAAAGGGCG in the Reverse Primer text box.

Keep all the default settings.

Select Submit.

•

•

•

•

•

•

•

•

•
−

−

•

•

•

•

•

•
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The search returns a sequence output file in FASTA format con-
taining all sequences in the database that lie between and include 
the primer pair (Figure 1.11).

6.  Other Utilities (DNA Duster)
From the UCSC home page, click “Utilities” on the navigation bar.

Select DNA Duster under UCSC Genome Browser Utilities.

Paste the Sample Data 4 to the DNA Duster textbox.

The output format settings are 5 for spaces (pull-down menu), 
50 for line breaks (pull-down menu), uncheck show numbers 
option, “unchanged” under case and strand, uncheck translate, 
start at AUG options, and lowercase in intron checkbox.

Select submit and DNA Duster retrieve data as shown in the follow-
ing text:

	accac	 agtgg	tgtcc	 gagaa	gtcag	gcacg	tagct	cagcg	gcggc	 cgcgg	

cgcgt	 gcgtc	tgtgc	 ctctg	cgcgg	gtctc	ctggt	ccttc	tgcca	 tcatg	

ccgat	 gttca	tcgta	 aacac	caacg	tgccc	cgcgc	ctccg	tgccg	 gacgg	

gttcc	 tctcc	gagct	 caccc	agcag	ctggc	gcagg	ccacc	ggcaa	 gcccc	

cccag	 tacat	cgcgg	 tgcac	gtggt	cccgg	accag	ctcat	ggcct	 tcggc	

ggctc	 cagcg	agccg	 tgcgc	gctct	gcagc	ctgca	cagca	tcggc	 aagat	

cggcg	 gcgcg	cagaa	 ccgct	cctac	agcaa	gctgc	tgtgc	ggcct	 gctgg	

ccgag	 cgcct	gcgca	 tcagc	ccgga	caggg	tctac	atcaa	ctatt	 acgac	

atgaa	 cgcgg	ccaat	 gtggg	ctgga	acaac	tccac	cttcg	cctaa	 gagcc	

gcagg	 gaccc	acgct	 gtctg	cgctg	gctcc	acccg	ggaac	ccgcc	 gcacg	

ctgtg	 ttcta	ggccc	 gccca	cccca	acctt	ctggt	gggga	gaaat	 aaacg	

gttta	 gagac           t

Click Back arrow on the Web page to go back to DNA Duster page 
(you should still have the input data pasted in the textbox).

Change the output format settings to “None” for spaces (pull-down 
menu) and check Translate and start at AUG options checkbox.

Select Submit, and retrieve data as shown in the following text:

 MPMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAF	

GGSSEPCALCSLHSIGKIGGAQNRSYSKLLCGLLAERLRISPDRVYINYY	

DMNAANVGWNNSTFA

•

•

•

•

•

•

•

•

•
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Part III	 Sample Data

	 1.	MIF exon 1 sequence

> MIF partial sequence for Blat

ACCACAGTGGTGTCCGAGAAGTCAGGCACGTAGCTCAGCGGCGGCCGCGG

CGCGTGCGTCTGTGCCTCTGCGCGGGTCTCCTGGTCCTTCTGCCATCATG

CCGATGTTCATCGTAAACACCAACGTGCCCCGCGCCTCCGTGCCGGACGG

GTTCCTCTCCGAGCTCACCCAGCAGCTGGCGCAGGCCACCGGCAAGCCCC

CCCAG

	 2.	 Input file for build 1 (custom track)

browser position chr22:22556600-22577700

track name=build1	description=”Demo”	 visibility=3

chr22	22556700	 22556800

chr22	22556800	 22556900

chr22	22556900	 22562000

	 3.	 Input file for Build 2 and Build 3 (custom track)

browser position chr22:20100000-20200000

track name=Build2 description=”Blue ticks every 5000 

bases” color=0,0,255,

chr22 20100000 20105001

chr22 20105000 20110001

chr22 20110000 20115001

chr22 20115000 20120001

chr22 20120000 20125001	

track name=Build3 description=”Red ticks every 500 

bases” color=255,0,0

chr22 20100000 20100500	Frag 1

chr22 20100501 20101000	Frag 2

chr22 20101001 20101500	Frag 3

chr22 20101501 20102000	Frag 4

chr22 20102001 20102500	Frag 5

chr22 20102501 20103000	Frag 6

	 4.	 Input file for DNA Duster

1 accacagtgg tgtccgagaa gtcaggcacg tagctcagcg gcggccgcgg cgcgtgcgtc

61 tgtgcctctg cgcgggtctc ctggtccttc tgccatcatg ccgatgttca tcgtaaacac
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121 caacgtgccc cgcgcctccg tgccggacgg gttcctctcc gagctcaccc agcagctggc

181 gcaggccacc ggcaagcccc cccagtacat cgcggtgcac gtggtcccgg accagctcat

241 ggccttcggc ggctccagcg agccgtgcgc gctctgcagc ctgcacagca tcggcaagat

301 cggcggcgcg cagaaccgct cctacagcaa gctgctgtgc ggcctgctgg ccgagcgcct

361 gcgcatcagc ccggacaggg tctacatcaa ctattacgac atgaacgcgg ccaatgtggg

421 ctggaacaac tccaccttcg cctaagagcc gcagggaccc acgctgtctg cgctggctcc

481 acccgggaac ccgccgcacg ctgtgttcta ggcccgccca ccccaacctt ctggtgggga

541 gaaataaacg gtttagagac t

Section 2	 Sequence Similarity Searching by BLAST
Part I	I ntroduction

Because a sequence itself is not informative, finding similarities between 
sequences by comparative methods against existing databases provides a 
powerful way to develop novel sequences with previously characterized 
genes from the same or different organisms (for example, abundant mes-
sage in a cancer cell line bears similarity to protein phosphatase genes). 
Based on this, you can infer the function of newly sequenced genes, pre-
dict new members of gene families, explore evolutionary relationships, 
and gain insight into the function and biological importance (for exam-
ple, phosphorylation and dephosphorylation play an important role in the 
regulation of cellular transformation in the cancer cell line). In addition, 
a sequence similarity searching tool can also be used to predict the loca-
tion and function of protein-coding and transcription regulation regions 
in genomic DNA.

1.  What Is BLAST?
BLAST or Basic Local Alignment Search Tool is a method to ascertain 
sequence similarity. The core of BLAST services (BLAST 2.0), also known 
as “Gapped BLAST,” is designed to take protein or nucleic acid sequences 
and compare them against a selection of NCBI databases. The BLAST algo-
rithm introduced in 1990 (Ref Altschul SF) was written to provide better 
overall speed of searches, while retaining good sensitivity by breaking 
the query and database sequences into fragments, for distance sequence 
relationship. Different from other global or multiple sequence alignment 
programs, BLAST is focused on regions that share only isolated regions 
of similarity. Therefore, BLAST is a very powerful tool to view sequences 
aligned with each other, or to find homology. Regions of similarity embed-
ded in otherwise unrelated sequences can be calculated, and statistical 
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significance of matches obtained. Both functional and evolutionary infor-
mation can be inferred from well-designed queries and alignments.

BLAST comes in variations, for use with different query sequences 
against different databases. All BLAST applications, as well as information 
on which BLAST program to use and other help documentation, are 
listed on the BLAST home page (http://www.ncbi.nlm.nih.gov/BLAST). 
Recently, NCBI BLAST has implemented several new display features, 
including: (1) highlight mismatches between similar sequences, (2) show 
where the query was masked for low-complexity sequence, and (3) inte-
grate information about the database sequences from the NCBI Entrez 
system into the BLAST display. Additionally, the new report generator has 
been optimized for databases with large sequences (Jian Ye et al., 2006).

We will briefly introduce the main function of each program and give a 
step-by-step tutorial with examples in Part II.

2.  What Are the Principles Behind This Software?
The BLAST algorithm is a heuristic program and is tuned to find functional 
domains that are repeated within the same protein or across different proteins 
from different species, as well as shorter stretches of sequence similarity.

To perform a BLAST search, you need to submit sequences (nucleotide 
or protein) via a BLAST Web page (http://www.ncbi.nlm.nih.gov/BLAST) 
as a query against all (or a subset of) the public sequence databases. The 
QBLAST system located on the NCBI BLAST server executes the search, 
first by making a look-up table of all the “words” (short subsequences) 
and “neighboring words,” i.e., similar words in the query sequence. The 
sequence database is then scanned for these “hot spots.” When a match 
is identified, it is used to initiate gap-free and gapped extensions of the 
“word.” After the algorithm has looked up all possible “words” from the 
query sequence, and extended them maximally, it assembles the best 
alignment for each query sequence pair and writes this information to 
a SeqAlign data structure, e.g., Abstract Syntax Notation 1 or ASN.1. 
ASN.1 is an international standard data-representation format used to 
achieve interoperability between computer platforms. It allows for reli-
able exchange of data in terms of structure and content by computer and 
software systems of all types. The BLAST Formatter, which sits on the 
BLAST server, can then format the results by fetching the ASN.1 and the 
sequences from the BLAST databases and post them back in a ranked list 
format to the browser, in the chosen display format. Thus, once a query 
has been completed, the results can be reformatted without rerunning 
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the search. Alternatively, StandAlone BLAST can be performed locally 
as a full executable through the command line and can be used to run 
BLAST searches against private, local databases, or downloaded copies of 
the NCBI databases. BLAST binaries are provided for Macintosh, Win32 
(PC), LINUX, Solaris, IBM AIX, SGI, Compaq OSF, and HP UX systems. 
StandAlone BLAST executables can be obtained on the NCBI anonymous 
FTP server (ftp://ftp.ncbi.nih.gov/blast/executables/).

There are many different variations of the BLAST program available to 
use for different sequence comparisons, e.g., a DNA query to a DNA data-
base, a protein query to a protein database, and a DNA query, translated in 
all six reading frames, to a protein sequence database. Other adaptations 
of BLAST, such as Position-Specific Iterated-BLAST (PSI-BLAST) for iter-
ative protein sequence similarity searches and Reversed Position Specific 
BLAST (RPS-BLAST) for searching for protein domains in the Conserved 
Domains Database that perform comparisons against sequence profiles, 
are available as well.

BLAST does not search GenBank flat files (or any subset of GenBank 
flat files) directly. Rather, sequences are made into BLAST databases. Each 
entry is split, and two files are formed, one containing just the header 
information, and the other containing just the sequence information. 
These are the data that the algorithm uses. If BLAST is to be run in stand-
alone mode, the data file could consist of local, private data, downloaded 
NCBI BLAST databases, or a combination of the two.

To have some idea of whether the alignment performed by BLAST is 
“good” and whether it represents a possible biological relationship, or 
whether the similarity observed is attributable to chance alone, BLAST 
uses statistical theory to produce a bit score and expect value (E-value) for 
each alignment pair (query-to-hit). In general terms, this score is calcu-
lated from a formula that takes into account the alignment of similar or 
identical residues, as well as any gaps introduced to align the sequences. 
The scoring system for nucleotide sequence pairwise alignment is called 
identity matrix, in which an identity results in a score of +1 and a mis-
match results in a score of −3 at that position. However, the scoring sys-
tem for protein sequence pairwise alignment is based on the selected 
substitution matrix in which scores for each position are derived from 
observations of the frequencies of substitutions for any possible pair of 
residues that are aligned. Scores for an amino acid pair can be positive, 
zero, or negative depending on how often one amino acid is observed to 
be substituted for another in nature. Each matrix is tailored to a particu-
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lar evolutionary distance. The BLOSUM62 matrix (Blocks Substitution 
Matrix) is the default for most BLAST programs, except for the blastn 
program, which perform nucleotide–nucleotide comparisons and hence 
does not use protein-specific matrices and MegaBLAST. In BLOSUM62, 
the alignment from which scores were derived, was created using 
sequences sharing no more than 62% identity. Sequences more identi-
cal than 62% are represented by a single sequence in the alignment so as 
to avoid overweighting closely related family members. Other matrices, 
including BLOSUM80, BLOSUM45, PAM30 (Percent Accepted Muta-
tion), and PAM70, are also available, depending on the type of sequences 
you are searching with. More information on BLAST substitution matri-
ces can be found at http://www.ncbi.nlm.nih.gov/blast/html/sub_matrix.
html. Because the bit scores are normalized, they can be used for differ-
ent alignment comparisons, even if different scoring matrices were used. 
Generally, the higher the score, the better the alignment and the greater 
the degree of similarity.

The E-value gives an indication of the statistical significance of a given 
pairwise alignment and reflects the size of the database and the scoring 
system used. For example, a sequence alignment with an E-value of 0.05 
means that this similarity has a 5 in 100 chance of occurring by chance 
alone. Although a statistician might consider this to be significant, it still 
may not represent a biologically meaningful result, and analysis of the 
alignments is required to determine biological significance. Generally, the 
lower the E-value, the more significant the hit is. The default statistical 
significance threshold for reporting matches against database sequences 
is 10, such that 10 matches are expected to be found merely by chance. If 
the statistical significance ascribed to a match is greater than the expected 
threshold, the match will not be reported. Increasing the E-value forces 
the program to report less significant matches.

At some positions, where a letter is paired with a null, gaps are intro-
duced. Because a single mutational event may cause the insertion or dele-
tion of more than one residue, the presence of a gap is frequently ascribed 
more significance than the length of the gap. Hence, the gap is penalized 
heavily, whereas a lesser penalty is assigned to each subsequent residue in 
the gap. There is no widely accepted theory for selecting gap costs. There-
fore, it is rarely necessary to change gap values from the default.

There are many databases available to compare your query sequences 
against. A protein database is appropriate for amino acid sequence searches, 
whereas a nucleic acid database is appropriate for DNA sequence searches. 
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The exception to this occurs when using programs such as BLASTX and 
TBLASTN, which perform cross-comparisons between different types of 
query and database sequences. A commonly used “nr database” is a col-
lection of “non-redundant” sequences from GenBank and other sequence 
databanks, including EMBL, DDBJ, SwissProt, PIR, PRF, and PDB etc. 
A detailed list of available subject databases can be accessed from http://
www.ncbi.nlm.nih.gov/blast/ blast_databases.shtml.

3.  What Can BLAST Do?
There are different BLAST programs, which can be distinguished by the 
type of the query sequence (DNA or protein) and the type of the sub-
ject database, to search for various types of homology. Basically, BLAST 
can tell you: (1) putative identity and function of your query sequence, (2) 
help to direct experimental design to prove the function, (3) find similar 
sequences in model organisms (e.g., yeast, C. elegans, and mouse), which 
can be used to further study the gene, and (4) compare complete genomes 
against each other to identify similarities and differences among organ-
isms. In addition to databases maintained by NCBI, SwissProt and PDB 
are compiled outside of NCBI, dbEST and month are subsets of the NCBI 
databases, and other “virtual Databases” can be created using the “Limit 
by Entrez Query” option. If you are not sure which BLAST program to 
use, you should check out the “BLAST Program Selection Guide” available 
at http://www.ncbi.nlm.nih.gov/blast/producttable.shtml.

There are some common features in the BLAST programs:

	 1.	Query sequences should be pasted in the “search” text area.

	 2.	Only FASTA (up to 80 nucleotide bases or amino acids per line), bare 
sequence, or sequence identifiers (e.g., accession number and Gi) are 
accepted as input formats.

	 3.	No blank lines are allowed in any input format.

	 4.	Sequences are expected to be represented in the standard IUB/
IUPAC amino acid and nucleotide codes.

	 5.	Lowercase letters are accepted and are mapped into uppercase.

	 6.	A single hyphen or dash can be used to represent a gap of indetermi-
nate length.
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	 7.	U (for selenocysteine), * (translation stop), and hyphen (gap of inde-
terminate length) are accepted in amino acid sequences.

The selection of a BLAST program is dependent on: (1) the nature of the 
query, (2) the purpose of the search, and (3) the database intended as the 
target of the search and its availability. Following are the brief descriptions 
of each program (Figure 1.22).

NUCLEOTIDE

Blastn compares a nucleotide query sequence (>20 and <3000 
bp) against a nucleotide sequence database.

Megablast uses a greedy algorithm for highly similar sequences 
(>28 bp) search. This program is optimized for aligning 
sequences that differ slightly as a result of sequencing or other 
similar “errors.” It also efficiently handles much longer DNA 
sequences than traditional BLAST algorithms. However, when 
comparing less conservative sequences (<80%), this approach 
becomes much less productive than for the higher degree of con-
servation. Depending on the length of the exact match to start 

•

•

•

Figure 1.22  BLAST home page and available functions.
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the alignments from, it either misses a lot of statistically signifi-
cant alignments or, on the contrary, finds too many short ran-
dom alignments. Megablast is the only BLAST Web service that 
accepts multiple queries in FASTA format. If the query sequences 
are already present in the Entrez Nucleotide database, the GI or 
accession numbers can be pasted into the search text box (one 
identifier per line).

Discontiguous megablast is designed specifically for compari-
son of diverged sequences, especially sequences from different 
organisms that have alignments with low degree of identity. In 
contrast to Megablast and Blastn, which look for exact matches 
of certain length as the starting points for gapped alignments, 
discontiguous Megablast finds initial offset pairs, from which 
the gapped extension is then performed. Additional details on 
discontiguous Megablast are available at http://www.ncbi.nlm.
nih.gov/blast/ discontiguous.html and http://www.ncbi.nlm.nih.
gov/Web/Newsltr/FallWinter02/ blastlab.html.

Search for short nearly exact matches is used for short nucle-
otides (7–20 bp) e.g., primer search. To perform this function, 
parameter settings for blastn need to be adjusted so that the 
significance threshold governed by the E-value parameter and 
default word size parameter are not set too high. Currently, this 
tool does not work with degenerate bases.

PROTEIN

Blastp compares an amino acid query sequence (>15 residues) 
against a protein sequence database. Generally, blastp is better to 
use than blastn because the genetic code is degenerate; blastn can 
often give less specific results as compared to blastp.

PSI-Blast is designed for position-specific iterated search and 
can be used to find members of a protein family or build a cus-
tom position-specific score matrix.

PHI-Blast is designed for pattern-hit-initiated Blast and can be 
used to find proteins similar to the query around a given pattern.

Rpsblast (Reverse Position-Specific Blast) is used to search con-
served domains (i.e., recurring sequence patterns or motifs) of 
a protein against NCBI’s Conserved Domain Database (CDD), 

•

•

•

•

•

•

•
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which is a collection of multiple sequence alignments for ancient 
domains and full-length proteins. Using the Rpsblast algorithm, 
the query sequence is compared to a position-specific score matrix 
prepared from the underlying conserved domain alignment. Hits 
may be displayed as a pairwise alignment of the query sequence 
with representative domain sequences or as multiple alignments.

Cdart (Conserved Domain Architecture Retrieval Tool) uses 
precomputed conserved domain-search results to quickly iden-
tify proteins with a set of domains having similar architectures.

Search for short nearly exact matches is used for short pep-
tide (10 to 15-mer or shorter) search. Similar to the short primer 
search function mentioned earlier, the parameter settings need 
to be adjusted for blastp so that the significance threshold gov-
erned by the E-value parameter and default word size parameter 
are not set too high.

TRANSLATED

Blastx compares the six-frame conceptual translation products 
of a nucleotide query sequence (both strands) against a protein 
sequence database and provides combined significance statis-
tics for hits to different frames. This program is useful for find-
ing: (1) potential translation products of an unknown nucleotide 
sequence, and (2) homologous proteins to a nucleotide-coding 
region. Blastx is often the first analysis performed with a newly 
determined nucleotide sequence and is used extensively in analyz-
ing EST sequences. This search is more sensitive than nucleotide 
blast because the comparison is performed at the protein level.

Tblastn compares a protein query sequence against a nucleotide 
sequence database that is dynamically translated in all six read-
ing frames (both strands). Tblastn can be a very productive way 
of finding homologous protein-coding regions in unannotated 
nucleotide sequence databases such as ESTs (expressed sequence 
tags) and draft genomic records (HTG). Because ESTs and HTGs 
have no annotated coding sequences, there are no corresponding 
protein translations in the BLAST protein databases. Therefore, a 
tblastn search is the only way to search for these potential coding 
regions at the protein level. Similar to all translating searches, the 

•

•

•

•

•
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tblastn search is especially suited to working with error-prone 
data similar to ESTs and HTG, because it combines BLAST sta-
tistics for hits to multiple reading frames, and thus is robust to 
frame shifts introduced by sequencing error.

Tblastx compares the six-frame translations of a nucleotide 
query sequence against the six-frame translations of a nucleotide 
sequence database. It is useful for identifying novel genes in error-
prone nucleotide query sequences. However, this program cannot 
be used with the nr database on the BLAST Web page, because it 
is computationally intensive.

GENOMES (20 or 28 bp and above for nucleotide and 15 residues 
and above for proteins are needed for genome query) You can use 
this service to map the query sequence, determine the genomic 
structure, identify novel genes, find homologues, and perform other 
data mining. Currently, NCBI provides the following genomes for 
purpose of query:

Blast human, mouse, rat, chimp, cow, pig, dog, sheep, and cat

Blast chicken, puffer fish, zebra fish

Blast fly, honeybee, and other insects

Blast microbes and environmental samples

Blast plants and nematodes

Blast fungi, protozoa, and other eukaryotes

SPECIAL

GEO Blast tool enables retrieval of expression profiles on the 
basis of nucleotide sequence (20 or 28 bp and above) similarity 
against all GenBank identifiers represented on microarray Plat-
forms or SAGE libraries in GEO. The output resembles conven-
tional BLAST output with each alignment receiving a quality 
score. Each retrieval has an expression ‘E’ icon that links directly 
to corresponding Entrez GEO Profiles.

Bl2seq (Blast 2 Sequences) is designed to directly align two given 
sequences (11 bp or above and 15-mer and above) using the BLAST 
engine. You can Blast nucleotide-to-nucleotide, nucleotide-to-
protein, protein-to-nucleotide, or protein-to-protein, as long as 

•

•

•

•

•

•

•

•

•

•

•
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the appropriate program is selected. In the case of aligning short 
sequence (i.e., primer) to a given sequence, you need to increase 
the E-value to 1000 or higher, uncheck the filter box, and decrease 
the word size. The stand-alone executable Bl2seq can be retrieved 
from NCBI ftp site (ftp://ftp.ncbi.nlm.nih.gov/blast/executables/).

VecScreen is designed for identifying vector sequence (20 or 28 
bp and above) contamination in a query sequence against the 
UniVec database. Currently, UniVec contains a nonredundant 
set of unique vector segments from a large number of known 
cloning vectors, and sequences for adapters, linker, stuffers, and 
primers that are commonly used in the cloning and manipula-
tion of cDNA or genomic DNA. It is recommended to use this 
service to screen for vector contamination in sequences, before 
the submission to GenBank. More detailed information about 
this program can be found at http://www.ncbi.nlm.nih.gov/Vec-
Screen/ UniVec.html).

IgBlast (Immunoglobulin Blast) uses the BLAST search algorithm 
to facilitate analysis of immunoglobulin V-region sequences in 
GenBank. This tool has three major functions: (1) reports the 
three germ line V genes, three D, and two J genes that show the 
closest match to the query sequence, (2) annotates the immu-
noglobulin domains (FWR1 through FWR3), (3) and matches 
the returned hits (for databases other than germ line genes) to 
the closest germ line V genes, making it easier to identify related 
sequences. Currently, only human and mouse Ig germ line genes 
are available.

SNP Blast is linked to NCBI SNP Web page (http://www.ncbi.
nlm.nih.gov/SNP/snp_blastByOrg.cgi), where you can perform 
SNP blast database by organism or blast human SNP database 
by chromosome. SNP Blast result is displayed in “Pairwise with 
identify” format, which highlights the mismatches in red. In 
some cases, you can select “Query anchored with identity” for-
mat to get more information.

META

Retrieve results for an RID provides multiple accesses to the 
same result and displays it in various formats. QBLAST issues a 

•

•

•

•

•
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unique request ID (RID) for each successfully submitted NCBI 
BLAST search request, and RID can be used to retrieve the 
results. However, the server will only make the RID available 24 
h after the result is generated (Figure 1.23).

Part II	 Step-By-Step Tutorial

Here, we give a couple of examples of sequence homology search. As you 
are more familiar with the NCBI BLAST service, you will notice that the 
interfaces for both nucleotide and protein search are very similar. In most 
of the cases, you should keep the default setting for each unique program 
unless the query you perform did not give you good results.

	 1.	Search for nucleotide sequence homology

Using Blastn
Go to the NCBI Blast Web page (http://www.ncbi.nlm.nih.
gov/BLAST) directly or from the NCBI home page (http://
www.ncbi.nlm.nih.gov), and select BLAST from the top of 
the navigation bar.
Select “Nucleotide-nucleotide BLAST (blastn)” under Nucle-
otide section.
Paste the nucleotide sequences in the Search textbox (see 
Sample Data 1 in the following text).

•
−

−

−

Figure 1.23  Sample view of BLAST interface for retrieving results. An example 
of the RID (request ID) is illustrated.
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Select “nr” (nonredundant) for the most comprehensive 
search under the Choose database. Alternatively, you may 
select other database from the pull-down menu.

Note: There are several options for advanced blasting 
including “Limit by entrez query,” “organisms,” “Com-
positional adjustments,” “Filter,” “Expect value,” “Word 
size,” “Matrix,” “Gap costs,” etc. A hyperlink is provided 
with each option for a more detailed description.
Keep the default E-value to 10 and word size to 11.

Selecting BLAST will take you to the NCBI formatting BLAST 
page, with the comment that “Your request has been success-
fully submitted and put into the Blast Queue.” A summary 
statement about the query is given (in this case, Query = NM_
002415 MIF 561 letters). An RID is issued by the QBLAST in 
the text box (e.g., 1164153702-23479-21026453877.BLASTQ4).

Note: The RID number given in the previous paragraph is 
no longer available for data retrieval. You will be assigned 
a new RID when you perform the exercises.

Select Format, which will take you to the NCBI results of 
BLAST page. Whatever formatting options are being changed, 
you need to select Format again to apply them.

Note: All the BLAST reports consist of four major sec-
tions: (1) the header, which contains information about 
the query sequence and the database searched; (2) inter-
active browser; (3) the one-line descriptions with E-values 
and scores for each database sequence found to match the 
query sequence; these provide a quick overview for brows-
ing; and (4) the alignments for each database sequence 
matched (there may be more than one alignment for a 
database sequence it matches, Figure 1.25).
By default, a maximum of 500 sequence matches are 
displayed. You may change it on the advanced BLAST 
page with the Alignments option. Many components 
of the BLAST results display via the Internet and are 
hyperlinked to the same information at different places 
in the page, to additional information including help 
documentation, and to the Entrez sequence records of 
matched sequences. These records provide more infor-

−

−

−
−

−

−

−

−
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Paste nucleotide
sequences here 

Figure 1.24  Sample view of nucleotide-nucleotide BLAST search and the con-
figuration options.

Description

Browserheader

Alignment

Figure 1.25  A typical BLAST Search Report. It consists of four major sections: 
1) a header (top left); 2) a browser (top right); 3) the one-line descriptions with 
E-values (lower left); and 4) the alignments for each database sequence matched 
(lower right).
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mation about the sequence, including links to relevant 
research abstracts in PubMed.

Using Search for short nearly exact matches:
From the NCBI Blast Web page (http://www.ncbi.nlm.nih.
gov/BLAST) select “Search for short nearly exact matches” 
under Nucleotide section.
Paste the nucleotide sequences (7–20 bp). We use the 
excerpted sequence GCGGGTCTCCTGGTCCTTCT from 
MIF genomic DNA, as an example.
Select “nr” (nonredundant) for the most comprehensive 
search under the Choose database. Alternatively, you may 
select other database from the pull-down menus.

Note: Keep the default E-value to 1000 and word size to 7.
Select BLAST, which will take you to the NCBI formatting 
BLAST page, with the comment that “Your request has been 
successfully submitted and put into the Blast Queue.” A sum-
mary statement about the query is given (in this case, Query = 
20 letters). An RID is issued by the QBLAST in the textbox.
Select Format, which will take you to the NCBI results of 
BLAST page.

	 2.	Search for protein sequence homology

Using Blastp:
From the NCBI Blast Web page, select “Protein-protein 
BLAST (blastp)” under Protein section.
Paste the protein sequences (see Sample Data 2).
Select “nr” under database and check the Do CD-Search 
checkbox.

Note: Keep the default E-value to 10, word size to 3, and 
Matrix to BLOSUM62. A more detailed description on 
choosing parameters for protein-based BLAST searches 
can be found at http://www.ncbi.nlm.nih.gov/Education/
Blast_setup.html#Choose.

Select BLAST to see the results (in this case, Query = NM_
002415 MIF 114 letters). Because the Do CD-Search option 
is selected, putative conserved domains were searched, and 
in this case was detected with an image. Click on the image 

•
−

−

−

−
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−

•
−
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−
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−
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to go to the NCBI Conserved Domains Web page with more 
detailed descriptions and options.
Select Format if you wish to view the retrieved results in a 
different way.

Note: By default, a maximum of 100 descriptions, 50 
sequence alignments, and 100 graphic overviews are dis-
played. You may change it on the advanced BLAST page 
with the Alignments option.

Using Search for short, nearly exact matches:
From the NCBI Blast Web page, select “Search for short nearly 
exact matches” under Protein section.
Paste the nucleotide sequences (10 to 15-mer). We use the 
extracted sequence PMFIVNTNVPR from MIF protein 
DNA as an example.
Select the “nr” (nonredundant) database.

Note: Keep the default E-value to 20000, word size to 2, 
and Matrix to PAM30.

Select BLAST for results.
Select Format for a different view.

	 3.	Translated BLAST

Using Blastx:
From the NCBI Blast Web page, select “Translated query vs. 
protein database (blastx)” under Translated section.
Paste the nucleotide sequences (see Sample Data 2).
Select the “nr” (nonredundant) database. Keep the default and 
choose a translation to “TRANSLATED query-PROTEIN 
database [blastx]” and set Genetic codes to “Standard (1).”

Note: Keep the default E-value to 10, word size to 3, and 
Matrix to BLOSUM62.

Select BLAST for results.
Note: By default, a maximum of 100 descriptions, 50 sequence 
alignments, and 100 graphic overviews are displayed. You 
may change it on the advanced BLAST page with the Align-
ments option.

Using tBlastn
From the NCBI Blast Web page, select “Protein query vs. 
translate database (tblastn)” under Translated section.

−

−
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Paste the MIF protein sequences (see Sample Data 2).
Select the “nr” database. Keep default choose a translation 
to “PROTEIN query-TRANSLATED database [tblastx]” and 
Genetic codes to “Disabled.”

Note: Keep the default E-value to 10, word size to 3, and 
Matrix to BLOSUM62.

Select BLAST for results (in this case, Query = 115 letters).
Select Format if you wish.

Using tBlastn
From the NCBI Blast Web page, select “Protein query vs. 
translate database (tblastn)” under Translated section.
Paste the MIF protein sequences as an example.
Select the “nr” database. (Keep the default and choose a 
translation to “PROTEIN query-TRANSLATED database 
[tblastx]” and set Genetic codes to “Disabled.”)

Note: Keep the default E-value to 10, word size to 3, and 
Matrix to BLOSUM62.

Select BLAST for result (in this case, Query = 115 letters).
Select Format (optional).

	 4.	Genome BLAST

Blast Human sequences:
From the NCBI Blast Web page, select “Human, mouse, rat 
….” under Genomes section.
Select “Enter an accession, gi, or a sequence in FASTSA for-
mat” option and enter NM_002415 (accession) or 4505184 
(gi) or paste the MIF mRNA sequences in the text box.
Select “genome (all assemblies, previous build 35.1)” under 
Database.

Select “cross-species mega-BLAST: Compare nucleotide 
sequences for other species to this genome” under Pro-
gram. Keep default values for all the other settings.

Select Begin Search for result (in this case, Query = gi|4505184 
(561 letters)).
Select Format (optional).
Selecting ref|NT_011520.10|Hs22_11677 under Alignments 
will take you to the NCBI Map Viewer with the Blast hit. 
Select D (highlighted in green) under Alignments will show 
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you the Definition as “Gi|51476066|ref|NT_011520.10|Hs22_
11677 Homo sapiens chromosome 22 genomic contig.” Fol-
lowed by the definition is the sequence including up to 1000 
bp flanking sequence.

	 5.	Special BLAST

Blast 2 Sequence (Bl2seq):

	 1.	For nucleotide sequences
From the NCBI Blast Web page, select “Align two 
sequences (bl2seq)” under Special section.
Select “blastn” under Program because the input 
sequences we used here are nucleotide sequences. Keep 
“Not Applicable” under Matrix.
Paste MIF mRNA sequences (Sample Data 1) to sequence 
1 textbox.
Paste MIF genomic sequences plus 500 bp upstream and 
downstream of the flanking sequences of the gene (total 
of 1845 bp) (Sample Data 3) into the sequence 2 textbox.
Select Align, which will take you to the NCBI Blast 2 
Sequence results page stating the version of the BLASTN 
(2.2.14) and the date [May-07-2006]. Followed by the 
heading are the descriptions about the alignment. A brief 
summary about sequence 1 and sequence 2 is listed.
A diagram with three color segments is displayed in 
sequence matrix where x-axis is sequence 1 and y-axis is 
sequence 2. Each segment represents an exon aligned to 
the genomic sequences.

	 2.	For protein sequences:
From the NCBI Blast Web page, select “Align two 
sequences (bl2seq)” under Special section.
Select “blastp” under Program because the input 
sequences we used here are nucleotide sequences. Keep 
“BLOSUM62” under Matrix.
Paste sequence 1 (RTGVGTHLTSLALPGKAEGVAS-
LTSQCSYSSTIVHVGD KKP) to sequence 1 textbox.
Paste sequence 2 (RTGVGTHLTSLALPGKAESVAS-
LTSQCSYSSTIVHVGD KKP) to sequence 2 textbox.
Select Align.

•

−

−

−

−

−

−

−

−

−

−

−
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Results page showing an amino acid mutation (G to S) as 
shown in the following text.

Score = 82.8 bits (203), Expect = 4e − 15

Identities = 40/41 (97%), Positives = 40/41 (97%), 

Gaps = 0/41 (0%)

Query 1 RTGVGTHLTSLALPGKAEGVASLTSQCSYSSTIVHVGDKKP 41

 RTGVGTHLTSLALPGKAE VASLTSQCSYSSTIVHVGDKKP

Sbjct 1 RTGVGTHLTSLALPGKAESVASLTSQCSYSSTIVHVGDKKP 41

	 6.	Meta BLAST

Retrieve results
From the NCBI Blast Web page, select “Retrieve results” 
under Meta section.
Type in the Request ID, which was generated within the past 
24 h in the textbox.
Select Format!

Note: In the case where the alignment file is too big, it will 
be deleted from the server in 30 min.

In addition to the Step-by-Step Tutorial described here, NCBI 
also provides some BLAST exercises available in the prob-
lem set (http://www.ncbi.nlm.nih.gov/Class/FieldGuide/ 
problem_set.html) and exercise page (http://www.ncbi.
nlm.nih.gov/Class/MLACourse/ exercises.html#BLAST).

Part III	 Sample data

	 1.	MIF mRNA sequences (Homo Sapien) for blastn

>NM_002415 (MIF)

accacagtggtgtccgagaagtcaggcacgtagctcagcggcggccgcgggcgt 

gcgtctgtgcctctgcgcgggtctcctggtccttctgccatcatgcgatgttca 

tcgtaaacaccaacgtgccccgcgcctccgtgccggacgggttcctctccgagc 

tcacccagcagctggcgcaggccaccggcaagcccccccatacatcgcggtgca 

cgtggtcccggaccagctcatggccttcggcggctcagcgagccgtgcgcgctc 

tgcagcctgcacagcatcggcaagatcgccagaaccgctcctacagcaagctgc 

tgtgcggcctgctggccgagcgcctgcgcacagcccggacagggtctacatcaa 

ctattacgacatgaacgcggccaatgtgggctggaacaactccaccttcgccta 

agagccgcagggacccacgctgtctgc gctggctccacccgggaacccgccgc 

−

•
−

−

−
−
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acgctgtgttctaggcccgcccaccccaaccttctggtggggagaaataaacg 

gtttagagact

	 2.	MIF protein sequences (Homo Sapien) for blastp

>NM_002415 (MIF)

MPMFIVNTNVPRASVPDGFLSELTQQLAQATGKPPQYIAVHVVPDQLMAFGGSSEPCALCS

LHSIGKIGGAQNRSYSKLLCGLLAERLRISPDRVYINYYDMNAANVGWNNSTFA

	 3.	MIF genomic DNA sequence

>hg18_knownGene_NM_002415

atggtgattcgcaggggcagctcccctctcacctgccgcgatgactacccc 

gccccatctcaaacacacaagctcacgcatgcgggactggagcccttgagg 

acatgtggcccaaagacaggaggtacaggggctcagtgcgtgcagtggaat

gaactgggcttcatctctggaagggtaaggggccatcttccgggttcaccg 

ccgcatccccacccccggcacagcgcctcctggcgactaacatcggtgact 

tagtgaaaggactaagaaagacccgaggcgaggccggaacaggccgatttc 

tagccgccaagtggagaacaggttggagcggtgcgccgggcttagcggcgg 

ttgctggaggaacgggcggagtcgcccagggtcctgccctgcgggggtcga 

gccgaggcaggcggtgacttccccactcggggcggagccgcagcctcgcgg 

gggcggggcctggcgccggcggtggcgtcacaaaaggcgggACCACAGTGG 

TGTCCGAGAAGTCAGGCACGTAGCTCAGCGGCGGCCGCGGCGCGTGCGTCT 

GTGCCTCTGCGCGGGTCTCCTGGTCCTTCTGCCATCATGCCGATGTTCATC 

GTAAACACCAACGTGCCCCGCGCCTCCGTGCCGGACGGGTTCCTCTCCGAG 

CTCACCCAGCAGCTGGCGCAGGCCACCGGCAAGCCCCCCCAGgtttgccgg 

gaggggacaggaagaggggggtgcccaccggacgaggggttccgcgCtggg 

agctggggaggcgactcctgaacggagctggggggcggggcggggggagga 

cggtggctcgggcccgaagtggacgttcggggcccgacgaggtcgctgggg 

cgggctgaccgcgccctttcctcgcagTACATCGCGGTGCACGTGGTCCCG 

GACCAGCTCATGGCCTTCGGCGGCTCCAGCGAGCCGTGCGCGCTCTGCAGC 

CTGCACAGCATCGGCAAGATCGGCGGCGCGCAGAACCGCTCCTACAGCAAG 

CTGCTGTGCGGCCTGCTGGCCGAGCGCCTGCGCATCAGCCCGGACAGgtac 

gcggagtcgcggaggggcgggggaggggcggcggcgcgcggccaggccggg 

actgagccacccgctgagtccggcctcctccccccgcagGGTCTACATCAA 

TATTACGACATGAACGCGGCCAATGTGGGCTGGAACAACTCCACCTTCGCC 

TAAGAGCCGCAGGGACCCACGCTGTCTGCGCTGGCTCCACCCGGGAACCCG 

CCGCACGCTGTGTTCTAGGCCCGCCCACCCCAACCTTCTGGTGGGGAGAAA 

TAAACGGTTTAGAGACTaggagtgcctcggggttccttggcttgcgggagg 
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aattggtgcagAgccgggatattggggagcgaggtcgggaacggtgttgggg 

gcgggggtcagggccgggttgctctcctcCgaacctgctgttcgggagccct 

tttgtccagcctgtccctcctacgctcctaacagaggagccccagtgtcttt 

ccattctatggcgtacgaagggatgaggagaagttggcactctgccctgggc 

tgcagactcgggatctaaggcgctctgcccgccggaatccgtttacctaggg 

ccaccacgtggggtgctggaggtgagccgaccacggaagagggggaggagga 

gttggagttgggaggagtccgaggtcttctaggcctagacctttctctcagc 

cccaccttccccagccttcttgttgggcagagggtagccagaggacagaaag 

atcccacccagagccactcactgc catccactttgttaggtgacttcag

References
	 1.	 THE HUMAN GENOME: Science Genome Map. 2001. Science 291 (5507), 

1218. 
	 2.	 Istrail, S., Sutton, G.G., and Florea, L. et al. Whole-genome shotgun assem-

bly and comparison of human genome assemblies. Proc Natl Acad Sci USA. 
2004. 101(7):1916-21.

	 3.	 Hinrichs, A.S., Karolchik, D., and Baertsch, R. et al. The UCSC Genome 
Browser Database: update.  Nucleic Acids Res. 2006. 34: D590-D598. 

	 4.	 Kent, W.J. BLAT---The BLAST-Like Alignment Tool. Genome Res. 2002 12: 
656-664

	 5.	 McGinnis, S. and Madden, T.L. BLAST: at the core of a powerful and diverse 
set of sequence analysis tools. Nucleic Acids Res. 2004 Jul 1;32 (Web Server 
issue): W20-5. 

	 6.	 Ye, J., McGinnis, S., and Madden, T.L. BLAST: improvements for bet-
ter sequence analysis. Nucleic Acids Res. 2006 Jul 1;34 (Web Server issue):
W6-9.

C8105.indb   54 7/18/07   8:09:15 AM



55

C H A P T E R  2

Two Common DNA 
Analysis Tools

Blanca Camoretti-Mercado

Contents

Section 1 Restriction Mapping	 56
Part I Introduction	 56

1.  What Is Restriction Mapping?	 58
2.  Why Is Restriction Mapping Useful?	 58
3.  Online Restriction Mapping Programs	 59

Part II Step-By-Step Tutorial	 61
1.  Input Your Genomic or cDNA Sequence	 61
2.  Results: Display and Analysis	 62

Part III Sample Data	 66
Section 2 PCR Application	 67

Part I Introduction	 67
1.  How PCR Works	 67
2.  Quantitative Real-Time PCR	 68
3.  PCR Applications	 68
4.  PCR Primer Design	 70

Part II Step-By-Step Tutorial	 72
1.  Sequence Input and Parameters Selection	 72
2.  Results	 75

Part III Sample Data	 76

C8105.indb   55 7/18/07   8:09:15 AM



56  <  Blanca Camoretti-Mercado

The discovery of restriction enzymes from microorganisms ushered in 
the era of recombinant DNA technology and the technologies of genetic 
cloning and genetic engineering during the second half of the twentieth 
century. Similarly, the polymerase chain reaction (PCR) methodology 
facilitated unexpected breakthroughs in many life science disciplines, 
including clinical and basic research. Progress will certainly continue 
as more robust and faster computational tools emerge and continue 
to improve. This chapter focuses on the application of bioinformatics 
tools to restriction mapping and PCR, two of the most common DNA 
analyses.

Section 1	 Restriction Mapping
Part I	I ntroduction

Restriction enzymes are endonucleases that cleave DNA. These proteins 
are found in bacteria and form part of the defense mechanism against 
viral and other foreign DNA. Restriction enzymes’ names are derived 
from the organism in which they were isolated (genus, species, strain, 
and order of discovery). For example, EcoRI refers to the first restriction 
enzyme isolated from Escherichia coli, strain RY13. Bacteria contain over 
400 restriction enzymes that recognize and cut more than 100 different 
DNA sequences.

Restriction enzymes recognize and bind specific oligonucleotide 
(oligo) sequences of 4 to 12 nucleotides long (restriction sites). Their 
activity generates DNA fragments with unique ends by making nicks 
on the double-stranded DNA. Most restriction enzyme sites have dyad 
symmetry (palindromic) sequences; that is, the sequence on one strand 
reads the same in the opposite direction on the complementary strand. 
The enzyme recognition sites are written using a single-letter code (see 
Table 2.1), in 5' to 3' orientation, with the position of the cleavage indi-
cated by a “/” or a “̂ ”. For instance, EcoRI recognizes the G/AATTC 
sequence, and cuts (or digests) each strand of DNA between the G and 
the A. This leaves “sticky,” “cohesive,” or “complementary” ends that are 
single-stranded overhangs of DNA. Other enzymes like SmaI (restric-
tion site, CCC/GGG) make strand incisions just opposite one another, 
producing DNA fragments with “blunt” ends. Isoschizomers are restric-
tion endonucleases that recognize the same sequence; their cut sites may 
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or may not be identical. For example, HpaII is an isoschizomer of MspI 
(restriction site, C/CGG), and AccI is an isoschizomer of FblI (restric-
tion site, C/MKAC). DNA fragments produced by restriction enzymes 
can be reformed by the activity of ligases. For bases’ nomenclature, see 
Table 2.1.

For nonpalindromic enzymes, the point of cleavage is indicated by 
numbers in parentheses. For instance, GGTCTC(1/5) indicates cleavage 
at 5'…GGTCTCN/…3' in the top strand and 3'…CCAGANNNNN/…5' 
on the bottom strand. For enzymes that cleave away from their rec-
ognition sequence, the cleavage sites are also indicated in paren-
theses. For example, for MboII, GAAGA (8/7) indicates cleavage as 
follows: 5'…GAAGANNNNNNNN/…3' on the top strand and 3'…
CTTCTNNNNNNN/…5' on the bottom strand.

The Restriction Enzyme Database REBASE (http://rebase.neb.com) 
contains information on restriction enzymes and related proteins, their 
recognition and cleavage sites, published and unpublished references, 
isoschizomers, commercial availability, methylation sensitivity, as well 
as crystal and sequence data. REBASE is continuously updated, and 

Table 2.1  �Bases Nomenclature
Abbreviation Base

A Adenosine
C Cytosine
G Guanosine
T Thymidine

R (purine) G or A
Y (pyrimidine) C or T

M A or C
K G or T

S (strong) G or C
W (weak) A or T

B not A
D not C
H not G
V not T
N Any

Note: Mixed bases are also known as degenerate or wobble bases. As there are 11 different 
possible combinations of 2, 3, or 4 bases, a universal nomenclature has been estab-
lished, the IUB codes that must be used when specifying nucleic acid content at a 
mixed-base site.
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each enzyme has its own Web page. Related proteins include homing 
endonucleases, nicking enzymes, as well as DNA methyltransferases.

1.  What Is Restriction Mapping?
The discovery of the restriction enzymes and the elucidation of their mech-
anism and specificity of action led to the development of recombinant 
DNA technology. Indeed, restriction enzymes are fundamental means 
used in many procedures in molecular biology and genetic engineering. 
They are invaluable tools for dissecting, analyzing, and reconfiguring any 
genetic information at the molecular level.

The characterization of double-stranded DNA that is based on the loca-
tion of the restriction endonucleases cleavage sites constitutes the restric-
tion map. A small number of very large DNA fragments (several thousand 
to million base pairs [bp]) are obtained by digestion with rare-cutter 
restriction enzymes, which usually have 6-bp recognition sites. Most 
enzymes, however, cut DNA more often and generate many fragments 
(of less than a 100 to more than a 1000 bp long). On average, restriction 
enzymes with 4-base recognition sites will yield fragments of 256 bases, 
6-base recognition sites will yield pieces 4,000 bases long, and 8-base rec-
ognition sites will yield pieces 64,000 bases long.

2.  Why Is Restriction Mapping Useful?
Restriction mapping has been used in several disciplines. In molecular 
biology, restriction mapping is the first step in many DNA manipulations 
of recombinant technology. It is a prerequisite for molecular cloning, sub-
cloning of DNA fragments into a variety of vectors, mutagenesis studies, 
and other interventions that involve description of the DNA. On the other 
hand, although it is usually desirable to know the sequence of the DNA, 
in practical terms some DNA manipulations can be performed with no 
previous knowledge of its sequence.

Restriction digests are performed in genetic fingerprinting and restric-
tion fragment length polymorphism (RFLP) analysis, although recently 
they have been replaced by faster PCR-based techniques. Restriction 
mapping is used in DNA profiling in medicine to match potential organ 
donors; in biological sciences to study wild animal and plant populations; 
in forensics to analyze DNA from blood, hair, saliva, or semen, and to 
examine paternity and investigate crimes as well.

In 1978, Werner Arber (Biozentrum der Universität Basel, Switzer-
land), with Dan Nathans and Hamilton Smith (both from Johns Hopkins 
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University School of Medicine, Baltimore, MD) shared the Nobel Prize in 
Physiology or Medicine for the discovery of “restriction enzymes and their 
application to problems of molecular genetics.” Arber discovered restric-
tion enzymes, Smith showed that bacterial restriction enzymes cut DNA 
in the middle of specific symmetrical sequences, and Nathans pioneered 
the application of restriction enzymes to genetics. He demonstrated their 
use for construction of genetic maps and developed and applied new 
methodologies involving restriction enzymes. As a consequence, these 
techniques have opened new avenues in the study of the organization and 
expression of genes of higher animals and in the solution of basic prob-
lems in developmental biology. In medicine, increased knowledge in this 
area has helped in the prevention and treatment of malformations, heredi-
tary diseases, and cancer.

3.  Online Restriction Mapping Programs
As stated earlier, restriction maps can be generated with no previous 
knowledge of the DNA nucleotide sequence by using restriction enzyme 
digestion with two or more enzymes followed by electrophoresis on aga-
rose or polyacrylamide gels, or by high-performance liquid chromatog-
raphy (HPLC). The DNA of interest is frequently cloned into a vector 
(plasmid, phage, virus, cosmid, etc.) that contains a “linker” region which 
harbors dozens of restriction enzyme recognition sites within a very short 
segment of artificial DNA. Once the sizes of the fragments generated are 
calculated against standards run simultaneously, it becomes feasible to 
deduce where each enzyme cuts. This is an effective, but manual and time-
consuming approach of generating restriction maps. However, with the 
availability of known complete genome sequences from human and other 
species, and the availability of several computer programs, it is currently 
easy to search for dozens of restriction enzyme recognition sites as well as 
to predict and build corresponding maps of any input DNA.

Some of the most popular online programs employed to generate 
restriction maps are listed in the following text (also see Table 2.2; usually, 
these programs display graphical as well as text-based maps):

NEB Cutter provided by New England Biolabs (NEB) takes the 
input DNA sequence (up to 300,000 bases) and finds the sites for all 
restriction enzymes that cut the sequence only once. This program 
also detects open reading frames (OFRs). By changing the settings, 
additional enzymes not available from NEB could be used.

•
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Restriction/Mapper, available as part of the Molecular Toolkit pack-
age, is a restriction mapping software that allows a virtual simulta-
neous digestion of a given sequence with enzymes of your choice. 
The database of enzymes used by this program is from the “Proto-
types” file at NEB.

Webcutter from BioDirectory, which also uses the NEB database, 
offers additional features in its new 2.0 version, including high-
lighted enzymes in color or boldface for easy identification, analysis 
of sequences containing ambiguous nucleotides such as N, Y, and 
R, selection of circular or liner sequences, and the ability to find 
sites that may be introduced by silent mutagenesis (those that do not 
change the encoded protein sequence).

In Silico Restriction from the University of the Basque Country in Spain 
allows restriction digests of one or more DNA sequences with commer-
cially available or specific endonucleases. It also compares restriction 
patterns of multiple prealigned sequences. These are valuable tools for 
single-nucleotide polymorphism (SNP) and mutation detection.

WatCut from the University of Waterloo, Canada, searches restric-
tion enzyme cleavage sites in the entered DNA, creates new cleavage 
sites in oligonucleotides using silent mutations, and analyzes SNP-
RFLP by introducing restriction sites that will cleave only one vari-
ant of the given sequence.

EnzymeX, developed by Dr. Mek and Dr. Tosj, allows restriction 
analysis and documentation (Mac users). A nice feature provided 
is that along with the results, the DNA sequence and the protein 
translation are always displayed at the bottom of the window for a 
detailed view.

•

•

•

•

•

Table 2.2  Web Sites of Some Programs That Perform Restriction Enzyme Mapping
Site Address

NEB Cutter http://tools.neb.com/NEBcutter2/index.php
Restriction/Mapper http://arbl.cvmbs.colostate.edu/molkit/mapper/index.html

http://www.restrictionmapper.org/
Webcutter http://www.ccsi.com/firstmarket/cutter/cut2.html
In Silico Restriction insilico.ehu.es
WatCut http://watcut.uwaterloo.ca/watcut/watcut/
EnzymeX http://mekentosj.com/enzymex/
Silent http://bioweb.pasteur.fr/seqanal/interfaces/silent.html
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Silent, from Pasteur Institute in France, scans nucleic acid sequences 
for silent mutation restriction enzyme sites. The program finds posi-
tions where a point mutation could be made to introduce a specified 
restriction enzyme recognition site without changing the translation.

Part II	 Step-By-Step Tutorial

The following is a guide that can be followed to perform restriction map-
ping using the NEBcutter2 program. It performs restriction enzyme 
analysis with parameters set by the user. Other programs share similar 
characteristics as the NEBCutter.

1.  Input Your Genomic or cDNA Sequence
The target sequence to be analyzed can be from a local file (first box), 
retrieved from GenBank via its accession number (second box), or 
cut-and-pasted (third box). In this demonstration, the sequence for human 
SM22alpha was pasted (see Figure 2.1).

Once the DNA sequence has been entered, you should select the options 
regarding topology of the DNA (linear or circular) and set “Enzymes to 
use.” The default search uses NEB enzymes. NEBCutter also shows all 

•

Figure 2.1  Restriction mapping using NEBcutter2 program. Input of genomic 
or cDNA sequence and selection of parameters for sequence analysis is shown.

C8105.indb   61 7/18/07   8:09:19 AM



62  <  Blanca Camoretti-Mercado

nonoverlapping open reading frames (ORFs) spanning the methionine 
residue (Met) to the stop codon. The default for ORF size is 100 amino 
acids, but it can be modified to bigger or smaller values. Giving a name 
to the sequence (box at the bottom) is useful, especially if several searches 
are performed. Clicking on the “More options” button will open a win-
dow with additional selections such as methylation modifications, usage 
of type I enzymes, changing the genetic code to one of another species, 
as well as the possibility of searching a selected region of the input DNA. 
Projects are saved and can be retrieved for a few days.

2.  Results: Display and Analysis
After clicking the “Submit” button, results of the search are shown for 
enzymes that cut once (Figure 2.2). Cleavage codes and enzyme name 
codes are described at the top in color, below the sequence name. If you 
select the 2- or 3-cutter enzymes (bottom box) option, a redrawing of 
the sequence results is displayed. Clicking on “List” shows a table with 
enzymes (specified by number of cuts) and their cleavage positions. For 
example, Figure 2.3 shows the list of enzymes that do not cut the DNA. 
Pointing and/or clicking on the displayed features in the results win-
dow retrieves additional information. Thus, positioning the mouse over 

Figure 2.2  Results display using NEBcutter2 program. Sequence is represented 
in linear form, and sites for enzymes that cut only once (default) are shown (for 
details, see text).
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the name of the restriction enzymes pops up the recognition site and the 
position of cutting. Clicking on the name of the enzymes instead, opens 
a new window with complete information about that enzyme, including 
information on isoschizomers and enzymes that (unambiguously) gener-
ate compatible cohesive sites.

All long ORFs are denoted by filled arrows, flanked by the closer 
restriction enzymes that could be used in a complete digest to excise each 

Figure 2.3  Analysis of restriction mapping by selected features. An example 
of an option offered in “List” box displayed in Figure 2.2 is shown. The table lists 
enzymes (and their recognition sites) that do not cut the selected sequence.
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ORF. The length of each ORF is also shown. Clicking on an ORF opens a 
new window (ORF Sequence, Figure 2.4) that displays the coding region 
coordinates and the deduced protein sequence in a one-letter code. Addi-
tionally, further options exist to locate flanking restriction enzyme sites 
or to BLAST the ORF sequence against GenBank. Other possibilities for 
analysis of the selected ORF are “Edit” and “Delete.” The “Locate multiple 
cutters that excise this ORF” function displays flanking sites for restric-
tion enzymes (Figure 2.5) and their number; the “Silent Mutagenesis” 
option shows unique sites within the ORF that can be created by mutating 
one or more bases without changing the protein sequence (Figure 2.6). In 
our example, it is composed of two pages; the first one is shown in Fig-
ure 2.6. Clicking on “List all sites” displays a table that contains detailed 
information on the candidate mutated bases (shown in red, underlined 
and highlighted) and the protein sequence (in a three-letter code) under-
neath. The enzyme’s name, restriction site position, and specificity are also 
displayed. The “Help” box gives additional valuable information.

Back to the initial display (Figure 2.2): A red mark can be made by 
clicking once (or twice in order to select a region bounded by the two 
marks) on the horizontal line that represents the DNA sequence. The 
selected position or region can be zoomed to visualize it in more detail. 
Finally, the “Main options” box includes a “Custom digest” selection to 
create maps with enzymes of your choice and with the ability of displaying 
the digests in a digital gel. Options include any set of enzymes that have 
sites within the DNA, enzymes with compatible ends or buffers, enzymes 
producing particular kinds of termini, and others. The “View sequence” 

Figure 2.4  Predicted ORF sequence using NEBcutter2 program (for details, 
see text).
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Figure 2.6  Silent mutagenesis predicted by NEBcutter2 program. This option 
displays unique restriction enzyme sites that can be created by nucleotide substi-
tutions without changing the ORF (for details, see text).

Figure 2.5  Restriction enzyme sites flanking ORFs using NEBcutter2 pro-
gram. This option displays the enzymes that potentially release a selected ORF 
and their cleavage sites for downstream manipulations such as mutagenesis and 
expression purposes.
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option allows browsing of the input DNA sequence file. “ORF summary” 
provides a table of the genes, their coordinates, polypeptide lengths, pro-
tein IDs at GenBank, and flanking, single-cutter restriction enzymes.

Importantly, published restriction maps generated by NEBcutter should 
be cited (Vincze et al., 2003).

Part III	 Sample Data

The first 1500 bases of the genomic DNA sequence used in the previous 
demo process (for which 5388 bases was used) are shown in the following 
text. It is the human SM22 alpha gene starting at the initiation of tran-
scription. It has the accession number AF013711, for Homo sapiens 22-kDa 
actin-binding protein (SM22) gene, complete cds (Camoretti-Mercado et 
al., 1998).
 gi|2501853|gb|AF013711.1|HUMSM22S2[2501853]

 1 atcctgtctg tccgaaccca gacacaagtc ttcactcctt cctgcgagcc ctgaggaagc

 61 cttgtgagtg cattggctgg ggcttggagg gaagttgggc tggagctgga caggagcagt

 121 gggtgcattt caggcaggct ctcctgaggt cccaggcgcc agctccagct ccctggctag

 181 ggaaacccac cctctcagtc agcatggggg cccaagctcc aggcagggtg ggctggatca

 241 ctagcgtcct ggatctctct cagactgggc agccccgggc tcattgaaat gccccggatg

 301 acttggctag tgcagaggaa ttgatggaaa ccaccggggt gagagggagg ctccccatct

 361 cagccagcca catccacaag gtgtgtgtaa gggtgcaggc gccggccggt taggccaagg

 421 ctctactgtc tgttgcccct ccaggagaac ttccaaggag gtgagtgtgt gaacgcacct

 481 gtgttggagc acggtgtccc actctggcgg gtccccaggg cctgagcagc agcgatagcc

 541 ctgtgacaat gtgaagggcc acagaactct tgtattccag tcaggggcaa agagtggaga

 601 cggaaggcct gtccttctga caagcagccc cttccactgt ctgacagtgg gaggtcaccc

 661 ccactgtagc agaggggtgg ggggcgggta ctgccaagga ggagctttgg agtgataggc

 721 ggggcaggcc tgggaccctt ggtctttccc aaagggtggt tccctttcaa agttgctatt

 781 ccaaaggtag cagtgaggat ggcacaaatt tatgtagcca ggccactcct gtttgtccgt

 841 ggagtggaga ggagccaccc tcctgccctc tcagaggtcc aggtgtgctc actcctattt

 901 gggaagagag aaggggcaca gcagccctgc aggggcccct ggctctgctc gtgtttctgg

 961 gcttctgctg gtagggggtg cgaccttccc gtttgaccct ggactttctt tctccactgc
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 1021 ccactttcac ccactgggca gctcagggga ggggtcctgg caggagccac agggcaggag

 1081 ggtccatgcc tgtccatgct gtcctgggag tgtcttgaga tgcccctggg ggggccgccc

 1141 tgtaatcatc ctcctctccc cctccccact ggctcgaagg caggactcgg gaggcttcat

 1201 cagaggactc taaaggattt ctggggattc tccacttttc gaccctgacc caggaggagg

 1261 aaggggaagg atggtggtgc tgggtgggag tggggatggt gtgtgcttca tccccctctg

 1321 accgaaatcc taatcttgtc tctagatctg ggggctgcag tgttgtgtac ctgtcaccct

 1381 tagccttgct gctttgacct gtattgtctg ttctgaccct cctgagactg gaagctgggg

 1441 gtaggggaca cactctcctt ccatcctgtt cctcaggagc ccagcagggg tgcagaaggg

Section 2	 PCR Application
Part I	I ntroduction

Polymerase chain reaction (PCR) is an enzymatic in vitro procedure by 
which a desired DNA sequence of any origin (viral, bacterial, animal, 
plant, or human) can be selectively amplified several orders of magnitude 
(hundreds of millions of times) in a short time (from a few hours down 
to 5 to 10 min with new heating and cooling gas-based instruments). PCR 
was first described in 1985 by Kary B. Mullis, who won the Nobel Prize 
in Chemistry in 1993 for this invention. PCR allows amplification from 
minute amounts of DNA, a task that would require days with standard 
recombinant methodologies. PCR technology has greatly impacted many 
areas of science, including basic research, clinical medicine, genetic dis-
ease diagnostics, forensic, and evolutionary biology. Justly, it has been said 
that PCR is to genes what Gutenberg’s printing press was to the written 
word (Johannes Gensfleisch zur Laden zum Gutenberg, 1398–1468, was 
a German goldsmith and inventor credited with inventing movable type 
printing in Europe in 1450).

1.  How PCR Works
PCR is based on the utilization of specialized thermostable DNA polymer-
ases. It requires, therefore, a DNA template that harbors the target sequence, 
all four dNTPs, and two specific DNA primers (each about 20 bases long) 
that flank the sequence to be amplified. To synthesize DNA fragments 
(amplicons) by PCR, repeated heating and cooling cycles are generated auto-
matically using a thermocycler, which alters the temperature of the reac-
tion mixture to certain preestablished values and duration. The mixture is 
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first heated to separate the strands of double-stranded DNA (denaturation), 
and then is cooled to an optimal temperature to allow the primers to bind 
to their complementary target sequences (annealing). In a third step, the 
temperature is modified again to let the enzyme extend the primers into 
new complementary strands (extension). Highly specific amplification of 
the target DNA occurs exponentially (by a factor of 2n, where n = number 
of cycles) because each new double-stranded DNA is separated in the next 
cycle to become two templates for further synthesis. In theory, every cycle 
will duplicate the amount of DNA present and, for example, after 20 PCR 
cycles, the target DNA will be amplified by a millionfold.

2.  Quantitative Real-Time PCR
Quantitative real-time PCR (q-RT-PCR) has revolutionized our ability to 
measure nucleic acid abundance. Real-time PCR instruments quantify the 
amount of PCR product at each step of the reaction (in real time), enhanc-
ing the accuracy, reproducibility, and ease of quantification compared to 
classic PCR-based methods. These instruments support chemistries for 
template detection that include SYBR green dye intercalation (the most 
popular method), hybridization probes, hydrolysis probes, and molecu-
lar beacons. Primer sets for q-RT-PCR may be designed using standard 
primer design algorithms (see following text).

PCR amplicons are produced exponentially, but because it takes a num-
ber of cycles to readily detect enough product (either from the intercalated 
SYBR green or by using fluorescent primers), the plot of fluorescence vs. 
cycle number is sigmoidal. At later cycles, the substrates become depleted 
and the curve starts to flatten. The point on the curve in which the fluores-
cence begins to increase rapidly is termed the threshold cycle (Ct value). 
The plot of Ct vs. template amounts is linear and allows comparison of Ct 
values between multiple reactions. Therefore, calculation of the concen-
tration of the target can be performed from a standard curve, or relative to 
control genes. The slope of this line provides a measure of PCR efficiency.

3.  PCR Applications
PCR has impacted wide areas across scientific disciplines and clinical spe-
cialties, including applications in molecular biology, and in the diagnosis 
and research of cancers, infectious and genetic diseases, and other medi-
cal conditions. PCR technology has increased the speed with which stud-
ies can be performed, which directly affects the capacity for simultaneous 
sample handling. PCR is a highly sensitive and reliable process, easily 

C8105.indb   68 7/18/07   8:09:26 AM



Two Common DNA Analysis Tools  <  69

adapted for automation. However, great care should be taken to prevent, 
detect, and remediate potential contamination.

PCR is a valuable laboratory tool used routinely for tasks that can be 
done more easily and faster than with other methods. Numerous applica-
tions based on PCR technology exist, with dozen of variations of published 
methods available. Moreover, multiplex PCR offers the ability to amplify 
not just one region of the DNA or RNA but multiple portions, facilitating 
the interrogation and survey of several regions simultaneously in a single 
reaction. In the following text we briefly describe two general applications 
of PCR as representative examples: DNA subcloning and PCR-mediated 
in vitro mutagenesis. Subcloning of DNA targets using PCR allows cell-
free cloning of DNAs into plasmid vectors when no convenient restric-
tion enzymes sites are available to use classic approaches. Three strategies 
are commonly employed to subclone PCR products: (1) T/A cloning, (2) 
addition of restriction sites, and (3) blunt-end ligation. T/A cloning takes 
advantage of the property of Taq DNA polymerase of adding a single A 
residue to the 3' end of amplified DNA fragments. These products are eas-
ily ligated with vectors containing overhanging T residues in their clon-
ing polylinker region. Addition of restriction sites is another common 
method in which PCR primer pairs incorporate restriction enzyme rec-
ognition sites into their 5' ends, which are subsequently used for subclon-
ing. For blunt-end cloning of PCR products, “polishing” enzymes such as 
T4 polymerase or Pfu polymerase are used to remove overhanging single 
nucleotides and facilitate cloning into vectors digested with an appropri-
ate enzyme such as SmaI.

PCR-mediated in vitro mutagenesis exploits the elevated error rate of 
Taq polymerase in the presence of MnCl2 and high MgCl2 concentrations 
to incorporate random mutations. The advantage over chemical mutagen-
esis lies in the selectivity of targeting the random mutations to a defined 
segment of DNA flanked by the PCR primers. In addition, PCR carried 
out with designed nested primers allows generation of a series of DNA 
fragments with progressively smaller regions either at the 5' or 3' end of 
the external amplicon.

PCR is widely used in gene expression studies using cDNA templates 
generated by reverse transcription from messenger RNA (RT-PCR). 
PCR is particularly useful for amplification of differentially expressed 
gene sequences because standard differential screening and subtraction 
hybridization require large amounts of RNA to synthesize sufficient quan-
tities of an enriched cDNA probe for library screening. PCR allowed the 	
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development of Serial Analysis of Gene Expression (SAGE), a powerful 
quantitative technique for profiling gene expression.

In the clinical arena, there are three main diagnostic applications of 
PCR: detection of pathogens, screening specific genes for unknown muta-
tions, and genotyping. For instance, PCR permits mutation detection and 
early identification of deadly infective agents like SARS, small pox, HIV, 
and influenza. PCR can be applied for tumor cell detection as well, mixed 
chimerism after bone marrow transplantation, and noninvasive prenatal 
screening of fetal DNA in the maternal circulation. Single-strand confor-
mational polymorphism (SSCP) is one of the most widely used methods 
for detecting single base pair mutations. SSCP is based on the sequence-
dependent intramolecular folding that is responsible for the differential 
migration of two single-stranded DNA molecules of identical length but 
dissimilar sequence on nondenaturing acrylamide gel. Finally, efficient 
extraction of RNA and DNA from formaldehyde fixed tissues was recently 
achieved and, importantly, it was shown that it is possible to perform 
PCR on these often-damaged short DNAs. This accomplishment gives 
researchers the exciting opportunity of utilizing PCR to obtain informa-
tion from archival materials collected many years ago, thus contributing 
to the understanding of common complex, chronic diseases.

Applications of real-time PCR include, among others, gene expression 
quantification and detection, validation of gene expression data obtained 
by microarray analysis, measurement of DNA copy number, detection 
and quantification of viral particles and potentially lethal microorgan-
isms, allelic discrimination, and SNP detection.

4.  PCR Primer Design
Successful PCR relies on the utilization of suitable primers. Human-
designed PCR primers often fail due to low amplification efficiency, non-
specific amplification, and primer-dimers formation. Several programs 
are available that help design the most appropriate set of primers for a 
given application; many of these tools are freely available online. Several 
companies that synthesize custom oligos usually offer either in-house, 
commercial, or academic sites for primer design. With these computa-
tional tools, primer pairs are computed from user-selected target regions 
and then screened against a series of parameters to maximize priming 
efficiency for trouble-free PCR. The following attributes are included in 
primer design: target sequence, amplicon length, cross homology with 
related genes and pseudogenes (if present), amplicon location (distance 
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from 3' end), primer Tm (melting temperature), primer length, primer del-
taG 3' end, intron spanning, GC content, and primer hairpin structure. 
For qRT-PCR, added parameters include perfect probe/template anneal-
ing Tm, probe 5' and 3' extensions, probe melting point, probe length, and 
probe GC content. Getting these characteristics right is critical to achiev-
ing sensitive, specific, and reproducible PCR results.

In the following text is a list of some online sites for the design PCR 
primers (see also Table 2.3). Several sites include the development of 
repositories for primer sets, reaction conditions, and the primers them-
selves that would benefit investigators interested in contributing to and 
taking advantage of the information available:

Primer3 designs PCR primers from DNA sequences according 
to thermodynamic, primer size, and product size characteristics 
(Rozen and Skaletsky, 2000). Primer3 software can check existing 
primers and design hybridization probes as well. This can be use-
ful, for example, for spotted arrays for mRNA expression profiling. 
Primer3 was developed at the Whitehead Institute and the Howard 
Hughes Medical Institute. The Primer3 Web site is also funded by 
the National Institutes of Health.

AutoPrime designs primers for real-time PCR for eukaryotic gene 
expression. Primer pairs are selected in such a way that at least one 
of them matches an exon-exon border sequence that is present in 
the cDNA but not in the genomic sequence. Alternatively, the pair is 
designed by placing each primer in a different exon so that a genomic 
product would include a long intronic sequence unlikely to be ampli-
fied under the running PCR conditions.

RTPrimerDB is a public database for primer and probe sequences 
used in real-time PCR that employs popular chemistries such 
as SYBR Green I, Taqman, hybridization probes, and molecular 

•

•

•

Table 2.3  Web Sites of Some Programs That Perform PCR Primer Design
Site Address

Primer3 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi
AutoPrime http://www.autoprime.de/AutoPrimeWeb
RTPrimerDB http://medgen.ugent.be/rtprimerdb/index.php
PrimerBank http://pga.mgh.harvard.edu/primerbank/index.html
QPPD http://web.ncifcrf.gov/rtp/gel/primerdb/
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beacons. This site encourages users to submit their validated primer 
and probe sequences, so that other users can benefit from their expe-
rience. The goals of this site are twofold: to prevent time-consuming 
primer design and experimental optimization (Pattyn et al., 2006), 
and to introduce a certain level of uniformity and standardization 
among different laboratories.

PrimerBank is another public resource for PCR primers for gene 
expression detection or quantification (real-time PCR). It contains 
about 180,000 primers covering most known human and mouse 
genes. The company claims that primer design algorithm has been 
extensively tested by real-time PCR experiments for PCR specificity 
and efficiency.

QPPD (Quantitative PCR Primer Database) provides information 
about primers and probes gathered from published articles cited in 
PubMed. Primers are used to quantify human and mouse mRNA.

Part II	 Step-By-Step Tutorial

The following is a guide to designing primers using the Primer3 program.

1.  Sequence Input and Parameters Selection
The first step is to cut and paste the sequence in the input window (Fig-
ure 2.7). Note that the entire window has been divided into two figures, 
(Figure 2.7 and Figure 2.8). Sequences should be devoid of cloning arti-
facts or chimeric sequences and should not contain repetitive elements. 
Low-quality bases should be changed to N’s or be made part of “Excluded 
Regions.” “Sequence Id” is an assigned identifier that is reproduced in 
the output to enable you to identify the chosen primers. For standard 
PCR, only the “left” and “right” primer options should be selected. In the 
“Excluded Regions” box, primers will not overlap any region specified 
in this tag. Enter the value as a space-separated list of start,length pairs, 
where start is the index of the first base of the excluded region, and length 
is its length. This feature is useful for excluding regions of low sequence 
quality or rich in repetitive elements such as ALUs.

Figure 2.8 shows commonly used settings for primer design. “Product 
Size Range” displays a list of target size ranges (100 bp in the example 
shown). Primer3 attempts to pick primers starting with the first range, 
then goes to the next range and tries again. The program continues in 
this way until the last range is screened or until it has picked all necessary 

•

•
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Figure 2.7  Primer design using Primer3 program. The sequence to be used for 
primer selection is entered in the open box. (For details of sequence properties, 
see text). Primer design for standard PCR is shown. If real-time PCR is to be per-
formed using Taqman, the hybridization probe can be designed by also selecting 
the middle box.

Figure 2.8  Primer design using Primer3 program (continuation). Commonly 
used settings for primer design are shown (for details, see text).
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primers. Selecting this option is less computationally demanding than 
the “Product Size” option. For “Product Size,” Primer3 will not generate 
primers with products shorter than Min (minimum) or longer than Max 
(maximum) length entered, and will try to pick primers producing ampli-
cons close to the optimum length. “Number To Return” is the maximum 
number of primer pairs displayed in the result document (in this case, 
5). The program sorts the primer pairs from best to the poorest “quality.” 
Choosing a large value in this setting will increase the running time. “Max 
3' Stability” is the maximum stability for the five 3' bases of either primer 
measured as a value of the maximum deltaG for duplex disruption, which 
is calculated by the nearest-neighbor method. Bigger numbers mean more 
stable 3' ends. “Max Mispriming” (default is 12) is the maximum allowed 
weighted similarity with any sequence in Mispriming Library. “Pair Max 
Mispriming” (default value is 24) is the maximum allowed sum of simi-
larities of a primer pair with any sequence in Mispriming Library.

For the “General Primers Picking Conditions” section, enter values in 
“Primer Size” for minimum, optimum, and maximum primer lengths. 
Primer3 will attempt to pick primers close to Opt and not shorter than 
Min or longer than Max (which cannot be larger than 36 bases). The 
“Primer Tm” option sets the minimum and maximum melting tempera-
tures (in Celsius) for a primer. Primer3 will try to pick primers with melt-
ing temperatures (“Primer Tm”) close to Opt and not smaller than Min or 
larger than Max. “Maximum Tm Difference” is the maximum acceptable 
difference between the “Primer Tm” values. Primer3 uses the oligo melt-
ing temperature formula given by Rychlik et al. (1990) and Breslauer et 
al. (1986). The “Product Tm” is the minimum, optimum, and maximum 
melting temperature of the amplicon. Product Tm is calculated using the 
formula from Bolton and McCarthy (1962), which considers the sodium 
concentration, %GC content, and the sequence length in the calculations.

Primer3 uses penalty components to pick the best primers by taking 
into consideration values less or greater than those specified as optimum. 
The score indicates deviation from the specified optimal design param-
eters; a lower penalty score indicates a better primer pair. Penalty weights 
are governed by various parameters, including the Tm difference, primer–
primer complementarity, primer–primer 3' complementarity, and primer 
pair mispriming similarity. Position Penalty Weight determines the over-
all weight of the position penalty in calculating the penalty for a primer. 
Deviations from the optimum primer size and Tm have a large influence on 
the penalty score. “Max Complementarity” considers the tendency of the 
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primer to anneal to itself or to each other. The scoring system gives 1.00 for 
complementary bases, −0.25 for a match of any base with an N, −1.00 for 
a mismatch, and −2.00 for a gap. Only single base pair gaps are allowed. A 
score of 0.00 indicates that there is no reasonable local alignment between 
two oligos. “Max 3' Complementarity” tests for complementarity between 
left and right primers. A score of 0.00 indicates that there is no reasonable 
3'-anchored global alignment between two oligos. The score of a local 
alignment will always be at least as great as the score of a global alignment. 
“Max Poly-X” refers to the length of mononucleotide repeat.

In “CG Clamp” box, the number of consecutive G’s and C’s at the 3' 
end of both the left and right primer are specified. When “Liberal base” 
is checked, Primer3 accepts IUB/IUPAC codes for ambiguous bases (see 
Table 2.1).

2.  Results
After clicking the “Pick Primers” button, a window with a text document 
(Primer3 output) appears (Figure 2.9 and Figure 2.10).

The window displays a table with the first (i.e., best) left and right primer 
pair sequences shown on the right (always in 5' to 3') along with their start 
positions, lengths, melting temperatures, and percentage of G or C bases. 
Their self- and 3' self-complementarity scores are also displayed. Below 
the table, the predicted product size is shown as well as the DNA sequence 
and the positions where the left and right primers indicated by arrowheads 
map (in the figure, the forward left primer is boxed). Other programs pro-
vide extinction coefficient, molecular weight, µg/OD, nmol/OD, predicted 
secondary structures (hairpins), and potential duplexes when the oligo 
can anneal to any target sequence.

At the bottom of the window (Figure 2.10), similar information is pro-
vided for the remaining four additional primer pairs (note that “Number 
To Return” was set at 5 [see Figure 2.8]). Some statistics are given regard-
ing the number of considered and unacceptable primers.

Some programs offer the possibility of sending your input sequence to 
NCBI Blast search for short, nearly exact matches. When working with 
software with multiplex capability, it may be necessary to try several 
values for melting temperature and %GC content before finding a mul-
tiplex primer set for your sequences. The time spent designing the prim-
ers should be worthwhile as it will reduce the time in the multiplex PCR 
optimization step.

C8105.indb   75 7/18/07   8:09:31 AM



76  <  Blanca Camoretti-Mercado

Part III	 Sample Data

The sequence used in the previous demo procedure is shown in the fol-
lowing text. It is the mouse SM22alpha gene flanking sequence, accession 
number L41161.1, GI:793751, for Mus musculus SM22 alpha gene (Solway 
et al., 1995). Position 1 in exon 1 at nucleotide 1341 is shown underlined 
in boldface.

Figure 2.9  Results displayed using Primer3 program. The output window lists, 
among others, the primer pair sequences and their properties (start positions, 
lengths, melting temperatures, and percentage of G or C bases), as well as the 
predicted amplification product size and their position within the sequence.
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1 gaattcagga cgtaatcagt ggctggaaag caagagctct agaggagctc cagcttatta

61 tgacccttcc ttcagatgcc acaaggaggt gctggagttc tatgcaccaa tagcttaaac

121 cagccaggct ggctgtagtg gattgagcgt ctgaggctgc acctctctgg cctgcagcca

181 gttctgggtg agactgaccc tgcctgaggg ttctctcctt ccctctctct actcctttc

241 ccctctccct ctccctctct ctgtttcctg aggtttccag gattggggat gggactcaga

301 gacaccacta aagccttacc ttttaagaag ttgcattcag tgagtgtgtg agacatagca

361 cagatagggg cagaggagag ctggttctgt ctccactgtg tttggtcttg ggtactgaac

421 tcagaccatc aggtgtgata gcagttgtct ttaaccctaa ccctgagcct gtctcacctg

481 tcccttccca agaccactga agctaggtgc aagataagtg gggacccttt ctgaggtggt

541 aggatctttc acgataagga ctattttgaa gggagggagg gtgacactgt cctagtcctc

Figure 2.10  Results displayed using Primer3 program (continuation). Addi-
tional primer pairs are displayed with some of their properties.
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601 ttaccctagt gtctccagcc ttgccaggcc ttaaacatcc gcccattgtc accgctctag

661 aaggggccag ggttgacttg ctgctaaaca aggcactccc tagagaagca cccgctagaa

721 gcataccata cctgtgggca ggatgaccca tgttctgcca cgcacttggt agccttggaa

781 aggccacttt gaacctcaat tttctcaact gttaaatggg gtggtaactg ctatctcata

841 ataaagggga acgtgaaagg aaggcgtttg catagtgcct ggttgtgcag ccaggctgca

901 gtcaagacta gttcccacca actcgatttt aaagccttgc aagaaggtgg cttgtttgtc

961 ccttgcaggt tcctttgtcg ggccaaactc tagaatgcct ccccctttct ttctcattga

1021 agagcagacc caagtccggg taacaaggaa gggtttcagg gtcctgccca taaaaggttt

1081 ttcccggccg ccctcagcac cgccccgccc cgacccccgc agcatctcca aagcatgcag

1141 agaatgtctc cggctgcccc cgacagactg ctccaacttg gtgtctttcc ccaaatatgg

1201 agcctgtgtg gagtgagtgg ggcggcccgg ggtggtgagc caagcagact tccatgggca

1261 gggaggggcg ccagcggacg gcagaggggt gacatcactg cctaggcggc ctttaaaccc

1321 ctcacccagc cggcgcccca gcccgtctgc cccagcccag acaccgaagc tactctcctt

1381 ccagtccaca aacgaccaag ccttgtaagt gcaagtcat
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Phylogenetics is the field of biology that deals with identifying and under-
standing the relationships between the many different kinds of life on 
earth. In the past, phylogenetic analysis was heavily based on morphologi-
cal data. With the sequencing of the human genome now complete and 
a number of other animal and plant genome sequences on the horizon, 
well-resolved molecular trees based on molecular data (nuclear DNA and 
derived protein data) have become an important tool in phylogenetical 
analysis. Molecular trees can serve as scaffolds for investigating evolution-
ary relationships. We are inching closer to understanding the organiza-
tion and structure of the ancestral mammalian and plant genome, as well 
as the differences that make each species unique. This chapter commences 
with multiple sequence alignments in Section 1 and then introduces phy-
logenetical analysis in Section 2. In line with the format and style through-
out this book, each section starts with a theoretical introduction in Part I, 
continues with a step-by-step tutorial in Part II, and ends with the presen-
tation of sample data in Part III.

Section 1	 Multiple Sequence Alignments
Part I	I ntroduction
1.  Why Are Multiple Sequence Alignments Needed?
Multiple sequence alignments are an important tool in studying sequences, 
by aligning more than two DNA or protein sequences. Sequence alignment 
is the poster child of bioinformatics. Alignment is the most basic compo-
nent of biological sequence manipulation, and it has diverse applications 
in sequence annotation, structural and functional predictions for genes 
and proteins, phylogeny and evolutionary analysis. The basic information 
multiple sequence alignment can provide is identification of conserved 
sequence regions. This is very useful in designing experiments to test and 
modify the function of specific proteins, in predicting the function and 
structure of proteins, and in identifying new members of protein families.

The completion of human genome sequencing has dramatically speeded 
up the discovery of new proteins. The number of newly available protein 
sequences far outpaces the limited number of determined protein three-
dimensional structures, and multiple alignments of protein sequences 
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remains the main method to infer protein structure, function, active sites, 
and evolutionary history.

2.  What Is Involved in Multiple Sequence Alignments?
Four basic steps are involved in multiple sequence alignment: selecting 
DNA or protein sequences, inputting into an automatic multiple sequence 
alignment Program such as ClustalW, editing alignments, and interpret-
ing the alignments.

Selecting DNA or protein sequences. Aligning protein sequences is 
the better choice because protein sequences are three times shorter than 
the corresponding DNA sequences, and protein sequences use a more 
informative alphabet of twenty amino acids in contrast to only four nucle-
otides in DNA sequences. Inputting protein or DNA sequences need to 
be converted to appropriate formats for an automatic multiple sequence 
alignment program such as ClustalW. Sequence formats are simply the 
way in which the amino acid or DNA sequence is recorded in a computer 
file. Different programs expect different formats, so if you are to submit 
a job successfully, it is important to understand what the various formats 
are. There are at least a couple of dozen sequence formats in existence 
at the moment. The program ClustalW accepts sequences in the follow-
ing formats: Pearson (FASTA), Align/ClustalW (ALN/ClustalW), The 
National Biomedical Research Foundation/Protein Information Resource 
(NBRF/PIR), The European Molecular Biology Laboratory/Universal Protein 
Resource (EMBL/UniProt), Genetic Data Environment (GDE), Genet-
ics Computer Group/ Multiple Sequence Format (GCG/MSF), and Rich 
Sequence Format (RSF). You can submit protein or DNA sequences in any 
of these formats to ClustalW. An example of the partial human pre-B-cell 
colony-enhancing factor (PBEF) in the FASTA format is provided in Fig-
ure 3.1. The FASTA sequence format is a widely accepted format. It starts 
with the greater than symbol (>), gene identification number, its reference 
protein accession number, and its name followed by the sequence.

>gi|5031977|ref|NP_005737.1| pre-B-cell colony enhancing factor 1 isoforma [Homo sapiens]
MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKLRKVKYEETVFYGLQYILNKYL
KGKVVTKEKIQEAKDVYKEHFQDDVFNEKGWNYILEKYDGHLPIEIKAVPEGFVIPRGNVLFTVENTDPE
CYWLTNWIETILVQSWYPITVATNSREQKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASA
HLVNFKGTDTVAGLALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIV……    

 

Figure 3.1  Partial human PBEF protein sequence in the FASTA format.
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Multiple sequence alignment in alignment programs such as Clust-
alW. The sequences can either be pasted into the Web form or uploaded 
from a file to the Web form in the ClustalW program. Sequences can be 
aligned across their entire length (global alignment) or only in certain 
regions (local alignment). This is true for pairwise and multiple align-
ments. Global alignments need to use gaps (representing insertions or 
deletions) although local alignments can avoid them, by aligning regions 
between gaps. The standard computational formulation of the pairwise 
problem is to identify the alignment that maximizes protein-sequence 
similarity, which is typically defined as the sum of substitution matrix 
scores for each aligned pair of residues, minus some penalties for gaps. This 
approach is generalized to the multiple sequence case by seeking an align-
ment that maximizes the sum of similarities for all pairs of sequences. A 
substitution matrix describes the likelihood that two residue types would 
mutate to each other in evolutionary time. Understanding theories under-
lying a given matrix can aid in making proper choice. ClustalW can adopt 
four types of matrices: Point Accepted Mutation (PAM), Blocks Substitu-
tion Matrix (BLOSUM), GONNET, and DNA Identity Matrix (Unitary 
Matrix). PAM matrices are traditionally amino acid scoring matrices, 
which refer to various degrees of sensitivity, depending on the evolution-
ary distance between sequence pairs. In this manner, PAM40 is most sen-
sitive for sequences 40 PAMs apart. PAM250 is for more distantly related 
sequences and is considered a good general matrix for protein database 
searching. PAM40 and PAM250 mean 40 and 250 mutations per 100 
amino acids of sequence, respectively. The BLOSUM matrices, also used 
for protein database search scoring (the default in blastp), are divided into 
statistical significance degrees, which in a way are reminiscent of PAM 
distances. The BLOSUM 45 matrix means a sequence blocks clustered 
at the 45% identity level. The BLOSUM matrices are most sensitive for 
local alignment of related sequences and are therefore ideal for identify-
ing an unknown nucleotide sequence. The GONNET matrix is a different 
method to measure differences among amino acids; it was developed by 
Gonnet et al. using exhaustive pairwise alignments of the protein data-
bases as they existed at that time. They used classical distance measures to 
estimate an alignment of the proteins. They then employed these data to 
estimate a new distance matrix. This was useful to refine the alignment, 
estimate a new distance matrix, and so on, iteratively. In the DNA Identity 
Matrix, you only get a positive score for a match, and a score of −10000 
for a mismatch. As such a high penalty is given for a mismatch, no sub-
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stitution should be allowed, although a gap may be permitted. A penalty 
is subtracted for each gap introduced into an alignment because the gap 
increases uncertainty into an alignment. A gap is a maximal consecutive 
run of spaces in a single string of a given alignment. It corresponds to an 
atomic insertion or deletion of a substring. A single mutation can create 
a gap (very common). There are several causes for gaps. Unequal crossover 
in meiosis can lead to insertion or deletion of strings of bases. DNA slip-
page in the replication procedure can result in the repetition of a string. 
Retrovirus insertions and translocations of DNA between chromosomes 
can also create gaps.

Editing alignments. When you generated a multiple sequence align-
ment with any kind of automatic program, you probably need to edit it 
manually or in an editing program before presenting or publishing the 
alignment. Multiple Align Show (http://bioinformatics.org/sms/index.
html) and Jalview (http://www.jalview.org/) are two such multiple align-
ment editors. Multiple Align Show will be employed as a demo in the next 
part. Multiple Align Show accepts a group of aligned sequences (in FASTA 
or GDE format) and formats the alignment to your specifications. You 
can specify the number of residues per line, the font size and font style, 
and colors for different regions. You can also set a consensus level, which 
specifies the fraction of residues that need to be identical or similar in 
a column of the alignment for highlighting to be added. Multiple Align 
Show is one of many such programs that can be used to enhance the out-
put of sequence alignment programs.

Interpreting the result of multiple sequence alignment. You want to 
identify important positions or motifs in your protein from your multiple 
alignment, which are conserved even when aligning distantly related pro-
teins. When you find a good alignment with too many conserved posi-
tions, you need to add a few distantly related sequences one by one and 
check the effect of these sequences on the overall alignment quality. Those 
sequences that BLAST reported as marginal hits when you first scanned 
SWISS-PROT for homologous sequences can be construed as distantly 
related sequences. Initially aligned conserved patterns, if they survive 
after aligning with distantly related sequences, may be true conserved 
patterns. You can also resort to other pattern-identifying tools such as 
ScanProsite and MotifScan hyperlinked in ExPASy Proteomics Server Site 
(http://ca.expasy.org/) to verify these conserved patterns, revealed by the 
multiple sequence alignment.
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3.  New Development in Multiple Sequence Alignment Programs
In recent years, protein multiple sequence alignment tools have improved 
rapidly in both scalability and accuracy. Table 3.1 lists useful uniform 
resource locators (URLS) of several newly developed multiple sequence 
alignment (MSA) programs. Some features of these programs are briefly 
discussed as follows.

3D-Coffee. 3D-Coffee is designed to create protein sequence align-
ments that incorporate three-dimensional structural information, when 
appropriate structures exist. In principle, utilizing three-dimensional 
structures facilitates the alignment of distantly related sequences. Struc-
tural elements are generally more conserved than primary sequences, 
retaining their align ability well into the twilight zone (≤25% sequence 
identity). 3D-Coffee is a fast, simple, and accurate method for incorporat-
ing heterogeneous structural data into an alignment and to improve its 
accuracy, even when only one or two structures are available. The draw-
back is that using this information can be complicated.

MUSCLE (multiple sequence comparison by log-expectation). MUS-
CLE is a new progressive alignment package that is extremely fast and 
accurate. The first step in MUSCLE is to rapidly generate a rough draft of 
the alignment, using a very crude guide tree. The next stage in the pro-
cess is to refine the rough draft by generating a more accurate guide tree, 
which is based on the initial alignment. A second progressive alignment 
is generated using this improved tree. The speed of MUSCLE was also 
demonstrated, by aligning 5000 sequences on a PC in 7 min. The latest 
version of MUSCLE, version 6, is a collaboration between the developers 
of MUSCLE and PROBCONS and uses a new refinement strategy based 
on the PROBCONS algorithm. It gives a significant increase in accuracy 
at a modest computational cost.

PROBCONS. PROBCONS is currently the most accurate multiple 
alignment method. Initially, all the sequences are aligned with each other 
using a pair-HMM (hidden Markov model) generated with the maximum 
expected accuracy objective function. Next, a consistency transformation 

Table 3.1  �Several Useful URLS of Multiple Sequence Alignment Programs
3D-Coffee http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi
MUSCLE http://www.drive5.com/muscle/
PROBCONS http://probcons.stanford.edu/
MAFFT http://timpani.genome.ad.jp/Art was here, but was deleted.mafft/server/
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is applied. The multiple alignment is then generated by using a progressive 
alignment scheme. The final alignment is then subjected to an iterative 
refinement protocol.

MAFFT. MAFFT uses a fast Fourier transform to quickly generate a 
guide tree for progressive alignment. A fast tree-based iteration strategy is 
then used to refine the alignment by optimizing the weighted sum of pairs 
(WSP) objective function. This protocol results in very accurate and very 
fast alignments.

Multiple alignments are so widely used that any further improvements to 
software or algorithms can have a significant impact on the scientific com-
munity. Future improvements of multiple sequence alignment programs 
are likely to come by combining sequence alignment with other informa-
tion, such as known structures of some of the proteins being aligned or 
homology to a larger pool of proteins. Parameter selection for alignment 
tools remains an important problem, as demonstrated by the sensitivity of 
RNA benchmarking results to parameter choice. Algorithmically, consid-
eration of all sequences at once as an alternative to progressive alignment 
(consistency-based methods are a step in this direction) has been shown to 
be an effective strategy. Finally, better utilization of phylogenetic relation-
ships and incorporation of models of protein sequence evolution also hold 
promise for improved alignment performance.

Part II	 Step-By-Step Tutorial

The ClustalW program is used for the demonstration purpose because it 
is by far the most commonly used program for making multiple sequence 
alignments. ClustalW is a fully automatic program for global multiple 
alignment of DNA and protein sequences. The alignment is progressive 
and considers sequence redundancy. Trees can also be calculated from 
multiple alignments. The program has some adjustable parameters with 
reasonable defaults.

The Multiple Align Show program is used for the demonstration of edit-
ing and publishing multiple aligned sequences because it is user-friendly 
with a suite of molecular tools of multiple capability.

1.  Align Multiple Protein Sequences
The demo example is to align human, mouse, and rat Pre-B-cell Colony-
Enhancing Factor (PBEF) protein sequences:
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	 1.	Fetch human, mouse, and rat PBEF protein sequences from the NCBI 
Web site.

	 a.	 As demonstrated in Figure 3.2, type the address (http://www.
ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) in your browser 
(Internet Explorer or others). In “Search,” select “Protein” cat-
egory. In the “for,” type “human PBEF.”

	 b.	 Click “Go” in your browser or press “Enter” on your keyboard. 
The accession number of the human PBEF protein sequence will 
be displayed as in the Figure 3.3.

	 c.	 Click “NP_005737” to display all human PBEF protein sequence 
information. Then in the Display, select “FASTA” format, and 
you will have the human PBEF protein sequence in the FASTA 
format (Figure 3.4).

Figure 3.2  Search for human PBEF protein sequence from the NCBI Unigene 
database. This screenshot displays how to initiate a retrieval of a protein sequence 
from the NCBI Unigene database using a protein name symbol.

Figure 3.3  Display the accession number of human PBEF protein sequence. 
Item 2 (NP_005737) in the screenshot is the reference accession number of 
human PBEF protein sequence.

C8105.indb   88 7/18/07   8:09:42 AM



Phylogenetic Analysis  <  89

	 d.	 Repeat step a to step c to fetch mouse and rat PBEF protein 
sequences, respectively, in the FASTA format.

	 2.	Load a group of protein sequences into the ClustalW program.
	 a.	 In your browser (Internet Explorer or others), type the address 

(http://www.ebi.ac.uk/clustalw/) to get access to the ClustalW 
program (Figure 3.5).

	 b.	 Change the first line of each sequence into human, mouse, and 
rat after sign >, respectively. Paste human PBEF, mouse PBEF, 
and rat PBEF protein sequence one by one into the sequence win-
dow of the ClustalW program (Figure 3.6). Keep the default set-
ting, and click “Run.”

	 c.	 Results come in three sections: Scores Table, Alignment, and 
Guide Tree. Score Table lists pairwise scores. Alignment con-
tains the detailed alignment file. The guide tree contains the tree 
used to guide its progressive alignment strategy, which will be 

Figure 3.4  Human PBEF protein sequence in the FASTA format.

Figure 3.5  The EBI ClustalW server. This screenshot displays the parameter-
setting window in the ClustalW program.
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dealt with in detail in the next section. In Scores Table, users can 
sort the scores by Alignment Score, Sequence Number, Sequence 
Name, and Sequence Length. Figure 3.7 shows that the Human 
PBEF amino acid sequence has 95% identity to those of mouse 
and rat, whereas the mouse PBEF amino acid sequence is 98% 
identical to rat’s. This result indicates that the PBEF gene is evo-
lutionally highly conserved. Figure 3.8 present part of the aligned 
output file. The * sign indicates the identical sequence. The . sign 
indicates the semiconserved sequence substitution, and the : sign 
indicates the conserved sequence substitution. The gap indicates 
nonconserved substitution.

2.  Edit and Publish Aligned Multiple Protein Sequences
Human PBEF, mouse PBEF, and rat PBEF protein sequences are aligned as 
In the preceding text except the output file set in the GDE format.

Figure 3.6  Submit 3 PBEF protein sequences in FASTA formats.

Figure 3.7  Report of pairwise score.
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	 1.	Load the aligned sequences into the Multiple Align Show program.
	 a.	 Go to the Web site: http://cgat.ukm.my/tools/sms/multi_align.html
	 b.	 Paste the aligned sequences in the GDE format into the Multiple 

Align Show program (Figure 3.9). For the demo purpose, only 
limited amino acid sequences of each species are shown.

	 2.	Run the program.

Figure 3.9  Paste the aligned sequences in the GDE format into Multiple Align 
Show program.

Figure 3.8  ClustalW(ver.1.83) multiple sequence alignments. The left column 
contains names of different species of the same protein. The middle column 
shows the sequence alignments. The number on the right indicates the position 
of an amino acid.

C8105.indb   91 7/18/07   8:09:47 AM



92  <  Shui Qing Ye

After selecting the desired parameters (sixty residues per line; identi-
cal residues as black; conserved substitution as dark gray and noncon-
served substitution as white), click “SUBMIT.” The partial result is shown 
in Figure 3.10.

Part III	 Sample Data
1.  Human PBEF Amino Acid Sequence in the FASTA Format
>gi|5031977|ref|NP_005737.1| pre-B-cell colony enhancing factor 1 iso-
form a [Homo sapiens]

MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTEN-

SKLRKVKYEETVFYGLQYILNKYLKGKVVTKEKIQEAKDVYKEHFQDDVF-

NEKGWNYILEKYDGHLPIEIKAVPEGFVIPRGNVLFTVENTDPECYWLTNWI-

ETILVQSWYPITVATNSREQKKILAKYLLETSGNLDGLEYKLHDF-

GYRGVSSQETAGIGASAHLVNFKGTDTVAGLALIKKYYGTKDPVP-

GYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVSVVSDSYDIYNACEKIW-

GEDLRHLIVSRSTQAPLIIRPDSGNPLDTVLKVLEILGKKFPVTEN-

SKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKMWSIENIAFGSGGGL-

LQKLTRDLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLHRTPAG-

NFVTLEEGKGDLEEYGQDLLHTVFKNGKVTKSYSFDEIRKNAQLNIELEAAHH

2.  Mouse PBEF Amino Acid Sequence in the FASTA Format
>gi|10946948|ref|NP_067499.1| pre-B-cell colony-enhancing factor 1 
[Mus musculus]

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTEN-

SKVRKVKYEETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYREHFQDDVFN-

ERGWNYILEKYDGHLPIEVKAVPEGSVIPRGNVLFTVENTDPECYWLTNWI-

ETILVQSWYPITVATNSREQKRILAKYLLETSGNLDGLEYKLHDS-

GYRGVSSQETAGIGASAHLVNLKGTDTVAGIALIKKYYGTKDPVP-

Figure 3.10  Sequence Manipulation Suite: Multiple Align Show.
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GYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVSVVSDSYDIYNACEKIW-

GEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKVLDILGKKFPVTEN-

SKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENVSFGSGGAL-

LQKLTRDLLNCSFKCSYVVTNGLGVNVFKDPVADPNKRSKKGRLSLHRTPAG-

NFVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNIEQDVAPH

3.  Rat PBEF Amino Acid Sequence in the FASTA Format
>gi|29293813|ref|NP_808789.1| pre-B-cell colony enhancing factor 1 [Rat-
tus norvegicus]

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTEN-

SKVRKVKYEETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYREHFQDDVFN-

ERGWNYILEKYDGHLPIEVKAVPEGSVIPRGNVLFTVENTDPECYWLTNWI-

ETILVQSWYPITVATNSREQKKILAKYLLETSGNLDGLEYKLHDF-

GYRGVSSQETAGIGASAHLVNFKGTDTVAGIALIKKYYGTKDPVP-

GYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVSVVSDSYDIYNACEKIW-

GEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKVLDILGKKFPVSEN-

SKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENVSFGSGGAL-

LQKLTRDLLNCSFKCSYVVTNGLGVNVFKDPVADPNKRSKKGRLSLHRTPAGT-

FVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNMEQDVAPH

Section 2	 Building a Phylogenetic Tree
Part I	I ntroduction
1.  What Is Phylogenetics?
The word phylogenetics is derived from the Greek words, phylon, which 
means tribe or race, and genetikos, which means birth. Phylogenetics, 
also known as phylogenetic systematics, studies evolutionary relatedness 
among various groups of organisms. Phylogenetics is a special kind of 
phylogeny that studies the origin and evolution of a set of organisms.

2.  Why Is Phylogenetic Analysis Needed?
	 1.	To classify living species of organisms: Unlike traditional classifica-

tion rooted in the work of Carolus Linnaeus, who grouped species 
according to shared physical characteristics, modern classification is 
based on molecular phylogenetic analysis in which the characters are 
aligned nucleotide or amino acid sequences. Every living organism 
contains DNA, RNA, and proteins. Closely related organisms gener-
ally have a high degree of agreement in the molecular structure of 
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these substances, whereas the molecules of organisms distantly related 
usually show a pattern of dissimilarity. Molecular phylogeny uses 
such data to build a “relationship tree” that shows the probable evolu-
tion of various organisms, which is the basis of species classification.

	 2.	To apply to genetic testing and forensics: Phylogenetics has been 
applied to the very limited field of human genetics, such as genetic 
testing to determine a child’s paternity as well as the criminal foren-
sics focused on genetic evidence.

	 3.	To infer functions of new genes: One can use phylogenetic analysis 
to examine whether a new gene is orthologous to another well-char-
acterized gene in another species to infer the potential functions 
of that new gene. Phylogenetic analyses are increasingly being per-
formed on a genomic scale to predict gene and protein functions, 
especially in the functional genomic era after the completion of 
human genome sequencing.

3.  What Activities Are Involved in Phylogenetic Analyses?
Collecting data. It is critical that the data subjected to the phylogenetic 
analysis are homologous, that is, related by evolutionary descent. Among 
many methods is the sequence-similarity searching method, which can be 
used to retrieve homologous sequences. This tool can be accessed at sites 
such as the National Center of Biological Information (http://www.ncbi.
nlm.nih.gov), the Japanese GenomicNet server (http://www.blast/genome.
ad.jp), and the European Bioinformatics Institute (http://www.ebi.ac.uk). 
The starting point of a phylogenetic analysis is usually a set of related pro-
teins because it is more informative to work with proteins; more distant 
relationships can be analyzed.

Multiple sequence alignments. Once a set of sequences to be subjected 
to the phylogenetic analysis is collected, the next step is to perform a mul-
tiple sequence alignment. Readers can refer to Section 1 of this chapter for 
the details.

Building the phylogenetic tree. Once the sequences have been aligned, 
the multiple alignment file becomes the input for a phylogenetic analysis 
program. Numerous phylogenetic methods have been proposed, because 
no single method performs well in all situations. Complete discussion 
of all these methods is beyond the scope of this section. There are three 
major types of methods: distance matrix, maximum parsimony, and max-
imum likelihood. In distance matrix methods, the number of nucleotide 
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or amino acid substitutions between sequences is treated as a distance and 
computed for all pairs of taxa. The phylogenetic tree is constructed based 
on these distances. Neighbor-joining, one of commonly applied distance 
methods, is statistically consistent under many models of evolution, and 
hence capable of reconstructing the true tree with high probability. Dis-
tance methods are quick to compute. A central idea of the maximum par-
simony is that the preferred evolutionary tree requires the smallest number 
of evolutionary changes to explain the differences observed among the taxa 
under study. Although parsimony makes no explicit assumptions, there is 
the critical assumption of the parsimony criterion that a tree requiring 
fewer substitutions or changes is better than a tree requiring more. This 
can be contrasted with likelihood methods, which make explicit assump-
tions about the rate of evolution and patterns of nucleotide substitution. 
Maximum parsimony is a very simple approach, and is popular for this 
reason. However, it is not statistically consistent; that is, it is not guaran-
teed to produce the true tree with high probability, given sufficient data. 
Maximum parsimony methods take longer to compute. Maximum likeli-
hood method is a popular statistical method used to make inferences about 
parameters of the underlying probability distribution of a given data set. 
Maximum likelihood methods are very slow, typically computer inten-
sive, and have not been implemented on the Internet as widely as other 
methods.

Phylogenetics programs are available for both desktop computers and 
mainframes. A combination of three popular and user-friendly programs, 
NCBI Protein-protein BLAST (blastp), ClustalW, and the PHYLogeny 
Inference Package (PHYLIP), will be used as demo in next section to per-
form phylogenetic analyses. Blastp (http://www.ncbi.nlm.nih.gov/BLAST/) 
will be employed to search for and collect homologous protein amino acid 
sequences. ClustalW (http://www.ebi.ac.uk/clustalw/) will be used to carry 
out multiple protein sequence alignments and build the phylogenetic tree. 
PHYLIP will be employed to build the phylogenetic tree. Expert Protein 
Analysis System (ExPASY) proteomics tools (http://ca.expasy.org/tools/
#phylo) has, under the heading “Phylogenetic Analysis,” a fairly compre-
hensive collection of phylogenetic analysis programs. There, nearly 300 
phylogenetic analysis programs and servers are listed. Many of those listed 
programs are available on the Web, including both free and nonfree ones. 
The software programs are conveniently categorized by methods avail-
able, by computer systems on which they work, and the particular types 
of data analyzed. This site is periodically updated, though users should be 	
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cautioned that the host does not make any attempt to exclude programs 
that do not meet some standard of quality or importance. It is important 
that users for particular software programs should have a good under-
standing of their underlying methods and potential pitfalls.

Tree evaluation. After a phylogenetic tree is built, it is necessary to 
evaluate it for robustness. The most common method for doing this is 
bootstrap analysis, which essentially involves resampling the database and 
then analyzing the resampled data. Those robust results obtained from 
initial phylogenetic analysis will tolerate variations introduced by the 
resampling process, whereas nonrobust results will be altered and yield 
different trees when small changes in data are made through resampling.

Tree visualization. After robust trees are created, the final step is to best 
visualize trees and produce publication-quality printouts of the results.

4.  New Developments in Phylogenetic Analyses
Phylogenomic analyses. In recent years, phylogenetic analyses have been 
performed on a genomic scale to address issues ranging from the predic-
tion of gene and protein function to organismal relationships, to the influ-
ence of polyploid and horizontal gene transfer on genome content and 
structure, and to the reconstruction of ancestral genome characteristics. 
Thus, the term phylogenomic has emerged. Phylogenomic analyses are 
broadly defined as the integration of phylogenetic and genomic analysis, 
which places genome sequence, gene expression, and functional data in a 
historical context and thereby helps elucidate the processes shaping the 
structure and function of genes, genetic systems, and whole organisms. 
The development and refinement of searchable phylogeny databases such 
as TreeBase or gene tree databases is an important step in the advance-
ment of phylogenomics. A group of scientists in the field of phylogenetics 
recently has taken the initiative to develop a Minimal Information About 
a Phylogenetic Analysis (MIAPA) standard to bring phylogenetic analy-
ses more fully into the informatics age. This will have many beneficial 
effects on the utility and impact of phylogenomics. A starting proposal 
on MIAPA includes: (1) the objective of the phylogenetic analysis, (2) the 
description of raw data, (3) sample voucher information, (4) procedures 
for establishing character homology, (5) the sequence alignment or other 
character matrix, (6) the detailed description of the phylogenetic analysis, 
and (7) the phylogenies, including branch lengths and support values.

New software developments. Widespread recognition of the importance 
of phylogenetics to genome biology comes at a time when the availability 
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of whole-genome sequences is increasing at an unprecedented rate. It has 
spurred a rapid expansion and refinements of new and existing programs in 
phylogenetic analyses. The following are a few examples. Polar and Interac-
tive Tree (PoInTree, http:/geneproject.altervista.org) is an application that 
allows building, visualizing, and customizing phylogenetic trees in a polar 
interactive and highly flexible view. It takes as input a FASTA file or multi-
ple alignment formats. Phylogenetic tree calculation is based on a sequence 
distance method and utilizes the Neighbor Joining (NJ) algorithm. It also 
allows displaying precalculated trees of the major protein families based 
on Pfam classification. In PoInTree, nodes can be dynamically opened and 
closed, and distances between genes are graphically represented. Tree roots 
can be centered on a selected leaf. The text search mechanism, color-coding, 
and labeling display are integrated. The visualizer can be connected to an 
Oracle database containing information on sequences and other biological 
data, helping guide their interpretation within a given protein family across 
multiple species. DNA assembly with gaps (Dawg, http://scit.us/dawg/) sim-
ulates phylogenetic evolution of DNA sequences in continuous time, using 
the robust general-time reversible model with gamma and invariant rate 
heterogeneity and a novel length-dependent model of indel formation. On 
completion, Dawg produces the true alignment of the simulated sequences. 
It can be used to parametrically bootstrap an estimation of the rate of indel 
formation for the phylogeny. Because Dawg can assist in parametric boot-
strapping of sequence data, its usefulness extends beyond phylogenetics, 
such as studying alignment algorithms or parameters of molecular evolu-
tion. Bio++, a set of object-oriented libraries written in C++, has been estab-
lished to bundle bioinformatics applications in the fields of biosequence 
analysis, molecular evolution, and population genetics. Bio++ enables easy 
extension and new methods development. It contains a defined general hier-
archy of classes that allow developers to implement their own algorithms, 
which remain compatible with the rest of the libraries. Bio++ source code is 
distributed free of charge under the CeCILL general public license from its 
Web site http://kimura.univ-montp2.fr/BioPP.

Part II	 Step-By-Step Tutorial

As described in the Introduction, a combination of three popular and 
user-friendly programs, NCBI Protein-protein BLAST (blastp), ClustalW, 
and PHYLIP, will be used to demonstrate phylogenetic analyses in this 
section. The BLAST program was described in Chapter 1. The ClustalW 
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program was demonstrated in the first section of this chapter. PHYLIP is 
maintained by Joe Felsenstein in the Department of Genome Sciences and 
the Department of Biology, University of Washington, Seattle, WA, U.S. It 
consists of thirty-five programs. It is distributed as source code, documen-
tation files, and a number of different types of executables. It is available 
free over the Internet, and is designed to work on as many different kinds 
of computer systems as possible. Methods that are available in the pack-
age include parsimony, distance matrix, and likelihood methods, includ-
ing bootstrapping and consensus trees. Data types that can be handled 
include molecular sequences, gene frequencies, restriction sites and frag-
ments, distance matrices, and discrete characters. The programs are con-
trolled through a menu, which asks the users which options they want to 
set, and allows them to start the computation. PHYLIP is the most widely 
distributed phylogenetic analysis package since 1980.

1.  Collecting a Set of Homologous Protein Sequences
Here again, we use the PBEF protein as an example:

	 1.	Fetch the human PBEF protein sequence from the NCBI Web site.
	 a.	 As demonstrated in Figure 3.2, type the following address 

(http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=unigene) in 
your browser (Internet Explorer or others). In “Search,” select 
“Protein” category. In the “for,” type “human PBEF.”

	 b.	 Click “Go” in your browser or press “Enter” on your keyboard. 
The accession number of human PBEF protein sequence will be 
displayed as in the Figure 3.3.

	 c.	 Click “NP_005737” to display all human PBEF protein sequence 
information. Then in the Display, select “FASTA” format, and 
you will have the human PBEF protein sequence in the FASTA 
format (Figure 3.4).

	 2.	Obtain PBEF homologous sequences from NCBI Blastp site.

Go to http://www.ncbi.nlm.nih.gov/BLAST/, click “Protein-protein 
BLAST” (blastp) under Protein, then paste human PBEF protein sequence 
into the Search window before clicking “BLAST!” followed by clicking 
“Format!” The results of BLASTp search will be graphically displayed 
online on the Distribution of Blast Hits on the Query Sequence as well as 
sequences producing the significant alignments. A partial list of homolo-
gous protein sequences to the human PBEF is presented in Figure 3.11.
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2.  Multiple Sequence Alignments
	 1.	Edit the input sequences in a text editor or in Microsoft Word. Orga-

nize all homologous sequences into one file and keep only species or 
strain names in the first line of each sequence after sign >, respec-
tively (see Part III titled “Sample Data”). Paste all sequences into the 
sequence window of the ClustalW program. Keep the default set-
ting, and click “Run” as described in Section 1.

	 2.	Result delivery: As described in Section 1, results come in three sec-
tions: Scores Table, Alignment, and Guide Tree. For the following 
phylogenetic tree construction, only the alignment file as presented 
in Figure 3.12 is needed.

Figure 3.11  Partial list of homologous proteins to human PBEF protein. This 
screenshot shows the partial results of BLAST search, those sequences producing 
significant alignments to human PBEF protein.

Figure 3.12  Output file of multiple sequence alignments (partial presentation).
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3.  Building the Phylogenetic Tree
	 1.	Load the alignment file into a Phylip server. Go to the Phylip server 

sponsored by the Pasteur Institute (http://bioweb.pasteur.fr/seqa-
nal/phylogeny/phylip-uk.html), select “advanced form” in “protdist” 
under Programs for molecular sequence data “sequence.doc,” 
then paste the alignment file from the ClustalW program into the 
sequence window as shown in Figure 3.13.

	 2.	To run the program, Enter your e-mail address required by the server, 
select Bootstrap options with an odd random number seed such as 
5 and 100 repeats before clicking “Run protdist.” The analysis result 
will be produced as shown in Figure 3.14. Select Neighbor, which is 
a good distance matrix program, and click “Run the selected pro-
gram” on outfile. The Web page is then displayed as in Figure 3.15.

Figure 3.13  Paste the aligned file into the sequence window of the Phylip 
program.

Figure 3.14  Result file.
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4.  Tree Evaluation
	 1.	Bootstrap options: Click “bootstrap options,” and select the param-

eters as shown in Figure 3.16.

	 2.	Result display: Click the “Run” button, and the result will be dis-
played as in Figure 3.17. The top two files are consensus files. The 
bottom two files are normal files. Outfiles contains text versions of 
phylogenetic trees, and outtree files are the Newick formats of the 
same phylogenetic trees.

5.  Tree Visualization
Phylogentic trees can be displayed online or with other tree display pro-
grams after saving the output files. The following is the example using 
the online drawtree program. After selecting drawtree, click “Run the 
selected program” on outtree.consensus, and the Web page will be dis-

Phylip: neighb or - Neighbor-Joining and UPGMA methods
(Felsenstein)

Figure 3.15  Select neighbor-joining matrix.

Figure 3.16  Select parameters in bootstrap options.
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played as in Figure 3.18. Click “Run drawtree,” and the result will be as 
shown in Figure 3.19. Click “plotfile.ps,” and the final phylogenetic tree 
will be displayed as in Figure 3.20.

Phylip: neighb or - Neighbor-Joining and UPGMA methods (Felsenstein)

Figure 3.17  Files of Phylogenetic analyses. The upper part lists files of outfile.
consense and outtree.consense. The lower part lists files of outfile and outtree.

Phylip : drawtre e - Plots an unrooted tree diagram (Felsenstein)

Figure 3.18  Select parameters in the drawtree program.
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Part III	 Sample Data (Partial Listing)

>Homo sapiens

MNPAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFERKKTENSKLRKVKYEE 

TVFYGLQYILNKYLKGKVVTKEKIQEAKDVYKEHFQDDVFNEKGWNYILEKYDG 

HLPIEIKAVPEGFVIPRGNVLFTVENTDPECYWLTNWIETILVQSWYPITVATN 

SREQKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHLVNFKGT 

DTVAGLALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSV 

PVSVVSDSYDIYNACEKIWGEDLRHLIVSRSTQAPLIIRPDSGNPLDTVLKVLE 

ILGKKFPVTENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKMWSIENIAF 

GSGGGLLQKLTRDLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLHR 

TPAGNFVTLEEGKGDLEEYGQDLLHTVFKNGKVTKSYSFDEIRKNAQLNIELEA 

AHH

>Chimpanzee

MKAKSDHPQYLIVQVTHYKQYPPNTSKVYSYFECREKKTENSKLRKVKYEETVF 

YGLQYILNKYLKGKVVTKEKIQEAKDIYKEHFQDDVFNEKGWNYILEKYDGHLP 

IEIKAVPEGFVIPRGNVLFTVENTDPECXWLTNWIETILVQSWYPITVATNSRE 

QKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHLVNFKGTDTV 

Phylip: drawtree - Plots an unrooted tree diagram 
(Felsenstein)

Figure 3.19  Plotfile by the drawtree program.

Human

Puffyfish

Proteobact

Sponge
Xenopus

Rat

Murine

Bovine
Pig

Figure 3.20  Output by the drawtree program in the plottree.ps program.
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AGLALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSSVPVS 

VVSDSYDIYNACEKIWGEDLRHLIVSRSTQAPLIIRPDSGNPLDTVLKVLEILG 

KKFPVTENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKMWSIENIAFGSG 

GGLLQKLTRDLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLHRTPA 

GNFVTLEEGKGDLEEYGQDLLHTVFKNGKVTKSYSFDEIRKNAQLNIELEAAHH

>Rhesus monkey

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKLRKVKY 

EETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYKEHFQDDVFNEKGWNYILEKY 

DGHLPIEVKAVPEGSVIPXXXILIKMQSTDQCWSMPCLIQTILVQSWYPITVAT 

NSREQKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHLVNFKG 

TDTVAGIALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSS 

VPVSVVSDSYDIYNACEKIWGEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKVL 

EILGKKFPVTENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENVS 

FGSGGALLQKLTRDLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLH 

RTPAGNFVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNIELE 

AAPH

>Mus musculus

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKVRKVKY 

EETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYREHFQDDVFNERGWNYILEKY 

DGHLPIEVKAVPEGSVIPRGNVLFTVENTDPECYWLTNWIETILVQSWYPITVA 

TNSREQKRILAKYLLETSGNLDGLEYKLHDSGYRGVSSQETAGIGASAHLVNLK 

GTDTVAGIALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFS 

SVPVSVVSDSYDIYNACEKIWGEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKV 

LDILGKKFPVTENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENV 

SFGSGGALLQKLTRDLLNCSFKCSYVVTNGLGVNVFKDPVADPNKRSKKGRLSL 

HRTPAGNFVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNIEQ 

DVAPH

>Rattus norvegicus

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKVRKVKY 

EETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYREHFQDDVFNERGWNYILEKY 

DGHLPIEVKAVPEGSVIPRGNVLFTVENTDPECYWLTNWIETILVQSWYPITVA 

TNSREQKKILAKYLLETSGNLDGLEYKLHDFGYRGVSSQETAGIGASAHLVNFK 

GTDTVAGIALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFS 

SVPVSVVSDSYDIYNACEKIWGEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKV 

LDILGKKFPVSENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENV 

SFGSGGALLQKLTRDLLNCSFKCSYVVTNGLGVNVFKDPVADPNKRSKKGRLSL 
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HRTPAGTFVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNMEQ 

DVAPH

>Sus scrofa

MNAAAEAEFNILLATDSYKVTHYKQYPPNTSKVYSYFECREKKTENSKIRKVKY 

EETVFYGLQYILNKYLKGKVVTKEKIQEAKEVYKEHFQDDVFNEKGWNYILEKY 

DGHLPIEVKAVPEGSVIPRGNVLFTVENTDPECYWLTNWIETILVQSWYPITVA 

TNSREQKKILAKYLLETSGNLDGLEYKLHDGYRGVSSQETAGIGASAHLVNFKG 

TDTVAGIALIKKYYGTKDPVPGYSVPAAEHSTITAWGKDHEKDAFEHIVTQFSS 

VPVSVVSDSYDIYNACEKIWGEDLRHLIVSRSTEAPLIIRPDSGNPLDTVLKVL 

DILGKKFPVTENSKGYKLLPPYLRVIQGDGVDINTLQEIVEGMKQKKWSIENIA 

FGSGGALLQKLTRDLLNCSFKCSYVVTNGLGINVFKDPVADPNKRSKKGRLSLH 

RTPGGNFVTLEEGKGDLEEYGHDLLHTVFKNGKVTKSYSFDEVRKNAQLNIELE 

AAPH
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Section 1	 SNP Analysis
Part I	I ntroduction
1.  What Is SNP?
SNP, pronounced “snip,” stands for single-nucleotide polymorphism, 
which represents a substitution of one base for another, e.g., C to T or 
A to G. SNP is the most common variation in the human genome and 
occurs approximately once every 100 to 300 bases. SNP is terminologi-
cally distinguished from mutation based on an arbitrary population fre-
quency cutoff value: 1%, with SNP > 1% and mutation < 1%. A key aspect 
of research in genetics is associating sequence variations with heritable 
phenotypes. Because SNPs are expected to facilitate large-scale associa-
tion genetics studies, there has been an increasing interest in SNP discov-
ery and detection.

2.  SNP Discovery and Assay
Much effort has been devoted to developing reliable, efficient, and cost-
effective modalities in the discovery and genotyping of SNPs across the 
human genome. A variety of technologies have been available. Here, a 
few representative low-throughput methods on the SNP identification 
and genotyping will be introduced first. This is not only because these 
methods have contributed significantly to the discovery of SNPs in human 
population in the past, but also because they are still valuable and eco-
nomical in any individual lab for a low-to-mid-throughput genotyping 
need. Then, several high-throughput platforms on the SNP identification 
and genotyping will be described.

Low-throughput methods. Here, three major methods for SNP discov-
ery will be introduced:

	 1.	Sequencing-based: The most reliable strategy for identifying SNPs 
in a population of interest is the direct sequencing of the genomic 
DNA region in each individual. Direct DNA sequencing has been 
adopted as the gold standard. The sample size of the population 
being resequenced is important. In general, larger sample sizes are 
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needed to identify SNPs with low minor allele frequency. Smaller 
sizes are required to identify SNPs with high minor allele frequency. 
The Direct DNA sequencing method is still not widely applied to the 
large population survey of SNPs because the cost of DNA sequenc-
ing is still quite high. As the costs associated with sequencing are 
projected to decrease over time, direct sequencing may become the 
main method to identify and assay SNPs in populations so that the 
“$1000 per genome” scenario could come true.

	 2.	Conformation-based: Single-strand conformation polymorphism 
(SSCP), cleavage fragment length polymorphism (CFLP), and con-
formation-sensitive gel electrophoresis (CSGE) are three popular 
conformation-based methods. SSCP is based on the fact that a sin-
gle-stranded DNA molecule will adopt a unique conformation due to 
the formation of intrastrand base pairing under nondenaturing con-
ditions. That conformation is strictly dependent on its sequence con-
text. A single base change can result in conformation change, which 
can be detected by an alteration in electrophoretic mobility. Conven-
tional SSCP analysis requires denaturation of the double-stranded 
PCR product by heating, immediate chilling on ice, followed by gel 
electrophoresis under nondenaturing conditions. Although SSCP is 
one of the widely used methods, it is a little cumbersome to perform 
because it requires more than one electrophoretic condition to be 
run to observe all possible conformational changes. Its assay can-
not detect all point mutational differences. Recently, SSCP analy-
sis has been coupled with automated capillary array sequencers for 
high-throughput SNP identification and genotyping. CFLP is based 
on the fact that single-stranded DNAs form reproducible hairpin 
duplexes during self-annealing. In CFLP, the hairpins are cleaved 
by endonuclease cleavage I (cleavage 1), a structure-specific endo-
nuclease, at the 5' side of the junctions between the single-stranded 
and the duplex region. The cleavage products show sequence-spe-
cific patterns of bands on an electrophoretic gel. Compared with 
SSCP, CFLP is more rapid, more accurate, and permits the analysis 
of larger DNA fragments. However, its reproducibility is a concern. 
CSGE is based on differences in conformation between homoduplex 
and heteroduplex double-stranded DNA fragments. Heteroduplexes 
are generated by heat denaturation and reannealing of a mixture of 
wild-type and mutant DNA molecules. The resulting homoduplexes 
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and heteroduplexes exhibit either distinct electrophoretic mobility 
or distinct cleavage patterns under appropriate conditions. Only 
when combined with SSCP can the mutation-detection rate of CSGE 
approach 100%.

	 3.	Melting-based: Denaturing high-performance liquid chromatogra-
phy (DHPLC), denaturing gradient gel electrophoresis (DGGE), and 
two-dimensional gene scanning (TDGS) are widely used melting-
based methods. DHPLC uses ion-pair reverse phase liquid chroma-
tography to detect DNA heteroduplexes. Under partially denaturing 
conditions, heteroduplexes denature more readily and display reduced 
column retention time compared to their homoduplex counterparts. 
DHPLC is an automated, fast method with the capacity to analyze 
fragment sizes from 200 up to 700 bp, but its current format is not 
suitable for large-scale testing. DGGE is based on the fact that single-
nucleotide differences are sufficient to alter melting behavior. When 
a DNA fragment reaches a denaturant concentration or temperature 
equivalent to the melting temperature of its lowest-melting domain, 
partial strand separation, branching, and reduction in electropho-
retic mobility occur in a gradient gel of increasing denaturant con-
centration (DGGE) or increasing temperature (temperature gradient 
gel electrophoresis, TGGE). DGGE is generally considered the most 
accurate method for detecting DNA sequence variation. TDGS is 
based on DGGE in a two-dimensional format, enabling analysis of 
an entire gene for all possible sequence variants in one gel under 
one set of conditions. With the recent introduction of high-speed 
2D electrophoresis with multicolor fluorescent detection, TDGS 
has become at least an order of magnitude more cost-effective than 
nucleotide sequencing at equal accuracy.

High-throughput methods. Recently, the advent of newer technologies 
has increased the throughput of SNP genotyping while simultaneously 
decreasing the cost. Newer technologies have allowed the evaluation of 
SNPs, not just at a single locus, but on a genomewide level at densities that 
were previously thought to be unobtainable. Here, three technologies are 
briefly introduced: TaqMan assay (Applied Biosystems), GeneChip human 
mapping assays (Affymetrix), and Infinium genotyping assay (illumina).
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	 1.	TaqMan assay: TaqMan assays are based on a 5' nuclease assay in 
which two probes hybridize to a given polymorphic sequence in an 
allele-specific manner in a single PCR reaction. Each probe carries a 
5' end fluorescent reporter and a 3' end dye quencher. The quencher 
suppresses the fluorescent reporter until a probe is hybridized to the 
appropriate SNP allele during the PCR reaction. When the quencher 
is cleaved by the 5' nuclease activity of Taq polymerase, a fluorescent 
signal from the released reporter is produced. The fluorescent signal 
for each of the two allele-specific reporter dyes will report the geno-
type of that SNP. The TaqMan assay combines the PCR amplification 
and genotyping assay into a single step, greatly reducing sample pro-
cessing. Its 380-sample plate format facilitates the midthroughput 
though the instrument and associated reagents for the TaqMan assay 
is relatively high for any individual lab.

	 2.	GeneChip human mapping assays: Affymetrix has utilized an 
adaptor-PCR to create a reduced-complexity genome for SNP analy-
sis. Genomic DNA is digested with a restriction enzyme (e.g., XbaI), 
and universal adaptor sequences are annealed to the sticky ends. The 
fragments are then amplified by PCR, using a single primer recogniz-
ing the adaptor-ligated sequences. The reaction conditions are such 
that only a subset of the fragments is amplified. As a result, a repro-
ducible subset of the genome is isolated. The fragments are labeled 
and hybridized to a chip containing oligos that allow genotyping of 
the SNPs present within the reduced genome. Owing to the nature 
of the genome-complexity reduction approach, it can be scaled to 
higher levels of SNP genotyping by simply altering the restriction 
enzyme or PCR conditions to create a higher-complexity subset and 
a greater number of amplified SNPs. This approach has been used 
in the creation of the GeneChip human mapping 100 K and 500 K 
products for the analysis of over 100,000 and 500,000 SNPs, respec-
tively. This platform has its disadvantages. The assay requires high-
quality DNA. The instrument cost is high and mainly suitable for 
the service core lab. The procedure involves multiple steps and takes 
days to finish.

	 3.	Infinium genotyping assay: The illumina platform combines its 
BeadChip arrays with an allele-specific extension reaction, which 
can analyze over 100,000 SNPs in an exon-centric manner across 
the genome. In the assay, genomic DNA is amplified by a non-PCR 
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approach in an isothermal reaction. Amplified DNA is fragmented 
and hybridized to a mixture of bead types. Two bead types are dedi-
cated for the genotyping of each SNP site, resulting in over 200,000 
bead types for the analysis of over 100,000 SNPs. To each pair of 
beads a ~50-mer locus-specific oligo is attached in which the last 
nucleotide is positioned at the polymorphic base. Upon hybridiza-
tion to the amplified DNA, the bead-bound primers undergo an 
extension reaction in the presence of unlabeled and labeled nucleo-
tides. Primers with a mismatch at the SNP site will fail to extend 
and not be labeled, whereas those with a perfect match will extend 
and become labeled. The reporter signal associated with each bead 
is determined by imaging each of the 200,000 bead types. The rela-
tive signal observed for each pair of beads is used to determine the 
genotype of each SNP. Products have recently been released for the 
analysis of over 250,000 SNPs. The Infinium assay also involves mul-
tiple steps and requires days to complete. One significant advantage 
of the Infinium assay over the Affymetrix system is that it can utilize 
DNA that is partially degraded; thus, it can be applied to assay older 
DNA samples.

3.  SNP and Human Disease
The most abundant source of genetic variation in the human genome is 
represented by SNPs, which can account for heritable interindividual dif-
ferences in complex phenotypes. Identification of SNPs that contribute to 
susceptibility to common diseases will provide highly accurate diagnos-
tic information that will facilitate early diagnosis, prevention, and treat-
ment of human diseases. Common SNPs, ranging from a minor allele 
frequency of 5 to >20%, are of interest because it has been argued that 
common genetic variation can explain a proportion of common human 
disease — the common variant/common disease (CV/CD) hypothesis. 
SNPs occur in the coding region, intron region, 5′ and 3′ untranslated 
region, promoter region, and intragenic region. There are two types of 
coding SNPs: nonsynonymous SNPs and synonymous SNPs. nonsynony-
mous SNPs result in changes in amino acids, whereas synonymous SNPs 
do not change amino acids. Because nonsynonymous SNPs directly affect 
protein function, many investigators focus on the genotyping of coding 
SNPs in genetic association studies; this strategy is known as a “direct” 
approach. The challenge of this approach lies in predicting or determining 
a priori which SNPs are likely to be causative or predicting the phenotype 
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of interest. Nonsynonymous SNPs, though obvious suspects in causing a 
proportion of human disease, do not account for all SNPs that can cause 
disease or susceptibility to disease. The “indirect” approach to genetic 
association studies differs from the direct approach in that the causal SNP 
is not assayed directly. The assumption is that the assayed or genotyped 
SNPs will be in linkage disequilibrium or associated with the causative 
SNP; thus, the assayed SNP would be overrepresented among cases com-
pared with controls because it is highly correlated with the disease-caus-
ing SNP. Besides nonsynonymous SNPs, other functional SNPs, located in 
promoters, introns, splice sites, and intragenic regions, are implicated in 
human diseases or susceptibility to diseases. Furthermore, even synony-
mous (or “silent”) SNPs have been implicated as having functional conse-
quences via unknown mechanisms. We are still in the early stages of fully 
discerning effects of DNA polymorphisms in relation to human disease.

4.  SNP Databases
A number of SNP databases exist. Here, two selective SNP resources are 
briefly described.

dbSNP: dbSNP (http://www.ncbi.nlm.nih.gov/projects/SNP/get_html.
cgi?whichHtml=overview) was established by The National Center 
for Biotechnology Information (NCBI), U.S. in collaboration with 
the National Human Genome Research Institute, U.S. to serve as a 
central repository for both single-base nucleotide substitutions and 
short deletion and insertion polymorphisms. The data in dbSNP are 
integrated with other NCBI genomic data. The data in dbSNP are 
freely available to the scientific community and made available in a 
variety of forms.

dbSNP takes the looser “variation” definition for SNPs, so there is 
no requirement or assumption about minimum allele frequency. 
dbSNP records all submitted SNP data regardless of any allele fre-
quency in populations. Thus, many SNPs in the database are not 
validated, nor is any allele frequency data percent.

Scientific users of dbSNP should be aware of the current status in 
dbSNP to effectively harness the power of this resource. As of 
November 1, 2006, dbSNP has collected SNPs from 35 organ-
isms. Among them, Homo sapiens, Mus musculus, Canis famil-
iaris, Gallus gallus, Pan troglodytes, Oryza sativa, and Anopheles 
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gambiae have had at least 1 million SNPs curated. In dbSNP build 
126 for human SNPs, there are 27,846,394 submitted SNPs and 
11,961,761 reference SNPs with 47.20% of them validated; 43.42% 
of those reference SNPs occur within the gene. For those submit-
ted SNPs, only about 20% of them have genotype data and <3% 
of them have frequency data.

SeattleSNPs: Seattle SNPs (http://pga.gs.washington.edu/) has been 
funded as part of the National Heart Lung and Blood Institute’s 
(NHLBI) Programs for Genomic Applications (PGA). The Seattle-
SNPs PGA has been focused on identifying, genotyping, and modeling 
the associations between single-nucleotide polymorphisms (SNPs) in 
candidate genes and pathways that underlie inflammatory responses 
in humans. As of November 2, 2006, they have sequenced 286 genes 
and identified 28,312 SNPs from 24 African-American (AA) sub-
jects and 17,560 SNPs from 23 European (CEPH) subjects. The Web 
sites provides useful sequence, genotype, software, and educational 
resources as well as linking to other relevant SNP databases.

Part II	 Step-By-Step Tutorial

In this part, pre-B-cell colony-enhancing factor (PBEF1) gene will be used 
to demonstrate how to search for its SNP information from dbSNP and 
display all SNP data of the IL-10 gene in VG2 from SeattleSNP.

1.  Search for SNP Information of PBEF 1 Gene from dbSNP
	 1.	Go to the SNP home page (http://www.ncbi.nlm.nih.gov/SNP/). 

There are six different search options: entrez SNP, ID numbers, 
Submission info, Batch, Locus info, and between markers. Here, 
entrezSNP is demonstrated. Type gene symbol PBEF1 in the textbox 
at the top of the page, as displayed in Figure 4.1.

	 2.	Click “GO,” and the graphic summary on how many SNPs collected 
from each species as well as each SNP with reference SNP number 
(rs#) is shown as in Figure 4.2. Users can have 31 display options to 
present different formats of the data, and sort the data in 6 different 
ways. Furthermore, users can go to each particular SNP by simply 
clicking the relevant linking bar to get detailed information such as 
its chromosomal location, gene view, sequence view, and genotypes.
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Figure 4.1  Search for SNP information of PBEF 1 gene in dbSNP. This screen-
shot displays the search for PBEF1 SNP information from dbSNP by typing the 
gene symbol PBEF1 in the text box.

Figure 4.2  The graphic summary of PBEF1 SNPs. This screenshot shows how 
many PBEF1 SNPs were collected from each species as well as each SNP with 
reference SNP number (rs#).
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2.  Search for SNP Information of IL-10 Gene from SeattleSNPs
	 1.	Go to the home page of SeattleSNPs (http://pga.gs.washington.edu/). 

Click “Sequenced Genes” under “Sequencing Resources.” Find IL-10 
in the alphabetical listing of genes. Double click IL-10 gene symbol, 
the result is displayed as in Figure 4.3.

	 2.	Click “SNP Allele Frequency” under “Genotype Data,” and the tabu-
lar view of all SNP allele frequency data is presented as in Figure 4.4. 
As an example (SNP 000245), the frequency of the minor allele T 
is 2 times higher in Africa-descent population (0.47) compared to 
those in European-descent population (0.23). The same Web page 
also hosts other useful hyperlinked information and analysis tools 
such as mapping data, linkage data, and haplotype data, which are 
just a click away.

Figure 4.3  Search for SNP information of IL-10 gene from SeattleSNPs. This 
screenshot shows that various types of information on a particular gene, such as 
the IL-10 gene, is just a click away.
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Part III	 Sample Data

	 1.	Gene symbol: PBEF 1

	 2.	Gene symbol: IL-10 (Interleukin 10)

Section 2	 Haplotype Analysis
Part I	I ntroduction
1.  What Is a Haplotype?
The term haplotype is a contraction of “haploid genotype.” Haplotypes are 
a combination of alleles at different markers along the same chromosome 
that are inherited as a unit. Although each marker can be analyzed 
independently of other marker, it is much more informative to analyze 
markers in a region of interest simultaneously. There is a growing interest 
in understanding haplotypes structures in the human genome using iden-
tified genetic markers because: (1) haplotype structure may provide criti-
cal information on human evolutionary history and the identification of 
genetic variants underlying various human traits; and (2) molecular tech-
nologies now make it possible to study hundreds of thousands of genetic 
polymorphisms in population samples of reasonable sizes. One major aspect 

Figure 4.4  Tabular view of all SNP allele frequency data in the IL-10 gene. The 
tabular view presents SNP site, allele frequencies, and heterozygosities in both Afri-
can- and European-descent populations of each SNP in the IL-10 gene.
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of haplotype analysis is to identify linkage disequilibrium (LD), or allelic 
association, patterns in different regions and different populations because 
the very existence of LD among markers makes it possible to infer popula-
tion histories and localize genetic variants underlying complex traits.

2.  Methods of Haplotype Analysis
Currently, there are two broad categories of tools that can unambiguously 
determine haplotypes: directly genotyping pedigrees and using molecu-
lar methods in combination with genotyping for individual samples that 
do not have pedigree information. The pedigree or family-based method 
relies on the fact that different loci on the same chromosome (haplotype) 
will be inherited as a unit unless they are separated by a recombination 
event. The probability of a recombination depends partly on the physi-
cal distance between the markers. Markers that are closer in physical 
distance have a greater chance of being “linked,” which means that their 
alleles are transmitted from parent to offspring as a haplotype. For popu-
lation-based data, molecular or experimental methods have become the 
“gold standard” method for constructing haplotypes. Several molecular 
methods are available to construct unambiguous haplotypes. Two widely 
used molecular methods include allele-specific polymerase chain reaction 
(AS-PCR) and somatic cell hybrids. These molecular methods distinguish 
which allele is on which chromosome, a step generally not required by fam-
ily-based studies because this information can be extracted from knowl-
edge of the alleles transmitted by the parents to the offspring. A common 
PCR reaction on an individual sample without pedigree information will 
tell the investigator which two alleles are present in an individual sample, 
but an allele-specific PCR will reveal which allele is present in the context 
of another allele on the same chromosome. The somatic cell hybrid is a 
technique that physically separates the maternal and paternal chromo-
somes of an individual before genotyping. Both AS-PCR and somatic cell 
hybrids have been used to unambiguously determine haplotypes in rela-
tively small- to moderate-sized population surveys.

Although pedigrees and molecular methods are more reliable in assign-
ing haplotypes, both tools are costly and tedious relative to statistical 
inference. A number of the statistical-inference software packages are cur-
rently available. These haplotype inference programs can be categorized 
into three broad groups: parsimony, maximum likelihood, and Bayes-
ian. Each group has advantages and disadvantages. The Clark algorithm, 
based on parsimony, first determines the known haplotypes and then 
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searches for genotype combinations that are congruent with the known 
haplotypes. The Clark algorithm is easily understandable but cannot be 
applied to all datasets. The expectation-maximization (EM) algorithms 
can assign all alleles to haplotypes with a high probability. However, the 
EM algorithms do not make assumptions about recombination or muta-
tion, assume that the data are in Hardy Weinberg equilibrium, and cannot 
handle large datasets efficiently. Bayesian approaches incorporate assump-
tions or prior information as a guide for the inference of haplotypes not 
previously observed. The Bayesian algorithms perform better than the 
parsimony and maximum-likelihood algorithms. Like other algorithms, 
Bayesian approaches do not account for recurrent mutation or gene con-
version. The drawback of nearly every statistical-inference package is that 
not all inferred haplotypes are correct.

3.  Linkage Disequilibrium, Haplotype Block, and Haplotype Tagging
Linkage disequilibrium. Linkage disequilibrium (LD) is a term used in 
the study of population genetics for the nonrandom association of alleles at 
two or more loci. A study of haplotype consisting of a short tandem repeat 
polymorphism and an Alu deletion polymorphism at the CD4 locus in 
forty-two worldwide populations first demonstrated that the LD patterns 
between these two polymorphisms could provide evidence of a common 
and recent African origin for all non-African populations. In addition to 
its use in inferring population history, the extent of LD is a critical factor 
in identifying disease-associated genetic variants and designing efficient 
studies to detect disease gene associations. Various measures have been 
proposed for characterizing the statistical association that arises between 
alleles at different loci. The most commonly used ones are D' and r2. Both 
D' and r2 range between 0 and 1.

D' is a measure of linkage disequilibrium between two genetic mark-
ers. A value of D' = 1 (complete LD) indicates that two SNPs have not 
been separated by recombination, whereas values of D' < 1 (incomplete 
LD) indicate that the ancestral LD was disrupted during the history of the 
population. Only D' values near one are a reliable measure of LD extent; 
lower D' values are usually difficult to interpret as the magnitude of D' 
strongly depends on sample size. To calculate this value, see the article by 
Lewontin (1988) for the details.

r2 is a measure of linkage disequilibrium between two genetic markers. 
For SNPs that have not been separated by recombination or have the same 
allele frequencies (perfect LD), r2 = 1. In such case, the SNPs are said to be 
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redundant. Lower r2 values indicate less degree of LD. One useful property 
of r2 for association studies is that its inverse value, 1/r2, provides a practi-
cal estimate of the magnitude by which the sample size must be increased 
in a study design to detect association between the disease and a marker 
locus, when compared with the size required for detecting association 
with the susceptibility locus itself. To calculate this value, see the article by 
Pritchard and Przeworski (2001) for the details. It should be pointed out 
that based on the analysis of many studies, LD is both locus and popula-
tion specific. Although LD between two markers tends to decrease as their 
physical distance increases, the variation is so great that is not possible 
to predict LD between two polymorphisms reliably, based only on their 
physical distance. The amount of LD differs among different populations, 
and LD is usually weaker among Africans than other populations. There-
fore, only with a systematic empirical study that covers the genome and 
involves many human populations could the full spectrum of LD patterns 
in the human genome be understood.

Haplotype block. Some recent studies have found that chromosomes are 
structured such that each chromosome can be divided into many blocks, 
i.e., haplotype blocks, within which there is limited haplotype diversity. 
The concept of “blocks” arose from an initial report that the 500-kb region 
of 5q31 genotyped in a European-descent population had discrete regions 
of low haplotype diversity. The regions, termed blocks, were up to 100 kb 
long and generally consisted of 2–4 haplotypes, which accounted for >90% 
of the chromosomes surveyed. Within the blocks, there was little to no 
recombination and between the blocks, there was a clustering of recom-
bination events. Afterward, haplotype blocks have been demonstrated 
across the human genome in several populations. It should be cautioned 
that there is no universally accepted definition of haplotype blocks; thus, 
the block structures identified in each study depend strongly on the defi-
nition used, and there has been no systematic comparison of haplotype 
blocks identified under various definitions.

The main advantage of low haplotype diversity or haplotype blocks is that 
only a few markers or SNPs need to be genotyped to represent haplotypes 
within a block in a whole-genome association study. Fueled by the pros-
pect that the human genome can be described in terms of haplotype blocks, 
the National Human Genome Research Institute (NHGRI) at the National 
Institutes of Health (NIH) initiated the International “HapMap” Project.

The International HapMap Project is an organization whose goal is to 
develop a haplotype map of the human genome (the HapMap) that will 
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describe the common patterns of human genetic variation and make 
these data available for researchers interested in whole-genome associa-
tion studies. The project is a collaboration among researchers at academic 
centers, nonprofit biomedical research groups, and private companies in 
Canada, China, Japan, Nigeria, the U.K., and the U.S. Four populations 
were selected for inclusion in the HapMap: 30 adult-and-both-parents 
trios from Ibadan, Nigeria (YRI), 30 trios of U.S. residents of northern 
and western European ancestry (CEU), 44 unrelated individuals from 
Tokyo, Japan (JPT), and 45 unrelated Han Chinese individuals from Bei-
jing, China (CHB). All the data generated by the project, including SNP 
frequencies, genotypes, and haplotypes, have been placed in the pub-
lic domain at http://www.hapmap.org. International HapMap Project 
becomes a useful public tool in the search for disease-causing genes and 
loci important in public health.

Haplotype tagging. Haplotype tagging refers to methods of selecting 
minimal number of SNPs that uniquely identify common haplotypes (>5% 
in frequency). The reason for haplotype tagging or tagging SNP selection 
is that the number of markers now available per gene makes genotyping 
all markers very expensive for the average research budget, although the 
costs associated with genotyping have decreased. Because of this, much 
interest has been devoted to choosing a set of markers to best represent the 
genetic variation of the candidate gene.

There are two principal uses of tagging. The first is to select a “good” 
subset of SNPs to be typed in all the study individuals from an extensive 
SNP set that has been typed in just a few individuals. Until recently, this 
was frequently a laborious step in study design, but the International Hap-
Map Project and related projects now allow selection of tag SNPs on the 
basis of publicly available data.

A secondary use for tagging is to select for analysis a subset of SNPs 
that have already been typed in all the study individuals. Although it is 
undesirable to discard available information, the amount of information 
lost might be small, and reducing the SNP set in this way can simplify 
analyses and lead to more statistical power by reducing the degrees of free-
dom (df) of a test.

Many current approaches to haplotype tagging have limitations. Many 
algorithms require haplotypes but do not account for incorrectly inferred 
haplotypes or variously defined haplotype blocks. The population that 
underlies a particular study will typically differ from the populations 
for which public data are available, and a set of tag SNPs that have been 
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selected in one population might perform poorly in another. Investigators 
should be aware that population stratification inflates estimates of linkage 
disequilibrium; therefore, populations of combined race or ethnicity (e.g., 
the Polymorphism Discovery Resource Panel) are not ideal for choosing 
tagSNPs to be genotyped in larger populations.

4.  Medical Applications of Haplotyping
Candidate gene search. In the research setting, haplotypes are com-
monly used to localize a disease-conferring gene or locus. Currently, 
much interest surrounds the use of genetic association studies because 
this study design is suggested to be more powerful than linkage stud-
ies in localizing susceptibility loci for common diseases (e.g., heart 
disease, asthma, diabetes, autoimmune disease, or cancer) that have 
moderate risk. Similar to the linkage study design, an association study 
design genotypes markers in affected and unaffected individuals, and 
it is expected that markers which co-occur or are associated with the 
disease phenotype either contribute to the phenotype or are associated 
with the disease susceptibility locus. In a candidate gene association 
study, a gene is chosen for study based on an educated guess of the loca-
tion (usually by a linkage study), genetic studies in model organisms, 
or the biology of the disease locus in relation to the disease phenotype. 
The specific role of haplotypes in a candidate gene association study 
depends on the hypothesis being tested. For example, haplotypes can 
represent a combined effect of several sites along the same chromosome 
(cis-acting loci) that cannot be detected when these sites are tested one 
by one.

More commonly, investigators rely on haplotypes to serve as proxies for 
ungenotyped SNPs. In this case, for a traditional case-control gene asso-
ciation study design, a statistical test is performed to determine if an allele 
or genotype of a SNP in a particular candidate gene is overrepresented 
among cases compared with controls. If a SNP allele is associated with a 
disease phenotype, the allele is either contributing to the disease pheno-
type or is in linkage disequilibrium with the SNP allele that contributes 
to the phenotype.

Diagnosis. Human leukocyte antigen (HLA) matching is a clear exam-
ple of how haplotypes can be used in the clinic to improve outcome. In 
this scenario, transplant recipients and donors are genotyped at several 
markers along the major histocompatibility complex. The HLA haplo-
types are then determined by ordering the alleles along the chromosomes. 
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Patients who match the donor haplotypes closely are predicted to have 
a better transplant outcome than those who do not. The development of 
HLA haplotype matching has proved to be crucial in making transplanta-
tion between unrelated patients and donors a success. There are instances 
in which haplotypes rather than genotypes at a single locus can predict 
severity of disease. For example, some research suggests that a specific 
β-globin locus haplotype is associated with less severe sickle cell disease 
phenotypes. More recently, a promoter region haplotype in IL-10 was 
associated with a lower incidence of graft-versus-host disease and death 
compared with other haplotypes among patients receiving hematopoietic-
cell transplants.

Pharmacogenomics and phamacogenetics. Pharmacogenomics and 
phamacogenetics are terms used to describe the study of genetic vari-
ants and how these variants relate to interindividual response to drug 
therapy. Both terms can be used to describe how genetic variation affects 
key pathways for drug metabolism, delivery excretion, sight of action, 
and toxicity. However, pharmacogenomics emphasizes a larger, genome-
wide approach that considers not only single-gene effects, but also muta-
gen interactions and pathways. Pharmacokinetics will usually be used 
to describe a single-gene approach to understand the effects of genetic 
variation on drug response. Many examples of varied clinical response 
to medication based on heritable differences have been described, and 
it has been estimated that 20 to 90% of drug effects and efficacy may 
be caused by heritable differences. PharmGKB (http://www.pharmgkb.
org/) is curating information that establishes knowledge about the rela-
tionships among drugs, diseases and genes, including their variations 
and gene products. PharmGKB now contains Applied Biosystems’ vari-
ant data from 4 human populations on over 200 drug-metabolizing 
genes. Incorporation of haplotypes into studies of pharmacogenomics 
and pharmacogenetics will certainly increase in the near future and pro-
vide a more complete picture of the sites that are relevant, either alone 
or in concert, in the practice of “genetic medicine” at the population or 
individual level.

Part II	 Step-By-Step Tutorial

In this part, we describe how to find information on all genotyped SNPs 
of PBEF1 and select tagSNP from the HapMap, and download them into 
the Haploview program to perform LD select and haplotype analysis.
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1.  Find All SNPs in the Human PBEF1 Gene
	 1.	Go to the HapMap home page, select Browse Project Data under Proj-

ect Data, type “PBEF1” in the Search window under Landmark or 
Region and click “Search,” and the result is shown as in Figure 4.5.

	 2.	Click hyperlink chr7:105.5..105.5 Mbp (34.7 kbp) by the NM_005746 
pre-B-cell colony enhancing factor 1 isoform a [PBEF1], all 36 gen-
otyped SNPs within the PBEF1 gene region in 4 different human 
populations (as of November 6, 2006) will be shown as in Figure 4.6. 
Reference # SNP is followed by (+/−) strand information. Blue color 
represents reference allele in the human genome assembly, and red 
color represents alternative allele. In the pie chart, blue and red dis-
plays allele frequency in each population, and white color means that 
data are not available. Double-clicking each reference SNP will lead 
to the detailed SNP information, including its genomic location, fre-
quency report, and available assays.

2.  Select tagSNP
	 1.	Under Report and Analysis, select Annotate tagSNP Picker from its 

drop-down menu, click “Configure” … and its configuring page is 
shown as in Figure 4.7.   Several parameters such as population, r2 value, 
and MAF cutoff can be adjusted at the discretion of investigators.

Figure 4.5  Find all SNPs in the human PBEF1 gene from the HapMap site. 
This screenshot displays two hyperlinked results of both PBEF1 and PBEF2 SNPs 
that matched the search request.
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	 2.	Click “Configure,” and six tagSNPs in the human PBEF gene are 
shown as in the lower part of Figure 4.8.

Figure 4.6  All 36 genotyped SNPs within the PBEF1 gene region in 4 different 
human populations. Top panel displays all genetyped SNPs of the PBEF1 gene. 
Lower panel illustrates two isoforms of the PBEF gene.

Figure 4.7  Configure PBEF1 gene tagSNP picker.
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3.  Download PBEF1 SNP Genotype Data from HapMap to the 
Haploview Program to Perform LD Select and Haplotype Analysis
	 1.	Select Download SNP genotype Data from the drop-down menu 

Under Reports and Analysis, click “Configure” … . The configuring 
page is displayed as in Figure 4.9, panel A. After choosing a particu-
lar population and the parameters, select “Save to Disk” and click 
“Go” before saving the file in the Haploview folder (assuming that 
the Haploview program has been downloaded to local computer).

	 2.	Select Load HapMap data (Figure 4.9, panel B) in the Haploview pro-
gram to load downloaded HapMap data. After loading, the page of 
Check Marker is shown as in Figure 4.10. Out of 19 SNPs, 6 SNPs are 
unchecked because their minor allele frequencies (MAF) are all zero.

	 3.	Click “Haplotypes” in the upper left to display Haplotypes as in Fig-
ure 4.11. Click “LD plot” to display the LD plot as in Figure 4.12. 
Under Display options, click “LD zoom” to view annotated details.

Part III	 Sample Data

	 1.	  PBEF1

Figure 4.8  Output of PBEF1 gene tagSNPs. Top panel displays all genetyped 
SNPs of the PBEF1 gene. The middle panel illustrates two isoforms of the PBEF 
gene. The bottom panel in the figure reports six PBEF1 gene tagSNPs from the 
European population.
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A. Configure downloading data from HapMap

B. Load HapMap data

Figure 4.9  Download PBEF1 SNP genotype data from HapMap to the Haplo-
view program. Panel A shows configuration of downloading data from the Hap-
Map. Panel B shows Load HapMap data.

Figure 4.10  Table view of 19 PBEF1 gene SNPs in the Check Markers Page of 
the Haploview program.

C8105.indb   127 7/18/07   8:12:38 AM



128  <  Shui Qing Ye

Figure 4.12  LD plot display.

Figure 4.11  Haplotype display of PBEF gene SNPs.
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Introduction
Completion of the human genome project signaled a new beginning for 
modern biology, one in which the majority of biological and biomedical 
research will be conducted in a sequence-based fashion. The need to gen-
erate, analyze, and integrate large and complex sets of molecular data has 
led to the development of whole-genome approaches, such as microarray 
technology, to expedite the process of translating molecular data to bio-
logically meaningful information. The paradigm shift from traditional 
single-molecule studies to whole-genome approaches requires not only 
standard statistical modeling and algorithms but also high-level, hybrid, 
computational/statistical automated learning systems for improving the 
understanding of complex traits.

Microarray experiments provide unprecedented quantities of genome-
wide data on gene-expression patterns. The implementation of a success-
ful uniform program of expression analysis requires the development 
of various laboratory protocols, as well as the development of database 
and software tools for efficient data collection and analysis. Although 
detailed laboratory protocols have been published, the computational 
tools necessary to analyze the data are rapidly evolving, and no clear con-
sensus exists as to the best method for revealing patterns of gene expres-
sion. Consequently, choosing the appropriate algorithms for analysis is a 
crucial element of the experimental design.
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The purpose of this chapter is to provide a general overview of some 
existing approaches for gene expression analysis. This is not comprehen-
sive, but instead represents a tutorial on some of the more basic tools. The 
focus here is on basic analysis principles that are generally applicable to 
expression data generated using spotted arrays (Agilent), SAGE (Serial 
Analysis of Gene Expression), or oligo arrays (Affymetrix and illumina), 
provided the data is presented in an appropriate format. Figure 5.1 shows 
a general schematic framework for microarray analysis. A unique aspect 
of this book is the integration of practical tutorials with didactic informa-
tion. In the tutorial, the reader is encouraged to explore multiple steps in 
the analysis process and become familiar with various software and anal-
ysis tools. Many of the topics covered have been recently reviewed (From 
Hoheisel, J.D. Nat Genet 7(3): 200–210, March 2006), and pertinent recent 
references are provided for further reading at the end of the chapter.

Section 1	 Experimental Design
The underlying theory behind expression microarray technology is that 
gene-specific probes, representing thousands of transcribed sequences, are 

Biological question

Microarray experiment

Image Analysis

Normalization

Quality 
measurement

Analysis

Estimation Filtering Clustering Discrimination

Pre-processing

Failed

Passed

Data interpretation
Functional enrichment Pathway analysis

Experimental design

Biological verification

Figure 5.1.  Schematic of microarray analysis.
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arrayed on a fixed substrate and used to assay the levels of gene expression 
in a target biological sample. RNA is extracted from a source of interest 
(tissue, cells, or other materials), labeled with a detectable marker (typi-
cally, fluorescent dye) and allowed to hybridize to the arrays with indi-
vidual messages hybridizing to their complementary gene-specific probes 
on the array. Stoichiometry dictates that the relative abundance of nucleic 
acid bound to any probe is a function of concentration. A more intense 
signal corresponds to a higher degree of hybridization, implying higher 
levels of expression. Once hybridization is complete, samples are washed 
and imaged using a confocal laser scanner. The relative fluorescence inten-
sity for each gene is extracted and transformed to a numeric value. The 
actual value reported depends on the microarray technology platform and 
experimental design.

Currently, multiple microarray platforms can be exploited to ana-
lyze global gene expression. Regardless of the approach, subsequent data 
analyses are the expression measures for each gene in each experiment. 
Summary of all microarray commercial products, including software 
for analysis is available at: http://www.nature.com/nature/journal/v442/
n7106/pdf/4421071a.pdf.

1.  Gene Expression Microarray Platforms

The MicroArray Quality Control (MAQC) project sponsored by the U.S. 
Food and Drug Administration (FDA) compared performance of dif-
ferent microarray platforms with regard to their sensitivity, specificity, 
dynamic range, precision, and accuracy. The study included microarrays 
from five major vendors: Affymetrix, Agilent, Applied Biosystems, GE 
Healthcare, and Illumina, and is published online in Nature BioTechnol-
ogy 2006. This project is the largest one of its kind and ultimately involved 
a total of 137 scientists from 51 scientific organizations (major findings of 
the first phase of the MAQC project were published in six research papers 
in the September 8, 2006 issue of Nature Biotechnolog: http://www.nature.
com/nbt/focus/maqc/index.html). In contrast to a few (but not all previ-
ous studies), technical performances were found similar across all plat-
forms (Table 5.1).

One of the major limitations of expanding the use of microarray tech-
nology is that expression values generated on different platforms cannot 
be directly compared because of the unique labeling methods and probe 
sequences used. To assess relative accuracy, expression detected on Taq-
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Man quantitative real-time RT-PCR (qRT-PCR) was compared to micro-
array assays. Affymetrix, Agilent, and illumina platforms displayed high 
correlation values of 0.9 or higher, based on comparison of approximately 
450–550 genes amplified by qRT-PCR. GE Healthcare and NCI platforms 
had a reduced average correlation of 0.84, but identified almost 30% more 
genes in the data comparison, reflecting perhaps better lower level of detec-
tion of the technology and consequently greater variation. The results of 
the MAQC consortium demonstrated that most major commercial plat-
forms can be selected with confidence. Moreover, the MAQC data set 
offers scientists a highly validated reference for future work. The MAQC 
data are available through GEO (series accession number: GSE5350), Array 
Express (accession number: E-TABM-132), ArrayTrack (http://www.fda.
gov/nctr/science/centers/toxicoinformatics/ArrayTrack/), and the MAQC 
website (http://edkb.fda.gov.MAQC/).

2.  Sources of Variability and Experimental Design

Gene expression microarrays are powerful, but variability arising through-
out the measurement process can obscure the biological signals of interest. 
The many sources of variation in a microarray experiment have, from its 
inception, been considered in four separate categories: (1) manufacturing 
of arrays, (2) generation of biological sample (the experimental unit), (3) 
technical variation (preprocessing), and (4) processing of samples (obtain-
ing image). Variability due to errors introduced in the manufacturing of 
the arrays is specific to the technology and, for all intents and purposes, 
beyond the scope of this chapter. Consequently, the three remaining fac-
tors comprise the three layers where variability can be introduced.

The first layer corresponds to variation due to the biological component 
of the experiment. This is intrinsic to all biological systems and includes 
features influenced by genetic and environmental factors, as well as by 
whether the samples are pooled or individual. It is often difficult to dis-
tribute systemic errors introduced because of the “biology” of the experi-
ment equally to prevent bias; this is mostly achieved through appropriate 
randomization (see following text). Technical variation surrounding the 
preprocessing of the samples can arise at any stage of the operation (RNA 
extraction, labeling, etc.). Protocolization of the processing steps improves 
the quality and reproducibility of the technique. Measurement error is 
associated with reading the fluorescent signal, which may be affected by 
factors such as dust on the arrays.
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Valid statistical tests for differential expression of a gene across the 
samples can be constructed on the basis of any of these variance compo-
nents, but there are important distinctions in how the different types of 
tests should be interpreted. There are two broad types of replicate experi-
ments: “biological replicates” refer broadly to analysis of RNA of the same 
type but from different subjects (e.g., blood samples from various different 
patients treated with the same drug). “Technical replicates” refer to mul-
tiple array analyses performed with the same RNA (e.g., one blood sample 
from the same individual analyzed many times). If we are interested in 
determining how the treatments affect different biological populations 
represented in our samples, statistical tests should be based on the biologi-
cal variance. If our interest is to detect variations within treatment groups, 
the tests should be based on technical variation.

Lastly, identifying the independent units in an experiment is a prereq-
uisite for a proper statistical analysis. Details of how individual animals 
and samples were handled throughout the course of an experiment can 
be important to identify which biological samples and technical replicates 
are “independent.” In general, two measurements may be regarded as 
independent only if the experimental materials on which the measure-
ments were obtained could have received different treatments, and if the 
materials were handled separately at all stages of the experiment, where 
the variation might have been introduced.

3.  Sample Size and Replication

The precision of estimated quantities depends on the variability of the 
experimental material, the number of experimental units, the number of 
repeated observations per unit, and the accuracy of the primary measure-
ments. The basis for drawing inferential conclusions is the residual error 
(or mean-squared error, MSE), which quantifies the precision of estimates 
and thus allows one to determine whether estimated quantities are sig-
nificantly different in the statistical sense. There are only two types of 
mistakes to be considered: (1) type I error or α error — erroneously con-
cluding that there is a real biological effect when in reality there is not; and 
(2) type II error or β error — concluding that the treatment had no effect 
when in reality it did.

A simple way to assess the adequacy of a design is to determine the 
degrees of freedom (df). This is done by counting the number of indepen-
dent units and subtracting from it the number of distinct treatments (count 

C8105.indb   138 7/18/07   8:12:48 AM



Gene Expression Profiling by Microarray  <  139

all combinations that occur if there are multiple treatment factors). If there 
are no df left, there may be no information available to estimate the bio-
logical variance. The statistical tests will rely on technical variance alone, 
and the scope of the conclusions will be limited to the samples in hand. 
If there are 5 or more df, then the analysis may be considered adequate. 
Although it is generally recommended to have no fewer than 5 residual 
df, it is quite common to see fewer in microarray experiments, even to the 
point of having no residual df at all. In the latter case, some strong (that 
is, questionable) assumptions about the variability in the experiment must 
be made in order to draw conclusions that can be generalized. Replication 
and/or repetition of measurements at various levels in the experiment can 
increase precision. The most direct method to achieve this is to increase 
the number of experimental units. The MSE decreases in proportion to the 
square root of the sample size. It is also possible to increase precision by 
taking measurements on multiple technical replicates obtained from the 
experimental units. However, this approach cannot reduce the biological 
variance component, and the gain achieved by taking repeated measure-
ments of single RNA samples will be limited.

For large studies involving highly heterogeneous populations, such as 
human studies, the problem of calculating the number of independent 
observations required in a microarray experiment is similar to that of 
sample size/power calculations in clinical trials and other experiment 
designs. In general, the required sample size depends on several factors: 
the true magnitude of the change of gene expression, the desired statisti-
cal power (that is, probability) to detect the change, and the specified type 
I error rate. Any method for sample size/power calculations has to depend 
on the specific statistical test to be used in data analysis. Free software to 
calculate sample size is now available from various sites (Table 5.2) to 
assist in determining how many samples are needed to achieve a speci-
fied power for a test of whether a gene is differentially expressed, and 
the reverse, to determine the power of a given sample size. Because the 
calculation of sample size depends largely on the statistical approach 
used to subsequently analyze the data, there are two fundamental func-
tions for two types of experimental design that need to be addressed to 	
determine sample size: (1) completely randomized treatment-control 
design (where each measurement is considered independent) and (2) 
a matched-pairs design (where the observations are not independent; 
instead, pairs of samples are related so that n pairs of matched samples are 
created). For the calculation of power, there are three functions for four 
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types of experimental designs: (1) a completely randomized treatment-
control design, (2) a matched-pairs design, (3) a multiple treatment design 
having an independent treatment effect, and (4) a randomized block design 
(where related groups of samples are analyzed together as a single group; 
http://www.biostat.harvard.edu/people/faculty/mltlee/web-front-r.html).

It is also important to remember that longitudinal designs (the use of 
multiple samples from the same subject) provide considerably greater 
power at lower numbers of replicates. They best control for interindi-
vidual variability because each subject serves as their own control. When 
measurement is expensive and/or the individual measurements are very 
precise, it is preferable to add experimental units rather than technical 
replicates. Pilot experiments should always be considered to make accu-
rate estimates of effect size (http://discover.nci.nih.gov/microarrayAnaly-
sis/Experimental.Design.jsp). When the variability of measurements is 
greater than the variability between experimental units, technical replica-
tion and repeated measurements will effectively increase precision.

4.  Pooling

There is considerable disagreement about whether to pool individual 
samples, among practitioners and also among statisticians. Sometimes, 
the amount of sample from any one individual sample is insufficient for 
hybridization, and in that case pooling is a practical necessity. In theory, 
if the variation of a gene among different individuals is approximately 
normally distributed, then pooling independent samples would result in a 
reduction of variance.

Pooling can reduce the biological component of variation, but it cannot 
reduce the variability due to sample handling or measurement error. In 
such cases, the variation can be reduced further by making replicates of 
the pool, and hybridizing to replicate arrays. Because technical variation is 

Table 5.2  Online Tools for Power Analysis

From Web site
UCLA Department 
of Statistics http://calculators.stat.ucla.edu/powercalc/

U of Iowa 
Department of 
Statistics

http://ww.stat.uiowa.edu/[1]rlenth/Power/

York U Department 
of Math http://www.math.yorku.ca/SCS/Online/power

Bioconductor http://bioconductor.org/packages/1.9/bioc/html/sizepower.html
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usually less than (roughly half of) individual variation, this strategy would 
in theory give more accurate estimates of the group means for each gene.

In practice, the distribution of expression levels of many genes among 
individuals are not roughly normal; often, there are more very high values 
(outliers) than the normal distribution. This can be because of many fac-
tors unrelated to the experimental treatment: for example, individual ani-
mals or subjects may be infected, or some tissue samples may be anoxic for 
long periods before preservation, which allows cells to respond to stress 
(Pritchard, C.C. Hsu, L., Delrow, J. and Nelson, P.S. PNAS 98(23) 13266–
13271, November 6, 2001). In some studies, in which the same samples are 
analyzed by pooled and unpooled designs, the majority of genes that are 
identified as differently expressed between two groups turn out to repre-
sent extremes in only one individual. Also, if one pools samples, there is 
no way to estimate variation between individuals. More importantly, by 
pooling samples we also eliminate all independent replication and jeopar-
dize the df allowed for inferential analysis.

If pooling is inevitable, then a commitment to confirming altered gene 
expression using an alternative technique, such as qRT-PCR, is impera-
tive. This can be done by retesting samples from individual samples used 
in the pool; a biologically more robust way is to test the genes of interest in 
different samples not included in the pool.

5.  Randomization

The importance of randomization cannot be overlooked; it forms the 
physical basis of the validity of statistical tests. It is most crucial to apply 
randomization or random sampling at the stage of treatment assignment. 
If the treatment is something that can be applied to the units (e.g., injec-
tion of a drug), then a carefully randomized experiment will enable infer-
ences regarding cause and effect to be made during the analysis steps. 
In contrast, if a treatment assignment is attached to the units (e.g., sex 
and strain), then conclusions are limited to associations. In this particu-
lar case, the valid scope of the conclusions is contingent upon how well 
the population of interest (both in its mean behavior and its diversity) is 
represented by the sample of experimental units in the experiment. True 
random sampling of populations is an ideal that is difficult to achieve, but 
often a good representative sample can be obtained.

Randomization should also be considered at other stages of the micro-
array experiment to help minimize or avoid hidden bias. Steps amenable to 
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randomization include dye assignment, order and position of slide print-
ing and scanning, selecting which slide will be used to hybridize which 
sample and, finally, the arrangement of spots on an array.

6.  Designs for Two-Color Arrays

Multiple software programs are available to assist in experimental design. 
An easy-to-use and freely available program is TIGR_Madam 4.0 (http://
www.tm4.org/madam.html). Experiment designer will assist in the plan-
ning and development of microarray experiments (Figure 5.2) (Churchill, 
G.A. Nat Genet 32 suppl: 490–495, December, 2005). Multiple experimen-
tal designs have been considered for analysis of two-color (competitively 
hybridized spotted) arrays.

The ability to make direct comparisons between two samples on the 
same microarray slide is a unique and powerful feature of the two-color 
microarray system (Figure 5.3a and Figure 5.3b). By pairing samples, we 
can account for variation in spot size that would otherwise contribute to 
the error. One complication in two-color arrays is that the two dyes do not 
get taken up equally well, so that the amount of label per amount of RNA 
differs (dye bias). An early approach to compensate for dye bias was to 

Figure 5.2  Experimental designer. This software program can be down-
loaded from http://www.tm4.org/madam.html, and is used to design two-col-
ored microarray experiments in a systematic fashion. In conjunction with a 
program to calculate sample size and number of replicates, this is a powerful 
adjunct to microarray experimental design. (Reporduced from Tm4 Tutorial, 
with permission).
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make duplicate hybridizations with the same samples, using the opposite 
labeling scheme (Figure 5.3c). However, dye bias is not consistent, and in 
practice, the ratios in dye-swap experiments do not precisely compensate 
each other. Robust normalization strategies are currently preferred to dye-
swap experiments (e.g., doping controls for microarray; http://genome-
www.stanford.edu/turnover/supplement.shtml).

The most common design is the “reference design”: each experimental 
sample is hybridized against a common reference sample (Figure 5.3e and 
Figure 5.3f). The reference design has several practical advantages: (1) it 
extends easily to other experiments, if the common reference is preserved; 
(2) it is robust to multiple chip failures; (3) reduces incidence of laboratory 

A BA B A BA B

A1 B1

A2 B2

A1 B1

A2 B2

A1 B1

A2 B2

A1 B1

A2 B2

(a)

(c) (d)

(b)

Direct comparison

Direct comparisons with dye swap

Reference

A B C Z

Reference

A B C Z•••

•••

Reference

A B ZC

Reference

A B ZC

Indirect comparisons via a
reference sample 

(e)

No dye swap

Dye swap

(f)

Figure 5.3  Two-sample comparison. Circles, representing mRNA samples, are 
labeled as varieties A or B. Subscripts indicate the number of independent biolog-
ical replicates of the same treatment. Arrows represent hybridizations between 
the mRNA samples and the microarray. The sample at the tail of the arrow is 
labeled with red (Cy5) dye, and the sample at the head of the arrow is labeled 
with green (Cy3) dye. Direct comparison: This figure shows (a) a dye swap, (b) 
a repeated dye swap, (c) a replicated dye swap, and (d) a simple loop design. For 
example, in (a), sample A (labeled red) and sample B (labeled green) are hybrid-
ized to one array; then sample A (labeled green) and sample B (labeled red) are 
hybridized to another. Indirect comparisons via a reference sample: (e) boxes 
represent RNA samples, and arrows represent microarrays, as in Figure 5.4a, the 
standard reference design uses a single array to compare each test sample (A, B, 
C, and so on) to the reference RNA. (f) Shows variation, uses a dye swap for each 
comparison. (From Churchill, G.A. Nat Genet 32 Suppl.: 490–495, December 
2002. With permission.)
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mistakes, because each sample is handled the same way; and (4) provides 
built-in technical replication. The loop (Figure 5.3d) is a simple alternative 
to the reference design. This works well for small numbers, but becomes 
inefficient for larger experiments.

In reference designs, the path connecting any two samples is never longer 
(or shorter) than two steps; thus, all comparisons are made with equal effi-
ciency. Methods for identifying genes that are differentially expressed across 
two experimental conditions can be extended to more general settings in 
which multiple conditions (samples) are considered. Extensions may include 
time-course experiments, in which two conditions are considered; facto-
rial design, in which the effects of multiple factors and their interactions are 
explored simultaneously; and so forth. Moreover, reference designs can be 
extended (as long as the reference sample is available) to assay large numbers 
of samples that are collected over a period of time. From a practical perspec-
tive, every new sample in a reference experiment is handled in the same way. 
This reduces the possibility of laboratory error and increases the efficiency of 
sample handling in large projects. Standardizing practices for spotted cDNA 
arrays is especially problematic, because the manufacture of the arrays var-
ies considerably from place to place. In addition, all spotted arrays use cohy-
bridization of a test RNA sample labeled with one color fluorophore, with a 
control RNA labeled with a different color to which the test is compared on 
the same spot. The output is in the form of a ratio of hybridization signals that 
is comparable to other experiments only if the same control RNA is always 
used. Consequently, the most important consideration when choosing an 
appropriate reference RNA sample is that it is plentiful, homogeneous, and 
stable over time. These are the objectives of the External RNA Controls Con-
sortium (ERCC). It aims to identify and help make commercially available a 
collection of RNA “spike-in” controls that can be included in any microarray 
experiment to assess variables such as labeling and hybridization efficiency.

It has been argued that the reference samples are not necessary and that the 
practice of making all comparisons to a reference sample can lead to inefficient 
experiments. Half of the measurements in a reference experiment are made 
on the reference sample, which is presumably of little or no interest. As a con-
sequence, technical variation is inflated four times relative to the level that can 
be achieved with direct comparisons. Designs that interweave two or more 
loops together or combine loops with reference designs improve efficiency 
and robustness by creating multiple links among the samples (Figure 5.4a and 
Figure 5.4b). The difficulty presented by loop designs is that the deconvolution 
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of relative expression values is not always intuitive. However, the availability 
of software tools that can analyze general designs reduces this concern.

Section 2	 Data Acquisition and Preprocessing
In this section, we will focus on key features of data extraction and prepro-
cessing, with a special emphasis on quality control and standardization of 
microarray data. For the purpose of analysis, the first step begins with 
understanding the characterization and annotation of the probes used to 
generate microarray chips. The relevant software is presented in Box 5.1.

1. I mage Analysis

In terms of image analysis, how to appropriately quantify spots on micro-
arrays is a topic of vigorous inquiry. The millions of sequence strings 
created at each probe location produce individual hybridization signals 
that become partitioned into neighborhoods, called pixels, by an optical 
scanner according to its resolution. A typical scanner resolution scale is at 
most 10 μm per pixel length. Each square micrometer contains many tens 
of thousands of oligonucleotide strings. This digital record typically takes 
the form of a pair of 16-bit TIFF (Tagged Image File Format) images, one 
for each channel, which records the intensities at each of a large number of 
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Figure 5.4  Multiple sample comparison. The ability to make direct compari-
sons between two samples on the same microarray slide is a unique and power-
ful feature of the two-color microarray system. Novel design strategies explore 
obviating the use of reference hybridizations. (a) and (b) show examples for how 
to explore this possibility for both multiple sample comparisons and more com-
plex factorial designs. (From Ness, S.A. Methods Mol Biol 316: 13–33, 2006. With 
permission.)
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pixels covering the array. Typically, a probe is composed of up to 300 pix-
els. Each observed pixel signal is the ensemble consequence of its mixed 
population of correct and defective sequences. As a consequence of non-
specific and/or somewhat specific levels of hybridization (cross-hybridiza-
tion between nonperfectly base-paired sequences), defective sequences in 
the pixel population are likely to partially bond to an assortment of target 
sequences, creating a weak signal. Figure 5.5 reviews some of the basic 
principles of image detection.

Several programs are available to extract spot intensity for two-dye arrays 
after the slides have been scanned (A relatively complete list can be found 
at http://www.statsci.org/micrarra/image.html). TIGR Spotfinder is a free 
software program that allows for the rapid, reproducible, and computer-

Box 5.1 | Array Probes
Unlike the situation in prokaryotes and simple eukaryotes, generat-
ing microarray probes by simply designing PCR probes to amplify the 
genes of interest from genomic DNA is not feasible. The large number 
of genes, the existence of introns, and the lack of a complete genome 
make direct amplification impractical. In these species, the EST data 
collection in the public DNA sequence databases are a valuable rep-
resentation of the transcribed portion of the genome, and the cDNA 
clones from which the ESTs are derived have become the primary 
reagents for expression analysis. Clone selection, though, is a consid-
erable challenge — there are over 3 million human ESTs in the dbEST 
database, from which a single representative needs to be selected for 
each gene included in the array. Each database attempts to group ESTs 
from the same gene and to provide a common annotation. Although 
the precise approaches taken by the databases vary, they all generally 
provide high-quality annotation for the cDNAs represented in the pub-
lic databases. Currently, the most-used databases and their links are:

cDNA DATABASES UniGene | TIGR Gene Indices | STACK | DoTS
IMAGE-PROCESSING SOFTWARE Axon | BioDiscovery | Imaging 
Research | NHGRI Microarray Project | TIGR software tools | Eisen lab
DATA ANALYSIS TOOLS BioDiscovery | European Bioinformatics Insti-
tute (EBI) Expression Profiler | Eisen lab | Silicon Genetics | Spotfire |  
X Cluster | TIGR software tools | J-express
META-LISTS OF OTHER AVAILABLE SOFTWARE EBI | National Cen-
ter for Genome Resources | Rockefeller | École Normale Supérieure | 
Stanford

Adapted from Quackenbush, J. Toxicol Appl Pharmacol 207(2 Suppl.): 195–199, Sep-
tember 1, 2005. With permission.
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Figure 5.5  Image analysis. (Adapted from Automated Microarray Image 
Analysis (AMIA) Toolbox for MATLAB®, http://www.pnl.gov/statistics/AMIA/. 
With permission.)

C8105.indb   147 7/18/07   8:15:02 AM



148  <  Claudia C. dos Santos and Mingyao Liu

aided analysis of microarray images and the quantification of gene expres-
sion. TIGR Spotfinder reads paired 16-bit or 8-bit TIFF image files generated 
by most microarray scanners and uses a semiautomatic grid construction 
to define the areas of the slide where spots are expected. This is a desktop 
program that allows you to explore two available segmentation methods 
(histogram and Otsu) to define the boundaries between each spot and the 
surrounding local background (http://www.tm4.org/spotfinder.html).

2.  Normalization

Typically, the first transformation applied to expression data, referred to 
as normalization, adjusts the individual hybridization intensities to bal-
ance them appropriately, so that meaningful biological comparisons can be 
made. There are a number of reasons why data must be normalized, includ-
ing unequal quantities of starting RNA, differences in labeling or detection 
efficiencies between the fluorescent dyes used, and systematic biases in the 
measured expression levels. Normalization attempts to remove such varia-
tion, which affects the measured gene expression levels; it does not correct for 
biological variations. The most common strategies are presented in Box 5.2.

For two-colored arrays, all methods assume that all (or most) of the 
genes in the array, some subset of genes, or a set of exogenous controls that 
have been “spiked” into the RNA before labeling, should have an average 
expression ratio equal to one. The normalization factor is then used to 
adjust the data to compensate for experimental variability and to “bal-
ance” the fluorescence signals from the two samples being compared.

Although normalization alone cannot control all systematic variations, 
it plays an important role in the earlier stage of microarray data analysis, 
because expression data can significantly vary from different normalization 
procedures (MAQC). Subsequent analyses, such as differential expression 
testing, is therefore dependent on the choice of a normalization procedure. 
No clear consensus exists in the microarray community as to which normal-
ization method is best under a given set of circumstances. Many normaliza-
tion methods have been developed for different microarray platforms. The 
optimal normalization or scaling methods for a given dataset may depend 
both on the experiment and on many attributes of that microarray data set.

3. I mage-Processing Algorithms for Oligo Arrays

Several image-processing methods have been developed for Affymetrix 
arrays, which are the most commonly used oligonucleotide microar-
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Box 5.2 | Common Normalization Strategies

Total Intensity Normalization
Total intensity normalization data relies on the assumption that the 
quantity of initial mRNA is the same for both labeled samples. Fur-
thermore, one assumes that some genes are upregulated in the query 
sample, relative to the control and that others are downregulated. For 
the hundreds or thousands of genes in the array, these changes should 
balance out so that the total quantity of RNA hybridizing to the array 
from each sample, is the same. Consequently, the total integrated 
intensity computed for all the elements in the array should be the same 
in both the Cy3 and Cy5 channels. Under this assumption, a normal-
ization factor can be calculated and used to rescale the intensity for 
each gene in the array.
Normalization Using Regression Techniques
For mRNA derived from closely related samples, a significant fraction 
of the assayed genes would be expected to be expressed at similar 
levels. In a scatter plot of Cy5 vs. Cy3 intensities (or their logarithms), 
these genes would cluster along a straight line, the slope of which 
would be one if the labeling and detection efficiencies were the same 
for both samples. Normalization of these data is equivalent to calcu-
lating the best-fit slope using regression techniques and adjusting the 
intensities so that the calculated slope is one. In many experiments, 
the intensities are nonlinear, and local regression techniques are more 
suitable, such as LOcally WEighted Scatterplot Smoothing (LOWESS) 
regression.
Normalization Using Ratio Statistics
To normalize data using ratio statistics, the assumption is that although 
individual genes might be up- or downregulated, in closely related 
cells, the total quantity of RNA produced is approximately the same 
for essential genes, such as “housekeeping genes.” Using this assump-
tion, it is possible to estimate an approximate probability density for 
the ratio Tk = Rk/Gk (where Rk and Gk are, respectively, the measured 
red and green intensities for the kth array element). This can then be 
used in an iterative process that normalizes the mean expression ratio 
to one and calculates confidence limits that can be used to identify 
differentially expressed genes.

Reproduced from Quackenbush, J. Nat Genet 32 Suppl.: 496–501, December 2002. 
With permission.
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rays. These methods estimate the amount of RNA from fluorescent array 
images, while trying to minimize the extraneous variation that occurs 
owing to technical artifacts. Plasmode data sets are real (not computer-
simulated) data sets for which the true structure is known. These can be 
used as a way of testing a proposed analytical method and have been used 
to evaluate different image-processing normalization methods — one of 
these data sets has been selected for analysis in the tutorial presented in 
Section 4. The three core strategies are the model-based expression index, 
the MAS 5.0 statistical algorithm, and the robust multichip average.

In the Affymetrix system, the mismatched probe (MM) probe contains 
oligonucleotide sequences identical to the perfect match (PM) probe, except 
for a single nucleotide at the center of the sequence, which is different and 
is intended to serve as an internal control of hybridization specificity. The 
PM and MM intensities for each probe set are combined together to produce 
biologically meaningful expression values. Ideally, expression indices should 
be both precise (low variance) and accurate (low bias). In 2001, Affymetrix 

developed a new summary measure based on Tukey’s biweight function, 
called MAS 5.0 (http://www.wi.mit.edu/CMT/protocols/statisticalalgo-
rithms.pdfalgorithm). This algorithm is implemented on a chip-by-chip 
basis (http://www.affymetrix.com/products/software/specific/mas.affx).

Model-based expression index uses the invariant set normalization 
method, which chooses a subset of PM probes with small within-subset 
rank difference in the two arrays, to serve as the basis for fitting a normal-
ization curve. The fitted curve is the running median curve in the scatter 
plot of probe intensities of the two arrays. The dCHIP software (http://
biosun1.harvard.edu/complab/dchip/) computes the probe set intensity 
signal using a multiplicative model. Fitting the model, “dCHIP expression 
measures” are obtained for each probe set. Using this approach, dCHIP 
allows for a standard error (SE) for each probe set intensity to be mea-
sured, which is an indicator of the hybridization quality to the probe set. 
SEs are useful for discarding probe sets with low hybridization quality.

The robust multiarray analysis (RMA) method models PM intensity 
as a sum of exponential and Gaussian distributions for signal and back-
ground, respectively. It uses quantile normalization and a log-scale expres-
sion effect plus probe effect model that is fit robustly (median polish) to 
define the expression estimate for each gene (conducts a multichip analy-
sis). In the tutorial presented in Section 4, we use this strategy to analyze 
a plasmode data set available from Affymetrix. The GC-RMA method 
describes an algorithm similar to RMA, but incorporating the MM using 
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a model based on GC content definition (GC-RMA). GC-RMA substan-
tially refines the RMA algorithm by replacing the model for background 
correction with a more sophisticated computation that uses each probe’s 
sequence information to adjust the measured intensity for the effects of 
nonspecific binding, according to the different bond strengths of the two 
types of base pairs. It also takes into account the optical noise present in 
data acquisition (Affymetrix; http://www.affymetrix.com/products/soft-
ware/specific/arrayassist_lite.affx).

A more recent option for oligo array normalization is the application of 
the PLIER (probe logarithmic intensity error) algorithm. This produces a 
summary value for a probe set by accounting for experimentally observed 
patterns in feature behavior and handling error appropriately at low and 
high abundance. PLIER accounts for the systematic differences between 
features by means of parameters termed feature responses, using one such 
parameter per feature (or pair of features, when using MM probes, to 
estimate cross-hybridization signal intensities for background). Feature 
responses represent the relative differences in intensity between features 
hybridizing to a common target. PLIER produces a probe-set signal by 
using these feature responses to interpret intensity data, applying dynamic 
weighting by empirical feature performance, and handling error appro-
priately across low and high abundances. Feature responses are calculated 
using experimental data across multiple arrays. PLIER also uses an error 
model that assumes error is proportional to the observed intensity rather 
than to the background-subtracted intensity. This ensures that the error 
model can adjust appropriately for relatively low and high abundances of 
target nucleic acids.

Recently, an online tool, Affycomp II, has been developed to facilitate 
further research in the field of microarray data processing. This program 
allows users to benchmark their normalization methods using “known” 
data sets from Affymetrix GeneChip experiments (http://affycomp.bio-
stat.jhsph.edu/), and makes those benchmark results publicly available.

4. Q uality Control

Digitized spot luminosities are not mRNA concentrations. Based on the 
preceding discussion, tissue contamination, RNA degradation, label-
ing efficiency, hybridization efficiency, unspecified hybridization, wrong 
clone, PCR yield, contamination of PCR product, spotting efficiency, 
DNA-support binding, image segmentation (e.g., overshining), spot quan-
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titation, background correction, and others, all contribute to the numeric 
value assigned as signal intensity. Quality control (QC) measures have 
been developed to deal individually with the potential sources of error. 
Various data-visualizing tools are used to asses the quality of microarray 
data. Most common are graphic checks: histograms, box plots, images, 
and residual images (Figure 5.6). Detailed examination of the raw data is a 
fundamental step in QC, the information gathered is invaluable in deter-
mining quality filters during preprocessing of the data. Specific strategies 
for microarray QC were used extensively as part of the MAQC project to 
assess different platform performance.

Individual measurements from a single microarray platform do not 
share the same precision, sensitivity, or specificity. Consider that, for a 
microarray with 99% accuracy (P < 0.01), readouts of 10,000 data points 
would still yield 100 false-positive signals based solely on random chance. 
This makes comparisons between different microarray experiments unre-
liable. Moreover, the annotations across different platforms are not repre-
sented by exactly the same gene sequence regions. Competing sequence 
targets vary from tissue to tissue and from sample to sample, thereby add-
ing to variability in the hybridization-based measurements for any given 
probe. It has been proposed that the only way to efficiently deal with vari-
ability is to create standards for each step of the microarray process. Three 
technical elements of the system have been highlighted as critical control 
points where standards may be applied to make results more universally 
sharable: measurement traceability (www.measurementuncertainty.org/), 
method validation (http://jbt.abrf.org/cgi/reprint/12/1/11.pdf), and uncer-

Figure 5.6  Assessment of data quality. Various data visualizing tools are used 
to assess the quality of microarray data. Most common are graphic checks: (a) 
Spot shape QC score (spot area/spot perimeter, for an ideal circle: πR2/2πR = 
R/2). Probe intensity (integral: add all pixels in a spot area; median: take median 
intensities in spot), repeat for background. A “good spot” is above 2*median 
(background). (b) Image files can reveal substantial artifacts and systematic pat-
terns. (c) MA plots are used observe the distribution of intensity values and log 
ratios. This is a plot of log-ratio of two expression intensities vs. the mean log-
expression of the two. Nondifferentially expressed genes are on a horizontal line 
at M = 0. Ideally, this should be symmetric. (d) Box plot and smoothed histogram 
of Log2 data for five separate arrays. Look for differences in shape and location. 
In the example, array 3 deviates from the others significantly. (Panel a was cor-
dially provided by Dr. Vasily Sharov from TIGR. Panel c was cordially provided 
by Dr. François Papin of McGill University, Canada. Panels b and d are from the 
authors’ laboratory. )
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tainty quantification (http://www.springerlink.com/content/xd84qg-
dm0y12agan/). An example of how to improve measurement traceability 
is the “reference design,” the introduction of a universal reference RNA 
is expected to greatly improve the ability to share data. The MAQC proj-
ect has set the stage for future protocolization of microarray analysis. 
Precision-only estimates of uncertainty are typically used to select differ-
entially expressed genes; as the technique evolves and quantitative assess-

C8105.indb   153 7/18/07   8:15:15 AM



154  <  Claudia C. dos Santos and Mingyao Liu

ments become more robust and validation strategies easier to perform on 
a larger number of genes, this will significantly improve.

Another important component of maintaining quality is generating 
data that conform to certain standards and, consequently, can potentially 
be shared. Guidelines for reporting and annotation of microarray data 
from the Microarray Gene Expression Data (MGED) Society (http://www.
mged.org/) — using MIAME (Minimum Information About a Microar-
ray Experiment) standards (Box 5.3) and the Microarray Gene Expression 
Markup Language (MAGE-ML) represent an important step toward this 
goal. The efforts of this multinational academic–industry partnership has 
made it possible to develop databases that can house the many types of 
microarray data within the same data structure, enabling some data que-
ries between experiments and experimental platforms. The ArrayExpress 
microarray database (http://www.ebi.ac.uk/arrayexpress/?) is the first 

Box 5.3 | The MIAME Guidelines 
for Data Reporting

The Microarray Gene Expression Data Society (MGED) is an interna-
tional discussion group of microarray experts, with the primary goal of 
developing methods for data sharing between experimental platforms. 
The main output of this group has been the Minimum Information 
About a Microarray Experiment (MIAME) guidelines for microarray 
data annotation and reporting. The guidelines have been adopted by 
a number of scientific journals and have recently been endorsed for 
use by the US Food and Drug Administration and the US Department 
of Agriculture.

The MIAME guidelines include descriptions of experimental 
design (number of replicates, nature of biological variables), samples 
used, extract preparation and labeling, hybridization procedures and 
parameters, and measurement data and specifications. These guide-
lines have been most important for the spotted cDNA and oligonucle-
otide experimental platforms (see Box 5.1), in which the flexibility in 
microarray design and utilization also leads to considerable variation 
in array data generation and reporting between different laboratories. 
The guidelines do not attempt to dictate how experiments should be 
done, but rather provide adequate information associated with any 
published or publicly available experiment so that the experiment can 
be reproduced.

Adapted from Brazma, A. et al. Nat Genet 29(4): 365–371, December 2001. With 
permission.

C8105.indb   154 7/18/07   8:15:16 AM



Gene Expression Profiling by Microarray  <  155

major publicly accessible database that adheres to this universal data-pre-
sentation platform.

Section 3	 Data Analysis
Expression-profiling experiments can be broadly characterized into four 
primary groups: class discovery, class comparison, class prediction, and 
mechanistic studies. Briefly, for class comparison, the goal is to identify 
genes that are differentially expressed between two or more groups. The 
groups can represent different biological states such as disease state, histo-
logical type, or treatment group. For class discovery studies, the aim is to 
identify groups within the samples examined or among the genes exam-
ined. Class prediction studies involve trying to predict group membership 
for a sample, based on gene expression profiles. For mechanistic studies, 
the process of discovery is often hypothesis driven, and the goal is to shed 
light on the mechanisms underlying particular responses. There are mul-
tiple ways of achieving the task of extracting biological information from 
microarray analysis. Irrespective of the specific tool exploited, the process 
itself can be broken down into three distinct tasks: (1) identification of 
significantly regulated genes, (2) identification of global patterns of gene 
expression, and (3) the determination of the biological meaning of both 
individual genes and group of genes.

1.  Differential Expression

The fundamental goal of microarray expression profiling is to identify 
differential gene expression in the condition of interest. In addition, the 
identification of discrete patterns of gene expression and subsequent par-
titioning of the data set based on these expression patterns is commonly 
done. The process of identifying genes that are differentially expressed 
is divided into two main parts: (1) applying filtering criteria to identify 
differential expression, including fold change and statistical significance 
determined by comparison statistics (inferential analyses) and (2) sepa-
ration of those differentially expressed messages into discrete groups or 
clusters, based on expression pattern (classification). Depending on the 
experimental design, this may be as simple as generating a list of upregu-
lated and downregulated genes or it may involve the use of sophisticated 
analysis to identify more complex patterns of gene expression.
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2. I nferential Analysis

Inference involves making conclusions on the basis of circumstantial evi-
dence rather than on direct observation. In the context of gene expression 
analysis, it is about making a logical judgment of the truth of a hypothesis 
that involves unobserved parameters about the whole populations, based 
on statistical analysis of the population. The methods aimed at minimiz-
ing inferential errors — type 1 and type 2 errors — as well as estimating 
the long-range error rate.

For the most part, inferential analysis involves applying comparison 
statistics to the data. The criteria applied will influence the content of the 
list and determine how confident we are that the genes identified are truly 
differentially regulated. Although it has been commonly used, the concept 
that fold change alone can give insight into differential gene expression 
may not be useful in practice, because it does not address the reproduc-
ibility of the observed difference, and therefore is not useful in determin-
ing the statistical significance of changes in expression. Comparison tests 
require replicates and exploit the variability within the replicates to assign 
a confidence level or p-value as to whether specific genes are expressed 
in differential fashion. The commonly used tests can be grouped based 
on the number of groups being compared, as well as the number of fac-
tors being examined. For two-group comparison, the t-test, Welch’s t-test, 
and the Wilcoxon rank sum can be used. When three or more groups 
are being compared, this requires the use of the one-way ANOVA or the 
Kruskal–Wallis test, provided a single factor is being examined. For mul-
tiple groups and multiple factors (more than two), the two-way ANOVA 
must be used.

Comparison tests are also grouped according to how they deal with 
differences between groups and the variability within groups. Parametric 
tests, similar to t-tests, are used when the data are normally distributed, 
and identify genes where there are large differences between the groups 
but a small amount of variability within the groups; where the values for 
replicates in each group are similar. Nonparametric tests, such as the Wil-
cox rank sum test, assume the distribution is not normal, and identify 
genes where all or most of the values for the replicates in one group are 
higher than those in the other group. These tests do not assess the vari-
ability between replicates in a group; they only determine whether the 
values in one group are higher than those in another group. A paramet-
ric test is especially useful for experiments using model systems, such as 
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animal models or cell lines, in which the researcher expects good agree-
ment between replicates, and where excessive variability indicates either a 
technical artifact or nonuniform biological response across replicates. In 
contrast, nonparametric tests can be useful when data from patients are 
being examined and there may be a large amount of variability between 
replicates. In addition to standard statistical tests, there are also multiple 
variations of these tests that have been developed specifically to address 
important limitations pertaining to microarray data, such as statistical 
power for studies with limited replicates by calculating variance from a 
pool of genes with similar expression levels rather than using only the 
values for each gene being measured.

Inferential analysis carried out in the context of microarray gene expres-
sion profiling experiments exploits the concept of “shrinkage” to overcome 
statistical limitations. Considering each gene separately when conducting 
statistical tests is terribly inefficient. By using all the data simultaneously, 
better estimates of variance can be obtained, resulting in more power-
ful testing. Capitalizing on the parallel nature of microarrays, informa-
tion can be “borrowed” across genes to improve variance estimates and 
thereby increase statistical power.

The primary limitation of parametric statistical analysis is that it makes 
assumptions about the distribution of the data. By contrast, resampling-
based inference (RBI) methods rely on resampling the data. Compared 
with the standard parametric statistics, RBI has the advantage of being 
robust and flexible to accommodate any new statistics without the need 
to mathematically derive a statistical distribution. Examples of RBI meth-
ods would be bootstrapping and permutation testing. Problems with this 
strategy are that there are multiple ways to permute the data, and only a 
few will yield valid inferences. Another is the sampling unit; most meth-
ods permute the genes rather than the sampling unit; this strategy has 
been criticized for ignoring both sample size and nonindependence across 
genes. Also, because the sample sizes are small, RBI p-value distribution 
can be coarse or granular, and it will often be algebraically impossible 
to obtain p-values below some specified level. To overcome this problem, 
some false discovery rate corrections (FDR) procedures, such as the sig-
nificance analysis of microarray (SAM) algorithm, combine all resampled 
test statistics across all genes to obtain very small p-values. This is based 
on two assumptions: that the null distribution for the test statistics is the 
same for all transcripts; and that all transcripts are independent — this 
may indeed not be the case.

C8105.indb   157 7/18/07   8:15:19 AM



158  <  Claudia C. dos Santos and Mingyao Liu

Finally, multiple issues remain surrounding the testing of multiple 
hypotheses in microarray analysis. Intersection-union testing (IUT) is use-
ful when asking “and” or “all” questions, such as which genes are differen-
tially expressed or correlated with each other in all conditions analyzed.

3.  Correction for Multiple Comparisons

The p-value calculated for an individual gene represents the chance of a 
similar difference occurring because of chance, and this risk is cumulative 
for all tests being performed. In other words, if 10,000 comparisons are 
performed and a cutoff value of 0.05 for the raw p-value is selected, then 
by chance alone, 500 genes will be selected as differentially expressed. 
Consequently, the p-value needs to be adjusted, based on the number of 
comparisons performed; this is called a multiple comparisons correc-
tion. The point of these adjustments is to reduce the number of false-posi-
tive changes identified in an experiment. Tests that correct for multiple 
comparisons can be grouped into two main categories: family-wise error 
rate (FWER), which adjust the p-value so that it reflects the chance of at 
least one false-positive being found in the list; that is, if we identified 500 
genes with an adjusted FWER p-value of 0.05, then there is a 5% chance of 
having one false-positive in the list of 500. Examples of FWER methods 
include Bonferonni and Holm. FDRs adjust the p-value so that it reflects 
the frequency of false-positives in the list. Therefore, if we identified 500 
genes with an adjusted FDR p-value of 0.05, then there are an estimated 25 
false-positives. Examples of FDR methods include Benjamini and Hoch-
berg and SAM. For the most part, the FWER methods are much more 
conservative, and the FDR methods are accepted in “discovery” experi-
ments, in which a small number of false-positives may be acceptable.

Recently, mixture models have become more prevalent. Mixture mod-
els treat gene expression arrays as being composed of two or more popula-
tions of genes: one represents those genes that are differentially expressed 
and the other, those genes that are not differentially expressed. Many 
related mixture-model methods (MMMs) have been devised. MMMs esti-
mate FDRs for genes that are declared differentially expressed, whereas 
the original Benjamini and Hochberg approach controls the FDR at or 
below a certain level. Consequently, MMMs have been postulated to be 
more powerful methods of dealing with multiple corrections. Although 
there are subtle differences between different methods proposed, they 
all estimate a “gene-specific” FDR that is interpreted as the Bayesian 
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probability that a gene that is declared to be differentially expressed is a 
false-positive. Despite significant advances in the understanding of how 
different statistical tools can be applied to correct multiple comparisons 
performed during microarray analysis, questions remain about accom-
modating dependence among genes in FDR estimations.

4.  Classification and Clustering

The process of classification entails assigning objects to classes (groups) 
on the basis of measurements made on these objects. There are two main 
options for class assignment: (1) supervised classification (class assign-
ment, prediction, or discrimination), in which objects (genes) are placed 
into preexisting categories that are predetermined (training or learning); 
this is when a set of labeled objects is used to form a classifier for classifi-
cation of future observations; or (2) unsupervised clustering, in which no 
a priori knowledge of object classification is used, and objects are allowed 
to cluster so that novel classes can be discovered from the data. Clustering 
methods are descriptive or explanatory tools that can be used to identify 
patterns of gene expression. Although each clustering approach will work 
with any data set, in practice, they often do not work well for large data 
sets in which most of the expression levels do not vary. Consequently, it 
has become common to see clustering strategies being used after the data 
have already been manipulated using inferential statistics.

5. U nsupervised Clustering

Cluster-analysis algorithms group objects on the basis of a similarity (or 
dissimilarity) metric that is computed for one or more features or vari-
ables. For example, genes can be grouped into classes on the basis of 
the similarity in their expression profiles across tissues, cases, or condi-
tions. Cluster-analysis approaches entail making several choices regard-
ing which metric to use to quantify the distance or similarity among the 
objects in question, what criteria to optimize in determining the cluster 
solution, and how many clusters to include in a solution. No consensus 
or clear guidelines exist to direct these decisions. Cluster analysis will 
always produce clustering, but whether a pattern observed in the sample 
data characterizes a true pattern present in the population remains to be 
determined. Resampling methods can be exploited to address this issue, 
but results indicate that most clustering in microarray data sets is unlikely 
to reflect reproducible patterns in the overall population.
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It is useful to consider the values that make up a microarray data set as a 
matrix, with each row being data for a single gene and each column being 
data for a single array experiment. Data for a gene in the matrix defines a 
gene expression vector, which has as many dimensions as there are data 
points within the vector (Figure 5.7a). Using standard mathematical met-
rics, the similarity (or dissimilarity) between different vectors can then be 
measured in conjunction with certain rules (an algorithm); these metrics 
can then be used to organize data (Figure 5.7b). There are two main met-
rics that can be used: correlation and distance metrics.
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Figure 5.7  Gene Expression vectors and distance metrics. (a) Expression val-
ues for each gene in the matrix defines the gene expression vector. Above +1, 
this denotes the positive direction of the vector, values less than 1 identify the 
negative direction of the vector. (b) Expression vectors thus denote expression 
points in space and can be plotted and grouped accordingly. In (b), this is done 
according to the expression in specific experiments. Expression vectors can be 
organized using either correlation of partitioning metrics. (c) Correlation matri-
ces, e.g., Pearson coefficient search for the degree to which a linear relationship 
can be approximated between two variables (this usually ranges between −1 to 
1). This is performed for the expression values x and y for each gene i in the 
array. (d) Two main distance metrics are used to partition gene expression vector: 
Euclidean and Manhattan city blocks. Euclidean distance between two vectors is 
simply the distance in space between the two end points defined by those vectors 
(p0 to p1, light gray), whereas in Manhattan city blocks, the distance between two 
vectors is the path one would have to follow between two addresses in an urban 
downtown, making only right-angle turns (p0 to p1, black). (Adapted from MeV4 
Tutorial by John Quackenbush, Dana-Farber Cancer Institute, with permission.) 
(http://www.tm4.org/)
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A.	 Correlation Metrics
Correlation metrics explore the degree to which a linear relationship can 
be approximated between two variables (Figure 5.7c). There are several 
correlation metrics that can be used, and these can be divided into para-
metric and nonparametric metrics. Parametric metrics make underlying 
assumptions about the distribution of the data, whereas nonparametric 
measures of correlation use ranks within the data instead. For the most 
part, a metric that makes assumptions is more powerful than one that does 
not make assumptions (if those assumptions are correct). A nonparametric 
measure is preferred when such assumptions cannot be made safely. In the 
case of gene expression microarray data, the log-ratio measurements do 
form a roughly normal distribution, and using the Pearson correlation is 
reasonable. When these assumptions cannot be made, the Spearman rank 
correlation, or Kendall’s, is more appropriate. There are several statistical 
tests to determine the “goodness of fit” for data distribution to normal 
distribution, such as the Shapiro–Wilk test or the D’Agostino–Pearson 
omnibus test, which provides a p-value for the hypothesis that data were 
drawn from a normal distribution. Such tests are implemented in various 
statistical packages. In addition, visual inspection of a frequency histo-
gram of data can also be used to determine whether the distribution devi-
ates grossly from a normal distribution.

B.  Distance Metrics
Euclidean distance: The Euclidean distance between two vectors is 

simply the distance in space between the two end points defined by 
those vectors (Figure 5.7d). It corresponds to the geometric distance 
into the multidimensional space. Thus, it is sensitive to the direc-
tion of the vectors, like the Pearson correlation, and also to their 
magnitude. Unlike the Pearson correlation, the Euclidean distance 
is sensitive to a change in magnitude, but relatively less sensitive to 
a small change in phase. Euclidean distance may be a more useful 
metric than the Pearson correlation, when the magnitude of change 
is an important element of the analysis.

Manhattan or city-block distance: The Manhattan distance between 
two points can be thought of in terms of the path one would have to 
follow between two addresses in an urban downtown, making only 
right-angle turns (Figure 5.7d). The distance is calculated as the sum 
of absolute values of these orthogonal legs of the journey rather than 
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as the sum of squares of Euclidean distance. This makes the Man-
hattan distance less sensitive to outlier values, as each element of the 
vector is weighted linearly rather than quadratically.

6.  Criteria to Classify Clustering Algorithms

Briefly, there are several criteria that need to be considered when classi-
fying clustering algorithms: (1) agglomerative vs. divisive (agglomerative 
adds objects to clusters, whereas divisive splits clusters); (2) monothetic 
vs. polythetic (calculates distance on the basis of one feature at a time 
or calculates distance based on all features simultaneously); (3) hard vs. 
fuzzy (each object belongs to a single cluster vs. each object may belong to 
several clusters); and (4) incremental vs. nonincremental (describes con-
straints of execution time and memory space effects). In this paper, we will 
only spend time in agglomerative vs. divisive clustering.

An agglomerative cluster places each object in its own cluster and gradu-
ally merges these atomic clusters into larger and larger clusters until all objects 
are in a single cluster. A divisive cluster reverses the process by starting with 
all objects in one cluster and subdividing into smaller pieces. Agglomerative 
hierarchical clustering is a simple and effective method for exploratory analy-
sis of gene expression microarray data. An exploratory method does not spe-
cifically test any particular hypotheses, but instead simply allows the user to 
explore data. Genes with similar patterns are grouped, so exploring data is 
much easier than if they were disorganized. Gene expression vectors are orga-
nized in a tree structure, with the goal that each vector is closest in the tree 
to the vectors most similar to it according to the distance metric and linkage 
rule chosen. Each node in the tree represents a group of similar genes, and 
the height of the node in the tree indicates the degree of similarity. The data 
matrix is then reordered according to the tree structure so that again each 
vector is next to similar vectors. Clustering in both the gene and experiment 
dimensions may be carried out sequentially on the same matrix. The largest 
correlation/smallest distance in the matrix defines the two most similar vec-
tors, which are then joined to form a node. This node is then compared to each 
other’s expression vector or node (using some linkage rule), and these results 
are added to the correlation matrix. Again, the most similar vectors/nodes are 
joined, and the process is repeated. Thus, single-expression profiles are joined 
successively to form nodes, which in turn are joined further. The process con-
tinues until all individual profiles and nodes have been joined to form a single 
hierarchical tree. Divisive clustering essentially reverses this process.
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7.  Rules for Comparing Nodes

A clustering algorithm needs a rule to determine how to compare a node 
to either a single expression vector or another node. Among the vari-
ous ways in which this might be done, four are commonly implemented 
(Figure 5.8):

Single linkage (nearest neighbor): The similarity of two nodes is taken 
as the best (highest correlation, or shortest distance) of all pairwise 
comparisons of the members of one node to the other. This produces 
very loose clusters.

Complete linkage (furthest neighbor): The similarity between two nodes 
is recorded as the lowest similarity of all pairwise comparisons 
between the members of one node to the other. Complete linkage 
tends to produce tight clusters. It is as computationally efficient as 
single linkage.

Average linkage: The similarity between two nodes is recorded as the 
average correlation from all pairwise comparisons between the 
members of one node to the other. Average linkage tends to produce 

x x

Complete (maximum) Single (minimum) 

Distance between centroids Average (mean) linkage

Figure 5.8  Rules for comparing nodes. Single linkage (nearest neighbor): The 
similarity of two nodes is taken as the best (highest correlation, or shortest dis-
tance) of all pairwise comparisons of the members of one node to the other. Com-
plete linkage (farthest neighbor): The similarity between two nodes is recorded 
as the lowest similarity of all pairwise comparisons between the members of one 
node to the other. Average linkage: The similarity between two nodes is recorded 
as the average correlation from all pairwise comparisons between the members 
of one node to the other. Centroid linkage: The similarity between two nodes is 
the similarity between the centroids of those nodes. The centroid of a node is 
simply calculated by averaging its constituent expression vectors. (From Jean Yee 
Hwa Yang, http://www.biostat.ucsf.edu/jean/. With permission.)
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clusters intermediate between single and complete linkage in terms 
of internal consistency.

Centroid linkage: The similarity between two nodes is the similarity 
between the centroids of those nodes. The centroid of a node is sim-
ply calculated by averaging its constituent expression vectors.

There are some key limitations to clustering. For example, in centroid 
linkage, the average vector that is calculated may not represent accurately 
any of the contained vectors. Irrespective of the method that is used, vec-
tors within a node will become less similar as they approach the root of 
the tree; that is, nodes become more heterogeneous. Also, any subopti-
mal joint made early on, cannot be corrected. In addition, when clustering 
genes by experiment (columns), the similarity between vectors is calculated 
over the total number of genes within the data set. Therefore, if a group 
of genes in sample A is most similar to sample B — and this similarity is 
biologically important — this may be completely obscured by the fact that 
sample C is overall more similar to sample A. This important detail would 
be lost in this analysis. Finally, it may be that a hierarchical structure does 
not apply to the data. An alternative to clustering is partitioning data into 
more or less homogeneous groups instead. Figure 5.9 shows the concep-
tual difference between partitioning and clustering. Several such parti-
tioning methods exist; the most commonly used in microarray analysis 
are self-organizing maps (SOM) and K-means clustering.

8.  Self-Organizing Maps

Self-organizing maps is essentially a data visualization technique that 
reduces the dimensions of data through the use of self-organizing neu-
ral networks. This is an unsupervised strategy that is used for partition-
ing data into a two-dimensional matrix of cells or partitions. Each gene 
and/or array is assigned to a single partition. The vectors in each parti-
tion are most similar to each other; each partition, overall, is more simi-
lar to adjacent partitions than to those farther away in the matrix. Prior 
to initiating the analysis, the user defines a geometric configuration for 
the partitions, typically a two-dimensional rectangular or hexagonal grid. 
Random vectors are generated for each partition, but before genes are 
assigned to the partitions, the vectors are first “trained” using an itera-
tive process that continues until convergence, so that the data are most 
efficiently separated. SOMs have been applied to gene expression data in a 
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number of studies; we will be describing how to perform SOM clustering 
in the tutorial.

9. K -Means

K-means clustering partitions data in a manner similar to self-organizing 
maps, with the key difference being that one partition does not influence 
another directly. In this strategy, objects are partitioned into a fixed num-
ber (k) of clusters that are internally similar but externally dissimilar. The 
K-means algorithm assigns each point to the cluster center (centroid) that 
is nearest. The center is the average of all the points in the cluster; that is, its 
coordinates are the arithmetic mean for each dimension separately over all 
the points in the cluster. Using an iterative model, objects are moved between 
clusters and intra- and intercluster distances are measured with each move. 
Objects are allowed to stay in the new cluster only if they are closer to it than 
the original cluster. The shuffling process continues until moving objects is 
only making the clusters more variable. K-means clustering has been used 
successfully to analyze microarray data (see Tutorial in Section A).

10.  Limitations of Partitioning Methods

One of the main drawbacks of partitioning methods is the uncertainty in 
choosing an optimal number and arrangement of partitions. Several meth-
ods for determining the correct number of partitions to make have been 
suggested, including the Gap statistic (http://www.genetics.ucla.edu/hor-
vathlab/Biostat278/GapStatistics.ppt), which was designed with gene expres-
sion data in mind. The main goal when partitioning expression data is to 
reduce the within-cluster dispersion, such that each cluster is reasonably 
homogeneous while at the same time, the between-cluster dispersion is large. 

Partitioning Hierarchical

Figure 5.9  Hierarchical vs. partitioning clustering. Schematic representation of 
conceptual differences between partitioning and hierarchical clustering strategies. 
(From Jean Yee Hwa Yang, http://www.biostat.ucsf.edu/jean/. With permission.)
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For references on software, see http://engr.smu.edu/~mfonten/research/
MAsoftware.html and http://ihome.cuhk.edu.hk/~b400559/arraysoft_min-
ing_specific.html.

11.  Performance of Clustering Methods

Formal assessments of clustering metrics performance are still lacking. 
Recently, at least two approaches have been used to examine the data to 
predict which clustering methodology may perform better under individ-
ual circumstances. The first approach is the figure of merit (FOM). This 
is a “leave one out” approach, in which data from all but one array are 
clustered and then assessed to see how well clustered data predict data 
in the excluded array. This is repeated for all arrays. The more robust the 
clustering method, the more predictive the clustering should be of data in 
the left-out experiment. For real data, single-linkage clustering frequently 
performed almost identically to random assignment of genes to clusters, 
whereas the other linkage methods, clustering affinity search technique 
(CAST) and K-means clustering did significantly better, performing simi-
larly to each other. The second approach explored how coherent the bio-
logical annotation for genes within subclusters was, using different metrics 
and different algorithms. Again, with this approach, single linkage per-
formed poorly. In addition, average linkage performed worse than ran-
dom as a cluster was cut into more subclusters. The consensus, however, 
using either a “leave-out approach or exploiting biological annotation to 
determine cluster performance is that, in terms of measures of dissimi-
larity, no method outperformed Euclidean distance for ratio-based mea-
surements or Pearson distance for non-ratio-based measurements at the 
optimal choice of cluster number. Moreover, SOMs were the best approach 
for both measurement types at higher numbers of clusters. Clearly, unless 
there is a compelling reason to do so, single linkage should not be used 
for clustering microarray data, despite being an available option in many 
software packages. Table 5.3 highlights top clustering software packages. 
In the tutorial outlined in Section 4, the reader is encouraged to explore 
different clustering algorithms, using the Affymetrix data set provided.

Unsupervised methods for classification are extremely popular. This 
probably reflects the fact that they are relatively easy to use and require 
almost no hypothesis and almost no data assumptions. Moreover, the 
investigator is guaranteed to obtain clustering, irrespective of the sam-
ple size, data quality, or experimental design, or indeed, any biological 
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validity that is associated with the cluster. These are significant limita-
tions. Moreover, little information is available about the absolute valid-
ity or relative merits of clustering procedures. The evidence indicates that 
the clusters that are produced with typical sample sizes (<50) are gener-
ally not reproducible. More importantly, the reproducibility of unsuper-
vised classification rarely seems to address the questions that are asked by 
biologists.

12.  Supervised Classification (Class Prediction)

Another powerful way to analyze microarray data is to consider the sit-
uation where the goal of the experiment is not to identify function, but 
rather is to identify genes that can be used to group samples into biologi-
cally or clinically relevant classes. In supervised clustering, the experiment 
typically begins with a priori knowledge of the groups represented in the 
data — although any hypothesis along these lines can be further explored 
using clustering approaches. Taking into account these initial groups, the 
next step is to ask whether there are any genes that can be used to sepa-
rate the relevant classes. For the most part, a computer algorithm finds 
the rule that best classifies a set of available cases for which the correct 
type is known. This approach has shown great promise in exploring the 
use of microarray technology for the purpose of molecular clinical diagno-
sis. Examples of class prediction analysis strategies include vector support 

Table 5.3  Well known and high-performing clustering software
Name Source/author Web site

Acuity Molecular Devices http://www.moleculardevices.com/
pages/software/gnacuity.html

Cluster Michael Eisen http://rana.lbl.gov/EisenSoftware.htm
http://bonsai.fms.u-tokyo.ac.jp/

Cluster 3.0 Michiel de Hoon http://bonsai.ims.u-tokyo.ac.
jp/~mdehoon/software/cluster/
software.htm#ctv

GeneSpring Agilent http://www.genespring.com
Hierarchical Jinwook Seo http://www.cs.umd.edu/hcil/hce/
J-Express Molmine http://www.molmine.com/
MeV John Quackenbush http://tm4.org
XCluster Gavin Sherlock http://genetics.standford.edu/~sherlock/

cluster.html

C8105.indb   167 7/18/07   8:15:31 AM



168  <  Claudia C. dos Santos and Mingyao Liu

machines (VSM), artificial neural networks (ANN), diagonal linear dis-
criminant analysis (DLDA), K-nearest neighbor (KNN), and various other 
discrimination methods (http://stat-www.berkeley.edu/users/terry/zarray/
Html/discr.html). The ultimate goal is to generalize the trained classifier as 
a routine diagnostic tool for differentiating between the samples that are 
difficult or even impossible to classify using available methods. This is also 
an area of extremely active research, where the disciplines of statistics and 
machine learning have contributed much (http://cbio.uct.ac.za/arraypor-
tal/data_anls_details.htm).

13.  Limitations of Classification Strategies

First, for the user, it quickly becomes evident that many methods yield 
nonunique solutions or, in other words, can return different solutions of 
very similar quality (e.g., prediction error rate), which itself leads to the 
question of how to choose among solutions. A direct way of approach-
ing this problem is via model combination and model averaging. Model 
averaging is well known, and theory shows that a (weighted) average of 
predictions from several models should perform better. Other model-
averaging strategies have recently been developed. Regardless of which 
models are used, two general problems can affect all models/algorithms. 
First, most of the available methods assume additive effects of genes. Non-
additive relationships or interactions, also called synergistic (or antago-
nistic) effects, are present when the outcome depends not just on the 
sum of the independent contributions of X and Y, but on their combined 
effects. Random forests implicitly incorporate interactions as they are an 
ensemble of classification trees, but the actual interactions are not easy to 
see. Second, the predictive capacity of many models can be hampered by 
unrecognized heterogeneity within classes that are regarded as homoge-
neous. Not much work has been done in this area. A final set of problems 
involves the biological interpretation of class prediction models. Most 
methods for building predictors tend not to return models that allow for 
easy biological interpretation of why and how those predictors are used 
and how the genes in the predictors affect and relate to the class predic-
tion. These problems have been detailed, and examples are methods that 
use dimension reduction via principle component analysis (PCA) or pro-
portional hazard regression model for survival analysis (PLS), in which all 
genes have loadings on all the components, making it virtually impossible 
to interpret the biological meaning, if any, of the components. In addition, 
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“molecular signatures” or “gene expression signatures” are key features in 
many studies in cancer research and seem to imply the idea of coordinate 
expression of subsets of genes, so that some of these sets of coordinate 
expression would be related to some criterion of interest (e.g., cancer type, 
or survival). In spite of their apparent relevance, however, there seems to 
be no approach for identifying molecular signatures; that is, sets of genes 
that are tightly coexpressed and that can be used as successful predictors. 
Many unresolved issues remain and, in truth, good classification perfor-
mance, per se, does not shed any light into the underlying biological or 
clinical phenomena.

To evaluate the performance of a predictor, it is common to provide the 
error rate of the predictions. However, many papers report error rates that 
are biased, leading to overoptimistic claims about the performance of dif-
ferent methods. One possible reason for overinflated estimates may arise 
from reporting the “resubstitution rate,” the error rate computed from 
the very same observations that were used to build the classifier. This is 
a problem, because the resubstitution rate is severely biased due to over-
fitting — this is when the classifier “adapts” to some peculiarity of the 
data and does great with that particular data set, but poorly as a predictor. 
To solve this problem either cross validation or bootstrap has been used; 
both methods build the predictor using a subset of the data, and then pre-
dict the values for the remaining data, thus ensuring that the predictions 
are from data not used for the training. A second common problem is to 
carry out the cross-validation after the gene selection: all samples are used 
for gene selection, and the cross-validation process does not include gene 
selection. The solution is to perform cross-validation or bootstrap so that 
all steps of the analysis (including gene selection, but also other potential 
steps such as imputation) are included in the cross-validation. Another 
potential difficulty in the field is the lack of validation of the methodology; 
many new methods that are published are not evaluated against standard 
competing methods.

It is also important to recognize that microarray experiments are obser-
vational studies. Observational studies present several potential problems, 
primarily, background differences between groups and the presence of 
potential confounding variables. A related problem is interaction, such as 
when the degree of association between an exposure factor (e.g., expres-
sion of gene A) and the disease is different for different levels of the con-
founding variable, such as sex; there is evidence that this might be the 
case in lung cancer. Confounding and interaction can be addressed, at 
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least partially, by appropriately using relevant covariates in the statistical 
models. These factors are of critical importance.

A lingering issue is regarding the sharing of software for microar-
ray data analysis. The Open Bioinformatics Foundation (http://www.
open-bio.org/) is “focused on supporting open source programming 
in bioinformatics.” The Free Software Foundation (http://www.fsf.org) 
and the Open Source Initiative (http://www.opensource.org/) explain 
free and open-source software.

Section 4	 Tutorial
In the following section, a tutorial based on different microarray analysis 
tools will be used to allow the reader to analyze a trial set of microarray 
data, understand the analysis sequence, and become familiar with com-
mon software tools available.

1.  TM4 Software Overview

For the purpose of this tutorial, all the data will be analyzed in TM4 
(http://www.tm4.org/scgi-bin/getprogram.cgi?program=expcnvt). This 
is free software that can be downloaded into your personal computer. 
The TM4 suite of tools consist of four major applications, Microarray 
Data Manager (MADAM), TIGR_Spotfinder, Microarray Data Analy-
sis System (MIDAS), and Multiexperiment Viewer (MeV), as well as a 
MIAME-compliant MySQL database, all of which are freely available 
to the scientific research community at TIGR’s software download site. 
Although these software tools were developed for spotted two-color 
arrays, many of the components can be easily adapted to work with 
single-color formats such as filter arrays and GeneChips™(Affymetrix). 
This software is OSI certified (Open Source Initiative [OSI] is a non-
profit corporation dedicated to managing and promoting the Open 
Source Definition for the good of the community, specifically through 
the OSI Certified Open Source Software certification mark and pro-
gram [http://www.opensource.org/]). In this tutorial, we will not be 
using MADAM or TIGR_Spotfire. MADAM is essentially a data man-
agement tool used to upload, download, and display various microarray 
data to and in a database management system (MySQL). This software 
interfaces with MySQL and allows data to be electronically recorded, 
captured, administrated, and annotated, enabling data to be shared 
and used by others within the scientific community. TIGR Spotfinder is 
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an image-processing software created for analysis of image files (TIFF 
files) generated in microarray expression studies. This software enables 
spot quantification.

2.  Experiment and Data

For this tutorial, we will be using a plasmode data set provided by 
Affymetrix. The initial step is to download a test data set. Affymetrix 
has made available on their Web site (Permission obtained to use data 
at http://www.affymetrix.com/support/technical/sample_data/datasets.
affx) two very useful data sets: the human genome U133 data set and 
human genome U95 data set. Both are arrayed in a Latin square format 
(a Latin square of order n is an n by n array of n symbols, in which every 
symbol occurs exactly once in each row and column of the array). We will 
be using the U133A data set in the example. The human genome U133 
data set consists of 3 technical replicates of 14 separate hybridizations 
of 42 spiked transcripts in a complex human background, at concentra-
tions ranging from 0.125 pM to 512 pM. Thirty of the spikes are isolated 
from a human cell line, four spikes are bacterial controls, and eight spikes 
are artificially engineered sequences believed to be unique in the human 
genome. A total of five files need to be downloaded. The data are avail-
able from Affymetrix in a .Cel file format (U133 Data, HG-U133A_tag_
Latin_Square.zip, 141 MB); this will allow the data to be processed at 
the probe level (we will not be reviewing the image file). This data set 
requires a special, alternate chip description file (CDF, HG-U133A_tag_
CDF.zip, 6.9 Kb), available from the same site, containing information 
about the eight artificial clones. The exact spiked sequences are found 
in the Excel file describing the experimental design (U133 Description, 
HG-U133A_Tag_description.zip, 19 KB). For further analysis, the probe 
sequences (HG-U133A_tag_ProbeSequence.zip, 4.2 MB) as well as the 
complete library files (HG-U133A_tag_library files, 14 MB) are included. 
These files are particularly useful in illustrating the use of replicates and 
spiked controls. They will allow the reader to focus on important techni-
cal issues discussed in the text.

3.  Preprocessing

MIDAS-RMA can be used to analyze .Cel files generated by Affymetrix. 
MIDAS-RMA can be downloaded from https://sourceforge.net/projects/
midas-tm4/. Make sure you download the 2.0 version; the earlier version 
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(1.9) cannot perform RMA analysis. Before running the software, make 
sure you have ready:

	 1.	CEL files (.Cel) you downloaded from Affymetrix — the Latin 
Square experiment.

	 2.	CDF files (Channel file) in text format (the file should be in a format 
that you can open and read with Notepad) — the way the tutorial has 
been set up, the file formats you have downloaded from Affymetrix 
are appropriate.

Once you have both files in the correct format, download MIDAS pack-
age and extract the files to the directory you want. Please make sure you 
also download the .pdf file containing RMA instructions — this may be 
very useful and essentially walks you through the operations required for 
preprocessing. For the most part, unless specified, we will be using all 
default settings in the interest of simplicity.

Using MIDAS_RMA, we will detect expression signals using RMA as 
our background correction method (see Figure 5.5). The data will be nor-
malized using quantile normalization (see Box 5.2). The default method 
for expression summary of RMA data will be RMA Median Polish. The 
software will also perform virtual trimming — eliminating poor-qual-
ity probe signals as per default settings. Figure 5.10 shows MIDAS_RMA 
window outlining default settings for data preprocessing.

Click on MIDAS.bat to start the application.
Click on “Read All Data Files in a Folder” (this is the third “glasses” 

icon from the left of the menu bar with caption).
Now click on the blank “Value” column of “Multiple Data Files Names” 

— in the parameters window. A small pop-up will appear. Make sure to 
choose “Affymetrix Probe Intensity files (.Cel)” from the top Load expres-
sion files of type. The “please specify raw data files…” window that appears 
will allow you to navigate and select the .Cel files that you want to include 
in the analysis. To make this example more efficient, load the three repli-
cates for experiments 1, 2, 3, and 4 as follows:

12_13_02_U133A_Mer_Latin_Square_Expt1_R1.Cel

12_13_02_U133A_Mer_Latin_Square_Expt1_R2.Cel

12_13_02_U133A_Mer_Latin_Square_Expt1_R3.Cel

12_13_02_U133A_Mer_Latin_Square_Expt2_R1.Cel
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12_13_02_U133A_Mer_Latin_Square_Expt2_R2.Cel

12_13_02_U133A_Mer_Latin_Square_Expt2_R3.Cel

12_13_02_U133A_Mer_Latin_Square_Expt3_R1.Cel

12_13_02_U133A_Mer_Latin_Square_Expt3_R2.Cel

12_13_02_U133A_Mer_Latin_Square_Expt3_R3.Cel

12_13_02_U133A_Mer_Latin_Square_Expt4_R1.Cel

12_13_02_U133A_Mer_Latin_Square_Expt4_R2.Cel

12_13_02_U133A_Mer_Latin_Square_Expt4_R3.Cel

Once the .Cel files you want are highlighted, press “OK” to close the 
window. At this point the, .Cel file names should be displayed in the 
“Value” entry for “Multiple Data files Names.”

Click on the second icon from the right on the menu bar with “Affy” 
on it.

In the parameters window, make sure that for “Background Correction 
Method,” you click on “RMA,” which should be the default value on this 
first line.

Figure 5.10  MIDAS default settings for data preprocessing.
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Now click on the “Output Processed File,” the last icon on your right-
hand menu bar.

Click on the “execution” button on the Work Flow panel; at this point, 
you will be prompted to say where you want all of your output files saved. 
Choose the directory you want and press “Save.”

At this stage, the software will request the .CDF file. In the pop-up win-
dow, just press “…” and direct the computer to where you saved the .CDF 
file. Press “Apply.”

The application will then start running. You will be able to follow the 
completion of the analysis in the “Process status” window. Once the pro-
cess is completed, you will find the process log (.rpt) and result (.txt) under 
the project directory you have chosen previously.

The Latin Square experiment we initially downloaded in .Cel format 
has gone through the process of preprocessing.

Your output file should look something like Figure 5.11, in which the 
first column is the probe ID, and subsequent columns contain the RMA 
normalized gene expression values. Column names refer to each individ-
ual sample.

4.  Data Processing

Multiexperiment Viewer (MeV) will be used to process RMA files. MeV 
can only process normalized and filtered expression files. This is a versatile 
microarray data analysis tool, incorporating sophisticated algorithms for 
clustering, visualization, classification, statistical analysis, and biological 
theme discovery. MeV can handle several input file formats. These include 
the “.mev” and “.tav” files generated by TIGR Spotfinder and TIGR MIDAS, 
and also Affymetrix® (“.txt”) and Genepix® (“.gpr”) files. MeV generates 
informative and interrelated displays of expression and annotation data 
from single or multiple experiments (http://www.tm4.org/mev.html).

Click on TMEV.bat (TMEV batch file) to start the program. Also down-
load the MeV_Manual_4_0.pdf for further detailed instructions.

The main menu bar will appear with four menus: File, Display, Win-
dow, and References.

Go to File, and click on “Load Data.”
Select the Tab Delimited, Multiple Sample Files (TDMD) (*,*) options 

from the drop-down menu, and load TDMS format files. A pop-up win-
dow will show you the folder containing the files — this will be displayed 
in tabular format in the file-loader-preview table. Click the cell in the table 
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that contains the upper-leftmost expression value in the files (not probe 
ID). The header labels for the annotation fields will be displayed at the 
bottom of the dialog. Check that the correct fields are listed before click-
ing on “Load.”

Once the loading process is complete, the software generates a Main 
Expression Image; this is the heat map seen in Figure 5.12.

Note that for each set of expression values loaded, a column is added 
to the main display (Figure 5.12). This display is an expression Image 
Viewer. Here, each column represents a single sample, and each row, a 
single gene. By convention, red is upregulated, and black is downregu-
lated. The color intensity is usually related to the degree of up- or down-
regulation, the more intense color indicating extremes of hybridization 
intensity.

We have downloaded a total of 12 samples (12 chips) each containing 
expression values for 22,300 genes.

Figure 5.11  Excel file showing processed RMA data. The first column contains 
Probe ID information. All subsequent columns are labeled according to their 
specific samples and contain information pertinent to expression values for each 
gene (rows) in each different sample (columns).
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5.  Significant Analysis of Microarray

The next step is to treat the data to an inferential analysis step — statis-
tical analysis to identify those genes whose expression value is signifi-
cantly different.

Click on SAM in the horizontal Menu bar. Background information 
about SAM is discussed briefly in Section 3.

In SAM, the data for each gene are permuted, and a test statistic d is 
computed for both the original and the permuted data for each gene. SAM 
generates an interactive plot (Figure 5.12) of the observed vs. expected 
(based on the permuted data) d-values. You can change the value of the 
tuning parameter delta using either the slide bar or the text input file below 
the plot. Delta is a vertical distance (in graph units) from the solid line of 
slope 1 (i.e., where observed = expected). The two dotted lines flanking this 
solid line, represents the region within +/- delta units from the “observed 
= expected” line. In the two-class analysis, the genes whose plot values are 
represented by black dots are considered nonsignificant, those gray dots 
are considered to be significantly upregulated, and the dark gray ones are 
thought to be significantly downregulated. You also have the option of 
applying a fold change criterion to selection of genes. In the multiclass 
analysis, the direction of change is not provided. The SAM plot shows all 
significantly altered genes as gray dots.

In the pop-up menu, you will be offered a choice of types of analysis: 
Two-class unpaired, Two-class paired, Multi-class, Censored survivals, 
or One-Class.

Click on Multi-class, and the number of groups is “4.” Press “OK.”
A pop-up window will appear requesting assignment of samples to 

specific analysis groups. Assign all three replicates from Experiment 1 to 
group A, all replicates from Experiment 2 to group B, all replicates from 
Experiment 3 to group C, and all three replicates from Experiment 4 to 
group D.

Select “100” as the number of permutations.
Select S0 using Tusher et al. method.
To expedite the analysis for “Calculate q-values,” say “No” (quick).
Click “K-nearest neighbor” for imputation engine, and “10” for number 

of neighbors.
Click also on Hierarchical clustering “construct hierarchical Trees” for 

“significant genes only.” When the software prompts you for which clus-
tering method to use, click on “Pearson correlation.”
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Click “Go.”
A pop-up window showing you the SAM plot will appear. This is an 

interactive window, and it allows you to use the slider to set the value of 
delta. Feel free to adjust delta at different values, and look carefully at the 
two dashed lines flanking the solid line of “expected = observed.” As the 
space between the lines contracts and expands, the color of the dots at the 
inflection point of the line change from gray dots to black and vice versa. 
Adjust delta so that you have the maximum number of significant genes 
and a minimum number of false significant genes (choose a false discov-
ery rate that is acceptable, usually less or equal to 1%). In this example, we 
set a delta of 0.18785691; there should be 4.44108 median number of false 
significant genes and 68 (number of) significant genes identified.

Figure 5.13 shows the resulting SAM plot.
Click on SAM in the navigator on the left-hand side. Separate icons should 

now be available for the SAM graph, Delta Table, Expression Images, Hier-
archical Tree (where we used Pearson correlation), Centroid graphs, Expres-
sion graphs, Table views, Cluster information, and General information.

If you click on the history icon, a description of all relevant processing 
steps performed to data on this particular data set should be outlined.

Please review the information in the manual, and use this opportunity 
to explore SAM.

A.  Clustering Strategies
Another analysis option is to use clustering methods to identify gene 
expression profiles. The gene list contained in the Main View is over 22,000 
genes long, and for the most part, most clustering algorithms would have 
difficulty processing so many genes on a personal computer; usually, com-
putational memory is the limiting factor.

Go to “Adjust data” in the horizontal Menu.
Scroll down to “Data Filters,” one-colored arrays and click on “Set 

Lower Intensity cut-off”; insert 10.0 in the lower intensity cut-off value. 
Press “Ok.”

In the navigational window on the right-hand side, an icon for “Data 
Filter” should have appeared.

Click on the expression Image; note that a total of 807 genes passed the 
Low Intensity cut-off filter.

Use this lower number of genes to cluster data using SOMs.
Click on SOM on the horizontal bar.
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A pop-up window will prompt you to decide whether you want to clus-
ter genes or samples. You can do either; for the purpose of this example, 
we will cluster genes.

In the distance metric selection, choose Euclidean distance. This is the 
default metric for SOMs.

For parameters, keep the current default settings: Dimension X and Y 
= 3; Iterations 2000, alpha 0.05, radius 3.0; Initialization random genes; 
Neighborhood Gaussian, and Topology Hexagonal.

Do not construct a hierarchical tree.
Press “OK.”
An icon should pop up on your left-hand navigator for SOM-genes.
Click on this icon and scroll down to U-matrix color.
Figure 5.14 shows the use of SOM to identify 2 unique clusters (dark 

gray and black) identified in this data set. Table information identifies 
individual genes contained in each cluster.

Figure 5.13  SAM plot. On the y-axis are the observed values and on the x-axis 
are the expected values. Solid line is the line that corresponds to gene expression 
values when expected = observed. Dashed lines are set by delta, which allows you 
to shrink or expand the area around the solid line, to determine how many genes 
will be deemed statistically significant (see text). Black dots correspond to the 
expression values of genes whose expression does not change between expected 
and observed. Gray dots correspond to expression values for genes whose expres-
sion is significantly different in the observed to the expected.
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You may vary any of the parameters we mentioned and examine the 
performance of different strategies.

You may use the same reduced data set to explore the use of K means 
clustering.

Click on “KMC.” The pop-up window that appears will allow you to 
choose between clustering samples and clustering genes; choose “cluster-
ing genes.”

Select cluster genes, and use the same default settings suggested.
Figure 5.15 shows KMC plots you will generate going through this 

operation.
Try running KMC again, and this time instead of clustering genes, clus-

ter samples. Note that all samples in the Affymetrix data set are extremely 
similar to each other and are grouped in a single cluster. Try repeating the 
same procedure with the second data set provided.

Figure 5.14  SOM plots — this is the self-organizing map hexagonal plot show-
ing that the data can be viewed as containing nine clusters, of these two (gray and 
black) stand out as containing genes whose expression pattern may be perceived 
as unique.

C8105.indb   180 7/18/07   8:15:48 AM



Gene Expression Profiling by Microarray  <  181

B.  Gene Ontology Analysis
Any list generated using the aforementioned strategies, and other strategies 
that the reader may want to explore, can be further analyzed using Functional 
Ontologies. This may be particularly useful at any stage of postprocessing.

In this particular example, we shall use the small group of genes selected 
as statistically significant using SAM.

Make sure you can open your SAM significant gene file in either Note-
pad or Excel, and that it is in .txt format.

Go to Gene Ontology Tree Machine (http://bioinfo.vanderbilt.edu/gotm/).
You must register to be able to use the software package, but this should 

be fairly fast.
Once you have registered and you are logged in, click on “WebGestalt.”

Figure 5.15  KMC plots — on the left-hand side the navigational bar shows how 
to keep track of the data processing tools that have been already applied to the 
data set. If you highlight the icon for Expression graphs and scroll down to all 
graphs, the expression graphs for all genes clustered using K-means comes up on 
the right-hand side, showing how genes with different gene expression values are 
clustered across the data set.

C8105.indb   181 7/18/07   8:15:49 AM



182  <  Claudia C. dos Santos and Mingyao Liu

In the Orange Section, go to “Upload” in the “select method,” scroll 
down, and click on “from file.”

Click on “Upload.”
Give Gene set a name — Affy Latin Squares SAM_test1.
In the box provided, briefly describe details of the experiment for future 

reference — it does not really matter how you describe the experiment as 
the description is not used in any calculation, but if you leave this section 
blank, the program will not compute.

Under “organism,” choose “Homo sapiens.”
Under “ID type,” choose “HG_U133A.”
Under “Upload your file of gene set,” press “Browse” and load your .txt 

file containing the ID column only.
Press “Upload.”
Note that for this program to work appropriately, you may need to 

reformat the file generated by MeV. This is very straightforward.
Go to the Tabular format of the SAM result output in MeV. Under 

“File,” save this as a .txt file.
Open the file in Excel and delete all columns except the first column 

containing the probe ID data. Save the file again — under a different name 
— e.g., Affy Latin Squares SAM_test1. This is the file that you will load 
into GOTM.

Once the file is loaded, a new window will appear requesting that you 
choose details for further analysis.

Under “Gene Information retrieval tool,” you may leave this section 
blank; this way, the data will be computed by default.

Under “Gene set analysis tool,” go to “Go Tree.”
Under “select a reference” set scroll down, and click on 

“wengestalt_HG_U133A.”
Under “statistical method,” scroll down and select “hypergeometric test.”
Under “select a significance value,” select “0.05.”
Under “select a minimum number of genes,” select “4.”
Click on “Make Go tree.”
The computer will perform the operation; once it is completed, you will 

be prompted. Press on “check Go Tree.”
In the new window you will be able to see how the list of genes selected 

is significantly enriched for genes overrepresented by specific GO ontolo-
gies. Specific functional enrichment for biological process, molecular 
function, and cellular component will be highlighted.
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Functions represented as gray dots are overrepresented in the data set. 
The p-value of 0.05 indicates the likelihood that this enrichment occurred 
by chance alone.

In the orange section, in the far right, click on “enriched DAG.”
Figure 5.16 shows the DAG (directed acyclic graph) of the enriched GO 

categories (p < 0.05 and at least genes, which are represented as thin boxes) 
and their nonenriched parents (which are colored black, represented as 
thick boxes). Click on particular nodes to view the list of gene members. 
You may adjust the font name and size and redraw the graph.

This software allows you to explore the data from a functional perspective.
This concludes the tutorial. It is far from complete, but presumably has 

served the purpose of introducing the reader to a variety of software anal-
ysis tools freely available and relatively easy to use. For your convenience, 
a second data set is provided.

An alternative data set is available from GEO (http://www.ncbi.nlm.
nih.gov/entrez/query.fcgi?CMD=search&DB=gds). The GSE1318 Web 
page has links for the authors involved in generating the data, for a 
PubMed citation (15105423) describing this data, the e-mail address of the 
submitter (ness@unm.edu), and other information. The files come from 
an Affymetrix microarray analysis of gene expression changes induced 
by using a recombinant adenovirus to express the c-Myb transcription 
factor in human MCF-7 cells. To download the data, go to the GEO Web 
site: http://www.ncbi.nlm.nih.gov/projects/geo/. In the “Query” section in 
the middle of the page, type “GSE1318” (without the quotes) into the box 
labeled “GEO accession,” then push “GO.”

GSE1318 is a data series, a collection of 25 microarray data sets 
(GSM21610–GSM21638). To simplify things and make them go faster, we 
will only use the first six for this tutorial (GSM21610–GSM21615). At the 
bottom of the page is part of a table showing the data structure. This table 
lists normalized and raw values for each type of sample. However, the data 
in the table already has the replicate samples averaged together. We will 
start with the original data for three sets of replicates instead.

Download the data sets GSM21610–GSM21615. There are links for each 
set just above the partial table. Follow the following steps to download 
each data set:
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	 1.	Click on the link for the appropriate data set (e.g., GSM21610).

	 2.	From the new page, use the pull-down menu to set the “Scope” to 
“Samples.”

	 3.	Set the “Format” to “SOFT” and the “Amount” to “Full.”

	 4.	Push “GO” to download the data on your computer.

	 5.	In the “GEO accession” box, change the accession number to the 
next one (e.g., GSM21611), push “GO” to download, then repeat for 
the rest of the samples.

Put all the newly downloaded files in one folder.
The samples are the following:

GSM21610 and GSM21611: Control cells, uninfected MCF-7

GSM21612 and GSM21613: Control cells, infected with a control (GFM-
only) adenovirus

GSM21614 and GSM21615: Experimental cells, infected with an adeno-
virus expressing c-Myb and GFP

Conclusions
In this chapter, we have reviewed some of the important challenges 
associated with gene array analysis. These arise in part from the inher-
ent variability of expression microarrays at the individual slide and spot 
level, from the large-scale nature of the data, from the novel structure of 
microarray data, and in part because the full use of expression profiles 
for inferring gene function is still only partly explored. The key areas in 
microarray data analysis include experimental design, the assessment of 
significance for differential expression, discriminant analysis (supervised 
learning), and clustering (unsupervised learning). These are supported by 
equally important but lower-level techniques for data acquisition, storage, 
linkage to gene databases, normalization, and visualization. As novel and 
more mature approaches to handling microarray data become available, 
one critical limitation remains: how to make efficient and maximal use of 
the information generated from heterogeneous genomic metadata sources 
such as transcriptomics, proteomics, genotyping, as well as the variety of 
platforms contributing to the fields. Complicating factors include the pres-
ence of unavoidable high level of noise, the high levels of interactions with 
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a large number of traits, and the heterogeneities in time and space. This 
provides a unique opportunity for computational and systems scientists 
to develop tools to integrate this vastly complex data. The research in this 
field is prolific and exciting. Although much effort will have to be spent on 
optimizing and validating the technology, the promise is undeniable. 

The author would like to thank Drs. Pepin, Quackenbush, Sharov, and 
Yang, for cordially allowing us to reproduce or adapt their figures for this 
tutorial. We would also like to thank Dr. Quackenbush for corrections of 
part of this manuscript. 
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Abstract
SAGE is a powerful technology for measuring global gene expression, 
through rapid generation of large numbers of transcript tags. It rivals 
microarray analysis, with the advantage that it is affordable for standard 
laboratories. It provides a platform to define complete metabolic pathways 
and has been applied to study responses to drug treatment. The SAGE 
technique’s high sensitivity and its global assessment of the transcriptome 
suggest that it is a perfect tool for analytical studies on representative sam-
ples to find candidate genes, which can be assessed in larger clinical popu-
lations. Although technically quite distinct, SAGE has some of the same 
limitations associated with microarray studies. As with microarrays, com-
parisons between SAGE studies of hormone-regulated gene expression in 
different tissues or cell types will likely reveal relatively limited overlaps 
in gene expression profiles. Comparisons between different SAGE studies 
may be complicated by the number of different statistical methods used 
to analyze expression patterns in SAGE libraries, which, like microar-
rays, must deal with “noise” associated with stochastic variations in gene 
expression. Nevertheless, SAGE will continue to be significant in building 
a reference database for gene expression analysis. This chapter describes 
the SAGE method, differences between SAGE and microarrays, applica-
tions of this technology to medical research, steps for SAGE data analysis, 
and methods to retrieve data from SAGE databases.

Section 1	 SAGE experimentation
1.  What Is SAGE?

Serial analysis of gene expression (SAGE) is a novel method used to give sci-
entists an overview of a cell’s complete gene activity. SAGE is a method of 
large-scale gene expression analyses and was developed in the mid-1990s. 
SAGE detects transcripts by extracting short tags from them. It is a tech-
nique that works by capturing RNAs, and it allows the speedy and quan-
titative study of a number of transcripts. It is a very powerful technique 
that has the potential to generate the complete catalog of mRNAs present 
within a cell population at a given time, along with their prevalence. SAGE 
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is one of the few methods capable of uniformly probing gene expression at 
a genome level irrespective of mRNA abundance and without a previous 
knowledge of the transcripts present. It is intriguing to note that owing to 
limited length, many SAGE tags are shared by the transcripts from differ-
ent genes, which can complicate gene identification. It is well established 
now that SAGE has advantages over other hybridization-based methods, 
for instance, subtractive hybridization and differential display. It is also 
better than the expressed sequence tag (EST) approach because SAGE can 
identify the genes, which are expressed at low levels and which correspond 
to a majority of genes in the human genome. By comparing different types 
of cells, the researchers expect to generate profiles that will facilitate an 
understanding of healthy cells and what goes wrong during diseases.

2.  Brief Introduction to SAGE Procedure

In simple terms, SAGE works by capturing the RNAs, followed by “rewrit-
ing” them into DNA, and cutting a small, fourteen-letter tag from each 
one. Because it would take a long time to load tens of thousands of single 
tags into a sequencing machine, the method joins a lot of tags together 
into long molecules, which are called concatemers. The sequencer reads 
these molecules, counts and analyzes them, and computer programs gen-
erate a list of the genes that these tags belong to.

The technique is mainly based on two principles:

	 1.	The short oligonucleotide sequence tags (10–11 base pairs), which 
contain sufficient information to uniquely identify transcripts, are 
used to identify genes and the relative abundance of their transcripts 
within mRNA.

	 2.	The concatenation of short sequence tags allows an effective analysis of 
transcripts in a serial manner because SAGE uses serial processing such 
that 25-50 SAGE tags are analyzed on each lane of DNA sequencer.

These sequence data are analyzed to discover each gene expressed in the 
cell and the levels at which each gene is expressed. This information cre-
ates a library that can be used to analyze the differences in gene expression 
among cells. The occurrence of each SAGE tag in the cloned multimers 
precisely reflects the abundance of the transcript. Therefore, SAGE pro-
vides a precise picture of gene expression at both the quantitative and the 
qualitative levels. Briefly, some of the SAGE steps are as follows: trap the 
RNAs with beads and convert the RNA into cDNA. These cDNAs are 
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digested so that there is an end sticking out, and a “docking unit” is ligated 
to this end. A short tag is cut off, and the two tags are combined together 
to form a ditag. These ditags are copied using polymerase chain reaction 
(PCR) and specific primers and are ligated to form concatemers, which are 
then sequenced. Using software, these cDNAs are identified and charac-
terized, and the sequence of each tag is matched to the gene that produced 
the RNA.

A.  Generation of the Library
The step-by-step procedure for library construction is shown in Fig-
ure 6.1. Double-stranded cDNA is synthesized from mRNA by using 
oligo(dT) primer. To enable recovery of 3'-cDNA fragments, the oligo 
(dT) primer contains a 5'-biotin moiety. The resulting double-stranded 
cDNA is then cleaved with restriction enzyme (also known as anchoring 
enzyme) NlaIII, which recognizes and cleaves to leave a 3' CATG exten-
sion CATG (Figure 6.1). This cleavage step results in the formation of a 
specific position within each transcript for a consequent excision of the 
adjoining SAGE tag. By using streptavidin-coated magnetic beads, these 
biotinylated 3'-cDNAs are affinity-purified. These captured cDNAs are 
then ligated to linkers (or adapters) (Figure 6.1). The linkers used for this 
purpose are oligonucleotide duplexes, which contain a NlaIII 4-nucle-
otide cohesive overhang, a type IIS recognition sequence, and a PCR 
primer sequence (primer A or primer B). Type IIS restriction enzymes, 
also known as tagging enzyme, cleave the DNA at a defined distance 
14–15 nucleotides 3' of its nonpalindromic recognition sequence, releas-
ing the linker-adapted SAGE tag from each cDNA. The most common 
enzyme used for this cleavage is BsmFI. The majority of the cleavage sites 
used for BsmFI are 15 nucleotides downstream of its recognition sequence 
but ~20% of the sites are 14 nucleotides downstream of its recognition 
sequence. Hence, for repairing the ends of linker-adapted SAGE tags, 
DNA polymerase (Klenow) enzyme is used (Figure 6.1). These repaired 
cDNAs from each pool are mixed together and then ligated using T4 
DNA ligase. The ligated tags now serve as the templates for PCR ampli-
fication, with the primers specific to each linker. These linker-adapted 
ditags are amplified by primers A and B, digested with NlaIII to release 
the primer-adapters, and the SAGE ditags are purified (Figure 6.1). The 
cleavage with anchoring enzyme NlaIII allows the isolation of ditags, 
which are then polymerized using T4 DNA ligase and cloned into a 
high-copy plasmid vector. Each cloned insert is organized as a concat-
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enated series of ditags of 20–22 nucleotides in length, separated by the 
(4-nucleotide recognition sequence) for the anchoring enzyme NlaIII. 
Automated sequencing of concatenated SAGE tags allows the routine 
identification of ~1000 tags per sequencing gel. This rapid sequencing 
allows quantitation and identification of cellular transcripts. SAGE can 
generate an exhaustive profile of the gene expression because each tag 
individually identifies a transcript.

AAA
AAA

mRNA

AAA
AAA

cDNA

NlaIII
CATG

NlaIII
CATG

AAA

AAA

NlaIII
digest

AAA

AAA
Ligate linkers to 
Introduce tagging
Enzyme site 

AAA
AAA

Cleave with tagging
Enzyme, repair with 
Klenow and ligate

Cleave with NlaIII 
To remove linkers 

Ditag

Concatemerize Ditags with ligase and clone 

Sequence and analysis of tags 

CATG ACCCACGAGC
TAG 1

AGG GTACGATGAT
TAG 2

CATG GAAACCTATG
TAG 3

CACC TTGGGTAGCA
TAG 4

CATG

TAGGACGAGG
TAG 5

GT GGACAATGCT
TAG 6

CATG

Example of a concatemer:

Figure 6.1  Step-by-step procedure for SAGE library construction.
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SAGE has been generally used to catalog gene expression patterns in a 
number of tissues. A variety of modifications to this procedure have been 
developed, and recently a novel approach for the construction of SAGE 
libraries from small quantities of total RNA by using Y linkers to selec-
tively amplify 3' cDNA fragments has also been reported. Since the discov-
ery of SAGE technology, a number of modifications have been reported in 
the technique. Some of the important modifications include micro-SAGE, 
“SAGE-lite,” mini-SAGE, generation of longer cDNA fragments from SAGE 
tags for gene identification (GLGI), and a SAGE adaptation for downsized 
extracts (SADE). A substantially improved version of SAGE, SuperSAGE 
(which generates 26 base pair tags), has been developed and used to interpret 
the “interaction transcriptome” of both the host and one of its eukaryotic 
pathogen. It is interesting to note that SAGE can also be used to discover 
new genes in the organisms for which the complete genome sequence is not 
available. If a sequence does not match a known gene, then it must have 
appeared from a gene that has not been discovered earlier.

3.  What is the Difference between SAGE and Microarray?

Microarrays use the principle of Watson–Crick base pairing and are used 
to identify the profiles of expressed genes in a given tissue at a given time. 
In DNA microarrays, a number of known sequences (either short oligo-
nucleotides or cDNA sequences) are immobilized on a solid support com-
monly known as a chip; usually fluorescent-labeled target sequences are 
added and allowed to hybridize. After hybridization the similar probes 
bind target sequences and, after washing away the nonspecifically bound 
target sequences, the amount of the residual bound target sequences is 
proportional to the amount of the target sequence, which forms the 
basis of nucleic acid quantification. The degrees of hybridization in the 
control and the test preparation are compared. Microarray analysis has 
enabled the measurement of thousands of genes in a single RNA sample. 
A comparison between SAGE and microarray analysis has been shown in 
Table 6.1.

Two widely used methods for the production of microarrays are (a) in 
situ synthesis of oligonucleotides and (b) robotic deposition of nucleic 
acids (oligonucleotides or PCR products) onto a glass slide. There are many 
methods to label the target sequences, and the labeling method depends 
on the amount of RNA. For a sufficient amount of RNA, i.e., about 20 µg 
of total RNA, it can be labeled with biotin directly. If the RNA quantity 
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is limited, it is first converted to a double-stranded cDNA (for 20–200-
fold amplification), and then it is subsequently transcribed into a labeled 
antisense RNA by in vitro transcription. Usually, there are two basic tech-
niques used for the detection of hybridization. The control and test prep-
arations could be placed together on a single chip or separately on two 
chips. As opposed to SAGE analysis, which is usually performed between 
single libraries, microarray studies can be performed in triplicate or more. 
Microarray technology makes possible a more complete and comprehen-
sive experimental approach in which variation in the transcript level of 
the whole genomes can be simultaneously assayed in response to a vari-
ety of stimuli. This genomewide approach to transcriptional analysis or 
“transcriptional profiling” makes available the comparative data on the 
relative expression level of various transcripts within an organism and 
relates this to modifications that occur as a consequence of a defined cel-
lular stimulus.

Microarrays bear a resemblance to the yeast two-hybrid technique 
because they provide a screening platform to restrict the potential gene 
target. The major advantage in using microarrays is that they can handle 
a great number of known genes to establish the profiles of their expres-
sion. But further validation for microarray results is absolutely necessary 
because the false-positive rate for microarray experiments is very high. 
The microarray techniques generally need commercially produced chips 
in addition to specialized equipment and sophisticated computing skills 
and facilities. A number of issues must be considered before establishing 

Table 6.1  �Difference between Microarray Analysis and SAGE Technology
Parameters Microarray SAGE

Principle Hybridization of labeled 
cDNA

10–17 base pair tag 
generation and sequencing

Novel gene discovery No Yes
Polymorphism discovery Yes No
Data format Relative intensity Count of amplified SAGE 

tags
Low-abundance transcript 
detection

No Yes

Setup cost High Low
Operation procedure Easy Difficult
Multiple sample Handling Yes No
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a microarray platform and starting the expression profiling studies, in 
particular, the overall cost. For a cDNA microarray platform, one must 
purchase a clone set, a robot, printing pins, and the reagents needed for 
DNA amplification and purification. The cost of these materials can differ 
considerably, though once the process of printing and hybridizing micro-
arrays has been optimized, the cost per experiment will fall dramatically. 
Therefore, one must decide if the number of planned experiments is ade-
quate to justify the time and cost of establishing a microarray platform. If 
not, it may be more sensible to seek the services of an academic microar-
ray core facility or a commercial entity.

4.  Application of SAGE to Medical Research

Since the discovery of SAGE in 1995, it has been used to provide a com-
prehensive analysis of a variety of different tissue samples, each usually 
consisting of millions of cells. The SAGE method is also used to study 
global gene expression in cells or tissues in various experimental condi-
tions. The approach has been extended recently to permit analysis of the 
gene expression in substantially fewer cells, thereby allowing analysis of 
more homogeneous cell populations or microanatomical structures. SAGE 
data can also be used to complement studies in cases where other gene 
expression methods may be inefficient. It is a well-known fact that the 
gene expression profiles of different types of cells (for example, a muscle 
cell and a brain cell) are very different. Similarly, the profile of a cancerous 
cell, or one that has been infected, will also deviate from that of a normal 
cell. Therefore, by monitoring the complete activity of the genome, SAGE 
should give researchers strong clues about patterns of gene activity that 
contribute to a particular disease. It is well established that SAGE can be 
used in an extensive variety of applications, such as to identify the effect 
of drugs on tissues, to identify disease-related genes, and to offer insights 
into the disease pathways (Ye et al. 2002). Another major application of 
SAGE is in the identification of differentially expressed genes. Modifica-
tion of the original SAGE method, such as longSAGE for genomic DNA 
analysis, further enhanced its utility for cancer target identification.

SAGE and its variant longSAGE have been widely used to catalog gene 
expression patterns in a number of tissues. These techniques have also 
identified several useful prognostic markers and therapeutic targets in 
cancer. SAGE profiling has shown that the most intense changes in gene 
expression coupled with tumorigenesis occur early, and several of these 
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changes influence the expression of secreted proteins. A number of stud-
ies have been done that involve SAGE as a tool to study various aspects of 
cancer. Some of these studies are listed in the following sections.

A.  SAGE in Cancer
Gastric carcinoma is the fourth most common cause of cancer death 
worldwide, but its molecular biology is poorly understood. Gene expres-
sion patterns were examined in the gastrointestinal tumors using SAGE 
to understand the complex differences between normal and cancer cells 
in humans. The SAGE method has been used to systematically analyze 
transcripts present in lung and thyroid cancer. Two approaches, SAGE 
and DNA arrays, have been used to elucidate pathways in breast cancer 
progression and ovarian cancer by finding genes consistently expressed at 
different levels in primary breast cancers, metastatic breast cancers, and 
normal mammary epithelial cells. SAGE profiles of two well-character-
ized breast tumor cell lines were compared with SAGE profiles of normal 
breast epithelial cells to identify the differentially expressed genes. The 
coupling of SAGE and DNA arrays resulted in finding the predicted over-
expression of known breast cancer markers HER-2/neu and MUC-1 and 
also in the identification of genes and potential pathways characteristic of 
breast cancer.

SAGE was applied to identifying expression of developmental control 
genes in the neuroblastoma and glioblastoma. The human homologue of 
the Drosophila Delta gene, Delta like-1 (DLK1), was shown to have an 
unusually high expression in a SAGE library of the SK-N-FI neuroblas-
toma cell line. Northern blot analysis confirmed high DLK1 expression 
in SK-N-FI and several other neuroblastoma cell lines. The data therefore 
suggest a role for the Delta-Notch pathway in a neuroblast differentiation. 
The chromosomal position of human genes is rapidly being established. 
These mapping data were integrated with the genomewide messenger RNA 
expression profiles as provided by SAGE to study prostate cancer and renal 
cell carcinoma. Biological effects of androgen on target cells are mediated 
in part by transcriptional regulation of androgen-regulated genes (ARGs) 
by androgen receptor. Using SAGE a comprehensive repertoire of ARGs 
in LNCaP cells (prostate cancer cell line) has been determined. One of the 
SAGE-derived tags exhibiting homology to an expressed sequence tag was 
maximally induced in response to synthetic androgen R1881 treatment.

SAGE has been used for the investigation of modulation in gene expres-
sion in numerous health conditions and to identify hormone-regulated 
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genes in a variety of experimental models. For example, in a study reported 
for breast tumors, the gene expression profiles of breast carcinoma cells 
were compared, and it was observed that the patterns of gene expression in 
normal tissue were markedly different from those of the tumors. Recently, 
data regarding the application of SAGE technology to various studies, 
including various cancers, have been compiled in a few reviews. The SAGE 
database was also used to identify the differences between solid tumors and 
the cell lines, and 62 genes were identified to be overexpressed in tumors. It 
was suggested that the SAGE analysis has offered a molecular window into 
tumor biology, which in some instances could determine the difference 
between drug sensitivity and drug resistance. SAGE has also been used 
for comparative studies of gene expression profiles in hormone-dependent 
and -independent cancers. In another study using SAGE, it has been shown 
that histone deacetylases are generally expressed in almost all the tissues, 
and there were no major differences between the expression patterns of 
histone deacetylases of normal and the malignant tissues. Therefore, even 
though derived from only a few tissue libraries, gene expression profiles 
obtained by using SAGE in all probability represent an impartial yet char-
acteristic molecular signature for most of the human cancers.

B.  SAGE in Cardiovascular Diseases
There are only a limited number of studies that have used the SAGE 
technique to evaluate the cardiovascular system. Some of these studies 
are analysis of normal human heart transcriptomes, alterations in gene 
expression induced by hypoxia in human cardiac cells, and differentia-
tion of the pleuripotent cells into cardiomyocytes. SAGE studies in the 
hematopoietic cells have generated novel insights into the cardiovascu-
lar system. SAGE analysis has shown that the genes associated with ath-
erosclerosis and lipid metabolism were induced in cytokine-stimulated 
human monocytes. With all of these data and the delineation of the car-
diovascular transcriptome, the next step will be the application of these 
SAGE datasets for diagnostic and therapeutic purposes.

C.  New Gene Mapping and Karyotyping
The LongSAGE approach has broadened the scope of the application of 
SAGE. LongSAGE has a complex tag sequence; therefore, it allows for the 
direct mapping to the genomic sequence database. This advanced technique 
is very useful for screening candidate genes, and it also allows for the high-
resolution mapping of the chromosomal derangements in cancer cells. This 
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technique may possibly be modified in the near future to screen for mito-
chondrial or nuclear genetic changes taking place in a variety of diseases.

Besides the medical research in human physiology and the diseases, 
SAGE technology has also been successfully used for the analysis of gene 
expression in a variety of other species such as the yeast Saccharomyces 
cerevisiae, rice seedlings, the malaria parasite Plasmodium falciparum, 
and Arabidopsis roots.

Section 2	 SAGE data analysis
1.  SAGE Data Analysis Steps

The result of SAGE is a long list of nucleotides that have to be investigated 
by the computer. This analysis will do numerous things: count the tags, 
determine which ones come from the same RNA molecule, and figure out 
which ones come from well-known, well-studied genes and which ones 
are new. SAGE determines the expression level of a gene by measuring 
the frequency of a sequence tag derived from the corresponding mRNA 
transcript. However, individual SAGE tags can match many sequences in 
the reference database, complicating gene identification. The primary data 
outcome of the SAGE technology is the cloned insert sequence that cor-
responds to the concatenated tags, the ditags, which are separated by the 
four base restriction site (NlaIII site).

The steps for tag extraction as described by Lash et al. (2000) are as 
follows:

	 1.	The CATG (NlaIII site) is located within the ditag concatamer.

	 2.	The ditags of 20–26 base pair length, which occur between these 
sites, are extracted.

	 3.	The repeat occurrences of ditags (including the repeat occurrences 
in the reverse-complemented orientation also) are removed.

	 4.	Reverse-complementing the right-handed tag, the endmost ten bases 
of each ditag are defined as “tags.”

	 5.	The tags corresponding to linker sequences (such as TCCCCGTACA 
and TCCCTATTAA) and those with unspecified bases (bases other 
than A, C, G, or T) are removed.

	 6.	The number of occurrences for each tag is counted.
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The outcome of this processing is a catalog of tags with their matching 
count values and therefore is a digital depiction of cellular gene expression.

An essential step in SAGE library analysis is tag mapping, which refers 
to the unambiguous determination of the gene represented by a SAGE 
tag and is called tag-to-gene mapping. UniGene project is an experi-
mental system for automatically separating all the GenBank sequences 
such as ESTs, proteins, mRNA/cDNA, etc., into a nonredundant set of 
gene-oriented clusters. Each UniGene cluster contains sequences that 
correspond to a unique gene and is associated with its corresponding 
tissue type. These UniGene clusters are created for almost all the organ-
isms for which there are genes in the GenBank. Therefore, the UniGene 
project provides a single identifier and gene description for each cluster 
of sequence. These identifiers are utilized in the creation of a SAGE tag-
to-gene mapping.

This process of the tag-to-UniGene cluster assignment as described by 
Lash et al. (2000) is as follows:

	 1.	The individual human sequences from the GenBank submission 
record that are represented in UniGene are separated.

	 2.	The sequence orientations are allocated by way of combination of 
identification of polyadenylation tail (a minimum of 8 A’s), polyade-
nylation signal (AATAAA or ATTAAA), and orientation annotation 
(5' or 3').

	 3.	A 10-base tag that is 3'-adjacent to the most 3'-NlaIII site is extracted.

	 4.	A UniGene identifier to each human sequence with a SAGE tag is 
allocated.

	 5.	For every tag–UniGene pair, two frequencies are calculated: the 
first from the number of times this tag–UniGene pair has been seen 
divided by, separately, the number of sequences with this tag and, 
second, the number of sequences with tags in this UniGene cluster.

2.  What Online Programs Are Available?

The SAGE300 program is probably the most commonly used application 
for SAGE analysis. In order to identify SAGE tags, this program compiles 
a database of tags extracted from human sequences in Genbank. SAGE300 
is freely available from http://www.sagenet.org. It has been shown that 
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although in many cases it is probable that a given tag sequence is unique 
within the genomes, in larger genomes this cannot be safely assumed. 
Therefore, for a thorough analysis of the SAGE data, the USAGE package 
has been developed. USAGE is a Web-based application that contains an 
integrated set of tools, which includes many functions for analyzing and 
comparing the SAGE data. USAGE is freely accessible for academic insti-
tutions at http://www.cmbi.kun.nl/usage/. Additionally, USAGE includes 
a statistical method for the planning of new SAGE experiments. It is acces-
sible in a multiuser environment offering users the option of sharing data 
and is interfaced to a relational database to store data and analysis results. 
USAGE provides the biologist increased functionality and flexibility for 
analyzing the SAGE data.

For the analysis of gene expression profiles derived from ESTs and 
SAGE, Expression Profile Viewer (ExProView), a software tool, has been 
developed. This software visualizes a complete set of classified transcript 
data in a two-dimensional array of dots, a “virtual chip,” in which each dot 
represents a known gene as characterized in the transcript databases. To 
evaluate the software, public EST and SAGE gene expression data obtained 
from the Cancer Genome Anatomy Project at the National Center for Bio-
technology Information were analyzed and visualized. In another study, 
eSAGE, a comprehensive set of software tools for managing and analyz-
ing data generated with SAGE has been described. eSAGE was written in 
Visual Basic v6.0 (Microsoft Corp.) and is compatible with the Windows 
95/98 and NT v4.0 operating systems (Microsoft Corp.).

Recently, using the statistical approach of Audic and Claverie (1997), 
a useful and flexible tool (WEBSAGE) was developed. WEBSAGE is a 
software that enables a rapid and thorough analysis of the SAGE data, 
and this simple tool also performs statistical analysis on SAGE data. It 
compares a large number of SAGE tags and depicts the comparison of 
two SAGE libraries in a scatter plot. It is freely available and accessible 
at http://bioserv.rpbs.jussieu.fr/websage/index.php. The limitation of their 
method is that more than two libraries cannot be visualized using their 
tool. However, using WEBSAGE, full SAGE data are comprehensively rep-
resented in plots, and WEBSAGE not only gives the identification but also 
the function of the gene. Therefore, WEBSAGE is a useful Web service, 
and the user can query with a specific tag and get tag-to-gene assignment 
and gene function from Kegg, Biocarta, and Gene Ontology databank.
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3.  Demo: How to Analyze Generated Raw SAGE Data

WEBSAGE is a very useful program for the analysis of SAGE data. The 
steps to use WEBSAGE are well explained on its Web site and are sum-
marized as follows.

A.  Data Input
First click on the input data link, and enter the pathname of your file. The 
files can be provided in Kinzler’s or generic format. Then enter the legends 
of x-axis and y-axis (for the first library, such as liver; and for the second 
library, such as kidney). These names are displayed on the graph on the 
respective places. To compute a scatter plot, press the “submit” button.

B.  Scatter Plot
A representative scatter plot is shown in Figure 6.2. In the plot the X and 
Y axes are normalized and represent the tags of the first (liver) and the 
second (kidney) library, respectively. The p value is computed according to 
the formula of Audic and Claverie: p(y | x) = (N2/N1)y(x + y)!/ x!y!(1+N2/
N1)(x+y+1), where N1 is the size of library 1, N2 is the size of library 2, x is 
the number of tags in library 1, and y is the number of tags in library 2.

The number of analyzed tags is shown under the title. On the legend, 
the number of tags for each class is written between brackets. It is interest-
ing to note that the color of the plot represents 3 classes of p value: green 
color represents a significant p value (0.01); yellow color represents p value 
of medium significance (>0.01 and <0.05), and red color represents a non-
significant p value (>0.05). The size of the plot is proportional to the num-
ber of tags it contains. The scale is logarithmic, and data are normalized.

C.  Identification of Tag
By clicking on a plot, a Web page is displayed that contains the tag’s infor-
mation. Mainly, the information consists of the following:

Tag: the tag analyzed. By clicking on the tag link, a new window (NCBI 
site) gives the chromosome link of the tag.

Number of library legend: the abundance of each tag in each library.

Fold change: the fold increase (Inc) or reduced (Red) gene expression.

GeneBank accession number: accession number in GenBank of the 
gene corresponding to the tag.
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Unigene accession number: accession number in Unigene of the gene 
corresponding to the tag.

Title: the gene name corresponding to the tag.

KEGG, Biocarta, and GO (Gene Ontology): the information corre-
sponding to the gene from these databanks. A new window on the 
site is displayed by clicking on one of these links.

D.  Data Exportation
The export local plot button is clicked to export information correspond-
ing to the plot or clicked to export all the data exportation link.

Figure 6.2  WEBSAGE analysis of SAGE data.
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Section 3	 Retrieve data from SAGE databases
1.  Brief Introduction to Available SAGE Databases

The data analysis steps for a standard SAGE experiment are as follows. To 
confirm the tag content of the newly obtained SAGE clone, it is processed 
using the software. Consequently, the main characteristics of the SAGE 
software are (1) to extract and tabulate the tag sequences and counts from 
raw sequence files, (2) to correlate the tag abundance among projects, and 
(3) to match the tag sequences to sequences in other databases.

Therefore, as mentioned in the previous sections, a thorough analysis of 
SAGE data necessitates software that incorporates (statistical) data analy-
sis techniques with a database system. The main databases are listed in the 
following text:

	 1.	SAGEnet: Among the most common public SAGE databases is a 
SAGE tag database for colon cancer, pancreatic cancer, and the cor-
responding normal tissue. This database is called SAGEnet (www.
sagenet.org), and it is maintained by the Vogelstein/Kinzler lab at 
Johns Hopkins University, Burlington, MA.

	 2.	Genzyme’s SAGE database: The Genzyme proprietary SAGE data-
base, which is an integral part of the company’s therapeutic discovery 
efforts, presently includes over 4 million SAGE tags, and is believed 
to represent over 100,000 genes from major cancers and from nor-
mal human tissues. This database is available to commercial licens-
ees for a fee through distributors (Celera Genomics and Compugen). 
Genzyme also offers a for-fee service whereby it will generate SAGE 
tag libraries for contracting parties.

	 3.	SAGEmap: SAGEmap is a public gene expression database reposi-
tory produced by the National Institutes of Health’s (NIH’s) National 
Center for Biotechnology Information (NCBI) in conjunction with 
the NIH’s Cancer Genome Anatomy Project (CGAP). To provide the 
quantitative expression levels on a genomewide scale, the CGAP uses 
SAGE. Over 7 million SAGE tags from 171 human cell types have 
been assembled. This database uses SAGE to quantify the transcript 
levels in both the malignant and normal human tissues. By access-
ing SAGEmap, the user can compare transcript populations between 
any of the posted libraries. The WWW and FTP components of this 
resource SAGEmap are located at http://www.ncbi.nlm.nih.gov/sage 
and ftp://ncbi.nlm.nih.gov/pub/sage, respectively. In these Web sites 
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the authors have described SAGE data submission procedures, the 
construction and characteristics of SAGE tags to gene assignments, 
the derivation and use of a novel statistical test designed specifically 
for the differential-type analyses of SAGE data, and the organiza-
tion and use of this resource. To enhance the utility of this data, the 
CGAP SAGE project created SAGE Genie, a Web site for the analy-
sis and presentation of SAGE data (http://cgap.nci.nih.gov/SAGE). 
SAGE Genie provides an automatic link between gene names and 
the SAGE transcript levels, accounting for alternative transcription 
and many potential errors. SAGE Genie was created for better analy-
sis and dissemination of the digital gene expression profiles. SAGE 
Genie automatically identifies SAGE tags from a gene’s primary or 
alternatively polyadenylated transcript. By using the SAGE Genie, a 
large group of SAGE data can be readily and precisely viewed. Begun 
originally as a database of gene expression data from brain cancer 
investigations, SAGEmap can now accept SAGE sequence data from 
any source. This database presently contains 623 SAGE experiments 
from 18 organisms. SAGEmap can also construct a user-configurable 
table of data comparing one group of SAGE libraries with another. 
By accessing SAGEmap the user can compare transcript populations 
between any of the posted libraries.

	 	 An important feature of SAGEmap is its systematic approach to 
mapping SAGE tags to UniGene EST clusters. Rather than simply 
matching SAGE tags across all NlaIII sites in the sequence clusters, 
SAGEmap incorporates EST frequency, location, and orientation 
information as well as a correction for sequencing error to refine the 
mapping of tags to genes. This mapping represents a “best guess” 
for matching of observed tags to expressed sequences in the public 
database.

	 4.	The Mouse SAGE site: This site is maintained on an ongoing basis 
at the Institute of Molecular Genetics, Academy of Sciences of the 
Czech Republic, and is accessible at the Internet address http://mouse.
biomed.cas.cz/sage/. The database aims to provide mouse geneticists 
with easy-to-use Web-based tools for utilizing mouse SAGE data. It 
is a recently developed Web-based database of all the available pub-
lic libraries generated by SAGE from various mouse tissues and cell 
lines. The database contains mouse SAGE libraries organized in a 
uniform way and provides Web-based tools for browsing, compar-
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ing, and searching SAGE data with reliable tag-to-gene identification. 
A modified approach based on the SAGEmap database is used for 
reliable tag identification.

	 5.	The Gene Expression Omnibus (GEO) at NCBI: This is one of the major 
fully public repositories for high-throughput molecular abundance 
data, which are primarily gene expression data. As described, the three 
central data entities of GEO are platforms, samples, and series.

Platform: A platform describes a list of probes that define what set 
of molecules may be detected. A platform record describes the 
list of elements on the array (e.g., cDNAs, oligonucleotide probe 
sets, ORFs, and antibodies) or the list of elements that may be 
detected and quantified in that experiment (e.g., SAGE tags, pep-
tides). Each platform record is assigned a unique and a stable 
GEO accession number (GPLxxx). A Platform may reference 
many samples that have been submitted by multiple submitters.

Sample: A sample explains the set of molecules that are being probed 
and references a single platform used to generate its molecular 
abundance data. A sample record also describes the conditions 
under which an individual sample was handled, the manipula-
tions it underwent, and the abundance measurement of each ele-
ment derived from it. Each sample record is assigned a unique 
and stable GEO accession number (GSMxxx). A sample entity 
must reference only one platform and may be included in the 
multiple series.

Series: A series organizes samples into the meaningful data sets, 
which make up an experiment. A series of record defines a set of 
related samples considered to be part of a group, how the samples 
are related, and if and how they are ordered. A series provides a 
focal point and description of the experiment as a whole. Series 
records may also contain tables describing extracted data, sum-
mary conclusions, or analyses. Each series record is assigned a 
unique and a stable GEO accession number (GSExxx).

	 	 The database is user-friendly and allows the submission, retrieval, 
and the storage of a number of data types, including SAGE data. 
The GEO database presently holds more than 30,000 submis-
sions and is publicly accessible through the World Wide Web at 
http://www.ncbi.nlm.nih.gov/geo.
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	 6.	Another SAGE resource comprises the online query tool of the Sac-
charomyces Genome Database, which allows users to search and 
present SAGE data obtained for yeast in several ways (http//:genome.
www.stanford.edu/cgi-bin/SGD/SAGE/query/SAGE).

2.  How to Retrieve Data from GEO

GEO stores a broad collection of high-throughput experimental data that 
have been generated as a result of processing by multiple means and ana-
lyzed by a variety of methods. To address some of these issues, an extra 
level of curation was added, in which submitted samples were collected 
into biologically meaningful and statistically comparable GEO DataSets 
(GDSs). These DataSets (GDSxxx) are curated sets of GEO sample data. 
These records supply a coherent synopsis about an experiment and offer 
a basis for downstream data mining and display tools. A GDS record 
represents a collection of biologically and statistically comparable GEO 
samples and forms the basis of GEO’s suite of data display and analysis 
tools. Samples within a GDS refer to the same platform; that is, they share 
a common set of probe elements. Information reflecting the experimental 
design is provided through GDS subsets.

GEO data can be viewed and downloaded in several formats; several 
options are available for the retrieval and display of original GEO records. 
The Scope feature allows display of a single accession number or any (Plat-
form, Sample, or Series) or all (Family) records related to that accession. 
The amount determines the quantity of data displayed, and the format 
controls whether records are displayed in HTML or in SOFT (Simple 
Omnibus Format in Text) format. SOFT is an ASCII text format that was 
designed to be a machine-readable representation of data retrieved from, 
or submitted to, GEO.

As suggested by Barrett et al. (2005), there are a number of ways and 
formats in which GEO data may be retrieved:

	 1.	Using the GEO accession number, the individual platform, sample, 
series, and GDS records can be accessed on the Web. On the GEO 
site, these related records are intralinked in such a way that the asso-
ciated platform, sample, series, and GDS records can be easily navi-
gated. Each GDS record has three options for the download of that 
dataset. The complete SOFT document contains all information for 
that dataset, including dataset description, type, organism, subset 
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allocation, etc., as well as a data table containing identifiers and val-
ues. The data-only option allows download of the data table only, 
whereas the quick view provides dataset descriptive information and 
the first 20 rows of the data table.

	 2.	Using the title, type, platform, or organism, the GDS records may 
be browsed at http://www.ncbi.nlm.nih.gov/geo/gds/gds_browse.cgi. 
The records submitted by the user might also be browsed by category 
or submitter.

	 3.	Both GDS and GEO data are available for bulk download via file 
transfer program (FTP). GEO DataSets may be downloaded in com-
plete GDS SOFT format, whereas complete original GEO records, 
partitioned by GEO Platform, may be downloaded in SOFT format. 
All of the user-submitted records, raw data, and GDS value matri-
ces with annotation are accessible for bulk download via (FTP). It 
should be noted that all of the user-submitted records are assembled 
as compressed series and platform “family” files that combine all 
related accessions as well. Equivalent files can also be downloaded 
from each record on the Web.

3.  Demo of the Procedure Preceding 
Section: A Step-By-Step Tutorial

As described on the Web site, GEO data can be retrieved in a number of 
ways. The Accession Display bar (found at the bottom of the GEO home 
page and at the top of each GEO record) can be used to look at a particular 
GEO record for which an accession number is available. This tool has sev-
eral options for selecting the format and amount of data to view.

For the inquiry of all the GEO submissions in a specific field, or over all 
fields, the Entrez GEO Datasets or Entrez GEO Profile interfaces can be 
used. It is to be noted that the Entrez GEO DataSets query all GEO Data-
Set annotation, allowing identification of experiments of interest. Entrez 
GEO Profiles query the gene expression/molecular abundance profiles, 
allowing the identification of genes or sequences or profiles of interest.

For browsing the lists of GEO data and experiments, the GDS browser or 
the list of current GEO repository contents can be investigated; for example:
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	 1.	To search for genes analyzed in breast cancer, type the phrase: 
SAGE analysis breast cancer on the site Entrez GEO Datasets and 
press “search.” (Figure 6.3)

	 2.	A page will appear with the results, showing the results as: all; Data-
Sets; Platform; and Series (Figure 6.4 to Figure 6.7).

	 3.	The results will be displayed as items 1 and 2, etc.

	 4.	By clicking on the record button, the complete record is displayed. 
This record displays all the relevant and necessary information 
regarding the data set (Figure 6.8a, Figure 6.8b).

Figure 6.3  Display of GEO Dataset for SAGE analysis in breast cancer.
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Figure 6.4  GEO accession display of platform.

By further clicking on the sample, the details and sequences of the tags 
and the genes that they belong to can be easily obtained (Figure 6.9, 
Figure 6.10).
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Figure 6.5  GEO accession display of samples.
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Figure 6.6  GEO accession display of series.
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Figure 6.7  GEO Dataset records: platform.
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Figure 6.8A  (a) and (b): GEO Dataset records: detail of series.
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Figure 6.8B
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Figure 6.9  Dataset Records.
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Figure 6.10  GEO profile details.
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The regulation of gene expression is important for any biological pro-
cess. This chapter introduces several major aspects of regulation on gene 
transcription and expression, including alternative promoters, alternative 
splicing, alternative translational initiation, and RNA editing. In each 
section, a brief theoretical description of the topic will be followed by a 
step-by-step tutorial on how to retrieve and analyze curated data using the 
currently available bioinformatics tools.

Section 1	 Alternative promoters
Part I	I ntroduction
1.  What Are Alternative Promoters?
Promoters are modulatory DNA sequences around a transcription ini-
tiation site including a complex array of cis-acting regulatory elements 
required for efficient and accurate initiation of transcription and for con-
trolling expression of a gene. Alternative promoters are special promoters 
that can lead to significant variation and complexity in the transcription. 
The transcription initiation levels can be different among alternative pro-
moters and the turnover rate or translation efficiency of mRNA isoforms 
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with different leader exons and promoters can be different. Alternative 
promoters can have diverse tissue specificity and react differently to 
signals, and the alternative usage of promoters can lead to the generation 
of protein isoforms varying at the amino terminus.

2.  Why Are Alternative Promoters Important?
Promoters play an important role in regulating transcriptional initiation 
and efficiency. Emerging evidence suggests that a considerable fraction of 
human genes probably have alternative promoters. The mammalian genes 
use alternative promoters, each subjected to different regulatory factors, to 
regulate and expand their transcriptional and translational potential.

Alternative promoters create elaborate regulations of gene expres-
sion in different tissues, cell types, and developmental stages. The prod-
uct transcripts may encode diverse protein isoforms, or may vary only in 
their 5' untranslated regions, affecting mRNA stability and the efficiency 
of translation. Stringency regulation is critical for accurate gene function, 
and loss of this control may have serious phenotypic effects. There are sev-
eral examples of diseases associated with alternative promoter usage; for 
example, in a number of cancers, promoters are specifically activated.

So, a comprehensive description of the transcriptase of cells is the foun-
dation of a complete understanding of the complexities of disease pheno-
types, proteome, and the regulation network.

3.  What Is the Current Status of Research on Alternative Promoters?
So far no genomewide analysis has been carried out to specifically address 
the prevalence of alternative promoter usage in mammals. One study ana-
lyzed orthologous sequences in both mouse and human genomes, and it 
was found that 9% of the mouse genes had alternative first exons. On ana-
lyzing 152 putative promoter regions in a database of full-length human 
transcripts generated by the Mammalian Gene Collection, it was noted 
that 28 of the genes examined contained alternative transcription initia-
tion sites, separated by a sequence more than 500 bp, and these were pos-
sible alternative promoters. Later on, 67,000 human transcripts from the 
NCBI LocusLink database (http://www.ncbi.nlm.nih.gov/LocusLink/) 
were analyzed, and the evidence suggests that more than 18% of all human 
genes use alternative promoters.

Typically, genes with alternative promoters contain two or more pro-
moters producing transcripts with identical open reading frames (ORFs). 
No variation in the product proteins of these genes has been observed. 
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In these genes, the mRNAs have alternative leader exons with the same 
downstream exons and identical ORFs. Although these genes produce 
no protein isoforms, the mRNA variants differ in their transcription pat-
terns and translation efficiencies. Because the resulting protein remains 
unchanged, variances in different tissue or developmental stages are the 
main consequences in these cases. In more complex situations, besides 
transcriptional differences, alternative promoter usage can lead to changed 
N-termini of proteins or create different ORFs, although the latter possi-
bility is quite rare.

Alternative promoters have different tissue specificity, different devel-
opmental activity and expression levels or the variant untranslated regions 
(UTRs). A common example of a human gene with tissue-specific expres-
sion using alternative promoters is the CYP19 gene. The murine Ly49 mul-
tigene family, members of which are expressed on the surface of natural 
killer (NK) cells, is another interesting example of the use of different 
promoters in different developmental stages. Alternative promoters can 
also affect transcription procedures by the translation machinery. The p18 
(INK4c) gene, a cyclin-dependent kinase inhibitor, illustrates this effect. 
The human neuronal isoform of the nitric oxide synthase gene (NOS1) is 
a striking example of multiple promoters, with nine alternative first exons 
exhibiting variances in tissue specificity and translation efficiency.

The aforementioned examples are of usage of alternative promoters in 
genes that produce no protein isoforms. Actually, there are other usages 
of alterative promoters leading to different protein forms with N-termini, 
some even resulting in a truncated protein such as p73. p73 is a member of 
the tumor suppressor gene p53 family.

There are rare cases in which alternative promoters produce different 
proteins through either alternative reading frames or splicing variation to 
create new ORFs. The well-documented example is the cyclin-dependent 
kinase inhibitor 2A gene that influences the activity of p53.

The usage of alternative promoters is highly common in mammalian 
genomes, and these promoters play an important role in organisms. The alter-
native promoters create diversity at the levels of transcriptome and proteome, 
and we think this is one of the key mechanisms for organism complexity.

Further research will focus on development of computational tools 
for annotating experimentally known alternative promoters and exons, 
conduction of chromatin immunoprecipitation microarray (ChlP-on-
chip) and luciferase assays to confirm computationally annotated alter-
native promoter sequences of human and mouse orthologous genes, and 

C8105.indb   222 7/18/07   8:16:28 AM



Regulation of Gene Expression  <  223

developing computational methods to detect alternative promoters and 
exons in the human and mouse genomes.

Part II	 Step-By-Step Tutorial

In this part, we demonstrate how to check whether a human epidermal 
growth factor receptor (HS_EGFR) utilizes alternative promoters from a 
Eukaryotic Promoter Database (EPD, http://www.epd.isb-sib.ch).

1.  Browsing the List of Alternative Promoters in the EPD
EPD is a compendium of eukaryotic POL II promoters for which the tran-
scription start sites have been examined in experiments. To browse the 
list of alternative promoters collected in the current release of the EPD, 
go to the home page by typing the address http://www.epd.isb-sib.ch/ and 
click the hyperlink “List of alternative promoters” under “Documents.” 
The entire current collection will be displayed. As of December 2, 2006, 
220 alternative promoters are present in the database. The first three lines 
of the list are shown in Figure 7.1. In each collection, there are alternative 
promoter identification code, independent subset status, accession num-
ber, promoter name, and homology status.

Figure 7.1  Introduction of eukaryotic promoter database.
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2.  Go to the Search Window of the EPD
Either directly type the following address (http://www.epd.isb-sib.ch) in 
your browser or simply click the hyperlink EPD home page as displayed 
in Figure 7.1 to get access to the search window of the EPD as shown in 
Figure 7.2.

3.  Search for Alternative Promoters of HS_EGFR
In the search window by the “Quick Search,” type “HS_EGFR.” Click 
“Quick Search” in your browser or press “Enter” on your keyboard. Two 
alternative promoters, HS_EGFR_1 and HS_EGFR_2, for this particular 
gene will be displayed as shown in Figure 7.3. Click the hyperlinks to 
either HS_EGFR_1 or HS_EGFR_2 to obtain the detailed information 
on each promoter, respectively. This information includes: ID — Iden-
tification, AC — Accession number, DT — DaTe, DE — Description, 
OS — Organism Species, HG — Homology Group, AP — Alternative 
Promoter, NP — Neighboring Promoter, DR — Database Cross-Refer-
ences, RN — Reference Number, RX — Reference Cross-References, RA 
— Reference Authors, RT — Reference Title, RL — Reference Location, 
ME — Methods, SE — Sequence, FL — Full Length, IF — Initiation Fre-
quency, TX — TaXonomy, KW — KeyWords, FP — Functional Position, 
DO — Documentation, RF — Literature Reference, and // — Termina-
tion Line.

Figure 7.2  Home page of eukaryotic promoter database.
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These results indicate that human epidermal growth factor receptor 
gene utilizes two alternative promoters. The consequences of these two 
different promoter usages in the EGFR gene are different protein isoforms. 
EGFR 1 protein is the product of alternative promoter #1, and the EGFR 2 
protein is the product of alternative promoter #2. Further investigation of 
alternative promoter usage in the EGFR gene in different tissues, different 
development stages, and different conditions will help shed light on the 
functional roles of the EGFR gene in human health and disease.

For the search in the EPD database, it has to be pointed out that 
ENTRY_NAME is a unique entry identifier “HS_EGFR,” which obeys rig-
orous naming principles. It contains two or three fields. The first is the 
species identification, and the second field is the protein code of SWISS-
PROT ID used for gene identification. For human EPD entries, the official 
gene symbol approved by the HUGO nomenclature committee could be 
used instead of the SwissProt ID. The third field is optional. The “_” sign 
serves as a separator. Promoter entries are presented in a similar format as 
EMBL and SWISS-PROT sequence entries.

Part III	 Sample Data

The human epidermal growth factor receptor (HS_EGFR).

Figure 7.3  Search result view of eukaryotic promoter database.
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Section 2	 Alternative splicing
Part I	I ntroduction
1.  What Is Alternative Splicing?
Most of the eukaryotic genes are mosaic, consisting of intervening 
sequences separating the coding sequences. The coding sequences are 
exons, and the intervening sequences are introns. The process by which 
introns are removed from the pre-mRNA is called RNA splicing. Alterna-
tive splicing means some pre-mRNAs can be spliced in more than one 
way, generating alternative mRNAs. A cell can splice the “primary tran-
script” in different ways and thereby make different polypeptide chains 
from the same gene. About 60% of the human genes are spliced in this 
manner.

2.  Why Is Alternative Splicing Important?
RNA splicing is very important for the maintenance of gene functions 
and regulation of the expression of certain genes. The mutations that 
affect RNA splicing can cause approximately 15% of all genetic diseases. 
The same pre-mRNA can be spliced variously in different tissues, cell 
types, and at different developmental stages, and react to various biologi-
cal signals. So far only about 30,000 genes have been identified, compared 
with previous estimates of 100,000 or more. This indicates that one gene 
encodes more than one distinct mRNA; hence, more than one protein 
may play a critical role in expanding the function of our genomes. The 
usage of alternative splicing can switch on and off the expression of a 
certain gene. In this case, one functional protein is produced by a splicing 
event, and the nonfunctional proteins resulted from other splicing events. 
A single gene can produce several different kinds of proteins, when dif-
ferent splicing possibilities exist. In one extreme case, the Drosophila 
DSCAM gene can be spliced in 38,000 alternative ways. In another com-
mon case, alternative splicing of the fibronectin gene during its transla-
tion is a well-documented phenomenon and accounts at least in part for 
the known different forms of this protein. The regulation of RNA splic-
ing can also generate protein isoforms in different tissues. The creatine 
kinase is a good example of a gene that generates specialized forms in 
different tissues.

Research on alternative splicing is very helpful for understanding the 
regulations of transcription and genome complexity, and for revealing the 
mechanisms of some genetic diseases related to alternative splicing.
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3.  What Is the Current Status of Research in Alternative Splicing?
Basically, sequences within the RNA determine where splicing occurs. 
The borders between introns and selected exons are marked by specific 
nucleotide sequences within the pre-mRNAs. The intron is removed in 
a form called a lariat as the flanking exons are joined. A process named 
transsplicing, in which two exons of different RNA molecules are spliced 
together, can fuse exons from different RNA molecules.

A large complex called spliceosome mediates the splicing. The com-
plexes of snRNA and proteins are called small nuclear ribonuclear proteins 
(snRNPs). The spliceosome is the largest snRNP, and the exact makeup 
differs at different stages of the splicing reaction.

The splicing pathway includes assembly, rearrangement, and catalysis 
within the spliceosome. The spliceosome is composed of about 150 pro-
teins and 5 small nuclear RNAs (snRNAs). Many functions of the spliceo-
some are executed by its RNA components. A small group of introns is 
spliced by a minor spliceosome. This spliceosome works on a minority of 
exons, and those have distinct splice-site sequences. The chemical path-
way is the same as for the major spliceosome.

The observation of self-splicing introns suggests the RNA can catalyze 
RNA splicing. The self-splicing intron folds by itself into a specific confor-
mation within the precursor RNA and catalyzes the chemistry of its own 
release and the exon ligation.

There are two ways for a spliceosome to find the splice sites reliably. In 
one way, the C-terminal tail of the RNA polymerase II carries genes of 
various splicing proteins, and cotranscriptional loading of these proteins 
to the newly synthesized RNA ensures all the splice sites emerging from 
RNA polymerase II are readily recognized, thus preventing splice site 
skipping. The other way is dependent on SR proteins, which are composed 
of splicing factors and regulators and can bind to the ESEs (exonic splicing 
enhancers) present in the exons and promote the use of the nearby splice 
sites by recruiting the splicing machinery to those sites.

Alternative splicing can be either constitutive or regulated. RNA splic-
ing can be regulated either negatively, by repressors that prevent the 
splicing machinery from gaining access to a particular splice site on the 
RNA, or positively, by activators that help direct the splicing machinery 
to an otherwise overlooked splice site. There are two kind of regulating 
sequences, exonic (or intronic) splicing enhancers (ESE or ISE) or silencers 
(ESS and ISS). The former enhance and the latter repress splicing. Proteins 
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that regulate splicing bind to these specific sites for their action. As we 
mentioned previously, SR proteins bind to enhancers and act as activators, 
and hnRNPs bind with RNA and act as repressors.

Thus, there are two outcomes of alternative splicing: (1) producing mul-
tiple isoform proteins and (2) regulating the expression level of a given 
gene with functional and nonfunctional proteins.

Part II	 Step-By-Step Tutorial
1.  Databases of Alternative Splicing
EASED is an online available outline of alternative splice forms in certain 
organisms (Arabidopsis thaliana, Bos taurus, Caenorhabditis elegans, Dro-
sophila melanogaster, Danio rerio, Homo sapiens, Mus musculus, Rattus 
norvegicus, and Xenopus laevis). Alternative splice forms are identified by 
comparison of high-scoring ESTs to mRNA sequences (both from Gen-
Bank) with known exon-intron information (from ENSEMBL database) 
using BLAST. The ends of each aligned sequence pair for deletions or inser-
tions in the EST sequence are compared using filtering programs with 
defined parameters to reveal the existence of alternative splice usages.

2.  Searching the Alternative Splicing Sites of a Given Gene
The following are the search steps:

	 1.	Type the following address (http://eased.bioinf.mdc-berlin.de/) in 
your browser (Internet Explore or others) as shown in Figure 7.4.

	 2.	You may use either a GenBank or EnsEMBL accession number or 
keywords to request the database. For instance, if you want to search 

Figure 7.4  Home page of extended alternatively spliced EST database.

C8105.indb   228 7/18/07   8:16:37 AM



Regulation of Gene Expression  <  229

the gene “Tranmembrane 4 Superfamily,” then type “Tranmembrane 
4 Superfamily” in the blank. Click “search” in your browser. The 
entry of alternative splicing related to Transmembrane 4 Superfam-
ily gene will be displayed (Figure 7.5).

	 3.	Click each entry in blue in your browser, for example 
“ENST00000003603,” to display the information of this entry.

The result page is divided into four major parts. The first part (General 
Information about the Entry) summarizes the most important informa-
tion as database id’s, organism, and description (Figure 7.6).

The alternative splice profile (ASP) of each human sequence is demon-
strated in the second part (Alternative Splice Frequency). ASP comprises 
the number of alternatively spliced ESTs (NAE), the number of constitu-
tively spliced ESTs (NCE), the number of alternative splice sites (NSS) per 
mRNA, and the number of ESTs from cancerous tissues. Furthermore, the 
tissue type and developmental stages are shown in different colors to help 
the user understand the origins of the matching ESTs.

The third part, the so-called Splice Site View, illustrates all alternative 
splice sites for the whole transcript.

The fourth part was displayed in Figure 7.7 and named as the Splice 
Site Profile. The Splice Site Profile shows the parameters mentioned ear-
lier, such as number of alternative spliced ESTs, number of constitutively 
spliced ESTs, and the number of cancer ESTs as well as the histological 
sources and developmental stages for each splice site. The accession num-
bers of the matching ESTs are also shown here. The classification of alter-
native splice events is categorized by the location of the HSP (high-scoring 

Figure 7.5  Search result view of EASED.
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pairs) boundaries compared to the given exon–intron boundaries. It was 
defined as an exact match of HSP boundary to an exon–intron boundary 
with given 10 bp “uncertainty.” The donor sites of the alternative splice 
events are named 5xas, 5eas, or 5ias. For the acceptor site there are 3xas, 
3eas, or 3ias splice sites. Using this category all splice sites were marked 
as (a) alternative 5' splice site (5eas or 5ias), (b) alternative 3' splice sites 
(3eas or 3ias), (c) cassette exons (3xas and 5xas), and (d) retained intron 
(3xas and 5xas and inserted nucleotides correspond to intron sequence). 
Additionally, the type of alternative splicing is given as “skip” when the 
EST sequence is shorter than the mRNA sequence and a gap between two 
HSPs is found on the mRNA. The type of alternative splicing is given as 
“insert” vice versa.

Figure 7.6  The first part of the result page: general information about the 
entry.
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Part III	 Sample Data

Transmembrane 4 Superfamily and its gene bank accession number 
(AC: O43657)

Section 3	 Alternative translation initiation
Part I	I ntroduction

1.  What Is Alternative Translational Initiation?
In eukaryotic cells, translation is usually initiated according to the ribo-
some scanning model; that is, the 40S ribosomal subunit and translation 
initiation factors bind to the 5' end of mRNA (messenger RNA) and scan 
the RNA molecule in the 3' direction until they reach an AUG codon; then 
the 80S ribosome assembles and begins protein synthesis.

ATI (alternative translational initiation) is one of the mechanisms that 
increases the complexity level of an organism by alternative gene expres-
sion pathways. The use of ATI codons in a singe mRNA contributes to the 
generation of protein diversity. The genes produce two or more versions 
of the encoded proteins, and the shorter version, initiated from a down-
stream in-frame start codon, lacks the N-terminal amino acids fragment 
of the full-length isoform version.

Figure 7.7  The alternative splice profile, splice site view, and splice site profile 
of the entry.
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2.  Physiological and Pathological Implications 
of Alternative Translational Initiation
Since the first discovery of ATI, a small yet growing number of mRNAs 
initiating translation from alternative start codons have been reported. 
The structural features within the 5' UTR (untranslated region), such as 
secondary structures and ORFs can strongly influence the efficiency of 
translational initiation. Various studies began to emerge focusing on this 
new field in gene expression and revealed the biological significance of the 
use of alternative initiation. For example, several forms of bFGF (bFGF, 
basic fibroblast growth factor) are detected in most producing cell types, 
and these different forms result from alternative initiation of translation 
at an AUG codon or at three in-frame upstream CUG codons, leading, 
respectively, to synthesis of a small form of 19 kDa or of large forms of 21, 
21.5, and 22.5 kDa. The expression of the AUG-initiated form (18 kDa) 
leads to cell transformation, whereas expression of the CUG-initiated 
forms leads to cell immortalization. In the translation of bFGF mRNA, 
five cis-acting elements located in the 5' UTR of bFGF mRNA are able to 
modulate the global or alternative use of the four initiation codons. As the 
cis-acting elements in mRNA could be the targets for specific trans-acting 
factors involved in cell growth and differentiation, control of the alter-
native initiation of translation of bFGF mRNA will have an important 
impact on cell behavior.

The glucocorticoid receptor gene, its products, and their actions rep-
resent a paradigm that the expression of different isoforms of any protein 
resulting from ATI could have physiological and pathological implica-
tions. Glucocorticoids interact with GRs (GRs, glucocorticoid receptors), 
through which they exert their effects. It was found that expression of 
about 20% of the expressed human leukocyte genome was positively or 
negatively affected by glucocorticoids. There is the report (Chrousos & 
Kino, 2005) that the GRα regulates expression of bL-Selection and CD11/
CD18 on human neutrophils. Variant mRNA was translated from at least 
eight initiation sites into multiple GRα isoforms termed GRα.-A through 
GRα-D (A, B, C1 to C3, and D1 to D3). Recently, a convincing associa-
tion was made between the ER22/23EK polymorphism of the human 
GR gene and increased human longevity secondary to a healthier meta-
bolic profile. These polymorphisms were previously found to be associ-
ated with subtle glucocorticoid resistance. It was found that when the 
ER22/23EK polymorphism was present, about 15% more GRα-A protein 
was expressed than when it was absent, whereas total GR levels (GRα-A 
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plus GRα-B) were not affected. These results suggested that transcriptional 
activity in GRα (ER22/23EK) carriers was decreased because more of the 
less transcriptionally active GRα-A isoform was formed. The underlying 
mechanism may be due to an altered secondary mRNA structure. Beyond 
the production of N-terminal isoforms conferring an additional impor-
tant mechanism for regulation of GR actions, the mineralocorticoid, ERα  
(estrogen), and PRs (progesterone receptors) also contain potential alter-
native translation initiation sites in their N-terminal domains. Therefore, 
tissue-specific and regulated variable N-terminal isoform production may 
be a general mechanism that defines target tissue sensitivity to steroid 
hormones, further adding to the complexity of their own signal transduc-
tion systems.

Several other examples can be described here. LP-BM5 MuLV (MuLV, 
murine leukemia virus)-infected C57BL/6 mice develop profound immu-
nodeficiency and B-cell lymphomas. Recent study suggests the existence of 
a novel ORF 2 products, with ATI downstream from normal ORF 1 prod-
uct, that is required for LP-BM5-induced pathogenesis and has potentially 
broad implications for other retroviral diseases. An ATI at an in-frame 
internal AUG located three codons downstream of the stop codon muta-
tion R37X, which caused the ATR-X (ATR-X, alpha-thalassemia/mental 
retardation syndrome), could rescue the phenotype and is associated 
with levels of ATRX protein that are up to 20% of those seen in the wild 
type. The synthesis of a foot-and-mouth disease virus initiates at two start 
codons located 84 nucleotides apart in the same reading frame, which 
leads to the synthesis of two alternative N-terminal processing products 
of the viral polyprotein, the leader protein L and L'.

3.  Databases on Alternative Translational Initiation
ATID (Alternative Translational Initiation Database, http://166.111.201.26/
atie/) is an online resource that collects gene information, alternative prod-
ucts of genes, and domain structures of isoforms. The ATID database is 
available for public use at http://bioinfo.au.tsinghua.edu.cn/atie/. Supple-
mentary instructions about this database and statistical analyses can also 
be found on the Web page. The records of alternative translational events 
are converted and stored in a MySQL database program (http://www.
mysql.com). The topological structure of the FGF2 (fiber growth factor) 
gene in Homo sapiens as shown in Figure 7.8. There are four shorter iso-
forms lacking the N-terminal amino acids fragments from the original 
30.8-kD full-length isoform (Figure 7.8).

C8105.indb   233 7/18/07   8:16:44 AM



234  <  Xiao-Lian Zhang and Fang Zheng

In response to the need for systematic studies on genes involving ATI, 
ATID is established to provide data of publicly available genes, alterna-
tively translational isoforms, and their detailed annotations. This data-
base contains 650 alternatively translated variants assigned to a total of 
300 genes. These database records of alternative ATI have been collected 
from publicly available protein databases, such as SWISS-PROT database 
and Entrez protein database protein database on NCBI (NCBI, National 
Center for Biotechnology Information) (http://www.ncbi.nlm.nih.gov/
Entrez/). Additionally, the information of 89 ATI events extracted from 
the published research literature is also included in the database. The 
genes, contributing to alternative translational initiation, cover many spe-
cies including Homo sapiens, Mus musculus, Bostaurus, Saccharomyces 
cerevisiae, Virus, etc.

Also, a large number of software packages (http://www.expasy.ch/
tools/dna.html, or http://www.biology.utah.edu/jorgensen/wayned/ape/) 
for translating DNA sequences already exists. However, many of these fine 
tools do not support translating sequences containing degenerate nucleo-
tides, have no or limited support for alternative translation tables (includ-
ing alternative initiation codons), and in general have problems handling 
special situations. Virtual Ribosome is a new DNA translation tool (avail-
able at http://www.cbs.dtu.dk/services/VirtualRibosome/.) with two areas 
of focus: (1) full support for the IUPAC degenerate DNA alphabet and all 
translation tables defined by the NCBI taxonomy group, including the use 
of alternative start codons; and (2) support for working with files contain-
ing intron/exon structure annotation.

1aa

79aa
Isoform2

Isoform3

Isoform4

Isoform5

288aa

288aa88aa

288aa93aa

288aa134aa

288aa
Product

Figure 7.8  ATID screenshots: Topological structure of five alternative isoforms 
initiated from the FGF2 gene.
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Part II	 Step-By-Step Tutorial

Browser ATID (Alternative Translational Initiation Database) via Web 
interface pages: (http://166.111.201.26/atie) is a Web-oriented database that 
uses a browser-based interface to access data under the SQL framework. 
The Web page allows interaction between the users and the data applica-
tion. Indexing key identifiers of the database optimizes batch queries from 
the HTTP Web page interface. When a HTTP request is triggered, we can 
import items of an SQL database into the application. Then, the results are 
sent in HTML format on the Web.

1.  Search the Alternative Translational Initiation of a Given Gene
The alternative translation initiation of the CRYBA1 gene has been exam-
ined in experiments. We will take CRYBA1 as an example:

	 1.	Type following address (http://166.111.201.26/atie) in your browser, 
and you will find ATID as displayed in Figure 7.9. Then click “search.” 
Figure 7.10 will be displayed. You can type different keywords 
(ATIE_id, or Gene Name) or input gene sequence; for example, 
type “CRYBA1” (GeneName), click “GO”, and the CRYBA1 gene of 	

Figure 7.9  Search the alternative translation initiation of CRYBA1 gene from 
the database in the Web site.
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Figure 7.10  Step-by-step tutorial: keyword queries in alternative translation 
initiation database (ATID).

Figure 7.11  Different isoforms (Isoform1 and Isoform2) of the CRYBA1 gene 
shown in ATID.

C8105.indb   236 7/18/07   8:16:50 AM



Regulation of Gene Expression  <  237

different organisms will be displayed. Their isoforms (Isoform1 and 
Isoform2) are displayed in Figure 7.11.

	 2.	You can also find the alternative translation initiation of CRYBA1 
in another way. Click “Browse” in the address (http://166.111.201.26/
atie). The result will be displayed as Figure 7.12. Then click “Bos tau-
rus” or” Homo sapiens” under “Mammalian,” and you will find the 
CRYBA1 gene you searched (Figure 7.13). Now, you know how to 
search the ATI (alternative translation initiation) of different gene; 
when you find them (Figure 7.13), click the “gene name” and “gene 
description,” references of NCBI database access numbers, and the 
literature on CRYBA1 gene in Bostaurus or Homo sapiens will be 
shown as Figure 7.14A. You can also click a specific region of isoform 
ID, such as “isoform1,” and information on alternative translational 
products will be displayed. Elements such as point isoelectric (PI) 
value, molecular weight, domain contexts, and sequence information 
are designated to annotate the isoform products of genes; the linked 
Web page for isoform2 of CRYBA1 gene is shown in Figure 7.14B.

Figure 7.12  Search the alternative translation initiation of CRYBA1 by brows-
ing from the database in the Web site.
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	 3.	The distributions of domain content in the amino acid sequence con-
cerned with protein function are scanned by family matching sys-
tem Pfam 21.0 at http://pfam.janelia.org/ (as shown in Figure 7.15A). 
Click “protein search” and you will enter a new page (Figure 7.15B). 
Paste the sequence of amino acids of CRYBA1 into the framework, 
click “inquire,” and the result will be displayed as in Figure 7.15C. 
Lastly, click “crystal,” and the description of the crystal will be dis-
played (Figure 7.15D).

	 4.	ATID supports two querying methods for the entries, besides 
directly accessing the entries from the Web links. One is a keyword 
query, and the other is a sequence similarity query. In the former 
case, keywords such as accession number and gene name can be sub-
mitted. The record that contains the keyword will be returned. In the 
latter case, one nucleotide sequence or amino acid sequence can be 
submitted in FASTA format through a Web interface. The submitted 
sequence will be compared with the representative sequences in the 
database by BLAST (The Basic Local Alignment Search Tool) pro-

Figure 7.13  Search the CRYBA1 gene from “Bos taurus” or “Homo sapiens” 
under “Mammalian.”
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gram. The E-value parameter of the BLAST program is adjustable. 
After the query job is finished, the cluster of database entries that 
contains the most similar sequences are returned in table format. 
Detailed information on sequence matches, such as aligned starting 
sites and aligned ending positions, are given in the display of BLAST 
result. The Web pages of the database querying system and the 
returned results of a sequence query are demonstrated on the Web 
(http://166.111.201.26/atie). Figure 7.16A shows the Web pages of the 
database querying system, and the returned results of a sequence 
query are shown in Figure 7.16B.

Figure 7.14  Step-by-step tutorial: (A) Gene description and references of NCBI 
database access numbers and literature of CRYBA1 gene in Bostaurus or Homo 
sapiens. (B) A specific region of isoform ID information on alternative transla-
tional products. Elements such as point isoelectric (PI) value, molecular weight, 
domain contexts, and sequence information are designated to annotate isoform2 
of the CRYBA1 gene.
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Part III	 Sample Data

CRYBA1 gene: Homo sapiens mRNA for crystallin or cow beta-crystallin 
(p Beta 25/23) mRNA

Section 4	 RNA editing
Part I	I ntroduction
1.  What Is RNA Editing?
The term RNA editing describes those molecular processes in which the 
information content is altered in an RNA molecule. RNA editings are 
posttranscriptional modification machineries that alter the RNA pri-

Figure 7.15 A-B  Family matching system Pfam. (A) The distributions of domain 
content in the amino acid sequence concerned with protein function are scanned by 
family matching system Pfam 21.0 at http://pfam.janelia.org/. (B) Query sequence by 
searching Pfam. 
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mary sequence by base modifications, nucleotide insertions or deletions, 
and nucleotide replacements. After transcription, some RNA molecules 
are altered to contain bases not encoded in the genome. The diversity of 
RNA-editing mechanisms includes nucleoside modifications such as C-
to-U and A-to-I deaminations, as well as nontemplated nucleotide addi-
tions and insertions. Most often this involves the editing or modification 
of one base to another, but in some organisms can involve the insertion 
or deletion of a base. RNA editing in mRNAs effectively alters the amino 
acid sequence of the encoded protein so that it differs from that predicted 
by the genomic DNA sequence. For example, in mammals, the apo-
B(apolipoprotein-B) gene is expressed in liver as a 500-kD protein called 
Apo-B100, whereas in intestine cells its product is a smaller protein called 
Apo-B48. Apo-B100 is produced without RNA editing, but Apo-B48 is 
synthesized from an mRNA whose sequence has been altered by a specific 
enzyme. This enzyme changes a codon, CAA, in the middle of the original 

Figure 7.15 C-D  Family matching system Pfam. (C) Sequence alignments. (D) 
Description of crystal.
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mRNA to the stop codon UAA, thereby causing early termination of the 
protein synthesis.

Usually there are two classes of RNA editing: the substitution/conver-
sion class and the insertion/deletion class. The insertion/deletion editing 
occurs in protozoans like Trypanosoma and Leishmania; in slime molds 
like Physarum spp., and in some viral categories like paramyxoviruses, 
Ebola virus, etc. To date, the substitution/conversion pathway has been 
observed in humans along with other mammals, Drosophila, and some 
plants. The RNA-editing processes are known to create diversity in pro-
teins involved in various pathways like lipid transport, metabolism, etc., 
and may act as potential targets for therapeutic intervention.

To date RNA editing has been observed in mRNA, tRNA (transfer 
mRNA) and rRNA (ribosomal RNA) molecules of eukaryotes. RNA edit-
ings in pre-mRNA that alter protein products are by changing codon or 
modifying splicing signals, or by altering regulation. tRNA editings are 
classical RNA modifications, and rRNA and snoRNAs (small nucleolar 
RNAs) editings are RNA-guided nucleotide modifications.

Figure 7.16  Query the ATID database. (A) ATID keyword query in ATID 
database; (B) sequence similarity query in ATID database.
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2.  RNA Editing and Human Disease
RNA editing is a physiological mechanism for developmental stages and 
normal life in both invertebrates and vertebrates. Overexpression or 
deficiency in RNA editing activities may cause diseases. Hyperediting 
caused by overexpression of Apobec-1, one of the Apobec enzyme family 
catalyzing C-to-U RNA editing, leads to carcinomas in model systems, 
whereas hyperediting of measles virus transcripts has been observed in 
patients with subacute sclerosing panencephalitis and measles inclu-
sion body encephalitis. ADAR1 (ADAR, adenosine deaminases acting 
on RNA) knockout mice die embryonically, and ADAR2 null mice are 
born at full term but die prematurely. Altered RNA-editing activities have 
also been implicated in the pathogenesis of human malignant gliomas, 
schizophrenic patients, and suicide victims. RNA editing may be altered 
in patients with Alzheimer’s and Huntington’s disease.

3.  Types of RNA Editing
RNA editing occurs concomitantly with transcription and splicing pro-
cesses in the nucleus, as well as in mitochondria and plastids. These mod-
ifications have been observed in plants, animals, fungi, and viruses. In 
mRNA, this editing process can be either in the coding or noncoding 
region of RNA There are at least 16 different types of RNA editing (C to U, 
A to G, U to C, A to C, G to C, G to A, A to U, GG to AA, AA to GG, G-, 
C-, U-, A-, AA-, and C/U insertions, and G deletion). Three selected RNA 
editing types are briefly described in the following text.

A.  C-Insertion and Dinucleotide Insertion Editing  The mitochondria of 
Physarum polycephalum and several other members of the phylum Myxo-
mycota display a unique type of RNA editing that is characterized by the 
insertion of mono- and dinucleotides in RNAs relative to their mtDNA 
(mitochondrial DNA) template. In addition, four examples of C-to-U 
base conversion have been identified. The most common mononucleo-
tide insertion is cytidine, although a number of uridine mononucleotides 
are inserted at specific sites. Adenosine and guanosine have not been 
observed in mononucleotide insertions. Five different dinucleotide inser-
tions have been observed: GC, GU, CU, AU and AA. Both mono- and 
dinucleotide insertions create ORFs in mRNA and contribute to highly 
conserved structural features of rRNAs and tRNAs. If mononucleotide 
and dinucleotide insertions are considered together, then any one of the 
four standard ribonucleotides can be inserted. The sites of insertion are 
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distributed relatively uniformly throughout a given mRNA with an aver-
age spacing of 25 nucleotides, which varies with a standard deviation of 
about 10 nucleotides.

The editing site distribution within the rRNAs is also fairly uniform but 
with an average spacing of 43 nucleotides. The less common dinucleotide 
insertion sites are intermixed with the mononucleotide insertion sites. 
The insertion sites are apparently not defined by any consensus sequence 
in the RNA. Although there is a bias for insertion after purine-pyrimidine 
dinucleotides, many insertions are after other dinucleotides and numer-
ous purine-pyrimidine dinucleotides are present that do not precede edit-
ing sites. To date the insertion of 360 nucleotides at 346 sites in 12 separate 
RNAs has been identified. With about half of the 60-kb sequence of the 
mtDNA explored, it is likely that these numbers will double.

A number of significant ORFs have been identified on the mtDNA that 
apparently do not require insertional RNA editing to create the ORF in 
the mRNA. The mRNAs that are edited require the insertion of between 
9 and 64 nucleotides to create their reading frame. These insertions must 
both be accurate (the correct nucleotide at the correct location) and effi-
cient to produce functional mRNAs. Inaccurate nucleotide insertion has 
not been observed for this type of RNA editing. Furthermore, the effi-
ciency of editing (frequency of nucleotide insertion at a given site) is very 
high, generally greater than 95% in mitochondrial RNA populations.

B.  C-To-U Editing  C-to-U RNA editing occurs in plant mitochondria 
and chloroplasts and in apoB (apoprotein B) in mammals. Recently, an 
APOBEC family of enzymes has been discovered with the ability to deam-
inate cytidines to uridines on RNA or DNA. The first member of this new 
family is APOBEC1, which deaminates apoB messenger RNA to generate 
a premature stop codon. APOBEC1 is evolutionally conserved from bacte-
ria to humans. There is a unique motif containing two phenylalanine resi-
dues and an insert of four amino acid residues across the active site motif, 
which are present in all APOBEC family members, including APOBEC1 
AID (activation-induced cytidine deaminase), APOBEC2, and APO-
BEC3A through APOBEC3G. AID is essential for initiating class-switch 
recombination, somatic hypermutation, and gene conversion. The APO-
BEC3 family is unique to primates. They can protect cells from human 
immunodeficiency virus and other viral infections. Overexpression of 
enzymes in the APOBEC family can cause cancer, suggesting that the 
genes for the APOBEC family of proteins are proto-oncogenes.
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C.  A-To-I Editing  RNA editing by adenosine-to-inosine (A-to-I) modi-
fication generates RNA and protein diversity in higher eukaryotes selec-
tively altering coding and noncoding sequences in nuclear transcripts. The 
enzymes responsible for A-to-I editing, ADARs (adenosine deaminases 
acting on RNA), are ubiquitously expressed in mammals and specifi-
cally recognize partially dsRNA (double-stranded RNA) structures where 
they modify individual adenosines depending on the local structure and 
sequence environment. Long, extended dsRNAs undergo massive editing, 
whereas RNA duplex structures with bulges and loops are subject to site-
selective editing, as observed in several neurotransmitter receptor mRNAs 
ensuing single amino acid substitutions. The ADARs (Figure 7.17) spe-
cifically target single nucleotides for editing within the partially double-
stranded pre-mRNAs of their substrates, such as neuronal glutamate and 
serotonin receptor transcripts. Because inosine is read as guanosine by the 
translation machinery, A-to-I editing often leads to codon changes that 
result in the alteration of protein function. It can also create or destroy pre-
mRNA splice signals or lead to alterations in RNA secondary structure. 
The deficiency or misregulation of A-to-I RNA editing has been implicated 
in the etiology of neurological diseases such as epilepsy, ALS (amyotrophic 
lateral sclerosis), and depression in mammals, and it has been shown that 
a loss of A-to-I editing following the genetic inactivation of ADARs in 	
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1, 2, 2: Yeasts; 4, 5: Nematodes; 6, 7: Insects; 8, 9, 10, 11: Vertebrates
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Figure 7.17  RNA editing by A-to-I (adenosine-to-inosine) modification. Ade-
nosine Deaminase is responsible for A-to-I editing acting on RNA.
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mammals, as well as flies and the worms, results in behavioral or neuro-
logical dysfunctions or embryonic lethality (ADAR1).

D.  RNA-Editing Databases  Here, three representative RNA-editing 
databases are concisely presented. EdRNA (http://edrna.mbc.nctu.edu.
tw/) stores putative RNA-editing sites that have been predicted using com-
putational methods. dbRES (http://bioinfo.au.tsinghua.edu.cn/dbRES) 
collects experimentally verified RNA-editing sites. RNA Editing Website 
(http://dna.kdna.ucla.edu/rna/index.aspx) gathers information on various 
type of RNA editing, especially lists of all researchers and literature refer-
ences on a particular editing field.

EdRNA (http://edrna.mbc.nctu.edu.tw/): EdRNA is a comprehen-
sive RNA-editing database that stores putative RNA-editing sites by 
computational methodology. In EdRNA, RNA-editing sites are anno-
tated by using some cross-references such as SNP, repeat, UTR, and 
cross-species-conserved region. EdRNA collects 312,774 RNA-editing 
sites comprising 6,090 genes, which account for 17.77% of the total num-
ber of human genes (34,270) based on the Ensembl database. Computer 
prediction suggests that the RNA editing occurs mostly in coding regions 
and thus heavily affects mRNA translations. RNA editing occurs more 
frequently in 3’UTR regions than in 5’UTR regions.

dbRES (http://bioinfo.au.tsinghua.edu.cn/dbRES): dbRES is a Web-
oriented comprehensive database for experimentally verified RNA-editing 
sites. It now contains 5437 RNA-editing sites. dbRES covers 95 organisms 
from 251 transcripts. All these data are manually collected from the litera-
ture or the Gene Bank database. Among them, C-to-U RNA-editing sites 
account for 84% of all collected sites. Anthoceros formosae ranks number 
one with 975 sites, i.e., 18% of the total citations collected.

RNA Editing Website (http://dna.kdna.ucla.edu/rna/index.aspx): 
RNA Editing Website highlighted hyperlinks to six types of RNA-editing 
sites. For example, interested readers can click on the hyperlinks 1. The 
Web site (http://164.67.39.27/trypanosome/index.html) acts as a source of 
information on the U insertion/deletion type of RNA editing and a list of 
all researchers, literature references, sequence databases specific for this 
field, upcoming scientific meetings, as well as a section with data taken 
from published and unpublished research to illustrate research problems 
and research directions.

C8105.indb   246 7/18/07   8:17:03 AM



Regulation of Gene Expression  <  247

Part II	 Step-By-Step Tutorial

In this part, we show how to search for how many RNA-editing sites exist 
in the APOB mRNA from the EdRNA Web site (http://edrna.mbc.nctu.
edu.tw/):

	 1.	Input the search term: Go to the Web site (http://edrna.mbc.nctu.
edu.tw/), and you will find three options for search terms: mRNA ID, 
Gene symbol, and Gene ID. Select “Gene symbol” and type “APOB” 
in the search window as displayed in Figure 7.18.

	 2.	Display the search results: After inputting the search term, click “Go”; 
the result is shown in Figure 7.19. There are 211 predicted RNA-editing 
sites in the APOB. Click the hyperlinked data for detailed information 
about positions of each editing sites in its mRNA, gene and chromo-
some, type, magnitude, and EST (expressed sequence tag) number.

Part III	 Sample Data

Gene symbol: APOB.

Figure 7.18  Searching RNA-editing sites in the EdRNA Web site.
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Abstract
MicroRNAs (miRNAs) are short 19–25 nucleotide RNA molecules that 
have been shown to regulate the expression of other genes in a variety of 
eukaryotic systems. MiRNA alterations are involved in the initiation and 
progression of human cancers. Abnormal expression of miRNAs has been 
proved to be the main abnormality of the miRNoma in cancer cells. Vari-
ous methods of microRNA expression profiling of human tumors, mainly 
by microarray, have identified signatures associated with diagnosis, pro-
gression, prognosis, and response to treatment.

Section 1	 What Are miRNAs?
Noncoding RNAs (ncRNAs) range in size from 19 to 25 nt for the large 
family of microRNAs (miRNAs) that modulate development in several 
organisms, including mammals, up to more than 10,000 nt for RNAs 
involved in gene silencing in higher eukaryotes. MiRNAs are typically 
excised from a 60–110 nt hairpin precursor (fold-back) RNA (named pre-
miRNA) structure that is transcribed from a larger primary transcript 
(named pri-miRNA).

1. M icroRNAs: Strangers in the Genomic Galaxy

First described in C. elegans more than a decade ago, over 4000 members of 
a new class of small ncRNAs, named miRNAs, have been identified in the 
last four years in vertebrates, flies, worms, and plants, and even in viruses. 
In humans, the miRNoma (defined as the full spectrum of miRNAs) con-
tains more than 450 experimentally or in silico cloned miRNAs, and the 
total number is expected to pass the 1000 mark. The behavior of miRNA 
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genes differ from the classical paradigms. Genomically, miRNAs repre-
sent less than 1% of the size of usual protein coding genes (PCGs), a reason 
why they “escaped” cloning for such a long time. No open reading frame 
(ORF) can be identified in the small piece of genome codifying for miR-
NAs. The splicing reaction requires Dicer RNase III and Argonaute family 
members. Functionally, it was shown that miRNAs reduce the levels of 
many of their target transcripts as well as the amount of protein encoded 
by these transcripts by direct and imperfect miRNA::mRNA interaction. 
For several miRNAs, participation in essential biological processes for the 
eukaryotic cell has been proved. For example, the list of proposed func-
tions includes hematopoietic B-cell lineage fate (miR-181), B-cell survival 
(miR-15a and miR-16-1), cell proliferation control (miR-125b and let-7), 
brain patterning (miR-430), pancreatic cell insulin secretion (miR-375), 
and adipocyte development (miR-143).

2. T he “Old” Discovery of miRNAs: Recent Exciting Developments

The discovery of miRNAs began in early 1981 when the heterochronic 
genes capable of controlling the timing of specific postembryonic develop-
mental events in C. elegans were identified. Chalfie et al., in 1981, during a 
loss-of-function study in C. elegans, discovered that mutations in the lin-4 
gene lead to continued synthesis of larval-specific cuticle. Eight years later, 
Victor Ambros described, in hypodermal cells, an interaction hierarchy 
of heterochronic regulatory genes lin-14, lin-28, and lin-29 to coordinate 
the “larva-to-adult switch.” In 1993 two independent studies, published 
in the same issue of Cell by Ambros and Gary Ruvkun, presented the 
real nature of the lin-4 gene and its ability to regulate heterochronic gene 
expression. These authors, after cloning the lin-4 gene, demonstrated that 
the potential ORF does not encode for a protein. They identified two small 
lin-4 transcripts of approximately 22 and 61 nt and suggested that the tem-
poral regulation of lin-14 is guided by lin-4 RNA via antisense RNA–RNA 
interaction involving the small RNA lin-4 and the 3`UTR of lin-14 whose 
translation was inhibited. Seven years later, Reinhart et al. showed that let-
7 gene is another heterochronic switch gene coding for a small 21 nt RNA 
and proposed that the sequential stage-specific expression of let-7 and lin-
4 RNAs was capable through an RNA–RNA interaction with the 3`UTR 
of the target genes to trigger the temporal cascade of regulatory heteroch-
ronic genes specifying the timing of C. elegans developmental events. The 
miRNA revolution begin in late 2001 when independent researchers in the 
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laboratories of Thomas Tuschl, David Bartel, and Victor Ambros, isolating 
and cloning RNA from different organisms and cellular systems, by using 
the same strategy applied to cloned siRNA processed from exogenous 
dsRNAs in an embryo lysate, were able to isolate a large group of RNAs 
with the same characteristics of lin-4 and let-7. The data provide evidence 
for the existence of a large class of small RNAs with potential regulatory 
roles; because of their small size, the authors referred to these novel RNAs 
as microRNA (abbreviated miRNA).

Section 2	 miRNAs and human diseases
As a consequence of extensive participation in normal functions, it is 
quite logical to ask the question, do microRNAs abnormalities play a role 
in human diseases? The answer to this fundamental question is built on 
many recent evidences, obtained mainly from the study of human cancers. 
The present understanding is that miRNAs and proteins involved in the 
processing of miRNAs are involved in various types of human diseases.

1. M iRNAs and Their Role as Tumor Suppressors and Oncogenes

It was recently shown that miRNA alterations are involved in the ini-
tiation and progression of human cancer. Homozygous deletions or the 
combination mutation + promoter hypermethylation (as is the case for the 
miR-15a/miR-16a cluster), or gene amplification (as is the case for miR-155 
or the cluster miR-17-92) seem to be the main mechanisms of inactivation 
or activation, respectively. Because of their small size, the loss-of-func-
tion or gain-of-function point mutations represent rare events. miRNAs 
activity can be influenced either by the repositioning of other genes close 
to miRNA promoters or regulatory regions (as is the case for miR-142s 
– c-MYC translocation) or by the relocalization of a miRNA near other 
regulatory elements. The overall effect in the case of miRNA inactiva-
tion is the overexpression of target mRNAs, whereas miRNA activation 
leads to downregulation of target mRNAs involved in apoptosis, cell cycle, 
invasion, or angiogenesis. To date only few miRNA::mRNA interactions 
with importance for cancer pathogenesis have been proved. For example, 
it was elegantly demonstrated that the let-7 microRNA family regulates 
RAS oncogenes and that let-7 expression is lower in lung tumors than in 
normal lung tissue, whereas RAS protein has an inverse variation. Fur-
thermore, enforced expression of the miR-17-92 cluster from chromosome 
13q32-33 in conjunction with c-myc accelerates tumor development in a 
mouse B-cell lymphoma model.
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2.  miRNAs and Other Diseases

Several papers have been published showing a probable link between miR-
NAs and other human diseases (such as Fragile X syndrome or spinal mus-
cular atrophy), but the precise mechanisms are still not known. Recently, 
an unexpected mechanism of miRNA involvement in human disease 
was identified. Sequence variants of a candidate gene on chromosome 
13q31.1 named SLITRK1 (Slit and Trk-like 1) were identified in patients 
with Tourette syndrome, a neurologic disorder manifested particularly by 
motor and vocal tics and associated with behavioral abnormalities. One 
variant found in two unrelated patients was located in the 3'UTR bind-
ing site for the miR-189 and might affect SLITRK1 expression. Therefore, 
it is tempting to propose that germ line mutations or polymorphisms in 
miRNA genes or interacting sequences in target mRNA might represent a 
newly described mechanism of predisposition to hereditary disorders.

Section 3	S ignificance of miRNA profiling
Proving cancer-specific expression levels for hundreds of miRNA genes 
is time consuming, requires a high amount of total RNA (at least 10 to 20 
ugs for each Northern blot), and uses autoradiographic techniques that 
require handling of radioactive material. To overcome these limitations 
and further understand the involvement of miRNAs in human cancer, our 
group was the first to developed an miRNA microarray and established a 
novel detection methodology of miRNA expression that overcomes the 
size limitation of these very small molecules.

1.  miRNAs Microarrays as Profiling Tools

The most commonly used high-throughput technique for the assessment 
of cancer-specific expression levels for hundreds of microRNAs in a large 
number of samples is represented by oligonucleotide miRNA microarrays 
(Table 8.1 and Figure 8.1). Several technical variants were independently 
developed in the last few years, and the main differences between them are 
included in Table 8.2. Another method to determine miRNA expression 
levels involves the use of a bead-based flow cytometric technique. Other 
developments include the quantitative RT-PCR for precursor miRNA or 
active miRNA or the miRAGE, the genomewide miRNA analysis with 
serial analysis of gene expression (SAGE). Each of these techniques has its 
strengths and caveats, and the confirmatory use of a second technique is 
mandatory at present time.
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Figure 8.1  Principles of microarray technology used for miRNA profiling. 
Microarray-based miRNA profiling is presented as described in the majority of 
profiling studies on primary tumors, initially developed by Liu et al. in 2004. 
This strategy involves four main steps (presented on the left side): target label-
ing, hybridization, staining, and signal detection. The different replicates of the 
spots on the glass slide represent different oligonucleotide sequences correspond-
ing to sequences from the precursor miRNA or active miRNA molecule. The 
main advantage of the microarray-based miRNA profiling is the high level of 
standardization of the procedure, allowing the processing of tens of samples in 
parallel. Modified with permission from Nature Reviews Cancer (Calin, G.A., 
Croce, C.M. MicroRNA signatures in human cancers. Nat Rev Cancer. 6, 857–
866 (2006)) Copyright (2006) Macmillan Magazines.

Table 8.1  �Examples of High-Throughput Methods for miRNA Expression

Type Principle Advantages Ref.
miRNA microarray 
microchips

Thousands of 
oligonucleotide 
probes used to 
hybridize with 
mature/precursor 
miRNA cDNA probe

Concomitant 
screening of a large 
number of miRNAs 
through extensive 
sample collections

Liu et al., 2004, 
review in Calin 
and Croce, 
2006a

Bead-based 
technology

Single-miRNA oligos 
coating polystyrene 
beads hybridized 
with biotin labeled  
dsDNA target, 
followed by flow 
cytometry signal 
detection

Higher specificity 
and accuracy 

Lu et al., 2005

Stem-loop qRT-PCR 
for mature product

Stem-loop RT primer 
cDNA synthesis 
followed by 
quantitative 
conventional TaqMan 
PCR

Specific 
quantification of 
the mature miRNA

Chen et al., 
2005

qRT-PCR for 
precursor miRNA

Hairpin-specific 
primers used to 
amplify cDNA

Specific 
quantification of 
the precursor 
miRNA

Schmittgen et 
al., 2004

miRAGE (SAGE) Serial analysis of gene 
expression (SAGE) 
adapted for small 
RNAs.

Mixture of cloning 
and prexpression 
profiling: adequate 
to discover new 
miRNAs

Cummins et al., 
2006

Note: ds DNA — double-stranded DNA; LNA — fluorescent locked nucleic acid.
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2. B iological Significance of miRNA Profiling

After several years of studies employing these technologies and the anal-
yses of more than 1000 primary tumors, three common characteristic 
themes of miRNA deregulation in human tumors emerged. First, miRNA 
expression profiles classify every type of human cancer. Second, common 
miRNA genes are differentially expressed in various types of cancers, sug-
gesting common altered regulatory pathways. Third, onco-miRNAs and 
suppressor-miRNAs may represent two different versions of the same 
microRNA gene with respect to the specific mechanism of inactivation or 
the tissue type where it occurred.

MiRNA alterations are involved in the initiation and development of 
human cancers. Abnormal expression of miRNAs has been proved to be 
the main abnormality of the miRNoma in cancer cells. The causes of the 
widespread differential expression of miRNA genes between malignant 
and normal cells can be explained by the genomic location of these genes 
in cancer-associated genomic regions, by epigenetic mechanisms, as well 
as by alterations of proteins included in processing machinery. miRNA 
profiling achieved by various methods (Table 8.1) has been exploited to 
identify miRNAs that are potentially involved in the pathogenesis of 
human cancers and has allowed the definitions of signatures associated 
with diagnosis, staging, progression, prognosis, and response to treatment 
of human tumors.

Section 4	S ignificance of miRNA CGH Assay
Several arguments suggest that the highly significant association between 
the location of miRNAs and chromosomal or molecular genomic aberra-
tions is not without consequences. In order to investigate these effects at 
the genomewide levels, a specific technology of array comparative genomic 
hybridization (aCGH) was developed by Zhang et al. in 2006.

1.  Genomic Investigation of miRNA Loci by CGH

Most of miRNA genes cloned and verified have been localized onto chro-
mosome loci (Sanger Institute, miRBase http://microrna.sanger.ac.uk/cgi-
bin/sequences/browse.pl). The principle of the technology for miRNA DNA 
copy number detection is as the same as for aCGH for genomic DNA copy 
number detection. Zhang et al. (2006) first reported the miRNA genomic 
alteration in human ovarian cancer by using a CGH array with BAC 
clones. The pair of genomic DNA samples in the microgram was labeled 
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with Cy3 and Cy5 separately by using a Bioprimer random-primed label-
ing kit (Invitrogen). The labeled control reference and test DNA samples 
were combined and coprecipitated with human Cot-1 DNA to reduce non-
specificity. Labeled DNA was resuspended in the hybridization buffer and 
hybridized to CGH array. The hybridized and processed a-CGH array was 
scanned with both green and red lasers simultaneously. The difference of 
signal intensities of cyanine dye on the same spot of single BAC clone was 
considered as a genomic copy number in the specific miRNA locus. The 
BAC a-CGH has its limitation concerning the resolution of 1 megabase 
(MB) in regard to the very small miRNA precursor genomic size of 60–110 
nt. Fortunately, oligo-based aCGH arrays with higher resolutions in the 
range of kilobases (Kb) have been developed and are commercially avail-
able (http://www.chem.agilent.com/ and http://www.nimblegen.com/).

2. B iological Significance of CGH Investigation

If the location of miRNAs is relevant to tumorigenesis, then structural or 
functional alterations of miRNAs should be identified in various types of 
cancers. A growing number of reports are providing such evidence and 
suggest that abnormal expression of miRNAs is central to cancer pathog-
eny. The majority of miRNAs causally linked to human tumorigenesis 
are located in genomic regions altered in cancer, and the genomic abnor-
mality is concordant with expression deregulation (genomic deletion for 
downregulation and amplification for upregulation, respectively). The 
combination of nonrandom chromosomal abnormalities and other types 
of genetic or epigenetic events could contribute to downregulation or over-
expression of miRNAs. An extensive study of high-resolution array-based 
comparative genomic hybridization by Zhang et al. (2006) on 227 human 
ovarian cancer, breast cancer, and melanoma specimens clearly proved 
that regions hosting miRNAs exhibit high-frequency genomic alterations 
in human cancer. Strengthening the importance of these findings is the 
fact that miRNA copy changes correlate with miRNA expression. The 
analyses of the same-histotype, breast ductal carcinomas performed by 
two independent groups using distinct techniques revealed overlapping 
sets of miRNAs differentially expressed and DNA copy number gains or 
losses compared to normal breast tissues.
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Section 5	 Genomewide miRNA 
profiling by microarray
For the technological steps such as target preparation and array hybrid-
ization, the detailed protocols can be found in Liu et al. (2004) (online 
Supplemental Information) (Figure 8.2). Also, the definitions of the 
main technical terms used in this effort are presented in the glossary 
(Table 8.3).

Microarray Fabrication

Microarray Processing

Image Analysis

1) Target RNA labeling: 2.5~5 µg total RNA are labeled
By reverse transcription with two biotin labeled random
Octamer primer into first strand biotin-cDNAas targets.  

2) DNA-DNA hybridization: 5’end labeled biotin-cDNA
Target are loaded onto miRNA microarray to hybridize
Gene-specific miRNA olgo probe for 18 hours under the
condition as described.  

3) Post-hybridization process: The micro arrays are washed
In 0.75X TNT buffer for 40 min at 37C, then block the
micro array in 1X TNB buffer first and stain the slide with
Streptavidin Alexa 647(1:500) at RT for 30 mins. The post
Staining washing in 1X TNT is performed at RT for 40 mins.
Rinse slide in H2O before Spin dry. The microarrayslides are
scanned by Axon Scanner 4000B    

Oligo Probe design: Two 40mer oligos were designed from
micro RNA precusor sequences. One covers the active “mature
sequence and another is precusor sequence only.  

20µM oligo probes in 50µM Phosphate buffer were codispensed
with Fluorescineon Code link activated slides. QC scanning using
blue laser. Printed slides were processed follow vendor instruction. 

Figure 8.2  Step-by-step tutorial for genomewide miRNA profiling by 
microarray.
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1. T otal RNA Isolation

This has to be performed using the Tri-reagent protocol (Molecular Research 
Center, Cincinnati, OH) Trizol (Invitrogen, Carlsbad, CA) or the newly 
developed mirVana kit for RNA extraction (Ambion). In our experience, to 
minimize the introduction of human error and bias in the RNA isolation for 
the applications of both mRNA and miRNA expression profiling of the same 
sample crossing the platforms, Tri-reagent extraction is popular and simple. 
It maintains adequate quantities of small RNAs in the final extraction solu-
tion, and the results of miRNACHIP correlate well with those of confirma-
tion methods. Between 2.5 and 5 µg of total RNA is sufficient for each sample 
expression chip, and the detection assay gives a sensitivity of 1–3 copies per 
cell, with a linear dynamic range of 2.5 orders of magnitude, 90–94% speci-
ficity, and reproducibility CV (coefficient variability) of less than 10%.

2. M icroRNACHIP Production and Description

The current OSU miRNA microarray (version 3.0, miRNACHIPv3) contains 
probes against 578 miRNA precursor sequences (329 Homo sapiens, 249 Mus 

Table 8.3  Glossary of Terms Used to Describe Microarray Research
miRNoma: The full spectrum of miRNAs expressed in a particular cell type.
Gene-expression profiling: Determination of the level of expression of hundreds or 
thousand of genes through the use of microarrays. Total RNA extracted from the test 
tissue or cells and labeled with a fluorescent dye is tested for its ability to hybridize to 
the spotted nucleic acids.

Hierarchical clustering technique: A computational method that groups genes (or 
samples) into small clusters and then group these clusters into increasingly higher-level 
clusters. As a result, a dendrogram (i.e., tree) of connectivity emerges. 

Genelist: A group of genes or proteins with some common property, such as putative 
interaction with miRNAs or same expression profiles. They are generated by target 
prediction programs or by calculations performed by GeneSpring or some other 
bioinformatics tool.

Prediction analysis of microarrays (PAM): A statistical technique that identifies a 
subgroup of genes that best characterizes a predefined class and uses this gene set to 
predict the class of new samples.

Significance analysis of microarrays (SAM): A statistical method used in microarray 
analyzes that calculates a score for each gene and thus identifies genes with a 
statistically significant association with an outcome variable such as transfection with 
specific miRNAs.

GeneSpring software: GeneSpring is a powerful analysis tool that analyzes the scanned 
microarray data by assigning experiment parameters and interpretation to filter genes 
for differential expression and cluster to identify similar regulated groups.
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musculus, and 3 Arabidopsis thaliana as negative controls). These correspond 
to human and mouse miRNAs found in the miRNA Registry at www.sanger.
ac.uk/Software/Rfam/mirna/ (October 2005) or collected from published 
papers. All the sequences were confirmed by BLAST alignments with the 
corresponding genome at www.ncbi.nlm.nih.gov and the hairpin structures 
were analyzed at www.bioinfo.rpi.edu/applications/mfold/old/rna. All 40-
mer oligos were screened for their cross-homology to all genes of the relevant 
organism, number of bases in alignment to a repetitive element, amount of 
low-complexity sequence, maximum homopolymeric stretch, global and 
local G + C content, and potential hairpins (self 5-mers). The best oligo that 
contained each active site of each miRNA was selected. Next, we attempted 
to design an oligo that did not contain the active site for each cluster, when it 
was possible to choose such an oligo that did not overlap the selected oligos 
by more than 10 nt. To design each of these additional oligos, we required 
<75% global cross-homology and <20 bases in any 100% alignment to the 
relevant organism, <16 bases in alignments to repetitive elements, <16 bases 
of low-complexity, homopolymeric stretches of no more than 6 bases, G + C 
content between 30 and 70%, and no more than 11 windows of size 10 with 
G + C content outside 30–70%, and no self 5-mers. In addition, we designed 
oligos for seven mouse tRNAs and eight human tRNAs, using similar design 
criteria. We selected a single oligo for each, with the exception of the human 
and mouse initiators Met-tRNA-i, for which we selected two oligos.

3. T arget Preparation

An amount of 2.5–5 µg of total RNA is separately added to a reaction mix 
in a final volume of 12 µl, containing 1 µg of [3'(N)8-(A)12-biotin-(A)12-
biotin 5'] oligonucleotide primer. The total RNA and oligo primer mixture 
is incubated for 10 min at 70°C for specific annealing first and chilled on 
ice. With the mixture remaining on ice, 4 µl of 5X first-strand buffer, 2 µl 
of  0.1 M DTT, 1 µl of 10 mM dNTP mix, and 1 µl Superscript™ II RNaseH- 
reverse transcriptase (Invitrogen) (200 U/µl) is added to a final volume of 
20 µl and the mixture incubated for 90 min in a 37°C water bath. After 
incubation for first-strand cDNA synthesis, 3.5 µl of 0.5 M NaOH/50 mM 
EDTA is added to 20 µl of first-strand reaction mix and incubated at 65°C 
for 15 min to denature the RNA/DNA hybrids and degrade RNA tem-
plates. Then, 5 µl of 1 M Tris-HCI, pH 7.6 (Sigma), is added to neutralize 
the reaction mix, and first-strand-labeled cDNA targets are stored in 28.5 
µl at −80°C until chip hybridization.
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4.  Array Hybridization

Labeled first-strand cDNA targets from 5 µg of total RNA is used for 
hybridization on each OSU-CCC miRNA microarray containing probes 
specific for 578 miRNA precursor sequences (329 Homo sapiens, 249 Mus 
musculus, and 3 Arabidopsis thaliana). All probes on these microarrays 
are 5' amine-modified 40-mer oligonucleotides spotted on Codelink-acti-
vated slide (GE Healthcare, Piscataway, NJ) by contacting technologies and 
covalently attached to a polymeric matrix. The microarrays are hybridized 
in 6X SSPE/30% formamide at 25°C for 18 h, washed in 0.75X TNT at 37°C 
for 40 min, and processed using direct detection of the biotin-contain-
ing transcripts by Streptavidin-Alexa647 conjugate. Processed slides are 
scanned using an Axon 4000B Scanner (Molecular Devices Corp., Sunny-
vale, CA) with the red laser set to 635 nm, at power 100% and PMT 800 
setting, and a scan resolution of 10 µm.

5. R aw Data Analysis

This is an important aspect of miRNA profiling, because these arrays are 
low-density and no clear strategy for data normalization was available. 
With the exception of the U6 small nuclear RNA, no other small RNA was 
used in Northern blotting experiments for normalization. In spite of this, 
we were able to prove that our approach to data analysis gives data that is 
easily confirmed. During this step we are assisted by experienced bioinfor-
maticians at CCC-OSU and University of Ferarra, Italy. Raw data are nor-
malized and analyzed in GeneSpring® software (Silicon Genetics, Redwood 
City, CA). Expression data are median-centered using both GeneSpring 
normalization option or Global Median normalization of the Biocon-
ductor package (www.bioconductor.org). We did not find any substantial 
difference. Statistical comparisons are done using both the GeneSpring 
ANOVA tool and the SAM software (Significance Analysis of Microarray, 
http://www-stat.stanford.edu/~tibs/SAM/index.html). miRNA predictors 
are calculated by using PAM software (Prediction Analysis of Microar-
rays, http://www-stat.stanford.edu/~tibs/PAM/index.html); the Support 
Vector Machine tool of GeneSpring is used for the cross-validation and 
test-set prediction. In this way, the miRNAs able to best separate the 
groups are identified and confirmed by two different methods of raw data 
normalization. All data are submitted using MIAMExpress to the Array 
Express database at http://www.ebi.ac.uk/arrayexpress/.

C8105.indb   264 7/18/07   8:20:18 AM



MicroRNoma Genomewide Profiling by Microarray  <  265

6.  Validation of miRNAs Results

Confirmation of microarray data is done by Northern blots and quan-
titative real-time RT-PCR analysis. For Northern blot analysis, 10 to 20 
µg of total RNA is used for each sample to run on a 15% polyacrylamide 
denaturing (urea) Criterion precast gel (Bio-Rad), and then transferred 
onto Hybond-N+ membrane (Amersham Pharmacia Biotech). The blots 
are performed as described. Quantitative RT-PCR for miRNA precursors 
and active molecules are performed as described for precursor miRNAs or 
for active molecules of miRNA.

7. S ample Data of miRNA Profiling by Microarray

The output of raw data from the microarray facility is shown in the fol-
lowing text:

	 1.	The .gpr raw data extracted by GenePix 6.0 software in .txt file 
(Figure 8.3).

	 2.	The raw data txt file converted into Microsoft Excel file for further 
statistical data analysis (Figure 8.4).

The end-result data will mainly consist of (1) dendrograms showing 
the clustering of multiple samples according to the miRNAs expression 
(Figure 8.5) and (2) a gene list containing genes differentially expressed 
at high statistical significance (P < 0.01) and biologically significant folds 
between the different categories of samples. It is important to note that the 
filter on fold-change is set to 1.2 because this threshold, already used for 
miRNAs analyzed with the same chip in published papers, was demon-
strated to reflect a real biological difference. An example of SAM output is 
presented in Table 8.4.
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Figure 8.3  The GenePix Results (GPR) .gpr raw data extracted by GenePix 6.0 
software in .txt file. This is a text file format developed by Axon Instruments that 
is used to save GenePix Results data. ID = probe ID; X and Y are the coordinations 
of individual oligo spot on the microarray slide; Dia. = spot diameter based on the 
signal intensity of the spot detected on the assayed image; F635 median = median 
signal pixel intensity value of spot detected at laser 635 nm; F635 Mean = mean 
(average) signal pixel intensity value of spot detected at laser 635 nm; F635 SD = 
Standard Deviation of pixel intensity value of the spot detected at laser 635 nm; 
F635CV = Coefficient Variability of pixel intensity value of the spot at laser 635 nm; 
B635 = pixel intensity of local Background in surrounding area of the spot detected 
at laser 635. B635 Median = median pixel intensity of local background detected at 
laser 635; B635 mean = mean (average) pixel intensity of local background detected 
at laser 635, and so on. For the details of Genepix Pro 6.0 software, please visit http://
www.moleculardevices.com/pages/software/gn_genepix_pro.html.

Figure 8.4  The raw data txt file converted into a Microsoft Excel file for further 
statistical data analysis. All the terms at row 32 are described in the legend of .gpr 
files in Figure 8.3.
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Figure 8.5  Hierarchical clustering of samples according to microRNA expres-
sion. Unsupervised cluster of duplicate samples from human and mouse tissues 
(right side) or same sample with different starting amounts of total RNA (left 
side). Samples are in column, miRNAs in rows. A green-colored gene is down-
regulated compared to its median expression in all samples, red is upregulated, 
and yellow means no variation.
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Table 8.4  The SAM Output of Microarray Data (positive scores denote overexpressed 
genes, whereas negative scores denote downregulated genes in one state — for example, 
cancer — relative to controls)

Row Gene ID Score (d) Fold Change q-value (%)
441 mmu-mir-345No1 10.37102596 5.867706418 0
383 mmu-mir-25No2 5.749654115 4.635803765 0
207 hsa-mir-345No1 5.178522772 6.624705736 0
103 hsa-mir-138-2-prec 3.740915915 13.78013905 0
153 hsa-mir-204-precNo2 3.490530828 7.492364538 4.050939964
451 mmu-mir-375No1 3.278119476 4.714569587 4.050939964
333 mmu-mir-185-prec 2.985666337 4.828383793 5.988346033
17 hsa-mir-007-1-prec 2.902430956 4.369463547 5.988346033
355 mmu-mir-200bNo1 -6.05691285 0.055498783 0
79 hsa-mir-123-precNo1 -4.45235779 0.191715062 0
87 hsa-mir-128b-precNo2 -4.386959727 0.058091275 0
85 hsa-mir-128a-precNo2 -3.856824003 0.103230162 4.304123711
86 hsa-mir-128b-precNo1 -3.817435507 0.069642266 4.304123711
465 mmu-mir-467No1 -3.801185995 0.206152456 4.304123711
281 mmu-mir-128aNo1 -3.673031526 0.106300064 4.304123711
24 hsa-mir-010a-precNo1 -3.523466759 0.024127996 4.304123711
283 mmu-mir-128bNo1 -3.498762752 0.083489905 4.304123711
285 mmu-mir-128-precNo1 -3.482973272 0.107292352 4.304123711
331 mmu-mir-182-prec -3.437858835 0.159670902 4.304123711
280 mmu-mir-127-prec -3.162901964 0.096361137 7.651775487
324 mmu-mir-181aNo1 -2.964061959 0.145973668 7.651775487
369 mmu-mir-218-2-precNo1 -2.958819217 0.281340441 7.651775487
458 mmu-mir-425No2 -2.901648286 0.22693507 7.651775487
Note: Gene ID represents the ID of the oligonucleotide from the chip.
Score (d) represents the value of t-test.
Fold change: If not otherwise specified, it represents ratio between Tumor against Normal 

(T/N), Treated against Control (T/C), and so on.
Q-value is the lowest false discovery rate (FDR) at which the gene is called significant. The FDR 

is the expected percentage of false predictions.
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Since it burst into epigenetic biology a few years ago, RNA interference 
(RNAi) as a gene-silencing strategy has transformed biological research 
and become one of most popular technologies to control gene expression. 
RNAi, occurs in plants, animals, and humans. RNAi via its tool small 
interfering RNAs (siRNAs), opens up exciting new avenues for use in gene 
technology. It is widely applied in many disciplines. Nearly every biologi-
cal or biomedical lab is using this tool to turn off genes to determine gene 
functions and their roles in cell division, organogenesis, and pathogenesis 
of plant, animal, and human diseases as well as therapeutic utilities. RNAi 
has revolutionized genetics and heralded the start of a new research field. 
In this chapter, we will first concisely expound the concept, historical 
discovery, design guideline, and applications of siRNA, and then briefly 
introduce some online siRNA resources in a step-by-step tutorial format.
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Section 1	I ntroduction to RNAi and siRNA
1.  What Are RNAi and siRNA?

RNAi stands for RNA interference. It is a mechanism in eukaryotic cells 
by which short fragments of double-stranded ribonucleic acid (dsRNA) 
interfere with the expression of a particular gene whose sequence is 
complementary to the dsRNA. The RNAi process is initiated by the 
ribonuclease protein Dicer, which binds and cleaves exogenous double-
stranded RNA molecules to produce double-stranded fragments of 20–25 
base pairs with a few unpaired overhang bases on each end. The short 
double-stranded fragments produced by Dicer, called siRNAs, are also 
known as short interfering RNA or silencing RNA. siRNAs have a well-
defined structure: a short (usually 21-nt) double strand of RNA (dsRNA) 
with 2-nt 3' overhangs on either end. Each strand has a 5' phosphate 
group and a 3’ hydroxyl (-OH) group. In vivo siRNAs are derived from 
either long dsRNAs or hairpin RNAs via the conversion of Dicer, whereas 
in vitro they can be artificially synthesized before being transfected into 
target cells to bring about the specific knockdown of a gene of interest. 
Essentially any gene could be a target of an siRNA based on its sequence 
complementarity to the appropriately tailored siRNA. This has made siR-
NAs an important tool for elucidating any gene function in the postgen-
omic era.

2. H istorical Discovery of siRNA

RNAi is one of the most important historical discoveries in modern sci-
entific history. In the early 1980s it was first noted that small RNA mol-
ecules (about 100 nucleotides in length) in Escherichia coli (E. coli) could 
inhibit protein translation. Today, about 25 cases of regulatory trans-act-
ing antisense RNAs have been found in E. coli. In the early 1990s, similar 
phenomena were observed in the worm Caenorhabditis elegans. In 2001, 
an extensive class of small RNAs called microRNA (miRNA) was iden-
tified in Caenorhabditis elegans. The miRNAs can regulate gene expres-
sion by base-pairing to mRNA, which results in either degradation of the 
mRNA or suppression of translation. Today, it is estimated that there are 
about 500 miRNAs in mammalian cells, and that about 30% of all genes 
are regulated by miRNAs. The RNAi phenomenon was also observed in 
plants. In the early and middle 1990s, researchers such as David Baul-
combe of the Sainsbury Laboratory in Norwich, U.K., determined that 
adding genes to plants sometimes turned off the endogenous counter-
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parts, a phenomenon then called cosuppression. A few years later plant 
virologists observed that plants carrying only short regions of viral RNA 
sequences not coding for any viral protein showed enhanced tolerance, 
to or even resistance against, virus infection. They called this phenom-
enon virus-induced gene silencing, or simply VIGS. These phenomena are 
collectively called posttranscriptional gene silencing (PTGS). A PTGS-like 
process called quelling was also established in the fungus Neurospora 
crassa. The real breakthrough of RNAi was made by Andrew Fire and 
Craig Mello on the regulation of gene expression in the nematode worm 
Caenorhabditis elegans. When they injected either a “sense” or “antisense” 
mRNA molecules encoding a muscle protein into a worm separately, no 
changes in the behavior of the worms were found. But when Fire and Mello 
injected sense and antisense RNA together, they observed that the worms 
displayed peculiar twitching movements. Similar movements were seen in 
worms that completely lacked a functioning gene for the muscle protein. 
Fire and Mello deduced that double-stranded RNA can silence genes, and 
that this RNA interference is specific for the gene whose code matches that 
of the injected RNA molecule; thus, Fire and Mello proposed that this is 
RNA interference, now commonly abbreviated to RNAi. Fire and Mello 
published their landmark findings in the journal Nature on February 19, 
1998. Their discovery clarified many confusing and contradictory experi-
mental observations and revealed a natural mechanism for controlling the 
flow of genetic information. Because of this immensely significant work, 
The Nobel Assembly at Karolinska Institutet bestowed the Nobel Prize in 
Physiology or Medicine for 2006 jointly upon Andrew Z. Fire and Craig 
C. Mello for their discovery of “RNA interference — gene silencing by 
double-stranded RNA.”

3. T he RNAi Mechanism

RNAi is an RNA-dependent gene silencing process that is mediated by the 
RNA-induced silencing complex (RISC). The process is initiated by the 
ribonuclease protein Dicer, which binds and cleaves exogenous or endog-
enous double-stranded RNA molecules to produce double-stranded frag-
ments of 20–25 base pairs called siRNAs, with a few unpaired overhang 
bases on each end. The siRNA are separated and integrated into the active 
RISC complex. It is the catalytically active components of the RISC com-
plex, known as argonaut proteins (endonucleases) in animals, that medi-
ate the siRNA-induced cleavage of the target mRNA. Argonaute proteins 
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have been identified as localized to specific regions in the cytoplasm called 
cytoplasmic bodies, which are also local regions of high mRNA decay 
rates. Because the fragments produced by Dicer are double stranded, they 
could each in theory produce a functional siRNA; however, only one of 
the two strands — known as the guide strand — binds the argonaute pro-
tein and leads to gene silencing. The other anti-guide strand or passenger 
strand is degraded as an RISC substrate during the process of RISC activa-
tion. The strand selected as the guide tends to be the strand whose 5’ end 
is more stable, but strand selection is not dependent on the direction in 
which Dicer cleaves the dsRNA before RISC incorporation.

The natural occurrence of the RNA interference machinery is not fully 
understood, but it is known to be involved in miRNA processing and the 
resulting translational repression. miRNAs, which are encoded in the 
genome and have a role in gene regulation, typically have incomplete base 
pairing and only inhibit the translation of the target mRNA; in contrast, 
RNA interference as used in the laboratory typically involves perfectly 
base-paired dsRNA molecules that induce mRNA cleavage. After integra-
tion into the RISC, siRNAs base-pair to their target mRNA and induce the 
RISC component protein argonaute to cleave the mRNA, thereby prevent-
ing it from being used as a translation template.

Organisms vary in their cells’ ability to take up foreign dsRNA and use 
it in the RNAi pathway. The effects of RNA interference are both systemic 
and heritable in plants and in C. elegans, although not in Drosophila or 
mammals, due to the absence of RNA replicase in these organisms. In 
plants, RNAi is thought to propagate through cells via the transfer of siR-
NAs through plasmodesmata.

4.  siRNA Applications

siRNAs have been widely applied to downregulate gene expression. This 
application has two clear objectives. The first is to investigate the function 
of genes, and the second is to determine which genes are involved in dis-
eases. Its current applications are summarized in the following text.

A tool for functional genomics. After the completion of human 
sequencing and a number of animal and plant genome sequencings, the 
challenge has shifted from the discovery of new genes to the elucidation of 
gene functions. Gene functions can usually be inferred from their expres-
sion patterns in different time, space, and conditions. The examination 
of siRNA’s effect on its sequence-specific inhibition of target gene make 
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siRNA a valuable tool in linking genes to their cellular function. Previ-
ously, gene knockdown in mammalian organisms was mainly restricted 
to mouse species. Gene knockout mouse strategy requires dedicated tech-
nical training and facilities such that it limits its broad applicability into 
the determination of gene functions. With the advent of a convenient and 
economical siRNA tool, gene knockdown technology is accessible to all 
researchers and will accelerate the progress of functional characterization 
of all genes. A significant number of researchers have utilized siRNA tech-
nology in their endeavors to comprehend the functional roles of individual 
genes in physiology and pathology. siRNA can also be a powerful tool to 
dissect any signal transduction pathway. After treating a cell with a gene-
specific siRNA, profiling the differentially expressed genes can reveal how 
many pathways and how many genes in each pathway are affected by the 
gene of interest. The order of each gene in a particular pathway can be 
assigned by sequentially knocking down them with their cognate siRNAs 
and examining their effects.

Identification of disease-associated genes and drug targets. Since its 
initial discovery, siRNA has been rapidly employed for the identification 
of disease-associated genes. By knocking down genes in cell-based studies 
and animal models for the characterization of their roles in various cel-
lular processes including endocytosis, apoptosis, and the cell cycle, siRNA 
serves as a tool not only for functional genomics but also for the Iden-
tification of disease-associated genes. Several examples are summarized 
in the following text. The implication of the chemokine receptor chemo-
kine (C–X–C motif) receptor 4 (CXCR4) in the proliferation of breast 
cancer was revealed when its expression was inhibited by its siRNA in 
the breast cancer cell line MDA-MB-231 and the rate of cell expansion 
slowed dramatically. The application of siRNA also showed α6β4 integrin 
and EpCAM receptors on the same cells involved in cellular invasion and 
metastasis. Silencing of viral genes by RNAi has shed light on some viral 
diseases, such as HIV, hepatitis, and severe acute respiratory syndrome 
(SARS)-associated coronavirus. siRNA has also been increasingly used 
in identification and validation of drug targets for the treatment of dis-
eases. Reducing the expression of a potential therapeutic target by siRNA 
and evaluating the desired phenotype results should provide a reference 
on whether an inhibitor of the same target gene would have any thera-
peutic value or not. This approach has been met with varying degrees of 
success to improve target therapeutics for cancer, metabolic, inflamma-
tory, infectious, neurological, and other types of disease. Given the initial  
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success and promising potential, RNAi has drawn increasing attention 
for its potential clinical applications. Currently, there are a number of 
biotechnology companies developing clinical applications of siRNA in 
various human diseases. In addition to the ease of synthesis and low pro-
duction costs relative to protein or antibody therapies, data indicate that 
siRNA has favorable pharmacokinetic properties and can be delivered to a 
wide range of organs. However, blood stability, delivery, poor intracellular 
uptake, and nonspecific immune stimulation still present significant chal-
lenges for the development of RNAi reagents for clinical use.

It is anticipated that further understanding of RNAi biology coupled 
with rigorous performance evaluation will yield reliable and powerful 
tools for biological inquiry as well as of disease-associated gene and drug 
target identifications.

5.  siRNA Design

No matter what methods, synthetic (chemical, in vitro transcription or 
PCR expression cassettes) or vector based (plasmid or virus), are used 
to produce siRNA, the first step in all processing is to design siRNA by 
choosing the siRNA target site from a given cDNA sequence. Although 
a number of online siRNA design softwares (free or commercial sources) 
are available and each may have its own design algorithm, siRNAs can 
be designed in-house by following some generally accepted rules on how 
to choose an ideal siRNA target site: (1) Targeted regions on the cDNA 
sequence of a targeted gene should be located 50–100 nt downstream of 
the start codon (ATG) on the target mRNA sequence; this will enhance 
the chance of success for the intended siRNA as the region surrounding 
ATG is usually occupied by translational and regulational proteins. (2) 
Search for sequence motif AA(N19)TT or NA(N21), or NAR(N17)YNN, 
where N is any nucleotide, R is purine (A, G), and Y is pyrimidine (C, 
U). (3) Avoid sequences with > 50% G + C content. (4) Avoid stretches of 
four or more nucleotide repeats. (5) Avoid sequences that share more than 
16 or 17 contiguous base pairs of homology with other related or unre-
lated genes. Homology search is essential to minimize off-target effects 
of any siRNA. Here are some BLAST tools for homology search: NCBI 
Blast tool — http://www.ncbi.nlm.nih.gov/BLAST/ (blastn); Blat tool on 
UCSC Genome Web site — http://genome.ucsc.edu/cgi-bin/hgBlat; and 
Ensembl Blast — http://www.ensembl.org/Multi/blastview. Normally 3 to 
4 siRNAs per gene should be tested for specificity and efficiency of gene 
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silencing. At the same time, a negative control siRNA should be included, 
which is a scramble nucleotide sequence of the gene-specific siRNA lack-
ing homology to any other genes.

6.  siRNA Resources

Rich siRNA resources such as siRNA design software, large collaborative 
siRNA projects, and siRNA suppliers are available.

siRNA design software. Numerous online siRNA design software is a 
click away. Three selected free siRNA design software packages are briefly 
introduced here:

	 1).	siRNA at Whitehead (Whitehead Institute for Biomedical Research): 
siRNA at Whitehead (http://jura.wi.mit.edu/bioc/siRNAext/) helps 
select oligos to knock down a gene of interest based on its position 
within the sequence, the snps, and other criteria. The results are 
made available directly on the Web and will be emailed to the user 
when ready.

	 2).	Gene-specific siRNA selector (Bioinformatics Facility, The Wistar 
Institute): Gene-specific siRNA selectors (http://hydra1.wistar.upenn.
edu/Projects/siRNA/siRNAindex.htm) scan a target gene for can-
didate siRNA sequences that satisfy user-adjustable rules. Selected 
candidates are then screened to identify those siRNA sequences that 
are specific to the gene of interest.

	 3).	siDirect: siDirect (http://design.RNAi.jp/) is a Web-based online 
software system for computing highly effective siRNA sequences 
with maximum target specificity for mammalian RNAi. Most com-
mercial suppliers of siRNA products also provide free online siRNA 
design software such as Block-iT RNAi Designer (Invitrogen), 
siRNA Target Finder (Ambion), and siRNA Design (Integrated DNA 
Technologies).

Large collaborative siRNA projects. Several representative large col-
laborative siRNA projects are briefly described in the following text:

	 1).	The RNAi Consortium (TRC): TRC is a public-private consor-
tium based at the Broad. It consists of Broad Institute, Harvard 
Medical School, the Massachusetts Institute of Technology, Dana-
Farber Cancer Institute, the Whitehead Institute for Biomedical 

C8105.indb   277 7/18/07   8:20:27 AM



278  <  Li Qin Zhang

Research, Novartis, Eli Lilly, Bristol-Myers Squibb, Sigma-Aldrich, 
and research institute Academia Sinica in Taiwan. Their 3-year, 
$18 million initiative, would create a library of materials to con-
duct RNAi experiments on 15,000 human genes and 15,000 mouse 
genes. A total of 150,000 custom-designed plasmids that express 
short and unique pieces of RNA (known as short hairpin RNAs, 
or shRNAs) which target specific genes would be created and 
validated. This fundamental resource has been made available 
to scientists worldwide through Sigma-Aldrich (http://www.sig-
maaldrich.com/) and Open.Biosystem (http://www.openbiosys-
tems.com).

	 2).	CGAP RNAi at NCI: The NCI is part of the consortium supporting 
the preparation of human and mouse libraries containing RNAi 
constructs that target cancer-relevant and other genes. The clones, 
prepared in the laboratory of Greg Hannon of Cold Spring Har-
bor, produce small RNA molecules, shRNAs, that are available 
to the public from Open.Biosystem (http://www.openbiosystems.
com). As of October 14, 2006, there are 82,306 human and 50,875 
mouse siRNA shRNA clones prepared. siRNA searchers can also 
find genes containing RNAi constructs from http://cgap.nci.nih.
gov/RNAi.

	 3).	The Arabidopsis Small RNA Project: The Arabidopsis Small RNA 
Project is supported by a 2010 Project grant from the National Sci-
ence Foundation. The project uses facilities and resources provided 
by the Department of Botany and Plant Pathology, the Center for 
Gene Research and Biotechnology, Oregon State University. This 
project seeks to characterize and functionally analyze the two major 
classes of endogenous small RNAs: microRNAs (miRNAs) and short-
interfering RNAs (siRNAs). The specific aims of the project include 
(1) discovery of new miRNAs and siRNAs, (2) functional analysis of 
miRNAs and siRNAs, and (3) Functional analysis of multidomain 
RNaseIII-like genes. Readers can get further information from their 
Web site (http://asrp.cgrb.oregonstate.edu/).

siRNA Databases. A number of siRNA databases exist. Here, three 
selective siRNA databases are briefly described:
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	 1.	RNAi resources at the NCBI: RNAi resources at the NCBI (http://
www.ncbi.nlm.nih.gov/projects/genome/RNAi/) provide a portal 
to the information on the knowledgebase of RNAi, several NIH- or 
NSF-funded siRNA consortiums, hyperlinks to a number of siRNA 
design software and most commercial suppliers of siRNA products 
as well as stored sequences of RNAi reagents, and experimental 
results generated using those reagents via The Probe database.

	 2.	HuSiDa: HuSiDa (http://www.hnman-siRNA-database.net), the 
human siRNA database was established by Matthias Truss and col-
leagues at Universitatsmedizin and Humboldt-University, Berlin, 
Germany. This database is a collection of the published siRNA data 
in PubMed. The database provides sequences of published functional 
siRNA molecules targeting human genes and important technical 
details of the corresponding gene silencing experiments, includ-
ing the mode of siRNA generation, recipient cell lines, transfection 
reagents and procedures, and direct links to published references. 
The database also includes information on the quality of the siRNA, 
such as the silencing activity and the homology to its target gene 
mRNA sequence. To estimate the siRNA sequence off-target effects, 
a value given to each entry that has been blasted against the RefSeq 
database search to identify the length of the longest contiguous part 
of the siRNA that, in addition to the target mRNA, also matches 
other mRNA sequences.

	 3.	Protein Lounge siRNA database. Protein Lounge siRNA database 
(http://www.proteinlounge.com/sirna), is a commercially available 
Web site. This siRNA database contains siRNA targets against all 
known mRNA sequences through a variety of organisms including 
Homo sapiens, Mus musculus, Rattus norvegicus, Bos Taurus, Danio 
rerio, Drosophila melanogaster, Anopheles gambiae, Caenorhabditis 
elegans, Arabidopsis thaliana, and Saccharomyces cerevisiae (ten dif-
ferent species). You also can select siRNA according to the different 
protein function subtypes such as kinases, phosphatases, transcrip-
tion factors, and disease genes. The entire siRNA targets in the data-
base were designed by following the algorithm created by Dr. Thomas 
Tuschl (Max-Planck Institute). Many of the targets have been tested 
through Western blot to see if these targets knocked down gene 
production. The remaining targets in the database have been vali-
dated through statistical comparisons. All siRNA targets have been 

C8105.indb   279 7/18/07   8:20:28 AM



280  <  Li Qin Zhang

screened to remove any siRNA that shares homology with other 
sequences, thus producing targets which are specific to the gene of 
interest. Also, they claim that in many cases the siRNA was able to 
produce a knockdown of about 99%. To retrieve data from this Web 
site, just search the gene name or the GenBank accession number.

Section 2	S earch for siRNA Information
In this part, Homo sapiens epidermal growth factor receptor (EGFR) gene 
will be used to demonstrate how to search for its siRNA information from 
siRecords and display its siRNA data in a record:

1. Search Demo

	 1).	Go to the siRecords home page (http://sirecords.umn.edu/siRecords/
index.php). You can start search either by Genbank accession or GI 
number of the gene of interest. You also can go to Advanced Search, 
using other information like Host Species, Cell Type, Method, and 
Sequence to begin the search. If you are looking for particular paper, 
the search can be started by entering the Pubmed ID, Authors, Title 
of Article, and Abstract of Article. Here, the Genbank accession 
number is demonstrated. Type the EGFR Genbank accession num-
ber NM_005228 in the text box at the top of the page as displayed in 
Figure 9.1.

	 2).	Click “search Gene,” and the next screen shows the gene name under 
the accession number (Figure 9.2).

	 3).	Click “NM_005228.3/41327737,” and the gene information table will 
be shown; underneath are the siRNA records of the gene table, which 
include siRNA sequences (Figure 9.3).

	 4).	Click one of the sequences; in the record fold will be displayed all the 
detailed information about this particular siRNA, targeting mRNA, 
and resource article (Figure 9.4). To select a different siRNA sequence, 
just click “back” to the previous page and choose another one.

2. S ample Data for Section 2

Homo sapiens epidermal growth factor receptor (EGFR) cDNA 
(NM_005228).
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Figure 9.1  Search for EGFR siRNA information from siRecords. This screen-
shot displays the initiation of the search for the EGFR siRNA information using 
the Genbank accession number NM_005228.

Figure 9.2  The result matching the query.
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Figure 9.4  Display the record of a particular EGFR siRNA. The top panel 
shows the siRNA record, the middle panel gene information, and the lower panel 
reference article information.

Figure 9.3  Output of the gene information (upper panel) and siRNA record of 
the gene (lower panel).
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Proteomics is an emerging scientific field that involves the identification, 
characterization, and quantification of proteins in cells, tissues, or body 
fluids. Protein characterization, in an ideal situation, includes amino acid 
sequence analysis, determination of specific splice variant, polymorphism, 
and posttranslational modifications (PTMs), identification of protein 
binding partners, cellular localization, and its potential function. Two-
dimensional gel electrophoresis (2DE), mass spectrometry, and protein 
microarrays are important technologies in proteomics, and the related 
data analysis tools allow us to interpret the data and get meaningful infor-
mation. In this chapter, proteomic data analysis, specifically, analysis of 
2DE-derived data, mass-spectrometry-derived data, and data derived from 
protein microarrays will be reviewed. In each section, the basic steps and 
commonly used data analysis programs will be reviewed, and a step-by-
step tutorial of how to use the most popular program will be given.

Section 1	 Analyzing 2DE-Derived Data
Part I	I ntroduction
1.  Two-Dimensional Gel Electrophoresis: 
What Is It and Why Is It Useful?
Two-dimensional gel electrophoresis (2DE) is a powerful protein separation 
tool and one of the cornerstones of proteomic analyses. It separates intact 
proteins in the first dimension based on intrinsic pI (isoelectric focusing, 
IEF), and in the second dimension by molecular weight (MW or mass). 
The combined result of these separations is a two-dimensional spot pattern 
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that can be compared to the spot pattern of a sample that has undergone a 
different treatment to examine differences in protein regulation.

The power of 2DE is displayed in its ability to resolve hundreds to thou-
sands of proteins into distinct spots that can be visualized with several 
varieties of protein-staining methods. When combined with the identifica-
tion potential of mass spectrometry, 2DE can be used to generate gel map 
protein databases, which are useful for subsequent differential analyses and 
can provide novel posttranslational modification information. Posttrans-
lational modifications often shift the mass or isoelectric point of a protein, 
and these shifts can be apparent on 2DE gels. As a result, if a protein is 
posttranslationally modified, it can be identified from multiple spots, or a 
spot significantly different from its theoretical position on a gel.

2DE can provide a researcher with an enormous quantity of new data, 
but the analysis process can be quite involved. To quantify the differences 
between two or more samples separated by 2DE, the gels must be scanned 
and the images analyzed by 2DE-specific software. When the gels have 
been uploaded into the software, all protein spots must be detected, cir-
cled (to determine spot boundaries for quantification), and matched. The 
spot volumes should be corrected for aberrations in background (if neces-
sary) and normalized to a specific gel. Any detected differences should be 
validated using multiple gels and statistical analyses. Before any analysis 
can take place, the gels should be qualitatively evaluated for consistency, 
and the staining and scanning of these gels should be of a high standard 
of consistency.

2.  What Is Involved in Performing Analyses of 2DE Gels?
This section is intended to give the reader insight into 2DE analysis. It 
will briefly cover preparation and scanning of gels for objective image 
analysis and explain in detail the use of Progenesis software for quantita-
tive image analysis.

A.  Gel Preparation  2DE gels should be prepared and run as consistently 
as possible to ensure that any changes between gels can be attributed to 
biological significance and not technical error. Generally, protein loads 
should be regulated between gels using protein assays to ensure that the 
appearance of the gel image can be quantitatively linked to the loaded 
sample. Protein labeling or staining should be consistent, and technical 
replicates assessed for consistency of the methods. Generally, it is easier 
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to obtain consistent staining results with end-point stains such as Coo-
massie-brilliant blue.

Prior to any comparisons, the total spot numbers and volumes (summa-
tion for all spot volumes per gel) should be compared between all samples 
for consistency. Measuring both total spot volume and spot number per 
gel can provide information on whether it is valid to use gels for compari-
son. If two gels show very minor variation in spot number and the major-
ity of the spots in the sample fall in a linear quantification range and have 
roughly the same number and size of saturated spots, the researcher will 
be able to normalize the samples to a single experimental gel. However, 
if a gel with consistently larger spot volumes has many more than other 
gels in the set, some spots may be below detection thresholds on other 
gels, preventing optimal volume correction through normalization. This 
is more of an issue with stains that have a small linear range. Cy-label-
ing methods offer a linear quantification over several orders of magni-
tude (well beneath human visual thresholds), allowing normalization to 
be more readily applied between gels. Similar total spot volume with dra-
matically different spot numbers between gels may be the result of poor 
focusing or resolving issues. The consistency of the analyzed gels may be 
very important for determining the types of biological changes that can 
be determined from the gel set. As the technical variation is increased, 
changes between disease and control will have to be larger to appear sta-
tistically significant.

B.  Scanning Parameters  As with protein loading and staining, digi-
tal image capturing is a key factor in determining the quality of a 2DE 
analysis. Gel images should be captured at an appropriate size and image 
depth to allow enough contrast between samples in order to accurately 
mine the data for points of interest. Gels should be scanned at a size that 
allows the capture of all spot details and can allow the highest reasonable 
level of accurate spot detection. The term reasonable level is used because 
increasing image size for improving gel analysis results in diminishing 
returns: the larger image captures more of the gel’s characteristics, but as 
the image’s size grows, it approaches the resolution limits of 2DE. Once 
the image reaches this size, further increases will not improve analy-
sis, but they will continue to increase the processing time required for 
analysis. Generally, images with resolutions between 200 and 350 dpi are 
ideal. For directly visual stains (silver, Coomassie, deep purple, etc.), a 
calibrated, linear, transmissive light scanner will yield the best results for 
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analysis. This scanner should have 16-bit grayscale capability to allow the 
generation of 65,536 shades of gray instead of the 256 shades that an 8-bit 
scan allows. This feature allows for a more accurate quantification of the 
detected spots as the spot volume is more accurately reflected in the more 
subtle gradient provided by the 16-bit scan. Another scanner property of 
interest is optical density (OD) (Figure 10.1). The scanner utilized should 
be able to ensure that all (or as many as possible) of the spots detected are 
within a linear quantification range. Scanners for these gels should be able 
to measure at least 3.6 OD units.

If fluorescence is used as a means of quantification, several pieces 
of equipment can generate a useful gel image. However, few are able to 
generate an image that utilizes the entire linear range of the stain or dye. 
Ideally, a laser densitometer with the appropriate excitation wavelengths 
is best for quantitative analysis.

3.  2DE Gel Analysis Software
There are several varieties of software for the analysis of 2DE gels, ranging 
from simple viewers to massive display/analysis/statistical validation all-
in-one proteomics packages. These software include Progenesis, DeCyder, 

Gel set 1

Gel set 2

Gel set 3

Figure 10.1  The gel images used for the sample analysis. Silver-stained 24-
cm pH 4–7 gels of 200 μg protein loading of albumin and IgG-depleted human 
serum.
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Melanie, Z3, Image Investigator, Dymension, and many others. The com-
ponents of these programs are similar in that they all have spot detection, 
matching, and quantification algorithms as well as a means for generation 
of statistically validated data, but they differ in cost, performance, dif-
ferential in gel electrophoresis (DIGE) /non-DIGE capability, automation, 
and display and analysis method. Despite the large number of differences 
between the software, they all have the same desired end points: all spots 
detected perfectly with their boundaries accurately trace the edges of the 
spot (to allow perfect quantification), and all spots between gels match 
perfectly to their equivalent spot in another gel.

Part II	S tep-By-Step Tutorial

In this section, Progenesis-based analysis of 2DE gels will be demonstrated. 
Progenesis-based analysis was selected because it is one of the most com-
mon 2DE software packages, it is able to perform analysis on single or 
cross-stained gels, it offers automated analyses, and it has the option of 
manual correction. It is not the intention of this section to guide the user 
through every aspect and feature of the software as the programs have 
detailed manuals for this. The purpose of this section is to provide a start-
to-finish protocol from the array of tools to quantitatively examine a gel 
set (Figure 10.2) and determine proteins of interest. To aid in clarification, 
the icons mentioned in the text are listed and displayed in Figure 10.3.

1.  TT900 Warping
The most current Progenesis applications recommend aligning all gel 
images with their warping program TT900. This involves manually (or 
with some automation) aligning all spots on all gel images. A set of gel 
images is opened, and one of the images is designated as a reference (ide-
ally, the image containing the most spots and spot positions consistent 
with other gels [to reduce warping work]). For DIGE analysis, a DIGE 
image hierarchy can be designated to reduce the amount of warping work 
as multiple image channels of the same gel can be aligned simultaneously. 
The operation of this program is fairly straightforward: the magenta layer 
is the reference gel; the green is the gel undergoing the warp (this can 
be altered by selecting a different gel from the set on the left panel). All 
misaligned green spots are clicked and dragged to the matching magenta 
spots, where the opposite colors overlay to give a grayscale matched image 
(Figure 10.4). The fade and checkerboard windows on the right side of the 
screen can be used to aid in the alignment. The image can be updated to 
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50 dpi 100 dpi 150 dpi

200 dpi 300 dpi 600 dpi

Figure 10.2  A comparison of dpi scan settings. At the current magnification, 
gel images scanned at 200 dots per inch (dpi) and above appear identical, but may 
subtly influence quantitative results. The quality of analysis decreases rapidly 
with progressive decrease from 200 dpi.

Select area of interest 

Drawing spots tool

Erase spots tool

Add spot tool

Edge grow tool

Spot splitting tool

Auto merge tool

Auto split tool

Spot select tool

Undo

Renumber spots

Clear spots
Detect spots (right panel
auto detect) 

Overlay matching
Montage matching
Dual window matching
Clear manual matching
Clear auto matching
Match (Right panel automatic match) 

Matching
Detect spots
Selection

Montage window
3D window
Help topics

Spot detection imageGeneral navigation and viewing icons

Matching icons

Animation (3D viewer)
Select fields (measurement, histogram,
comparison, expression windows)

Figure 10.3  Progenesis tool icons.
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view the overlay progress by occasionally applying warp to the vectors that 
are generated. The alignments should be performed until all matching 
spot constellations are completely overlaid—the only green and magenta 
spots should have come from actual biological or technical differences in 
the gel, not alignment. This can take anywhere from 100 to 300 vectors.

2.  Progenesis Analysis

A.  Automatic Analysis  Gels selected for analysis should first be oriented 
and cropped in a consistent manner to minimize the effort of the software 
to align and match spots. This can be accomplished in an external draw-
ing or photo-editing tool that can handle 16-bit images (editing the gels in 
an external program may, however, alter pixel information) or in Progen-
esis itself in the following manner:

Open Progenesis
Under the heading marked “Tools” select “Image Manipulation”

•
•

Figure 10.4  TT900 warping. Directly align as many spots as possible to master 
image.
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Select the gel to manipulate. The gel will appear in the new 
window. Flip, rotate, or crop as desired.

Select “Save” As to create a new image for the alterations 
or “Done” to apply the alterations to the file image. Be 
sure to place all images to be used for analysis in the same 
folder and store them on the local analysis PC drive. This 
makes operations faster and smoother than from a CD or 
network drive.

(It is not advisable to crop DIGE images as many software applications 
require matched pixel numbers between each channel of the dyes, 
and cropping these images may affect the ability to overlay the dual 
channel images in a project.)

When gel images are positioned and cropped as desired, begin the auto-
mated analysis as follows:

Under the “Analysis” heading select “Automatic Analysis” — this 
will open up the analysis wizard (Figure 10.5a)

Name the experiment, and select the analysis type. Cross-stain 
analysis is for multiple images of the same gel (DIGE experi-
ments), and any other experiments, including single-channel 
fluorescence, should be single-stain analysis.

The next step is selecting the images for analysis. Open the 
folder of interest and highlight all gels to be included in the 
analysis (Figure 10.5b).

If you are performing a DIGE analysis, you can organize 
your images at this point. Group images of each gel from 
all channels and highlight the internal standard by right-
clicking on the Cy2 standard.

The next window (Figure 10.5c) allows regions of interest to be 
selected for analysis. Spots will only be automatically detected and 
matched within the green window. Generally, it is best to start with a 
global image analysis (gel box covering the entire image), and remove 
incorrect or nonrelevant spot information later.

The following window (Figure 10.5d) provides the option of combin-
ing technical replicates to generate a representative gel for a single 
sample. This option can reduce technical variation inherent to 2DE, 
improve the precision of a proteomic analysis and makes navigation 

−

−
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•
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−
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•
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of a DIGE experiment easier. However, it also makes any manual 
editing of the other images more difficult. It may be advisable to run 
the automatic analysis both with and without the creation of average 
gels.

If the user elects to create average gels, the next window (Fig-
ure 10.5e) will allow you to select analysis options to remove outly-
ing spots from the technical replicates. The parameters selected here 
are dependent on the consistency of the gels analyzed. If most are 
highly consistent, tight acceptance parameters can be utilized. If gels 
require manual editing, do not use average gels.

The next window (Figure 10.5f) prompts you to load an analysis pro-
tocol. If you have used Progenesis analysis software before on the 
sample and optimized the conditions for analysis, you can select a 
previously generated protocol or you can enter the spot detection 

•
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Figure 10.5  a) Automatic analysis. Enter the experiment name and stain type: 
single or cross-stain. b) Gel selection. Go to the experiment folder and select 
desired gels. c) Inspect images. View and highlight images that are of interest for 
analysis. d) Average gels. Group samples or technical replicates together and 
assign a master image. e) Average gel parameters. Select the conditions for the 
average gels. f) Select a reference gel. Pick a reference gel template for the exper-
iment. g) Spot detection criteria. Select criteria for inclusion of a spot during 
detection, or leave it blank and use the default settings. h) Background subtrac-
tion. Select the choice algorithm for background correction.
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parameters on your own, based on spot volume, circularity, area, 
etc. As it is difficult to gauge which values to use without visual trial 
and error from spot analysis, it is recommended to run through the 
analysis with no analysis protocol, and determine a reasonable pro-
tocol for future experiments using the spot-filtering tool that will be 
discussed in the manual editing section.

The next window prompts you to select an image from your experi-
ment to serve as a reference gel or import one from a previous exper-
iment. This image is used to perform matching. The gel selected 
should appear consistent with the other gels in the sample and, if 
possible, contain the most spots. This is done to make the reference a 
good representative of as many experimental spots as possible.

The next window (Figure 10.5g) allows you to toggle the spot detec-
tion option on and off and includes detection parameters saved in an 
analysis protocol. Again, it is beneficial to examine detection with-
out the introduction of spot parameters. However, if the optimal set-
tings are known, implement them.

The next window (Figure 10.5h) allows selection of background sub-
traction options. Mode of nonspot is the most common (nonspot 
pixel grayscale value); lowest on boundary and average on bound-
ary are background subtractions based on the pixel grayscale value 
of the border of the spot in question. Progenesis Background is a 
proprietary background correction algorithm. It may be prudent to 
compare several varieties of background subtraction and determine 
which works best in your particular analysis.

The next window (Figure 10.6a) is the gel warping and matching 
window. If TT900 has been utilized prior to analysis, turn off warp-
ing (the images would already be aligned using a superior program), 
otherwise leave the warp feature on as it aids in generating matches 
between images. The “Match detected spots to spots in the reference 
gel” feature can save manual image processing time and is essential 
to Progenesis analyses. The “combine warping and matching” feature 
adds to processing time. However, it may yield better results through 
iterative matching. This feature should not be used if the images are 
warped with TT900, as the matching process will be very different.
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The next window (Figure 10.6b) deals with spot numbers and 
unmatched spots. Adding unmatched spots to the reference gel can 
be toggled on or off. This allows spots not present on the reference gel 
to be incorporated into the experiments. Synchronizing spot num-
bers gives all matched identifications the same ID numbers between 
gels. This is very useful for exporting data for external statistical tests 
or viewing a spot of interest with the “Go to spot tool” under “Edit.”

The next window (Figure 10.6c) controls normalization. The user 
can select:

Ratiometric — Normalizes images based on ratios of internal 
standard (only appropriate for DIGE analyses).

Total spot volume — Normalizes base on the cumulative volume 
of all spots in an image (or all matched spots only if this option 
is selected).

•
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Figure 10.6  a) Matching parameters. Select warping and matching options b) 
Reference gel options. Select how spot information will be cataloged and incor-
porated with the reference gel. c) Normalization. Select the type of normalization 
for the experiment. d) Save and export experiment information. Save analysis 
protocols and export experiment XML files. e) View experiments to be run. Com-
pile list of experiments to be analyzed. f) Initiation of analysis. Start automated 
analysis. g) Progression of compilation of analysis. h) Compilation of analyses. 
Follow experiment progress to completion and view current compilations.
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Total volume ratio — The volume of each spot in each gel is nor-
malized by multiplying the ratio of total spot volume of the image 
by the base image (image used to generate a reference image).

Value — Every spot is multiplied by a specific value.

Match ratio — Every spot present in the image and base image 
has its volume corrected by multiplying the average of the spot 
ratios of the base image over the current image and multiplying 
this by the area of a single pixel in mm2.

The specific conditions of the user’s experiments may 
require specific normalization methods, but generally, total 
spot volume is appropriate for single-stained gel images 
with equal protein loading and ratiometric normalization 
is appropriate for DIGE-format images with a pooled Cy2 
internal standard.

The next window (Figure 10.6d) allows the user to save the analysis 
protocol for future experiments. If specific, customized detection 
settings are used, they can be saved at this point.

The next window (Figure 10.6e) lists the experimental setup to be 
run. If those are multiple experiments or multiple analysis condi-
tions for the same set of samples, they can all be set up here and will 
run sequentially. The user can then begin the automated analysis 
(Figure 10.6f). This can take minutes to hours depending on the size, 
number, and complexity of the images as well as the analysis options 
chosen (Figure 10.6g and Figure 10.6h).

B.  Evaluating the Automatic Analysis  When the analysis is complete, it 
is a good idea to briefly overview the results (Figure 10.7). Use the arrow 
icon to select regions of the gel to display in the montage window, or if the 
data set is too large to effectively view all the images at once, the animation 
window can be used to quickly view the same region across multiple gels. 
In addition to the spot detection, turn on match vector from the display 
options menu on the gel window and check that spot shifts on a gel rela-
tive to the reference gel are consistent for regions on the image (vectors 
in a recognizably different direction or magnitude from their immediate 
neighbors are signs of an incorrect match). If you are satisfied with the 
appearance of the analyzed images, data can be exported for statistical 
validation. Spot statistics can be performed within newer versions of 
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Progenesis. However, the newer versions may require the user to set up 
experiments in a specific manner (average gels), and this may not always 
be desired.

C.  Validation of Spot Information  Exporting the data into a spreadsheet 
program can be easily accomplished, and a greater variety of validation 
tests can be performed (Figure 10.8). Exporting the data can be performed 
using the “view” header and selecting the desired data from measurement, 
comparison, or expression window, then selecting the type of information 
to be extracted using the field selection icon on the top left of the measure-
ment, comparison, or expression window (usually, normalized volume is 
desired). The comparison window is usually the most useful, as it organizes 
the actual spot information in columns by gel, suitable for easy export for 
statistical validation. The order of the gels in the columns can be altered by 
selecting the selection tool icon and manipulating the gel order on the right 
side of the screen by right-clicking on a gel image and selecting “move up” 
or “move down.” If the data are arranged as desired, they can be exported 
by copying (Ctrl C) and pasting (Ctrl V) the data from the measurement, 
comparison, and expression windows into an external statistics program, 
and the desired statistical tests can be performed. Generally, this will be 
Student’s T-tests or analysis of variance. There is debate over the appropri-
ate statistical tests and confidence level to use for analysis, and the majority 
of this debate is beyond the scope of this section.

Any proteins of interest identified from an external list should be vali-
dated by manual examination. Simply put, the person examining the list 
should check every protein of interest to make sure that the changes are 
real (actual difference in spot volume, not background aberration) and 

Figure 10.7  Experimental navigation. Automatic analyses are complete; exam-
ine data using quantitative and visual tools.

C8105.indb   298 7/18/07   8:20:53 AM



Proteomic Data Analysis  <  299

both matching and spot boundaries are correct. This can be accomplished 
by using the “Go to Spot” feature under the “Edit” header. Make sure you 
have the correct gel of interest in the primary viewer, and enter the spot 
number in the box. Usually, it is advantageous to have the montage win-
dow open to check matching and the 3D viewer to assess the spot bound-
aries. The images from both the montage and 3D viewer can be exported 
easily to presentation programs like PowerPoint using copy (Ctrl C) and 
paste (Ctrl V) tools. If the image set is too large (more than 12 gels), it may 
be easier to simply use the animation tool on the 3D viewer as follows:

Open the 3D window and select the icon that looks like a film strip. 
This will allow the user to select which gels to be included, animation 
speed and rotation of the 3D image.

D.  Manual Spot Detection/Correction  Any spots that appear incorrectly 
matched or detected can be corrected manually. The methods for doing 
this are discussed here (Figure 10.9).

The images can be navigated and organized using the arrow tool from 
the menu (Figure 10.3). This tool allows selection of spots by clicking on 
them, and regions of interest drawing a box around the desired region. 
This box will also be the area used in montage and 3D views. Gel editing 
is selected with the “detect spots” icon and performed using the following 
tools outlined in Figure 10.3.

Manual spot detection is performed primarily with a few of the offered 
tools: the “draw spots,” “erase spots,” “auto merge,” and “spot splitting” 

•

Statistical output file

Figure 10.8  Identify proteins of interest. Use data output to identify potential 
proteins of interest using statistical software.
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tools. False spots can quickly be removed with the “erase spots” tool. Cor-
recting poorly detected spots is most easily performed by cutting with the 
spot splitting tool, which cleaves spots in line segments, or expanding the 
boundaries with the draw spots tool, which can add to the edges of the 
spot to appropriately engulf the spot. The draw spots and spot splitting 
tools are both useful for splitting spots as they offer more control than the 
“auto split” tool. Incorrectly defined spots in crowded gel regions are best 
resolved by merging the incorrect spots into one spot with the auto merge 
tool, and then using the spot splitting tool to define the specific spots cor-
rectly. The “add spot” tool is not often used as the spots that are effectively 
identified with this tool are usually correctly detected by the automatic 
analysis, and the others are easier to identify with the draw spots tool. The 
“edge grow” tool detects a small central region around the peak of a spot 
that grows outward with each mouse click. This is generally a slow way to 

35767_day1_grayscale 16

35767_day3_grayscale 16

35767_day2_grayscale 16

35768_day1_grayscale 16

35767_day1_grayscale 16

35767_day3_grayscale 16

35767_day2_grayscale 16

35768_day1_grayscale 16

Figure 10.9  Spot correction. Regions of poor detection are corrected using the 
“auto-merge” spot tool.
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reach the correct boundaries of a spot. Using the auto split tool is faster 
than the cutting tool, but it frequently makes errors, so the use of this tool 
should be restricted to occasions where it is the only option, such as on 
cross-stain analyses.

The version of the software used will also influence how the analysis 
is performed. If using an older version of the software, the spot correc-
tions should be performed on the actual gel image, whereas warping with 
TT900 and using SameSpots™ requires the reference image to be the one 
modified. Any spot identification changes should be checked in the 3D 
viewer window to ensure the boundaries are correct.

E.  Manual Spot Matching  Any changes introduced to the spots will 
result in their match to the corresponding spot in the reference gel to be 
broken, and the spots must be rematched after the spot editing. This is 
accomplished by selecting one of the matching options (Figure 10.3). The 
overlay matching tool is used to align the spots with the reference spots 
by overlaying the red and blue spot boundaries on the same image. This 
tool can be used to rapidly correct highly consistent gels. The montage 
(Figure 10.10) and window matches are performed by first selecting the 
desired spot for matching in the reference gel, followed by selecting the 
desired spot in the edited slave gels. When matched, the spots should 
appear highlighted and have match vectors indicating the direction of shift 
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35766 rescan_day2_graysc...

35766 rescan_day1_graysc... Gel_demo_1_Ref 35766 rescan_day1_graysc...
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Figure 10.10  Matching correction. Mismatched or newly edited spots are 
linked to the reference gel image.
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in the match relative to the reference gel. Generally, correcting matches 
from the montage works best as it provides a comparative view of many or 
all the gels simultaneously.

If the slave gel used to generate the reference is modified, the match-
ing procedure is more complicated. Any modified spot in this gel must be 
introduced to the reference gel with the “add to reference” feature under 
analysis. Before this is done, any spots overlapping the edited spot should 
be deleted from the reference gel — most quickly accomplished using the 
spot editing tools. This will remove all of the matches to the deleted refer-
ence spots. Adding spots to the reference gel can be accomplished using 
the “add to reference” feature and selecting the spot to add in the slave gel. 
The spot should then appear in the reference gel and can be matched to the 
corresponding spots in other gels as described previously.

If using a version of Progenesis with SameSpots™, matching will not be 
an issue as the spot boundaries from the reference gel will be applied to 
all slave gels. Issues arise only if the user wants to introduce a spot or a 
specific set of spot boundaries. To do this, delete interfering spots from the 
reference and use the “add to reference” tools as outlined previously, then 
use SameSpots™ again to apply the boundary information to all slave gels.

At the end of all manual editing, the normalization and background 
subtraction will be removed and must be reapplied from the analysis menu 
(Figure 10.11). The data can then be extracted and queried as mentioned at 
the end of the automatic analysis section.

Part III	S ample Data

The sample gels are shown in Figure 10.2.

Figure 10.11  Background subtraction and normalization. After manual edit-
ing, the gels are background-corrected and normalized for data mining as shown 
in Figure 10.8 and the “Progenesis Analysis” section.
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Section 2	 Analyzing Mass-
Spectrometry-Derived Data
Part I	I ntroduction
1.  The Scientific Utility of Mass Spectrometry and 
Mass Spectrometry Database Search Programs
Proteomics has been greatly advanced with the development of mass spec-
trometry methods. Mass spectrometry and the its related database search 
programs are important tools in proteomics, and they can be used to (1) 
identify peptides/proteins present in a sample, (2) characterize PTMs, and 
(3) quantitate proteins expressed in healthy and diseased tissues or body 
fluids, or cells treated with and without a therapeutic agent or agonist. In 
this section, the basic steps and commonly used mass spectrometry data 
analysis programs will be reviewed, and a step-by-step tutorial on how to 
use the Mascot Daemon program will be given.

2.  What Is Involved in Mass-Spectrometry-Derived Data Analysis?
Four basic steps are involved in analyzing mass spectrometry data: under-
standing the algorithm of the database search program, setting up data-
base search, interpreting the results, and further processing the results. 
This further processing is necessary so that a minimum set of protein 
sequences that adequately accounts for the observed peptides is reported.

A.  Understanding the Algorithm of the Database Search Program  Typ-
ically, the input for mass spectrometry database searches can be divided 
into three categories: accurate peptides molecular weights obtained from 
the enzymatic digestion of a protein (a peptide mass fingerprint, or PMF), 
MS/MS data from one or more peptide (an MS/MS ions search), and the 
combination of mass data with explicit amino acid sequence data or physi-
cochemical data which can be used to infer the amino acid sequence or 
composition (a sequence query). Several algorithms and computer pro-
grams have been described in the literature for protein identification/
quantification by searching a sequence database using mass spectrometry 
data, and the general approach to searching in all cases is similar. In order 
to identify the “unknown” protein, the experimental data are compared 
with calculated peptide mass or fragment ion mass values obtained by 
applying appropriate cleavage rules to the entries in a sequence database. 
Corresponding mass values are then counted or scored in a way that allows 
the peptide or protein that best matches the data to be identified. The aim 
is to pull out the correct entry if the “unknown” protein is in the database. 
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If the “unknown” protein is not in the database, then the aim is to identify 
those entries that exhibit the closest homology, most often equivalent pro-
teins from related species, or different proteins isoforms. The alternative is 
to carry out de novo sequencing which extracts the amino acid sequence 
information without the use of databases.

Four general types of algorithms have been used to match mass spectra 
to peptide sequences: probability-based matching that calculates a score 
based on the statistical significance of a match between an observed pep-
tide fragment and those calculated from a protein sequence database or 
sequence search library; cross-correlation methods, referred to as heuris-
tic algorithms, that correlate experimental spectra with theoretical spec-
tra; the use of unambiguous “peptide sequence tags” derived from spectra 
that are used to search known amino acid sequences; and de novo calling 
of the sequence directly from the spectrum.

B.  Setting Up a Database Search  The first step to setting up a database 
search is to create or download the protein database, generally in FASTA 
format. FASTA format is a text-based format for representing both nucleic 
and protein sequences, in which base pairs or proteins are represented 
using a single-letter code. The databases can be downloaded from a lot 
of Web-based resources, among which are National Center for Biotech-
nology Information (ftp://ftp.ncbi.nih.gov/blast/db/FASTA/), European 
Bioinformatics Institute (ftp://ftp.ebi.ac.uk/pub/databases), and Expert 
Protein Analysis System (ftp://us.expasy.org/databases/). The second step 
is to set up the search parameters, typically including the database, enzyme 
used for digest, number of missed cleavages allowed (typically two), fixed 
and variable modifications (for example, acetylation, oxidation), peptide 
mass tolerance (the allowed peptide mass error between experimental 
and theoretical data; instrument dependant), MS/MS ion mass tolerance 
(the allowed peptide fragment ion error between experimental and theo-
retical data; instrument dependent), mass type (monoisotopic or average; 
instrument dependent), and peptide charge. The third step is to input the 
experimental mass spectrometry data file, and sometimes the name and 
designation of the output file.

C.  Interpreting the Mass Spectrometry Database Search Results  For dif-
ferent database search programs, the output files will differ. Even so, the 
output file can be manipulated to find the most significant match between 
the experimental and theoretical mass spectra. For the probability-based 
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matching algorithm, the smaller the probability, the better the match. 
Typically, matches with p < 0.05 are accepted as significant. For cross-
correlation-based algorithm, the higher the X-corr (correlation score) and 
the bigger the ΔCn (normalized correlation score), the better the match. 
A typically cutoff filter is X-corr 1.9 for +1 ions, 2.2 for +2 ions, and 3.75 
for +3 ions with ΔCn > 0.1. In the cases with no significant match, data-
base search parameters would need to be changed, and another round of 
database search would be required. If a protein is identified with a single 
peptide (one-hit wonder), manual validation is absolutely necessary before 
it is reported.

D.  Further Processing of the Mass Spectrometry Database Search 
Results  In the experimental strategies based on proteolytic digestion 
of protein mixtures, proteins are digested to peptides, and the peptide 
sequences are identified through database search of mass spectrometry 
data and reassembled into proteins or a protein group. This strategy results 
in loss of connectivity between peptides and their protein precursors, and 
two outcomes are possible: distinct peptides that map to only one protein 
sequence, or shared peptides that map to more than one protein sequence. 
Although the identification of shared peptides implies that multiple related 
protein sequence are present, the initial assumption should be that only a 
single form is detected, and therefore a minimum set of protein sequences, 
or a nonredundant protein list should be reported. Programs such as Pro-
teinProphetTM (http://proteinprophet.sourceforge.net/, Institute for Sys-
tems Biology) and Pro GroupTM (Applied Biosystems) are designed for this 
purpose. Pro GroupTM is an integral part of the ProteinPilotTM database 
search program (Applied Biosystems).

For large-scale experiments, the results of any additional statistical 
analyses that indicate or establish a measure of identification certainty, or 
allow a determination of the false-positive rate, need to be provided. For 
false-positive rate estimation, a reversed database is created by precisely 
reversing the order of the amino acid sequence for each protein so that 
the C terminus becomes the N terminus. A composite database is created 
by adding the reversed database after the forward database. All MS/MS 
spectra are searched against this indexed database, and the results are 
filtered using the same criteria for the forward database. The false-posi-
tive rate is estimated by doubling the number of peptides found from the 
reversed database and dividing the result by the total number of identified 
peptides from both databases according to the following formula: % fal = 
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2[nrev/(nrev + nreal)], where % fal is the estimated false-positive rate, nrev is 
the number of peptides identified (after filtering) from the reversed data-
base, and nreal is the number of peptides identified (after filtering) from the 
real database.

3.  Some Commonly Used Mass Spectrometry 
Database Search Programs
Mass spectrometry has become the method of choice for protein identifi-
cation, quantitation, and characterization. Algorithms and computer pro-
grams for mass spectrometry database search have improved rapidly in 
speed, sensitivity, and specificity. In general each instrument company has 
its own database search programs that are compatible with its instrument 
data format, and there are also programs that are compatible with multi-
ple data formats. Table 10.1 lists some commonly used mass spectrometry 
database search programs, and some of their features are briefly discussed 
in the following text.

Mascot. Mascot is the most commonly used database search program 
and can be freely accessed at the uniform resource locator (http://www.
matrixscience.com). It is a probability-based program, and it is compatible 
with all three types of input of mass spectrometry database search: PMF 
data, MS/MS data, and sequence queries. It is also compatible with multi-

Table 10.1  �Some Commonly Used Mass Spectrometry Database Search Programs

Program Algorithm
Open-Source or 

License Required

Associated 
Companies (license 
required) or URLs 

(open-source 
programs) 

Mascot Probability-based Open-source, but many 
more functions with 
license

http://www.
matrixscience.com 

BioworksTM Cross-correlation-
based and 
probability-based

License required Thermo Electron 
Corp.

ProteinPilotTM Probability-based License required Applied Biosystems/
MDS Sciex

OMMSA Probability-based Open-source http://pubchem.
ncbi.nlm.nih.
gov/omssa/

X!Tandem Cross-correlation-based Open-source http://www.thegpm.
org/TANDEM/
index.html
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ple data formats from different mass spectrometry instrumentation com-
panies, for example, Voyager DAT files from Applied Biosystems, Analyst 
WIFF data files from Applied Biosystems/MDS Sciex Analyst, Thermo 
Electron Xcalibur/BioWorks Raw files, and Waters MassLynx sample list. 
If Macot Distiller (which requires an additional license) is installed, a wide 
range of native file formats can be processed. 

BioWorksTM. BioWorksTM from Thermo Electron is used to search data 
files generated specifically from Thermo Electron Instruments. The old 
version of BioWorks is based on Sequest, a cross-correlation-based algo-
rithm. The latest version also incorporated a probability-based algorithm, 
so that both the correlation scores and probabilities of peptides and pro-
teins are reported, and that the results can be compared with those gen-
erated from other probability-based search engines. The latest BioWorks 
contains a tool for easy creation of reverse databases for false-positive rate 
evaluation. One unique feature of BioWorks is that it can search an indexed 
database, which contains the mass of each peptide generated by using the 
appropriate enzyme to cleave each protein sequence entries in the protein 
FASTA database, and therefore speed up the database searches. PepQuan 
in BioWorks can be used for peptide/protein quantitation with data gener-
ated from isotope-coded affinity tag (ICAT/c-ICAT), isobaric tagging for 
relative and absolute quantitation (iTRAQTM, Applied Biosystems), and 
stable isotope labeling with amino acids (SILAC) experiments.

ProteinPilotTM. ProteinPilotTM (Applied Biosystems/MDS Sciex) is an 
integration of two steps: peptide/protein identification and quantitation 
using the ParagonTM algorithm and further processing of the results to 
report a minimum group of proteins using the Pro GroupTM algorithm. 
It can be used to analyze data files generated using the quadrupole time-
of-flight and hybrid triple quadrupole linear ion trap mass spectrometers 
from Applied Biosystems. The ParagonTM search algorithm enables over 
150 peptide modifications simultaneously, and the Pro GroupTM algorithm 
can be used to distinguish protein isoforms, protein subsets, and suppress 
false-positives.

Open Mass Spectrometry Search Algorithm (OMMSA). OMMSA is an 
efficient search engine for identifying MS/MS peptide spectra by searching 
libraries of known protein sequences. It is compatible with collision-acti-
vated dissociation MS/MS (CAD-MS/MS) spectra from ion trap mass spec-
trometers and electron transfer dissociation MS/MS (ETD-MS/MS) spectra. 
OMSSA scores significant hits with a probability-based algorithm. OMSSA is 
free and in the public domain (http://pubchem.ncbi.nlm.nih.gov/omssa/).
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X!tandem. X!tandem is an open-source search engine (http://www.
thegpm.org/TANDEM/index.html) that has been optimized for speed. It 
generates theoretical spectra for the peptide sequences using knowledge 
of intensity patterns associated with particular amino acid residues. These 
spectra are then correlated with the experimental data and, subsequently, 
an expectation value is calculated. This algorithm is straightforward to 
implement using open-source software, and it results in speed improve-
ments by factors exceeding 1000X, compared to the conventional, single-
step algorithm.

For large-scale MS/MS data, different database search programs will 
generate comparable but somewhat different protein identifications. Appli-
cation of a rescoring algorithm, such as PeptideProphet, could improve 
the results. PeptideProphet automatically validates peptide assignments 
to MS/MS spectra made by database search algorithms such as Sequest. 
Merging and combining database search results using different search 
algorithms has merit, and the scores could be considered as independent 
and orthogonal.

Part II	S tep-By-Step Tutorial

Mascot Daemon, a client application that automates the submission of 
searches to a Mascot server, is used for demonstration purposes because it 
is compatible with a wide range of data platforms, and it is by far the most 
commonly used program. Here, we will demonstrate how to use Mascot 
Daemon to analyze the MS/MS data acquired on the Thermo Electron lin-
ear ion trap (LTQ) mass spectrometer. Data acquired from other instru-
ments can be analyzed when the settings are adjusted accordingly.

1.  Setting Up a Database Search
The demo example is a raw file, demo.raw. Briefly, mouse bronchoalveolar 
lavage fluid (1 µg) was separated on one-dimensional gel electrophoresis, 
and the resulting gel was silver stained. The band around 50 kD was 
excised. The protein was reduced with dithiothreitol, alkylated with iodo-
acetamide, and in situ digested with trypsin. The peptides were extracted 
and analyzed on LTQ interfaced with reversed-phase HPLC (Agilent 
Technologies, Foster City, CA).

A.  Set Up the Path to the Data Import Filter for Data File Search and the 
Directory for Storing the Peak List Generated from Data Import Filter  To 
do this, open Mascot Daemon, go to Edit→ Preferences → Data import 
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filters, and then use the Browse button to set up these two paths (Full path 
to LCQ_DTA.EXE has to point directly to extract_msn.exe itself); then 
save and close the window.

B.  Define the Search Parameters  Click on the “Parameter Editor” tab 
and you will see the default setting. Some of the default parameters need 
to be changed according to experimental conditions. In this case, the final 
parameters are as following (as shown in Figure 10.12):

Search title: Demo

Taxonomy: Mus musculus

Database: NCBInr

Enzyme: Trypsin

Maximum missed cleavages: 2

Fixed modifications: Carbamidomethyl (sample was alkylated with 
iodoacetamide)

Variable modifications: Oxidation (M)

Figure 10.12  Define the search parameters.
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Monoisotopic or average: Average (on LTQ, the peptide masses are aver-
age masses)

Peptide tolerance ±: 0.8 Da (LTQ has unit resolution)

Peptide charge: 1+, 2+ and 3+

MS/MS ions search: Checked

Data format: Mascot Generic

Protein summary or peptide summary: Peptide summary

MS/MS tolerance ±: 0.8 Da

Instrument: ESI-TRAP

Click on the “Save As” button to save the parameter file as “LTQ.par.”

C.  Create and Run a Task  Click on the “Task Editor” tab and you will 
see the default screen. Change the settings accordingly and input the data 
files. The data file for search has to be on the local computer. In this case, 
the final “Task Editor” tab is shown as in Figure 10.13 with the following 
settings:

Task: demo.

Parameter set: LTQ.par.

Data import filter: ThermoFinnigan LCQ/DECA raw file.

Data file list: demo.raw (You can input a batch of raw files in one task);

Schedule: Start now. (You can schedule a time by checking “start at” 
option and put a time; or you can check “Real-time monitor” if you 
are still acquiring data on the instrument and want to search in real 
time; or you can check “follow up” if this is a follow-up search.)

Follow-up: No follow-up required.

Click on the “option tab” in the Data import filter, click on the lcq_dta.
exe tab, and change the settings for DTA file generation. Typical settings 
are shown in Figure 10.14.

Click on the “Run” button, and the display will switch to the “Status” 
tab. Initially, the task will show as an hourglass. Once the task is running 
and the search is submitted, the icon will change to a clock face. You can 
switch to the “Event Log” tab at this time to see if there is any problem. 
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If there is a problem, e.g., peak list not recognized or no output from the 
lcq_dta.exe, the details will be recorded in the “Event Log” tab. If every-
thing is normal, as the task is being processed, the Event Log would state 
“Starting new task,” “Search submitted,” “Search completed,” and finally 
“Task completed.” On the status tab, a completed task is indicated by a 
green tick.

2.  View and Interpret the Results
Once the search is done, on the “Status tab” you can expand the task node 
and click on the result node to show the result details on the right. A lim-
ited amount of information for each result can be displayed by clicking on 
the result node. To view the full report, click once on the blue hyperlink, 
and the report will be loaded to your default Web browser. Figure 10.15 
shows the results of this database search.

A.  Header and Search Parameters  These are displayed on the top of the 
report, as shown in Figure 10.15A.

Figure 10.13  Change the settings and input data files on the “Task Editor” 
tab.
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B.  Types of Report and Format Controls  You can select the type of report 
by pulling down the arrow in the “Select Summary Report” session, and 
then click the “Format As” button. There is a list of variable formats you 
can choose from. The default format for PMF results is a “Concise Pro-
tein Summary,” where proteins that match the same set, or a subset, or 
mass values are grouped into a single hit. For MS/MS searches of less than 
1000 spectra, the default report format is “Peptide Summary,” which pro-
vides the clearest and most complete picture of the results, especially if 
the sample is a protein mixture. In the Peptide Summary, a minimum set 
of proteins that completely accounts for the peptide matches found the 
experimental data is reported. For MS/MS searches of more than 1000 
spectra, the best format is “Select Summary,” which is similar to Peptide 
Summary, but provides a very compact view of the results. In this case, we 
have more than 1000 MS/MS spectra, so the best format is Select Summary 
(protein hits) as shown in Figure 10.15A. If you switch to Select Summary 
(unassigned), you will see the list of peptide matches not assigned to pro-
tein hits, and if there are no details it means no match.

There are some other format controls in addition to types of report:

Figure 10.14  Typical settings for DTA file generation using lcq_dta.exe.
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Significance threshold: The default is p < 0.05. You can change this to 
any value in the range 0.1 to 1E−18.

Maximum number of hits: This is the maximum number of protein hits 
to report, and this can be set when the search is submitted. For protein 
Summary Report (format for PMF), the maximum number is 50. There 
is no limit for Peptide Summary or Select Summary for MS/MS results. 
If you put Auto or 0, it will display all the hits that have a protein score 
exceeding the significance threshold, plus one extra hit. In our case, we 
do not know how many proteins are there, so the input is Auto.

Standard or MudPIT scoring: Multidimensional protein identification 
technology (MudPIT) is a more aggressive protein scoring. This 
removes many of the junk protein hits, which have high protein score 
but no high-scoring peptide matches. It is the default for searches 
that have more than 1000 queries.

Ions score cutoff: In Mascot, the score for an MS/MS match is based 
on the absolute probability (p) that the observed match between the 
experimental data and the database sequence is a random event. The 

Figure 10.15A  A typical display of results. (A) Header and search parameters, 
and types of report and format controls display.
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reported score is −10Log(P). So, the lower the P (the better the match), 
the higher the ions score. By setting this to a certain number, you elim-
inate all the peptide matches that have scores lower than this number.

Show subsets: By default, each hit in the Peptide Summary shows the set 
of proteins that matches a particular set of peptides, and the proteins 
that match a subset of those peptides are not shown. You can choose 
to show these additional protein hits, but this may make the report 
much longer.

Show or suppress pop-ups: The JavaScript pop-up windows that display 
the top ten peptide matches for each query are helpful; however, they 
increase the size of the report, which takes longer to load in a Web 
browser. You can choose Suppress pop-ups to avoid this.

Sort unassigned: These are sorting options for the list of peptide matches 
that are not assigned to protein hits.

Require bold red: In the results, you can see that peptides could be in 
bold red, bold dark, red but not bold, or dark plain text. The red 
means that it is the rank number 1 peptide match for that query, 
and the bold means that this is the first time this peptide match to 
a query appears in the report. Requiring a protein hit to include at 
least one bold red peptide match is a good way to remove duplicate 
homologous proteins from a report.

C. Body of Report  The body of the Peptide Summary report contains a 
tabular listing of the proteins, sorted by descending protein score, a sec-
tion of which is shown in Figure 10.15B. The number of proteins reported 
can be set by putting a number in the “Max. number of hits” in format 
control.

For each protein, the first line contains the accession string, the protein 
molecular weight, a nonprobabilistic protein score (which is derived from 
the ions scores), and the number of peptide matches. The accession string 
links to the corresponding Protein View of peptide matches; an example 
is shown is Figure 10.16. The matched peptides are shown in bold red. The 
second line is a brief descriptive title for the protein, and this is followed 
by a table summarizing the matched peptides. The contents of the table 
columns are described briefly in Table 10.2. If any variable modifications 
are found for that peptide, they will be listed after the peptide sequence. 
However, the exact sites of modification will not be listed here, and you 

C8105.indb   314 7/18/07   8:21:08 AM



Proteomic Data Analysis  <  315

Figure 10.15B  A typical display of results. (B) body of report display.

Figure 10.16  An example of Protein View.
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have to use Peptide View, which displays the MS/MS spectrum with the 
matched ions in red, and a list of b and y ion masses with the matched ions 
highlighted in bold red. Clicking on the hyperlinked query number opens 
the Peptide View for the match in a new browser window. An example of 
Peptide View is shown in Figure 10.17. Resting the mouse cursor over the 
hyperlinked query number causes a pop-up window to appear, displaying 
the complete list of peptide matches for that query. The pop-up window 
displays the query title, followed by one or two significance thresholds. 
Then, there is a table containing information on the highest-scoring pep-
tide matches for the query. In the table, the “Hit” column is the number of 
the (first) protein containing the peptide match, and a plus sign after the 
hit number indicates that multiple proteins contain a match for this pep-
tide. The protein column contains the accession string of the (first) protein 
containing this peptide match.

In most cases, there is prior knowledge of the origin of a sample, so it is 
only natural to look for matches to proteins that fit. In our case, it is from 
mouse and it is from a gel band around 40 kD, so the correct proteins 
should be around 40 kD from mouse. We searched the mouse database, 
and we found several proteins with high score and reasonable molecular 
weight, including haptoglobin (39 kD), albumin (67 kD), Fibrinogen, B 
beta polypeptide (55 kD), and sulfated glycoprotein-2 isoform 2 (44 kD). 
These proteins all have high-score peptides, and they seem real. However, 
before we state that they do exist in the sample, we need to open the Pep-

Table 10.2  Contents of the Table Columns Summarizing the Matched Peptides

Column 
Contents Brief Description

Query Hyperlinked query number 
Observed Experimental m/z ratio
Mr (expt) Molecular mass transformed from experimental m/z ratio
Mr (calc) Calculated molecular mass of the matched peptide
Delta Difference (error) between Mr (expt) and Mr (calc)
Miss Number of missed enzyme cleavage sites
Ions score Ions score for that match; if there are multiple matches to the same 

peptide, then the lower-scoring matches are shown in brackets.
Expect Expectation value for the peptide match, e.g., the number of times 

we would expect to obtain an equal or higher score purely by 
chance. The lower this value, the more significant the result.

Rank Rank of the ions match. On a scale of 1 to 10, 1 is the best match.
Peptide Peptide sequence in 1-letter code. If any variable modifications are 

found for this peptide, they will be listed after the sequence string.
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tide View to confirm at least a couple of peptides for each protein. We 
also have 7 bold red proteins from Complement C3 precursor, which is a 
188-kD protein. Most likely, we are detecting a degradation product from 
it. This is confirmed by clicking on the accession number of Comple-
ment C3 precursor (Figure 10.16). All the peptides, except the first one, 
are toward the C-terminal of Complement C3 precursor. The first peptide 
KDTLPESR does not seem real, because it has a rank number of 4 and 
ions score of 11. From the Peptide View we are able to confirm that it is 
not real. We also detected keratin family proteins; most likely these are 
contaminants from sampling and in gel digest.

If the search is restricted to a particular species and the genome of 
the species is not completely sequenced, there is no guarantee that the 
sequence of the analyte protein is actually present in the database. In this 
case, we may need to search a bigger database to find homologous proteins 
from other species. These searches, however, will take longer to search and 
have a potential for increased false-positives.

Part III	S ample Data

Figure 10.18 shows the total ion current chromatography for the raw 
file demo.raw.

Figure 10.17  An example of Peptide View.
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Section 3	 Analyzing data derived 
from Protein Microarrays
Part I	I ntroduction
1.  Types of Protein Microarrays
Protein microarrays are being adopted as a critical tool in many fields of 
biochemical and molecular biological research. Most protein microarray 
platforms are created by using specialized robots to dispense micro vol-
umes of sample onto slides. Over the last several years, protein microar-
rays have become more complex, with advances in both the number of 
samples printed onto each platform and the number of functions that each 
is able to accomplish.

There are two major classes of protein microarrays that are currently 
available: analytical and functional protein microarrays. The most com-
mon are the analytical microarrays, which include antibody microarrays. 
A major advantage of antibody microarrays is their capacity to generate 
high-throughput quantitative and qualitative information from a small 
volume of a single biological sample. With advances in the production of 
highly specific and selective antibodies, the increase in the number of bind-
ing molecules on each microarray has enabled the generation of a plethora 
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Figure 10.18  Total ion current chromatography for demo.raw. The x-axis 
shows time and the y-axis shows the total ion current intensity.
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of information in a single experimental run. However, the quality of each 
antibody, the interaction of the antibodies and analytes in combination 
(when multiplexed), and matrix affects will determine the accuracy of the 
multiplex. The functional microarray platforms are also being increasingly 
applied and so far have focused on protein interactions with molecules, 
including proteins, lipids, DNA, drugs, and peptides as a means of access-
ing biological or cellular functionality. This induces the capture of single 
proteins, protein complexes, organelles, and even cells. Other applications 
of functional microarrays have been used to analyze other protein func-
tions such as biochemical activity (e.g., kinase activity) and the induction 
of immune responses. This capture will deal only with protein–protein 
(antibody) interactions, but similar data processing and analysis occur 
regardless of type or complexity of the moiety captured on the array.

2.  Why Is Protein Microarray Analysis Important?
Like mass spectrometry and mass-spectrometry-related database search pro-
grams, protein microarrays and their related data analysis software can be 
used for protein identification, protein quantitation, and characterization of 
protein PTMs. A major benefit of using protein microarrays is the increased 
throughput, which allows researchers to study theoretically thousands of 
known or candidate proteins at the same time. Similar to gene arrays, each 
protein array experiment generates large amounts of data, potentially allow-
ing a global perspective. This has pushed biological research to expand into 
the field of bioinformatics, which use complex techniques of applied math-
ematics, informatics, statistics, and computational algorithms to analyze 
biological data. Bioinformatics tools still remain the principal method for 
protein microarray dataset interpretation of protein abundance, quantita-
tion, and PTMs. More importantly, bioinformatics tools can be applied to 
compare and profile groups of datasets to determine the level of “related-
ness” between samples in multiple dimensions.

3.  Procedures in Executing Protein Microarray Data Analysis
To analyze data obtained from protein microarrays and to quantify and 
identify changes between datasets, the data need to be processed. Steps 
necessary for data analysis include the following; (1) spots and perime-
ter identification, (2) importing data files from the microarray scanning 
source, (3) normalization and quantification, (4) analyzing all datasets 
statistically, and finally (5) clustering and making multidimensional com-
parison of samples.
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A.  Identification of Spots and Perimeter Identification  There are numer-
ous ways to scan a protein array slide and obtain the corresponding spot 
intensities. Of the available commercial scanners, Molecular Devices’ 
GenePix (formally known independently as Axon Instruments) micro-
array scanners (www.moleculardevices.com) are one of the most popu-
lar scanners available for image analysis of protein arrays that have been 
printed on microscope slide platforms. Other scanning instruments cur-
rently available are Agilent Technologies DNA Microarray scanner (www.
agilent.com) and GE Healthcare’s (formally known as Amersham Biosci-
ences) Typhoon 4910 scanner (www.amershambiosciences.com). Gener-
ally, all scanners have application software (e.g., GenePix Pro with GenePix 
scanners) to control the scanner settings, generate high-resolution tagged 
image format files (.tiff), and perform image analysis. One of the most 
crucial steps in evaluating the signal of microarray spots after scanning 
is to define the limits of the signal by assigning perimeters (borders) 
around each spot. The printing of irregular spots as seen in most microar-
ray platforms complicates the analysis in many dimensions. Fortunately, 
the discrepancies could be alleviated by using an automated system that 
identifies signal from the background. An example of the automated spot 
perimeter identification in GenePix Pro can be seen in Figure 10.19. One 
of the benefits of these programs is that it also allows users to person-
ally customize or alter any minor differences that are not corrected by the 
automated analysis. Once perimeters have been assigned, spot intensity 
quantifications are exported as spreadsheets, usually in the format of text 
(.txt) files. The text file format is a widely accepted format for most micro-
array analysis programs.

B.  Importing Data Files from Microarray Scanning Sources  Most of 
the popular software available contain a wide range of analytical tools 
and algorithms to calculate statistical differences and graphically dis-
play the information as graphs and tables. Although some applications in 
these programs are specifically designed for gene arrays only, the major-
ity of the analysis tools are applicable to proteins arrays. Such programs 
include Agilent Technologies’ GeneSpring GX and, for the more com-
puter-literate individual, Bioconductor of R (www.bioconductor.org). It 
is very important to have (or convert if necessary) the files in the correct 
format for the specific software that will be used. The advantage of most 
spreadsheets is that they can be opened in a number of programs and 
can be edited and analyzed independently. Each spreadsheet contains 
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the scanning parameters and spot information. An example of a spread-
sheet generated from GenePix Pro is illustrated in Figure 10.19. Once the 
appropriate file has been imported into the analysis program, the user 
can analyze the information and see the quantification values for each 
spot on the array. In most programs, parametric values created for each 
array include block numbers, column and row coordinates, diameter and 
volumes of spots targeted, and the intensity and background values for 
individual spots within the array. Datasheets also include basic statisti-
cal information such as mean, median, and standard deviation values. 
Furthermore, normalization is generally conducted prior to import into 
the analysis programs.

C.  Normalization and Quantification of Protein Microarrays  Compar-
ing data generated from different protein arrays can be problematic. Dif-
ferences with the extent or type of protein labeling, affinity and avidity 
of protein capturing, spot sizes, slide batches, and scanner settings are 
some factors that strongly influence the experimental results. Therefore, 
it is necessary that all datasets are normalized in the same manner or 
with a subset of controls run across all platforms. In almost all cases, 

Figure 10.19  Example of spreadsheet generated from GenePix Pro software.
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it is not possible to compensate for all the possible variations that can 
potentially alter experimental results. Like most protein quantification 
assays, normalization in protein arrays is compensated by having known 
purified samples as standards to compare with the unknowns. This alle-
viates many of the complications from variations between experiments 
and batches as seen in gene arrays. Once standard quantifications have 
been established, normalization across samples can be easily done for the 
unknown samples. Quantification can be carried out using automated 
algorithms that are incorporated into microarray software packages 
or independently using spreadsheet programs such as Microsoft Office 
Excel (www.microsoft.com). The data from some microarrays could not 
be normalized if protein standards are not available. An example is cell 
arrays in which the signal detected is dependent on the intensity of refrac-
tion from cells bound to each spot. As with gene arrays, normalization 
is conducted after image analysis but prior to subsequent data analysis. 
The most common procedure for normalization in these cases is to do a 
one-per-spot normalization together with one-per-chip normalization. 
Normalized datasets are generally compared using the median intensi-
ties of each array.

D.  Statistical Analysis of Protein Microarray Results  Statistics is used to 
identify significant differences in protein quantity levels between samples 
and components across experiments. This comparison is performed for 
each protein within the identifier and across array samples, and the most 
significant identifications are returned, i.e., proteins identified with the 
smallest p-value. The most common statistical model used for analyz-
ing samples in experimental pools has been using analysis of variance 
(ANOVA) tests. In practice, there are several types of ANOVA tests, 
depending on the number of treatments and the way they are applied to 
the subjects in the experiment. When performing each test, it is important 
to choose the specific test to compare your samples with and also set the 
parameters you want the program to apply. When performing an ANOVA 
test, specific parameters that define your group of tests, parametric and 
nonparametric tests, p-value cutoff, and the multiple testing correction 
options need to be defined.

E.  Clustering and Comparing of Protein Microarray Results  A fun-
damental reason for protein microarray analysis is to understand the 
biological mechanisms by which experimental systems differ from one 
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another at multiple dimensional perspectives. One of the complications 
with protein microarray analysis is the complexity of information that is 
generated from a single experiment and between multiple samples within 
an experimental pool. Combining statistical analysis with clustering 
algorithms enables researchers to visually deconvolute large datasets of 
information to a simplified format (refer to “Clustering Technique in Gene 
Arrays” section for additional information). The principle of this tool is 
to analyze and compare protein expression (quantity or ratios) profiles in 
multiple dimensions. This is a very powerful tool in that it has the capa-
bility to cluster components from large sets of data and, in most cases, 
cluster coregulated proteins that often belong to the same biological path-
way or protein complexes into a single group. What clustering does is to 
extrapolate patterns of protein quantity into subgroups and subclasses. 
Most clustering algorithms can generally perform two-dimensional clus-
tering. The first dimension usually clusters sample together in relationship 
or “expression” profiles of samples. An example of this is looking at lon-
gitudinal studies (e.g., prognosis of a disease) in which classes of samples 
should group together based on the groups or types of proteins altered at 
a particular stage of disease development. Second, dimensional analysis 
can be carried out to further cluster proteins with expressed at similar 
levels (or quantities or ratio) across the pool of samples (cross-sectional 
analysis). The clustering of these proteins generally signifies the groups of 
proteins responsible for the changes between sample groups.

4.  Examples of Protein Microarray Analysis Programs
Aligent Technologies’ GeneSpring GX. GeneSpring GX is a powerful 
visualization and analysis program that has been designed for use with 
expression data from gene arrays and also quantitation levels of other array 
platforms such as protein arrays. One of the advantages of this program is 
it allows researchers to identify targets quickly and reliably. By providing 
statistically (ANOVA, Student’s T-test) meaningful results, GeneSpring 
GX enables prediction of clinical outcomes and characterization of novel 
“expression” patterns. Furthermore, it is part of an integrated analysis 
suite that enables a visual and analytical comparison between quantity, 
genotyping, proteins, metabolites, and other data types to answer com-
plex biological questions.

Bioconductor for R. Bioconductor is an open-source and open-devel-
opment software project for the analysis and comprehension of micro-
array data that have been specifically designed for the R programming 
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language. Although the program has been specifically designed to analyze 
genomic data, users of the software are able to reprogram the algorithms 
for compatibility with all microarray platforms, including protein arrays. 
Generally, there are a number of subpackages that can be installed with 
the program for certain analysis purposes. In addition, the R package sys-
tem itself provides implementations for a broad range of state-of-the-art 
statistical and graphical techniques, including linear and nonlinear mod-
eling, cluster analysis, prediction, resampling, survival analysis, and time-
series analysis.

Part II	S tep-By-Step Tutorial
1.  Agilent Technologies: GeneSpring GX
GeneSpring GX is used in this demonstration for statistical analysis pur-
poses. It is one of the most user-friendly and comprehensive programs 
available for microarray analysis. GeneSpring GX is a program that has 
been designed principally for the analysis of image files exported from 
scanning devices such as GenePix and Affymetrix (www.affymetrix.com) 
scanners. Although many of the applications apply only to gene arrays, it 
has the capability of analyzing all microarray platforms, including protein 
arrays.

The demonstration here is to identify the differences in protein quan-
tity of a series of known candidate proteins extracted from tissue obtained 
from patients with ischemic heart disease or idiopathic dilated cardiomy-
opathy and compared them to those from healthy donors. Normalized 
datasets (Table 10.3) are obtained from cell protein arrays that capture 
cluster of differentiation (CD) surface proteins on white blood cells using 
the image analysis program GenePix Pro.

	 1.	Initiating new experimental analysis in GeneSpring GX
	 a.	 Open the program by double-clicking the shortcut “GeneSpring 

GX 7.3.1.”
	 b.	 Once the program is opened, load the specific array platform that 

you wish to analyze, e.g., CD antibody array. You will see a list of 
proteins that will be examined in the data analysis, as shown in 
Figure 10.20.

	 c.	 Go to File → Import Data and a window should pop up. At this 
stage, only one file is needed to initiate a new analysis.

	 d.	 Select the array platform that you are using.
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	 e.	 At the top of each column, select from the scroll bar at the top of 
each column the “Gene Identifier” and the “Signal” for the nor-
malized data as seen in Figure 10.21.

	 f.	 Import the rest of the files that the user would like to analyze 
by clicking on each individual file or by clicking “Add All” if all 
your files are in the same directory.

	 g.	 Fill in as many parameters in the sample attributes table.

Table 10.3  Normalized Data Sets of Cell Protein Microarrays
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Figure 10.21  Assignment of titles to columns in imported text (.txt) files.

Figure 10.20  Opening window with list of proteins to be analyzed in protein 
array.
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	 h.	 Click “Ok” to verify the list of samples in the pool for analysis 
and then finally save the experiment in a subfolder in the “Exper-
iments” folder.

	 i.	 Once completed, a “New Experiment Checklist” window will 
pop up. This window contains options for normalization of cer-
tain parameters in the user’s imported datasets, as seen in Fig-
ure 10.22. If necessary, apply the built-in algorithm (“Per Chip” 
or “Per Gene” options) to normalize data if you have not done so.

	 j.	 The user has completed a new experimental run. The main data 
analysis window should pop up with a control column on the 
left, colored bars on in the center, and a color intensity bar scale 
on the right, as seen in Figure 10.23.

	 2.	Statistical analysis of normalized data
	 a.	 To run statistical analysis, go to Tools → Statistical Analysis 

(ANOVA).
	 b.	 Assign the proper categories and parameters for your test and 

also the samples which you want to compare with. This is shown 
in Figure 10.24. A common practice with this specific run is that 
the user can do multiple analyses on a number of sample groups 

Figure 10.22  Data setup options.
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Figure 10.24  Statistical analysis using ANOVA.

Figure 10.23  Primary analysis window.
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and parameters. You can use the number of parameters to set the 
number of tests.

	 c.	 A table of significant changes will be listed. Save the list to a des-
ignated folder, as shown in Figure 10.25. Tables can be copied 
and saved as spreadsheets.

	 3.	Clustering and sample comparison
	 a.	 To run the clustering analysis, go to Tools → Clustering → Gene 

Tree. This tool clusters together proteins that belong to the same 
biological pathway or protein complexes into a single group. In 
this instance, we could cluster the list of proteins identified from 
the ANOVA tests. Find the file from the control column and select 
the file that contains the list of proteins. Again, make sure that 
you use the correct parameters (mainly similarity measurement 
test and clustering algorithm) that the user would like the sam-
ples to be analyzed with. Once the computational analysis has 
completed, a block and a Gene Tree are generated. Save the file in 
the designated folder.

	 b.	 Repeat the same procedures for Tools → Clustering → Condition 
Tree. Save the file that is generated in the “Condition Tree” folder.

Figure 10.25  ANOVA test results.
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	 c.	 The clustering analysis is now completed. The user can review the 
two-dimensional analysis results by going to the main window 
and select the saved files in the “Gene Tree” and the “Condition 
Tree” folders within the control panel bar. The partial results of 
the clustering in this demonstration are shown in Figure 10.26.

Part III	S ample Data

The sample data are shown in Table 10.3.
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Section 1	P rimary Structure Analysis
Part I	I ntroduction
1.  What Is Primary Structure Analysis?
Most natural polypeptides contain between 50 and 2000 amino acid resi-
dues and are commonly referred as proteins. The mean molecular weight 
of an amino acid residue is about 110, and so the molecular weights of 
most proteins are between 5,500 and 220,000. Each protein has a unique, 
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precisely defined amino acid sequence, and it is often referred as its pri-
mary structure. Analyzing the amino acid sequences using a primary 
structure analysis program is the initial step to predict the functions and 
three-dimensional structures of proteins. A classical method to determine 
amino acid sequence is Edman degradation, in which amino acid residues 
are removed stepwise from the N-terminus by reaction with phenylisothio-
cyanate. This method was named after Pehr Victor Edman (1916–1977), a 
Swedish protein chemist, who described the method in 1956. Frederick 
Sanger, an English biochemist and a two-time Nobel laureate, determined 
the complete amino acid sequence of insulin in 1955, which earned him 
his first Nobel Prize in Chemistry in 1958. This section will not describe 
direct amino acid sequencing but will cover the bioinformatic analysis of 
primary structure, including (1) computation of theoretical pI (isoelectric 
point) and Mw (molecular weight) of proteins, (2) de novo repeat detection 
in protein sequences, (3) hydropathy plot for proteins, and (4) hydropho-
bic cluster analysis of proteins.

2.  What Is Involved in Primary Structure Analysis?
Two simple steps are involved in the primary structure analysis of pro-
teins: selecting protein sequences and computing them, using specific pro-
grams such as Compute pI/Mw, RADAR, PlotScale, and Drawhca.

Selecting protein sequences. For primary sequence analyses, you can 
submit protein sequences in simple text or FASTA format. The FASTA 
sequence format is a widely accepted format. It starts with the greater 
than symbol (>) gene identification number, its reference protein acces-
sion number, and its name followed by the sequence.

Computation of pI and Mw of proteins. The tool “Compute pI/Mw” 
(http://us.expasy.org/tools/pi_tool.html) computes the pI and Mw of pro-
teins. Protein pI is calculated using pK values of amino acids, which were 
defined by examining polypeptide migration between pH 4.5 and 7.3 in 
an immobilized pH gradient gel environment with 9.2 M and 9.8 M urea 
at 15°C or 25°C. Protein Mw is calculated by the addition of average iso-
topic masses of amino acids in the protein and the average isotopic mass 
of one water molecule. This program does not account for the effects of 
posttranslational modifications; thus modified, proteins on a 2D gel may 
migrate to a position quite different from that predicted. In addition to 
pI and Mw, ProtParam (http://us.expasy.org/tools/protparam.html) can 
compute various physicochemical properties that can be deduced from 
a protein sequence. The parameters computed by ProtParam include the 
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molecular weight, theoretical pI, amino acid composition, atomic com-
position, extinction coefficient, estimated half-life, instability index, ali-
phatic index, and grand average of hydropathicity. Molecular weight and 
theoretical pI are calculated as in Compute pI/Mw.

A.  De Novo Repeat Detection in Protein Sequences  RADAR stands 
for Rapid Automatic Detection and Alignment of Repeats in protein 
sequences (http://www.ebi.ac.uk/Radar/). Many large proteins have 
evolved by internal duplication, and many internal sequence repeats cor-
respond to functional and structural units. RADAR uses an automatic 
algorithm to segment query sequences into repeats; it also identifies 
short-composition-biased as well as gapped approximate repeats and 
complex repeat architectures involving many different types of repeats in 
your query sequence.

B.  Hydropathy Plot for Proteins  PlotScale (http://us.expasy.org/tools/
protscale.html) allows computation and representation of the profile 
produced by any amino acid scale on a selected protein. An amino acid 
scale is defined by a numerical value assigned to each type of amino acid. 
ProtScale can be used with fifty predefined scales entered from the lit-
erature. You can set several parameters that control the computation of 
a scale profile, such as the window size, the weight variation model, the 
window edge relative weight value, and scale normalization.

C.  Hydrophobic Cluster Analysis (HCA) of Proteins  The HCA 
method is based on the use of a bidimensional plot, called the HCA 
plot (http://bioserv.rpbs.jussieu.fr/RPBS/cgi-bin/Ressource.cgi?chzn_
lg=an&chzn_rsrc=HCA). The bidimensional plot originates from the 
drawing of the sequence on α helix (3.6 residues/turn, connectivity dis-
tance of 4 residues separating two different clusters), which has been 
shown to offer the best correspondence between clusters and regu-
lar secondary structures. Examination of the HCA plot of a protein 
sequence allows identification of globular and nonglobular domains. 
The HCA plot signature is also useful in the comparison of families of 
highly divergent sequences and allows detection at low levels of relevant 
similarities.
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Part II	S tep-By-Step Tutorial

The demo example is human vaspin (visceral adipose-tissue-derived 
serine protease inhibitor), mouse galectin-9, human collectrin, and 
human α1-antitrypsin.

1.  Selecting Protein Sequences
	 1.	Fetch human vaspin protein sequences from the NCBI Web site.
	 a.	 As demonstrated in Figure 11.1, type the following address (http://

www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=Protein) in your 
browser (Internet Explorer or others). In the “Search,” Protein cate-
gory is now the default setting. In the “for,” type “human vaspin.”

	 b.	 Click “Go” in your browser or press “Enter” on your keyboard. 
The accession number of human vaspin protein sequence will be 
displayed as in Figure 11.2.

	 c.	 Click “NP_776249” to display all human vaspin protein sequence 
information. Then in the Display, select “FASTA” format, and 
you will get the human vaspin protein sequence in the FASTA 
format (Figure 11.3).

2.  Compute pI/Mw
	 1.	Type the following address (http://us.expasy.org/tools/pi_tool.html) 

in your browser (Internet Explorer or others).

	 2.	Enter a protein sequence in the box by cutting and pasting the sin-
gle-letter code as plain text (Figure 11.4). This program does not 
accept FASTA format sequence; however, it accepts one or more Uni-
ProtKB/Swiss-Prot protein identifiers (ID) (e.g., ALBU_HUMAN) 
or UniProt Knowledgebase accession numbers (AC) (e.g., P04406), 
separated by spaces, tabs, or newlines.

Figure 11.1  Search for human vaspin protein sequence from NCBI protein 
database.
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Figure 11.2  Display the accession number of human vaspin (SERPINA12) 
protein sequence.

Figure 11.3  Human vaspin (SERPINA12) protein sequence in the FASTA 
format.

Figure 11.4  Submit human vaspin sequence in Compute pI/Mw tool.
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	 3.	Click “Click here to compute pI/Mw,” and you will have the theoreti-
cal pI/Mw (Figure 11.5).

3.  RADAR (Rapid Automatic Detection and 
Alignment of Repeats in Protein Sequences)
	 1.	Type the following address (http://www.ebi.ac.uk/Radar/) in your 

browser (Internet Explorer or others).

	 2.	Enter a protein sequence in the box by cutting and pasting the entire 
FASTA format sequence (Figure 11.6).

Figure 11.5  Report of human vaspin in Compute pI/Mw tool.

Figure 11.6  Submit mouse galectin-9 sequence in RADAR server.
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Figure 11.7  Tandem repeat of carbohydrate domains in mouse galectin-9 
sequence revealed by RADAR.

Figure 11.8  Submit collectrin sequence in PlotScale server.

	 3.	Click “Run,” and you will get the results (Figure 11.7). Galectin-9 is a 
tandem-repeat type of galectin gene family and consists of N-termi-
nal and C-terminal carbohydrate-binding domains. These domains 
share 38.5% homology, and RADAR recognizes the repeat of the 
domains (Figure 11.7).

4.  PlotScale
	 1.	Type the following address (http://us.expasy.org/tools/protscale.

html) in your browser (Internet Explorer or others).
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	 2.	Enter UniProtKB/Swiss-Prot protein identifiers (ID) (e.g., ALBU_
HUMAN) or UniProt Knowledgebase accession numbers. You can 
also cut and past the FASTA format amino acid sequences in the box 
(Figure 11.8).

	 3.	Choose and click an amino acid scale from the list (Figure 11.8).

	 4.	Click “Submit,” and you will have the results (Figure 11.9). In the 
hydropathy plot, you can see the two hydrophobic domains of collec-
trin, signal peptide, and transmembrane domains (Figure 11.9).

Using the sale Hphob. / Kyte & Doolittle, the individual values for the 20 amino acids are:

Weights for window positions 1,..,9, using linear weight variation model:
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Figure 11.9  Hydropathy plot of collectrin sequence using PlotScale server.
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5.  Hydrophobic Cluster Analysis (HCA) of Proteins
	 1.	Type the following address (http://bioserv.rpbs.jussieu.fr/RPBS/cgi-

bin/Ressource.cgi?chzn_lg=an&chzn_rsrc=HCA) in your browser 
(Internet Explorer or others).

	 2.	Enter a protein sequence in the box by cutting and pasting the single-
letter code as plain text (Figure 11.10). This program does not accept 
FASTA format sequences.

	 3.	Click “Submit” and wait until next page appears.

	 4.	Click “Access to pdf file” and a new browser window will pop up.

	 5.	Click “data_to_download.pdf,” and you will get the results as a 
PDF file (Figure 11.11). HCA plots are useful for analyzing signal 
peptide and transmembrane segments. In Figure 11.11A, signal 
peptide and transmembrane domains of collectrin are clearly dem-
onstrated. Globular domains, which are characterized by a typical 
thick distribution of hydrophobic clusters and are often separated 
from other domains by hydrophilic variable length of hinges. MCA 
is a useful tool in visual delineation of such domain structures. In 
Figure 11.11B, two carbohydrate-binding domains and link peptide 
are clearly demonstrated. The structural similarity of two globu-
lar domains is also seen. Finally, the HCA plot demonstrates the  

Figure 11.10  Submit human α1-antitrypsin sequence in Hydrophobic Cluster 
Analysis (HCA) server
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Figure 11.11  Hydrophobic cluster analysis (HCA) of human collectrin (A), 
mouse galectin-9 (B), and human α1 antitrypsin.
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clusters of β-strand and α-helix secondary structures. In Fig-
ure 11.11C, an HCA plot of human α1-antitrypsin is indicated with 
α-helix and β-strand structures obtained from protein data bank 
(PDK; 1KCT). Typical shapes of hydrophobic amino acid clusters are 
demonstrated in an HCA plot.

Part III	S ample Data
1.  Human Vaspin Amino Acid Sequence in the FASTA Format
>gi|27777657|ref|NP_776249.1| serine (or cysteine) proteinase inhibitor, 
clade A (alpha-1 antiproteinase, antitrypsin), member 12 [Homo sapiens]

MNPTLGLAIFLAVLLTVKGLLKPSFSPRNYKALSEVQGWKQRMAAKELARQN-

MDLGFKLLKKLAFYNPGRNIFLSPLSISTAFSMLCLGAQDSTLDEIKQGFN-

FRKMPEKDLHEGFHYIIHELTQKTQDLKLSIGNTLFIDQRLQPQRKFLEDA-

KNFYSAETILTNFQNLEMAQKQINDFISQKTHGKINNLIENIDPGTVMLLANY-

IFFRARWKHEFDPNVTKEEDFFLEKNSSVKVPMMFRSGIYQVGYDDKLSC-

TILEIPYQKNITAIFILPDEGKLKHLEKGLQVDTFSRWKTLLSRRVVD-

VSVPRLHMTGTFDLKKTLSYIGVSKIFEEHGDLTKIAPHRSLKVGEAVH-

KAELKMDERGTEGAAGTGAQTLPMETPLVVKIDKPYLLLIYSEKIPSVLFLG-

KIVNPIGK

2.  Mouse Galectin-9 Amino Acid Sequence in the FASTA Format
>gi|2811065|sp|O08573|LEG9_MOUSE Galectin-9

MALFSAQSPYINPIIPFTGPIQGGLQEGLQVTLQGTTKSFAQRFVVNFQNSF-

NGNDIAFHFNPRFEEGGYVVCNTKQNGQWGPEERKMQMPFQKGMPFEL-

CFLVQRSEFKVMVNKKFFVQYQHRVPYHLVDTIAVSGCLKLSFITFQNSAA-

PVQHVFSTLQFSQPVQFPRTPKGRKQKTQNFRPAHQAPMAQTTIHMVHSTP-

GQMFSTPGIPPVVYPTPAYTIPFYTPIPNGLYPSKSIMISGNVLPDATRFHIN-

LRCGGDIAFHLNPRFNENAVVRNTQINNSWGQEERSLLGRMPFSRGQSFSVWI-

ICEGHCFKVAVNGQHMCEYYHRLKNLQDINTLEVAGDIQLTHVQT

3.  Human Collectrin Amino Acid Sequence in the FASTA Format
>gi|9957754|gb|AAG09466.1|AF229179_1 collectrin [Homo 

MLWLLFFLVTAIHAELCQPGAENAFKVRLSIRTALGDKAYAWDTNEEYLFKAM-

VAFSMRKVPNREATEISHVLLCNVTQRVSFWFVVTDPSKNHTLPAVEVQ-

SAIRMNKNRINNAFFLNDQTLEFLKIPSTLAPPMDPSVPIWIIIFGVIF-

CIIIVAIALLILSGIWQRRRKNKEPSEVDDAEDKCENMITIENGIPSDPLD-

MKGGHINDAFMTEDERLTPL
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4.  Human α1-Antitrypsin Amino Acid Sequence in the FASTA Format
>gi|50363217|ref|NP_000286.3| serine (or cysteine) proteinase inhibitor, 
clade A (alpha-1 antiproteinase, antitrypsin), member 1 [Homo sapiens]

MPSSVSWGILLLAGLCCLVPVSLAEDPQGDAAQKTDTSHHDQDHPTF-

NKITPNLAEFAFSLYRQLAHQSNSTNIFFSPVSIATAFAMLSLGTKADTHDEI-

LEGLNFNLTEIPEAQIHEGFQELLRTLNQPDSQLQLTTGNGLFLSEGLKLVD-

KFLEDVKKLYHSEAFTVNFGDTEEAKKQINDYVEKGTQGKIVDLVKELDRDTV-

FALVNYIFFKGKWERPFEVKDTEEEDFHVDQVTTVKVPMMKRLGMFNIQHCK-

KLSSWVLLMKYLGNATAIFFLPDEGKLQHLENELTHDIITKFLENEDRRSASL-

HLPKLSITGTYDLKSVLGQLGITKVFSNGADLSGVTEEAPLKLSKAVHKAV-

LTIDEKGTEAAGAMFLEAIPMSIPPEVKFNKPFVFLMIEQNTKSPLFMGKVVNPTQK

Section 2	S econdary and 
Tertiary Structure Analysis
Part I	I ntroduction
1.  What Is Secondary and Tertiary Structure Analysis?
A protein does not exhibit a full biological activity until it folds into a 
three-dimensional structure. Information on the secondary and three-
dimensional (3D) structures of a protein is important for understand-
ing its biological activity, because the shape and nature of the protein 
molecule surface account for the mechanisms of rational protein func-
tions. It is also practically useful for rational molecular design of proteins 
with improved function as well as of drugs targeting the proteins. As of 
November 2006, about 40,000 protein structures have been deposited in 
the RCSB (Research Collaboratory for Structural Bioinformatics) Protein 
Data Bank (PDB) and the number is rapidly increasing, and more than 
200,000 protein sequence entries are in the Swiss-Prot protein sequence 
database, a ratio of approximately one structure to five sequences. If a 3D 
structure of the queried sequence has already been solved and deposited 
in PDB, the structure of the protein itself as well as the proteins show-
ing high sequence similarity with it can be obtained easily from PDB. 
Protein sequences whose structures have not yet been solved have to be 
analyzed with prediction tools for protein structure. A very large number 
of methods have been devised for secondary and tertiary protein struc-
ture prediction, and many servers provide them via Internet. The set of 
3D coordinates of the protein thus obtained from PDB or from the pre-
diction servers can be processed into intuitive graphics showing the 3D 
molecular models and the position of secondary structures of the protein 
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by using molecular modeling and visualization tools. It should be noted 
that the results provided by the prediction servers are possible models: 
the results on the same sequence from one method (server) may be differ-
ent from those from another method (server). The accuracy of the predic-
tion results depends on the sequence submitted and the programs used. 
The prediction results will be relatively accurate for a sequence with high 
similarity to known protein structures, whereas it is still difficult to pre-
dict long sequences of unknown fold proteins (particularly, β-rich, mul-
tidomain, and complicated-topology proteins). Trends in the research on 
3D structure prediction methods are published in reports of CASP (Criti-
cal Assessment of Techniques for Protein Structure Prediction), which 
provides valuation contests on protein structure prediction research and 
servers every two years.

2.  What Is Involved in Secondary and Tertiary Structure Analysis?

A.  Searching PDB for Protein Sequences  Using a sequence search pro-
vided by the PDB servers is one of the fastest way to know if a protein 
sequence encodes a known protein structure or not.

RCSB PDB (http://www.rcsb.org/pdb/home/home.do). It has a menu 
that retrieves the PDB database for a sequence submitted via sequence 
search program using blastp from NCBI or the program of FASTA. If 
the sequence has significant homology to known proteins whose PDB 
data are available, the servers provide the list of PDB IDs of selected 
proteins with the results of sequence alignment. You can obtain the 
structure information on the selected PDB ID, such as its structural 
classification (according to SCOP, CATH, and PFAM), secondary 
structures, and geometry (bond length, bond angle, dihedral angle). 
The selected protein molecules will be easily displayed via viewers in 
the Web browser. The deposited structural data including the set of 
3D coordinates of all the atoms can be downloaded as a PDB file for 
further analyses on your computer.

B.  Secondary Structure Prediction  Predicting secondary structure of a 
protein whose structure is unknown is an alternative or first step toward 
the much more difficult task of predicting the 3D structure. Several meth-
ods have been developed and improved for a secondary structure predic-
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tion of the protein structure from a sequence. In the 1970s, simple and basic 
methods using single sequences for prediction were developed initially.

Chou & Fasman (http://fasta.bioch.virginia.edu/fasta_www2/fasta_
www.cgi?rm=misc1). It is one of the earliest methods that deter-
mined the frequency of occurrence of each amino acid in α-helices 
and β-sheets. This was calculated from a survey of fifteen proteins of 
known structure. Residues were assigned into strong formers, weak 
formers, formers, indifferent formers, strong breakers, and breakers, 
according to their ability to initiate or terminate these structures. In 
simple terms the method is executed as follows:

	 1.	 Assign residues as shown earlier for both helices and sheets.
	 2.	 For helices, locate a cluster of 4 formers or strong formers within 

6 residues. Extend the helix in both directions until terminated 
by a tetrapeptide with an average alpha propensity equal to 1 i.e. 
indifferent. Disallow prolines in helices.

	 3.	 For sheets: locate a cluster with 3 out of 5 formers or strong form-
ers. Extend in both directions. Terminate as for alpha helices.

	 4.	 Use similar method for turns. It gives 50% accuracy.

GOR  (http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.pl?page=npsa_
gor4.html). The GOR method is based on information theory and 
was developed by J. Garnier, D. Osguthorpe, and B. Robson. The 
present version, GOR IV, uses all possible pair frequencies within a 
window of seventeen amino acid residues. After cross-validation on a 
data base of 267 proteins, version IV of GOR has a mean accuracy of 
64.4%. The program gives two outputs, one giving the sequence and 
the predicted secondary structure in rows (H = helix, E = extended 
or beta strand, and C = coil) and the second gives the probability 
values for each secondary structure at each amino acid position. The 
predicted secondary structure is the one of highest probability com-
patible with a predicted helix segment of at least four residues and a 
predicted extended segment of at least two residues.

		  Recent programs for secondary structure prediction use multiple 
sequences and more information on protein nature combined with 
new computational algorithms (neural networks, nearest-neighbor 
methods, etc.) for better prediction. The following are some repre-
sentative programs (servers) for secondary structure prediction:
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PHD (http://www.predictprotein.org/). PHDsec in PHD (a suite of 
programs predicting from primary structure) predicts secondary 
structure from multiple sequence alignments. The secondary struc-
ture is predicted by a system of neural networks.

PROF (http://www.predictprotein.org/). PROFsec (in PROF) is an 
improved version of PHDsec and predicts secondary structure by 
using a profile-based neural network.

APSSP2 (http://www.imtech.res.in/raghava/apssp2/). This method 
uses the standard neural network and multiple sequence alignment 
generated by PSI-BLAST (Position Specific Iterated - BLAST) pro-
files, and a modified example-based learning (EBL) technique. The 
combination of the two is based on a reliability score.

PSIpred (http://bioinf.cs.ucl.ac.uk/psipred/psiform.html). PSIpred 
incorporates two feed-forward neural networks that perform an 
analysis on output obtained from PSI-BLAST. Version 2.0 of PSIpred 
includes a new algorithm that averages the output from up to four 
separate neural networks in the prediction process to further increase 
prediction accuracy.

SAM-T02 (http://www.soe.ucsc.edu/research/compbio/HMM-apps/
T02-query.html). The Sequence Alignment and Modeling system 
(SAM) is a collection of flexible software tools for creating, refin-
ing, and using linear hidden Markov models (HMMs) for biological 
sequence analysis. SAM-T02 method for iterative SAM HMM con-
struction and remote homology detection and protein structure pre-
diction updates SAM-T99 by using predicted secondary structure 
information in its scoring functions.

SSpro (http://www.igb.uci.edu/tools/scratch/). It is a server for pro-
tein secondary structure prediction based on an ensemble of eleven 
BRNNs (bidirectional recurrent neural networks based on PSI-
BLAST profiles). In SSpro version 2.0 a better algorithm to obtain 
multiple alignments of homologue sequences, based on PSI-BLAST, 
is exploited.

Jpred server (http://www.compbio.dundee.ac.uk/~www-jpred/): JNet 
predicts the secondary structure from multiple sequence alignments, 
PSI-BLAST profiles, and HMMER2 profiles. The JPred Server takes 
a single protein sequence or multiple sequence alignments and runs 
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the JNet secondary structure prediction method as well as methods 
to predict coiled coil structures.

The accuracy of these secondary prediction methods is often evalu-
ated with a value of a three-state prediction (Q3). The Q3 values of those 
recent methods are evaluated in two categories (sequence unique and 
similar 3D) to be about 70–80%. The evaluations of these programs can 
be seen in the Evaluation of automatic structure prediction servers for 
Critical Assessment of Fully Automated Structure Prediction (CAFASP/
EVA) (http://cubic.bioc.columbia.edu/eva/cafasp/index.html) and Live 
Bench (http://bioinfo.pl/meta/livebench.pl).

C.  Tertiary Structure Prediction  A very large number of methods have 
been devised for tertiary protein structure prediction and are available via 
Internet freely for academic use. Tertiary structure prediction methods 
are categorized into mainly two types: modeling the 3D structure using a 
structure of a known protein as a template (fold-recognition methods) or 
modeling without templates (Ab initio modeling).

Fold-recognition (FR) programs first select appropriate protein struc-
ture suitable for a queried (target) sequence from PDB and then build 
models using the selected structure as a template by a restraint-based 
modeling program such as Modeller. Two types of methods are utilized 
to select template structures from PDB. Sequence-Only Methods utilize 
only sequence information available about the target and the templates 
to find similarities, based on the knowledge that proteins having simi-
lar sequences show similar 3D structures. Programs using this method, 
such as ESyPred3D, FFAS03, PDB-blast, and PSI-blast, employ so-called 
comparative modeling (CM) or homology modeling. On the other hand, 
it has long been recognized that proteins often adopt similar folds despite 
no significant sequence or functional similarity and that nature is appar-
ently restricted to a limited number of protein folds. To find folds that are 
compatible with a target sequence from libraries of known protein folds, 
Threading Methods utilize sequence information and predicted structural 
features in their scoring functions. In many cases the predicted secondary 
structure of the target is compared with the observed secondary structure 
of the templates. Programs such as 3D-PSSM, FUGUE2, mGenThreader, 
and Sam-T02 use the threading method. The accuracy of these template-
based methods is relatively high, only if the appropriate protein structure 
can be found and used as a template for modeling.
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Ab initio programs use physicochemical simulations (e.g., energy 
minimization) combined with fragment assembly method to build mod-
els. They are used for a “New Fold (NR)” sequence whose fold cannot be 
assigned to any known folds. In the Rosetta algorithm, a representative 
program of this category, the distribution of conformations observed for 
each short sequence segment in known protein structures is taken as an 
approximation of the set of local conformations that sequence segment 
would sample during folding. The program then searches for the com-
bination of these local conformations that has the lowest overall energy. 
Programs of this category are also referred as New Fold or de novo model-
ing. The accuracy of these programs is not so high, particularly for long 
sequences >100 aa.

There are several meta-servers available that integrate protein struc-
ture predictions performed by various methods described earlier. Some 
meta-servers, which submit a target sequence to several external predic-
tion servers and evaluate the models provided by the servers, have higher 
accuracy than individual structure prediction servers (Figure 11.12). Some 

Pcons/pmodeller meta server

Blast

E-value
>1e-5

<1e-5

Build models for all alignments

Submit sequence to external
fold-recognition servers

Target sequence

RPS-Blast PFAM

Evaluate models
Globally Locally

Global consensus analysis
(Pcons)

Global structural evaluation
(ProQ)

Local structural evaluation
(ProQres)

Local consensus analysis
(Pcons)

Figure 11.12  Three-dimensional structure prediction server (Pcons/Pmodeller 
Meta Server as an example).
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representative programs and meta-servers for tertiary structure predic-
tion are now described.

PredictProtein (http://www.predictprotein.org/). The meta-server in 
this site provides several tertiary structure prediction tools (four homol-
ogy modeling and ten threading servers) as well as six interresidue contact 
predictions, fifteen secondary structure predictions, five membrane-helix 
predictions, and other methods predicting signal peptide, domains, o-gly-
cosylation sites, and so on. This site provides the other services of basic 
protein structure analysis for a sequence such as Prosite motif search.

@Tome (@utomatic Threading Optimisation Modelling & Evaluation) 
(http://bioserv.cbs.cnrs.fr/HTML_BIO/frame_home.html). This meta-
server allows one to submit an amino acid sequence to six remote serv-
ers (one similarity search, three threading, and two secondary prediction) 
dedicated to structural predictions and fold recognition.

GeneSilico Metaserver (http://genesilico.pl/meta). This server provides 
access to eleven FR servers. It aligns the target sequence to sequences of 
proteins with known structures, identified by protein FR methods. The 
Pcons consensus server will evaluate to what extent the FR alignments 
agree with each other and whether a particular fold can be singled out. 
Registration is required before use. From FR alignments you can auto-
matically generate crude 3D models (without variable loops).

BioInfoBank (http://bioinfo.pl/). The Structure Prediction Meta Server 
in this site provides access to various fold recognition, function prediction, 
and secondary structure prediction methods. The 3D-Jury system gener-
ates meta-predictions from sets of models created using variable methods.

Pcons/Pmodeller Meta Server (http://www.cbr.su.se/pcons/index.
php?about=pcons). Pcons5 integrates information from three different 
sources: consensus analysis, structural evaluation, and the score from the 
FR servers. It selects one of the models returned by these services. Pmodeller 
provides models optimized in the last step using the Modeller program.

Robetta (http://robetta.bakerlab.org/). Robetta produces full-chain 
models with the Rosetta de novo and comparative modeling methods. De 
novo models are built by fragment insertion simulated annealing. Com-
parative models are built by detecting a parent PDB with PSI-BLAST or 
Pcons2, aligning the query to the parent with the K*SYNC alignment 
method, and modeling variable regions with a modified version of the de 
novo protocol. Registration is required before use.
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The servers CAFASP/ EVA and Live Bench also evaluate these 3D struc-
ture prediction programs and servers. The results of CASP can be seen in 
the Protein Structure Prediction Center (http://predictioncenter.org/).

Part II	S tep-By-Step Tutorial

The demo example is a sequence of rat betacellulin (BTC), whose ter-
tiary structure itself has not been solved, whereas the structures of the 
EGF domains of its human homologue and other members of EGF fam-
ily proteins have been available at PDB. Before submitting to prediction 
programs, it is recommended that the sequence be analyzed for protein 
motifs and topology using the tools described in the next section, in order 
to divide the sequence into short fragments corresponding to domains. 
Better and faster results will be obtained when domains are submitted 
separately. The time it takes before results are returned from each server 
depends on the length of the target sequence as well as the complexity of 
the algorithm. The sequence of rat BTC consists of five domains of sig-
nal sequence, N-terminal region whose structure is unknown, EGF-like 
domain, transmembrane helix, and cytoplasmic region whose structure is 
unknown, respectively.

1.  Analyze the Sequence with the RCSB PDB
	 1.	Submit a sequence to the prediction server.
	 a.	 Type the following address (http://www.rcsb.org/pdb/) to get access 

to the RCSB PDB in your browser (Internet Explorer or others). 
Go to “Sequence Search” window by selecting “Search” tag and 
“Sequence” database in the menu at the left side of the window.

	 b.	 Select “use Sequence” checkbox. Enter a protein sequence by cut-
ting and pasting your sequence as a simple text (Figure 11.13). 
Click “Search” in your browser.

	 2.	 If there are structural data of a protein identical to or significantly 
similar to the queried sequence, their PDB IDs will be listed with 
the alignment statistics (Figure 11.14). In this sample sequence (rat 
BTC), there is no structural data of the queried sequence itself, but 
several PDB IDs showing significant similarity to a portion (K63–
Y11) of the sequence, which corresponds to the EGF-like domain, are 
listed. Partial sequences of rat BTC containing the EGF domain will 
also give a similar list, but partial sequences without the EGF-like 
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domain will not, because only the structures of the EGF-like domain 
are available in PDB.

	 3.	To get the structure information of a listed protein, click its PDB 
ID in the list. Structural summary of the selected PDB ID will be 
displayed. You can display and move the protein molecule by using 
several viewers listed in the “Display Molecule” column. The descrip-
tion of its secondary structure can be seen in the “Sequence Details” 

Figure 11.13  Search for a protein structure from the RCSB PDB database with 
a protein sequence.

Figure 11.14  Display the PDB IDs of proteins with sequence homology.
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menu. The analyzed data (such as Ramachandran Plot) of the protein’s 
structure can be obtained from “Geometry” in “Structure analysis” 
menu. You can download the “PDB Files” from “Download Files” for 
further processing by molecular viewers such as Swiss-PDBViewer, 
VMD, and RasMol in your computer.

2.  Prediction of Secondary and Tertiary Structure 
by Using PredictProtein Metaserver
The metaserver is convenient because it submits a query sequence to sev-
eral external prediction servers based on different methods.

Figure 11.15  Submit a sequence for secondary and tertiary structure predic-
tion programs via the metaserver in PredictProtein.

C8105.indb   354 7/18/07   8:21:52 AM



Protein Sequence Analysis  <  355

	 1.	Submit a sequence to the prediction server.
	 a.	 Type the following address (http://www.predictprotein.org/) to 

get access to the PredictProtein server in your browser. Click the 
“MetaPP” tag in the menu to access the metaserver.

	 b.	 Type your e-mail address and name of your sequence in the cor-
responding boxes (Figure 11.15). Enter a protein sequence by cut-
ting and pasting the single-letter code as plain text. Forty-nine 
amino acid sequences corresponding to the EGF-like domain of 
rat BTC is used as an example suitable for homology modeling. 
From the list of the “Available Services,” choose checkboxes to 
request the programs for the sequence. Then click “SUBMIT/
RUN PREDICTION.”

	 2.	Receive the results from the PredictProtein metaserver.
	 a.	 If the request is submitted successfully, the “Submission Summary” 

will be displayed and the e-mail entitled “submission to MetaPP” 
will also come soon from the PredictProtein meta server.

	 b.	 Prediction results will be sent by another e-mail from the Pre-
dictProtein metaserver, usually within a day. Access the address 
in the e-mail to see the prediction results. If there are some pro-
grams commented with “(No Response from Server)” at the time, 
access this site again another day, and you will find the updated 
results from the program servers. It may take several days until 
you receive all the results from all the program servers.

	 3.	Obtain and process the prediction results.
	 a.	 For example, responses received from secondary structure predic-

tion servers of PSIpred and SAM-T99 are shown in Figure 11.16. 
PSIpred presents the prediction results in a simple style that gives 
the sequence, the predicted secondary structure, and the con-
fidence value of the prediction at each amino acid position in 
rows (H = helix, E = extended or beta strand, and C = coil). The 
graphical output for the result can be obtained by accessing the 
address contained in the server response. Some program servers 
will only give the addresses to be accessed, as in the case of SAM-
T99 (Figure 11.16). Access this SAM-T99 site, and the prediction 
results are provided in other styles, such as a list of the probabil-
ity values for each secondary structure at each amino acid posi-
tion (Figure 11.17) or a list of the most probable structure and its 
probability at each amino acid position (CASP format).
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Figure 11.16  The results of secondary structure prediction received from 
PSIpred and SAM-T99 servers via MetaPP server.

Figure 11.17  Secondary structure predicted by SAM-T99 (rdb format).
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	 b.	 Results from EsyPred are shown in Figure 11.18 as an example 
of 3D structure prediction. EsyPred will provide the predicted 
molecular structure as well as the template structure in PDB for-
mat. Copy the data corresponding to the target protein structure 
(from the row next to “EXPDTA” to that of “END,” which con-
tain the set of space coordinates of all atoms of the sequence) 
and past into an appropriate word file such as Microsoft Word 
to make a PDB file in a text format (with an extension of “pdb”). 
Open and analyze the file with a molecular viewer program such 
as RasMol or VMD.

3.  Prediction of 3D Structure by the Metaserver in BioInfoBank
	 1.	Submit a sequence to the prediction server.
	 a.	 Go to BioInfoBank Web site (http://bioinfo.pl/meta/livebench.

pl), and access the “Meta server” at the site.
	 b.	 Type your e-mail address and name of the sequence in the cor-

responding boxes (Figure 11.19). Enter a protein sequence by cut-
ting and pasting the single-letter code as a simple text. Forty-two 
amino acid sequence corresponding to cytoplasmic domain of 
rat BTC is used as an example of sequences with little homol-
ogy to known structures. Click checkboxes to skip the predic-
tion methods if you like. Click “submit” in your browser, then 
“Request submitted job successfully” will be displayed.

	 2.	Obtain and process the prediction results.

Figure 11.18  Submission a sequence for 3D structure prediction programs via 
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Figure 11.19  The results of 3D structure predictions provided by BioInfo-
Bank metaserver.

Figure 11.20  The results of 3D structure predictions provided by Pcon/Pmod-
eller metaserver.

Figure 11.21  The InterProScan schema.
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	 a.	 Click “Queue” in the menu, and you will find your sequence 
name in a list of submitted sequences. Click your sequence name 
or your submission Id to see the results. If calculation of the serv-
ers is not over, reaccess this page another day. (Bookmark the 
site for easy access.) It will take several days to receive all the 
results from all the servers selected. If the submitted sequence 
has a significant homology to a known PDB protein such as rat 
BTC-EGFd, the threading prediction programs may be stopped 
automatically and only the results based on sequence alignment 
will be displayed.

	 b.	 As in Figure 11.20, the results of prediction will be shown as lists of 
(1) alignment and threading programs used, (2) programs whose 
results are displayed in this window, (3) the secondary structure 
prediction results, (4) the 3D models processed by 3D-Jury, and 
(5) the results of fold recognition from selected programs. You 
will be able to see more results by selecting other programs fol-
lowed by clicking the “Display” button. Using the structure data 
of “PDB hit” as a template, the 3D models are calculated and 
evaluated by 3D-July to give the 3D-Jury score (Jscore). The mod-
els that are most similar to others have a higher chance of being 
correct and obtaining higher J scores. When default settings are 
applied and results for most servers are available, the Jscore cor-
responds roughly to the number of C-alpha atoms of the model 
within 3.5Å from the native structure. Clicking “server” in the 
top menu can check the status of each program server. In the 
first row of 3D-Jury results in Figure 11.29 the model (ORF2_02) 
is built by using “PDB hit” (1nsiA) as a template. The alignment 
between the template and the target sequence will be shown at 
the right. Click “[pdb]” to obtain the set of 3D coordinates of the 
model, and the PDB file will be downloaded onto your computer. 
Open and analyze the file with a molecular viewer. The down-
loaded PDB file (ORF2_02) can be opened by RasMol but not by 
Swiss-PdbViewer 3.9 (for Macintosh), because the file contains 
only a Cα trace.

	 c.	 Figure 11.21 shows the results of the same sequence (rBTCCd) 
from the other metaserver, Pcon/Pmodeller. This server provides 
the models with their graphics in the summary list according to 
their evaluation score (Pcon score). You can download the PDB 
file by clicking the graphic of the model. The PDB file provided by 
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this server can be opened by Swiss-PdbViewer. Judging from their 
evaluation scores, reliability of the prediction models from both 
Pcon/Pmodeller and BioInfoBank metaservers is considered to 
be low. It is also suggested by the fact that the templates selected 
are quite different among the fold-recognition programs.

Part III	S ample Data
1.  Amino Acid Sequence of Rat Betacellulin (BTC) 
in the FASTA Format Fetched from Genbank
>AB028862 (genbank) 49.582/translation=

MDSTAPGSGVSSLPLLLALVLGLVILQCVVADGNTTRTPETNGSLCGAP-

GENCTGTTPRQKSKTHFSRCPKQYKHYCIHGRCRFVMDEQTPSCICEKGYF-

GARCEQVDLFYLQQDRGQILVVCLIGVMVLFIILVIGVCTCCHPLRKHRK-

KKKEEKMETLSKDKTPISEDIQETNIA

2.  A Partial Sequence Corresponding to EGF-Like Domain of Rat BTC
>rat BTC-EGFd

THFSRCPKQYKHYCIHGRCRFVMDEQTPSCICEKGYFGARCEQVDLFY

3.  A Partial Sequence Corresponding to 
Cytoplasmic Domain of Rat BTC
>rBTCCd

IGVCTCCHPLRKHRKKKKEEKMETLSKDKTPISEDIQETNIA

Section 3	Pa ttern and Profile Search
Part I	I ntroduction
1.  Why are Pattern and Profile Search Needed?
The sequence alignments and blast search against the sequence database 
are the first steps in the characterization of the primary structure of your 
protein. Secondary and tertiary structure predictions are also available as 
described in Section 2, if you have your own sequence. However, further 
information would be important in order to know what your sequence 
looks like. It would be an easy way to see if we know just motifs that are 
commonly found in groups of proteins. Typically, many proteins are 
known to form many kinds of families with patterns of sequences local-
ized in a restricted region of the primary structure even if they are com-
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posed of domains with high molecular weights. These domain structures 
are related to the higher order of structures and functional properties  of 
the proteins. The comparison of the proteins with others, whose struc-
tures and functions are well known, is very useful to know the patterns 
and profiles of the protein of interest, to understand the function, and 
to design further experiments to test and modify the function of specific 
proteins. For the purpose of this pattern and profile search, many software 
packages coupled with unique databases have been developed recently. 
The protein signature databases are developing as vital tools to identify 
distant relationships in novel sequences and are used to classify protein 
sequences by inferring their functions.

2.  What Is Pattern and Profile Search?
To know the pattern and profiles localized in your proteins, the easiest 
way would be if there are databases of protein domains, families, and 
functional sites. These kinds of databases are now being constructed at 
several sites as described in the following text:

PROSITE: PROSITE (http://www.expasy.ch/prosite/) is a database 
of protein families and domains. It consists of biologically signifi-
cant sites, patterns, and profiles that help reliably identify to which 
known protein family (if any) a new sequence belongs. Profiles cre-
ated by the Generalized Profile Syntax, which is a very sensitive 
method of finding motifs in a query sequence, from various protein 
domains are incorporated into the PROSITE library. Each signature 
is linked to a documentation that provides useful biological informa-
tion on the protein family, domain, or functional site identified by 
the signature.

		  During the last two years, the documentation has been redesigned 
and the latest version of PROSITE (Release 20.0, of 15 November, 
2006) contains 1449 documentation entries, 1331 patterns, 675 
profiles, and 720 ProRule. Over the past two years more than 200 
domains have been added, and now 52% of UniProtKB/Swiss-Prot 
entries (release 48.1 of September 27, 2005) have a cross-reference 
to a PROSITE entry. The ProRule section of PROSITE comprises 
manually created rules that increase the discriminatory power of 
PROSITE motifs (generally profiles) by providing additional infor-
mation about functionally and structurally critical amino acids and 
can automatically generate annotation based on PROSITE motifs in 
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the UniProtKB/Swiss-Prot format. Each ProRule is defined in the 
UniRule format.

		  Once a profile is found, wherever available, series of three dimen-
sional structures are retrieved from the PDB database that share the 
motif, and you can examine them using such as RasMol program 
(http://www.umass.edu/microbio/rasmol/).

Pfam: Pfam (http://www.sanger.ac.uk/Software/Pfam/) is a large collec-
tion of protein families and domains. The database contains multiple 
sequence alignments and HMMs covering many common protein 
domains of these families. Pfam can be used to view the domain 
organization of proteins. A single protein can belong to several Pfam 
families. Seventy-four percent of protein sequences have at least one 
match to Pfam. The data in the Pfam database contains two parts: 
Pfam-A and Pfam-B. Pfam-A is the curated part of Pfam, containing 
over 8296 protein families (May 2006). Pfam-B is an automatically 
generated supplement to Pfam-A. It contains a large number of small 
families taken from the ProDom database that do not overlap with 
Pfam-A. In spite of lower quality, Pfam-B families is useful when 
no Pfam-A families are found. To search against Pfam database the 
program HMMER (http://hmmer.janelia.org/) is used.

ProDom: The ProDom (http://prodom.prabi.fr/prodom/current/html/
home.php) database contains protein domain families generated 
from the SWISS-PROT database by automated sequence compari-
sons. The current version was built with a new improved procedure 
based on recursive PSI-BLAST homology searches. The BLAST2 
program, the gapped version of the BLAST, is available to search a 
protein sequence against the ProDom database.

BLOCKS: BLOCKS (http://blocks.fhcrc.org/) are multiply aligned 
ungapped segments corresponding to the most highly conserved 
regions of proteins. The blocks for the BLOCKS Database are made 
automatically by looking for the most highly conserved regions in 
groups of proteins documented in the Prosite database. The Pros-
ite pattern for a protein group is not used in any way to make the 
BLOCKS database, and the pattern may or may not be contained in 
one of the blocks representing a group. These blocks are then cali-
brated against the SWISS-PROT database to obtain a measure of 
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the chance distribution of matches. It is these calibrated blocks that 
make up the BLOCKS database.

PRINTS: The PRINTS (Protein Fingerprint Database) (http://umber.sbs.
man.ac.uk/dbbrowser/PRINTS/PRINTS.html) is a compendium of 
protein motif fingerprints. A fingerprint is a group of conserved motifs 
used to characterize a protein family; its diagnostic power is refined 
by iterative scanning of a SWISS-PROT/TrEMBL composite. Usually, 
the motifs do not overlap but are separated along a sequence, though 
they may be contiguous in 3D-space. Fingerprints can encode protein 
folds and functionalities more flexibly and powerfully than can single 
motifs, full diagnostic potency deriving from the mutual context pro-
vided by motif neighbors. It is derived by the excision of conserved 
motifs from sequence alignments and refined by iterative dredging of 
the OWL (http://umber.sbs.man.ac.uk/dbbrowser/OWL/), a nonre-
dundant composite sequence database. Two types of fingerprint are 
represented in the database, either simple or composite, depending 
on their complexity: simple fingerprints are essentially single-motifs, 
whereas composite fingerprints encode multiple motifs.

HAMAP: The HAMAP profile (http://www.expasy.org/sprot/hamap/
families.html) is a collection of orthologous microbial protein fami-
lies, generated manually by expert curators. They are used for the 
high-quality automatic annotation of microbial proteomes in the 
framework of the Swiss-Prot protein knowledgebase. This database 
is only available on the Motif scan server.

TIGRFAMs: TIGRFAMs (http://www.tigr.org/TIGRFAMs/index.
shtml) is a collection of protein families, featuring curated multiple 
sequence alignments, HMMs, and annotation, which provides a 
tool for identifying functionally related proteins based on sequence 
homology. Those entries that are “equivalogs” group homologous 
proteins which are conserved with respect to function.

Phospho.ELM: The Phospho.ELM database (http://phospho.elm.
eu.org/) contains a collection of experimentally verified serine, 
threonine, and tyrosine sites in eukaryotic proteins. The entries, 
manually annotated and based on scientific literature, provide infor-
mation about phosphorylated proteins and the exact position of 
known phosphorylated instances. Phospho.ELM version 5.0 (May 
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2006) contains 2540 substrate proteins from different species cover-
ing 1434 tyrosine, 4798 serine, and 974 threonine instances.

PIRSF: The PIRSF protein classification system (http://pir.georgetown.
edu/iproclass/) is a network with multiple levels of sequence diver-
sity from superfamilies to subfamilies that reflects the evolutionary 
relationship of full-length proteins and domains. The primary PIRSF 
classification unit is the homeomorphic family, whose members are 
both homologous (evolved from a common ancestor) and homeo-
morphic (sharing full-length sequence similarity and a common 
domain architecture).

SUPERFAMILY: SUPERFAMILY (http://supfam.mrc-lmb.cam.ac.uk/
SUPERFAMILY/) is a library of profile HMMs that represent all 
proteins of known structure. The library is based on the SCOP clas-
sification of proteins: each model corresponds to a SCOP domain 
and aims to represent the entire SCOP superfamily that the domain 
belongs to. SUPERFAMILY has been used to carry out structural 
assignments to all completely sequenced genomes. The results and 
analysis are available from the SUPERFAMILY Web site.

InterPro: InterPro (http://www.ebi.ac.uk/interpro/index.html) is a data-
base of protein families, domains, and functional sites in which iden-
tifiable features found in known proteins can be applied to unknown 
protein sequences. InterPro, an integrated documentation resource of 
protein families, domains, and functional sites, was created to inte-
grate the major protein signature databases. Currently, it includes 
PROSITE, Pfam, PRINTS, ProDom, SMART, TIGRFAMs, PIRSF, 
and SUPERFAMILY. Signatures are manually integrated into Inter-
Pro entries that are curated to provide biological and functional infor-
mation (8166 families, 201 repeats, 26 active sites, 21 binding sites, and 
20 posttranslational modification sites). InterPro covers over 78% of 
all proteins in the Swiss-Prot and TrEMBL components of UniProt.

CATH: CATH (http://www.cathdb.info/latest/index.html) is a hier-
archical classification of protein domain structures that clusters 
proteins at four major levels: Class, Architecture, Topology, and 
Homologous superfamily. Class, derived from secondary structure 
content, is assigned for more than 90% of protein structures auto-
matically. Architecture, which describes the gross orientation of 
secondary structures, independent of connectivities, is currently 
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assigned manually. The topology level clusters structures into fold 
groups according to their topological connections and numbers of 
secondary structures. The homologous superfamilies cluster pro-
teins with highly similar structures and functions. The assignments 
of structures to fold groups and homologous superfamilies are made 
by sequence and structure comparisons.

3.  Integrated Analyzing System Developed for the Databases
In recent years, scanning tools for the various databases have been devel-
oped and are being improved rapidly. Table 11.1 lists useful uniform 
resource locators (URLS). Some features of these programs are briefly 
described in the following text.

InterProScan: InterProScan is an integrated search in PROSITE, Pfam, 
PRINTS, and other family and domain databases. This is a tool that 
combines different protein signature recognition methods into 
one resource. The number of signature databases and their associ-
ated scanning tools, as well as the further refinement procedures, 
increases the complexity of the problem. InterProScan is more than 
just a simple wrapping of sequence analysis applications as it also 
performs a considerable amount of data lookup from various data-
bases and program outputs. Results are shown in various formats 
such as “html,” “xml,” and so on.

FingerPRINTScan: FingerPRINTScan scans a protein sequence 
against the PRINTS Protein Fingerprint Database. The BLIMPS 
program, which scores a sequence against blocks or a block against 
sequences, is also available to search a protein sequence against the 
PRINTS database. The original PRINTS database will be converted 
to BLOCKS format for each release of PRINTS. “Composite” finger-
prints were decomposed into motif components under the unique 
PRINTS code (such as “GLABLOOD” held in “gc” line, which is 
equivalent to “PR00001” in “gx” line in the PRINTS database.)

3of5: The 3of5 Web application enables complex pattern matching 
in protein sequences. 3of5 is named after a special use of its main 
feature, the novel n-of-m pattern type. This feature allows for an 
extensive specification of variable patterns in which the individual 
elements may vary in their position, order, and content within a 
defined stretch of sequence. The number of distinct elements can 
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Table 11.1  �Several Useful URLS of Scanning Programs for Protein Profile Databases

Application URL Databases
InterProScan http://www.ebi.ac.uk/InterProScan/ InterPro

PROSITE
Pfam
PRINTS
ProDom
SMART
TIGRFAMs
PIRSF
SUPERFAMILY

ScanProsite http://kr.expasy.org/tools/scanprosite/ PROSITE
Swiss-Prot/TrEMBL.

MotifScan http://myhits.isb-sib.ch/cgi-bin/motif_scan PROSITE
Pfam
HAMAP
TIGRFAMs

Pfam HMM 
search

http://pfam.janelia.org/http://www.sanger.ac.uk/
Software/Pfam/search.shtml

Pfam 

BLIMPS ftp://ftp.ncbi.nih.gov/repository/blocks/unix/blimps/ BLOCKS
FingerPRINTScan http://umber.sbs.man.ac.uk/fingerPRINTScan/ PRINTS 
3 of 5 http://www.dkfz.de/mga2/3of5/3of5.html Not specified
ELM http://elm.eu.org/ SMART

Pfam
PRATT http://www.ebi.ac.uk/pratt/http://kr.expasy.org/tools/pratt/ N/A
PPSEARCH http://www.ebi.ac.uk/ppsearch/ PROSITE
PROSITE scan http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.

pl?page=npsa_prosite.html
PROSITE

PATTINPROT http://npsa-pbil.ibcp.fr/cgi-bin/npsa_automat.
pl?page=npsa_pattinprot.html

A protein databases 
for one or several 
patterns at PBIL.

SMART http://smart.embl-heidelberg.de/ Swiss-Prot
SP-TrEMBL
stable Ensembl 
proteomes

TEIRESIAS: http://cbcsrv.watson.ibm.com/Tspd.html N/A
Hits http://myhits.isb-sib.ch/cgi-bin/index MySQL
PANTHER http://www.pantherdb.org/ UniProt
Gene3D http://cathwww.biochem.ucl.ac.uk:8080/Gene3D/ BioMap

UniProt
CATH
 Pfam
COG/KOG

SignalP http://www.cbs.dtu.dk/services/SignalP/ N/A
TMHMM http://www.cbs.dtu.dk/services/TMHMM/ N/A
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be constrained by operators, and individual characters may be 
excluded. The n-of-m pattern type can be combined with common 
regular expression terms and thus also allows for a comprehensive 
description of complex patterns. 3of5 increases the fidelity of pat-
tern matching and finds all possible solutions in protein sequences 
in cases of length-ambiguous patterns instead of simply reporting 
the longest or shortest hits. Grouping and combined search for pat-
terns provides a hierarchical arrangement of larger patterns sets. This 
application offers an extended vocabulary for the definition of search 
patterns and thus allows the user to comprehensively specify and 
identify peptide patterns with variable elements. The n-of-m pattern 
type offers improved accuracy for pattern matching in combination 
with the ability to find all solutions, without compromising the user-
friendliness of regular expression terms.

SMART: SMART is a Simple Modular Architecture Research Tool at 
EMBL. In Normal SMART, the database contains Swiss-Prot, SP-
TrEMBL, and stable Ensembl proteomes. The protein database in 
Normal SMART has significant redundancy, even though identi-
cal proteins are removed. Genomic mode will enhance SMART to 
explore domain architectures, or to find exact domain counts in 
various genomes. The numbers in the domain annotation pages will 
be more accurate, and there will not be many protein fragments cor-
responding to the same gene in the architecture query results. A user 
must keep in mind exploring a limited set of genomes.

Hits: Hits is a database containing information about a protein, i.e., a 
sequence and annotations,and it is also a collection of tools for the 
investigation of the relationships between protein sequences and 
motifs. These motifs are defined by a heterogeneous collection of 
predictors, which currently includes regular expressions, generalized 
profiles, and HMMs. MyHits is an extension of Hits. It allows any reg-
istered user to manage its own private collections of protein sequences 
and motifs. The system relies on a MySQL database updated daily. 
Registration is free for academic use.

PANTHER: The PANTHER (Protein ANalysis THrough Evolutionary 
Relationships) Classification System is a unique resource that classi-
fies genes by their functions, using published scientific experimental 
evidence and evolutionary relationships to predict function even in 
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the absence of direct experimental evidence. Proteins are classified 
by expert biologists into families and subfamilies of shared func-
tion, which are then categorized by molecular function and biologi-
cal process ontology terms. For an increasing number of proteins, 
detailed biochemical interactions in canonical pathways are cap-
tured and can be viewed interactively.

Gene3D: Gene3D is built upon the BioMap sequence database, which 
consists of UniProt (including the genome sets obtained from 
Integr8) and extra sequences from various functional resources 
(including KEGG and GO). These sequences are annotated using 
functional data from GO, COGS, and KEGG. This program scans 
the CATH domain database against the whole sequence database 
and adds Pfam domain family data for UniProt sequences. The pro-
tein–protein interaction data from BIND and MINT, where avail-
able, are added. The sequences are clustered into whole-chain protein 
families. These families should show good conservation of function 
and structural features. The complete genomes are obtained from 
Integr8 at the EBI. They are mostly correct, but for some genomes 
(i.e., rat) you may want to check on whether they are actually com-
plete or not.

Part II	S tep-By-Step Tutorial

InterProScan is a metaserver integrated with different protein signature 
recognition methods into one resource with look up of corresponding 
InterPro and GO annotation and is best suitable for the demonstration 
purpose (Figure 11.22). This site is enhanced with a number of programs 
mentioned earlier. It scans PROSITE (patterns and profiles), PRINTS, 
PFAM, PRODOM, SMART, TIGRFAMs, PIR SuperFamily, and SUPER-
FAMILY and runs GENE3D, PANTHER, SignalP v3, and TMHMM v2 at 
the same time if you check boxes as many as you want.

The demo example shows how to run this InterProScan:

	 1.	Obtain the protein sequences you want to analyze from the database 
or your own experiments. The sample data used in this demonstra-
tion are listed below in Part III titled “Sample Data.”

	 2.	Go to the InterProScan Web site at the address http://www.ebi.
ac.uk/InterProScan/. Then you will reach the image shown in 
Figure 11.23.
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	 3.	Enter your e-mail address if you want to receive the results via e-mail.

	 4.	Choose either an interactive run (when the results will be displayed 
online) or an e-mail run (when you will receive your results by e-mail).

	 5.	Select the type of sequence you are going to input, i.e., protein or 
nucleotide.

You can copy and paste or type a nucleotide or protein sequence into 
the large text window. A free text (raw) sequence is simply a block 
of characters representing a protein or DNA/RNA sequence. You 
may also paste a sequence in Fasta, EMBL, Swiss-Prot, and Gen-
Bank format.

To input a protein sequence, use free text/Raw, FASTA, or 
Swiss-Prot.
To input a nucleotide sequence use free text/Raw, FASTA, 
EMBL, or GenBank.

Instead of putting your sequence into the window, you may want to 
attach a file containing your sequence.

−

−

Protein Sequence

InterProScan

ScanRegExp

Pfscan

Prosite

HMMPfam

FingerPrintScan

HMMPfam

HMMPfam

BlastProDom.pl

Prints

Combine
results

Look up
InterPro

Return list
of InterPro

hits

Pfam

ProDom

SMART

TIGRFAMMs

Prosite profile

Figure 11.22  Search for protein profiles and patterns with a protein sequence 
through InterProScan.
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	 6.	When you are submitting a nucleotide sequence, you have to choose 
the minimum length of open reading frame (ORF) in your sequence. 
After submission, the sequence will be automatically translated 
into an amino acid sequence only when an ORF is present in the 
sequence. Copy and paste your sequence in the window appearing 
below the sentence. Figure 11.13 shows the image that has the amino 
acid sequence of human betacellulin precursor (No. 1 sequence in 
Part III titled “Sample Data”) is input.

Figure 11.23  The results of InterProScan (Picture view).
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	 7.	Check boxes appropriately depending on the assessment required. 
All boxes are checked as default. The checked protein sequence 
applications are launched. These applications search against specific 
databases and have preconfigured cutoff thresholds:

BlastProDom scans the families in the ProDom database.
FprintScan scans against the fingerprints in the PRINTS database.
HMMPIR scans the HMMs that are present in the PIR Protein 
Sequence Database (PSD) of functionally annotated protein 
sequences, PIR-PSD.
HMMPfam scans the HMMs that are present in the PFAM Pro-
tein families database.
HMMSmart scans the HMMs that are present in the SMART 
domain/domain families database.
HMMTigr scans the HMMs that are present in the TIGRFAMs 
protein families database.
ProfileScan scans against PROSITE profiles.
ScanRegExp scans against the regular expressions in the PROS-
ITE protein families and domains database.
SuperFamily is a library of profile HMMs that represents all pro-
teins of known structure.

Refer SignalPHMM and HMMPANTHER to SignalP and PAN-
THER above, respectively.

	 8.	Now you can perform an InterProScan query by clicking “Submit 
job.” In this demonstration the result will appear in the computer 
screen but not via e-mail.

	 9.	After a while, the result will appear as shown in Figure 11.24. This is 
a typical summary pattern as a picture view. Alternatively, this sum-
mary could be taken as a table by clicking the “Table View” button 
(Figure 11.25).

	 10.	In either of these summaries, the left column shows the entry code 
of InterPro, i.e., IPR000742 (EGF-like, type3), IPR 001336 (EGF-like, 
type1), IPR 006209 (EGF-like), IPR 006210 (EGF), and IPR 013032 
(EGF-like region).

	 11.	The right column shows the entry code related with another data-
base. For example, the line of IPR000742 (EGF-like, type3) shows the 

•
•
•

•

•

•

•
•

•
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category is related with PS50026 in PROSITE as for the amino acid 
residues from 65 to 105.

	 12.	The entry code starting with IPR (e.g., IPR000742 assigned to the 
signature of “EGF-like, type 3”) belongs to InterPro, and the con-
tents of the entry can be seen by clicking the code.

	 13.	Further information related to this entry code can be obtained by 
clicking the underlined character codes, which belong to the data-
bases collaborating with InterProScan. The detailed tutorial for 
InterPro is found at (http://www.ebi.ac.uk/interpro/tutorial.html).

	 14.	The scan should be carefully done to obtain more information that 
could not be shown with the first submission. This appears to occur 
owing to the priority of information automatically ordered by the 
program. In this case there is so much information on the EGF-motif 
that other information is removed from the final results. To obtain 

Figure 11.24  The results of InterProScan (Table view).
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Figure 11.25  Results by the submission of amino-terminal sequence of 
betacellulin.
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the missing information, it is strongly recommended to submit the 
sequence fragmented into short pieces.

	 15.	The amino-terminal half sequence of betacellulin with incomplete 
EGF-motif (No. 2 sequence in Part III, titled “Sample Data”) is sub-
mitted and the results are obtained as shown in Figure 11.26.

In this case PANTHER found both profiles of TRANSFORMING 
GROWTH FACTOR ALPHA (PTHR10740) and Betacellu-
lin (PTHR10740:SF3), whereas no entry was found in InterPro. 
Another point is that the results from SignalP and TMHMM. 
SignalP predict the secretion signal peptide localized at amino 
acid residues from 1 to 32. Also, TMHMM predicts the trans-
membrane region at amino acid residues from 14 to 34, which 
appears to be the hydrophobic core of the signal peptide.

Figure 11.26  Results by the submission of carboxyl-terminal sequence of 
betacellulin.
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	 16.	Figure 11.27 shows the results when the carboxyl-terminal half 
sequence of betacellulin precursor without EGF motif (No. 3 
sequence in Part III, titled “Sample Data”) is submitted.

Again, PANTHER found both profiles of TRANSFORMING GROWTH 
FACTOR ALPHA (PTHR10740) and Betacellulin (PTHR10740:SF3). Sig-
nalP predicts the secretion signal peptide again; however, the submitted 
part of the sequence is not localized at the amino terminal of betacellu-
lin, so that this is not a secretion signal but the transmembrane region as 
TMHMM predicts at amino acid residues from 14 to 34.

A detailed tutorial on InterProScan is available at “2Can Support Por-
tal” (http://www.ebi.ac.uk/2can/tutorials/function/InterProScan.html).

Figure 11.27  Tertiary structure predicted by EsyPred.
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Part III	S ample Data

1.  Human Betacellulin Precursor Amino 
Acid Sequence in FASTA Format
>gi|4502461|ref|NP_001720.1| betacellulin [Homo sapiens]

MDRAARCSGASSLPLLLALALGLVILHCVVADGNSTRSPETNGLLCGDPEEN-

CAATTTQSKRKGHFSRCPKQYKHYCIKGRCRFVVAEQTPSCVCDEGYIGAR-

CERVDLFYLRGDRGQILVICLIAVMVVFIILVIGVCTCCHPLRKRRKRK-

KKEEEMETLGKDITPINEDIEETNIA

2.  The Amino-Terminal Half Amino Acid 
Sequence of Human Betacellulin

MDRAARCSGASSLPLLLALALGLVILHCVVADGNSTRSPETNGLLCGDPEEN-

CAATTTQSKRKGHFSRCPKQYKHYCIKGRCRFVVAEQTPSCV

3.  The Carboxyl-Terminal Half Amino Acid 
Sequence of Human Betacellulin

RVDLFYLRGDRGQILVICLIAVMVVFIILVIGVCTCCHPLRKRRKRK-

KKEEEMETLGKDITPINEDIEETNIA
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Proteins largely determine cellular events. Proteins may be classified into 
a variety of functional categories such as catalytic, transporting, signal-
ing, regulatory, controlling, structural, or mechanical proteins.

One of the major challenges of the postgenomic era is to unravel the 
underlying molecular mechanisms of protein function and to elucidate 
how individual proteins interact in biological processes. As only a small 
fraction of known proteins have been experimentally characterized, the 
majority of uncharacterized proteins are annotated by the transfer of 
existing knowledge from homologous proteins.

In the first section of this chapter, the application of protein sequence 
analysis to protein function prediction for the purpose of database anno-
tation is described. The second section is dedicated to the prediction of 
posttranslational protein modifications, as such modifications provide an 
important means of regulating protein function and increasing functional 
diversity. Although the in silico protein sequence analysis methods are 
valuable for the prediction of biochemical function, they may be unable 
to reliably predict the biological role of a protein. Such context-depen-
dent functions can be analyzed by studying protein–protein interactions, 
a subject covered in the third section.
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Section 1	P rotein Function Annotation
Part I	I ntroduction
1.  Why Is Protein Function Annotation Needed?
An amino acid sequence without any function annotation is meaningless. 
What is more, the vast majority of proteins cannot perform their proper 
cellular function as such. As deduced from characterized proteins, it has 
been shown that most are chemically altered: amino acid modifications 
can either stabilize the protein’s structure or influence a protein’s func-
tion. More than 350 different types of amino acid modifications have 
already been described. What is more, most proteins assemble with other 
proteins to achieve a function that none of the components can perform 
on their own. The knowledge of such modifications is indispensable for 
understanding the molecular function of proteins and their contribution 
to the biological processes of cells.

Hundreds of raw sequences enter protein databases every day. The 
characterization of an individual protein requires a multitude of experi-
mental studies, that are performed mostly on model organisms such as 
mouse, fruit fly, yeast, or Escherichia coli. Most other proteins will never 
be experimentally characterized; in contrast, their characterization will be 
based on the assumption that corresponding proteins of related organisms 
are likely to perform the same function. The knowledge obtained on one 
protein will thus be used to infer the possible function of related proteins. 
Consequently, the combination of biological knowledge, experimental 
findings, and in silico protein sequence analysis makes protein function 
annotation possible also for uncharacterized proteins.

2.  What Is Involved in Protein Function Annotation?
Three basic steps are involved in protein function prediction: the reading 
of relevant literature, in silico function analysis, and the interpretation of 
the obtained results.

Access to experimental records. The only way to acquire knowledge on 
the function of proteins is through experiments. The results of such studies 
are published in scientific journals and review articles written by experts, 
who give a summarized interpretation of the available knowledge. Tools 
for finding relevant information in the literature are helpful, but cannot 
replace the careful reading of the individual articles. Reading is actually 
one of the main tasks of an annotator. Only a small fraction of protein 
function annotation goes back to direct author submissions. Since the 
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introduction of large-scale experiments, databases have been created for 
the storage of experimental findings from numerous studies, among them 
gene expression and protein–protein interactions. The raw data are gener-
ally not used for protein function prediction without further validation.

In silico protein sequence analysis. Numerous tools can be used to 
gain insight into a protein’s function. A nonexhaustive list is presented in 
Table 12.1. In the following text, the successive steps of a protein sequence 
analysis are described, using one possible combination of software tools.

The first step in sequence analysis is generally a database similarity 
search. These often detect closely related sequences from other species, 
and their annotation can give a first clue regarding a possible function — 
if at least one of the sequences has already been characterized and curated. 
The function of most proteins is actually inferred from the known func-
tion of related sequences. Similar sequences originating from different 
species — and in an order consistent with evolutionary distances — may 
be considered potentially orthologous. The similarity of the orthologs will 
generally cover the full length of the protein.

Further, a multiple sequence alignment of the query sequence and its 
potential orthologs might help refine the sequence’s primary structure. 
For example, initiation codons can be inferred from orthologs for which 
they have been experimentally determined. Moreover, locally divergent 
regions in the alignment are often caused by splice variants or frameshift 
errors, which can be checked by analyzing the coding region of the gene. 
At this stage of the study, the orthologous relationship of the proteins can 
be clarified by performing a phylogenetic analysis. Based on the assump-
tion that orthologs share the same function, a literature search for all the 
orthologs will detect more relevant experimental findings than would be 
obtained for an individual protein.

Going deeper into the protein’s function will generally require scan-
ning the query protein against a family and domain database. Predicted 
domains might also indicate a structural and functional similarity 
between more distantly related proteins. Protein-function-relevant infor-
mation is documented in family and domain databases that also report 
on functional sites and regions within domains. Such information helps 
accurately predict biologically important sites, e.g., active sites, binding 
sites, or posttranslational modifications (PTMs) (see next section).

Another aspect critical for the deduction of protein function is the pre-
diction of the subcellular location of the protein. A number of methods 
have been developed to predict features relevant to the final destination 
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Table 12.1  �List of Selected Programs Relevant to Protein Function Prediction
Database Similarity Search Against a Protein Sequence Database

Blast 
UniProtKB

http://www.uniprot.org/blast/ Find similar entries in 
UniProtKB

Blast RefSeq http://www.ncbi.nlm.nih.gov/BLAST/ Find similar entries in 
RefSeq

Multiple Sequence Alignment (see Chapter 3)
Phylogenetic Analysis (see Chapter 3)

Family and Domain Prediction (see Chapter 10)
InterProScan http://www.ebi.ac.uk/InterProScan/ Families, domains, and sites 

from ten databases, 
including Pfam, PROSITE, 
SMART, and CATH/SCOP

Pfam http://www.sanger.ac.uk/Software/Pfam/
search.shtml

Families and domains

ScanProsite http://www.expasy.org/tools/scanprosite/ Families, domains, sites, 
and annotation rules

SMART http://smart.embl-heidelberg.de/ Domains
HAMAP http://www.expasy.org/sprot/hamap/

families.html
Family prediction and 
annotation of microbes 

COILS http://www.ch.embnet.org/software/
COILS_form.html

Coiled coils

Deduction of the Subcellular Location
PSORT http://www.psort.org/psortb/ Subcellular location of 

bacterial proteins
PSORTII http://wolfpsort.seq.cbrc.jp/ Subcellular location of 

eukaryotic proteins
ChloroP http://www.cbs.dtu.dk/services/ChloroP/ Chloroplast transit peptides
PTS1 http://mendel.imp.ac.at/mendeljsp/sat/

pts1/PTS1predictor.jsp
Peroxisomal targeting signal 
1 

SignalP http://www.cbs.dtu.dk/services/SignalP/ Secretory pathway signal 
peptide cleavage site 

TargetP http://www.cbs.dtu.dk/services/TargetP/ Chloroplast transit peptide, 
mitochondrial targeting 
peptide and secretory 
pathway signal peptide

DAS http://www.sbc.su.se/~miklos/DAS Transmembrane regions in 
prokaryotes 

TMHMM http://www.cbs.dtu.dk/services/TMHMM-2.0/ Orientation and location of 
transmembrane helices

big-PI http://mendel.imp.ac.at/gpi/gpi_server.
html

GPI-anchor

PTM Prediction (see Chapter 11, Section 2)
Prediction of Protein–Protein Interactions (see Chapter 11, Section 3)

Deduction of the Biological Role of a Protein
String http:/string.embl.de/ Protein–protein interactions
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of a protein in the cell, e.g., targeting signals for the secretory pathway, 
mitochondria, peroxisomes and chloroplasts, transmembrane domains, 
and glycosyl phosphatidylinositol (GPI) anchors (GPI-anchors).

Combined analysis methods. The biological role of a protein can 
also be inferred from characterized proteins that are — in one way or 
another — associated with the protein of interest. A simple case would 
be the deduction of a protein function from known proteins encoded by 
the same operon. Functional evidence can also be obtained from cluster 
analysis of expression data or the analysis of protein–protein interaction 
networks, but both approaches have not yet achieved the accuracy needed 
for function prediction. Results seem to be more reliable when combining 
information from different sources, such as from genomics, proteomics, 
and high-throughput experiments.

Interpretation of the analysis results. Annotation is more than an 
accumulation of experimental findings and analysis results. All out-
comes need checking for their logical coherence, and this requires bio-
logical knowledge. Whereas some inconsistencies in the predicted results 
are blatant, others are much less obvious. In turn, though analysis results 
may appear to be paradoxical, they could actually be correct. However, 
complex explanations are possible only when based on experimental 
results.

3.  New Developments in Protein Function Annotation
Automated annotation. Protein function annotation is time consum-
ing, and fortunately some of the analysis and annotation steps can be 
automated. Various approaches to automatic annotation have been 
developed over the past few years: procedures differ extensively in their 
extent of integrated analysis steps and quality checks, dependent on 
the scope of the project. Depending on the scope of the project, proce-
dures differ extensively in their extent of integrated analysis steps and 
quality checks. Large-scale analysis — as for the detection of trends in 
comparative genomics — tends to maximize the coverage of function 
predictions. In contrast, systems for the proper characterization of indi-
vidual proteins perform sequence analysis as extensively as with manual 
annotation. Validation steps implemented in the analysis pipeline fil-
ter sequences with unexpected characteristics for sequence correction 
or special annotation. Quality-oriented annotation procedures are not 
meant to replace manual annotation, but rather increase efficiency: 
instead of annotating an individual sequence entry, family-specific 
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annotation rules are developed and applied to sequences, with coher-
ent analysis results. Annotation rules are constantly maintained and 
updated as new scientific findings emerge.

Controlled vocabularies. Annotation is regularly used to access and 
compare data. This is possible when the database format is well struc-
tured and the information content is standardized. To this end, con-
trolled vocabularies have been created; a typical example is keywords. In 
contrast, ontologies are a combination of controlled vocabularies with 
defined relationships. Building controlled vocabularies with precise defi-
nitions is a huge task, especially when they are used to characterize related 
data from distinct disciplines. Multiple research groups are involved in 
the Gene Ontology (GO) project, which provides controlled vocabularies 
to describe gene product attributes in a species-independent manner. So 
far, the GO project has created three ontologies for molecular functions, 
biological processes, and cellular components. GO terms are data inde-
pendent and can thus be assigned to data of distinct nature, e.g., proteins, 
protein families, protein domains, protein complexes, and pathways. 
Thanks to the GO annotation, data derived from different species can be 
compared more easily.

Part II	S tep-By-Step Tutorial

This step-by-step tutorial pinpoints distinct aspects of protein function 
annotation: in silico protein sequence analysis (demo 1), exploration 
of existing database annotation (demo 2), and automatic annotation 
(demo 3).

1.  Prediction of the Subcellular Location for a Protein
This demo example shows how to apply various methods for the prediction 
of the subcellular location by (1) retrieving information from the annota-
tion of related data, (2) applying several programs for the prediction of the 
subcellular location of a protein, and (3) using InterProScan to comple-
ment the information obtained. The protein analyzed is an automatically 
annotated protein of Drosophila melanogaster. Besides a strong similarity 
to other probable insect orthologs, the strongest similarity to reviewed 
data of the UniProtKB database is detected for ALK tyrosine kinase recep-
tors and leukocyte tyrosine kinase receptors. The sequence similarity cov-
ers the full length of these proteins.

The steps of the demo example follow:
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	 1.	Access a protein entry from the UniProtKB Web site by typing the 
address http://www.uniprot.org/ in your browser. In the “Query” 
field, type “P97793.” The UniProtKB database entry for the mouse 
ALK tyrosine kinase receptor is displayed (Figure 12.1).

	 a.	 The annotation indicates that the protein is expected (see non-
experimental qualifier “Potential”) to be a type-1 membrane 
protein. This implies, that (1) the protein possesses a signal pep-
tide for the secretory pathway, (2) that it has one transmembrane 
domain, and (3) that the topology of the N-terminal is “outside” 
(e.g., extracellular) and the C-terminal of the protein remains in 
the cytosol. Three distinct types of domains have been predicted 

Figure 12.1  Function-related annotation of mouse ALK tyrosine kinase recep-
tor (UniProtKB/Swiss-Prot: P97793, version 58).
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for this protein: two MAM domains and an LDL-receptor class 
A domain that are located within the extracellular terminal of 
the protein, whereas the protein kinase domain is located in the 
cytoplasmic terminal of the protein. The catalytic activity of the 
protein kinase domain is given, and the function annotation 
describes the possible biological role of the protein. Question: 
Does the topology of this protein also apply to the similar protein 
of Drosophila?

	 2.	Access a protein entry from the UniProt Web site by typing the address 
http://www.uniprot.org/ in your browser. In the “Query” field, type 
“Q7KJ08.” The UniProtKB database entry for an uncharacterized 
protein of Drosophila melanogaster is displayed. Click on the FASTA 
button to display the entry in FASTA format. Copy the entry.

	 a.	 Type the address http://www.cbs.dtu.dk/services/SignalP/ in 
your browser. Paste the FASTA-formatted sequence data into 
the “Search” field and click “Submit.” The result is presented in 
Figure 12.2a. A signal for the secretory pathway has been pre-
dicted with a high probability. The signal peptide is likely to be 
cleaved between sequence positions 23 and 24. The existence of a 
signal anchor is predicted to be improbable.

	 b.	 Type the address http://www.cbs.dtu.dk/services/TMHMM/ in 
your browser. Paste the FASTA-formatted sequence data into the 
“Submission” field, select under “Organism group” “Eukaryotes” 
and click “Submit.” The result is presented in Figure 12.2b. Two 
transmembrane domains are predicted: one is located in the N-
terminal at positions 7 to 29, and the second one is located at 
sequence positions 1106 to 1128; the N-terminal region of the 
second predicted transmembrane domain is expected to be “out-
side,” and the C-terminal “inside.” The predicted N-terminal 
transmembrane domain clashes with the predicted signal pep-
tide: both are hydrophobic, alpha-helical regions, and the diffi-
culty of discrimination between the two regions is well known. 
In this case, we assume that the signal peptide is likely to be true, 
based on the outcome of SignalP and the global sequence simi-
larity to the tyrosine kinase receptors. To verify if the Drosophila 
protein could be a possible protein kinase receptor, the Drosoph-
ila sequence is scanned against family and domain databases.
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	 3.	Type the address http://www.ebi.ac.uk/InterProScan/ in your 
browser, paste the FASTA-formatted sequence data into the “Enter 
or Paste…” field and click “Submit Job.” The result is shown in Fig-
ure 12.3. Three distinct types of domains are predicted: two MAM 
domains, one low-density lipoprotein receptor class A domain, and a 
tyrosine protein kinase domain (more specific than the more general 
signature for the protein kinase domain that is also predicted). The 
four domains are predicted by distinct methods, which strengthens 
their plausibility. Both the MAM domain and the low-density lipo-
protein receptor class A domain are typical extracellular domains: 
their structure is stringently stabilized by disulfide bonds and thus 
unstable in the oxidizing environment of the cytosol. Their N-ter-
minal location in the probable transmembrane domain is consis-

Figure 12.2  Prediction of the subcellular location of an uncharacterized pro-
tein of D. Melanogaster (Q7AJ08). Results from the programs (a) SignalP, (b) 
TMHMM.

C8105.indb   388 7/18/07   8:22:19 AM



Protein Function Analysis  <  389

tent with the predicted topology of the protein. The protein kinase 
domain is located in the cytoplasmic region of the protein. Conclu-
sion: The Drosophila protein is probably located in a membrane of 
the secretory pathway and/or in the cell membrane.

2.  Exploring Disease-Related Annotation
Disease-related annotation can be descriptive (1a), include controlled vocab-
ularies (1c), be position specific (1d), or give access to other resources (1b).

	 1.	Search a protein entry from the UniProtKB Web site by typing the 
address http://www.uniprot.org/ in your browser. In the search field, 
type “Q15848.” The database entry for human adiponectin is dis-
played (Figure 12.4).

	 a.	 Scroll down to the section “General annotation” and find the 
topic “Involvement in disease.” The enclosed annotation gives 
a brief description of the disease and includes a cross-reference 
to the corresponding MIM database entry (a disease database), 
which provides more details on the disease correlated to a defi-
ciency in the protein.

Figure 12.3  Result of the InterProScan for the Drosophila protein (Q7AJ08).
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	 b.	 By clicking the MIM accession number, the MIM entry relevant 
to adiponectin is displayed. Click the “Back” button of your 
browser to retrieve the UniProtKB/Swiss-Prot entry Q15848. In 
the same section of the entry, there is the topic “Pharmaceutical 
use,” which indicates that this protein is used or considered for 
disease treatment.

	 c.	 Scroll further down to the section “Ontologies,” subsection “Key-
words,” topic “Disease.” Several disease-related keywords are 
listed. Click the term “Diabetes mellitus.” The uploaded Web site 
provides a definition for the usage of the keyword in UniProtKB. 
Click the term “Disease” in the “Category” section. All disease-
related keywords used in UniProtKB are listed. Click the “Back” 
button of your browser to get back to the keyword entry. Click 
the term “UniProtKB” to get a list of all protein entries that are 
related to this disease. Click the “Back” button of your browser 
twice to get back to the UniProtKB/Swiss-Prot entry Q15848.

	 d.	 In the protein entry, scroll further down to the section “Sequence 
annotation.” Under the subsection “Natural modifications” find 
the feature “Sequence variant” for amino acid position 112. It 

Figure 12.4  Disease-related annotation of human adiponectin (UniProtKB/
Swiss-Prot: Q15848, version 74).
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describes a disease mutation for “Adiponectin deficiency.” In the 
description field of this feature, click “R->C.” The Web site for the 
variant entry is uploaded and provides structural details for the 
specific protein variant.

3.  Retrieve Function Annotation from the HAMAP Server
An uncharacterized prokaryotic protein is scanned against the HAMAP 
family database for microbial proteins. The resulting Web site provides 
functional annotation.

	 1.	Fetch a protein entry in FASTA format.
	 a.	 Search a protein entry from the UniProtKB Web site by typ-

ing the address http://www.uniprot.org/ in your browser. In the 
search field, type “Q0WAA3.” The database entry for a currently 
uncharacterized protein from Yersinia pestis is displayed.

	 b.	 Click on the box “FASTA” on the top right of the page to retrieve 
the entry in FASTA format. Copy the entry.

	 2.	Run the program
	 a.	 Access the HAMAP server by typing in your browser the address 

http://www.expasy.org/sprot/hamap/families.html. In the sec-
tion “Scan your sequence against the HAMAP families,” paste 
the entry in the sequence field and press “Run the scan.”

	 b.	 The resulting Web site lists a trusted hit for a protein family. Click 
on the family identifier “MF_01531.” The resulting Web site con-
tains automatically assigned annotation for this entry (Figure 12.5). 
In the section “Sets of member sequences,” topic “All,” click on the 
number at the end of the line, which indicates the number of fam-
ily members in the UniProtKB/Swiss-Prot database. The resulting 
Web site gives access to all reviewed family members.

Section 2	P rotein Posttranslational 
Modifications
Part I	I ntroduction
1.  What Are PTMs?
During the late steps of protein synthesis, many proteins undergo modi-
fications of their amino acids. The majority of these modifications occur 
posttranslationally, i.e., once the protein has undergone folding, and are 
typically catalyzed by specific enzymes found in the endoplasmic reticu-
lum, the Golgi apparatus, the cytoplasm, or the nucleus. In the literature, 
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the term PTM is often used in a rather general sense and includes both 
co- and posttranslational modifications. In general, PTMs are performed 
by enzymatic mechanisms that are present in a subset of organisms and/or 
subcellular compartments and are specific to certain amino acids.

There are three naturally occurring types of PTM. The first involves a 
change in the chemical nature of amino acids, for example, via deimina-
tion (arginine) or deamidation (glutamine or asparagine). The second type 
involves changes in the primary structure of the protein. These include 
proteolytic cleavages, or the formation of disulfide bridges by covalent 
linkage of two cysteines. The third type involves the addition of func-
tional groups to amino acids. For example, phosphorylation adds a phos-
phate group to serine, threonine, or tyrosine; glycosylation adds a glycosyl 
group to either asparagine, serine, or threonine; acetylation adds an ace-

Figure 12.5  Automatic HAMAP annotation. A protein of the bacterium Yer-
sinia pestis (Q0WAA3) is scanned against the HAMAP family database and 
automatically annotated according the corresponding annotation rule.
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tyl group, usually at the N-terminus of the protein; methylation adds a 
methyl group at lysine or arginine residues, and isoprenylation adds an 
isoprenoid group to a cysteine. PTMs can also consist of covalent linkages 
to another protein such as ubiquitin or an ubiquitin-like modifier.

In addition to specific proteolytic cleavages, more than 350 naturally occur-
ring PTMs have been identified to date. The freely accessible RESID database 
(http://www.ebi.ac.uk/RESID) is a comprehensive collection of annotations 
and structures for these PTMs. For each PTM, it provides systematic and 
alternate names, the atomic formula and mass, enzymatic activities that gen-
erate the modification, keywords, literature citations, Gene Ontology (GO) 
cross-references, structure diagrams, and molecular models. In addition, it 
shows how PTMs are annotated in the UniProtKB/Swiss-Prot database. A 
complete list of PTMs currently annotated in the UniProtKB/Swiss-Prot is 
available on the ExPASy Web site (http://www.expasy.org/cgi-bin/ptmlist.pl). 
The Human Protein Reference Database (HPRD) (www.hprd.org) also con-
tains high-quality PTM annotation for many human disease-related proteins. 
In addition, several manually curated PTM-specific databases, including O-
GlycBase (http://www.cbs.dtu.dk/databases/OGLYCBASE/), Phospho.ELM 
(http://phospho.elm.eu.org/), and PhosphoSite (http://www.phosphosite.org) 
provide large amounts of experimental data.

2.  Functional Impact of PTMs
One or more distinct PTMs can occur in a protein — and in various combi-
nations — thus effectively extending the structural variety of a gene prod-
uct. Hence, PTMs are a powerful mechanism to enhance the diversity of 
protein structures and to modify protein properties. Many sequence mod-
ifications such as proteolytic processing are irreversible, thus changing the 
property of the protein irreversibly too. Others are reversible and dynami-
cally alter protein conformation, subcellular location, or interactions with 
other proteins; they are considered major regulatory mechanisms for 
metabolic enzymes and signaling pathways. In addition, competition for 
different PTMs at a single site in response to distinct upstream signals 
can provide a fine-tuning mechanism for signal integration. Therefore, it 
is not surprising that PTMs are now recognized as important targets in 
molecular medicine and pharmacology.

It is estimated that as many as a third of the eukaryotic proteins that 
enter the secretory pathway are glycosylated. The presence of carbohydrate 
chains has a profound influence on the physicochemical properties of  
glycoproteins. It can aid protein folding and quality control in the  
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endoplasmic reticulum, and affect protein stability or aggregation prop-
erties. In addition, carbohydrate moieties are implicated as ligands in 
recognition phenomena, and can determine or affect the subcellular 
location, activity, or function of glycoproteins. Congenital disorders of 
glycosylation are inherited metabolic diseases caused by defects in the 
biosynthesis of glycoconjugates and hypoglycosylation of different glyco-
proteins. They cover a large variety of symptoms affecting multiple sys-
tems including, in most cases, statomotor and mental retardation.

In human cells, 518 protein kinases with different substrate specificities 
have been identified so far. They can phosphorylate cytosolic or nuclear 
proteins on serine, threonine, or tyrosine residues. As their activities are 
counterbalanced by a set of about 150 phosphatases, the resulting phospho-
proteome can change in a highly dynamic way. Protein phosphorylation 
is considered to be the key event in many signal transduction pathways 
governing cell biology, including cell cycle control, membrane transport, 
cell adhesion, neurotransmission, and metabolism.

A good illustration of complex multisite PTMs is the “histone code,” 
which regulates the structure and function of nucleosomes in chromatin. 
This code relies on a battery of enzymes that reversibly and dynamically 
methylate, acetylate, phosphorylate, and ubiquitinate distinct amino acids 
in the core histones, thereby modulating their interactions with DNA and 
with other factors involved in DNA replication, transcription, and repair. 
The ability to interfere with this code by using chemical compounds such 
as histone deacetylase inhibitors seems to be a promising strategy to block 
gene activation in cancer cells and check their proliferation.

3.  How Are PTMs Experimentally Studied?
PTMs are usually present at substoichiometric levels, which means that a 
PTM at a given site is often present in only a small fraction of the protein 
molecules: for example, the occupancy of a phosphorylation site in 5% of a 
protein population may be sufficient to activate a signaling pathway. Thus, 
direct analysis of PTMs requires isolation of the correctly modified pro-
tein in a sufficiently large amount for biochemical study. For this reason, 
much work has been done on recombinant proteins expressed in systems 
thought to produce modification patterns similar to those of the organism 
of interest. For example, the baculovirus expression system is often used 
to mimic mammalian cell expression. Whatever the expression system 
used, there are still frequent significant differences between recombinant 
proteins and native proteins.
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Two-dimensional gel electrophoresis separates protein populations 
on the basis of charge and molecular weight. For some PTMs such as 
phosphorylation, the resolution is sufficient to separate the different states 
of a protein directly. If sufficient information is available regarding the 
type and position of expected PTMs in the protein of interest, and if high-
quality antibodies are available, Western blot on one- or two-dimensional 
gels is an easy and powerful method for PTM analysis. This technique is 
frequently coupled with site-directed mutagenesis.

Once a protein has been isolated, amino acid sequencing by the classi-
cal technique of Edman degradation is the method of choice to determine 
proteolytic processing. Edman degradation can also be performed on pep-
tides obtained after enzymatic or chemical degradation of the protein. In 
this case, modified amino acids become apparent because of their absence 
or retention-time shift in the corresponding sequencing cycle, and can be 
mapped on the initial protein sequence.

In theory, any PTM can be detected by mass spectrometry (MS), pro-
vided that it leads to a difference in mass. The technique of peptide mass 
fingerprinting is widely used for high-throughput MS protein identifica-
tion. This involves the digestion of the protein with an endoproteinase of 
known cleavage specificity, the measurement of the masses of resulting 
peptides by MS, and protein identification by matching the observed pep-
tide masses against databases of theoretical masses of proteins and their 
derived peptides. Because unmatched peptides can be due to artifactual 
chemical modifications, to contamination with other proteins, but also to 
true PTMs, their inspection can sometimes directly provide useful PTM 
information.

However, in general, the mass shift of a modified peptide is not suf-
ficient to determine confidently the nature of its modification. Peptides 
are usually refragmented at peptide bonds and reanalyzed by MS, which 
allows a precise determination of both their sequence and modifications. 
This type of approach is called “tandem mass spectrometry” or MS/MS. 
These MS techniques currently allow analysis of large sets of proteins 
at once. The development of affinity capture/enrichment techniques to 
examine subproteomes of proteins containing specific PTMs has allowed 
both increased sensitivity and simplified data analysis. For example, 
affinity enrichment of phosphopeptides by immobilized metal-affinity 
chromatography (IMAC) or antiphosphotyrosine antibodies and affinity  
enrichment of glycoproteins by lectins have been successfully performed 
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to analyze protein phosphorylation and glycosylation in many model 
organisms (Arabidopsis, yeast, human, mouse, and C. elegans).

4.  Which PTMs Can Be Predicted? How?
PTMs that are experimentally proved for a given protein are expected 
to occur in the same way in its orthologs from evolutionary close organ-
isms. Therefore, PTMs are often inferred by similarity to a model organ-
ism. However, this relies on two main assumptions that always have to be 
checked first: the same PTM-performing enzymatic machinery is present 
in both organisms, and the sequence surrounding the PTM site is highly 
conserved in both organisms.

Even in the absence of PTM information available for ortholog proteins, 
it remains possible to predict several PTMs. As a matter of fact, PTMs are 
located at specific amino acid residues in proteins, usually in the context 
of particular sequence patterns. If they are sufficiently well defined and 
linear, these consensus motifs can be used to predict PTM occurrence. 
For example, N-glycosylation takes place at the Asn residue in the sequon 
Asn-X-Ser/Thr-X (where X is any amino acid but not Pro), which is easily 
revealed by computational sequence analysis. In the same vein, a wide range 
of computational approaches have been developed for prediction of PTMs, 
ranging from simple consensus motif searches to more complex methods 
such as artificial neural networks. Valuable tools are now available to pre-
dict proteolytic cleavages, tyrosine sulfation, N-terminal acetylation and 
myristoylation, O-glycosylation, or GPI-anchoring. Several algorithms 
have also been developed for prediction of kinase-specific phosphoryla-
tion sites. Although the rate of false-positive predictions is generally high 
for all these predictors, they may be useful to select potential substrates for 
further experimental analysis. In addition to PTM-related patterns from 
the PROSITE database (http://www.expasy.org/prosite/), a list of PTM 
prediction tools can be found at http://www.expasy.org/tools/#ptm.

The lack of highly curated PTM data sets makes it difficult to evaluate, 
compare, and improve PTM prediction tools in terms of sensitivity and 
specificity. Still, it is currently admitted that most PTM predictors tend to 
overpredict sites and therefore need more accurate filtering. For example, 
the taxonomic range of the organism studied should be considered, and 
protein subcellular location and topology should be taken into account in 
order not to predict N-glycosylation sites in cytosolic domains, or phos-
phorylation sites in transmembrane or extracellular domains. Finally, 
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rapid developments in proteomics should increase the number of available 
PTM data and guide the improvement of PTM predictors.

Part II	S tep-By-Step Tutorial
1.  Retrieve PTM Information on a Given Protein 
from General and More Specific Databases
The demo example is to illustrate what kind of PTM information is retriev-
able for a given protein from different databases. The chosen protein 
example is human crystallin alpha (A chain). The steps are as follows:

	 1.	Go to UniProtKB by typing the address http://www.uniprot.org/ 
in your browser. In the dropdown list “Search in” select “Protein 
Knowledgebase (UniProtKB)” and type “human crystallin alpha” in 
the “Query” field. In the result list, click P02489 (CRYAA_HUMAN) 
to access the entry. Figure 12.6 presents part of the entry relevant to 
PTM. Modified amino acids are annotated in the section “Sequence 
annotation.” The type of feature key used depends on the nature of 
the modification, and the exact name of the modified amino acid 
is indicated in the description field. Here, the sequence annotation 
shows one proteolytic cleavage, N-terminal acetylation, one glycosyl-
ation site, four phosphorylation sites, four internal acetylation sites, 
two methylation sites, one deamidation site, one disulfide bridge, 
and three sites that are susceptible to oxidation. Some details about 
deamidation, glycosylation, and phosphorylation are given in the sec-
tion “General annotation” under the topic “Post-translational modi-
fication.” In addition, five PTM-associated keywords are given under 
the topic “Ontologies.” All the references from which the information 
was extracted are available under the topic “References,” and for each 
of them a summary of the extracted information is provided.

	 2.	Go to HPRD by typing the address http://www.hprd.org/ in your 
browser. Click on “Query” to obtain the form page. In the “Protein 
Name” field, type “crystallin alpha.” Click on “Crystallin, alpha A” 
to access the entry. Click on “PTMs & SUBSTRATES” to access the 
PTM information (Figure 12.7). The disulfide bridge and the phos-
phorylation, methylation, glycosylation, and internal acetylation sites 
are annotated as in UniProtKB/Swiss-Prot. The HPRD entry also 
mentions two glycated sites that are not annotated in UniProtKB/
Swiss-Prot, because they were obtained after chemical treatment of 
the protein and may be artifactual. The abstracts of the references 
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Figure 12.7  HPRD PTM information on crystallin alpha, A chain (03 October, 
2006).

Figure 12.6  UniProtKB/Swiss-Prot PTM annotation on human crystallin 
alpha, A chain (Release 50.8 of 03 October, 2006).
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used for HPRD annotation are easily retrieved by clicking on the 
modified site positions.

	 3.	Go to Phospho.ELM by typing the address http://phospho.elm.
eu.org/ in your browser. Click on “Query” to obtain the form page. 
In the “Protein Name” field, type “crystallin alpha.” Click on “Crys-
tallin alpha A” to access the entry. For the human protein, the four 
phosphorylation sites are provided, with links on the corresponding 
references and on the UniProtKB/Swiss-Prot entry (Figure 12.8).

2.  Prediction of PTMs from Sequence
The demo example is to illustrate what kind of PTM information can be 
predicted for the sequence of human crystallin alpha (A chain) from avail-
able tools, and to compare it with experimentally verified information. The 
first step is to get the human crystallin alpha (A chain) sequence in FASTA 
format. One way to proceed is to click on “P02489 in FASTA format” at the 
bottom of the UniProtKB/Swiss-Prot entry and copy the sequence from 
the uploaded Web site. The steps are as follows:

	 1.	Prediction of subcellular location: Before performing any PTM pre-
diction, it is important to determine where the protein is located in 
the cell. One possibility is to use BaCelLo predictor at the following 
address: http://gpcr.biocomp.unibo.it/bacello/pred.htm. Paste the 
FASTA sequence of P02489 in the submission box and, as it is a human 
sequence, click the taxonomy button “animal.” The output result 
is shown on Figure 12.9. It predicts that this protein is cytoplasmic. 
Given this information, typical cytosolic PTMs such as N-acetylation, 
phosphorylation, and beta O-glycosylation can be searched for.

Figure 12.8  Phospho.ELM PTM information on crystallin alpha, A chain 
(Version 5.0 May 2006)
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	 2.	Prediction of N-acetylation: Go to Terminator2 server by typing the 
following address: http://www.isv.cnrs-gif.fr/terminator2/. Select 
“Eukaryote” and then “Animal,” “Nuclear” genome, and “No” pre-
dicted LPR cleavage in the selector fields. Paste the FASTA sequence 
of P02489 in the submission box and delete all characters before the 
first methionine of the sequence. Click on “Run prediction.” The 
output result is shown on Figure 12.10. It predicts that this protein 
has a N-acetylmethionine, with a likelihood of 67%. This prediction 
is accurate, as N-acetylation of the methionine has been experimen-
tally proven.

	 3.	Prediction of phosphorylation and O-glycosylation sites: Because 
interplay of phosphorylation and O-glycosylation at the same site 
may result in the protein undergoing functional switches, it can be 
important to predict both O-glycosylation and phosphorylation on 
Ser/Thr residues of the protein. Go to YinOYang server by typing the 
address http://www.cbs.dtu.dk/services/YinOYang/ in your browser. 
Paste the FASTA sequence of P02489 in the “Sequence” field, select 
the “Output for all S/T residues” and “Yin-yang site predictions” but-
tons and click on the “Submit sequence” button. The resulting output 
is shown in Figure 12.11. NetPhos predicts eleven serine phosphory-
lation sites and three threonine phosphorylation sites. Among these 
sites, Ser-122 has one of the highest scores and is indeed shown to be 
phosphorylated. In contrast, Thr-13 and Ser-45, which are experi-
mentally shown to be phosphorylated, had a very low probability of 
being phosphorylated according to the predictor. YinOYang predicts 
five sites with a high probability to be O-glycosylated. Among them, 
three also have a high probability of being phosphorylated. Among 

Figure 12.9  Subcellular location prediction of human crystallin alpha chain A 
by BaCelLo.
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the predicted sites, Ser-162 was shown to be O-glycosylated in the 
sequence from the Rhesus macaque ortholog.

This example shows that PTM predictors can be efficiently used to pre-
dict some potential PTM sites. Depending on the considered protein, its 
taxonomy range, and subcellular location, many other prediction tools 
may be used. A (nonexhaustive) list can be found on http://www.expasy.
org/tools/#ptm. However, these predictors may fail to predict real PTM 
sites (e.g., the two false-negative phosphorylation sites in the preceding 
example), and often predict many PTM sites that are probably not modi-
fied in vivo (e.g., the false-positive phosphorylation and glycosylation sites 
in the preceding example). Thus, results from PTM predictors should 
always be interpreted carefully, and each PTM site must be experimen-
tally validated.

Figure 12.10  N-terminal acetylation prediction in human crystallin alpha 
chain A by TermiNator.
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Part III	S ample Data

Human crystallin alpha (A chain) sequence in the FASTA format

>P02489|CRYAA_HUMAN Alpha crystallin A chain - Homo sapiens (Human).

MDVTIQHPWFKRTLGPFYPSRLFDQFFGEGLFEYDLLPFLSSTISPYYRQSLFRTVLDSG

ISEVRSDRDKFVIFLDVKHFSPEDLTVKVQDDFVEIHGKHNERQDDHGYISREFHRRYRL

PSNVDQSALSCSLSADGMLTFCGPKIQTGLDATHAERAIPVSREEKPTSAPSS

Figure 12.11  Prediction of O-glycosylation sites and phosphorylation sites in 
human crystallin alpha chain A by YinOYang.
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Section 3	P rotein–protein interactions
Part I	I ntroduction
1.  Why Is Protein–Protein Interaction Important?
Regardless of function, proteins seldom act alone and are usually assem-
bled into complexes and dynamic macromolecular structures to perform 
their task in the cell. Protein interactions are important for the smooth 
functioning of regulatory pathways that are crucial for cell survival. For 
example, the response to external stimuli through signaling cascades, the 
control of DNA replication and transcription, and the progression of a 
cell’s cycle all require a dynamic interaction between proteins. Protein 
interactions are also essential for certain proteins to exert their particular 
cellular function. For example, human hemoglobin comprises a complex 
of four stable subunits to fix oxygen.

For a long time, it had only been possible to study proteins as isolated 
entities. More recently, genome-scale high-throughput techniques com-
bined with novel computational tools have made it possible to study pro-
tein interactions on a network level.

2.  How Do Proteins Interact?
Protein–protein interaction is characterized by a number of parameters. 
Apart from wondering which proteins interact together, protein–protein 
interaction itself is defined by its stoichiometry, its affinity, the kinetics of 
its formation and dissociation, and its particular structural features.

The stoichiometry of the interaction defines the number of each pro-
tein involved (e.g., monomer vs. dimer or multimer). Proteins of identical 
or nonidentical chains are usually named as homo- or heterooligomeric 
complexes, respectively. The affinity of the interaction defines the strength 
of binding. Quantitatively, the interaction strength between two proteins 
is characterized by the equilibrium constant Kd, with weak interactions 
in the mM range and strong interactions in the nM range or below. The 
kinetics of protein–protein interaction are defined by both the rate of asso-
ciation (kon) and dissociation (koff). Whereas the typical association rates 
are in the order of 105−106 M−1sec−1 and do not vary much, the dissociation 
rate constant can vary considerably.

Structure-wise, protein–protein interactions are mediated mostly by 
physical contact made between protein domains. In the simplest scenario, 
two protein domains that are complementary in shape and charge may 
interact with no change in their conformation, as in the key-and-lock 
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model. In other scenarios, interactions only occur following conforma-
tional changes (induced-fit model). Protein–protein interfaces appear to 
have a minimal contact surface of around 800 Å and an average surface 
of 1600 ± 400 Å. The interfaces have detectable properties such as biases 
in residue and motif composition. Several major forces are involved in 
the interaction. These include electrostatic forces, hydrogen bonds, van 
der Waals attractions, and hydrophobic effects. The energy of interaction 
is not evenly distributed between the two proteins at the interface, but is 
mostly contributed by hot spot residues.

Crudely, protein–protein interactions can be described either as stable 
or transient. Stable interactions are those associated with proteins that 
can be purified and eventually structurally analyzed as multisubunit 
complexes, e.g., ribosome, RNA polymerase II, and proteasome. Tran-
sient interactions, on the contrary, are temporary in nature and typically 
require a set of conditions that promote the interaction. They are respon-
sible for the control of the majority of cellular processes, such as signal 
cascades, enzyme–substrate reactions, and transport. Both stable and 
transient interactions can be either strong or weak.

Inside the cell, a protein usually resides in a crowded environment with 
many potential binding partners with different surface properties. Apart 
from structural properties and energetic factors that determine which 
interactions may occur, other “environment”-dependent types of control 
are also present. These include (1) the colocalization of binding partners, 
in time and space; (2) local concentration of the proteins; and (3) the local 
physicochemical environment such as the presence of an effector molecule 
(e.g., ATP, Ca2+) or a change in physiological conditions (e.g., changes in 
pH and temperature).

3.  How Are the Interactions Determined Experimentally?
Traditionally, protein interactions have been studied in isolates using 
biochemistry-based methods such as protein–protein affinity chroma-
tography, coimmunoprecipitation, and gel filtration. More recently, 
high-throughput techniques such as yeast two-hybrid and mass-spec-
trometry-based methods started to produce genome-size datasets. Pro-
tein interaction networks have already been proposed for yeast, C. elegans, 
fruit fly, and humans, using these techniques.

It is essential to note that each of these techniques (traditional or high-
throughput) produces a distinct interaction dataset with respect to the 
nature and functional categories of interactions. Transient and direct 
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binary interactions are best determined by yeast-two hybrid or fluorescence 
resonance energy transfer (FRET), which have the additional advantage 
of detecting actual in vivo interactions. Stable interactions, on the other 
hand, are best studied by coimmunoprecipitation and large-scale mass-
spectrometry-based methods. These methods rely on the purification of 
complexes and cannot pinpoint direct physical interactions between the 
components constituting the complexes. The different experimental tech-
niques also have their own limitations, and the interpretation of data is 
subject to caution. It is well known that yeast two-hybrid produces a high 
number of false-positives as well as false-negatives. An alternative method 
is usually required to confirm true interactions. Mass-spectrometry-based 
methods also have high false-positive rates, and are biased toward highly 
abundant stable complexes. They might also miss some complexes that are 
not formed under the experimental conditions.

Given this situation, it is hardly surprising that there are few overlaps 
between the datasets, and that it was estimated that genomewide screens 
might overlook between 20 and 80% of the interactions, depending on the 
species and the experiments. In addition to this incompleteness, it should 
also be noted that these experiments only report one aspect of protein–
protein interaction, i.e., who interacts with who. What is more, it is a static 
and not a dynamic picture of the interactome that is given. Molecular 
details are also missing, and information such as the atomic description 
of the protein–protein interface can only be gathered by high-resolution 
3D structures of interacting proteins and complexes.

4.  In Silico Study of Protein Interaction: From 
Interaction Network to Structural Details
A protein–protein interaction network (or interactome) can be consid-
ered as the complete collection of all physical protein–protein interactions 
that can take place within a cell. Mathematically or computationally, this 
network is represented as a graph, where proteins are nodes and interac-
tions between proteins are edges. Although such a representation does not 
reflect the true dynamic and complex nature of protein interactions, it 
serves to answer some fundamental questions, such as: “What is the global 
architecture of the network?”

Indeed, the major topological properties of protein interaction networks 
have been studied since the first large-scale experiments were published. It 
has been suggested by several groups that interaction networks are “scale-
free” and present a “small-world” property. Scale-free networks are char-
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acterized by a few highly connected nodes (hubs) and many nodes with 
few connections. The distribution of the node degree k follows a power law. 
Although the exact biological consequences of these topological proper-
ties are not clear and there are still some controversies on this subject, the 
scale-free nature does explain why highly connected proteins (hubs) play 
an essential role in the cell and are vulnerable to attack by mutations. Net-
work topology and connectivity have also been used in conjunction with 
other information (e.g., expression profiles) to derive methods to evaluate 
the accuracy of the experimentally determined interactions.

Apart from studying global network properties, an interaction network 
is useful to answer biological questions that were not addressable before. 
For example, how conserved is the protein–protein interaction network 
among the species? An answer to this could help identify evolutionarily 
conserved pathways, or even reconstruct networks of some less well-
studied organisms by transferring experimentally verified interactions 
from one organism to another. Another interesting question to address is 
whether one can identify important subcomponents or functional mod-
ules within a network. Clearly, a protein interaction network as a whole 
can be too complex to study. Highly interconnected (or clustered) regions 
in networks have been suggested to represent groups of proteins with sim-
ilar cellular functions. Most often they are stable protein complexes, but 
transient protein interactions involved in pathways can be present as well. 
Identification of these functional modules can prove useful for annotating 
uncharacterized proteins, studying evolution, and uncovering new path-
ways. A variety of supervised or unsupervised clustering methods have 
been employed to identify these modules. It remains to be seen if the dif-
ferent methods provide consistent results. Alternatively, it is possible to 
use current biological knowledge to map well-documented signaling, or 
metabolic pathways to the whole network. This approach can be useful 
for finding relationships between known pathways, although — currently 
— an exact match is not always found.

The global analysis of network features, although useful, is not sufficient 
to provide molecular details of individual constituents and the mechanistic 
aspects of their interactions. For this, knowledge of 3D structures is essen-
tial. Many physical interactions between domains are conserved through 
evolution, regardless of the proteins harboring the domains. Many studies 
have thus focused on identifying domain–domain interactions. Domain–
domain interaction networks have been constructed, and this offers an 
alternative view on network organization. At an even more atomic level, 
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several groups have recently exploited the increase in the number of high-
resolution 3D structures in the Protein Data Bank (PDB) to systematically 
investigate the features of protein–protein interfaces. In general, binding 
sites share common properties that distinguish them from the rest of the 
proteins. Interfaces tend to be planar, and residue composition can be dif-
ferent between transient and obligate complexes. Numerous other geomet-
rical, chemical, and energetic features such as shape complementarities 
and crystal packing have also been used to distinguish different types of 
interfaces. From an evolutionary point of view, residues in protein–pro-
tein interfaces appear to be more conserved, although this observation is 
not universally agreed upon. Apart from general interface analysis, vari-
ous investigators have identified and studied energetic hot spots in protein 
interfaces using different approaches.

5.  How About Prediction?
There are many prediction challenges in the field of protein–protein 
interactions. The most obvious one is to predict interacting partners. A 
number of different strategies have been proposed. They use information 
either from the genetic environment, phylogenetics, or protein structures. 
Genome-context-based methods propose interactions between proteins 
for which there is evidence of an association. This association can be either 
based on the relative position of one protein to the other in known genome 
sequences, or on similar expression profiles. For example, the gene fusion 
of “Rosetta stone” method relies on the observation that some pairs of 
interacting proteins have homologs fused to a single protein chain in 
another organism. For phylogenetic-based methods, such as phylogenetic 
profiling, tree similarity and clusters of orthologous proteins, the basic 
assumption is that proteins that interact are likely to coevolve. Structure-
based methods — either domain-based or sequence/structural features-
based — rely on the existent knowledge of protein domain interactions or 
specific characteristics of protein interfaces to perform predictions.

It has been shown that the accuracy of protein–protein interaction pre-
diction is comparable to those of large-scale experiments. Prediction data 
can therefore complement high-throughput experimental data that are 
still far from complete.

Apart from predicting interacting partners, progress has been made 
in the prediction of actual binding sites involved in protein interactions. 
A communitywide evaluation of different methods used in the predic-
tion of protein–protein interactions and protein docking (Critical Assess-
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ment of Prediction Interaction, or CAPRI) has been carried out annually 
since 2001. However, although significant advances have been observed in 
protein docking, the prediction of protein–protein interaction sites is still 
far from satisfactory and has been the subject of intense studies in recent 
years. In fact, no single property absolutely differentiates protein–protein 
interfaces from other surface patches. Therefore, most binding site predic-
tion methods combine more than one physiochemical property. The most 
effective of these methods make extensive use of structural information, 
and evolutionary information is also sometimes included.

6.  Can Protein–Protein Interaction Be Used 
to Predict Protein Function?
It has been observed that the majority of the interacting proteins (up to 
70–80%) share at least one function. This property has been exploited to 
assign a function to an uncharacterized protein based on the functions of 
its characterized binding partners. The major disadvantage of this simple 
method is that predictions are limited to proteins that have at least one 
interaction partner with a known function. Recently, several groups have 
further explored the use of functional modules in protein networks and 
indirect interacting partners for function prediction.

Clearly, annotating protein function using information from pro-
tein–protein interaction is a promising technique that may become more 
useful when the available datasets are more complete and accurate. This 
approach can be integrated with other methods, such as those focusing on 
mRNA expression profiles or evolutionary data.

7.  Resources on Protein–Protein Interaction
Resources on protein–protein interaction can be classified into three cat-
egories: databases, analysis, and visualization tools. It is more and more 
common, however, to find databases that also offer prediction, analysis, or 
visualization tools.

There is a plethora of databases that contain information on protein–pro-
tein interactions (Table 12.2). Most of the databases have user-friendly inter-
faces and provide good search engines. Interactions can usually be searched 
by gene or protein name. A list of interactors is usually given, together with 
their functional annotation or experimental details when available.

The databases are different in a number of ways. Databases can store 
either experimental (e.g., DIP, BIND, MINT, IntAct), predicted (e.g., 
InterDom, OPHID), or both types of interaction data (e.g., STRING). They 
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Table 12.2  Resources on Protein–Protein Interactions

Resource Name URL Remarks
PPI Databases

IntAct www.ebi.ac.uk/intact/ Experimental data, curated
DIP dip.doe-mbi.ucla.edu/ Experimental data
MINT mint.bio.uniroma2.it/mint/

Welcome.do
Experimental data, curated

BOND bond.
unleashedinformatics.
com/Action?

This new database includes 
BIND

MIPS mammalian PPI 
db

mips.gsf.de/proj/ppi/ Curated, mammals

BioGRID www.thebiogrid.org/ Experimental data, curated
OPHID ophid.utoronto.ca/ophid/ Includes predicted data
HPRD www.hprd.org/ Experimental data, curated, 

human specific
STRING String.embl.de Experimental data, 

prediction, functions
Domain–Domain Interaction Database

PIBASE alto.compbio.ucsf.edu/pibase/ Information on interface
3did gatealoy.pcb.ub.es/3did/
PSIBase psibase.kobic.re.kr/
Ipfam www.sanger.ac.uk/Software/ 

Pfam/iPfam/
InterDom interdom.lit.org.sg/
InterPare interpare.net/ Information on interface
SCOWLP www.scowlp.org/ Information on interface
PRISM Gordon.hpc.eng.ku.edu.tr/ 

prism/H
Information on interface

Network Analysis
NetAlign www1.ustc.edu.cn/lab/pcrystal/ 

NetAlign/ 
Pathways comparison

MAVisto mavisto.ipk-gatersleben.de/ Exploration of network 
motifs

ToPNET networks.gersteinlab.org/
genome/interactions/networks/
core.html

Topology analysis

FANMOD www.minet.uni-jena.
de/~wernicke/motifs/

Fast network motif 
detection

Interface Analysis
ProFace www.boseinst.ernet.in/resources/

bioinfo/stag.html
NoxClass Noxclass.bioinf.mpi-inf.mpg.de Prediction of protein–

protein interaction type
MolSurfer Projects.villa-bosch.de/ 

dbase/molsurfer
Compute parameters such 
as the distribution of 
electrostatic potential
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can also record protein–protein interactions (e.g., DIP, BIND), or struc-
tural domain–domain interactions (e.g., 3did, PiBase, iPfam, PSIbase, 
InterPare, PRISM). Some databases contain manually curated data (e.g., 
IntAct), whereas others are species specific (e.g., HPRD). There are also 
databases that incorporate genomic data to provide novel insights into 
protein–protein interaction networks (e.g., STRING). In order to facili-
tate data exchange or comparison between this diverse set of databases, 
the HUPO Protein Standard Initiative (PSI) is developing a standard data 
format for the representation of protein interaction data. The standard has 
already been adopted by numerous databases belonging to the Interna-
tional Molecular Exchange Consortium (IMEX).

Apart from databases, protein–protein interaction data can also be 
found in the literature. PreBIND (http://prebind.bind.ca/), a data-mining 
tool, locates information on interactions in scientific articles.

In terms of analysis tools, a lot of novel methodologies have been pub-
lished in recent years, covering areas from global network analysis to the 
detection of hot spots in protein interfaces. Not all these tools, however, 
are online and made available to the public. Table 12.2 lists some of the 
resources known to the authors. The list is not exhaustive. Users should also 
bear in mind that this field is still in active development. Therefore, tools 
may not all have been properly benchmarked or compared to one another.

For network visualization, most databases now provide their own tool 
to visualize protein interactions as a graph (e.g., IntAct, MINT). Several 
specialized visualization tools are also available and may offer additional 
features (Table 12.2). Among these tools, Cytoscape is an open-source 
software project for visualizing and analyzing biomolecular interaction 
network data. Besides its software core that provides basic functionalities 
to display and query the network, the tool is extensible through a plug-in 

Table 12.2  Resources on Protein–Protein Interactions

Resource Name URL Remarks
Computational alanine 
scanning

http://robetta.bakerlab.org/
alascansubmit.jsp

Identify hot spot residues

Visualization Programs
Cytoscape www.cytoscape.org Open source, with lots of 

plug-ins offered
VisANT visant.bu.edu
Osprey biodata.mshri.on.ca/osprey/  

   servlet/Index
WebInterViewer interviewer.inha.ac.kr/
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architecture that allows contribution from the research community to add 
additional computational features. For example, it is possible to integrate 
gene expression profiles for interaction data analysis (Dynamic Expres-
sion Plugin), or to determine clusters present in the network (MCODE).

Part II	S tep-By-Step Tutorial

In this tutorial, we will retrieve information on protein–protein interac-
tion from the open-source database IntAct. The data will then be visual-
ized and analyzed using Cytoscape. It should be reminded that (1) the 
protein–protein interaction networks determined for different organisms 
are still incomplete, and (2) there are few overlaps between the datasets, 
depending on the experimental method used (e.g., yeast two-hybrid vs. 
mass-spectrometry-based methods). Moreover, many analysis tools are 
still currently under development, and their performance will certainly 
improve as novel algorithms emerge and the available datasets become 
more complete. For these reasons, it is not the intention of the authors to 
demonstrate a standard or best way to analyze protein–protein interac-
tions, but to expose the users to the different possibilities while focusing 
on function annotation. Users, by knowing the resources available and 
their pros and cons, should not hesitate to explore the different tools and 
identify the most suitable resources for their specific needs.

1.  How to Find out if the Protein of Interest Has PPIs.
In this part, we will try to gather information for the Swiss-Prot protein 
Q96CG3_HUMAN (UniProtKB AC: Q96CG3). At the time of the prepa-
ration of this chapter (Oct 2006), this protein was still largely uncharacter-
ized, with no function and GO annotation.

A.  Search the IntAct Database  First, go to the IntAct Web site at http://
www.ebi.ac.uk/intact/site/index.jsp. Perform the search using UniProtKB 
accession number Q96CG3.

A result table is shown (Figure 12.12a) with the query protein high-
lighted in red and its interacting proteins listed in the following text. You 
will find that protein Q96CG3 interacts with seven different proteins. The 
“Number of interactions” column indicates the number of reported inter-
actions that involve the protein of interest. Seven interactions are stated 
here. Click on the hyperlink to obtain the list of the interactions. One can 
see that each interaction is characterized by a name, an accession number, 
a description, and an experiment. In this case, all seven interactions are 
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obtained from the experiment rual-2005-2. Click on one of the interaction 
names (e.g., ap1m1-tifa), and this will lead you to the experimental sum-
mary page (Figure 12.12b).

The experimental summary page provides all the annotated experimental 
data extracted from the source literature or submission. It can be clearly seen 
that IntAct stores an interaction in the context of the experiment that origi-
nally describes the interaction. For the experiment rual-2005-2, it records 

Figure 12.12A  IntAct search result for protein Q96CG3.

Figure 12.12B  The experiment summary page for the experiment set 
rual-2005-2.
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a large-scale yeast two-hybrid analysis with 2671 different interactions. All 
seven interactions involving Q96CG3 are detected in this context.

B.  HierachView of the Interactions  IntAct offers the possibility to visu-
alize interaction networks contained in IntAct.

Go back to the original result table. Check the box to select the 
Q96CG3_human protein, and then click “Graph” to see a graphical dis-
play (Figure 12.13).

The graphical display shows the specified protein with a bold font and 
its immediate interactors. On the right-hand panel, there is a list of all GO 
and InterPro terms associated with the specified protein in the displayed 
interaction network. In this case, protein Q96CG3 does not have a GO 
annotation but contains an FHA domain.

To get an idea about the properties of all the seven interacting pro-
teins of Q96CG3, we can expand the network by typing the list of seven 
protein names (separated by a comma) in the Interactor form on the top 
left panel. Click the add button to display the related interaction network. 
Now, one can see that all seven proteins are highlighted in black in the 
graphical display. Altogether, these seven proteins have fourteen associ-
ated GO terms. For biological process annotation (all terms that start with 
“P:”), we can note that these proteins are mainly involved in a signaling 
cascade (16 + 4 counts). One can click on the “show” button to highlight 

Figure 12.13  Graphical display of proteins interacting with Q96CG3.
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the proteins associated with one particular term in red. By clicking on the 
hierarchy icon, the related GO hierarchy will appear in the right lower 
panel. Try to browse and see which proteins share common GO or Inter-
Pro annotations.

C.  Others  IntAct offers a large range of other options to facilitate the 
analysis of protein interactions. Owing to space limitations, it is impos-
sible to cover all these options here. Users are required to refer to their 
documentation for further details.

To download interaction data, users can either go to the download site 
(ftp://ftp.ebi.ac.uk/pub/databases/intact/current) or obtain data directly 
from the experiment summary page (Figure 12.12b). The latter option is espe-
cially useful for retrieving data from individual large-scale experiments.

2.  Analyze a Protein–Protein Interaction Network
In this part, we will use Cytoscape version 2.3.2 to analyze global network 
architecture and detect functional modules in a protein–protein interac-
tion network. This part is slightly more difficult, and more time will be 
required. For users interested in the structural aspect of the interaction, 
they can go directly to the section titled “Structural Analysis of Protein–
Protein Interface.”

A.  Dataset  A human protein–protein interaction network (Rual et al., 
2005) will be used for demonstration. This dataset includes a set of inter-
actions determined by a high-throughput yeast two-hybrid experiment, 
data collected from literature, and a number of coimmunoprecipitation 
results aiming to verify the yeast two-hybrid data. The dataset is available 
at http://www.cytoscape.org/cgi-bin/moin.cgi/Data_Sets/.

(Note: This combined dataset is different from the two datasets recorded in 
IntAct, rual-2005-1 (EBI-710837) and rual-2005-2 (EBI-711122), which contain 
the coimmunoprecipitation and the yeast two-hybrid data, respectively.)

To start, please install the latest version of Cytoscape onto your com-
puter by going to their Web page (http://www.cytoscape.org/down-
load_list.php) and following the installation instructions. Once you have 
verified that it works, proceed to obtain the three plug-ins at http://www.
cytoscape.org/plugins2.php:

NetworkAnalyzer plugin (Note: To use this plug-in in Cytoscape 
2.3, you will need to download two additional files jfreechart-0.9.20.

•
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jar and jfreechart-common-0.9.5.jar from http://med.bioinf.mpi-inf.
mpg.de/netanalyzer/faq.php.)

MCODE plugin

BINGO plugin

All the plug-ins should be saved in the [Cytoscape_Home]/plugins 
directory. Cytoscape should now be closed and restarted. The installed 
plug-ins should be visible from the Plugins menu on top (Figure 12.14).

Cytoscape has a comprehensive online tutorial (http://www.cytoscape.
org/tut/tutorial.php). Readers are encouraged to go through the “Getting 
started” section first. In the following, only major steps are described, and 
readers are referred to the relevant tutorial sessions provided by Cytoscape 
for more detailed step-by-step instruction.

B.  Global Network Architecture  In this part, we will analyze the global 
network architecture:

	 1.	Load the RUAL.sif network and the node attribute file RUAL.na 
into Cytoscape.

Hint: Please refer to the online “Basic tutorial.”

	 2.	Filter the dataset so as to exclude the interactions determined by 
coimmunoprecipitation (coAP), and keep only those determined 
by the yeast two-hybrid experiment (Y2H) and from the literature 
(core, noncore, and hypercore).

Hint: Please refer to the online tutorial “Filters and Editor.”

	 3.	Save the filtered network as a new network.

Hint: Select edges with the filter “Edge:interact ~*” and save the new 
network by using the File menu bar (File → New → Network → 
From selected nodes, selected edges).

	 4.	Obtain information about the resultant network by using the plugin 
NetworkAnalyzer, from the Plugins menu bar (Plugins → Network 
Analyzer → Analyze Network).

You will obtain the result icon as depicted in Figure 12.14. Note that the 
human protein–protein interaction network displays a typical scale-free 
topology, i.e., a few highly connected nodes (nodes with a large degree) 

•

•
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Figure 12.14A  Visualizing network properties using Cytoscape.  The main Cyto-
scape frame.

Figure 12.14B  Visualizing network properties using Cytoscape.  Network statis-
tics provided by the NetworkAnalyzer plugin.
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and many nodes with few connections (nodes with a small degree). One 
can display the graph of any other topological property (e.g., clustering 
coefficient C(k) distribution) by simply clicking on it.

C.  Detect Functional Modules Using MCODE  Now, we will proceed to 
detect the presence of functional modules in this network:

	 1.	Run the MCODE plug-in with the default parameters: click on plug-
ins, drag down to MCODE, and choose “Run MCODE on current 
network.” The MCODE result (Figure 12.15) shows all the putative 
complexes. The score and the number of nodes and edges for each 
complex are listed in the columns. A significant result is the one with 
a high score (greater than one) and a reasonable number of nodes 

Figure 12.15  Functional modules identified by the MCODE plugin.
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and edges. One of the properties of a functional module is that most 
of the time, all members of the complex share a similar function. To 
analyze the members of a complex and to see if they share common 
GO annotations, we will use the plug-in BINGO.

	 2.	In the MCODE results summary frame, check the box “Create a new 
child network” and click on the first cluster. A new frame will appear 
that shows only proteins belonging to the first clusters.

	 3.	Select all the nodes in this frame, and select BINGO from the Plugins 
menu. A dialog box appears. Fill in a cluster name (e.g., cluster 1), 
check “Get Cluster from Network.” Leave the parameters at their 
default value. Select organism “Homo sapiens” and check “Entrez 
Gene ID.” This is because we are analyzing a human network and 
the ID provided for the proteins is EntrezGeneID. Start BINGO. A 
graph (Figure 12.16) appears. Note that GO terms related to RNA 
splicing are significantly enriched (red color) in this cluster. Repeat 
the operation for clusters 2 to 4. You will find that cluster 2 has no 

Figure 12.16A  Enriched GO annotations identified by the BINGO plugin 
Results for cluster 1.
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significant GO terms, cluster 3 appears to be related to “regulation 
of progression through cell cycle,” and cluster 4 may be involved in 
the ubiquitin cycle. To learn the identity of the proteins involved 
in each cluster, use the Node Attribute Browser at the bottom right 
panel (Cytopanel2). Table 12.3 gives the correspondence between 
EntrezGene ID and the UniProtKB accession number. You will now 
note that the protein Q96CG3 studied previously belongs to cluster 
3. Given that Q96CG3 interacts with proteins involved primarily in 
the signaling cascade (results from IntAct), and BINGO shows that 
the cluster is most likely related to regulation of cell cycle progres-
sion, it is probable that Q96CG3 is related to these functions.

3.  Structural Analysis of Protein–Protein Interface
Currently, there are few protein-protein interface analysis tools available 
online. Most of them require a resolved 3D complex. The structure of pro-
tein Q96CG3 is not solved. Although a homology model is available in Mod-

Figure 12.16B  Enriched GO annotations identified by the BINGO plugin.  
Results for cluster 3.

C8105.indb   420 7/18/07   8:22:51 AM



Protein Function Analysis  <  421

Base (http://modbase.compbio.ucsf.edu/), the sequence homology between 
Q96CG3 and the template used (PDB code: 1UHT) is obviously too low 
(13%) for the model to be trusted. Therefore, in this section, we will use the 
complex between TRAF2 and TRADD (PDB code: 1F3V) as an example:

	 1.	Go to Protein Data Bank (PDB) (www.rcsb.org/pdb) to download 
the coordinate file for the structure 1F3V.

Table 12.3  Mapping of EntrezGene ID to UniProtKB ID and AC for the Four Best-
Scoring Clusters Identified by MCODE

EntrezGene ID UniProtKB ID UniProtKB AC
Cluster 1

6606 SMN_HUMAN Q16637
25804 LSM4_HUMAN Q9Y4Z0
27258 LSM3_HUMAN P62310
11157 LSM6_HUMAN P62312
27257 LSM1_HUMAN O15116
57819 LSM2_HUMAN Q9Y333
23658 LSM5_HUMAN Q9Y4Y9

Cluster 2
3131 HLF_HUMAN Q16534

10538 BATF_HUMAN Q16520
1054 CEBPG_HUMAN P53567
1649 DDIT3_HUMAN P35638
7008 TEF_HUMAN Q10587

Cluster 3
7186 TRAF2_HUMAN Q12933

11007 DIPA_HUMAN Q15834
5711 PSMD5_HUMAN Q16401
5701 PRS7_HUMAN P35998
1019 CDK4_HUMAN P11802
1027 CDN1B_HUMAN P46527
5708 PSMD2_HUMAN Q13200
896 CCND3_HUMAN P30281

80125 Q8TAX6_HUMAN Q8TAX6
92610 Q96CG3_HUMAN Q96CG3
5700 PRS4_HUMAN P62191

Cluster 4
6500 SKP1_HUMAN P63208

83461 Q99618_HUMAN Q99618
84893 FBX18_HUMAN Q8NFZ0
9978 RBX1_HUMAN P62877
8454 CUL1_HUMAN Q13616
6502 SKP2_HUMAN Q13309
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		  This structure is composed of two chains. Chain A represents the 
TRAF2 binding domain of TRADD (residues 7–163), and chain B 
represents the TRAF domain of human TRAF2 (residues 331–501).

	 2.	Go to ProFace (www.boseinst.ernet.in/resources/bioinfo/stag.html), 
and upload the PDB file 1F3V.

		  A result page will appear that contains four sections: (1) graphi-
cal plots of interface residues; (2) statistics of interface parameters, 
including interface area, residues and atom composition; (3) down-
loadable files, including the coordinates of interface atoms as well 
as the PDB files in which the interface residues are tagged, a list of 
neighboring residues (within 4.5 Å); and (4) a structure viewer, either 
Rasmol or Chime.

	 3.	Click on “To simply identify interface residues.” Choose to display 
interface information for Chain A by clicking “Chain A.” A new 
window will open, showing a graphical plot of interface residues and 
secondary structure (Figure 12.17a).

	 4.	Display the information for Chain B. Choose To identify inter-
face residues, dissected into patches and core/rim” this time (Fig-
ure 12.17b). If we compare the result for Chain A (TRAF2 binding 
domain of TRADD) to the published data (Park et al., 2000), we will 
find that the program successfully identifies all the residues involved 

Figure 12.17A  ProFace results for the structure 1F3V. Simple display for chain 
A showing interface residues and secondary structure.
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in interactions. Three residues, namely, V12, R119, and E150, were 
not mentioned in the paper as belonging to the interface. They are, 
however, in close proximity to the interface.

Part III	S ample Data

All the sample data are available online.
The human protein–protein interaction network, RUAL.sif and RUAL.na: 

http://www.cytoscape.org/cgi-bin/moin.cgi/Data_Sets.
The PDB file 1F3V: www.rcsb.org/pdb.
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The lowly mouse is highly regarded as a useful model for human diseases. 
As sequences of the human and mouse genomes indicate that the two 
genomes are 85% identical, a multidisciplinary collaboration of basic and 
clinical scientists worldwide has undertaken genomewide mutagenesis to 
functionally annotate the mouse genome and develop new mouse models 
relevant to human disease. In this chapter, Section 1 will present various 
murine models of human diseases and relevant online resources, and Sec-
tion 2 will demonstrate how to fetch some online murine model informa-
tion from selected databases.

Section 1	 Various Murine 
Models of Human Diseases
1.  Why Are Mouse Models of Human Diseases Valuable?

The house mouse, Mus musculus, has been linked with humans since the 
beginning of civilization — wherever farmed food was stored, mice would 
be found. Many of the advances in 20th century biology featured significant 
contributions from the mouse, which has become the favored model animal 
in most spheres of research. Mus musculus has played a prominent role in the 
study of human disease mechanisms throughout the rich, 100-year history 
of classical mouse genetics, evidenced by the insight gained from naturally 
occurring mutants such as agouti, reeler, and obese. Now, with the comple-
tion of the human and mouse genome sequences, increasing attention has 
been focused on elucidating human gene functions and their pathophysi-
ological roles in mouse models. The large-scale production and analysis 
of induced genetic mutations in mice have greatly accelerated the under-
standing of human gene functions. Among the animal models of human 
diseases, the mouse offers particular advantages for the study of human 
biology and disease: (1) the development, body plan, physiology, behavior, 
and diseases of the mouse have much in common with those of humans; (2) 
most or nearly all (99%) mouse genes have homologues in humans; and (3) 
the mouse genome is relatively easy to be manipulated for the mutagenesis 
of its genes by homologous recombination in embryonic stem (ES) cells. A 
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number of databases on gene knockout or overexpressing mouse models 
are now available on the Internet. Efficiently leveraging this knowledge and 
other resources in mouse models of human diseases will be crucial in har-
nessing the power of the genome to drive biomedical discovery.

2.  Transgenic Mouse

A transgenic mouse is simply a mouse that has had foreign DNA intro-
duced into one or more of its cells artificially. Transgenic mice are pow-
erful tools for studying gene functions and testing drugs. Many human 
genetic diseases can be modeled by introducing the same mutation into a 
mouse. Although similar genetic manipulations can be performed in tis-
sue culture, the interaction of transgenes with proteins, hormones, neu-
rotransmitters, and other components of an intact organism provides a 
much more complete and physiologically relevant picture of the transgene’s 
function than could be achieved in any other way. In 1982, a team led by 
Richard Palmiter and Ralph Brinster prepared the first transgenic mouse. 
They fused elements of a gene that can be regulated by dietary zinc to a rat 
growth-hormone gene, and injected it into fertilized mouse embryos. The 
resulting mice, when fed with extra zinc, grew to be huge, and the tech-
nique paved the way for a wave of genetic analysis using transgenic mice.

There are two common strategies to introduce foreign DNA into mouse 
— (1) microinjection and (2) targeted insertion:

	 1.	Microinjection: DNA can be microinjected into the pronucleus of 
a fertilized ovum. Following injection, the DNA is incorporated 
into the genome of the cell. The transformed fertilized eggs are 
then injected back into pregnant females and brought to term. The 
injected DNA can integrate anywhere in the genome, and multiple 
copies often integrate in a head-to-tail fashion. There is no need for 
homology between the injected DNA and the host genome. Pronu-
clear injection of DNA is often used to characterize the ability of a 
promoter to direct tissue-specific gene expression. Another usage is 
to examine the effects of overexpressing and misexpressing endog-
enous or foreign genes at specific times and locations in the animal. 
A major drawback of this technique is that researchers could not 
predict where in the genome the foreign genetic material would be 
inserted. Because a gene’s location in the genome is important for its 
expression pattern, mouse lines carrying the same transgene could 
display wildly varying phenotypes.
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	 2.	Targeted insertion: Targeted insertion is to insert the DNA into 
embryonic stem (ES) cells and select for cells with homologous 
recombinants. In 1987–1989, teams led by Martin Evans, Oliver 
Smithies, and Mario Capecchi created the first knockout mice, by 
selectively disabling a specific target gene in embryonic stem cells. 
The three received the Lasker Award in 2001 for this achievement. 
Knockout mice have become one of the most widely used tools in 
helping understand the human gene functions and their roles in dis-
ease. Embryonic stem cells are used as the target cells for the insertion 
of gene-targeting vectors because they are pluripotent, and thus able 
to generate all the different types of cells in the adult body. Scientists 
interested in examining a specific gene will remove or “knock out” 
the gene in an embryonic stem cell as described earlier, then put the 
cell into a recently fertilized embryo. Typically, homologous recom-
bination is used to insert a selectable gene (e.g., neomycin) driven 
by a constitutive promoter (e.g., PGK) into an essential exon of the 
gene one wishes to disrupt. Typically, the neo gene (or other gene) 
is flanked by large stretches of DNA (on the order of 2–7 kb) that 
exactly match the genomic sequences surrounding the desired inser-
tion point. Once this construct is transfected into ES cells, the cells’ 
own machinery performs the homologous recombination. To make 
it possible to select against ES cells with nonhomologous recombi-
nants, it is common to include a negatively selectable gene outside 
the region intended to undergo homologous recombination in the 
targeting constructs. A commonly used gene for negative selection 
is the herpes virus thymidine kinase gene, which confers sensitivity 
to the drug gancyclovir, when a targeting vector is randomly incor-
porated into the targeting genome. Following positive selection (e.g., 
G418, to select for neo) and negative selection if desired, ES cell clones 
need to be screened for the right homologous recombinants. Because 
ES cells are diploid, only one allele is usually altered by the recom-
bination event. When appropriate targeting has occurred, one usu-
ally sees bands representing both wild-type and targeted alleles. The 
ES cells are derived from the inner cell masses of blastocysts (early 
mouse embryos). These cells are pluripotent. They must be main-
tained on a layer of feeder cells, typically mouse embryo fibroblasts 
that have been irradiated to prevent them from dividing. ES cells 
must be passaged every 2 to 3 d to keep them from differentiating 
and losing pluripotency. It is important that the genomic DNA used 
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in making a targeting construct be derived from the ES cells of the 
same strain of mouse that one intends to target. Even small gaps in 
homology due to sequence polymorphisms between mouse strains 
can dramatically reduce the efficiency of homologous recombina-
tion. Once positive ES clones have been grown and frozen, the pro-
duction of transgenic animals can begin. Donor females are mated, 
blastocysts are harvested, and 10–15 ES cells are injected into each 
blastocyst. Eight to ten blastocysts are then implanted into a uterine 
horn of each pseudopregnant recipient. By choosing the appropriate 
donor strain, the identification of chimeric offspring (i.e., those in 
which some fraction of tissue is derived from the transgenic ES cells) 
can be as simple as observing the change in hair and/or eye color. 
If the transgenic ES cells do not contribute to the germ line (sperm 
or eggs), the transgene cannot be passed on to offspring. Generally, 
those commonly used ES lines, if maintained properly, often yield 
the germ line.

Gene trapping is a high-throughput method of creating mutagenized ES 
cells for use in generating knockout and other mutant mouse strains for 
research in functional genomics. Major scientific initiatives are currently 
under way to knock out every mouse gene in ES cells in order to charac-
terize gene function and provide insight into molecular mechanisms of 

human diseases. Gene trapping is an attractive strategy to generate gene 
mutations in mice on a large scale. Gene trapping is based on random 

integration of a gene-trap vector into the mouse genome. A promoterless 
reporter gene following a splice acceptor will produce a fusion transcript 
between the trapped gene and the reporter gene when the vector inserts 
into an intron. This allows the identification of the trapped genes easily by 
5' rapid amplification of cDNA ends (RACE) and also to investigate both 

the in vitro and in vivo expression patterns of trapped genes. Because the 
reporter recapitulates the expression pattern of the trapped gene, in vitro 
expression screening in differentiating ES cells before in vivo expression 
analysis is useful to identify specific reporter expression in restricted cell 
types such as neuronal or hematopoietic lineage cells. If the insertion of a 
gene trap vector disrupts the endogenous gene structure, phenotypic anal-
ysis can be carried out in mice generated from gene-trapped ES cell lines. 
A number of international groups have used this approach to create size-
able public cell line repositories available to the scientific community for 
the generation of mutant mouse strains. The major gene trapping groups 
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worldwide have recently joined together to centralize access to all publicly 
available gene trap lines by developing a user-oriented Web site for the 
International Gene Trap Consortium (IGTC). This collaboration provides 
an valuable public informatics resource comprising approximately 45,000 
well-characterized ES cell lines, which currently represent approximately 
40% of known mouse genes, all freely available for the creation of knock-
out mice on a noncollaborative basis. To standardize annotation and pro-
vide high-confidence data for gene trap lines, a rigorous identification and 
annotation pipeline has been developed combining genomic localization 
and transcript alignment of gene trap sequence tags to identify trapped 
loci. This information is stored in a new bioinformatics database accessi-
ble through the IGTC Web site interface. The IGTC Web site (www.genet-
rap.org) allows users to browse and search the database for trapped genes, 
BLAST sequences against gene trap sequence tags, and view trapped genes 
within biological pathways. In addition, IGTC data have been integrated 
into major genome browsers and bioinformatics sites to provide users with 
outside portals for viewing this data. The development of the IGTC Web 
site marks a major advance by providing the research community with the 
data and tools necessary to effectively use public gene trap resources to 
facilitate the characterization of mammalian gene function.

3.  Usage of Knockout Mice

Knockout mice are used in a variety of ways:

	 1.	They allow testing of the specific functions of any gene and observa-
tion of the processes that this gene could regulate. What actions does 
this gene turn off and on? By examining what is happening in an in 
vivo model, investigators are able to determine the effects a particu-
lar gene may have. These effects would be impossible to observe in a 
culture dish. However, to completely establish and assign an action 
to a particular gene is very challenging and requires lots of work.

	 2.	They are models to study human diseases at the molecular level. 
The objective is that by examining what role a gene may play in the 
development of a particular disease in gene knockout mouse models, 
investigators can better understand molecular mechanisms on how 
that gene contributes to the pathogenesis of a counterpart human 
disease. Researchers can also take the knowledge a step further and 
search for drugs that act on that gene.
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Although knockout technology is highly advantageous for both bio-
medical research and drug development, it also suffers from a number of 
limitations. For example, because of developmental defects, many knock-
out mice are embryonically lethal before the researcher has a chance to use 
the model for experimentation. Even if a mouse survives, several mouse 
models have somewhat different physical or other phenotypic traits than 
their human counterparts. An example of this phenomenon is that the 
p53 knockout mice develop a completely different range of tumors than do 
humans. In particular, mice develop lymphomas and sarcomas, whereas 
humans tend to develop epithelial-cell-derived cancers. Because such dif-
ferences exist, it cannot be assumed that a particular gene will exhibit 
identical function in both mouse and human, and thus limits the utility of 
knockout mice as models of human disease.

4.  Conditional Knockout Mouse

Although conventional gene targeting technology has been a powerful tool 
for studying gene function in vivo and has shed light on many developmen-
tal biological questions, it has not achieved the same success in explaining 
physiological and pathophysiological processes in mature animals. The 
reasons for such relatively poor results are largely twofold. First, it was 
initially not possible to control the timing of gene disruption. Originally, 
gene targeting typically involved insertion, using homologous recombina-
tion in mouse embryonic stem (ES) cells, of an exogenous DNA fragment 

into an exon critical for target gene function, resulting in gene knockout. 
Animals derived from these stem cells are affected by mutant gene dys-
function throughout ontogenesis, often yielding undesired effects. For 
example, endothelins-1 and -3 (ET-1 and ET-3) were initially implicated in 
blood pressure regulation; however, homozygous ET-1 knockout mice die 
at birth from first pharyngeal arch malformation, and homozygous ET-3 

knockout mice die shortly after birth owing to failure to develop a myen-
teric plexus. In these cases, the biological roles of ET-1 and ET-3 could not 
be studied in mature mice. The second major reason why traditional gene 
targeting has had limited success is that the targeted gene is affected in 
all cell types. Thus, if one wanted to examine the biological significance 
of a targeted gene in a particular cell type, then this would be precluded 
by the confounding and potentially injurious effects of gene dysfunction 

throughout the body. Hence, it becomes clear that conditionally regulat-
ing the gene targeting is needed. Unlike the goal of conventional knockout 
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technology, which is to knock out both alleles so that the gene is entirely 
absent from all cells, the purpose of conditional knockouts, in contrast, 
is to delete a gene in a particular organ, cell type, or stage of develop-
ment. Researchers can use the technique to knock out certain portions of 
specific genes at particular times when those genes are important. Condi-
tional knockout mice have several benefits over the conventional type. Not 
only do they typically survive longer than traditional knockout mice, but 
conditional knockout methods are more precise as well.

There are several different ways to make conditional knockout models; 
however, the most widely used method is the site-specific recombinase 
(SSR) system (Cre-loxP, Flp/frt and φC31/att). SSR systems are transform-
ing both forward and reverse genetics in mice. By enabling high-fidelity 
DNA modifications to be induced in vitro or in vivo, these systems have 
initiated a wave of new biology, advancing our understanding of gene 
function, development, and disease.

Cre–loxP system. The Cre–loxP system mediates site-specific DNA 
recombination and was originally described in bacteriophage P1. Two 
components are involved: (1) a 34-bp DNA sequence containing two 
13-bp inverted repeats and an asymmetric 8-bp spacer region termed 
loxP (“locus of X-over in P1”) that targets recombination, and (2) a 343 
amino acid monomeric protein termed Cre (Cause recombination of the 
bacteriophage P1 genome) recombinase that mediates the recombination 
event. Any DNA sequence will be excised by Cre if it is flanked by two loxP 
sites in the same orientation. On the other hand, any DNA sequence will be 
inverted by Cre if it is flanked by two loxP sites in opposite orientation.

A major advantage of the Cre–loxP system lies in its relative simplic-
ity. First, no cofactors are required for Cre activity. Second, loxP target 
sites are short and easily synthesized. Third, there are no apparent exter-
nal energy requirements. This is because the Cre–loxP complex provides 
the necessary energy through formation of phosphotyrosine intermedi-
ates at the point of strand exchange. Fourth, Cre is a very stable protein. 
Finally, and most important, it is easy to generate DNA constructs with 
any promoter of interest driving Cre expression. This permits controlling 
the tissue site, and possibly the timing, of Cre expression and resultant 
gene disruption. It is not surprising, therefore, that this system has been 
increasingly employed in manipulating eukaryotic genes in vivo.

Utilization of the Cre–loxP system for gene targeting in vivo involves 
two lines of mice. The first mouse line is generated using ES cell technol-
ogy. Typically, the target gene is altered, by homologous recombination in 
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ES cells, such that genomic regions critical for protein activity are flanked 
by loxP sites (“floxed” gene). Mice derived from these ES cells should ulti-
mately contain floxed alleles in all cells. These mice should be phenotypi-
cally normal because the loxP sites were inserted into introns, where they 
theoretically do not affect gene function. The second line of transgenic 
mice is generated by standard oocyte injection techniques. These mice 
express Cre under the control of a “particular” (time- or tissue-specific) 
promoter. Mating of the two mouse lines should result in Cre-mediated 
gene disruption only in those cells in which the promoter is active.

The power and versatility of the Cre–loxP system is largely a function of 
promoter activity. Such activity can be regulated to achieve tissue-specific 
Cre expression in mice by either (1) endogenous cell-specific elements or 
(2) exogenously administered regulatory (inducing) factors. Cre expres-
sion may also be temporally regulated using inducible promoters. This has 
the theoretical advantage of restricting gene targeting events to a particu-
lar time in the animal’s life, thereby avoiding potentially adverse conse-
quences of defective gene function during earlier developmental stages. 
A few inducible systems have been coupled to Cre expression, such as the 
interferon-responsive Mx1 promoter, a tamoxifen-dependent mutated 
estrogen receptor promoter, and the tetracycline-regulated transactivator/
tet operator system.

Flp–FRT system. The Flp–FRT recombination system is essentially the 
eukaryotic homologue of the Cre–loxP system. Flp was named for its abil-
ity to invert, or flip, a DNA fragment in S. cerevisiae. It is a 423 amino 
acid monomeric peptide encoded within the 2-µm plasmid of Saccharo-
myces cerevisiae. Flp is similar to Cre in that it requires no cofactors, uses 
a phosphotyrosine intermediate for energy, and is relatively stable. FRT 
(Flp recombinase recognition target) is also very similar to loxP in that 
it is composed of three 13-bp repeats surrounding an 8-bp asymmetric 
spacer region. The asymmetric region dictates whether excision (FRT sites 
in same orientation) or inversion (FRT sites in inverted orientation) of an 
intervening DNA sequence occurs after recombination.

Although not as widely used as Cre–loxP, the Flp–FRT system has been 
shown to cause site-specific DNA recombination in ES cells and transgenic 
mice. Interestingly, despite similar mechanisms of action and DNA recog-
nition sites, the Cre–loxP and Flp–FRT systems do not exhibit significant 
cross-reactivity. The uniqueness of these two recombination systems may 
allow them to be used in concert to simplify the gene targeting process.
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φC31–att system. The Streptomyces-phage-derived φC31 site-specific 
recombinase (SSR) has been established for use in ES cells. The φC31 SSR 
mediates recombination only between the heterotypic sites attB (34 bp in 
length) and attP (39 bp in length). attB and attP, named for the attachment 
sites for the phage integrase on the bacterial and phage genomes, respec-
tively, both contain imperfect inverted repeats that are likely bound by 
φC31 homodimers. The product sites, attL and attR, are effectively inert to 
further φC31-mediated recombination, making the reaction irreversible. 
For catalyzing insertions, it has been found that attB-bearing DNA inserts 
into a genomic attP site more readily than an attP site into a genomic 
attB site. Thus, typical strategies position by homologous recombination 
an attP-bearing “docking site” into a defined locus, which is then part-
nered with an attB-bearing incoming sequence for insertion. Importantly, 
expression of φC31 in ES cells (like Cre and Flp) is compatible with germ 
line competence.

5.  Chemical Mutagenesis in Mouse

The alkylating agent N-ethyl N-nitrosourea (ENU), considered one of the 
most potent mutagens in mice, is estimated to induce a point mutation 
(most often AT-to-TA transversions or AT-to-GC transitions) at a given 
locus every 700 gametes. In contrast to null mutations generated by gene 
targeting, ENU mutagenesis may result in hypomorphic or hypermorphic 
alleles. Repetitive intraperitoneal administration of ENU to male mice 
(G0, generation 0) efficiently mutagenizes spermatogonial stem cells; G1 
mice are subsequently generated through breeding of treated males with 
wild-type females. Dominant or recessive mutations are identified through 
phenotypic screening for variation in the traits under study, using different 
breeding strategies. Dominant screens of G1 mice are logistically simpler 
and more rapid then recessive screens that require two- or three-generation 
breeding schemes. In two large-scale screens carried out to date, 2% of all 
G1 mice displayed a heritable phenotypic abnormality. Mutations of many 
disease phenotypes are identifiable with robust screening methods and, to 
date, dysmorphological mutants, circadian rhythm abnormalities, clini-
cal chemical abnormalities, immunological phenotypes, and neurobehav-
ioral phenotypes have all been successfully identified. Confirmation of the 
heritable nature of these mutations is obtained through repetitive screen-
ing of subsequent generations of mice derived from affected animals.

C8105.indb   434 7/18/07   8:23:00 AM



Functional Annotation of Proteins in Murine Models  <  435

Chromosomal localization of stable, heritable mutations is achieved 
by linkage analysis of backcross or intercross populations derived from 
breeding of mutagenized mice with another strain that is phenotypically 
divergent for the trait of interest, using a panel of informative markers 
spanning the genome.

Chemical mutagens have contributed to large-scale generation of 
mouse mutants. Conventional germ-cell mutagenesis with N-ethyl-N-
nitrosourea (ENU) is compromised by an inability to monitor mutation 
efficiency, strain, and interlocus variation in mutation induction, and 
extensive husbandry requirements. New methods for generating mouse 
mutants were devised to generate germ line chimaeric mice from ES cells 
heavily mutagenized with ethylmethanesulphonate (EMS). Germ line chi-
meras were derived from cultures that underwent a mutation rate of up to 
1 in 1200 at the Hprt locus (encoding hypoxanthine guanine phosphori-
bosyl transferase). The spectrum of mutations induced by EMS and the 
frameshift mutagen ICR191 was consistent with that observed in other 
mammalian cells. Chimeras derived from ES cells treated with EMS trans-
mitted mutations affecting several processes, including limb development, 
hair growth, hearing, and gametogenesis. This technology affords several 
advantages over traditional mutagenesis, including the ability to conduct 
shortened breeding schemes and to screen for mutant phenotypes directly 
in ES cells or their differentiated derivatives.

6.  Using Mouse Models to Identify Quantitative Trait Loci (QTL)

Definition of QTL. A QTL is a region of DNA that is associated with a 
particular phenotypic trait. A quantitative trait is one that has measurable 
phenotypic variation. Generally, quantitative traits are multifactorial and 
are influenced by several polymorphic genes and environmental condi-
tions. One or many QTLs can influence a trait or a phenotype. Two classic 
examples of quantitative traits are height and weight. Loci that modulate 
these traits are therefore called QTLs. These traits can also be influenced 
by loci that have large discrete effects (often called Mendelian loci). The 
distinction between Mendelian loci and QTLs is artificial, as the same 
mapping techniques can be applied to both. In fact, the classification of 
genetic (and allelic) effects should be considered as a continuum. At one 
end of the spectrum is the dichotomous Mendelian trait with only two 
detectable and distinct phenotypes, which are governed by a single gene. 
At the other end are traits, such as growth, which are likely to be affected 

C8105.indb   435 7/18/07   8:23:00 AM



436  <  Shui Qing Ye

by many genes that each contribute a small portion to the overall pheno-
type. Although they present challenges of discovery and analysis, QTL is 
important for us to understand disease processes because they are respon-
sible for most of the genetic diversity in human disease susceptibility and 
severity. With the development of new genetic techniques and with the 
completion of human, mouse and other mammalian genomes, a new wave 
of optimism is permeating scientific circles that QTLs will become easier 
to identify and will provide valuable information about normal develop-
ment and disease processes.

Mouse-to-human strategy. Finding QTL genes in mice is much more 
cost-effective, less time consuming, and less fraught with ethical issues 
than finding them first in humans, especially now that many new genetic, 
genomic, and bioinformatics tools for the mouse are available. A QTL 
gene can be first identified in the mouse, and then tested for its validity 
in human association studies in human diseases. The completion of the 
human HapMap project has greatly simplified such studies by facilitating 
the selection of representative SNPs of a haplotype block. In addition, dense 
SNPs throughout the human genome have facilitated whole-genome asso-
ciation studies in which the candidacy of all the genes in human diseases 
are systematically studied. The success of this mouse-to-human strategy 
has been documented in the identification of the proopiomelanocortin 
as a gene influencing obesity, cytotoxic T-lymphocyte-associated protein 
4 as a gene contributing to autoimmune disorders, and engrailed 2 as a 
gene involved in autism-spectrum disorder. This strategy has also been 
used to the discovery of an atherosclerosis-susceptibility gene, a tumor 
necrosis factor superfamily member 4, a polymorphism of which was sig-
nificantly associated with the risk of myocardial infarction and coronary 
artery disease in humans. Among nearly 30 human atherosclerosis QTLs 
reported, more than 60% are concordant to mouse QTLs, suggesting that 
these mouse and human atherosclerosis QTLs have the same underlying 
genes. Therefore, genes regulating human atherosclerosis will be most 
efficiently discovered by first identifying their orthologues in concordant 
mouse QTLs. Once QTL genes are identified in mice, they can be tested 
in human association studies for their relevance in human atherosclerotic 
disease. This paradigm can be applied to identify genes regulating QTLs 
in any other complex diseases.

Bioinformatics tools for dissecting rodent QTLs. A number of bioin-
formatics tools for dissecting rodent QTLs are available, and they are con-
tinuously updated and improved. A nutshell of those tools are presented 
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in the following text. Comparative genomics can identify regions of chro-
mosomal synteny in QTLs that are concordant across species. Experimen-
tal evidence suggests that causal genes underlying rodent QTLs are often 
conserved as disease genes in humans. Therefore, aligned concordant 
QTLs by comparative genomics analysis are likely to contain the causal 
gene. Generally, comparative genomic analysis only modestly narrows a 
QTL interval in most cases. Combined cross-analysis combines multiple 
crosses, detecting a shared QTL into one susceptibility and one resistance 
genotype into a single QTL analysis. Combining multiple crosses increases 
the number of recombination events, leading to better resolution of the 
QTL interval, based on the assumption that the same causal gene under-
lies the QTL in each cross. Haplotype analysis is useful to refine further a 
QTL interval to several Mb. There are interval-specific and genomewide 
haplotype analyses. Interval-specific haplotype analysis is often used to 
identify small regions (<5 Mb) within a QTL that are likely to contain 
the causal gene. Genomewide haplotype association analyzes haplotype 
patterns across the whole genomes of inbred strains surveyed for a phe-
notype to associate that phenotype with conserved haplotype patterns. 
Strain-specific sequence and gene expression comparisons are effective 
for focusing on a few strong candidate genes that may underlie relevant 
QTLs. Each strategy has its advantages, limitations and pitfalls. Interested 
readers may refer to an excellent review on the subject by DiPetrillo et al. 
(2005) for the details.

7.  The Mouse Genome Informatics (MGI)

MGI provides integrated access to data on the genetics, genomics, and biol-
ogy of the laboratory mouse in order to facilitate the use of the mouse as 
a model system for understanding human biology and disease processes. 
A core component of the MGI effort is the acquisition and integration of 
genomic, genetic, functional, and phenotypic information about mouse 
genes and gene products. MGI works within the broader bioinformatics 
community to define referential and semantic standards to facilitate data 
exchange between resources, including the incorporation of information 
from the biomedical literature. MGI is also a platform for computational 
assessment of integrated biological data with the goal of identifying can-
didate genes associated with complex phenotypes. MGI is web acces-
sible at http://www.informatics.jax.org, hosted at The Jackson Laboratory 
(http://www.jax.org). Its core component is the Mouse Genome Database 
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(MGD). Other projects and resources that are part of the MGI system 
include the Gene Expression Database (GXD) (http://www.informatics.
jax.org/mgihome/GXD/aboutGXD.shtml) and the Mouse Tumor Biology 
Database (MTB) (http://tumor.informatics.jax.org). All MGI component 
groups participate actively in the development and application of the Gene 
Ontology (GO) (http://www.geneontology.org). MGI continues to evolve, 
expanding its data coverage, improving data access, and providing new 
data query, analysis, and display tools.

Section 2	S earch for Murine Databases
In this part, step-by-step tutorials are presented on the search for the 
following:

	 1.	Mouse strains and stocks available worldwide, including inbred, 
mutant, and genetically engineered mice from International Mouse 
Strain Resources (IMSR, http://www.informatics.jax.org/imsr/
IMSRSearchForm.jsp)

	 2.	Mutant mouse embryonic stem (ES) cell lines from The International 
Gene Trap Consortium (IGTC)

	 3.	The candidate gene in a QTL region.

1.  Search for International Mouse Strain Resources

International Mouse Strain Resources include sixteen repositories world-
wide. All regions and repositories are selected by default (ANY). One can 
limit the search to a specific region or more specific repositories from the 
selection list. Here, searching for Apolipoprotein E (Apoe) gene mutant 
mouse models is demonstrated:

	 1.	In the Internet browser, type the following address: http://www.
informatics.jax.org/imsr/IMSRSearchForm.jsp; then, under Gene or 
Allele Symbol/Name in IMSR Search Form, type gene symbol Apoe 
as displayed in Figure 13.1.

	 2.	Click “Search,” and query summary of “Apoe” appears as displayed 
in Figure 13.2. There are nineteen matching items found. In each 
item listed in the IMSR, users can obtain information about: Where 
a strain is available (Holder Site); in what states a strain is available 
(e.g. live, frozen, germplasm, ES cells); links to further information 
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about a strain; and links for contacting the holder to order a strain or 
send a query. Descriptions of each field are presented in Table 13.1.

2.  Search for Mutant Mouse Embryonic Stem (ES) Cell Lines 
from The International Gene Trap Consortium (IGTC)

IGTC represents all publicly available gene trap cell lines, which are avail-
able on a noncollaborative basis for nominal handling fees. Researchers 
can search and browse the IGTC database for cell lines of interest using 

Figure 13.1  Search for Apoe mutant mouse from the International Mouse 
Strain Resources.

Figure 13.2  Query summary of the “Apoe” search. Nineteen matching items 
are displayed. Only the partial list is shown.
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accession numbers or IDs, keywords, sequence data, tissue expression 
profiles, and biological pathways. The best way to determine if the IGTC 
has trapped your gene or locus of interest is to use the BLAST search func-
tion to align your sequence to our database of trapped genes and cell line 
sequences. Here, searching for Pre-B-cell colony enhancing factor (Pbef) 
gene insertion mutant ES cell lines is demonstrated:

	 1.	In the Internet browser, type the following address: http://www.gen-
etrap.org/dataaccess/blast.html; then paste the query Pbef cDNA 
sequence (Sample data B) in the FASTA format into search window 
as displayed in Figure 13.3. Click on the “Quick Search” button; the 
default BLAST search for the NM_021524 sequence (NM_021524) 
yields the result displayed in Figure 13.4. There are twenty-one blast 
hits on the query sequences. Five of significant hits is presented. The 
user can record cell line numbers and further search the IGTC by 
clicking hyperlinked cell lines to get additional information on the 
supplier site, and availability status from the cell line annotation 
page.

Table 13.1  �Description of Each Query Field

Field Description
N Nomenclature status of the Strain/Stock Designation: 

Approved, Not Approved, or Not Reviewed.
Strain/stock designation Complete designation for a strain/stock, using current 

official nomenclature.
State State of the strain/stock (e.g., live, cryopreserved embryos, 

etc.) at the holder site listed.
Holder site Site at which the strain/stock is held.
Strain types Type of strain as enumerated in the Web site.
Strain/stock synonyms Alternative (unofficial or former) designated for that strain.
Chr Chromosomes containing the designated alleles.
Allele symbol Current allele symbols for mutant alleles carried by the 

strain/stock.
Allele name Current allele names for all mutant alleles carried by the 

strain/stock.
Gene name Current gene names for all genes with mutant alleles carried 

by the strain/stock.
Mutation types Mutant type indicates how the allele was created.
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3. S earch for the Candidate Gene in a QTL Region

A.  Find a QTL
	 1.	Go to the MGI homepage (http:www.informatics.jax.org), click 

“Genes and Markers” under “Search Menus,” click again “Genes 
and Markers” under “Searches,” select QTL under “Type” in “Gene/
marker,” type “HDL cholesterol” under “Phenotype/Human Dis-
ease” in “Mouse phenotypes & mouse models of human disease,” 
and sort by Nomenclature under “Sorting and output format.” The 
end screen shot of all these steps is presented in Figure 13.5.

Figure 13.3  Search for mutant mouse ES cell lines from IGTC. The screen-
shot shows pasting the query Pbef cDNA sequence in the FASTA format into the 
search window.

Figure 13.4  Output of the query PBEF1. Top panel shows the distribution of 21 
blast hits on the query sequence. Lower panel shows 6 out of 21 hits producing 
the significant alignments.

C8105.indb   441 7/18/07   8:23:05 AM



442  <  Shui Qing Ye

	 2.	Click “Search,” and 217 matching items are displayed. A partial 
screenshot of the list is presented in Figure 13.6.

B.  Find the Genes in the QTL Region
Here, we use an example of the QTL region: Chromosome 2: 117803890-
174126009bp, the last list of Figure 13.6 to search for the genes in this 
QTL region.

	 1.	Go to the MGI homepage (http:www.informatics.jax.org), click 
“Genes and Markers” under “Search Menus,” click again “Genes 
and Markers” under “Searches,” select Gene under “Type” in “Gene/
marker,” select Chromosome 2 and Genome Coordinates: 117803890-
174126009bp under “Map position,” type “Insulin” under “Pheno-
type/Human Disease” in “Mouse phenotypes & mouse models of 
human disease,” and sort by Genome Coordinates under “Sorting 
and output format.” The end screenshot of all these steps is presented 
in Figure 13.7.

Figure 13.5  Find the QTL on insulin. This screenshot shows where search 
terms “QTL” and “Insulin” should be entered in the search window.

C8105.indb   442 7/18/07   8:23:06 AM



Functional Annotation of Proteins in Murine Models  <  443

Figure 13.6  A partial screenshot of 217 matching items.

Figure 13.7  Find the genes in the QTL region. Fill in genome coordinates and 
find how many genes are in the region.
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	 2.	Click “Search,” and twelve matching items are displayed. A screen-
shot of the list is presented in Figure 13.8.

C.  Search for SNPs in Candidate Gene
DNA sequences polymorphisms affecting either expression or function 
of a gene product are the molecular basis for QTLs. Thus, identifying 
sequence polymorphisms between strains used to detect a QTL is impor-
tant for determining the causal gene. From the mouse phenome database 
(http://phenome.jax.org), one can find the insulin level of male mouse 
strain DBA/2J (4.29 ng/ml), a high extreme, and A/J (0.53 ng/ml), a low 
extreme. One can search for whether there are SNPs in the hepatic nuclear 
factor 4 alpha gene, which is one of twelve genes in the QTL regions for 
insulin level (Figure 13.8), to further rigorously examine its candidacy 
regulating insulin expression.

	 1.	Go to the MGI homepage (http:www.informatics.jax.org), click 
“SNPs” query form, add “DBA/2J” as a “Reference strain” and “A/
J” as a “Selected strain,” select “Different” as an “SNPs returned” 
format, and type “Hnf4a” under Gene Symbol/Name in “Associ-
ated genes.” The end screen shot of all these steps is presented in 
Figure 13.9.

	 2.	Click “Search,” and forty matching items are displayed. A screenshot 
of the partial list is presented in Figure 13.10.

Figure 13.8  A screenshot of 12 matching items.
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Figure 13.9  Search for SNPs in the Hnf4a gene from the MGI Web site.

Figure 13.10  A screenshot of 40 matching items.
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4.  Sample Data for Section 2
A.  Gene Symbol “Apoe”
B.  Pbef mRNA Sequence in the FASTA Format
>NM_021524. Mus musculus Pbef1 mRNA
TGACTTAAGCAACGGAGCGCAGCGAAGCCCATTTTTCTCCTTGCTCGCAGCCGCGCCGGGCAGCTCGTGG
CGCGGCGTCTCCGCTCCGGCCCGAGATGAATGCTGCGGCAGAAGCCGAGTTCAACATCCTGCTGGCCACC
GACTCGTACAAGGTTACTCACTATAAACAATACCCACCCAACACAAGCAAAGTTTATTCCTACTTTGAAT
GCCGTGAAAAGAAGACAGAAAACTCCAAAGTAAGGAAGGTGAAATACGAGGAAACAGTATTTTATGGGTT
GCAGTACATTCTTAATAAGTACTTAAAAGGTAAAGTAGTGACCAAAGAGAAAATCCAGGAGGCCAAAGAA
GTGTACAGAGAACATTTCCAAGATGATGTCTTTAACGAAAGAGGATGGAACTACATCCTTGAGAAATACG
ATGGTCATCTCCCGATTGAAGTAAAGGCTGTTCCCGAGGGCTCTGTCATCCCCAGAGGGAACGTGCTGTT
CACAGTGGAAAACACAGACCCAGAGTGCTACTGGCTTACCAATTGGATTGAGACTATTCTTGTTCAGTCC
TGGTATCCAATTACAGTGGCCACAAATTCCAGAGAACAGAAGAGAATACTGGCCAAATATTTGTTAGAAA
CCTCTGGTAACTTAGATGGTCTGGAATACAAGTTACATGACTCTGGTTACAGAGGAGTCTCTTCGCAAGA
GACTGCTGGCATAGGGGCATCTGCTCATTTGGTTAACTTAAAAGGAACAGATACTGTGGCGGGAATTGCT
CTAATTAAAAAATACTATGGGACAAAAGATCCTGTTCCAGGCTATTCTGTTCCAGCAGCAGAGCACAGTA
CCATAACGGCTTGGGGGAAAGACCATGAGAAAGATGCTTTTGAACACATAGTAACACAGTTCTCATCAGT
GCCTGTGTCTGTGGTCAGCGATAGCTATGACATTTATAATGCGTGTGAGAAAATATGGGGTGAAGACCTG
AGACATCTGATAGTATCGAGAAGTACAGAGGCACCACTAATCATCAGACCTGACTCTGGAAATCCTCTTG
ACACTGTATTGAAGGTCTTAGATATTTTAGGCAAGAAGTTTCCTGTTACTGAGAACTCAAAAGGCTACAA
GTTGCTGCCACCTTATCTTAGAGTCATTCAAGGAGATGGCGTGGATATCAATACTTTACAAGAGATTGTA
GAGGGAATGAAACAAAAGAAGTGGAGTATCGAGAATGTCTCCTTCGGTTCTGGTGGCGCTTTGCTACAGA
AGTTAACCCGAGACCTCTTGAATTGCTCCTTCAAGTGCAGCTATGTTGTAACCAATGGCCTTGGGGTTAA
TGTGTTTAAGGACCCAGTTGCTGATCCCAACAAAAGGTCAAAAAAGGGCCGGTTATCTTTACATAGGACA
CCAGCGGGGAACTTTGTTACACTTGAAGAAGGAAAAGGAGACCTTGAGGAATATGGCCATGATCTTCTCC
ATACGGTTTTCAAGAATGGGAAGGTGACAAAAAGCTACTCATTTGATGAAGTCAGAAAAAATGCACAGCT
GAACATCGAGCAGGACGTGGCACCTCATTAGGCTTCATGTGGCCGGGTTGTTATGTGTGCAGTGTGTGTA
TACATACATGCACGTATGTGTGCGCCTGTGCGTATGTACTAACATGTTCATTGTACAGATGTGTGGGTTC
GTGTTTATGATACACTGCAGCCAGATTATTTGTTGGTTTATGGACATACTGCCCTTTTTATTTTTCTCCC
AGTGTTTAGATGATCTCAGATTAGAAAACACTTACAACCATGTACAAGATTAATGCTGAAGCAAGCTTTT
CAGGGTCCTTTGCTAATAGATAGTAATCCAATCTGGTGTTGATCTTTTCACAAATAACAAACCAAGAAAC
TTTTATATATAACTACAGATCACATAAAACAGATTTGCATAAAATTACCATGCCTGCTTTATGTTTATAT
TTAACTTGTATTTTTGTACAAACGAGATTGTGTAAGATATATTTAAAGTTTCAGTGATTTACCAGTCTGT
TTCCAACTTTTCATGATTTTTATGAGCACAGACTTTCAAGAAAATACTTGAAATAAATTACATTGCCTTT
TGTCCATTAATCAGCAAATAAAACATGGCCTTAACCAAGTTGTTTGTGGTGTTGTACATTTGCAAATTAT
GTCAGGACAGACAGACACCCAACAGAGTTCCGAACATCACTGCCCTTGTAGAGTATGCAGCAGTCATTCT
CCGTGGAAGAGAAGAATGGTTCTTACGCGAATGTTTAGGCATTGTACAGTTCTGTGCCCTGGTCAGTGTA
TGTACCAGTGATGCCAAATCCCAAAGGCCTGTTCTGCAATTTTATATGTTGGATATTGCCTGTGGCTCTA
ATATGCACCTCAAGATTTTAAGAAGATAATGTTTTTAGAGAGAATTTCTGCTTCCACTATAGAATATATA
CATAAATGTAAAATATTGAAAGTGGAAGTAGTGTATTTTAAAGTAATTACACTTCTGAATTTATTTTTCA
TATTCTATAGTTGGTATGTCTTAAATGAATTGCTGGAGTGGGTAGTGAGTGTACTTATTTTAAATGTTTT
GATTCTGTTATATTTTCATTAAGTTTTTTAAAAATTAAATTGGATATTAAACTGTAAAAAAAAAAAAAAA
AAAA

C.  Insulin
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With a large number of prokaryotic and eukaryotic genomes completely 
sequenced and more forthcoming, the use of genomic information and 
accumulated biomedical knowledge for the discovery of new knowledge 
has become the central theme of modern biomedical research. The explo-
ration of the Internet and the use of the World Wide Web (WWW) have 
enabled various data sources like GenBank and a variety of bioinformatics 
tools like BLAST accessible to biomedical researchers. However, to truly 
exploit various sources and bioinformatics tools, biologists need to under-
stand and be able to use programming languages for managing, present-
ing, and analyzing large amounts of data or results obtained from many 
different sources or tools.

Similar to human languages, programming languages need to fol-
low syntax rules that specify the basic vocabulary of the language and 
how programs can be constructed using control structures such as loops, 
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branches, and subroutines. A syntactically correct program is one that 
can be successfully compiled or interpreted; programs that have syntax 
errors will be rejected. The program also needs to be semantically right. 
This chapter introduces you to three different open-source programming 
languages with some basic information about their syntax and seman-
tics. Step-by-step tutorials are provided for the installation and the use of 
existing bioinformatics code for one operation system (OS), i.e., Window 
XP. We also provide sample applications. In the first section, we intro-
duce Perl, which is the most commonly used language in bioinformat-
ics for data manipulation and analysis. Next, we discuss JAVA, which has 
strengths in graphical user interface (GUI) development. R, a program-
ming language and software environment for statistical computing and 
graphics, is described in the last section.

Section 1	 Application of Perl in Biology
Part I	I ntroduction
1.  What Is Perl Programming?
Perl is a programming language that was created in 1986 as the result of 
one man’s frustration with a task involved generating reports from a lot 
of text files with cross-references. Being tired of writing specific utilities 
to manage similar tasks dealing with extracting information from text 
and generating reports, Larry Wall invented a new language and wrote an 
interpreter in C for it that later became known as Perl (stands for Practical 
Extraction Report Language). The initial emphasis of Perl was on system 
management and text handling. More features were added during later 
revisions, including regular expressions, signals, and network sockets.

Programs written in Perl are usually called Perl scripts. Perl can be used 
for a large variety of tasks. A typical simple use of Perl would be extracting 
information from a text file and printing out a report, or converting a text 
file into another form. But Perl has evolved to provide a large number of 
tools for quite complicated systems.

Perl is implemented as an interpreted language (i.e., turned into binary 
instruction on fly) rather than a compiled language (i.e., turned into 
binary instructions at once). The execution of a Perl script may take more 
time than a program written in traditional programming languages such 
as C or JAVA. On the other hand, computers tend to get faster and faster, 
and writing something in Perl instead of languages such as C tends to save 
you time.
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2.  Why Is Perl Popular in Biology?
The Perl programming language is probably the most commonly used lan-
guage in bioinformatics, partly for the following reasons. First, Perl is less 
structured than traditional programming languages, and it is easy to learn 
for biologists. Perl takes care of many of the low-level tasks in traditional 
programming, such as memory allocation, and developers can concentrate 
on solving the problem at hand. Perl is interpreted, which enables the quick 
and dirty creation of portable (i.e., platform-independent) analysis pro-
grams. Perl is also free software and available for a variety of operating sys-
tems, including Windows and Mac, as well as Linux and Unix platforms. It 
is often the case that a problem can be solved using Perl programming with 
a few lines of code while requiring several times more lines of code in C or 
Java. For example, the following several lines of code will enable an appli-
cation to read a file “example.txt” and perform some task line by line.

open(FILE,”example.txt”);

while(<FILE>){

	some task

}

Additionally, the Comprehensive Perl Archive Network (CPAN, http://
www.cpan.org) provides an impressive collection of Perl code (mostly Perl 
modules), which makes the development of complex systems possible. For 
example, the ability to manipulate data stored in commercial or free data-
base management systems (DBMSs) and the text manipulation capability 
have made Perl the language of choice to create Common Gateway Inter-
face (CGI) scripts for handling data submission and information retrieval 
tasks (shown in Figure 14.1). 

The approach used by Perl to access DBMSs is a two-tier approach:

	 1.	The top level (DBI module) is visible to application scripts and pres-
ents an abstract interface for connecting to and using database 
engines. The interface does not depend on details specific to par-
ticular engines and is designed to provide a simple interface to send 
database queries in Structured Query Language (SQL) and retrieve 
the results.

	 2.	The lower level (DBDs) consists of drivers for individual DBMS 
engines. Each driver handles the details necessary to map the abstract 
interface onto operations that a specific engine will understand. The 
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DBD modules usually have the libraries for specific DBMSs in them 
and know how to communicate with the real databases; there is one 
DBD module for every database.

The Perl module CGI can be used to create CGI scripts such as querying 
databases using HTML Web forms (Figure 14.1).

Furthermore, the existence of a collection of Perl modules specific to 
bioinformatics applications, Bioperl, enables the development of complex 
bioinformatics applications in Perl. There are many reusable Perl modules 
in Bioperl that facilitate writing Perl scripts for sequence manipulation, 
accessing of databases using a range of data formats, and parsing of the 
results of various molecular biology programs including Blast, ClustalW, 
TCoffee, genscan, ESTscan, and HMMER. Bioperl is freely (under a very 
unrestrictive copyright) available at http://bioperl.org. Also, tutorials and 
documents on how to use them are also accessible at http://bioperl.org.

The following is a brief overview of the main types of modules in Biop-
erl, collected in a few broadly defined groups:

Perl Script

Web Browser Internet Server CGI Perl CGI can call
modules or other
network functions such
as sendmail to complete
the task

DBI

DBD::Oracle
Oracle

MySQL

PostgreSQL
DBD::Pg

DBD::mysql

Top Bottom

Figure 14.1  Overviews of the two-tier architecture of database applications 
using Perl and the server-client architecture of Web applications using Perl Com-
mon Gateway Interface (CGI) scripts.
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Sequences

Bio::LiveSeq::* handles changing sequences.

Bio::PrimarySeq is a sequence object without features.

Bio::Seq is the main sequence object in Bioperl.

Bio::Seq::LargeSeq provides support for very large sequences.

Bio::SeqIO provides sequence file input and output.

Bio::Tools::SeqStats provides statistics on a sequence.

Databases

Bio::DB::GenBank provides GenBank access.

Bio::Index::* indexes and accesses local databases.

Bio::Tools::Run::StandAloneBlast runs BLAST on your local computer.

Bio::Tools::Run::RemoteBlast runs BLAST remotely.

Bio::Tools::BPlite parses BLAST reports.

Bio::Tools::BPpsilite parses psiblast reports.

Bio::Tools::HMMER::Results parses HMMER hidden Markov 
model results.

Alignments

Bio::SimpleAlign manipulates and displays simple multiple 
sequence alignments.

Bio::UnivAln manipulates and displays multiple sequence alignments.

Bio::LocatableSeq is for sequence objects with start and end points 
for locating relative to other sequences or alignments.

Bio::Tools::pSW aligns two sequences using the Smith-Waterman 
algorithm.

Bio::Tools::BPbl2seq is a lightweight BLAST parser for pairwise 
sequence alignment using the BLAST algorithm.

Bio::AlignIO aligns two sequences using BLAST.

Bio::Clustalw is an interface to the multiple sequence alignment 
package Clustalw.
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Bio::TCoffee is an interface to the multiple sequence alignment pack-
age TCoffee.

Bio::Variation::Allele handles sets of alleles.

Bio::Variation::SeqDiff handles sets of mutations and variants.

Features and genes on sequences

Bio::LocationI provides an interface to location information for 
a sequence.

Bio::Location::Fuzzy provides location information that may be inexact.

Bio::Location::Simple handles simple location information for a 
sequence, both as a single location and as a range.

Bio::Location::(Tisdall) provides location information where the loca-
tion may encompass multiple ranges, and even multiple sequences.

Bio::SeqFeature is the sequence feature object in Bioperl.

Bio::Tools::OddCodes rewrites amino acid sequences in abbreviated 
codes for some specific statistical analyses.

Bio::Tools::EPCR parses the output of ePCR program.

Bio::Tools::ESTScan is an interface to the gene-finding program 
ESTScan.

Bio::Tools::MZEF is an interface to the gene-finding program MZEF.

Bio::Tools::Grail is an interface to the gene-finding program Grail.

Bio::Tools::Genemark is an interface to the gene-finding program 
Genemark.

Bio::Tools::Genscan is an interface to the gene-finding program 
Genscan.

Bio::Tools::RestrictionEnzyme identifies restriction sites in sequence.

Bio::Tools::SeqPattern provides support for regular expression 
descriptions of sequence patterns.

Bio::Tools::Sim4::Results (and Exon) is an interface to the gene exon 
finding program.

Bio::Tools::Sigcleave finds amino acid cleavage sites.
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3.  Some Perl Basics
Most operating systems (OSs), such as Linux and Mac, include Perl in their 
releases. In case Perl is not installed or you need the latest Perl release, you 
can go to http://www.perl.com/download.csp or http://www.cpan.org/
ports/index.html and follow the instructions for downloading and install-
ing it on your system. Detailed steps for installation of Perl for Windows 
will be provided in the tutorial section.

Writing and executing a Perl script can be broken into several steps: 
creating a script, running and debugging the scripts, and reading the out-
put. An integrated development environment (IDE), a type of computer 
software that assists programmers in developing software, can be used to 
simplify and accelerate the development process. Most IDEs consist of a 
source code editor, a compiler and/or interpreter, build-automation tools, 
and usually a debugger. IDEs for Perl can also be found at http://www.
cpan.org/ports/index.html and will not be discussed in detail.

A.  Creating the Script  A Perl script is just a text file that contains instruc-
tions written in the Perl language. The scripts can be created using a text 
editor such as vi, emacs, pico, or TextPad. By convention, Perl script files 
end with the extension .pl. Some text editors (e.g., TextPad, Emacs) have a 
Perl mode that will autoformat your Perl scripts and highlight keywords. 
Perl mode will be activated automatically if the script has a name ending 
with .pl. A Perl script consists of a series of statements and comments. 
Each statement is a command that is recognized by the Perl interpreter and 
executed. Statements are terminated by the semicolon character (;). They 
are also usually separated by a newline character to enhance readability. 
A comment begins with the # sign and can appear anywhere. Everything 
from the # to the end of the line is ignored by the Perl interpreter. The Perl 
interpreter will start at the top of the script and execute all the statements, 
in order from top to bottom, until it reaches the end of the script. This 
order of execution can be modified by loops and control structures.

The following is a script consisting of two lines of comments that indi-
cate what the script is and what it does:

# time.pl

# print out the local time

$time = localtime;

print “The current time is $time \n”;
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There are three building blocks for statements: variables, operators, and 
functions. A variable is a named reference to a memory location. Variables 
provide an easy handle for programmers to keep track of data stored in 
memory. There are two basic types of variables in Perl. Scalar variables 
hold the basic building blocks of data: numbers and characters. Array 
variables hold lists. Perl has a rich set of operators (over fifty of them) that 
perform operations on string and numeric values. Some operators will be 
familiar from algebra (like “+”, to add two numbers together), whereas 
others are more esoteric (like the “.” string concatenation operator). In 
addition to its operators, Perl has many built-in functions. Functions usu-
ally have a human-readable name, such as print, and take one or more 
arguments passed as a list. A function may return no value, a single value, 
or a list. The argument list can be optionally included in parentheses. In 
the previous example, a scalar variable $time was assigned with a result 
from a build-in function localtime and “.” is an operator used by Perl to 
concatenate strings. Besides built-in functions, users can also define func-
tions, which are usually termed subroutines to differentiate them from 
built-in functions.

B.  Running the Script  There are two options to execute the script. The 
first option is to run it from the command line, giving it the name of the 
script file to run:

$ perl time.pl

The current time is Mon Nov 27 11:40:49 2006.

The second option is to run the script as a command by putting the 
comment #!/usr/bin/perl at the top of the script and make it execut-
able by typing chmod +x time.pl. The comment directs the system to 
locate the Perl interpreter; you need to substitute /usr/bin/perl with 
the full path to your Perl installation, which can be found by typing which 
perl at the command line in Unix or Linux platforms.

Every script usually goes through a few iterations before the program-
mer gets it right. The common errors include syntax errors such as for-
getting the “$” sign in the name of a scalar variable, or runtime errors 
such as dividing a number by zero. Other common errors include forget-
ting to make the script executable or putting the path to Perl wrong on 
the “#!” line. You can call Perl with a few command-line options to help 
catch errors:
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-c - Perform a syntax check, but don’t run.

-w - Turn on verbose warnings.

-d - Turn on the Perl debugger.

Usually, you will invoke these from the command line, as in perl -cw 
time.pl (syntax-check time.pl with verbose warnings). You can also put 
them in the top line: #!/usr/bin/perl -w. 

Part II	S tep-By-Step Tutorial

The step-by-step tutorial provides an example of how to set up a computer 
for testing Bioperl scripts available at http://bioperl.open-bio.org/. The 
tutorial assumes that you have a personnel computer (PC) with Window 
XP as the operating system and that Perl is not installed. Also, we assume 
that Firefox is your Internet browser. Note that Firefox is available at http://
www.mozilla.org/download.html) for download and installation.

1.  Download and Install Perl
For Windows, we can download the latest Perl distribution from the 
ActiveState Web site, which is the leading provider of tools and services for 
languages such as Perl, PHP, Python, Ruby, and Tcl. Figure 14.2 shows a 
series of screenshots guiding the download and installation of ActivePerl:

	 1.	Open a Firefox window and type in the address http://www.actives-
tate.com/Products/ActivePerl.

	 2.	Click on the link “Get ActivePerl.”

	 3.	Click “Free Download.”

	 4.	Select appropriate operating systems and download the MSI package.

	 5.	Open the download file in the Firefox download window, and follow 
the installation directions to install the program.

2.  Download and Install TextPad
Perl scripts can be created using text editors. Here, we use the trial version 
of TextPad. It can be downloaded from http://www.textpad.com/down-
load/index.html. The software can be installed by following the instruction 
provided in the Web page. Figure 14.3 shows a series of screenshots guid-
ing the download and installation of TextPad:
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Figure 14.2  Overview of the installation of Perl in Window XP.

Figure 14.3  Overview of the installation of TextPad in Window XP.
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	 1.	Open a Firefox window, and type in the address http://www.textpad.
com/download/index.html.

	 2.	Click on the link “FTP.”

	 3.	Save to the disk.

	 4.	Open the download file in the Firefox download window and follow 
the installation direction to install the program.

3.  Install Bioperl Module
The instruction for installing the Bioperl module can be found at http://
bioperl.open-bio.org/wiki/Installing_Bioperl_on_Windows. We simplify 
the procedure as follows (shown in Figure 14.4):

	 1.	Start the Perl Package Manager GUI from the “Start” menu.

	 2.	Go to Edit >> Preferences and click the “Repositories” tab. Add a 
new repository for each of the entries listed in the following with the 
format “Name:Location”:

BioPerl-Release Candidates: http://bioperl.org/DIST/RC

BioPerl-Regular Releases: http://bioperl.org/DIST

Kobes: http://theoryx5.uwinnipeg.ca/ppms

Bribes: http://www.Bribes.org/perl/ppm

	 3.	Select View >> All Packages.

	 4.	Right-click the latest version of Bioperl available and choose “install.”

	 5.	Click the green arrow to complete the installation.

4.  Start TextPad, Configure for Syntax Highlight and Running Perl
TextPad allows you to configure for syntax highlight and execute Perl. 
After starting TextPad (accessible from the “Start” menu), the following 
shows the steps (screenshots are shown in Figure 14.5):

	 1.	Go to Configure>>New Document Class and click.

	 2.	Enter “perl” as “Document class name” and click next.

	 3.	Enter “*.pl” as “Class members” and click next.

•

•

•

•
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Figure 14.4  Overview of the installation of BioPerl through Perl Package Man-
ager (PPM).

Figure 14.5  Set up TextPad for Perl Syntax Highlight.
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	 4.	Select “Enable syntax highlighting” and from the dropdown menu, 
select “perl5.syn” as syntax file, and follow the instructions to finish 
the configuration for syntax highlight.

	 5.	Go to Configure>>Preferences and click.

	 6.	Select “Tools” and click “add,” follow the directions and go to the bin 
directory of perl and select perl.exe. The default install bin directory 
for perl usually is “C:\Perl\bin.”

5.  Test Bioperl Scripts
A very useful way to learn programming is through examples. There are a 
lot of example scripts available on various Web sites, including the Biop-
erl Web site http://bioperl.open-bio.org/. For example, in the Bioperl Web 
site, the HOWTOs page http://bioperl.open-bio.org/wiki/HOWTOs pro-
vides narrative-based descriptions of Bioperl modules focusing more on a 
concept or a task than one specific module. We demonstrate how to test 
those scripts without much typing in Figure 14.6:

Figure 14.6  An illustration of testing Bioperl scripts.
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	 1.	Open Firefox and go to the Web site http://bioperl.open-bio.org/
wiki/HOWTO:Beginners.

	 2.	Browse the window until you identify the script that retrieves Gen-
Bank records, press the mouse, and select the script.

	 3.	Go to Edit>>Copy in Firefox to copy the script.

	 4.	Start TextPad and go to Edit>>Paste in Textpad to paste the example.

	 5.	Go to File>>Save and click “Save.”

	 6.	Save the file as a local file ending with .pl (e.g., “bioperl_example1.pl”).

	 7.	Go to the left window of Textpad, right-click the mouse, and select 
“Tile horizontally.”

	 8.	Go to Tools>>Perl in TextPad and click.

	 9.	The results will be shown in the “Command Results” area.

You can test any of the example scripts available at the Bioperl Web site, 
by using the previous nine steps.

Part III	 An Application Example

We introduce here a stand-alone Perl application that (1) processes a file 
containing official human gene names and symbols downloaded from 
HUGO Gene Nomenclature Committee (HGNC) in text format, (2) stores 
the information in a local MySQL database, and (3) retrieves the official 
human gene name for a given official symbol. We also introduce a Web 
application for querying the underlying MySQL database. The example is 
to demonstrate the usefulness of Perl for applications using DBMSs and 
the Web.

1.  Background
We first provide a short introduction to HGNC, MySQL, and Web 
applications.

HGNC is an organization that approves one gene name and one gene 
symbol for each known human gene. Providing a unique symbol for each 
gene resolves ambiguity and facilitates electronic data retrieval from pub-
lications. All approved gene names and symbols are stored in the HGNC 
database, with a total of 24,044 approved entries. The HGNC database is 
downloadable from the Web site (http://www.gene.ucl.ac.uk/nomencla-
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ture/data/gdlw_index.html). Let us download the Core Database in text 
format and name the file hgnc.txt (see Figure 14.7).

MySQL is a popular database server that is used in various bioinfor-
matics applications. SQL stands for Structured Query Language, which 
is what MySQL uses to communicate with other programs. On top of 
that, MySQL has its own expanded SQL functions to provide additional 
functionality to users. Please refer to http://www.mysql.com on how to 
do the initial MySQL installation, set up databases and tables, and create 
new users. Assume a user named perlbio, a password perlbio, and a 
database named perlbio have been created. In order to use Perl to com-
municate with MySQL, we need to install the Perl DBI and DBD::mysql 
modules (refer to the step-by-step tutorial and http://www.cpan.org about 
the installation of modules).

For the development of Web applications, a HTTP Web server, such 
as Apache Web Server (available at http://www.apache.com), needs to be 
installed. If you can design, develop, and post your own Web pages in a com-
puter, then a Web server has already been installed in that computer. The 
details on how to set up a Web server are beyond the scope of this chapter.

Figure 14.7  Screenshot on obtaining the HGNC core table.
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2.  Read the File
There are nine fields in the HGNC core table (see Figure 14.8 for a screen-
shot). We first start with a script that reads the file, and provides statistics 
of the number of records with nonempty values for each field:

#! /usr/bin/perl

#count.pl

#provide statistics for the HGNC core table

use strict; # a module that forces every variable 

#needs to be declared as local or global variables

my @fieldnames; # store field names

my @fields; # store field values

my %count; # the counter hash,

 # keys will be field names, and

 # values will be the number of rows with non-empty 

#values for the corresponding field

open(HGNC, “hgnc.txt”); # open the file to read

my @rows=<HGNC>; # read in lines into an array @rows

chomp(@rows); # remove the end-of-line characters from 

#each row

@fieldnames=split(/\t/,$rows[0]);

# the first row contains field names, separate them 

#into fields according to “\t”.

for(my $i=1; $i<=$#rows; $i++){

# iterate through the number of rows, starting from 

#the second row

@fields= split(/\t/,$rows[$i]); # separate the row 

#into fields

for(my $j=0; $j<=$#fieldnames; $j++){ # iterate 

#through the number of fields

	 if($fields[$j] ne “”){ $count{$fieldnames[$j]}++

  ;} #increment the counter by 1

  }

}

foreach my $field (keys %count){

print $count{$field}.” out of “.($#rows).” are non-

empty values at field $field! \n”;

}
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In the count.pl script, the code use strict; is a statement to tell the 
script to use the “strict” module. A module can be called by:

use modulename;

There are two types of variables in Perl: one is local (defined using my) 
and the other is global (by default). The use of the module “strict” will force 
every local variable in the script to be declared. Variables @fieldnames 
(to store field names) and @fields (to store field values) are arrays, and 
the variable %count is a hash that is a special type of array consisting of 
(key, value) pairs. The keys for %count will be field names, and the value 
will be the number of rows with nonempty values for the corresponding 
field.

The function open is used to open a file to read or write. There are gener-
ally two parameters: a file handler (e.g., HGNC) and a filename (e.g., hgnc.
txt). All lines in the file can be read to an array. (e.g., @rows=<HGNC>;). 
They can also be read line by line, using the while loop as follows:

 while(<HGNC>){ chomp; 

# The parameter to chomp is the default scalar $_.

......

}

Figure 14.8 R ecords in the HGNC core table.
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The function chomp is a built-in function that removes the end-of-line 
character from each element in the array @rows. Another function, split, 
is used to split a string to an array according to a delimiter. A nested for 
loop is used to iterate through each row and each field. A if condition 
block is to check if the value of a field is empty or not; if it is not empty, the 
counter is incremented by one for the corresponding field. Besides for, 
another way to iterate an array or an hash is foreach.

The result of running the script together with the script (i.e., the sta-
tistics of the HGNC core table (downloaded Nov 27, 2006)) is shown in 
Figure 14.9.

3.  Store the Data into MySQL
The script store.pl stores the HGNC core table into the MySQL database 
perlbio:

# store.pl

# A script to process the HGNC core table and store in 

#MySQl database perlbio

use DBI; # require DBI module

my $dsn=”DBI:mysql:database=perlbio”; 

#assume MySQL database as “perlbio”

Figure 14.9  Screenshot for using TextPad to edit and run count.pl.
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my $dbh=DBI->connect($dsn,”perlbio”,”perlbio”);

# assume MySQL user name and password are both “perl

#bio”

my $droptable=’DROP TABLE IF EXISTS HGNC;’; 

# SQL statement to delete a table if exists

my $sth=$dbh->prepare($droptable)

or die “Couldn’t prepare statement “.$dbh->errstr; 

# the statement handler

$sth->execute() or die “Couldn’t execute statement 

“.$sth->errstr; # execute the statement

my $createtable=’CREATE TABLE HGNC (

id int(11),

symbol varchar(50),

name varchar(255),

status varchar(50),

psymbols varchar(255),

aliases varchar(255),

chromosome varchar(50),

accession varchar(100),

refseq varchar(100),

PRIMARY KEY (id) );’;

# SQL statements for creating a table

# The number inside parentheses is the maximum number 

# of characters allowed

$sth=$dbh->prepare($createtable) or die “Couldn’t 

prepare statement “.$dbh->errstr;

$sth->execute() or die “Couldn’t execute statement 

“.$sth->errstr;

my @fieldnames; # store field names

my @fields; # store field values

open(HGNC, “hgnc.txt”); # open the file to read

my @rows=<HGNC>; # read in lines into an array @rows

chomp(@rows); 

# remove the end-of-line characters from each row

@fieldnames=split(/\t/,$rows[0]); 

# the first row contains field names, separate them 

into fields

# according to “\t”.
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$insertrecord=’insert into HGNC (id, symbol, name, 

status, psymbols, aliases, chromosome, accession, 

refseq) values (‘.”?, “ x (@fieldnames-1).’?)’;

 # use of string operator “x”, will repeat the string 

#“?, “ one less than the number of fields

$sth=$dbh->prepare($insertrecord) or die “Couldn’t 

prepare statement “.$dbh->errstr;

for(my $i=1; $i<=$#rows; $i++){

# iterate through the number of rows, starting from 

#the second row

@fields= split(/\t/,$rows[$i]); 

# separate the row into fields

$sth->execute(@fields[0..8]); 

# “..” here defines an integer array from 0 to 8.

}

The line use DBI; indicates that the script will utilize the DBI module 
to interact with DBMSs. The actual connection is achieved by the follow-
ing two lines:

my $dsn=”DBI:mysql:database=perlbio”; 

#assume MySQL database as “perlbio”

my $dbh=DBI->connect($dsn,”perlbio”,”perlbio”);

After making the connection, Perl sends SQL statements to MySQL 
to perform SQL operations such as deletion of a table, creation of a table, 
and insertion.

Execution of the script will generate a table called HGNC in MySQL 
database perlbio.

4.  Retrieve the Data from MySQL
The script retrieve.pl provides a console interface to the HGNC core 
table. The complete code is shown in Figure 14.10. The execution of the 
program generates a console window and allows the users to query the 
MySQL database (see Figure 14.11). Note that here we can execute the 
script only from the console window. If executing from Textpad, a console 
window will not be brought up.
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5.  Web Application
Assume MySQL and the Web server are in the same computer and the 
Web server can be accessed as http://www.perlbio.org (replace the link 
with the address of your Web server). Under the Web server root Web 
directory, we create a test directory as perlbio and under the root cgi-
bin directory, we create a test cgi-bin directory as perlbio-cgi. Under 
perlbio directory, we create a HTML file hgnc _ query.htm (see Fig-
ure 14.12 for htm text and screenshot). After making the directory and file 
readable by anyone (i.e., with chmod –R 744 perlbio in Linux/Unix 
or right-click to change the property of the directory and file to “readable 
by anyone”). Under perlbio-cgi directory, we create a file retrieve.
cgi, which uses the CGI module to retrieve query parameters, submits 
the query to MySQL database using DBI, and generates a Web page to 
display the query result:

#!/usr/bin/perl

# retrieve.cgi

use strict;

use CGI;  

use DBI;

Figure 14.10  Screenshot displaying code in the script retrieve.pl that provides 
a command-line interface for the HGNC core table.
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my $dsn=”DBI:mysql:database=perlbio”;

my $dbh=DBI->connect($dsn,”perlbio”,”perlbio”);

my $query = new CGI;

my $field = $query->param(‘field’);

my $value = $query->param(‘value’);

my $field1 = $query->param(‘field1’);

Figure 14.11 Sc reenshot of the command-line interface for the HGNC 
core table.
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print “Content-type: text/html\n\n”;

print “<HTML><HEAD>\n”;

print “<title> HGNC Search Results </title>\n”;

print “</HEAD><BODY>\n”;

my $selectrecord=’select ‘.$field1.’ from HGNC where ‘

.$field.’=”’.$value.’”’;

my $sth=$dbh->prepare($selectrecord) or die ‘<H3><font 

color=”#CC0000”> Server is not ready! </font></H3></

BODY>’;

my $sthresult =$sth->execute();

print “\n<H3> Results:\n</H3><hr>”;

if($sthresult eq “”){

	print “\n When $field is $value, cannot retrieve 

$field1. \nMaybe $field1 or $field is an invalid 

field!\n”;

}

elsif($sthresult eq “0E0”){

print “\n When $field is $value, cannot retrieve 

$field1. \nMaybe an invalid value for $field!\n”;

}

else{

	while (my @data = $sth->fetchrow_array()) {

		 if($data[0] eq “”){

			  print “\n When $field is $value, $field1 

has an empty value.\n”;

		 }

		 else{

			  print “ When $field is $value, $field1 is 

$data[0]\n”;

		 }

	}

}

print ‘<hr>’;

print ‘<a href=”/test/hgnc_query.htm”> Try Again </

a>’;

print “</BODY>\n”;
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After making the directory executable such as using chmod –R 755 
perlbio-cgi      in Unix/Linux, the search engine can then be accessed at 
http://www.perlbio.org/perlbio/hgnc_query.htm.

Section 2	 Application of JAVA in Biology
Part I	I ntroduction

1.  What Is JAVA?
Another popular language used in Biology is JAVA, which was developed 
by Sun Microsystems. Java is an object-oriented language similar to C++, 
but simplified to eliminate language features that cause common program 
errors. Similar to Perl, JAVA is an interpreted language. Java source code 

Figure 14.12  The HTML page that provides a Web form interface for the 
HGNC core table.
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files (files with a .java extension) are first compiled into a format called 
bytecode (files with a .class extension), which can then be executed by a 
Java interpreter. Compiled Java code can run on most computers because 
Java interpreters and runtime environments, known as Java Virtual 
Machines (JVMs), exist for most operating systems, including Windows, 
Linux/Unix, and Mac. Bytecode can also be converted directly into exe-
cutable applications using a just-in-time compiler (JIT).

2.  Why Is JAVA Popular in Biology?
Traditionally, the language of choice for bioinformaticians has been Perl. 
Perl scripts usually require prerequisite dependency installations, and 
they lack the dynamic graphical user interface (GUI) interactions inher-
ent in Java. Additionally, the value of stand-alone bioinformatics applica-
tions created with Perl is limited in scope and in its contribution back 
to research biologists. For this reason, bioinformaticians have been using 
Java to deliver applications to researchers at all levels of computational 
ability and provide dynamic GUI interactions.

Another feature making JAVA popular is its object-oriented property 
and a rich set of existing JAVA application programming interface (API) 
packages for bioinformatics. Object-oriented programming defines not 
only the data type of a data structure, but also the types of operations 
that can be applied to the data structure. In this way, the data structure 
becomes an object that includes both data and functions. In addition, 
programmers can create relationships between one object and another. 
For example, objects can inherit characteristics from other objects. One 
of the principal advantages of object-oriented programming techniques 
is that they enable programmers to create modules that do not need to be 
changed when a new type of object is added. A programmer can simply 
create a new object that inherits many of its features from existing objects. 
This makes object-oriented programs easier to modify.

Furthermore, the existence of many bioinformatics-based JAVA appli-
cations and APIs motivates bioinformaticians to use them as resources for 
acquiring or manipulating data. The development of applications and APIs 
that couple biological and computational knowledge to formally describe 
complex biological data types significantly reduces the number of con-
flicting formats, and the time required to access as well as analyze biologi-
cal data. The following provides several bioinformatics-based applications 
or APIs that aid in acquiring, processing, and defining biological data, 
each in its own unique way:
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TIGR MultiExperiment Viewer (MEV) integrates large numbers of 
experiments to facilitate researchers in analyzing patterns of gene 
expression. MEV is an important example of a bioinformatics appli-
cation that aims at integrating bioinformatics experimentation.

WebMol analyzes molecular structure information. This program 
uses Java3D to allow researchers to visualize and manipulate com-
plex protein structures.

Apollo is a genome annotation tool designed to aid in the annota-
tion of genes in various genomes, and has been used to annotate the 
fruit fly genome and parts of the human genome. Apollo is a good 
example of a Java bioinformatics tool that integrates biological data 
to aid in human-facilitated annotation activities.

Sockeye facilitates comparative genome analysis (the science of com-
paring genomic-level similarities across species). It allows users to 
view and compare annotation and sequence from several genomes 
simultaneously. Sockeye uses Java3D to display genomes and their 
respective annotations.

Spice is a browser for protein sequences, structures, and their anno-
tations. It can display annotations for PDB, UniProt, and Ensembl 
Peptides. All data are retrieved from different sites on the Internet. 
Annotations are available using the DAS protocol. It is possible to 
add new annotations to Spice, and to compare them with informa-
tion already available.

BioJava is more of an API than an application. Many bioinformatics 
projects exist for different languages. These APIs try to organize the 
semantics of working with and manipulating biological data.

caBIO (Cancer Bioinformatics Infrastructure Objects) is one com-
ponent of the National Cancer Institute’s Centre for Bioinformat-
ics (NCICB) caCORE research management system. caBio is a 
great solution for bioinformatics developers who want the benefits 
of defined biomedical objects, coupled with search criteria objects 
capable of cross-platform data exchange and retrieval.

PAL (Phylogenetic Analysis Library) is dedicated to the subset of 
bioinformatics analysis that pertains to the evolutionary develop-
ment of genomes (DNA and protein sequence). Some of the more 

•

•

•

•

•

•

•

•
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advanced features include phylogenetic tree manipulation, amino 
acid substitution modeling, and several tree-construction methods.

MAGE-stk facilitates the loading of MAGE-ML, an XML-based for-
mat based on the MIAME standards. Although that may not seem 
impressive, the Java component of MAGE-stk comprises more than 
300 classes, making it one of the heavyweights when compared to 
the other APIs mentioned here.

The Knowledge Discovery Object Model (KDOM) is a bioinfor-
matics-based API designed to represent and manage biological 
knowledge during application development. The goal of KDOM is 
to create a framework for managing the acquisition and implemen-
tation of biological objects. Developers can further define relation-
ships between biological objects to develop a knowledge ontology 
that is persistent through the system. KDOM also facilitates context-
dependent display of biological objects. For instance, a gene can be 
displayed differently in the context of a chromosome or an exon.

LSID (The Life Science Identifier) project is I3C URN specification 
that is being implemented by IBM. The concept boils down to creat-
ing a worldwide unique ID for life sciences data that includes the 
information required to resolve this ID. The LSID project is being 
developed for Java and Perl as freely downloaded open-source soft-
ware. Basic LSID-handling capabilities are also appearing in BioJava 
under org.biojava.utils.lsid.

The effort to compartmentalize bioinformatics tasks into discrete APIs 
is a fundamental component of standardizing knowledge and creating reli-
able bioinformatics systems. User adoption and adherence to code-reuse 
strategies will significantly aid in the construction and delivery of complex 
analysis systems to researchers with varying computational proficiencies. 
Here, community efforts must be undertaken to increase the visibility and 
usability of JAVA APIs among developers. The majority of the existing Java 
APIs are the products of dedicated individuals or relatively small groups 
of developers. In many cases, there is little documentation or guarantee 
that the software will work out of the box. The measure of success has 
been related to the proportion of the bioinformatics community that uti-
lizes the API. Unfortunately, most novice programmers are overwhelmed 
when they take their first steps into an object-oriented environment, and 
abandon or side-step the effort. Furthermore, senior programmers, who 

•

•

•
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are more likely to use these APIs, frequently do not; they are either not 
aware of them, or the short-term tradeoff between time and the challenge 
of doing it themselves is not that appealing. Both reactions are under-
standable, as it is frequently unclear where to go to find these APIs or how 
to start using one once identified (even if it is bug free).

3.  Some JAVA Basics
The latest JAVA API development kit (JDK) and JAVA Runtime Environ-
ment (JRE) can be downloaded from http://java.sun.com. The Java Tuto-
rial series (available at http://java.sun.com/docs/books/tutorial/) provides 
practical guides for programmers who want to use the Java programming 
language to create applications, with hundreds of complete, working 
examples, and dozens of lessons.

Writing and executing a JAVA program can be broken into several steps: 
creating a program, compiling, and executing the program. Similar to Perl, 
IDEs can be used to simplify and accelerate the development process.

A.  Creating the Program  A JAVA source code file is just a text file that 
can be created using a text editor such as vi, emacs, pico, or TextPad. We 
will illustrate JAVA programming through the famous “Hello World” 
application.

/**

 * The HelloWorldApp class implements an application 

that * 

simply prints “Hello World” or “Hello World from ?” 

* to standard output.

 */

class HelloWorldApp {

 public static void main(String[] args) {

 if(length(args)>0){

	 System.out.println(“Hello World from ” + args[0]+”\

n”); // Display the string.

	}

 else{

	System.out.println(“Hello World!\

n”); // Display the string.

	}

 }

}
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An object in JAVA is usually a class that can have other classes as vari-
ables and have a collection of methods. It can be an extension of an exist-
ing class or can be implemented from several interfaces. The basic form of 
a class definition is:

class name {

 . . .

}

The keyword class begins the class definition for a class named name, 
and the code for each class appears between the opening and closing curly 
braces marked in bold above. The file needs to be named after its main class 
and ended with .java. For the above example, the main class is Hello-
WorldApp, so the program needs to be saved as HelloWorldApp.java.

Every JAVA program must have the main method, whose signature is:

	public static void main(String[] args)

This array is the mechanism through which the runtime system passes 
information to the application. Each string in the array is called a com-
mand-line argument. Command-line arguments let users affect the opera-
tion of the application without recompiling it.

Java programming language supports three kinds of comments:

/* text */

The compiler ignores everything from /* to */.

/** documentation */

This indicates a documentation comment (doc comment, for short). 
The compiler ignores this kind of comment, just like it ignores comments 
that use /* and */. The javadoc tool uses doc comments when preparing 
automatically generated documentation.

// text

The compiler ignores everything from // to the end of the line.
Finally, the line:

System.out.println(“Hello World!”);

uses the System class from the core library to print the “Hello World!” 
message to standard output.
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B.  Compiling and Executing the Program  The java program usually 
compiles using the command javac and runs using the command java. 
Usually, you may need to set up your computer environment so that the 
compilation and execution run smoothly. Let us assume a fresh installa-
tion of JDK. Figure 14.13 shows how to set up the computer for compiling 
and executing java programs:

	 1.	From the start menu or Desktop, right-click “My Computer,” and 
select “Properties.”

	 2.	Click on button “Advanced.”

	 3.	Click “Environment Variables.”

Figure 14.13 S teps for setting up Window XP’s environment vari-
ables for compiling and executing JAVA applications.
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	 4.	 If variable CLASSPATH is shown as one of the User variables, select 
CLASSPATH and add “.;” at the beginning. If CLASSPATH is not 
shown, click “New” and create CLASSPATH.

	 5.	Modify System variables Path and append the JDK bin directory 
(e.g., C:\Program Files\Java\jdk1.6.0\bin) at the beginning.

Now, we can compile and execute the program by restarting the com-
puter and bringing up a command window (see Figure 14.14):

	 1.	From the start menu select “run.”

	 2.	Type cmd in the popup run window.

	 3.	Go to the directory where the java program saved, compile by typing 
javac HelloWorldApp.java and execute by typing java Hel-
loWorldApp or java HelloWorldAPP PERL, etc., where PERL is 
the first argument passing to the main program.

Part II	S tep-By-Step Tutorial

The step-by-step tutorial provides an example of how to set up the com-
puter for testing Biojava scripts available at http://biojava.org/. The tuto-
rial here assumes that you have a PC with Window XP as your operation 
system and that java is not installed. Also, we assume that Firefox is your 
Internet browser.

1.  Download and Install Java
We can download the latest JAVA distribution from the following Web 
site: http://java.sun.com. Figure 14.15 shows a series of screenshots for 
downloading and installing the latest JDK:

	 1.	Open a Firefox window, and type in the Web site http://java.sun.com.

	 2.	Click on the link “Java SE.”

	 3.	Click the download button to download JDK6.

	 4.	Accept the agreement and click Windows online installation, Multi-
language, and start the download.

	 5.	Open the download file in the Firefox download window and follow 
the installation directions to install the program.
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2.  Download and Install TextPad

Figure 14.14  Run Java from the Command Window.

Figure 14.15  Overview of the installation of JAVA in Window XP.
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This step is the same as shown in Section 1. We need to reinstall TextPad 
to capture the JDK installation information.

3.  Install Biojava Module
The instructions for installing Biojava can be found at http://www.bio-
java.org. You also need to download associated APIs from the same 
Web site. The procedure to install is described in the following list (see 
Figure 14.16):

	 1.	Go to “C:” and right-click the mouse, and create a new folder.

	 2.	Name the folder as javalibs under “C”:.

	 3.	Open a Firefox window and type http://www.biojava.org/wiki/Bio-
Java:Download.

Figure 14.16  Overview of the installation of Biojava in Window XP.
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	 4.	Point to Biojava-1.5-beta.Jar file, right-click, and select “Save 
the Link as.”

	 5.	Save the file to C:\javalibs (repeat 4 and 5 for bytecode.jar).

	 6.	Configure ClassPath to include those two jar files.

4.  Start TextPad, Configure for Syntax Highlight 
as well as Compiling and Running JAVA
By default, TextPad is configured for syntax highlight and java execute. 
Otherwise, follow the step shown in the tutorial of the previous section.

5.  Program Using Biojava
Biojava contains 12 core biological packages (see Figure 14.17 for a screen-
shot of Biojava1.4 API). There are a lot of example programs available 
through the Biojava Web site. We will demonstrate one program using 
Biojava, which transfers GenBank-format DNA sequences to Fastaformat. 
Before introducing the code, we need to have a file that stores sequence 
records in GenBank format. One way to get such a file is to use the NCBI 
Entrez system (Figure 14.18).

Figure 14.17  Core biological packages in Biojava.
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	 1.	Go to http://www.ncbi.nih.gov and search for “Nucleotide.”

	 2.	Type CLIM1 (or any other gene symbol).

	 3.	Select Display and GenBank.

	 4.	Show to format as File.

A file named sequences.gb will be generated on the desktop. Let us 
place it in the same directory where you work on the code. Let us name the 
code file GB2FASTA.java.

//GB2FASTA.java

//An example program to transfer DNA sequences in 

//GenBank format//to FASTA format

//import API packages

import org.biojavax.bio.seq.*;

import org.biojavax.bio.seq.io.*;

import org.biojavax.Namespace;

import org.biojavax.SimpleNamespace;

import org.biojavax.RichObjectFactory;

import org.biojava.bio.seq.DNATools;

import org.biojava.bio.seq.io.SymbolTokenization;

import org.biojava.bio.BioException;

import java.io.*;

import java.util.*;

// definition of the main class

public class GB2FASTA{

	public static void main(String[] args) {

	BufferedReader input=null;

	FileOutputStream output=null;

	// sequences will be DNA sequences

	try{

		 SymbolTokenization dna = DNATools.getDNA().getTo

kenization(“token”);

		 // read Genbank

		 RichSequenceFormat genbank = new 

GenbankFormat();

		 // write FASTA

		 RichSequenceFormat fasta = new FastaFormat();

		 // compress only longer sequences
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RichSequenceBuilderFactory factory =

RichSequenceBuilderFactory.THRESHOLD;

	 // read/write everything using the ‘perlbio’  

//namespace

		 Namespace perlbioNS = (Namespace) RichObjectFac-

tory.getObject(

SimpleNamespace.class, new Object[]{“perlbio”});

// read seqs from file “sequences.gb”

// write seqs to file “sequences.fasta”

		 try{

			  input = new BufferedReader(new 

FileReader(“sequences.gb”));

			  output = new FileOutputStream(“sequences.

fasta”);

}

catch(IOException e){

			  e.printStackTrace();

}

RichStreamReader seqsIn = new

RichStreamReader(input,genbank,dna,factory,perlbioNS);

RichStreamWriter seqsOut = new RichStreamWriter(output

,fasta);

// one-step Genbank to Fasta conversion!

try{

			  seqsOut.writeStream(seqsIn,perlbioNS);

		 }

catch (IOException ex) {

			  ex.printStackTrace();

}

}

catch (BioException ex) {

//not in GenBank format

ex.printStackTrace();

}

}

}

The program GB2FASTA.java can be compiled and executed by bring-
ing up a Command window or in TextPad.
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Figure 14.19  The JAVA graphical user interface (GUI) for the HGNC core 
table.

Figure 14.18  Process to obtain a Genbank format sequence file.
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Part III	 An Application Example

In the previous section, we have shown two different ways (i.e., console 
or Web) of querying the HGNC table. In the following text, we introduce 
another way to query the table, i.e., a stand-alone JAVA GUI application. 
The approach used by JAVA to interact with DBMSs is the same as Perl’s 
(i.e., a two-tier approach), in which the top level is the JDBC interface, and 
the bottom level consists of various database driver packages. The JDBC 
interface allows developers to write applications that can be used with dif-
ferent databases with a minimum of porting effort. Once a driver for a 
given server engine is installed, JDBC applications can communicate with 
any server of that type.

In order to use JDBC to access MySQL, we need to download a database 
driver for MySQL. There are several drivers available. We recommend 
MySQL Connector/J, which can be downloaded at (available at http://
www.mysql.com/products/connector/j/). Similar to the download and 
installation of Biojava, we copy the jar file to the directory C:/javalibs/ 
and modify the CLASSPATH environment accordingly.

The graphical user interface (see Figure 14.19) consists of three panels: 
Search, Result, and Web site, where

	 1.	Search panel includes three components: a list of fields that can be 
used to search, a textfield to enter query, and a group of buttons to 
execute the query.

	 2.	Result panel is simply a list that displays a list if HGNC identifiers 
retrieved.

	 3.	Web site panel is the same as the search result page of the HGNC 
Web site http://www.gene.ucl.ac.uk/.

We explain the code step by step.
The beginning of the code imports APIs used in the code.

import javax.swing.*;

import java.awt.event.*;

import javax.swing.event.*;

import javax.swing.border.*;

import java.awt.*;

import java.util.*;

import java.io.*;
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import java.net.URL;

import java.sql.*;

JAVA controls the accessibility of a member, including methods, vari-
ables, and classes. There are three levels of accessibility: public, private, and 
protected. Public members allow other members to access them, private 
members only allow members in the same class to access them, and pro-
tected members can be accessed only within their own package. The main 
class HGNCBrowser here is a public class, and it extends an object called 
JFrame and implements two interfaces: ListSelectionListener and 
HyperlinkListener.

public class HGNCBrowser extends JFrame implements 

ListSelectionListener, HyperlinkListener{

The following are class-level variables, and all of them are private vari-
ables. They can only be accessed by members in the same class. JEditor-
Pane, JSplitPane, JScrollPane, and JList are JAVA Swing classes, 
which provide different kinds of graphical user interface. Connection 
and Statement are JAVA JDBC classes that serve as top-level interfaces.

private JEditorPane definition=new JEditorPane(); 

//A panel to display webpage

private JSplitPane leftPane;

private JScrollPane rightPane;

private DefaultListModel listModel=new DefaultList-

Model(); 

//store a list of HGNC identifiers

private JList list=null; //a swing object for list

private String field=””; //the search field

private Connection conn=null; //JDBC connection

private Statement s=null;

Every JAVA program must have the main method in order to be execut-
able. The main program here just brings up the window and specifies the 
window’s property including size and visibility.

public static void main(String[] args) {

	HGNCBrowser frame = new HGNCBrowser();

	Dimension screenSize = Toolkit.getDefaultToolkit().

getScreenSize();

	frame.setBounds(5, 5,
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	screenSize.width - 20,

	screenSize.height-20);

frame.addWindowListener(new WindowAdapter() {

		 public void windowClosing(WindowEvent e) {

		 System.exit(0);

		 }

	});

	frame.setVisible(true);

}

The following defines a constructor that initializes class HGNCBrowser 
with no parameters.

public HGNCBrowser(){

The first task when initializing the constructor is to set up the connec-
tion to MySQL database and hook up the Statement with the Connec-
tion. Exceptions need to be caught here.

try{

	Class.forName(“com.mysql.jdbc.Driver”).newInstance();

	conn = DriverManager.getConnection(“jdbc:mysql:///

perlbio”, “perlbio”, “perlbio”);

s=conn.createStatement();

}

catch(Exception e){

	e.printStackTrace();

}

The following code sets up the components in the JFrame and adds 
them to the JFrame’s content panel. Note that we set SelectionMode 
and add ListSelectionListener to the JList list that displays a list of 
HGNC identifiers returned by the query. mySearchLabel is a class inside 
HGNCBrowser that sets up the Search panel.

list = new JList(listModel); //define JList to display 

//the list of HGNC identifiers

list.setSelectionMode(ListSelectionModel.SINGLE_SELEC-

TION); //only allow single selection

list.addListSelectionListener(this);

mySearchLabel msl=new mySearchLabel();
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//combine the search panel annd right panel into the 

//left pane

leftPane=new JSplitPane(JSplitPane.VERTICAL_SPLIT, new 

JScrollPane(msl), new JScrollPane(list));

leftPane.setDividerLocation(420);

//a scrollpane to display the Web site

rightPane=new JScrollPane(definition);

JSplitPane splitPane = new JSplitPane(JSplitPane.

HORIZONTAL_SPLIT, leftPane,rightPane);

splitPane.setDividerLocation(140);

//add the splitpane into the Frame

getContentPane().add(splitPane);

pack();

}

The valueChanged method is to change the Web site display accord-
ing to the selection of the list in the result panel.

public void valueChanged(ListSelectionEvent e) {

	if (e.getValueIsAdjusting()) return;

	JList theList = (JList)e.getSource();

	if (theList.isSelectionEmpty()) {

		 theList.setSelectedIndex(0);

}

else {

	int index=theList.getSelectedIndex();

int intval=(Integer) listModel.elementAt(index);

//display the HGNC webpage

String def=”http://www.gene.ucl.ac.uk/nomenclature/

data/get_data.php?hgnc_id=”+intval;

try {

		 definition.setEditable(false);

		 definition.addHyperlinkListener ( this ) ;

		 definition.setPage(new URL(def));

		

definition.setSize(definition.getPreferredSize());

	}

	catch(Exception ex){

		 definition.setText (“Could not load 

page:”+def+”\n”+”Error:”+ex.getMessage());
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	}

	}

}

The method hyperlinkUpdate allows users to activate links in the 
Web panel.

public void hyperlinkUpdate ( HyperlinkEvent e ) {

if (e.getEventType( ) == HyperlinkEvent.EventType.

ACTIVATED ) {

try {

URL url = e.getURL ( ) ;

definition.setPage ( url ) ;

}

catch ( Exception ex ) {

definition.setText (“Could not load page!\

n”+”Error:”+ex.getMessage());

	}

}

}

The following is the code for mySearchLabel. It sets up the search panel 
and associates actions with buttons and list selections.

public c lass mySearchLabel extends JPanel implements 

ActionListener, ListSelectionListener{

//varibles

JTextField tf = new JTextField(10); 

// the textfield for entering query terms

DefaultListModel fieldList=new DefaultListModel(); 

// to hold the list of fields

mySearchLabel(){ //constructor

	//allow to search according to id, symbol, and name

	fieldList.addElement(new String(“id”));

	fieldList.addElement(new String(“symbol”));

	fieldList.addElement(new String(“name”));

	JList fieldlist=new JList(fieldList);

fieldlist.setSelectionMode(ListSelectionModel.SINGLE_

SELECTION);

fieldlist.addListSelectionListener(this);

fieldlist.setSelectedIndex(0);
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//three buttons used to control the behavior of 

//searching

JButton b1 = new JButton(“OK”);

	JButton b2 = new JButton(“Cancel”);

	JButton b3 = new JButton(“Batch”);

	b1.addActionListener(this);

	b2.addActionListener(this);

	b3.addActionListener(this);

	JPanel tfp=new JPanel();

	tfp.add(fieldlist);

	tfp.add(tf);

	tfp.setLayout(new GridLayout(2,1));

	tfp.setBorder(new TitledBorder(new EtchedBorder(), 

“Find: “));

tfp.setSize(tfp.getMinimumSize());

	add(tfp);

	JPanel p2=new JPanel(new GridLayout(3,1));

p2.add(b1);

	p2.add(b2);

	p2.add(b3);

	p2.setBorder(new TitledBorder(“Proceed”));

add(p2);

setLayout(new BoxLayout(this,BoxLayout.Y_AXIS));

}

//the following modifies the field used for search

public void valueChanged(ListSelectionEvent e) {

if (e.getValueIsAdjusting()) return;

JList theList = (JList)e.getSource();

int index=theList.getSelectedIndex();

field=(String) fieldList.elementAt(index);

}

//the following lists actions when pressing buttons

public void actionPerformed(ActionEvent e){

if(e.getActionCommand().equals(“OK”)){

String str=tf.getText();

	if(str.equals(“”)){

	definition.setText(“Please input text for search”); 

//if it is empty, doing nothing

	}
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	else{

		 try{

			  //remove previous results

listModel.removeAllElements();

s.executeQuery(“SELECT id from HGNC where “+field+”=\

””+str+”\””);

		 ResultSet rs=s.getResultSet();

		 while(rs.next()){

			  int idval = rs.getInt(“id”);

			  listModel.addElement(idval);

			  }

	 //select the first result to display the //

corresponding webpage on the right panel

 		 list.setSelectedIndex(0);

		 }

 		 catch (Exception ex){

			  ex.printStackTrace();

			  }

		 }

}

else if (e.getActionCommand().equals(“Batch”)){

	 //open a file chooser to select a file 

//with query terms

		 JFileChooser fc = new JFileChooser();

		 fc.showOpenDialog((HGNCBrowser) SwingUtilities.

getRoot(this));

		 File selFile = fc.getSelectedFile();

try{

listModel.removeAllElements();

FileInputStream fstream = new FileInputStream(selFile)

;

		 BufferedReader in = new BufferedReader(new Input

StreamReader(fstream));

		 String str=in.readLine();

		 while (str!=null) {

s.executeQuery(“SELECT id from HGNC where “+field+” 

= \””+str+”\””);

			  ResultSet rs=s.getResultSet();

			  while(rs.next()){
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				   int idval = rs.getInt(“id”);

				   listModel.addElement(idval);

				   }

				   str=in.readLine();

				   }

		 }

	 //select the first result to display the 

//corresponding webpage on the right panel

		 list.setSelectedIndex(0);

		 }

		 catch (Exception ex){

			  ex.printStackTrace();

		 }

	}

	else if(e.getActionCommand().equals(“Cancel”)){

		 tf.setText(“”);

	}

}

} // the class end for mySearchLabel

} // the class end for HGNCBrowser

Section 3	 Application of R in Biology
Part I	I ntroduction
1.  What Is R Programming?
R (www.r-project.org) is a widely used open-source language and environ-
ment for statistical computing and graphics — GNU’s S-Plus. It provides a 
high-level programming environment together with a sophisticated pack-
aging and testing paradigm for statistical analysis and presentation. It also 
has a number of mechanisms that allow it to interact directly with soft-
ware that has been written in many different languages. The main object 
types in R include the following:

Vectors: ordered collection of numeric, complex, logical and char-
acter values

Factors: vector object used to specify grouping of its components

Arrays and matrices: multidimensional arrays of vectors

Lists: general form of vectors with different types of elements

•

•

•

•
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Data frames: matrixlike structures with different types of columns

Functions: piece of code

R contains most arithmetic functions such as mean, median, sum, 
prod, sqrt, length, log, etc. An extensive list of R functions can be 
found on http://cran.r-project.org/manuals.html. Many R functions and 
datasets are stored in separate packages, which are only available after 
loading them into an R session.

2.  Why Is R Popular in Biology?
Since its creation, R has revolutionized the statistical data analysis for most 
bioscience and chemistry disciplines. The R environment is completely free 
and runs on all common operating systems. The required time to learn the 
R software is well invested, as the R environment covers an unmatched 
spectrum of statistical tools, including an efficient programming lan-
guage for automating time-consuming analysis routines. Specifically, the 
BioConductor project provides many additional R packages for statisti-
cal data analysis in biosciences, such as tools for the analysis of SNP and 
transcriptional profiling data derived from SAGE, cDNA microarrays, 
and Affymetrix chips. Because of their popularity, R and BioConductor 
are continuously updated and extended with the latest analysis tools that 
are available in the different research fields. BioConductor updates twice a 
year. Figure 14.20 shows the increasing trend of the number of packages in 
BioConductor. Packages in BioConductor can be browsed at the BioCon-
ductor Web site (http://www.bioconductor.org.) Figure 14.21 shows pack-
ages available in BioConductor for one-channel microarray data analysis.

3.  Some R Basics
Precompiled binary distributions of the base system and contributed 
packages for various platforms can be downloaded at http://cran.r-proj-
ect.org/. Online documentation for most of the functions and variables 
in R exists, and can be printed onscreen by typing help(name) (or ?name) 
at the R prompt, where name is the name of the topic help sought for. 
A very informative introduction to R can be found at http://cran.r-proj-
ect.org/doc/manuals/R-intro.html. Different from Perl and JAVA, R is an 
expression language that interacts with users directly. When R is invoked, 
it issues a prompt and expects input commands. The default prompt is “>”. 

•

•
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Figure 14.20  The number of packages for each Bioconductor release.

Figure 14.21  An overview of the packages available in Bioconductor for one-
channel microarray.
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Input commands can be directly typed or read from an external file using 
the function “source.” To quit the R program, the command is q().

Part II	S tep-By-Step Tutorials

Bioconductor is an open-source and open development software project 
to provide tools for the analysis of SNP and transcriptional profiling data 
(SAGE, microarrays or Affymetrix chips) and the integration of genomic 
meta data. In the following, we demonstrate how to get R and Bioconduc-
tor and work on an example.

1.  Download and Install R
We can download the latest R distribution from the following Web site: 
http://cran.r-project.org/. Figure 14.22 shows a series of screenshots:

	 1.	Open a Firefox window and type in the Web site http://cran.r-proj-
ect.org.

	 2.	Click on the link “Windows (95 or later).”

	 3.	Click the link “R-2.4.0-win32.exe” (the version number can change 
from time to time).

Figure 14.22  Overview of the installation of R in Window XP.

C8105.indb   497 7/18/07   8:24:00 AM



498  <  Hongfang Liu

	 4.	Open the download file in the Firefox download window and follow 
the installation directions to install the program.

2.  Install BioConductor
The instructions for installing Bioconductor can be found at http://www.
bioconductor.org/. The procedure to install Bioconductor is shown in the 
following (see Figure 14.23):

	 1.	Go to “Start” in Windows and hold the mouse “All Programs” and 
invoke R.

	 2.	Type source(http://www.bioconductor.org/getBioC.R) and 
hit enter.

	 3.	Type getBioC() and hit enter, and a list of default packages in Bio-
Conductor will be installed.

	 4.	Use the library function to load packages needed for the data analy-
sis. For example, library(affy) will load the affy package, a 
package for analyzing Affymetrix chips.

Figure 14.23  Overview of the installation of Bioconductor.
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	 5.	 Install packages that are not in the default list. Note that the com-
mand getBioC() only installs a list of default packages in BioCon-
ductor. In case a package is not included in the list, you can use 
getBioC(PackageList) to install other packages. For example, 
getBioC(“rae230a”,”rae230acdf”) will install two packages: the 
annotation package rae230a and the Chip Definition File (CDF) 
package rae230acdf, which will be used in Step 3.

3.  Perform Microarray Data Analysis Using BioConductor
BioConductor provides extensive resources for the analysis of Affymetrix 
data. Here we introduce the affy package, which provides basic methods 
for analyzing Affymetrix chips. Let us first derive some CEL files from 
GEO from one of the GEO deposited data set ftp://ftp.ncbi.nih.gov/pub/
geo/DATA/supplementary/series/GSE2275/. After unzipping and unpack-
ing the data, let us move all the CEL files into a newly created directory 
under “C:” in the computer called biochip (shown in Figure 14.24). The 
following steps outline the usage of the affy package and associated 
packages.

Figure 14.24  An illustration of using Bioconductor for microarray data 
analysis.
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	 1.	Use library(affy) to load the affy package.

	 2.	Use ReadAffy to read Cel files and store them into affybatch object 
celdata.

	 3.	Obtain expression values using RMA method and store in an object 
expset in standard exprSet format.

	 4.	Obtain expression values using MAS5 method and store in an object 
expsetmas in standard exprSet format.

	 5.	Generate expression calls similar to dChip (MBEI) method from Li 
and Wong and store in an object expset1.

	 6.	Export data from expset1 object to text file celdata.txt in C:\
biochip directory.

There are more functions in the affy package. The following provides 
an overview of them; each block can be copied and pasted to the R console 
for execution (after performing the previous six steps). Note that anything 
following the sign “#” is a comment.

A.  Obtain Single Probe-Level Data From affybatch Objects

mypm <- pm(celdata) 

# Retrieve PM intensity values for single probes

mymm <- mm(celdata) 

# Retrieve MM intensity values for single probes

myaffyids <- probeNames(celdata) # Retrieve Affy IDs

result <- data.frame(myaffyids, mypm, mymm) 

# Combine into data frame

B.  Work with exprSet Objects

expset 

# Provide summary information of exprSet object ‘exp-

set’

pData(expset) #List the analyzed file names

exprs(expset)[1:2,1:4]; exprs(expset)[c(“1398982_

at”,”1398983_at”),1:4]

# Retrieve specific rows and fields of exprSet object.

test <- as.data.frame(exprs(expset))

covN <- list(sample=”arbitrary numbering”)
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geneCov <- data.frame(row.names=names(test), sample=1:

length(names(test)))

phenoD <- new(“phenoData”, pData=geneCov, 

varLabels=covN);

eset2 <- new(“exprSet”, exprs=as.matrix(test), 

phenoData=phenoD)

# Example for creating an exprSet object from a data

#frame or a matrix.

data.frame(expset)

#Print content of ‘expset’ as data frame to STDOUT

C.  Retrieve Annotation Data For affy IDs

library(rae230a) # Open library with annotation data.

library(help=rae230a) 

# Show availability and syntax for annotation data.

library(rae230acdf)

ls(rae230acdf) 

# Retrieve all Affy IDs for a chip in

# vector format.

x <- c(“1398982_at”, “1398983_at”) 

# Generate sample data set of Affy ID numbers.

mget(x, rae230aACCNUM, ifnotfound=NA) 

# Retrieve locus ID numbers for Affy IDs.

mget(x, rae230aCHR) 

#Retrieve chromosome numbers

mget(x, rae230aCHRLOC) 

# Retrieve chromosome locations of Affy IDs.

mget(x, rae230aGO) 

# Retrieve GO information for Affy IDs.

D.  Access Probe Sequence Data
source(“http://www.bioconductor.org/getBioC.R”);getBio

C(c(“rae230aprobe”)); library(rae230aprobe) 

#Install and open library with probe sequence data.

print.data.frame(rae230aprobe[1:22,])

# Print probe sequences and their position for first

#twenty two Affy IDs.

pm <- rae230aprobe$sequence
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# Assign sequence component of list object

#‘rae230aprobe’ to vector ‘pm’.

mm <- complementSeq(pm, start = 13, stop = 13)

# Create mismatch sequences with complementSeq 

# function by flipping the middle base at position 13.

cat(pm[1], mm[1], sep = “\n”)

# The generic ‘cat’ function produces output in user

# defined format. Here: pm aligned above mm.

reverseSeq(complementSeq(pm[1])) # Command to generate

#reverse and complement of a sequence.

E.  Visualization and Quality Controls

deg <- AffyRNAdeg(celdata) 

# Performs RNA degradation analysis.

# It averages on each chip the probes relative to the 

5’/3’ position on the target genes

summaryAffyRNAdeg(deg) 

# A summary list and a plot are returned

plotAffyRNAdeg(deg)

hist(celdata[ ,1:2]) # Plots histogram of PM 

# intensities for 1st and 2nd array

hist(log2(pm(celdata[,1])), breaks=100, col=”blue”)

# Plot bar histogram of the PM (‘pm’) or MM (‘mm’) log

# intensities of 1st array

boxplot(celdata,col=”red”) 

# Generates boxplot of unnormalized log intensity

# values

boxplot(data.frame(exprs(expset)),col=”blue”, 

main=”Normalized Data”)

# Generates boxplot of normalized log intensity values

mva.pairs(pm(celdata)[,c(1,4)]) 

# Creates MA-plot for un-normalized data

# A MA-plot is a plot of log-intensity ratios 

# (M-values) versus log-intensity averages

# (A-values) between selected chips (here ‘[1,4]’)

>mva.pairs(exprs(expset)[,c(1,4)]) 

# Creates MA-plot for normalized data.
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This section covers two seemingly disparate topics. However, use of Web 
sites integrated with database functions is becoming increasingly com-
mon and is important in information presentation and sharing in the 
scientific world. This chapter provides a practical overview of concepts 
and technical limitations behind the creation of Web sites and reviews 
principles of how to organize data in a formal manner for efficient storage, 
retrieval, and analysis.

Section 1	P ersonal Web site Design
Part I	I ntroduction

This section describes what a Web site is, how it functions across a net-
work, and how to create and publish your own site. Selected types of Web 
page editors are discussed, and some online resources are pointed out. The 
hands-on portion demonstrates how to create a basic page with graphics, 
tables, text, and sound, using readily available editors and templates.

1.  Background
A personal Web site is generally regarded as a noncommercial post-
ing of information of interest to the creator. A Web site is a collection 
of documents that are designed to be hosted on remote computers in a 
network and viewed in a Web browser. There are a number of intercon-
nected computer standards and technologies behind the creation and pre-
sentation of Web sites. The network may be the Internet, a local network 
with no external connections, or a local network with limited access to the 
Internet. A Web browser is software designed to interact with and display 
a Web-based document. The term Internet refers to a publicly accessible 
network of connections to numerous local networks that can carry a wide 
variety of data and services.

The World Wide Web is a global information space for sharing docu-
ments that is accessible on the Internet; it is not the Internet. The stan-
dards used for document sharing will work on the Internet or on properly 
configured local networks because they address basic issues of how docu-
ments are formatted, how network resources are located, and how markup 
language controls the document display. This takes place in a client-server 
model in which a client computer with a browser application requests doc-
uments from a server.

Web-oriented documents functionally consist of two parts: the con-
tent to be displayed and the instructions on how it is to be displayed. The 
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browser interprets the display commands and renders an image of the 
content on the client computer. The process starts with the browser pro-
gram requesting a document. The document is located by entering a URL 
(uniform resource locator) such as http://www.jhu.edu, which is resolved 
to a physical address on the network where the documents are located. The 
documents are sent to the browser, which then renders them for display or 
action as dictated by the markup language included with the documents.

The first markup language for documents on the World Wide Web was 
HTML (hypertext markup language), and it is still the principal language. 
HTML specifies the layout of a page but leaves many of the details to the 
client machine. The result is that a page will display differently on different 
machines, depending on the local resources available. The HTML stan-
dard has been revised several times with extensions to address limitations, 
and supplementary standards have also been developed.

To address difficulties in sharing and displaying documents uniformly 
on a variety of client machines, XML (eXtensible Markup Language), 
XHTML (eXtensible HTML), and CSS (Cascading Style Sheets) standards 
were developed. CSS is designed to address the presentation of content 
specified by a markup language. CSS describes the style of elements in a 
document such as fonts, type size, and other layout details that cannot be 
specified in HTML. XML is a general markup language designed for shar-
ing data across different computer systems and is capable of both describ-
ing and containing data. Currently, the field is moving toward extensive 
use of XML for data sharing. JavaScript is not a markup language but a 
programming scripting language developed to provide additional func-
tional capability not possible in HTML alone. DHTML (dynamic HTML) 
is not a specific standard; rather, it is a combination of protocols such as 
HTML and JavaScript that together enable a browser to alter a Web page’s 
look and style after the page is loaded.

2.  Creating a Web Page
	 1.	Editors: There are three general classes of editing programs for cre-

ating a Web page: document editors, which can save pages in HTML 
format; full-featured WYSIWYG (what you see is what you get) 
graphic-oriented professional editors; and HTML text editors. Spe-
cialized editors are not addressed here.

	 a.	 Document editors: Microsoft Word and Corel WordPerfect 
each can save a document in HTML format suitable for use as a 
Web page. The HTML export functionality is being adopted in 
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other programs as well. For instance, Microsoft Excel can save 
a spreadsheet in HTML format for Web posting. The exported 
HTML Web page may have accompanying directories with XML 
files, images, and ancillary information necessary for proper ren-
dering of the page in a browser. They can be used in a Web site, 
but you may have problems matching style if are using a Web site 
template to standardize the appearance.

	 b.	 Full-featured editors: The two dominant full-featured edi-
tors for professional Web page design are Microsoft FrontPage 
and Macromedia Dreamweaver. Fortunately, novices can create 
good-looking Web sites by choosing a default approach, using 
recommended templates and allowing the program to generate 
the computer code. Although extensive knowledge of the various 
Web-specific standards is not necessary, the programs can pres-
ent so many options that it becomes overwhelming to a novice. 
FrontPage is the easier of the two for a beginner to use in produc-
tion of a personal Web site; Dreamweaver is decidedly geared for 
technically proficient professional developers. FrontPage will be 
fully supported until June 2008 but is currently in the process of 
being replaced by Microsoft Expression Web Designer.

	 c.	 Text editors: HTML can be edited in a pure text editor such as 
Notepad. Free HTML-specific editors are abundant on the Web; 
a recent search at download.com produced a list of 153 editors. 
A posted link to the developer’s Web site may be a condition for 
noncommercial use. Many of these editors have both graphic 
and text editing modes. Capability to switch between graphic 
and HTML editing modes is an important consideration because 
it is tedious to edit in text mode then use a separate browser to 
display the result. The graphic editing mode considerably speeds 
up the process because you have immediate feedback on layout 
and appearance.

	 2.	Web page templates: Templates are used to standardize Web site 
layout and simplify site creation. Basically, templates take care of 
HTML coding and graphics are needed for a polished presentation 
that allows the developer to focus on adding content. Dreamweaver 
and FrontPage both have numerous templates for single page layouts 
for commercial sites. FrontPage, however, has a specific template 
for a personal Web site that includes suggestions for and examples 
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of content. Also, there are numerous free templates available from 
many sources on the Web. Usually, they are created by a Web graph-
ics company and are free for use as long as there is an easily used link 
to the company site.

Typically, a personal Web site will include a home page, a link page, 
a personal interest or hobby page, a photo page, and a means to provide 
feedback to the author via e-mail or postings. The home page presents 
basic information and brief summaries of what is on the other pages. The 
link page contains pointers to other Web sites the author finds interesting. 
Usually, the links are grouped by category with some commentary. Large 
photo pages may take considerable time to be loaded onto the client com-
puter and are difficult to navigate. If the photo page becomes extensive, it 
is best to create additional photo pages by topic and provide links between 
the pages.

3.  Basic Steps to Setting up a Web Site
	 1.	Hosting a Web site: Numerous companies provide Web site hosting 

for a wide variety of prices, depending on disk space, connectivity, 
and user requirements. A quick online search will turn up hundreds. 
A simple solution for many users is to use the Web space available 
from their ISP (Internet Service Provider). Many providers, whether 
dial-up, DSL, or cable, will provide several megabytes of disk space 
for personal Web pages as part of the account. Also check with your 
employer; some companies and colleges will host a personal site if it 
meets their use standards. If you decide to register a domain name, 
many of the domain name registration companies also provide Web 
site hosting and management for additional fees.

	 2.	Domain registration: Domain registration is not necessary for a 
Web site to be functional. However, name registration can make it 
easier for users to find a site later because the URL to a Web site can 
become rather long and difficult to remember.

Domain name registration is a separate issue from Web site registra-
tion with search engines. Registering a domain name provides 
a direct link to your site through DNS (Domain Name System)  
resolution, in which the text, such as www.mysite.org, is translated 
to a physical address where the information resides. Without a 
domain name specific for your site, the pathway becomes indirect, 
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usually going through the hosting company name space such as 
www.bighostcompany.com/personalsites/user12345/mywebsite.

	     Domain name registration is controlled by ICANN (Internet 
Corporation for Assigned Names and Numbers). The InterNIC 
Web site (http://www.internic.net/) established by ICANN has 
extensive listings of accredited registrar companies worldwide. 
Charges for registration vary among companies, and many offer 
additional services such as e-mail accounts and Web site hosting 
for additional fees. Registration of a domain name is for a limited 
period of time usually starting at two years. If you do not renew, 
the domain name becomes available for reuse by anyone pay-
ing the registration fee. Be cautious when paying renewal fees. 
Some companies may send a notice that your registration needs 
to be renewed, but it may not be from the company you originally 
registered with. This may result in paying fees twice or losing 
Web site hosting paid for with the first company.

	     With or without a site-specific domain name, most Web users 
will initially find the site through links from other sites or topic 
searches in one of the Web search engines such as Google. Search 
engine registration enters your Web site into the list of sites to be 
indexed. Search engine registration is not necessary, but it will 
speed up the process as the various companies have automated 
searching and indexing programs. Judicious use of keywords 
and document descriptors will help users find your Web site in a 
search.

	 3.	Loading Web pages on the host site: FTP (file transfer protocol) is 
used to upload the Web site pages to the host. Check with host site 
technical support for details because the site index files must be cor-
rectly named and placed in specific directory locations. There are 
many FTP programs available at a wide variety of costs; many are 
free. CuteFTP is a low-cost, easily configured, general-purpose FTP 
program, and there are many others. Searching at www.download.
com produces extensive listings. Usually, your hosting company will 
have detailed instructions on how to connect via FTP and may have 
specific instructions for a particular FTP program.

	 4.	Maintaining a site: It is necessary to periodically review Web sites 
and update material. Even if the content you created has not changed, 
presentation styles become outdated, and you may have published 
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additional papers or changed hobbies. Links are subject to “link rot,” 
where they are no longer functional because the target sites have 
changed. A page full of bad links usually indicates a site that is no 
longer maintained.

4.  Basic Web Page Editing
An element is the basic unit of a Web document in HTML and has two 
basic properties: attributes and content. HTML uses attribute tags to 
indicate how content is to be displayed. Attributes are usually dictated 
by paired starting and ending tags, whereas content is between the tags; 
together they make a display element. Content may be text, images, links, 
or other files. Whereas HTML indicates what is to be displayed, the client 
system determines many details of how it is to be displayed. For example, 
a block of text may be tagged as a paragraph, but details such as font and 
font size are determined by what is available on the user’s computer. The 
result may radically alter appearance of the page and not be what the Web 
site designer intended; this is frequently a problem with controlling spac-
ing between images. The basic elements of Web page editing are described 
in the following text:

	 1.	How to hyperlink a text file: HTML requires anchor tags to indicate 
a hyperlink in a block of text. The attribute portion of the tag “href=” 
is set to the URL, as an example <a href=http://www.jhu.edu> Johns 
Hopkins </a>. The first part within < and > is the opening tag, indi-
cating that the following content is hyperlinked to this URL. The 
text to be linked is between the opening tag and the closing tag “</
a>”. Forgetting to properly place closing tags is a common source of 
problems for novice programmers.

			   Links can be made to other places in the same document, other 
local files, files on other computers in a local network, or files on 
other machines accessible through the Internet.

			   Link names are case sensitive under some circumstances. There 
are differences among operating systems as to how case differences 
are handled; some systems will accept either case for the same file. 
However, to many Web servers, “SomeFile” is not the same name as 
“Somefile” and a “file not found” error will be returned. Letter case 
errors can be very difficult to find.
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	 2.	Adding a picture to your Web page: There is a multitude of image 
file formats that can be displayed by various versions of browser but 
not all browsers can display all formats, and older browsers cannot 
display some of the newer formats. There are two that are common 
enough to be reliable: GIF and JPEG. Both use image compression to 
reduce the amount of data that needs to be transferred. JPEG loses 
some detail during compression, whereas GIF does not. However, 
GIF is limited to 256 colors, and JPEG is not. Try to avoid using 
uncompressed files, as they can add considerably to the time neces-
sary for downloading and viewing. If it is a large image file, it is rec-
ommended to make a thumbnail image of it for display on the Web 
page, and provide a link to the full-size image.

			   With WYSIWYG editors and Microsoft Word, just drag and 
drop the image onto the page. Many HTML editors do not have 
drag-and-drop capability, so you have to use the insert command 
from the menu edit bar. However, position control on the page is 
crude in HTML alone. In either case, the editor uses spaces, tabs, 
and paragraph positioning to move the image where you want it. 
The program then generates the underlying HTML code to position 
the image on the page. Exact positioning on a page and control of 
text flow around the image can be difficult in any editor. It is best to 
assume the image location will vary on different computers, brows-
ers, and display hardware, so try not to make your page dependent 
on exact layout of images. Although tedious, it helps to view your 
Web page in different browsers with different screen resolutions.

			   Steps to precisely control image placement and text flow on pages 
under all circumstances are beyond the scope of a novice tutorial. 
However, there is one crude solution that works. Position the images 
and text as you want it on a page in your computer and make an 
image of the display. You can use the print screen key to copy, and 
then paste the picture into a graphics editor. Alt–print screen cop-
ies the active page, and print screen copies the entire display. Use 
the image in the Web page instead of trying to control a variety of 
displays.

	 3.	Tables: There are specific HTML tags for creation and arrangement 
of tables and lists. Although table tags are precise in meaning, the 
actual HTML code can become quite convoluted; the tutorial will 
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show an example from the template. Most HTML editing programs 
have table creation functions that automate the process and are a 
substantial asset if the page requires a table. The individual cells of a 
table can hold text or images; consequently, tables can be extremely 
useful in controlling placement of images.

	 4.	Background color and images: Background colors and images are 
used to provide texture, contrast, enhance interest, or reinforce a 
theme. A color setting floods the display field with a single color 
over the entire page or just a section, depending on how it is placed 
in the document. A background image is repeated to fill the page 
both across and down. Any content text or image appears on top of 
the background. Portions of an image can be made to blend with 
the background by specifying a transparency mode in the image 
file; this feature is supported in GIF (Graphics Interchange Format) 
images. If the image is as wide as the page, the repetition can be used 
to produce interesting linear effects (Figure 15.1). (Note: When using 
either background images or background color, it is important to 
check the visibility of text. Some combinations are very difficult or 
impossible to read.)

	 5.	Adding animation and sound: To add animation, use an animated 
image in GIF format. The image format is limited to 256 colors, so 
it is unsuitable for photos but does very well with drawn images. 
The single file is made up of a series of compressed images that are 
displayed sequentially in the same location to produce an animated 
effect. Numerous free animated images and background images are 
available at http://www.gifanimations.com.
	     Original HTML did not 

natively support sound 
or animation, and there 
are limited means to add 
functional elements in a 
pure HTML Web page. 
HTML allows media files 
to be embedded in a docu-
ment using the OBJECT 
command. However, it has 
numerous limitations in 
editing and display. Upon 

A

B

This is demonstration text

Figure 15.1  A background image as 
wide as the Web page (A) is repeated 
to produce the appearance of a page of 
legal paper (B). Graphics or text appears 
on top of the background image.
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loading the Web page, a copy of the program that will play the 
file will open. Security on the Web browser may present a popup 
window asking if the user will allow the program to run or block 
it without notification.

	      A solution to adding audio is to use the JavaScript tag 
<BGSOUND>. JavaScript instructions are intended to be used 
in an HTML document and rendered by the browser. This com-
mand was originally introduced in Internet Explorer 3 and is 
commonly supported now. A client browser may be configured 
to prevent audio files from playing and ignore the command. 
Also, keep in mind that large audio or video files may take con-
siderable time to load over a slow network connection, and frus-
trate the user. Overall, it is best to become proficient in JavaScript 
and other techniques to add anything more than simple media 
elements.

Part II	S tep-By-Step Tutorials

For the demonstration we will use the HTML editor PageBreeze (http://
www.pagebreeze.com), which is free for personal or nonprofit use, and a 
template downloaded from the Internet. We will modify a template and 
save the changed version as a new template. From the new template we will 
create links to other pages and create a personal interest page with text, 
graphics, and a table.

The editor is limited to running in Windows and with Internet Explorer 
for previews. However, it has tabbed displays, which makes it very easy to set 
up a page, view and edit source code, set page properties, and view the result 
in a browser. These combined functions make the program very useful for 
a novice developer. The template selected is a single page HTML document 
with minimal use of advanced features. The graphics are simple, and place-
ment controlled with a few interesting HTML tricks using tables; this makes 
it a good starting point for learning. The detailed steps are:

	 1.	Setup:

Install and start PageBreeze. The program opens to an instructional 
page. First, examine the HTML code for a blank page. Create a new 
page using the blank template (File>New Page or press Ctrl-N), 
and name it demonstration. Switch to the HTML source tab (Fig-
ure 15.2). (Note: On first use, you may need to exit the program 
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then reload the blank page to see the code.) The document header 
between the <head> and <\head> tags is not displayed. The header 
section contains metadata, which is information about the docu-
ment such as keywords, page titles for search engines, as well as 
refresh rates for the browser. This document is written compli-
ant to HTML 3.2 standards. The start of the document to be dis-
played is indicated by the <body> tag. Background color is set to 
white (ffffff); nonbreaking spaces (&nbsp) within paragraph tags 
<p> </p> are used to create a blank space to write on.

Download a template. From the Menu bar, select File > “Get web-
site templates…” and navigate to Steve’s Templates (http://www.
steves-templates.com/templates.html). We will be working with 
template number 38; 39 and 40 are color variations of the same 
template and will work just as well. Download the file and save it 
to the My Webs directory in the My Documents folder. The file 
is zipped and can be easily extracted in Windows XP. Open the 
zipped file using Windows Explorer, and copy the contents to the 
My Webs directory. Keeping the files associated in a single root 
directory simplifies Web site creation and later transfer of files to 
a Web host.

	 2.	Overview of the template: Open the template by selecting the index.
html file. There are a number of generic features that can be easily 
modified by the user. All displayed graphics are in the folder img and 
easily modified in most graphics programs (Figure 15.3A). We will 

Figure 15.2  HTML coding of a blank page showing header and body regions.
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Figure 15.3  Template customization: changing the default logo image. (A) 
Default page displayed in editing mode with the logo image selected. (B) HTML 
source code for logo image placement using a table to control position. (C) HTML 
source code for changing the image file while maintaining placement. (D) Page 
display with replaced image.
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change the sitename image later. (Note: The name of the opening 
page on a Web site is usually index.html, but some Web hosts use 
the name default.html.)

			   The pink sidebar with white page space is created with a simple 
pink and white linear background image repeated multiple times 
in a designated space (Figure 15.3A; see also Figure 15.1). The page 
space, navigation bars on the left, and placement of images in the site 
name header at the top are controlled with tables. (Note: Gray layout 
lines appear in the Normal [editing] mode, but are not visible in the 
Preview [viewer] mode.)

			   On the HTML page, the source code between the highlighted tags 
shows the complexity of instructions necessary to create a defined 
space that holds the two slate gray images of the header bar (Fig-
ure 15.3B). Without use of tables, the images would shift in position-
ing, depending on the browser and display resolution of the client.

	 3.	Template customization

Change a template image: To customize the template, we need to 
change the default logo image in the upper left corner. Double-
click on the sitename image indicated by the selection box in Fig-
ure 15.3A. An Insert Graphic screen appears and the selected 
image file templogo.jpg in the img folder is highlighted. Navi-
gate to the source folder. In the source folder, select blank-
logo _ withswirl.jpg.

	     The HTML code shows the source of the image in the table 
cell has been changed (Figure 15.3C). Changing the image could 
have been done manually by typing in the selected text.

	 4.	Setting page properties: Select the Page properties tab. The page 
title, keywords, and description are information that goes in the 
header section and is used by search engines to index the page for 
searches. The page title is the default label used when saving a link 
in the browser. Failure to change the title, or leaving it blank, results 
in Web pages being bookmarked as index or other strange names. 
In this case, the bookmark would read “Your pages’ title goes here.” 
Although PageBreeze is called an HTML editor, it can also edit CSS 
files.
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	 5.	Setting the background and link color scheme: While in the page 
properties tab, click on the “Set page Background …” to bring up 
the background properties window. In this case we want to use the 
default colors for the link color highlights, so check the appropriate 
boxes. Without specifying the link color, the links are not highlighted 
and not easily found. The page background image has already been 
selected by the template. These are document master settings used by 
default; areas within a page can have different settings.

Exercise. Uncheck the image box and select a highly contrasting back-
ground color and see how that changes the page display. The mar-
gins in an expanded view will have a new color scheme; the colors 
inside the tables do not change. Restore the selections to continue.

	 6.	Creating a template and new page: First, customize the naviga-
tion bar by changing the labels. Highlight the Products label and 
change it to Interests, change Bookmark to Links, and change 
Services to Photos.

			   From the edit bar select File > “Save Copy of Page as Template …” 
and give it an easily identifiable label such as My38template. The 
customized page can now be used to generate new pages with the 
new logo image and navigation bar labels.

			   Select “New page” from the file menu then select the template you 
just created. The new page will be loaded in the editor. Label the 
new page “Links” and save it as Links.html. Close the page. Create 
another page from the template and label it Interests.

	 7.	Adding text and images:

Text. Entering text is as simple as typing or using cut and paste from 
the clipboard. Positioning text can be a challenge. We will stick 
to simple text entry. Clear the place-holding text in the opening 
page. The two items “welcome to our site” and “temporary head-
line” are both graphic images; delete them as well.

	     At the top of the page use the menu function insert>horizontal 
line. Type in introductory text from the Sample Data section, 
and then press Enter to end the paragraph. End with another 
horizontal line.

Images. Download an image of the ship Endurance trapped in ice 
from the Wikipedia entry on the Ernest Shackleton 1914 expe-
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dition by right-clicking on the image and selecting save to file 
(http://en.wikipedia.org/wiki/Imperial_Trans-Antarctic_Expe-
dition). Use the menu item insert>graphic or press F5 to bring 
up the menu. Select the image file to be used and type in an 
appropriate alternate text label (Figure 15.4). The alternative text 
will be used in browsers designed for visually impaired users, by 
search engines to index a site and is displayed when the browser 
is set to not download graphics. Click “OK.”

	     Use the paragraph centering layout to position the image in 
the center of the page. Press return several times, and enter any 
additional text you want to fill out the page.

	 8.	Linking: Highlight the Links item on the navigation bar, and press 
the create hyperlink icon (Figure 15.5A) or double-click on the word 
“Links” in the navigation bar; because it already has a link, an edit-
ing window pops up. The links associated with the words in the navi-
gation bar words contain an “http://” prefix, which indicates this is a 
hypertext transfer protocol and the browser should request the page 
from the network destination, not the local disk (Figure 15.5B). In 
the template these links are nonfunctional place holders and need to 
be modified or removed in the final page. Editing can be manually 

Figure 15.4  Insert image control form. 
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or through the menu. The HTML code shows the default text linked 
to the navigation button (Figure 15.5B).

Select the local link button and pick the Links.html file (Fig-
ure 15.5C). The preview tab can be used to bring up an image 
of the target page. Click “OK.” Examination of the HTML code 
shows that there now is a different anchor tag associated with 
the word links (Figure 15.5D). (Note: Links are not active in the 
editor mode; the preview tab needs to be selected for links to be 
active.) Save the page.

Figure 15.5  Editing a hyperlink. (A) Hyperlink menu icon, (B) template default 
text to be replaced, (C) Selecting the hyperlink target, (D) Changed HTML code 
pointing the link to a new location. 
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	 9.	Creating and editing a table: Tables are easily created through use 
of the table insert form (Figure 15.6). Here we specify five rows and 
two columns with a total width of 50% of the display to hold the 
listing of senior officers on the expedition. The caption is displayed 
above the table and is used by automated site-indexing software.

			   The form produces the empty table shown in Figure 15.7. High-
light the caption text, and change the size to 4. Note that the cap-
tion display font has only seven sizes. These are not point sizes that 
would normally be used in a word processing document; these are 
HTML-specified sizes and are translated by the browser for display. 
The font specified is Tahoma; if the font is not installed on the client 
computer, the browser will select another typeface that is installed 
locally, which may in turn alter the point size used for the display. 
These changes can substantially alter the appearance and layout of a 
Web page. Enter crew member descriptions and names from the list 
in the Sample Data section.

	 10.	Adding audio: Use Windows Explorer to locate TADA.WAV in the 
system/media folder. Copy the file to the PageBreeze sample direc-
tory in the Program Files directory. Locate the start of the page 
body in the HTML code. Add a blank line below it, and insert the 
following line: <bgsound src=”tada.wav”>; no closing tag is 

Figure 15.6  Table creation form. 
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necessary. This will play the sound file immediately before the page 
loads. Placing the line just before the closing body </body> tag will 
play the sound file after the page is loaded.

Part III	S ample Data

Text:

Men wanted: for hazardous journey. Small wages, bitter cold, long 
months of complete darkness, constant danger, safe return doubtful. 
Honor and recognition in case of success. Ernest Shackleton.

Although widely attributed to Shackleton as a newspaper recruiting 
advertisement for the expedition, there is no evidence that it was ever 
run and appears to be an after-the-fact invention which has achieved 
the status of an urban legend.

Public domain image from Wikipedia article on the Imperial Trans-
Antarctic Expedition.

http://en.wikipedia.org/wiki/Imperial_Trans-Antarctic_Expedition

Figure 15.7  Changing displayed text size. 
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Crew of the Endurance.

Ernest Shackleton 	 1st in Command
Frank Wild 		  2nd in Command
Frank Worsley 	 Captain of Endurance
Frank Hurley 	 Photographer
Hubert Hudson 	 Navigation Officer

Section 2	N uts and Bolts of Biological 
Databases and Their Construction
Part I	I ntroduction

This section describes what a database is, the various structures a data-
base may have, and how data are searched and results retrieved. Impor-
tant issues to consider prior to establishing a database are discussed. 
Selected available database management systems are briefly reviewed as 
well as some important online biological databases. The hands-on portion 
demonstrates how to establish an object-oriented database of existing data 
structures to create a searchable index of archived data. Lastly, data files 
are imported from existing spreadsheets and linked to facilitate informa-
tion retrieval.

1.  Database Basics
Fundamentally, a database is a collection of facts organized for efficient 
use. The basic unit of information is the record, which is a collection of 
one or more fields containing data. The organizational layout of a data-
base is called the schema. There are a wide variety of database models 
with differing underlying schemas. Each was developed to address vari-
ous data tracking and retrieval issues, and each has its own strengths and 
weaknesses. No one model solves all problems, and the various types of 
databases continue to be in use.

Databases may be static or dynamic. Dynamic data change and need to 
be updated on a regular basis, such as inventories of culture room supplies 
or laboratory chemicals. Static data seldom change and, if modified, the 
changes usually need to be tracked; laboratory notebooks, for example.

The collection of records is a database, but database management soft-
ware (DBMS) is required to enter, locate, and extract information. The 
specifics of how the management software is implemented and how well it 
works for a particular purpose depends on the database schema.
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Spreadsheet vs. database. There are fundamental differences between 
a spreadsheet and a database. Spreadsheet programs are designed to sup-
port general computation using cells to organize data and present results; 
the basic unit of information to be operated upon is the cell. Usually a row 
of cells is viewed by the user as a record of information about some object; 
however, spreadsheet software has no such interpretation of how the cells 
relate because it is designed to perform general computation.

In tabular format for presentation, a database record has the same 
appearance as a row of cells in a spreadsheet but, in a database, fields are 
linked by the software. Deleting a field deletes the field in all records and 
does not change the association of data within records. When a group of 
records is sorted by information in a single field, all the fields in the record 
remain associated.

In spreadsheets, deleting a cell (as opposed to clearing the information 
within a cell) will usually cause the remaining cells in the column to move 
up or cells in the row to move laterally to fill the vacated space. Another 
problem occurs when a column or region is selected for sorting; the other 
cells do not sort with them, unless they are also selected. Both issues break 
the perceived relationship of information between cells with potentially 
serious consequences.

Commercial spreadsheets have tools to provide database-like function-
ality because they are often used as databases, but the inherent differences 
remain. It may help to think of a database record as a page in a laboratory 
notebook, whereas a spreadsheet is a scrapbook collection of sticky notes.

Data vs. information. Data are simple facts. Information adds to knowl-
edge as the result of organizing, processing, or transforming data. Infor-
mation can change over time as new experiments are conducted. These 
issues can be confused and cause problems when implementing a labo-
ratory database. Often, what is desired is a laboratory information man-
agement system similar to a laboratory notebook that integrates multiple 
sources of data and interpretation of results. This may include such items 
as pathology laboratory reports, patient history, genotype, biopsy pictures, 
microarray results, lists of genes altered in specific pathways, literature 
citations, and other items. Choice of the database schema and operating 
software will dictate how effectively these sources can be integrated.

2.  Database Models
The database models commonly encountered are flat file, hierarchical, net-
work, relational, object-oriented, and entity-relational. Normally, a user 
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sees only the output of the database, and the database model behind it is 
neither obvious nor relevant. However, if you have reached a point where 
a formal database is necessary, you need to consider the strengths and 
weaknesses of the various options available. You also need to keep in mind 
that the various models are conceptual structures that require specifically 
written software to fully implement. Quite often, people start using one 
or more of the database structures without realizing it in an effort to cope 
with information overload.

Flat file data structure. A flat file is simply a text file containing all 
records and associated fields with a fixed file structure to indicate data 
fields and records. The FASTA file format used by NCBI (National Center 
for Biotechnology Information) is a flat file dataset. The ability to search 
and sort the information within the text file is limited to standard text edit-
ing tools unless time and effort are spent developing task-specific tools. For 
some standard flat file formats such as FASTA, tools are available, but are 
usually developed by and intended for use by professional computer staff. 
The FASTA format was developed to facilitate use of text-editing tools and 
scripting languages to search, edit, and manipulate sequence data.

Hierarchical structure. A hierarchical database is structured with a 
parent/child relationship from a source usually called the root. One par-
ent may have multiple children, but children have only one parent. The 
data item is called a leaf or node, and the path back to the root is called 
a branch. Computer folder and file navigation is an example. Each drive 
is a root, and all files on that drive are linked back to the root through a 
hierarchical structure. When implemented in a formal software-driven 
database, algorithms called tree searches are used to locate and extract 
data. However, the data are forced into a structure that does not easily 
accommodate items that can be in multiple categories, e.g., proteins with 
multiple functions. The result is that single items are repeated on various 
branches in order to fit the schema. Each node is independent; if the infor-
mation in one node is updated, the others are not. This leads to problems 
with multiple versions of information.

Hybrid models. Many laboratory datasets are organized as a hybrid 
model with flat files linked by a hierarchical navigation structure and 
can be quite useful for small datasets that do not change frequently (Fig-
ure 15.9). Users often have no specific software for searching and sorting 
beyond that available in the computer operating system. The drawbacks 
are that it is time consuming to locate, examine, and combine informa-
tion from several files. Also, you may not recall the reason the dataset was 
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Figure 15.8  Final form of the Web site displayed in IE7. 

Figure 15.9  Example of a commonly used database structure with hierarchical 
organization of flat file datasets and photos.
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placed in a particular branch; what is obvious today is less clear 2 years 
later, when research directions have shifted. Files may be inadvertently 
duplicated on another branch, resulting in different versions accumulat-
ing over a period of time.

Because this type of data organization is common in laboratories, some 
databases allow direct import of this structure to create an index that can 
be searched, sorted, and manipulated in the database.

Network model. A network database structure is similar to hierarchi-
cal, but there is not a strict one parent per child relationship between lev-
els. One child level may have multiple parents, and the parents may be on 
different levels. This is called a set structure, where tables are related by 
an owner/member relationship; a single item may have multiple owners. 
As an example, CFTR in the GO (Gene Ontology) classification structure 
belongs in multiple functional categories: ATPase activity, ion channel 
activity, and PDZ domain binding. In a hierarchical model based on func-
tion, CFTR would be displayed in three branches; in a network model, it 
is displayed once with three owners. Although the data display may follow 
a network model, the actual database structure used to store, search, and 
retrieve information may be relational.

Efficient computational search and sorting in the network and hierar-
chical models is heavily dependent on hardware and physical location of 
records. Neither is easily adaptable to changing needs.

Relational model. Relational databases are good for large homogenous 
datasets where extraction of data is important. The relational database 
structure is derived from mathematical considerations and is organized to 
permit efficient use of set theory and predicate (true/false) logic to imple-
ment search and retrieval strategies. The name is derived from the rela-
tional calculus used to formulate queries. In a relational database data are 
organized by tables which are collections of records. Records are made up 
of linked fields containing data. Each record has a unique identifier called 
a primary key. The physical order of the records within a table or fields 
within a record is not relevant to retrieving information, thus removing 
some serious constraints of a network or hierarchical model. The standard 
method of managing a relational database, locating data, retrieving infor-
mation, and organizing results is through use of SQL (Structured Query 
Language); however, other management methods can be used.

The strengths of the relational model lie in the linking of tables by 
common key fields. The software provides tools for creating an organiza-
tional structure, but it is the developer who must decide what tables are  

C8105.indb   527 7/18/07   8:24:21 AM



528  <  Jerry M. Wright

necessary. The process of breaking down large datasets and creating 
smaller data tables suitable for efficient use is called normalization. When 
properly constructed, each table addresses a single topic and contains a 
minimum of redundant information.

 For example, there may be a table listing of protein records with 
sequence and function data in the fields, a table of species records with 
taxonomy data, and a table of tissues with morphological and functional 
descriptions. The records in each table have fields for keys from other 
tables; a record in one table is linked to a record in another table by use 
of the primary key. The DBMS can then search and associate data by use 
of a query in the form of SELECT - FROM – WHERE. For example, to 
extract a list of all tissues in which CFTR is expressed, a query would be 
constructed such as SELECT (all records) FROM (tissue table) WHERE 
(CFTR primary key is found). The search could be further narrowed by 
restricting the output to vertebrates.

Understanding what primary keys are and how records and tables 
should be laid out for efficient use is very important in creation of an effi-
cient relational database. There are multiple implementations of relational 
databases and SQL DBMSs available both commercially and free. Although 
there are numerous technical papers and tutorials available online with 
each of the major database vendors, many of them assume the user has a 
technical or computer software background. For an introduction to rela-
tional databases written for a nontechnical audience, Hernandez [1] has a 
clear, minimally technical introduction with numerous examples. Even 
if you do not implement a relational database, understanding how they 
are organized and searched will be of substantial value in implementing 
object-oriented or other schema databases.

Object-oriented models. Object-oriented databases are well suited for 
complex datasets and work directly with object-oriented programming 
languages. An object-oriented database is based on objects that have prop-
erties. Although not technically correct, the terminology is sometimes 
used interchangeably with records and fields in user manuals and mar-
keting information. One of the underlying concepts is the use of classes 
and inheritance to describe objects. This permits integration of multiple 
data types because an object in a class will be correctly interpreted. For 
example, an object in class image will be interpreted as a picture to be 
displayed and those in class text as text to be handled by a word proces-
sor; both image files and text files can be used as properties of an object 
without confusion.
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Commercial object-oriented databases are a relatively recent innovation, 
and industry standards are still being developed. This can cause problems 
if moving data from one vendor’s DBMS to another. Nonetheless, they can 
be extremely useful in managing laboratory data because of their use of 
intuitive object structure and ability to incorporate a wide variety of data 
sources, such as audio clips, photos, microarray result tables, text docu-
ments, etc., into a single object. The data structure may be very complex 
and not easily stored or searched in conventional databases.

The class structure is exemplified by example of an experiment, for 
which you may create a parent class project that has the basic properties 
of hypothesis and funding. Subclasses such as animal and cell cul-
ture are created that inherit the properties of the parent and add new 
ones specific to the subclass. For example, the class cell culture may 
have properties such as cell line, drug tested, drug concentration, incuba-
tion time, culture media, photos of the culture, and date. The class cell 
culture is used to create an object that holds the information for a spe-
cific experiment. All objects (experiments) in the class have the same basic 
properties but differ in details of the properties. This addition of proper-
ties appropriate to hold the data for an experiment can be extensive, but it 
may be better to create additional subclasses for clarity.

Entity-relational model. An entity-relational database combines the 
SQL query function of relational databases and the ability to store complex 
data formats of object-oriented databases in order to overcome limitations 
in storage, searching, and linking data from diverse sources. The NCBI 
database is an entity-relational model implemented in ASN1 (Abstract 
Syntactical Notation version 1) for describing and exchanging data even 
though the output in FASTA format is a flat file. There is a historical rea-
son for this in that the original database was based on a flat file model, and 
users came to expect that format to be used for submission and retrieval. 
However, flat files cannot function efficiently with large datasets. The 
changeover was a substantial undertaking because it had to be made with-
out interruption to the end user community. Currently, the data are being 
shifted from ASN1 format to XML because of limitations, evolving com-
puter standards, and increasing use of the World Wide Web to distribute 
information (http://www.ncbi.nlm.nih.gov/IEB/ToolBox/XML/ncbixml.
txt). This highlights the importance of considering the model, software 
selection, and evolving software standards when setting up a database.

Object-oriented features are starting to appear in some standard relational 
DBMS but they may not be marketed as entity-relational DBMS systems.

C8105.indb   529 7/18/07   8:24:22 AM



530  <  Jerry M. Wright

3.  Additional Database Selection Considerations
Database applications usually fall into one of two categories: manage-
ment of data collections or information analysis. Relational databases do 
extremely well with data collections when the schema is simple and the 
data types are few; the data may change, but relationships among data 
fields are stable. Examples are inventory control and microarray expres-
sion results. Object-oriented databases do well when there is need to navi-
gate through and analyze large volumes of data in multiple formats.

Additional considerations include the overall size of the database and 
what existing data files need to be incorporated. Inclusion of large binary 
objects such as photos or confocal microscopy images can tremendously 
expand the physical size of the database. Relational databases do not han-
dle images well without very specifically designed DBMS software. The 
issue is often avoided by including a path to the image rather than the 
image itself. However, this solution requires a very stable physical organi-
zation and extreme care in maintaining links when moving the database 
to a new computer.

Budget, availability of technical support staff, user training, and antici-
pated growth are other factors. What computing hardware and operating 
systems are available? What hardware and operating systems are required 
by the software? How many people need to access the data simultane-
ously? There may be a substantial investment in education, layout design, 
and training prior to becoming productive. Costs of commercial object-
oriented databases are comparable to relational databases, and both mod-
els have free versions. There are no simple answers to all the issues but, in 
general, the more complex the dataset, the more difficult it is to implement 
as a relational database.

4.  Databases on the Market
Coverage in this section is of the readily available, better-known prod-
ucts or interesting special-purpose database systems. There are far more 
database management programs available than mentioned here, many of 
which are intended for technically savvy users.

A.  Relational Database Management Software  A wide variety of rela-
tional model DBMS programs are available, each with differing file format 
characteristics, pricing, and utility. Vendors usually have conversion pro-
grams and utilities to translate the data file format of one system to that 
of another. Many third-party conversion utilities can be found at www.
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download.com as well utilities that manipulate files and data in a variety 
of database formats. There are online user community support groups for 
the database programs which vary widely in quality and activity.

Some companies offer a free version with limited functionality as an 
introduction to their full-featured commercial products. Note that the 
DBMS usually does not have to be implemented on a server; a worksta-
tion may do fine for small laboratories. Most laboratories will do well with 
software intended for small business use. However, if substantial use is 
anticipated, server hardware and server operating system versions are rec-
ommended as well as consultation with a professional database developer. 
A few DBMS programs are now described:

Access (http://www.microsoft.com). Sold as a stand-alone product or 
included with Microsoft Office Professional, this is probably the easi-
est DBMS to implement for a laboratory that has MS Office installed, 
has few users, no need for simultaneous access, limited needs, and 
limited resources. The program can import directly from and export 
directly to Excel spreadsheets, and features a graphical user interface 
for designing SQL queries. The graphic interface makes the introduc-
tion to SQL a bit easier. As with other relational databases, knowledge 
of SQL is imperative to efficiently design and utilize the database. 
At a minimum, a spreadsheet can be converted to a database then 
manipulated in table mode, where it has the familiar appearance and 
some of the tools of a spreadsheet. The fictional Northwind Trad-
ers database, downloadable from Microsoft, provides numerous 
examples of common data search and retrieval functions. The dem-
onstration database was developed for Access 2000 and can be easily 
converted to the Access 2003 standard.

Paradox (http://www.corel.com). Paradox is included in WordPerfect 
Office professional and the WordPerfect student and teacher edition. 
This is also a low-cost solution for those who have Corel corporate 
software installed. Paradox has its own programming language and 
structure; there are tools available should data transfer to another 
DBMS be needed. It also is a good introductory database program 
because its target users are business office workers.

MySQL (http://www.mysql.com). MySQL community edition is free 
and open-source, which means the source code is available. Online 
documentation is extensive but intended for a technology-oriented 
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reader. Available for both Windows and Linux, but versions are spe-
cific for the processor utilized in the computer: Intel 32 or 64 bit, 
AMD 32 or 64 bit, PowerPC, and others.

Oracle (http://www.oracle.com). Oracle has been sold commercially 
since 1979 and offers several versions including large business, enter-
prise-class functionality. Oracle Database XE is a free version that can 
store up to 4 GB of user data, uses up to 1 GB RAM, and one CPU on 
the host machine. Both Windows and Linux versions are available.

SQL Server (http://www.microsoft.com). SQL Server is a Microsoft 
product. SQL Server Express is a free, limited version, for use by 
developers and is available for Windows XP and Vista; not rec-
ommended for novices. The DBMS includes a management con-
sole. MSDE (Microsoft Data Engine) is an earlier free version also 
intended for developers and has been integrated in many third-party 
programs to perform data management tasks. Runs on Windows 
operating systems.

SQLite (http://www.sqlite.org). SQLite is a public domain project where 
the DBMS is incorporated into another program instead of being a 
separate entity. The database exists as a single file that aids in trans-
ferring the database to another machine. Although free, it requires 
substantial programming knowledge to implement as intended. A 
stand-alone program called sqlite3 can be used to create a data-
base, run queries, and manage the database. However, sqlite3 has a  
command-line interface and requires the user to be comfortable 
with database programming.

Iman (http://www.search-tech.com). Iman is a DBMS software 
designed specifically to manage images and runs on top of Microsoft 
SQL server. Data entry and management is Web based, so it is easily 
set up for use at multiple locations. This works well for managing 
and searching large libraries of digital images, with office staff per-
forming most of the work. It is not intended for use with numeric 
datasets, but these can be created in SQL Server, which is required 
for Iman.

B.  Object-Oriented and Object-Relational Database Management  
Software  We now describe some popular DBMSs in this category:
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Catalyzer (www.axiope.com). Marketed by Axiope, Catalyzer was spe-
cifically designed by researchers for biomedical research laboratory 
use. It runs on Windows, Mac OS X, and Linux. The program comes 
in two versions: one for desktop use and a server version for use as 
a central repository by the desktop installations. There is an evalu-
ation version that allows creation of up to 100 objects without hav-
ing to purchase a license. A Web browser is required for use with 
the server version; IE 6 and 7, Mozilla 1.4, Firefox 1.0, Netscape 7.0 
and 7.1, Safari 2.0, and Opera 7.0 browsers are supported. There are 
modules that support direct inclusion and display of some common 
proprietary laboratory data files, including pClamp electrophysiol-
ogy records, flow cytometry FCS files, MetaMorph images, Zeiss 
confocal, IPLab, and other imaging formats. The database is a single 
file that simplifies moving the store to a new computer.

OpenLink Virtuoso (http://www.openlinksw.com/virtuoso). OpenLink 
server is an object-relational model database server that combines 
multiple functions beyond just database management to include Web 
applications and file server functions, among others. The Virtuoso 
edition is open-source, comes with a free license, and runs on Win-
dows, Linux, and Mac OS X. However, it is appropriate for advanced 
users, developers, and information technology professionals.

dBASE (http://www.dbase.com). dBASE was one of the early successful 
relational databases for microcomputers. Although originally a rela-
tional database, the current version is managed by an object-oriented 
programming language. dBASE did not use SQL; instead, it had a 
proprietary programming language for database management that 
has spawned a number of other programming languages referred to 
as xBase languages. The program is capable of directly connecting to 
SQL-based databases including MS SQL Server, Oracle, and Sybase. 
Runs on Windows operating systems.

Visual FoxPro (www.microsoft.com). FoxPro is usually regarded as a 
DBMS but actually is an xBase programming language used to write 
database applications. It is a popular database programming lan-
guage among professionals.
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5.  Important Biological Databases
Online databases have become an important tool in molecular biology 
research. The annual January issue of Nucleic Acids Research is dedicated 
to online research databases; there were 858 in the 2006 update [2]. It is 
important to keep in mind that some databases are repositories of raw data 
with no guarantees of quality, whereas others may have extensive manual 
curation to ensure that only high-quality information is produced. Just 
as important as the databases are easy-to-use online tools to search and 
retrieve information.

NCBI (http://www.ncbi.nlm.nih.gov/) has one of the largest research 
sites on the Internet with a single-entry portal for search and navigation. 
At the time of this writing, there are twenty-one linked and searchable 
databases within the site. As mentioned earlier, it has an entity-relational 
structure written in ASN1. Many important bioinformatics databases are 
part of the NCBI family, including dbSNP, 3D Domains, RefSeq, Genomes, 
and proteins. In addition, databases from other sources, such as OMIM 
(Online Mendelian Inheritance in Man), have been incorporated into the 
NCBI site search capabilities. The GenBank database at NCBI, the DNA 
database of Japan, and EMBL (European Molecular Biology Laboratory) 
together form the International Nucleotide Sequence Database Collabora-
tion with information exchanged among sites on a daily basis.

The Pfam (http://pfam.wustl.edu/) and GO databases have proved very 
useful in automated gene annotation. Protein sequences are compared 
against the Pfam database of sequence alignments of common protein 
families. This permits tentative assignment of function prior to labora-
tory bench work and is useful when large numbers of proteins are being 
investigated in genomewide scans. The database is accessible through 
Web sites hosted in several countries.

The GO database is a part of the Gene Ontology project (http://www.
geneontology.org/), which provides a controlled vocabulary to describe 
gene and gene products. Ontology is a formal method of describing con-
cepts and their relationships. The limited vocabulary and networked struc-
ture addresses the issue of several genes having multiple descriptive terms 
for the same process. Although a human would recognize that transla-
tion and protein synthesis probably have the same meaning when used 
by different authors, an automated computer search and retrieval system 
has no way to match the terms. Additionally, the database provides the 
level of confidence that can be ascribed to a descriptor, ranging from pub-
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lished laboratory-based work to automated annotation based on sequence 
similarity.

Manually curated and defined biological pathways are available 
through the KEGG (http://www.genome.jp/kegg/pathway.html) and Bio-
Carta (http://www.biocarta.com/) databases. Automated links to these 
databases are now found in several microarray analysis programs in 
which a list of genes is evaluated for representatives occurring in specific 
pathways.

Part II	S tep-By-Step Tutorial

The tutorial has four goals in demonstrating basic data input and 
retrieval operations. They are as follows: how to create a searchable 
index of archived work, how to enter data, how to organize data for 
efficient use, and how to link objects by their properties in order to 
extract information. Data organization, called normalization in rela-
tional database work, is the key to creating an effective database. Data 
accumulation without organization is the computational equivalent of 
metastasis.

Catalyzer is used for demonstration purposes because it is easy to 
integrate existing datasets commonly found in laboratories, represents 
the newer object-oriented model technology toward which databases 
are moving, and requires the minimal amount of additional training to 
enter, locate, and extract data. An evaluation version can be used to work 
through the demonstration. The terms object and property are used inter-
changeably with record and field in the user manual, and they will be used 
in the same manner in this exercise.

1.  Create a Catalog of Archived Data
Start by inserting a CD or other device with the data files to be cataloged. 
From the File drop-down menu, select Import>Folder then navigate to the 
drive and folder containing the data files, and click “import.”

Check the options desired in the selection window. The imported structure 
can be limited to specific file types and exclude undesired files. In this case, 
we will generate small thumbnails of images for inclusion in the database.

The program creates a searchable index to the data files by importing 
the file structure, creating a thumbnail of images found, and extracting 
embedded image information (Figure 15.10). The generated thumbnail 
image, extracted image information hierarchical structure (pathway), 
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filenames, file size, file creation date, and other parameters are in the 
database; the data within the files are not. Note that the program recog-
nized embedded data fields in .JPG files and extracted the information 
into EXIF and IPTC objects. This extracted data can be searched to locate 
images taken by a specific camera, exposure time, date, use of flash, or 
other parameters.

A.  Sorting the Archived Data Catalog  In the default display for objects 
within a container, switch to table view mode by clicking on the table 
view button in the lower right, outlined (Figure 15.11A) . Sort a column 
by clicking on the title field in a selected column (Figure 15.11B); a second 
click reverses the sort order. Despite having the appearance of a spread-
sheet, all fields remain associated as a record even though only one field is 
selected for sorting.

B.  Exporting the Catalog  Data may be exported as a PDF file, as another 
catalog with only the selected information, or copied to the clipboard for 
use in other programs. In the table view, highlight the data you wish to 

Figure 15.10  Database view of imported folder structure and images in the fic-
tional archived AD project folder.
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export. Right-click and select “copy to clipboard.” The data can now be 
pasted into Excel or other programs. Each field becomes a column with 
the field label as a column header. In this instance there are separate fields 
for file name, path, size, file extension, and modification date.

Additional CDs, memory sticks, hard drives, network drives, or other 
accessible media containing archived data can be added to the database. 
The resulting dataset can be searched efficiently to locate files without 
having to search each CD or other device individually.

2.  Data Entry
Because many laboratory records are already stored in Excel files, the 
simplest way to enter data is to cut and paste from an Excel spreadsheet. 

Figure 15.11  Manipulation of imported file structure in the database. (A) Use 
the highlighted icon to switch to table view of objects in a folder. This makes all 
data fields available. (B) Sorting the records based upon selection a single data 
field.
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Alternatively, an Excel worksheet can be used to create a file of comma-
separated values that can be imported via the file import function. 
When properly laid out, the first row of column headers is used to create a 
template for the object (record), with the individual column labels becom-
ing the object properties (data fields). Each subsequent row is treated as a 
new object. The first column of each row becomes the name displayed in 
the left side navigation bar; the displayed name can be changed later.

The workflow assumed is that samples are acquired in the clinic, sent to 
a laboratory for mRNA extraction, and then stored in a freezer. Portions 
of stored samples are later sent to a microarray facility, which prepares 
the sample for processing and then returns the results and quality control 
reports in data files labeled with their processing identifiers.

Select the folder where a new project will be located then right-click 
(Ctl-click for Mac) and select > add using class > folder; this will create a 
container to hold the new records. Rename the folder Demo Data.

A.  Organize the Data  This is a fictional dataset from an experiment 
designed to compare characteristics of skin biopsy samples from normal 
individuals with those from individuals with atopic dermatitis. In this 
case, the sample ID and patient ID are different because one was assigned 
by the clinic and the other was assigned by the microarray facility (Fig-
ure 15.12). Although the entire set of records could be entered at once, 
there are several issues that will cause problems later whether using either 
object-oriented or relational databases.

Inspection indicates there are three primary objects (tables, if creating a 
relational database): patients, samples, and microarrays. The first step is to 
reorganize the data to reflect that division using the patient ID as the com-
mon identifier in the resulting tables. Create an Excel worksheet contain-
ing information about the sample from Table 15.1 in the Data Section.

In Excel, select the data in the worksheet to be entered and copy it to 
the clipboard. In Catalyzer, with the Demo Data folder highlighted, use 
File> Import > Clipboard to import data from the clipboard. This enters 
the data from the clipboard and creates a subfolder named Imported 
Data. Rename the new folder to Sample Data for clarity (Figure 15.13A). 
Switching to the class view using the class creation icon, highlighted in 
Figure 15.13B, reveals that the program has also automatically created a 
class object named Imported Data (Figure 15.13C) for the imported 
dataset. The class can be renamed to match the renamed data folder. The 
properties of the object created by this class may also be modified in this 
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Figure 15.12  Spreadsheet of fictional experimental data.

Figure 15.13  Importing data from the clipboard automatically creates data 
folders and an object class for the data. (A) The Imported Data folder, created 
when data were entered via the clipboard, has been renamed to reduce confusion. 
(B) Location of the class creation icon to switch function from data manipula-
tion to object property modification. (C) Imported Data class, also created when 
importing from the clipboard, is now visible and can be renamed to match the 
renamed data folder. The properties of the object created by this class may also 
be modified.
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view. If a new field is added here, it will appear in all records that have 
been created from this class. Switch back to the catalog view using the blue 
book icon (Figure 15.13B).

B.  Advanced Searches  The records refer to another set of objects: freez-
ers where the samples are stored. Create another Excel worksheet from the 
data in Table 15.2 in the Data Section and import the data. Rename the 
folder to “freezer list.”

We will perform an advanced search to locate all −20˚C freezers, and 
then link fields across records to have access to an inventory of individual 
freezer contents from the patient records. Select search from the menu 
or press Ctrl-F. This brings up a default list of all records in the database: 
files, folders, freezers, etc. Lists of individual records in a specific class 
are available by clicking on the named tabs. Searching now will check for 
information in all records and all fields, which can be time consuming in 
a large database.

To limit the search, switch to the advanced search mode by pressing the blue 
arrow in the upper right corner next to the search text box. Limit the search by 
selecting the class object of interest, in this case Freezer. The display auto-
matically shows all records in the class freezer. Further limit the search by 
selecting the field Temperature, and then set the value to −20. This creates a 
list limited to freezers that have the value of −20 in the temperature field.

C.  Create an Inventory by Linking Data Fields with Class Objects  Al-
though the records can be searched, sorted, and edited, and new ones 
added in this mode, further organization and linking is required for effi-
cient use. This process is analogous to creating an SQL query in a rela-
tional database to extract information. The difference here is that the link 
is dynamic and updates are immediately visible in the results; in SQL, a 
query has to be run again to update the results.

Switch to class mode as previously mentioned. Select a record in the 
sample data folder. The class navigation pane shows the class for this 
object created when the data were first copied into the program; it can be 
renamed for clarity.

In the class design right side window, highlight the freezer field, 
and use the drop-down menu to change field type to reference (Fig-
ure 15.14A). There will be a warning message about potential data loss; 
click “continue.” In the field conversion popup window, select the target 
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class (Figure 15.14B) and list output (Figure 15.14C). In this case the class 
is freezer, and the list is contents.

In the sample data record, the freezer field now is an interactive link 
to the freezer containing the sample (Figure 15.15A). Without the active 
link, only the freezer number would be displayed. Clicking on the + sign 
in the freezer field opens a table view of all samples in freezer 1 (Fig-
ure 15.15B). The fields in the referenced sample records can be opened and 
edited from this window.

At this point we have created a live link to freezer contents from an 
individual patient record. Not only do we know which freezer the sample 
is in, but we also can find out what else is stored in the same freezer and 
go directly to information about other samples. If the freezer contents are 

Figure 15.14  Linking a field in a record to a reference. (A) Select the field name 
and change type to reference. (B) Select target class as freezer. (C) Select class 
output list as freezer contents.
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changed, the data in this field are automatically updated. Likewise, if the 
sample is moved to another freezer, the freezer data field will be automati-
cally linked to the new location.

In a similar manner, samples can be linked to patient information and 
microarrays linked to sample data. This provides a means of tracking 
samples through all the processing stages, rapidly locating materials and 
linking microarray results back to patient information.

Whether using a relational or object-oriented database, data fields have to 
be linked to selected records in order to retrieve information. Organization 
and layout of basic elements, either in tables or as objects, is the key to suc-
cessful use.

Figure 15.15  (A) Patient record has a freezer data field that is an active link 
to the freezer record. (B) Expanding the freezer data field shows the entire 
contents of the freezer that contains the patient sample.
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Part III	S ample Data

Freezer Data (Table 15.1)
Sample Data (Table 15.2)

References
	 1.	 Hernandez, M.J. Database Design for Mere Mortals: A Hands-On Guide to 

Relational Database Design, 2nd ed., Addison-Wesley, 2003.
	 2.	 Galperin, M.Y. The molecular biology database collection: 2006 update. 

Nucl Acids Res 34: D3–D5, 2006.

Table 15.1  Sample Data

Patient ID Sample ID
RNA 

Preparation RNA Yield
Sample 

Date Freezer
1 M_ad-001 OK 100 02/26/2006 1
5 M_ad-003 OK 110 03/02/2006 1
6 M_ad-004 OK 135 03/03/2006 1
11 F_ad-003 OK 111 03/08/2006 1
14 M_ad-005 OK 135 03/11/2006 1
18 F_nonad-006 OK 122 03/15/2006 1

Table 15.2  �Freezer Data
Freezer Location Make Temperature

1 D207 Revco -80
2 WBSB208 Revco -80
3 D207 Sanyo -20
4 D207 Revco -20
5 BP216 Sanyo -80
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Recently developed gene expression platforms such as oligonucleotide and 
cDNA microarrays are powerful and extremely specific techniques for the 
identification of differentially regulated genes in a large variety of experi-
mental models and human diseases. The search for new candidate genes 
of human diseases in global gene expression profiling using this high-
throughput microarray technology has been widely employed. Microar-
ray profiling is a robust tool in simultaneous identification of expression 
patterns of large groups of genes and elucidating the mechanisms under-
lying complex biological processes and diseases. This approach reveals 
responses of thousand of genes to a given challenge or condition. To cope 
with these overwhelming datasets, various computing algorithms were 
developed. The majority of these analytical programs and tools represents 
complex statistical packages and requires specific bioinformatics training 
of potential users. The biomedical scientists become dependent on the bio-
informatics assistance, which reduces flexibility of the research and dis-
covery processes. However, despite the complexity of the gene expression 
data, tools familiar to every biologist for data storage, manipulation, and 
analysis such as Microsoft Excel and Microsoft Access can be efficiently 
employed for the basic genomic analyses. While waiting for the detailed 
and finesse analysis from their bioinformaticians, biologists will be able to 
evaluate major trends of expressional changes and make an educational 
guess in what direction to proceed with their ongoing researches.
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Section 1	M icrosoft Excel
Part I	I ntroduction

Several attempts to simplify gene expression analysis using Microsoft 
Excel were reported and successfully tested. However, these approaches are 
based on modifications and add-ins to the basic Microsoft Excel platform 
and introduced extra functionality that requires advanced knowledge of 
and experience with Microsoft Excel. The goal of this section, however, is 
to allow bioinformatics illiterates to conduct basic genomic analysis using 
standard Microsoft Excel functions such as sorting, filtering, and in-place 
calculations. The straightforward approach described in this section will 
allow researchers to conduct a basic gene expression analysis tailored to 
their immediate needs.

1.  What Is Microsoft Excel?
Microsoft Excel is a spreadsheet program that allows creating and editing 
spreadsheets, which are used to store information in columns and rows 
that can then be organized and processed. Spreadsheets are designed to 
work with numeric and character entries that can be easily manipulated 
using multiple embedded functions. Mathematical calculations can be 
done on numerical entries and text modifications on characters entries 
in such a way that desired changes propagate throughout the spreadsheet 
automatically.

2.  What Can Microsoft Excel Do?
In numerous tutorials, the description of the Microsoft Excel application is 
restricted to business-oriented tasks and focused on computations related 
to accounting and production of concise financial reports. The charting 
and text manipulation features make Microsoft Excel well suited to pro-
ducing attractive and informative reports for business meetings. In this 
chapter we will employ the enormous calculating and data storage poten-
tial of this program for the analysis of large datasets generated during 
gene expression profiling. The standard Microsoft Excel spreadsheet can 
accommodate 65,536 entries and the largest Affymetrix Human U133 Plus 
2 array contains 54,614 entries, which eliminates space concerns. We will 
demonstrate how the mathematical, statistical, and searching functions of 
Microsoft Excel would help us to retrieve biologically sensible information 
from meaningless rows of expression values.
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3.  Featured Functions in Microsoft Excel for Microarray Analysis

A.  Open Data Sheet  The variety of Microsoft Excel functions appli-
cable for gene expression analysis will be introduced during progression 
of a sample microarray data processing. The single-channel microarray 
platform (microarrays that use one labeling dye) such as Affymetrix will 
be considered in this chapter. The researchers are usually provided with 
spreadsheet data in text (.txt) or excel (.xls) format. The standard outputs of 
these arrays contain various gene expression information including three 
key entries: unique probe identifier, gene expression signal, and detecting 
quality of this signal. The sample shorten version of common output for 
the Affymetrix platform is provided in Part III.

B.  Log Transformation  We will first generate the basic spreadsheet of gene 
expression information, which will contain only the key entries described 
earlier. Then expression data will be converted into log base two (log2) for-
mat. The results of microarray experiments are usually presented as fluo-
rescent signal ratios of gene expression signals between control and treated 
samples.

We recommend processing these ratios in log format. In our example 
experiment in Part III, we will look at gene expression at Drugs A and 
B, and the results are relative expression levels compared to the control 
set as numerical 1. Assume Drug A upregulates a gene by two-fold and 
Drug B downregulates this gene by two-fold relative to control expression. 
The numerical ratio values are 2.0 and 0.5 for Drug A and B, respectively. 
Apparently we have the same magnitude of expressional changes in both 
drugs, but in an opposite direction. However using these numerical values 
for further calculation will generate a difference between Drug A (two-
fold change or 2.0) and control (no change or 1) equal to +1.0, whereas 
that between control (1) and Drug B (0.5) equals −0.5. Thus, mathematical 
operations that use the difference between numerical values would lead 
to the conclusion that the two-fold upregulation was twice as significant 
as the two-fold downregulation, which is wrong. The log transformation 
eliminates this problem. When data from the previous example is log2-
transformed, the data points become 0, 1.0, and −1.0 for control, Drug A, 
and Drug B, respectively. With these values, two-fold up- and two-fold 
down regulation are symmetric in relation to 0. For microarray analy-
sis we recommend that you work with log2-transformed data using LOG 
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function of Microsoft Excel and at the end of the analysis convert log2 
data back to numeric values using power (̂ ) function of the program.

C.  Normalization  Once data are log-transformed, the next step will be 
intraarray normalization. When analyzing multiple arrays, there is a need 
for data normalization, after calculating gene expression. The overall signal 
intensity can vary between arrays. This global variation is characterized by 
the overall shift in the intensity of expression signals. This nonbiological 
variation is multifactorial and depends on RNA quality, experimental and 
scanning procedures, sample labeling, and environmental factors such 
as light exposure. There are different algorithms available to normalize 
microarray data, and most microarray platforms reports already-normal-
ized data. However, most normalization procedures are based on the whole 
array data including genes, expression of which is affected by experimental 
drugs. Therefore, it is preferable that these genes be excluded from the nor-
malization procedure and only invariant between arrays genes utilized. 
Our basic tutorial will accept original Affymetrix normalized data and 
proceed with analysis without additional data normalization. The more 
complex process of global array normalization using invariant gene set 
with application of mean center array normalization will be described in 
the “Advanced” section of the tutorial.

D.  Filtering  Usually, only a fraction of genes is expressed in a given cell 
or tissue type. To simplify our analysis, we will exclude nonexpressors from 
further consideration using the filtering functions of Microsoft Excel. In our 
basic streamline analysis, we will consider only genes that were detected on 
all arrays. This approach will provide major information about global gene 
expression changes in response to a given drug. You have to realize that 
this strict filtering will leave out genes that were undetectable, for example, 
in control samples but become active after exposure to a certain drug. The 
more complex selective filtering, which recognizes these particular cases, 
will be described in the “Advanced” section of the tutorial.

E.  Statistics  Microsoft Excel provides a number of functions for statis-
tical calculations, including ANOVA and t-test. Considering the over-
whelming multiple comparison nature of array data where 20,000–50,000 
thousand genes are tested simultaneously, the Microsoft Excel statistical 
package is not particularly suited for microarray analysis. However, it is 
efficient enough to identify general trends in transcriptional changes of 
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implicated genes and suggest most probable gene candidates. An exam-
ple of the basic gene expression analysis will be presented using the t-test 
function of the program.

F.  Visualization  In this section we will demonstrate how to gener-
ate color-coded expression tables and expression-pattern-based clusters 
using Microsoft Excel formatting and filtering functions. These tech-
niques should be especially useful to laboratories that do not have access 
to specialized commercial visualization software. Huge columns of num-
bers are mind-numbing to most users. Microarray data are much easier 
to perceive as colored squares, where the color indicates whether a gene 
is up- or downregulated. We will use Microsoft Excel’s Conditional 
Formatting function to highlight or replace expression ratios with a 
corresponding color, thereby transforming an array database into a color 
representation that will facilitate global assessment of gene expression 
patterns. We also will perform clustering, a powerful method for discov-
ering patterns in array data. The goal of clustering is to subdivide genes in 
such a way that similar expression patterns fall in the same cluster. Gene 
expression clustering allows an open-ended exploration of the data, with-
out getting lost among the thousands of individual genes. We will demon-
strate how to cluster genes that show similar expression patterns across a 
number of samples, using the expression pattern of one gene as a template 
for the identification of its counterparts.

Part II	S tep-By-Step Tutorial
1.  Basic Data Analysis Streamline
A.  Retrieving Gene Expression Spreadsheet  Researchers are usually pro-
vided with gene expression spreadsheets in text (.txt) or Excel (.xls) for-
mat, both of which can be opened using Microsoft Excel:

	 1.	Start Microsoft Excel by clicking on Start -> Programs -> Micro-
soft Excel or by double-clicking on the Microsoft Excel icon 
on the desktop.

	 2.	To open the gene expression spreadsheet click File -> Open. There 
are several shortcuts to call desired Microsoft Excel functions, which 
can significantly accelerate manipulation of large amounts of data. 
These shortcuts will be gradually introduced in this tutorial. The 
shortcut keys help provide an easier, and usually quicker, method of 
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navigating and using Microsoft Excel. Shortcut keys are commonly 
accessed by using the ALT, CTRL, and SHIFT keys in conjunction 
with a single letter (on IBM-compatible computers). The assigned 
shortcuts are listed in the corresponding menus (in our case under 
the File menu next to the Open function, we can see a description 
of assigned shortcuts for Open (modifier key plus single character; 
CTRL+O). In other words, CTRL+O is telling you to simultaneously 
press the CTRL key and the O key to activate the shortcut. Pressing 
CTRL+O would bypass the File function and perform the Open 
command directly. In addition to the assigned shortcuts, we can use 
ALT-associated shortcuts, which are alternatives to mouse clicking. 
You will note that the “F” in File has been underlined. This tells you 
that you can press the ALT key and F to access the File menu; then 
you can see that under File menu the Open has an underlined “O.” 
Therefore, holding ALT and pressing F and then O will follow the 
mouse-clicking route and perform File and then Open function in 
succession. As you begin to work with shortcut keys, you will notice 
that your navigation throughout Microsoft Office will be dramati-
cally accelerated.

(Note: Users outside the U.S. or users using a foreign copy of Micro-
soft applications may not be able to get all shortcut keys to per-
form the function listed in this tutorial.)

	 3.	 In the Open window, select your file and double-click on it.

	 4.	If a gene expression spreadsheet was provided to you in raw text 
format (also called ASCII) and you cannot see it in the Open win-
dow, use Files of type: scroll down the menu of the Open win-
dow (alternatively use ALT+T) and then select All files (*.*) 
from the menu. Double-click on your file, and Microsoft Excel 
will automatically recognize it as a text file and start the Import 
Wizard.

	 5.	Choose Finish and you will see the data placed in cells in a Micro-
soft Excel spreadsheet.

	 6.	Convert this text file to a Microsoft Excel file with File->Save as or 
ALT+F+A and select Microsoft Excel Workbook (*.xls) from 
Save as type: pull-down menu of the dialog box Save As.
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B.  Formatting Data for Expression Analysis  The analysis flow of a stan-
dard Affymetrix output, provided in Part III, which will be demonstrated 
in this tutorial, can be applied to other platforms as well:

	 1.	Open Affymetrix data source sample.xls as described in 
Section 1. For our analysis we will need only three key entries: Probe 
set ID, Signal, and Detection. Therefore, we will remove all 
Stat Pairs Used columns and a Description column; the latter 
consumes a lot of computer memory and slows down the computing 
process.

	 2.	Save Affymetrix data source sample.xls file as Affymetrix 
expession.xls using the File->Save As function.

(Tip: It is a good practice to save a file as a copy before you perform any 
modifications on it.)

	 3.	Select column B C1 Stat Pairs Used by clicking on the title cell 
of this column, then holding down the CTRL key, select all other 
columns (…Stat Pairs Used) to be removed. To delete selected 
columns use Edit->Delete (Figure 16.1) or (ALT+E+D). Alterna-

Figure 16.1  Deleting multiple columns using the Microsoft Excel tool bar.
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tively, while pointing on any of the selected columns right-click your 
mouse to display the popup menu, then select the Delete function 
(right-click ->Delete) (Figure 16.2).

Now, when we have only necessary information, we will log-transform 
expression signal values. To facilitate future computing, we will rear-
range data in the spreadsheet by clustering Signal and Detection 
values.

	 4.	Select all nine Signal columns as described earlier, and copy them 
using Edit->Copy or assigned function CTRL+C. Alternatively, you 
can use ALT+E+C or right-click->Copy.

	 5.	Select the first empty column (in our case, T) and paste copied col-
umns with Edit->Paste or CTRL+P. The alternative commands 
can be deduced from the previous pattern and are ALT+E+P or 
right-click->Paste.

	 6.	Now we have to reselect original Signal columns and delete them. 
After completion of these manipulations, we will have all Signal 
values clustered in nine columns from K to S. Next, we will designate 

Figure 16.2  Deleting multiple columns using the Microsoft Excel popup 
window.
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space for log-transformed data using column titles and text-modify-
ing formulas.

	 7.	Select cell T1, and type: =K1&” log2”. This equation tells Microsoft 
Excel to take the value in cell K1, which is a text entry “Placebo1 Signal” 
and add (ampersand sign, &) text “log2” in quotation marks. After you 
hit Enter, the content of T1 cell will be “Placebo1 Signal log2”.

(Note: All entries starting with the equal sign are interpreted by Micro-
soft Excel as a formula. If you forget to put the equal sign, the pro-
gram will see it as a regular entry.)

	 8.	To title other columns accordingly, click on the T1 cell again and 
while holding the right mouse button, highlight eight first raw cells 
to the right (including AB column). To fill highlighted cells with 
titles, use the CTRL+R command (Fill-to-the-Right function). 
Microsoft Excel will move through cells from K1 to S1, applying the 
formula that we provided in the T1 cell to each highlighted cell.

Given that log transformation can be applied only to positive numbers, 
we will substitute all zero values in our datasheet with 0.001 using 
the Replace function.

	 9.	To search the entire worksheet for 0 values, click any cell in the 
datasheet.

	 10.	On the Edit menu, click Replace (CTRL+H).

	 11.	In the Find what slot, enter 0.

	 12.	Click Options and then select the Match entire cell contest 
checkbox (Figure 16.3).

	 13.	In the Replace with box, enter 0.001 and click Replace All.

	 14.	Close Find and Replace window. Now we are ready to populate 
titled columns with log-transformed data.

	 15.	Select cell T2 and type in the formula: =LOG(K2,2), which tells 
Microsoft Excel to take the value in cell K2 (170.2) and convert it into 
a log value with base 2 (the number after the comma in the formula).

	 16.	Hit Enter. Select the entire area under new titles by clicking on the T2 
cell and highlighting it by dragging the mouse pointer to cell AB13 while 
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holding the right button. Alternatively, you can highlight the desired area 
by clicking on the T2 cell and then performing CTRL+SHIFT+End.

(Note: CTRL+Home and CTRL+End will select the very first or last cell 
in a spreadsheet, respectively.)

To fill the selected area, we have to use the Fill-Down (CTRL+D) and 
Fill-to-the-Right (CTRL+R) functions in succession in any order of 
these commands. This approach demonstrates the functionality of relative 
referencing in Microsoft Excel. A relative cell reference in a formula, such 
as T2, is based on the relative position of the cell that contains the formula 
and the cell the reference refers to (in our case, K2). If the position of the 
cell that contains the formula changes, the reference changes in the same 
direction. When we copy our formula down columns and then across 
rows, the reference will be automatically adjusted. For example, when we 
copy (fill down) formula =LOG(K2,2) in cell T2 to cell T3, the relative ref-
erence is automatically adjusted from K2 to K3.

C.  Selecting Detectable Genes  To select genes that were expressed on 
all microarrays, we will apply filtering functions of Microsoft Excel. The 
Detection columns (B1–G1) contain information of transcript detect-
ability by each probe set on an array and coded by Affymetrix as P for 
present, M for marginal, and A for absent. For our further analysis, we will 
select genes expression of which was classified by Affymetrix as “present  
(P)” on all arrays.

Figure 16.3  Application of the Microsoft Excel Find and Replace func-
tion to the selected area of a datasheet.

C8105.indb   555 7/18/07   8:24:42 AM



556  <  Dmitry N. Grigoryev

	 1.	Select cell B1; on the Data menu, point to Filter, and then click 
AutoFilter or ALT+D+F+F.

	 2.	Click the arrow in column B1 and select P. The AutoFilter func-
tion will retain only rows that contain P in column B1 (Figure 16.4).

	 3.	Select P in the other eight columns. To track your filtering, Micro-
soft Excel will change the color of the arrow in filtered columns 
from black to blue. This AutoFilter approach becomes tedious 
when there is a large number of arrays to analyze. The application 
of the more efficient but complex Advance Filter function will 
be described in the section “Clustering.” Now we will copy identified 
“present” genes to Sheet2 of this workbook.

	 4.	Select Probe set ID column and all Signal log2 columns and 
copy them (CTRL+C).

	 5.	Click on the Sheet2 tab in the right lower corner of the workbook, 
select the A1 cell in Sheet2, and paste (CTRL+P) the copied data. 
You should have six probe sets that detect their corresponding genes 
in all tested samples.

Figure 16.4  Application of the Microsoft Excel AutoFilter function.
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	 6.	You can rename Sheet2 using the Format menu, point to Sheet, 
and then click Rename. Type the new name Present over the cur-
rent (Sheet2) highlighted name.

D.  Expression Analysis
	 1.	Name columns K2 and M2 Fold change DrugA and Fold Change 

DrugB, respectively.

	 2.	Name columns L2 and N2 P value DrugA and P value DrugB, 
respectively.

	 3.	To calculate expression fold change for the first probe set 1417290_at 
select cell K2 and type: =2 (̂AVERAGE(E2:G2)-AVERAGE(B2:D2)).

		  Microsoft Excel will subtract the average of control expression 
signals from the average of DrugA expression signals and convert 
the resulting log2 value to the numeric fold change.

		  (Note: The subtraction of log values is an equivalent of division of 
numeric values.)

	 4.	Repeat this step for Drug B (cell M2: =2 (̂AVERAGE(H2:J2)-

AVERAGE(B2:D2)).

	 5.	To access statistical tools, click Data Analysis in the Tools menu. 
If the Data Analysis is not available, ask your IT person to load 
the Analysis ToolPak add-in program.

	 6.	 In cell L2 type: =TTEST(E2:G2,B2:D2,2,2) where E2:G2 represent 
Drug A data set, B2:D2 represent Placebo data set, the third entry 
specifies the number of distribution tails (in our case it is a 2-tailed 
test), the fourth entry specifies the type of a test (1 = paired, 2 = two-
sample equal variance (our case), 3 = two-sample unequal variance).

		  Given that during log2 transformation the variability of expres-
sion values becomes equivalent, the two-sample equal variance type 
was selected.

	 7.	Repeat this step for Drug B by typing in cell N2: =TTEST(H2:J2,B2:
D2,2,2).

	 8.	Click on L2 cell, and select all cells under new titles using your mouse 
or shortcut CTRL+SHIFT+End.

	 9.	Fill empty cells with CTRL+D.
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			   Now we will select genes that were significantly (0.5 > Fold change 
> 2 and P < 0.05) affected by at least one of two tested drugs.

	 10.	For Drug A select cell K1, and on the Data menu, point to Filter 
and then click AutoFilter or ALT+D+F+F. 

	 11. 	Click the arrow in the column K1 and select (Custom…).

	 12.	In the box on the left, click the arrow and select is greater 

than.

	 13.	In the box on the right, enter 2.

	 14.	Add another criteria by clicking Or and repeat the previous step in 
blank boxes, but this time select is less than.

	 15.	In the box on the right, enter 0.5 (Figure 16.5) and click OK.

	 16.	Perform filtering for column L2 by selecting is less than and 
entering 0.05 in the box on the right.

	 17.	Select Probe set ID and four last columns, copy them to a new 
(CTRL+N) workbook, and save it (CTRL+S) as Candidate genes.
xls.

	 18.	Return to Affymetrix expression.xls Present sheet; click the 
arrow in the column K1 and select All.

Figure 16.5  User-defined filtering using (Custom…) feature of the Microsoft 
Excel AutoFilter function.
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	 19.	Repeat this step for column L1, and the original dataset will be 
restored.

	 20.	Repeat the entire filtering procedure for Drug B, using columns M 
and N.

	 21.	Click on cell A2, then holding SHIFT click on cell A7 and perform 
copy command (CTRL+C). Now your selection will be limited to 
a specific set of cells, which will allow you to paste selected Probe 
set ID entries under existing data in the Candidate genes.xls 
workbook.

	 22.	Click on cell A6 in Candidate genes.xls and paste (CTRL+V) 
Probe set IDs from the Drug B gene list.

	 23.	Repeat this step with data in columns K to N. Click on the cell K2, 
and holding SHIFT click on the cell N7, copy and paste into Candi-
date genes.xls, selecting cell B6.

These manipulations generated the candidate gene list for both drugs A 
and B. But there are most likely genes that were significantly affected 
by both drugs and, therefore, this list contains duplicated entries. 
To eliminate duplicates, we will filter for unique records using the 
Advanced Filter function.

	 24.	Click cell A1 in the list.

	 25.	On the Data menu point to Filter and then click Advanced 
Filter.

	 26.	Click “Filter the list, in-place” and select the Unique records 

only checkbox, click OK.

	 27.	To save unique candidate genes, perform CTRL+SHIFT+END -> 
CTRL+C, paste (CTRL+V) to Sheet2 of this workbook, and rename 
Sheet2 with Unique using Rename function as described earlier.

We will annotate these candidate genes in Section 2 using Microsoft Access.

E.  Color-Coding Gene Expression Ratios  First, we have to convert gene 
expression values into fold change ratios on a chip-to-chip basis:
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	 1.	Open (CTRL+O) Color coding and clustering.xls work-
book provided in Part III, which represents familiar expression val-
ues in log2 format (Expression values spreadsheet).

	 2.	Label columns K to P by copying titles form columns E to J, 
respectively.

	 3.	Select cells K1 to P1 and replace Signal log2 part of the title with 
Fold change as described in the following text.

	 4.	On the Edit menu, click Replace. In the Find what box, enter 
Signal log2. In the Replace with box, enter Fold change.

	 5.	Click Replace All and then OK.

	 6.	 In the cell K2 type formula: =E2-AVERAGE($B2:$D2).

This formula tells Microsoft Excel to subtract average of log2 Placebos 
from individual gene expression value on each array for Drug A and 
Drug B.

	 7.	Copy Probe set ID (column A) and six Fold change columns 
(K to P) to spreadsheet Color coding of this Microsoft Excel 
workbook.

	 8.	Click on the first number containing cell B2, and select all numeric 
entries in Color coding spreadsheet with CTRL+SHIFT+END.

	 9.	On the Format menu, click Conditional Formatting.

	 10.	In the first slot of the Conditional Formatting dialog box, select 
Cell Value Is, select the comparison phrase greater than, and 
then type 1 in the third slot.

Remember that a 1-fold change in log2 format stands for a numeric 2-
fold change.

	 11.	Click the Format button in the Conditional Formatting dialog 
box, and in the Format Cell dialog box select the Pattern tab, 
choose red color, and click OK.

	 12.	To add another condition, click the Add button in the Conditional 
Formatting dialog box.

	 13.	Select the comparison phrase less than, and then type -1 in the 
third slot. Click Format.
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	 14.	In the Format Cell dialog box, select Pattern, choose green color, 
and then click OK (Figure 16.6).

To facilitate segregation of genes that were similarly affected by both Drug 
A and Drug B, we will sort genes by their averaged expression values.

	 15.	Type formula =AVERAGE(B2:G2) in cell H2.

	 16.	Generate averages for all genes by selecting cells from H2 to H13 and 
filling down with CTRL+D.

	 17.	Sort this datasheet by column H in descending order by clicking a 
cell in the column H and then the Sort Descending icon.

This manipulation will move genes that were mostly upregulated in both 
conditions upward and those that were mostly downregulated in both 
conditions downward.

F.  Clustering  We will build a cluster around 1449984_at probe set, 
which is our putative gene of interest. Our goal is to identify other genes 
with expression patterns similar to that of the 1449984_at probe set. We 
will set upper and lower fold change limits for our cluster using 2 logs 
deviation from the corresponding fold change values of the 1449984_at 
probe set.

Figure 16.6  Visualization of the sought data points using Format Cell 
option of the Microsoft Excel Conditional Formatting function.
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	 1.	Copy columns A to G from Color coding spreadsheet to the Clus-
tering spreadsheet.

	 2.	Select all copied cells in the Clustering spreadsheet, and delete 
conditional formatting as described in the following text.

	 3.	Select Conditional Formatting from the Format menu and 
in the Conditional Formatting dialog box click the Delete 
button.

	 4.	In the Delete Conditional Formatting dialog box select Con-
dition1 and Condition2 checkboxes, and click OK in Delete 
Conditional Formatting and followed Conditional Format-
ting dialog boxes.

	 5.	Insert six blank rows above the list that will be used for storing filter-
ing criteria.

	 6.	Select cells A1 to G6, and on the Insert menu click Rows.

The criteria containing rows must have their own column labels, so 
copy column titles from the seventh row and paste them in the first 
row. Given that we will filter our datasheet using two values (upper 
and lower cluster limits), we have to duplicate column titles in the 
filtering criteria area.

	 7.	Paste another set of array titles (excluding Probe set ID title) to 
cells H1 to M1.

	 8.	To identify upper limiting values of the cluster, type in the cell A4 
title: upper-> and in cell B4 type formula: =B10+2. This formula 
tells Microsoft Excel to add 2 logs (4 fold changes) to the expression 
value of 1449984_at probe set.

	 9.	To identify lower limiting values, type in cell A5 title: lower->, and 
in cell B5 type formula: =B10-2.

	 10.	Generate upper and lower value for all six arrays by highlighting the A4 
to G5 area and filling highlighted cells with the CRTL+R command.

Now we will submit these numbers to filtering criteria.

	 11.	Select cell B2 and type: =”<”&B4. The resulting expression will tell 
Microsoft Excel to search for numbers that are below upper limits of 
the cluster.
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	 12.	Generate upper limit searching criteria for all six arrays by high-
lighting A2 to G2 area and filling highlighted cells with the 
CRTL+R command.

	 13.	Select cell H2, and type: =”>”&B5. The resulting expression will tell Excel 
to search for numbers that are above the lower limits of the cluster.

	 14.	Generate lower limit searching criteria for all six arrays by highlight-
ing the H2 to M2 area and executing the CRTL+R command.

(Note: The criteria range must be separated from your database by at 
least one blank row.)

	 15.	Click cell A7 (it can be any cell inside the datasheet), then select 
Filter->Advanced Filter from the Data menu. The Advanced 
Filter dialog box will appear.

The List range in the dialog box is the area of the spreadsheet that 
Microsoft Excel determines as your database. On the spreadsheet, it 
will be outlined with dotted lines.

	 16.	To indicate the criteria range, click in the Criteria range slot of 
the dialog box, then select (highlight) the A1 to M2 area that con-
tains filtering criteria.

(Note: If the criteria range in the dialog box already contains cell refer-
ences, highlight them prior to scrolling over our criteria range or 
type in correct cell addresses.)

We have the option of filtering the database “in place” or copying the 
filtered records to another location in the spreadsheet.

	 17.	Leave Filer the list, in-place selected (Figure 16.7) and click 
OK.

Microsoft Excel identified three records that contain probe sets that are 
in the specified cluster range. To retrieve more genes, the limiting 
criteria should be relaxed by increasing deviation to 3 or 4 logs.

To view all records again, select Filter->Show All from the Data 
menu.

	 18.	To perform graphical visualization, select filtering results to be 
graphed.
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Figure 16.7  Application of the Microsoft Excel Advanced Filter 
function.

	 19.	Put your cursor in cell A7, click hold the mouse button down, and 
drag to cell G11.

	 20.	Click on the Chart Wizard. button on the Microsoft Excel toolbar.

	 21.	From the Chart Wizard dialog box that opens, select Line from 
the listing in the “Chart type” and the first template from the “Chart 
subtype”; then click Finish (Figure 16.8).

2.  Advanced Techniques
A.  Mean Center Array Normalization  This array-normalizing approach 
is a simplified version of Z-transformation of array data and should be 
performed on log transformed data. The normalization is achieved by 
subtraction of the columnwise mean from the individual values in each 
row of this column, so that the mean value of the column becomes 0.

First, we will identify invariant probe sets:

	 1.	Open file Affymetrix expression.xls.

Instead of filtering for present (P) detection as described in the “Selecting 
detectable genes” procedure, we will filter for “absent” (A) detection.

	 2.	Apply AutoFilter function to all columns, and retain only rows 
that contain A.

	 3.	Save identified absent genes that are representative of invariant data 
fraction to Sheet3 of this workbook.
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	 4.	Select Probe set ID column and all Signal log2 columns and 
copy them (CTRL+C).

	 5.	Click on the Sheet3 tab in the left lower corner of the workbook, 
select A1 cell in Sheet3, and paste (CTRL+P) copied data.

	 6.	Rename Sheet3 as Absent.

You should have four probe sets that did not detect their correspond-
ing genes in any of tested samples, which characterize these genes 
as nonspecific for a given tissue. Therefore, hybridization signals of 
these probe sets represent nonspecific binding for all arrays and can 
serve as an invariant data set.

Now we will calculate mean value for each column.

	 7.	In cell B6 type =AVERAGE(B2:B5) and hit Enter.

	 8.	Select B6 to J6 and Fill-to-the-Right (CTRL+R).

Now you can evaluate the technical variability of array brightness, 
where Placebo3 is the dimmest and DrugB3 is the brightest array 
in the experiment.

Figure 16.8  Creating linear graph for selected values using the Microsoft Excel 
Chart Wizard.
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	 9.	Return to Sheet1 and uncheck AutoFilter: on the Data menu, 
point to Filter, and then click AutoFilter (ALT+D+F+F).

	 10.	Select cell AC1 and type: =T1&” normalized”, and create titles for 
AC1-AJ1 columns as described previously.

	 11.	Select cell AC2 and type: =T2-Absent!B$6. This formula introduces 
two new functions: referencing to another worksheet and absolute 
formula reference.

In this formula we are referencing values located in the worksheet named 
Absent. An exclamation point (!) links T2 reference cell from the cur-
rent worksheet (Sheet1) to the Absent worksheet in the same work-
book and precedes the referenced cell in the Absent worksheet.

Contrary to relative referencing described in the log transformation 
paragraph, an absolute cell reference in a formula, such as $B$6, 
always refers to a cell in a specific location. If the position of the cell 
that contains the formula changes, the absolute reference remains 
the same. However, each column in our case is represented by its 
own mean value located in the sixth row of the Absent worksheet; 
therefore, we will apply mixed referencing. A mixed reference has 
either an absolute column and relative row or absolute row and 
relative column. An absolute row reference takes the form B$6, 
which allows changes in column address but keeps the row location 
constant.

	 12.	Apply the normalizing formula to all nine columns.

B.  Expanded Selection of Detectable Genes  In our basic streamline 
analysis we identified detectable genes that were present (P) on all arrays. 
This approach ignored genes that were unaffected by one condition but 
become detectable in another. In this section we will identify all genes 
that were detectable at any given experimental condition. We will define 
genes that are detectable on two out of three arrays under any experimen-
tal conditions.

C8105.indb   566 7/18/07   8:24:51 AM



Microsoft Excel and Access  <  567

	 1.	Copy Probe set ID, Detection, and Normalized columns (A-J, 
AC-AK) in Sheet1 of workbook Affymetrix expression.xls 
to new workbook (CTRL+N or by clicking on New icon in the Micro-
soft Excel toolbar); and save it (CTRL+S) as Normalized expres-
sion.xls.

	 2.	 In the Detection columns we will replace A and M with 0, and P 
with 1 using the Replace function.

	 3.	Select cell B2 and, holding SHIFT, select cell J13.

	 4.	On the Edit menu, click Replace (CTRL+H).

	 5.	In the Find what box, enter P.

	 6.	Click Options and then select Match entire cell contest 
checkbox.

	 7.	In the Replace with slot, enter 1 and click Replace All.

	 8.	Replace M and A with 0.

	 9.	Close the Find and Replace window.

	 10.	Name columns T, U, and V Placebo detection, DrugA detec-
tion, and DrugB detection, respectively.

	 11.	In cells T2, U2, and V2 type: =INT(AVERAGE(B2:D2)/(2/3)), 
=INT(AVERAGE(E2:G2)/(2/3)), =INT(AVERAGE(H2:J2)/(2/3)), 
respectively. This formula will assign 1 to a probe set that was pres-
ent on 2 or 3 arrays (≥2/3) and 0 to probe sets that were present on 
less than 2 arrays (<2/3), where an integer function (INT) reports 
numbers rounded down to an integer.

	 12.	Fill the corresponding columns down (CTRL+D).

	 13.	Name column W Overall detection.

	 14.	In cell W2 type: =SUM(T2:V2) and fill down the column.

Now we will filter out probe sets with overall detection equal to 0.

	 15.	Select cell W1, and on the Data menu point to Filter; then click 
AutoFilter or ALT+D+F+F.

	 16.	Click the arrow in the column W1 and select (Custom…).

	 17.	In the box on the left, click the arrow and select “does not equal”.
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	 18.	In the box on the right, enter 0 and click OK.

	 19.	Copy (CTRL+C) Probe set ID column and nine “Normalized” 
columns (K-S) to Sheet2 and rename Sheet2 as Present genes.

This approach identified eight detectable genes compared to six genes 
that were detected using the “present on all arrays” approach in Affyme-
trix expression.xls.

Part III	S ample Data

Affymetrix data source sample.xls represents shortened (12 
probe sets) example of standard (12000–54000 probe sets) Affyme-
trix array output.

Affymetrix expression example.xls represents the final out-
come of all manipulation described in the tutorial for Affymetrix 
expression.xls.

Candidate genes example.xls demonstrates final selection of 
candidate genes generated by analyses described in the tutorial.

Color coding and clustering.xls contains basic expression 
data for color coding and clustering exercises.

Color coding and clustering example.xls represents the 
final outcome of all manipulation described in the tutorial.

Normalized expression example.xls represents the final out-
come of all manipulation described in the advanced section of 
Microsoft Excel tutorial for Normalized expression.xls.

Section 2	M icrosoft Access
Part I	I ntroduction

DNA microarray experiments provide expression information for thou-
sand of genes, including well-known, newly identified, and unannotated 
genes. This flood of information can overwhelm biologists and make 
extraction of useful information a challenging task. Lack of sufficient 
annotation often becomes rate-limiting as sifting through available data-
bases and biomedical literature sources is a monotonous, laborious, and 
time-consuming task. To accelerate this process, Microsoft Access-based 
tools and macros were developed and successfully applied for gene anno-
tation. However, these tools require installation of additional scripts and 
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macros. In this chapter we will show how to annotate selected genes using 
the basic functions of Microsoft Access. The application of these sim-
ple functions allows batch querying of multiple genomic databases and 
obtaining up-to-date annotation for candidate genes of interest.

1.  What Is Microsoft Access?
Microsoft Access is a database management system that functions in the 
Windows environment and allows one to create and process data in a 
relational database. In simple terms a relational database is an organized 
collection of tabular data that can be linked (related) using similar fields 
between multiple tables such as gene symbols or accession numbers. The 
flexible Microsoft Access database management system provides research-
ers with tools they need to organize gene expression data tailored to spe-
cific objectives. Microsoft Access also provides a user-friendly interface 
that allows users to manipulate data in a graphical environment that is less 
intimidating for general users such as biologists.

2.  What Can Microsoft Access Do?
Microsoft Access supports the framework for storing and analyzing large 
amounts of information in a database in a matter of minutes. Tables com-
prise the fundamental building blocks of the Microsoft Access database 
and are extremely similar to Microsoft Excel spreadsheets. Microsoft 
Access allows researchers to add, modify, or delete data from the database, 
ask questions (queries) about the data stored in the database, and produce 
reports summarizing selected contents. The report-building wizards pro-
vide the capability to quickly produce summaries of the data contained in 
several tables tailored to researcher’s objectives.

3.  Featured Functions in Microsoft Access for Biologists
Microsoft Access offers one of the simplest database management func-
tions. Although Microsoft Access is a powerful stand-alone application, 
we will use it as an auxiliary tool for selection of common entries from 
multiple gene expression and annotation datasheets and filtering large 
textual entries for gene ontology. We also will demonstrate applicability 
of basic Microsoft Access functions for cross-referencing gene lists for cre-
ation of Venn diagrams. The Venn diagram is a useful visualization tool 
to indicate the extent of overlaps and differences between multiple gene 
lists generated during microarray analyses. The flexibility of the Micro-
soft Access filtering function allows identification of not only numbers of 
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shared genes or genes specific to a particular condition but also descrip-
tion of these genes.

A.  Queries  The Microsoft Access query function will be used to display 
information from a combination of tables. For example, suppose you have 
one table that lists the mouse probe sets that detected significant changes 
in expression pattern of their target genes. A second table contains descrip-
tive information about all mouse probe sets. By creating a query based on 
both tables, you could retrieve a listing of each significantly changed probe 
set along with the name of a gene and its biological function. We will also 
use the query function for cross-linking orthologous genes. It is common 
in genomic research that human genes are better annotated than rodent, 
canine, or other species. To enrich, for example, mouse annotation, one 
can link mouse genes to their corresponding human orthologues, which is 
easily done with Microsoft Access query function.

B.  Filtering Large Entries  The Microsoft Excel filtering function can 
handle approximately 300 characters and spaces per cell in a spreadsheet. 
However, the majority of the gene ontology descriptions go well beyond 
300 characters. Therefore, the search for a specific gene ontology using 
the Microsoft Excel filtering function would be incomplete. The Microsoft 
Access filtering function does not have this limitation and will generate a 
complete list of queried ontologies.

Part II	S tep-By-Step Tutorial
1.  Starting Microsoft Access
	 1.	Double-click on the Microsoft Access icon on the desktop or click on 

Start -> Programs -> Microsoft Access. If a dialog box is auto-
matically displayed with options to create a new database or open an 
existing one, select Candidate gene annotation.mdb database 
and then click OK.

	 2.	 If the dialog box is not displayed open provided in Part III database 
manually with CTRL+O, then in the Look in field of the Open dia-
log box select Candidate gene annotation.mdb file and click 
Open button.

	 3.	Under Table object you will see four tables: Candidate genes, 
Human annotation, Mouse annotation, and Human-Mouse 
orthologues. Candidate genes table represents six candidate 
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genes previously identified in Microsoft Excel section and can be 
opened by double-clicking on the table title (Figure 16.9).

2.  Assigning Probe Sets to Their Target Genes
	 1.	 In the Database window click Queries under Objects, and then 

click New on the Database window toolbar.

	 2.	 In the New Query dialog box, select Design View, and then click 
OK. Alternatively, you can double-click on Create query in 
Design view.

	 3.	 In the Show Table dialog box, select Candidate genes and Mouse 
annotation tables by double-clicking the name of each table and 
Microsoft Access will add these tables to the query; and then click 
Close.

	 4.	 In Query design view (top panel), drag a Probe set ID field from 
Candidate genes table to the Probe set ID field in Mouse 
annotation table, and the join line should appear. This line between 
fields of two different tables tells Microsoft Access how the data in one 
table is related to the data in the other. With this type of join, Micro-
soft Access selects records from both tables only when the values in 
the joined fields are equal (in our case, the same probe set IDs).

Figure 16.9  Locating tabular data in the Microsoft Access environment.
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	 5.	To generate the output of this query, we will drag selected fields from 
the field list to columns in the design grid (bottom panel) to show 
these fields in the output table. From table Mouse annotation, 
drag fields Probe Set ID, Gene Title, Gene Symbol, and Gene 
Ontology Biological Process into the design grid.

	 6.	From table Candidate genes drag fields Fold change DrugA, 
P value DrugA, Fold change DrugB, and P value DrugB 
(Figure 16.10).

	 7.	Under Query menu select Run or click Run query icon.

	 8.	Save query with File->Save (CTRL+S) as Query Candidate 

gene annotation. The resulting table will contain combined selec-
tive information from both tables, including expression changes of 
candidate genes and their functional annotation. Close the query.

3.  Assigning Probe Sets to Their Orthologues in Another Species
	 1.	Open Candidate gene annotation.mdb. In the Database win-

dow click Queries under Objects, and then double-click on Cre-
ate query in Design view.

	 2.	 In the Show Table dialog box double-click on Human annotation 
and Mouse-Human orthologues; two tables should appear in the 
query design view.

	 3.	Click Queries tab in the Show Table dialog box and double-click 
on Query Candidate gene annotation listing. Close Show 
Table dialog box.

Figure 16.10  Building up a simple, two-component query using the Microsoft 
Access Design View panels.
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	 4.	Connect Probe set ID field from the Query Candidate gene 
annotation table with the Mouse Probe Set field in Mouse-
Human orthologues table. Connect Probe set ID field from the 
Human annotation table with the Human Probe Set field in the 
Mouse-Human orthologues table.

	 5.	Starting with the Probe set ID field in Query Candidate gene 
annotation table, select multiple entries by holding SHIFT and 
clicking on the last field P value DrugB. Drag the whole selection 
down into the first column of design grid (bottom panel).

	 6.	Drag Probe set ID and Gene Ontology Biological Process 
fields from the Human annotation table into the second and fifth 
column of the design grid, respectively (Figure 16.11).

	 7.	Run query and save resulting table as Query Mouse-Human 

ontology.

The resulting table will contain set of mouse-human orthologous candidate 
genes that are annotated using functional information from both species.

Figure 16.11  Building up a complex, three-component query using the Micro-
soft Access Design View panels.
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4.  Filtering for Large Entries
	 1.	Open Mouse annotation table.

	 2.	On the Microsoft Access Records menu, point to Filter, and then 
click Advanced Filter/Sort.

	 3.	Add to the design grid the Gene Ontology Biological Process 
field by dragging it from the Mouse annotation table.

	 4.	 In the “Criteria:” cell for the “Field:” Gene Ontology Biological 
Process enter *transport*. The asterisk (*) represents the wild 
card character that is commonly used in computing to substitute for 
any other character, number, or text. This expression tells Microsoft 
Access to search for any entry that contains the combination of let-
ters transport. Therefore, all gene ontologies related to any kind of 
molecular transport will be retrieved (Figure 16.12).

	 5.	Apply the filter with Record->Apply Filter/Sort or by clicking 
Apply Filter on the toolbar. Three genes with transport-related 
gene ontology are identified.

Figure 16.12  Searching for oversized entries using the Microsoft Access Fil-
ter function.
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	 6.	To reproduce this filtering approach in Microsoft Excel, open Mouse 
annotation.xls file.

	 7.	Select cell E1 (Gene Ontology Biological Processes), on the Data 
menu, point to Filter and then click AutoFilter or ALT+D+F+F.

	 8.	Click the arrow in the column E1 and select (Custom…).

	 9.	 In the box on the left, click the arrow and select contains.

	 10.	In the box on the right, type transport and click OK.

This approach identified only two genes related to molecular transport (the 
Snca gene identified by Microsoft Access is missing because letter combi-
nation transport is located beyond 300 characters and spaces (at 734-742 
to be precise) in ontology annotation for this genes and therefore cannot 
be accessed by the filtering function of Microsoft Excel.

5.  Cross-Referencing for Venn Diagram Construction
We will generate a basic two-component Venn diagram and identify cor-
responding gene lists using candidate genes for Drug A (three genes) and 
Drug B (five genes) produced in Section 1 with more stringent significance 
set at p < 0.01.

	 1.	Open the Microsoft Access database Venn diagram.mdb, which is 
provided in Part III.

	 2.	 In the Database window click Queries under Objects listings, 
and then double-click on Create query in Design view.

	 3.	Put tables Candidates Drug A and Candidates Drug B into the 
query (top panel) by double-clicking the name of each table in the 
Show Table dialog box, and then click Close.

	 4.	 In query design view (top panel), connect Probe set ID field from 
Candidates Drug A table to the Probe set ID field in the Can-
didates Drug B table.

	 5.	From table Candidates Drug A drag field Probe Set ID into the 
first column and from table Candidates Drug B drag field Fold 
Change B into the second column of the design grid (bottom panel) 
to show these fields in the output table.

	 6.	Under Query menu select Run or click Run query icon.
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Two genes are identified as affected by both drugs. Therefore, in a Venn 
diagram the area of shared genes will have two genes; as a result, 
Drug-A- and Drug-B-specific areas will be represented by one and 
three genes, respectively.

Now we will identify these drug-specific genes.

	 7.	On the Microsoft Access tool bar click View -> Design view. The 
query design will reappear.

	 8.	Click on the intertable link with the right button and in the appeared 
dialog box select Join Properties (Figure 16.13).

	 9.	In the Joint Properties dialog box select radio button “2: Include 
ALL records from ‘Candidates Drug A’ and only those records from 
‘Candidates Drug B’ where the joined fields are equal” and click OK.

	 10.	After you run this query, the resulting table will have all Probe set 
ID for genes affected by Drug A and Probe set ID affected by 
both drugs.

Figure 16.13  Manipulating with query output by modifying table joining 
default settings using the Microsoft Access Join properties function.
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The Probe set ID field for probe set 1436853_a_at in Drug B col-
umn is empty (Figure 16.14), which identifies this gene as specific for 
Drug A.

	 11.	Repeat the previous steps, but now select in the Joint Properties 
dialog box radio button “3: Include ALL records from ‘Candidates 
Drug B’ and only those records from ‘Candidates Drug A’ where the 
joined fields are equal” and click OK.

	 12.	Run the query.

Now we have identified three genes in the Drug B list that have blank 
cells in the Drug A column. On the lines of the previous conclusion, these 
genes are specific for Drug B.

Part III	S ample Data

Candidate gene annotation example.mdb and Venn diagram 

example.mdb contain queries generated during tutorial using Candidate 
gene annotation.mdb and Venn diagram.mdb, respectively.
Mouse annotation.xls represents an annotation table for twelve 

probe sets in the sample Affymetrix array from Section 1.

Section 3	I nterchange of data between 
Microsoft Excel and Access
Microsoft Excel is tightly integrated with Microsoft Access, which makes 
data transfer between these applications an easy task. Microsoft Access 
accepts tabular information in multiple formats and automatically gener-
ates its own program compatible tables. Given that Microsoft Access tables 
are extremely similar to Microsoft Excel spreadsheets, the cross-program 
conversion of data is a straightforward task. Once data are imported into 
Microsoft Access, researchers will be able to manipulate data inside the 
Microsoft Access database and easily export the resulting tables back to 
Microsoft Excel as program-compatible spreadsheets.

Figure 16.14  Tabular output of a query from Figure 16.13.
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Part I	I ntroduction
1.  Import
Microsoft Access provides functions for using data from an external data 
source. You can import the data into a new Microsoft Access table, which 
is a way to convert data from a different format (in our case, a Micro-
soft Excel spreadsheet) and copy it into Microsoft Access. Imported data 
represent a copy of the Microsoft Excel spreadsheet information in a 
Microsoft Access database, with the source table not being altered dur-
ing the importing process. Therefore, updating genomic information in 
your Microsoft Excel spreadsheet will not affect content of its copy in the 
Microsoft Access database. Although there is a function that allows one to 
link Microsoft Excel and Microsoft Access tables, we would recommend 
the simple reimporting of updated genome annotation files upon their 
availability.

2.  Export
Microsoft Access objects are probably the easiest objects to export to 
Microsoft Excel because, as they are created with the same application, 
these objects are accordingly formatted and recognizable. The Export 
function will allow quick transformation of a Microsoft Access table into 
the familiar environment of the regular Microsoft Excel workbook.

Part II	S tep-By-Step Tutorial

	 1.	Double-click on the Microsoft Access icon on the desktop or perform 
Start -> Programs -> Microsoft Access.

	 2.	 If a dialog box is automatically displayed with options to create a new 
database, select Blank Access database and then click OK.

	 3.	 If a dialog box is not displayed, create a new database with CTRL+N, 
then on the New File tab, which appears on the right of your screen  
click Blank Database.

	 4.	Use File name: slot to name database Candidates.mdb and spec-
ify location using File New Database wizard.

	 5.	Click Create to start defining our database.

1.  Importing Tables
We will import Candidates Drug A.xls and Candidates Drug 

B.xls files provided in Part III of this section.
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	 1.	To import the Candidates Drug A.xls spreadsheet: on the File 
menu, point to Get External Data, and then click Import.

	 2.	 In the Import dialog box, in the Files of type slot, click the 
arrow and select Microsoft Excel (*.xls).

	 3.	Click the arrow to the right of the Look in box, select the drive and 
folder where Candidates Drug A.xls is located, and then double-
click its icon.

	 4.	In the Import Spreadsheet Wizard dialog box select worksheet 
Sheet1 (you can import from only one spreadsheet within a work-
book at the time).

	 5.	Click Next, select First Row Contains Column Headings 
checkbox and click Finish.

	 6.	Click the OK button in the report of successful importing that will 
appear (Figure 16.15).

	 7.	Click once on the new Microsoft Access table with default name 
Sheet1 and rename this table as Candidates Drug A.

Figure 16.15  Importing Microsoft Excel table using the Microsoft Access Get 
External Data function.
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	 8.	Repeat these steps to import file Candidates Drug B.xls and 
name it Candidates Drug B.

Now this database should be an exact copy of Venn diagram.mdb 
described in Section 2. Query these tables for common Probe Set ID 
and name resulting table Query common candidates.

2.	 Exporting Queries
Now we will convert this Microsoft Access table back into Microsoft 
Excel.

	 1.	On the File menu, click Export. In the Save as type: slot select 
Microsoft Excel 97-2002 (.xls).

	 2.	Click the arrow to the right of the Save in: box, and select the drive 
and folder to save to. Name the exported file Common candidates 
and click Export All.

(Note: Given that some gene ontology fields are pretty long do not select 
the “Save formatted” check box, it will truncate all output fields to 255 
characters and spaces.)

Now we have familiar Microsoft Excel workbook environment for genes 
that were affected by both drugs.

Part III	S ample Data

Candidates Drug A.xls and Candidates Drug B.xls files 
provided for importing exercise and derived from the original gene 
list provided in Section 1.

Candidates example.mdb represents the database after all the steps 
described in tutorial are completed.

Common candidates.xls is an exported file from Candidates exam-
ple.mdb and exemplifies the outcome of accurate exporting exercise.
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Selected Websites

Chapter 1	 Genome Analysis

UCSC Genome Browser Home http://genome.ucsc.edu

NCBI-BLAST http://www.ncbi.nlm.nih.gov/BLAST

Ensembl Genome Browser http://www.ensemble.org

ECR Browser http://ecrbrowser.dcode.org

Argo Genome Browser http://www.broad.mit.edu/annotation/argo

Chapter 2	Tw o Common DNA Analysis Tools

REBASE http://rebase.neb.com

NEB Cutter http://tools.neb.com/NEBcutter2/index.php

Primer3 http://frodo.wi.mit.edu/cgi-bin/primer3/primer3_www.cgi

Restriction/Mapper http://arbl.cvmbs.colostate.edu/molkit/mapper/index.html

http://www.restrictionmapper.org/

Chapter 3	P hylogenetics Analysis

Clustalw http://www.ebi.ac.uk/clustalw/
3D-Coffee http://igs-server.cnrs-mrs.fr/Tcoffee/tcoffee_cgi/index.cgi
MUSCLE http://www.drive5.com/muscle/
PROBCONS http://probcons.stanford.edu/
MAFFT http://timpani.genome.ad.jp/mafft/server/
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Chapter 4	SNP  and Haplotype Analyses

dbSNP http://www.ncbi.nlm.nih.gov/projects/SNP

HapMap http://www.hapmap.org/

Haploview http://www.broad.mit.edu/mpg/haploview/

PharmGKB http://www.pharmgkb.org/

Seattle SNPs http://pga.gs.washington.edu/

Chapter 5	 Gene Expression 
Profiling by Microarray

Affymetrix http://affymetrix.com/index.affx

GEO http://www.ncbi.nlm.nih.gov/geo/

GeneSpring http://www.genespring.com

MeV http://www.tm4.org/mev.html

SAM http://www-stat.stanford.edu/~tibs/SAM/

Chapter 6	 Gene Expression Profiling by SAGE 

SAGEnet http://www.sagenet.org

NCBI-SAGE http://www.ncbi.nlm.nih.gov/sage

NCI-SAGE http://cgap.nci.nih.gov/SAGE

NCBI-GEO http://www.ncbi.nlm.nih.gov/geo

Chapter 7	R egulation of Gene Expression 

NCBI-LocusLink  http://www.ncbi.nlm.nih.gov/LocusLink/

EASED http://eased.bioinf.mdc-berlin.de/

RNA Editing Web Site http://dna.kdna.ucla.edu/rna/index.aspx

Chapter 8	M icroRNoma genome-
wide profiling by microarray

miRBase: http://microrna.sanger.ac.uk/sequences/

RNAdb: http://research.imb.uq.edu.au/rnadb/

MIAME: http://www.ebi.ac.uk/miamexpress/

miRGen: http://www.diana.pcbi.upenn.edu/miRGen.html. 
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Chapter 9	 siRNA

siRNA at Whitehead: http://jura.wi.mit.edu/bioc/siRNAext/ 

siDirect: http://design.RNAi.jp/

CGAP RNAi at NCI: http://cgap.nci.nih.gov/RNAi

HuSiDa: http://www.hnman-siRNA-database.net

Protein Lounge siRNA database: http://www.proteinlounge.com/sirna

Chapter 10	Proteomic Data Analysis

Software for proteomics and 
genomics research

http://www.nonlinear.com

Matrix Science – Home http://www.matrixscience.com

Pubchem http://pubchem.ncbi.nlm.nih.gov/omssa/

Chapter 11	P rotein Sequence Analysis

RCSB PDB http://www.rcsb.org/pdb/home/home.do 

PredictProtein http://www.predictprotein.org

BioInfoBank http://bioinfo.pl/meta/livebench.pl

InterProScan http://www.ebi.ac.uk/InterProScan/

Chapter 12	  Protein Function Analysis

Uniprotein http://www.uniprot.org/

Ex-PASY http://www.expasy.org/tools/

EBI site http://www.ebi.ac.uk/services/

CBS Prediction Servers http://www.cbs.dtu.dk/services/

Chapter 13 Functional Annotation 
of Proteins in murine models

The Jackson Laboratory http://www.jax.org. 

Mouse Genome Informatics http://www.informatics.jax.org

Charles River Laboratories http://www.criver.com/

IGTC http://www.genetrap.org/

Baygenomics http://baygenomics.ucsf.edu/  
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Chapter 14	 Application of Programming 
Languages in Biology

Perl website: http://www.cpan.org

R website: http://cran.r-project.org

Biojava website: http://www.biojava.org

Bioperl website: http://bioperl.open-bio.org 

BioConductor website: http://www.bioconductor.org

Chapter 15	 Website and Database Design 

Wiki-Database http://en.wikipedia.org/wiki/Database

HTML tags http://www.w3schools.com 

Software download http://www.download.com

HTML and CSS tutorials http://www.htmldog.com

Chapter 16	M icrosoft Excel and Access

Microsoft Corp. http://office.microsoft.com/en-us/default.aspx

Microsoft Excel http://www.exceltrainingsite.com/

Microsoft Access http://www.accesstrainingsite.com/
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Glossary

Accession number: This refers to the unique GenBank identifier a 
sequence has been assigned. This number can be used to search 
Genbank records for a specific sequence.

Affymetrix: Affymetrix was founded by Stephen P.A. Fodor, Ph.D. and 
others in the late 1980s with the revolutionary idea to use semi-
conductor manufacturing techniques to create GeneChips (an 
Affymetrix trademark) or generically DNA microarrays.

α-value: The nominal probability (set by the investigator) of making a 
type 1 error.

Algorithm: any well-defined procedure describing how to accomplish a 
particular task.

ALT: the Alt (alternative) key on the IBM computer keyboard used to 
change the function other keys. 

Alternative promoter: an alternative region from which transcripts of a 
gene originate. The existence of multiple transcripts for a single 
gene that differ in their 50 termini reflects the presence of alterna-
tive promoters.

Alternative splicing: alternative splicing means some pre-mRNAs can be 
spliced in more than one way, generating alternative mRNAs.

Amplicon: a DNA fragment product of polymerase chain reaction
Analysis of variance: A statistical test for determining differences in 

mean values between two or more groups.
Argonaute proteins: endonucleases of the RISC complex capable of 

degrading the target mRNA strand whose sequence is comple-
mentary to that of the siRNA guide strand.

Bayesian probability: The probability of a proposition being true, which 
is conditional on the observed data.

Bioconductor: Bioconductor is an open source and open development 
software project to provide tools for the analysis of SNP and 
transcriptional profiling data (SAGE, microarrays or Affymetrix 
chips) and the integration of genomic meta data. 
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Biojava:   Biojava is an open source project dedicated to providing Java 
tools for processing biological data. It includes objects for manip-
ulating sequences, file parsers, CORBA interoperability, DAS, dy-
namic programming, and simple statistical routines. 

Bioperl:  Bioperl is a collection of reusable Perl scripts and modules that 
can be used to develop complex bioinformatics applications. It con-
tains a rich set of scripts or modules for sequence manipulation, 
accessing of databases using a range of data formats, and parsing 
of the results of various molecular biology programs including 
Blast, clustalw, TCoffee, genscan, ESTscan and HMMER.

BLAST: a method to ascertain sequence similarity.
Blat: a fast sequence alignment tool similar to BLAST.
Bonferroni correction:   A family-wise error rate (FWER) control proce-

dure that sets the -value level for each test and strongly controls 
the FWER for any dependency structure among the tests.

Bootstrap analysis:   A form of computer-intensive resampling-based 
inference. Pseudo-data sets are created by sampling from the 
observed data with replacement (that is, after a case is resampled, 
it is returned to the original data and can, potentially, be drawn 
again).

Case:     In a microarray experiment, a case is the biological unit under 
study; for example, one soybean, one mouse or one human.

cDNA: complementary DeoxyriboNucleic Acid.   Single-stranded DNA 
that is complementary to messenger RNA or DNA that has been 
synthesized from messenger RNA by reverse transcriptase.

ChIP-on-chip: is a microarray-based technique for understanding gene 
regulation in disease. It uses chromatin immuno-precipitation 
(ChIP) to discover how regulatory proteins interact with the 
genome of living cells. 

Chromosome: Chromosome refers to the structure in the cell composed 
of a very long molecule of DNA and associated proteins called 
Histones.

Conditional knockout gene:  to delete a gene in a particular organ, cell 
type, or stage of development.

CTRL: the Ctrl (control) key on the IBM computer keyboard used to 
change the function other keys.

Dicer: an RNAse III ribonuclease that cleaves double-stranded RNA 
(dsRNA) and pre-microRNA into short double-stranded siRNA.
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DNA Microinjection: DNA injected into the pronucleus of a fertilized 
ovum. Following injection, DNA would incorporate into the 
genome of the cell.

Domains: Compact, globular regions of proteins that are the basic units 
of tertiary structure

Dscam: The Drosophila melanogaster Down syndrome cell adhesion mol-
ecule (Dscam) gene: this gene encodes an axon guidance recep-
tor and can generate 38,016 different isoforms via the alternative 
splicing of 95 variable exons. Dscam contains 10 immunoglobulin 
(Ig), six Fibronectin type III, a transmembrane (TM), and cyto-
plasmic domains.

EMBL (The European Molecular Biology Laboratory): Major research 
center coordinating molecular biology research. It includes sites in 
Grenoble, Hamburg, Heidelberg, Hinxton, and Monterotondo. 

Ensembl: a joint project between EMBL-EBI and the Sanger Centre to 
develop a software system which produces and maintains auto-
matic annotation on eukaryotic genomes.

Expressed Sequence Tags ESTs: partial, single-pass sequences from either 
end of a cDNA clone

False-discovery rate (FDR): The expected proportion of rejected null 
hypotheses that are false positives. When no null hypotheses are 
rejected, FDR is taken to be zero.

5' splice site: the exon-intron boundary at the 5' end of the intron
Fold change:  A metric for comparing a gene’s mRNA-expression level 

between two distinct experimental conditions. Its arithmetic defi-
nition differs between investigators.

Format: to create or edit the layout of a document; to change a document 
so it will fit onto a different type of page or to prepare a mass 
storage medium for initial use, erasing any existing data in the 
process in computing. 

GenBank: the NIH genetic sequence database; an annotated collection of 
all publicly available DNA sequences

Gene Expression Omnibus (GEO):   the largest fully public repository 
for high-throughput molecular abundance data, primarily gene 
expression data at the National Center for Biotechnology Infor-
mation (NCBI).

Gene Ontology:  A way of describing gene products in terms of their asso-
ciated biological processes, cellular components and molecular 
functions in a species-independent manner.
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Gene trapping: a method based on the random integration of a gene-trap 
vector into the mouse genome. A promoterless reporter gene fol-
lowing a splice acceptor will produce a fusion transcript between 
the trapped gene and the reporter gene when the vector inserts 
into an intron. This allows the identification of the trapped genes 
easily by 5' rapid amplification of cDNA ends and also to investi-
gate both the in vitro and in vivo expression patterns of trapped 
genes.

Gene-expression profiling: Determination of the level of expression of 
hundreds or thousand of genes through the use of microarrays. 
Total RNA extracted from the test tissue or cells and labeled with 
a fluorescent dye is tested for its ability to hybridize to the spotted 
nucleic acids.

Genelist: A group of genes/proteins with some common property, such 
as putative interaction with miRNAs or same expression profiles. 
Are generated by target prediction programs or by calculations 
performed by GeneSpring or other bioinformatics tools.

Genespring software: GeneSpring is a powerful analysis tool that analyzes 
the scanned microarray data by assigning experiment parameters 
and interpretation to filter genes for differential expression and 
cluster to identify similar regulated groups.

Genetic code: rules by which information encoded in genetic material is 
translated into proteins. It defines the relationship between tri-
nucleotides (codons) and amino acids

Genome Browser: a tool which collates all relevant genomic sequence 
information in one location and provides a rapid, reliable and 
simultaneous display of any requested portion of genomes at any 
scale in a graphical design.

Genome: genetic information of an organism
Haplotype:  a combination of alleles at different markers along the same 

chromosome that are inherited as a unit.
Haplotype tagging:  refers to methods to select minimal number of SNPs 

that uniquely identify common haplotypes (>5% in frequency).  
Hierarchical clustering technique: A computational method that groups 

genes (or samples) into small clusters and then group these clus-
ters into increasingly higher level clusters. As a result, a dendro-
gram (i.e., tree) of connectivity emerges.
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HUGO (The Human Genome Organization): is the international orga-
nization of scientists involved in human genetics. Established in 
1989 by a collection of the world’s leading human geneticists, the 
primary ethos of the Human Genome Organization is to promote 
and sustain international collaboration in the field of human 
genetics. 

IBM: International Business Machines corporation.  American computer 
technology corporation headquartered in Armonk, New York. 
The company is one of the few information technology compa-
nies with a continuous history dating back to the 19th century; 
it was founded in 1888. IBM manufactures and sells computer 
hardware, software, infrastructure services, hosting services, and 
consulting services in areas ranging from mainframe computers 
to nanotechnology.

Intersection-union tests:    Multicomponent tests in which the compound 
null hypothesis consists of the union of two or more component 
null hypotheses.

Isoschizomers, restriction endonucleases that recognize the same 
restriction site

Linkage disequilibrium (LD): a term used in the study of population 
genetics for the non-random association of alleles at two or more 
loci.

Markup language: originally developed by the publishing industry to 
communicate page layout information between the editor, writer 
and printer.  The text is accompanied by embedded codes which 
indicate specifics of styling such as font, point size, italic, para-
graph indent, line spacing, etc.  Specific code systems have been 
developed which extend the concept to data interchange among 
various computer systems.

MiRNoma: The full spectrum of microRNAs expressed in a particular 
cell type.

Multiple sequence alignment (MSA): to align more than two sequences 
at a time in a given query set. MSA is often used in identifying 
conserved sequence regions across a group of sequences hypoth-
esized to be evolutionarily related.

Normalization:     The process by which microarray spot intensities are 
adjusted to take into account the variability across different 
experiments and platforms.
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Null hypothesis: The hypothesis that is being tested in a statistical test. 
Typically in a microarray setting it is the hypothesis that states: 
there is no difference between gene-expression levels across 
groups or conditions.

Object oriented database: a database based upon objects which have 
properties that are variable and can used to identify individual 
objects.  Objects are defined by classes; this permits integration 
and manipulation of many data types including non-numeric 
data e.g. class – person: properties - name, height, weight, appear-
ance (photo), DNA sequence.  Well suited for working with com-
plex data structures.

Open reading frame (ORF): a portion of DNA that begins with an initia-
tion codon (ATG) and ends with a nonsense/stop codon (TAG, 
TAA, TGG). An open reading frame has the potential to encode a 
polypeptide beginning with methionine

Overfitting: This occurs when an excessively complex model with too 
many parameters is developed from a small sample of ‘training’ 
data. The model fits those data well, but does so by capitalizing 
on chance variations and, therefore, will fit a fresh set ‘test’ data 
poorly.

Parameter: A quantity (for example, mean) that characterizes some aspect 
of a (usually theoretically infinite) population.

Perl:  Perl stands for Practical Extraction Report Language and is a 
programming language designed to handle a variety of system 
administrator functions. It provides comprehensive string han-
dling functions and is widely used to write Web server programs 
for tasks such as automatically updating user accounts and news-
group postings, processing removal requests, synchronizing 
databases and generating reports. Perl has also been adapted to 
non-UNIX platforms. Perl is one of the most popular languages 
used by Biologists. 

Permutation test: A statistical hypothesis test in which some elements of 
the data are permuted (shuffled) to create multiple new pseudo-
data sets. One then evaluates whether a statistic quantifying 
departure from the null hypothesis is greater in the observed data 
than a large proportion of the corresponding statistics calculated 
on the multiple pseudo-data sets.

Phamacogenetics:  the study of genetic variants and how these variants 
relate to interindividual response to drug therapy.
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Phylogenetics: the study of evolutionary relatedness among various 
groups of organisms. 

Phylogeny (or phylogenesis):  the origin and evolution of a set of organ-
isms, usually a set of species.

Plasmode:  A real (not computer simulated) data set for which the true 
structure is known and is used as a way of testing a proposed ana-
lytical method.

Polylinker: a very short segment of artificial DNA that harbors restriction 
enzyme recognition sites

Polymerase chain reaction (PCR): a highly specific in vitro expo-
nential amplification of the target DNA using a thermostable 
polymerase

Posterior probability: The Bayesian probability that a hypothesis is cor-
rect, which is conditional on the observed data.

Power: This is classically defined as the probability of rejecting a null 
hypothesis that is false. However, power has been defined in sev-
eral ways for microarray studies.

Prediction analysis of microarrays (PAM): A statistical technique that 
identifies a subgroup of genes that best characterizes a predefined 
class and uses this gene set to predict the class of new samples.

Primary structure of protein: The sequence of amino acids in a polypep-
tide chain; 

Primer: oligonucleotide that binds to complementary target sequences and 
is extended during the synthesis of DNA by DNA polymerase

Probability-based algorithm: For mass spectrometry database search, 
the probability-based algorithms model to some extent the pep-
tide fragmentation process and calculate the probability that a 
particular peptide sequence produced the observed spectrum by 
chance. 

Programming Language:  Programming Language are a series of instruc-
tions written by a programmer according to a given set of rules 
or conventions (“syntax”). Programming language instructions 
are converted into programs in language specific to a particular 
operating system so that the computer can interpret and carry 
out the instructions. Some common programming languages are 
Perl, JAVA, C, and C++.
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Promoter: the genomic sequence immediately upstream of the transcrip-
tional start site defined by the 5’ end of an mRNA. It is this region 
that is presumed to bind the transacting factors required to tran-
scribe the gene.

Protein annotation: Refers to information associated to an amino-acid 
sequence. Besides annotation relevant to the protein structure 
and function, it could also include references and cross-references 
to related data sources, for instance. 

Protein function: In the narrow sense, protein function refers to the 
molecular function that a protein performs based on its biochem-
ical properties. In a broader sense, protein function also refers 
to the biological role in which a protein is involved - which can 
be both on the level of biological processes as on the phenotypic 
level.

Protein microarray: In a protein microarray, capture molecules are immo-
bilized in a very small area, and probed for various biochemical 
activities. There are two general types of protein microarrays: 
analytical microarrays and functional protein microarrays.

Protein sequence analysis: Refers to the prediction of protein features 
such as biochemical properties, post-translational modifications 
and the presence of structural or functional domains.

Post-translational modifications: Refers to specific amino-acid modifi-
cations that occur during the late steps of protein synthesis and 
performed by enzymatic mechanisms. In addition to specific pro-
teolytic cleavages, more than 350 naturally occurring post-trans-
lational modifications have been identified to date.

Protein-protein interaction: Refers to the association of protein mole-
cules and the study of these associations from a structural, bio-
chemical and network perspective.

Proteomics: Proteomics is an emerging scientific field that involves the 
identification, characterization, and quantification of proteins in 
cells, tissues or body fluids.

p-value: The probability, were the null hypothesis true, of obtaining results 
that are as discrepant or more discrepant from those expected 
under the null hypothesis than those actually obtained.

Real time PCR (q-RT-PCR): a PCR method in which the amount of PCR 
produced is monitored in real time, during each cycle

Recombinant DNA: artificial DNA made by combining two or more dif-
ferent strands of DNA from the same of different organisms. 
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Relational database:  a database organized to efficiently utilize set theory 
and predicate (true/false) logic to search, sort and retrieve data.  
This structure works well with large amounts of numeric data in 
limited formats.

Restriction enzyme: endonuclease that cleaves DNA as part of the defense 
mechanism against foreign DNA

Restriction mapping: the characterization of double-stranded DNA that 
is based on the location of the restriction endonucleases cleavage 
sites

Restriction site: the DNA sequence (usually 4 - 6 bases) cleaved by restric-
tion enzymes. They usually have dyad symmetry (palindromic 
sequences) 

RNA splicing: is a process that removes introns and joins exons in a pri-
mary transcript. 

RNAi: RNAi is a short form of RNA interference. It is a mechanism in 
eukaryotic cells by which short fragments of double-stranded 
ribonucleic acid (dsRNA) interfere with the expression of a par-
ticular gene whose sequence is complementary to the dsRNA.

RNA-induced silencing complex (RISC): a multi-protein siRNA complex 
which cleaves (incoming viral) dsRNA and binds the antisense 
RNA strand to a protein which seeks out the complementary 
strand. When it finds the complementary strand, it activates 
RNAse activity and cleaves the RNA.

Sampling variation:  The variability in statistics that occurs among ran-
dom samples from the same population and is due solely to the 
process of random sampling.

Schema:  In computer databases it is the underlying organizational struc-
ture or model by which data are organized. The organizational 
structure dictates the type and efficiency of algorithms that can 
be used to search, sort and retrieve data.

Secondary structure of protein: The regular arrangement of amino acids, 
such as α-helix and β sheet, within localized regions of a polypep-
tide chain; 

Selection bias:    This occurs when the prediction accuracy of a rule is 
estimated using cases that had some role in the derivation of the 
rule. It is an upward bias — that is, one that overestimates the 
predictive accuracy.
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SHIFT: the Shift key on the IBM computer keyboard is a modifier key that 
used to type capital letters and other alternate “upper” characters. 
There are typically two Shift keys, on the left and right sides of a 
keyboard.

Significance analysis of microarrays (SAM): A statistical method used in 
microarray analyses that calculates a score for each gene and thus 
identifies genes with a statistically significant association with an 
outcome variable such as transfection with a specific miRNAs.

Silent mutagenesis: change in nucleotide sequence that preserves the 
encoded protein sequence

Single Nucleotide Polymorphism (SNP): single-base variations in a DNA 
sequence. For example, two sequenced DNA from different indi-
viduals, AAGCCTA to AAGCTTA, contain a difference in a single 
nucleotide. In this case we say that there are two alleles, C and T.

siRNA: siRNA is the short double-stranded RNA, called small interfering 
RNAs (siRNAs), also known as short interfering RNA or silenc-
ing RNA.  siRNAs have a well defined structure: a short (usually 
21-nt) double-strand of RNA (dsRNA) with 2-nt 3’ overhangs on 
either end. They are underlying RNA interference.

Spliceosome: Protein-RNA complex that removes introns from eukaryotic 
nuclear RNAs. Splicing is catalyzed by spliceosome. Spliceosome 
consists of many small nuclear RNA and associated proteins.

SQL: Structured Query Language, a computer language designed for 
retrieving data from a relational database.  It also has functions to 
create a database, modify the database schema and modify data; 
thus, it is primary control center for the database administrator.  
Although SQL has been defined by the American National Stan-
dards Institute, companies may have custom implementations of 
the language specific for their product.

SR proteins: are Serine / Arginine -residue proteins which are involved in 
regulating and selecting splice sites in eukaryotic mRNA.

SWISS-PROT: a curated protein sequence database which strives to pro-
vide a high level of annotation (such as the description of the 
function of a protein, its domains structure, post-translational 
modifications, variants, etc.), a minimal level of redundancy and 
high level of integration with other databases.

Table Browser: a tool provides text-based access to the genome assemblies 
and annotation data stored in the Genome Browser database.
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Tag: A SAGE tag is a 14-nucleotide sequence that has been found within an 
mRNA. The relative abundance of a particular SAGE tag within a 
pool of tags gives some indication of the level of expression of the 
gene(s) containing that tag.

Targeted insertion: to insert the DNA into embryonic stem cells and 
selecting for cells with homologous recombinants.

Tertiary structure of protein: The three dimensional folding of a poly-
peptide chain that gives the protein its functional form; 

3' splice site: the exon-intron boundary at the 3' end of the intron
Transformation: The application of a specific mathematical function so 

that data are changed into a different form. Often, the new form 
of the data satisfies assumptions of statistical tests. The most com-
mon transformation in microarray studies is log2.

Transgenic mouse: a mouse that has had foreign DNA introduced into 
one or more of its cells artificially.

t-tests:  Statistical tests that are used to determine a statistically significant 
difference between two groups by looking at differences between 
two independent means.

Two-dimensional differential in gel electrophoresis or 2D DIGE: 2D-
DIGE is a fairly recent improvement of the 2DE technology. Prior 
to gel electrophoresis, the proteins from different disease states or 
experimental treatments are separately labeled with different flu-
orescent dyes which are matched with mass and charge and each 
has a different emission wavelength. The labeled samples are then 
combined and subjected to 2DE. 

Type 1 error: A false positive or the rejection of a true null hypothesis; 
for example, declaring a gene to be differentially expressed when 
it is not.

Type 2 error: A false negative, or failing to reject a false null hypothesis; 
for example, not declaring a gene to be differentially expressed 
when it is.

U133: Gene Chip based on Indigene build 133.
Venn: John Venn (August 4, 1834 – April 4, 1923) was a British logician 

and philosopher, who is famous for conceiving the Venn dia-
grams, which are used in many fields, including set theory, prob-
ability, logic, statistics, and c
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Ab initio programs, 350
Access software, 531
Adenosine-to-inosine modification, 

245–246
Affycomp II, 151
Affymetrix, 111, 134–135, 150, 170–171, 

174
	 Bioconductor and, 495, 497–502
	 Microsoft Excel and, 547, 551
Agglomerative cluster place, 162
Agilent, 134, 135, 320, 323, 324
Align/ClustalW, 83
Alignments
	 BLAT, 5, 10–12, 19–23
	 multiple sequence, 82–93, 99
Allele-specific PCR, 118
Alternative promoters
	 current status of research on, 221–223
	 defined, 220–221
	 in EPD, 223–225
	 importance of, 221
	 step-by-step tutorial, 223–225
	 Alternative splicing
	 defined, 226
	 importance of, 226
	 regulating sequences, 227–228
	 step-by-step tutorial, 228–231
Alternative translation initiation
	 databases, 233–234
	 defined, 231
	 physiological and pathological 

implications, 232–233
	 querying methods, 238–240
	 searching, 235–240
	 step-by-step tutorial, 235–240
Ambros, Victor, 254
Amplicons, PCR, 68
Animation and sound, Web site, 513–514

ANN, 167
Annealing process, 68
Annotation
	 disease-related, 389–391
	 protein function, 381–391
	 tracks, UCSC genome browser, 6–7, 16
ANOVA, 156, 264, 322
Anti-guide strand, 274
Apache Web Server, 464
Apollo tool, 475
Applied Biosystems, 110, 123, 134, 307
APSSP2, 348
Arabidopsis Small RNA Project, 277
Arber, Werner, 58
Archived data catalogs, 535–537
Argonaut proteins, 273–274
Array Express, 135, 154
ArrayTrack, 135
Artificial neural networks, 167
Asn residue, 396
ATI. See Alternative translation initiation
ATID (Alternative Translational Initiation 

Database), 233–234
	 querying methods, 238–240
	 searching, 235–240
A-to-I RNA editing, 245–246
Audic, S., 201
Audio, Web site, 521–522
AutoPrime, 71
Average linkage nodes, 163
Axiope, 533

B
Barrett, T., 207
Bartel, David, 254
Basic Local Alignment Search Tool. See 

BLAST
Batch Coordinate Conversion, UCSC 

genome browser, 18
Baulcombe, David, 272
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BeadChip arrays, 111
Betacellulin
	 human, 374–376
	 rat, 352–360
Big-PI, 383t
Bio-Carta, 535
Bioconductor for R, 323–324
	 downloading and installing, 498–499
	 microarray data analysis using, 

499–502
	 packages available for, 494, 496f
BioDirectory, 60
BioGRID, 410t
BioInfoBank, 351, 357–358
BioJava, 475, 482–486
Biological replicates, RNA, 138
Bioperl, 453–455, 460, 461f
Bio++ software, 97
BioWorks™, 307
BLAST
	 ATID and, 238–240
BLOSUM62 matrix in, 38
Bl2seq, 43–44, 51
	 capabilities, 39–45, 452
	 common features in, 39–40
	 defined, 35–36
	 Formatter, 36–37
	 gapped, 35–36
	 GenBank flat files and, 37
	 genome function, 43, 50–51
	 GEO Blast, 43
	 meta functions, 44–45, 52–54
	 multiple sequence alignments and, 85
	 nucleotide program, 40–41, 45–46
	 PCR and, 75
	 phylogenetic analysis using, 95
	 protein program, 41–42, 48–49, 95, 

97–99
	 RefSeq, 383t
	 searching, 36–37
	 siRNA design and, 276–277
	 software principles behind, 36–39
	 special functions, 43–44, 51
	 StandAlone, 37
	 step-by-step tutorial, 45–54
	 translated program, 42–43, 49–50
	 UniProtKB, 383t, 385–391

Blast-Like Alignment Tool. See BLAT
Blastn function, BLAST, 40–41, 45–48
Blastp function, BLAST, 41, 48–49
	 phylogenetic analysis using, 95, 97–99
Blastx function, BLAST, 39, 42, 49
BlastZ alignment program, 3
BLAT, 5
basic functionality, 19–22
sequence searching using, 10–12, 22–23
BLIMPS, 364t
Block, haplotype, 120–121
BLOCKS database, 362–363
Blocks Substitution Matrix, 84
BLOSUM45 matrix, 84
BLOSUM62 matrix, 38
Bl2seq, 43–44, 51
Bolton, E. T., 74
BOND, 410t

C
C. elegans, 253, 272–273, 405
CaBIO, 475
CAFASP/EVA server, 352
Cancer
	 Bioinformatics Infrastructure Objects, 

475
	 Genome Anatomy Project, 201, 204
	 miRNAs role as tumor suppressors 

and oncogenes in, 254
	 SAGE in, 197–198, 209
	 siRNA and, 275–276
Candidate gene search, 122
Capecchi, Mario, 428
Cardiovascular diseases, SAGE in, 198
CAST, 166
Catalyzer software, 534
CATH database, 364–365
ΨC31-att system, 434
Cdart, BLAST, 42
Centroid linkage nodes, 164
CGAP RNAi at NCI, 277
CGH assay, 259–260
Chemical mutagens, 434–435
ChloroP, 383t
Chou & Fasman method, 347
Chromatin immunoprecipitation 

microarray, 222
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C-insertion and dinucleotide insertion 
editing, 243–244

City-block distance, 161
Clark algorithm, 118–119
Classification
clustering and, 159, 162
	 of living species, 93–94
	 of proteins, 380
	 supervised, 167–168
Class prediction, 167–168
Claverie, J.-M., 201
Cleavages
	 fragment length polymorphism, 109
	 proteolytic, 393
ClustalW, 83, 84–85
	 phylogenetic analysis using, 95, 97–98
	 step-by-step tutorial, 87–93
Clustering
	 algorithms classification criteria, 162
	 and classification of data, 159
	 K-means, 164, 165, 166
	 method performance, 166–167
	 Microsoft Excel and, 550, 561–564
	 partitioning methods, 165
	 protein microarray results, 322–324
	 rules for comparing nodes, 162–164
	 strategies, 178–180
	 unsupervised, 159–161, 267f
Clustering affinity search technique, 166
COILS, 383t
Combo, 4–5
Common variant/common disease 

hypothesis, 112
Comparative genomic hybridization, 

array, 259–260
Comparative modeling, 349	
Comparison tests, 156–157
Complete linkage nodes, 163
Comprehensive Perl Archive Network, 452
Computational alanine scanning, 411t
Computer programming languages, 

450–451
	 JAVA, 451, 452, 473–494
	 Perl, 451–473
	 R, 494–503
Conditional knockout mouse, 431–434

Conformation-based SNP discovery, 
109–110

Conformation-sensitive gel 
electrophoresis, 109

Conserved Domain Architecture 
Retrieval Tool, 42

Correction for multiple comparisons in 
microarray analysis, 158

Correlation metrics, 160–161
Cosuppression, 273
Cre-loxP recombination system, 432–433
CRYBA1 gene, 235–240
C-to-U RNA editing, 244
Custom Track, UCSC genome browser, 

26–31
CuteFTP, 510
Cytoscape, 411, 411t, 415–420

D
D’Agostino-Pearson omnibus test, 161
DAS, 383t
Data
	 acquisition and preprocessing in 

microarray analysis, 145–154
	 analysis
		  mass spectrometry-derived, 

303–306
		  by microarray, 155–170
		  miRNA profiling, 264
		  by SAGE, 199–203
		  using BioConductor, 499–503
	 classification and clustering, 159
	 clustering
		  K-means, 164, 165, 166
		  methods performance, 166–167
		  strategies, 178–180
		  unsupervised, 159–161
	 collection in phylogenetic analysis, 94
	 creating catalogs of archived, 535–537
	 entry into databases, 537–543
	 exportation, 203
	 fields linked to class objects, 540–543
	 filtering, 549, 570, 574–575
	 interchange between Microsoft Access 

and Excel, 577–580
	 normalization, 148, 149b, 296–297, 

321–322, 327–329, 535, 549
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	 partitioning methods, 165
	 processing using multiexperiment 

viewer, 174–175, 176f
	 protein microarray analysis, 320–321
	 protein-protein interaction network, 

415–420
	 queries, 570
	 retrieval from MySQL, 469, 470f
	 rules for comparing nodes, 162–164
	 SAGE databases, 204–210, 211–217f
	 scatter plots, 202
	 self-organizing maps, 164, 166, 

178–180
	 sets
		  plasmode, 150, 171
		  protein-protein interaction 

network, 415–420
	 storage in MySQL, 465–469
	 supervised classification, 167–168
	 vs. information, 524
Databases
	 basic characteristics, 523–524
	 entity-relational, 529
	 flat file data structure, 525
	 hierarchical, 525, 526f
	 hybrid model, 525–527
	 important biological, 534–535
	 management systems, 452–453, 487, 

530–533
	 models, 524–529
	 network model, 527
	 object-oriented, 528–529 533–535
	 relational, 527–528 530–532
	 selection considerations, 530
	 size of, 530
	 software, 530–533
	 spreadsheets vs., 524
	 step-by-step tutorial, 535–543
		  archived data catalog creation, 

535–537
		  data entry, 537–543
Dawg software, 97
DBASE software, 534
DBMSs. See Databases
DbRES, 246
DbSNP, 113–114, 114, 115f
DCHIP software, 150

3D-Coffee, 86
2DE. See Two-dimensional gel 

electrophoresis
DeCyder, 289
Denaturation process, 68
Denaturing gradient gel electrophoresis, 

110
Denaturing high-performance liquid 

chromatography, 110
Diagnostic applications of haplotyping, 

122–123
Diagonal linear discriminant analysis, 167
Dicer, 272
Differential expression in microarrays, 

155
Differential in gel electrophoresis, 290, 

293–294
DIGE. See Differential in gel 

electrophoresis
DIP, 410t
Discontiguous megablast, BLAST, 41
Discrimination methods, 167
Disequilibrium, linkage, 119–120
Distance
	 matrix method for building 

phylogenetic trees, 94–95
	 metrics, 161
DLDA, 167
DNA
	 analysis
		  PCR, 56, 67–78
		  restriction mapping, 58–67
	 Duster, UCSC genome browser, 18–19, 

33–35
	 Identity Matrix, 84
	 microinjection, 427
	 SAGE and, 192–194
	 sequence alignment, 82–93
	 sequencing and SNP discovery, 

108–109
	 subcloning, 69
	 targeted insertion, 428–430
Domain registration, 509–510
Drawtree program, 102, 103f
Dreamweaver, 508
Drosophila, 242, 274
	 automated annotation of, 385–387

C8105.indb   602 7/18/07   8:25:15 AM



Index  <  603

	 Delta gene, 197
	 protein function analysis, 385–391
Dye bias, 142–143
Dymension, 290

E
E. coli, 272–273, 381
EASED, 228–231
ECR Browser, 4
Editing
	 and publishing aligned multiple 

protein sequences, 90–92, 99
	 RNA, 240–247
	 web page, 507–509, 511–514
Edman, Pehr Victor, 335
Edman degradation, 335, 395
EdRNA, 246–247
Electrophoresis, gel. See Two-dimensional 

gel electrophoresis
ELM, 366t
Embryonic stem cell lines, mutant mouse, 

439–440, 441f
ENCODE, 13–14
Ensembl Blast, 276–277
Ensembl genome browser, 3
Entity-relational model databases, 529
Entrez GEO Datasets, 208
Entrez GEO Profile interfaces, 208
Entrez protein database, 234
EnzymeX, 60
EPD, 223–225
Epidermal growth factor receptor, 280, 

281–282f
Euclidean distance, 161
Eukaryotic Promoter Database, 223–225
European Bioinformatics Institute, 3, 94, 

304
European Molecular Biology Laboratory, 

3, 83
Evaluation of phylogenetic trees, 96, 101
E-value and alignment, 38
Evans, Martin, 428
ExPASy Proteomics Server Site, 85, 393
Expectation-maximization algorithms, 

119
Experimental design in microarray 

analysis

	 gene expression platforms, 134–135
	 pooling, 140–141
	 randomization, 141–142
	 reference design, 143–144, 153
	 sample size and replication, 138–140
	 sources of variability, 135–138
	 two-color arrays, 142–145
Expert Protein Analysis System, 95, 304
Exportation, data, 203
Expression Profile Viewer, 201
Extention process, 68

F
False discovery rate corrections, 157–158
Family-wise error rate, 158
FANMOD, 410t
FASTA
	 InterProScan and, 369
	 mass spectrometry and, 304
	 primary structure analysis and, 335, 

338f, 342
	 protein function annotation and, 391
	 sequence format and sequence 

alignments, 83
FDR procedures, 157–158
Felsenstein, Joe, 98
Figure of merit, 166
File transfer protocol, 510
Filtering
Microsoft Access, 570, 574–575
Microsoft Excel, 549
Fingerprinting, genetic, 58
FingerPRINTScan, 365, 366t
Fire, Andrew Z., 273
Flat file data structure, 525
Flp-FRT recombination system, 433
Fluorescence resonance energy transfer, 

406
Fold-recognition programs, 349
FOM, 166
Forensics
	 phylogenetic analysis in, 94
	 restriction mapping in, 58
Fragile X syndrome, 255
Free Software Foundation, 170
FRET, 406
FrontPage, 508–509
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FTP, 510
Functional modules, protein-protein 

interaction, 418–420
Function annotation, protein
	 access to experimental records and, 

381–382
	 automated, 384–385
	 controlled vocabularies, 385
	 exploring disease-related annotation 

in, 389–391
	 new developments in, 384–385
	 reasons for, 381
	 in silico protein sequence analysis, 

382–384
	 step-by-step tutorial, 385–391
FWER, 158

G
Gapped BLAST, 35–36
Gap statistic, 165
GC-RMA method, 150
GE Healthcare, 134, 135
Gel electrophoresis. See Two-dimensional 

gel electrophoresis
GenBank, 228, 450, 534
	 flat files, 37, 39
GeneChip human mapping assays, 110, 

111, 151, 170
Gene3D, 366t, 368
Gene Expression Database, 438
Gene expression microarrays
	 correction for multiple comparisons, 

158
	 criteria to classify clustering 

algorithms, 162
	 data
		  analysis, 155–170
		  classification and clustering, 159
		  clustering methods performance, 

166–167
		  correlation metrics, 160–161
		  K-means clustering, 164, 165
		  normalization, 148, 149b
		  partitioning methods, 165
		  supervised classification, 167–168
		  unsupervised clustering, 159–161
	 differential equation, 155

	 image analysis, 145–148
	 image-processing algorithms for oligo 

arrays, 148–151
	 inferential analysis, 155–157
	 Microsoft Excel and, 550–564
	 platforms, 134–135, 136–137t
	 pooling, 140–141
	 quality control, 151–154
	 randomization, 141–142
	 rules for comparing nodes, 162–164
	 sample size and replication, 138–140
	 self-organizing maps, 164
	 sources of variability in, 135–138
	 tutorial, 170–185
		  clustering strategies, 178–180
		  data processing, 174–175, 176f
		  experiment and data, 171
		  gene ontology analysis, 181–185
		  preprocessing, 171–174
		  significant analysis of microarray, 

177–185
		  TM4 software, 170
	 two-color arrays, 142–145
Gene Expression Omnibus, 135, 183–185, 

206
	 Blast, 43
	 displays, 210–217f
	 retrieving data from, 207–208
	 step-by-step tutorial, 208–210, 

211–217f
Gene mapping, new, 198–199
Gene ontology analysis, 181–185
Gene Ontology project, 385, 393, 438, 534
Gene Ontology Tree Machine, 181–185
GenePix, 174, 266f, 320, 321f
GeneSilico Metaserver, 351
Gene Sorter, UCSC genome browser, 

16–18, 32
Gene-specific siRNA selector, 277
GeneSpring, 264
	 GX, 323–330
Genetic Data Environment, 83
Genetics Computer Group/Multiple 

Sequence Format, 83
Genetic testing and phylogenetic analysis, 

94
Gene trapping, 429–430
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Genome browser
	 Combo, 4–5
	 defined, 2
	 ECR, 4
	 Ensembl, 3
	 multiple sites, 2–5
	 NCBI MapViewer, 4
	 UCSC, 2–3, 5–35
	 VISTA, 3
Genome function, BLAST, 43, 50–51
GenomeVISTA, 3
Genotyping pedigrees, 118–119
Genzyme SAGE database, 204
GEO. See Gene Expression Omnibus
GIF files, 512
Global network architecture, protein-

protein interaction, 416–418
Glucocorticoids, 232–233
GONNET, 84
Google, 510
GOR method, 347
Guide strand, 274
GXD, 438

H
HAMAP, 363, 383t, 391, 392f
Hannon, Greg, 277
Haplotype analysis
	 defined, 117–118
	 haplotype block in, 120–121
	 haplotype tagging in, 121–122
	 linkage disequilibrium and, 119–120
	 medical applications of, 122–123
		  candidate gene search, 122
		  diagnostic, 122–123
		  pharmacogenomics and 

phamacogentics, 123
	 methods, 118–119
	 quantitative trait loci and, 435
	 step-by-step tutorial, 123–128
Haploview program, 126–127
HapMap Project, 120–121
	 step-by-step tutorial, 123–128
Hardy Weinberg equilibrium, 119
HCA analysis, 336, 342–344
HGNC
	 background, 463–464

	 file reading, 465–467
Hierarchical databases, 525, 526f
High-throughput methods for SNP 

discovery, 110–112
Histone code, 394
Hits program, 366t, 367
Homology modeling, 349
Hosting, Web site, 509
HPRD, 410t, 411
HS_EGFR, 223–225
HTML, 507
	 Web forms, 453, 470–473
	 Web site design and, 506–509
	 Web site editing and, 511–514
Human a1-antitrypsin amino acid, 

337–345
Human α1-antitrypsin amino acid, 345
Human collectrin amino acid, 337–344
Human crystallin alpha, 397–403
Human disease
	 miRNAs and, 254–255
	 murine models of, 426–438
	 quantitative trait loci and, 436–437
	 -related annotation, 389–391
	 RNA editing and, 243
	 SAGE and, 197–198, 209
	 siRNA applications, 275–276
	 SNP and, 112–113
Human epidermal growth factor receptor, 

223–225
Human genome project, 14, 113, 120
	 microarray experiments, 132–133
Human leukocyte antigen, 122–123
Human PBEF1 gene. See PBEF
Human Protein Reference Database, 393
Human SM22 alpha gene, 66–67
Human vaspin, 337–344
HUPO Protein Standard Initiative, 411
HuSiDa, 279
Hybridization, array, 264
Hybrid model databases, 525–527
Hydropathy plot for proteins, 336
Hydrophobic Cluster Analysis of Proteins, 

336, 342–344
Hyperlinks, 511, 519–520
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I
ICANN, 510
IgBlast, 44
IGTC, 430, 439–440, 441f
Illumina, 134, 135
Image Investigator, 290
Image(s)
	 analysis, microarray, 145–148
	 processing algorithms for oligo arrays, 

148–151
	 Web site, 512, 518–519
Iman software, 533
IMEX, 411
Immmobilized metal-affinity 

chromatography, 395–396
Inferential analysis, 155–157
Infinium genotyping assay, 110, 111–112
Insertion/deletion class of RNA editing, 

242
In silico studies
	 PCR, 18, 32–33
	 protein interaction, 406–408
	 protein sequence analysis, 382–384
		  step-by-step tutorial, 385–391
	 restriction, 60
Institute of Molecular Genetics, 205–206
IntAct, 410t, 411
	 step-by-step tutorial, 412–423
Interaction networks, 406–408, 415–420
InterDom, 410t
Interface, protein-protein, 420–423
International Gene Trap Consortium, 430, 

439–440, 441f
International Molecular Exchange 

Consortium, 411
International Mouse Strain Resources, 

438–439
Internet, the. See Web programs/servers; 

Web sites, personal
Internet Corporation for Assigned Names 

and Numbers, 510
Internet Service Providers, 509
InterPare, 410t
InterPro database, 364
InterProScan, 365, 366t
	 c, 383t
	 step-by-step tutorial, 368–376

Intersection-union testing, 157
In vitro mutagenesis, PCR-mediated, 69
Ipfam, 410t
ISPs, 509
IUT, 157

J
Jalview, 85
Japanese GenomicNet Server, 94
JAVA, 451, 452, 514
	 application example, 487–494
	 basics, 477–480
	 BioJava module, 475, 482–486
	 defined, 473–474
	 popularity in biology, 474–477
	 program compilation and execution, 

479–480
	 program creation in, 477–478
	 step-by-step tutorial, 480–486
		  BioJava module, 475, 482–486
		  downloading and installing, 

480–482
		  Textpad, 481–482, 483
JPEG files, 512
Jpred server, 348–349

K
Karyotyping and new gene mapping, 

198–199
KDOM, 476
KEGG, 535
K-means clustering, 164, 165, 166
K-nearest neighbor, 167
KNN, 167
Knockout mice, 430–434
Knowledge Discovery Object Model, 476
Kruskal-Wallis test, 156

L
Lash, A. E., 200
Leishmania, 242
LifeOver, UCSC genome browser, 18
Life Science Identifier, 476
Lin-4 gene, 253
Linkage disequilibrium, 119–120
	 haplotyping and, 122
Linnaeus, Carolus, 93
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Linux platforms, 452, 456–458, 474, 532
Liu, C. G., 261
Live Bench, 352
LocusLink database, 221
LongSAGE, 198–199
Low-throughput methods for SNP 

discovery, 108–110
LSID, 476
Luciferase assays, 222

M
Mac operating system, 452, 456–458, 474
MADAM, 170
MAFFT, 87
MAGE-ML, 154, 476
MAGE-stk tool, 476
Mammalian Gene Collection, 221
Manhattan distance, 161
Maps, self-organizing, 164, 166, 178–180
MAS 5.0, 150
Mascot Daemon, 306–307
	 body of reports, 314–317
	 header and search parameters, 311
	 setting up a database search in, 

308–311
	 types of reports and format controls, 

312–314
Mass spectrometry
	 data analysis, 303–306
	 database search programs, 306–308
		  Bioworks™, 307
		  Mascot, 306–307
		  open mass spectrometry search 

algorithm, 307
		  ProteinPilot™, 305, 307
		  X!tandem, 308
	 protein posttranslational 

modifications and, 395
	 scientific utility of, 303
	 step-by-step tutorial, 308–317
Matrices, ClustalW, 84
MAVisto, 410t
Maximum likelihood method for building 

phylogenetic trees, 94–95
Maximum parsimony method for 

building phylogenetic trees, 
94–95

McCarthy, B. J., 74
MCODE, 418–420
Mean center array normalization, 

564–566
Measurement traceability, 152–153
Megablast, BLAST, 40–41
Melanie, 290
Mello, Craig C., 273
Melting-based SNP discovery, 110
Mendelian loci, 435–437
Messenger RNA, 69–70
Meta functions, BLAST, 44–45, 52–54
Metrics
	 correlation, 160–161
	 distance, 161
MeV, 170, 174–175, 176f
MGD, 437–438
MGED, 154
MGI, 437–438, 444–446
MIAME standards, 154, 476
MIAMExpress, 264
Microarray analysis
	 clustering methods performance, 

166–167
	 data acquisition and preprocessing, 

145–154
		  image analysis, 145–148
		  image-processing algorithms, 

148–151
		  normalization, 148, 149b
		  quality control, 151–154
	 data analysis, 155–170
		  classification and clustering, 159
		  correction for multiple 

comparisons, 158
		  correlation metrics, 160–161
		  criteria to classify clustering 

algorithms, 162
		  differential equation, 155
		  inferential analysis, 155–157
		  K-means clustering, 164, 165
		  partitioning methods, 165
		  rules for comparing nodes, 162–164
		  self-organizing maps, 164
		  supervised classification, 167–168
		  unsupervised clustering, 159–161
	 difference between SAGE and, 194–196
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	 experimental design, 133–145
		  gene expression platforms, 134–135, 

136–137t
		  pooling, 140–141
		  randomization, 141–142
		  sample size and replication, 

138–140
		  sources of variability, 135–138
		  two-color array, 142–145
	 limitations of, 134–135
	 Microsoft Excel and, 548–550
	 miRNA, 255–259, 261–265
	 as observational studies, 169
	 protein
		  clustering and comparing results, 

322–323, 329–330
		  identification of spots and 

perimeters, 320
		  importance of, 319
		  importing data files, 320–321
		  normalization and quantification, 

321–322
		  procedures, 319–323
		  programs, 323–324
		  statistical analysis, 322
		  step-by-step tutorial, 323–329
		  types of, 318–319
	 tutorial, 170–185
		  clustering strategies, 178–180
		  data processing, 174–175, 176f
		  experiment and data, 171
		  gene ontology analysis, 181–185
		  preprocessing, 171–174
		  significant analysis of microarray, 

177–185
		  TM4 software, 170
	 using BioConductor, 499–503
Microarray Data Analysis System, 170
Microarray Data Manager, 170
Microarray Gene Expression Data, 154
Microarray Gene Expression Markup 

Language, 154
MicroArray Quality Control, 134
Microinjection, DNA, 427
MicroRNACHIP production and 

description, 262–263
MicroRNAs. See MiRNAs

Micro-SAGE, 194
Microsoft Access
	 assigning probe sets to orthologues in 

another species in, 572–573
	 assigning probe sets to target genes in, 

571–572
	 basic functions, 569
	 cross-referencing for Venn diagram 

construction, 575–577
	 features for biologists, 569–570
	 filtering, 574–575
	 filtering large entries in, 570, 574–575
	 interchange of data between Microsoft 

Excel and, 577–580
	 queries, 570
	 starting, 570–571
Microsoft Excel
	 basic functions, 547
	 data entry into, 537–543
	 data normalization, 549
	 filtering, 549
	 interchange of data between Microsoft 

Access and, 577–580
	 log transformation, 548–549
	 microarray analysis in, 548–550
	 sample data, 568
	 statistics, 549–550
	 step-by-step tutorial, 550–568
		  clustering, 561–564
		  color-coding gene expression 

ratios, 559–561
		  detectable genes selection, 555–557, 

566–568
		  expression analysis, 557–559
		  formatting data for expression 

analysis, 552–555
		  mean center array normalization, 

564–566
		  retrieving gene expression 

spreadsheet, 550–552
Microsoft Expression Web Designer, 508
Microsoft Office Professional, 531
Microsoft Word, 512
MIDAS, 170
	 TIGR, 174
MIDAS-RMA, 171–174
MIF genomic DNA sequence, 53–54
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MIF mRNA sequences, 52–53
MIF protein sequences, 53
Minimal Information About a 

Phylogenetic Analysis standard, 
96

Minimum Information About a 
Microarray Experiment, 154

MINT, 410t
MIPS mammalian PPIdb, 410t
MiRNAs
	 alterations, 259
	 array hybridization, 264
	 CGH assay, 259–260
	 defined, 252–254
	 genomic characteristics, 252–253
	 human diseases and, 254–255
	 profiling, 255–259
		  by microarray, 261–265
	 recent developments in study of, 

253–254
	 validation of results, 265
MirVana kit, 262
Mismatched probes, 150
Mixture-model methods, 158
Model-based expression index, 150
Molecular biology, PCR applications in, 

68–69
Molecular signatures, 167
Molecular Toolkit package, 59–60
MolSurfer, 410t
MotifScan, 85, 366t
Mouse Genome Database, 437–438
Mouse Genome Informatics, 437–438
Mouse/mice. See also Murine models
	 chemical mutagenesis in, 434–435
	 galectin-9 amino acid, 337–344
	 knockout, 430–434
	 Mouse Genome Informatics and, 

437–438
	 mutant embryonic stem cell lines, 

439–440, 441f
	 SAGE site, 205–206
	 transgenic, 427–430
Mouse Tumor Biology Database, 438
MTB, 438
Mullis, Kary B., 67

Multidimensional protein identification 
technology, 313

Multiexperiment Viewer, 170, 174–175, 
176f

Multiple Align Show, 85, 90–92
Multiple sequence alignments
	 aligning multiple protein sequences in, 

87–90
	 in ClustalW, 84–85
	 3D-Coffee, 86
	 editing alignment, 85, 90–92, 99
	 interpreting results of, 85
	 MAFFT, 87
	 Multiple Align Show, 85, 90–92
	 MUSCLE, 86
	 new developments in, 86–87
	 phylogenetic analysis and, 94, 99
	 PROBCONS, 86–87
	 publishing, 90–92
	 reasons for using, 82–83
	 sample data, 92–93
	 selecting DNA or protein sequences 

for, 83
	 steps in, 83–87
Multiple sequence comparison by log-

expectation, 86
Multiplex PCR, 69
Murine models. See also Mouse/mice
	 databases, 438–446
		  International Gene Trap 

Consortium, 439–440, 441f
		  International Mouse Strain 

Resources, 438–439
	 of human diseases, 426–438
	 quantitative trait loci in, 435–437, 

441–444
	 SNPs and, 444–446
MUSCLE, 86
Mutations
	 chemical, 434–435
	 detection, 60
	 embryonic stem cell lines, 439–440, 

441f
MVISTA, 3
MySQL database, 170, 233, 531–532
	 introduction, 463–464
	 JAVA and, 487–494
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	 retrieving data from, 469, 470f
	 storing data in, 465–469

N
N-acetylation, 401
Nathans, Dan, 58–59
National Biomedical Research 

Foundation/Protein 
Information Resource, 83

National Cancer Institute, 475
National Center for Biotechnology 

Information, 113, 204, 304
National Center of Biological 

Information, 94
National Heart Lung and Blood Institute, 

114
National Human Genome Research 

Institute, 14, 113, 120
National Institutes of Health, 120, 204
Natural killer cells, 222
Nature, 273
Nature Biotechnolog, 134
NCBI
	 biological databases, 534–535
	 MapViewer, 4
	 RNAi resources at, 279
NEB Cutter, 59
	 display and analysis of results in, 

62–66
	 inputting genomic or cDNA sequences 

into, 61–62
	 sample data, 66–67
	 step-by-step tutorial, 61–66
Neighbor-joining distance method, 95, 97, 

101f, 102
NetAlign, 410t
N-ethyl N-nitrosourea, 434
Network model databases, 527
Networks, interaction, 406–408, 415–420
New England Biolabs Cutter, 59
N-glycosylation, 396–397
Nodes, rules for comparing, 162–164
Nonparametric metrics, 160–161
Nonparametric tests, 156
Nonsynonymus SNPs, 113
Normalization, data, 148, 149b, 296–297, 

321–322, 327–329, 535, 549

	 mean center array, 564–568
NoxClass, 410t
N-terminal domains, 233
Nucleic acid abundance and PCR, 68
Nucleic Acids Research, 534
Nucleotide BLAST function, 40–41, 45–46

O
Object-oriented databases, 528–529, 

533–535
Object-relational database management, 

533–535
Observational studies, microarray 

analysis as, 169
	 3of5 web application, 365–367, 366t
O-glycosylation, 401–402, 403f
Oligo arrays, image-processing algorithms 

for, 148–151
OMIM, 534
OMMSA, 307
Online Mendelian Inheritance in Man, 

534
Ontology analysis, gene, 181–185
Open Bioinformatics Foundation, 169–170
OpenLink Virtuoso, 534
Open Mass Spectrometry Search 

Algorithm, 307
Open reading frames
	 alternative promoters and, 221–222
	 InterProScan, 370
	 restriction mapping and, 59, 62, 63–64, 

65f
	 RNA editing and, 244
Open Source Initiative, 170
OPHID, 410t
Oracle software, 533
ORFs. See Open reading frames
Organ donation, 58

P
PageBreeze
	 adding audio in, 521–522
	 adding text and images in, 518–519
	 creating and editing tables in, 521
	 hyperlinking in, 519–520
	 page properties setting, 517–518
	 sample data, 522–523
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	 setup, 514–515
	 templates
		  creating new pages using, 518
		  customization, 517
		  overview, 515–517
PAL, 475–476
PANTHER, 366t, 367–368, 374–375
Paradox software, 531
Parameters
	 mass spectrometry search, 309–310
	 PCR, 72–75
	 scanning, 288–289
Parametric metrics, 160–161
Partitioning methods, data, 165
Passenger strand, 274
Pasteur Institute, 100
Paternity testing and phylogenetic 

analysis, 94
Pattern and profile search
	 databases
		  BLOCKS, 362–363
		  CATH, 364–365
		  HAMAP, 363
		  InterPro, 364
		  Pfam, 362
		  Phospho.ELM, 363–364
		  PIRSF, 364
		  PRINTS, 363
		  ProDom, 362
		  PROSITE, 361–362
		  SUPERFAMILY, 364
		  TIGRFAMs, 363
	 defined, 361–365
	 integrated analyzing systems, 365–368
		  FingerPRINTScan, 365, 366t
		  InterProScan, 365, 366t
		  3of5, 365–367, 366t
	 PIRSF, 364
	 reasons for, 360–361
	 sample data, 376
	 step-by-step tutorial, 368–376
PATTINPROT, 366t
PBEF
	 alignment of human, mouse and rat, 

87–93
	 collecting homologous sequences of, 

98–99

	 HapMap haplotyping and, 124–128
	 partial human protein sequence, 83
	 Pre-B-cell Colony-Enhancing Factor, 

87–90
PCA, 167
PCons/Pmodeller Meta Server, 351, 358f, 

359–360
PCR, 56
	 allele-specific, 118
	 amplicons, 68
	 applications, 68–70
	 defined, 67
	 DNA subcloning using, 69
	 GeneChip human mapping assays, 111
	 gene expression studies, 69–70
	 multiplex, 69
	 mutation detection, 70
	 primer design, 70–72
	 process, 67–68
	 product contamination, 151–152
	 quantitative real-time, 68
	 results, 75–76
	 SAGE and, 192
	 sample data, 76–78
	 sequence input and parameters 

selection, 72–75
	 step-by-step tutorial, 72–76
	 TaqMan assay and, 111
	 in vitro mutagenesis, 69–70
Pearson correlation, 161, 177
Pearson (FASTA), 83
Pedigrees, genotyping, 118–119
Peptides, modified, 395
Performance of clustering methods, 

166–167
Perl
	 application examples, 463–473
		  data retrieval, 469, 470f
		  data storing, 465–469
		  file reading, 465–467
		  web application, 470–473
	 basic operations, 456–458
	 Bioperl module, 453–455, 460, 461f
	 defined, 451
	 downloading and installing, 458
	 popularity of, 452–455
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	 scripts
		  creation, 456–457
		  running, 457–458
		  testing, 462–463
	 step-by-step tutorial, 458–463
	 TextPad, 458–460, 460–462, 469
Pfam, 362, 366t, 383t, 534
Phamacogenetics and haplotyping, 123
Pharmacogenomics and haplotyping, 123
PharmGKB, 123
PHDsec, 348
PHI-Blast function, BLAST, 41
Phospho.ELM, 363–364, 393, 400
Phosphorylation, 401–402, 403f
PhosphoSite, 393
PHYLIP, 97–98, 100
Phylogenetic analysis
	 activities involved in, 94–96
	 classification of living species using, 

93–94
	 collecting a set of homologous protein 

sequences for, 98–99
	 data collection in, 94
	 defined, 93
	 forensic applications of, 94
	 multiple sequence alignments, 94, 99
	 new developments in, 96–97
	 phylogenetic tree building in, 94–96, 

100
	 phylogenomic analyses in, 96
	 reasons for, 93–94
	 sample data, 103–105
	 software programs, 95–96, 96–97
	 step-by-step tutorial, 97–105
	 tree evaluation, 96, 101
	 tree visualization, 101–103
Phylogenetic Analysis Library, 475–476
Phylogenetic Tree Gif Maker, UCSC 

genome browser, 19
Phylogenomic analyses, 96
PHYLogeny Inference Package, 95
Phylo-VISTA, 3
Physarum pp., 242, 243
Pi and Mw of proteins, 335–336, 337–339
PIBASE, 410t
PIRSF, 364
Pixels, 145

Plasmode data sets, 150, 171
Platforms, microarray, 134–135, 136–137t
PLIER algorithm, 151
PlotScale, 336, 340–341
PLS, 167
Point Accepted Mutation matrix, 84
Polar and Interactive Tree software, 97
Polymerase chain reaction. See PCR
Pooling, sample, 140–141
Posttranscriptional gene silencing, 273
Posttranslational modifications, protein, 

382–384
	 defined, 391–393
	 experimental studies, 394–396
	 functional impact of, 393–394
	 naturally occurring types of, 392–393
	 prediction, 396–397, 400–403
	 sample data, 403
	 step-by-step tutorial, 397–403
Power analysis, experimental design, 

139–140
PPSEARCH, 366t
PRATT, 366t
Pre-B-cell colony-enhancing factor, 

114–117, 440
PreBIND, 411
Prediction
	 class, 167–168
	 protein-protein interactions and, 

408–409
PredictProtein server, 351, 354–357
Primary structure analysis. See also 

Secondary and tertiary 
structure analysis

	 computation of pI and Mw of proteins 
in, 335–336

	 defined, 334–335
	 selecting protein sequences for, 335, 

337
	 step-by-step tutorial, 337–343
Primer3, 71, 73f, 74–75, 76f, 77f
PrimerBank, 72
Primer design, PCR, 70–72
Principle component analysis, 167
PRINTS database, 363
PRISM, 410t
Pritchard, J. K., 120
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PROBCONS, 86–87
ProDom, 362
ProFace, 410t
Profiling, miRNA, 255–259
PROFsec, 348
Progenesis, 289
	 analysis
		  automatic, 292–297
		  evaluation, 297–298
	 manual spot detection/correction, 

299–301
	 spot
		  detection/correction, 299–301
		  information validation, 298–299
		  matching, 301–302
	 TT900 warping, 290–292
	 validation of spot information, 

298–299
Programming languages, 450–451
	 database, 530–533
	 JAVA, 451, 452, 473–494
	 Perl, 451–473
	 R, 494–503
Pro Group™, 305, 307
Proportional hazard regression model, 

167
PROSITE, 361–362, 396
	 scan, 364t
Protein Data Bank, 408, 421–423
ProteinPilot™, 305, 307
ProteinProphet™, 305
Protein(s)
	 argonaut, 273–274
	 BLAST function, 41–42, 48–49
	 classification of, 380
	 Duster, UCSC genome browser, 19
	 function annotation, 381–391
	 hydropathy plot for, 336
	 Lounge siRNA database, 279–280
	 microarray analysis
		  analysis programs, 323–324
		  clustering and comparing results, 

322–323, 329–330
		  identification of spots and 

perimeters, 320
		  importance of, 319
		  importing data files, 320–321

		  normalization and quantification, 
321–322

		  procedures, 319–323
		  statistical analysis, 322
		  step-by-step tutorial, 323–330
		  types of, 318–319
	 phosphorylation, 394
	 pI and Mw of, 335–336, 337–339
	 posttranslational modification, 

382–384, 391–403
	 -protein interactions
		  experimental studies, 405–406
		  features of, 404–405
		  importance of, 404
		  interface structural analysis, 

420–423
		  networks, 406–408, 415–420
		  predicting protein function, 409
		  prediction and, 408–409
		  resources on, 409–412
		  in silico study of, 406–408
		  step-by-step tutorial, 412–423
	 Rapid Automatic Detection and 

Alignment of Repeats, 336, 
339–340

	 sequence alignment, 87–90
		  editing and publishing, 90–92
	 sequence analysis, in silico, 382–384
	 subcellular location prediction, 

385–387
Proteolytic cleavages, 393
Protocolization, 135
ProtParam, 335–336
Przeworski, M., 120
PSI-Blast function, BLAST, 41
PSIpred, 348
PSORT, 383t
PTGS, 273
PTMs. See Posttranslational 

modifications, protein
PTS1, 383t
PubMed, 72
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Quality control, microassay, 151–154, 
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Quantitative real-time PCR, 68
Quantitative trait loci, 435–437, 441–444

R
RADAR, 336, 339–340
Randomization, sample, 141–142
Rapid Automatic Detection and 

Alignment of Repeats, 336, 
339–340

Ratio statistics, normalization using, 149b
RBI methods, 157
RCSB Protein Data Bank, 345, 352–360
Reference designs, 143–144, 153
Regression techniques and normalization, 

149b
Relational databases, 527–528, 530–532
Replicates, biological and technical, 138
Resampling-based inference, 157
Restriction digests, 58
Restriction endonucleases cleavage sites, 

58
Restriction Enzyme Database, 57
Restriction fragment length 

polymorphism analysis, 58
Restriction/Mapper, 59–60
Restriction mapping
	 applications, 58–59
	 defined, 58
	 displaying and analysis of results, 

62–66
	 inputting genomic or cDNA 

sequencing into, 61–62
	 online programs, 59–61
	 restriction enzymes in, 56–57, 58–59
	 sample data, 66–67
	 step-by-step tutorial, 61–66
Reverse Position-Specific Blast, 41–42
RFLP analysis, 58
Rich Sequence Format, 83
RNA
	 alternative translation initiation, 

231–240
	 array hybridization, 264
	 A-to-I editing, 245–246

	 biological replicates, 138
	 C-insertion and dinucleotide insertion 

editing, 243–244
	 C-to-U editing, 244
	 databases for editing, 246
	 degradation and microassay quality 

control, 151–154, 502–503
	 differs, 142–143
	 editing, 240–247
	 -induced silencing complex, 273–274
	 interference (See RNAi)
	 lin-4, 253
	 messenger, 69–70
	 microarray technology and, 134
	 serial analysis of gene expression and, 

190–199
	 splicing, 226–231
	 technical replicates, 138
	 total isolation, 262
	 two-color arrays, 143–144
RNA Editing Website, 246
RNAi
	 applications, 271
	 defined, 272
	 mechanism, 273–274
RNAi Consortium, 277–278
Robetta, 351
Robust multiarray analysis, 150
R programming
	 basics, 495–497
	 defined, 494–495
	 popularity in biology, 495
	 step-by-step tutorial, 497–503
		  BioConductor installation, 498–499
		  downloading and installing, 

497–498
		  microarray data analysis, 499–503
Rpsblast function, BLAST, 41–42
RTPrimerDB, 71–72
RVISTA, 3
Rychlik, W., 74

S
S. cerevisiae, 433
Saccharomyces Genome Database, 207
SAGE. See Serial analysis of gene 

expression
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SAGEmap, 204–205
SAGEnet, 204
SAGE300 program, 200–201
SAM algorithm, 157, 177–185, 268t
SameSpots, 302
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	 comparison of multiple, 144–145
	 2DE gel preparation and, 287–288
	 normalization, 148, 149b
	 pooling, 138–140
	 randomization, 141–142
	 reference designs, 143–144
	 size and replication, 138–140
SAM-T02, 348
Sanger, Frederick, 335
Sanger Institute, 3
ScanProsite, 85, 366t, 383t
Scatter plots, SAGE, 202
SCOWLP, 410t
Scripts, Perl
	 creation, 456–457
	 running, 457–458
	 testing, 462–463
SeattleSNPs, 114, 116
Secondary and tertiary structure analysis. 

See also Primary structure 
analysis

	 defined, 345–346
	 sample data, 360
	 searching PDB for protein sequences 

in, 346
	 secondary structure prediction, 

346–349
	 step-by-step tutorial, 352–360
		  3D structure prediction using 

BioInfoBank, 357–360
		  prediction using PredictProtein, 

354–357
		  sequence analysis, 352–354
	 tertiary structure prediction, 349–352
Self-organizing maps, 164, 166, 178–180
Sequence
	 alignment
		  editing and publishing, 90–92
		  multiple, 87–90

	 analysis, protein, 382–384
	 prediction of posttranslational 

modifications from, 400–403
	 search
		  BLAST similarity, 35–54
		  PCR, 72–75
		  UCSC genome browser, 10–12, 

22–23
Sequencing-based SNP discovery, 108–109
Serial analysis of gene expression, 70
	 application to medical research, 

196–199
	 in cancer, 197–198, 209
	 in cardiovascular diseases, 198
	 data analysis, 199–203
	 databases, 204–210, 211–217f
		  introduction to, 204–207
	 defined, 190–191
	 difference between microarray and, 

194–196
	 library construction, 192–194
	 new gene mapping and karyotyping, 

198–199
	 online programs, 200–201
	 principles of, 191–194
	 raw data, 202–203
	 step-by-step tutorial, 208–210, 

211–217f
Shapiro-Wilk test, 161
SiDirect, 277
SignalP, 366t, 383t
Signatures, molecular, 167
Significance analysis of microarray 

algorithm, 157, 177–185
Silent, 61
Single linkage nodes, 163
Single-nucleotide polymorphism, 60
Single-strand conformation 

polymorphism, 109
SiRNA at Whitehead, 277
SiRNAs
	 applications, 274–276
	 databases, 277–280
	 defined, 272
	 design, 276–277
	 functional genomics and, 274–275
	 historical discovery of, 272–273
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genes and drug targets using, 
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	 resources, 277–280
	 searching, 280, 281–282f
Site-specific recombinase system, 432
SLITRK1, 255
SM22alpha gene flanking sequence, 76–78
SMART, 366t, 367, 383t
Smith, Hamilton, 58–59
Smithies, Oliver, 428
SNP, 60
	 Blast, 44
	 databases, 113–114
	 defined, 108
	 discovery and assay, 108–112
		  high-throughput methods for, 

110–112
		  low-throughput methods for, 

108–110
	 haplotype tagging and, 121–122, 

124–128
	 human disease and, 112–113
	 information searches, 114–116
	 murine models and, 444–446
	 nonsynonymous, 113
	 restriction fragment length 

polymorphism, 60
	 sample data, 117
	 step-by-step tutorial, 114–117
	 synonomous, 112
Sockeye tool, 475
SOM, 164, 178–180
Sound and animation, Web site, 513–514
Spearman rank correlation, 161
Special functions, BLAST, 43–44, 51
Spice tool, 475
Spinal muscular atrophy, 255
Splicing. See Alternative splicing
Spot(s)
	 detection/correction, 299–301
	 identification in protein microarray 

analysis, 320
	 information validation, 298–299
	 matching, manual, 301–302
Spreadsheets vs. databases, 524

SQLite, 533
SQL Server, 533
SSpro method, 348
StandAlone BLAST, 37
Statistics
	 Microsoft Excel, 549–550
	 ratio, 149b
Streptomyces, 434
STRING program, 383t, 410t, 411
Subcellular location for proteins, 385–387
Subcloning, DNA, 69
Substitution/conversion class of RNA 

editing, 242
Sun Microsystems, 473
SUPERFAMILY database, 364
Supervised classification, 167–168
SWISS-PROT database, 85, 234, 397–403
Synonymous SNPs, 112

T
Table Browser, USCS Genome Browser
	 custom tracks, 26–31
	 functionality, 12–16
	 step-by-step instructions for, 24–26
Tables, Web site, 512–513, 521
Tagged Image File Format, 145
Tagging, haplotype, 121–122
Tag identification, SAGE, 202–203
TaqMan assays, 110, 111
	 microarray assays compared to, 

134–135
Targeted insertion, 428–430
TargetP, 383t
Tblastn function, BLAST, 39, 42–43, 

49–50
Tblastx function, BLAST, 43
Technical replicates, RNA, 138
TEIRESIAS, 366t
Templates, Web page, 508–509
Tertiary structure prediction, 349–352
TextPad, 458–460, 460–462, 469, 481–482, 

483
Thermo Electron, 307
Threading methods, 349
TIGRFAMs, 363
TIGR_Madam 4.0, 142
TIGR MIDAS, 174
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TIGR MultiExperiment Viewer, 475
TIGR Spotfinder, 146, 170, 174
TMHMM, 366t, 383t
TM4 software, 170
@Tome, 351
ToPNET, 410t
Total intensity normalization, 149b
Traceability, measurement, 152–153
Transgenic mouse
	 DNA microinjection, 427
	 gene trapping, 429–430
	 targeted insertion, 428–430
Translated BLAST function, 42–43, 49–50
Translational initiation. See Alternative 

translation initiation
Trapping, gene, 429–430
Trees, phylogenetic
	 building, 94–96, 100
	 evaluation, 96, 101
Tri-reagant protocol, 262
Trizol, 262
Truss, Matthias, 279
Trypanosoma, 242
TT900 warping, 290–292, 295
Tuschl, Thomas, 254, 279
Two-color array design, 142–145
Two-dimensional gel electrophoresis
	 analysis software, 289–290
	 defined, 286–287
	 gel preparation, 287–288
	 protein posttranslational 

modifications and, 395
	 scanning parameters, 288–289
	 step-by-step tutorial, 290–302
		  automatic analysis, 292–297
		  evaluation, 297–298
		  manual spot detection/correction, 

299–301
		  TT900 warping, 290–292, 295
		  validation of spot information, 

298–299
	 usefulness, 286–287
Two-dimensional gene scanning, 110

U
UCSC genome browser, 2–3, 5–19
	 annotation tracks, 6–7, 16

	 basic functionality, 19–22
	 Batch Coordinate Conversion, 18
	 change options, 7–8
	 creating and using custom track in, 16
	 Custom Track, 26–31
	 data columns, 17–18
DNA Duster, 18–19, 33–35
	 filtering, manipulating, downloading 

data using, 12–16, 24–26
	 Gene Sorter, 16–18, 32
	 Phylogenetic Tree Gif Maker, 19
	 Protein Duster, 19
	 sequence search, 10–12
	 In Silico PCR function, 18, 32–33
	 siRNA and, 276
	 step-by-step tutorial, 19–35
	 Table Browser, 12–16, 24–31
	 text searching, 5–10, 19–22
	 visual cues, 8–9
UniGene project, 200, 205
UniProtKB, 383t, 385–391, 393, 397–403
Universal Protein Resource, 83
Unix platforms, 452, 456–458
Unsupervised clustering, 159–161, 267f
Untranslated regions, 222
USAGE, 201
UTRs, 222

V
Validation of spot information, 

Progenesis, 298–299
Variability, gene expression microarrays, 

135–138
VecScreen, 44
Vector support machines, 167
Venn diagram construction, 575–577
VIGS, 273
Virtual Ribosome, 234
Virus-induced gene silencing, 273
VisANT, 411t
VISTA, 3
Visual FoxPro, 534
Visualization
	 microarray analysis using 

BioConductor and, 502–503
	 Microsoft Excel, 550
	 phylogenetic tree, 101–103
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Vocabularies, controlled annotation, 385
VSM, 167

W
Wall, Larry, 451
Warping, TT900, 290–292, 295
WatCut, 60
Webcutter, 60
WebInterViewer, 411t
WebMol tool, 475
Web programs/servers
	 pattern and profile search, 361–368
	 Perl, 470–473
	 PlotScale, 336, 340–341
	 protein function annotation, 385–391
	 restriction mapping, 59–61
	 RNA-editing, 246
	 SAGE, 200–201
	 secondary structure prediction, 

347–349
	 siRNA design software, 277
	 tertiary structure prediction, 351–352
WEBSAGE, 201, 202–203
Web sites, personal
	 animation and sound, 513–514
	 background color and images, 513
	 basic steps to setting up, 509–511

	 designing, 506–507
	 domain registration, 509–510
	 editing, 511–514
	 hosting, 509
	 hyperlinking text files to, 511, 519–520
	 loading pages onto, 510
	 maintaining, 510–511
	 PageBreeze and, 514–523
	 page creation, 507–509
	 pictures, 512, 518–519
	 step-by-step tutorial, 514–523
	 tables, 512–513, 521
Wilcox rank sum test, 156
Windows operating system, 452, 474, 

481–482f, 532
WYSIWYG editors, 512

X
X!tandem, 308

Y
Yeast two-hybrid technique, 195–196

Z
Z3, 290
Zhang, L., 259, 260
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