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PREFACE

This is the seventh edition of a book that was first published by Professor Klotz in
1950. He died while we were preparing this edition, and it is dedicated to his memory.

Many friends have asked why a new edition of a thermodynamics text is necess-
ary, because the subject has not changed basically since the work of J. Willard Gibbs.
One answer is given by the statement of Lord Rayleigh in a letter to Gibbs�,

The original version, though now attracting the attention it deserves, is too condensed
and too difficult for most, I might say all, readers.

This statement follows a request for Gibbs to prepare a new edition of, or a treatise
founded on, the original. Those of us who still have difficulty with Gibbs are in
good company. Planck wrote his famous textbook on thermodynamics independently
of Gibbs, but subsequent authors were trying to make the work of Gibbs more easily
understood than the Gibbs original. Similarly, each new edition of an established
text tries to improve its pedagogical methods and bring itself up to date with recent
developments or applications. This is the case with this edition.

One hundred fifty years ago, the two classic laws of thermodynamics were formu-
lated independently by Kelvin and by Clausius, essentially by making the Carnot
theorem and the Joule–Mayer–Helmholtz principle of conservation of energy con-
cordant with each other. At first the physicists of the middle 1800s focused primarily
on heat engines, in part because of the pressing need for efficient sources of power. At
that time, chemists, who are rarely at ease with the calculus, shied away from

�Quoted in E. B. Wilson, Proc. Natl. Acad. Sci., U. S. A. 31, 34–38 (1945).
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thermodynamics. In fact, most of them probably found the comment of the distin-
guished philosopher and mathematician August Comte very congenial:

Every attempt to employ mathematical methods in the study of chemical questions must
be considered profoundly irrational. If mathematical analysis should ever hold a promi-
nent place in chemistry-an aberration which is happily impossible-it would occasion a
rapid and widespread degradation of that science.
—A. Comte, Cours de philosophie positive, Bachelier, Paris, 1838, Vol. 3, pp. 28–29

By the turn of the nineteenth into the twentieth century, the work of Gibbs,
Helmholtz, Planck, van’t Hoff, and others showed that the scope of thermodynamic
concepts could be expanded into chemical systems and transformations.
Consequently, during the first 50 years of the twentieth century, thermodynamics
progressively pervaded all aspects of chemistry and flourished as a recognizable
entity on its own—chemical thermodynamics.

By the middle of the twentieth century, biochemistry became increasingly under-
stood in molecular and energetic terms, so thermodynamic concepts were extended
into disciplines in the basic life sciences and their use has expanded progressively.
During this same period, geology and materials science have adapted thermodyna-
mics to their needs. Consequently, the successive revisions of this text incorporated
examples and exercises representative of these fields.

In general, the spirit and format of the previous editions of this text have been
maintained. The fundamental objective of the book remains unchanged: to present
to the student the logical foundations and interrelationships of thermodynamics
and to teach the student the methods by which the basic concepts may be applied
to practical problems. In the treatment of basic concepts, we have adopted the
classic, or phenomenological, approach to thermodynamics and have excluded
the statistical viewpoint. This attitude has several pedagogical advantages. First, it
permits the maintenance of a logical unity throughout the book. In addition, it
offers an opportunity to stress the “operational” approach to abstract concepts.
Furthermore, it makes some contribution toward freeing the student from a perpetual
yearning for a mechanical analog for every new concept that is introduced.

A great deal of attention is paid in this text to training the student in the application
of the basic concepts to problems that are commonly encountered by the chemist, the
biologist, the geologist, and the materials scientist. The mathematical tools that are
necessary for this purpose are considered in more detail than is usual. In addition,
computational techniques, graphical, numerical, and analytical, are described fully
and are used frequently, both in illustrative and in assigned problems. Furthermore,
exercises have been designed to simulate more than in most texts the type of
problem that may be encountered by the practicing scientist. Short, unrelated exer-
cises are thus kept to a minimum, whereas series of computations or derivations,
which illustrate a technique or principle of general applicability, are emphasized.

We have also made a definite effort to keep this volume to a manageable size. Too
often, a textbook that attempts to be exhaustive in its coverage merely serves to over-
whelm the student. On the other hand, if a student can be guided to a sound grasp of
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the fundamental principles and be shown how these can be applied to a few typical
problems, that individual will be capable of examining other special topics indepen-
dently or with the aid of one of the excellent comprehensive treatises that
are available.

Another feature of this book is the extensive use of subheadings in outline form to
indicate the position of a given topic in the general sequence of presentation. In using
this method of presentation, we have been influenced strongly by the viewpoint
expressed so aptly by Poincare:

The order in which these elements are placed is much more important than the elements
themselves. If I have the feeling . . . of this order, so as to perceive at a glance the reason-
ing as a whole, I need no longer fear lest I forget one of the elements, for each of them
will take its allotted place in the array, and that without any effort of memory on my part.
—H. Poincare, The Foundations of Science, translated by G. B. Halsted, Science Press,

1913.

It is a universal experience of teachers, that students can to retain a body of infor-
mation much more effectively if they are aware of the place of the parts in the whole.

Although thermodynamics has not changed fundamentally since the first edition
was published, conventions and pedagogical approaches have changed, and new
applications continue to appear. A new edition prompts us to take note of the pro-
gressive expansion in range of areas in science and engineering that have been
illuminated by thermodynamic concepts and principles. We have taken the opportu-
nity, therefore, to revise our approach to some topics and to add problems that reflect
new applications. We have continued to take advantage of the resources available on
the World Wide Web so that students can gain access to databases available online.

We are indebted to the staff of Seeley-Mudd Science and Engineering Library for
their assistance in obtaining resource materials. R.M.R. is grateful to the Chemistry
Department of Northwestern University for its hospitality during his extended visit-
ing appointment. We thank Warren Peticolas for his comments on several chapters
and for his helpful suggestions on Henry’s law. We are grateful to E. Virginia
Hobbs for the index and to Sheree Van Vreede for her copyediting. We thank
Rubin Battino for his careful reading of the entire manuscript.

A solutions manual that contains solutions to most exercises in the text is
available.

While this edition was being prepared, the senior author, Irving M. Klotz, died. He
will be sorely missed by colleagues, students, and the scientific community. This
edition is dedicated to his memory.

ROBERT M. ROSENBERG

Evanston, Illinois
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CHAPTER 1

INTRODUCTION

1.1 ORIGINS OF CHEMICAL THERMODYNAMICS

An alert young scientist with only an elementary background in his or her field might
be surprised to learn that a subject called “thermodynamics” has any relevance to
chemistry, biology, material science, and geology. The term thermodynamics,
when taken literally, implies a field concerned with the mechanical action produced
by heat. Lord Kelvin invented the name to direct attention to the dynamic nature of
heat and to contrast this perspective with previous conceptions of heat as a type of
fluid. The name has remained, although the applications of the science are much
broader than when Kelvin created its name.

In contrast to mechanics, electromagnetic field theory, or relativity, where the
names of Newton, Maxwell, and Einstein stand out uniquely, the foundations of
thermodynamics originated from the thinking of over half a dozen individuals:
Carnot, Mayer, Joule, Helmholtz, Rankine, Kelvin, and Clausius [1]. Each person
provided crucial steps that led to the grand synthesis of the two classic laws of
thermodynamics.

Eighteenth-century and early nineteenth-century views of the nature of heat were
founded on the principle of conservation of caloric. This principle is an eminently
attractive basis for rationalizing simple observations such as temperature changes
that occur when a cold object is placed in contact with a hot one. The cold
object seems to have extracted something (caloric) from the hot one. Furthermore,

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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if both objects are constituted of the same material, and the cold object has twice
the mass of the hot one, then we observe that the increase in temperature of the
former is only half the decrease in temperature of the latter. A conservation principle
develops naturally. From this principle, the notion of the flow of a substance from
the hot to the cold object appears almost intuitively, together with the concept that
the total quantity of the caloric can be represented by the product of the mass mul-
tiplied by the temperature change. With these ideas in mind, Black was led to the
discovery of specific heat, heat of fusion, and heat of vaporization. Such successes
established the concept of caloric so solidly and persuasively that it blinded even the
greatest scientists of the early nineteenth century. Thus, they missed seeing well-
known facts that were common knowledge even in primitive cultures, for
example, that heat can be produced by friction. It seems clear that the earliest of
the founders of thermodynamics, Carnot, accepted conservation of caloric as a
basic axiom in his analysis [2] of the heat engine (although a few individuals [3]
claim to see an important distinction in the contexts of Carnot’s uses of “calorique”
versus “chaleur”).

Although Carnot’s primary objective was to evaluate the mechanical efficiency of
a steam engine, his analysis introduced certain broad concepts whose significance
goes far beyond engineering problems. One of these concepts is the reversible
process, which provides for thermodynamics the corresponding idealization that
“frictionless motion” contributes to mechanics. The idea of “reversibility” has appli-
cability much beyond ideal heat engines. Furthermore, it introduces continuity into
the visualization of the process being considered; hence, it invites the introduction
of the differential calculus. It was Clapeyron [4] who actually expounded Carnot’s
ideas in the notation of calculus and who thereby derived the vapor pressure equation
associated with his name as well as the performance characteristics of ideal engines.

Carnot also leaned strongly on the analogy between a heat engine and a hydro-
dynamic one (the water wheel) for, as he said:

we can reasonably compare the motive power of heat with that of a head of water.

For the heat engine, one needs two temperature levels (a boiler and a condenser) that
correspond to the two levels in height of a waterfall. For a waterfall, the quantity of
water discharged by the wheel at the bottom level is the same as the quantity that
entered originally at the top level, with the work being generated by the drop in grav-
itational level. Therefore, Carnot postulated that a corresponding thermal quantity,
“calorique,” was carried by the heat engine from a high temperature to a low one;
the heat that entered at the upper temperature level was conserved and exited in
exactly the same quantity at the lower temperature, with work having been produced
during the drop in temperature level. Using this postulate, he was able to answer in a
general way the long-standing question of whether steam was suited uniquely for a
heat engine; he did this by showing that in the ideal engine any other substance
would be just as efficient. It was also from this construct that Kelvin subsequently
realized that one could establish an absolute temperature scale independent of the
properties of any substance.

2 INTRODUCTION



When faced in the late 1840s with the idea of conservation of (heat plus work)
proposed by Joule, Helmholtz, and Mayer, Kelvin at first rejected it (as did the
Proceedings of the Royal Society when presented with one of Joule’s manuscripts)
because conservation of energy (work plus heat) was inconsistent with the Carnot
analysis of the fall of an unchanged quantity of heat through an ideal thermal
engine to produce work. Ultimately, however, between 1849 and 1851, Kelvin and
Clausius, each reading the other’s papers closely, came to recognize that Joule and
Carnot could be made concordant if it was assumed that only part of the heat entering
the Carnot engine at the high temperature was released at the lower level and that
the difference was converted into work. Clausius was the first to express this in
print. Within the next few years, Kelvin developed the mathematical expression
SQ/T ¼ 0 for “the second fundamental law of the dynamical theory of heat” and
began to use the word thermodynamic, which he had actually coined earlier.
Clausius’s analysis [5] led him, in turn, to the mathematical formulation ofÐ
dQ/T � 0 for the second law; in addition, he invented the term entropy (as an

alternative to Kelvin’s “dissipation of energy”), for, as he says,

I hold it better to borrow terms for important magnitudes from the ancient languages so
that they may be adopted unchanged in all modern languages.

Thereafter, many individuals proceeded to show that the two fundamental laws,
explicitly so-called by Clausius and Kelvin, were applicable to all types of macro-
scopic natural phenomena and not just to heat engines. During the latter part of the
nineteenth century, then, the scope of thermodynamics widened greatly. It became
apparent that the same concepts that allow one to predict the maximum efficiency
of a heat engine apply to other energy transformations, including transformations
in chemical, biological, and geological systems in which an energy change is not
obvious. For example, thermodynamic principles permit the computation of the
maximum yield in the synthesis of ammonia from nitrogen and hydrogen under a
variety of conditions of temperature and pressure, with important consequences to
the chemical fertilizer industry. Similarly, the equilibrium distribution of sodium
and potassium ions between red blood cells and blood plasma can be calculated
from thermodynamic relationships. It was the observation of deviations from an equi-
librium distribution that led to a search for mechanisms of active transport of these
alkali metal ions across the cell membrane. Also, thermodynamic calculations of
the effect of temperature and pressure on the transformation between graphite and
diamond have generated hypotheses about the geological conditions under which
natural diamonds can be made.

For these and other phenomena, thermal and work quantities, although controlling
factors, are only of indirect interest. Accordingly, a more refined formulation of ther-
modynamic principles was established, particularly by Gibbs [6] and, later, indepen-
dently by Planck [7], that emphasized the nature and use of several special functions or
potentials to describe the state of a system. These functions have proved convenient
and powerful in prescribing the rules that govern chemical and physical transitions.
Therefore, in a sense, the name “energetics” is more descriptive than is
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“thermodynamics” insofar as applications to chemistry are concerned. More
commonly, one affixes the adjective “chemical” to thermodynamics to indicate the
change in emphasis and tomodify the literal and original meaning of thermodynamics.

1.2 OBJECTIVES OF CHEMICAL THERMODYNAMICS

In practice, the primary objective of chemical thermodynamics is to establish a cri-
terion for determining the feasibility or spontaneity of a given physical or chemical
transformation. For example, we may be interested in a criterion for determining
the feasibility of a spontaneous transformation from one phase to another, such as
the conversion of graphite to diamond, or the spontaneous direction of a metabolic
reaction that occurs in a cell. On the basis of the first and second laws of thermodyn-
amics, which are expressed in terms of Gibbs’s functions, several additional theoreti-
cal concepts and mathematical functions have been developed that provide a powerful
approach to the solution of these questions.

Once the spontaneous direction of a natural process is determined, we may wish to
know how far the process will proceed before reaching equilibrium. For example, we
might want to find the maximum yield of an industrial process, the equilibrium solu-
bility of atmospheric carbon dioxide in natural waters, or the equilibrium concen-
tration of a group of metabolites in a cell. Thermodynamic methods provide the
mathematical relations required to estimate such quantities.

Although the main objective of chemical thermodynamics is the analysis of spon-
taneity and equilibrium, the methods also are applicable to many other problems. For
example, the study of phase equilibria, in ideal and nonideal systems, is basic to the
intelligent use of the techniques of extraction, distillation, and crystallization; to met-
allurgical operations; to the development of new materials; and to the understanding
of the species of minerals found in geological systems. Similarly, the energy changes
that accompany a physical or chemical transformation, in the form of either heat or
work, are of great interest, whether the transformation is the combustion of a fuel,
the fission of a uranium nucleus, or the transport of a metabolite against a concen-
tration gradient. Thermodynamic concepts and methods provide a powerful approach
to the understanding of such problems.

1.3 LIMITATIONS OF CLASSIC THERMODYNAMICS

Although descriptions of chemical change are permeated with the terms and language
of molecular theory, the concepts of classic thermodynamics are independent of mole-
cular theory; thus, these concepts do not require modification as our knowledge of
molecular structure changes. This feature is an advantage in a formal sense, but it
is also a distinct limitation because we cannot obtain information at a molecular
level from classic thermodynamics.

In contrast to molecular theory, classic thermodynamics deals only with measurable
properties of matter in bulk (for example, pressure, temperature, volume, cell potential,
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magnetic susceptibility, and heat capacity). It is an empirical and phenomenological
science, and in this sense, it resembles classic mechanics. The latter also is concerned
with the behavior of macroscopic systems, with the position and the velocity of a body
as a function of time, without regard to the body’s molecular nature.

Statistical mechanics (or statistical thermodynamics) is the science that relates the
properties of individual molecules and their interactions to the empirical results of
classical thermodynamics. The laws of classic and quantum mechanics are applied
to molecules; then, by suitable statistical averaging methods, the rules of macroscopic
behavior that would be expected from an assembly of many such molecules are for-
mulated. Because classical thermodynamic results are compared with statistical
averages over very large numbers of molecules, it is not surprising that fluctuation
phenomena, such as Brownian motion, the “shot effect,” or certain turbidity pheno-
mena, cannot be treated by classical thermodynamics. Now we recognize that all such
phenomena are expressions of local microscopic fluctuations in the behavior of a rela-
tively few molecules that deviate randomly from the average behavior of the entire
assembly. In this submicroscopic region, such random fluctuations make it impossi-
ble to assign a definite value to properties such as temperature or pressure. However,
classical thermodynamics is predicated on the assumption that a definite and repro-
ducible value always can be measured for such properties.

In addition to these formal limitations, limitations of a more functional nature also
exist. Although the concepts of thermodynamics provide the foundation for the solu-
tion of many chemical problems, the answers obtained generally are not definitive.
Using the language of the mathematician, we might say that classical thermodynamics
can formulate necessary conditions but not sufficient conditions. Thus, a thermodyn-
amic analysis may rule out a given reaction for the synthesis of some substance by indi-
cating that such a transformation cannot proceed spontaneously under any set of
available conditions. In such a case, we have a definitive answer. However, if the analy-
sis indicates that a reactionmay proceed spontaneously, no statement can bemade from
classical thermodynamics alone indicating that it will do so in any finite time.

For example, classic thermodynamic methods predict that the maximum equili-
brium yield of ammonia from nitrogen and hydrogen is obtained at low temperatures.
Yet, under these optimum thermodynamic conditions, the rate of reaction is so slow
that the process is not practical for industrial use. Thus, a smaller equilibrium yield at
high temperature must be accepted to obtain a suitable reaction rate. However,
although the thermodynamic calculations provide no assurance that an equilibrium
yield will be obtained in a finite time, it was as a result of such calculations for the
synthesis of ammonia that an intensive search was made for a catalyst that would
allow equilibrium to be reached.

Similarly, specific catalysts called enzymes are important factors in determining
what reactions occur at an appreciable rate in biological systems. For example, ade-
nosine triphosphate is thermodynamically unstable in aqueous solution with respect
to hydrolysis to adenosine diphosphate and inorganic phosphate. Yet this reaction
proceeds very slowly in the absence of the specific enzyme adenosine triphosphatase.
This combination of thermodynamic control of direction and enzyme control of rate
makes possible the finely balanced system that is a living cell.
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In the case of the graphite-to-diamond transformation, thermodynamic results
predict that graphite is the stable allotrope at a fixed temperature at all pressures
below the transition pressure and that diamond is the stable allotrope at all pressures
above the transition pressure. But diamond is not converted to graphite at low press-
ures for kinetic reasons. Similarly, at conditions at which diamond is the thermody-
namically stable phase, diamond can be obtained from graphite only in a narrow
temperature range just below the transition temperature, and then only with a catalyst
or at a pressure sufficiently high that the transition temperature is about 2000 K.

Just as thermodynamic methods provide only a limiting value for the yield of a
chemical reaction, so also do they provide only a limiting value for the work obtain-
able from a chemical or physical transformation. Thermodynamic functions predict
the work that may be obtained if the reaction is carried out with infinite slowness,
in a so-called reversible manner. However, it is impossible to specify the actual
work obtained in a real or natural process in which the time interval is finite. We
can state, nevertheless, that the real work will be less than the work obtainable in a
reversible situation.

For example, thermodynamic calculations will provide a value for the maximum
voltage of a storage battery—that is, the voltage that is obtained when no current
is drawn. When current is drawn, we can predict that the voltage will be less than
the maximum value, but we cannot predict how much less. Similarly, we can calcu-
late the maximum amount of heat that can be transferred from a cold environment into
a building by the expenditure of a certain amount of work in a heat pump, but the
actual performance will be less satisfactory. Given a nonequilibrium distribution of
ions across a cell membrane, we can calculate the minimum work required to maintain
such a distribution. However, the actual process that occurs in the cell requires much
more work than the calculated value because the process is carried out irreversibly.

Although classical thermodynamics can treat only limiting cases, such a restriction
is not nearly as severe as it may seem at first glance. In many cases, it is possible
to approach equilibrium very closely, and the thermodynamic quantities coincide
with actual values, within experimental error. In other situations, thermodynamic
analysis may rule out certain reactions under any conditions, and a great deal of
time and effort can be saved. Even in their most constrained applications, such as
limiting solutions within certain boundary values, thermodynamic methods can
reduce materially the amount of experimental work necessary to yield a definitive
answer to a particular problem.
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CHAPTER 2

MATHEMATICAL PREPARATION
FOR THERMODYNAMICS

Ordinary language is deficient in varying degrees for expressing the ideas and
findings of science. An exact science must be founded on precise definitions that
are difficult to obtain by verbalization. Mathematics, however, offers a precise
mode of expression. Mathematics also provides a rigorous logical procedure and a
device for the development in succinct form of a long and often complicated argu-
ment. A long train of abstract thought can be condensed with full preservation of con-
tinuity into brief mathematical notation; thus, we can proceed readily with additional
steps in reasoning without carrying in our minds the otherwise overwhelming burden
of all previous steps in the sequence. Yet, we must be able to express the results of our
investigations in plain language if we are to communicate our results to a general
audience.

Most branches of theoretical science can be expounded at various levels of abstrac-
tion. The most elegant and formal approach to thermodynamics, that of Caratheodory
[1], depends on a familiarity with a special type of differential equation (Pfaff
equation) with which the usual student of chemistry is unacquainted. However, an
introductory presentation of thermodynamics follows best along historical lines of
development, for which only the elementary principles of calculus are necessary.
We follow this approach here. Nevertheless, we also discuss exact differentials and
Euler’s theorem, because many concepts and derivations can be presented in a
more satisfying and precise manner with their use.

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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2.1 VARIABLES OF THERMODYNAMICS

Extensive and Intensive Quantities [2]

In the study of thermodynamics we can distinguish between variables that are inde-
pendent of the quantity of matter in a system, the intensive variables, and variables
that depend on the quantity of matter. Of the latter group, those variables whose
values are directly proportional to the quantity of matter are of particular interest
and are simple to deal with mathematically. They are called extensive variables.
Volume and heat capacity are typical examples of extensive variables, whereas temp-
erature, pressure, viscosity, concentration, and molar heat capacity are examples of
intensive variables.

Units and Conversion Factors

The base units of measurement under the Systeme International d’Unites, or SI units,
are given in Table 2.1 [3].

Some SI-derived units with special names are included in Table 2.2. The standard
atmosphere may be used temporarily with SI units; it is defined to be equal to
1.01325�105Pa. The thermochemical calorie is no longer recommended as a unit
of energy, but it is defined in terms of an SI unit, joules, symbol J, as 4.184 J [4].
The unit of volume, liter, symbol L, is now defined as 1dm3.

The authoritative values for physical constants and conversion factors used in
thermodynamic calculations are assembled in Table 2.3. Furthermore, information
about the proper use of physical quantities, units, and symbols can be found in
several additional sources [5].

2.2 ANALYTIC METHODS

Partial Differentiation

As the state of a thermodynamic system generally is a function of more than one inde-
pendent variable, it is necessary to consider the mathematical techniques for expres-
sing these relationships. Many thermodynamic problems involve only two
independent variables, and the extension to more variables is generally obvious, so
we will limit our illustrations to functions of two variables.

Equation for the Total Differential. Let us consider a specific example: the
volume of a pure substance. The molar volume Vm is a function f only of the tempe-
rature T and pressure P of the substance; thus, the relationship can be written in
general notation as

Vm ¼ f (P, T) (2:1)

10 MATHEMATICAL PREPARATION FOR THERMODYNAMICS



in which the subscript “m” indicates a molar quantity. Using the principles of calcu-
lus [6], we can write for the total differential

dVm ¼ @Vm

@P

� �
T

dPþ @Vm

@T

� �
P

dT (2:2)

TABLE 2.1. Base SI Unitsa

Quantity Unit Symbol Definition

Length meter m The meter is the length of the path
traveled by light in vacuum during a
time interval of 1/299, 792, 458 of a
second.

Mass kilogram kg The kilogram is the mass of the
international prototype of the
kilogram.

Time second s The second is the duration of 9, 192,
631, 770 periods of the radiation
corresponding to the transition
between the two hyperfine levels of
the ground state of the cesium-133
atom.

Electric current ampere A The ampere is that current which, if
maintained in two straight parallel
conductors of infinite length of
negligible cross section, and placed
1m apart in vacuum, would produce
between these conductors a force
equal to 2�1027 newton per meter
of length.

Thermodynamic
temperature

kelvin K The kelvin is the fraction 1/273.16 of
the thermodynamic temperature of the
triple point of water.

Amount of substanceb mole mol The mole is the amount of substance of a
system that contains as many
elementary entities as there are atoms
in 0.012kg of Carbon 12.

Luminous intensity candela cd The candela is the luminous intensity, in
a given direction, of a source that
emits monochromatic radiation of
frequency 540�1012 hertz and that
has a radiant intensity in that direction
of 1/683 watts per steradian.

aB. N. Taylor, Guide to the Use of the International System of Units (SI), NIST Special Publication 811,
Gaithersburg, MD, 1995. http://www.physics.nist.gov/cuu/units/current.html. http://www.bpim.fr.
bThe amount of substance should be expressed in units of moles, with one mole being Avogadro’s constant
number of designated particles or groups of particles, whether these are electrons, atoms, molecules, or the
number of molecules of reactants and products specified by a chemical equation.
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For the special case of one mole of an ideal gas, Equation (2.1) becomes

Vm ¼ RT

P
¼ RT

1
P

� �
(2:3)

where R is the universal gas constant. As the partial derivatives are given by the
expressions

@Vm

@P

� �
T

¼ �RT

P2
(2:4)

TABLE 2.2. SI-Derived Units

Quantity Name Symbol
Expression in Terms

of Other Units

Force newton N m kg s22

Pressure pascal Pa N m22

bar bar N m22

Energy, work, quantity of heat joule J N m
Power watt W J s21

Electric charge coulomb C A s
Electric potential, electromotive
force

volt V WA21, J C21

Celsius temperature degree
Celsius

8C K

Heat capacity, entropy joule per
kelvin

J K21

TABLE 2.3. Fundamental Constants and Conversion Factors�

Ice-point temperature, (08C) ¼ 273.15 Kelvins (K)
Gas constant, R ¼ 8.314471 J K21 mol21 (+15)a

¼ 1.987 ca1th K21 mol21

¼ 0.0820575 dm3 atm K21 mol21

Avogadro constant, NA, L ¼ 6.02215�1023 mol21 (+107)a

Faraday constant, F ¼ 96485.3383 C mol21 (+839)a

Elementary charge, e ¼ 1.60217653�10219 C (+143)a

Boltzmann constant, k ¼ 1.3806505�10223 J/K (+24)a

a2002 CODATA recommended values of the Fundamental Physical Constants, ICSU-CODATA Task
Group on Fundamental Constants, P. J.Mohr and B. N. Taylor, Rev. Mod. Phys., 77, 1 (2005). (http://physics.
nist.gov/cuu/Constants). Uncertainties are in the last two digits of each value.
�Uncertainties are in the last significant figures of the quantity.
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and

@Vm

@T

� �
P

¼ R

P
(2:5)

the total differential for the special case of the ideal gas can be obtained by
substituting from Equations (2.4) and (2.5) into Equation (2.2) and is given by the
relationship

dVm ¼ �RT

P2
dPþ R

P
dT (2:6)

We shall have frequent occasion to use this expression.

Conversion Formulas. Often no convenient experimental method exists
for evaluating a derivative needed for the numerical solution of a problem. In this
case we must convert the partial derivative to relate it to other quantities that
are readily available. The key to obtaining an expression for a particular partial
derivative is to start with the total derivative for the dependent variable and to
realize that a derivative can be obtained as the ratio of two differentials [8].
For example, let us convert the derivatives of the volume function discussed in the
preceding section.

1. We can obtain a formula for (@P/@T )V by using Equation (2.2) for the total
differential of V as a function of T and P and dividing both sides by dT.
Keeping in mind that dVm ¼ 0, we obtain

dVm

dT
¼ 0 ¼ @Vm

@P

� �
T

dP

dT
þ @Vm

@T

� �
P

(2:7)

Now, if we indicate explicitly for the second factor of the first term on the right
side that Vm is constant, and if we rearrange terms, we obtain

@P

@T

� �
V

¼
� @Vm

@T

� �
P

@Vm

@P

� �
T

(2:8)

Thus, if we needed (@P/@T )V in some situation but had no method of direct
evaluation, we could establish its value from the more readily measurable
(@Vm/@P)T and (@Vm/@T )P. These coefficients are related to the coefficient
of thermal expansion a, (1/V )(@V/@T )P and to the coefficient of compressibi-
lity b, 2(1/V )(@V/@P)T.
We can verify the validity of Equation (2.8) for an ideal gas by evaluating

both sides explicitly and showing that the equality holds. The values of the
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partial derivatives can be determined by reference to Equations (2.4) and (2.5),
and the following deductions can be made:

@P

@T

� �
V

¼ �R=P

�RT=P2
¼ P

T
¼ R

Vm
(2:9)

2. We can obtain a formula for (@T/@P)V by dividing Equation (2.2) by dP to
find dVm/dP and by imposing the restriction that Vm be constant. Thus, we
obtain

dVm

dP
¼ 0 ¼ @Vm

@P

� �
T

þ @Vm

@T

� �
P

@T

@P

� �
V

Rearranging terms, we have

@Vm

@P

� �
T

¼ � @Vm

@T

� �
P

@T

@P

� �
V

(2:10)

or, alternatively,

@T

@P

� �
V

¼ �ð@Vm=@PÞT
ð@Vm=@TÞP

(2:11)

3. From Equations (2.8) and (2.11), we infer a third relationship

@P

@T

� �
V

¼ 1
@T

@P

� �
V

(2:12)

Thus, we see again that the derivatives can be manipulated practically as if they
were fractions.

4. A fourth relationship is useful for problems in which a new independent vari-
able is introduced. For example, we could consider the volume V of a pure sub-
stance as a function of pressure and energy U.

V ¼ g(U,P)

We then may wish to evaluate the partial derivative (@Vm/@P)U that is, the
change of volume with change in pressure at constant energy. A suitable
expression for this derivative in terms of other partial derivatives can
be obtained from Equation (2.2) by dividing dVm by dP and explicitly
adding the restriction that U is to be held constant. The result obtained is the
relationship

@Vm

@P

� �
U

¼ @Vm

@P

� �
T

þ @Vm

@T

� �
P

@T

@P

� �
U

(2:13)
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5. A fifth formula, for use in situations in which a new variable X(P,T) is to be
introduced, is an example of the chain rule of differential calculus. The
formula is

@Vm

@T

� �
P

¼ @Vm

@X

� �
P

@X

@T

� �
P

(2:14)

These illustrations, which are based on the example of the volume function, are
typical of the type of conversion that is required so frequently in thermo-
dynamic manipulations.

Exact Differentials

Many thermodynamic relationships can be derived easily by using the properties of
the exact differential. As an introduction to the characteristics of exact differentials,
we shall consider the properties of certain simple functions used in connection
with a gravitational field. We will use a capital D to indicate an inexact differential,
as in DW, and a small d to indicate an exact differential, as in dU.

Example of the Gravitational Field. Let us compare the change in potential
energy and the work done in moving a large boulder up a hill against the force of
gravity. From elementary physics, we see that these two quantities, DU and W,
differ in the following respects.

1. The change in potential energy depends only on the initial and final heights of
the stone, whereas the work done (as well as the heat generated) depends on the
path used. That is, the quantity of work expended if we use a pulley and tackle
to raise the boulder directly will be much less than if we have to move the
object up the hill by pushing it over a long, muddy, and tortuous road.
However, the change in potential energy is the same for both paths as long
as they have the same starting point and the same end point.

2. An explicit expression for the potential energy U exists, and this function can
be differentiated to give dU, whereas no explicit expression for W that leads to
DW can be obtained. The function for the potential energy is a particularly
simple one for the gravitational field because two of the space coordinates
drop out and only the height h remains. That is,

U ¼ constantþ mgh (2:15)

The symbols m and g have the usual significance of mass and acceleration
because of gravity, respectively.

3. A third difference between DU and W lies in the values obtained if one uses a
cyclic path, as in moving the boulder up the hill and then back down to the
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initial point. For such a cyclic or closed path, the net change in potential energy
is zero because the final and initial points are identical. This fact is represented
by the equation þ

dU ¼ 0 (2:16)

in which
Þ
denotes the integral around a closed path. However, the value of

W for a complete cycle usually is not zero, and the value obtained depends
on the particular cyclic path that is taken.

General Formulation. To understand the notation for exact differentials that gen-
erally is adopted, we shall express the total differential of a general function L(x, y) to
indicate explicitly that the partial derivatives are functions of the independent vari-
ables (x and y), and that the differential is a function of the independent variables
and their differentials (dx and dy). That is,

dL(x, y, dx, dy) ¼ M(x, y)dxþ N(x, y)dy (2:17)
in which

M(x, y) ¼ @L

@x

� �
y

(2:18)
and

N(x, y) ¼ @L

@y

� �
x

(2:19)

The notation in Equation (2.l7) makes explicit the notion that, in general, dL is a func-
tion of the path chosen. Using this expression, we can summarize the characteristics
of an exact differential as follows:

1. A function f (x, y) exists, such that

df (x, y) ¼ dL(x, y, dx, dy) (2:20)

That is, the differential is a function only of the coordinates and is independent
of the path.

2. The value of the integral over any specified path, that is, the line integral [7]

ð2
1

dL(x, y, dx, dy) ¼
ð2
1

df (x, y) (2:21)

and depends only on the initial and final states and is independent of the path
between them.

16 MATHEMATICAL PREPARATION FOR THERMODYNAMICS



3. The line integral over a closed path is zero; that is,

þ
dL(x, y, dx, dy) ¼

þ
df (x, y) ¼ 0 (2:22)

It is this last characteristic that is used most frequently in testing thermodynamic
functions for exactness. If the differential dJ of a thermodynamic quantity J is
exact, then J is called a thermodynamic property or a state function.

Reciprocity Characteristic. A common test of exactness of a differential
expression dL(x, y, dx, dy) is whether the following relationship holds:

@

@y
M(x, y)

� �
x

¼ @

@x
N(x, y)

� �
y

(2:23)

We can see that this relationship must be true if dL is exact, because in that case a
function f(x, y) exists such that

dL(x, y, dx, dy) ¼ df (x, y) ¼ @f

@x

� �
y

dxþ @f

@y

� �
x

dy (2:24)

It follows from Equations (2.20) and (2.24) that

M(x, y) ¼ @f

@x

� �
y

(2:25)

and

N(x, y) ¼ @f

@y

� �
x

(2:26)

But, for the function f (x, y), we know from the principles of calculus that

@

@y

@f

@x

� �
y

¼ @2f

@y@x
¼ @

@x

@f

@y

� �
x

(2:27)

That is, the order of differentiation is immaterial for any function of two variables.
Therefore, if dL is exact, Equation (2.23) is correct [8].

To apply this criterion of exactness to a simple example, let us assume that we
know only the expression for the total differential of the volume of an ideal gas
[Equation (2.6)] and do not know whether this differential is exact. Applying
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Equation (2.23) to Equation (2.6), we obtain

@

@P

R

P

� �
¼ � R

P2
¼ @

@T
�RT

P2

� �

Thus, we would know that the volume of an ideal gas is a thermodynamic property,
even if we had not been aware previously of an explicit function for Vm.

Homogeneous Functions

In connection with the development of the thermodynamic concept of partial molar
quantities, it is desirable to be familiar with a mathematical relationship known as
Euler’s theorem. As this theorem is stated with reference to “homogeneous” func-
tions, we will consider briefly the nature of these functions.

Definition. As a simple example, let us consider the function

u ¼ ax2 þ bxyþ cy2 (2:28)

If we replace the variables x and y by lx and ly, in which l is a parameter, we can
write

u� ¼ u(l x,ly) ¼ a(l x)2 þ b(l x)(ly)þ c(ly)2

¼ l2ax2 þ l2bxyþ l2cy2

¼ l2(ax2 þ bxyþ cy2)

¼ l2u (2:29)

As the net result of multiplying each independent variable by the parameter l merely
has been to multiply the function by l2, the function is called homogeneous. Because
the exponent of l in the result is 2, the function is of the second degree.

Now we turn to an example of experimental significance. If we mix certain quan-
tities of benzene and toluene, which form an ideal solution, the total volume V will be
given by the expression

V ¼ V†
mbnb þ V†

mtnt (2:30)

in which nb is the number of moles of benzene, V†
mb is the volume of one mole of pure

benzene, nt is the number of moles of toluene, and V†
mt is the volume of one mole of

pure toluene. Suppose that we increase the quantity of each of the independent vari-
ables, nb and nt, by the same factor, say 2. We know from experience that the volume
of the mixture will be doubled. In terms of Equation (2.30), we also can see that if we
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replace nb by lnb and nt by lnt, the new volume V� will be given by

V� ¼ V†
mblnb þ V†

mtlnt
¼ l(V†

mbnb þ V†
mtnt)

¼ lV (2:31)

The volume function then is homogeneous of the first degree, because the parameter
l, which factors out, occurs to the first power. Although an ideal solution has been
used in this illustration, Equation (2.31) is true of all solutions. However, for nonideal
solutions, the partial molar volume must be used instead of molar volumes of the pure
components (see Chapter 9).

Proceeding to a general definition, we can say that a function, f (x, y, z,. . .) is
homogeneous of degree n if, upon replacement of each independent variable
by an arbitrary parameter l times the variable, the function is multiplied by ln†,
that is, if

f ðlx,ly, lz, . . .Þ ¼ lnf ðx, y, z, . . .Þ (2:32)

Euler’s Theorem. The statement of the theorem can be made as follows: If f(x, y)
is a homogeneous function of degree n, then

x
@f

@x

� �
y

þ y
@f

@y

� �
x

¼ nf (x, y) (2:33)

The proof can be carried out by the following steps. First let us represent the vari-
ables lx and ly by

x� ¼ lx (2:34)
and

y� ¼ ly (2:35)

Then, because f (x, y) is homogeneous

f � ¼ f (x�, y�) ¼ f (lx, ly) ¼ lnf (x, y) (2:36)

The total differential df � is given by

df � ¼ @f �

@x�
dx� þ @f �

@y�
dy� (2:37)
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Hence

df �

dl
¼ @f �

@x�
dx�

dl
þ @f �

@y�
dy�

dl
(2:38)

From Equations (2.34) and (2.35)

dx�

dl
¼ x (2:39)

and

dy�

dl
¼ y (2:40)

Consequently, Equation (2.38) can be rewritten as

df �

dl
¼ @f �

@x�
xþ @f �

@y�
y (2:41)

Using the equalities in Equation (2.36) we can obtain

df �

dl
¼ df (x�, y�)

dl
¼ d[lnf (x, y)]

dl
¼ nln�1f (x, y) (2:42)

Equating the right sides of Equations (2.41) and (2.42), we obtain

x
@f �

@x�
þ y

@f �

@y�
¼ nln�1f (x, y) (2:43)

Because l is an arbitrary parameter, Equation (2.43) must hold for any particular
value. It must be true then for l ¼ 1. In such an instance, Equation (2.43) reduces to

x
@f

@x

� �
y

þ y
@f

@y

� �
x

¼ nf (x, y)

This equation is Euler’s theorem [Equation (2.33)].
As one example of the application of Euler’s theorem, we refer again to the volume

of a two-component system. Evidently the total volume is a function of the number of
moles of each component:

V ¼ f (n1, n2) (2:44)

As we have seen previously, the volume function is known from experience to be
homogeneous of the first degree; that is, if we double the number of moles of each
component, we also double the total volume. In other words, a homogeneous

20 MATHEMATICAL PREPARATION FOR THERMODYNAMICS



function of the first degree is an extensive property. Applying Euler’s theorem, we
obtain the relationship

n1
@V

@n1
þ n2

@V

@n2
¼ V (2:45)

or,

V ¼ n1Vm1 þ n2Vm2 (2:46)

where Vm1 and Vm2 are the partial molar volumes of components 1 and 2, respect-
ively. Equation (2.46) is applicable to all solutions and is the analog of Equation
(2.30), which is applicable only to ideal solutions.

EXERCISES

2.1. Calculate the conversion factor for changing liter atmosphere to (a) erg, (b)
joule, and (c) calorie. Calculate the conversion factor for changing atmosphere
to pascal and atmosphere to bar.

2.2. Calculate the conversion factor for changing calorie to (a) cubic meter atmos-
phere and (b) volt faraday.

2.3. The area a of a rectangle can be considered to be a function of the breadth b and
the length l:

a ¼ bl

The variables b and l are considered to be the independent variables; a is the
dependent variable. Other possible dependent variables are the perimeter p

p ¼ 2bþ 2l

and the diagonal d

d ¼ (b2 þ l2)
1
2

a. Derive expressions for the following partial derivatives in terms of b and l, or
calculate numerical answers:

@a

@l

� �
b

@l

@b

� �
d

@p

@l

� �
b

@l

@b

� �
p

@d

@b

� �
l

@p

@b

� �
l

@a

@b

� �
l
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b. Derive suitable conversion expressions in terms of the partial derivatives
given in (a) for each of the following derivatives; then evaluate the results
in terms of b and l. (Do not substitute the equation for p or d into that for a.)

@a

@b

� �
d

@b

@p

� �
l

@a

@b

� �
p

c. Derive suitable conversion expressions in terms of the preceding partial
derivatives for each of the following derivatives; then evaluate the results
in terms of b and l:

@p

@b

� �
d

@a

@p

� �
l

@b

@p

� �
d

@a

@p

� �
d

2.4. In a right triangle, such as that illustrated in Figure 2.1, the following relation-
ships are valid:

D2 ¼ H2 þ B2

P ¼ H þ Bþ D

A ¼ (1=2)BH

a. Given the special conditions:

H ¼ 1000 cm

@H

@B

� �
D

¼ �0:5
@H

@B

� �
A

¼ �2
@B

@H

� �
P

¼ �1:309

compute the values of each of the following partial derivatives using conver-
sion relationships if necessary:

@A

@B

� �
H

@A

@H

� �
B

@A

@B

� �
D

@A

@H

� �
P

Figure 2.1. A right triangle.
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b. Given the following different set of special conditions:

B ¼ 4 cm

@H

@A

� �
P

¼ �0:310
@H

@B

� �
A

¼ �2:0
@P

@B

� �
A

¼ 2:341

compute the values of each of the following partial derivatives using conver-
sion relationships if necessary:

@H

@A

� �
B

@B

@A

� �
P

@P

@A

� �
B

Compute A.

2.5. Considering U as a function of any two of the variables P, V, and T, prove that

@U

@T

� �
P

@T

@P

� �
V

¼ � @U

@V

� �
P

@V

@P

� �
T

2.6. Using the definition H¼UþPV and, when necessary, obtaining conversion
relationships by considering H (or U ) as a function of any two of the variables
P, V, and T, derive the following relationships:

a.
@H

@T

� �
P

¼ @U

@T

� �
V

þ Pþ @U

@V

� �
T

� �
@V

@T

� �
P

b.
@H

@T

� �
P

¼ @U

@T

� �
V

þ V � @H

@P

� �
T

� �
@P

@T

� �
V

c. @U

@T

� �
V

¼ @H

@T

� �
P

� @H

@T

� �
P

@T

@P

� �
H

þ V

� �
@P

@T

� �
V

2.7. By a suitable experimental arrangement, it is possible to vary the total pressure P
on a pure liquid independently of variations in the vapor pressure p. (However,
the temperature of both phases must be identical if they are in equilibrium.) For
such a system, the dependence of the vapor pressure on P and T is given by

@lnp
@P

� �
T

¼ Vml

RT

@lnp
@T

� �
P

¼ DHm

RT2
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in which Vml is the molar volume of liquid and DHm is the molar heat of vapor-
ization. Prove that

@P

@T

� �
P

¼ �DHm

TVml

2.8. The length L of a wire is a function of the temperature T and the tension t on the
wire. The linear expansivity a is defined by

a ¼ 1
L

@L

@T

� �
t

and is essentially constant in a small temperature range. Likewise, the isothermal
Young’s modulus Y defined by

Y ¼ L

A

@t

@L

� �
T

in which A is the cross-sectional area of the wire is essentially constant in a small
temperature range. Prove that

@t

@T

� �
L

¼ �aAY

2.9. An ideal gas in State A (Fig. 2.2) is changed to State C. This transformation can
be carried out by an infinite number of paths. However, only two paths will
be considered, one along a straight line from A to C and the other from A
to B to C [9].

a. Calculate and compare the changes in volume from A to C that result from
each of the two paths, AC and ABC. Proceed by integrating the differential
Equation (2.2)

dVm ¼ @Vm

@P

� �
T

dPþ @Vm

@T

� �
P

dT

or

dVm ¼ �RT

P2
dPþ R

P
dT

Before the integration is carried out along the path AC, use the following
relationships to make the necessary substitutions:

slope of line AC ¼ T2 � T1
P2 � P1

¼ T � T1
P� P1

(2:47)
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Therefore

T ¼ T1 þ T2 � T1
P2 � P1

(P� P1) (2:48)

and

dT ¼ T2 � T1
P2 � P1

dP (2:49)

Remember that T1, T2, P1, and P2 are constants in this problem.

b. Applying the reciprocity test to Equation (2.6), show that dVm is an exact
differential.

c. Calculate and compare the work performed in going from A to C by each of
the two paths. Use the relationship

dW ¼ �PdVm ¼ RT

P
dP� RdT (2:50)

and the substitution suggested by Equation (2.49).

d. Applying the reciprocity test to Equation (2.50) show that dW is not an exact
differential.

2.10. For a wire, the change in length dL can be expressed by the following differ-
ential equation:

dL ¼ L

YA
dtþ aLdT

in which t is the tension and T is the temperature; A (cross-sectional area), Y,
and a are essentially constant if the extension is not large (see Exercise 8).

a. Is dL an exact differential?

b. Is the differential for the work of the stretching, dW¼tdL, an exact
differential?

Figure 2.2. Two paths for carrying an ideal gas from State A to State C.
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2.11. For an ideal gas we will show later that the molar entropy Sm is a function of the
independent variables, molar volume Vm and temperature T. The total differen-
tial dSm is given by the equation

dSm ¼ (CVm=T)dT þ (R=Vm)dVm

in which CVm and R are constants.

a. Derive an expression for the change in volume of the gas as the temperature
is changed at constant entropy, that is, for (@Vm/@T )S. Your final answer
should contain only independent variables and constants.

b. Is dSm exact?

c. Derive an expression for (@CVm/@Vm)T.

2.12. The compressibility b and the coefficient of expansion a are defined by the
partial derivatives:

b ¼ � 1
V

@V

@P

� �
T

a ¼ 1
V

@V

@T

� �
P

Show that

@a

@P

� �
T

þ @b

@T

� �
P

¼ 0

2.13. For an elastic fiber such as a muscle fibril at constant temperature, the internal
energy U is a function of three variables: the entropy S, the volume V, and
the length L. With the aid of the laws of thermodynamics, it is possible to
show that

dU ¼ TdS� PdV þ tdL

in which T is the absolute temperature, P is the pressure, and t is the tension on
the elastic fiber. Prove the following relationships:

@U

@L

� �
S,V

¼ t� @t

@V

� �
S,L

¼ @P

@L

� �
S,V

2.14. The Gibbs function G is a thermodynamic property. If (@G/@T )P ¼ 2S and
(@G/@P)T ¼ V, prove the following relationship:

@S

@P

� �
T

¼ � @V

@T

� �
P
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2.15. The Helmholtz function A is a thermodynamic property. If (@A/@V )T ¼ 2P
and (@A/@T )V ¼ 2S, prove the following relationship:

@S

@V

� �
T

¼ @P

@T

� �
V

2.16. For a van der Waals gas

dUm ¼ CVmdT þ a

Vm
2 dVm

in which a is independent of Vm.

a. Can dUm be integrated to obtain an explicit function for Um?

b. Derive an expression for (@CVm/@Vm)T, which assumes that dUm is exact.

2.17. Examine the following functions for homogeneity and degree of homogeneity:

a. u ¼ x2yþ xy2 þ 3xyz

b. u ¼ x3 þ x2yþ y3

x2 þ xyþ y2

c. u ¼ (xþ y)1=2

d. ey=x

e. u ¼ x2 þ 3xyþ 2y3

y2
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CHAPTER 3

THE FIRST LAW OF
THERMODYNAMICS

Now that we have summarized the historical and mathematical background, the
objectives, and the limitations of chemical thermodynamics, we will develop
the basic postulates upon which its analytic framework is built. In discussing these
fundamental postulates, which are essentially concise descriptions based on much
experience, we will emphasize at all times their application to chemical, geological,
and biological systems. However, first we must define a few of the basic concepts
of thermodynamics.

3.1 DEFINITIONS

Critical studies of the logical foundations [1] of physical theory have emphasized the
care that is necessary in defining fundamental concepts if contradictions between
theory and observation are to be avoided. Our ultimate objective is clarity and pre-
cision in the description of the operations involved in measuring or recognizing
the concepts. First let us consider a very simple example—a circle. At a primitive
stage we might define a circle by the statement, “A circle is round.” Such a definition
would be adequate for children in the early grades of elementary school, but it could
lead to long and fruitless arguments as to whether particular closed curves are circles.
A much more satisfactory and refined definition is “a group of points in a plane, all of
which are the same distance from an interior reference point called the center.”
This definition describes the operations that need to be carried out to generate a

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. Edited by Irving M. Klotz and
Robert M. Rosenberg
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circle or to recognize one. The development of mature scientific insight involves, in
part, the recognition that an early “intuitive understanding” at the primitive level often
is not sound and sometimes may lead to contradictory conclusions from two
apparently consistent sets of postulates and observations.

The operational approach to the definition of fundamental concepts in science has
been emphasized by Mach, Poincare, and Einstein and has been expressed in a very
clear form by Bridgman [2]. (Operational definitions had been used implicitly much
earlier than the twentieth century. Boyle, for example, defined a chemical element in
terms of the experiments by which it might be recognized, in order to avoid the
futile discussions of his predecessors, who identified elements with qualities or
properties.) In this approach, a concept is defined in terms of a set of experimental
or mental operations used to measure or to recognize the quantity: “The concept is
synonymous with the corresponding set of operations” (Bridgman). An operational
definition frequently may fail to satisfy us that we know what the concept really is.
The question of scientific reality has been explored by many scientists and philoso-
phers and is one that every student should examine. However, in the operational
approach, we are not concerned with whether our definition has told us what the
concept really is; what we need to know is how to measure it. The operational
approach has been stated succinctly by Poincare in the course of a discussion of
the concept of force:

When we say force is the cause of motion we talk metaphysics, and this definition, if we
were content with it, would be absolutely sterile. For a definition to be of any use, it must
teach us to measure force. Moreover that suffices; it is not at all necessary that it teach
what force is in itself nor whether it is the cause or the effect of motion.

The power of the operational approach became strikingly evident in Einstein’s
theory of special relativity, with its analysis of the meaning of presumably absolute,
intuitive concepts such as time or space. Newton defined absolute time as

Absolute, True, and Mathematical Time, of itself, and from its own nature flows equably
without regard to anything external.

The difficulty with a definition of this type, based on properties or attributes, is that
we have no assurance that anything of the given description actually exists in nature.
Thus, Newton’s definition of time implies that it would be clear and meaningful to
speak of two events in widely separated places (for example, the flaring up of two
novae) as occurring simultaneously; presumably each event occurs at the same
point on the time scale, which flows equably without regard to external events or
to the activities of the individuals making the observations. In contrast, in relativity
theory, time is defined by a description of specific manipulations with clocks, light
signals, and measuring rods. It turns out that events that are simultaneous for one
observer will occur at different moments if viewed by another observer moving at
a different velocity. Which observer is correct? In practice this question is meaning-
less. Both are correct. In fact, no operational meaning exists to absolute simultaneity,
despite its intuitive reasonableness. All operations by which time is measured are
relative ones. Thus, the term absolute time becomes meaningless.
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Relativity theory, with its rigorous operational definitions of time and space, led to
many unexpected results that are contrary to common experience. One result was that
the measured length of a body depends on the speed with which the body moves with
respect to the observer. These new theorems from relativity theory removed apparent
contradictions that had perplexed physicists in their measurements of the speed of
light, and they also allowed prediction of a variety of new phenomena that since
have been verified abundantly.

Thus, physical scientists have become increasingly aware of the need to define
concepts in terms of operations instead of relying on intuitive feelings of a priori
recognition. To avoid possible pitfalls in thermodynamic applications, it is desirable
that all thermal and energy concepts likewise be approached with an operational atti-
tude. The use of operational definitions is particularly important in a phenomeno-
logical science such as thermodynamics.

Before approaching these thermodynamic concepts, we need to agree on the
meaning of certain more primitive terms that will occur often in our analyses. We
shall assume without analysis that the term body as an identifiable, definite thing
has an obvious meaning. When we carry out experiments on or make observations
of a body in order to characterize it, we obtain information that we call the properties
of the body. Similarly, we shall speak of the properties of a system, which is any
region of the universe, large or small, that is being considered in our analysis.
Regions outside the boundaries of the system constitute the surroundings. A
system is said to be in a certain state when all of its properties have specified
values. The values of these properties are called variables of state. Generally, only
a few properties of a system in a given state can be expressed as independent vari-
ables. It has been found, empirically, that only two intensive variables need to
be specified to determine the values of all other intensive variables and hence the
state of a one component system. Relationships between dependent variables of
state and independent variables of state are specified by equations of state. If one
or more properties of a system are found to be different at two different times, then
in this time interval, a process has taken place and a change of state has occurred.
We also will speak of a closed system, by which we mean a system that mass
neither enters nor leaves. Obviously then, an open system is one that mass may
enter or leave. An adiabatic system is a closed system in which, if it is in thermal equi-
librium, no change in state can be produced except by movement of its boundaries. In
essence, work must be done on an adiabatic system if its state is to be changed; if only
PV work is done, the boundaries must be moved. (If electrically charged bodies are
present in the system, this definition of “adiabatic” is inadequate, but such situations
will not be considered here.) Such a system also is described as thermally insulated
from the surroundings. With these primitive notions, we will proceed to an analysis of
thermodynamic concepts.

Temperature

The earliest concept of temperature undoubtedly was physiologic, that is, based on
the sensations of heat and cold. Such an approach necessarily is very crude in
both precision and accuracy. In time, people observed that the same temperature
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changes that produced physiologic responses in themselves also produced changes in
the measurable properties of matter. Among these properties are the volume of a
liquid, the electrical resistance of a metal, the resonance frequency of a quartz
crystal, and the volume of a gas at constant pressure.

Each of these properties can provide the basis for an operational definition
of a temperature scale. For example, the Celsius temperature Q is defined by
Equation (3.1):

u ¼ Xu � X0

X100 � X0
(100) (3:1)

in which XQ is the value of the property at temperature Q, X0 is the value of the prop-
erty at the temperature of a mixture of ice and water at equilibrium under a pressure of
1 atm (1.0135 � 105 Pa), and X100 is the value of the property at the temperature of an
equilibrium mixture of water and steam under a pressure of 1 atm.

Unfortunately, when temperatures other than 08C and l008C are measured, the
value obtained depends on the property used to measure it and, for the same property,
depends on the substance whose property is measured. However, when the product of
the pressure and the molar volume of a gas A, which is a quantity that changes in a
monotonic fashion with changes of temperature, is measured at a series of pressures,
and these values are extrapolated to a limit at zero pressure, the limit is the same
for all gases at a given temperature. This phenomenon is illustrated for several
gases in Figure 3.1.

The result shown in Figure 3.1 lends confidence in the use of the properties of
gases at the limit of zero pressure as a fundamental basis for a temperature scale. It
also is found that the limit of the pressure-volume product at zero pressure

Figure 3.1. Pressure-volume product data for several gases at low pressures at 08C. Data for
oxygen and nitrogen from G. Baxter and H. Starkweather, Proc. Natl. Acad. Sci. U. S. A.
12, 699 (1926); 14, 50 (1928); data for carbon dioxide from E. B. Millard, Physical
Chemistry for Colleges, McGraw-Hill, New York, 1946, p. 15.
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extrapolates to zero at a sufficiently low temperature. This behavior leads to a
definition of an absolute ideal gas temperature scale, which is denoted by T.

Following an international convention [3], if we take the temperature of the triple
point of water as a reference temperature (T0) and assign it the value of 273.16 K on
the absolute scale, then any other ideal gas temperature T is defined by the equation

T

T0
¼

lim
P!0

(PV)T

lim
P!0

(PV)T0
¼ T

273:16K
(3:2)

Difficulties develop if the thermometer is exposed to certain types of radiation.
However, calculations indicate that under normal circumstances, these radiation
fields raise the temperature by only about 102128C, which is a quantity that is not
detectable even with the most sensitive current-day instruments [4]. Similarly, we
shall neglect relativistic corrections that develop at high velocities, for we do not
encounter such situations in ordinary thermodynamic problems.

Although the ideal gas temperature scale provides an adequate basis for a tempera-
ture scale that is independent of the working substance, it is difficult to do actual
temperature measurements using it. Practical temperature scales are defined in
terms of fixed points, interpolating instruments, and equations that relate the measure-
ment of a particular instrument to the temperature. The most recent practical tempera-
ture scale, the International Temperature Scale of 1990 (ITS-90), improves on earlier
such scales by including reference temperatures between 0.5 K and 13.8 K and by
replacing less-reproducible thermocouple measurements by measurements with a
platinum resistance thermometer in the range between 630 K and 1064 K. The
scale is designed to reproduce ideal gas temperatures with an uncertainty less than
the uncertainty of the ideal gas scale itself [5].

The word “thermodynamics” implies a relationship between thermal properties,
such as temperature, and the dynamic properties described by classic mechanics.
Therefore, we shall consider next the dynamic concepts of work and energy and
relate them to the properties of thermodynamic systems.

Work

For our purposes, work is done when a displacement occurs under the influence of a
force; the amount of work is taken as the product of a force by the displacement.
Because force and displacement can be given suitable operational significance, the
term “work” also will share this characteristic. The measurement of the displacement
involves experimental determinations of a distance, which can be carried out, in prin-
ciple, with a measuring rod. The concept of force is somewhat more complicated. It
undoubtedly originated from the muscular sensation of resistance to external objects.
A quantitative measurement is obtained readily with an elastic body, such as a spring,
whose deformation can be used as a measure of the force. However, this definition of
force is limited to static systems. For systems that are being accelerated, additional
refinements must be considered. Because these considerations would take us far
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from our main course, we merely make reference to Bridgman’s critical analysis [2].
Nevertheless, for the definition of force even in the static situation, it should be
emphasized that precision measurements require several precautions, particularly
against changes in temperature. In dealing with these concepts, we generally
assume implicitly that such sources of error have been recognized and accounted for.

A body or system can do work on its surroundings, or the surroundings can do
work on the system. Therefore, we must agree on a sign convention for work W.
We will follow the convention that W represents the work done on a system by its
surroundings. Therefore, a negative value for W signifies that the system has done
work on its surroundings; a positive value signifies that work has been done on the
system by some agency in the surroundings.

As the concept “work” focuses on an interaction of the system with its surround-
ings, we shall define work in terms of the external force F0, rather than F, the force
exerted by the system. For example, let us consider a spring subject to an external
force F0, where the restoring force of the spring is F. Mathematically, work is
defined as the line integral of the scalar product of the external force vector F0 and
an infinitesimal displacement vector ds, in this case the change in length of the
spring. If F0 is greater than F, then the displacement is in the direction of the external
force; if F0 is less than F, then the displacement is in the direction opposite to the
external force. The symbolic statement of the definition is

W ¼
ð
path

F0� ds

¼
ð
path

jjF0jdsj cos u (3:3)

The vertical lines indicate the magnitude of the force vector and of the displace-
ment vector, and u is the angle between the force vector and the displacement
vector, as illustrated in Figure 3.2.

The sign convention for work W follows naturally from the definition in Equation
(3.3). When the external force vector is in the same direction as the displacement
vector, the surroundings do work on the system, u is equal to 0, cos u is equal to
1, and W is positive. When the external force vector is in the opposite direction
from that of the displacement vector, the system does work on the surroundings, u
is equal to p, cos u is equal to 21, and W is negative. Thus, the convention that
W represents the work done on the system by its surroundings follows naturally
from the definition of work.2

Figure 3.3 is a schematic representation for the work done by an external force F0

in the interaction of a gas in a cylinder with its surroundings. jF0 j is the magnitude of
the force exerted by the surroundings on the boundary of the system, jFj is the mag-
nitude of the force exerted by the gas on the boundary, and jdsj is the magnitude of
the element of displacement of the boundary. The sign of the work is consistent

2The opposite sign convention for work appears if we put a minus sign in Equation (3.3). Such a conven-
tion was formerly common in thermodynamics.
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with the chosen convention if the infinitesimal element of work is defined as in
Equation (3.4):

DW ¼ jF0jdsj cos u (3:4)

where the external force is in the direction shown in Figure 3.3. If the gas is com-
pressed, ds is in the same direction as F0 and the work is positive, because
cos u ¼ 1. Conversely, if the gas expands, ds is in the opposite direction from F0

Figure 3.2. Possible relationships between the vector of external force F0 and the displacement
vector ds.

Figure 3.3. Element of work.
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and the work is negative, because cos u ¼ 21. The definition states explicitly that the
amount of work done is determined by the external force, not the by the internal
force.

In a noninfinitesimal change of state, the work done is obtained by integrating
Equation (3.4) from a lower limit, the initial state, State 1, to an upper limit, the
final state, State 2. That is,

W ¼
ðState 2
State 1

jF0jjdsj cos u (3:5)

In accord with the definition of work in Equation (3.5), the path over which the
change of state occurs must be known; that is, jF0j must be known as a function of
the displacement s.

For example, if the bottom of Figure 3.3 represents a cylinder of gas that exerts a
force F on the walls, then F0 represents the external force on the piston in the cylinder
(for example, that caused by a weight). As the magnitude of the external
force jF0j¼P0A, where P0 is the external pressure and A is the area of the piston,
we can write Equation (3.5) as

W ¼
ðState 2
State 1

P0Ajdsj cos u ¼
ðV2

V1

P0jdV j cos u

For gaseous expansion, cos u ¼ 21 and jdVj ¼ dV; for gaseous compression,
cos u ¼ 1, and jdVj ¼ 2dV, so that for both expansion and compression,

W ¼ �
ðV2

V1

P0 dV

and

dW ¼ �P0 dV (3:6)

A special case of gaseous expansion, and one that can only be approached but not
exactly realized, is that in which the external pressure is adjusted continuously so that it
differs only infinitesimally from the pressure of the gas. By an infinitesimal change in
the external pressure, the direction can be reversed, hence, the designation reversible.

If the change of state is carried out reversibly, so that P0 is not significantly differ-
ent from P throughout the change of state, then Equation (3.6) can be changed to

W ¼ �
ðV2

V1

P dV (3:7)

If work is done on the system, the gas is compressed, V2 is less than V1, and W is
positive, which is consistent with the chosen convention. If work is done by the
system, the gas expands, V2 is greater than V1, and W is negative. In practice, to
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evaluate the integral analytically, P must be known as a function of V, for example,
from an equation of state.

Let us also consider the reversible work done when a spring changes in length by
an amount dL. If the extension from the rest length L0 is not too great, the tension t in
the spring is given by Hooke’s law as

t ¼ �k(L� L0) (3:8)

We can maintain the sign convention that we have chosen for W if we define
DW as

DW ¼ �tdL ¼ k(L� L0) dL (3:9)

If the original length of the spring is greater than its rest length, the surroundings
must do work on the spring for the length to be increased even more, because L2L0
is positive and dL is also positive. If the original length of the spring is less than its
rest length, the spring must do work on the surroundings for the length to be increased
even more, because L2L0 is negative and dL is still positive. Other possible combi-
nations of length and direction also yield the correct sign of dW.

Similarly, if we focus attention on the reversible work in raising a body a certain
height, dh, against the force of gravity, we write

DW ¼ mgdh (3:10)

in which m is the mass of the body and g is the gravitational acceleration. In this case,
some force other than the gravitational force does work on the body in raising it in the
gravitational field, and W is positive if dh is positive. If the body falls in the gravita-
tional field, dh is negative, the body can do work, and W is negative.

From these examples, equations for other types of work should follow naturally.

3.2 THE FIRST LAW OF THERMODYNAMICS

Energy

In its modern form, the first law of thermodynamics has its empirical basis in a series
of experiments conducted by Joule between 1843 and 1848. He used a system sur-
rounded by adiabatic walls, which do not allow the system to be affected by temp-
erature differences between the system and the surroundings. He did work on such
an adiabatic system in a variety of ways, using the rotation of a paddle wheel, the
passage of an electric current, friction, and the compression of a gas. He concluded
that a given amount of work done on the system, no matter how it was done, produced
the same change of state, as measured by the change in the temperature of the system.
Thus, to produce a given change of state, the adiabatic work required is independent
of the path by which the change is achieved.
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Therefore, it seems appropriate to define a quantity, the energy U, whose value is
characteristic of the state of a system, whereby the adiabatic work required to bring
about a change of state is equal to the difference between the value of U in one
state and that in another state. That is,

DU ¼ U2 � U1 ¼ Wadiabatic (3:11)

The sign is consistent with our convention for work; if the system does work on
the environment, the energy of the system must decrease, and vice versa. This
formulation of the definitions of adiabatic systems and of energy and the subsequent
discussion of the first law originated with Caratheodory [6].

Heat1

It is well known that the changes of state brought about by adiabatic work also can be
brought about without doing work. A change can be achieved without expenditure of
work by placing a system in contact with another system at a different temperature
through rigid, nonadiabatic (or thermally conducting) walls. It is this exchange of
energy, which is a result of a temperature difference, that we call heat (Q). As the
energy difference has been determined in previous experiments by measuring the
adiabatic work, the amount of heat transferred can be measured by the change in
energy in a system on which no work is done. That is,

Q ¼ DU (no work) ¼ (U2 � U1)(no work) (3:12)

The positive sign in Equation (3.12) expresses the convention that Q is positive
when heat is transferred from the surroundings to the system. Such a transfer
results in an increase in the energy of the system.

General Form of the First Law

Let us consider the general case in which a change of state is brought about both by
work and by transfer of heat. It is convenient to think of the system as being in
thermal contact with a body that acts as a heat bath (one that transfers heat but
does no work) as well as in non-thermal contact with another portion of the environ-
ment, so that work can be done.

The value of DU in the change of state can be determined from the initial and final
states of the system as well as from a comparison with previous experiments that used
only adiabatic work. The work W can be calculated from the changes in the environ-
ment (for example, from the change in position of a weight). The value of Q is deter-
mined from the change of state of the heat bath, which was also previously calibrated
by experiments with adiabatic work.

1Alternate views can be found in Reference 7.
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Although the change in state of the heat bath, hence the value ofQ, usually is deter-
mined by measuring a change in temperature, this is a matter of convenience and
custom. For a pure substance the state of a system is determined by specifying
the values of two intensive variables. For a heat bath whose volume (and density) is
fixed, the temperature is a convenient second variable. A measurement of the pressure,
viscosity, or surface tension would determine the state of the system equally as well.
This point is important to the logic of our development because a later definition of a
temperature scale is based on heat measurements. To avoid circularity, the measure-
ment of heat must be independent of the measurement of temperature.

Although the proportions of the energy change contributed by heat and by work
can vary from one extreme to the other, the sum of the heat effect and the work effect
is always equal to DU for a given change of state, as indicated in Equation (3.13).

DU ¼ QþW (3:13)

That is, Q and W can vary for a given change of state, depending on how the
change is carried out, but the quantity (Q þ W ) is always equal to DU, which
depends only on the initial and final states.

The energy U is called a state function. It is appropriate to use a quantity DU equal
to the difference between the values of U in two different states. The quantities Q and
W are not expressed as differences because their values depend on the path taken from
one state to another.

For an infinitesimal change of state, the analog of Equation (3.13) is

dU ¼ DQþ DW (3:14)

in which the difference in notation indicates that dU is a differential of a function,
which is an exact differential, whereas DQ and DW are inexact differentials.
Another way to express the difference is to say that the integral of dU around a
closed path is equal to zero:

þ
dU ¼ 0 (3:15)

whereas the integrals of DQ and DW around a closed path can have any value,
depending on the path taken. Equation (3.15) is thus a statement of the conservation
of energy.3

It also should be pointed out that the very definition of the energy concept pre-
cludes the possibility of determining absolute values thermodynamically; that is,
we have defined only a method of measuring changes in internal energy. In this
regard, a significant difference exists between the character of the thermodynamic
property energy and that of a property such as volume. We can specify an

3Some readers may prefer Joule’s statement: “it is manifestly absurd to suppose that the power with which
God has endowed matter can be destroyed any more than that they can be created by man’s agency.”
J. P. Joule, Scientific Papers, Vol I, reprinted by Dawsons of Pallmall, London, 1963, p. 269.
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unambiguous value for the volume of a system in a particular state. However, it is
appropriate to speak of “energy” only with reference to a transition from one con-
figuration of a system to another, that is, only with reference to an energy change.
No measurement of the energy of a given state can occur. Energy differences can
be measured, and a value can be assigned to a particular state in terms of an arbitrary
reference state. To speak of energy in an absolute sense is only a way of expressing
the observation that certain aspects of a transition depend uniquely on characteristics
of the initial and final states.

Equations (3.11)–(3.13) (repeated here), together with the statement that U is a
state function, constitute a complete statement of the first law. In effect, Equations
(3.11) and (3.12) are operational definitions of DU and Q, respectively, whereas
Equation (3.13) is an empirical statement of the relationship among the quantities
DU, Q, and W:

DU ¼ U2 � U1 ¼ Wadiabatic (3:11)

Q ¼ DU (no work) ¼ (U2 � U1)(no workÞ (3:12)

DU ¼ QþW (3:13)

EXERCISES

3.1. If the temperature of 1 mL of air at 1 atm and 08C is raised to l008C at the same
pressure, the volume becomes 1.3671 mL. Calculate the value of absolute zero
for a thermometer using air, assuming that the pressure-volume product is linear
with absolute temperature even at 1 atm. Compare your result with the ice-point
temperature in Table 2.3.

3.2. Let Figure 3.3 represent a plane surface (such as a soap film between wires) that
is being expanded in the direction indicated. (The symbol A must be replaced by
a symbol L for the length of the wire, with A being the area of the surface.) Show
that the work of reversible expansion is given by the expression

W ¼
ð
gdA

in which g is the force per unit length of the leading edge of the soap film and A
is the surface area.

3.3. Let t represent the tension of a wire of length L, A represent its cross-sectional
area, and Y represent the isothermal Young’s modulus (L/A)(@t/@L)T. For a
wire, A and Y are essentially constant as the tension is increased, and L
changes very little with changing tension. (See Exercises 2.8 and 2.10.) Show
that the work for an isothermal reversible increase in tension of a wire is
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given by

W ¼ L

2AY
(t2final � t2initial)

3.4. From Equation (3.13), show that DQ is an exact differential for a process at
constant pressure in which only PV work is performed.

3.5. If the atmosphere were isothermal, the pressure would vary with height
according to the equation

P ¼ P0 e
�Mgh

RT

where P0 (1.01325 � 105 Pa) is the pressure at sea level, M is the average molar
mass of air (considered to be 80 mol% N2 and 20 mol% O2), g is the acceleration
from gravity, h is the height, R is the gas constant and T is the ideal gas temp-
erature. If a rigid balloon containing 100 � 103 dm3 of helium and carrying a
load of 100 kg is allowed to float in an atmosphere at 298 K, at what height
will it come to rest? What will be its potential energy?
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CHAPTER 4

ENTHALPY, ENTHALPY OF
REACTION, AND HEAT CAPACITY

In Chapter 3, we defined a new function, the internal energy U, and noted that it is a
thermodynamic property; that is, dU is an exact differential. As Q was defined in
Equation (3.12) as equal to DU when no work is done, the heat exchanged in a
constant-volume process in which only PdV work is done is also independent of
the path. For example, in a given chemical reaction carried out in a closed vessel
of fixed volume, the heat absorbed (or evolved) depends only on the nature and con-
dition of the initial reactants and of the final products; it does not depend on the mech-
anism by which the reaction occurs. Therefore, if a catalyst speeds up the reaction
by changing the mechanism, it does not affect the heat exchange accompanying
the reaction.

Most chemical reactions are carried out at constant (atmospheric) pressure rather
than at constant volume. It is of interest to know then whether the heat absorbed in
a constant-pressure reaction depends on the path—that is, on the method by which
the reaction is carried out—or whether it too is a function only of the initial and
final states. If the latter were true, it would be possible to tabulate heat quantities
for given chemical reactions and to use known values to calculate heats for new reac-
tions that can be expressed as sums of known reactions.

Actually, this question was answered on empirical grounds long before thermo-
dynamics was established on a sound basis. In courses in elementary chemistry, stu-
dents become familiar with Hess’s law of constant heat summation, which was
enunciated in 1840. Hess pointed out that the heat absorbed (or evolved) in a
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given chemical reaction is the same whether the process occurs in one step or in
several steps. Thus, to cite a familiar example, the heat of formation [1] of CO2

from its elements is the same if the process is the single step

C(graphite)þ O2(gas) ¼ CO2(gas), Q298K ¼ �393:509 kJmol�1

or the series of steps

C(graphite)þ 1
2 O2(gas) ¼ CO(gas), Q298K ¼ �110:525 kJmol�1

CO(gas)þ 1
2 O2(gas) ¼ CO2(gas), Q298K ¼ �282:984 kJmol�1

C(graphite)þ O2(gas) ¼ CO2(gas), Q298K ¼ �393:509 kJmol�1

It is difficult to measure the heat of combustion of graphite to carbon monoxide
because carbon dioxide always is produced as well. But, from Hess’s law, it is poss-
ible to calculate the heat of combustion of graphite to carbon monoxide from the more
easily measurable heats of combustion of graphite and of carbon monoxide to carbon
dioxide.

We could introduce Hess’s generalization into thermodynamics as another empiri-
cal law, which is similar to the first law. However, a firm theoretical framework
depends on a minimum of empirical postulates. Thermodynamics is so powerful a
method precisely because it leads to so many predictions from only two or three
basic assumptions. Hess’s law need not be among these postulates, because it can
be derived directly from the first law of thermodynamics perhaps most conveniently
by using a new thermodynamic function, enthalpy.

4.1 ENTHALPY

Definition

Let us start by considering the quantity of heat DQP that is exchanged in a process at
constant pressure when only PV work is performed. From the first law,

DQ ¼ dU � DW

and, because only PV work is performed, and the pressure is equal to the constant
pressure of the surroundings,

DW ¼ �PdV

Then

DQP ¼ dU þ PdV (4:1)
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As the pressure is constant, we can add VdP to the right side of Equation (4.1) without
changing the equality. The result is

DQP ¼ dU þ PdV þ VdP

¼ dU þ d(PV)

¼ d(U þ PV)

(4:2)

Thus, the heat exchanged at constant pressure when only PV work is performed is the
differential of a state function, U þ PV. Therefore, it is useful to define a new state
function, the enthalpy H as

H ¼ U þ PV (4:3)

From the definition,1 it is evident that H, the enthalpy, is a thermodynamic property
because it is defined by an explicit function. All quantities on the right side of
Equation (4.3), U, P, and V, are properties of the state of a system; consequently,
so is H. Then we can rewrite Equation (4.2) as

DQP ¼ dHP ¼ dQP (4:4)

It is also evident from the definition [Equation (4.3)] that absolute values of H are
unknown because absolute values of U cannot be obtained from classic thermo-
dynamics alone. Therefore, from an operational point of view, it is possible only to
consider changes in enthalpy DH. Such changes can be defined readily by the
expression

DH ¼ DU þ D(PV) (4:5)
and

DHP ¼ QP (4:6)

in which the subscript emphasizes the restriction of constant pressure during the
process. Equations (4.5) and (4.6) are valid only if no nonmechanical work is
being performed. Under these conditions, dQ is an exact differential. In other
words, for chemical reactions carried out at constant pressure (for example, at atmos-
pheric pressure) in the usual laboratory or large-scale vessels, the heat absorbed
depends only on the nature and conditions of the initial reactants and of the final pro-
ducts. Thus, it does not matter whether a given substance is formed in one step or in
many steps. As long as the starting and final materials are the same, and as long as the
processes are carried out at constant pressure and with no nonmechanical work, the
net Q’s will be the same. Thus, Hess’s law is a consequence of the first law of
thermodynamics.

1This definition is an example of a Legendre transform, as discussed by some authors, such as R. A.
Alberty, Pure Appl. Chem. 73, 1349 (2001).

4.1 ENTHALPY 45



Relationship between QV and QP

We have just proved that DH equals QP for a reaction at constant pressure. Although
most calorimetric work is carried out at a constant pressure, some reactions must be
observed in a closed vessel, that is, at constant volume. In such a closed system, the
heat quantity that is measured is QV. For additional chemical calculations, it
frequently is necessary to know QP. Therefore, it is highly desirable to derive
some expression that relates these two heat quantities.

We will use the relationship implied in Equation (3.12),

DUV ¼ QV (4:7)

and in Equation (4.6),

DHP ¼ QP

together with Equation (4.5) restricted to a constant-pressure process:

DHP ¼ DUP þ PDV (4:8)

where P is the pressure of the constant pressure process. Generally, DUP is not
significantly different from DUV. In fact, for ideal gases at a fixed temperature
(as we will see in Chapter 5), U is independent of the volume or pressure. Hence,
as a rule,

DUP ffi DUV ¼ QV (4:9)

Substituting Equations (4.6) and (4.9) into (4.8), we obtain

QP ¼ QV þ P DV (4:10)

(where QP and QV refer to different changes of state).
In reactions involving only liquids and solids, the PDV term usually is negligible

in comparison withQ; hence, the difference betweenQP andQV is slight. However, in
reactions involving gases, PDV may be significant because the changes in volume
may be large. Generally, this term can be estimated with sufficient accuracy by
using the equation of state for ideal gases,

PV ¼ nRT (4:11)

in which n represents the number of moles of a particular gas. If the chemical reaction
is represented by the expression

aA(g)þ bB(g)þ � � � ¼ ‘L(g)þ mM(g)þ � � � (4:12)
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in which a, b, ‘, and m indicate the number of moles of each gas, then, because an
isothermal change is being considered,

QP ¼ QV þ PDV ¼ QV þ (‘RT þ mRT þ � � � �aRT �bRT � � � � )
or

QP ¼ QV þ (Dn)RT (4:13)

The symbol Dn refers to the change in number of moles of gases only when one mole
of reaction occurs. In common reactions (Dn)RT contributes a few kilojoules to the
difference QP 2 QV (see Exercise 4.1 at the end of this chapter).

4.2 ENTHALPY OF REACTIONS

In Section 4.1, we introduced a new function—enthalpy—and found among its prop-
erties a correspondence with the heat of reaction at constant pressure (when the only
work is from a volume change against that pressure). Most chemical reactions are
carried out in a vessel exposed to the atmosphere and under conditions such that no
work other than that against the atmosphere is produced. For this reason, and
because DH is independent of the path of a reaction and is measured by the heat trans-
ferred in the reaction, the enthalpy change of a reaction is a useful quantity. Knowledge
of the heat of reaction is particularly important when one needs to plan the heating or
cooling required to maintain an industrial chemical reaction at constant temperature.

Enthalpy changes also give pertinent information for several other problems in
chemical thermodynamics. For a long time it was thought that a negative sign of
DH, which is characteristic of a reaction in which heat is evolved, is a criterion for
a spontaneous reaction. When this misconception was cleared up, it was evident
that this criterion is still useful within certain limitations. If the DH values are
large enough, their signs still can be used as the basis for a first guess regarding
the spontaneity of a reaction. In more rigorous applications, the entropy change
must be known in addition to the enthalpy change (see Chapter 6).

Also, DH values are required to calculate the temperature dependence of equili-
brium constants. For all these reasons, it is desirable to have tables of DH values
available, so that the enthalpies of various transformations can be calculated
readily. In many of these calculations, we make use of Hess’s law, which is now
firmly established on the basis of the first law of thermodynamics. We can then cal-
culate DH for reactions for which the heat effect is difficult to measure but that can be
expressed as sums of reactions with known values of DH.

Definitions and Conventions

Some Standard States. The enthalpy change of a reaction depends on the states
of the substances involved. Thus, in the formation of water,

H2(g)þ 1
2 O2(g) ¼ H2O
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if the H2O produced is a liquid, DH will differ from that observed if the H2O is a
vapor. Similarly, for nonideal gases, the enthalpy change of the reaction depends
on the pressure of any gases involved. Furthermore, for reactions involving solids,
such as sulfur, DH depends on which crystalline form (for example, rhombic or
monoclinic) participates in the reaction. For these reasons, tabulated values of DH
refer to reactions with the reactants and products in specified standard states.

The states that have been agreed on as reference states in tabulating enthalpies
of reaction are summarized in Table 4.1. Other standard states may be adopted in
special problems. When no state is specified, it can be assumed to be that listed in
Table 4.1.

Enthalpy of Formation. Tables of enthalpies of reaction generally list the enthal-
pies of formation of various compounds in their standard states from the elements in
their standard states at the specified temperature. Thus, if the standard molar enthalpy
of formation, DfH8m, of CO2 at 258C is given as 2393.509 kJ mol21, the following
equation is implied:

C þ O2 ¼ CO2

(graphite at 298:15K,
0:1Mpa)

(gas at 298:15 K,
zero pressure)

(gas at 298:15 K,
zero pressure)

D fH8m ¼�393:509 kJ mol�1

TABLE 4.1. Standards and Conventions for Enthalpies of Reactiona

Standard state of solid The most stable form at 0.1-MPa (1 bar) pressure and the specified
temperature (unless otherwise specified)b

Standard state of liquid The most stable form at 0.1-MPa (1 bar) pressure and the specified
temperature

Standard state of gas Zero pressurec and the specified temperature
Standard state of carbon Graphite
Reference temperature 258C (298.15 K)
Sign of DH þIf heat is absorbed

aThe International Union of Pure and Applied Chemistry now recommends a standard pressure of 0.1MPa
(1 bar) in place of the previously accepted standard of 101.325 kPa (1 atm). The difference in thermodyn-
amic quantities is not significant for condensed phases, and differences in DH values are not significant
even for gases, but the user of thermodynamic tables will have to note carefully the standard state
chosen for any compilation of data. See Ref. 1, pp. 2–23; IUPAC Division of Physical Chemistry,
Commission on Symbols, Terminology and Units, Manual of symbols and terminology for physico-chemi-
cal quantities and units, M. L. McGlashan, M. A. Paul, and D. N. Whiffen, eds., Pure and App. Chem. 51, 1
(1979), and Appendix IV, Pure and Applied Chem. 54, 1239 (1982).
bThus, for some problems, rhombic sulfur may be a convenient standard state, whereas for others, mono-
clinic sulfur may be a convenient standard state.
cIt is shown in Chapter 16 that internal consistency in the definition of standard states requires that zero
pressure be the standard state for the enthalpy of a gas. Unfortunately, most reference sources use the con-
vention of 0.1-MPa or 101.325-Kpa pressure. In most cases, the difference in enthalpy among these three
pressures is very small.
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By this definition the enthalpy of formation of an element in its standard state is zero.
In other words, elements in their standard states are taken as reference states in the
tabulation of enthalpies of reaction, just as sea level is the reference point in measur-
ing geographic heights.

Modern tables of thermodynamic data are made self-consistent either by methods
of iteration or by computer-assisted simultaneous solutions [1]. The value of DH for
any chemical reaction that can be obtained from two or more thermodynamic cycles
should have the same value from each of those cycles if the data are obtained from the
same tables. Any thermodynamic calculation, therefore, should be carried out using
data from a single database whenever possible. Thus, in listing some values of enthal-
pies of formation below, we provide values from different databases in separate
tables.

Data for other substances can be obtained from the following critical compilations
and online in the NIST Chemistry WebBook at http://www.webbook.nist.gov/
chemistry/ or from the NIST-TRC Databases available on disk. (Information can
be found at http://www.nist.gov/srd/thermo.htm, or at http://srdata.nist.gov/
gateway/gateway?keyword ¼ thermodynamics.) An exhaustive list of earlier
sources of tabulated thermochemical data can be found in Volume 1 of Chemical
Thermodynamics, A Specialist Periodical Report [2]. A useful list of websites
containing thermodynamic data is available at http://tigger.uic.edu/� mansoori/
Thermodynamic.Data.and.Property.html.

A recent development is the creation of an electronic database from which particu-
lar properties can be retrieved on demand [3]. This work is being lead by the
Thermodynamics Research Center, which is now part of the National Institute of
Standards and Technology at Boulder, Colorado.

International Critical Tables, McGraw-Hill, New York, 1933.

Landolt-Börnstein, Physikalisch-chemische Tabellen, 5th ed., Springer, Berlin,
1936; Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Springer-
Verlag, Berlin, 1961, 1963, 1967, 1972.

Landolt-Börnstein, Volume 19, Thermodynamic Properties of Inorganic
Materials, Subvolume A1, Pure Substances. Part 1: Elements and
Compounds from AgBr to Ba3N2, P. Franke and D. Neuschütz Guest eds.,
1999, http://www.springerlink.com/link.asp?id¼KH6W2TX1RQ77.

Subvolume A2, Pure Substances. Part 2: Compounds from BeBr(g) to ZrCl2(g),
1999, http://www.springerlink.com/link.asp?id¼4EEKKY1F24PE.

Subvolume A3, Pure Substances. Part 3: Compounds from CoCl3 to Ge3N4,
http://www.springerlink.com/link.asp?id¼NEGDT64X4YVX.

Subvolume A4, Pure Substances. Part 4: Compounds from HgH(g) to ZnTe(g).
http://www.springerlink.com/link.asp?id¼92D3BEBCG7H0.

Subvolume B1, Binary Systems. Part 1: Elements and Binary Systems from Ag-Al
to Au-Tl, P. Franke and D. Neuschüt, Guest eds., 2002, http://www.
springerlink.com/link.asp?id¼B5BVPDD2PX27.
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Subvolume B2, Thermodynamic Properties of Inorganic Materials: Binary
Systems. Part 2: Elements and Binary Systems from B–C to Cr–Zr, 2004,
http://www.springerlink.com/link.asp?id¼Q4AMK7NV6RFN.

Subvolume B3, Thermodynamic Properties of Inorganic Materials: Binary
Systems. Part 3: Binary Systems from Cs-K to Mg-Zr, 2005. http://www.
springerlink.com/link.asp?id ¼ N4NFQ36PTE6B.

W. M. Latimer, Oxidation Potentials, 2nd ed., Prentice-Hall, Englewood Cliffs,
NJ, 1952.

D. R. Stull and G. C. Sinke, Thermodynamic Properties of the Elements,
American Chemical Society, Washington, DC, 1956.

M. W. Chase, ed., NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem.
Ref. Data, Monograph No. 9 (Part I and Part II), 1998.

R. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and
related substances, Geological Survey Bulletin 2131, 1995.

L. B. Pankratz, J. M. Stue, and N. A. Gokcen, Bureau of Mines Bulletin 677, 1984.

S. G. Lias, J. E. Bartmess, J. F. Liebman, J. L. Holmes, R. D. Levin, and W. G.
Mallard, Gas-Phase Ion and Neutral Thermochemistry, J. Phys. Chem.
Ref. Data, 17, Supplement No. 1, 1988.

L. V. Gurvich, I. V. Veyts, and C. B. Alcock, eds., Thermodynamic Properties of
Individual Substances, Vol. 3, Parts 1 and 2, CRC Press, Boca Raton, FL, 1994.

TABLE 4.2. Standard Enthalpiesa of Formation at 298.15 K

Substance DfH8m/(kJ mol21) Substance DfH8m/(kJ mol21)

H(g) 217.965 CO(g) 2110.525
O(g) 249.170 CO2(g) 2393.509
Cl(g) 121.679 NH3(g) 246.11
Br(g) 111.884 Glycine(s) 2528.10
F(g) 78.99 Taurine(s) 2785.3
NO(g) 90.25 Acetic acid(l) 2484.5
I(g) 106.838 Urea(s) 333.51
N(g) 472.704 CaSiO3(s); wollastonite 21634.94
C(g) 716.682 CuS04.5H2O(s); chalcanthite 22279.65
Br2(g) 30.907 SiO2(s): a quartz 2910.94
I2(g) 62.438 SiO2(s); a cristobalite 2909.48
H2O(g) 2241.818 SiO2(s); a tridymite 2909.06
H2O(l) 2285.830 Mg2SiO4(s); forsterite 22174.0
HF(g) 2271.1 MgSiO3(s); enstatite 21549.00
HD(g) 0.318 Methane(g) 274.81
C(diamond) 1.895 Ethane(g) 284.68
HCl(g) 292.307 Ethene(g) 52.26
HBr(g) 236.40 Ethyne(g) 226.73
HI(g) 26.48 Methanol(l) 2238.66
ICl(g) 17.78 Ethanol(l) 2277.69

aSelected from Ref. 1.
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J. B. Pedley, Thermochemical Data and Structures of Organic Compounds, Vol. I,
Thermodynamics Research Center, College Station, TX, 1994.
http://www.fiz-chemie.de/infotherm/servlet/infothermSearch.

An updated electronic version of these tables is available as NIST Standard
Reference Database 85; information can be found at http://trs.nist.gov/database/
Table/wintable.htm.

Quantum-chemical calculations now can provide values of enthalpies of formation
with a precision and accuracy comparable with thermochemical values and those cal-
culated from statistical thermodynamics. The basis for these calculations is beyond
the scope of this text, but it is interesting to observe some values calculated in this
way for comparison with other values in Tables 4.3–4.5. The data in Table 4.6
were obtained by a method called Gaussian-3 (G3) [5].

TABLE 4.3. Standard Enthalpiesa of Formation at 298.15 K

Substance DfH8m/(kJ mol21) Substance DfH8m/(kJ mol21)

HBr(g) 236.443 H2O(g) 2241.826
CO(g) 2110.527 NH3(g) 245.898
CO2(g) 2393.522 HF(g) 2272.546

HCI(g) 292.312

aM. W. Chase, Jr., NIST-JANAF thermochemical tables, 4th ed. J. Phys. Chem. Ref. Data, Monograph
No. 9, 1998.

TABLE 4.4. Standard Enthalpiesa of Formation at 298.15 K

Substance
DfH8m/(kJ
mol21) Substance

DfH8m/(kJ
mol21)

Br2(g) 30.9+0.1 CuSO4(s) 2771.4+ 1.3
I2(g) 62.4+0.1 CuSO4

. 5H2O(s); chalcanthite 22279.7+ 3.4
C(diamond) 1.9+0.0 CaSO4

. 2H2O(s) 22023.0+ 4.3
CO(g) 2110.5+0.2 CaSO4(s) 21434.4+ 4.2
CO2(g) 393.5+0.1 CaSiO3(s); wollastonite 21634.8+ 1.4
NO2(g) 33.1+0.4 SiO2(s); a quartz 2910.7+ 1.0
Br2(g) 30.9+0.1 CuSO4(s) 2771.4+ 1.3
SO2(g) 2296.8+0.2 SiO2(s); a cristobalite 2908.4+ 2.1
SO3(g) 2395.7+0.1 SiO2(s); a tridymite 2907.5+ 2.4
S(monoclinic) 0.3+0.1 CH4(g) 274.8+ 0.3
MgO(s) 2601.6+0.3 NH3(g) 245.9+ 0.4
Mg2SiO4(s);
forsterite

22173.0+2.0 Fe2SiO4(s); fayalite 21478.2+ 1.3

K2SO4; arcanite 21437.7+0.5 Fe2O3; hematite 2826.2+ 1.3
Fe2(SO4)3 22581.9+2.9 H2O(g) 2241.8+ 0.0
H2O(l) 2285.8+0.1

aR. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related substances,
Geological Survey Bulletin 2131, 1995.
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4.3 ENTHALPY AS A STATE FUNCTION

Because the enthalpy is a thermodynamic property, the value of DH depends only on
the nature and state of the initial reactants and final products, and not on the reactions
that have been used to carry out the transformation. If we must deal with a reaction
whose DH is not available, it is sufficient to find a series of reactions for which DH’s
are available and whose sum is the reaction in question.

Enthalpy of Formation from Enthalpy of Reaction

As the formation of Ca(OH)2(solid) from the elements is not a calorimetrically
accessible reaction, we will calculate the enthalpy of formation of Ca(OH)2(solid)
from data for other reactions, such as follows [6]:

CaO(s)þ H2O(l) ¼ Ca(OH)2(s), DH188C ¼ �63:84 (4:14)

H2(g)þ 1
2 O2(g) ¼ H2O(l), DH188C ¼ �285:830 kJ (4:15)

Ca(s)þ 1
2 O2(g) ¼ CaO(s), DH188C ¼ �635:13 kJ (4:16)

TABLE 4.5. Standard Enthalpiesa of Formation at 298.15 K

Substance DfH8m/(kJ mol21) Substance DfH8m/(kJ mol21)

Methane(g) 274.5 o-Xylene(g) 19.1
Ethane(g) 283.8 m-Xylene(g) 17.3
Propane(g) 2104.7 p-Xylene(g) 18.0
n-Butane(g) 2126.8 Methanol(g) 2200.9
Ethylene(g) 52.5 Ethanol(g) 2235.0
Propylene(g) 19.7 CO(g) 2110.5
1-Butene(g) 20.5 CO2(g) 2393.5
Acetylene(g) 228.2 Acetic acid(g) 2432.3
Benzene(g) 82.9 Toluene(g) 50.2
Cyclohexane(g) 2123.4

aFrom Ref. 4.

TABLE 4.6. Standard Enthalpies of Formation at 298.15 K�

Substance DH8f/(kJ mol21) Substance DH8f /(kJ mol21)

CH4(g) 274.9 Ethylene(g) 52.3
NH3(g) 246.0 Ethane(g) 284.1
H2O(g) 2241.8 CO(g) 2110.5
HF(g) 2272.4 CO2(g) 2393.7
Acetylene(g) 226.8

aL. A. Curtiss, K. Raghavachari, P. C. Redfern, V. Rassolov, and J. A. Pople, J. Chem. Phys. 109, 7764 (1998).
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The addition of these three chemical equations leads to the desired equation; hence, the
addition of the corresponding DH’s gives the desired enthalpy of formation:

Ca(s) þ O2(g)þ H2(g) ¼ Ca(OH)2(s)

DH188C ¼ �984:81 kJ mol�1 (4:17)

Enthalpy of Formation from Enthalpy of Combustion

Calculation of the enthalpy of formation from the enthalpy of combustion is common
because for most organic compounds, combustion is the most calorimetrically
accessible reaction; yet the enthalpy of formation is the more useful quantity for
additional thermodynamic calculations. A typical example of such a calculation is
outlined by Equations (4.18)–(4.21):

C2H5OH(l)þ 3O2(g) ¼ 2CO2(g)þ 3H2O(l)

DH298K ¼ �1368:82 kJ mol�1
(4:18)

3H2O(l) ¼ 3H2(g)þ 3
2 O2(g), DH298K ¼ 857:490 kJ mol�1 (4:19)

2CO2(g) ¼ 2C(graphite) þ 2O2(g), DH298K ¼ 787:018 kJ mol�1 (4:20)

C2H5OH(l) ¼ 3H2(g)þ 1
2 O2(g)þ 2C(graphite),

DH ¼ 277:69 kJ mol�1
(4:21)

Reversing Equation (4.21), we obtain the enthalpy of formation of ethyl alcohol:

3H2(g)þ 1
2 O2(g)þ 2C(graphite) ¼ C2H5OH(l),

DfHm8 ¼ �277:69 kJ mol�1
(4:22)

Enthalpy of Transition from Enthalpy of Combustion

Calculation of the enthalpy of transition in the solid state from the enthalpy of
combustion is particularly important when changes of reference state from one
allotrope to another are necessary. Carbon is illustrated as an example [7]:

C(graphite)þ O2(g) ¼ CO2(g), DH298K ¼ �393:475 kJ mol�1 (4:23)

C(diamond)þ O2(g) ¼ CO2(g), DH298K ¼ �395:347 kJ mol�1 (4:24)

Subtracting the first reaction from the second, we obtain

C(diamond) ¼ C(graphite), DH298K ¼ �1:872 kJ mol�1 (4:25)
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The enthalpy change for the transition from graphite to diamond is an essential item
of information in calculation of the conditions for the geological and industrial pro-
duction of diamonds.

Enthalpy of Conformational Transition of a Protein from
Indirect Calorimetric Measurements [8]

Many protein molecules exist in two (or more) different structures of the
same molecular mass but with different spatial disposition of constituent
atoms. An intensively studied enzyme, aspartate transcarbamoylase (abbreviated
ATCase), under some circumstances is in an enzymatically less-active constrained
steric arrangement, which is labeled the T form, and under other conditions in
the enzymatically very active, structurally more swollen and open conformation,
the R form.

The DHT!R of the transition from T to R is a thermodynamically valuable
parameter for understanding the behavior of the enzyme. However, this quantity
cannot be measured directly because the transition can only be achieved by
addition of a small-molecule substrate or an analog thereof. One such analog,
N-(phosphonacetyl)-L-aspartate (PALA), is very effective in promoting the T ! R
transition. Calorimetric measurements have been reported [8] for the mixed
process of binding the PALA and the accompanying T ! R transition. The
observed DHm values (per mole of enzyme) depend on the number of moles of
PALA bound.

The different transitions for which calorimetric data have been obtained and the
relationships of the experimental DHm values to the enthalpy of transition,
DHm(T!R), and to the enthalpy of binding of PALA, DHmPALA, are shown in
Figure 4.1, which is a thermodynamic cycle that permits calculation of DHm for
one step if all others are known. Each enthalpy DHmI to DHmV, in principle, contains
some contribution from the enthalpy of binding and some from the enthalpy of
conformational transition. It has been assumed that the enthalpy of binding per
mole of ligand, DHmPALA, is identical for each of the six PALA molecules taken
up sequentially by the enzyme. Thus,

DHmVI ¼ 6DHmPALA (4:26)

However DHmVI is not accessible directly by calorimetric measurements. In
each step, DHmI to DHmV, the contribution from DHm(T!R) cannot be established
without some knowledge of the extent of the conformational transition, which is
known not to be proportional to the number of moles of bound PALA.

Extrathermodynamic (ultracentrifugation) experiments have established that 43%
of the conformational transition occurs when the first 1.8 moles of ligand is added.
Therefore, we can write

DHmI ¼ 1:8 DHmPALA þ 0:43 DHm(T!R) (4:27)
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Similarly, it is known that when the bound PALA is increased from 3.4 to 5.2, 23%
of the conformational transition takes place. Therefore, for the additional binding
of 1.8 moles of PALA, in the third step of the left-hand path of Figure 4.2, we can
state that

DHmIII ¼ 1:8 DHmPALA þ 0:23 DHm(T!R) (4:28)

Using the experimentally determined values for DHmI and DHmIII, 263.2 kJ mol21

and 259.0 kJ mol21, respectively, shown in Table 4.7, we can solve Equations (4.27)
and (4.28) for the DHm’s of the two inaccessible steps in Figure 4.1. In this way it has
been shown that

DHm(T!R) ¼ �21 kJ=mol�1

DHmPALA ¼ �30 kJ=mol�1

Alternatively, we can use the experimental calorimetric data for the diagonal path
in Figure 4.1, that is, for the addition of 6 moles of ligand in one step. According to

Figure 4.1. Thermodynamic cycles, which illustrate states of enzyme ATCase during calori-
metric measurements of enthalpies accompanying the binding of progressively increasing
quantities of the substrate analog PALA. At the outset, the ATCase is 100% in the T confor-
mation; at the conclusion of the transformation, the ATCaseR form (PALA)6 is 100% in the R
conformation and has six bound PALA molecules. When the extent of binding of PALA is
between 0 and 6, the extent of conformational conversion is between 0% and 100%. The hori-
zontal broken arrow at the top of the diagram indicates the process that is accompanied by the
enthalpy DHT!R that we want to know. The vertical broken arrow at the right represents a pure
binding step for the enzyme in the 100% R conformation.

4.3 ENTHALPY AS A STATE FUNCTION 55



the table, DHmV is 2209.2 kJ mol21. Consequently we can write

DHmV ¼ 6 DHmPALA þ DHm(T!R) (4:29)

This equation can be combined with either Equation (4.27) or (4.28), and in each
procedure alternative values can be computed for DHm(T!R) and for DHmPALA.

An additional method makes use of all three equations simultaneously to take
advantage of all data available. In such an overdetermined set of data, one can use
the method of least squares (see Appendix A) for more than one independent variable
and matrix methods to solve the resulting equations [9].

Enthalpy of Solid-State Reaction from Measurements of
Enthalpy of Solution

Many reactions of geological interest have crystalline (c) solids as reactants and pro-
ducts. Even when such reactions have large values of DHm, the enthalpy of reaction
cannot be measured directly because the reactions are very slow. An important
reaction of this kind is that of MgO (periclase) and SiO2 (quartz) to form forsterite
(Mg2SiO4).

2MgO(c) þ SiO2(c) ¼ Mg2SiO4(c), DHmI (4:30)

Workers at the Bureau of Mines were able to obtain DHmI by measurements of the
value of DHm for the reaction of each of the solids with 20% HF solutions near
758C. The reactions observed are as follows:

SiO2(c, 258C)þ 6HF(soln, 73:78) ¼ H2SiF6(soln, 73:78C)

þ 2H2O(soln, 73:78C)

DHmII ¼ �148:16 kJ mol�1 (10)

(4:31)

MgO(c, 258C)þ 2HF(soln, 73:78C) ¼ MgF2(soln, 73:78C)

þ H2O(soln, 73:78C)

DHmIII ¼ �162:13 kJ mol�1 (10)

(4:32)

TABLE 4.7. Enthalpy Change on Binding PALA to ATCase

Change in Moles
PALA Bound per
Mole ATCase

0.0! l.8 1.8! 3.4 3.4! 5.2 0.0! 6.0

DHm/(kJ mol21) 263.2 262.3 259.0 2209.2
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Mg2SiO4(c, 258C)þ 10HF(soln, 73:78C)

¼ 2MgF2(soln, 73:78C)þ H2SiF6(soln, 73:78C)

þ 4H2O(soln, 73:78C)

DHmIV ¼ �399:07 kJ mol�1 (11)

(4:33)

From an inspection of the reactions, one can see that

DHmI ¼ 2(DHmIII)þ DHmII � DHmIV

¼ �73:35 kJ mol�1
(4:34)

4.4 BOND ENTHALPIES

The calculation of the enthalpy of formation of a given compound depends on the
determination of the enthalpy of at least one reaction of this substance. Frequently,
it is desirable to estimate the enthalpy of a chemical reaction involving a hitherto
unsynthesized compound, or one that has been synthesized but has not been
characterized calorimetrically. For the solution of problems of this type, a system
of average bond enthalpies has been established such that, if the molecular structure
of the compound is known, it is possible to approximate the enthalpy of formation by
adding the appropriate average bond enthalpies.

Definition of Bond Enthalpies

We must be careful to distinguish between “bond enthalpy” and the “dissociation
enthalpy” of a given bond. The latter is a definite quantity that refers to the enthalpy
absorbed when a given bond of some specific compound is broken. However, bond
enthalpy is an average value of the dissociation enthalpies of a given bond in a series
of different dissociating species.

The distinction between these two terms may be more evident if described in terms
of a simple example, the C–H bond. The enthalpy of dissociation of the C–H bond
depends on the nature of the molecular species from which the H atom is being
separated. For example, in the methane molecule

CH4(g) ¼ CH3(g)þ H(g) (4:35)

the dissociation enthalpy of the carbon–hydrogen bond in methane [12] is 427 kJ
mol21. This value is not equal to the average bond enthalpy of the C–H bond,
1C–H. One reaction by which we can obtain a value of 1C–H is

CH4(g) ¼ C(g)þ 4H(g), 1C�H ¼ DHm

4
(4:36)

From experiments with many compounds in which the C–H bond is broken and from
an average of the results, we can attain a representative value for 1C22H, for example,
415.85 kJ mol21.
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Calculation of Bond Enthalpies

The fundamental data for calculating DHm for Equation (4.36) are obtained
from enthalpies of combustion. We will calculate the C–H bond enthalpy from
data on the enthalpy of combustion of methane. Consider the following reactions
at 298 K:

CH4(g)þ 2O2(g) ¼ CO2(g)þ 2H2O(l)

DHm ¼ �890:36 kJ mol�1
(4:37)

CO2(g) ¼ C(graphite) þ O2(g)

DHm ¼ 393:51 kJ mol�1
(4:38)

2H2O(l) ¼ 2H2(g)þ O2(g), DHm ¼ 571:70 kJ mol�1 (4:39)

2H2(g) ¼ 4H(g), DHm ¼ 871:86 kJ mol�1 (4:40)

C(graphite) ¼ C(g), DHm ¼ 716:682 kJ mol�1 (4:41)

CH4(g) ¼ C(g)þ 4H(g), DHm ¼ 1663:39 kJ mol�1 (4:42)
Thus, at 298 K

1C�H ¼ 1663:39
4

¼ 415:85 kJ mol�1 (4:43)

This value of the C–H bond enthalpy does not correspond to the enthalpy of
dissociation of the carbon–hydrogen bond in methane, as represented in
Equation (4.35).

In the preceding calculation of 1C–H, enthalpy values at 298 K were used; hence,
the bond enthalpy also refers to this temperature. For some purposes, it is the practice
to calculate bond enthalpies at 0 K, rather than 298 K. For 1C–H, we would obtain
410.9 kJ mol21 at 0 K, which is a value slightly lower than that at 298 K.
Generally, the differences between the bond enthalpies at the two temperatures are
small. A list of bond enthalpies at 298 K is given in Table 4.8.

In some cases, the value given in the table depends on that calculated previously
for some other bond. For example, to obtain 1C–C, we combine the enthalpy of
combustion of ethane, 21,588 kJ mol21, with the proper multiples of the DHm’s
in Equations (4.38)–(4.41) to obtain the enthalpy change for the reaction

C2H6(g) ¼ 2C(g)þ 6H(g) DH � 2827 kJ mol�1 (4:44)

From our definition of bond enthalpy

1C�C ¼ DHmEquation (4:44) � 61C�H (4:45)
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Thus, the value of 345.6 kJ mol2 1 listed in Table 4.8 is based on an 1C–H of 413.0 kJ
mol21. Other estimates of 1C–H would lead to different values for 1C–C.

Enthalpy of Reaction from Bond Enthalpies

The primary significance of bond enthalpies lies in the calculation of the enthalpy
of a reaction involving a compound for which no enthalpy data are available.
For example, if the enthalpy of formation of Se2Cl2(g) were not known, it
could be calculated from bond enthalpies by the following steps. As the bond
enthalpy refers to the dissociation of Cl–Se–Se–Cl gas into gaseous atoms, the
enthalpy change for the formation of this gaseous molecule from the atoms should

TABLE 4.8. Bond Enthalpiesa at 298 K

Bond kJ mol21 Bond kJ mol21 Bond kJ mol21

H–H 435.89 Te¼Te 222� O–C1 218
Li–Li 105� I–I 150.88 F–Cl 253.1�

C–C 345.6 Cs–Cs 43.5� Na–Cl 410�

C¼C 610.0 Li–H 243 Si–Cl 381
C;C 835.1 C–H 413.0 P–Cl 326
N–N 163 N–H 390.8 S–C1 255
N;N 944.7 O–H 462.8 K–Cl 423�

O–O 146 F–H 565 Cu–Cl 368�

O¼O 498.3 Na–H 197� As–Cl 293
F–F 155 Si–H 318 Se–Cl 243
Na–Na 71� P–H 322 Br–Cl 218�

Si–Si 222 S–H 347 Rb–Cl 428�

P–P 201 Cl–H 431.4 Ag–Cl 301�

S–S 226 K–H 180� Sn–Cl 318
Cl–Cl 242.13 Cu–H 276� Sb–Cl 310
K–K 49.4� AsH 247 I–C1 209�

Ge–Ge 188 Se–H 276 Cs–Cl 423�

As–As 146 Br–H 365.7 C–N 304.6
As;As 381� Rb–H 163� C;N 889.5
Se–Se 209 Ag–H 243� C–O 357.7
Se¼Se 272� Te–H 238 C¼O 745
Br–Br 192.80 I–H 298.7 C;O 1046
Rb–Rb 45.2� Cs–H 176� P;N 577�

Sn–Sn 163 Li–Cl 481� S¼O 498
Sb–Sb 121 C–Cl 339 C–S 272
Sb;Sb 289� N–Cl 192 C¼S 536

aCalculated from data in T. L. Cottrell. The Strengths of Chemical Bonds, 2nd ed., Butterworths, London,
1958, pp. 270-289; and from data in A. G. Gaydon. Dissociation Energies, 3rd ed., Chapman and Hall,
Ltd., London, 1968.
�When values at 298 K have not been available, those at 0 K have been listed instead.
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be given by

2Se(g)þ 2Cl(g) ¼ Se2Cl2(g),

DHm ¼ �[1Se�Se þ 21Se�Cl] ¼ �695 kJ mol�1
(4:46)

However, to estimate the standard enthalpy of formation, it is necessary to add
two reactions to Equation (4.46), because, by definition, the standard enthalpy
of formation refers to the formation of the compound in its standard state from the
elements in their standard states. Therefore we introduce the following enthalpy
changes to convert the elements from their standard states to the gaseous atoms
at 298 K:

Cl2(g) ¼ 2Cl(g), DHm ¼ 243:36 kJ mol�1 (4:47)

2Se(hexagonal) ¼ 2Se(g)

DHm ¼ 2 � 227:07 kJ mol�1
(4:48)

The addition of Equations (4.46)–(4.48)leads to the expression

2 Se(hexagonal)þ Cl2(g) ¼ Se2Cl2(g)

DHm ¼ þ3 kJ mol�1
(4:49)

If we wish to know the enthalpy of formation of liquid Se2Cl2, we can estimate the
enthalpy of condensation (perhaps from Trouton’s rule [13] or by comparison with
related sulfur compounds) and can add it to the value of DHm obtained in
Equation (4.49).

By these methods, one can obtain fairly reliable estimates of enthalpies of for-
mation of many compounds. As the bond enthalpies used are average values, they
cannot be expected to result in highly accurate results for enthalpies of formation.
More complex procedures also have been developed that will provide greater
accuracy [14]. Related methods for estimation of thermodynamic data are discussed
in Appendix A.

4.5 HEAT CAPACITY

We introduced the enthalpy function particularly because of its usefulness as a
measure of the heat that accompanies chemical reactions at constant pressure. We
will find it convenient also to have a function to describe the temperature dependence
of the enthalpy at constant pressure and the temperature dependence of the energy at
constant volume. For this purpose, we will consider a new quantity, the heat capacity.
(Historically, heat capacity was defined and measured much earlier than were
enthalpy and energy.)
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Definition

Fundamental Statement. The heat absorbed by a body (not at a transition
temperature) is proportional to the change in temperature:

Q ¼ C(T2 � T1) (4:50)

The proportionality constant C is called the heat capacity2 and is proportional to the
mass of the substance undergoing the temperature change. Hence, the heat capacity
per gram is called the specific heat, and the heat capacity for one mole of material is
called the molar heat capacity.

The value of C,

C ¼ Q

T2 � T1
¼ Q

DT
(4:51)

may depend on the temperature. Thus, for a rigorous definition of heat capacity, we
must consider an infinitesimally small temperature interval. Consequently we define
the heat capacity by the expression

C ¼ DQ

dT
(4:52)

in which the D in DQ emphasizes the inexactness of the differential of Q. As DQ is
inexact, C has no unique value but depends on the path or conditions under which
heat is supplied. We can place certain restrictions on Equation (4.52), such as constant
pressure or constant volume. For these situations, we can modify Equation (4.52) to
the following expressions:

CP ¼ DQ

@T

� �
P

(4:53)

and

CV ¼ DQ

@T

� �
V

(4:54)

Derived Relationships. Equations (4.52)–(4.54) are fundamental definitions.
From these and previous thermodynamic principles, new relationships can be
derived that are very useful in other work.

If we have a substance that is absorbing heat at a constant pressure, it is evident that
the restrictions placed on Equation (4.4) are being fulfilled; that is,

DQP ¼ dHP

2The term “heat capacity” is a historical remnant of the time when it was thought that heat is stored in an
object; we now consider that thermal energy is contained in an object and that heat is energy being trans-
ferred because of a difference in temperature.
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Substitution of Equation (4.4) into Equation (4.53) leads to the important expression

CP ¼ @H

@T

� �
P

(4:55)

As dH is exact, CP has a definite value for a particular substance in a specified state.
Similarly, if we have a substance that is absorbing heat at constant volume, the

restrictions placed on Equation (4.7) are being fulfilled; hence,

DQV ¼ dUV (4:56)

Substitution of Equation (4.56) into Equation (4.54) leads to an additional basic
relationship,

CV ¼ @U

@T

� �
V

(4:57)

Some Relationships between CP and CV

From the considerations of the preceding section, no apparent connection is found
immediately between the two heat capacities, CP and CV. We can illustrate the
power of thermodynamic methods by developing several such relationships
without any assumptions beyond the first law of thermodynamics and the definitions
that have been made already. The following three examples are of derivations of these
relationships:

1. Starting with the derived relationship for CP [Equation (4.55)], we introduce
the definition of H:

CP ¼ @(U þ PV)
@T

� �
P

¼ @U

@T

� �
P

þ P
@V

@T

� �
P

(4:58)

The partial derivative (@U/@T )P is not CV, but if it could be expanded into
some relationship with (@U/@T )V, we would have succeeded in introducing
CV into Equation (4.58). The necessary relationship can be derived by consid-
ering the internal energy U as a function of T and V and setting up the total
differential:

dU ¼ @U

@T

� �
V

dT þ @U

@V

� �
T

dV (4:59)

Dividing by dT and imposing the condition of constant pressure, we obtain

@U

@T

� �
P

¼ @U

@T

� �
V

þ @U

@V

� �
T

@V

@T

� �
P

(4:60)
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Substituting Equation (4.60) into Equation (4.58) and factoring out the partial
derivative (@V/@T )P, we obtain the desired expression:

CP ¼ @U

@T

� �
V

þ Pþ @U

@V

� �
T

� �
@V

@T

� �
P

¼ CV þ Pþ @U

@V

� �
T

� �
@V

@T

� �
P

(4:61)

This expression will be of considerable value when we consider special
cases for which values or equations for the partial derivatives (@U/@V )T and
(@V/@T )P are available.

2. A second relationship can be derived by starting with the definition for CV

[Equation (4.57)] and by substituting from the relation between U and H.

CV ¼ @U

@T

� �
V

¼ @(H � PV)
@T

� �
V

¼ @H

@T

� �
V

� V
@P

@T

� �
V

(4:62)

The partial derivative (@H/@T )V is not CP, but if it could be expanded into
some relationship with (@H/@T )P, we would have succeeded in introducing
CP into Equation (4.62). The necessary relationship can be derived by
considering the enthalpy H as a function of T and P and by setting up the
total differential:

dH ¼ @H

@T

� �
P

dT þ @H

@P

� �
T

dP (4:63)

Dividing by dT and imposing the condition of constant volume, we obtain

@H

@T

� �
V

¼ @H

@T

� �
P

þ @H

@P

� �
T

@P

@T

� �
V

(4:64)

Substituting Equation (4.64) into Equation (4.62), and factoring out the partial
derivative (@V/@T )P, we obtain the desired expression:

CV ¼ @H

@T

� �
P

þ �V þ @H

@P

� �
T

� �
@P

@T

� �
V

¼ CP þ �V þ @H

@P

� �
T

� �
@P

@T

� �
V

(4:65)
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or,

CP ¼ CV þ V � @H

@P

� �
T

� �
@P

@T

� �
V

(4:66)

Several other general relationships between CP and CV are obtainable by
procedures similar to those just outlined.

Heat Capacities of Gases

From classic thermodynamics alone, it is impossible to predict numeric values for
heat capacities; these quantities are determined experimentally from calorimetric
measurements. With the aid of statistical thermodynamics, however, it is possible
to calculate heat capacities from spectroscopic data instead of from direct calori-
metric measurements. Even with spectroscopic information, however, it is con-
venient to replace the complex statistical thermodynamic equations that
describe the dependence of heat capacity on temperature with empirical equations
of simple form [15]. Many expressions have been used for the molar heat
capacity, and they have been discussed in detail by Frenkel et al. [4]. We will
use the expression

CPm

R
¼ a0 þ a1T þ a2T

2 þ a3T
3 þ a4T

4 (4:67)

Some results of the calculations of Frenkel et al. [4] for the coefficients in this
equation are summarized in Table 4.9 and are illustrated in Figure 4.2.

Figure 4.2. Variation of heat capacity with temperature as calculated from the equations of
Frenkel et al. [4]. The differences observed between isotopic species and the way heat capacity
depends on molecular size and structure can be described thermodynamically, but they must be
explained by the methods of quantum-statistical thermodynamics. The right-hand scale is for
H2 and D2; the left-hand scale is for the other compounds.
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Heat Capacities of Solids

Early in the nineteenth century, Dulong and Petit observed that the molar heat capacity
of a solid element generally is near 6 cal mol21 K21 (25 J mol21 K21). Subsequent
investigation showed that CVm (or CPm) varies markedly with the temperature, in the
fashion indicated by Figure 4.3. However, the upper limiting value of about 25 J
mol21 K21 is approached by the heavier elements at room temperature.

Data for a large number of organic compounds can be found in E. S. Domalski, W.
H. Evans, and E. D. Hearing, “Heat capacities and entropies in the condensed phase,”
J. Phys. Chem. Ref. Data, Supplement No. 1, 13 (1984). It is impossible to predict
values of heat capacities for solids by purely thermodynamic reasoning. However,
the problem of the solid state has received much consideration in statistical thermo-
dynamics, and several important expressions for the heat capacity have been derived.
For our purposes, it will be sufficient to consider only the Debye equation and, in
particular, its limiting form at very low temperatures:

CVm ¼ 12p4

5
R
T3

Q3 ¼ 1943:8
T3

Q3 J mol�1 K�1 (4:68)

The symbol u is called the characteristic temperature and can be calculated from
an experimental determination of the heat capacity at a low temperature. This
equation has been very useful in the extrapolation of measured heat capacities [16]
down to 0 K, particularly in connection with calculations of entropies from
the third law of thermodynamics (see Chapter 11). Strictly speaking, the Debye
equation was derived only for an isotropic elementary substance; nevertheless,
it is applicable to most compounds, particularly in the region close to
absolute zero [17].

Figure 4.3. Molar heat capacities of solid sodium (W) and palladium (A). [Data from G. L.
Pickard and F. E. Simon, Proc. Phys. Soc. 61, 1 (1948).]
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Heat Capacities of Liquids

No adequate theoretical treatment has been developed that might serve as a guide in
interpreting and correlating data on the heat capacities of liquids, but a critical review
and recommended values are available for several liquids [18]. However, it has been
observed that the molar heat capacity of a pure liquid generally is near that of the
solid, so if measurements are not available we may assume that CVm is 25 J mol
K21. However, the heat capacities of solutions cannot be predicted reliably from
the corresponding properties of the components. Empirical methods of treating
solutions will be considered in later chapters.

Other Sources of Heat Capacity Data

Sources of heat capacity data at many temperatures include:
J. D. Cox, D. D. Wagman, and V. A. Medvedev, CODATA Key Values for

Thermodynamics, Hemisphere Publishing Corporation, New York, 1989.
M. W. Chase, Jr., JANAF Thermochemical Tables, 4th ed., J. Phys. Chem.

Ref. Data, Monograph No. 9 (1998).
R. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and

related substances, U. S. Geological Survey Bulletin 2131, 1995.
NIST Webbook, http://webbook.nist.gov/chemistry.
http://i-systems,dechema.de/detherm.datasets.php?
M. Zabransky, V. Ruzicka, E. S. Domalski, J. Phys. Chem. Ref. Data, 30, 1199

(2001).
G. Kreysa, ed., Solid and Liquid Heat Capacity Data Collection, John Wiley &

Sons, New York, 1998.
The NIST Webbook gives data for heat capacity over a range of temperatures, and

it provides coefficients for empirical equations for heat capacity as a function of temp-
erature for solid, liquid, and gas phases. The latter are referred to as “Shomate
equation parameters.”

4.6 ENTHALPY OF REACTION AS A FUNCTION
OF TEMPERATURE

In the preceding sections we discussed methods of obtaining enthalpies of reaction at
a fixed temperature (generally 298.15 K). In particular, we pointed out that it is poss-
ible to tabulate enthalpies of formation and bond enthalpies and to use these to cal-
culate enthalpies of reaction. Such tables of enthalpies of formation are available for
only a few standard temperatures. Frequently, however, it is necessary to know the
enthalpy of a reaction at a temperature different from those available in a reference
table. Therefore, we consider now the procedures that can be used to calculate
the enthalpy of reaction (at constant pressure) at one temperature, from data at
another temperature.
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Analytic Method

As we are interested in the variation of enthalpy with temperature, we recall from
Equation (4.55) that

@H

@T

� �
P

¼ CP

Such an equation can be integrated at constant pressure:

ð
dH ¼

ð
CP dt

and

H ¼
ð
CP dT þ H0 (4:69)

In Equation (4.69), H0 is an integration constant. If we are considering a chemical
transformation, represented in general terms by

Aþ Bþ . . . ¼ M þ N þ . . . (4:70)

we can write a series of equations of the form

HA ¼
ð
CPAdT þ H0A

HB ¼
ð
CPBdT þ H0B

HM ¼
ð
CPMdT þ H0M

HN ¼
ð
CPNdT þ H0N

(4:71)

For the chemical reaction 4.70, the enthalpy change DHm is given by

DHm ¼ HmM þ HmN þ � � � � HmA � HmB � � � �
¼ (HmOM þ HmON þ � � � � HmOA � HmOB � � � � )

þ
ð
CPmMdT þ

ð
CPmNdT þ � � � �

ð
CPmAdT �

ð
CPmBdT � . . . (4:72)

If we define the quantities inside the parentheses as DHm0 and if we group the
integrals together, we obtain

DHm ¼ DHm0 þ
ð
(CPmMþ CPmNþ � � � � CPmA� CPmB� � � � ) dT (4:73)

4.6 ENTHALPY OF REACTION AS A FUNCTION OF TEMPERATURE 69



or

DHm ¼ DHm0 þ
ð
DCPmdT (4:74)

in which DCPm represents the expression in the parentheses, that is, the integrand of
Equation 4.73. Thus, to obtain DHm as a function of the temperature, it is necessary to
know the dependence of the heat capacities of the reactants and products on the
temperature, as well as one value of DHm so that DHm0 can be evaluated.

As an example, let us consider the enthalpy of formation of CO2(g):

C(graphite)þ O2(g) ¼ CO2(g), DHm,298:15K ¼ �393,509 J mol�1

The heat capacities of the substances involved can be expressed by the equations

CPm(C) ¼ �1:30031þ 21:18994� 10�3 T � 10:16834� 10�5 T2

þ 26:66831� 10�8T3 � 25:4198� 10�11T4 (4:75)

CPm(O2) ¼ 3:6297� 1:7943� 10�3T þ 0:6579� 10�5T2

� 0:6007� 10�8T3 þ 0:17861� 10�11T4 (4:76)

CPm(CO2) ¼ 3:912þ 1:356� 10�3T � 1:502� 10�5T2

� 2:374� 10�8T3 þ 1:056� 10�11T4 (4:77)

Hence, the difference in heat capacities of products and reactants is given by the
equation

DCPm ¼ �1:018� 18:040� 10�3T þ 11:012� 10�5T2

� 28:442� 10�8T3 þ 26:297� 10�11T4 (4:78)

Consequently,

DHm ¼ DHm0 þ
ð
(�1:018� 18:040� 10�3T þ 11:012� 10�5T2

� 28:442� 10�8T3 þ 26:297� 10�11T4)dT (4:79)

or

DHm ¼ DHm0 þ 1:018T � 9:020� 10�3T2

þ 3:671� 10�5T3 þ 7:111� 10�8T4 þ 5:259 � 10�11T5
(4:80)

As DHm is known at 298.15 K, it is possible to substitute that value into the preceding
equation and to calculate DHm0:

DHm0 ¼ �392,713 J mol�1 (4:81)
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Now we can write a completely explicit equation for the enthalpy of formation of CO2

as a function of the temperature:

DHm ¼�392,713þ 1:018T � 9:020� 10�3T2 þ 3:671� 10�5T3

þ 7:111� 10�8T4 þ 5:259� 10�11T5
(4:82)

with the result expressed in J mol21. However, this expression is valid only in the
temperature range for which Equations (4.75)–(4.77) represent the heat capacities
of the reactants and products (see Table 4.9; as the values for C are valid from 50
K to 400 K, any calculation for temperatures above 400 K would require another inte-
gration from 400 K to that temperature using the coefficients for the higher range).
These equations are empirical equations that are fitted to experimental data in a
limited temperature range. In particular, DHm0 is not the value of DHm at 0 K.

Arithmetic Method

A second procedure, which is fundamentally equivalent to the analytic method,
involves adding suitable equations to get the desired equation and makes use expli-
citly of the property that DHm is a state function. For example, if we consider the
freezing of water, the enthalpy of the reaction is known at 08C (T1), but it may be
required at 2108C (T2). We can obtain the desired DHm by adding the following
equations (assuming that CPm, is constant over the temperature range):

H2O(l, 08C) ¼ H2O(s, 08C), DHm ¼ �6008 J mol�1 (4:83)

H2O(s, 08C) ¼ H2O(s, �108C), DHm ¼
ð�108C

08C

CPm(s)dT

¼ CPm(s)(T2 � T1)

¼ �364 J mol�1 (4:84)

H2O(l, �108C) ¼ H2O(l, 08C), DHm ¼
ð08C

�108C

CPm(l)dT

¼ CPm(l)(T1 � T2)

¼ 753 J mol�1 (4:85)

H2O(l, �108C) ¼ H2O(s, �108C), DHm ¼ �6008� 364þ 753

¼ �5619 J mol�1 (4:86)
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Graphical or Numerical Methods3

If analytic equations for the heat capacities of reactants and products are unavailable,
we still can carry out the integration required by Equation (4.78) by graphical or
numerical methods. In essence, we replace Equation (4.79) by the expression

DHm ffi DHm0 þ
X

(DCPm)(DT) (4:87)

where DCPm is the average value in the interval DT.

EXERCISES

4.1. Calculate the differences between QP and QV in the following reactions:

a. H2(g) þ 1/2 O2(g) ¼ H2O(l) at 258C
b. Ethyl acetate þ water ¼ ethyl alcohol þ acetic acid, at 25oC

c. Haber synthesis of ammonia, at 4008C
d. C6H12O6 þ 6O2(g) ¼ 6CO2(g) þ 6H2O, at 258C
e. a quartz ¼ b quartz, at 846 K

4.2. Find the enthalpy of formation of ethyl alcohol in the International Critical
Tables and the National Bureau of Standards tables (Table 4.2). Compare
the respective values. Compare each of these with the value obtained from
the Thermodynamic Research Center tables (Table 4.5) when combined with
a value of the enthalpy of vaporization.

4.3. According to Schwabe and Wagner [19], the enthalpies of combustion in a
constant-volume calorimeter for fumaric and maleic acids are 21337.21 kJ
mol21 and 21360.43 kJ mol21, respectively, at approximately 258C.
a. Calculate the enthalpies of formation of these isomers.

b. What is the difference in enthalpy between these isomers?

4.4. Standard enthalpies of formation of some sulfur compounds [Reprinted with per-
mission from Ref. (20). Copyright 1958 American Chemical Society.] are listed
below, together with that for S(g) from tables of the National Bureau of Standards:

Substance DfH8m298.15K/(kJ mol21)

C2H5–S–C2H5(g) 2147.24
C2H5–S–S–C2H5(g) 2201.92
S(g) 278.805

From these data alone, compute 1S-S.

3See section A.2.
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4.5. For NF3(g) at 258C, DfH8m is 2124.3 kJ mol21 [21]. Using Table 4.8 for any
necessary bond enthalpies, calculate 1N-F.

4.6. From mass spectrometric experiments [22], it is possible to compute a value of
109 kJ mol21 for DH8m298K for the reaction

N2H4(g) ¼ N2H2(g)þ H2(g)

Knowing in addition that DfH8m298K of hydrazine gas, N2H4, is 95.0 kJ mol21,
and assuming that the structure of N2H2 is HN ¼ NH, calculate 1N¼N.

4.7. Taking the enthalpy of combustion of ethane as 21559.8 kJ mol21, calculate
the C–C bond enthalpy.

4.8. Find data for the standard enthalpies of formation of Cl(g), S(g), S8(g), and
S2Cl2(g) from appropriate sources.

a. Calculate the enthalpy of the S–S bond. Assume that S8 consists of eight
such linkages.

b. Calculate the enthalpy of the S–Cl bond.

c. Estimate the enthalpy of formation of SC12(g).

4.9. Molar heat capacities of solid n-heptane are listed in Table A.4.

a. Calculate Hm,182.5 K 2Hm,15K by numerical integration.

b. Calculate Hm,15K 2Hm,0K by analytical integration of the Debye equation
from 0 K to 15 K.

c. Calculate Hm,182.5 K 2Hm,0K from the results of a and b.

4.10. Prove the following relationships using only definitions and mathematical
principles:

a:
@U

@V

� �
P

¼ CP
@T

@V

� �
P

� P

b:
@U

@P

� �
V

¼ CV
@T

@P

� �
V

4.11. Using the equations in Exercise 10, calculate (@Um/@Vm)P and (@Um/@P)V for
the special case of 1 mol of an ideal gas, for which PVm ¼ RT.

4.12. Suggest a substance, and the conditions for that substance, such that CP ¼ CV,
that is, for which the second term on the right side of Equation (4.61) equals
zero.
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4.13. Derive an equation for the dependence of DHm on temperature for the
reaction

CO(g)þ 1
2
O2(g) ¼ CO2(g)

Appropriate data can be found in the tables of this chapter.

4.14. Enthalpies of formation of solid alloy phases can be calculated from enthalpies
of solution of these phases in a suitable liquid metal. The pure metals and
alloys listed below, which were all originally at 318C, have each been
dropped into liquid tin at 2508C, and the heat of this process has been
measured. The results, which are reprinted with permission from Ref. 23,
Copyright American Chemical Society, computed for 1 mole of material are
as follows:

Phase DHm/(J mol21)

Ag 20418
Cd 18995
z(Ag0.5Cd0.5) 27447
g(Ag0.412Cd0.588) 27949

a. Calculate DfH8m of the z phase at 3l8C.
b. Calculate DfH8m of the g phase at 3l8C.

4.15. Calculate the enthalpy change at 258C for the following reaction using standard
enthalpies of formation:

Mg2SiO4( forsterite)þ SiO2(quartz) ¼ 2MgSiO3(enstatite)

4.16. The “proton affinity” ‘ of a substance such as NH3 is defined as the change in
energy for the reaction

NHþ
4 (g) ¼ NH3(g)þ Hþ(g)

‘(NH3) at 0 K can be computed from other thermal data through consideration
of an appropriate Born–Haber cycle (all substances except NH4Cl
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being gases):

in which U represents the lattice energy per mole of crystalline NH4Cl, IH is the
ionization energy of a mole of hydrogen atoms, and ECl is the electron affinity
of a mole of chlorine atoms. The values of these quantities are (in kJ mol21)
640, 1305, and 387.0, respectively. Using 2314.2 kJ mol21 as the enthalpy
of formation of NH4Cl(s) and 245.6 kJ mol21 as the enthalpy of formation
of NH3(g), and finding any other quantities you need from tables in this
chapter, calculate ‘(NH3).

4.17. The adiabatic flame temperature is the temperature that would be attained if a
compound were burned completely under adiabatic conditions so that all the
heat evolved would go into heating the product gases. Calculate the adiabatic
flame temperature for the burning of ethane in an air mixture containing orig-
inally twice as much air as is necessary for complete combustion to CO2(g) and
H2O(g). Assume that air is composed of 20% O2 and 80% N2 by volume. In
using heat capacity equations, neglect all terms containing T2 or higher powers
of T. Assume also that the combustion occurs at constant pressure.

4.18. Mass spectrometry is one of the experimental methods for determining bond
dissociation enthalpies. The mass spectrometer can provide a measure of the
appearance potential for a given reaction, that is, the threshold energy necess-
ary to produce a particular set of particles. The appearance potential for the
following reaction of H2,

H2 ¼ Hþ þ Hþ e�

is 18.0 eV. The ionization energy of hydrogen is 13.6 eV. Calculate the bond
enthalpy of H2. (1 eV ¼ 96.44 kJ mol21)

4.19. Good [24] measured at 298.15 K the standard enthalpy of combustion of n-
octane(l) as 25470.29 kJ mol21 and the standard enthalpy of combustion of
2,2,3,4-tetramethyl butane(s) as 25451.46 kJ mol21. Calculate the corre-
sponding standard enthalpies of formation.
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4.20. Johnson and Steele [25] determined the standard enthalpy of combustion of
UO2,(s) in gaseous fluorine. The products of combustion are UF6(s) and
O2(g). The measured value of the enthalpy of combustion is 21112.6 kJ
mol21, and the standard enthalpy of formation of UF6(s) is 22197.7 kJ
mol21. Calculate the standard enthalpy of formation of UO2(s).

4.21. McDonald et al. [26] used a flowing afterglow apparatus to measure the proton
and electron affinities of hypovalent ion radicals in the gas phase.

a. They obtained a value of 364 kcal mol21 for the proton affinity of
(CF3)2CH

2. Calculate DfH8m for this anion, using the value of 367.2 kcal
mol for DfH8m of Hþ(g) and 2326.9 kcal mol21 for DfH8m of
(CF3)2CH2(g).

b. With the results of part a and their determination of DH8m of dissociation of
(CF3)2CH

2 to (CF3)2C
2. þ H., equal to l00 kcal mol21, calculate DfH8m for

(CF3)C
2.

4.22. Ervin et al. [27] have determined the electron affinity of the acetylide radical,
HC ; C., to be equal to 2.969+ 0.010 eV and the enthalpy of the acid
dissociation of acetylene in the gas phase to be equal to 377.8+ 0.6 Kcal
mol21. Use these data, together with the ionization potential of the
hydrogen atom, 13.595 eV, to calculate the enthalpy for the dissociation
of the CH bond in acetylene. The ionization potentials are properly applied
at 0 K, but a good approximation is to assume that they are equal to enthalpy
changes at 298.15 K, the temperature at which the enthalpy of the acid
dissociation was measured.

4.23. Steele et al. [28] have measured the standard enthalpy of combustion
of buckminsterfullerene C60 with bomb calorimetry of solid samples at
298.15 K. They have found a value of 26,033+ 14 kJ mol21. Calculate the
standard enthalpy of formation of C60 and the standard enthalpy of transition
from graphite to C60.

4.24. Nolan et al. [29] have determined metal ligand bond dissociation enthalpies by
titration calorimetry.

a. For the reaction in toluene,

2Cp2Smþ I2 ¼ 2Cp2SmI

they found DHm ¼ 2102.4 kcal mol21, where Cp is the cyclopentadienyl
ligand. Use this value and other data in this chapter to calculate DHm for
the reaction in toluene:

Cp2SmI ¼ Cp2Smþ I

(You may assume that gas phase data may be used for reactions in toluene.)

76 ENTHALPY, ENTHALPY OF REACTION, AND HEAT CAPACITY



b. For the reaction in toluene,

2Cp2SmHþ I2 ¼ 2Cp2SmIþ H2

they found DHm ¼ 2104.8 kcal mol21. Use this value, the results in a, and
other data in this chapter to calculate DHm for the reaction in toluene:

Cp2SmH ¼ Cp2Smþ H

4.25. Chirico et al. [30] have determined the standard molar enthalpies of combus-
tion at 298.15 K of 4,5,9,10-tetrahydropyrene (C16H14), 28,322.18+ 1.21
kJ mol21, and 1,2,3,6,7,8-hexahydropyrene (C16H16), 28,538.75+ 1.74 kJ
mol21. Calculate DHm

8 for the reaction

C16H14(s)þ H2(g) ¼ C16H16(s)

4.26. Forray et al. [31] determined the enthalpy of formation of the mineral yava-
paiite KFe(SO4)2 by high-temperature oxide melt solution calorimetry.
Yavapaiite was dissolved in molten 3Na2O . 4MoO4. The enthalpy of solution
for yavapaiite was measured as well as the corresponding values for
Fe2O3, K2SO4, and SO3, although the products of solution of yavapaiite
were K2O, Fe2O3, and SO3, because the corresponding experiment could not
be carried out for K2O. The values obtained were as follows: DH of solution
for yavapaiite at 298 K to solution in the melt at 973 K is 22042.8+ 6.2 kJ
mol21; DH of solution for Fe2O3 under the same conditions is 2826.2+
1.3 kJ mol21, DH of solution for SO3 under the same conditions
is 2395.7+ 0.7 kJ mol21, and DH of solution for K2SO4 to yield K2O
and SO3 under the same conditions is 21437.7+ 0.5 kJ mol21. Use these
data along with any values needed from Table 4.4 to calculate DfH8m for
yavapaiite.

4.27. Corrazana et al. [32] have measured the enthalpy of inclusion of rimantidine, an
adamantyl compound, into several cyclodextrins. The values ofDH for inclusion
of rimantidine in b cyclodextrin, 6-amino b cyclodextrin, and 3-amino b cyclo-
dextrin, respectively, are 228.60+ 0.16 kJ mol21, 225.02+ 0.13 kJ mol21,
and 217.29+ 0.18 kJ mol21. Calculate the values of DH for transfer of riman-
tidine from each cyclodextrin to each of the others. We can write the equations
for the inclusion process as:

a. b cyclo þ rimantidine ¼ complex 1

b. 6-amino b cyclo þ rimantidine ¼ complex 2

c. 3-amino b cyclo þ rimantidine ¼ complex 3
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CHAPTER 5

APPLICATION OF THE FIRST
LAW TO GASES

As a prelude to the development of the second law of thermodynamics, we will find it
useful to consider the information obtainable for the behavior of gases by the
application of the first law of thermodynamics and the associated definitions that
have been developed so far. In addition, the relationships developed for gases that
are based on the first law will be useful in developing the second law of thermo-
dynamics and in applying the second law to specific systems. As the behavior of
many gases at low pressure can be approximated by the simple equation of state
for the ideal gas, and as the ideal equation of state describes accurately the behavior
of real gases at the limit of zero pressure, we will begin our discussion with a
consideration of ideal gases.

5.1 IDEAL GASES

Definition

An ideal gas is one (1) that obeys the equation of state

PV ¼ nRT (5:1)

in which n is the amount of matter in units of moles and R is a
universal constant; and (2) for which the energy U is a function of the temperature
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only; that is,

@U

@V

� �
T

¼ @U

@P

� �
T

¼ 0 (5:2)

It follows from Equation (5.2) that if an ideal gas undergoes any isothermal trans-
formation, its energy remains fixed.1

Equation (5.1) can be derived from the empirical laws of Boyle and Charles by
using the total differential. Boyle’s law can be expressed by the relationship

V ¼ nkT
P

(T constant, n constant) (5:3)

or

@V

@P

� �
T

¼ � nkT
P2

(5:4)

in which kT is a constant at a fixed temperature. Similarly, Charles’s law can be
expressed by relationship

V ¼ nkPT (P constant, n constant) (5:5)

or

@V

@T

� �
P

¼ nkP (5:6)

If we consider the total differential of the volume V ¼ f(T, P), we obtain

dV ¼ @V

@T

� �
P

dT þ @V

@P

� �
T

dP (5:7)

Equations (5.4) and (5.6) can be used to substitute for the partial derivatives in
Equation (5.7) to obtain

dV ¼ nkPdT � nkT
P2

dP (5:8)

1We shall show as an exercise in Chapter 6, that Equation (5.2) follows from the second law of thermo-
dynamics and does not have to be a part of the definition of an ideal gas.
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The constants kP and kT can be replaced by their values from Equations (5.3)
and (5.5):

dV ¼ V

T
dT � V

P
dP (5:9)

Rearranging Equation (5.9), we obtain

dV

V
þ dP

P
¼ dT

T
(5:10)

which can be integrated to give

ln V þ ln P ¼ T þ ln k0 (5:11)

or

PV ¼ k0T (5:12)

in which k 0 is a constant of integration. If we identify k 0 with nR, we have Equation
(5.1), the ideal gas law. The identification of k 0 with nR is derived from the empirical
content of Avogadro’s law, that the PV product of a gas at constant temperature is
proportional to the amount of matter, which is expressed in moles.

Enthalpy as a Function of Temperature Only

We can show that the enthalpy, as well as the internal energy, is constant in any
isothermal change of an ideal gas as follows:

H ¼ U þ PV (4:3)
and

@H

@V

� �
T

¼ @U

@V

� �
T

þ @(PV)
@V

� �
T

(5:13)

But from Equations (5.1) and (5.2), it is evident that each term on the right side of
Equation (5.12) is zero. Consequently

@H

@V

� �
T

¼ 0 (5:14)

By an analogous procedure, it also can be shown that

@H

@P

� �
T

¼ 0 (5:15)
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Relationship Between CP and CV

In Chapter 4 the following expression [Equation (4.61)] was shown to be a general
relationship between the heat capacity at constant pressure and the heat capacity at
constant volume:

CP ¼ CV þ Pþ @U

@V

� �
T

� �
@V

@T

� �
P

For 1 mole of an ideal gas

@Um

@Vm

� �
T

¼ 0 (5:16)

and

@Vm

@T

� �
P

¼ R

P
(5:17)

The substitution of Equations (5.15) and (5.16) into Equation (4.61) leads to the
familiar expression

CPm ¼ CVm þ R (5:18)

Calculation of the Thermodynamic Changes in
Expansion Processes

Isothermal. As pointed out in Equation (3.6), work performed in a finite gaseous
expansion is given by the expression

W ¼ �
ðV2

V1

P0dV (3:6)

in which P0 is the external pressure.
Any finite expansion that occurs in a finite time is irreversible. A reversible

expansion can be approximated as closely as desired, and the values of the thermo-
dynamic changes can be calculated for the limiting case of a reversible process.
In the limiting case, the process must be carried out infinitely slowly so that the
pressure P is always a well-defined quantity. A reversible process is a succession
of states, each of which is an equilibrium state, in which the temperature and
pressure have well-defined values; such a process is also called a quasi-static
process.

As the actual work done approaches the reversible work, the pressure P of the gas
and the external pressure P0 differ infinitesimally, and the direction of change can be
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reversed by an infinitesimal change in the external pressure. Under these conditions,
P0 is essentially equal to P; thus, Equation (3.6) can be rewritten as

W ¼ �
ðV2

V1

PdV (reversible) (5:19)

Because the reversible process is a succession of equilibrium states, P is given by the
equation of state, which is Equation (5.1) for an ideal gas. Substituting from Equation
(5.1) into Equation (5.19), we obtain

W ¼ �
ðV2

V1

nRT

V
dV ¼ �nRT ln

V2

V1
(5:20)

for the case in which the gas is in thermal equilibrium with the surroundings, which
are maintained at a constant temperature T. The reversible expansion can be visual-
ized as in Figures 5.1 and 5.2. The curve in Figure 5.2 represents the succession of

Figure 5.1. Schematic representation of an isothermal reversible expansion from pressure
P1 to pressure P2. The external pressure is maintained only infinitesimally less than the
internal pressure.

Figure 5.2. The path inP–V space taken in a reversible isothermal expansion of an ideal gas. The
area between the dashed lines under the curve represents the negative of the work performed.
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equilibrium states in the expansion, and the area under the curve between the dashed
lines is the negative of the work performed in an expansion from V1 to V2.

As the process is isothermal, and as U depends only on the temperature,

DU ¼ 0 (5:21)

With this information and the use of the first law of thermodynamics, we can
calculate the heat absorbed from the surroundings in the process:

Q ¼ DU �W ¼ nRT ln
V2

V1
(5:22)

Finally, DH also is equal to zero, because

DH ¼ DU þ D(PV) ¼ 0þ D(nRT) ¼ 0 (5:23)

If the gas is allowed to expand against zero external pressure (a free expansion;
Fig. 5.3), then from Equation (3.6) W equals zero. Although the temperature of the
gas may change during the free expansion (indeed, the temperature is not a well-
defined quantity during an irreversible change), the temperature of the gas will
return to that of the surroundings with which it is in thermal contact when the
system has reached a new equilibrium. Thus, the process can be described as iso-
thermal, and for the gas,

W ¼ 0 (5:24)

DU ¼ 0

Q ¼ DU �W ¼ 0
(5:25)

and

DH ¼ DU þ D(PV) ¼ 0 (5:26)

In an intermediate irreversible expansion in which the external pressure is not zero
but is less than the pressure of the gas by a finite amount, some work would be

Figure 5.3. Schematic representation of a free expansion. A small valve separating the two
chambers in (a) is opened so that the gas can rush in from left to right. The initial volume
of the gas is V1, and the final volume is V2.
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obtained. However, because P0 is always less than P, the work performed always will
be less in magnitude than that for the reversible expansion. That is,

0 , jW j , �nRT ln
V2

V1

����
���� (5:27)

because W is negative in an expansion by our convention.
For an ideal gas when isothermal conditions are maintained as in Equation (5.21)

and Q is given by the first law as

Q ¼ DU �W ¼ �W (5:28)

Then

0 , Q , nRT ln
V2

V1
(5:29)

The enthalpy change is calculated from the relationship

DH ¼ DU þ D(PV) ¼ 0 (5:30)

TABLE 5.1. Thermodynamic Quantities for Isothermal Changes in an Ideal Gas

Expansion Compression Cycle

Reversible

W ¼ �nRT ln
V2

V1
W ¼ �nRT ln

V1

V2
W ¼ 0

DU ¼ 0 DU ¼ 0 DU ¼ 0

Q ¼ nRT ln
V2

V1
Q ¼ nRT ln

V1

V2
Q ¼ 0

DH ¼ 0 DH ¼ 0 DH ¼ 0

Free

W ¼ 0 W ¼ P0(V1 � V2) . nRT ln
V1

V2
W ¼ �P0(V1 � V2) . 0

DU ¼ 0 DU ¼ 0 DU ¼ 0

Q ¼ 0 Q ¼ P0(V1 � V2) , nRT ln
V1

V2
Q ¼ P0(V1 � V2) , 0

DH ¼ 0 DH ¼ 0 DH ¼ 0

Intermediate

0 , jW j , �nRT ln
V2

V1

����
���� W ¼ P0(V1 � V2) . nRT ln

V1

V2
W . 0

DU ¼ 0 DU ¼ 0 DU ¼ 0

0 , Q , nRT ln
V2

V1
Q ¼ P0(V1 � V2) , nRT ln

V1

V2
Q , 0

DH ¼ 0 DH ¼ 0 DH ¼ 0
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The thermodynamic changes for reversible, free, and intermediate expansions are
compared in the first column of Table 5.1. This table emphasizes the difference
between an exact differential and an inexact differential. Thus, U and H, which are
state functions whose differentials are exact, undergo the same change in each of the
three different paths used for the transformation. They are thermodynamic properties.
However, the work and heat quantities depend on the particular path chosen, even
though the initial and final values of the temperature, pressure, and volume, respect-
ively, are the same in all these cases. Thus, heat and work are not thermodynamic
properties; rather, they are energies in transfer between system and surroundings.

It is permissible to speak of the energy (or enthalpy) of a system, even though we
can measure only differences in these functions, because their differences are
characteristic of the initial and final states and are independent of the path. In
contrast, heat and work are not properties of the system alone but also of the
path followed when the system goes from one state to another. Because the work
or heat obtained in going from State A to State B may be different from that
required to return it from Stage B to State A, it is misleading to speak of the
work or heat contained in the system.

If we consider the reverse of the changes described in the first column of Table 5.1,
we can examine the net results of a complete cycle. For a reversible isothermal com-
pression from V2 to V1, the work performed is, according to Equation (3.6)

W ¼ �
ðV1

V2

PdV

¼ �
ðV1

V2

nRT

V
dV (5:31)

¼ �nRT ln
V1

V2
(5:32)

As we have observed, DU ¼ 0 and

Q ¼ �W ¼ nRT ln
V1

V2
(5:33)

Similarly,

DH ¼ DU þ D(PV) ¼ 0 (5:34)

for both expansion and compression.
No compression equivalent to a free expansion exists. We shall consider that the

free expansion is reversed by an irreversible compression at a constant external
pressure P0 that is greater than the final pressure of the gas, as shown in Figure 5.4.
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Thus,

W ¼ �
ðV1

V2

P0dV (5:35)

and the work performed in the irreversible compression is a greater positive quantity
than the work performed in the reversible compression. Again DU ¼ 0, so

Q ¼ �W ¼ P0(V1 � V2) , nRT ln
V1

V2
(5:36)

and the heat lost to the surroundings, a negative quantity, is greater in magnitude than
in the reversible compression. As in the reversible compression,

DH ¼ DU þ D(PV) ¼ 0 (5:37)

As no meaningful distinction exists in a compression process between the free and
the intermediate expansion, the reverse of the intermediate irreversible expansion can
be chosen to be the same as the reverse of the free expansion. The work performed in
the intermediate expansion is less in magnitude than the reversible work of expan-
sion. Even if the compression were carried out reversibly, the work performed on
the gas would be numerically equal (but opposite in sign) to that performed by the
gas in the reversible expansion. Hence, the work performed in the compression is
greater in magnitude than the work obtained in the expansion, so the net work in
the cycle is positive; that is, work is performed by the surroundings on the system.
Similarly, the heat liberated on compression is greater in magnitude than the heat
absorbed during expansion; thus, the net heat exchanged is negative, and heat is trans-
ferred from the system to the surroundings.

Figure 5.4. The irreversible compression at pressure P0 used to return a gas to its initial state
after a free expansion or an intermediate expansion. The area bounded by dashed lines
represents the negative of the work performed.
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Table 5.1 summarizes the thermodynamic changes in the ideal gas for expansions,
compressions, and the complete cycles, all at constant temperature. For both the
reversible and the irreversible changes in the ideal gas, DU and DH are zero for
the complete cycle, because the system has been restored to its initial state and U
and H are state functions. In contrast, Q and W for the cycle depend on the way in
which the change is carried out. Q and W are zero for the reversible cycle, which
thereby indicates that for a reversible cycle, the surroundings, as well as the
system, return to their initial state. For the irreversible cycles, Q and W are not
zero. A net amount of work has been performed by the surroundings on the
system, and a net amount of heat has been transferred to the surroundings from
the system. It is this change in the surroundings that is characteristic of irreversible
cycles and of all real processes, and that will be important in our consideration of
the second law of thermodynamics.

Some critical studies of the treatment of irreversible work have been discussed and
extended by G. L. Bertrand [1].

Adiabatic. By definition, an adiabatic expansion is one that is not accompanied by a
transfer of heat. Therefore

DQ ¼ 0 (5:38)

It follows from the definition of U [Equation (3.11)] that

dU ¼ DW ¼ dW (adiabatic) (5:39)

This equality then can be used to specify more explicitly the work performed,
because if DU is known,W is obtained immediately. For an ideal gas, DU in the adia-
batic expansion can be obtained by the following procedure.

If we consider the energy as a function of temperature and volume, U ¼ f(T, V ),
we can write an equation for the total differential [Equation (4.59)]:

dU ¼ @U

@T

� �
V

dT þ @U

@V

� �
T

dV (4:59)

Because we are dealing with an ideal gas, from Equation (5.2),

@U

@V

� �
T

¼ 0 (5:40)

Hence, Equation (4.59) can be reduced to

dU ¼ @U

@T

� �
V

dT ¼ CVdT ¼ dW (5:41)

90 APPLICATION OF THE FIRST LAW TO GASES



Then the work performed W and the energy change DU can be obtained by integrat-
ing Equation (5.39):

W ¼
ðT2
T1

CV dT ¼ DU (5:42)

Because dU is an exact differential and (@U/@V )T is equal to zero, the cross-
derivative property of the exact differential leads to the conclusion that (@CV/@V )T
is equal to zero, so CV is a function of T only.

To calculate DH, we use Equation (5.15), which is valid for an ideal gas,

@H

@P

� �
T

¼ 0 (5:15)

so that

dH ¼ @H

@T

� �
P

dT ¼ CPdT (5:43)

and

DH ¼
ðT2
T1

CPdT (5:44)

So far we have not specified whether the adiabatic expansion under consideration
is reversible. Equations (5.40), (5.42), and (5.44) for the calculation of the thermo-
dynamic changes in this process apply to the reversible expansion, the free expansion,
or the intermediate expansion, so long as we are dealing with an ideal gas. However,
the numerical values of W, DU, and DH will not be the same for each of the three
types of adiabatic expansion because T2, the final temperature of the gas, will
depend on the type of expansion, even though the initial temperature is identical
in all cases.

If we consider the free expansion, it is apparent from Equation (5.43) that, because
no work is performed, no change in temperature occurs; that is, T2 ¼ T1. Thus, DU
and DH also must be zero for this process. A comparison with the results for a
free expansion in Table 5.1 shows that an adiabatic free expansion and an isothermal
free expansion are two different names for the same process.

For the reversible adiabatic expansion, we can see from Equation (5.42) that the
final temperature T2 must be less than T1, because W is negative and CV is always
positive. Thus, the adiabatic reversible expansion is accompanied by a temperature
drop, andW, DU, and DH can be calculated from the measured initial and final temp-
eratures using Equations (5.42) and (5.43).

For an irreversible adiabatic expansion in which some work is performed, the work
performed is less in magnitude than that in the reversible process because the external
pressure is less than the pressure of the gas by a finite amount. Thus, if the final
volume V2 is the same as that in the reversible process, T2 will not be as low in

5.1 IDEAL GASES 91



the actual expansion because, according to Equation (5.44), the value of the integral
will be less than for the reversible expansion. Similarly, from Equations (5.42) and
(5.44), DU and DH, respectively, also must be numerically smaller in the intermediate
expansion than in the reversible one.

The three types of adiabatic expansions are summarized in Table 5.2.
For the reversible adiabatic expansion, a definite expression can be derived to

relate the initial and final temperatures to the respective volumes or pressures if we
assume that the heat capacity is independent of temperature. This assumption is
exact at all temperatures for monatomic gases and above room temperature for dia-
tomic gases. Again we start with Equation (5.39). Recognizing the restriction of
reversibility, we obtain

dU ¼ dW ¼ �PdV (5:45)

As we are dealing with an ideal gas, Equation (5.40) is valid. Substitution from
Equation (5.41) into Equation (5.45) leads to

CVdT ¼ �PdV (5:46)

For an ideal gas, from Equation (5.1), P ¼ nRT/V and CV equals nCVm. Thus,
Equation (5.46) becomes

nCVmdT ¼ nRT

V
dV (5:47)

Separating the variables, we obtain

CVm

T
dT ¼ � R

V
dV (5:48)

TABLE 5.2. Thermodynamic Changes in Adiabatic Expansions of an Ideal Gas

Reversible Free Intermediate

V1 V1 V1

V2 V2 V2

W ¼ Ð T2T1
CVdT , 0 W 0 ¼ Ð T 0

2
T1

CVdT ¼ 0 W 00 ¼ Ð T 00
2

T1
CVdT , 0

[ T2 , T1 [ T02 ¼ T1 [ T002 ¼ T1
DU ¼ Ð T2T1

CVdT , 0 DU0 ¼ 0 DU00 ¼ Ð T 00
2

T1
CVdT , 0

DH ¼ Ð T2T1
CPdT , 0 DH0 ¼ 0 DH00 ¼ Ð T2T1

CPdT , 0

T2 , T 00
2 , T 0

2 ¼ T1
W , W 00 , W 0 ¼ 0
DU , DU00 , DU0 ¼ 0
jDUj . jDU00j . jDU0j ¼ 0
DH , DH00 , DH0 ¼ 0
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which can be integrated within definite limits when CVm is constant to give

CVm ln
T2
T1

¼ �R ln
V2

V1
(5:49)

This equation can be converted to

T2
T1

� �CVm

¼ V2

V1

� ��R

¼ V1

V2

� �R

or

T2
T1

¼ V1

V2

� �R=CVm

(5:50)

Hence

T2V
R=CVm
2 ¼ T1V

R=CVm
1 (5:51)

Equation (5.51) states that the particular temperature–volume function shown is
constant during a reversible adiabatic expansion. Hence we can write

TVR=CVm ¼ constant (5:52)
or

VTCVm=R ¼ constant0 (5:53)

Any one of the Equations (5.51) through (5.53) can be used to calculate a final temp-
erature from the initial temperature and the observed volumes.

If we measure pressures instead of temperatures, it is possible to use the following
equation instead:

PVCPm=CVm ¼ constant00 ð5:54Þ

Equation (5.54) can be derived from Equation (5.53) by substituting from the
equation of state for the ideal gas [2]2.

We can see from Equation (5.52) that the final temperature T2 in the reversible
adiabatic expansion is less than T1, because V1 is less than V2 and both R and CV

are positive numbers. Thus, the adiabatic reversible expansion is accompanied by a
temperature drop, which can be calculated from the measured initial and final
volumes or pressures. If we know the initial and final temperatures, we can calculate
W, DU, and DH by substitution into Equations (5.42) and (5.44).

2Equation (5.53) can be derived from Boyle’s law and from the definitions of CP and CV without assuming
the validity of the first law of thermodynamics. See Ref. [2].
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For an irreversible adiabatic expansion in which some work is performed, the
work performed is less in magnitude than that in the reversible process because
the external pressure is less than the pressure of the gas by a finite amount. Thus,
if the final volume is the same as in the reversible process, the final temperature
will not be as low in the irreversible process, because, according to Equation
(5.47), the temperature drop depends directly on the work performed by the expand-
ing gas. Similarly, from Equations (5.42) and (5.44), DU and DH, respectively, also
must be numerically smaller in the intermediate expansion than in the reversible
expansion. In the adiabatic expansion, from a common set of initial conditions to
the same final volume, the values of DU and DH, as well as the values of the
work performed, seem to depend on the path (see summary in Table 5.2). At first
glance, such behavior seems to contradict the assumption that U and H are state
functions. Careful consideration shows that the difference occurs because the end-
points of the three paths are different. Even though the final volume can be made
the same, the final temperature depends on whether the expansion is free, reversible,
or intermediate (Table 5.2).

5.2 REAL GASES

The isotherms for real gases are unlike the isotherm for an ideal gas shown in
Figure 5.2 except for temperatures above the critical temperature, as illustrated in
Andrews’s isotherms for CO2 shown in Figure 5.5. He suggested the term “critical”
for the state at Tc, Pc, and Vc.

Equations of State

Numerous representations have been used to describe the isotherms in Figure 5.5.
Some representations, such as the Van der Waals equation, are semi-empirical,
with the form suggested by theoretical considerations, whereas others, like the
virial equation, are simply empirical power series expansions. Whatever the descrip-
tion, a good measure of the deviation from ideality is given by the value of the
compressibility factor, Z ¼ (PVm)/(RT ), which equals 1 for an ideal gas.

Semi-Empirical Equations

Van der Waals Equation. The van der Waals equation was one of the first intro-
duced to describe deviations from ideality [4]. The argument behind the equation
is discussed adequately in elementary textbooks. Usually, it is stated in the form

Pþ a

V2
m

� �
(Vm � b) ¼ RT (5:55)

in which Vm is the volume per mole and a and b are constants. Because the critical
isotherm, as shown in Figure 5.5, exhibits a horizontal tangent and an inflection point
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at the critical point, we can use the original equation, together with the two
conditions:

@P

@Vm

� �
Tc

¼ 0

and

@2P

@V2
m

� �
Tc

¼ 0 (5:56)

Figure 5.5. Isotherms for CO2 taken from the work of Andrews [3]. The shaded area indicates
the region of stability of a one-phase liquid system. Liquid and vapor exist together at equili-
brium under the dashed curve. Above the critical isotherm, 31.18C, no distinction exists
between liquid and gas. Andrews suggested that the term “vapor” be used only to represent
the region to the right of the dashed curve below the critical temperature. The dashed curve
ABCD represents the van der Waals equation. (By permission, from J. R. Partington, An
Advanced Treatise on Physical Chemistry, Vol. 1, Longman Group, Ltd., London, 1949,
p. 628.)
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to evaluate the coefficients a, b, and R in terms of the critical pressure, critical
temperature, and critical molar volume, respectively, Pc, Tc, and Vmc. The resulting
relations are as follows:

b ¼ Vmc

3
a ¼ 3PcV

2
mc R ¼ 8PcVmc

3Tc
zc ¼ 3

8

¼ RTc
8Pc

¼ 27
64

R2T2
c

Pc

(5:57)

Berthelot Equation. This equation is too unwieldy to be used generally as an
equation of state. However, it is convenient in calculations of deviations from ideality
near pressures of 1 atm; hence, it has been used extensively in the determination of
entropies from the third law of thermodynamics. This aspect of the equation will
receive more attention in subsequent discussions.

The Berthelot equation can be expressed as

Pþ a

TV2
m

� �
(Vm � b) ¼ RT

or PVm ¼ RT 1þ 9
128

P

Pc

Tc
T

1� 6
T2
c

T2

� �� � (5:58)

Redlich–Kwong Equation. The Redlich–Kwong equation, which was proposed in
1949 [5], has been found to reproduce experimental P–V–T data for gases just as
well as several equations that use more than two empirical constants and better
than other two-parameter equations [6]. It has the form

Pþ a

T0:5Vm(Vm þ b)

� �
(Vm � b) ¼ RT (5:59)

in which a and b are the constants characteristic of the gas. They are related to the
critical constants of the gas by the equations

a ¼ 0:42748R2T2:5
c

Pc

b ¼ 0:0866RTc
Pc

Zc ¼ PcVmc

RTc
¼ 1

3

(5:60)

where the subscript c indicates the critical constants and Z is the compressibility
factor [7]. More complex and accurate equations of state are discussed in Ref. [8].

Each of the two-parameter semi-empirical equations above leads to the law of cor-
responding states, first formulated by Van der Waals in 1881 [9], which says that all
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gases obey the same equation of state in terms of the reduced variables

Pr ¼ P=Pc

Vmr ¼ Vm=Vmc

Tr ¼ T=Tc

Each two-parameter equation for real gases yields a slightly different equation.
That such an equation exists for all two-parameter equations was shown by Meslin
in 1893 [10].

The behavior of real gases can then be represented with fair precision by a single
chart of the compressibility factor Z as a function of the reduced pressure Pr in which
all gases approximately fit a single curve for a given value of the reduced temperature
Tr. At another reduced temperature, a new curve is obtained for Z versus Pr, but it too
fits all gases. Therefore, it becomes possible to condense into a single chart of com-
pressibility factors an approximate quantitative graphical representation of the beha-
vior of real gases for a wide range of pressure and temperature [11, 12].

Figure 5.6 is an example of the fit of experimental data to the law of corresponding
states.

As the parameters of each of the two-parameter semi-empirical equations can be
evaluated in terms of the critical constants of the gases of interest, we provide in
Table 5.3 a set of values of the critical constants for some gases of interest.

Figure 5.6. Fit of experimental data for ten gases to the law of corresponding states. By
permission from G. J. Su, Ind. Eng. Chem. 38, 803 (1946).
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Virial Function. A useful form of expression for deviations from the ideal gas law
is the virial equation,

PVm ¼ A(T)þ B(T)Pþ C(T)P2 þ � � � (5:61)
or

PVm ¼ A0(T)þ B0(T)
1
Vm

� �
þ C0(T)

1
V2
m

� �
þ � � � (5:62)

in which A, B, C, A0, B0, and C0 are functions of the temperature and are known as
virial coefficients (Table 5.4). The terms A and A0 are both equal to RT because at
very low pressures, all gases approach ideal gas behavior. A critical discussion of
the virial equation can be found in Ref. 13.

Joule–Thomson Effect

One method of measuring deviations from ideal behavior quantitatively is by deter-
mining the change in temperature in the Joule–Thomson porous-plug experiment
(Fig. 5.7). The enclosed gas, initially of volume V1, flows very slowly from the
left chamber through a porous plug into the right chamber. The pressure on the
left side is maintained constant at P1, whereas that on the right side also is constant,
but at a lower value P2. The apparatus is jacketed with an insulator so that no heat is
exchanged with the surroundings. Generally, it is observed that the final temperature
T2 differs from the initial temperature T1.

TABLE 5.3. Critical Constants for Some Gasesa

Substance Pc/(MPa) Tc/K

Acetylene 6.14 308.3
Ammonia 4.39 405.5
Argon 4.86 150.7
Carbon dioxide 7.38 304.4
Carbon monoxide 35.0 133.1
Chlorine 0.814 417.0
Diethyl ether 3.64 466.7
Helium 0.229 5.19
Hydrogen 1.30 33.2
Hydrogen chloride 8.26 324.5
Methane 4.60 190.6
Nitric oxide 6.58 179.8
Nitrogen 3.40 126.2
Nitrogen dioxide 20.17 431
Oxygen 5.08 154.7
Sulfur dioxide 7.89 430.6
Water 22.12 647.3

aUsed by permission of Flexware, Inc., http://www.flexwareinc/
gasprop.htm. Critical constants of gases may also be found in Landolt-
Börnstein, Physikalisch-chemische Tabellen, 6th ed., II. Band, 1. Teil,
Springer, Berlin, 1971, pp. 328–377.
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Isenthalpic Nature. As the Joule–Thomson experiment is carried out adiabati-
cally, we can write

Q ¼ 0

However, it does not follow from this fact alone that DH also is zero, because the
process involves a change in pressure. Nevertheless, it can be shown that the
process is an isenthalpic one; that is, DH is zero.

The work performed by the gas is that accomplished in the right chamber.

W2 ¼ �
ðV2

0

P2dV ¼ �P2V2 (5:63)

plus that performed in the left chamber,

W1 ¼ �
ð0
V1

P1dV ¼ P1V1 (5:64)

TABLE 5.4. Virial Coefficients for Some Gasesa

Substance t/8C
A/(kPa dm3

mol21)
B/(1022 dm3

mol21)
C/(10210 dm3

(Pa)21mol21)

Hydrogenb 0 2271.1 1.374 0.8806
100 3102.5 1.567 0.1418

Nitrogenc 0 2271.1 21.027 6.3009
100 3102.5 0.656 3.3393

Carbon
monoxided

0 2271.1 21.419 6.9570

100 3102.5 0.449 4.2515

aTaken from Ref. 13.
bA. Michels, W. de Graaf, T. Wassenaar, J. H. H. Levett, and P. Louwerse, Phys. Grav. 25, 25 (1959); and
Ref. 13, p. 205.
cA. Michels, H. Wouters, and T. de Boer, Phys. Grav. 1, 587 (1934) and 3, 585 (1936); and Ref. 13, p. 235.
dA. Michels, J. M. Lupton, T. Wassenaar, and W. de Graaf, Phys. Grav. 18, 121 (1952); Ref. 13, p. 45.
Reprinted by permission of Oxford University Press.

Figure 5.7. Schematic representation of a Joule–Thomson porous-plug experiment. The
entire experimental apparatus is kept well insulated from the surroundings.
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Hence the net work is

W ¼ W1 þW2 ¼ �P2V2 þ P1V1 (5:65)

Similarly, the net gain in energy, DU is

DU ¼ U2 � U1 (5:66)

As Q ¼ 0, it follows from the first law of thermodynamics that

U2 � U1 ¼ W ¼ P1V1 � P2V2 (5:67)

Therefore

U2 þ P2V2 ¼ U1 þ P1V1

or

H2 ¼ H1and

DH ¼ 0

Thus, we have proved that the Joule–Thomson experiment is isenthalpic as well as
adiabatic.

Joule–Thomson Coefficient. Knowing that a process is isenthalpic, we can for-
mulate the Joule–Thomson effect quantitatively.

As it is the change in temperature that is observed as the gas flows from a higher to
a lower pressure, the data are summarized in terms of a quantity mJ.T., which is
defined as

mJ:T: ¼
@T

@P

� �
H

(5:68)

The Joule–Thomson coefficient mJ.T. is positive when a cooling of the gas (a
temperature drop) is observed; because dP is always negative, mJ.T. will be positive
when dT is negative. Conversely, mJ.T. is a negative quantity when the gas warms
on expansion because dT then is a positive quantity. Values of the Joule–
Thomson coefficient for argon and nitrogen at several pressures and temperatures
are listed in Table 5.5.

It frequently is necessary to express the Joule–Thomson coefficient in terms of
other partial derivatives. Considering the enthalpy as a function of temperature and
pressure H(T, P), we can write the total differential

dH ¼ @H

@P

� �
T

dPþ @H

@T

� �
P

dT (5:69)
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Placing a restriction of constant enthalpy on Equation (5.69), we obtain

0 ¼ @H

@P

� �
T

þ @H

@T

� �
P

@T

@P

� �
H

which can be rearranged to give

@T

@P

� �
H

¼ � (@H=@P)T
(@H=@T)P

(5:70)

or

mJ:T: ¼ � 1
CP

@H

@P

� �
T

(5:71)

Another relationship of interest can be obtained by substituting the fundamental
definition of H into Equation (5.70):

mJ:T: ¼ � 1
CP

@U

@P

� �
T

� 1
CP

@(PV)
@P

� �
T

(5:72)

From either of these last two expressions it is evident that mJ.T. ¼ 0 for an ideal
gas, because each partial derivative is zero for such a substance. It is interesting
that mJ.T. does not equal 0 for a real gas at zero pressure except at the inversion temp-
eratures (see below). This result suggests that our assumption that a real gas appro-
aches the properties of an ideal gas at the limit of zero pressure is not entirely correct.

It is also possible to measure (@H/@P)T, the “isothermal” Joule–Thomson coefficient
directly, which is a quantity more directly related to deviations from ideality [14].

Joule–Thomson Inversion Temperature. The Joule–Thomson coefficient is
a function of temperature and pressure. Figure 5.8 shows the locus of points on
a temperature–pressure diagram for which mJ.T. is zero. Those points are at the
Joule–Thomson inversion temperature Ti. It is only inside the envelope of this

TABLE 5.5. Joule–Thomson Coeffcientsa for Argon and Nitrogen

mJ.T./(K(MPa)21)

t/8C P ¼ 101 kPa P ¼ 10.1MPa P ¼ 20.2MPa

300 Ar 0.635 0.439 0.272
N2 0.138 20.074 20.169

0 Ar 4.251 2.971 1.858
N2 2.621 1.657 0.879

2150 Ar 17.88 20.273 20.632
N2 12.493 0.199 20.280

aThe Smithsonian Physical Tables, The Smithsonian Institution, Washington, DC, 1954, p. 279. Based on
data of Roebuck and Osterberg, Phys. Rev. 46, 785 (1934) and 48, 450 (1935).
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curve that mJ.T. is positive, that is, that the gas cools on expansion. This property is
crucial to the problem of liquefaction of gases. Indeed, hydrogen and helium were
considered “permanent” gases for many years, until it was discovered that their
upper inversion temperatures are below room temperature; thus, they have to be
prechilled or else they are heated by expansion.

For conditions under which the van der Waals equation is valid, the Joule–
Thomson inversion can be calculated from the expression

2a
RTi

� 3abP
R2T2

i

� b ¼ 0 (5:73)

(The derivation of Equation (5.73) is dependent on the second law of thermodyn-
amics and will be performed in Section 10.4.) Using Figure 5.8, we can see that
Equation (5.73) (a quadratic equation in Ti) should have two distinct real roots for
Ti at low pressures, two identical real roots at Pmax, and two imaginary roots above
Pmax. At low pressure and high temperature, which are conditions that correspond
to the upper inversion temperature, the second term in Equation (5.73) can be
neglected and the result is

Ti ¼ 2a
Rb

(5:74)

Hence, if the van der Waals constants are known, Ti can be calculated. For all
gases except hydrogen and helium, this inversion temperature is above common
room temperatures.

Calculation of Thermodynamic Quantities in Reversible Expansions

Isothermal. The procedure used to calculate the work and energy quantities in an
isothermal reversible expansion of a real gas is similar to that used for the ideal gas.

Figure 5.8. Locus of Joule–Thomson inversion temperatures for nitrogen. Data from J. R.
Roebuck and H. Osterberg, Phys. Rev. 48, 450 (1935).
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Into the expression for the work performed, Equation (5.19),

W ¼ �
ðV2

V1

PdV

we can substitute for P (or for dV ) from the equation of state of the gas and then carry
out the required integration. For example, for 1 mole of gas that obeys the van der
Waals equation

W ¼ �
ðVm2

Vm1

RT

Vm � b
� a

V2
m

� �
dVm ¼ �RT ln

Vm2 � b

Vm1 � b

� �
� a

Vm2
þ a

Vm1
(5:75)

The change in energy in an isothermal expansion cannot be expressed in a simple
form without introducing the second law of thermodynamics. Nevertheless, we
will anticipate this second basic postulate and use one of the deductions obtainable
from it:

@U

@V

� �
T

¼ T
@P

@T

� �
V

� P (5:76)

For a gas that obeys the van der Waals equation, Equation (5.76) reduces to

@U

@V

� �
T

¼ a

Vm2
¼ @Um

@Vm

� �
T

(5:77)

DUm can be obtained by integrating this equation:

DUm ¼
ðVm2

Vm1

a

V2
m
dVm ¼ � a

Vm2
þ a

Vm1
(5:78)

From the first law of thermodynamics, we now can calculate the heat absorbed in
the isothermal reversible expansion:

Q ¼ DUm �W ¼ RT ln
Vm2 � b

Vm1 � b
(5:79)

DHm can be obtained from Equation (4.5):

DHm ¼ DUm þ D(PVm)
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The PVm product can be calculated from the van der Waals equation in the form

P ¼ RT

Vm � b
� a

V2
m

(5:80)

by multiplying each term by Vm:

PVm ¼ RT
Vm

Vm � b
� a

Vm
(5:81)

With a few algebraic manipulations, we can show that

(PVm)2 � (PVm)1 ¼ D(PVm) ¼ bRT
1

Vm2 � b
� 1
Vm1 � b

� �
� a

Vm2
þ a

Vm1
(5:82)

Adding Equations (5.78) and (5.82), we obtain

DHm ¼ bRT
1

Vm2 � b
� 1
Vm1 � b

� �
� 2a
Vm2

þ 2a
Vm1

(5:83)

Adiabatic. In an adiabatic change of state, Q equals zero. However, a calculation of
the work and energy quantities depends on the integration of Equation (4.59) for the
change in energy. Furthermore, specifying the equation of state for the gas does not
give automatically an expression for the dependence of CV on temperature. When
adequate equations, empirical or theoretical, for the variation of U and CV with T
and V are available, they can be used in Equation (4.59). If the resulting expression
is integrable analytically, the energy and work quantities can be calculated as for an
ideal gas. If the expression is not integrable analytically, numerical or graphical
procedures can be used (see Section A.2).

EXERCISES

When derivations or proofs of equations are called for, start from fundamental defi-
nitions and principles.

5.1. Derive an explicit equation for the reversible work of an isothermal expansion
for each of the following cases:

a. When P is given by the equation of state of an ideal gas.

b. When P is obtained from the van der Waals equation of state.

c. When dVm is obtained from the equation of state, PVm ¼ RT þ BP þ CP2.

d. When dVm is obtained from the Berthelot equation.

e. When P is obtained from the Redlich–Kwong equation.
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5.2. Derive an explicit expression for the work performed in the irreversible expan-
sion of a gas from volume V1 to volume V2 against a constant external pressure
P0 that is less than the pressure of the gas throughout the expansion.

5.3. Rozen [15] characterizes gases by “deviation coefficients” such asT(@P/@T )V/P,
P(@Vm/@T )P/R, and P2(@Vm/@P)T/(RT ). Calculate the values of these
coefficients for (a) an ideal gas, (b) a gas that obeys the van der Waals equation,
and (c) a gas that obeys the Dieterici equation of state,

P ¼ RT

Vm � b
e�alRTVm

5.4. Derive expressions for W, DU, Q, and DH in an isothermal reversible expan-
sion of 1 mole of a gas that obeys the equation of state PVm ¼ RT þ BP.
Use Equation (5.76) to calculate DU.

5.5. A gas obeys the equation of state PVm ¼ RT þ BP and has a molar heat
capacity CVm that is independent of the temperature.

a. Derive an expression relating T and V in an adiabatic reversible expansion.

b. Derive an equation for DHm in an adiabatic reversible expansion.

c. Derive an equation for DHm in an adiabatic free expansion.

5.6. a. Given the equation

CP ¼ CV þ V
@H

@P

� �
T

� �
@P

@T

� �
v

derive the relationship

CV ¼ CP 1� mJ:T:
@P

@T

� �
V

� �
� V

@P

@T

� �
v

b. To what expression can this equation be reduced at the inversion
temperature?

5.7. For a monatomic ideal gas, Cvm ¼ 3/2 R. Calculate the work performed in an
adiabatic reversible expansion of 1 mole of this gas by integrating Equation
(5.41).

5.8. An ideal gas absorbs 9410 J of heat when it is expanded isothermally (at 258C)
and reversibly from 1.5 dm3 to 10 dm3. How many moles of the gas are
present?

5.9. Derive the following relationship for an ideal gas:

@U

@V

� �
P

¼ CVmP

R
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5.10. Keeping in mind that dU is an exact differential, prove that for an ideal gas

@CV

@V

� �
T

¼ 0

@CP

@P

� �
T

¼ 0

5.11. With the aid of a McLaurin series, a polynomial in 1/Vm, expanded about
Vm ¼ 0, it is possible to relate the constants of the virial equation to the van
der Waals constants a and b.

a. Rearrange the van der Waals equation to the form

PVm ¼ RTVm

Vm � b
� a

Vm

¼ RT

1� b 1
Vm

� �� a
1
Vm

� �

and expand PVm as a polynomial in (1/Vm) to obtain the coefficients in the
equation

PVm ¼ RT þ B
1
Vm

� �
þ C

1
Vm

� �2

b. Show that

B ¼ b
a

RT

C ¼ b2

c. The Boyle temperature is defined as that at which

lim
P ! 0

@(PVm)
@(1=Vm)

� �
T

¼ 0

Use the virial form of the van der Waals equation to show that

TBoyle ¼ a

Rb

5.12. Using T and V as coordinates, sketch a graph that shows the three adiabatic
expansions of Table 5.2.

5.13. According to the theory of acoustics, the velocity of propagation of sound w
through a gas is given by the equation

w2 ¼ @P

@r
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in which r is the density of the gas.

a. If the propagation of sound is assumed to occur adiabatically, and if the
transmitting gas acts as if it were ideal and as if it were undergoing revers-
ible compressions and expansions, show that

w2 ¼ CP

CV

RT

M

(Hint: Take 1 mole of gas and find a relationship between dr and dV.)

b. Calculate w for sound in air assuming CP/CV is 7/5.

c. If the propagation of sound is assumed to occur isothermally, show that

w2 ¼ RT

M

5.14. Derive an equation for the coefficient of thermal expansion a:

a ¼ 1
V

@V

@T

� �
P

for a gas that obeys the van der Waals equation.
(Hint: Equation (5.54) could be solved explicitly for Vm and then differen-

tiated. However, an equation explicit in Vm would be cubic and unwieldy; it is
much easier to differentiate Equation (5.79) implicitly with respect to T.)

5.15. For a rubber band, the internal energy U equals f(T, L); L is the length of the
band. For a particular type of rubber

@U

@L

� �
T

¼ � 1
L2

and

@U

@T

� �
L

¼ CL ¼ constant

A stretched rubber band of length L2 is allowed to snap back to length L1 under
adiabatic conditions and without doing any work. Will its temperature change?
Show clearly the reason for your conclusion. Show that you need to find the
derivative (@T/@L)U.

5.16. Express the compressibility factor Z ¼ (PVm)/(RT) for a gas that follows the
Redlich–Kwong equation. Convert the resulting equation into one in which
the independent variable is (1/Vm). Obtain a McLaurin series for Z as a poly-
nomial in (1/Vm), and express the virial coefficients for that equation in terms
of the parameters of the Redlich–Kwong equation.
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5.17. Use the critical constants for hydrogen given in Table 5.3 to calculate the
parameters a and b for the van der Waals and Redlich–Kwong equations for
hydrogen. Use each of these equations to calculate the compressibility factor
z for hydrogen as a function of 1/Vm at 50 K between 0.1 Mpa and 20 MP,
and compare your calculated values with the experimental values of
Johnston and White [16].
(Hint: Transform the van der Waals and Redlich–Kwong equations into

equations that express the compressibility factor z as polynomials in 1/Vm

using McLaurin’s theorem and thereby relate the constants a and b to the
virial coefficients.)

5.18. Kayukawa et al. [17] studied the PVT properties of trifluoromethyl methyl
ether, because it is a possible refrigerant with zero ozone depletion potential
and low global-warming potential. One series of their data is shown in
Table 5.6. Calculate Z, the compressibility factor, and the molar volume in
mol m23 from the given data, and fit the data for Z as a function of 1/Vm to
both a linear and a quadratic equation to see whether a third virial coefficient
is warranted by the data.
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CHAPTER 6

THE SECOND LAW OF
THERMODYNAMICS

6.1 THE NEED FOR A SECOND LAW

For a scientist, the primary interest in thermodynamics is in predicting the
spontaneous direction of natural processes, chemical or physical, in which by “spon-
taneous” we mean those changes that occur irreversibly in the absence of restraining
forces—for example, the free expansion of a gas or the vaporization of a liquid above
its boiling point. The first law of thermodynamics, which is useful in keeping account
of heat and energy balances, makes no distinction between reversible and irreversible
processes and makes no statement about the natural direction of a chemical or
physical transformation.

As we noticed in Table 5.1, DU ¼ 0 both for the free expansion and for the revers-
ible expansion of an ideal gas. We used an ideal gas as a convenient example because
we could calculate easily the heat and work exchanged. Actually, for any gas, DU has
the same value for a free and a reversible expansion between the corresponding initial
and final states. Furthermore, DU for a compression is equal in magnitude and oppo-
site in sign to DU for an expansion; no indication occurs from the first law of which
process is the spontaneous one.

A clue to the direction that needs to be followed to reach a criterion of spontaneity
can be obtained by noticing in Table 5.1 that Q andW are equal to zero for the revers-
ible cycle but are not zero for the irreversible cycle. In other words, it is changes in the
surroundings as well as changes in the system that must be considered in distinguish-
ing a reversible from an irreversible transformation. Evidently, then, we need to find a
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concept or quantity that incorporates some treatment of the surroundings to serve as a
criterion of spontaneity. Ideally, we should find a state function, instead of path-
dependent quantities such as heat or work. Such a function would provide the foun-
dation for the formulation of the general principle (or law) that we are seeking.

6.2 THE NATURE OF THE SECOND LAW

Natural Tendencies Toward Equilibrium

The natural tendency of systems to proceed toward a state of equilibrium is exhibited in
many familiar forms. When a hot object is placed in contact with a cold object, they
reach a common temperature. We describe the change by saying that heat has flowed
from the hot object to the cold object. However, we never observe that two objects in
contact and at the same temperature spontaneously attain a state in which one has a
high temperature and the other a low temperature. Similarly, if a vessel containing a
gas is connected to an evacuated vessel, the gas will effuse into the evacuated space
until the pressures in the two vessels are equal. Once this equilibrium has been
reached, it never is observed that a pressure difference between the two vessels is
produced spontaneously. Solutes diffuse from a more concentrated solution to a
more dilute solution; concentration gradients never develop spontaneously. Magnets
spontaneously become demagnetized; their magnetism never increases spontaneously.
When a concentrated protein solution such as egg white is placed in a vessel of boiling
water, the egg white coagulates, but we never observe that coagulated egg white at the
temperature of boiling water returns spontaneously to a liquid state.

It is desirable to find some common measure (preferably a quantitative measure) of
the tendency to change and of the direction in which change can occur. In the 1850s,
Clausius and Kelvin independently formulated the second law of thermodynamics,
and Clausius invented the term “entropy S” (from the Greek word troph́, which
means transformation), to provide a measure of the “transformational content” or
the capacity for change. In this chapter, we will develop the properties of this function
and its relationship to the direction and extent of natural processes as expressed in the
second law of thermodynamics.

Statement of the Second Law

Numerous equivalent statements of the second law exist. We will begin with the
following statement proposed by Clausius:

It is impossible to construct a machine that is able to convey heat by a cyclical process
from one reservoir (at a low temperature) to another at a higher temperature unless work
is done on the machine by some outside agency.

The second law, like the first law, is a postulate that has not been derived from any
prior principles. It is accepted because deductions from the postulate correspond to
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experience. Except in submicroscopic phenomena, to which classical thermodynamics
does not apply, no exceptions to the second law have been found.

The statement that we have chosen to use as the fundamental expression of the
second law of thermodynamics is in a form that resembles some other fundamental
principles of physical science. It is expressed as a “principle of impotence” [1], that
is, an assertion of the impossibility of carrying out a particular process. In physics,
such principles of impotence occur frequently. For example, the impossibility of
sending a signal with a speed greater than that of light in a vacuum provides the
basis for the theory of relativity. Also, wave mechanics may be considered to
be a consequence of the impossibility of measuring simultaneously the position and
velocity of an elementary particle. Similarly, we can state the first law of thermodyn-
amics in terms of humanity’s impotence to construct a machine capable of producing
energy from nothing, a so-called “perpetual-motion machine of the first kind.” The
second law describes an additional incapacity, “the impossibility of constructing a per-
petual-motion machine of the second kind.” Such a machine would operate without
contradicting the first law, but still it would provide an inexhaustible supply of work.

Mathematical Counterpart of the Verbal Statement

In the form in which it has been expressed thus far, the second law is not a statement
that can be applied conveniently to chemical problems. We wish to use the second
law of thermodynamics to establish a criterion by which we can determine whether
a chemical reaction or a phase change will proceed spontaneously. Such a criterion
would be available if we could obtain a function that had the following two
characteristics.

1. It should be a thermodynamic property; that is, its value should depend only
on the state of the system and not on the particular path by which the state
has been reached.

2. It should change in a characteristic manner (for example, always increase)
when a reaction proceeds spontaneously.

The entropy function of Clausius satisfies these requirements. Although the
subject of heat engines at first may seem unpromising in searching for a general prin-
ciple to predict which processes are spontaneous, such engines can also be viewed as
general devices for the interconversion of heat and work. Their properties will
provide a useful basis for developing the mathematical properties of the entropy func-
tion and a mathematical statement of the second law. Therefore, we shall consider the
properties of the ideal heat engine described by Carnot.

6.3 THE CARNOT CYCLE

The Carnot engine is a device by which a working substance can exchange mecha-
nical work with its surroundings and can exchange heat with two heat reservoirs,
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one at a high temperature t2 and one at a low temperature t1, as shown schematically
in Figure 6.1. (As we wish to derive the properties of the entropy function without
reference to the properties of the ideal gas, we shall use any convenient empirical
scale, rather than the ideal gas temperature scale, as a preliminary measure of
temperature.)

The Forward Cycle

The Carnot cycle is a series of four steps that the working substance undergoes in
the operation of the engine. At the completion of the four steps, the working sub-
stance has been returned to its initial state. In the forward direction, in which
the engine transfers a net amount of heat to the working substance and does a net
amount of work on the surroundings, the four steps are as follows:

Step I. A reversible isothermal expansion in thermal contact with the high-
temperature reservoir at t2.

Step II. A reversible adiabatic expansion in which the temperature of the working
substance decreases to t1.

Step III. A reversible isothermal compression in thermal contact with the low-
temperature reservoir at t1.

Step IV. A reversible adiabatic compression in which the temperature of the
working substance increases to t2 and the substance is returned to its initial
state.

Figure 6.1. Scheme of a Carnot engine as (a) a heat engine and (b) as a refrigerator or heat
pump.
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Such a cycle is represented as a pressure-volume diagram in Figure 6.2. The
representation of a temperature-volume diagram in Figure 6.3 emphasizes the isothermal
nature of Steps I and III.

LetQ2 (a positive quantity) represent the heat exchanged with the high-temperature
reservoir in Step I, let Q1 (a negative quantity) represent the heat exchanged with
the low-temperature reservoir in Step III, and let W be the net work performed
(by the system). W is represented in Figure 6.2 by the negative of the area within
the cycle; that is,

W ¼ �
þ
PdV (6:1)

Figure 6.2. Carnot cycle: pressure–volume diagram.

Figure 6.3. Carnot cycle: temperature–volume diagram.
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As the working substance returns to its initial state at the end of the cycle

DU ¼ 0 (6:2)

Then from the first law

�W ¼ Q1 þ Q2 (6:3)

The proportion 1 of the heat absorbed at the high temperature that is converted to
work represents a useful characteristic of a heat engine:

1 ¼ � W

Q2
(6:4)

and the negative sign ensures that 1 is positive, becauseW and Q2 are always opposite
in sign. Substituting for W from Equation (6.3) into, Equation (6.4), we obtain

1 ¼ Q1 þ Q2

Q2
(6:5)

¼ 1þ Q1

Q2
(6:6)

The quantity 1 usually is called the efficiency of the engine.

The Reverse Cycle

As the Carnot engine is a reversible device, it can be operated in the opposite direc-
tion, with each step traversing the same path and characterized by the same heat and
work quantities but opposite in sign [see Fig. 6.1(b)]. The reverse engine absorbs heat
from the low-temperature reservoir, has work preformed on it by the surroundings,
and liberates heat to the high-temperature reservoir. Thus, it acts as a heat pump or
as a refrigerator. Its operation does not contradict the Clausius statement of the
second law, because the surroundings do work to transport heat from the low-
temperature reservoir to the high-temperature reservoir.

If we designate the heat and work quantities for the reverse cycle by primed
symbols, the reverse and forward relationships are

W 0 ¼ �W

Q0
2 ¼ �Q2

Q0
1 ¼ �Q1

(6:7)
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and

1 ¼ �W

Q2
¼ �W 0

Q0
2

(6:8)

¼ Q0
1 þ Q0

2

Q0
2

¼ 1þ Q0
1

Q0
2

(6:9)

Thus, 1 is the same for both the forward and the reverse cycles.1

Alternative Statement of the Second Law

In addition to the statement we have been using, several alternative ways exist to
express the second law. One that will be particularly useful is the Kelvin–Planck
statement:

It is impossible to construct a machine that, operating in a cycle, will take heat from a
reservoir at constant temperature and convert it into work without accompanying
changes in the reservoir or its surroundings.

If such a machine could be constructed, it would be a “perpetual-motion machine of
the second kind.”

To prove this statement, we shall rely on the technique of assuming that it is
false—that heat can be converted into work in a cyclic isothermal process without
other changes occurring in the reservoir or the surroundings. Suppose that we
carry out a cyclic process in which heat from the reservoir at a constant temperature
t2 is converted completely into work. Then DU ¼ 0 because the system is returned to
its initial state. The work obtained can be used to operate a reversible Carnot engine as
a refrigerator. This cycle transfers a quantity of heat from a reservoir at the lower
temperature t1 to the reservoir at the higher temperature t2 of the original isothermal
cycle. The amount of heat first removed from the high-temperature reservoir is equi-
valent to the work obtained from the isothermal cycle. The heat Q now added to
the high-temperature reservoir is the sum of the heat (2Q1) removed from the
low-temperature reservoir and the heat equivalent of the work performed by
the isothermal cycle. The net work performed in the combined cycles is zero. The
final result of the combined cycles is the transfer of heat from the lower temperature
reservoir at t1 to the higher temperature reservoir at t2 in a cyclic process with no other
changes in the system or surroundings. This result contradicts the Clausius statement
of the second law. Therefore, the assumption that heat can be converted into work in a

1It is sometimes convenient to define a coefficient of performance for a refrigerator as b ¼ Q0
1/W 0, which is

equal to (l/1) 21. Similarly, a coefficient of performance for a heat pump can be defined as g ¼ 2Q0
2/W 0,

which is equal to 1/1. Thus, a reversible frictionless heat pump transfers as heat to the high temperature
reservoir a multiple of the work done on the engine, and, in some circumstances, a real heat pump can
be more economical than direct combustion as a source of heat.
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cyclic isothermal process is false. Thus, the Kelvin–Planck statement is as valid a
form of the second law as is the Clausius statement.

Carnot’s Theorem

Carnot stated that the efficiency of a reversible Carnot engine depends only on the
temperatures of the heat reservoirs and is independent of the nature of the working
substance. This theorem can be proved by showing that the assumption of a reversible
engine with any but the known efficiency of a reversible Carnot engine leads to a
contradiction of the Clausius statement of the second law.

Let us illustrate the principle of this proof with a specific numeric example. If the
ideal Carnot engine A has an efficiency 1A ¼ 0.5, which is dependent only on the
temperatures of the reservoirs, let us assume that engine B has a higher efficiency,
1B ¼ 0.6. If l00 joules of heat are absorbed from the high-temperature reservoir by
engine B operating in the forward cycle, then the engine will do 60 J of work on
the surroundings and 40 J of heat will be transferred to the low-temperature reservoir,
as listed in the first column of Table 6.1.

If the work performed by engine B is used to operate engine A in reverse, as illus-
trated in Figure 6.4, then W for engine A is 60 J, Q2 is equal to 2120 J, and Q1 is
equal to 60 J, as listed in the second column in Table 6.1. Thus, the net result of
the coupling of the two cycles is that 20 J of heat has been removed from the low-
temperature reservoir and has been added to the high-temperature reservoir, with
no work performed and no other changes occurring, because both working

Figure 6.4. Scheme of two Carnot engines, one acting as a heat engine and the other as a
refrigerator or heat pump.

TABLE 6.1. Coupling of Two Carnot Cycles with Different Efficiencies

Engine B
(Forward Cycle)

Engine A
(Reverse Cycle)

Net Change for
Working Substances

Net Change for
Reservoirs

Q2 100 J 2120 J 220 J 20 J
W 260 J 60 J 0
Q1 240 J 60 J 20 J 220 J
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substances have been returned to their initial states. This result contradicts the
Clausius statement of the second law. Consequently, engine B cannot have a
higher efficiency than that of the ideal Carnot engine A.

Now we can demonstrate the proof in a general way, with the scheme shown in
Figure 6.4. If the efficiency of a Carnot engine A is 1A, we can assume a second
engine B, with efficiency 1B . 1A. When B is operated in the forward direction,
thus exchanging heat Q2B (a positive quantity) with the high-temperature reservoir,
performing work WB (a negative quantity) on the surroundings, and exchanging
heat Q1B (a negative quantity) with the low-temperature reservoir, we obtain

1B ¼ �WB

Q2B
(6:10)

The Carnot engine A operated in a reverse cycle between the same heat reservoirs
exchanges heat Q0

1A with the low-temperature reservoir and is made to use all the
work available from engine B so that work W0

A ¼ 2WB; it also exchanges heat
Q0
2A with the high-temperature reservoir. The two engines are coupled through the

exchange of work.
As 1B is assumed greater than 1A

�WB

Q2B
.

�W 0
A

Q0
2A

(6:11)

Because we will compare the magnitudes of the quantities rather than their value, we
shall use their absolute values. As WB and Q2B have opposite signs, as do W0

A and
Q0
2A, the ratios in Equation (6.11) are equal to the ratios of the absolute values. Thus,

jWBj
jQ2Bj .

jW 0
Aj

jQ0
2Aj

(6:12)

As WB ¼ 2W 0
A

jWBj ¼ jW 0
Aj (6:13)

Therefore

1
jQ2Bj .

1
jQ0

2Aj
or

jQ2Bj , jQ0
2Aj (6:14)

Thus, the amount of heat returned to the high-temperature reservoir in the reverse
cycle is greater than the amount removed from it in the forward cycle.

By a similar argument, it can be shown that the amount of heat added to the low-
temperature reservoir in the forward cycle is less than the amount removed from it in
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the reverse cycle. The working substances of both engines have returned to their
initial states, so DU ¼ 0 for the entire process. The net work performed is zero
because the work produced by the forward engine was used entirely to operate the
reverse engine. Thus, heat was transported to the high-temperature reservoir from
the low-temperature reservoir in a cyclic process without any work being performed,
which contradicts the Clausius statement of the second law.

By a similar argument, it can be shown that the assumption of an efficiency less
than eA also leads to a contradiction of the second law. Thus, any reversible Carnot
engine operating between the same pair of reservoirs has the same efficiency, and that
efficiency must be a function only of the temperatures of the reservoirs.

e ¼ f (t1, t2) ¼ �Q2

Q1
(6:15)

6.4 THE THERMODYNAMIC TEMPERATURE SCALE

Equation (6.16), which includes Equation (6.6), is a mathematical statement of
Carnot’s theorem:

e ¼ 1þ Q1

Q2
¼ f (t1, t2) (6:16)

Solving for Q1/Q2, we obtain

Q1

Q2
¼ �[1� f (t1, t2)] (6:17)

¼ �g(t1, t2) (6:18)

As Q1 and Q2 have opposite signs, their ratio is opposite in sign to the ratio of their
absolute values. Thus,

jQ1j
jQ2j ¼ g(t1, t2) (6:19)

Now consider a group of three heat reservoirs at temperatures t1 , t2 , t3 and a
reversible Carnot engine that operates successively between any pair of reservoirs.
According to Equation (6.19)

jQ1j
jQ2j ¼ g(t1, t2) (6:20)

jQ1j
jQ3j ¼ g(t1, t3) (6:21)
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and

jQ2j
jQ3j ¼ g(t2, t3) (6:22)

If Equation (6.21) is divided by Equation (6.22), the result is

jQ1j
jQ2j ¼

g(t1, t3)
g(t2, t3)

(6:23)

Equating the right sides of Equation (6.20) and Equation (6.23), we obtain

g(t1, t2) ¼ g(t1, t3)
g(t2, t3)

(6:24)

As the quantity on the left side of Equation (6.23) depends only on t1 and t2, the quan-
tity on the right side also must be a function only of t1 and t2. Therefore, t3 must
appear in the numerator and denominator of the right side in such a way as to
cancel, which thereby gives

g(t1, t2) ¼ h(t1)
h(t2)

(6:25)

Substituting from Equation (6.25) into Equation (6.19), we have

jQ1j
jQ2j ¼

h(t1)
h(t2)

(6:26)

As the magnitude of the heat exchanged in an isothermal step of a Carnot cycle
is proportional to a function of an empirical temperature scale, the magnitude of
the heat exchanged can be used as a thermometric property. An important advantage
of this approach is that the measurement is independent of the properties of any par-
ticular material, because the efficiency of a Carnot cycle is independent of the
working substance in the engine. Thus we define a thermodynamic temperature
scale (symbol T ) such that

jQ2j
jQ1j ¼

T2
T1

(6:27)

with the units of the scale defined by setting T ¼ 273.16 K (kelvin) at the triple point
of water.

6.4 THE THERMODYNAMIC TEMPERATURE SCALE 121



Removing the absolute value signs from Equation (6.26), we obtain

T2
T1

¼ �Q2

Q1
(6:28)

A substitution from Equation (6.28) into Equation (6.6) yields

1 ¼ 1� T1
T2

(6:29)

¼ T2 � T1
T2

(6:30)

Thus, we have obtained the specific functional relationship between the efficiency of
a reversible Carnot engine and the thermodynamic temperatures of the heat
reservoirs.

The relationship between the thermodynamic temperature scale and the ideal gas
temperature scale can be derived by calculating the thermodynamic quantities for a
Carnot cycle with an ideal gas as the working substance. For this purpose, we
shall use u to represent the ideal gas temperature.

In Step I of Figure 6.1, the work performed is

WI ¼ �
ðV2

V1

PdV ¼ �
ðV2

V1

nRu2
V

dV

¼ �nRu2 ln
V2

V1
(6:31)

As Step I is isothermal DU ¼ 0 and

Q2 ¼ �WI ¼ nRu2 ln
V2

V1
(6:32)

Similarly, for Step III, which is also isothermal, DU ¼ 0 and

Q1 ¼ �WIII ¼ nRu1 ln
V4

V3
(6:33)

As Steps II and IV are adiabatic, Equation (5.46) applies, and

CV
du

u
¼ �nR

dV

V
(6:34)
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For an ideal gas, CV is a function only of u, and both sides of Equation (6.34) can be
integrated. Thus, for Step II

ðu1
u2

CV
du

u
¼ �nR

ðV3

V2

dV

V

¼ �nR ln
V3

V2
(6:35)

and for Step IV

ðu2
u1

CV
du

u
¼ �nR

ðV1

V4

dV

V

¼ �nR ln
V1

V4
(6:36)

As the integrals on the left sides of Equations (6.35) and (6.36) are equal and opposite
in sign, the same must be the case for the integrals on the right sides of the two
equations. Thus,

nR ln
V3

V2
¼ �nR ln

V1

V4

or

ln
V3

V2
¼ ln

V4

V1
(6:37)

Therefore

V3

V2
¼ V4

V1
(6:38)

According to Equation (5.42),WII andWIV are equal in magnitude and opposite in
sign because the limits of integration are reversed in calculating these two quantities.
Because these quantities are equal and opposite, the work performed in the adiabatic
steps does not contribute to the net work, which is

W ¼ WI þWIII

¼ �nRu2 ln
V2

V1
� nRu1 ln

V4

V3
(6:39)
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The efficiency 1 then is

1 ¼ �W

Q2

¼
nRu2 ln

V2

V1
þ nRu1 ln

V4

V3

nRu2 ln
V2

V1

¼
u2 ln

V2

V1
þ u1 ln

V4

V3

u2 ln
V2

V1

(6:40)

From Equation (6.38)

V3

V2
¼ V4

V1

so

V2

V1
¼ V3

V4

and

ln
V4

V3
¼ �ln

V2

V1
(6:41)

Substituting from Equation (6.41) into Equation (6.40), we obtain

1 ¼
u2 ln

V2

V1
� u1 ln

V2

V1

u2 ln
V2

V1

¼ u2 � u1
u2

(6:42)

¼ 1� u1
u2

(6:43)

As the efficiency of a Carnot engine is independent of the working substance, the effi-
ciency given in Equation (6.42) for an ideal gas must be equal to that given in
Equation (6.29) for any reversible Carnot engine operating between the same heat
reservoirs. Thus,

1� u1
u2

¼ 1� T1
T2

124 THE SECOND LAW OF THERMODYNAMICS



or
u1
u2

¼ T1
T2

(6:44)

and the two temperature scales are proportional to one another. With the choice of the
same reference point (the triple point of water)

Ttr ¼ utr ¼ 273:16K (6:45)

the two scales become identical. Therefore, we use T to represent both the ideal gas
temperature scale and the thermodynamic temperature scale.

Although the two scales are identical numerically, their conceptual bases are
different. The ideal gas scale is based on the properties of gases in the limit of
zero pressure, whereas the thermodynamic scale is based on the properties of heat
engines in the limit of reversible operation. That we can relate them so satisfactorily
is an illustration of the usefulness of the concepts so far defined.

6.5 THE DEFINITION OF S, THE ENTROPY OF A SYSTEM

According to Equation (6.27)

Q2

Q1
¼ �T2

T1

Rearranging the equation, we obtain

Q2

T2
¼ �Q1

T1
(6:46)

or

Q2

T2
þ Q1

T1
¼ 0 (6:47)

As the isothermal steps in the Carnot cycle are the only steps in which heat is
exchanged, we also can write Equation (6.47) as

X
cycle

Q

T
¼ 0 (6:48)

That we again have a quantity whose sum over a closed cycle is zero suggests that
Q/T is a thermodynamic property, even though we know that Q is not a thermo-
dynamic property. Acting on this suggestion, we define the entropy function, as
Clausius did, by the equatifon

dS ¼ DQrev

T
(6:49)
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As was the case with energy, the definition of entropy permits only a calculation of
differences, not an absolute value. Integration of Equation (6.48) provides an
expression for the finite difference in entropy between two states:

DS ¼ S2 � S1 ¼
ð2
1

dS ¼
ð2
1

DQrev

T
(6:50)

We will demonstrate in three steps that DS in Equation (6.50) is independent of the
path by showing that:

1. dS is an exact differential for any substance carried through a Carnot cycle.

2. dS is an exact differential for any substance carried through any reversible
cycle.

3. Entropy is a function only of the state of the system.

6.6 THE PROOF THAT S IS A THERMODYNAMIC PROPERTY

Any Substance in a Carnot Cycle

If we integrate Equation (6.49) for the steps of a reversible Carnot cycle, the
results are

DSI ¼
ð
DQrev

T2

¼ 1
T2

ð
DQrev ¼ Q2

T2
(6:51)

and because Step II is adiabatic

DSII ¼
ð
DQrev

T
¼ 0 (6:52)

Similarly,

DSIII ¼ Q1

T1
(6:53)

and

DSIV ¼ 0 (6:54)

Thus, for the complete cycle

DScycle ¼
þ
dS ¼ Q2

T2
þ Q1

T1
(6:55)
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From Equation (6.47) we see that the right side of Equation (6.55) is equal to zero.
Therefore

DScycle ¼
þ
dS ¼ 0 (6:56)

and S is a thermodynamic property for any substance carried through a reversible
Carnot cycle.

Any Substance in Any Reversible Cycle

For S to be a generally useful function we must remove any specifications as to the
nature of the reversible cycle through which the substance is being carried. Let us
represent a general reversible cycle by the example illustrated in Figure 6.5(a).
This cycle also can be approximated in Carnot cycles, as illustrated in

Figure 6.5. (a) A reversible cycle. (b) A reversible cycle approximated by Carnot cycles.
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Figure 6.5(b), if we proceed along the heavy-lined path. In Cycle a, for example,
Steps BC and DE are isothermal and Steps CD and EB are adiabatic. It can be
shown by the following procedure that:þ

dS ¼ 0

To obtain this integral, we must evaluate

DQ

T

� �
G!B

þ DQ

T

� �
B!A

þ � � � þ DQ

T

� �
M!D

þ DQ

T

� �
D!N

þ � � �
þ
dS (6:57)

We can do this by examining the small Carnot cycles in more detail. For example, for
the cycle labeled a, we can state definitely, because the adiabatic steps contribute
nothing to DQ/T, that

DQ0
2

T 0
2

� �
B!C

þ DQ0
1

T 0
1

� �
D!E

¼
XDQ

T

� �
cycle a

¼ 0 (6:58)

in which the primes are used to emphasize that the quantities refer to the approximate
Carnot cycle, not to the actual path of Figure 6.5(a). In the P–V diagram of
Figure 6.5(b) we also note that for the small area BACB

þ
BACB

PdV ¼ area BACB ¼ �
þ
BACB

DW ¼
þ
BACB

DQ (6:59)

The last equality follows because, for a cycle, DU ¼ 0. Hence

area BACB ¼
þ
DQ ¼ (DQ)B!A þ 0þ (DQ0

2)C!B (6:60)

where Segment AC is part of an adiabatic step. Noticing that

(DQ0
2)C!B ¼ �(DQ0

2)B!C (6:61)

We conclude that

(DQ)B!A ¼ (DQ0
2)B!C þ area BACB (6:62)

A better approximation to the actual cycle of Figure 6.5(a) would be a larger
number of Carnot cycles in Figure 6.5(b). In each such approximation, Equation
(6.61) would be valid, but as the number of cycles used for the approximation
is increased, the area BACB becomes smaller and smaller. In the limit of an
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infinite number of cycles, for which the approximation to the actual cycle becomes
perfect,

area BACB ! 0 (6:63)

and

(DQ)B!A¼ (DQ0
2)B!C (6:64)

For every pair of sections, BA and DN, of the actual path we have corresponding
(isothermal) pairs, BC andDE, which are parts of an approximate Carnot cycle. In the
limit of an infinite number of infinitesimally small cycles, sections BA and DN can be
considered isothermal at temperatures T equal to the respective temperatures T 0 for
sections BC and DE. Hence we can write

þ
actual

dS ¼ DQ

T

� �
B!A

þ � � � þ DQ

T

� �
D!N

þ � � �

¼ DQ0
2

T 0
2

� �
B!C

þ � � � DQ0
1

T10

� �
D!E

þ � � � ¼ 0 (6:65)

We conclude that dS is an exact differential for any reversible cycle.

Entropy S Depends Only on the State of the System

Figure 6.6 is a representation of two possible reversible paths for reaching State b
from State a. We have just shown that over a reversible closed path, the entropy

Figure 6.6. Two reversible paths, acb and adb, from state a to state b.
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change is zero, so ð
path
acb

dSþ
ð
path
bda

dS ¼ 0 (6:66)

Hence

Sb � Sa ¼
ð
path
acb

dS ¼
ð
path
bda

dS ¼
ð
path
adb

dS (6:67)

Notice that the order of limits is reversed in the right equality. Equation (6.67) empha-
sizes that the entropy change is the same for all arbitrary reversible paths from a to b.
Thus, the entropy change DS is a function only of State a and State b of the system.

6.7 ENTROPY CHANGES IN REVERSIBLE PROCESSES

Having established that dS is an exact differential, let us consider the value of the
entropy change for several noncyclic reversible changes.

General Statement

According to the definition of heat, whenever a system absorbs a quantity of heat DQ,
the surroundings lose an equal quantity of heat. Thus,

DQsys ¼ �DQsurr (6:68)

It follows that

DQsys

T
þ DQsurr

T
¼ 0 (6:69)

Consequently, for a reversible process,ð
dS ¼ 0 (6:70)

(1) for the system plus surroundings undergoing a noncyclic process and (2) for the
system undergoing a cyclic process. Several specific examples follow.

Isothermal Reversible Changes

For isothermal reversible changes, the entropy change for the system is given by

DSsys ¼
ð
dS ¼

ð
DQ

T
¼ 1

T

ð
DQ ¼ Q

T
(6:71)

130 THE SECOND LAW OF THERMODYNAMICS



For the specific case of the expansion of an ideal gas, because DU ¼ 0,

Q ¼ �W ¼ nRT ln
V2

V1

in which V2 is the final volume and V1 is the initial volume. Hence

DSsys ¼ Q

T
¼ nR ln

V2

V1
(6:72)

If Q is the heat absorbed by the system, then 2Q must be the heat absorbed by the
surroundings. Therefore

DSsurr ¼ �Q

T
(6:73)

Hence, for the system plus surroundings

DStotal ¼ DSsys þ DSsurr ¼ 0 (6:74)

Adiabatic Reversible Changes

In any adiabatic reversible change, DQrev equals zero. Thus,

DSsys ¼ DSsurr ¼ DStotal ¼ 0 (6:75)

Reversible Phase Transitions

Any change from one phase to another—for example, from ice to water—can be
carried out reversibly and at a constant temperature. Under these conditions,
Equation (6.71) is applicable. Generally, equilibrium phase transitions also are
carried out at a fixed pressure. As no work is expended in these transitions except
against the atmosphere, Q is given by the enthalpy of transition, and

DSsubs ¼ DHtrans

T
(6:76)

In these isothermal reversible phase transitions, for every infinitesimal quantity of
heat absorbed by the substance, an equal quantity of heat is released by the surround-
ings. Consequently

DSsurr ¼ �DSsubs (6:77)

and again the entropy change for system plus surroundings is zero.
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As a specific example of a calculation of DS for a phase transition, we consider the
data for the fusion of ice at 08C:

H2O(s, 08C) ¼ H2O(1, 08C), DH ¼ 6008 Jmol�1

DSwater ¼ 6008
273:15

¼ 21:996 J mol�1K�1

DSsurr ¼ � 21:996 J mol�1K�1

DStotal ¼ 0

Earlier conventions expressed entropy changes as cal mol21 K21 or entropy
units (eu) and sometimes as Gibbs mol21.

Isobaric Reversible Temperature Changes

The reversible expansion of a gas (a reversible flow of work) requires that the pressure
of the gas differ only infinitesimally from the pressure of the surroundings. Similarly,
a reversible flow of heat requires that the temperature of the system differ only
infinitesimally from the temperature of the surroundings. If the temperature of the
system is to change by a finite amount, then the temperature of the surroundings
must change infinitely slowly. Thus, the reversible flow of heat, like the reversible
expansion of a gas, is a limiting case that can be approached as closely as desired,
but it can never be reached.

If an isobaric temperature change is carried out reversibly, the heat exchanged
in the process can be substituted into the expression for the entropy change,
and the equations at constant pressure when no work is performed other than PV
work are

DSsys ¼
ðT2
T1

DQ

T
¼
ðT2
T1

dH

T
¼
ðT2
T1

CPdT

T
¼
ðT2
T1

CPd ln T (6:78)

If CP is constant

DS ¼ CP ln
T2
T1

(6:79)

in which T2 is the final temperature and T1 is the initial temperature.
If the system is heated reversibly, the change in the surroundings is equal and

opposite in sign to that for the system, and

DSsys þ DSsurr ¼ DStotal ¼ 0
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Isochoric Reversible Temperature Changes

The change in entropy for temperature changes at constant volume are analogous to
those at constant pressure except that CV replaces CP. Thus, because PdV ¼ 0,

DSsys ¼
ðT2
T1

DQ

T
¼
ðT2
T1

dU

T
¼
ðT2
T1

CVdT

T
¼
ðT2
T1

CVd lnT (6:80)

Again, the entropy change for the system plus surroundings is zero. Strictly speaking,
Equations (6.78), (6.79), and (6.80) are applicable only when no phase changes or
chemical reactions occur.

6.8 ENTROPY CHANGES IN IRREVERSIBLE PROCESSES

The definition of entropy requires that information about a reversible path be
available to calculate an entropy change. To obtain the change of entropy in an irre-
versible process, it is necessary to discover a reversible path between the same initial
and final states. As S is a state function, DS is the same for the irreversible as for the
reversible process.

Irreversible Isothermal Expansion of an Ideal Gas

It has been shown [Equation (6.72)] that in the reversible isothermal expansion of an
ideal gas

DSsys ¼ nR ln
V2

V1

As S is a thermodynamic property, DSsys is the same in an irreversible isothermal
process from the same initial volume V1 to the same final volume V2. However,
the change in entropy of the surroundings differs in the two types of processes.
First let us consider an extreme case, a free expansion into a vacuum with no work
being performed. As the process is isothermal, DU for the perfect gas must be
zero; consequently, the heat absorbed by the gas Q also is zero:

Q ¼ DU �W ¼ 0

Thus, the surroundings have given up no heat and have undergone no change.
Consequently,

DSsurr ¼ 0 (6:81)

and

DStotal ¼ nR ln
V2

V1
þ 0 . 0 (6:82)
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In other words, for the system plus surroundings, this irreversible expansion has been
accompanied by an increase in entropy.

We may contrast this result for DStotal with that for DUtotal for an ideal gas, as
mentioned in Section 5.1. In the irreversible expansion of an ideal gas, DUsys ¼ 0;
the surroundings undergo no change of state (Q and W are both equal to zero), and
hence, DUtotal ¼ 0. If we consider the reversible expansion of the ideal gas, DUsys

is also equal to zero and DUsurr is equal to zero because Q ¼ 2W, so again
DUtotal ¼ 0. Clearly, in contrast to DS, DU does not discriminate between a reversible
and an irreversible transformation.

In any intermediate isothermal expansion, the work performed by the gas is not
zero, but it is less in magnitude than that obtained by reversible means (see
Table 5.1). As DU is zero and as

jWirrev sysj , nRT ln
V2

V1
(6:83)

it follows that

Qirrev sys , nRT ln
V2

V1
(6:84)

Nevertheless, the entropy change for the gas still is given by Equation (6.72) because
it is equal to that for the reversible process between the same endpoints. If we divide
both sides of Equation (6.84) by T and apply Equation (6.72) we obtain

DSsys ¼ nR ln
V2

V1
.

Qirrev

T
(6:85)

We can combine Equation (6.72) and Equation (6.85) into the compact form

DS � Q

T
(6:86)

in which the equality applies to the reversible isothermal change and the inequality
applies to the irreversible isothermal change. In the corresponding differential
form, the result is not limited to isothermal changes:

dS � DQ

T
(6:87)

Equation (6.87) is a condensed mathematical statement of the second law; the inequal-
ity applies to any real process, which is necessarily irreversible, and the equality applies
to the limiting case of the reversible process.

For the heat exchange with the surroundings to occur reversibly (so that we can
calculate the entropy change in the surroundings), we can imagine the gas to be in
a vessel immersed in a large two-phase system (for example, solid–liquid) at
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equilibrium at the desired temperature. The heat lost by the surroundings must be
numerically equal but opposite in sign to that gained by the gas:

Qsurr ¼ �Qirrev sys (6:88)

However, for the two-phase mixture at constant pressure and temperature, the change
in entropy depends only on the quantity of heat evolved:

DSsurr ¼ Qsurr

T
(6:89)

because the change in state of the two-phase mixture during this process is a revers-
ible one. Thus,

DStotal ¼ DSsys þ DSsurr ¼ nR ln
V2

V1
þ Qsurr

T

¼ nR ln
V2

V1
� Qirrev sys

T
(6:90)

From Equation (6.85)

nR ln
V2

V1
.

Qirrev sys

T
and

DStotal . 0 (6:91)

Irreversible Adiabatic Expansion of an Ideal Gas

Points a and b in Figure 6.7 represent the initial and final states of an irreversible adia-
batic expansion of an ideal gas. The path between is not represented because the
temperature has no well-defined value in such a change; different parts of the
system may have different temperatures. The inhomogeneities in the system that
develop during the irreversible change do not disappear until a new equilibrium is
reached at b.

To determine the entropy change in this irreversible adiabatic process, it is necess-
ary to find a reversible path from a to b. An infinite number of reversible paths are
possible, and two are illustrated by the dashed lines in Figure 6.7.

The first consists of two steps: (1) an isothermal reversible expansion at the temp-
erature Ta until the volume V0 is reached, and (2) an adiabatic reversible expansion
from V0 to Vb. The entropy change for the gas is given by the sum of the entropy
changes for the two steps:

DSgas ¼ nR ln
V 0

Va
þ 0 (6:92)
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As V0 . Va, the entropy change for the gas is clearly positive for the reversible path
and, therefore, also for the irreversible change.

The second path consists of [1] an adiabatic reversible expansion to Vb and a temp-
erature T 0 less than Tb, and [2] an isochoric temperature increase from T0 to Tb. The
entropy change for the gas is again given by the sum of the changes for the two steps:

DSgas ¼ 0þ
ðTb
T 0

CV
dT

T
(6:93)

As Tb is greater than T0, DSgas is positive.
A reversible adiabatic expansion of an ideal gas has a zero entropy change, and an

irreversible adiabatic expansion of the same gas from the same initial state to the same
final volume has a positive entropy change. This statement may seem to be inconsist-
ent with the statement that S is a thermodynamic property. The resolution of the
discrepancy is that the two changes do not constitute the same change of state;
the final temperature of the reversible adiabatic expansion is lower than the final
temperature of the irreversible adiabatic expansion (as in path 2 in Fig. 6.7).

Irreversible Flow of Heat from a Higher Temperature
to a Lower Temperature

Imagine the flow of heat, by means of a conductor, from a very large reservoir at a
higher temperature T2 to a very large reservoir at a lower temperature T1. By the
use of large reservoirs we may consider the heat sources to be at constant temperature
despite the gain or loss of a small quantity of heat Q.

Figure 6.7. Irreversible change from State a to State b. The dashed lines represent two poss-
ible reversible paths from State a to State b.
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To calculate the change in entropy in this irreversible flow, it is necessary to
consider a corresponding reversible process. One process would be to allow an
ideal gas to absorb reversibly the quantity of heat Q at the temperature T2. The gas
then can be expanded adiabatically and reversibly (therefore with no change in
entropy) until it reaches the temperature T1. At T1 the gas is compressed reversibly
and evolves the quantity of heat Q. During this reversible process, the reservoir at
T2 loses heat and undergoes the entropy change

DShot reservoir ¼ � Q

T2
(6:94)

As the same change in state occurs in the irreversible process, DS for the hot reservoir
still is given by Equation (6.94). During the reversible process, the reservoir T1
absorbs heat and undergoes the entropy change

DScold reservoir ¼ Q

T1
(6:95)

As the same change in state occurs in the irreversible process, DS for the cold reser-
voir still is given by Equation (6.95). In the irreversible process, the two reservoirs are
the only substances that undergo any changes. As T2 . T1, the entropy change for the
system as a whole is positive:

DSsys ¼ DShot reservoir þ DScold reservoir ¼ � Q

T2
þ Q

T1
. 0 (6:96)

Irreversible Phase Transitions

A convenient illustration of an irreversible phase transition is the crystallization of
water at 2l08C and constant pressure:

H2O(l, �108C) ¼ H2O(s, �108C) (6:97)

To calculate the entropy changes, it is necessary to consider a series of reversible
steps leading from liquid water at 2108C to solid ice at 2108C. One such series
might be: (1) Heat supercooled water at 2l08C very slowly (reversibly) to 08C, (2)
convert the water at 08C very slowly (reversibly) to ice at 08C, and (3) cool the ice
very slowly (reversibly) from 08C to 2l08C. As each of these steps is reversible,
the entropy changes can be calculated by the methods discussed previously. As S
is a thermodynamic property, the sum of these entropy changes is equal to DS for
the process indicated by Equation (6.97). The necessary calculations are summarized
in Table 6.2, in which T2 represents 08C and T1 represents 2108C.

Notice that a decrease has occurred in the entropy of the water (that is, DS is nega-
tive) drring crystallization at 2108C even though the process is irreversible. This
example emphasizes again that the sign of the entropy change for the system plus
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the surroundings, and not merely for either alone, is related to irreversibility. To
obtain DS for the combination we must consider the entropy change in the surround-
ings, because the process described by Equation (6.96) occurs irreversibly. If we con-
sider the water as being in a large reservoir at 2108C, then the crystallization will
evolve a certain quantity of heat Q, which will be absorbed by the reservoir
without a significant increase in temperature. The change in state of the reservoir is
the same as would occur if it were heated reversibly; hence, DS is given by

DSreservoir ¼
ð
DQ

T
¼ �DH

T
¼ � (�5619J)

263:15K
¼ 21:353 J mol�1K�1 (6:98)

in which DH represents the heat of crystallization of water at 2108C. Clearly, for the
system plus surroundings the entropy has increased:

DStotal ¼ DSH2O þ DSreservoir ¼ �20:545þ 21:353 ¼ 0:808 J mol�1K�1 (6:99)

Irreversible Chemical Reactions

As a final specific example, let us examine the particular chemical reaction

H2(g)þ 1
2O2(g) ¼ H2O(l) (6:100)

TABLE 6.2. Entropy Change in Spontaneous Crystallization of Watera

H2O(l, 2108C) ¼ H2O(l, 08C)

DS1 ¼
ð
DQ

T
¼
ð
CPdT

T
¼ CP ln

T2
T1

¼ 2:807 J mol�1 K�1

H2O(l, 08C) ¼ H2O(s, 08C)

DS2 ¼
ð
DQ

T
¼ DH

T
¼ �6008 J mol�1

273:15 K
¼ �21:996 J mol�1 K�1

H2O(s, 08C) ¼ H2O(s, 2108C)

DS3 ¼
ð
DQ

T
¼
ð
CPdT

T
¼ CP ln

T1
T2

¼ �1:356 J mol�1 K�1

Adding:
H2O(l, 2108C) ¼ H2O(s, 2108C)

DS4 ¼ DS1 þ DS2 þ DS3 ¼ �20:545 J mol�1 K�1

aThis computation is based on the assumption that CP for supercooled water and CP for ice are
independent of temperature. Actually, CP for the supercooled liquid decreases with increasing
temperature, whereas CP for ice increases with increasing temperature. See: R. C. Dougherty
and L. N. Howard, J. Chem. Phys. 109, 7379 (1998).
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The formation of water from gaseous hydrogen and oxygen is a spontaneous reaction
at room temperature, although its rate may be unobservably small in the absence of a
catalyst. At 298.15 K, the heat of the irreversible reaction at constant pressure is
2285,830 J mol21. To calculate the entropy change, we must carry out the same
transformation reversibly, which can be performed electrochemically with a suitable
set of electrodes. Under reversible conditions, the heat of reaction for Equation (6.99)
is 248,647 J mol21. Hence, for the irreversible or reversible change

DSchem ¼ �48,647 J mol�1

298:15 K
¼ �163:16 J mol�1K�1 (6:101)

The heat absorbed by the surrounding reservoir during the irreversible reaction is
285,830 J, and this heat produces the same change in state of the reservoir as the
absorption of an equal amount of heat supplied reversibly. If the surrounding reser-
voir is large enough to keep the temperature essentially constant, its entropy change is

DSreservoir ¼ 285,830 J mol�1

298:15 K
¼ 958:68 J mol�1K�1 (6:102)

In the spontaneous formation of water, the system plus surroundings, chemicals plus
environment, increases in entropy:

DStotal ¼ �163:16þ 958:68 ¼ 795:52 J mol�1K�1 (6:103)

General Statement

In the preceding examples, irreversible processes are accompanied by an increase in
total entropy. It remains to be shown that such an increase occurs generally for iso-
lated systems. By an isolated system we mean a region large enough to include all the
changes under consideration, so that no matter or heat or work (thus, no energy) is
exchanged between this region and the environment. In other words, an isolated
system is at constant U and V. Thus, the isolated region is adiabatic during the
course of any spontaneous processes that occur within its boundaries.

Consider an irreversible process in which an isolated system goes from State a to
State b. As the process is irreversible, Figure 6.8 indicates only the initial and the final
states and not the path. To calculate the entropy change in going from a to b, let us
complete a cycle by going from b to a by the series of reversible steps indicated by the
dashed lines in Figure 6.8. The adiabatic path bc is followed to some temperature Tc,
which may be higher or lower than Ta. The only requirement in fixing Tc is that it be a
temperature at which an isothermal reversible process can be carried out from State c
to State d. State d is chosen in such a way that a reversible adiabatic change will return
the system to its initial state, a. By means of these three reversible steps, the system is
returned from State b to State a. As the first and third steps in this reversible process
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are adiabatic, the entropy change for those steps is zero. Consequently, the entropy of
State c is the same as that of State b, namely Sb. Similarly, the entropy of State d is the
same as that of State a, namely Sa. However, an entropy change does occur along the
path cd. As this is an isothermal reversible process

Sd � Sc ¼ Sa � Sb ¼ Q

Tc
(6:104)

As in the complete cycle (irreversible adiabatic process from a to b followed by the
three reversible steps)

DUcycle ¼ 0
it follows that

Qcycle ¼ �Wcycle (6:105)

Furthermore, in the four steps of the cycle (Fig. 6.8) three are adiabatic (one irre-
versible, two reversible). Hence, Qcycle is identical with Q of the isothermal step,
that is, Q of Equation (6.104). If Q . 0, then W, 0; that is, work would
have been performed by the system. In other words, if Q were positive, we would
have carried out a cyclical process in which heat at a constant temperature had
been converted completely into work. According to the Kelvin–Planck statement
of the second law, such a process cannot be carried out. Hence, Q cannot be a positive
number. As Q must be either negative or zero, it follows from Equation (6.104) that

Sa � Sb 	 0

Figure 6.8. Schematic diagram of general irreversible change. The dashed line represents one
possible reversible path between State a and State b.

140 THE SECOND LAW OF THERMODYNAMICS



Therefore

DS ¼ Sb � Sa � 0 (6:106)

Thus, the entropy change for an irreversible process occurring in an isolated system is
greater than or equal to zero, with the equal sign applying to the limiting case of a
reversible process.

We have thus been able to show that for a closed section of space including all the
changes under observation,

DS � 0
or

dS � 0

for an infinitesimal change. The equality sign applies to reversible changes in isolated
systems and the inequality to irreversible changes in isolated systems. As the system
is isolated, infinitesimal reversible change can take place only as a result of fluctu-
ations about an equilibrium state, so that the equality sign indicates an isolated
system at equilibrium. Similarly, irreversible changes in an isolated system must be
spontaneous. All finite natural changes are really irreversible; that is, for all observa-
ble changes, DS is positive for the system plus surroundings.

When an infinitesimal change occurs in a system in contact with a thermal
reservoir, the system and reservoir together constitute an isolated system. Then we
can write

dS ¼ dSsystem þ dSreservoir � 0

Although the change in the system may be irreversible, the absorption of an infinit-
esimal amount of heat by the reservoir at constant temperature can be considered
reversible, so that

dSreservoir ¼ dQreservoir

Treservoir

The system and reservoir are at the same temperature, and

dQreservoir ¼ �dQsystem

so that

dSsystem � dQsystem

T
� 0 (6:107)

or

dS � dQ

T
(6:108)
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Equation (6.108) is a general mathematical statement of the second law of
thermodynamics, of which the infinitesimal form of Equation (6.107) is a special
case. The second law does not state that the entropy of a system cannot decrease;
it does state that the magnitude of the entropy decrease in the system must be less
than the magnitude of the entropy increase in the surroundings. This consideration
removes the apparent paradox of a living organism, which decreases its entropy as
it develops into a highly organized system only with the compensating larger increase
in the entropy of the surroundings caused by release of heat by the organism and the
conversion of complex foodstuffs to simpler molecules like H2O and CO2. When
crystals form spontaneously, the entropy decrease caused by the formation of
an ordered structure is smaller than the concomitant increase in the entropy of the
surroundings caused by the heat of crystallization.

6.9 GENERAL EQUATIONS FOR THE ENTROPY OF GASES

Entropy of the Ideal Gas

We can obtain an explicit equation for the entropy of an ideal gas from the mathe-
matical statements of the two laws of thermodynamics. It is convenient to derive
this equation for reversible changes in the gas. However, the final result will be
perfectly general because entropy is a state function.

In a system in which only reversible expansion work is possible, the first law can
be stated as

dU ¼ DQ� PdV (6:109)

For a reversible transformation [Equation (6.49)]

dS ¼ DQ

T

Substituting for DQ from Equation (6.109) into Equation (6.49), we obtain

dS ¼ dU

T
þ PdV

T
(6:110)

or

dU ¼ TdS� PdV (6:111)

Equation (6.111) is sometimes called the combined first and second laws of thermo-
dynamics, and this equation suggests that S and V are natural independent variables
for U. Conversely, we can say that U and V are natural variables for S. One can also
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conclude from Equation (6.111) that a natural thermodynamic definition of T is

T ¼ @U

@S

� �
V

(6:112)

For one mole of an ideal gas

P

T
¼ R

Vm

and, from Equation (5.39),

dUm ¼ CVmdT

Thus

dSm ¼ CVm

T
dT þ R

Vm
dVm (6:113)

If Cvm is constant, this expression can be integrated to give

Sm ¼ CVm ln T þ R lnVm þ Sm0 (6:114)

in which Sm0 is an integration constant characteristic of the gas. This integration
constant cannot be evaluated by classic thermodynamic methods. However, it can
be evaluated by statistical thermodynamic methods. For a monatomic gas, Sm0 was
formulated explicitly originally by Tetrode [3] and by Sackur [4].

Entropy of a Real Gas

In deriving an equation for the entropy of a real gas we can start with Equation
(6.110), which is general and not restricted to ideal gases. A suitable substitution
for dU in Equation (6.110) can be obtained from the total differential of U as a func-
tion of V and T [Equation (4.59)]:

dU ¼ @U

@T

� �
V

dT þ @U

@V

� �
T

dV

Thus

dS ¼ 1
T

@U

@T

� �
V

dT þ 1
T

@U

@V

� �
T

dV þ P

T
dV (6:115)
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The entropy S also can be considered to be a function of V and T; thus, a second
equation for the total differential dS is

dS ¼ @S

@T

� �
V

dT þ @S

@T

� �
V

dV (6:116)

A comparison of the coefficients of the dT terms in Equations (6.115) and (6.116)
leads to the following equality:

@S

@T

� �
V

¼ 1
T

@U

@T

� �
V

¼ 1
T
CV (6:117)

It can be shown also, by a procedure to be outlined in Chapter 7, that the following
relationship is valid:

@S

@V

� �
T

¼ @P

@T

� �
V

(6:118)

Substituting from Equations (6.117) and (6.118) into Equation (6.116), we obtain

dS ¼ CV

T
dT þ @P

@T

� �
V

dV (6:119)

Equation (6.119) can be integrated to give

S ¼
ð
CVd ln T þ

ð
@P

@T

� �
V

dV þ constant (6:120)

To evaluate these integrals, it is necessary to know the equation of state of the gas and
the dependence of CVm on temperature.

If a gas obeys the van der Waals equation of state, it can be shown that

Sm ¼
ð
CVmd lnT þ R ln (Vm � b)þ constant (6:121)

6.10 TEMPERATURE–ENTROPY DIAGRAM

In making diagrams of various reversible cycles, it is a common practice to plot
pressure as a function of volume because the area under the curve,

Ð
PdV, gives the

negative of the work performed in any step. Instead, we have used temperature and
volume as coordinates because a diagram on this basis emphasizes the constancy
of temperature in an isothermal process. However, it has the disadvantage that the
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area is not related to the work. Gibbs (5, p. 9) pointed out that a diagram with
temperature and entropy as coordinates is particularly useful because it illustrates
graphically not only the work involved in a reversible cycle but also the heat. In
addition, this type of diagram emphasizes the isentropic nature of an adiabatic revers-
ible process as well as the constancy of temperature in isothermal stages. A typical
diagram for a simple Carnot cycle is illustrated in Figure 6.9.

The four stages in a forward cycle are labeled by roman numerals. In Step I, the
temperature is constant, heat Q2 is absorbed by the working substance, and
the entropy increases from S1 to S2. As this stage is reversible and isothermal, we
have from Equation (6.51)

DSI ¼ S2 � S1 ¼ Q2

T2
(6:51)

and

Q2 ¼ T2(S2 � S1) ¼ area under line I (6:122)

In Step II, a drop in temperature occurs in the adiabatic reversible expansion, but no
change in entropy occurs. The isentropic nature of II is emphasized by the vertical
line. Step III is an isothermal reversible compression, with a heat numerically
equal to Q1 being evolved. As this step is reversible and isothermal, we have from
Equation (6.53)

DSIII ¼ S1 � S2 ¼ �(S2 � S1) ¼ Q1

T1
(6:53)

Figure 6.9. Gibbs temperature–entropy diagram for a Carnot cycle.
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and

Q1 ¼ �T1(S2 � S1) ¼ negative of area under line III (6:123)

Thus,

Q ¼ Q1 þ Q2 ¼ �area under line III þ area under line I

¼ area enclosed by cycle

In the fourth step, which is adiabatic and reversible, no entropy change occurs, but the
temperature increases to the initial value T2. As the process is cyclic

DU ¼ 0
and

Q2 þ Q1 ¼ �W

Therefore

�W ¼ T2(S2 � S1)� T1(S2 � S1)

¼ (T2 � T1)(S2 � S1) ¼ area enclosed by cycle
(6:124)

Thus, the work and heat involved in the cycle are both given by the area within a T–S
diagram, and the nature of the isothermal and isentropic steps is emphasized.

6.11 ENTROPY AS AN INDEX OF EXHAUSTION

To obtain a better grasp of the essential character of the entropy concept, let us
examine in more detail a few transformations that occur spontaneously even
though DU ¼ 0 in each case (Fig. 6.10).

If two blocks of metal, one at a high temperature T3 and the other at a low temp-
erature T1 [Fig. 6.10(a)] are separated by a perfect heat insulator, and the system as a
whole is surrounded by a thermal blanket that permits no transfer of heat in or out,
then no change in internal energy can occur with time. If the insulator between the
blocks is removed, the hotter block will decrdease in temperature and the cooler
one will increase in temperature until the uniform temperature T2 is reached. This
transformation is spontaneous. DU is zero. But a loss of capacity to perform work
has occurred. In the initial state, we could insert a thermocouple lead in the block
at T3 and another in that at T1 and obtain electrical work. Insertion of thermocouple
leads in the same positions in the double block at T2 cannot generate any work. At the
conclusion of the spontaneous transformation without the thermocouple, the internal
energy is still the same as that at the outset, but it is no longer in a condition where it
has the capacity to do work.
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Similarly, if the barrier separating two ideal gases at the same temperature, one at a
high pressure P3 and the other at a low pressure P1, is removed, the high-pressure gas
will move spontaneously into the low-pressure chamber [Fig. 6.10(b)]. Yet DU ¼ 0.
Again a loss of capacity to perform work has occurred. In the initial state, we could
arrange a piston with a rod extending to the outside of the containers, have the gas at
P3 on one side of the piston and the gas at P1 on the other, and the piston could
perform work (for example, by lifting a weight against gravity). That capacity to
do work is no longer present at the conclusion of the spontaneous transformation
(even if a piston were present); the character of the energy has changed.2

Figure 6.10. Some processes that occur spontaneously (with DU ¼ 0) in which loss of
capacity occurs to perform work.

2The energy is “differentiated” in the separated bodies, “dedifferentiated” after thermal equilibration. The
entropy is different in the differentiated state of this system than it is in the dedifferentiated state; the entropy
is an index of extent of dedifferentiation. Corresponding statements can be phrased for two gases initially at
different pressures, two solutions with different concentrations of Cuþþ [Fig. 6.10(b, c)]. In a molecular
visualization, a system also has a larger entropy when it is “dedifferentiated.” For example, let us place
three layers of black balls at the bottom of a cubic box and carefully place three layers of white balls on
top of the black layers. If the box is then buffeted around, in time the balls will achieve one of many poss-
ible random arrangements of black balls and white balls. At the outset, the system was very differentiated; at
the end of the transformation, it reached a highly dedifferentiated state, one that Boltzmann associated with
a larger entropy.
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A similar analysis can be made for two solutions with a solute (for example, an
electrolyte such as CuSO4) at two different concentrations being allowed to mix spon-
taneously during removal of a separating partition (Fig. 6.10(c)). Copper metal
electrodes inserted into solutions C2

0 and C2
0 will generate electrical energy, but

such a pair of electrodes in the same physical position after spontaneous mixing
has been completed to give solution C2 can produce no work. In a very different
type of system, a stretched rubber band [Fig. 6.10(d )], release of the constraint will
spontaneously lead to the relaxed rubber band. In each system DU ¼ 0; but again
the capacity to perform work has been diminished.

This loss in capacity to perform the work is a property of each system illustrated in
Figure 6.10, whether or not it has actually performed any work during the
transformation.

Thus, we should view entropy as an index of condition or as a character of a system
(perhaps somewhat analogous to a cost-of-living index or to pH as an index of
acidity). It is an index of the state of differentiation2 of the energy, an index of the
capacity to perform work, an index of the tendency toward spontaneous change.
The more a system exhausts its capacity for spontaneous change, the larger the
entropy index. Hence, we should preferably say that entropy is an index of exhaus-
tion; the more a system has lost its capacity for spontaneous change—the more
this capacity has been exhausted—the greater is the entropy.

Thus, the second law of thermodynamics provides us with a measure of this
exhaustion, the entropy change DS, to be used as the fundamental criterion of spon-
taneity. For a closed region of space (for which, therefore, DU ¼ 0) including all
changes under observation,

DS � 0 (6:125)

with the equality sign applying to systems at equilibrium and the inequality to all
systems capable of undergoing spontaneous changes.

Spontaneous transformations occur all around us all the time. Hence, DS, for a
section of space encompassing each such transformation and its affected surround-
ings, is a positive number. This realization led Clausius to his famous aphorism:

Die Energie der Welt ist konstant; die Entropie der Welt strebt einemMaximum zu (6,7),

that is,
The energy of the universe is constant, and the entropy of the universe tends to a
maximum.3

3Today we would hesitate to comment on the energy or entropy of the universe, because we have no way to
measure these quantities, and we would refer only to the surroundings that are observed to interact with the
system. Some cosmological theorists have suggested that the increase in entropy postulated by the second
law is a result of the expansion of the universe [6]. One recent set of astronomical measurements leads to a
prediction that the universe will continue to expand, and another predicts that expansion will reach a
maximum and reverse [7].
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To a beginning student, this form of statement is frequently the source of more
perplexity than enlightenment. The constancy of energy causes no difficulty of
course. As energy is conserved, it fits into the category of concepts to which we attri-
bute permanence. In thought, we usually picture energy as a kind of material fluid,
and hence, even if it flows from one place to another, its conservation may be
visualized readily. However, when we carry over an analogous mental picture to
the concept of entropy, we immediately are faced with the bewildering realization
that entropy is “being created out of nothing” whenever an increase in entropy
occurs in an isolated system undergoing a spontaneous transformation.

The heart of the difficulty in “understanding” the concept of increase in entropy is
a verbal one. It is difficult to dissociate the unconscious verbal implications of a word
that we have used all of our lives in other contexts without critical analysis. In speak-
ing of “increase in entropy,” we are using language appropriate for the description of
material bodies. Automatically, therefore, we associate with entropy other character-
istics of material bodies that are at variance with the nature of entropy and hence that
are a source of confusion.

Ultimately, we must realize that entropy is essentially a mathematical function. It is
a concise function of the variables of experience, such as temperature, pressure, and
composition. Natural processes tend to occur only in certain directions; that is, the
variables pressure, temperature, and composition change only in certain—but very
complicated—ways, which are described most concisely by the change in a single
function, the entropy function (DS. 0).

Some of the historical reluctance to assimilate the entropy concept into general
scientific thinking, and much of the introductory student’s bewilderment, might
have been avoided if Clausius had defined entropy (as would have been perfectly
legitimate to do) as

dS0 ¼ �DQrev

T
(6:126)

with a negative sign instead of the positive one of Equation (6.49). With this defi-
nition, all thermodynamic consequences that have been derived from the entropy
function would be just as valid except that some relations would change in sign.
Thus, in place of Equation (6.123), we would find that for an isolated system,

DS0 	 0 (6:127)

with the equality sign applying to reversible changes in isolated systems and the
inequality to irreversible changes in isolated systems. Now, however, we would
recognize that for all isolated sections of space undergoing actual changes, DS is a
negative number; that is, the entropy decreases. Paraphrasing Clausius, we would
say, “Die Entropie der Welt strebt einem Minimum zu.” This statement would
accord more obviously with our experience that observable spontaneous changes
go in the direction that decreases the capacity for additional spontaneous change
and that decreases the capacity to perform work, and that the universe (or at least
the solar system) changes in time toward a state in which (ultimately) no more
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spontaneous change will be possible. We need merely reiterate a few examples:
Solutes always diffuse from a more concentrated solution to a dilute one; clocks
tend to run down; magnets become self-demagnetized; heat always flows from a
warm body to a colder one; gases always effuse into a vacuum; aqueous solutions
of NaCl and AgNO3 if mixed always form AgCl. Although some of these individual
changes can be reversed by an outside agency, this outside agent must undergo a
transformation that decreases its capacity for additional spontaneous change. It is
impossible to restore every system back to its original condition. On earth, our ulti-
mate sources of energy for work are the sun or nuclear power; in either case, these
ultimate nuclear reactions proceed unidirectionally and toward the loss of capacity
for additional spontaneous change.

In some respects, especially pedagogical ones, it might have been better to change
the sign of the original definition of the index so that it would measure residual
capacity rather than loss of capacity. However, with the development of statistical
thermodynamics and the identification of entropy with the probability of a system,
the original sign chosen by Clausius turns out to be the more convenient one. The
universal tendency of all changes to reduce everything to a state of equilibrium
may be correlated with the rearrangements of molecules from less-probable to
more-probable configurations. And because more-probable configurations have
more arrangements than less-probable configurations, it is appropriate that the
entropy index increase with the approach of all things to a state of equilibrium.

EXERCISES

6.1. One mole of an ideal monatomic gas (CVm ¼ 3/2 R) at 101.33 kPa (1 atm) and
273.1 K is to be transformed to 50.67 kPa (0.58 atm) and 546.2 K. Consider the
following four reversible paths, each consisting of two parts, A and B:

i. Isothermal expansion and isobaric temperature rise

ii. Isothermal expansion and isochoric temperature rise

iii. Adiabatic expansion and isobaric temperature rise

iv. Adiabatic expansion and isochoric temperature rise

a. Determine P, V, and T of the gas after the initial step of each of the four
paths. Represent the paths on a T–V diagram. To facilitate plotting, some
necessary data for the adiabatic expansions are given in Table 6.3. Supply
the additional data required for the completion of the adiabatic curve.

TABLE 6.3. Data for Adiabatic Expansions

V/dm3 P/kPa T/K

Initial 22.41 101.33 273.1
Path 3 341.77 208.2
Path 4 89.63 3.98
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b. For each portion of each path and for each complete path, calculate the
following: W, the work completed; Q, the heat absorbed by the gas; DU
of the gas; DH of the gas; DS of the gas. Tabulate your results.

c. Note which functions in (b) have values that are independent of the path
used in the transformation.

Note: R in joules should be used in all parts of the calculation. Check
units carefully.

6.2. An ideal gas is carried through a Carnot cycle. Draw diagrams of this cycle
using each of the following sets of coordinates:

a. P, V d. U, S
b. T , P e. S, V
c. T , S f. T , H

a. By a procedure analogous to that used to obtain Equation (6.116) show that

@S

@V

� �
T

¼ Pþ (@U=@V)T
T

(6:128)

b. Starting with Equation (6.111), demonstrate the validity of Equation
(6.118). Rearrange Equation (6.111) to

P ¼ T
@S

@V

� �
T

� @U

@V

� �
T

(6:129)

Differentiate with respect to temperature at constant volume to obtain

@P

@T

� �
V

¼ @S

@V

� �
T

þ T
@2S

@V@T
� @2U

@V@T
(6:130)

Show also that appropriate differentiation of Equation (6.111) leads to the
relationship

@2S

@V@T
¼ 1

T

@2U

@V@T
(6:131)

and proceed to obtain Equation (6.118)

@S

@V

� �
T

¼ @P

@T

� �
V
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c. Combining the results of parts (a) and (b), show that

@U

@V

� �
T

¼ T
@P

@T

� �
V

� P (6:132)

d. Prove that (@U/@V )T ¼ 0 for any gas obeying a general gas law of the form

Pf (V) ¼ RT

in which f (V ) is any continuous function of volume.

e. Derive the expression

@U

@V

� �
P

¼ CV
@T

@V

� �
P

þ T
@P

@T

� �
V

� P (6:133)

6.4. A gas obeys the equation of state

PVm ¼ RT þ BP

in which B is a constant at all temperatures.

a. Show that the internal energy U is a function of the temperature only.

b. Compute (@U/@V )P. Compare with the value obtained for this same partial
derivative for an ideal gas.

c. Derive an equation for the entropy of this gas that is analogous to Equation
(6.114) for the ideal gas.

6.5. Show that the efficiency of a Carnot cycle in which any step is carried out irre-
versibly cannot be greater than that of a reversible Carnot cycle.

6.6. The heat quantities, Q2 and Q1, absorbed by an engine during a completed
Carnot cycle (in which Q2 refers to a higher temperature and Q1 to a lower
temperature) can be plotted against each other using the coordinates shown
in Figure 6.11. Any conceivable Carnot cycle for an engine then can be charac-
terized by a point (Q1, Q2) on this plane. The figure then can be divided into
eight octants. In which octant or octants would useful Carnot cycles fall?

6.7. Gibbs (5, p.13) has suggested that the equation

Um ¼ V�R=CVm
m exp (Sm=CVm) (6:134)

(CVm and R constants) be regarded as the fundamental thermodynamic equation
of an ideal gas. With the aid of the two laws of thermodynamics, show that
Equations (5.1) and (5.2) are contained implicitly in Equation (6.134).
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6.8. A (reversible) Joule cycle consists of the following four steps: isobaric increase
in volume, adiabatic expansion, isobaric decrease in volume, and adiabatic
compression. Helium gas, with the equation of state

PVm ¼ RT þ BP (6:135)

(in which B ¼ 15 cm3 mol21), is carried through a Joule cycle. Sketch dia-
grams of this cycle using each of the following sets of coordinates:

a. P, V d. S, V
b. U, V e. T , V
c. T , S f. H, T

6.9. A (reversible) Sargent cycle consists of the following four steps: isochoric
increase in pressure, adiabatic expansion, isobaric decrease in volume, and
adiabatic compression. A gas obeying Equation (6.134) is carried through a
Sargent cycle. Sketch diagrams of this cycle using each of the following sets
of coordinates:

a. P, V d. S, V
b. T , V e. S, T
c. U, V f. H, T

Figure 6.11. Sketch of the Q2–Q1 coordinate system for possible Carnot cycles.
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6.10. A reversible cycle also can be completed in three steps, such as isothermal
expansion (at T2) from V1 to V2, cooling (at constant V2) from T2 to T1, and
adiabatic compression back to the initial state.

a. Sketch a diagram of this cycle using T and V as coordinates.

b. A nonideal gas obeying Equation (6.135) is carried through this cycle.
Compute DS for each step, and show that

Þ
dS ¼ 0 for the nonideal

gas in this cycle. Assume that CVm for this gas is a constant. Some of
its other characteristics in an adiabatic process have been worked out as
Exercise 5 in Chapter 5.

6.11. In Figure 6.12, two adiabatic reversible paths are drawn (1 ! 2 and 10 ! 20),
each one starting at the temperature T2 and ending at the temperature T1. The
points 1,10 are labeled in an order such that, for a process proceeding to the
right along the isothermal T1 or the isothermal T2 (e.g., 10 ! 1), heat is
absorbed by the system.

An essential step in the Caratheodory formulation of the second law of thermo-
dynamics is a proof of the following statement: Two adiabatics (such as a and b
in Fig. 6.12) cannot intersect. Prove that a and b cannot intersect. (Suggestion:
Assume a and b do intersect at the temperature T1, and show that this assump-
tion permits you to violate the Kelvin–Planck statement of the second law.)

6.12. For an isolated (adiabatic) system, DS. 0 for any natural (spontaneous)
process from State a to State b, as was proved in Section 6.8. An alternative
and probably simpler proof of this proposition can be obtained if we use a
temperature–entropy diagram (Fig. 6.13) instead of Figure 6.8. In
Figure 6.13, a reversible adiabatic process is represented as a vertical line
because DS ¼ 0 for this process. In terms of Figure 6.13, we can state our prop-
osition as follows: For an isolated system, a spontaneous process from a to b
must lie to the right of the reversible one, because DS ¼ Sb 2 Sa . 0.

Figure 6.12. Possible adiabatic paths on a temperature–volume coordinate system.
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Prove that b cannot be to the left of b0; that is, that DS cannot be negative for the
isolated spontaneous process. (Suggestion: Assume that b is to the left of b0, and
then complete a suitable cycle back to a that allows you to violate the Kelvin–
Planck statement of the second law.)

6.13. A spring is placed in a large thermostat at 278C and stretched isothermally and
reversibly from its equilibrium length L0 to 10 L0. During this reversible
stretching, 1.00 J of heat is absorbed by the spring. The stretched spring,
still in the constant–temperature thermostat, then is released without
any restraining back-tension and is allowed to jump back to its initial length
L0. During this spontaneous process, the spring evolves 2.50 J of heat.

a. What is the entropy change for the stretching of the spring?

b. What is the entropy change for the collapse of the spring?

c. What is the entropy change for the universe (spring plus surrounding
thermostat) for the total process, stretching plus return collapse to initial L0?

d. How much work was performed on the spring in the stretching process?

6.14. It has been suggested that biological systems may constitute exceptions to
the second law of thermodynamics, because they carry out irreversible
processes that result in a decrease in the entropy of the biologic system.
Comment on this suggestion.

6.15. Hydrogen atoms at 258C and 101 kPa pressure can spontaneously form H2 gas:

2H ¼ H2

However, DS ¼ 290.4 J mol21 K21 for this system. As the change occurs
even though DS is negative, this reaction apparently violates the second law
of thermodynamics. How do you explain this anomaly in terms of the
second law?

Figure 6.13. Reversible and spontaneous changes of state on a temperature–entropy diagram.
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6.16. In carrying out a (reversible) Carnot cycle, we can place a two-phase system
instead of an ideal gas into a cylinder. A suitable two-phase system is

H2O(I) ¼ H2O(g)

In the first, isothermal, step with this two-phase system, one mole of liquid
water is vaporized at 400 K with an absorption of 39.3 kJ. In the second, adia-
batic, step, the system is expanded even more, with an accompanying decrease
in temperature to 300 K. At 300 K, an isothermal compression is carried
out, which is followed by an adiabatic compression to return the system to
its starting point.
Assuming that this two-phase system obeys the first and second laws of

thermodynamics, and given that the heat of vaporization of water at 300 K is
43.5 kJ mol21, how many grams of liquid water must condense out of the
vapor in the isothermal compression step? Show your reasoning in your answer.

6.17. A bottle of champagne at a temperature of 280 K is placed in a refrigerator that
releases its heat into a room at a constant temperature of 300 K; the efficiency
of the refrigerator is 0.5 times the corresponding Carnot efficiency. How many
joules of electric energy are required to cool the bottle to a temperature
of 276 K? (Assume that the heat capacity of the filled bottle is equal to that
of 1 kg of water and independent of temperature.)

6.18. It is estimated that 106 kwh per heating season will be required to heat a build-
ing on the shore of Lake Michigan. Electricity costs $0.05 per kwh. Two
heating systems are under consideration:

a. Direct electric heating.

b. A heat pump that extracts heat from Lake Michigan at a depth with a
constant temperature of 48C.

Installation of b will require $200,000 more than installation of a, which is an
amount that must be borrowed at an interest rate of 6% per year. The principal
must be repaid from the operational savings of the heat pump. Assume that the
heat pump releases heat into the building at a temperature of 408C and that the
heat pump operates at 40% of the ideal Carnot efficiency. How many years will
be required to repay the borrowed money?

6.19. Find the natural independent variables for the enthalpy H, starting with
Equation (6.111) and the definition of H, [Equation (4.3)].

6.20. Two recent publications [8] determined the entropy change on binding small
ligands to proteins, spontaneous reactions, and found that the entropy
changes are negative.
How do you reconile these results with the second law of thermodynamics?
What must be the sign and magnitude of the entropy change of the surroundings
compared with the entropy change of the system? What thermodynamic change
of the system is related directly to the entropy change of the surroundings?
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CHAPTER 7

EQUILIBRIUM AND SPONTANEITY
FOR SYSTEMS AT CONSTANT
TEMPERATURE

7.1 REVERSIBILITY, SPONTANEITY, AND EQUILIBRIUM

The second law of thermodynamics was stated in Equation (6.106) as

DS � 0

for an isolated system, in which the equality refers to a system undergoing a reversible
change and the inequality refers to a system undergoing an irreversible change.

An irreversible change is always spontaneous in an isolated system because no
external force can interact with the system. Only at equilibrium can a change in
an isolated system be conceived to occur reversibly. At equilibrium any infinitesi-
mal fluctuations away from equilibrium are opposed by the natural tendency to
return to equilibrium. Therefore, the criterion of reversibility is a criterion of
equilibrium, and the criterion of irreversibility is a criterion of spontaneity for
an isolated system.

For systems that are not isolated, it will be convenient to use the criteria of rever-
sibility and irreversibility such as in Equation (6.108)

dS � dQ

T

that omit explicit references to changes in the surroundings. Nevertheless, we should
remember that such changes are included implicitly. Equation (6.108) will be the
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starting point from which to obtain criteria to decide whether a given system is at
equilibrium or can be expected to change spontaneously, given sufficient time or
an appropriate catalyst.

Systems at Constant Temperature and Volume

When the value of DQ obtained from the first law is substituted into Equation (6.108),
the result is

dS � dU � DW

T
(7:1)

If the only restraint on the system is the pressure of the environment, then the only
work is mechanical work against the external pressure P0. Therefore, DW is equal
to 2P0dV and Equation (7.1) becomes

dS � dU þ P0dV
T

(7:2)

or

dU þ P0dV � TdS 	 0 (7:3)

As the volume is constant, P0dV equals zero and can be omitted. Because the temp-
erature is constant, (2SdT ) can be added to the left side of Equation (7.3) without
changing its value. Thus,

dU � TdS� SdT 	 0
or

dU � (TdSþ SdT) 	 0 (7:4)

The terms in parentheses in Equation (7.4) are equal to the differential of the function
TS, and Equation (7.4) can be written as

dU � d(TS) 	 0 (7:5)
or

d(U � TS) 	 0 (7:6)

If the temperature and volume are constant, and if the only constraint on the system
is the pressure of the environment, Equation (6.106) and Equations (7.1) through
(7.6) provide the criteria of equilibrium and spontaneity. The equality in Equation
(7.1) applies to a reversible change, and as no exchange of work occurs with the
environment, the reversible change must be in a system at equilibrium. Similarly,
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the inequality in Equation (7.1) applies to an irreversible change, and in the absence
of any constraint other than the pressure of the environment, this change must be
spontaneous.

As U, T, and S are state functions, the quantity (U2TS) also must be a state func-
tion. This quantity is sufficiently important that it is given the name Helmholtz
function, or Helmholtz free energy, which is defined as

A ¼ U � TS (7:7)

Thus, we can state concisely that in a system at constant temperature and volume

dA , 0 (7:8)

for a spontaneous change and

dA ¼ 0 (7:9)

for an infinitesimal change at equilibrium.
Alternatively, from Equation (7.2), with V constant, we obtain

dS � dU

T
or

dS� dU

T
� 0 (7:10)

As T is constant, we can add (U/T2)dT to the left side of Equation (7.10) without
changing its value. Then

dS� dU

T
þ U

T2
dT � 0

or

dS� d
U

T

� �
� 0 (7:11)

and

d S� U

T

� �
� 0

Thus, the Massieu function [1]

J ¼ S� U

T
(7:12)
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is also a criterion of spontaneity and equilibrium at constant temperature and
volume. As dU at constant volume is equal to DQ [Equation (4.56)] and as
DQsystem ¼2DQsurroundings, which can be assumed to absorb heat reversibly even
if the system changes irreversibly, we can see that Equation (7.10) is another
way to state that

dSsystem þ dSsurroundings � 0 (7:13)

Systems at Constant Temperature and Pressure

The most familiar transformations occur under conditions of constant temperature and
pressure, so it will be particularly useful to have a criterion of spontaneity and equi-
librium that applies to these conditions.

We can start with Equation (7.3), in which the only restriction is that no work is
performed except mechanical work against an external pressure P0. If the change
is carried out at constant pressure, the pressure P of the system must equal P0, so
Equation (7.3) can be written as

dU þ PdV � TdS 	 0 (7:14)

If the pressure and temperature are constant, dP and dT are zero, so we can add 2SdT
and VdP to the left side of Equation (7.14) without changing its value:

dU þ PdV þ VdP� TdS� SdT 	 0
or

d(U þ PV � TS) 	 0 (7:15)

The function in parentheses in Equation (7.15) is a state function and is called the
Gibbs function, or Gibbs free energy, symbolized by G [2].1 Relationships for G are

G ¼ U þ PV � TS (7:16)

¼ H � TS (7:17)
and

dG 	 0 (const T , P) (7:18)

If the temperature and pressure are constant, and if the only constraint on the
system is the pressure of the environment, Equation (7.18) provides the criteria of
equilibrium and spontaneity. The equality in Equation (7.18) applies to a reversible

1The letter F previously has been associated with the Gibbs function, particularly in the United States.
Some older tabulations of chemical thermodynamic data use F for the function of Equation (7.17). The
term free energy is most commonly assigned to G, but we have adopted the name Gibbs function to be
consistent with Helmholtz function for A and Planck function for Y.
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change; because the only restraint is the constant pressure of the environment, which
is equal to the pressure of the system, the reversible change must be taking place in a
system at equilibrium as a result of infinitesimal fluctuations about the equilibrium
state. Similarly, the inequality in Equation (7.18) refers to an irreversible change;
in the absence of any constraint other than the constant pressure of the environment,
which is equal to the pressure of the system, this change must be spontaneous.

As we mentioned, changes in the environment are included implicitly in Equations
(7.8), (7.9), (7.11), and (7.18), even though they are not mentioned explicitly. For
example, from Equation (7.18) for a system undergoing change at constant tempera-
ture, we can write

dHsys � TdSsys 	 0 (7:19)

As the pressure is constant and only mechanical work is performed [Equation (4.4)],

dHsys ¼ DQsys

can be substituted in Equation (7.19) to give

DQsys � TdSsys 	 0 (7:20)

From Equation (6.67),

DQsys ¼ �DQsurr

and as the entropy change in the surroundings can be assumed to be equal to
DQsurr/T, we obtain

�TdSsurr � TdSsys 	 0
or

TdSsurr þ TdSsys � 0 (7:21)

Equation (7.21) is a restatement of the criterion for an isolated system. The choice of
dG as a criterion includes an implicit consideration of changes in the environment,
although only functions of the state of the system are used.

Planck [3] used a function Y, which he defined as

Y ¼ S� U þ PV

T

¼ S� H

T
(7:22)
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as a criterion of equilibrium and spontaneity at constant temperature and pressure. It
can be observed from Equation (7.22) that S is the dominant term at high tempera-
tures, whereas H/T is the dominant term at low temperatures.

From Equations (4.6), (6.67), and (7.22), we can see that

Y ¼ Ssys þ Ssurr (7:23)

and from Equation (7.17), we can see that

Y ¼ �G

T
(7:24)

Thus, the Planck function is a “temperature-normalized” Gibbs function.

Heat of Reaction as an Approximate Criterion of Spontaneity

For many years, it was thought, purely on an empirical basis, that if the enthalpy
change for a given reaction were negative, that is, if heat were evolved at constant
pressure, the transformation could occur spontaneously. This rule was verified for
many reactions. Nevertheless, numerous exceptions, exist such as the polymorphic
transformation of a quartz to b quartz at 848 K and atmospheric pressure:

SiO2(a quartz) ¼ SiO2(b quartz),

DH ¼ 0:63 kJ mol�1

which is spontaneous even though DH is positive.
As, at a fixed temperature, Equation (7.17) yields the differential expression

dG ¼ dH � TdS (7:25)

or, for a macroscopic change,

DG ¼ DH � TDS (7:26)

DH and DG will be nearly equal if TDS is small compared with DH. Usually, TDS is
of the order of magnitude of a few thousand joules. If DH is sufficiently large,
perhaps above 40 kJ, the sign of DH will be the same as that of DG. For such
relatively large values of DH, the heat of reaction may be a reliable criterion of spon-
taneity, because if DH were negative, DG probably would be negative also. However,
DH is not the fundamental criterion, and judgments based on its sign frequently are
misleading, particularly when the magnitudes involved are small.
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7.2 PROPERTIES OF THE GIBBS, HELMHOLTZ,
AND PLANCK FUNCTIONS

The Functions as Thermodynamic Properties

As G, A, and Y are defined by explicit equations in which the variables are functions
of the state of the system, all three of these functions are thermodynamic properties
and their differentials are exact. Thus, we can write

þ
dG ¼ 0

þ
dA ¼ 0

þ
dY ¼ 0

(7:27)

Relationships among G, Y, and A

From the definitions for G and A [Equations (7.7) and (7.16)], we can write

G ¼ H � TS ¼ U þ PV � TS ¼ (U � TS)þ PV

The relationship between G and A is then

G ¼ Aþ PV (7:28)

From Equation (7.24) and Equation (7.28)

Y ¼ �G

T
¼ Aþ PV

T
(7:29)

Changes in the Functions for Isothermal Conditions

Transformations at constant temperature are of frequent interest. For finite changes at
a fixed temperature T

DG ¼ G2 � G1 ¼ (H2 � TS2)� (H1 � TS1)

¼ H2 � H1 � (TS2 � TS1)

¼ H2 � H1 � T(S2 � S1)

¼ DH � TDS (7:30)

For an infinitesimal change for which dT ¼ 0

dG ¼ dH � TdS� SdT

¼ dH � TdS (7:31)
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The equations for DA and dA can be derived similarly to obtain

DA ¼ DU � TDS (7:32)
and

dA ¼ dU � TdS (7:33)

The corresponding equations for DY and dY are

DY ¼ DS� DH

T
(7:34)

and

dY ¼ dS� dH

T
(7:35)

Equations for Total Differentials

As the procedure is the same for both the Gibbs function and the Helmholtz function,
we shall consider in detail only the derivation for the Gibbs function G. After
Equation (7.14), we obtained the differential of the function, which was later to be
defined as G, as

dG ¼ dU þ PdV þ VdP� TdS� SdT (7:36)

If we substitute from the first law expression for dU, we have

dG ¼ DQþ DW þ PdV þ VdP� TdS� SdT (7:37)

If the change is carried out reversibly and the only work performed is PdV work, then
from Equation (6.48),

DQ ¼ TdS

and from Equation (5.43),

DW ¼ �PdV

When we substitute from Equations (6.48) and (5.43) into Equation (7.37) and cancel
terms, we obtain

dG ¼ VdP� SdT (7:38)

By an analogous procedure, it can be shown that the total differential of the
Helmholtz function is given by the expression

dA ¼ �PdV � SdT (7:39)
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Although the condition of reversibility was used, for convenience, in deriving
Equations (7.38) and (7.39), the result applies also to irreversible changes, because
G and A are state functions. The limitation to PdV work, however, applies to the
final equations. We shall consider later circumstances in which other than PdV
work is performed in the presence of external fields.

The total differential of the Planck function is

dY ¼ dS� dH

T
þ H

T2
dT (7:40)

If we substitute dU þ PdV þ VdP for dH, set dU equal to DQ þ DW from the first
law, and choose a reversible change so that we can use TdS for DQ and 2PdV for
DW, the result is

dY ¼ H

T2
dT � V

T
dP (7:41)

From these total differentials, which are obtained with use only of definitions and the
first and second laws, we can see why T and P are natural variables for G and Y,
whereas T and V are natural variables for A.

Pressure and Temperature Derivatives of the Functions

As dG is a criterion for equilibrium and spontaneity at constant T and P, and as T and
P are natural variables for G, it is useful to express the total differential when consid-
ering G as a function of T and P. That is,

dG ¼ @G

@T

� �
P

dT þ @G

@P

� �
T

dP (7:42)

If we compare the coefficients of dP and dT in Equations (7.38) and (7.42), it is
clear that

@G

@P

� �
T

¼ V (7:43)

and

@G

@T

� �
P

¼ �S (7:44)

In addition to determining the dependence of G on pressure for a substance, it is
useful to determine the dependence of DG on pressure for a transformation. To do so,
let us represent a transformation by the equation

Aþ B ¼ C þ D (7:45)
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where A and B are reactants and C and B are products, and use Equation (7.43)
to write

@GA

@P

� �
T

¼ VA

@GB

@P

� �
T

¼ VB

@GC

@P

� �
T

¼ VC

@GD

@P

� �
T

¼ VD

9>>>>>>>>>>>>=
>>>>>>>>>>>>;

(7:46)

Subtracting the sum of the pressure coefficients for the reactants from that for the
products, we obtain the desired relationship:

@GC

@P

� �
T

þ @GD

@P

� �
T

� @GA

@P

� �
T

� @GB

@P

� �
T

¼ VC þ VD � VA � VB (7:47)

or

@DG

@P

� �
T

¼ DV (7:48)

Similarly it can be shown that

@DG

@T

� �
P

¼ �DS (7:49)

If the same operations are carried out using the Helmholtz function, with natural
variables T and V, the results are

@A

@V

� �
T

¼ �P (7:50)

@DA

@V

� �
T

¼ �DP (7:51)

@A

@T

� �
V

¼ �S (7:52)

@DA

@T

� �
V

¼ �DS (7:53)
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For Y as a function of the natural variables T and P, the results are

@Y

@P

� �
T

¼ �V

T
(7:54)

@Y

@T

� �
P

¼ H

T2
(7:55)

@DY

@P

� �
T

¼ �DV

T
(7:56)

@DY

@T

� �
P

¼ DH

T2
(7:57)

Equations Derived from the Reciprocity Relationship

As G(T, P), A(T, V ), and Y(T, P) are thermodynamic properties, the reciprocity
relationship [Equation (2.23)] applies. Thus, for G, we may write

@

@T

@G

@P
¼ @

@P

@G

@T
(7:58)

According to Equations (7.43) and (7.44)

@G

@P

� �
T

¼ V

and

@G

@T

� �
P

¼ �S

Hence

@

@T

@G

@P
¼ @V

@T

� �
P

¼ @

@P

@G

@T
¼ � @S

@P

� �
T

or

@S

@P

� �
T

¼ � @V

@T

� �
P

(7:59)

By a similar set of operations on A, we can show that

@S

@V

� �
T

¼ @P

@T

� �
V

(7:60)
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Similarly, with Y, we can show that

@H

@P

� �
T

¼ V � T
@V

@T

� �
P

(7:61)

7.3 THE GIBBS FUNCTION AND CHEMICAL REACTIONS

In the preceding sections, we established the properties of the Gibbs, Helmholtz,
and Planck functions as criteria for equilibrium and spontaneity of transformations.
Thus, from the sign of DG, DA, or DY, it is possible to predict whether a given
chemical transformation can proceed spontaneously under the respective appropriate
conditions.

Standard States

Like U and H, G and Y can only be determined relative to some reference state or
standard state. The standard states that have been agreed to are given in Table 7.1.
The most stable form is that with the lowest value of G or the highest value of Y.

Another important concept is that of the standard change in the Gibbs function for
the formation of a substance DfG8m (Tables 7.2 through 7.5). By this we shall mean the
change in the Gibbs function that accompanies the formation of one mole of a sub-
stance in its standard state from its elements in their standard states, with all of the
substances being at the specified temperature. For example, the standard change in
the Gibbs function for the formation of CO2 given in Table 7.2 refers to the reaction

C(graphite, P8)þ O2(g, P8) ¼ CO2(g, P8),

DGm ¼ DfGm8 ¼ 394:360 kJ mol�1 (7:62)

It is a consequence of this definition that DfGm8 for any element is zero.

TABLE 7.1. Standard States for Gibbs Function and Planck Function

Standard state of
solid

Pure solid in most stable form at 1 bar pressure (100 kPa) and the
specified temperature

Standard state of
liquid

Pure liquid in most stable form at 1 bar pressure (100 kPa) and the
specified temperature

Standard state of
gas

Pure gas at unit fugacitya; for an ideal gas, fugacity is unity when
pressure is 1 bar (100 kPa); at specified temperature

aThe term fugacity has yet to be defined. Nevertheless it is used in this table because reference is made
to it in future problems. For now, the standard state of a gas may be considered to be that of an ideal
gas—1 bar pressure.
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From Equation (7.24), we can see that

DfYm8 ¼ �DfGm8
T

¼ 1:3227 kJ mol�1 K�1

The standard change in the Gibbs function DGm8 for any reaction is also an
important quantity. DGm8 is the change in the Gibbs function that accompanies

TABLE 7.2. Standard Gibbs Function for Formation of a Compound at 298.15 Ka

Substance DfGm8 /(kJ mol21) Substance DfGm8 /(kJ mol21)

H(g) 203.247 Methane(g) 250.72
O(g) 231.731 Ethane(g) 232.82
Cl(g) 105.680 Ethene(g) 68.15
Br(g) 82.396 Ethyne(g) 209.200
Br2(g) 3.110 Methanol(l) 2166.269
I(g) 70.250 Ethanol(l) 2174.780
I2(g) 19.327 Glycine(s) 2368.44
H2O(g) 2228.572 Acetic acid(l) 2389.9
H2O(l) 2237.129 Taurine(s) 2561.7
HF(g) 2273.2 Urea(s) 2197.331
HCl(g) 295.299 SiO2(s); a quartz 2856.64
HBr(g) 253.45 SiO2(s); a cristobalite 2855.43
HI(g) 1.70 SiO2(s); a tridymite 2855.26
ICl(g) 25.46 CaSO4(s); anhydrite 21321.790
NO(g) 86.55 CaSO4(s) . 2H2O; gypsum 21797.28
CO(g) 2137.168 FeSO4(s); fayalite 21479.9
CO2(g) 2394.359 MgSO4(s); forsterite 2055.1
NH3(g) 216.45 SO2(g) 300.194
SO3(g) 2371.06

aDfGm8 from The NBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11,
Supplement No. 2 (1982).

TABLE 7.3. Standard Gibbs Function for Formation of a Compound at 298.15 Ka

Substance DfGm8 /(kJ mol21) Substance DfGm8 /(kJ mol21)

CO(g) 2137.2 Propene(g) 62.2
CO2(g) 2394.4 Propane(g) 224.3
Methane(g) 250.5 12Butene(g) 70.4
Methanol(g) 2162.2 Butane(g) 215.9
Ethyne(g) 210.7 Benzene(g) 129.8
Ethene(g) 68.5 Cyclohexane(g) 32
Acetic acid(g) 2382.9 Toluene(g) 122.3
Ethane(g) 231.9 o-Xylene(g) 122.1
Ethanol(g) 2167.7 m-Xylene(g) 118.9

p-Xylene(g) 121.5

aDfGm8 from M. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, G. N. Roganov, Thermodynamics of
Organic Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
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one mole (see Table 2.1) of the conversion of reactants in their standard states to
products in their standard states. As the Gibbs function is a thermodynamic property
and does not depend on the path used to carry out a transformation, a simple addition
of reactions and their Gibbs functions can be used to obtain

DGm8 ¼
X

nDfGm8 (products)�
X

nDfGm8 (reactants) (7:63)

where the v’s represent the stoichiometric coefficients in the reaction.

7.4 PRESSURE AND TEMPERATURE DEPENDENCE OF DG

When studying geological problems, we are particularly interested in reactions that
take place over a wide range of pressures and temperatures. Therefore, we are

TABLE 7.4. Standard Gibbs Function for Formation of a Compound at 298.15 Ka

Substance DfGm8 /(kJ mol21) Substance DfGm8 /(kJ mol21)

Br2(g) 3.1 CuSO4(s) 2662.3
I2(g) 19.3 CuSO4 . 5H2O(s) chalcanth 21880.0
C(diamond) 2.9 CaSO4

. 2H2O(s); gypsum 21797.0
CO(g) 2137.1 CaSO4(s); anhydrite 21321.8
CO2(g) 2394.4 CaSiO3(s); wollastinite 21549.0
NO2(g) 51.2 SiO2; a quartz 2856.3
SO2(g) 2300.1 SiO2; a tridymite 2854.6
SO3(g) 2371.0 SiO2; a cristobalite 2853.8
S(monoclinic) 0.0 CH4(g) 250.7
MgO(s) 2569.3 NH3(g) 216.4
Mg2SiO4(s) 2053.6 Fe2SiO4; fayalite 21379.1
H2O(l) 2237.1 H2O(g) 2228.6

aDfGm8 from R. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related
substances, U. S. Geological Survey Bulletin 2131, 1995.

TABLE 7.5. Standard Gibbs Function for the Formation of
a Compound at 298.15 Ka

Substance DfGm8 /kJ mol21

HBr(g) 253.513
CO(g) 2137.163
CO2(g) 2394.389
HF(g) 2274.646
H2O(g) 2228.582
NH3(g) 216.367
HCl(g) 295.300

aDfGm8 from M. W. Chase, Jr., NIST-JANAF Thermochemical Tables,
4th ed., J. Phys. Chem. Reference Data Monograph No: 9, 1998.
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interested in the pressure and temperature dependence of DG. According to Equations
(7.48) and (7.49):

@DG

@P

� �
T

¼ DV and
@DG

@T

� �
P

¼ �DS

Thus, the total differential for DG can be written as

d(DG) ¼ @DG

@T

� �
P

dT þ @DG

@P

� �
T

dP ¼ �(DS)dT þ (DV)dP (7:64)

If Equation (7.64) is integrated from a reference temperature and pressure of 298 K
and P ¼ P8 to any temperature T 0 and pressure P0, we obtain

ðP0,T 0

P¼P8,T¼298

d(DG) ¼
ðP¼P8,T

P¼P8,T 0¼298

(�DS)dT þ
ðP0,T 0

P¼P8,T

(DV)dP (7:65)

From Equation (7.65), we can see that the first integral on the right side is integrated
with respect to temperature at constant pressure P8 and that the second integral on
the right side is integrated with respect to pressure at constant temperature T 0.
Thus, the temperature dependence and the pressure dependence can be dealt with
independently.

Temperature Dependence. A simple expression for the temperature dependence
is found if we remember that [Equation (7.26)]

DG(P ¼ P8, T 0) ¼ DH(P ¼ P8,T 0)�T 0DS(P ¼ P8, T 0)

and that from Equation (4.55)

@DH

@T

� �
P

¼ DCP (7:66)

and from Equation (6.78)

@DS

@T

� �
P

¼ DCP

T
(7:67)
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In view of Equation (7.66) and Equation (7.67), we can write Equation (7.26) as

DG(P ¼ P8,T 0) ¼DH(P ¼ P8,298K)þ
ðT 0

T¼298

(DCP)dT

�T 0DS(P ¼ P8,298K)� T 0
ðT 0

T¼298

DCP

T
dT (7:68)

in which the integrations with respect to temperature are carried out at P ¼ P8.

Pressure Dependence. As [Equation (7.48)]

@DG

@P

� �
T

¼ DVT

in which the subscript T indicates that DV is a function of T, we can write

DG(P0,T 0) ¼ DG(P ¼ P8,T 0)þ
ðP0

P¼P8

(DV)T 0dP (7:69)

in which integration with respect to P is carried out at temperature T 0 and (DV )T 0 must
be known at every temperature T 0 at which the integration is carried out.

General Expression. If we add Equation (7.68) and Equation (7.69), we obtain

DG(P0,T 0) ¼ DH(P ¼ P8,298K)� TDS(P ¼ P8,298K)

þ
ðT 0

T¼298

(DCP)dT � T 0
ðT 0

T¼298

DCP

T
dT þ

ðP0

P¼P8

(DV)TdP (7:70)

It can be seen from Equation (7.70) that to calculate DG at any temperature and
pressure we need to know values of DH and DS at standard conditions (P ¼ 100
kPa, T ¼ 298 K), the value of DCP as a function of temperature at the standard
pressure, and the value of DVT as a function of pressure at each temperature T 0.
Thus, the temperature dependence of DCP and the temperature and pressure depen-
dence of DVT are needed. If such data are available in the form of empirical equations,
the required integrations can be carried out analytically. If the data are available in
tabular form, graphical or numerical integration can be used. If the data are not avail-
able, an approximate result can be obtained by assuming DCP and DVT are constant
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over the range of interest. The approximate result if both are assumed constant is

DG(P0, T 0) ¼ DH(P ¼ P8, 298K)� T 0DS(P ¼ P8, 298K)

þ DCP(P ¼ P8)[T 0 � 298]� TDCP(P ¼ P8)[ ln T 0 � ln (298)]

þ (DV)(P0 � P8) (7:71)

7.5 USEFUL WORK AND THE GIBBS AND
HELMHOLTZ FUNCTIONS

Thus far we have observed that the Gibbs and Planck functions provide the criteria of
spontaneity and equilibrium in isothermal changes of state at constant pressure. If we
extend our analysis to systems in which other constraints are placed on the system,
and therefore work other than mechanical work can be performed, we find that the
Gibbs and Helmholtz functions also supply a means for calculating the maximum
magnitude of work obtainable from an isothermal change.

Isothermal Changes

We can begin with Equation (7.1) as a statement of the combined first and second
laws, which were rearranged to

dU � DW � TdS 	 0 (7:72)

As we are concerned with isothermal changes, 2SdT can be added to the left side of
Equation (7.74) without changing its value:

dU � TdS� SdT � DW 	 0
or

d(U � TS)� DW 	 0or

dA� DW 	 0or

dA 	 dW (7:73)

As constraints other than the constant pressure of the environment are now
considered, the one-to-one relationships between reversibility and equilibrium on
the one hand and irreversibility and spontaneity on the other hand are no longer
valid. A spontaneous change of state or the opposite change, a nonspontaneous
change, can be carried out reversibly by the appropriate adjustment of a constraint,
such as an electrical voltage. As before, the inequality applies to an irreversible
process and the equality to a reversible process. If the change of state is spontaneous,
dA is negative, work can be performed on the surroundings, and DW is negative. The
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value for dA is the same for a change of state whether it is carried out reversibly or
irreversibly. The reversible work, DWrev, then is equal to dA, whereas the irreversible
work, DWirrev, is algebraically greater than dA but smaller in magnitude. For a macro-
scopic change, we can write

DA ¼ Wrev

DA , Wirrev

	
(7:74)

The change in the Helmholtz function thus provides a limiting value for the magni-
tude of the total work (including work against the pressure of the atmosphere) obtain-
able in any spontaneous, isothermal process. That is,

jWrevj . jWirrevj (7:75)

and the magnitude of the reversible work is a maximum. If the change of state is not
spontaneous, dA is positive, work must be performed on the system to produce the
change, and DW is positive. Then Wrev is the minimum work required to carry out
a nonspontaneous change of state.

An interesting alternative demonstration of Equation (7.75) can be carried out on
the basis of isothermal cycles and of the Kelvin–Planck statement of the second law.
Consider two possible methods of going from State a to State b, a spontaneous
change of state, in an isothermal fashion (Fig. 7.1): (1) a reversible process and (2)
an irreversible process.

For each path, the first law of thermodynamics is valid:

DUrev ¼ Qrev þWrev

DUirrev ¼ Qirrev þWirrev

DUrev ¼ DUirrev

Figure 7.1. An isothermal process.
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Both processes begin and end at the same points, and U is a state function; thus,

Qrev þWrev ¼ Qirrev þWirrev
or

Qrev � Qirrev ¼ �(Wrev �Wirrev) (7:76)

Let us assume that the spontaneous irreversible process gives work of a greater mag-
nitude than the spontaneous reversible one. In that case

jWirrevj . jWrevj
and, from Equation (7.78), as W is negative for both alternatives,

Qirrev . Qrev

Let us use the irreversible process (which goes in only one direction) to carry the
system from State a to State b and the reversible process to return the system to its
initial state. We can construct a table for the various steps (Table 7.6). As we can
see from Table 7.6, the net result is that a positive amount of heat has been absorbed
and work has been performed on the surroundings in an isothermal cycle. However,
such a consequence is in contradiction to the Kelvin–Planck statement of the second
law of thermodynamics, which denies the possibility of converting heat from a reser-
voir at constant temperature into work without some accompanying changes in the
reservoir or its surroundings. In the postulated cyclical process, no such accompany-
ing changes have occurred. Hence, the original assumption is incorrect and the irre-
versible work cannot be greater in magnitude than the reversible work:

jWrevj � jWirrevj (7:77)

Thus, the reversible work is a limiting maximum value for the magnitude of work
obtainable in an isothermal change, with the equality applying to the limit when
the process becomes reversible.

Changes at Constant Temperature and Pressure

Equation (7.74) can be rewritten to include explicit reference to DWnet, the net useful
(non-PdV ) work, by substituting 2P0dVþDWnet for DW. That is,

dU þ P0dV � DWnet � TdS 	 0 (7:78)

TABLE 7.6. Isothermal Cycle

Irreversible Process
(Forward)

Reversible Process
(Backward)

Net for Both
Processes

Heat absorbed Qirrev 2Qrev Qirrev2Qrev . 0
Work performed Wirrev 2Wrev Wirrev2Wrev , 0
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For a constant-pressure process, PdV can be substituted for P0dV, and VdP can
be added without changing the value of the expression. As the temperature is con-
stant, 2SdT also can be added. With these additions and substitutions, Equation
(7.78) becomes

dU þ PdV þ VdP� TdS� SdT 	 DWnet

or [see Equation (7.15)]

dG 	 DWnet (7:79)

For a spontaneous change at constant T and P, dG is negative, work can be obtained,
and DWnet is negative. The value of dG is the same for a given change of state
whether it proceeds irreversibly in the absence of additional constraints, or whether
it follows a reversible path or proceeds irreversibly when subjected to additional con-
straints (for example, electrical). If the process is reversible, the equality in Equation
(7.79) applies. If the process is irreversible, the inequality applies. Thus DWnet,rev is
equal to dG, whereas DWnet,irrev is greater algebraically than dG but smaller in mag-
nitude. For a macroscopic change, we can write

DG ¼ Wnet,rev

DG , Wnet,irrev

	
(7:80)

If the change of state is spontaneous, jDGj is equal to the maximum magnitude of
non-PdV work that can be obtained. If the change of state is nonspontaneous, DG is
equal to the minimum non-PdV work that must be performed to carry out the change.

Relationship between DHP and QP When Useful Work is Performed

We repeatedly have used the relationship [Equation (4.6)]

DHP ¼ QP

but always with the stipulation that pressure on the system is constant and that no
work exists other than expansion work. Most chemical reactions are carried out
under these conditions; hence, the heat of a reaction has been valuable as a
measure of the enthalpy change. If nonatmospheric work also is being obtained,
Equation (4.6) is no longer valid. The value of QP under these conditions can be
obtained as follows. From the first law

dU ¼ DQþ DW

¼ DQ� P0dV þ DWnet

For a constant-pressure process, PdV can be substituted for P0dV, so that

dU þ PdV ¼ DQþ DWnet
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But at constant pressure, from Equation (4.3),

dH ¼ dU þ PdV

and we have, explicitly indicating the constancy of pressure,

or
dHP ¼ DQP þ DWnet

DHP ¼ QP þWnet

9=
; (7:81)

Only when Wnet is equal to zero is Equation (4.6) applicable.

Application to Electrical Work

Electrical work is among the most common kinds of nonmechanical work obtained
from chemical transformations. The ordinary storage battery and the electric cell are
examples of systems in which electrical work is produced from chemical transform-
ations. In both cases, the change in the Gibbs function gives the limiting value of the
magnitude of electrical work; in a spontaneous process, the actual value is always less
in magnitude than the decrease in the Gibbs function.

An example in which the relationships can be explored in some detail is the for-
mation at constant T and P of one mole of aqueous HCl from the gaseous elements H2

and Cl2:

1
2
H2(g)þ 1

2
Cl2(g) ¼ HCl(aq) (7:82)

If the gaseous mixture is exposed to a photochemical stimulus in the absence of any
other constraints, the reaction proceeds spontaneously and irreversibly. Thus,

dGm , 0

and

DWnet ¼ 0

The reaction also can be carried out reversibly if additional constraints are placed
on the system, as in the cell illustrated by Figure 7.2. The H2 and Cl2 electrodes
are connected to a potentiometer. If the electromotive force of the cell is opposed
by the electromotive force of the potentiometer, which is maintained at an infinitesi-
mally lower value than that of the H2–Cl2 cell, then the conversion to HCl can be
carried out reversibly, although it would take an infinitely long time to obtain one
mole of reaction. The change in the Gibbs function is the same for either the revers-
ible or the explosively spontaneous path for carrying out the transformation, because
the initial and final states are the same in both cases. However, the amount of useful
(electrical) work is different, and, for the reversible path

DWnet = 0
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When electrical work is obtained from the reaction under reversible conditions,
that is, against a counterpotential only infinitesimally smaller than that of the cell,
then

Welec ¼ Wnet,rev

¼ ( potential difference)� (charge transferred)

¼ (E )(�nF )

(7:83)

in which E is the counterpotential, which is equal to the cell potential under revers-
ible conditions, F is the charge of one mole of protons, and n is the stoichiometric
coefficient of the electron in each half-reaction of the cell reaction. It follows from
Equation (7.80) and Equation (7.83) that

DGm ¼ �nF E (7:84)

The potentiometer also can be kept at a finitely lower potential than the cell. In this
case, the reaction would proceed spontaneously, but the work obtained would be less
in magnitude than the value given in Equation (7.83). If the potentiometer is kept at a
potential greater than that of the cell, the reverse of Equation (7.82) will occur, irre-
versibly, with DG positive and Wnet positive. Then Wnet,rev is the minimum work
required to reverse the process in Equation (7.82).

Gibbs–Helmholtz Equation

It is of interest to consider the temperature dependence of the potential of an electro-
chemical cell. For an isothermal reaction [Equation (7.26)]

DGm ¼ DHm � TDSm

Figure 7.2. Formation of aqueous HCl in a reversible manner.
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From Equation (7.49)

DSm ¼ � @DGm

@T

� �
P

It follows that

DGm ¼ DHm þ T
@DGm

@T

� �
P

(7:85)

Equation (7.85) frequently is called the Gibbs–Helmholtz equation. From it, the
temperature coefficient of the free energy change (@DGm,P,T/@T)P can be obtained
if DGm and DHm are known. By differentiating Equation (7.83), we obtain

@DGm

@T

� �
P

¼ �nF
@E

@T

� �
P

(7:86)

because n and F are temperature-independent quantities. Substitution of Equations
(7.83) and (7.86) into Equation (7.85) gives

�nF E ¼ DHm � nF T
@E

@T

� �
P

(7:87)

or, on rearrangement, an alternative form of the Gibbs–Helmholtz equation

DHm ¼ nF T
@E

@T

� �
P

�E

� �
(7:88)

so that DHm can be obtained from measurements of cell potential and its temperature
derivative.

The Gibbs Function and Useful Work in Biologic Systems

As biologic systems operate at constant temperature and pressure, the change in the
Gibbs function of a reaction occurring in a biologic system is a measure of the
maximum magnitude of the net useful work that can be obtained from the reaction.

Biosynthetic Work. One primary function in a biologic system of spontaneous
reactions, which occur with a decrease in the Gibbs function (exergonic reactions),
is to make possible synthetic nonspontaneous reactions, which occur with an increase
in the Gibbs function (endergonic reactions). The statement about maximum work
can be paraphrased for this case: An exergonic reaction can make an endergonic reac-
tion feasible if the increase in the Gibbs function of the endergonic reaction is smaller
than the decrease in the Gibbs function of the exergonic reaction. In fact, such a coup-
ling of exergonic and endergonic reactions can occur only if the two reactions have a
common intermediate.
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The hydrolysis of adenosine triphosphate (ATP), an exergonic reaction [Equation
(7.89)], is frequently used in biologic systems to drive endergonic reactions. The
value of DGm8 for this reaction is 229,300 J mol21.

(7:89)

For ATP to carry out this function, it has to be produced from adenosine diphosphate
(ADP) in an endergonic reaction that must be driven by another exergonic metabolic
reaction. One exergonic reaction step that occurs in the overall oxidation of glucose in
the cell is the oxidation of 3-phosphoglyceraldehyde to 3-phosphoglycerate by pyru-
vate, for which DGm8 ¼ 229,300 J mol21.

(7:90)

As it occurs in the cell, the reaction (Equation 7.90) involves a mole of inorganic
phosphate:

(7:91)
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The 1,3-diphosphoglycerate that is formed then reacts with adenosine diphosphate to
form adenosine triphosphate and 3-phosphoglycerate:

(7:92)

The net result of Equations (7.91) and (7.92) is the same as the sum of Equation
(7.90), for which DGm8 ¼ 229,300 J mol21, and the formation of ATP
from ADP, the reverse of Equation (7.90) for which DGm8 ¼ þ29,300 J mol21.
Thus, the value of DGm8 for the overall reaction is 0, which means that reactants
and products exist at comparable concentrations, with ATP available to drive other
reactions.

One such reaction that uses ATP as the source of the driving potential is the
synthesis of sucrose from glucose and fructose:

(7:93)
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for which DGm8 ¼ 23,000 J mol21. The first step in this reaction in the cell is that of
ATP with glucose to form glucose 1-phosphate:

(7:94)

Following the reaction in Equation (7.94), the glucose 1-phosphate reacts with fruc-
tose to form sucrose:

(7:95)

The sum of Equations (7.94) and (7.95) is the same as the sum of Equation (7.93) and
Equation (7.89) so the net standard change in the Gibbs function is

DGm8 ¼ 23,000 J mol�1 � 29,300 J mol�1

¼ �6,300 J mol�1

Thus, the sum of the two reactions is spontaneous when reactants and products are in
their standard states.
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Mechanical Work. All cells exhibit motile and contractile properties. The remark-
able thing about these activities of cells is that they are based on the direct coupling of
chemical to mechanical action, in contrast to the heat engines that we have developed
to perform our work for us. The mechanisms by which this coupling of chemical to
mechanical processes takes place is not well understood, but the hydrolysis of adeno-
sine triphosphate is known to be an important part of the molecular pathway.
Although thermodynamic studies cannot provide information about the molecular
steps involved, any mechanism that is proposed must be consistent with thermodyn-
amic data [4].

Osmotic Work. It is characteristic of living cells that they maintain nonequilibrium
values of the concentrations of certain solutes on opposite sides of membranes, par-
ticularly ions such as Naþ and Kþ. It is this nonequilibrium distribution of ions that
probably is responsible for the electrical potentials developed by living organisms.
Again, although thermodynamic data do not lead to deductions about molecular
mechanisms, they provide limiting values with which any mechanism must be con-
sistent. We shall discuss the thermodynamic aspects of osmotic work in detail when
we have developed the methods required to deal with solutions.

EXERCISES

7.1. Prove the validity of Equations (7.39) and (7.60).

7.2. Derive the following expressions:

a. This expression is useful because it suggests an independent variable that
frequently leads to a linear plot for DY or DG/T.

@DY

@(1=T)

� �
P

¼ � @(DG=T)
@(1=T)

� �
P

¼ �DH (7:96)

b. Although T and P are the natural independent variables for G, it is some-
times useful to express G as a function of T and V. Derive the total differ-
ential of G as a function of T and V.

dG ¼ V
@P

@V

� �
T

dV þ V
@P

@T

� �
V

� S

� �
dT (7:97)

7.3. Derive the total differential for the Massieu function J, with natural variables T
and V; determine (@J/@T )V and (@J/@V )T; and show that

@U

@V

� �
T

¼ �Pþ T
@P

@T

� �
V

(7:98)
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7.4. If a rubber band is stretched, the reversible work is given by

DW ¼ tdL

in which t is the tension on the band and L is its length.

a. If the stretching is carried out at constant pressure, show that

dG ¼ tdL � SdT

b. Show also that

@G

@L

� �
T

¼ t

c. Prove that

@t

@T

� �
L

¼ � @S

@L

� �
T

d. Assuming that the volume of the rubber band does not change during
stretching, derive the following equation from fundamental thermodynamic
principles:

@U

@L

� �
T

¼ tþ T
@S

@L

� �
T

¼ t� T
@t

@T

� �
L

e. For an ideal gas, it can be shown that

1
P

@P

@T

� �
V

¼ 1
T

Show that the corresponding equation for an “ideal” rubber band is

1
t

@t

@T

� �
L

¼ 1
T

7.5. One mole of an ideal gas at 273.15 K is allowed to expand isothermally from
10.0 MPa to 1MPa.

a. Calculate (and arrange in tabular form) the values ofW,Q, DUm, DHm, DSm,
DGm, and DAm of the gas if the expansion is reversible.

b. Calculate (and arrange in tabular form adjacent to the preceding table) the
values of W, Q, DUm, DHm, DGm, and DAm of the entire isolated system
(gas plus its environment) if the expansion is reversible.
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c. Calculate (and arrange in tabular form adjacent to the preceding tables) the
values of the same thermodynamic quantities in (a) for the gas if it is
allowed to expand freely so that no work whatever is performed by it.

d. Calculate (and arrange in tabular form adjacent to the preceding tables) the
values of the same thermodynamic quantities in (b) for the entire isolated
system if the expansion is free.

7.6. A mole of steam is condensed reversibly to liquid water at 1008C
and 101.325-kPa (constant) pressure. The heat of vaporization of water is
2256.8 J g21. Assuming that steam behaves as an ideal gas, calculate W, Q,
DUm, DHm, DSm, DGm, and DAm for the condensation process.

7.7. Using thermal data available in this and preceding chapters, derive an
expression for DGm8 as a function of temperature for the reaction

CO(g)þ 1
2
O2(g) ¼ CO2(g)

7.8. If the heat capacities of reactants and products are expressed by equations of
the form

CPm ¼ aþ bT
c0

T2

in which a, b, and c0 are constants, what will be the form of the equation for
DGm as a function of temperature?

7.9. Dickson et al. [5], calculated the Gibbs function for the ionization of the
bisulfate ion by measurement of cell potentials in the temperature range
from 508 to 2508C. They found that the Gibbs function could be represented
by the equation

DG8 ¼ �10772:95 T þ 254118:2þ 1952:635 T ln T � 4:743192T2

þ 2:138535� 10�3T3

a. What does the form of the temperature dependence imply about the temp-
erature dependence of DCP?

b. Derive expressions for DYm8, DHm8, DSm8, and DCPm8 as a function of tempe-
rature, and calculate values at 508C and 2008C.

7.10. In theories of electrolytes, it is customary to regard the Gibbs function of the
solution as composed of two parts: Gu, the Gibbs function of the uncharged
particles, and Ge, the addition to the Gibbs function resulting from charging
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the particles to form ions. Ge can be given by the equation

Ge ¼ � 2p1=2N3=2
1 13V(nþZ2

þ þ n � Z 2)3=2

3D3=2(kT)1=2
(7:99)

in which

N1¼ number of molecules per unit volume of solution

e ¼ charge on electron

V ¼ volume of solution

nþ¼ number of positive ions per molecule

Zþ¼ number of charges on each positive ion

n_ ¼ number of negative ions per molecule

Z_ ¼ number of charges on each negative ion

D ¼ dielectric constant of solution

k ¼ Boltzmann constant

T ¼ absolute temperature

a. Assume that V and D do not change with temperature. Show that

He ¼ 3
2
Ge

and that

Se ¼ Ge

2T

b. It is obvious from Equation (7.99) that Ge is a negative quantity. Hence, Se
must be negative. What does this mean about the number of possible
arrangements in a solution of ions as compared with the number in an equiv-
alent solution of uncharged particles? How would you interpret this differ-
ence in terms of the molecular structure of the solution?

7.11. A spring obeys Hooke’s law, t ¼ 2Kx, in which t is the tension and x is the
displacement from the equilibrium position. For a particular spring at 258C,
K ¼ 2.0�1026 N m21 and dK/dT ¼ 21.0�1028 N m21 K21.

a. The spring is placed in a thermostat at 258C and stretched in a reversible
manner from x ¼ 0 m to x ¼ 0.010 m. How much heat is given to or
absorbed from the thermostat by the spring?
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b. The spring then is allowed to snap back to its original position without per-
forming any work. How much heat would it deliver into the thermostat?

7.12. Consider as an example the equilibrium

H2O(l) ¼ H2O(g)

at some fixed temperature. Let n represent the number of moles of H2O(g), and
let G and V represent the total Gibbs function and the total volume of all the
substances involved. Equilibrium exists if

@G

@n

� �
P

¼ 0

a. Show that

@G

@n

� �
V

¼ @G

@n

� �
P

þ @G

@P

� �
n

@P

@n

� �
V

b. Prove then that

@A

@n

� �
V ,T

¼ @G

@n

� �
P,T

7.13. For stretching a film of water at constant pressure and temperature until its area
is increased by 1 m2, the change in the Gibbs function DG is given by the
equation

DG ¼ 7:564� 10�6 J � (1:4� 10�8 J K�1)t

in which t is the temperature in degrees Celsius at which the stretching is
carried out. When the film is stretched, the total volume of the water is not
changed measurably.

a. How much work must be performed to increase the area of the film rever-
sibly by 1 m2 at 108C?

b. How much heat will be absorbed in the process in (a)?

c. Calculate DU, DH, DS, and DA for (a).

d. After the film has been stretched 1 m2 reversibly, it is allowed to contract
spontaneously and irreversibly to its original area. No work is regained in
this process. What is DG for this step?

e. Calculate Q, DU, DH, DS, and DA for the process in (d).
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7.14. An electrochemical cell is placed in a thermostated bath at 258C and 101.325
kPa, under which conditions it produces an emf of 0.100 V. For this cell,
@E/@T is 1�1024 V K21.

a. If electrical work is performed on this cell and it is charged reversibly until 1
faraday of charge has been passed through it, how much heat is given to or
absorbed from the thermostat?

b. If the charged cell is short-circuited, so that no electrical work is obtained
from it, and it is allowed to return to its initial state in (a), how much heat
is given to or absorbed from the thermostat?

7.15. In the synthesis of sucrose, 23,000 J of the 29,300 J available from the hydroly-
sis of ATP are used for synthetic work. If we call 23,000/29,300 the efficiency
of this pair of reactions carried out at 378C, and if we consider 378C equivalent
to the temperature of the high-temperature reservoir of a heat engine, what
would the temperature of the low-temperature reservoir have to be to attain a
comparable efficiency for a reversible Carnot engine?

7.16. Hawley [6] has measured the change in the Gibbs function for the transition
from native to denatured chymotrypsinogen as a function of temperature and
pressure. The reaction can be described as

N(native) ¼ D(denatured)

The following values were found for the given thermodynamic functions at
08C and 101.325 kPa:

DGm8 ¼ 10,600 Jmol�1

DSm8 ¼ �950 Jmol�1 K�1

DVm8 ¼ �14:3� 10�6 m3 mol�1

(@DVm8=@T)P ¼ 1:32� 10�6 m3 mol�1 K�1

(@DVm8=@P)T ¼ �0:296� 10�12 m6 J�1 mol�1

DCPm ¼ 16,000 Jmol�1 K�1

Calculate the value of DGm at 358C and 300MPa assuming that DCPm,
(@DVm/@T )P, and (@DVm/@P)T remain constant over that range of temperature
and pressure.

7.17. The oxygen-binding protein hemerythrin exists as an octamer in equilibrium
with its monomers:

8 Hr ¼ Hr8
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At pH 7.0 and 258C, Langerman and Klotz [7] found DGm8 ¼ 224.3 kJ mol21

(monomer). Langerman and Sturtevant [8] found DHm ¼ 4+2 kJ mol21

(monomer). Calculate DSm for the formation of one mole of the octamer.

a. What are the values of DYm8 and DGm8 at 258C?
b. Derive an equation for DHm8 as a function of the temperature.

c. Calculate the value of DHm8 at 258C.
d. What is the value of DSm8 at 258C?
e. Calculate DCPm8 at 258C for the reaction.

f. What does the form of the function for the ionization constant as a function
of temperature imply about the temperature dependence of DCP?

g. Derive expressions for DYm8, DGm8, DHm8, DSm8, and DCPm8 as a function of
temperature, and calculate values at 508C and 2008C.

7.18. Derive the equation

mJT ¼ 1
CP

T
@V

@T

� �
P

�V

� �
(7:100)

Hint: Remember Equation (5.70), and use the total differential for DY.
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CHAPTER 8

APPLICATION OF THE GIBBS
FUNCTION AND THE PLANCK
FUNCTION TO SOME PHASE
CHANGES

Now that we have developed convenient criteria for equilibrium and for spontaneity
we can apply the laws of thermodynamics to problems of interest. In this chapter,
we will deal with changes of phase in one-component systems, which are transform-
ations of concern to the chemist and of particular concern to the geologist and the
materials scientist.

8.1 TWO PHASES AT EQUILIBRIUM AS A FUNCTION
OF PRESSURE AND TEMPERATURE

The equations that describe equilibrium conditions between two phases of the same
substance are derivable from the two laws of thermodynamics with the aid of the
functions that we defined in the preceding chapter. Let us represent the equilibrium
in a closed system at any given temperature and pressure by the equation

Phase A ¼ Phase B (8:1)

As the system is at equilibrium at con stant temperature and pressure, any infinitesi-
mal transfer of matter between Phase A and Phase B occurs with a change of zero in
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the Gibbs function and in the Planck function. That is,

dG ¼ GmAdnA þ GmBdnB ¼ 0

dY ¼ YmAdnA þ YmBdnB ¼ 0
(8:2)

in which GmA and GmB are the molar Gibbs functions of A and B, YmA and YmB are
the respective Planck functions, and dnA and dnB are the infinitesimal changes in the
number of moles of A and B. As the system is closed, dnB ¼ 2dnA and

(GmA � GmB)dnA ¼ 0

(YmA � YmB)dnA ¼ 0
(8:3)

As Equation (8.3) holds for any infinitesimal transfer dnA whatsoever, the quantities
in parentheses must equal zero and

GmA ¼ GmB

YmA ¼ YmB
(8:4)

If the temperature and pressure are changed by amounts dT and dP such that the
system reaches a new state of equilibrium, then the molar Gibbs functions of A and B
change by amounts of dGA and dGB such that

GmA þ dGmA ¼ GmB þ dGmB

or

dGmA ¼ dGmB (8:5)

Similarly,

dYmA ¼ dYmB (8:6)

Clapeyron Equation

If we apply Equation (7.38) for the total differential of G to the quantities in Equation
(8.5), the result is

dGmA ¼ VmAdP� SmAdT (8:7)
and

dGmB ¼ VmBdP� SmBdT (8:8)

in which VmA and VmB are the molar volumes of A and B and SmA and SmB are the
molar entropies. If we substitute from Equations (8.7) and (8.8) into Equation (8.5),
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we obtain

VmBdP� SmBdT ¼ VmAdP� SmAdT

which can be rearranged to give

(VmB � VmA)dP ¼ (SmB � SmA)dT

Consequently

dP

dT
¼ SmB � SmA

VmB � VmA
¼ DSm

DVm
(8:9)

From Equation (8.9), we conclude that T and P are functions of each other at equili-
brium. Once a value of T or P is chosen, the value of the other is fixed by Equation
(8.9) and its integrated form. Such a relationship is illustrated by Figure 8.1 for water
and water vapor.

We are interested in the value of the derivative dP/dT at a specified temperature
and pressure such as is indicated by point a in Figure 8.1. For an isothermal, revers-
ible (that is, equilibrium) condition at constant pressure, from Equation (7.26),

DG ¼ DH � TDS ¼ 0

and

DS ¼ DH

T

Figure 8.1. Equilibrium vapor pressure of water. The broken line is the tangent at 350 K. Data
reprinted from the NIST Webbook, http://webbook.nist.gov.

8.1 TWO PHASES AT EQUILIBRIUM AS A FUNCTION OF PRESSURE AND TEMPERATURE 195



Therefore, Equation (8.9) can be converted to

dP

dT
¼ DHm

TDVm
(8:10)

which is generally known as the Clapeyron equation.
So far we have made no special assumptions as to the nature of the Phases A and B

in deriving Equation (8.10). Evidently the Clapeyron equation is applicable to equi-
librium between any two phases of one component at the same temperature and
pressure, and it describes the functional relationship between the equilibrium pressure
and the equilibrium temperature.

Clausius–Clapeyron Equation

The Clapeyron equation can be reduced to a particularly convenient form when the
equilibrium between A and B is that of a gas (g) and a condensed (cond) phase
[liquid or solid]. In this situation

VmB � VmA ¼ Vm,g � Vm,cond

Generally, the molar volume of a gas, Vm,g is much larger than the molar volume of
the condensed phase Vm,cond; that is,

Vm,g 
 Vm,cond

For example, the molar volume of liquid H2O near the boiling point is about 18 cm3,
whereas that for water vapor is near 30,000 cm3.

If Vm,cond is neglected with respect to Vm,g in Equation (8.10) (with the condensed
phase as Phase A), the result is

dP

dT
¼ DHm

TVm,g
(8:11)

Furthermore, if we assume that the gas behaves ideally, then

dP

dT
¼ DHm

T(RT=P)
¼ P(DHm)

RT2

or

1
P

dP

dT
¼ d ln P

dT
¼ DHm

RT2
(8:12)
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We can also write Equation (8.12) as

d ln P ¼ DHm

R

dT

T2

¼ �DHm

R
d

1
T

� �
(8:13)

so that the slope of a plot of ln P against 1/T is 2DHm/R. For many substances in a
moderate temperature range, the heat of vaporization is substantially constant. Then,
Equation (8.13) can be integrated as follows:

ln
P2

P1

� �
¼ �DHm

R

1
T2

� 1
T1

� �
(8:14)

or, written as the indefinite integral,

ln P ¼ �DHm

RT
þ constant (8:15)

or

P ¼ (constant) exp(�DHm=RT) (8:16)

Any one of Equations (8.14), (8.15), or (8.16) is known as the Clausius–Clapeyron
equation and can be used either to obtain DH from known values of the vapor
pressure as a function of temperature or to predict vapor pressures of a liquid (or a
solid) when the heat of vaporization (or sublimation) and one vapor pressure are
known. The same equations also represent the variation in the boiling point of a
liquid with changing pressure.

If we do not limit ourselves to the assumption of gas ideality, we can substitute for
Vm,g from the text above Equation (5.55) into Equation (8.11), so that

dP

dT
¼ DHm

T(ZRT=P)
or

1
P

dP

dT
¼ d ln P

dT
¼ DHm

ZR

1
T2

Rearranging, we have

d ln P ¼ DHm

ZR

dT

T2
¼ �DHm

ZR
d

1
T

� �
or

d ln P

d(1=T)
¼ �DHm

ZR
(8:17)
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Thus, the slope of a plot of 1n P against 1/T is 2DHm/ZR, and numerical differen-
tiation (Appendix A) of experimental vapor-pressure data will provide values
of DHm/Z as a function of temperature and pressure. If Z is known, DHm can
be calculated.

The Antoine equation is the most commonly used empirical equation for describ-
ing the vapor pressure of a liquid as a function of temperature.

ln P ¼ A� B

T þ C

where A, B, and C are empirical constants for a particular gas and T is the thermodyn-
amic temperature. Values of the constants for many gases and the temperature ranges
over which they apply can be found in Ref. 1.

8.2 THE EFFECT OF AN INERT GAS ON VAPOR PRESSURE

Liquid–vapor equilibria commonly are observed when the system is exposed to the
atmosphere (as in Fig. 8.2) rather than only to the vapor itself. Therefore, it is useful
to derive the equations that are applicable to such a situation. We will assume that air
is essentially insoluble in the liquid phase and that atmospheric pressure is rep-
resented by P. The saturation vapor pressure of the liquid in the absence of any
foreign gas such as air can be shown to differ from that of the partial pressure of
the vapor p in the presence of air.

As the liquid and vapor are in equilibrium at a given temperature and total pressure
P, we can write

Gm,g ¼ Gm,l (8:18)

Let us assume that the vapor behaves as an ideal gas, even in the presence of
the foreign gas. From Equation (7.43), we see that for one mole of an ideal gas at
constant T

dGm,g ¼ VmdP ¼ RT

P
dp (8:19)

Integration of this equation from the vapor pressure of the liquid p to the standard
state for an ideal gas, a pressure of 0.1 MPa, P8,

ðG8m,g

Gm,g

dGm,g ¼
ðP8
p
RTd ln P

which gives

RT ln
p

P8
¼ Gm,l � G8m,g (8:20)
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Variable Total Pressure at Constant Temperature

At constant temperature, Equation (8.20) can be differentiated with respect to the total
pressure to give

RT
@ ln p

@P

� �
T

� RT
@ ln P8
@P

� �
T

¼ @Gm,l

@P

� �
T

� @G8m,g

@P

� �
T

(8:21)

The quantity G8m,g is defined at a fixed standard pressure, so it is not a function of the
ambient pressure. Thus, the second term on the right side of Equation (8.21) is equal
to zero. Similarly, the second term on the left is also equal to zero. From Equation
(7.43), (@Gm/@P)T is equal to Vm. Thus, Equation (8.21) reduces to

@ ln p

@P

� �
T

¼ Vm,l

RT
(8:22)

in which Vm,l is the molar volume of the liquid phase.
The change of vapor pressure with change in total pressure of an inert atmosphere

is small. For example, for water, where Vm,l is 18 cm3, the right side of Equation
(8.22) reduces to less than 0.001 per bar at room temperature (for R ¼ 8.31 J
mol21 K21 and T ¼ 298 K).

Equation (8.22) can be integrated between p0, the vapor pressure in the absence of
inert gas, to P, the pressure of inert gas, to obtain

ln
p

p0
¼ Vm,l(P� p0)

RT
(8:23)

where p is the vapor pressure in the presence of inert gas. If p0 is small compared with
P, and we recognize that Vm,g is equal to RT/P, then we can write

ln
p

p0
¼ Vm,l

Vm,g
(8:24)

Figure 8.2. Liquid–vapor equilibrium in the presence of an inert gas.
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This form of the relationship makes obvious the small effect of an inert gas on vapor
pressure, because Vm,g is much larger than Vm,l.

Variable Temperature at Constant Total Pressure

At constant total pressure, Equation (8.20) can be differentiated with respect to T to
give the temperature dependence of the vapor pressure of a liquid in equilibrium with
its vapor in the presence of air at a fixed atmosphere pressure:

RT
@ ln p

@T

� �
P

¼ @Gm,l

@T

� �
P

� @G8m,g

@T

� �
P

(8:25)

From Equation (7.44), we can substitute for each term on the right side of Equation
(8.25) to obtain

RT
@ ln p

@T

� �
P

¼ �Sm,l þ S8m,g ¼ DSm,v (8:26)

As the system is at equilibrium at constant temperature and pressure,

DGm,v ¼ 0
and

DSm,v ¼ DHm,v

Tso that

@ ln p

@T

� �
P

¼ DHm,v

RT2
(8:27)

which is a result comparable with Equation (8.12).

8.3 TEMPERATURE DEPENDENCE OF ENTHALPY
OF PHASE TRANSITION

We are accustomed to think of the temperature coefficient of DHm as given from
Equation (4.55) by the expression

@DHm

@T

� �
P

¼ DCPm (8:28)

However, in any phase transition, the equilibrium pressure does not remain constant
as the temperature is varied. Hence, to obtain (dDHm/dT )equil, the temperature coeffi-
cient of the heat of vaporization, we must find the dependence of DHm on pressure as
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well as on temperature. Thereafter, as pressure is also a function of the temperature,
we can obtain (dDHm/dT )equil.

Let us start with an equation for the total differential:

d(DHm) ¼ @DHm

@T

� �
P

dT þ @DHm

@P

� �
T

dP

¼ DCPm dT þ @HmB

@P
� @HmA

@P

� �
T

dP (8:29)

in which HmB and HmA are the molar enthalpies of Phase B and Phase A. It can be
shown from properties of the Planck function [Equation (7.61)] that

@Hm

@P

� �
T

¼ V � T
@Vm

@T

� �
P

With this relationship, Equation (8.29) can be converted to

d(DHm) ¼ DCPm dT þ DVm � T
@DVm

@T

� �
P

� �
dP

As dT and dP are not independent if equilibrium between phases is maintained, we
can use the Clapeyron equation [Equation (8.10)] to substitute for dP and to obtain

d(DHm) ¼ DCPm dT þ DVm � T
@DVm

@T

� �
P

� �
DHm

TDVm
dT

From this equation, it follows that

d(DHm)
dT

¼ DCPm þ DHm

T
� DHm

@ ln DVm

@T

� �
P

(8:30)

So far in the derivation we have made no assumption as to the nature of Phases A
or B; thus, Equation (8.30) is applicable to all types of phase transitions. When both
A and B are condensed phases, the third term on the right side of Equation (8.30) is
small compared with the others and the equation reduces to

d(DHm)
dT

¼ DCPm þ DHm

T
(8:31)

If the phase transition is a vaporization or sublimation, and if the vapor can be
assumed to be an ideal gas, an alternative approximation applies:

DVm ffi Vm gas ffi RT

P
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From this approximation, it follows that the third term of Equation (8.30) cancels the
second and that

d(DHm)
dT

ffi DCPm (8:32)

Although Equations (8.28) and (8.32) are formally alike, they refer to different
types of processes. The former is strictly true for a process that occurs at a constant
pressure throughout a temperature range. Vaporization or sublimation does not fulfill
this restriction, but nevertheless, Equation (8.32) is approximately correct because the
molar volume of the condensed phase is small compared with that of the gas, and the
vapor pressure is small enough that the vapor behaves as an ideal gas.

8.4 CALCULATION OF CHANGE IN THE GIBBS FUNCTION
FOR SPONTANEOUS PHASE CHANGE

Thus far we have restricted our attention to phase changes in which equilibrium is
maintained. It also is useful, however, to find procedures for calculating the change
in the Gibbs function in transformations that are known to be spontaneous, for
example, the freezing of supercooled water at 2108C:

H2O(l,�108C) ¼ H2Oðs,�108C)

At 08C and 101.325-kPa pressure, the process is at equilibrium. Hence

DGm,08C ¼ 0

At 2108C, the supercooled water can freeze spontaneously. Therefore,

DGm,�108C , 0

Now we wish to evaluate DGm numerically.

Arithmetic Method

The simplest procedure to calculate the change in the Gibbs function at 2108C uses
the relationship [Equation (7.26)] for one mole,

DGm ¼ DHm � TDSm

for any isothermal process. DHm and DSm at 2108C (T2) are calculated from the
known values at 08C (T1) and from the temperature coefficients of DHm and DSm.
As the procedure can be represented by the sum of a series of equations, the
method may be called an arithmetic one. The series of equations is given in
Table 8.1. (Here, as in Chapter 4, Equations (4.83)–(4.86) we assume that CP is con-
stant for ice and supercooled water over this temperature range. See Ref. 18 in
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Chapter 4 for recent results on CP for this system.) From the values calculated for
DHm and DSm.

DGm ¼ �5622þ (263:15)(20:556) ¼ �213 J mol�1

and

DYm ¼ �DGm

T
¼ 213 Jmol�1

263:15 K
¼ 0:809 Jmol�1 K�1

Analytic Method

The proposed problem also could be solved by integrating Equation (7.57) for
one mole,

@DYm
@T

� �
P

¼ DHm

T2

As in the arithmetic method, we can assume that the heat capacities of ice and water
are substantially constant throughout the small temperature range under consider-
ation. Thus, from Equation (8.28),

@DHm

@T

� �
P

¼ DCPm

TABLE 8.1. Change in Gibbs Function for Freezing of Supercooled Water

H2O (l, 08C) ¼ H2O (s, 08C) DHm ¼ �6008J mol�1

DSm ¼ �6008
273:15

¼ �21:995 J mol�1 K�1

H2O (s, 08C) ¼ H2O (s,2108C)
DHm ¼

ðT2
T1

CPm,s dT ¼ CPm,s(T2 � T1)

¼ 36:4 ð�10Þ ¼ �364 J mol�1

DSm ¼
ðT2
T1

CPm,s

T
dT

¼ CPm,s ln
T2
T1

¼ �1:358 J mol�1 K�1

H2O (l, 2108C) ¼ H2O (l, 08C)
DHm ¼

ðT1
T2

CPm,l dT

¼ 75(10) ¼ 750 J mol�1

DSm ¼
ðT1
T2

CPm,l

T
dT ¼ 2:797 J mol�1 K�1

H2O (l,2108C) ¼ H2O (s, 2108C) DHm ¼ 25622 J mol21

DSm ¼ 220.556 J mol21 K21
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and during integration, we obtain

DHm ¼ DHm0 þ
ð
(CPm,ice � CPm,water)dT

¼ DHm0 � 38:9T (8:33)

where DHm0 ia a constant of integration (not equal to DHm at 08C). As, at 08C, DHm

is 26008 J mol21, we can determine DHm0:

DHm0 ¼ �6008þ 38:9 (273:15) ¼ 4617:54 J mol�1

(More significant figures are retained in these numbers than can be justified by the
precision of the data on which they are based. However, such a procedure is necessary
in calculations that involve small differences between large numbers.) Thus,

DHm ¼ 4617:54� 38:9T

and

DYm ¼
ð
(4617:54� 38:9T)

T2
dT

¼ 4617:54
T

� 38:9 ln T þ I (8:34)

in which I is a constant of integration. As DYm is known to be zero at 08C, the constant
I can be evaluated:

I ¼ 4617:54
273:15

þ 38:9 ln (273:15) ¼ 235:135

and

DYm ¼ 235:135� 4617:54
T

� 38:9 ln T (8:35)

Equation (8.35) leads to

DGm ¼ 4617:54þ 38:9T ln T � 235:135 T (8:36)

At 2108C, the value of the Gibbs function is

DGm,�108C ¼ �213 J mol�1

This result is the same as that obtained by the arithmetic method.
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As

DG ¼ DH � TDS

¼ Qsystem � TDS

¼ �Qsuroundings � TDS

¼ �TDSsurroundings � TDSsystem (8:37)

we should note that a process like the freezing of supercooled water, which is spon-
taneous despite having a negative value of DSsys, can have a negative value of DG
only if the value of DSsurr is positive and of greater magnitude than DSsys.

EXERCISES

8.1. Examine each of the following seven transformations:

a. H2O(s, 2108C, P8) ¼ H2O(l, 2108C, P8). (Note: No specification is made
that this process is carried out isothermally, isobarically, or reversibly.)

b. Same as part (a) but restricted to a reversible change.

c. Same as part (a) but restricted to isothermal and isobaric conditions.

d. The two-step, isobaric, reversible transformation:

H2O(l, 258C, 1 atm) ¼ H2O(l, 1008C, 1 atm)

H2O(l, 1008C, 1 atm) ¼ H2O(g, 1008C, 1 atm)

e. Ideal gas (258C, 10MPa) ¼ ideal gas (258C, 100 kPa), reversible.
f. Ideal gas (258C, 10MPa) ¼ ideal gas (258C, 1MPa), no work performed.

g. Adiabatic reversible expansion of an ideal gas from 10MPa to 1MPa.

Consider each of the following equations:

a.
ð
DQm

T
¼ DSm

b. Qm ¼ DHm

c. DHm

T
¼ DSm

d. DGm ¼ actual net work

e. DGm ¼ maximum net work

For each transformation, list the equations of the group (a) to (e) that are valid.
If your decision depends on the existence of conditions not specified, state what
these conditions are.
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8.2. Calculate DG8m and DY8m for each of the following transformations:

a. H2O(l, 1008C, 1 Bar) ¼ H2O(g, 1008C, 1Bar).
b. H2O(l, 258C, 1 Bar) ¼ H2O(g, 258C, 1 Bar). The vapor pressure of H2O at

258C is 3.17 kPa.

8.3. The vapor pressure of pure bromine at 258C is 28.4 kPa. The vapor pressure of
bromine in dilute aqueous solution at 258C obeys the equation p ¼ 147 m2, in
which m2 is molality and p is expressed in kPa.

a. Calculate DGm and DYm for the transformation
Br2(l, 258C, 28.4 kPa) ¼ Br2(m2 ¼ 0.01, aq. soln., 258C, Peq)

b. What would be the molality of bromine in a saturated solution in water
at 258C?

8.4. An equation for DGm for the freezing of supercooled water can be obtained also
by integrating the equation

@DGm

@T

� �
P

¼ �DSm

An expression for DSm as a function of temperature for substitution into the
preceding equation can be derived from

@DSm
@T

� �
P

¼ DCPm

T

a. On the assumption that DCPm is a constant, show that

DGm ¼ I 0 � DCPm(T ln T)þ (DCPm � DSm0)T

in which I0 and DSm0 are constants of integrations.

b. Evaluate the constants from data for the freezing process at 08C.
c. Calculate DGm at 2108C, and compare the result with the values calculated

by the methods described in the text.

8.5. The transition
sulfur (rh) ¼ sulfur (mono)

where rh ¼ rhombic and mono ¼ monoclinic is at equilibrium at 101.325 kPa
at 95.58C. The entropies (in J mol21 K21) of the allotropic forms are the fol-
lowing functions of temperature:

Sm,rh ¼ �61:13þ 14:98 ln T þ 26:11� 10�3T

Sm,mono ¼ �60:88þ 14:90 ln T þ 29:12� 10�3T

Compute the change in the Gibbs function and the change in the Planck func-
tion for this allotropic transition at 258C.
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8.6. By convention, the standard Gibbs function for formation DfG8m of graphite is
assigned the value of zero. On this basis, DfG8298 of diamond is 2900 J mol21.
Entropies and densities also are listed in Table 8.2. Assuming that the entropies
and densities are approximately constant, determine the conditions of tempera-
ture and pressure under which the manufacture of diamonds from graphite
would be thermodynamically and kinetically practical [2].

8.7. The melting points of carbon tetrachloride at various pressures are given in
Table 8.3 together with DVm fusion. Calculate DHm and DSm of fusion at
(a) 0.1 MPa and (b) 600 MPa.

8.8. For liquid thiacyclobutane, the vapor pressure, in millimeters of mercury, can
be expressed by the equation [3]

log10 P ¼ 7:01667� 1321:331
t þ 224:513

in which t is in 8C. Calculate DHm of vaporization at 298 K.

8.9. The vapor pressure of liquid helium can be expressed by the equation

P ¼ AT5=2e�[(a=T)þbT5:5]

in which A, a, and b are constants. Derive an equation for DHm of vaporization
as a function of temperature.

8.10. Compute DG8m and DY8m for the transformation

H2O (l,�58C,1 Bar) ¼ H2O (s,�58C,1 Bar)

TABLE 8.2. A List of Entropies and Densities
of Carbon

Graphite Diamond

DfG8m,298/(J mol21) 0 2900
S8m,298/(J mol21 K21) 5.740 2.377
Density/(g cm23) 2.22 3.51

TABLE 8.3. Melting Points of Carbon Tetrachloride

P/MPa t/8C DVm/(cm
3 mol21)

0.1 222.6 3.97
101 15.3 3.06
203 48.9 2.51
507 130.8 1.52
709 176.2 1.08
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given that the vapor pressure of supercooled liquid water at 258C is 421.7 Pa
and that of ice is 401.6 Pa.

8.11. What would be the form of the integrated Clausius–Clapeyron equation if the
heat capacity of the vapor were given by the equation

CPm ¼ aþ bT

and that of the condensed phase by

C0
Pm ¼ a0 þ b0 T

in which the a0s and b0s are constants?

8.12. Rhombic sulfur is the stable form at room temperature, and monoclinic sulfur is
the metastable form. The transition temperature is 95.58C. The melting point of
monoclinic sulfur is 1208C. How would you evaluate a report that 778C is the
melting point of rhombic sulfur? Answer in terms of a diagram of Gibbs func-
tion versus temperature for this system.

8.13. In the free-volume theory of liquids, the molar Helmholtz function Am is
defined by the equation

Am ¼ Azm(T)� RT lnVmf � L

in which Am
‡ (T ) is the volume-independent term of the Helmholtz function,

Vmf is the molar free volume in the liquid, and L is the contribution to the
potential energy from intermolecular forces. Assuming that

Vmf ¼ Vm � b

and

L ¼ a

Vm

in which Vm is the geometric volume and a and b are the van der Waals con-
stants, prove that this liquid would obey the van der Waals equation of state.

8.14. The data in Table 8.4 [4] represent the vapor pressure of mercury as a function
of temperature. Plot ln P as a function of 1/T to a scale consistent with the pre-
cision of the data. If the resultant plot is linear, calculate DHm/z from the slope
obtained by a least-squares fit to the line. If the plot is curved, use a numerical
differentiation procedure to obtain the value of DHm/Z as a function of T, and
calculate DCPm. See Appendix A for methods.

8.15. Da Silva and Monte [5] have measured the vapor pressure of crystalline
benzoylacetone by the Knudsen mass-loss effusion method over the tempe-
rature range, 292–3028C. One set of their data is given in Table 8.5. As
the vapor pressure is low, and the temperature range is small, use the
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Clausius–Clapeyron equation to calculate the value of DHm,sublimation for
benzoyl-acetone.

8.16. Use the NIST WEBBOOK (http://webbook.nist.gov) to find the vapor
pressure of water as a function of temperature over the range from 300 K to
600 K. When you reach the home page foir the WEBBOOK, click on the
NIST Chemistry Webbook, click on “Name” under search options, type
“water” in the space for name, click on “thermodynamic data,” click on “con-
densed phase,” click on “saturation properties,” and insert the temperature

TABLE 8.4. Vapor pressure of Mercury as a
Function of Temperature

T/K P/kPa

400.371 0.139
417.129 0.293
426.240 0.424
432.318 0.538
439.330 0.706
441.757 0.774
447.720 0.964
451.420 1.101
454.160 1.213
456.359 1.309
462.673 1.627
469.222 2.024
474.605 2.414
479.080 2.784
485.190 3.369
491.896 4.128
497.570 4.882

TABLE 8.5. Vapor Pressure of Benzoylacetone

T/K p/Pa

292.197 0.2958
293.194 0.3360
294.238 0.3780
295.198 0.4166
296.265 0.4858
297.165 0.5459
298.208 0.6209
299.165 0.7066
300.215 0.8169
301.224 0.9099
301.175 0.9921
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range and increments of 20 K. You will then be presented with a table of the
saturation properties of water, both liquid and vapor phases, including the equi-
librium temperature and pressure, and the density, entropy, and enthalpy
referred to a common reference state. Print the table landscape to obtain all
the data. Enter the data into a spreadsheet of your choice.

a. Plot the data as P against T and as ln P against 1/T. Fit the data to an
equation with ln P as a linear function of 1/T and to the Antoine equation

ln P ¼ Aþ B

C þ T

and use the residuals to decide which is the better fit.

b. Use the best-fit equation to calculate dP/dT at each of the data points.

c. Use the information from the data sheet to calculate DS/DV at each data
point, and compare the results with the values of dP/dT.

d. Use the values of dP/dT at each data point to calculate DH/Z at each data
point. You can calculate values of Z with the Redlich–Kwong equation at
the data points and then obtain values of DHvap as a function of temperature.
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CHAPTER 9

THERMODYNAMICS OF SYSTEMS
OF VARIABLE COMPOSITION

Many equations we have used thus far can be applied only to closed systems of
constant composition. This limitation simply means that we have been dealing
with a special case. In general, to fix the state of a system, the values of two indepen-
dent variables and the mole numbers of the components must be fixed. It is these
latter variables that we have been able to neglect because we have discussed only
closed systems of fixed composition. Now we will extend our discussion to the
more general systems and, in succeeding chapters, apply the equations developed.

9.1 STATE FUNCTIONS FOR SYSTEMS OF VARIABLE
COMPOSITION

For a closed system of fixed composition, the extensive thermodynamic properties
such as V, U, S, A, Y, and G are functions of any pair of convenient independent vari-
ables. For example, Equation (7.38) suggests that G is a natural function of T and P.
That is G ¼ f (T, P). The total differential of G would be

dG ¼ @G

@T

� �
P

dT þ @G

@P

� �
T

dP

¼ �S(T , P)dT þ V(T , P)dP (9:1)
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When the composition of a system varies, the mole numbers of the components
are additional independent variables and we have

G ¼ f (T , P, n1, n2, . . . , ni, . . .) (9:2)

so that the total differential becomes

dG ¼ @G

@T

� �
P,ni

dT þ @G

@P

� �
T ,ni

dPþ
X @G

@ni

� �
T ,P,nj

dni (9:3)

The partial derivative (@G=@ni)T ,P,n j
, in which i = j, represents the rate of increase in

the Gibbs function of the system per mole of component i added to the system when
T, P, and the other mole numbers are held constant. [Equation (9.3) is based
on the assumption that surface effects can be neglected.] The summation is over
all components of the system.

If the composition is constant, so the dni terms are zero, Equation (9.3) becomes
Equation (9.1), and we can write

@G

@T

� �
P,ni

¼ �S(T , P, ni) (9:4)

and

@G

@P

� �
T ,ni

¼ V(T , P, ni) (9:5)

Here we recognize explicitly that S and V also are functions of the mole numbers as
well as functions of T and P.

The partial derivative of G with respect to the mole number ni at constant T and P
and mole numbers nj = ni is defined as

@G

@ni

� �
T ,P,n j

¼ mi (9:6)

where mi is the chemical potential. We can now rewrite Equation (9.3) in terms of the
chemical potential as

dG ¼ �SdT þ VdPþ
X

midni (9:7)

Because, from Equation (7.28),

A ¼ G� PV (9:8)
and

dA ¼ dG� PdV � VdP

we can substitute from Equation (9.7) in Equation (9.8) to obtain

dA ¼ �PdV � Sdt þ
X

midni (9:9)
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so that the chemical potential is also

mi ¼
@A

@ni

� �
T ,V ,nj

(9:10)

Similarly, we can show from previously used thermodynamic relationships that

mi ¼
@U

@ni

� �
S,V ,nj

¼ @H

@ni

� �
S,P,nj

¼ � 1
T

@S

@ni

� �
U,V ,nj

¼ � 1
T

@Y

@ni

� �
T ,P,nj

(9:11)

Because most chemical, biological, and geological processes occur at constant
temperature and pressure, it is convenient to provide a special name for the partial
derivatives of all thermodynamic properties with respect to mole number at constant
pressure and temperature. They are called partial molar properties, and they are
defined by the relationship

Jmi ¼ @J

@ni

� �
T ,P,n j=i

(9:12)

where J is any thermodynamic property. The partial molar Gibbs function is the
chemical potential; however, the following derivatives are partial molar properties,
but they are not chemical potentials:

@A
@ni

� �
T ,P,nj

¼ Ami = mi

@H
@ni

� �
T ,P,nj

¼ Hmi = mi

@U
@ni

� �
T ,P,nj

¼ Umi = mi

@S
@ni

� �
T ,P,nj

¼ Smi = �mi
T

9>>>>>>>>>=
>>>>>>>>>;

(9:13)

because chemical potentials are derivatives with respect to the mole numbers with the
natural independent variables held constant.

9.2 CRITERIA OF EQUILIBRIUM AND SPONTANEITY IN
SYSTEMS OF VARIABLE COMPOSITION

The criteria for spontaneity and equilibrium developed in Chapter 7 [Equations (7.8),
(7.9), and (7.18), that is,

dA 	 0 (constant T , V)

dG 	 0 (constant T , P)
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and an additional equation for Y,

dY � 0 (constant T , P) (9:14)

are valid for all closed systems in which only PdV work is performed. Similarly,
Equation (7.79),

dG 	 DWnet (constant T , P)

is valid for all closed systems in which work other than pressure-volume work is per-
formed. In this expression, the equality applies to a reversible process and the
inequality applies to an irreversible process, whether the change of state is spon-
taneous or nonspontaneous. If the change of state is spontaneous, dG , 0 and
DWnet , 0, so that in absolute magnitude, jdGj � jDWnetj. If the change of state is
nonspontaneous, dG . 0 and DWnet . 0, so that jdGj 	 jDWnetj. Thus, for a spon-
taneous change of state, the magnitude of dG is equal to the maximum non-PV
work that can be performed by the system, whereas, for a nonspontaneous change
of state, the magnitude of dG is equal to the minimum non-PV work that must be per-
formed on the system to bring about the change in state. As G is a state function, the
value of dG is the same for a given change of state, whether it is carried out reversibly
or irreversibly; it is the value of dW that depends on reversibility.

If temperature and pressure are constant, we can conclude from Equation (9.9) that

dG ¼
X
i

midni (9:15)

and

dY ¼ � 1
T

X
midni (9:16)

which means that the criteria for spontaneity and equilibrium become (when the only
constraint on the system is the constant pressure of the atmosphere and only PdV
work is performed) X

i

midni 	 0 (constant T , P) (9:17)

When the system is placed under additional constraints, the relationships for non-PdV
work are X

i

midni 	 DWnet (constant T , P) (9:18)

in which the equality applies to a reversible process and the inequality applies to an
irreversible process. It can be shown that Equations (9.17) and (9.18) are general cri-
teria for equilibrium and spontaneity and are not limited to constant temperature and
pressure. However, it is with these limitations that we will apply the criteria.
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The chemical potential for chemical, biological, or geological systems is analo-
gous to the height, or gravitational potential, for a gravitational system; chemical, bio-
logical, or geological systems change spontaneously in the direction of decreasing
chemical potential, just as an object in a gravitational field moves spontaneously in
the direction of decreasing gravitational potential (downward).

9.3 RELATIONSHIPS AMONG PARTIAL MOLAR PROPERTIES
OF A SINGLE COMPONENT

Generally, the thermodynamic relationships that we have developed for extensive
thermodynamic properties also apply to partial molar properties. Thus, as
[Equation (7.17)]

G ¼ H � TS

we can obtain by differentiation with respect to ni, (at constant temperature, pressure,
and other mole numbers nj)

@G

@ni

� �
T ,P,nj

¼ @H

@ni

� �
T ,P,nj

� T
@S

@ni

� �
T ,P,nj

(9:19)

or, from the definition of a partial molar quantity [Equation (9.12)],

mi ¼ Gmi ¼ Hmi � TSmi (9:20)

Similarly, from the relationship [Equation (4.55)]

@H

@T

� �
P

¼ CP

we can write

@Hmi

@T

� �
P

¼ CPmi (9:21)

because the value of the cross-derivative of a thermodynamic property is independent
of the order of differentiation [Equation (2.27)]. That is,

@2H

@T@ni

� �
P,nj

¼ @

@T

@H

@ni

� �
T ,P,nj

" #
P,ni,nj

¼ @Hmi

@T

� �
P,ni,nj

(9:22)

and

@2H

@ni@T

� �
P,nj

¼ @

@ni

@H

@T

� �
P,ni,nj

" #
T ,P,nj

¼ @CP

@ni

� �
T ,P,nj

¼ CPmi (9:23)
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On the same basis we can state

@mi

@T

� �
P

¼ @Gmi

@T

� �
P

¼ �Smi (9:24)

and

@mi

@P

� �
T

¼ @Gmi

@P

� �
T

¼ Vmi (9:25)

where the derivatives are taken at constant composition as well as at constant pressure
or constant temperature.

9.4 RELATIONSHIPS BETWEEN PARTIAL MOLAR QUANTITIES
OF DIFFERENT COMPONENTS

Extensive thermodynamic properties at constant temperature and pressure are homo-
geneous functions of degree 1 of the mole numbers. From Euler’s theorem [Equation
(2.33)] for a homogeneous function of degree n

x
@f

@x

� �
y

þ y
@f

@y

� �
x

¼ nf (x, y)

For a general two-component system and any extensive thermodynamic property J,
we can write

J ¼ f (n1, n2)

and

n1
@J

@n1

� �
T ,P,n2

þ n2
@J

@n2

� �
T ,P,n1

¼ J (9:26)

From the definition of partial molar quantities [Equation (9.12)], Equation (9.26) can
be written as

n1Jm1 þ n2Jm2 ¼ J (9:27)

Like J, both Jm1 and Jm2 are functions of T and P and the system composition.
Although the function J is a homogeneous function of the mole numbers of degree

1, the partial molar quantities, Jm1 and Jm2 are homogeneous functions of degree 0;
that is, the partial molar quantities are intensive variables. This statement can be
proved by the following procedure. Let us differentiate both sides of
Equation (2.32) with respect to x:

@f (lx, ly, lz)
@x

¼ ln
@f (x, y, z)

@x
(9:28)
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If we divide both sides by l, we obtain

1
l

@f (lx, ly, lz)
@x

¼ ln�1 @f (x, y, z)
@x

(9:29)

We can rewrite Equation (9.29) in the common alternative notation for derivatives:

f 0(lx, ly, lz) ¼ ln�1f 0(x, y, z) (9:30)

Equation (9.30) is an analoge of Equation (2.32) for the first derivative function, and
it defines the degree of homogeneity of the partial derivative function f 0 and states that
its degree of homogeneity is n 21, that is, one less than the degree of homogeneity n
of the original function f. Because they are homogeneous functions of the mole
numbers of degree 0, the partial molar quantities, although still functions of n1 and
n2, are functions only of the ratio n1/n2, and thus, they are independent of the size
of the system.

Differentiation of Equation (9.27) leads to

dJ ¼ n1dJm1 þ Jm1dn1 þ n2dJm2 þ Jm2dn2 (9:31)

As at constant pressure and temperature J is a function of two variables, f (n1, n2), the
following equation is valid for the total differential:

dJ ¼ @J
@n1

� �
n2
dn1 þ @J

@n2

� �
n1
dn2

¼ Jm1dn1 þ Jm2dn2 (9:32)

If we equate Equations (9.31) and (9.32), we obtain

n1dJm1 þ Jm1dn1 þ n2dJm2 þ Jm2dn2 ¼ Jm1dn1 þ Jm2dn2

or

n1dJm1 þ n2dJm2 ¼ 0 (9:33)

Equation (9.33) is one of the most useful relationships between partial molar quan-
tities. When applied to the chemical potential, it becomes

n1dm1 þ n2dm2 ¼ 0 (9:34)

which is called the Gibbs-Duhem equation at constant temperature and pressure. This
equation shows that in a two-component system, only one of the chemical potentials
can vary independently at constant T and P.
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It follows from Equation (9.33) that

n1
dJm1

dn1
þ n2

dJm2

dn1
¼ 0 (9:35)

This equation is very useful in deriving certain relationships between the partial molar
quantity for a solute and that for the solvent. An analogous equation can be written for
the derivatives with respect to dn2.

Partial Molar Quantities for Pure Phase

If a system is a single, pure phase, a graph of any extensive thermodynamic property
plotted against mole number at constant temperature and pressure gives a straight line
passing through the origin (again neglecting surface effects). The data for the volume
of water are given in Figure 9.1. The slope of the line gives the partial molar volume

Vm ¼ @V

@n

� �
T ,P

¼ V

n
¼ V†

m (9:36)

Figure 9.1. Volume of a pure phase at specified temperature and pressure. Data for water at
273.16 K and 100 kPa from the NIST WebBook on saturation properties for water. (http://
www.webbook.nist.gov/chemistry)
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in which Vm
† is the molar volume of the pure phase. Similarly, for any extensive

thermodynamic property J of a pure phase

Jm ¼ J

n
¼ J†m (9:37)

9.5 ESCAPING TENDENCY

Chemical Potential and Escaping Tendency

G. N. Lewis proposed the term “escaping tendency” to give a strong kinetic-molecular
flavor to the concept of the chemical potential. Let us consider two solutions of iodine,
in water and carbon tetrachloride, which have reached equilibrium with each other at a
fixed pressure and temperature (Fig. 9.2). In this system at equilibrium, let us carry out
a transfer of an infinitesimal quantity of iodine from the water phase to the carbon tet-
rachloride phase. On the basis of Equation (9.17), we can say that

mI2(H2O)dnI2(H2O) þ mI2(CCl4)dnI2(CCl4) ¼ 0 (9:38)

In this closed system, any loss of iodine from the water phase is accompanied by an
equivalent gain in the carbon tetrachloride thus,

� dnI2(H2O) ¼ dnI2(CCl4) (9:39)Hence

mI2(H2O)dnI2(H2O) þ mI2(CCl4)[�dnI2(H2O)] ¼ 0 (9:40)

Figure 9.2. Schematic diagram of equilibrium distribution of iodine between water and carbon
tetrachloride at fixed temperature and pressure.
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It follows that

mI2(H2O) ¼ mI2(CCl4) (9:41)

for this system in equilibrium at constant pressure and temperature. Thus, at
equilibrium, the chemical potential of the iodine is the same in all phases in which
it is present, or the escaping tendency of the iodine in the water is the same as that
of the iodine in the carbon tetrachloride. We can return to the analogy with gravita-
tional potential; stating that the iodine in the two phases have the same chemical
potential is analogous to saying that two bodies at the same altitude have the same
gravitational potential.

It also may be helpful to consider the situation in which the iodine will diffuse
spontaneously (at constant pressure and temperature) from the water into the
carbon tetrachloride, a case in which the concentration in the water phase is greater
than that which would exist in equilibrium with the carbon tetrachloride phase.
From Equation (9.17), we can write

mI2(H2O)dnI2(H2O) þ mI2(CCl4)dnI2(CCl4) , 0 (9:42)

For the spontaneous diffusion of iodine, Equation (9.39) is valid in this closed
system. Hence,

mI2(H2O)dnI2(H2O) þ mI2(CCl4)[� dnI2(H2O)] , 0 (9:43)

or

[mI2(H2O) � mI2(CCl4)]dnI2(H2O) , 0 (9:44)

As the water loses iodine,

dnI2(H2O) , 0 (9:45)

That is, dn is a negative number. In such a case, Equation (9.44) is valid only if the
difference in chemical potentials is a positive number. Therefore

mI2(H2O) . mI2(CCl4) (9:46)

Thus, we may say that the escaping tendency of the iodine is greater in the water than
in the carbon tetrachloride phase, and the chemical potentials in the two phases
describe the spontaneous direction of transport from one phase to the other.

In general, when the chemical potential of a given species is greater in one phase
than in a second, we also shall say that the escaping tendency is greater in the former
case than in the latter. The escaping tendency thus is a qualitative phrase, which cor-
responds to the property given precisely by the chemical potential. Therefore, the
escaping tendency or the chemical potential can be used to determine the
spontaneous direction of transport.
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9.6 CHEMICAL EQUILIBRIUM IN SYSTEMS OF
VARIABLE COMPOSITION

We can apply the criterion of equilibrium expressed in Equation (9.17) to chemically
reacting systems. Consider the reaction

aAþ bBþ � � � ¼ rRþ sSþ � � � (9:47)

in which all reactants and products are in the same phase. If this chemical reaction is
at equilibrium at a fixed pressure and temperature, it follows from Equation (9.15) and
Equation (9.17) that

dG ¼ mAdnA þ mBdnB þ � � � þ mRdnR þ mSdnS þ � � � ¼ 0 (9:48)

However, the various dn’s in Equation (9.48) are not independent, but, in view of the
stoichiometry of the reaction of Equation (9.47), they must be related as follows:

� dnA
a

¼ � dnB
b

¼ � � � ¼ dnR
r

¼ dnS
s

¼ � � � (9:49)

As reactants disappear and products appear in the reaction, the corresponding dn’s in
Equation (9.49) have opposite signs. In view of the series of equalities in this
equation, let us define a quantity dj such that

dj ¼ � dnA
a

¼ � � � ¼ dnR
r

¼ � � � ¼ dni
ni

(9:50)

in which ni is merely a generalized notation for the dimensionless stoichiometric coef-
ficients, 2a, 2b, r, s, and so on. The quantity j is called the extent of reaction or the
progress variable, and it has the dimensions of amount of substance (Table 2.1) and
has the unit mol. From the relationships of Equation (9.50), Equation (9.48) can be
rewritten as

dG ¼ �amAdj� bmBdj� � � � þ rmRdjþ smSdjþ � � � ¼ 0 (9:51)

Alternatively, we can say that

@G

@j

� �
T ,P

¼ rmR þ smS � amA � bmB ¼ 0 (9:52)

is a criterion of equilibrium at constant temperature and pressure. The derivative
(@G/@j)T,P is the slope of a plot of the Gibbs function of the system G against j
the progress variable. When j ¼ 0, the system is all reactants, and when j ¼ 1, the
system is all products. At equilibrium, G is at a minimum, and the slope is equal
to zero. Such a graph is given in Figure 9.3.
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If Equation (9.52) is integrated with respect to j from j ¼ 0 to j ¼ 1 at constant
values of the chemical potentials (fixed composition of the reacting mixture), then
we obtain, at equilibrium,

DGm ¼ Gm2 � Gm1 ¼
ð1
0

@G

@j

� �
T ,P

dj ¼
X

nimi ¼ 0 (9:53)

in which it is understood that ni is a negative number for the stoichiometric coeffi-
cients of the reactants and a positive number for the products. The result is a molar
quantity, because the integration leads to a mole of reaction in the sense given in
the definition of mole in Table 2.1. As the composition of the reacting mixture
does not change when one mole of reaction occurs, we say that we are using an “infi-
nite copy model,” which is a system so large that the conditions of constant compo-
sition are satisfied.

Another way of writing Equation (9.53) is

X
(jnijmi)reactants ¼

X
(jnijmi)products (9:54)

The concept of escaping tendency also can be applied to the chemical reaction in
Equation (9.47). At equilibrium, from Equation (9.54), we can say that the sum of
the escaping tendencies of the reactants is equal to the sum of the escaping tendencies
of the products.

For a chemical transformation capable of undergoing a spontaneous change, it
follows from Equations (9.17) and (9.50) that

X
nimi , 0 (9:55)

Figure 9.3. A graph of the Gibbs function G as a function of the progress variable j, which
shows equilibrium at the minimum.
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or that

X
(jnijmi)reactants .

X
(jnijmi)products (9:56)

Thus, for a spontaneous reaction, we can say that the sum of the escaping tendencies
for the reactants is greater than the sum of the escaping tendencies for the products.

We can compare the sums of vimi for reactants and products to arrive at a decision
as to whether a transformation is at equilibrium or capable of a spontaneous change.
Although we can compare escaping tendencies or m’s of a given substance under
different conditions at constant temperature, it is meaningless to compare individual
escaping tendencies of different substances because we have no way of determining
absolute values of m. For similar reasons, we cannot compare escaping tendencies of
a single substance at different temperatures.

EXERCISES

9.1. Show that mi is equal to the four partial derivatives in Equation (9.11).

9.2. Show that Si mi dni 	 0 is a criterion of spontaneity and equilibrium when only
PdV work is performed at (a) constant T, V; (b) constant S, P; (c) constant S, V;
and (d) constant U, V.

9.3. Show that

@Sm
@P

� �
T

¼ � @Vm

@T

� �
P

9.4. Starting with the relationship for the corresponding extensive quantities, show
that

a. @Gmi

@P

� �
T ,Xi,Xj

¼ Vmi

b:
@Gmi

@T

� �
P,Xi,Xj

¼ �Smi

c: Gmi ¼ Hmi þ T
@Gmi

@T

� �
P,Xi,Xj

d:
@(m=T)
@T

� �
P,Xi,Xj

¼ �Hmi

T2

e:
@Ymi
@P

� �
T ,Xi,Xj

¼ �Vmi

T

(9:57)
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9.5. For a general chemical transformation

aAþ bBþ . . . ¼ rRþ sSþ . . .

at a fixed temperature, Equation (9.52) is

@G

@j

� �
P,T

¼ 0

in which G is the total Gibbs function of all components and j is the extent of
reaction. Verify that

a. @A

@j

� �
V ,T

¼ 0 and

b:
@Y

@j

� �
P,T

¼ 0

(9:58)

are valid if the system is at equilibrium.

9.6. For a system in which equilibrium between pure solid solute and solute in sol-
ution is maintained as the temperature is changed at constant pressure, show that

@m1(sat soln)

@T

� �
P

¼ �Sm1 � X2

X1
Sm2 � S†m2


 �
(9:59)

in which X2 and X1 are mole fractions of solute and solvent, respectively; Sm2

and Sm1 are partial molar entropies; and Sm2
† is the molar entropy of pure

solid solute.

9.7. For many biochemical reaction, such as the hydrolysis of adenosine triphos-
phate,

adenosine triphosphate (ATP)þ H2O ¼
adenosine diphosphate (ADP)þ inorganic phosphate (Pi)

(9:60)

the equilibrium constant is written as

Kobs ¼ [ADP][Pi]
[ATP]

(9:61)

in which the concentrations are total concentrations of the species shown and
their products of ionization. Since the species whose concentrations are given
in Equation (9.60) ionize as weak acids and also form complexes with Mg2þ,
the value of Kobserved and the value of DY8m,observed are function of T, pH, and
pMg at constant pressure (pMg ¼ 2log[Mg2þ]) [1]. An equation for the total
differential of DY8m can be written as

dDY8m ¼ @DYm8
@T

� �
pH,pMg

dT þ @DYm8
@pH

� �
T ,pMg

dpHþ @DYm8
@pMg

� �
T ,pH

(9:62)
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It also can be shown that

@DYm8
@ pH

� �
T ,pMg

¼ 2:3 RnH (9:63)

and

@DYm8
@ pMg

� �
T ,pH

¼ 2:3 RnMg (9:64)

in which nH is the number of Hþ ions produced in the reaction in Equation
(9.59) and nMg is the number of Mg2þ ions produced.

a. Show that

@DHm8
@ pH

� �
T ,pMg

¼ 2:3 RT2 @nH
@T

� �
pH,pMg

(9:65)

b. Show that

@DHm8
@ pMg

� �
T ,pH

¼ 2:3 RT2 @nMg

@T

� �
pH,pMg

(9:66)

c. Show that

@DCPm8
@ pH

� �
T ,pMg

¼ 2:3 RT 2
@nH
@T

� �
pH,pMg

þ T
@2nH
@T2

� �
pH,pMg

" #
(9:67)

d. Show that

@nH
@ pMg

� �
T ,pH

¼ @nMg

@ pH

� �
T ,pMg

(9:68)

9.8. Usually, chemical reactions are carried out in vessels that fit readily on a desktop
so that the difference in gravitational energy at the top and bottom of the vessel is
negligible. However, in some situations, a very high cylindrical vessel may be
used; in which case, the gravitational energy of a portion of the material of
fixed total mass m at the top is significantly different from that at the bottom.
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In this situation, the Gibbs function G may be a function of h, the height above
ground level, as well as of T, P, and ni.

a. Write an equation for dG for this situation.

b. It can be shown that

@G

@h

� �
T ,P,ni

¼ mg (9:69)

Rewrite the equation in (a) accordingly.
c. Starting with the fundamental definition of G, consider a system of mass m

that undergoes a reversible change in height in a gravitational field at constant
pressure and temperature, and show that dG ¼ mgdh.

d. Using the results in (b) and (c), find an equation for S mi dni.

e. For a system of many components i at constant pressure and temperature and
at any height h

G ¼
X

nimi (9:70)

Assuming this relationship plus the result in (d), find an equation for S ni dmi.
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CHAPTER 10

MIXTURES OF GASES AND
EQUILIBRIUM IN GASEOUS
MIXTURES

In this chapter we will apply the concepts developed in Chapter 11 to gaseous
systems, first to mixtures of ideal gases, then to pure real gases, and finally to mixtures
of real gases.

10.1 MIXTURES OF IDEAL GASES

In Chapter 5, we defined an ideal gas on the basis of two properties1:

PV ¼ nRT (5:1)

and

@U

@V

� �
T

¼ 0 (5:2)

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.

1We showed in Exercise 3 in Chapter 6 that Equation (5.2) can be derived from Equation (5.1) on the basis
of the second law of thermodynamics.
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We define an ideal gas mixture as one that follows Dalton’s law:

P ¼ n1
RT

V
þ n2

RT

V
þ � � � ¼ RT

V

X
i

ni (10:1)

It also follows from the second law of thermodynamics that the partial molar energy
Umi of each component is dependent only on the temperature and is independent
of the pressure. We make part of the definition of an ideal gas mixture that Umi is
independent of the composition.

We will see that the relationships that are derived for mixtures of ideal gases will
form convenient bases for the treatment of nonideal gases and solutions.

The Entropy and Gibbs Function for Mixing Ideal Gases

The change in entropy and the change in the Gibbs function for mixing ideal gases
can be calculated on the basis of a thought experiment with a van’t Hoff equilibrium
box (Fig. 10.1). Consider a cylinder in equilibrium with a thermal reservoir at
temperature T so that the experiment is isothermal. Initially, both A and B are
present in the separate compartments at the same pressure P. The two gases in the
cylinder are separated by two semipermeable pistons; the one on the right is
permeable only to A, and the one on the left is permeable only to B. To carry out
the mixing process in a reversible manner, the external pressure P0 on the right
piston is kept infinitesimally less than the pressure of B in the mixture; and the exter-
nal pressure P00 on the left piston is kept infinitesimally less than the pressure of A in
the mixture.

The work performed by the gases in the mixing process is the sum of the work
performed by A in expanding against the left piston and the work performed by B

Figure 10.1. van’t Hoff equilibrium box.
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in expanding against the right piston. That is,

Wrev ¼ WA þWB

¼ �
ðVAþVB

VA

PdV �
ðVAþVB

VB

PdV

¼ �
ðVAþVB

VA

nA RT
dV

V
�

ðVAþVB

VB

nB RT
dV

V

¼ �nA RT ln
VA þ VB

VA
� nB RT ln

VA þ VB

VB
(10:2)

As A and B initially were at the same temperature and pressure, and as the final
mixture is at the original temperature, and the total pressure of the mixture is equal
to the initial pressures of the individual gases, the volumes VA, VB, and VA þVB

are in the same proportion as the respective numbers of moles of gas. Thus,
Equation (10.2) can be written as

Wrev ¼ �nA RT ln
nA þ nB

nA
� nB RT ln

nA þ nB
nB

¼ nA RT ln
nA

nA þ nB
þ nB RT ln

nB
nA þ nB

¼ nA RT lnXA þ nB RT lnXB (10:3)

in which XA and XB are the mole fractions of the two gases. As the mixing process is
isothermal and the gases form an ideal mixture, DU ¼ 0, and

Qrev ¼ �Wrev ¼ �nA RT lnXA � nB RT lnXB (10:4)

Then from the entropy change in a reversible, isothermal process [Equation (6.72)]

DSmixing ¼ Qrev

T
¼ �nA R lnXA � nB R lnXB (10:5)

As both XA and XB are less than 1, DSmixing is a positive quantity.
For the reversible mixing, the entropy change in the surroundings is equal, but

opposite in sign, and the total entropy change is zero. If the mixing process were
allowed to proceed irreversibly by puncturing the two pistons, DS for the system
would be the same, but DS for the surroundings would be zero because no work
would be performed and no heat would be exchanged. Thus, the total change in
entropy for the irreversible process would be positive.

For the isothermal process involving ideal gases, DH is zero, and from
Equation (7.26)

DGmixing ¼ �TDSmixing (10:6)
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so that

DGmixing ¼ nA RT lnXA þ nB RT lnXB (10:7)

The Chemical Potential of a Component of an Ideal Gas Mixture

DGmixing also is equal to the difference between the Gibbs function for the mixture
and the Gibbs function for the unmixed gases. That is,

DGmixing ¼ Gmixture � Gpuregases

¼ [nAmA þ nBmB]mixed � [nAG
†
m,A þ nBG

†
m,B]unmixed (10:8)

where G†
m is the molar free energy of the pure gas. From Equation (7.43) and the ideal

gas law, we can obtain for the change in Gibbs function in the isothermal expansion
of an ideal gas:

DG ¼ nRT ln
P2

P1
(10:9)

If the change in state is the expansion of one mole of ideal gas from a standard
pressure P8 ¼ 0.1 MPa to a pressure P, Equation (10.9) can be written as

DG ¼ Gm � Gm8 ¼ RT lnP=P8 (10:10)

Substituting for Gm from Equation (10.10) into Equation (10.8), we obtain

DGmixing ¼ nAmA þ nBmB � nA(G8mA þ RT lnP=P8)

� nB(G8mB þ RT lnP=P8) (10:11)

From Equations (10.7) and (10.11), we have

nA RT lnXA þ nB RT lnXB ¼ nAmA þ nBmB �nAGmA8 � nA RT lnP=P8

� nB GmB8 � nB RT lnP=P8 (10:12)

The coefficients of nA and nB on the two sides of the equation must be equal: Thus,

RT lnXA ¼ mA � G8mA � RT lnP=P8 (10:13)

Therefore

mA ¼ G8mA þ RT lnXA þ RT lnP=P8

¼ GmA8 þ RT lnPXA=P8 (10:14)
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and similarly for mB. We shall define the partial pressure of an ideal gas as the
product of its mole fraction and the total pressure. Thus, we can write

mA ¼ GmA8 þ RT ln pA=P8 (10:15)

The right-hand equality in Equation (10.10), which gives the molar free energy
of a pure ideal gas, is of the same form as Equation (10.15), which gives the
chemical potential of a component of an ideal gas mixture, except that for
the latter, partial pressure is substituted for total pressure. If the standard state of a
component of the mixture is defined as one in which the partial pressure of that
component is 0.1 MPa, then

m8A ¼ G8mA (10:16)

and we can write

mA ¼ m8A þ RT ln pA=P8 (10:17)

Chemical Equilibrium in Ideal Gas Mixtures

For the reaction [Equation (9.47) applied to a mixture of ideal gases]

aA(pA)þ bB(pB)þ � � � ¼ rR(pR)þ sS(ps)þ � � � (10:18)

we can substitute the expression in Equation (10.17) for the chemical potentials into
Equation (9.53) that is

DGm ¼ �a(m8A þ RT ln pA=P8)� b(m8B þ RT ln pB=P8)

þ r(m8R þ RT ln pR=P8)þ s(m8s þ RT ln ps=P8) ¼ 0 (10:19)

or, if we gather together the chemical potential terms,

(rm8R þ sm8S � am8A � bm8B) ¼ �RT ln
( pR=P8)r( pS=P8)s

( pA=P8)a( pB=P8)b

� �
equil

(10:20)

We can define the left side of Equation 10.20 as DG8m, where the process described is
one mole of reaction at constant chemical potential for reactants and products, that is,
for a system large enough so that one mole of reaction can take place in the mixture
without any significant change in composition or chemical potential, an infinite-copy
model. As DG8m is a constant at constant temperature, the quantity in brackets is also a
constant at constant temperature, and, in particular, independent of the total pressure
and the initial composition of the system. We therefore designate the quantity in
brackets as KP, which is the equilibrium constant in terms of partial pressures for a
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mixture of ideal gases. Thus,

KP ¼ ( pR=P8)r( pS=P8)s

( pA=P8)a( pB=P8)b

� �
equil

(10:21)

and

DG8m ¼ �RT ln KP

and (10.22)

DYm8 ¼ R ln KP

because DG8m ¼ 2TDY8m. The subscript P distinguishes the ideal gas equilibrium
constant in terms of partial pressures from other forms for the constants that will
be derived for real systems.

If we use the symbol Q� for the quotient of pressures not at equilibrium on the
right side of Equation (10.21), then we can write

DGm ¼ DGm8þ R ln Q�

¼ �RT ln KP þ RT ln Q�

¼ RT ln (Q�=KP) (10:23)

Thus, if the initial quotient of pressures is greater than KP, DGm is positive and the
reaction will be spontaneous to the left, whereas if the initial quotient of pressures
is less than KP, DGm is negative and the reaction will be spontaneous to the right.

The form of the equilibrium constant in Equation (10.21) is different from that pre-
sented in introductory courses. It has the advantages that 1) it is explicit that KP is a
dimensionless quantity; 2) it is explicit that the numerical value of KP depends on the
choice of standard state but not on the units used to describe the standard state
pressure; the equilibrium constant has the same value whether P8 is expressed as
750.062 Torr, 0.98692 atm, 0.1 MPa, or 1 bar.

Dependence of K on Temperature

From the value of DY8m at a single temperature, it is possible to calculate the equili-
brium constant KP at that temperature. It is also desirable to be able to calculate KP

as a function of the temperature, so that it is not necessary to have values of DY8m
at frequent temperature intervals. All that is required is to differentiate the relationship
between DY8m and ln KP [Equation (10.22)] and to use Equation (7.57) for the
derivative of DY8m. Then

DHm

T2
¼ R

@ lnKP

@T

� �
P
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and

@ lnKP

@T

� �
P

¼ DHm

RT2
(10:24)

When Equation (10.24) is applied to the temperature dependence of ln KP, where
KP applies to an isothermal transformation, the DH8m that is used is the enthalpy
change at zero pressure for gases and at infinite dilution for substances in solution
(see Section 7.3).

We have observed in Chapter 4 that a general expression for DHm as a function of
temperature can be written in the form [Equation (4.74)]

DHm ¼ DHm0 þ
Ð
DCPmdT

If the heat capacities of the substances involved in the transformation can be
expressed in the form of a simple power series [Equation (4.67)]

CPm

R
¼ a0 þ a1T þ a2T

2 þ � � �

in which a0, a1, and a2 are constants, then Equation (4.74) becomes

DHm ¼ DHm0 þ R Da0T þ Da1
2

T2 þ Da2
3

T3 þ � � �
� �

(10:25)

in which the D’s refer to the sums of the coefficients for the products minus the sums
of the coefficients for the reactants. Equation (10.25) can be inserted into Equation
(10.24), which then can be integrated at constant pressure. If terms higher than T3

are neglected, the result is

Ð
d lnKP ¼

ð
DHm

RT2
dT

¼
ð

Da0
T

þ Da1
2

þ Da2
3

T þ DHm0

RT2

� �
dT (10:26)

If the constant of integration is I, the result of the integration can be written as

ln KP ¼ I þ Da0 ln T þ Da1
2

T þ Da2
6

T2 � DHm0

RT
(10:27)

The value of DHm0 can be found if the enthalpy of reaction is known at one temp-
erature. Similarly, the constant I can be determined if DHm0 and ln KP are known
at one temperature.
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Comparison of Temperature Dependence of DG88888m and ln K [1]

DYm8 ¼ R lnK

From Equation (10.22), when applied to a reaction in solution, we use K, not KP,

DYm8 ¼ R lnK

or (10.28)

DGm8 ¼ �RT lnK

In view of the relationship in Equation (10.28), one might expect that changes in DG8m
and ln K with temperature would be congruent. If K changes monotonically with
temperature, this expectation is fulfilled. If, however, K goes through a maximum
or minimum as temperature is changed, DG8m may still change monotonically in
one direction.

Such behavior is exhibited by the simple chemical reaction

HC2H3O2(aq)þ H2O( l) ¼ H3O
þ(aq)þ C2H3O

�
2 (aq)

Very precise, classic, measurements of the ionization constant of acetic acid were
made many decades ago [2]. The dependence of ln K on temperature is illustrated
in Figure 10.2. As the temperature is increased from 273 K, ln K and the degree of
ionization increases gradually, reaching a maximum just below 298 K, and then

Figure 10.2. The temperature dependence of ln K for the ionization of acetic acid. Data from
Ref. 2.
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decreases with increasing temperature. In contrast, DG8m is a monotonically increasing
function of the temperature (Fig. 10.3).

When we compare chemical reactions at a fixed temperature, that reaction with the
more positive value of DG8m is less “spontaneous,” less capable of progressing from
reactants to products. On the other hand, when we compare a given reaction at
different temperatures, a temperature with a more positive DG8m may show a more

Figure 10.3. The temperature dependence of DG8m for the ionization of acetic acid. Data from
Ref. 2.

Figure 10.4. The temperature dependence of DY8m for the ionization of acetic acid. Data from
Ref. 2.
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spontaneous reaction, as can be observed from Figures 10.2 and 10.3. For example,
the value of DG8m for the ionization of acetic acid is 5976.4 cal mol21 at 273 K and
6489.6 cal mol21 at 298 K. Nevertheless, the degree of ionization is greater at 298 K,
K ¼ 1.754�1025, than at 273 K, K ¼ 1.657�1025. In contrast to the Gibbs func-
tion, the Planck function DY8m does vary with temperature congruently with the
extent of reaction, as measured by ln K, as is illustrated in Figure 10.4.

10.2 THE FUGACITY FUNCTION OF A PURE REAL GAS

We expressed the molar free energy of a pure ideal gas as [Equation (10.10)]

GmA ¼ G8mA þ RT lnP=P8

by substituting V ¼ nRT/P in the integral

DG ¼
ðP
P8

VdP (10:28)

Similarly, we obtained the chemical potential of a component of an ideal gas mixture
as [Equation (10.17)] from an analysis of the van’t Hoff mixing experiment, using the
same integral.

mA ¼ m8A þ RT ln pA=P8

It would be possible to apply Equation (10.22) to real gases by substituting a different
empirical expression for Vm as a function of P for each gas, but no simple closed form
is applicable to all gases. A simple form of the equation for the chemical potential and
a simple form of the equation for an equilibrium constant that is independent of the
gases involved is so convenient, however, that G. N. Lewis suggested an alternative
procedure. He defined a new function, the fugacity f, with a universal relationship
to the chemical potential, and let the dependence of f on P vary for different
gases. The fugacity is defined to have the dimensions of pressure.

An advantage of the fugacity over the chemical potential as a measure of escaping
tendency is that an absolute value of the fugacity can be calculated, whereas an
absolute value of the chemical potential cannot be calculated.

One part of the definition of fugacity can be stated as

m ¼ m8þ RT ln
f

f 8
(10:29)

in which m8 is a function only of the temperature. The standard chemical potential is
characteristic of each gas and the standard state chosen. For a pure gas, the value of f8
is chosen equal to P8, 0.1 MPa.
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As all gases approach ideality as their pressure is decreased, and as Equation
(10.29) is of the same form as Equation (10.14) for an ideal gas, it is convenient
to complete the definition of f by stating

lim
P!0

f

P
¼ 1 (10:30)

That is, as the pressure approaches zero, the fugacity approaches the pressure.
Figure 10.5 indicates the relationship between P and f for ideal and real gases. The
standard state for a real gas is chosen as the state at which the fugacity is equal to
0.1 MPa, 1 bar, along a line extrapolated from values of f at low pressure, as indicated
in Figure 10.5. The standard state for a real gas is then a hypothetical 0.1 MPa stan-
dard state.

From Equation (10.29), we can see that the change in the Gibbs function for the
isothermal expansion of a real gas is

DG ¼ nRT ln
f2
f1

(10:31)

As the pressure approaches zero, Equation (10.30) applies and DG approaches the
value calculated from Equation (10.9).

Change of Fugacity with Pressure

The dependence of fugacity on pressure can be derived by differentiating
Equation (10.29):

@m

@P

� �
T

¼ RT
@ ln ( f =f 8)

@P

� �
T

(10:32)

Figure 10.5. Characteristics of the fugacity for ideal and real gases.
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Combining Equation (10.31) with Equation (9.25), we have

@ ln f

@P

� �
T

¼ Vm

RT
(10:33)

because f 8 is independent of P.
This equation can be integrated to find a fugacity at one pressure from that at another:

RT ln
f2
f1

¼
ðP2

P1

Vm dP (10:34)

Change of Fugacity with Temperature

Let us consider an isothermal process in which a gas is transformed form one state A
at a pressure P to another A� at a different pressure P�. Such a transformation can be
represented as follows:

A(P) ¼ A�(P�) (10:35)

The change in the Gibbs function for such a transformation is given by the expression

DG ¼ m� � m

¼ RT ln ( f �=f 8)� RT ln ( f =f 8)

¼ RT ln
f �

f
(10:36)

and

m�

T
� m

T
¼ R ln ( f �=f ) (10:37)

The partial derivative of the fugacity with respect to temperature is given by

@(m�=T)
@T

� �
P�
� @(m=T)

@T

� �
P

¼ R
@ ln f �

@T

� �
P�
� R

@ ln f

@T

� �
P

(10:38)

From Equation (9.57), we have

@(m�=T)
@T

� �
P�
� @(m=T)

@T

� �
P

¼ �H�
m

T2
þ Hm

T2
(10:39)

Therefore,

@ ln f �

@T

� �
P�
� @ ln f

@T

� �
P

¼ � H�
m

RT2
þ Hm

RT2
(10:40)
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If the pressure P� approaches zero, the ratio of the fugacity to the pressure approaches
one, and we can write

@ ln f �

@T

� �
P�

¼ @ lnP�

@T

� �
P�

¼ 0 (10:41)

If we substitute from Equation (10.40) into Equation (10.41), we obtain

@ ln f
@T

� �
P

¼ H�
m � Hm

RT2
(10:42)

in whichH�
m is the partial molar enthalpy of the substance in State A�, that is, the state of

zero pressure. Therefore, the difference (H�
m 2 Hm) is the change in molar enthalpy

when the gas goes from State A to its state of zero pressure, that is, at infinite volume.
The pressure dependence of this enthalpy change is given by the expression

@(H�
m � Hm)
@P

� �
T

¼ � @Hm

@P

� �
T

(10:43)

because (@H�/@P)T is zero, as H�
m is the partial molar enthalpy at a fixed (zero)

pressure.
From Equation (5.68), we know that the pressure coefficient of the molar enthalpy

of a gas is related to the Joule–Thomson coefficient mJ.T by the equation

@Hm

@P

� �
T

¼ �CPmmJ:T: (10:44)

If we combine Equations (10.43) and (10.44), we find that

@(H�
m � Hm)
@P

� �
T

¼ CPmmJ:T: (10:45)

Because of this relationship between (H�
m 2 Hm) and mJ.T., the former quantity fre-

quently is referred to as the “Joule–Thomson enthalpy.” The pressure coefficient
of this Joule–Thomson enthalpy change can be calculated from the known values
of the Joule–Thomson coefficient and the heat capacity of the gas. Similarly, as
(H�

m 2 Hm) is a derived function of the fugacity, knowledge of the temperature
dependence of the latter can be used to calculate the Joule–Thomson coefficient.
As the fugacity and the Joule–Thomson coefficient are both measures of the devi-
ation of a gas from ideality, it is not surprising that they are related.

10.3 CALCULATION OF THE FUGACITY OF A REAL GAS

Several methods have been developed for calculating fugacities from measurements
of pressures and molar volumes of real gases.
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Graphical or Numerical Methods

Using the a Function. A typical molar volume–pressure isotherm for a real gas
is illustrated in Figure 10.6, together with the corresponding isotherm for an ideal gas.
From Equation (10.34) we can write

RT ln
f2
f1

¼
ðP2

P1

VmdP

The ratio of the fugacity f2 at the pressure P2 to the fugacity f1 at the pressure P1 can
be obtained by graphical or numerical integration, as indicated by the area between
the two vertical lines under the isotherm for the real gas in Figure 10.6. However,
as P1 approaches zero, the area becomes infinite. Hence, this direct method is not
suitable for determining absolute values of the fugacity of a real gas.

Equation (10.34) takes cognizance of only one part of the definition of fugacity.
The second part of the definition states that although f approaches zero as P
approaches zero, the ratio f/P approaches one. Hence, this ratio might be integrable
to zero pressure.

If we take the pressure coefficient of the ratio f/P, we obtain

@ ln ( f =P)
@P

� �
T

¼ @ ln f
@P

� �
T

� @ lnP
@P

� �
T

(10:46)

Figure 10.6. Comparison of molar volume–pressure isotherms for a possible real gas and an
ideal gas.
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The pressure coefficient of ln f is given by Equation (10.33),

@ ln f
@P

� �
T

¼ Vm

RT

in which Vm is the molar volume of the gas. Thus, Equation (10.46) becomes

@ ln ( f =P)
@P

� �
T

¼ Vm

RT
� @ lnP

@P

¼ Vm

RT
� 1
P

¼ 1
RT

Vm � RT

P

� �
(10:47)

If we call the quantity within the parentheses 2a, that is, if

a ¼ RT

P
� Vm

� �
(10:48)

we obtain

@ ln ( f =P)
@P

� �
T

¼ � a

RT
(10:49)

Integration of this equation for isothermal conditions from zero pressure to some
pressure P gives

ðln( f =P)

0

d ln
f

P
¼ � 1

RT

ðP
0

a dP (10:50)

Figure 10.7. The a function for hydrogen gas at 300 K. Data from Ref. 3.
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or

ln
f

P
� ln

f

P

� �
P¼0

¼ � 1
RT

ðP
0

a dP (10:51)

As f/P approaches one as P approaches zero, the second term on the left side of
Equation (10.45) goes to zero. Hence

ln
f

P

� �
¼ � 1

RT

ðP
0

a dP (10:52)

Thus, to evaluate f, it is necessary to integrate a dP. Both Vm and RT/P approach
infinity as the pressure goes to zero. Nevertheless, the difference between them
generally does not approach zero. Usually, a can be measured for several pressures
and an extrapolation can be made to zero pressure. A typical graph for a (for
hydrogen gas) is illustrated in Figure 10.7 [3]. The area under the curve from
P ¼ 0 to any finite value of p can be obtained2 either graphically or numerically
(see Appendix A) to determine the integral in Equation (10.52).

This procedure of using a finite difference between two quantities, both of which
become infinite, is of general usefulness. We also will use it in Chapter 19 to obtain
the standard potential of a cell.

Using the Compressibility Factor. The behavior of most pure gases can be
represented adequately by a single chart of the compressibility factor Z, which has
been defined above in Equation (5.55).

Z ¼ PVm

RT
(10:53)

If a gas follows any two-parameter equation of state, such as the van der Waals or the
Redlich–Kwong, it has been shown in Section 5.2 that Z, the compressibility factor,
is a universal function of the reduced pressure Pr ¼ P/Pc and the reduced temperature
Tr ¼ T/Tc. Then if Z is plotted as a function of Pr, at a given reduced temperature Tr
all gases fit a single curve. At another reduced temperature Tr0, a new curve is
obtained for Z versus Pr, but it too fits all gases. Gases at equal reduced pressures
and reduced temperatures are said to be in corresponding states.

If Z could be related to a, it would be possible to plot some function of the fugacity
against Pr at a given value of Tr for which all gases would fit the same curve. At
another reduced temperature Tr0, a new curve would be obtained.

2Several investigators report values of a that deviate from 215 cm3 mol21 at pressures below 1 MPa, but
some values are greater than 215 mol21 and some are less. The limiting value of a at zero pressure must be
equal to 2B [Equation (5.59)], which is given as 14.8+0.5 in Ref. 4. It would seem, therefore, that the
disagreement in the data at low pressure is due to the difficulty in measuring a small difference between
two very large numbers.
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Let us then derive a relationship between a and Z. It follows from
Equation (10.49) that

a ¼ RT

P
� Vm ¼ RT

P
1� PVm

RT

� �
¼ RT

P
(1� Z) (10:54)

From Equation (10.48) and Equation (10.54), we obtain

d ln
f

P
¼ � 1

RT

RT

P
(1� Z)dP (10:55)

which by integration yields

ln
f

P
¼ �

ðP
0

1� Z

P
dP (10:56)

The integration of Equation (10.56) can be carried out, graphically or numerically,
to provide a chart of f/P [or g, the fugacity coefficient [5]] as a function of Pr and Tr.
A single chart of “universal fugacity coefficients” is applicable to all pure gases
within the precision to which the compressibility factor chart is valid. Several inves-
tigators have prepared such charts, a typical example of which is illustrated in
Figure 10.8. The values of Tr, and Pr can be calculated from the critical constants

Figure 10.8. Fugacity coefficients of gases. By permission, from B. W. Gamson and K. M.
Watson, Natl. Petrol. News, Tech. Sec. 36, R623 (1944).
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of the gas (Table 5.3), g can be read from the chart, and the fugacity can be calculated
from the expression

f ¼ gP (10:57)

Analytical Methods

Based on the Virial Equation. If the pressure–volume behavior of a gas is rep-
resented by a virial equation of the form [Equation (5.59)]

PVm ¼ RT þ BPþ CP2 þ � � �
Equation (10.34) becomes

ln( f =P) ¼ (1=RT)
ðP
0

(Bþ CPþ � � � )dP

¼ (1=RT)(BPþ CP2=2þ � � � ) (10:58)

and the fugacity can be evaluated at any pressure from values of the virial coeffi-
cients. The limiting value of a at zero pressure can be observed to be equal to the
value of 2B, where B is the second virial coefficient. (See Equation 5.6.)

Based on the Redlich–Kwong Equation of State. We can integrate
d ln ( f/P) by using an equation of state such as the Redlich–Kwong equation.
Integrating as in Equation (10.45), we obtain

RT ln
f

P
¼ �

ðP
0

a dP ¼
ðP
0

Vm � RT

P

� �
dP

¼
ðP
0

VmdP�
ðP
0

RT d lnPX (10:59)

To evaluate the first integral, it is necessary to substitute for Vm or dP. A trial will
show that it is simpler to substitute for dP. Thus, solving the Redlich–Kwong
equation of state for P, we obtain

P ¼ RT

Vm � b
� a

T1=2Vm(Vm þ b)
(10:60)

and

dP ¼ � RT

(Vm � b)2
dVm þ a

T1=2Vm(Vm þ b)2
dVm þ a

T1=2(Vm þ b)V2
m

dVm (10:61)
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If we insert Equation (10.55) into Equation (10.53), we obtain

RT ln
f

P
¼
ðVm

1
Vm � RT

(Vm � b)2
þ a

T1=2Vm(Vm þ b)2
þ a

T1=2(Vm þ b)V2
m

� �
dVm

� RT lnPjP0

¼ �
ðVm

1

RTVm

(Vm � b)2
dVm þ

ðVm

1

a

T1=2(Vm þ b)2
dVm

þ
ðVm

1

a

T1=2Vm(Vm þ b)
dVm � RT lnPjP0

¼ �
ðVm

1

RT(Vm � bþ b)

(Vm � b)2
dVm þ

ðVm

1

a

T1=2(Vm þ b)2
dVm

þ
ðVm

1

a

T1=2Vm(Vm þ b)
dVm � RT lnPjP0

¼ �
ðVm

1

RT(Vm � b)

(Vm � b)2
dVm �

ðVm

1

RTb

(Vm � b)2
dVm

þ
ðVm

1

a

T1=2(Vm þ b)2
dVm þ

ðVm

1

a

T1=2Vm(Vm þ b)
dVm � RT lnPjP0

¼ �RT ln (Vm � b)jVm
1 þ RTb

Vm � b
jVm
1 � a

T1=2(Vm þ b)
jVm
1

þ a

T1=2b
ln

Vm

Vm þ b
jVm
1 � RT lnPjP0 (10:62)

If we combine the first and fifth terms on the right side of Equation (10.56) before
substituting limits, we obtain

RT ln
f

P
¼ �RT ln {P(Vm � b)}jP,Vm

P¼0,Vm¼1 þ RTb

Vm � b
jVm
1

� a

T1=2(Vm þ b)
jVm
1 þ a

T1=2b
ln

Vm

Vm þ b
jVm
1 (10:63)

As

lim
P!0

Vm!1
P(Vm � b) ¼ PVm ¼ RT (10:64)
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then

RT ln
f

p
¼ �RT ln {P(Vm � b)}þ RTb

Vm � b
� a

T1=2(Vm þ b)

þ RT lnRT þ a

T1=2b
ln

Vm

Vm þ b
þ 0 (10:65)

Hence,

ln
f

P
¼ ln

RT

P(Vm � b)
þ b

Vm � b
� a

RT3=2(Vm þ b)
þ a

RT3=2b
ln

Vm

Vm þ b
(10:66)

Thus, the fugacity of a gas that obeys the Redlich–Kwong equation can be eval-
uated from the constants a and b at any given pressure P and corresponding molar
volume, Vm.

An Approximate Method. When the third virial coefficient is sufficiently small,
it frequently happens that a is roughly constant, particularly at relatively low press-
ures. A good example is hydrogen gas (Fig. 10.7). When this is the case, we can
integrate Equation (10.51) analytically and obtain

RT ln
f

P
¼ �aP ¼ BP (10:67)

where B is the second virial coefficient, which is consistent with Equation (10.52) at
low pressure.

This equation can be converted into several other approximate forms. For example,

ln
f

P
¼ �aP

RT
¼ BP

RT
(10:68)

Therefore,

f

P
¼ e�aP=RT ¼ eBP=RT (10:69)

The exponential in Equation (10.69) can be expanded as a Taylor series to give

f

P
¼ 1� aP

RT
þ 1
2!

aP

RT

� �2

� � � �

¼ 1þ BP

RT
þ 1
2!

BP

RT

� �2

þ � � � (10:70)

If aP � RT, we can neglect all terms of higher power than (aP) and we can obtain

f

P
¼ 1� aP

RT
¼ RT � [(RT=P)� Vm]P

RT

¼ PVm

RT
¼ Z (10:71)
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Another relationship can be obtained by defining an ideal pressure Pi as

Pi ¼ RT

Vm
(10:72)

If we substitute from Equation (10.72) into Equation (10.71), we obtain

f

P
¼ P

Pi
(10:73)

Thus, the fugacity can be estimated from the observed pressure, P, and the ideal
pressure can be calculated from the observed volume. The error (6, p. 198) in
Equation (10.73) is less than 1% for oxygen up to a pressure of 10 MPa. For
carbon dioxide, the error is 1% at 2.5 MPa and 4% at 5 MPa [6]. If a P� RT, the
numeric value of f/P is relatively insensitive to variations in the value of a as
large as 30%.

10.4 JOULE–THOMSON EFFECT FOR A VAN DER WAALS GAS

Although the van der Waals equation is not the best of the semi-empirical equations
for predicting quantitatively the PVT behavior of real gases, it does provide excellent
qualitative predictions. We have pointed out that the temperature coefficient of the
fugacity function is related to the Joule–Thomson coefficient mJ.T.. Let us now use
the van der Waals equation to calculate mJ.T. from a fugacity equation. We will restrict
our discussion to relatively low pressures.

Approximate Value of a for a van der Waals Gas

From the van der Waals Equation (5.54)

Pþ a

V2
m

� �
(Vm � b) ¼ RT

we obtain

PVm þ a

Vm
� Pb� ab

V2
m
¼ RT

and

Vm þ a

PVm
� b� ab

PV2
m
¼ RT

P

so that

a ¼ RT

P
� Vm ¼ a

PVm
� b� ab

PV2
m

(10:74)

When the pressure is low enough that

PVm ffi RT
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then

a ffi a

RT
� b� abP

(RT)2
(10:75)

At low pressures, bP/RT� PVm/RT ffi 1; hence, the third term on the right in
Equation (10.75) is negligible in comparison with the first term, and

a ¼ a

RT
� b (10:76)

Fugacity at Low Pressures

According to Equation (10.46)

RT ln
f

P
¼ �

ðP
0

a dP

If we substitute a from Equation (10.75) into Equation (10.46), we obtain

RT ln
f

P
¼ �

ðP
0

a

RT
dPþ

ðP
0

bdPþ
ðP
0

abP

(RT)2
dP

¼ � aP

RT
þ bPþ abP2

2(RT)2and

ln
f

P
¼ � aP

(RT)2
þ bP

RT
þ abP2

2(RT)3
(10:76)

Enthalpy of a van der Waals Gas

According to Equation (10.42)

H�
m � Hm

RT2
¼ @ ln f

@T

� �
P

Differentiating Equation (10.76) with respect to T, we obtain

@ ln f =P
@T

� �
P

¼ @ ln f
@T

� �
P

¼ H�
m � Hm

RT2
¼ 2aP

R2T3
� bP

RT2
� 3
2
� abP2

R3T4
(10:77)
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or

H�
m � Hm ¼ 2aP

RT
� bP� 3abP2

2R2T2
(10:78)

Joule–Thomson Coefficient

From Equation (10.45), we see that

mJ:T: ¼
1

CPm

@(H�
m � Hm)
@P

� �
T

If we apply Equation (10.45) to Equation (10.78), we obtain

mJ:T: ¼
1

CPm

2a
RT

� b� 3abP
R2T2

� �
(10:79)

and the more approximate result [starting with Equation (10.70) for a] is

mJ:T: ¼
1

CPm

2a
RT

� b

� �
(10:80)

As CPm is positive, the sign of the Joule–Thomson coefficient depends on the sign
of the expression in parentheses in Equations (10.79) and (10.80). The expression in
Equation (10.79) is a quadratic in T, and are two values of T exist at any value of P for
which mJ.T. ¼ 0. Thus, Equation (10.79) predicts two values of the Joule–Thomson
inversion temperature Ti for any pressure low enough for Equation (10.75) to be a
good approximation for a. As we saw in Section (5.2) and Figure 5.8, this prediction
fits, at least qualitatively, the experimental data for the Joule–Thomson experiment
for N2 at low pressure.

At sufficiently high temperatures and low pressures, Equation (10.80) applies.
This equation predicts a single value of Ti that is independent of pressure. It can
be observed from Figure 5.7 that this clearly is an approximate relationship for the
upper inversion temperature.

10.5 MIXTURES OF REAL GASES [7]

Now that we have obtained expressions for the fugacity of a real gas and its tempera-
ture and pressure coefficients, let us consider the application of the concept of
fugacity to components of a mixture of real gases.
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Fugacity of a Component of a Gaseous Solution

The equation for the fugacity of component i of a mixture has the same form as
Equation (10.29),

mi ¼ m8i þ RT ln ( fi=f 8) (10:81)

in which m8i and f 8 have the values of the pure component at the standard pressure.
On the basis of this definition, the fugacity of a component of a gaseous mixture is
equal to that of the pure gas in equilibrium with the mixture across a membrane
permeable only to that component.

As the mixture approaches ideality as the total pressure approaches zero, Equation
(10.81) should approach Equation (10.17). The second part of the definition of
fugacity for a gaseous component, which is analogous to Equation (10.24), is

lim
P!0

fi
pi

¼ 1 (10:82)

in which pi is the partial pressure of the component in the mixture, which is defined as
pi ¼ XiP.

The form of Equation (10.33) for a component of a solution is

@ ln fi
@P

� �
T ,Xi

¼ Vmi

RT
(10:83)

The integration of Equation (10.83) for a component of a mixture leads to a problem
of nonconvergence at P ¼ 0, just as for a single gas. To circumvent this difficulty, we
shall consider the ratio of the fugacity to the partial pressure of a component, just as
we considered the ratio of the fugacity to the pressure of a single gas.

By steps analogous to Equations (10.32) and (10.33), we can show that

@ ln ( fi=pi)
@P

� �
T ,Xi

¼ Vmi

RT
� 1
P

(10:84)

If we integrate Equation (10.84) between P ¼ 0 and P, we obtain

ln
fi
pi
� ln

fi
pi

� �
P¼0

¼
ðP
0

Vmi

RT
� 1
P

� �
dP (10:85)

From Equation (10.30), we can see that ln( fi/pi) approaches zero as P approaches
zero; thus,

ln
fi
pi

¼
ðP
0

Vmi

RT
� 1
P

� �
dP (10:86)
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If sufficient data are available on the dependence of the volume of the mixture on
composition and pressure, the fugacities of the components can be calculated by
means of Equation (10.86).

Approximate Rule for Solutions of Real Gases (6, p. 198, 226)

As the evaluation ofEquation (10.86) requires a great deal of data, and as adequate data are
available for only a few mixtures of gases, it is useful to have approximate relationships
that can be used to estimate the fugacity of components in a solution of gases.

For many gaseous solutions, even if the gases are not ideal, the partial molar
volumes of the components are equal to the molar volumes of the pure components
at the same total pressure. The gases are said to obey Amagat’s rule, and the volume
change on mixing is zero. Under these conditions, the gaseous solution behaves
ideally in the sense that it obeys the equation

fi ¼ Xi f
†
i (10:87)

which is called the Lewis and Randall rule. Lewis and Randall suggested that, even
though the gases in the solution are not ideal, the mixture behaves as an ideal solution
in that the fugacity of each component obeys Equation (10.87), in which fi

† is the
fugacity of the pure gas at the same temperature and at the same total pressure P
and Xi is the mole fraction of the particular component. Thus, the fugacity of a com-
ponent can be estimated from the fugacity of the pure gas and from the composition
of the mixture.

Fugacity Coefficients in Gaseous Solutions

The fugacity coefficient gi of a constituent of a gaseous solution is defined by the
expression

gi ¼
fi
pi

(10:88)

To the level of approximation provided by the Lewis and Randall rule, gi is given by
the equation

gi ¼
Xi f †i
pi

¼ Xi f †i
XiP

¼ g†i (10:89)

in which g†i is the fugacity coefficient of the pure constituent at the same pressure and
temperature. Thus, the fugacity coefficients obtained from Figure 10.8 for a pure gas
could be used to estimate the fugacity of a component in a mixture.
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Equilibrium Constant and Change in Gibbs Functions and
Planck Functions for Reactions of Real Gases

For the reaction

aA(g)þ bB(g) ¼ cC(g)þ dD(g) (10:90)

we can show, by a procedure analogous to that used for ideal gases, that the standard
change in the Gibbs function is related to the equilibrium constant in terms of
fugacities by the equation

DG8m ¼ �RT lnKf (10:91)

and the Planck function is related to the equilibrium constant by the relation

DY8m ¼ R lnKf (10:92)

In these equations, Kf is given by the ratio

Kf ¼ ( fC=f 8)c( fD=f 8)d

( fA=f 8)a( fB=f 8)b
(10:93)

and is the thermodynamic equilibrium constant K. To obtain DG8m or DY8m from
equilibrium data, it is necessary to calculate the equilibrium constant in terms of
fugacities rather than in terms of partial pressures.

As fi ¼ gipi [Equation (10.88)], K also can be expressed as

K ¼ Kf ¼ ( pCgC=P8)
c( pDgD=P8)

d

( pAgA=P8)
a( pBgB=P8)

b

¼ gcCg
d
D

gaAg
b
B

� �
( pC=P8)c( pD=P8)d

( pA=P8)a( pB=P8)b
(10:94)

K ¼ g8cC g8dD
g8aA g8bB

 !
( pC=P8)c( pD=P8)d

( pA=P8)a( pB=P8b

¼ KgKP (10:95)

in which KP represents the partial pressure equilibrium constant and Kg is the corre-
sponding ration of the fugacity coefficients for the respective pure gases at the speci-
fied total pressure. Approximate values of Kg can be obtained from tables and graphs
of fugacity coefficients of pure gases, as in Figure 10.8, and K can be calculated from
tables of DG8m by the methods described in Chapter 7.

Then, KP can be obtained at any pressure at which the fugacities of the pure gases
are available.
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EXERCISES

10.1. Consider a gas with the equation of state

PVm ¼ RT þ BP (10:96)

for which B is a small negative number.

a. Draw a rough sketch of a graph of PVm versus P for this gas. Include a
dotted line for the corresponding graph of an ideal gas.

b. Draw a dotted curve for a graph of Vm versus P for an ideal gas. On this
same graph, draw a curve for Vm versus P for a gas with the equation of
state given by Equation (10.96).

c. As P approaches zero what happens to the two curves in the graph in (b)?

d. Solve Equation (10.96) explicitly for Vm. What is the limit of Vm as P
approaches zero?

e. Solve Equation (10.96) explicitly for [Vm2(RT/P)]. What is the limit of
the quantity in brackets as P approaches zero?

f. Draw a graph of [Vm 2 (RT/P)] versus P for the gas with the equation of
state given by Equation (10.96).

Derive the following:

g. An expression for ln f.

h. An expression for g.

i. An expression for the Joule–Thomson enthalpy.

j. An expression for the Joule–Thomson coefficient.

10.2. For helium B in the equation of state (10.96) is essentially constant and
equals 11.5 cm3 mol21 in the temperature range 308C to 908C [8]. Find
explicit answers to questions (g–j) of Exercise 1 for He at 0.1 MPa
and 608C.

10.3. If the fugacity function is defined by Equation (10.81), show that for a
solution of two components

X1
@ ln f1
@X1

� �
P,T

¼ X2
@ ln f2
@X2

� �
P,T

(10:97)

10.4. For hydrogen at 250 K, Johnston and White [3] obtained the data given in
Table 10.1.

a. Find the fugacity of hydrogen at 5 MPa by numeric integration of a as a
function of P.

b. Use Equation (10.66) to calculate the fugacity of hydrogen at 5 MPa on the
basis of the Redlich–Kwong equation, and compare with the result of (a).
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Hint: Use Equation (5.59) to calculate a and b, with the values of the
critical constants in Table 10.3.

10.5. Proceeding in a manner analogous to that used for ideal gases, derive the
following equations for real gases:

DG8m ¼ �RT lnKf (10:91)

and

DY8m ¼ R lnKf (10:92)

10.6. R. H. Ewell [9] suggested the following reaction as a method for the
production of hydrogen cyanide:

N2(g)þ C2H2(g) ¼ 2HCN(g) (10:98)

a. From data in the NIST WebBook [10] calculate DG8m 298 for this reaction.

b. By methods discussed previously, calculate DGm8 for this reaction at
3008C. The value obtained should be about 34,000 J mol21. The necessary
data can also be found in the WebBook [10].

c. Calculate Kf for Reaction (10.98) at 3008C.
d. Find the critical temperatures and pressures for the gases in Reaction

(10.98) in Refs. [10], [11], and [12]. Tabulate these values. Also tabulate
the reduced temperatures for 3008C and the reduced pressures for a total
pressure of 0.5 MPa and 20.0 MPa.

e. Referring to Figure 10.8, find g’s for the gases in Reaction (10.98) at total
pressures of 0.5 MPa and 20.0 MPa. Tabulate these values.

f. Calculate Kg at 0.5 MPa and 20.0 MPa, and add these values to the
table in (e).

g. Calculate KP at 0.5 MPa and 20.0 MPa, and add these values to the
table in (e).

h. If we start with an equimolar mixture of N2 and C2H2, what fraction of
C2H2 is converted to HCN at 0.5-MPa total pressure? At 20.0-MPa total
pressure?

TABLE 10.1. Pressure–Volume Properties of H2(g)

P/MPa PVm/RT P/MPa PVm/RT

0.1013 1.000674 3.0398 1.019832
0.2027 1.001308 4.0530 1.026410
0.5066 1.003258 5.0663 1.033139
1.0133 1.006572 6.0795 1.039818
2.0265 1.013202 7.0928 1.046691
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i. What is the effect of increasing total pressure on the yield of hydrogen
cyanide (HCN)?

j. According to Le Chatelier’s principle, what should be the effect of increas-
ing total pressure on the yield of HCN?

10.7. The thermodynamic equilibrium constant K for the formation of ammonia
according to the equation

1
2 N2(g)þ 3

2 H2(g) ¼ NH3(g)

is 0.0067 at 4508C.

a. Calculate the degree of dissociation of ammonia at 4508C and 30.40-MPa
total pressure. At this temperature and pressure, the fugacities of the pure
gases, in MPa, are H2, 33.13; N2, 34.65; and NH3, 27.66. Assume the
Lewis and Randall rule.

b. Make a corresponding calculation assuming that the fugacity coefficients
all are equal to unity.

10.8. Table 10.2 shows values of Vm for O2 at 300 K taken from Weber [13].

a. Calculate a as a function of P for O2 at 300 K, and draw a smooth curve
from your calculated points. Fit your results to a cubic polynomial in P.

b. Calculate f/P at several values of P with Equation (10.46), using the cubic
polynomial in an analytical integration.

c. Calculate f/P at the same values of P with Equation (10.65), which is
based on the assumption that a is constant.

d. Why do the values in (c) agree with the values in (b) for P� 10.000 MPa,
despite the clear variation of a of 25% between 0 and 10 MPa? Hint:
Consider the numeric properties of the ln function and its argument
when the argument is less than 1.

10.9. Pelekh and Carr [14] measured the value of KP for the reaction

Ga(CH3)3(g)þ NH3(g) ¼ (CH3)3Ga:NH3(g)

TABLE 10.2. Pressure–Volume Properties of O2(g)

P/MPa Vm/cm
3 mol21

0.101325 24602.02
1.00000 2478.85
5.0000 484.94
10.000 237.81
20.000 118.38
30.00 82.28
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from measurements of total pressure, assuming that all reactants and products
are ideal gases, making corrections for the dissociation to form CH4(g).
Table 10.3 shows their calculated values of KP at seven temperatures from
408C to 1008C.

a. Calculate DG8m for the reaction at each temperature.

b. Plot ln K against 1/T, and determine whether the graph is linear by fitting
to both a linear function and a quadratic.

c. If the function is linear, calculate DH8m from the slope of the line. If the
function is not linear, calculate DH8m at each temperature from the slope
at each temperature.

d. Calculate DS8m at each temperature.
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CHAPTER 11

THE THIRD LAW OF
THERMODYNAMICS

11.1 NEED FOR THE THIRD LAW

We can determine the spontaneity of a reaction from values of DG or DY, as we
showed in Chapter 7. From Equation (7.26), we have

DG ¼ DH � TDS

and from Equation (7.34) we have

DY ¼ DS� DH

T

We can calculate DH from thermal data alone, that is, from calorimetric measure-
ments of enthalpies of reaction and heat capacities. It would be advantageous if
we could also compute DS from thermal data alone, for then we could calculate
DG or DY without using equilibrium data. The requirement of measurements for
an equilibrium state or the need for a reversible reaction thus could be avoided.
The thermal-data method would be of particular advantage for reactions for which
DG or DY is very large (either positive or negative) because equilibrium measure-
ments are most difficult in these cases.

We saw in Chapter 4 that DH for a reaction at any temperature can be calculated
from a value at one temperature and from the values of the heat capacities of reactants
and products in the temperature range of interest. Similarly, DS can be calculated at
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any temperature from the value at one temperature and from the appropriate heat
capacity data. However, unlike DH, DS cannot be calculated from thermal data
alone (that is, without obtaining equilibrium data) on the basis of the first and
second laws. For that, we require another postulate, the third law.

11.2 FORMULATION OF THE THIRD LAW

We have pointed out previously that for many reactions the contribution of the
TDS term in Equation (7.26) is relatively small; thus, DG and DH frequently are
close in value even at relatively high temperatures. In a comprehensive series of
experiments on galvanic cells, Richards [1] showed that as the temperature decreases,
DG approaches DH more closely, in the manner indicated in Figure 11.1 or
Figure 11.2. Although these results were only fragmentary evidence, especially
since they required extrapolation from 273 K to 0 K, they did furnish the clues that
led Nernst to the first formulation of the third law of thermodynamics.

Nernst Heat Theorem

The trend of DG toward DH can be expressed as

lim
T!0

(DG� DH) ¼ 0 (11:1)

Equation (11.1) is a consequence of Equation (7.26),

DG ¼ DH � TDS

because

lim
T!0

(�TDS) ¼ 0 (11:2)

Figure 11.1. Limiting approach of DG and DH as T approaches 0. [Adapted from
Richards [1].]
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without regard to the limit of DS as long as DS is finite. However, Nernst made the
additional assumption, based on the appearance of some of Richards’s curves
(Fig. 11.1), that the limiting value of DS is zero for all condensed systems:

lim
T!0

(�DS) ¼ lim
T!0

@DG

@T

� �
P

¼ 0 (11:3)

This assumption states not only that DG approaches DH as T approaches 0 K but also
that the DG curve and the DH curve (Fig. 11.1) approach a horizontal limiting
tangent.

Nernst asserted his postulate although the available data were inconclusive. In fact,
Richards extrapolated some of his data to give a graph such as that shown in
Figure 11.2, which suggests that Equation (11.1) is valid but that Equation (11.3)
is not. Numerous subsequent experiments have confirmed Nernst’s postulate if it is
limited to perfect crystalline systems. Apparent exceptions have been accounted for
satisfactorily. The term perfect implies a single, pure substance. Other restrictions
are implied by this term, but they will be discussed later.

Planck’s Formulation

In Nernst’s statement of the third law, no comment is made on the value of the
entropy of a substance at 0 K, although it follows from his hypothesis that all pure
crystalline substances must have the same entropy at 0 K. Planck [2] extended
Nernst’s assumption by adding the postulate that the value of the entropy of a pure
solid or a pure liquid approaches zero at 0 K:

lim
T!0

S ¼ 0 (11:4)

The assumption of any finite constant for the entropy of all pure solids and liquids
at 0 K leads to Nernst’s theorem [Equation (11.3)] for these substances.

Figure 11.2. Alternative limiting approach of DG and DH as T approaches 0. [Adapted from
Richards [1].]
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Equation (11.4) provides a convenient value for that constant. Planck’s statement
asserts that S0K is zero only for pure solids and pure liquids, whereas Nernst
assumed that his theorem was applicable to all condensed phases, including sol-
utions. According to Planck, solutions at 0 K have a positive entropy equal to the
entropy of mixing. (The entropy of mixing is discussed in Chapters 10 and 14).

Statement of Lewis and Randall

Lewis and Gibson [3] also emphasized the positive entropy of solutions at 0 K and
pointed out that supercooled liquids, such as glasses, even when composed of a
single element (such as sulfur), probably retain a positive entropy as the temperature
approaches absolute zero. For these reasons Lewis and Randall [4] proposed the
following statement of the third law of thermodynamics:

If the entropy of each element in some crystalline state be taken as zero at the absolute
zero of temperature, every substance has a finite positive entropy, but at the absolute
zero of temperature the entropy may become zero, and does so become in the case of
perfect crystalline substances.

We will adopt this statement as the working form of the third law of thermodyn-
amics. This statement is the most convenient formulation for making calculations of
changes in the Gibbs function or the Planck function. Nevertheless, more elegant for-
mulations have been suggested based on statistical thermodynamic theory [5].

The preceding statement of the third law has been formulated to exclude solutions
and glasses from the class of substances that are assumed to have zero entropy at 0 K.
Let us examine one example of each exclusion to see that this limitation is essential.

For the mixing process

AgCl (s, 0K)þ AgBr(s, 0K) ¼ solid solution(s, 0K) (11:5)

the entropy change can be represented as

DSm,0K ¼ Ssolid soln � Sm,AgBr � Sm,AgCl (11:6)

and can be computed from the experimentally known DS298 for the same mixing
reaction and from heat capacity data from near 0 K to 298 K for each of the three
solids [6].

For the formation of one mole of this solid solution, DSm,0K is 4.31 J K21 mol21.
Hence, if Sm,AgBr and Sm,AgCl each are assigned zero at 0 K, the entropy of the solid
solution at 0 K is not zero but 4.31 J K21 mol21. This value is close to 4.85 J K21

mol21, which is the value that would be calculated for the entropy of mixing to
form an ideal solution.

Likewise, glasses do not have zero entropy at 0 K; that is, DSm,0K is not zero for a
transition such as

glycerol(crystalline, 0K) ¼ glycerol(glass, 0K) (11:7)
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To calculate DSm for this transition, it is necessary to have heat capacity data for both
glassy and crystalline glycerol from near 0 K to the melting point and the heat of
fusion of both glass and crystal. Such data [7] lead to a DSm for Equation (11.7) of
19.2 J K21 mol21. Thus, glassy glycerol cannot be assigned zero entropy at 0 K;
rather, it possesses a residual entropy of 19.2 J K21 mol21.

Many substances can exist in two or more crystalline forms at low temperatures. Of
course, one form is more stable than the others. Nevertheless, if each is a perfect crystal-
line substance, the entropy of each will be zero at 0 K. For example, for the transition

sulfur(monoclinic, 0 K) ¼ sulfur(rhombic, 0 K) (11:8)

DSm,0K can be computed from heat capacity measurements [8] for each crystalline
form from near 0 K to the transition temperature (368.6 K) and the heat of transition.
The result is zero within experimental error. Hence, both rhombic and monoclinic
sulfur are assigned zero entropy at 0 K.

11.3 THERMODYNAMIC PROPERTIES AT ABSOLUTE ZERO

From the third law of thermodynamics, it is possible to derive several limiting
relationships for the values of thermodynamic quantities at absolute zero for
perfect crystalline substances.

Equivalence of G and H

It follows from the definition of the Gibbs function, Equation (7.17), that

G0K ¼ H0K � TS0K ¼ H0K (11:9)

DCP in an Isothermal Chemical Reaction

From Equations (11.3) and (7.49), we can see that

lim
T!0

@DG

@T

� �
P

¼ lim
T!0

(�DS) ¼ lim
T!0

DG� DH

T
¼ 0 (11:10)

As the left side of

lim
T!0

DG� DH

1
¼ 0

is indeterminant because both (DG 2 DH ) and T approach zero at 0 K, we can
resolve this indeterminate expression by appling L’Hopital’s rule of differentia-
ting numerator and denominator, respectively, with respect to the independent
variable T. Carrying out this procedure, from Equation (11.10), we obtain

lim
T!0

(@DG=@T )P� (@DH=@T )P
T

¼ 0
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and

lim
T!0

@DG

@T

� �
P

¼ lim
T!0

@DH

@T

� �
P

¼ lim
T!0

DCP (11:11)

From Equation (11.3) and Equation (11.11), it follows that

lim
T!0

DCP ¼ 0 (11:12)

Many investigators have shown that DCP does approach zero as T approaches
absolute zero. Nevertheless, these results in themselves do not constitute experimen-
tal evidence for the third law, which is a sufficient, but not a necessary, condition for
Equation (11.12). If (@DG/@T )P is a nonzero, finite number, it can be shown by a
series of equations corresponding to Equations (11.10) and (11.11) that Equation
(11.12) is still valid.

Limiting Values of CP and CV

The third law asserts that the entropy of a substance (which is referred to the
corresponding elements) must be finite or zero at absolute zero. In view of the
finite values observed for DS at higher temperatures, it follows that the entropy of
a substance must be finite at all (finite) temperatures.

If we consider an entropy change at constant pressure, then from Equations (6.49)
and (4.53),

dSP ¼ DQP

T
¼ CPdT

T

This differential equation can be integrated at constant pressure to give

S(T) ¼
ðT
0

CPdT

T
þ S(0 K) (11:14)

As S must be finite at all temperatures, it follows that

lim
T!0

CP ¼ 0 (11:15)

If CP had a finite value at T ¼ 0, the integral in Equation (11.14) would not converge,
because T in the denominator goes to zero and S would not be finite.

By an analogous procedure, we can show that

lim
T!0

CV ¼ 0 (11:16)

Temperature Derivatives of Pressure and Volume

From Equation (11.4)

lim
T!0

S ¼ 0

264 THE THIRD LAW OF THERMODYNAMICS



It follows that in the limit of absolute zero, the entropy of a perfect crystalline
substance must be independent of changes in pressure or volume (or any other
variable of state except T ). Thus,

lim
T!0

@S

@P

� �
T

¼ 0 (11:17)

and

lim
T!0

@S

@V

� �
T

¼ 0 (11:18)

Applying Equation (7.59),

@S

@P

� �
T

¼ � @V

@T

� �
P

to Equation (11.17), we obtain

lim
T!0

@V

@T

� �
P

¼ 0 (11:19)

Similarly, from Equation (7.60),

@S

@V

� �
T

¼ @P

@T

� �
V

and Equation (11.18) leads to

lim
T!0

@P

@T

� �
V

¼ 0 (11:20)

In other words, the temperature gradients of the pressure and volume vanish as
absolute zero is approached.

11.4 ENTROPIES AT 298 K

In the statement that we have adopted for the third law, it is assumed (arbitrarily) that
the entropy of each element in some crystalline state is zero at 0 K. Then for every
perfect crystalline substance, the entropy is also zero at 0 K. Consequently we can
set S(0 K) in Equation (11.14) equal to zero. Thus, we may write

S(T) ¼
ðT
0

CPdT

T
(11:21)

and we can evaluate the entropy of a perfect crystalline solid at any specified temp-
erature by integrating Equation (11.21). The molar entropy so obtained frequently is
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called the “absolute” entropy and is indicated as S8mT. However, in no sense is S8mT

truly an absolute entropy, because Equation (11.21) is based on the convention that
zero entropy is assigned to each element in some state at 0 K. For example, this con-
vention neglects any entropy associated with the nucleus, because no changes in
nuclear entropy are expected under the conditions in which chemical reactions
occur. Entropies obtained from Equation (11.21) properly are called conventional
entropies or standard entropies.

To calculate the entropy of a substance at a temperature at which it is no longer a
solid, it is necessary to add the entropy of transformation to a liquid or gas and the
subsequent entropies of warming. The same procedure would apply to a solid that
exists in different crystalline forms as the temperature is increased. The procedure
can be illustrated by some sample calculations.

Typical Calculations

For Solid or Liquid. For either of these final states, it is necessary to have heat
capacity data for the solid down to temperatures approaching absolute zero.

The integration indicated by Equation (11.21) then is carried out in two steps.
From approximately 20 K up, graphical or numerical methods can be used
(see Appendix A). However, below 20 K, few data are available. Therefore, it is
customary to rely on the Debye equation in this region.

Use of Debye Equation at Very Low Temperatures. Generally, it is assumed
that the Debye equation expresses the behavior of the heat capacity adequately
below about 20 K [9]. This relationship [Equation (4.68)],

CPm ffi CVm ¼ 1943:8
T3

u3
J mol�1K�1

contains only one constant u, which can be determined from a value of CPm in the
region below 20 K. The integral for the entropy then becomes

Sm ¼
ðT
0

kT3

T
dT ¼

ðT
0

kT2dT ¼ kT3

3
¼ CPm(T)

3
(11:22)

in which k represents 1943.8/u3.

Entropy of Methylammonium Chloride. Heat capacities for this solid in its
various crystalline modifications have been determined [10] precisely down to 12 K.
Some of these data are summarized in Figure 11.3. There are three crystalline
forms between 0 K and 298 K. One can calculate the entropy by integrating
Equation (11.21) for each allotrope in the temperature region in which it is most
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stable and then adding the two entropies of transition to the integrals thus obtained.
The details at a pressure of 101.3 kPa are as follows:

Step 1. CH3NH3Cl(s, b form, 0 K) ¼ CH3NH3Cl(s, b form, 12.04 K)

DS1 ¼ DSm1 ¼
ð12:04K

0K

CPmdT

T
¼ 0:280 J mol�1K�1 Debye equation

with Q ¼ 200:5K

� �

Step 2. CH3NH3Cl(s, b form, 12.04 K) ¼ CH3NH3Cl(s, b form, 220.4 K)

DS2 ¼ DSm2 ¼
ð220:4K

12:04K

CPm

T
dT ¼ 93:412 J mol�1K�1(numerical integration)

Figure 11.3. Heat capacities of the three allotropic forms, a, b, and g, of methylammonium
chloride [10]. The dashed curve represents the heat capacity of the metastable, supercooled g
form.
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Step 3. CH3NH3Cl(s, b form, 220.4 K) ¼ CH3NH3Cl(s, g form, 220.4 K)

DS3 ¼ DSm3 ¼ DHm

T
¼ 1779:0 J mol�1

220:4K
¼ 8:072 J mol�1K�1

Step 4. CH3NH3Cl(s, g form, 220.4 K) ¼ CH3NH3CL(s, g form, 264.5 K)

DS4 ¼ DSm4 ¼
ð264:5K

220:4K

CPmdT

T
¼ 15:439 J mol�1K�1(numerical integration)

Step 5. CH3NH3Cl(s, g form, 264.5 K) ¼ CH3NH3Cl(S, a form, 264.5 K)

DS5 ¼ DSm5 ¼ DH0
m

T 0 ¼ 2818:3 J mol�1

264:5K
¼ 10:655 J mol�1 K�1

Step 6. CH3NH3Cl(s, a form, 264.5 K) ¼ CH3NH3Cl(s, a form, 298.15 K)

DS6 ¼ DSm6 ¼
ð298:15K

264:5K

CPmdT

T
¼ 10:690 J mol�1K�1(numerical integration)

The addition of Steps 1 through 6 gives

CH3 NH3 Clðs,b form, 0KÞ ¼ CH3NH3Clðs, a form, 298:15KÞ

and

DS8 ¼ DS8m ¼
X6
1

DSmi ¼ 138:548 J mol�1K�1

Thus, for methylammonium chloride, S8m,298 is 138.548 J mol21 K21.

For a Gas. The procedure for the calculation of the entropy of a gas in its standard
state is substantially the same as the that for a solid or liquid except for two factors.
If the heat capacity data have been obtained at a pressure of 1 atm (101.325 kPa),
the resultant value of S 0

m is appropriate for that pressure and must be corrected
to the standard state pressure of 1 bar (0.1 MPa). This correction is given by
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the formula [11]

S8m(T)� S0m(T) ¼ R ln (P=P8)

¼ R ln (101:325 kPa=100 kPa)

¼ 0:1094 J mol�1K�1 (11:23)

In addition to the correction for the new standard state, it is necessary to correct for
the transformation from the real gas at standard pressure to the ideal gas at standard
pressure, which is defined as the standard state.1

Entropy of Gaseous Cyclopropane at its Boiling Point. Heat capacities for
cyclopropane have been measured down to temperatures approaching absolute zero
by Ruehrwein and Powell [12]. Their calculation of the entropy of the gas at the
boiling point, 240.30 K, is summarized as follows:

Step 1. C3H6(s, 0 K) ¼ C3H6(s, 15 K)

DS1 ¼ DSm1 ¼ 1:017 J mol�1K�1(Debye equation with u ¼ 130K)

Step 2. C3H6(s, 15 K) ¼ C3H6(s, 145.54 K)

DS2 ¼ DSm2 ¼ 65:827 J mol�1K�1(numerical integration)

Step 3. C3H6(s, 145.54 K) ¼ C3H6(l, 145.54 K)

DS3 ¼ DSm3 ¼ DHm,fusion

T
¼ 37:401 J mol�1K�1

Step 4. C3H6(l, 145.54 K) ¼ C3H6(l, 240.30 K)

DS4 ¼ DSm4 ¼ 38:392 J mol�1K�1(numerical integration)

Step 5. C3H6(l, 240.30 K) ¼ C3H6(real gas, 240.30 K)

DS5 ¼ DSm5 ¼ DHm,vap

T
¼ 83:454 J mol�1K�1

1The details of such a calculation can be found in the 5th Edition of this work, pp. 217–219.
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Summing Steps 1–5, we obtain

C3H6(s, 0 K) ¼ C3H6(real gas, 240:30K)

DS ¼ DSm ¼
X5
1

DSm,i ¼ 226:10 J mol�1K�1

at a pressure of the real gas equal to 101.325 kPa. To correct the entropy of the real
gas to a pressure of 0.1 MPa, we must add 0.11 J mol K21 to the value above.

The correction for gas imperfection is equal to 0.53 J mol21 K21. Therefore,
the entropy S8m,240.30 of cyclopropane in the ideal gas (that is, standard) state is
226.74 J mol21 K21.

The correction for gas imperfection may seem small. However, we should
keep in mind that an error of 20.4 J K21 mol21 affects the free energy by about
125 J mol21 near room temperature because DSm would be multiplied by T. An
error of 125 J mol21 would change an equilibrium constant of 1.00 to 1.05,
which is a difference of 5%.

Apparent Exceptions to the Third Law

Several cases exist in which calculations of the entropy change of a reaction from
values of the entropy obtained from thermal data and the third law disagree with
values calculated directly from measurements of DHm8 and determinations of DGm8
from experimental equilibrium constants. For example, for the reaction

H2(g)þ 1
202(g) ¼ H2O(l)

DS8m(thermal data) ¼ �153:6 J mol�1K�1 (11:24)

whereas

DS8m(equilbrium) ¼ DH8m � DG8m
T

¼ �163:3 J mol�1K�1 (11:25)

Thus, a large discrepancy exists between the two entropy values.
A satisfactory explanation for this discrepancy was not available until the develop-

ment of statistical thermodynamics with its methods of calculating entropies from
spectroscopic data and the discovery of the existence of ortho- and parahydrogen.
It then was found that the major portion of the deviation observed between
Equations (11.24) and (11.25) is from the failure to obtain a true equilibrium
between these two forms of H2 molecules (which differ in their nuclear spins)
during thermal measurements at very low temperatures (Fig. 11.4). If true
equilibrium were established at all times, more parahydrogen would be formed as
the temperature is lowered, and at 0 K, all the hydrogen molecules would be in the
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para form and the entropy would be zero. In practice, measurements actually are made
on a 3/1 mixture of ortho/para. This mixture at 0 K has a positive entropy. If the
hydrogen were in contact with an appropriate catalyst for ortho–para conversion,
an equilibrium mixture would be obtained, and the entropy could be calculated
correctly from the integral that gives the area under a curve of CPm against T corre-
sponding to the equilibrium curve in Figure 11.4.

When the corrections for ortho/parahydrogen are applied to Equation (11.24), the
value obtained is 2163.2 J mol21 K21, which is in agreement with the equilibrium
value. Most recent critical tables list S8m,298 corrected for the effects discussed here.

With the development of statistical thermodynamics and the calculations of the
entropies of many substances from spectroscopic data, several other substances in
addition to hydrogen have been found to have values of molar entropies that disagree
with those calculated from thermal data alone [13] (Table 11.1). The discrepancies
can be accounted for on the assumption that even near absolute zero not all molecules
are in the same state and that true equilibrium has not been attained. For CO, COCl2,
N2O, NO, and ClO3F, the close similarity in the sizes of the atoms makes different

Figure 11.4. Heat capacities (excluding translation) for hydrogen (H2) gas as a function of
temperature. Based on data of W. F. Giauque, J. Am. Chem. Soc. 52, 4816 (1930).

TABLE 11.1. Molar Entropies

Substance
Temperature/

K
Sm (spectroscopic)/
(J mol21 K21)

S8m (calorimetric)/
(J mol21 K21)

Deviation/
(J mol21 K21)

CO 298.1 197.958 193.3 4.7
COCl2 280.6 285.60 278.78 6.82
H2O 298.1 188.70 185.27 3.43
N2O 298.1 219.999 215.22 4.78
NO 121.4 183.05 179.9 3.2
ClO3F 226.48 261.88 251.75 10.13
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orientations possible in the crystals, whereas in the case of H2O, hydrogen bonds
maintain an irregularity in the distribution of molecules in the crystal. For
example, in carbon monoxide, molecules may have random positions such as CO
and OC in the crystal. Because of these exceptional situations, it is necessary to
interpret the term perfect crystal as excluding situations in which several orientations
of the molecules are present simultaneously.

Ulbrich and Waldbaum [14] pointed out that calorimetrically determined third law
entropies for many geologically important minerals may be in error because site
mixing among cations, magnetic spin disorder, and disorder among water molecules
in the crystals is frozen in the samples used for calorimetric measurements. They have
calculated corrections based on known crystallographic data for several minerals.

An exceptional case of a very different type is provided by helium [15], for which
the third law is valid despite the fact that He remains a liquid at 0 K. A phase diagram
for helium is shown in Figure 11.5. In this case, in contrast to other substances, the
solid–liquid equilibrium line at high pressures does not continue downward at low
pressures until it meets the liquid–vapor pressure curve to intersect at a triple
point. Rather, the solid–liquid equilibrium line takes an unusual turn toward the hori-
zontal as the temperature drops to near 2 K. This change is caused by a surprising

Figure 11.5. Phase diagram for 4He. Data for the melting curve and the l line from C. A.
Swenson, Phys. Rev. 79, 626 (1950). Data for the evaporation curve from H. van Dijk and
M. Durieux, Physica 24, 920 (1958). The evaporation curve was measured down to 0.5 K,
but the values of the vapor pressure were too small to be visible on the scale of the graph.
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metamorphosis in the character of liquid helium as the temperature drops below 2.2
K. Below this temperature, the liquid has a heat conductivity 100 times greater than
that of a metal such as copper or silver and becomes a superfluid in its flow behavior
with a viscosity less than 1029 that of a liquid such as water.

This transformed liquid, labeled HeII, also shows unusual thermal properties. One
of these properties, its entropy, is illustrated in Figure 11.6. An important feature of
this curve is the approach of Sm to zero as T approaches 0. Thus, liquid HeII possesses
zero entropy at 0 K despite being a liquid.

A confirmation of this conclusion also is provided by an examination of the
solid–liquid equilibrium in the neighborhood of 0 K. As shown in Equation (8.9),
a two-phase equilibrium obeys the Clapeyron equation:

dP

dT
¼ Sm,l � Sm,s

Vm,l � Vm,s

The densities of liquid and solid helium are different; thus, DVm of Equation (8.9)
is not zero. Yet the horizontal slope of the melting line of the phase diagram
shows that dP/dT is zero near 0 K. Hence, it is clear that DSm of Equation (8.9)
must be zero at 0 K, that is, that Sm,0K is zero for liquid He as well as for solid He.

The l transition in liquid helium shown in Figures 11.5 and 11.6 is a second-order
transition. Most phase transitions that follow the Clapeyron equation exhibit a
nonzero value of DSm and DVm; that is, they show a discontinuity in Sm and Vm,
the first derivatives of the Gibbs free energy Gm. Thus, they are called first-order
transitions. In contrast, the l transition shows a zero value of DSm and DVm and exhi-
bits discontinuities in the second derivatives of Gm, such as the heat capacity CPm.

Figure 11.6. Entropy of liquid 4He under its equilibrium vapor pressure. Data below 1.90 K
from H. C. Kramers, J. D. Wasscher, and C. J. Gorter, Physica 18, 329 (1952). Data from
1.90 K to 4.00 K from R. W. Hill and O. V. Lounasmaa, Phil. Mag. Ser. 8, 2, 143 (1957).
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Tabulations of Entropy Values

Data on molar entropies are available from the following sources and online in the
NIST Chemistry WebBook at http://www.webbook.nist.gov/chemistry/:

International Critical Tables, McGraw-Hill, New York, 1933.

Landolt-Börnstein, Physikalishc-chemische Tabellen, 5th ed., Springer, Berlin,
1936; 6th ed., 1961, 1963, 1967, 1972, 1980.

Landolt-Börnstein, Zahlenwerte und Funktionen, 6th ed., Springer-Verlag, Berlin,
1961, 1963, 1967, 1972.

Landolt-Börnstein, Thermodynamic Properties of Inorganic Materials, Vol. 19,
Subvolume A1, Pure Substances. Part 1: Elements and Compounds from
AgBr to Ba3N2, P. Franke and D. Neuschütz 1999, Guest eds., http://
www.springerlink.com/link.asp?id ¼ KH6W2TX1RQ77.

Subvolume A2, Pure Substances. Part 2: Compounds from BeBr(g) to ZrCl2(g),
1999, http://www.springerlink.com/link.asp?id ¼ 4EEKKY1F24PE.

Subvolume A3, Pure Substances. Part 3: Compounds from CoCl3 to Ge3N4,
http://www.springerlink.com/link.asp?id ¼ NEGDT64X4YVX.

Subvolume A4, Pure Substances. Part 4: Compounds from HgH(g) to ZnTe(g).
http://www.springerlink.com/link.asp?id ¼ 92D3BEBCG7H0.

Subvolume B1, Binary Systems. Part 1: Elements and Binary Systems from Ag-Al
to Au-Tl, P. Franke and D. Neuschüt, Guest eds., 2002, http://www.springer
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A few typical values of molar entropies have been assembled in Tables 11.2
through 11.5, with a separate table for each database. Data obtained from spectro-
scopic studies have been included even though the methods used in their calculations
have not been discussed here.

TABLE 11.2. Standard Entropies at 298.15 Ka

Substance S8m,298.15/(J mol21 K21) Substance S8m,298.15/(J mol21 K21)

H(g) 114.713 Methane(g) 186.264
O(g) 161.055 Ethane(g) 229.60
Cl(g) 165.198 Ethene(g) 219.56
Br(g) 175.022 Ethyne(g) 200.94
Br2(g) 245.463 Methanol(l) 126.8
I(g) 180.791 Ethanol(l) 160.7
I2(g) 260.69 Glycine(s) 103.51
H2O(g) 188.825 Acetic acid(l) 159.8
H2O(l) 69.91 Taurine(s) 154.0
HF(g) 173.779 Urea(s) 104.60
HCl(g) 186.908 SiO2(s); a quartz 41.84
HBr(g) 198.695 SiO2(s); a cristobalite 42.68
HI(g) 206.594 SiO2(s); a tridymite 43.5
ICl(g) 247.551 CaSO4(s); anhydrite 106.7
NO(g) 210.761 CaSO4.2H2O; gypsum 194.1
CO(g) 197.674 Fe2SiO4(s); fayalite 145.2
CO2(g) 213.74 Mg2SiO4(s); forsterite 95.14
NH3(g) 192.45 SO2(g) 248.22
SO3(g) 256.76

aNBS Tables of Chemical Thermodynamic Properties, J. Phys. Chem. Ref. Data 11. Supplement No. 2 (1982).
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TABLE 11.3. Standard Entropies at 298.15 Ka

Substance
S8m,298.15/

(J mol21 K21) Substance
S8m,298.15/

(J mol21 K21)

CO(g) 197.66 Propene(g) 266.73
CO2(g) 213.78 Propane(g) 270.31
Methane(g) 186.38 1-Butene(g) 307.86
Methanol(g) 239.88 Butane(g) 309.91
Ethyne(g) 200.92 Benzene(g) 269.30
Ethene(g) 219.25 Cyclohexane(g) 297.39
Acetic acid(g) 283.47 Toluene(g) 320.99
Ethane(g) 229.23 o-Xylene(g) 353.94
Ethanol(g) 280.64 m-Xylene(g) 386.65

p-Xylene(g) 352.34

aM. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, and G. N. Roganov, Thermodynamics of Organic
Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.

TABLE 11.4. Standard Entropies at 298.15 Ka

Substance
S8m,298.15/

(J mol21 K21) Substance
S8m,298.15/

(J mol21 K21)

Br2(g) 245.47+0.05 CuSO4(s) 109.5+ 0.6
I2(g) 260.69+0.02 CuSO4 . 5H2O(s) 301.2+ 0.6
C(diamond) 2.38+0.20 CaSO4 . 2H2O(s) 193.8+ 0.3
C(graphite) 5.74+0.10 CaSO4(s) 107.4+ 0.2
CO(g) 197.3+0.0 CaSiO3(s) 81.7+ 0.1
CO2(g) 213.8+0.0 SiO2(s); a quartz 41.5+ 0.1
NO2(g) 240.1+0.1 SiO2(s); a cristobalite 43.4+ 0.1
SO2(g) 248.2+0.1 SiO2(s); a tridymite 43.9+ 0.1
SO3(g) 256.8+0.8 CH4(g) 186.26+ 0.21
S(monoclinic) 33.03+0.05 NH3(g) 192.77+ 0.03
MgO(s) 26.9+0.2 Fe2SiO4(s) 151.0+ 0.2
Mg2SiO4(s) 91.4+0.8

aR. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related substances, U.S.
Geological Survey Bulletin 2131, 1995.

TABLE 11.5. Standard Entropies at 298.15 Ka

Substance S8m,298.15/(J mol21 K21) Substance S8m,298.15/(J mol21 K21)

HCl(g) 186.901 NH3(g) 192.774
HBr(g) 198.699 HF(g) 173.780
CO(g) 197.653 H2O(g) 188.834
CO2(g) 213.795

aM. W. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data, Monograph
No. 9 (1998).
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EXERCISES

11.1. Assuming that

lim
T!0

@DG

@T

� �
P

¼ 0

for reactions involving perfect crystalline solids, prove that

lim
T!0

@DA

@T

� �
V

¼ 0

11.2. Prove that lim
T!0

DCV ¼ 0:

11.3. Assume that the limiting slope, as T approaches zero, of a graph of DG versus
T has a finite value but not zero. Prove that DCP for the reaction still would
approach zero at 0 K.

11.4. Methylammonium chloride exits in several crystalline forms, as is evident
from Figure 11.3. The thermodynamic properties of the b and g forms
have been investigated by Aston and Ziemer [10] down to temperatures
near 0 K. Some of their data are listed below. From the information given,
calculate the enthalpy of transition from the b to the g form at 220.4 K.

CPm for b at 12:0K ¼ 0:845 J mol�1K�1ð
CPm d ln T from 12:0 K to 220:4 K ¼ 93:412 J mol�1K�1

CPm for g at 19:5 K ¼ 5:966 J mol�1K�1ð
CPm d ln T from 19:5 K to 220:4 K ¼ 99:918 J mol�1K�1

Transition temperature (that is, at P ¼ 1 atm) ¼ 220.4 K.

11.5. Cycloheptatriene has two different crystalline forms in the solid state. That
labeled I undergoes an entropy change of 116.223 J mol21 K21 on being
warmed from 0 K to 154 K [16]. Some thermal data for form II, the more
stable one at very low temperatures, as well as for I are listed below. Is I a
“perfect crystalline substance?”

CPm at 12 K for II ¼ 4:52 J mol�1K�1ð
CPm d ln T from 12 K to 154 K for II ¼ 99:475 J mol�1K�1
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Transition temperature for(II ¼ I) ¼ 154 K

DHmof transition(II ¼ I) ¼ 2347 J mol�1

11.6. The heat capacity of Na2SO4
. 10H2O has been measured from 15 K to 300 K

[17] and S8m298.15, which was computed from

ð298:15K

0K

CPm d ln T

was found to be 585.55 J mol K21. The following thermodynamic data also
are known for the hydration reaction:

Na2SO4(s)þ 10H2O(g) ¼ Na2SO4 � 10H2O(s)

DG8m298:15 ¼ �91,190 J mol�1

DH8m298:15 ¼ 521, 950 J mol�1

Furthermore, the entropies S8m298.15, for anhydrous Na2SO4 and for water
vapor are 149.49 and 188.715 J mol21 K21, respectively. Is Na2SO4

.

10H2O a perfect crystal at 0 K?

11.7. Two different crystalline forms of benzothiophene have been described [18].
The one that is the stable form at low temperatures is labeled I and the other II.
Calorimetric measurements down to 12 K have been made with each
crystalline form. At the normal transition temperature, 261.6 K, the molar
enthalpy of transition (I ¼ II) is 3010 J mol21. Some additional thermodyn-
amic data obtained by these investigators are given in Table 11.6. Is
Crystal II a perfect crystal at 0 K?

11.8. We have observed that the limiting values at 0 K of DGm and DHm are equal
and finite. What is the limiting value at 0 K of DYm, the change in the molar
Planck function?

11.9. Putnam and Boerio-Gates [19] have measured the heat capacity of pure, crys-
talline sucrose from 4.99 K to above 298.15 K. Their smoothed results up to
298.15 K are shown in Table 11.7. Use the Debye equation and numerical
integration of the experimental data to calculate Sm

m at 298.15 K.

11.10. Boyer et al. [20] have measured the heat capacity of crystalline adenine, a
compound of biologic importance, with high precision, from about 7 K to
over 300 K, and calculated the standard entropy of adenine. Table 11.8
contains a sampling of their data over the range from 7.404 K to 298.15 K.
Use those data to calculate the standard entropy of adenine at 298.15 K,
which assume the Debye relationship for CP. The value for 298.15 K is cal-
culated by the authors from a function fitted to the original data.
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TABLE 11.6. Thermodynamic Data for Benzothiophene

Crystal I Crystal II

CPm at 12.4 K 4.469 J mol21 K21 6.573 J mol21 K21Ð
CPm d ln T from 12 K to 261.6 K
(numerical)

148.105 J mol21 K21 152.732 J mol21 K21

Ð
CPm d ln T from 261.6 K to 304.5 K
(numerical)

23.142 J mol21 K21

DHm fusion (at 304.5 K) 11,827.3 J mol21

TABLE 11.7. Heat Capacities of Sucrose

T/K CPm/R T/K CPm/R

10 0.266 150 25.967
15 0.869 160 27.578
20 1.744 170 29.178
25 2.748 180 30.778
30 3.791 190 32.377
35 4.847 200 33.977
40 5.902 210 35.600
45 6.948 220 37.236
50 7.984 230 38.908
60 10.014 240 40.604
70 11.987 250 42.324
80 13.903 260 44.080
90 15.768 270 45.860
100 17.572 273.15 46.425
110 19.34 280 47.664
120 21.048 290 49.504
130 22.707 298.15 51.031
140 24.355

TABLE 11.8. Heat Capacity of Adenine

T/K CP/R T/K CP/R

7.404 0.04466 131.33 8.2000
12.893 0.3262 144.12 8.8371
20.226 0.8236 156.77 9.4619
29.190 1.6403 169.63 10.119
41.216 2.7915 182.32 10.784
54.069 3.8718 200.35 11.728
59.655 4.3117 226.01 13.113
68.949 4.942 251.72 14.539
81.405 5.6888 264.34 15.313
93.202 6.3430 279.79 16.112
106.13 6.9977 298.15 17.160
118.79 7.6214
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CHAPTER 12

APPLICATION OF THE
GIBBS FUNCTION TO
CHEMICAL CHANGES

Now that we have considered the calculation of entropy from thermal data, we can
obtain values of the change in the Gibbs function for chemical reactions from
thermal data alone as well as from equilibrium data. From this function, we can cal-
culate equilibrium constants, as in Equations (10.22) and (10.90.). We shall also con-
sider the results of statistical thermodynamic calculations, although the theory is
beyond the scope of this work. We restrict our discussion to the Gibbs function
since most chemical reactions are carried out at constant temperature and pressure.

12.1 DETERMINATION OF DGm88888 FROM EQUILIBRIUM
MEASUREMENTS

The fundamental method of calculating DG8m is from equilibrium measurements,
primarily from measurement of the equilibrium constant of a chemical reaction. As
an example, we shall consider the dissociation of isopropyl alcohol to form
acetone and hydrogen:

(CH3)2CHOH(g) ¼ (CH3)2CO(g) þ H2(g) (12:1)

With a suitable catalyst, equilibrium pressures can be measured for this dissociation.
If we start with n0 moles of isopropyl alcohol, a n0 mole each of acetone and

hydrogen are formed, where a is the degree of dissociation. The quantity of

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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alcohol remaining at equilibrium must be (12a)n0. The total number of moles of all
three gases is

ntotal ¼ (1�a)n0 þ an0 þ an0 ¼ (1þa)n0 (12:2)

If we assume that the gases in the equilibrium mixture are ideal,

ntotal ¼ PV

RT
¼ n0(1þ a) (12:3)

and a can be calculated from knowledge of P and n0. At 452.2 K and a total pressure
P of 95.9 kPa. a at equilibrium has been found [1] to be 0.564.

From Equation (12.1), the mole fraction X of each substance is

X(CH3)2CHOH ¼ 1�a

1þ a

X(CH3)2CHOH ¼ a

1þ a

XH2
¼ a

1þ a

(12:4)

As the equilibrium constant K is determined from the equilibrium partial pressures
[Equation (10.21)] it is given by

K ¼ P(CH3)2COPH2

P(CH3)2CHOHP8
¼ [a=(1þ a)]P[a=(1þ a)]P

[(1� a)=(1þ a)]P(P8)
¼ a2

1� a2

P

P8
(12:5)

and as a ¼ 0.564 at 95.9 kPa

K ¼ 0:450

The standard change in the Gibbs function then can be calculated from
Equation (10.22).

DG8m,452:2 K ¼ �RT ln (0:450) ¼ 3000 J mol�1 (12:6)

The values of DG8m just calculated apply to a system in which all reactants and pro-
ducts are at standard pressure and which is sufficiently large that one mole of reaction
does not alter the pressures appreciably. Alternatively, the expression R ln K can be
equated to (@G/@n)8T,P for a finite system, the initial rate of change of the total Gibbs
function of the system per mole of reaction when all reactants and products are at
standard pressure [2].

The positive value of DG8m does not imply that the reaction under consideration
may not proceed spontaneously under any conditions. DGm8 refers to the reaction

(CH3)2CHOH(g, P8) ¼ (CH3)2CO(g, P8)þ H2(g, P8) (12:7)
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in which each substance is in its standard state, that is, at a partial pressure of 0.1 MPa.
The positive value of DGm8 allows us to state categorically that Reaction (12.7) will
not proceed spontaneously under these conditions. However, as in the experiment
described, if we were to start with isopropyl alcohol at a partial pressure of
0.1 MPa and no acetone or hydrogen, the alcohol decomposes spontaneously at
452.2 K, and as the value of the equilibrium constant and the experimental data on
which it is based indicate, more than 50% dissociation can occur in the presence
of a suitable catalyst. Yields can be made even greater if one product is removed
continuously.

We also can calculate DGm for one set of conditions with the substances not all in
their standard states; for example,

(CH3)2CHOH(g, P8) ¼ (CH3)2CO(g, P ¼ 10:13 kPa)þ H2(g, P ¼ 10:13 kPa)

(12:8)

For this computation, we refer to Equation (10.23), which relates DGm under any
pressure conditions to DGm8 and the corresponding P’s and which, rearranged, is
written as

DGm ¼ DG8m þ RT ln
(PC)c(PD)d

(PA)a(PB)b
P8(aþb�c�d) (12:9)

Applied to Equation (12.7) this relationship gives

DGm ¼ 3000 J mol�1 þ RT ln
(10:13 kPa)2

(100 kPa)(100 kPa)

¼ �14,220 J mol�1

Just as in the calculation of DGm8, the value of DGm just calculated applies to a system
large enough that the pressure given for reactant and product do not change when
one mole of reaction occurs. Alternatively, DGm8 ¼ RT ln Q�/K can be equated to
(@G/@n)T,P for a finite system, the instantaneous rate of change of the total free
energy of the system per mole of reactants as the system composition passes
through the designated pressures of reactants and products.

Thus, if we are considering a given reaction in connection with the preparation of
some substance, it is important not to be misled by positive values of DGm8, because
DGm8 refers to the reaction under standard conditions. It is possible that appreciable
yields can be obtained even though a reaction will not go to completion. Such a
case is illustrated by the example of isopropyl alcohol, just cited. Only if DGm8 has
very large positive values, perhaps more than 40 kJ, can we be assured, without cal-
culations of the equilibrium constant, that no significant degree of transformation can
be obtained. If we start with pure reactant, the initial value of (@G/@n)T,P is always
negative, because the pressures of products in the numerator of the logarithmic
term in Equation (12.9) are equal to zero. As the reaction proceeds, the value of
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(@G/@n)T,P becomes less negative and equals zero at equilibrium. How far the reaction
proceeds before reaching equilibrium depends on the sign and magnitude of DG8m [3].

The value of DGm8 is obtained by considering a reaction like that of Equation
(12.7), in which reactants and products are in their standard states. Nevertheless,
because DGm ¼ 0 at equilibrium, Equation (10.22) is used to calculate a value of
the equilibrium constant K from DG8m. In general, equilibrium states such as

(CH3)2CHOH(g, Pequil) ¼ (CH3)2CO(g, Pequil)þ H2(g, Pequil) (12:10)

are different from standard states. The equilibrium pressures can be calculated from K
and thus from DG8m. No unique values for the equilibrium pressures exist; rather, they
depend on the initial pressures of the reactants and products.

12.2 DETERMINATION OF DG88888m FROM MEASUREMENTS
OF CELL POTENTIALS

Themethod of determination frommeasurements of cell potentials depends on the possi-
bility of carrying out a transformation reversibly in an electrical cell. (See Fig. 7.2.) In this
case, the spontaneous tendency of the transformation will be opposed by an opposing
potential just sufficient to balance the potential in the electrical cell produced by that
spontaneous tendency. The potential observed under such circumstances is related to
the change of the Gibbs function for the reaction by Equation (7.84)

DGm ¼ �nFE

From Equation (7.80), DG ¼Wnet.rev, so that�nFE represents the net, reversible work
per mole of reaction. From the appropriate extrapolation of measured values of E (see
Appendix A), a value of the standard potential E8 can be obtained. The value of E8
then can be used to calculate DG8m:

DG8m ¼ �nFE8 (12:11)

An example of a reaction to which this method is applicable is

(cytochrome c)FeII þ (cytochrome f )FeIII

¼ (cytochrome c)FeIII þ (cytochrome f )FeII (12:12)

Cytochrome c and cytochrome f both are involved in the electron transfer chain from
glucose metabolites to molecular oxygen in aerobic organisms. From values of the
half-cell potentials of cytochrome c and of cytochrome f at 308C, it is possible to cal-
culate that E8 is 0.11 V for the reaction in Equation (12.12) [4]. Hence

DG8m ¼ �(1)(96,487 C mol�1)(0:11 V)

¼ �10,600 V C mol�1 ¼ �10,600 J mol�1
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12.3 CALCULATION OF DGm88888 FROM CALORIMETRIC
MEASUREMENTS

We have observed from Equation (10.24) that we can calculate DHm from the
temperature derivative of K, or we can calculate K at one temperature from the
value of K at another temperature and the value of DHm. The technique of titration
calorimetry [5] makes possible the calculation of K and DHm from the same
experiment and, therefore, DHm and DGm and DYm.

In a typical titration calorimetry experiment, a solution of a macromolecule
M might be titrated with increments of a solution of a ligand X. The value of
DQ/D[Xtot] is the parameter obtained for each increment of added ligand, which is
a good approximation for dQ/d[X]tot. As

dQ ¼ DH8mV0d[MX] (12:13)

where DHm8 is the molar enthalpy of binding and V0 is the volume of the solution in
the titration cell, then

dQ

d[MX]
¼ DH8mV0 (12:14)

and

dQ

d[X]tot
¼ dQ

d[MX]
d[MX]
d[X]tot

¼ DH8mV0
d[MX]
d[X]tot

(12:15)

We shall obtain an expression for fd[MX])/(d[X]tot) from consideration of a
reaction of 1:1 stoichiometry such as

Mþ X ¼ MX (12:16)

in which M is being titrated with X. For this reaction, in solution, by analogy with
Equation (10.21) for gases,

K ¼ [MX]C8
[M][X]

(12:17)

[X]tot ¼ [X]þ [MX] (12:18)

[M]tot ¼ [MX]þ [M] ¼ [MX]þ [MX] C8
K[X]

(12:19)

Equation (12.18) can be solved for [X], and this result can be substituted into
Equation (12.19) to give the quadratic equation

[MX]2 þ [MX] �[M]tot � [X]tot � C8
K

� 	
þ [X]tot[M]tot ¼ 0 (12:20)
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The only physically meaningful root of Equation (12.20) is

[MX] ¼
[M]tot þ [X]tot þ C8

K
� [M]tot þ [X]tot þ C8

K

� �2
� 4[M]tot[X]tot

� 	2

2
(12:21)

Differentiation of Equation (12.21) with respect to [X]tot gives

d[MX]
d[Xtot]

¼ 1
2

1� �2[Mtot]þ [Xtot]þ C8
K

[Mtot]þ [Xtot]þ C8
K

� �2
� 4[Mtot][Xtot]

� 	1=2

2
6664

3
7775 (12:22)

From Equation (12.15)

dQ

d[X]tot
¼ dQ

d[MX]
d[MX]
d[X]tot

¼ DH8mV0
d[MX]
d[X]tot

(12:15)

so that

dQ

d[Xtot]]
¼ 1

2
DHm8V0 1� �2[Mtot]þ [Xtot]þ C8

K

[Mtot]þ [Xtot]þ C8
K

� �2
� 4[Mtot][Xtot]

� 	
2
664

3
775 (12:23)

Thus, the left side of Equation (12.23) is the result of a titration calorimetry experi-
ment, and the right-hand side includes experimental quantities and the equilibrium
constant K and DHm

o . Therefore, the parameters DHm8 and K can both be obtained
by a nonlinear, least-squares fitting of the data to the relation that we have derived
(see Appendix A).

Once we have calculated K for a reaction, we can obtain values for DGm8 from
Equation (10.22).

12.4 CALCULATION OF A GIBBS FUNCTION OF A REACTION
FROM STANDARD GIBBS FUNCTION OF FORMATION

As the Gibbs function is a thermodynamic property, values of DG do not depend on
the intermediate chemical reactions that have been used to transform a set of reactants,
under specified conditions, to a series of products. Thus, one can add known values of
a Gibbs function to obtain values for reactions for which direct data are not available.
The most convenient values to use are the functions for the formation of a compound
in its standard state from the elements in their standard states, as given in Tables 7.2
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through 7.5, and Equation (7.63) can then be used to calculate the Gibbs function or
the Planck function for a desired reaction.

12.5 CALCULATION OF A STANDARD GIBBS FUNCTION FROM
STANDARD ENTROPIES AND STANDARD ENTHALPIES

Now that we can calculate standard entropies from the third law (as in Chapter 11), let
us consider their primary use, which is the calculations of the standard Gibbs
function.

Enthalpy Calculations

As we mentioned, it is necessary to have information about the standard enthalpy
change for a reaction as well as the standard entropies of the reactants and products
to calculate the change in Gibbs function. At some temperature T, DH8mT can be
obtained from DfHm8 of each of the substances involved in the transformation. Data
on the standard enthalpies of formation are tabulated in either of two ways. One
method is to list DfHm8 at some convenient temperature, such as 258C, or at a series
of temperatures. Tables 4.2 through 4.5 contain values of DfHm8 at 298.15 K.
Values at temperatures not listed are calculated with the aid of heat capacity
equations, whose coefficients are given in Table 4.8.

On the basis of statistical thermodynamics, another method of tabulation, using
H8mT 2 H8m0, or (H8mT 2 H8m0)/T, or (H8mT 2 H8m298.15)/T, in which the subscripts
refer to the Kelvin temperatures, has come into general use. This method of

TABLE 12.1. Enthalpy Increment Function (H88888mT 2 H88888m298.15)
a

[(H8mT 2 H8m298.15)]/(kJ mol21)

Substance DfH8m298.15/(kJ mol21) 400 600 800 1000 1500

CO(g) 2110.527 2.976 8.942 15.177 21.690 38.850
CO2(g) 2393.522 4.003 12.907 22.806 33.397 61.705
H2O(g) 2241.826 3.452 10.501 18.002 26.000 48.151
HBr(g) 236.443 2.971 8.868 14.956 21.294 38.103
HCl(g) 292.312 2.969 8.835 14.835 21.046 37.508
HF(g) 2272.546 2.968 8.804 14.677 20.644 36.239
NH3(g) 245.898 3.781 12.188 21.853 32.637 63.582
H2(g) 0.0 2.959 8.811 14.702 20.680 36.290
N2(g) 0.0 2.971 8.894 15.046 21.463 38.405
F2(g) 0.0 3.277 10.116 17.277 24.622 43.458
Cl2(g) 0.0 3.533 10.736 18.108 25.565 44.422
C(graphite) 0.0 1.039 3.943 7.637 11.795 23.253
O2(g) 0.0 3.025 9.244 15.835 22.703 40.599

aM. W. Chase, Jr., NIST-JANAF thermochemical tables, 4th ed., J. Phys. Chem. Ref. Data, Monograph
No. 9 (1995).
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presentation, which is illustrated in Tables 12.1 through 12.3, does not require the
use of empirical heat capacity equations and allows easy comparison of data from
different sources.

The following procedure is used to calculate DfHm8 at any temperature T from
Table 12.2. Data in Tables 12.1 and 12.3 are different only in the reference temperature.
The standard enthalpy of formation of a compound C refers to the reaction

A þ B þ � � � ¼ C DfH8m (12.24)

element in element in compound in
standard state standard state standard state
at temperature T at temperature T at temperature T

TABLE 12.2. Enthalpy Increment Function (H88888mT2H88888m0)/T
a

[(H8mT 2 H8m0)/T ]/(J mol21K21)

Substance DfH8m0/(kJ mol21) 298.15 K 400 K 600 K 800 K 1000 K 1500 K

CO(g) 2113.8 29.11 29.12 29.37 29.81 30.36 31.68
CO2(g) 2393.1 31.41 33.42 37.12 40.21 42.76 47.37
Methane(g) 266.6 33.59 34.72 38.65 43.52 48.49 59.53
Methanol(g) 2190.1 38.37 40.75 47.03 53.70 59.94 72.73
Ethyne(g) 228.8 33.57 37.09 42.89 47.38 51.04 58.11
Ethene(g) 61.0 35.28 38.51 46.43 54.21 61.18 75.05
Aceticacid(g) 2418.1 45.60 52.24 66.02 78.61 89.44 109.59
Ethane(g) 268.2 39.83 44.68 55.72 66.53 76.36 96.09
Ethanol(g) 2217.4 47.80 54.26 67.99 80.64 91.64 112.97
Propene(g) 34.7 45.44 52.30 66.48 79.57 91.05 113.44
Propane(g) 282.4 49.44 58.19 76.15 92.73 107.19 135.48
1-Butene(g) 20.4 57.43 67.53 87.87 106.29 122.22 152.93
n-Butane(g) 297.2 64.60 76.61 100.42 121.96 140.67 176.82
Benzene(g) 100.4 47.73 60.60 86.56 108.99 127.50 161.24
Cyclohexane(g) 283.8 58.85 76.18 113.36 147.99 177.76
Toluene(g) 73.3 60.51 76.19 107.41 134.67 157.44 199.49
o-Xylene(g) 46.4 78.45 97.06 132.54 163.66 190.03 239.57
m-Xylene(g) 45.9 74.20 92.53 128.63 160.45 187.31 237.47
p-Xylene(g) 46.8 73.83 92.46 129.07 161.15 188.12 238.29
H2O(g) 2238.9 33.21 33.39 34.01 34.88 35.91 38.78
H2(g) 0.0 28.40 28.57 28.80 28.96 29.15 29.84
O2(g) 0.0 29.12 29.27 29.88 30.65 31.39 32.85
C(graphite)b 0.0 3.53 5.23 8.32 10.86 12.85 16.20

aM. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, and G. N. Roganov, Thermodynamics of Organic
Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
bCalculated from data in NIST-JANAF Thermochemical Tables; see Table 12.1.
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The sum of the following equations gives the required DfHm8 in terms of the functions
(H8mT 2 H8m0)/T:

A(0 K)þ B(0 K)þ � � � ¼ C(0 K), DH ¼ DfH8m0 (12:25)

A(T K) ¼ A(0 K), DH ¼ DH8m ¼ (H8m0 � H8mT )A (12:26)

TABLE 12.3. Enthalpy Increment Function (H88888mT2H88888m298.15)/T
a

[(H8mT 2 H8m298.15)/T ]/(J mol21K21)

Substance
DfH8m298.15 /
(J mol21 K21)

H8m298 2 H8m0/
(J mol21 K21) 400 K 600 K 800 K 1000 K 1500 K

Graphite(c) 0.0 1.05 2.60 6.58 9.54 11.78 15.51
Diamond(c) 1.9 0.523 2.09 5.88 8.90 11.24 15.43
Cl2(g) 0.0 9.18 8.83 17.89 22.63 25.57 29.61
HCl(g) 292.3 8.64 7.40 14.70 18.55 21.06 25.00
CaSO4(c) 21434.4 17.30 27.87 60.83 80.98 95.52
CuSO4(c) 2771.4 16.87 38.57 83.11 109.44 127.68
Fe2SiO4(c) 21478.2 22.49 36.51 78.23 102.16 118.39
Mg2SiO4(c) 22173.0 17.22 32.92 71.21 93.81 109.28 133.66
CaSiO3(c) 21634.8 13.84 23.77 51.50 67.83 78.74
Methane(g) 274.8 10.025 9.52 21.74 30.80 38.16 51.98
NH3(g) 245.9 10.045 9.43 20.28 27.31 32.65 42.37
CO(g) 2110.5 8.67 7.39 14.87 18.97 21.69 25.88
CO2(g) 2393.5 9.36 9.98 21.49 28.51 33.40 41.13
SiO2(c); quartz

b 2910.7 9.616 12.52 28.18 38.58 45.52 53.96
SiO2(c);
cristobalitec

2908.4 7.04 12.63 29.96 38.73 44.74 53.70

O2(g) 0.0 8.682 7.54 15.40 19.79 22.70 27.06
Cu(c)d 0.0 5.00 6.34 12.88 16.39 18.71 31.63
Ca(c)e 0.0 5.707 6.71 13.98 19.65 23.07 33.24
Fe(c)f 0.0 4.51 6.69 14.35 19.45 24.39 30.38
H2(g) 0.0 8.468 7.41 14.69 18.38 20.68 24.20
Mg(c)g 0.0 5.00 6.50 13.39 17.37 28.87 114.72
N2(g) 0.0 8.669 7.42 14.85 18.85 21.49 25.58
S(c)h 0.0 4.412 11.60 20.25 23.39 76.82 57.57
Si(c) 0.0 3.218 5.40 11.36 14.71 16.94 20.43

aR. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related substances, U.S.
Geologic Survey Bulletin 2131, 1995.
bTrigonal crystals to 844 K. b-crystals from 844 K.
cTetragonal crystals to 523 K. Cubic crystals from 523 K.
dMelting point 1357.8 K.
ea-crystals to 716 K. b-crystals to melting point at 1115 K.
fBody-centered cubic to 1185 K. Curie point at 1043 K. Face-centered cubic from 1158 K to 1667 K.
Body-centered cubic from 1667 K to melting point.
gHexagonal close-packed crystals to melting point at 923 K. Boiling point at 1366.1 K.
hOrthombic crystals to 368.3 K. Monoclinic crystals from 368.3 K to melting point at 388.36 K. Liquid to
fictive boiling point at 882.1 K.
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C(0 K) ¼ C(T K), DH ¼ DH8m ¼ (H8mT � H8m0)C (12:27)

B(T K) ¼ B(0 K), DH ¼ DH8m ¼ (H8m0 � H8mT)B (12:28)

A(T K)þ B(T K)þ � � � ¼ C(T K)

DfH8mT ¼ DH8mT ¼ DfH8m0 þ (H8mT � H8m0)compound

�
X

(H8mT � H8m0)elements (12:29)
and

DfH8mT=T ¼ DfH8m0=T þ (H8mT � H8m0)compound=T

�
X

(H8mT � H8m0)elements=T (12:30)

Each quantity in Equation (12.30) can be obtained from tables such as Table 12.2.
The equations required for use with Tables 12.1 and 12.3 will be provided as an
exercise at the end of the chapter.

Entropy Calculations

Standard entropies for many substances are available in tables such as Tables 11.2
through 11.6. Generally, the values listed are for 298.15 K, but many of the original
sources, such as the tables of the Thermodynamics Research Center, the JANAF
tables, or the Geological Survey tables, give values for other temperatures also. If
heat capacity data are available, entropy values for one temperature can be converted
to those for another temperature by the methods discussed in Section 11.4.

In a reaction such as that represented by Equation (12.23), the standard entropy
change DS8mT at the temperature T is given by the expression

DS8mT ¼ S8mT(compound) �
X

S8mT(elements) (12:31)

Change in Standard Gibbs Function

When adequate enthalpy and entropy data are available, the calculation of DG8mT is a
matter of substitution into Equations (7.26).

DG8mT ¼ DH8mT � T DS8mT

Generally, data for DH8m and DS8m are available at least at one temperature. The
conversion of the data for the Gibbs function from one temperature to another can
be carried out by the methods outlined in Chapter 7.

Statistical thermodynamic methods and the use of spectroscopic information
lead to the function (G8mT 2 H8m0)/T, and this function is tabulated in Table 12.4.
Tables 12.5 and 12.6 give the alternative function (G8mT 2 H8m298.15)/T, which is
equal to (Y8mT 2 Y8m298.15). This method of tabulation avoids the use of empirical
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equations, with their associated constants, and allows direct comparison of data
from different sources. Although we will not discuss the methods for calculating
this new function from experimental data by statistical thermodynamic methods,
we will use tables of these functions to obtain the change in the Gibbs function for
a reaction.

To calculate the Gibbs function for the formation of a compound C, we use
Equations (12.32) through (12.36), which are analogous to the equations used to
calculate DfHm8. In each case we use the relationship [Equation (11.9)] at 0 K

G8m0 ¼ H8m0

to obtain

A(0 K)þ B(0 K)þ � � � ¼ C(0 K), DG ¼ DfG8m0 ¼ DfH8m0 (12:32)

C(0 K) ¼ C(T), DG ¼ (G8mT � G8m,0K)C ¼ (G8mT � H8m,0K)C (12:33)

TABLE 12.4. Gibbs Function Increment (G88888mT 2 H88888m0)/T
a

[(G8mT 2 H8m0)/T ]/(J mol21 K21)

Substance 298.15 K 400 K 600 K 800 K 1000 K 1500 K

CO(g) 2168.55 2177.12 2188.96 2197.48 2204.21 2216.80
CO2(g) 2182.37 2191.88 2206.15 2217.26 2226.52 2244.80
Methane(g) 2152.79 2162.79 2177.56 2189.34 2199.56 2221.41
Methanol(g) 2201.51 2213.09 2230.76 2245.21 2257.87 2284.73
Ethyne(g) 2167.34 2177.70 2193.89 2206.87 2217.85 2239.96
Ethene(g) 2183.97 2194.76 2211.85 2226.29 2239.15 2266.74
Acetic acid(g) 2237.87 2252.18 2275.97 2296.72 2315.47 2355.84
Ethane(g) 2189.40 2201.78 2221.96 2239.47 2255.37 2290.33
Ethanol(g) 2232.85 2247.77 2272.37 2293.70 2312.91 2354.36
Propene(g) 2221.30 2235.59 2259.49 2280.44 2299.46 2340.89
Propane(g) 2220.87 2236.60 2263.62 2287.83 2310.15 2359.13
1-Butene(g) 2250.42 2268.69 2299.95 2327.81 2353.28 2409.04
n-Butane(g) 2245.31 2265.94 2301.54 2333.46 2362.75 2427.19
Benzene(g) 2221.56 2237.35 2252.30 2294.97 2321.35 2379.92
Cyclohexane(g) 2238.54 2258.19 2296.12 2333.57 2369.89
Toluene(g) 2260.48 2280.42 2317.30 2352.04 2384.62 2457.01
o-Xylene(g) 2275.49 2311.03 2347.30 2389.81 2429.25 2516.35
m-Xylene(g) 2284.45 2308.68 2353.23 2394.71 2433.49 2519.62
p-Xylene(g) 2278.51 2302.67 2347.29 2388.94 2427.89 2514.36
H2O(g) 2155.12 2165.28 2178.93 2188.83 2196.72 2211.81
H2(g) 2102.28 2110.65 2122.28 2130.59 2137.07 2149.01
O2(g) 2176.02 2184.60 2196.57 2205.27 2212.19 2225.21
C(graphite)b 22.216 23.490 26.209 28.914 211.611 217.165

aM. Frenkel, K. N. Marsh, R. C. Wilhoit, G. J. Kabo, and G. N. Roganov, Thermodynamics of Organic
Compounds in the Gas State, Thermodynamics Research Center, College Station, TX, 1994.
bCalculated from values in NIST-JANAF Thermochemical Tables; see Table 12.6.
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B(T) ¼ B(0 K), DG ¼ (Gm,0K � Gm,T )B ¼ �(Gm,T � Hm,0K)B (12:34)

A(T) ¼ A(0 K), DG ¼ (G8m,0K � Gm,T )A ¼ �(G8m,T � H8m,0K)A (12:35)

The summation of Equations (12.32) through (12.35) leads to the expression

A(T)þ B(T)þ � � � ¼ C(T),

DG8m,T ¼ DfH8m,0 þ (G8m,T � H8m,0K)compound

�
X

(G8m,T � H8m,0K)elements (12:36)

TABLE 12.5. Gibbs Function Increment, 2(G88888mT 2 H88888m298.15)/T
a

[2 (G8mT 2 H8m298.15)/T ]/(J mol21 K21)

400 K 600 K 800 K 1000 K 1500 K

C(graphite) 6.12 7.97 10.29 12.67 18.22
Carbon(diamond) 2.09 5.88 8.90 11.24 15.43
Cl2(g) 223.43 229.95 235.81 241.20 252.44
HCl(g) 188.04 192.61 197.41 201.84 211.20
CaSO4(c) 111.58 129.77 150.22 169.92
CuSO4(c) 38.57 83.11 109.44 127.68
Fe2SiO4(c) 156.48 180.09 206.13 230.77
Mg2SiO4(c) 99.05 120.44 144.25 166.94 216.35
CaSiO3 85.26 100.71 117.94 134.32
Methane(g) 187.70 194.03 201.58 209.27 227.53
NH3(g) 194.20 200.28 207.13 213.82 229.03
CO(g) 198.41 203.00 207.89 212.43 222.11
CO2(g) 215.30 221.75 228.96 235.88 251.04
SiO2(c); a quartzb 43.33 51.64 61.25 70.73 90.96
SiO2(c); a cristobalitec 45.31 54.64 64.55 73.87 93.91
O2(g) 206.31 211.04 216.12 220.86 230.99
N2(g) 192.75 197.35 202.22 206.73 216.30
H2(g) 131.82 136.40 141.18 145.54 154.66
Mg(c)d 33.66 37.76 42.20 47.11 67.49
Cu(c)e 34.11 38.08 42.31 46.23 55.58
Ca(c) f 43.93 48.17 52.99 57.75 70.13
Si(c) 19.63 23.08 26.84 30.38 37.98
Fe(c)g 28.10 32.41 37.27 42.11 53.67
S(c)h 33.19 39.82 46.14 58.59 85.56

aR. A. Robie and B. S. Hemingway, Thermodynamic properties of minerals and related substances, U.S.
Geologic Survey Bulletin 2131, 1995.
bTrigonal crystals to 844 K. b-crystals from 844 K.
cTetragonal crystals to 523 K. Cubic crystals from 523 K.
dHexagonal close-packed crystals to melting point at 923 K. Boiling point at 1366.1 K.
eMelting point 1357.8 K.
fa-Crystals to 716 K. b-crystals to melting point at 1115 K. Body-centered cubic 1667 K to melting point.
gBody-centered cubic to 1185 K. Curie point at 1043 K. Face-centered cubic from 1158 K.
hOrthombic crystals to 368.3 K. Monoclinic crystals from 368.3 K to melting point at 388.36 K. Liquid to
fictive boiling point at 882.1 K.
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To express the result in terms of the statistical thermodynamic expression, we
use (G8mT 2 H8m0)/T instead of (G8mT 2 H8m0). Hence, we have the following
expression for the Gibbs function for the formation DfG8mT of any compound at some
temperature T:

DfG8m,T

T
¼ DfH8m,0K

T
þ G8m,T � H8m,0K

T

� �� �
compound

�
X G8m,T � H8m,0K

T

� �
elements

(12:38)

If the change in the Gibbs function for the formation of each substance in a reac-
tion is known at the desired temperature, the change in the Gibbs function for any
reaction involving these substances can be calculated from the equation

DGmT ¼ SDfGmT(products) � SDfG8mT(reactants) (12:39)

EXERCISES

12.1. According to Stevenson and Morgan [6], the equilibrium constant K for the
isomerization reaction

cyclohexane(l) ¼ methylcyclopentane(l)

TABLE 12.6. Gibbs Function Increment,2(G88888mT 2H88888m298.15)/T
a

[2(G8mT 2 H8m298.15)/T ]/(J mol21 K21)

Substance 400 K 600 K 800 K 1000 K 1500 K

H2(g) 131.817 136.392 141.171 145.536 154.652
O2(g) 206.308 211.044 216.126 220.875 231.002
N2(g) 192.753 197.353 202.209 206.708 216.277
F2(g) 204.040 209.208 214.764 219.930 230.839
Br2(g) 246.818 252.575 258.618 264.143 275.595
C(graphite) 6.117 7.961 10.279 12.662 18.216
CO(g) 198.798 203.415 208.305 212.848 222.526
CO2(g) 215.307 221.772 228.986 235.901 251.062
H2O(g) 190.159 195.550 201.322 206.738 218.520
HBr(g) 199.843 204.437 209.270 213.737 223.228
HF(g) 174.923 179.501 184.273 188.631 197.733
NH3(g) 194.200 200.302 207.160 213.849 229.054
Cl2(g) 224.431 229.956 235.814 241.203 252.438
HCl(g) 188.045 192.469 197.434 201.857 211.214

a M. W. Chase, Jr., NIST-JANAF Thermochemical Tables, 4th ed., J. Phys. Chem. Ref. Data, Monograph
No. 9 (1995).
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can be expressed by the equation

ln K ¼ 4:814� 2059
T

a. Derive an equation for DG8m and DYm8 as a function of T.

b. Derive equations for DHm8 and DSm8 as functions of T.
c. Derive an equation for D CPm as a function of T.

12.2. According to Golden et al. [7], DHm8 and DSm8 for the reaction

cis-2-butene ¼ trans-2-butene

have the constant values of 21.2 kcal mol2 and 21.2 cal mol21 K21,
respectively, in the range of temperatures from 400 K to 500 K. Calculate
an equation for ln K as a function of T from their results.

12.3. According to Hales and Herington [8], the equilibrium constant K for the
hydrogenation of pyridine (C5H5N) to piperidine (C5H11N),

C5H5N(g)þ 3H2(g) ¼ C5H11N(g)

in the temperature range of 140–2608C can be expressed by the equation

ln KP ¼ �46:699þ 24,320
T

Calculate DHm8, DSm8, and DCPm8 at 2008C. (These data are for
P8 ¼ 101.325 kPa.)

12.4. Energy changes for the conversion of the chair to the boat conformation of the
cyclohexane ring can be estimated from a study of the equilibrium between
cis- and trans-1,3-di-t-butylcyclohexane. Some analytical results of
Allinger and Freiberg [9] are listed in Table 12.7.

a. Compute the equilibrium constant for the reaction cis ¼ trans at each
temperature.

b. Draw a graph of ln K against T and of ln K against 1/T. Fit the equation of
ln K against 1/T by the method of linear least squares (see Appendix A)
and use the residuals to decide whether the equation is linear.

c. Calculate DHm8 and DSm8 for the conformational change at 550 K.

TABLE 12.7. Equilibrium Data for Chair to Boat
Conversion

T/K 492.6 522.0 555.0 580.0 613.0
% trans 2.69 3.61 5.09 6.42 8.23

294 APPLICATION OF THE GIBBS FUNCTION TO CHEMICAL CHANGES



12.5. The standard potentials for a galvanic cell in which the reaction

1
2
H2(g)þ AgCl(s) ¼ Ag(s)þ HCl(aq)

is being carried on are given in Table A.2.

a. By numeric differentiation, construct the curve for (@E 8/@T )P as a func-
tion of temperature (see Appendix A for methods).

b. Calculate DG8m, DHm8, and DSm8, at 108C, 258C, and 508C, respectively.
Tabulate the values you obtain.

c. The empirical equation for E8 as a function of temperature is

E8 ¼ 0:22239� 645:52� 10�6(t � 25)� 3:284� 10�6(t � 25)2

þ 9:948� 10�9(t � 25)3

in which t is 8C. Using this equation, compute DG8m, DHm8, and DSm8 at
508C. Compare these values with the values obtained by the numeric
method.

12.6. Consider the problem of calculating a value for DGm as a function of the
extent of reaction. For example, consider a case that can be represented as

A ¼ B

in which the initial number of moles of A is n and the initial number of moles
of B is zero. Let nB represent the number of moles of B at any extent of reac-
tion. If X represents the mole fraction of B formed at any time in the reaction,
then X ¼ nB/n and XA ¼ 12 XB ¼ 1 2nB/n. The corresponding pressures of
A and B are

PA ¼ (1� X)P and PB ¼ XP

in which P is the total pressure. At any extent of conversion nB, it follows
from the discussion after Equation (12.9) that

@G

@nB

� �
T ,P

¼ 1
n

� �
@G

@X

� �
T ,P

¼ DGm8þ RT ln
X

(1� X)

� �

or

dG ¼ n DGm8þ RT ln
X

(1� X)

� �� 	
dX

a. Show that DG for raising the mole fraction of B from 0 to X0 is given by

ðX0

0
dG ¼ nXDGm8þ nRT X0 ln

X0

1� X0 þ ln (1� X0)
� �
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b. Prove that to reach the equilibrium state Xequil,

DG ¼¼ �nRT ln (K þ 1)

in which K is the equilibrium constant for the reaction.

12.7. Carey and Uhlenbeck [10] found the values of 219 kcal/mol for DHm and
230 cal/(mol K) for DSm for the reaction of a phage R17 coat protein with
its 21-nucleotide RNA binding site at 28C. In a similar study of the equili-
brium between the lac repressor and its operator, de Haseth et al. [11]
found that DHm ¼ 8.5 kcal/mol and DSm ¼ 81 cal/(mol K) at 248C.
Calculate DYm for each reaction, and speculate on the possible significance
of the difference between entropy-driven and enthalpy-driven reactions.

12.8. Eliel et al. [12] measured the values of DG8m for the following conformational
transitions:

Calculate the equilibrium ratios of the conformers in each case.

12.9. It has been suggested [13] that a-cyanopyridine might be prepared from
cyanogen and butadiene by the reaction
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Pertinent thermodynamic data are given in Table 12.8. From these data,
would you consider it worthwhile to attempt to work out this reaction?

12.10. The equilibrium constant K for the formation of a deuterium atom from two
hydrogen atoms can be defined by the equations

2H ¼ D K ¼ PD

(PH)2
P8

The equation for the temperature dependence of K is

log10 K ¼ 20:260þ 3=2 log10 T þ 7:04� 109

T

a. Calculate K at a temperature of 108 K.

b. Calculate DG8m, DHm8, and DSm8 at the same temperature.

12.11. Some thermodynamic information for benzene and its products of hydrogen-
ation are listed in Table 12.9 [14].

a. Make a graph of DfG8m for each compound, relative to benzene, against the
moles of H2 consumed to form each compound. Show that the diene is
thermodynamically unstable relative to any of the other three substances.

b. If hydrogenation of benzene were carried out with a suitable catalyst so that
equilbrium was attained among benzene and the three products, what
would be the relative composition of the equilibrium mixture at a hydrogen
pressure of 101.3 kPa?

TABLE 12.9. Thermodynamic Data for Benzene and Related Compounds

Substance DfH8m298/(kJ mol21) S8m298/(J mol21 K21)

Benzene 82.93 269.0
1,3-Cyclohexadiene 107.1 288.3
Cyclohexene 27.20 310.5
Cyclohexane 2123.14 298.3

TABLE 12.8. Thermodynamic Data for Synthesis of a-Cyanopyridine

Substance DfH8m298.15/(J mol21) S8m298.15/(J mol21 K21)

Butadiene (g) 111,914 277.90
Cyanogen (g) 300,495 241.17
a-Cyanopyridine(s) 259,408 322.54
Hydrogen(g) 0 130.58
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12.12. Some thermodynamic data for tin are tabulated in Table 12.10.

It is possible to construct an electrochemical cell

Sn (gray), electrolyte, Sn(white)

in which the following reaction occurs during operation:

Sn(gray) ¼ Sn (white)

a. Compute the emf of this cell at 258C and 100 kPa.

b. If the cell is operated reversibly, what would be the values of Wnet, Q, DE,
DH, DS, and DG, respectively, for the conversion of one mole of gray tin to
white tin?

c. If the cell is short-circuited so that no electrical work is obtained, what
would be the values of the thermodynamic quantities listed in (b)?

12.13. The heats of combustion of quinone(s) and hydroquinone(s) at 1 atm and
258C are 2745.92 and 2852.44 kJ mol21, respectively [15]. Entropies have
been computed from specific heat data; Sm8 298 is 161.29 J mol21 K21 for
quinone(s) and 137.11 J mol21 K21 for hydroquinone(s).

a. Compute DfHm8, the standard enthalpy of formation, for quinone and
hydroquinone.

b. Compute DHm8 for the reduction of quinone to hydroquinone.

c. Compute DSm8 and DG8m for the reduction of quinone to hydroquinone.

d. The reduction of quinone to hydroquinone can be carried out in an electro-
chemical cell in which one electrode contains a solution saturated with an
equimolar mixture of quinone and hydroquinone called quinhydrone, and
the other electrode is the standard hydrogen electrode.

Calculate E8 for this cell from the data above. The value obtained from elec-
trochemical measurements [16] is 0.681 V.

TABLE 12.11. Thermodynamic Data for Calcium Carbonate

Calcite Aragonite

DfHm8298/(kJ mol21) 21207.5 21207.9
Sm8298/(J mol21K21) þ91.7 þ88.0

TABLE 12.10. Thermodynamic Data for Tin

Sn(gray) Sn(white)

DfHm8298/(J mol21) 22090 0
Sm8298/(J mol21 K21) 44.14 51.55
Density/(g cm23) 5.75 7.31
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12.14. The values of DfHm8 298 and Sm8 298 for CaCO3 (calcite) and CaCO3 (aragonite)
are given in Table 12.11 [16]. Predict the thermodynamically stable form of
CaCO3 at 298 K from the value of DG8m 298 for the transformation

CaCO3 (calcite) ¼ CaCO3(aragonite)

12.15. The following problem illustrates the application of calculations involving the
third law to a specific organic compound, n-heptane. The necessary data can
be obtained from sources mentioned in the footnote to Table 12.2, in Table
A.4, and in the problem.

a. From the published tables of the enthalpy increment function, (H8mT 2
H8m0)/T, compute DH8m for the reaction (at 298.15 K)

7C (graphite)þ 8H2 (hypothetical ideal gas)

¼ n� C7H16 (hypothetical ideal gas) (12:40)

b. With the aid of data for the vaporization of n-heptane, calculate DH8m,298.15

for the reaction

7C (graphite) þ 8 H2(g) ¼ n� C7H16(l) (12:41)

c. Calculate S8m,298.15 for liquid n-heptane from the heat capacity data below
(Values calculated from data below (see Ref. 17) and from those for solid
n-heptane given in Table A.4. Integrate by means of the Debye equation to
obtain the entropy up to 15.14 K, and carry out a numeric integration

TABLE 12.12. Heat Capacities of Liquid n-Heptane�

T/K Cpm/J mol21 K21

182.55 203.01
190 201.96
200 201.46
210 201.79
220 202.88
230 204.51
240 206.61
250 209.12
260 211.96
270 215.02
280 218.36
290 221.92
298.15 224.93

�Values calculated from the data of Ref. 17.
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(CPm/T vs. T ) thereafter. Obtain DHm8 of fusion from Thermodynamics
Research Center tables.

d. Calculate DSm8 for Reaction (12.29) at 298.15 K. Use National Bureau of
Standards data on graphite and hydrogen.

e. Calculate the entropy of vaporization of liquid n-heptane at 298.15 K.

f. Calculate DfG8m,298.15 for liquid n-heptane.

g. Calculate DfG8m,298.15 for gaseous n-heptane.

h. From tables of the free energy increment function (G8mT 2 H8m0)/T, calcu-
late DfG8m,298.15 for gaseous n-heptane in the hypothetical ideal gas)
standard state. Compare with the value obtained in (f).

12.16. Ha et al. [18] have measured the equilibrium quotients for the formation of a
complex between the lac repressor protein and a symmetric operator sequence
of DNA as a function of temperature. Their results are given below. (The stan-
dard state is 1 mol dm23.)

T/8C Kobs

0.0 1.7(+0.2) � 1010

7.0 7.9(+2.7) � 1010

14.0 1.1(+0.1) � 1011

23.0 1.2(+0.3) � 1011

30.0 5.2(+1.5) � 1010

37.0 6.0(+1.7) � 1010

41.0 2.8(+0.6) � 1010

As Kobs goes through a maximum with increasing T, DCP is not equal to zero.
The authors fitted their data to the expression

ln Kobs ¼ DC8P,obs
R

� �
TH
T

� �
� ln

TS
T

� �
� 1

� �
(12:42)

in which DC8P,obs is assumed to be temperature independent, TH is the temper-
ature at which DH8obs is equal to zero, and TS is the temperature at which DS8obs is
equal to zero.

a. Derive Equation (12.42), starting with the assumption that DC8P is a constant.
b. Calculate DY8obs at each experimental temperature.

c. Use a nonlinear fitting program to obtain the values of the parameters,
DC8p,obs, TH, and TS, and calculate DH8obs and DS8obs at each experimental
temperature. Because this is a complex equation for a small dataset, it
may be necessary to obtain values of TH and TS from plots of ln K and
DG, and to obtain only DC8P,obs from a nonlinear fitting procedure.

12.17. The thermodynamic parameters for the dissociation of double-stranded DNA
into single strands can be obtained from a determination of the “melting temp-
erature” Tm as a function of the total concentration of strands CT. The melting
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temperature is defined as the temperature at which a, the fraction of total
strands present as single strands, is equal to 0.5.

a. Derive an expression for K for the dissociation in terms of a and CT, and
use that expression to show that

1
Tm

¼ R ln CT

DH8
þ DS8
DH8

b. How would you plot data on melting temperature as a function of total
strand concentration to obtain DH8 and DS8?
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CHAPTER 13

THE PHASE RULE

The mathematical basis of classic thermodynamics was developed by J. Willard
Gibbs in his essay [1], “On the Equilibrium of Heterogeneous Substances,” which
builds on the earlier work of Kelvin, Clausius, and Helmholtz, among others. In par-
ticular, he derived the phase rule, which describes the conditions of equilibrium for
multiphase, multicomponent systems, which are so important to the geologist and to
the materials scientist. In this chapter, we will present a derivation of the phase rule
and apply the result to several examples.

13.1 DERIVATION OF THE PHASE RULE

The phase rule is expressed in terms of ‘, the number of phases in the system; C, the
number of components; and F, the number of degrees of freedom or the variance of
the system.

The number of phases is the number of different homogeneous regions in the
system. Thus, in a system containing liquid water and several chunks of ice, only
two phases exist. The number of degrees of freedom is the number of intensive vari-
ables that can be altered freely without the appearance or disappearance of a phase.
First we will discuss a system that does not react chemically, that is, one in which the
number of components is simply the number of chemical species.

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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Nonreacting Systems

If we express the composition of a phase in terms of the mole fractions of all the
components, then (C 2 1) intensive variables are needed to describe the composition,
if every component appears in the phase, because the mole fractions must sum to 1. In
a system of ‘ phases, ‘(C 2 1) intensive variables are used to describe the compo-
sition of the system. As was pointed out in Section 3.1, a one-phase, one-component
system can be described by a large number of intensive variables; yet the specification
of the values of any two such variables is sufficient to fix the state of such a system.
Thus, for example, two variables are needed to describe the temperature and pressure
of each phase of constant composition or any alternative convenient choice of two
intensive variables. Therefore, the total number of variables needed to describe the
state of the system is

‘(C � 1)þ 2‘ ¼ ‘(C þ 1) (13:1)

To calculate the number of degrees of freedom, we need to know the number of
constraints placed on the relationships among the variables by the conditions
of equilibrium.

Mechanical Equilibrium. For a system of fixed total volume and of uniform
temperature throughout, the condition of equilibrium is given by Equation (7.9) as

dA ¼ 0

If phase I of the system changes its volume, with a concurrent compensating change
in the volume of phase II, then at constant temperature, it follows from Equation
(7.39) that

dA ¼ dAI þ dAII

¼ �PIdVI � PIIdVII ¼ 0 (13:2)

As the total volume is fixed,

dVI ¼ �dVII

and

PIIdVI � PIdVI ¼ 0 (13:3)

The equilibrium constraint of Equation (13.3) can be met only if PI ¼ PII, which is
the condition for mechanical equilibrium. (We will discuss several special cases to
which this requirement does not apply.) Or, to put the argument differently, if the
pressures of two phases are different, the phase with the higher pressure will spon-
taneously expand; and the phase with the lower pressure will spontaneously contract,
with a decrease in A, until the pressures are equal. Thus, for ‘ phases, ‘ 2 1 inde-
pendent relationships among the pressures of the phases can be written as follows:

PI ¼ PII ¼ � � � ¼ P‘
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Thermal Equilibrium. For an isolated system, one at constant total energy and
constant total volume, the condition of equilibrium follows from Equation (6.108) as

dS ¼ 0 (13:4)

If an infinitesimal amount of heat DQ is transferred reversibly from phase I to phase
II, it follows from Equation (6.49) that

dS ¼ dSI þ dSII

¼ �DQ

TI
þ DQ

TII
¼ 0 (13:5)

The constraint of Equation (13.5) can be met only if TI ¼ TII, which is the condition
for thermal equilibrium. Or, to put the argument differently, if the temperatures of
two phases differ, heat will flow irreversibly from the phase at higher temperature
to the phase at lower temperature, with an increase in entropy, until the temperatures
are equal. Thus, for ‘ phases, ‘ 2 1 independent relationships among the tempera-
tures of the phases can be written as follows:

TI ¼ TII ¼ � � � ¼ T‘

Transfer Equilibrium. For a system at constant temperature and pressure, the con-
dition of equilibrium is given from Equation (7.18) as

dG ¼ 0 (13:6)

If dnmoles of a substance are transferred from phase I to phase II, then it follows from
Equation (9.15) that

dG ¼ �mIdnþ mIIdn ¼ 0 (13:7)

The condition of Equation (13.7) can be met only if mI ¼ mII, which is the condition
of transfer equilibrium between phases. Or, to put the argument differently, if the
chemical potentials (escaping tendencies) of a substance in two phases differ, spon-
taneous transfer will occur from the phase of higher chemical potential to the phase of
lower chemical potential, with a decrease in the Gibbs function of the system, until
the chemical potentials are equal (see Section 10.5). For each component present
in all ‘ phases, (‘ 2 1) equations of the form of Equation (13.7) provide constraints
at transfer equilibrium. Furthermore, an equation of the form of Equation (13.7) can
be written for each one of the C components in the system in transfer equilibrium
between any two phases. Thus, C(‘ 2 1) independent relationships among the
chemical potentials can be written. As chemical potentials are functions of the
mole fractions at constant temperature and pressure, C(‘2 1) relationships exist
among the mole fractions. If we sum the independent relationships for temperature,
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pressure, and composition in the system, we find

(‘� 1)þ (‘� 1)þ C(‘� 1) ¼ (C þ 2)(‘� 1) (13:8)

independent relationships or constraints exist among the variables.

The Phase Rule. The number of degrees of freedom is the difference between the
number of variables needed to describe the system and the number of independent
relationships or constraints among those variables:

F ¼ ‘(C þ 1)� (‘� 1)(C þ 2)

¼ C � ‘þ 2 (13:9)

In a system in which one component is absent from a phase, the number of variables
needed to describe the system decreases by one. As the number of independent
relationships also decreases by one, the number of degrees of freedom remains
the same.

Reacting Systems

For a system undergoing R independent chemical reactions among N chemical
species, R equilibrium expressions are to be added to the relationships among the
intensive variables. From Equation (13.1), the total number of intensive variables
in terms of N becomes

‘(N � 1)þ 2‘ ¼ ‘(N þ 1) (13:10)

If we add R to the number of independent relationships specified by Equation (13.8),
we obtain

(N þ 2)(‘� 1)þ R (13:11)

Thus, the number of degrees of freedom for a reacting system is

F ¼ ‘(N þ 1)� (N þ 2)(‘� 1)� R

¼ (N � R)� ‘þ 2 (13:12)

We define the number of components in a system as N 2 R, which is also the
minimum number of chemical species from which all phases in the system can be
prepared. Each equilibrium relationship decreases by one the number of species
required to prepare a phase. Thus, the quantity (N 2 R) in Equation (13.12) is equiv-
alent to C in Equation (13.9). For example, water in equilibrium with its vapor at
room temperature and atmospheric pressure is a one-component system. Water in
equilibrium with H2 and O2 at a temperature and pressure at which dissociation
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takes place is a two-component system unless the mole ratio of H2/O2 is exactly 2;
then C ¼ 1. Water in equilibrium with OH2 and Hþ ions at room temperature and
atmospheric pressure is a one-component system because the requirement for electri-
cal neutrality in ionic solutions imposes an additional relationship on the system.

13.2 ONE-COMPONENT SYSTEMS

The number of degrees of freedom for a one-component system [C ¼ 1 in Equation
(13.9)] is

F ¼ 3� ‘ (13:13)

F is at most two because the minimum value for ‘ is one. Thus, the temperature and
pressure can be varied independently for a one-component, one-phase system and the
system can be represented as an area on a temperature versus pressure diagram.

If two phases of one component are present, only one degree of freedom remains,
either temperature or pressure. Two phases in equilibrium are represented by a curve
on a T2 P diagram, with one independent variable and the other a function of the
first. When either temperature or pressure is specified, the other is determined by
the Clapeyron Equation (8.9). If three phases of one component are present, no
degrees of freedom remain, and the system is invariant. Three phases in equilibrium
are represented on a T 2 P diagram by a point called the triple point. Variation of
either temperature or pressure will cause the disappearance of a phase.

An interesting example of a one-component systems is SiO2, which can exist in five
different crystalline forms or as a liquid or a vapor. As C ¼ 1, the maximum number
of phases that can coexist at equilibrium is three. Each phase occupies an area on
the T2 P diagram; the two-phase equilibria are represented by curves and the
three-phase equilibria by points. Figure 13.1 (2, p. 123), which displays the equili-
brium relationships among the solid forms of SiO2, was obtained from calculations
of the temperature and pressure dependence of DG (as described in Section 7.3)
and from experimental determination of equilibrium temperature as a function of equi-
librium pressure.

A one-phase system that is important in understanding the geology of diamonds as
well as the industrial production of diamonds is that of carbon, which is shown in
Figure 13.2. The phase diagram shows clearly that graphite is the stable solid
phase at low pressure. Thus, diamond can spontaneously change to graphite at atmos-
pheric pressure (�105 Pa). Diamond owners obviously need not worry, however; the
transition in the solid state is infinitely slow at ordinary temperatures. Some uncertain-
ties about the phase diagram for carbon are discussed by Bundy [3].

Although phase diagrams such as Figure 13.1 and Figure 13.2 describe the con-
ditions of T and P at which different phases are stable, they do not describe the prop-
erties of the system. As the specification of two intensive variables is sufficient to fix
all other intensive variables, the variation of any other intensive variable can be
described in terms of a surface above the T 2 P plane, and the height of any point
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Figure 13.1. Phase diagram for SiO2 for a range of pressures and temperatures. From data in
the sources in Ref. 2 (p. 123).

Figure 13.2. Phase diagram for carbon. From C. G. Suits, Am. Sci. 52, 395 (1964).
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in the surface about the T 2 P plane represents the value of the intensive variable.
Figure 13.3 shows such a surface for the molar volume Vm as a function of T and P.
When two or more phases are present at equilibrium, Vm is a multivalued function
of T and P. Similar surfaces can be constructed to describe other thermodynamic
properties, such as G, H, and S, relative to some standard value.

13.3 TWO-COMPONENT SYSTEMS

From Equation (13.9), it follows that the number of degrees of freedom for a two-
component system

F ¼ 4� ‘ (13:14)

Figure 13.3. A P–V–T surface for a one-component system in which the substance contracts
on freezing, such as water. Here T1 represents an isotherm below the triple-point temperature,
T2 represents an isotherm between the triple-point temperature and the critical temperature, Tc
is the critical temperature, and T4 represents an isotherm above the triple-point temperature.
Points g, h, and i represent the molar volumes of solid, liquid, and vapor, respectively, in equi-
librium at the triple-point temperature. Points e and d represent the molar volumes of solid and
liquid, respectively, in equilibrium at temperature T2 and the corresponding equilibrium
pressure. Points c and b represent the molar volumes of liquid and vapor, respectively, in equi-
librium at temperature T2 and the corresponding equilibrium pressure. From F. W. Sears and
G. L. Salinger, Thermodynamics, Kinetic Theory, and Statistical Thermodynamics. 3rd ed.,
Addison-Wesley, Reading, MA, 1975, p. 31.
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has a maximum value of three. As a complete representation of such a system requires
three coordinates, we can decrease the variance by fixing the temperature and leaving
pressure and composition as the variables of the system, or by fixing the pressure and
leaving temperature and composition as the variables of the system. Then,

F ¼ 3� ‘ (13:15)

In a reduced-phase diagram for a two-component system, F ¼ 2 for a single phase and
an area is the appropriate representation. F ¼ 1 for two phases in equilibrium, and a
curve that relates the two variables is the appropriate representation. As the compo-
sition of the two phases generally is different, two conjugate curves are required.

Figure 13.4 [4] is a reduced two-component diagram for the mineral feldspar,
which is a solid solution of Albite (NaAlSi3O8) and anorthite (CaAlSi2O8). Above
the liquidus curve, the system exists as a single liquid phase. Between the two
curves, liquid and solid phases are in equilibrium, and their compositions are given
by the intersections of a constant temperature line with liquidus and solidus curves.
A point in the region between the two curves represents only the overall composition
of the systemm and not the composition of either phase. This value is not described
by the phase rule, which is concerned omly with the number of phases and their com-
position. Although the region between the curves is frequently called a “two-phase
area,” only the curves correspond geometrically to a value of F ¼ 1 [5].

Other two-component systems may exhibit either limited solubility or complete
insolubility in the solid state. An example with limited solubility is the silver–
copper system, of which the reduced-phase diagram is shown in Figure 13.5.
Region L represents a liquid phase, with F ¼ 2, and S1 and S3 represent solid-solution
phases rich in Ag and Cu, respectively, so they are properly called “one-phase areas.”
S2 is a two-phase region, with F ¼ 1, and the curves AB and DF represent the
compositions of the two solid-solution phases that are in equilibrium at any

Figure 13.4. Phase diagram of the system feldspar, a solid solution of albite (NaAlSi3O8) and
anorthite (CaAlSi2O8). Data from Ref. 4.
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temperature. At 1052 K, liquid of composition C is in equilibrium with solid sol-
utions of composition B and D. With three phases, F ¼ 0, and the three compositions
are represented by points B, C, and D. Between 1052 K and 1234 K, lines EB and EC
represent the compositions of solid solution and liquid solution, respectively, in equi-
librium, with overall system composition richer in Ag than at C. Curves are appropri-
ate because F ¼ 1. Between 1052 K and 1356.55 K, lines GC and GD represent the
compositions of liquid solution and solid solution, respectively, in equilibrium, with
overall system composition richer in Cu than at C.

In two-component phase diagrams such as Figure 13.5 and Figure 13.6, the dis-
tinction between two-phase regions and one-phase regions is made on the basis of
the number of degrees of freedom represented by each. The one-phase region has
two degrees of freedom, two variables can be varied freely, and the region is truly
an “area.” The two-phase region has only one degree of freedom, only one variable
can be varied freely, and the second variable is a function of the first, with the func-
tion represented by a curve. Because two phases of different compositions in equili-
brium exist, two different curves exist, which bound a region. The two kinds of region
can be distinguished because the two-phase region is bounded by curves that rep-
resent a function; therefore, the curves must have continuous first derivatives in the
range of temperature characteristic of the region. The same is not required of the
boundaries of one-phase regions, which are true areas and are not bounded by
curves that represent functions [5].

Figure 13.5. The phase diagram for the system Ag-Cu at constant pressure. With permission,
from R. Hultgren, P. D. Desai, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of
Thermodynamic Properties of Binary Alloys, American Society of Metals, Metals Park, OH,
1973, p. 46.
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Figure 13.6 is the phase diagram of the system Na-K at constant pressure, which is
a system that exhibits limited solubility and the occurrence of a solid compound Na2K
(b), which melts at 280.06 K to form a solid solution of composition rich in Na and
liquid of composition H.

Although the phase rule is concerned with the number of relationships among
system variables that are represented by the equilibrium curves, it provides no infor-
mation about the nature of those relationships. We will consider the dependence of
the chemical potential on the system variables for various systems in later chapters.

Two Phases at Different Pressures

When we derived the phase rule, we assumed that all phases are at the same pressure.
In mineral systems, fluid phases can be at a pressure different from the solid phases if
the rock column above them is permeable to the fluid. Under these circumstances, the
system has an additional degree of freedom and the equilibrium at any depth depends
on both the fluid pressure PF and the pressure on the solid PS at that level. Each
pressure is determined by r, the density of the phase, and h, the height of the
column between the surface and the level being studied.

The equations required to calculate the effect of pressure and temperature on DG
are modified from Equation (7.43) to include a term for each pressure at any tempera-
ture T. For example, for the gypsum–anhydrite equilibrium,

CaSO4 � 2H2O(s, PS, T) ¼ CaSO4(s, PS, T)þ 2H2O(l, PF, T)
gypsum anhydrite

(13:16)

Figure 13.6. The phase diagram at constant pressure of the system Na-K. With permission,
from R. Hultgren, D. T. Hawkins, M. Gleiser, and K. K. Kelley, Selected Values of
Thermodynamic Properties of Binary Alloys, American Society of Metals, Metals Park, OH,
1973, p. 1057.
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the change in the Gibbs function can be computed by resolving the transformation
into the following four steps:

Step 1.

CaSO4 � 2H2O(s, P ¼ P8, T) ¼ CaSO4(s, P ¼ P8, T)þ 2H2O(l, P ¼ P8, T),

DGm ¼ DGm(P ¼ P8, T)

Step 2.

CaSO4 � 2H2O(s, Ps, T) ¼ CaSO4 � 2H2O(s, P ¼ P8, T),

DGm ¼ Vm,CaSO4�2H2O(s)(P8� PS)

ffi �PSVm,CaSO4�2H2O(s)

Step 3.

CaSO4(s, P ¼ P8, T) ¼ CaSO4(s, Ps, T),

DGm ¼ Vm,CaSO4(s)(Ps � P8)

ffi PSVm,CaSO4(s)

Step 4.

2H2O(l, P ¼ P8, T) ¼ 2H2O(l, PF, T),

DGm ¼ 2Vm,H2O(l)(PF � P8)

ffi 2PFVm,H2O(l)

The approximations for Steps 2 through 4 are reasonable because P8, atmospheric
pressure, is small compared with PF and PS, the high pressures found in geologic
formations.

The sum of the transformations in Steps 1 through 4 leads to the change shown in
Equation (13.16). The sum of the DGm’s for Steps 1 through 4 produces Equation
(13.17)

DGm(PF, PS, T) ¼ DGm(P ¼ P8, T)þ PS(DVmS)þ PF(DVmF) (13:17)

in which DVmS represents the molar volume change of the solid phases in the trans-
formation and DVmF represents the molar volume change of the fluid phase in
the transformation. (See Table 2.1 for the definition of one mole for a chemical
transformation.) That is,

DVmS ¼ Vm,CaSO4(s) � Vm,CaSO4�2H2O(s) ¼ �29:48 cm3 mol�1 (13:18)
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and

DVm,F ¼ 2Vm,H2O(l) ¼ 36:14 cm3 mol�1 (13:19)

The equilibrium diagram (2, p. 274; 6) for the species in Equation (13.16) is
shown in Figure 13.7. If gypsum and anhydrite are both under liquid water at 1
bar, then equilibrium can be attained only at 408C (see Fig. 13.7). If the liquid
pressure is increased, and the rock formation is completely impermeable to
the liquid phase, so that the pressure on the fluid phase is equal to the pressure on
the solid phase, then the temperature at which the two solids, both subject to this
liquid pressure, are in equilibrium is given by the curve with positive slope on the
right side of Figure 13.7. Thus, the right curve applies to any situation in which PF

is equal to PS. Under these conditions, the net DVm for the transformation of
Equation (13.16) is 36.14 2 29.48 ¼ 6.66 cm3 [see Equations (13.18) and (13.19)],
and 6.66 � PF makes a positive contribution to the DGm of Equation (13.17). Thus,
an increase in pressure should shift the equilibrium from anhydrite to gypsum, as
indicated in Figure 13.7.

Figure 13.7. Equilibrium diagram for transformations in Equation (13.16). Gibbs function
data from K. K. Kelley, J. Southard, and C. T. Anderson, Bureau of Mines Technical Paper
625, 1941.
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In contrast, if the rock above the layer being studied is completely permeable to the
fluid, the pressure on the solid phases is that of the overlying rock rshg, whereas the
pressure on the fluid phase is rFhg, in which g is the acceleration caused by gravity.
Under these circumstances, the equilibrium temperature for the transformation in
Equation (13.16) varies with pressure according to the curve with negative slope at
the left side of Figure 13.7. In this case, PS DVmS (229.48 � PS) exceeds PF DVmF

(36.14 � PF) in magnitude, and the net contribution to DG of the P DV terms in
Equation (13.17) is negative. Hence, increased pressure shifts the equilibrium from
gypsum to anhydrite. If the rock is partially permeable, the equilibrium curve falls
between the two curves shown, the exact position depending on the ratio of PF to
PS. At some value of the ratio between unity and rF/rS, the equilibrium temperature
becomes independent of the pressure. Whatever the position of the equilibrium curve,
gypsum is the stable solid phase at low temperatures (to the left of the curve) and
anhydrite is the stable solid phase at high temperatures (to the right of the curve).

Phase Rule Criterion of Purity

Equation (13.9) is written as if the number of degrees of freedom of a system were
calculated from known values of the number of phases and the number of com-
ponents. In practice, an experimentalist often determines F and ‘ from his or her
observation and then calculates C, the number of components.

The determination of the purity of a homogeneous solid from solubility measure-
ments is an example of this application of the phase rule. The experimental procedure

Figure 13.8. Solubility curves of chymotrypsinogen A in two different solvents. Adapted
from J. H. Northrop, M. Kunitz, and R. M. Herriot, Crystalline Enzymes, 2nd ed., Columbia
University Press, New York, 1948. Originally published in J. Gen. Physiol. 24, 196 (1940);
reproduced by copyright permission of the Rockefeller University Press.
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is to measure the concentration of dissolved material in equilibrium with excess solid,
at a fixed temperature and pressure, as a function of the amount of solid added. If the
solid is pure, the solid and solvent constitute a two-component system. At constant
temperature and pressure, F ¼ 22 ‘ and a two-phase system of solid and saturated
solution has zero degrees of freedom. If the solid contains more than one species, the
system has three components and F ¼ 1 when two phases are present. In the former
case, the solubility is independent of the amount of excess solid; in the latter case, the
solubility increases with the amount of added solid. Figure 13.8 shows the data of
Butler [7] on the solubility of chymotrypsinogen A, which was the precursor of
the pancreatic enzyme chymotrypsin. These data represent one of the earliest rigorous
demonstrations of the purity of a protein.

EXERCISES

13.1. What would be the number of degrees of freedom in a system in which pure
H2O was increased to a temperature sufficiently high to allow dissociation
into H2 and O2?

13.2. At atmospheric pressure (101.325 kPa), a quartz is in equilibrium with b
quartz at 847+ 1.5 K [8]. The enthalpy change of the transition from a
quartz to b quartz is 728+ 167 J mol21. Berger et al. [9] measured the
volume change by an X-ray diffraction method, and they reported a value of
0.154+ 0.015 cm3 mol21. Use these values to calculate the slope at atmos-
pheric pressure of the equilibrium curve between a quartz and b quartz in
Figure 13.1. Compare your results with the value of the pressure derivative
of the equilibrium temperature dT/dP, which is equal to 0.21 K (Mpa)21 [10].

13.3. For Equation (13.16) [2]

DGm(P ¼ P8, T) ¼ �10,430 J mol�1 þ (685:8 J mol�1K�1)T

The value of DVmS ¼229.48 cm3 mol21 and the value of DVmF ¼ 36.14 cm3

mol21 (2H2O). Calculate the ratio of PS to PF at which DGm (PF, PS, T ) is
independent of pressure.

13.4. In Figure 13.6, identify the phases in equilibrium and the curves that describe
the composition of each phase in Regions I, II, III, IV, V, VI, VII, and VIII.
Identify the phases in equilibrium and the composition of those phases at
260.53 K along line BDE and at 280.66 K along line HGM.
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CHAPTER 14

THE IDEAL SOLUTION

In Chapter 13, we discussed multiphase–multicomponent systems in terms of
the phase rule and its graphical representation. Now we want to describe the
equilibrium curves of a phase diagram in terms of analytic functions, and we
begin by considering the ideal solution. Although not many pairs of substances
form ideal solutions, we shall find that the relationships that describe an ideal sol-
ution provide limiting rules for real solutions and thereby provide a framework
for the discussion of real solutions, just as the relationships that describe an
ideal gas provide limiting rules for real gases and thereby provide a framework
for the discussion of real gases.

14.1 DEFINITION

Historically, an ideal solution was defined in terms of a liquid–vapor or solid–vapor
equilibrium in which each component in the vapor phase obeys Raoult’s law,

pi,g ¼ p†i,gXi,cond (14:1)

where pi,g is the vapor pressure of component i, pi,g
† is the vapor pressure of the pure

component i, and Xi,cond is the mole fraction of component i in the condensed phase.
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If the vapor does not behave as an ideal gas, the appropriate equation corresponding
to Equation (14.1) is

fi,g ¼ f †i,gXi,cond (14:2)

a form expressed in fugacities instead of partial pressures. Specifically, the fugacity
fi,g of each component in the gas phase is equal to f †i,g, the fugacity of the pure
vapor in equilibrium with the pure condensed phase at its equilibrium pressure, multi-
plied by Xi,cond, the mole fraction of the component in the condensed phase. We
should emphasize that the fugacity of the gas in equilibrium with the pure condensed
phase at its equilibrium vapor pressure is not equal to the standard fugacity of the gas
phase, which is defined in Figure 10.5. For an ideal two-component system, the
dependence of the fugacities in the gas phase on the mole fractions in the condensed
phase is illustrated in Figure 14.1.

Equation (14.2) clearly reduces to the historical form of Raoult’s law [Equation
(14.1)] when the vapors are an ideal mixture of ideal gases.

From Equation (10.29),

m8i,g ¼ mi,g þ RT ln
fi,g
fi,g8

(14:3)

and

m†
i,g ¼ m8i,g þ RT ln

f †i,g
fi,g8

(14:4)

where mi,g
† is determined at the same temperature as that of the solution and at the

equilibrium vapor pressure of the pure condensed phase, not at the standard pressure

Figure 14.1. Dependence of fugacities in the gas phase on the composition of the condensed
phase for an ideal solution.
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of 1 bar. Therefore, if we substitute for m8 from Equation (14.4) into Equation (14.3)
we obtain for a vapor in equilibrium with a condensed ideal solution, either
solid or liquid,

mi,g ¼ m†
i,g þ RT ln

fi,g
f †i,g

¼ m†
i,g þ RT lnXi,cond (14:5)

Furthermore, at equilibrium between the phases,

mi(cond) ¼ mi,g

¼ m†
i,g þ RT lnXi,cond

¼ m†
i,cond þ RT lnXi,cond (14:6)

because the pure gas and the pure condensed phases would also be in equilibrium at
this temperature and their equilibrium vapor pressure, and their chemical potentials
must be equal at equilibrium.

It is convenient, therefore, to choose the pure condensed phase at the temperature
of the solution at the equilibrium vapor pressure of the pure condensed phase as the
standard state for the component in the solution1 (see Ref. 1). Thus, Equation (14.6)
can also be written

mi,cond ¼ m8i,cond þ RT lnXi,cond (14:7)

14.2 SOME CONSEQUENCES OF THE DEFINITION

If Equation (14.2), Equation (14.6), or Equation (14.7) is used to define an ideal
solution of two components, values for the changes in thermodynamic properties
resulting from the formation of such a solution follow directly.

Volume Changes

No change in volume occurs when pure components that form an ideal solution are
mixed. This statement can be validated for an ideal solution as follows. At any fixed

1Two other conventions exist for the choice of standard states for components of a solution. One convention
chooses the pure component at 1 bar of pressure, for conformance with the usual standard state for pure
components. This choice has the disadvantage that it requires a term for the effect of pressure in the relation
between the chemical potentials of the pure component and of the component in solution. The
other convention chooses the pure component at the vapor pressure of the solution. This choice has the
disadvantage of having different standard states for each composition of solution.
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mole fraction, differentiation of Equation (14.6) and Equation (14.7) with respect to
pressure yields

@mi

@P

� �
T ,Xi

¼ @m8i
@P

� �
T

¼ @m†
i

@P

� �
T

(14:8)

But from Equation (9.25), we have

@mi

@P

� �
T ,Xi

¼ Vmi

Hence Equation (14.8) becomes

Vmi ¼ V†
mi (14:9)

in which Vmi
† represents the molar volume of pure component i. Thus, the partial

molar volume of each component in solution is equal to the molar volume of the
corresponding pure substance.

Before the two pure components are mixed, the total volume Vinitial is

Vinitial ¼ n1V
†
m1 þ n2V

†
m2 (14:10)

When the solution is formed, the total volume Vfinal is, from Equation (9.27),

Vfinal ¼ n1Vm1 þ n2Vm2 (14:11)

The volume change on mixing is, therefore,

DV ¼ Vfinal � Vinitial ¼ n1Vm1 þ n2Vm2 � (n1V
†
m1 þ n2V

†
m2) ¼ 0 (14:12)

Heat Effects

No heat is evolved when pure components that form an ideal solution are mixed.
The validity of this statement can be shown from consideration of the temperature
coefficient of the chemical potential. Again, from Equation (14.6) at fixed
mole fraction,

@(mi=T)
@T

� �
P,Xi

¼ @(m†
i =T)
@T

� �
P

¼ @(m8i=T)
@T

� �
P

(14:13)

From Section (9.3), we see that thermodynamic relationships for extensive
thermodynamic properties also apply to partial molar properties. From Equation
(9.57)

@(mi=T)
@T

� �
P,Xi

¼ �Hmi

T2
(14:14)
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Thus, Equation (14.13) becomes

Hmi ¼ H†
mi (14:15)

in which Hmi
† is the molar enthalpy of pure component i. Before mixing the two

components, the enthalpy Hinitial is given by

Hinitial ¼ n1H
†
m1 þ n2H

†
m2 (14:16)

and after the formation of the solution, the enthalpy is

Hfinal ¼ n1Hm1 þ n2Hm2 (14:17)

Thus, the enthalpy change on mixing is

DH ¼ Hfinal � Hinitial ¼ n1Hm1 þ n2Hm2 � (n1H
†
m1 þ n2H

†
m2) ¼ 0 (14:18)

As DH is a measure of the heat exchanged in a constant-pressure process, no heat is
evolved or absorbed on mixing an ideal solution.

From Equation (9.21)

@Hmi

@T

� �
P,Xi

¼ CPmi

and

@H†
mi

@T

� �
P

¼ C†
Pmi (14:19)

Therefore

CPmi ¼ C†
Pmi (14:20)

for each component of an ideal solution.

14.3 THERMODYNAMICS OF TRANSFER OF A COMPONENT
FROM ONE IDEAL SOLUTION TO ANOTHER

We can represent the transfer process by the equation

component i(A) ¼ component i(A0) (14:21)

where A represents one solution and A0 represents the other. The thermodynamic
properties of the two solutions are shown in Table 14.1.

If we transfer dni moles of component i from solution A to solution A0, we can
write from Equation (11.15) that

dGm ¼ m0
idni � midni ¼ (m0

i � mi)dni (14:22)
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or

@Gm

@ni

� �
T ,P,Xi

¼ m0
i � mi (14:23)

Then DGm for the transfer process can be obtained by integrating Equation (14.23)
from n ¼ 0 to n ¼ 1. That is,

DGm ¼ Gm2 � Gm1

¼
ð1
0

@Gm

@ni

� �
T ,P,Xi

dni

¼
ð1
0

(m0
i � mi)dni (14:24)

If we assume that the solutions are of large enough volume that the transfer does not
change the compositions and chemical potentials, that is the infinite copy model, then
the integral in Equation (11.24) can be evaluated and

DGm ¼ m0
i � mi

¼ m8i þ RT lnX0
i � [m8i þ RT lnXi]

¼ RT ln
X0
i

Xi
(14:25)

Furthermore, the enthalpy change is

DH ¼ H0
mi � Hmi

¼ H†
mi � H†

mi ¼ 0 (14:26)

Similarly, the volume change is

DV ¼ V 0
mi � Vmi

¼ V†
mi � V†

mi ¼ 0 (14:27)

TABLE 14.1. Thermodynamic Properties of Two Ideal Solutions (A and A0) of Different
Mole Fractions, Xi and Xi

0, Prepared from the Same Components

Property of Component i A A0

Mole fraction Xi Xi
0

Fugacity fi ¼ f †i Xi fi0 ¼ f i
†Xi

0

Chemical potential mi ¼ m8i þ RT ln ( fi/f 8) mi
0 ¼ m8i þ RT ln ( fi0/f 8)

Enthalpy Hmi ¼ Hmi
† H0

mi ¼ Hmi
†

Entropy Smi ¼ (Hmi
† 2 mi)/T S 0

mi ¼ (Hmi
† 2 mi

0)/T
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Finally, the entropy change is

DS ¼ S0mi � Smi

¼ H†
mi � m0

i

T
� H†

mi � mi

T

¼ �m0
i � mi

T
(14:28)

and from Equation (14.7) and Equation (14.28)

DS ¼ �R ln
X0
i

Xi
(14:29)

14.4 THERMODYNAMICS OF MIXING

In a similar way we can consider an integral mixing process for the formation of an
ideal solution from the components, as illustrated in Figure 14.2. The mixing process
can be represented by the equation

n1 moles component 1(pure)þ n2 moles component 2(pure)

¼ solution containing [n1 moles component 1(X1)

þ n2 moles component 2(X2)] (14:30)

Thus,

DJ ¼ Jfinal � Jinitial
¼ n1Jm1 þ n2Jm2 � n1J

†
m1 � n2J

†
m2

(14:31)

Then the change in the Gibbs function is

DG ¼ n1m1 þ n2m2 � n1m
†
1 � n2m

†
2

¼ n1[m81 þ RT lnX1 � m†
1 ]þ n2[m82 þ RT lnX2 � m†

2 ]

¼ n1 RT lnX1 þ n2 RT lnX2 (14:32)

because m1
† ¼ m81 and m2

† ¼ m82.
For the enthalpy change

DH ¼ n1Hm1 þ n2Hm2 � n1H
†
m1 � n2H

†
m2

¼ 0 (14:33)

because Hmi ¼ Hmi
† .
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As, for an isothermal change, from Equation (7.26)

DS ¼ DH � DG

T
then

DS ¼ �DG

T

¼ �n1R lnX1 � n2R lnX2 (14:34)

The values for the formation of an ideal solution are identical with those we derived
for mixing ideal gases in Chapter 10. Thus, a mixture of ideal gases is a special case
of an ideal solution. The equations that we have derived are equally applicable to
solid, liquid, and gaseous solutions as long as no phase change occurs in the
mixing process. For the special case when n1 þ n2 ¼ 1, the thermodynamic
changes are

DGm ¼ n1 RT lnX1 þ n2 RT lnX2

n1 þ n2

¼ X1 RT lnX1 þ X2 RT lnX2 (14:35)

DHm ¼ 0 (14:36)

Figure 14.2. Thermodynamics of formation of ideal solution from pure components.
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and

DSm ¼ �X1R lnX1 � X2R lnX2 (14:37)

14.5 EQUILIBRIUM BETWEEN A PURE SOLID AND AN IDEAL
LIQUID SOLUTION

For some ideal solutions, the range of composition that can be attained is limited
because of the limited solubility of one or both components. As an example, let us
consider the solution of naphthalene in benzene.

When DH is measured for the change

naphthalene(solid) ¼ naphthalene(solution in benzene) (14:38)

it is found that DHm is equal to DHm,f of naphthalene, where the subscript f refers to
fusion. Therefore, it is reasonable to consider that dissolved naphthalene can be
regarded as being in the liquid state rather than in the solid state. If we examine
the process

naphthalene(supercooled liquid) ¼ naphthalene(solution in benzene) (14:39)

we find the accompanying heat effect is zero. Clearly this result is consistent with the
observation that dissolved naphthalene behaves as if it were a liquid in an ideal solu-
tion. The liquid is called supercooled because the temperature is below the melting
point of naphthalene.

If the solution is ideal, the chemical potential m2 of the dissolved solute at a
fixed temperature and pressure is given by the expression [from Equations (14.6)
and (14.7)]

m2 ¼ m82 þ RT lnX2

¼ m†
2 þ RT lnX2 (14:40)

in which m2
† is the chemical potential of the pure, supercooled, liquid naphthalene.

This dissolved solute is characterized also by the molar volume and enthalpy,
V†
m2 and Hm2

† , respectively, that are equal to the corresponding quantities for the
pure, supercooled, liquid naphthalene.

Above a specified concentration (at a given temperature and pressure) no more
naphthalene will dissolve at equilibrium; that is, the solution becomes saturated.
When solid naphthalene is in equilibrium with the solution, as in Equation (14.41),

naphthalene(solid) ¼ naphthalene(satd soln) (14:41)

it follows that

m2,solid ¼ m2,satd soln

¼ m†
2 þ RT lnX2,satd soln (14:42)
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Clearly,

m2,solid , m†
2 (14:43)

because we know that supercooled, liquid naphthalene can be transformed spon-
taneously into the solid, and because X2,satd soln in Equation (14.42) is always less
than one; in other words, the escaping tendency of the supercooled liquid is
greater than that of the solid. By rearranging Equation (14.42), we obtain

lnX2,satd soln ¼
m2,solid � m†

2

RT
(14:44)

or

X2,satd soln ¼ exp
m2,solid � m†

2

RT

� �
(14:45)

In this equation, X2 represents the mole fraction of naphthalene in the saturated
solution in benzene. It is determined only by the chemical potential of solid naph-
thalene and of pure, supercooled liquid naphthalene. No property of the solvent
(benzene) appears in Equation (14.45). Thus, we arrive at the conclusion that the
solubility of naphthalene (in terms of mole fraction) is the same in all solvents
with which it forms an ideal solution. Furthermore, nothing in the derivation of
Equation (14.45) restricts its application to naphthalene. Hence, the solubility (in
terms of mole fraction) of any specified solid is the same in all solvents with
which it forms an ideal solution.

Change of Solubility with Pressure at a Fixed Temperature

When a solid is in equilibrium with the solute in an ideal solution under isothermal
conditions:

solid ¼ solute in solution (14:46)
then

m2,solid ¼ m2,satd soln (14:47)

If the pressure is changed, the solubility can change, but if equilibrium is maintained,
then

dm2,solid ¼ dm2,satd soln (14:48)

The chemical potential of the solid is a function only of the pressure at constant
temperature, whereas the chemical potential of the solute in the saturated solution
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is a function of both pressure and mole fraction. Thus,

dm2,solid ¼
@m2,solid

@P

� �
T

dP

¼ dm2,satd soln ¼
@m2,satd soln

@P

� �
T ,X2

dPþ @m2,satd soln

@X2

� �
T ,P

dX2 (14:49)

From Equation (9.25) and Equation (14.9)

@m2,solid

@P

� �
T

¼ Vm2,solid and
@m2,satd soln)

@P

� �
T ,X2

¼ Vm2,satd soln ¼ V†
m2 (14:50)

and, from Equation (14.6),

@m2,satd

@X2

� �
T ,P

¼ RT

X2
(14:51)

Substituting from Equations (14.50) and (14.51) into Equation (14.49), we obtain

Vm2,soliddP ¼ V†
m2dPþ RT

dX2

X2
(14:52)

or

dX2

X2
¼ d lnX2 ¼ Vm2,solid � V†

m2

RT
dP (14:53)

Rearranging we obtain

@ lnX2,satd

@P

� �
T

¼ Vm2,solid � V†
m2

RT
(14:54)

in which we recognize explicitly that X2 is the mole fraction of solute in the saturated
solution.

As V†
m2 is the molar volume of pure, supercooled solute, Equation (14.54) can be

written as

@ lnX2,satd

@P

� �
T

¼ �DfVm2

RT
(14:55)

In this case, DfVm2 is the molar volume change for the transition from the pure, solid
solute to the supercooled, liquid solute; that is, fusion.

Change of Solubility with Temperature

The procedure for deriving the temperature coefficient of the solubility of a solute in
an ideal solution parallels that just used for the pressure coefficient. The condition for
maintenance of equilibrium with a change in temperature is still Equation (14.48).
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As at constant pressure the chemical potential of the pure solid is a function only of
the temperature, and the chemical potential of the solute is a function of the tempera-
ture and mole fraction, we can express Equation (14.48) as

@m2,solid

@T

� �
P

dT ¼ @m2,satd soln

@T

� �
P,X2

dT þ @m2,satd soln

@X2

� �
P,T

dX2 (14:56)

From Equation (9.24), we have

@m2,solid

@T

� �
P

¼ �Sm2,solid and
@m2,satd soln

@T

� �
P,X2

¼ �Sm2,satd soln (14:57)

and from Equation (14.6)

@m2(satd)

@X2

� �
T ,P

¼ RT

X2
(14:58)

Consequently, Equation (14.56) becomes

�Sm2,solid dT ¼ �Sm2,satd soln dT þ RT

X2
dX2 (14:59)

or

d lnX2 ¼ Sm2,satd � Sm2,solid

RT
dT (14:60)

and

d lnX2,satd

dT

� �
P

¼ Sm2,satd � Sm2,solid

RT
(14:61)

From Table 14.1, as m2(satd) ¼ m2(solid) at equilibrium,

Sm2,satd � Sm2,solid ¼ Hm2,satd � Hm2,solid

T

¼ H†
m2 � Hm2,solid

T
(14:62)

Thus, Equation (14.61) can be written as

@ lnX2,satd

@T

� �
P

¼ DfHm2

RT2
(14:63)

and DfHm2 is the molar enthalpy change for the transition from pure, solid solute to
pure, supercooled, liquid solute (i.e., fusion).

As T is the temperature at which a liquid solution is in equilibrium with a pure,
solid solute, one also can interpret Equation (14.63) as describing the way in
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which the freezing point of the solution depends on concentration; from this point of
view, component 2 is the solvent. This interpretation is shown explicitly by inverting
the derivative:

@Tm
@ lnX2

� �
P

¼ RT2
m

DfHm2
(14:64)

The interpretation of Equations (14.63) and (14.64) can be illustrated graphically by
the reduced-phase diagram for a two-component system at constant pressure, as
shown for the system diopside-anorthite in Figure 14.3.

As we pointed out in Chapter 13, each of the two-phase regions has one degree of
freedom, and the equilibrium relationship between T and X is given by curves AB or
BCwhen component 2 or component 1, respectively, is in higher concentration. In the
region below the horizontal line, only the temperature can vary because both phases
are pure solids.

The equation of curve AB can be obtained by integrating Equation (14.64), and the
equation of curve BC can be obtained by integrating the corresponding equation:

@Tm
@ lnX1

� �
P

¼ RT2
m

DfHm1
(14:65)

in which DHm,f,1 is the molar enthalpy for the transition from pure, solid component
1 to pure, supercooled, liquid component 1.

Figure 14.3. The reduced phase diagram at constant pressure for the two-component system
diopside–anorthite, in which the pure solids are completely insoluble in each other. Data
from N. L. Bowen, Am. J. Sci. Ser. 4, 40, 161 (1915).
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14.6 EQUILIBRIUM BETWEEN AN IDEAL SOLID SOLUTION
AND AN IDEAL LIQUID SOLUTION

In Chapter 13 we discussed briefly the solid–liquid equilibrium diagram of a
feldspar. Feldspar is an ideal, solid solution of albite (NaAlSi3O8) and anorthite
(CaAlSi2O8) in the solid state as well as an ideal, liquid solution of the same
components in the molten state. The relationships that we have developed in
this chapter permit us to interpret the feldspar phase diagram (Figure 13.4) in a
quantitative way.

Composition of the Two Phases in Equilibrium

Let us designate albite as component 1 and anorthite as component 2. According
to Equations (14.6) and (14.7), we can write for each component in each phase

mi,s ¼ m8i,s þ RT lnXi,s ¼ m†
i,s þ RT lnXi,s (14:66)

mi,l ¼ m8i,l þ RT lnXi,l ¼ m†
i,l þ RT lnXi,l (14:67)

At equilibrium at constant temperature and pressure, the chemical potential of each
component must be the same in both phases. That is

mi,s ¼ mi,l (14:68)

If we substitute from Equations (14.66) and (14.67) into Equation (14.68), we obtain

ln
Xi,l

Xi,s
¼ m†

i,s � m†
i,l

RT
(14:69)

The two equations of the form of Equation (14.69), together with the restrictions
that X1,s þ X2,s ¼ 1 and X1,l þ X2,l ¼ 1, uniquely determine the compositions of
the two phases in equilibrium at any temperature at a fixed pressure. As the tempera-
ture interval in which solid and liquid phases can be in equilibrium is between the
melting points of the pure components (see Figure 13.4), one component is above
its melting point and one is below its melting point. For the component above its
melting point

m†
s . m†

l (14:70)

and therefore

Xsolid solution , Xliquid solution (14:71)

The opposite is true for the other component.
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Temperature Dependence of the Equilibrium Compositions

If the equilibrium is to be maintained as the temperature is changed at constant
pressure, then, from Equation (14.68), we conclude that

dmi,l ¼ dmi,s (14:72)

for each component. As mi is a function of temperature and composition, Equation
(14.72) becomes

@mi,s

@T

� �
P,Xi

dT þ @mi,s

@Xi,s

� �
T ,P

dXi,s ¼
@mi,l

@T

� �
P,Xi

dT þ @mi,l

@Xi,l

� �
T ,P

dXi,l (14:73)

If we substitute the appropriate expressions for the partial derivatives in Equation
(14.73), we obtain

�Smi,sdT þ RT

Xi,s
dXi,s ¼ �Smi,ldT þ RT

Xi,l
dXi,l (14:74)

If we rearrange terms in Equation (14.74), we obtain

dXi,s

Xi,s
� dXi,l

Xi,l
¼ Smi,s � Smi,l

RT
dT (14:75)

As in Equation (14.62), we can conclude that

Smi,s � Smi,l ¼ Hmi,s � Hmi,l

T

¼ H†
mi,s � H†

mi,l

T

(14:76)

and Equation (14.75) becomes

d ln
Xi,s

Xi,l
¼ �DfHmi

RT2 dT (14:77)

The integration of Equation (14.77) for each of the two components leads to the
temperature-composition curves of the solid and liquid phases.

Silverman [2] has presented an analogous analysis of the vapor–liquid
equilibrium for an ideal solution.

EXERCISES

14.1. a. Calculate DGm, DHm, and DSm (per mole of benzene) at 298 K for the
addition of an infinitesimal quantity of pure benzene to 1 mole of an
ideal solution of benzene and toluene in which the mole fraction of the
latter is 0.6.
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b. Calculate DGm, DHm, and DSm (per mole of benzene) at 298 K for the
mixing of 0.4 mole of pure benzene with 0.6 mole of pure toluene to
form an ideal solution.

14.2. Calculate the entropy (per mole of mixture) of “unmixing” 235U and 238U from
a sample of pure uranium from natural sources. The former isotope occurs to
the extent of 0.7 mole % in the natural (ideal) mixture.

14.3. For the mixing of two pure components to form 1 mole of an ideal solution,
DGm,mixing is given by Equation (14.35).

a. Plot DGm,mixing as a function of X2.

b. Prove analytically, from Equation (14.35), that the curve in (a) has a
minimum at X2 ¼ 0.5.

14.4. Suppose that a pure gas dissolves in some liquid solvent to produce an ideal
solution. Show that the solubility of this gas must fit the following
relationships:

a. @ lnX2,satd

@P

� �
T

¼ Vm2,g � Vm2

RT
(14:78)

b. @ lnX2,satd

@T

� �
P

¼ �DHm,v solute

RT2 (14:79)

c. lnX2,satd ¼ DHm,v

R

1
T
� 1
Tbp

� �
(14:80)

in which Tbp is the boiling point of the pure solute and DHm,v is the enthalpy of
vaporization of the pure solvent.

14.5. If two lead amalgam electrodes of different compositions (X2 and X 0
2) are

prepared and immersed in a suitable electrolyte, an electrical cell is obtained
in which the following transfer process occurs when the cell is discharged:

Pb (in amalgam; X0
2) ¼ Pb (in amalgam; X2) (14:81)

For a particular cell, operated at 278C and 1 bar, X 0
2 ¼ 0.000625 and X2 ¼

0.0165. Assume that Pb and Hg form ideal solutions in this concentration range.

a. Calculate DGm for the reaction if the cell is discharged reversibly.

b. Calculate DGm for the reaction if the cell is short-circuited so that no
electrical work is performed.

c. What is DHm for the reaction carried out under the conditions in (a)?

d. What is DSm for the reaction carried out under the conditions in (a)?

e. What is Qm for the reaction carried out under the conditions in (a)?

f. What is Qm for the reaction carried out under the conditions in (b)?
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14.6. Maury et al. [3] published data for the equilibrium

3-methylhexane ¼ 2-methylhexane

DG8m (pure liquid is the standard state for each substance) is 21194 J mol21 at
08C. In a solution containing only the two isomers, equilibrium is attained
when the mole fraction of the 3-methylhexane is 0.372. Is the equilibrium
solution ideal? Show the computations on which your answer is based.

14.7. Integrate Equations (14.64) and (14.65) from some point X, T to X ¼ 1, Tm ¼
Tm(pure), assuming that DHm,f is constant throughout the temperature range.
The melting points of pure naphthalene and pure benzene are 80.28C and
5.48C, respectively. The average enthalpies of fusion of naphthalene and
benzene in the temperature range are 10,040 and 19,200 J mol21, respectively.
Calculate the temperature and composition for the maphthalene–benzene
system that correspond to point B, the eutectic point, in Figure 14.3.

14.8. a. RuO4 and OsO4 are completely miscible in the solid and liquid states. Koda
[4] and Nisel’son et al. [5] showed that the solid and liquid phases in
equilibrium are of the same composition over the complete range of compo-
sitions and that the mole-fraction temperature curve is linear. Show from
Equation (14.77) that the solid solutions are not ideal.

b. Koda also showed that the boiling points of both compounds are identical
within experimental error, and that the boiling point-mole fraction curve
is horizontal over the whole range of compositions. Silverman [2] showed
that the equation for the boiling point curve for an ideal solution follows
the equation

(1� X2)e
[�DvHm1(1T � 1

TB1
)=R] þ X2e

[�DvHm2(1T � 1
TB2

)=R] ¼ 1 (14:82)

Show that the experimental data for the boiling point curve for this solution
is compatible with Equation (14.82).
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CHAPTER 15

DILUTE SOLUTIONS OF
NONELECTROLYTES

We will proceed in our discussion of solutions from ideal to nonideal solutions,
limiting ourselves at first to nonelectrolytes. For dilute solutions of nonelectrolyte,
several limiting laws have been found to describe the behavior of these systems
with increasing precision as infinite dilution is approached. If we take any one of
them as an empirical rule, we can derive the others from it on the basis of thermo-
dynamic principles.

15.1 HENRY’S LAW

The empirical description of dilute solutions that we take as the starting point of our
discussion is Henry’s law. Recognizing that when the vapor phase is in equilibrium
with the solution, m2 in the condensed phase is equal to m2,g, we can state this law as
follows: For dilute solutions of a nondissociating solute at constant temperature, the
fugacity of the solute in the gas phase is proportional to its mole fraction in the
condensed phase: That is,

f2,g ¼ k2X2,cond (15:1)

This generalized statement of Henry’s law originally was expressed in terms of vapor
pressure instead of fugacity. As solutions become more and more dilute, this law
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becomes increasingly more accurate. We can indicate the limiting nature of Henry’s
law explicitly by writing it as

lim
x2!0

f2,g
X2,cond

¼ k2 (15:2)

The difference between Raoult’s law [Equation (14.2)] and Henry’s law lies in the
proportionality constant relating the fugacity to the mole fraction. For Raoult’s
law, this constant is f2,g

† , the fugacity of the vapor in equilibrium with the pure
solute. Generally, however, for Henry’s law,

k2 = f †2,g (15:3)

This distinction can be made clearer by a graphical illustration (Fig. 15.1). A typical
fugacity-mole fraction curve is shown by the solid line. If the solute formed an ideal
solution with the solvent, the fugacity of the solute would be represented by the
broken line (Raoult’s law). The actual behavior of the solute does not approach
Raoult’s law, except when its mole fraction approaches 1 (that is, under circumstances
when it no longer would be called the solute). When the solute is present in small
quantities, its fugacity deviates widely from Raoult’s law. However, as X2 approaches
0, the fugacity does approach a linear dependence on X2. This limiting linear relation-
ship, which is a graphical illustration of Henry’s law, is represented by the dotted line
in Figure 15.1.1

When a solution obeys Henry’s law, the expression for the chemical potential
[from Equation (10.29) and Equation (15.1)] is

m2 ¼ m2,g ¼ m82,g þ RT ln
f2,g
fg8

� �

¼ m82,g þ RT ln
k2X2

fg8

� �

¼ m82,g þ RT ln
k2
fg8

� �
þ RT ln X2 (15:4)

If we define the first two terms on the right-hand side of Equation (15.4) as m82, the
standard chemical potential of the solute in solution, then

m2 ¼ m82 þ RT lnX2 (15:5)

and the standard state is a hypothetical standard state of unit mole fraction of solute,
one at the point of extrapolation of Henry’s law behavior to X2 ¼ 1. This assignment

1As discussed in Chapters 16 and 17, many solutions do not exhibit a linear behavior in dilute solution, but
they do show a finite limit of f2/X2 as X2 ! 0.
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of the standard state can also be observed from Figure 15.1, where k2 represents
the fugacity of the gas in equilibrium with the solute in solution in its hypothetical
standard state.

If mole fraction is not a convenient unit of composition, Henry’s law can be stated
in other units. As the law applies primarily to very dilute solutions

X2 ¼ n2
n1 þ n2

ffi n2
n1

(15:6)

in which n2 is the number of moles of solute and n1 is the number of moles of solvent.
Consequently Equation (15.1) can be revised to the form

f2,g ¼ k02
n2
n1

� �
¼ k002

m2

m28

� �
(15:7)

where m2 is the number of moles of solute dissolved in 1 kilogram of solvent (n1
moles) and the ratio of molalities is used to keep the dimensions of k002 the same as
those of k 02, and m2, the molality, is the number of moles of solute per unit mass
of solvent, usually the kilogram. Even when Equation (15.1) is valid throughout
a wide range of composition, Equations (15.6) and (15.7) are still approximate. In
limiting-law form, Equation (15.7) becomes

lim
m2!0

f2,g
m2=m28

¼ k002 (15:8)

Figure 15.1. Distinction between Henry’s law and Raoult’s law.
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From Equation (10.29) and Equation (15.7), the chemical potential can be
expressed as a function of molality:

m2 ¼ m82,g þ RT ln
f2,g
fg8

� �

¼ m82,g þ RT ln
k002m2=m28

fg8

� �
(15:9)

We can define the standard chemical potential of the solute in solution as

m28 ¼ m2,g8 þ RT ln
k002
fg8

� �
(15:10)

Thus,

m2 ¼ m28þ RT ln
m2

m28

� �
ð15:11Þ

In Equation (15.11), the choice of m82 is entirely arbitrary. However, it is conventional
to choose m82 ¼1 mol kg21; that is, the standard state of the solute is a hypothetical
one molal state that is the point of extrapolation of Henry’s law behavior to a molality
of 1 mol kg21. In a figure analogous to Figure 15.1, but with m2 along the horizontal
axis, the standard state would be a point on the Henry’s law dotted line directly above
m2¼1 mol kg21.

For solutions obeying Henry’s law, as for ideal solutions, and for solutions of ideal
gases, the chemical potential is a linear function of the logarithm of the composition
variable, and the standard chemical potential depends on the choice of composition
variable. The chemical potential is, of course, independent of our choice of standard
state and composition measure.

15.2 NERNST’S DISTRIBUTION LAW

If a quantity of a solute A is distributed between two immiscible solvents, for example
I2 between carbon tetrachloride and water, then at equilibrium the chemical potentials
or escaping tendencies of the solute are the same in both phases; thus, for

A(in solvent a) ¼ A(in solvent b)

m2 ¼ m0
2 (15:12)

If the chemical potential is expressed in terms of mole fraction

m28þ RT lnX2 ¼ m28
0 þ RT ln X0

2 (15:13)

340 DILUTE SOLUTIONS OF NONELECTROLYTES



Equation (15.13) can describe either an ideal solution [see Equation (14.7)] or a
solution sufficiently dilute that Henry’s law is followed [see Equation (15.5)]. In
either case, it follows that

ln
X2

X0
2

¼ �m28� m28
0

RT
(15:14)

and

X2

X0
2

¼ exp �m28� m28
0

RT

� �

¼ k

(15:15)

The value of k is constant because the standard chemical potentials in the two sol-
vents are constants at a fixed temperature. Nernst’s distribution law also can be
stated in terms of molality,

m2

m0
2
¼ k0 (15:16)

ifm82 ¼ m802, that is, if the same standard state is chosen for both solvents. Again k0 is a
constant, but it differs in magnitude from k. Equation (15.16) is valid only for low
molalities, even for ideal solutions, as can be observed from Equation (15.6).

15.3 RAOULT’S LAW

We can show that if the solute obeys Henry’s law in very dilute solutions, the solvent
follows Raoult’s law in the same solutions. Let us start from the Gibbs–Duhem
Equation (9.34), which relates changes in the chemical potential of the solute to
changes in the chemical potential of the solvent; that is, for a two-component system

n1dm1 þ n2dm2 ¼ 0

If Equation (9.34) is divided by n1þn2, we obtain

X1dm1 þ X2dm2 ¼ 0 (15:17)

or

X1
@m1

@X1
þ X2

@m2

@X1
¼ 0 (15:18)

As, for a two-component system,

X1 þ X2 ¼ 1
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and

dX1 ¼ �dX2

Equation (15.18) can be rewritten as

X1
@m1

@X1
� X2

@m2

@X2
¼ 0 (15:19)

or alternatively, with the constancy of temperature and pressure explicitly
indicated, as

@m1

@ lnX1

� �
T ,P

¼ @m2

@ lnX2

� �
T ,P

(15:20)

Let us apply Equation (15.20), which is a general relationship for any two-
component system, to a solution for which Henry’s law describes the behavior of
the solute. From Equation (15.5),

@m2

@ lnX2

� �
T ,P

¼ RT (15:21)

Thus, from Equation (15.20) and Equation (15.21)

@m1

@ lnX1

� �
T ,P

¼ RT (15:22)

Integration of Equation (15.22) at constant T, P leads toð
@m1

@ lnX1

� �
T ,P

d lnX1 ¼ RT

ð
d lnX1 (15:23)

or

m1 ¼ RT ln X1 þ C (15:24)

in which C is a constant of integration. For the solvent at X1¼1, m1¼m1
†¼m81¼C, and

hence, Equation (15.24) becomes

m1 ¼ m†
1 þ RT ln X1

¼ m18þ RT ln X1

These equations are the same as Equation (14.6) and Equation (14.7), statements of
Raoult’s law; thus, the solvent obeys Raoult’s law when the solute obeys Henry’s
law. As Henry’s law is a limiting law for the solute in dilute solution, Raoult’s law
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for the solvent in the same solution is also a limiting law. We can express this limiting
law in terms of the fugacity by rearranging Equation (14.2) to read as

lim
x1!1

f1
X1

¼ f †1 (15:25)

This behavior of a two-component mixture is illustrated in Figure 15.2, which shows
the actual fugacity, the values calculated from Henry’s law, and the values
calculated from Raoult’s law, as a function of mole fraction.

We can also show that Raoult’s law implies Henry’s law by applying the Gibbs–
Duhem equation to Raoult’s law. From Equation (14.6) and Equation (14.7), we
conclude that [compare with Equation (15.21)]

@m1

@ ln X1

� �
T ,P

¼ RT

From the Gibbs–Duhem equation [Equation (9.34)] we obtained above [Equation
(15.20)],

@m1

@ ln X1

� �
T ,P

¼ @m2

@ ln X2

� �
T ,P

With Equation (15.5), we were led to Equation (15.21),

@m2

@ ln X2

� �
T ,P

¼ RT

Figure 15.2. Limiting-law nature of Henry’s law and Raoult’s law.
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Integration of Equation (15.21) leads toð
@m2

@ ln X2

� �
T ,P

d ln X2 ¼
ð
R T d ln X2 (15:26)

or to

m2 ¼ RT ln X2 þ C0 (15:27)

We cannot evaluate the constant of integration in Equation (15.27) as easily as we did
with Equation (15.24), because in the limit of X2 ¼ 0, where Henry’s law is followed,
ln X2 would approach negative infinity. (As X2!0, m2 also tends toward negative
infinity.) Instead, let us make use of the equation for the chemical potential of com-
ponent 2 in the gas phase in equilibrium with the solution. That is [from Equation
(10.23)],

m2,g ¼ m82,g þ RT ln
f2
f28

¼ m2 ¼ RT ln X2 þ C0 (15:28)

Therefore,

ln f2 � ln X2 ¼ C0

RT
� m82,g

RT
þ ln f 82,g ¼ C00 (15:29)

from which it follows that

f2
X2

¼ eC
00 ¼ K (15:30)

This is Henry’s law [Equation (15.1)].

15.4 VAN’T HOFF’S LAW OF OSMOTIC PRESSURE2

As we indicated in Chapter 13, the requirement that all phases be at the same pressure
at equilibrium does not apply in all situations, and in particular, it does not apply to
two phases of different composition separated by a rigid membrane. If the membrane
is permeable to only one component, we can show that the pressure on the two phases
must be different if equilibrium is maintained at a fixed temperature.

Consider the apparatus illustrated schematically in Figure 15.3, in which two por-
tions of pure solvent are separated by a membrane M that is permeable only to the
solvent. Both compartments are filled to the level of the piston on the left. The
liquid levels are equal, the pressures P and P0 are equal at equilibrium, and

m†
1 (left) ¼ m†

1 (right) (15:31)

2The use of the Gibbs–Duhem equation to derive the limiting laws for colligative properties is based on the
work of W. Bloch.
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If we add through the side arm A some solute to which the membrane is imperme-
able, then with adequate mixing, the solute will become distributed uniformly
throughout the left chamber but will be absent from the right chamber. Solvent
then will be observed to move from the right to the left side because

m1(left) , m†
1 (right) (15:32)

The chemical potential and the escaping tendency of the pure solvent are always
greater than the chemical potential and the escaping tendency of the solvent in the
solution.

The movement of solvent can be prevented and equilibrium can be restored if the
pressure P is made sufficiently greater than P0. In the new equilibrium state

m1(left) ¼ m†
1 (right) (15:33)

and

dm1(left) ¼ dm†
1 (right) ¼ 0 (15:34)

because m1
†(right) was not affected by either the addition of solute to the left chamber

or the increase of pressure on the left chamber.
As m1 is a function of the pressure P and the mole fraction of solute X2, we can

express dm1(left) in Equation (15.34) as

dm1 ¼
@m1

@P

� �
T ,X2

dPþ @m1

@ ln X2

� �
T

d ln X2 ¼ 0 (15:35)

Figure 15.3. Schematic diagram of apparatus for measurement of osmotic pressure.
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From the Gibbs–Duhem equation at constant temperature and pressure [Equation
(11.34)], we can write

@m1

@m2

� �
T ,P

¼ � n2
n1

¼ �X2

X1
(15:36)

By the chain rule of differential calculus

@m1

@ lnX2

� �
T ,P

¼ @m1

@m2

� �
T ,P

@m2

@ lnX2

� �
T ,P

¼ �X2

X1

@m2

@ lnX2

� �
T ,P

(15:37)

Substituting from Equation (15.37) in Equation (15.35), and substituting Vm1 for
(@m1/@P)T,X2

, from Equation (9.25), we have

Vm1dP� X2

X1

@m2

@ ln X2

� �
T ,P

dX2

X2
¼ 0 (15:38)

With the insertion of Equation (15.21)

@m2

@ lnX2

� �
T ,P

¼ RT

into Equation (15.38), we find that

Vm1dP� RT

X1
dX2 ¼ 0 (15:39)

or

@P

@X2

� �
T

¼ RT

X1 Vm1
(15:40)

As Henry’s law is valid only in the limit of a very dilute solutions, we can write a
limiting law for Equation (15.40) as

lim
x2!0

@P

@X2

� �
T

¼ lim
x2!0

RT

X1Vm1

¼ RT

V†
m1

(15:41)

or, in the limit of a dilute solution,

dP ¼ RT

V†
m1

dX2 (15:42)
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If we assume that Vm1
† is independent of P over the range for which Equation (15.42)

is valid, we can integrate Equation (15.42) as follows:

ðP
P0

dP ¼ RT

V†
m1

ðX2

X2¼0

dX2 (15:43)

or

P� P0 ¼ RT

V†
m1

X2 (15:44)

The difference in pressures, P2 P0, required to maintain osmotic equilibrium is
defined as the osmotic pressure and is denoted by P. Equation (15.44) thus becomes

P ¼ RT

V†
m1

X2 (15:45)

As the solution is dilute, so that X2 ffi n2/n1,

P ¼ RT

V†
m1

n2
n1

¼ n2RT

V1
(15:46)

in which V1 is the total volume of solvent. Because the solution is dilute, V1 ffi V, the
total volume of the solution, and

P ¼ n2
V
RT

¼ c2RT ¼ w2RT

M2
(15:47)

in which c2 is the concentration of solute in moles per unit volume, usually 1 dm3; w2

is the mass concentration (mass per unit volume); andM2 is the molar mass. Equation
(15.47), called van’t Hoff’s law of osmotic pressure, is clearly a limiting law. A more
accurate expression is

lim
c2!0

P

c2
¼ RT (15:48)

or

lim
w2!0

P

w2
¼ RT

M2
ð15:49Þ
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Values for P can be determined experimentally at different mass concentrations. The
ratio P/w2, plotted against w2 and extrapolated to w2 ¼ 0, gives a value of RT/M2.
The unknown molar mass then is calculated.

In this form, van’t Hoff’s law of osmotic pressure is also used to determine the
molar masses of biological and synthetic macromolecules. When the osmotic
pressure is measured for a solution of macromolecules that contains more than one
species of macromolecule (for example, a synthetic polymer with a distribution of
molar masses or a protein molecule that undergoes association or dissociation), the
osmotic pressures of the various solute species Pi are additive. That is, in sufficiently
dilute solution

P ¼
X
i

Pi

¼ RT
X
i

wi

Mi
(15:50)

If we divide each side of Equation (15.50) by w ¼ Swi, we obtain

P

w
¼

RT
P
i

wi

MiP
i
wi

¼ RTP
i
wi

� �.P
i

wi

Mi

(15:51)

The number-average molar mass Mn is defined as

Mn ¼
P
i
ciMiP
i
ci

(15:52)

where ci is the molar concentration of each species i. Consequently,

Mn ¼
P
i
(wi=Mi)MiP
i
(wi=Mi)

¼
P
i
wiP

i
(wi=Mi)

(15:53)

Therefore, we can rewrite Equation (15.51) in the form of a limiting law as

lim
w!0

P

w
¼ RT

Mn
(15:54)
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Thus, the result of an osmotic pressure experiment with a mixture of solute
macromolecules yields the number-average molar mass Mn.

Osmotic Work in Biological Systems

As we mentioned at the end of Chapter 7, an important application of the Gibbs
function to biological systems is the calculation of the minimum work required to
maintain a nonequilibrium concentration gradient across a membrane. In living
cells, these gradients are not maintained by pressure differences, as in the osmotic
pressure experiment described here but by active transport processes whose mechan-
isms are just beginning to be understood [1]. The function of a thermodynamic analy-
sis is to verify that the work-producing part of the mechanism is adequate to maintain
the observed gradient.

If we assume that solutes in biological systems are at low enough concentrations
to obey Henry’s law, their chemical potentials are given individually as
[Equation (15.11)]

m2 ¼ m82 þ RT ln
m2

m82

� �

Thus, the change in the Gibbs function for the transfer of one mole of the solute from
a molality m2 to a molality m0

2 is

DGm ¼ m0
2 � m2

¼ RT ln
m0

2

m2

(15:55)

If m0
2 is greater than m2, then DGm is positive and work must be performed on

the system by the surroundings to carry out the transfer. According to Equation (7.80)

DGm , Wnet,irrev

in which Wnet is positive when work is performed on the system. Thus,

Wnet,irrev . RT ln
m0

2

m2
(15:56)

and because Wnet and DGm are positive

jWnet,irrevj . RT ln
m0

2

m2
(15:57)
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For example, if the molality of glucose in blood is 5.5 � 1023 mol kg21 and in urine
is 5.5 � 1025 mol kg21, then to transport glucose back into the blood, the kidney
must perform work against this gradient equal to at least

RT ln
5:5� 10�3 mol kg�1

5:5� 10�5mol kg�1 ¼ (8:314 J K�1mol
�1
)(310K) ln 100

¼ 11:870 J (mol glucose)�1 (15:58)

Any mechanism suggested for carrying out the active transport of glucose in the
kidney must provide at least this much work.

15.5 VAN’T HOFF’S LAW OF FREEZING-POINT DEPRESSION
AND BOILING-POINT ELEVATION

Let us consider a pure solid phase, such as ice, in equilibrium with a pure liquid
phase, such as water, at some specified temperature and pressure. If the two phases
are in equilibrium

m†
1;s ¼ m†

1 (15:59)

in which m1,s
† represents the chemical potential of the pure solid and m1

† represents the
chemical potential of the pure liquid. If solute is added to the system, and if it dis-
solves only in the liquid phase, then the chemical potential of the liquid solvent
will be decreased:

m1 , m†
1

To reestablish equilibrium, m1,s
† must be decreased also. This decrease in m can be

accomplished by decreasing the temperature. The chemical potential of the liquid
solvent is decreased by the drop in temperature as well as by the addition of
solute. Equilibrium is reestablished if

dm†
1;s ¼ dm1 (15:60)

As the chemical potential of the solid phase depends only on the temperature,
whereas that of the solvent in the solution depends on both temperature and concen-
tration of added solute, the total differentials of Equation (15.60) can be expressed in
terms of the appropriate partial derivatives, as follows:

@m†
1;s

T

� �
P

dT ¼ @m1

@T

� �
P,X2

dT þ @m1

@ ln X2

� �
P,T

d ln X2 (15:61)
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From Equation (9.24),

@m†
1,s

@T

� �
P

¼ �S†m,s;
@m1

@T

� �
P,X2

¼ �Sm1 (15:62)

and from Equation (15.21) and Equation (15.37)

@m1

@ lnX2

� �
P,T

d lnX2 ¼ �RT

X1
dX2 (15:63)

If we substitute from Equations (15.62) and (15.63) into Equation (15.61),
we obtain

�S†m,sdT ¼ �xm1dT � RT

X1
dX2

or

@T

@X2

� �
P

¼ � RT

X1(Sm1 � S†m,s)
(15:64)

If we express Equation (15.64) as a limiting law, which is consistent with the obser-
vation that Henry’s law is valid only in very dilute solutions,

lim
x2!0

@T

@X2

� �
P

¼ � RT

S†m1 � S†m,s

¼ � RT

DfSm1
(15:65)

At equilibrium at constant temperature and pressure [Equations (8.9) and (8.10)]

DSm ¼ DHm

T

so that

lim
x2!0

@T

@X2

� �
P

¼ � RT2

DfHm1
(15:66)

in which Df Hm1 is the molar enthalpy of fusion of pure solid component 1 to pure,
supercooled, liquid component 1. This result is analogous to that in Equation (14.65),
to which Equation (15.66) is a limiting-law equivalent. Whether we choose to use the
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equations to describe the temperature dependence of the solubility of a component or
the concentration dependence of the freezing point is a matter of point of view.

If DfHm1 is assumed to be constant in the small temperature range from the
freezing point of the pure solvent T0 to the freezing point of solution T, Equation
(15.66) is integrated as

DfHml

R

ðT
T0

dT

T2
¼ �

ðX2

0

dX2 (15:67)

or

DfHm1

R

1
T0

� 1
T

� �
¼ �X2 (15:68)

If T0 ffi T, another approximation is

DT ¼ � RT2
0

DfHm1
X2 (15:69)

The preceding expression, like the other laws of the dilute solution, is a limiting
law. It is expressed more accurately as

lim
x2!0

DT

X2
¼ � RT2

0

DfHm1
(15:70)

By a similar set of arguments, it can be demonstrated that the boiling point
elevation for dilute solutions containing a nonvolatile solute is given by the
expression

lim
x2!0

DT

X2
¼ RT2

0

DvHm1
(15:71)

in which DvHm1 is the molar enthalpy of vaporization of pure liquid component 1.
According to Equation (15.6), in a solution sufficiently dilute that the limiting

form of Equation (15.70) applies,

X2 ¼ n2
n1

¼ n2
M1

w1

wherew1 is the mass of solvent, which is usually expressed in kilograms. But n2/w1 is
equal to m2, so that in dilute solution,

X2 ¼ m2M1 (15:72)
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If we substitute for X2 from Equation (15.72) in Equation (15.70), which is written for
dilute solutions, then

DT ¼ RT2M1

DfHm1

� �
m2

¼ Kfm2 (15:73)

where Kf is the molal freezing point depression constant of the solvent, which is equal
to RT2M1/DfHm1.

As the laws of dilute solution are limiting laws, they may not provide an adequate
approximation at finite concentrations. For a more satisfactory treatment of solutions
of finite concentrations, for which deviations from the limiting laws become appreci-
able, the use of new functions, the activity function and excess thermodynamic
functions, is described in the following chapters.

EXERCISES

15.1. Derive Equation (15.71), the van’t Hoff expression for the elevation of the
boiling point.

15.2. If a molecule of solute dissociates into two particles in dilute solution, Henry’s
law can be expressed by the relationship

f2 ¼ K(X2)
2 (15:74)

in which X2 is the mole fraction of solute calculated as if no dissociation took
place.

a. Derive the Nernst law for the distribution of this solute between two sol-
vents; in one solvent, the solute dissociates, and in the other, it does not.

b. Derive the other laws of the dilute solution for such a dissociating solute.

15.3. Derive the laws of the dilute solution for a solute, one molecule of which
dissociates into v particles.

15.4. a. The standard Gibbs function for the formation at 298 K of a-D-glucose(s) is
2902,900 J mol21. The solubility of this sugar in 80% ethanol at this temp-
erature is 20 g kg21 solvent, and the solute obeys Henry’s law up to satur-
ation in this solvent. Compute DfG8m for this sugar at 298 K in 80% ethanol.
The standard state for this dissolved solute is a hypothetical 1-molal
solution.

b. The standard Gibbs function for the formation at 298 K of b-D-glucose(s) is
2901,200 J Mol21. The solubility of this sugar in 80% ethanol at this temp-
erature is 49 g kg21 solvent, and this solute also obeys Henry’s law up to
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saturation. Calculate the equilibrium constant for the reaction (in 80%
ethanol)

a-D-glucose ¼ b-D-glucose

15.5. A solution of a-D-Glucose in water obeys Henry’s law up to high concen-
trations and throughout a wide range of temperature and pressure. (Note:
This does not mean that the Henry’s law constant k is independent of pressure
or temperature; it is not.)

a. Calculate the heat absorbed when a solution containing 0.01 mole of
glucose and 1000 g of solvent is mixed with one containing 0.05 mole of
glucose and 1000 g of solvent.

b. Calculate the volume change in the mixing described in (a).

15.6. Compute DfGm8 of O2(aq) at 258C, that is, DG8m of formation of oxygen
dissolved in water at a hypothetical molality of 1 mol kg21. The solubility of
oxygen in water exposed to air is 0.00023 mol kg21. The saturated solution
may be assumed to follow Henry’s law.

15.7. According to Wagman et al. [2], DfG8m of Cl2(aq) that is, DGm8 of formation of
chlorine dissolved in water at a hypothetical molality of 1 mol kg21, is 6.94 kJ
mol21 at 298.15 K. The enthalpy of solution of gaseous chlorine at 1 atm
(101.3 kPa) into a saturated aqueous solution is 225 kJ mol21.

a. Neglecting hydrolysis reactions of Cl2 in H2O, and assuming that dissolved
chlorine follows Henry’s law, calculate the solubility of chlorine (in moles
per kilogram of water) when the pressure of the pure gas is 101.3 kPa.
Assume also that the pure gas behaves ideally.

b. If dissolved chlorine follows Henry’s law, calculate DfHm8 of Cl2(aq).

TABLE 15.1. Osmotic Pressure Data for Polyvinyl
Acetate in Methyl Ethyl Ketone at 1088888C

w/(kg m23) P/w/(J kg21)

0.052 1451
0.076 1792
0.129 2515
0.148 2821
0.194 3546
0.315 5911
0.321 6045
0.479 9493
0.572 11410
0.590 12142
0.645 13310
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15.8. The solubility of nitrogen in water exposed to air at 08C is 0.84�1023 mol kg21.
Dissolved N2 follows Henry’s law. Calculate DfG8m,273.15 K of N2(aq).

15.9. Table 15.1 contains osmotic pressure data calculated from the work of
Browning and Ferry [3] for solutions of polyvinyl acetate in methyl ethyl
ketone at 108C. Plot P/w against w, fit the data to a quadratic polynomial,
and calculate the number-average molar mass from the intercept with the
P/w axis.
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CHAPTER 16

ACTIVITIES, EXCESS GIBBS
FUNCTIONS, AND STANDARD
STATES FOR NONELECTROLYTES

In the preceding chapters we considered Raoult’s law and Henry’s law, which are
laws that describe the thermodynamic behavior of dilute solutions of nonelectrolytes;
these laws are strictly valid only in the limit of infinite dilution. They led to a simple
linear dependence of the chemical potential on the logarithm of the mole fraction of
solvent and solute, as in Equations (14.6) (Raoult’s law) and (15.5) (Henry’s law) or
on the logarithm of the molality of the solute, as in Equation (15.11) (Henry’s law).
These equations are of the same form as the equation derived for the dependence of
the chemical potential of an ideal gas on the pressure [Equation (10.15)].

When we try to describe the behavior of solutions over the entire range of compo-
sition,we find that no universal relationship exists between chemical potential and a com-
position variable. When faced with a similar situation with real gases, G. N. Lewis
invented the fugacity function so that he could obtain a linear dependence of the
chemical potential of a gas on the logarithm of the fugacity. The characteristics of
specific gases were then expressed implicitly by the dependence of the fugacity on
the pressure. Similarly, Lewis invented the (dimensionless) activity function so that
he could obtain a linear dependence of the chemical potential on the logarithm of
the activity. The characteristics of specific solvent–solute combinations were then
expressed by the dependence of the activity on the mole fraction or the molality.
The use of activity is especially advantageous when the focus is on individual
components of a solution, as in the treatment of reactants and products in a
chemical reaction (Section 16.3) or the treatment of cell potentials in solutions of
electrolytes (Section 19.2).

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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An alternative approach that is particularly applicable to binary solutions of
nonelectrolytes is that of excess thermodynamic functions for the solution instead
of activities for the components. That approach is most useful in treatments of
phase equilibria and separation processes [1], and it will be discussed in Section 16.7.

16.1 DEFINITIONS OF ACTIVITIES AND ACTIVITY COEFFICIENTS

Activity

The activity ai, of a component of a solution is defined by the equation

mi ¼ mi8þ RT ln ai (16:1)

together with one of the following limiting conditions:
for solvent,

lim
x1!1

a1
X1

¼ 1 (16:2)

for solute on the mole fraction scale,

lim
x2!0

a2
X2

¼ 1 (16:3)

and for solute on the molality scale,

lim
m2!0

a2
m2=m28

¼ 1 (16:4)

In Equation (16.4), m82 is the molality that corresponds to m82, that is, the molality of
the standard state. The latter three constraints are imposed because we want Equation
(16.1) to approach Equation (14.6), Equation (15.5), or Equation (15.11) in the appro-
priate limit.

Activity Coefficient

The deviation of a solvent from the limiting-law behavior of Raoult’s law is described
conveniently by a function called the activity coefficient, which is defined (on a mole
fraction scale) as

g1 ¼
a1
X1

(16:5)

Equation (16.1) can then be written as

m1 ¼ m18þ RT ln X1 þ RT ln g1 (16:6)

The deviation of a solute from the limiting behavior of Henry’s law, on the mole
fraction scale, is also described conveniently by the activity coefficient, which in this
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case is defined as

g2 ¼
a2
X2

(16:7)

Equation (16.1) can then be written as

m2 ¼ m28þ RT ln X2 þ RT ln g2 (16:8)

If the molality is a more convenient composition measure than the mole fraction, the
activity coefficient of the solute is defined as

g2 ¼
a2

m2=m28
(16:9)

and Equation (16.1) can be written as

m2 ¼ m28þ RT ln
m2

m28

� �
þ RT ln g2 (16:10)

Althoughwe cannot determine its absolute value, the chemical potential of a component
of a solutionhas avalue that is independent of the choiceof concentration scale and standard
state. The standard chemical potential, the activity, and the activity coefficient have values
that do depend on the choice of concentration scale and standard state. To complete the
definitions we have given, we must define the standard states we wish to use.

Whether mi, gi, and ai refer to a mole fraction composition scale or to a molality
composition scale will be clear from the context in which they are used. We will not
attempt to use different symbols for each scale.

16.2 CHOICE OF STANDARD STATES

From the nature of the definition [Equation (16.1)], it is clear that the activity of a
given component may have any numeric value, depending on the state chosen for
reference, but a8i must be equal to 1. No reason exists other than convenience for
one state to be chosen as the standard in preference to any other. It frequently will
be convenient to change standard states as we proceed from one type of problem
to another. Nevertheless, certain choices generally have been adopted. Unless a
clear statement is made to the contrary, we will assume the following conventional
standard states in all of our discussions.

Gases

If Equation (16.1) is to be consistent with Equation (10.14), it is clear that, for a
real gas

ai ¼ fi
f 8

(16:11)

and that the standard state of a gas is that state at which f ¼ 1 bar (0.1 MPa), along a
line extrapolated from values of f at a low pressure, as indicated in Figure 10.5. For an
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ideal gas, because f ¼ P,

ai ¼ pi
P8

(16:12)

and P8 ¼ 1 bar (0.1 MPa).

Liquids and Solids

Pure Substances. In most problems involving pure substances, it is convenient to
choose the pure solid or the pure liquid at each temperature and at a pressure of 1 bar
(0.1 MPa) as the standard state. According to this convention, the activity of a pure
solid or pure liquid at 1 bar is equal to 1 at any temperature.

Solvent in Solution. We shall use the pure substance at the same temperature as
the solution and at its equilibrium vapor pressure as the reference state for the com-
ponent of a solution designated as the solvent. This choice of standard state is
consistent with the limiting law for the activity of solvent given in Equation (16.2),
where the limiting process leads to the solvent at its equilibrium vapor pressure. To
relate the standard chemical potential of solvent in solution to the state that we defined
for the pure liquid solvent, we need to use the relationship

mi8 (solvent) ¼ mi8 ( pure liquid)þ
ðp†i
Pi8

V†
mdP (16:13)

where P8i is equal to 1 bar and pi
† is the vapor pressure of the pure liquid at the tempe-

rature of the solution.1 Thus, the activity of the “pure solvent” is equal to 1 at the
vapor pressure of the solvent, whereas the activity of the “pure liquid” is equal to
1 at 1 bar because they have different standard states. The chemical potential of
the solvent in solution at any finite concentration cannot be greater than the chemical
potential of the pure liquid solvent . If it were, a portion of pure solvent would sep-
arate spontaneously from the solution, with a concomitant decrease in the Gibbs
function of the system.

The solid curve in Figure 16.1 shows the activity of the solvent in a solution as a
function of the mole fraction of solvent. If the solution were ideal, Equations (14.6)
and (16.1) would both be applicable over the whole range of mole fractions. Then,
a1 ¼ X1, which is a relationship indicated by the broken line in Figure 16.1. Also,
because Equation (16.1) approaches Equation (14.6) in the limit as X1 ! 1 for the
real solution, the solid curve approaches the ideal line asymptotically as X1 ! 1.

The broken line in Figure 16.1 has a slope of 1. In this figure, when X1, the
abscissa, is equal to 1, a1, the ordinate, is equal to 1. The activity coefficient
a1/X1 at any concentration of solvent X1(i) is given by the ratio N/M because N is

1As P8i is equal to 1 bar and the vapor pressure of the pure solvent is usually less than 1 bar, the magnitude
of the correction is small. For example, for water the correction is less than 1.8 J mol21.
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a1, and because the slope of the broken line is 1, M is equal to X1. In the example
illustrated by Figure 16.1, the activity coefficient of the solvent is always
greater than or equal to 1. If the solid line lay below the (broken) line for ideal
behavior, the activity coefficient always would be less than or equal to 1.
Generally, in a real solution

g1 ¼
a1
X1

= 1 (16:14)

As we observe that the solvent approaches Raoult’s-law behavior in the limit of
infinite dilution, we also can state that

lim
x1!1

a1
X1

¼ lim
x1!1

g1¼1 (16:15)

The activity coefficient of the solvent is 1 at all concentrations in an ideal solution
because

g1 ¼
a1
X1

¼ X1

X1
¼ 1 (16:16)

Thus, the ideal solution is a reference for the solvent in a real solution, and the activity
coefficient of the solvent measures the deviation from ideality.

Solute in Solution. When the mole fraction scale is used, it is convenient to
choose a standard state such that the activity would approach the mole fraction in

Figure 16.1. Activity and activity coefficients for solvent when a Raoult’s-law standard state
is chosen.
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the limit of infinite dilution in which Henry’s law is valid. That is,

lim
X2!0

a2
X2

¼ 1 (16:17)

because Equation (16.1) approaches Equation (15.5) in the limit as X2 ! 0. The solid
curve in Figure 16.2 represents the activity of the solute as a function of the mole frac-
tionX2 of the solute,when the standard state is chosen to be the hypothetical state of unit
mole fraction extrapolated along the Henry’s-law line. In the example in Figure 16.2,
no real state of the solution exists in which the activity of the solute is equal to 1.

This choice of a standard state for the solute may appear strange at first glance. It
might seem that the choice of pure solute as standard state would be a simpler one.
The latter procedure would require either experimental information on the pure
solute in the same physical state (for example, liquid or solid) as the solution or
data for solutions of sufficiently high concentration of solute so that Raoult’s
law might be approached and might be used for the extrapolation to obtain a2 at
X2 ¼ 1. Such information for most solutes is not available. The details of the solid
curve in Figure 16.2 may be known only for small values of X2 and not throughout
the entire concentration range. Thus, usually no means for determining the value exist
that a2 would approach for pure, supercooled, liquid solute. However, with data avail-
able only at low concentrations of solute, it is sometimes2 feasible to find the limiting
slope and the constant in Henry’s law and, hence, to determine p82 equal to k2 for the
hypothetical state selected as the standard state.

Figure 16.2. Activity and activity coefficient for solute when a standard is chosen by extrapol-
ation of Henry’s law on a mole fraction basis.

2We shall see in Chapter 17 that it is frequently difficult to obtain reliable data at very low concentrations to
demonstrate experimentally that Henry’s law is followed in dilute solutions of nonelectrolytes.
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When data are available for the solute over the entire concentration range, from
mole fraction 0 to 1, the choice of standard state, either the hypothetical unit mole
fraction (Henry’s law) or the actual unit mole fraction (Raoult’s law), is arbitrary,
but it is frequently easier to demonstrate Raoult’s law as a limiting law than
Henry’s law. Figure 16.2 shows the relationships for activity and activity coefficient
when Henry’s law is used to define the standard state, and Figure 16.3 shows the same
relationships when pure solute is chosen as the standard state.

It can be seen from Figures 16.2 and 16.3 that the numerical values of the activity
and activity coefficient of the solute are different for the two choices of standard state.
The scale of activities, for example, is necessarily different. The activity coefficient at
mole fraction X2(i) is given by the ratio N/M in both figures. Thus, when the standard
state is chosen on the basis of Henry’s law, the activity coefficients are less than 1,
whereas when the pure solute is chosen as standard state, the activity coefficients
all are greater than 1.

However, the choice of standard states makes no difference in the value of DGm

for the transfer of solute between two solutions of different concentrations in the
same solvent. We can observe this by applying the definition of activity to the
equation for the free energy change in a transfer process:

DGm ¼ m0
2 � m2

¼ m28þ RT ln a02 � [m28þ RT ln a2]

¼ RT ln a02 � RT ln a2

¼ RT ln
a02
a2

(16:18)

Figure 16.3. Activity and activity coefficient for solute when a Raoult’s-law standard state
is chosen.
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The values m0
2 and m2 are characteristic of the states of the system and do not

depend on the choice of a standard state. It can be observed that the curves in
Figure 16.2 and Figure 16.3 differ only by a scale factor that is determined by the
choice of the point at which a2 ¼ a82 ¼ 1. If both a02 and a2 are based on the same
standard state, their ratio is independent of that choice.

The molality is used as a concentration scale primarily for solutions for which data
are not available for concentrations approaching pure solute, so the Henry’s-law basis
for choosing the standard state is the only practical choice. The behavior of an
example of such a solution is shown in Figure 16.4.

For such solutions, the definition of activity is completed by the requirement that
the activity approach the molality ratio in the limit of infinite dilution. That is,

lim
m2!0

a2
m2=m28

¼ lim
m2!0

g2 ¼ 1 (16:19)

The standard state chosen on this basis is indicated by the asterisk in Figure 16.4.
This reference state is a hypothetical 1-molal solution, that is, a state that has the activity
that a 1-molal solution would have if it obeyed the limiting law. It is misleading to
say that the standard state of the solute is the infinitely dilute solution because a2
equals zero in an infinitely dilute solution. It is clear from the graph that the activity
of the solute may be greater than 1 at high m2. The activity coefficient at m2,i [i.e.,
g2,i ¼ a2,i/(m2,i/m82)] is represented by the ratio N/M (because the height M is
numerically equal to the distance m2(i)/m82 along the abscissa) and represents the
deviation of the behavior of the solute from Henry’s law. The activity coefficient
g2(i) also is equal to the slope of a line from the origin to the point a2(i).

Figure 16.4. Activity and activity coefficient for solute when a standard state is chosen by
extrapolation of Henry’s law on a molality basis.
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We can observe from Figure 16.4 that for the particular system depicted, a solution of
somefinite concentrationm2( j) exists forwhich the activity is 1.Nevertheless, it would be
misleading to call this solution of molalitym2(i) the standard state. The standard state has
the properties that a 1-molal solutionwould have if it obeyed the limiting law; the solution
of molality m2(i) generally does not obey the limiting law.

16.3 GIBBS FUNCTION AND THE EQUILIBRIUM
CONSTANT IN TERMS OF ACTIVITY

With the definition of the activity function, we could derive a general expression that
relates DG8m of a reaction to the equilibrium constant and hence to eliminate the
restrictions imposed on previous relationships.

Let us consider the chemical reaction

aA(aA)þ bB(aB) ¼ cC(aC)þ dD(aD)

From Equation (9.15)

dG ¼ mAdnA þ mBdnB þ mCdnC þ mDdnD (16:20)

Applying the procedure used in Equations (9.49) through (9.51) and integrating from
j ¼ 0 to j ¼ 1, we obtain

DGm ¼ cmC þ dmD � amA � bmB (16:21)

Substitution for the chemical potentials from Equation (16.1) gives

DGm ¼ c(mC8þ RT ln aC)þ d(mD8þ RT ln aD)

�a(mA8þ RT ln aA)� b(mB8þ RT ln aB)

This equation may be written as

DGm ¼ (cmC8þ dmD8� amA8� bmB8)þ RT ln
acCa

d
D

aaAa
b
B

(16:22)

The expression in parentheses in Equation (16.22) is equal to DG8m, so we can write

DGm ¼ DGm8þ RT ln
acCa

d
D

aaAa
b
B

(16:23)

Equation (16.23) is a general relationship for the calculation of DGm for any reaction
from the value for DG8m and from the activities aA, aB, aC, and aD. We emphasize that
Equation (16.23) refers to a system in which a mole of reaction occurs with no change
in the activity of any reactant or product. Either the system is very large, the infinite
copy model (as described in Section 9.6) or one in which we calculate the molar
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change in Gibbs function from the change corresponding to an infinitesimal amount
of reaction, with (dG/dj)T,P as a criterion of equilibrium [see Equation (9.52)].

At equilibrium at constant temperature and pressure, DGm ¼ 0 and

DGm8
RT

¼ �ln
acCa

d
D

aaAa
b
B

� �
equil

(16:24)

From the definitions of standard states for components of solutions, it is clear that
DG8m is a function only of the temperature, because the standard state of each reactant
and product is defined at a specific fixed pressure. Thus, DG8m is a constant for a
particular reaction at a fixed temperature. Hence, we can write

DGm8
RT

¼ �lnKa (16:25)

in which Ka is the equilibrium constant in terms of activities. Consequently

Ka ¼ acCa
d
D

aaAa
b
B

� �
equil

(16:26)

If the mole fraction is a convenient variable, Equation (16.3) can be used to write
Equation (16.26) as

Ka ¼ Xc
Cg

c
CX

d
Dg

d
D

Xa
Ag

a
AX

b
Bg

b
B

(16:27)

¼ Xc
CX

d
Dg

c
Cg

d
D

Xa
AX

b
Bg

a
Ag

b
B

(16:28)

¼ KxKg (16:29)

Similarly, for reactants and products for which molality is the convenient compo-
sition variable, we can write

Ka ¼ KmKg (16:30)

where

Km ¼ (mC=m8)c(mD=m8)d

(mA=m8)a(mB=m8)b
(16:31)

An equilibrium constant for some reactions can be expressed in terms of mole frac-
tions for some components and molalities for other components.
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If the value of Ka for a reaction is calculated from the value of DG8m, we must have
values of the gi to substitute into Equation (16.27) or Equation (16.30) to obtain equi-
librium yields in terms of mi or Xi. The determination of these quantities from experi-
mental data will be discussed in Chapters 17 and 19.

16.4 DEPENDENCE OF ACTIVITY ON PRESSURE

As mi ¼ m8i þ RT ln ai

@mi

@P

� �
T ,X

¼ @mi8
@P

� �
T ,X

þ RT
@ ln ai
@P

� �
T ,X

(16:32)

From Equation (9.25)

@mi

@P

� �
T ,X

¼ Vmi

Although we have chosen to define the standard state at a fixed pressure, the vapor
pressure of the pure solvent, the standard chemical potential is still a function of
the pressure chosen, so that the first term on the right in Equation (16.32) is equal
to V8mi. Therefore,

@ ln ai
@P

� �
T ,X

¼ Vmi � Vmi8
RT

(16:33)

For solvents, V8mi is equal to Vmi
† , because the standard state is the pure solvent, if we

neglect the small effect of the difference between the vapor pressure of pure solvent
and 1 bar. As the standard state for the solute is the hypothetical unit mole fraction
state (Fig. 16.2) or the hypothetical 1-molal solution (Fig. 16.4), the chemical
potential of the solute that follows Henry’s law is given either by Equation (15.5)
or Equation (15.11). In either case, because mole fraction and molality are not
pressure dependent,

@m2

@P

� �
T ,m2,X2

¼ @m28
@P

� �
T ,m2,X2

so that

Vm,2 ¼ Vm,28

Thus, the partial molar volume is constant along the Henry’s-law line and equal to the
standard partial molar volume. The only real solution along the Henry’s-law line is
the infinitely dilute solution, so

Vm28 ¼ V1
m2 (16:34)
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16.5 DEPENDENCE OF ACTIVITY ON TEMPERATURE

From previous discussions of temperature coefficients of the Gibbs function (see
Section 7.2), we expect the expression for the temperature dependence of the activity
to involve an enthalpy function. Hence, we need to develop relationships for the
enthalpies of the standard states.

Standard Partial Molar Enthalpies

For pure solids and liquids, the standard enthalpy is the enthalpy of the substance at
the specified temperature and at 1 bar.

Solvent. Wehave defined the pure solvent at the same temperature as the solution and at
its equilibrium vapor pressure as the standard state for the solvent. It follows that

Hm1(standard state) ¼ Hm18 ¼ H†
m1 (16:35)

with the second equality valid if we neglect the trivial effect on the enthalpy of the small
change of pressure from 1 bar to the vapor pressure of the solvent.

Solute. The standard state for the solute is the hypothetical unit mole fraction
state (Fig. 16.2) or the hypothetical 1-molal solution (Fig. 16.4). In both cases, the
standard state is obtained by extrapolation from the Henry’s-law line that describes
behavior at infinite dilution. Thus, the partial molar enthalpy of the standard state
is not that of the actual pure solute or the actual 1-molal solution.

The chemical potential on a molality scale of the solute that follows Henry’s law is
given by Equation (16.10) with g2 ¼ 1.

m2 ¼ m28þ RT ln
m2

m28

� �
If we divide each term in Equation (16.10) by T and differentiate with respect to T at
constant P and m2, the result is

@(m2=T)
@T

� �
P,m2

¼ @(m28=T)
T

� �
P,m2

(16:36)

From Equation (9.57)

@(m=T)
@T

� �
P,m2

¼ �Hm

T2

Substituting from Equation (9.57) into Equation (16.36), we have

�Hm2

T2
¼ �Hm28

T2
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or

Hm2 ¼ Hm28 (16:37)

Thus, the partial molar enthalpy along the Henry’s-law line is constant and equal to
the standard partial molar enthalpy. The only real solution along the Henry’s-law line
is the infinitely dilute solution, so that

Hm28 ¼ H1
m2 (16:38)

For this reason, the infinitely dilute solution frequently is called the reference state for
the partial molar enthalpy of both solvent and solute.

Equation for Temperature Derivative of the Activity

From Equation (16.1)

mi ¼ mi8þ RT ln ai
or

mi

T
¼ mi8

T
þ R ln ai (16:39)

From Equation (9.57)

@(m=T)
@T

� �
P,m2

¼ �Hm

T2

If we differentiate Equation (16.39) with respect to temperature at constant molality
and pressure, and substitute from Equation (9.57), the result is

� Hmi

T2
¼ �Hmi8

T2
þ R

@ ln ai
@T

� �
P,m2

or

@ ln ai
@T

� �
P,m2

¼ �Hmi � Hmi8
RT2 (16:40)

From Equations (16.35), (16.37), and (16.38), we observe that for solute and solvent,
H8mi is equal to Hmi

1 . Therefore, we can write Equation (16.40) for either solvent
or solute as

@ ln ai
@T

� �
P,m2

¼ �Hmi � H1
mi

RT2 (16:41)

in which Hmi
1 2 Hmi is the change in partial molar enthalpy on dilution to an infinitely

dilute solution.
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From the definition of the activity coefficient [Equations (16.5) and (16.9)],

gi ¼
ai

mi=mi8
or gi ¼

ai
Xi

we can show that for the solute

@ ln g2
@T

� �
P,m2

¼ �Hm2 � H1
m2

RT2 (16:42)

and for the solvent

@ ln g1
@T

� �
P,X1

¼ �Hm1 � H1
m1

RT2 (16:43)

16.6 STANDARD ENTROPY

We have pointed out that a concentration m2(i) of the solute in the real solution may
have an activity of 1, which is equal to the activity of the hypothetical 1-molal stan-
dard state. Also, H8m2, the partial molar enthalpy of the solute in the standard state,
equals the partial molar enthalpy of the solute at infinite dilution. We might
inquire whether the partial molar entropy of the solute in the standard state S8m2

corresponds to the partial molar entropy in either of these two solutions.
Let us compare Sm2 for a real solution with S8m2 of the hypothetical 1-molal sol-

ution. For any component of a solution, from Equation (9.20), we can write

m2 ¼ Hm2 � TSm2

Hence,

�TSm2 ¼ m2 � Hm2 and �TSm28 ¼ mm28 � Hm28
and

�T(Sm2 � Sm28 ) ¼ (Hm28 � Hm2)þ (m2 � m28) (16:44)

At infinite dilution, that is, when m2 ¼ 0

Sm2 = Sm28 (at m2 ¼ 0) (16:45)

because

m2 = m28 (at m2 ¼ 0) (16:46)

even though

Hm2 ¼ Hm28 (at m2 ¼ 0)
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Hence, the partial molar entropy of the solute in the standard state is not that of the solute
at infinite dilution. Similarly, at the molarity m2( j ) (Fig. 16.4), where a2 is unity

Sm2 = Sm28 (at molality where a2 ¼ 1) (16:47)

because

Hm2 = Hm28 (at molality where a2 ¼ 1) (16:48)

even though

m2 ¼ m28 (at molality where a2 ¼ 1) (16:49)

Thus, Sm2 can be equal to S8m2 only for a solution with some molality m2(k) at which

(Hm28 � Hm2) ¼ (Gm28 � Gm2) ¼ m28� m2 (16:50)

The particular value of the molality m2(k) at which Sm2(k) ¼ S8m2 differs from solute to
solute and for different solvents with the same solute.

We can summarize our conclusions about the thermodynamic properties of the
solute in the hypothetical 1-molal standard state as follows. Such a solute is charac-
terized by values of the thermodynamic functions that are represented by m82, H8m2,
and S8m2. Frequently a real solution at some molality m2( j ) also exists (Fig. 16.4)
for which m2 ¼ m82, that is, for which the activity has a value of 1. The real solution
for which Hm2 is equal to H8m2 is the one at infinite dilution. Furthermore, Sm2 has a
value equal to S8m2 for some real solution only at a molality m2(k) that is neither zero
nor m2( j ). Thus, three different real concentrations of the solute exist for which the
thermodynamic qualities m2, Hm2, and Sm2 respectively, have the same values as in
the hypothetical standard state.

For the solvent, the standard thermodynamic properties are

m18 ¼ m†
1 ¼ m1

1 (16:51)

and

Hm18 ¼ H†
m1 ¼ H1

m1 (16:52)

so

Sm18 ¼ S†m1 ¼ S1m1 (16:53)

so long as we neglect the effects of the pressure difference between the pure liquid at
1 bar and the pure solvent at its vapor pressure.

Table 16.1 summarizes the information on the standard states of pure phases as
well as those of solvents and solutes.

A more elegant (although more difficult to visualize) formulation of the procedure
for the selection of the standard state for a solute may be made as follows. From
Equation (16.1)

m2 ¼ m28 þ RT ln a2
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and from Equation (16.9)

a2 ¼ m2g2
m28

It follows that

m28 ¼ m2 � RT ln
m2

m28
� RT ln g2

Therefore the state in which the solute has a partial molar Gibbs function of m82 can be
found from the following limit, because g2 approaches unity as m2 approaches zero:

lim
m2!0

m2 � RT ln
m2

m28

� �
¼ m28

With this method of formulation, it also is possible to show that frequently a real
solution at some molality mj exists for which m2 ¼ m82, that H8m2 corresponds to Hm2

for a real solution at infinite dilution, and that S8m2 equals Sm2 for a real solution at a
molality m2k, which is neither zero nor m2j.

16.7 DEVIATIONS FROM IDEALITY IN TERMS OF
EXCESS THERMODYNAMIC FUNCTIONS

Various functions have been used to express the deviation of observed behavior of
solutions from that expected for ideal systems. Some functions, such as the activity
coefficient, are most convenient for measuring deviations from ideality for a particu-
lar component of a solution. However, the most convenient measure for the solution
as a whole, especially for mixtures of nonelectrolytes, is the series of excess functions
(1) (3), which are defined in the following way.

We have derived an expression for the free energy of mixing two pure substances
to form one mole of an ideal solution [Equation (14.35)],

DGI
mix,m ¼ X1RT ln X1 þ X2RT ln X2 (16:54)

In actual systems, the observed value for the free energy of mixing DGmix,m may
differ from DGmix,m

I . We define this difference, the excess free energy Gm
E as

DGE
m ¼ DGmix,m � DGI

mix,m ¼ DGmix,m � XlRT ln X1 � X2RT ln X2 (16:55)

With a derivation analogous to that of Equation (14.35), we find that

DGmix,m ¼ X1RT ln a1 þ X2RT ln a2 (16:56)

where the activities are based on Raoult’s-law standard states.
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Thus,

GE
m ¼ X1RT ln

a1
X1

þ X2RT ln
a2
X2

¼ X1RT ln g1 þ X2RT ln g2 (16:57)

For the excess enthalpy Hm
E, because DHmix

I is zero

HE
m ¼ DHmix:m � DHI

mix,m

¼ DHmix,m ¼ X1(Hm1 � H†
m1)þ X2(Hm2 � H†

m,2) (16:58)

For the excess volume Vm
E, because DVmix

I is zero,

VE
m ¼ DVmix,m ¼ X1(Vm1 � V†

m1)þ X2(Vm2 � V†
m2) (16:59)

Similarly, we define the excess entropy Sm
E as

SEm ¼ DSmix,m � DSImix,m ¼ DSmix,m þ XlR ln X1 þ X2R ln X2 (16:60)

It can be shown that the usual relationships between temperature coefficients of the
Gibbs function and entropy or enthalpy, respectively, also apply if stated for excess
functions. Thus,

SEm ¼ � @GE
m

@T

� �
P,X

(16:61)

and

HE
m ¼ GE

m � T
@GE

m

@T

� �
P,X

(16:62)

Excess thermodynamic functions can be evaluated most readily when the vapor
pressures of both solute and solvent in a solution can be measured.

Representation of Gm
E as a Function of Composition

Redlich and Kister [4] suggested a convenient way to represent Gm
E as a function of

composition that permits convenient classification of various kinds of deviation from
ideality. From Equation (16.57)

GE
m

RT
¼ X1 ln g1 þ (1� X1) ln g2 (16:63)

374 ACTIVITIES, EXCESS GIBBS FUNCTIONS, STANDARD STATES FOR NONELECTROLYTES



If we differentiate Equation (16.63) with respect to X1, and simplify using the Gibbs–
Duhem relationship [Equation (9.34)], the result is

d

dX1

GE
m

RT

� �
¼ ln

g1
g2

(16:64)

As Gm
E must equal 0 when X1 ¼ 0 (pure solute) and when X1 ¼ 1 (pure solvent),

ð1
0

ln
g1
g2

dX1 ¼
ð1
0

d

dX1

GE
m

RT

� �
dX1 ¼ GE

m

RT

� �
X1¼1

� GE
m

RT

� �
X1¼0

¼ 0 (16:65)

Thermodynamic consistency of data on solutions can be tested by plotting ln (g1/g2)
against X1 and seeing whether the area between X1 ¼ 0 and 0.5 is equal and opposite
in sign to the area between 0.5 and 1.0. Such a plot is indicated in Figure 16.5 for
solutions of methyl t-butyl ether and chloroform at 313.5 K (5).

Redlich and Kister suggested that solutions of different degrees of nonideality
should be represented by a power series of the form

GE
m

RT
¼ X1X2[Bþ C(X1 � X2)þ D(X1 � X2)

2 þ � � � ]

¼ X1X2[Bþ C(2X1 � 1)þ D(2X1 � 1)2 þ � � � ] (16:66)

Figure 16.5. A plot of ln(g1/g2) for solutions of methyl t-butylether (1) and chloform (2) at
313.5 K (5).
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where the factor X1X2 is present so that the quantity will be equal to 0 at X1 ¼ 0 and at
X2 ¼ 0, and B, C, and D are coefficients that depend on the temperature and pressure
but not on the composition. Such a series was used by Scatchard [6], after a sugges-
tion of Guggenheim [7]. The factor (X1 2 X2) is the variable of the power series
because it is antisymmetrical with respect to interchange of components.

If the solution is ideal, that is, it follows Raoult’s law, Gm
E ¼ 0, and all coefficients

are equal to 0. If all coefficients other than B are equal to 0,

GE
m

RT
¼ BX1X2 (16:67)

where B is related to the interaction energy between components 1 and 2. These sol-
utions have been called regular solutions by Guggenheim [8], and usually they
describe those solutions in which both components have approximately the same
molecular size (B is the v of Guggenheim) and DSm,mix is equal to the ideal value.
If only B and C are= 0, the resulting equation is frequently called the Margules
equation [9].

GE
m

RT
¼ X1X2[Bþ C(2X1 � 1)] (16:68)

The equation for the slope corresponding to Equation (16.64) is

ln
g1
g2

¼ B(1� 2X1)þ C[6X1(1� X1)� 1]þ � � � (16:69)

We can distinguish easily among the three types of solutions discussed for Gm
E with a

plot of ln (g1/g2) against X1. For an ideal solution, the result is a value of 0 for all
points. For a regular solution, the plot is a straight line with slope equal to 22B,
which passes through 0 at X1 ¼ 0.5. For correlations that require 2 or more
parameters, the coefficients can be obtained from a least-squares analysis of the
data for Gm

E as a function of X1 (see Section (A.1)).

16.8 REGULAR SOLUTIONS AND HENRY’S LAW (10; 11, p. 33–35)

Margulies [9] originally expressed his equation in terms of partial pressures.
Expressed in terms of activities his equations are, for a regular solution,

m1(cond) ¼ m81(cond) þ RT ln X1 þ A1X2 þ B1X
2
2 þ � � � (16:70)

and

m2(cond) ¼ m82(cond) þ RT ln X2 þ A2X1 þ B2X
2
1 þ � � � (16:71)

where the standard state for each component is the Raoult’s-law standard state, the
pure component at its equilibrium vapor pressure. If we substitute from
Margulies’s equations limited to quadratic terms into the Gibbs–Duhem equation,
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[Equation (15.18)],

X1
@m1

@X1
þ X2

@m2

@X1
¼ 0

and equate the coefficients of corresponding powers of X1and X2, we obtain

m1(cond) ¼ m81(cond) þ RT ln X1 þ BX2
2 (16:72)

and

m2(cond) ¼ m82(cond) þ RT ln X2 þ BX2
1 (16:73)

where B ¼ B1 ¼B2 and A1 ¼ A2 ¼ 0.
But, at equilibrium,

m1(cond) ¼ m1,g ¼ m81,g þ RT ln
p1
p8

(16:74)

and

m2(cond) ¼ m2,g ¼ m82,g þ RT ln
p2
p8

(16:75)

In the limit of zero mole fraction of solute or unit mole fraction of solvent, the con-
dition in which Henry’s law is accurate as a limiting law, Equation (16.73) becomes

m2(cond) ¼ m82(cond) þ RT ln X2 þ B (16:76)

If we equate the chemical potential of the solute in the condensed phase with the
chemical potential of the solute in the gas phase at equilibrium, we obtain

m2(cond) ¼ m82(cond) þ RT ln X2 þ B

¼ m†
2(cond) þ RT ln X2 þ B

¼ m2,g ¼ m82,g þ RT ln
p2
p8

(16:77)

Similarly, for pure solute,

m†
2 (cond) ¼ m82(g)þ RT ln

p†

p8
(16:78)

If we substitute for m†
2 (cond) from Equation (16.78) into Equation (16.77), we obtain

m8g,2 þ RT ln
p†

p8
þ RT ln X2 þ B ¼ m82,g þ RT ln

p2
p8

(16:79)
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Then,

p2 ¼ p†2 e
B
RTX2 ¼ KHX2 (16:80)

where

KH ¼ p†2 e
B
RT (16:81)

so that the definition of the regular solution leads to Henry’s law, as a limiting law
valid in the limit of infinite dilution. That we can derive Henry’s law from the
Margules equation with a standard state of pure solute is not inconsistent with our
convenient choice of a unit mole fraction standard state extrapolated from the
Henry’s-law line.

16.9 REGULAR SOLUTIONS AND LIMITED
MISCIBILITY (11, p. 41–45)

Ideal solutions are miscible over the whole range of composition. We can show,
however, that regular solutions exhibit limited miscibility. From Equations (16.72)
and (16.6), we obtain the relation for a regular solution

ln g1 ¼
B

RT
X2
2 ¼ B0X2

2 (16:82)

So that,

a1 ¼ X1e
B0X2

2

If we plot a1 against X1 for varying values of B/RT, we obtain the curves shown in
Figure 16.6.

The curve at B/RT ¼ 2.50 shows a convex upward curvature, which indicates that
X1 is a two-valued function of a1. Thus, in that system, two phases with different
compositions exist. Thus, B is a parameter that describes phase separation and
limited miscibility.

The curve with B/RT ¼ 2.00 is the one with the highest value of B/RT in a one
phase system. It is called the critical solution curve. We can determine the thermo-
dynamic significance of B from the following analysis.

The Gibbs function of mixing is

DG(m,mix) ¼ G(mixture)

n1 þ n2
� n1G†

m1 þ n2G†
m2

n1 þ n2

¼ X1m1 þ X2m2 � X1m
†
1 � X2m

†
2

¼ X1RT ln X1 þ X2RT ln X2 þ B(X2
1 þ X2

2) (16:83)
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The entropy of mixing is, from Equation (14.34)

DS(m,mix) ¼ � @DG(m,mix)

@T

� �
X

(16:84)

If B is not a function of T,

DSm,mix ¼ �X1R ln X1 � X2R ln X2 (16:85)

which is the ideal entropy of mixing.
Then

DH(mix) ¼ DG(mix) þ TDS(mix)

¼ B(X2
1 þ X2

2 ) (16:86)

and B is a measure of the enthalpy of mixing, which is temperature independent.
Thus, B0 ¼ B/RT is inversely proportional to T, and the largest value of B0 at
which the two components are completely miscible represents the lowest temperature
at which they are miscible. This temperature is called the upper critical solution
temperature. Figure 16.7 shows the liquid–liquid equilibrium curve for ethanenitrile
[1] and 2,2,4-trimethylpentane [2], with a critical upper solution temperature of

Figure 16.6. Variation of a1 with X1 for a regular solution with various values of B/RT.
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Figure 16.7. Liquid–liquid equilibrium curve for ethanenitrile (1) and 2,2,4-trimethylpentane
(2), with a critical upper solution temperature of 354.55 K (12).

Figure 16.8. Graph of Gm/RT for solution with critical upper solution temperature.
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354.55 K (12). The difference in composition between the two phases in equilibrium
is called the miscibility gap.

We can see the basis of the miscibility gap in another way by plotting Gm for
the mixture as a function of X1, as shown in Figure 16.8. In plotting, we assume
arbitrary equal values for m†

1 and m†
2 , where Gm is the sum of X1m1 þ X2m2.

We can observe that for values of B/RT greater than 2, the curves have two
concave upward sections, and points between the concave upward sections have a
greater value of Gm than the minima, thus showing that two immiscible phases
have lower values of Gm than a single phase, even though the single phase has a
lower value of Gm than do the pure components. A more advanced treatment of
the miscibility gap can be found in Guggenheim’s treatise [13].

EXERCISES

16.1. For a pure gas, the fugacity is defined so that [Equation (10.30)]

lim
P!0

f

P
¼ 1

Show that, on this basis, the enthalpy of the gas in the standard state must
be equal to that at zero pressure. (Hint: If the gas were ideal, f ¼ P at all
pressures. For the real gas, f8 ¼ k ¼ 0.1 MPa. Proceed by analogy with the
discussion in Section 10.2.)

16.2. a. Differentiate both sides of Equation (16.40) with respect to T.

b. Prove that C8Pm(2) is equal to CPm(2) for the infinitely dilute solution. Keep
in mind that the temperature coefficient of ln g2 is zero in an infinitely
dilute solution.

16.3. Frequently it is necessary to convert solute activity coefficients based on mole
fraction to a molality basis, or vice versa. The equation for making this con-
version can be derived in the following way.

a. Starting from the fundamental definitions of activity on each concentration
basis, prove that for a solute

aX
am

¼ k002
k2

in which the subscript X refers to a mole fraction basis and m to a molality
basis, and k2 and k002 are the Henry’s-law constants on a mole fraction and
molality basis, respectively.
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b. Show also that

gX
gm

¼ m2=m82
X2

k002
k2

[k2 and k002 are defined by Equations (15.1) and (15.7)]

c. In very dilute solutions, Henry’s law is valid in the form of either Equation
(15.1) or Equation (15.7). Prove that

k002 ¼ k2M1m82

in whichM1 is the molar mass of the solvent, when the mass and the molar
mass of the solvent are both expressed in kilograms.

d. Show that for any concentration

gX
gm

¼ 1þ m2M1

(A factor of 1000 appears in these equations if the molar mass of
the solvent is expressed in grams; that is, k002 ¼ k2M1m82/1000, and
gX/gm ¼ 1 þ m2M1/1000.)

16.4. Molality m2 and molarity c2 are related by the expression

m2 ¼ c2
r� c2M2

in which r is the density of the solution, with mass in kilograms and volume
in cubic decimeters (Liters). If gc, the activity coefficient on a molarity basis,
is defined by

gc ¼
ac
c
c8

show that

gm
gc

¼ r

r1
� c2M2

r1

� �

in which r1 is the density of pure solvent.

16.5. Statistical thermodynamic analyis of regular solutions, with solvent and
solute molecules of the same size, indicate that the free energy of mixing
per mole of solution is given by

DGmix ¼ RT(X1 ln X1 þ X2 ln X2)þ X1X2v
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in which v is a parameter related to the interaction energies between mol-
ecules. Show that

SEm ¼ �X1X2
@v

@T

and

HE
m ¼ X1X2 v� T

@v

@T

� �

16.6. Starting with Equation (16.55) for Gm
E , derive Equations (16.60) and (16.58)

for the excess entropy and enthalpy of mixing, respectively.

16.7. At 428C the enthalpy of mixing of 1 mole of water and 1 mole of ethanol is
2343.1 J. The vapor pressure of water above the solution is 0.821 p1

† and that
of ethanol is 0.509 p2

†, in which p† is the vapor pressure of the corresponding
pure liquid. Assume that the vapors behave as ideal gases. Compute the
excess entropy of mixing.

16.8. Rhombic sulfur is soluble in CS2 and so is monoclinic. For the transition

S(rhombic) ¼ S(monoclinic) DG8m,298 ¼ 96 J mol�1

The solubility of monoclinic sulfur in CS2 is 22-molal. What is the solubility
of rhombic sulfur in the same solvent? Assume that the activity coefficient for
both forms of dissolved sulfur is 1.

16.9. Use the equations for Gm
E , Sm

E , and Hm
E to show that

DSmix ¼ X1
Hm1 � H8m1

T
� R ln a1

� �

þ X2
Hm2 � H8m2

T
� R ln a2

� �
(16:84)

16.10. Show that Equation (16.64) follows from Equation (16.63), using the Gibbs–
Duhem equation.

16.11. Derive Equation (16.69) from Equation (16.68).

16.12. Derive Equations (16.72) and (16.73) from Equations (16.70) and (16.71).

16.13. Create a graph analogous to Figure 16.8, with the corresponding negative
values of B/RT. Comment on the differences between the two graphs, with
special attention to the relation of B to DH(m,mix) and the connection
between DH(m,mix) and the existence of a miscibility gap.
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CHAPTER 17

DETERMINATION OF
NONELECTROLYTE ACTIVITIES
AND EXCESS GIBBS FUNCTIONS
FROM EXPERIMENTAL DATA

Having established the definitions and conventions for the activity function and for
the excess Gibbs function in Chapter 16, we are in a position to understand the experi-
mental methods that have been used to determine numeric values of these quantities.

17.1 ACTIVITY FROM MEASUREMENTS OF VAPOR PRESSURE

If the vapor pressure of a substance in solution is sufficiently great to be determined
experimentally, the activity can be calculated directly. As the standard state differs for
the solvent and solute, each must be considered separately.

Solvent

The activity of the solvent is related directly to the vapor pressure when the vapor is
an ideal gas. As the pure solvent is the standard state, the chemical potential m1 of the
solvent in any solution is given by the expression [Equation (16.1)]

m1 ¼ mW

1 þ RT ln a1
¼ m†1 þ RT ln a1

where m1
† is the chemical potential of the pure solvent under its own vapor pressure.

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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The chemical potential of the solvent in the liquid phase in equilibrium with its vapor
is equal to the chemical potential of the solvent vapor. Thus,

m†1 þ RT ln a1 ¼ mW

1(gas) þ RT ln
p1
P W

gas
(17:1)

Similarly, for the pure solvent in equilibrium with its vapor

m†1 ¼ mW

1(gas) þ RT ln
p†1
P W

gas
(17:2)

Thus, from Equations (17.1) and (17.2), we conclude that

a1 ¼ p1
p†1

(17:3)

in which p1 represents the partial pressure of the vapor of the solvent over the solution
and p1

† represents the vapor pressure of the pure solvent. If the vapor is not ideal,
fugacities must be used in place of partial pressures (see Chapter 10).

Solute

If the solute is sufficiently volatile to allow a determination of its vapor pressure over
the solution, its activity also can be calculated from its partial pressure in the vapor.
As the chemical potential in the vapor is equal to the chemical potential of the same
component in the liquid

m2 ¼ mW

2 þ RT ln a2

¼ m2(gas) ¼ mW

2(gas) þ RT ln
p2
PW

gas
(17:4)

provided that the vapor behaves as an ideal gas. If data are available throughout the
entire range of composition, and pure solute is chosen as the standard state, then m82 is
equal m2

†. If a hypothetical standard state is chosen, then m82 is equal to the chemical
potential of the solute in that standard state—that is, the chemical potential the solute
would have, either at X2 ¼ 1 or at m2 ¼ 1, if Henry’s law described its behavior at that
concentration. For the solute in its standard state

mW

2 ¼ mW

2(gas) þ RT ln
pW

2

PW

gas
(17:5)

where p82 is the vapor pressure of the solute vapor in equilibrium with the solution in
which the solute is in its standard state. Thus, from Equations (17.4) and (17.5), we
conclude that

a2 ¼ p2
pW

2

(17:6)
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As the Henry’s-law standard state is, by definition, hypothetical, we must find a way
to determine p82 from experimental data.

If the vapor is ideal, Henry’s law is expressed, on the molality scale, as

p2 ¼ k002
m2

mW

2

� �
(17:7)

[see Equation (15.7)]. As p82 is the value of p2 when m2 ¼ m82,

pW

2 ¼ k002 (17:8)

We can see from Figure 17.1 that k002 is the limiting slope of the curve of p2 against
m2/m82 as m2 ! 0. Thus,

lim
m2!0

p2
m2=mW

2

� �
¼ k002 ¼ pW

2 (17:9)

The extrapolation of this ratio to m2 ¼ 0 is shown in Figure 17.2. The curve in
Figure 17.2 should have a horizontal limiting slope. If an experimental curve does
not have a horizontal limiting slope, the data have not been obtained in sufficiently
dilute solution to show Henry’s-law behavior. Very few data are available that
satisfy this rigorous criterion [1]. We frequently settle for a condition in which the
plot of p2/m2 has a clear linear extrapolation to m2 ¼ 0, as opposed to a continuing
curvature that makes an extrapolation impossible.

Using these equations and the measured partial pressure of the solute in the
vapor, we have enough information to calculate the activity of the solute, if

Figure 17.1. Partial pressure of solute as function of molality ( p02 represents the vapor
pressure along the broken line) (Henry’s law).
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the vapor behaves as an ideal gas. If the vapor is not ideal, we must use fugacities
instead of pressures.

17.2 EXCESS GIBBS FUNCTION FROM MEASUREMENT OF
VAPOR PRESSURE

Although the description of deviations from ideality in terms of the excess Gibbs
function gives us one quantity instead of the two activity coefficients of the two com-
ponents of a binary solution, we still need to calculate the activity coefficients first, as
observed in Equation (16.57).

GE
m

RT
¼ X1RT ln g1 þ X2RT ln g2 (16:57)

We shall use the data of Mato et al. [2] for the vapor pressure and vapor compo-
sition1 of mixtures of methyl tert-butyl ether [1] and chloroform (2) at 313.15 K to
illustrate the procedures used to calculate Gm

E as a function of composition.2 These
data are plotted in Figure 17.3.

We calculate the activity coefficients based on a Raoult’s-law standard state from
Equation (17.3) and Equation (16.5), assuming that the vapors are ideal gases. The
authors corrected for the small degree of nonideality of the vapors. The results
are plotted in Figure 17.4. The data for Gm

E as a function of X1 are plotted
in Figure 17.5, along with two possible Redlich–Kister functions discussed in
Section 16.7.

Figure 17.2. Determination of partial pressure of solute in its standard state.

1Some authors prefer to calculate vapor composition from total pressure and liquid composition rather than
to measure vapor composition directly. See H. C. Van Ness, J. Chem. Thermodynamics 27, (1995).
2The data for vapor pressure of the pure liquids given in the paper must be multiplied by 10 to be consistent
with the vapor pressures of the solutions.
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As in Equation (16.69), we can decide what function to fit to the data for Gm
E by

plotting ln (g1/g2) against X1, as in Figure 17.6.
As the plot is not linear, the solution is not regular, and we need to obtain values

for C or C and D. As we can observe in Figure 17.5, the fit for a two-parameter

Figure 17.3. Data for vapor pressure and composition of solutions of methyl tert-butyl ether
p1 and chloroform p2 at 313.15 K. Data from Ref. 2.

Figure 17.4. Activity coefficients of methyl tert-butyl ether g1 and chloroform g2 as a function
of X1 at 313.15 K. Data from Ref. 2.
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equation is close, but the fit is much better for a three-parameter equation. A nonlinear
least-squares fit (see Section A.1) provides values of B ¼ 21.121+ 0.002,
C ¼ 0.029+ 0.005, and D ¼ 0.163+ 0.010. The negative value of B is consistent
with the minimum in the total vapor pressure.

Figure 17.5. A plot of Gm
E as a function of X1 for solutions of methyl tert-butyl ether [1] and

chloroform [2] as a function of X1 at 313.15 K. Data from Ref. 2. The two calculated curves
compare the fit of a two-parameter function and a three-parameter function of the form
proposed by Redlich and Kister.

Figure 17.6. A plot of ln (g1/g2) against X1 for the solutions described in Figure 17.3.
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17.3 ACTIVITY OF A SOLUTE FROM DISTRIBUTION
BETWEEN TWO IMMISCIBLE SOLVENTS

If the activity of a solute is known in one solvent, then its activity in another solvent
immiscible with the first can be determined from the equilibrium distribution of the
solute between the two solvents. As an example, let us consider an extreme situation,
such as that illustrated in Figure 17.7, in which the shapes of the fugacity curves are
different in two different solvents. The limiting behavior at infinite dilution, Henry’s
law, is indicated for each solution. The graphs reveal that the standard states are
different in the two solvents because the hypothetical l-molal solutions have
different fugacities.

If the solute in solution A is in equilibrium with that in solution B, its escaping
tendency is the same in both solvents. Consequently, its chemical potential m2 at
equilibrium also must be identical in both solvents. Nevertheless, the solute will
have different activities in solution A and B since [Equation (16.1)]

m2 ¼ mW

2 þ RT ln a2

and (m28)A differs from (m28)B. If the activity of the solute is known in one of the
solvents, then the activity in the other solvent can be calculated as follows. At
equilibrium

(m2)A ¼ (m2)B (17:10)

As

(m2)A ¼ (mW

2)A þ RT ln (a2)A

Figure 17.7. Comparison of figacity–molality curves for solute in two immiscable solvents;
used to determine Henry’s law constants.
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and

(m2)B ¼ (mW

2)B þ RT ln (a2)B

it follows from Equation (17.10) that

(mW

2)A þ RT ln (a2)A ¼ (mW

2)B þ RT ln (a2)B

or

RT ln
(a2)B
(a2)A

¼ (mW

2)A � (mW

2)B (17:11)

Therefore, to calculate (a2)B from (a2)A, we must find the difference between the
chemical potentials in the respective standard states. From Equation (15.10)

mW

2 ¼ mW

2(gas) þ RT ln
k002
f W

gas

 !

Thus,

(mW

2)B � (mW

2)A ¼ RT ln
(k002 )B
(k002 )A

� �
(17:12)

and

(a2)B
(a2)A

¼ (k002 )A
(k002 )B

(17:13)

To determine the ratio of the activities in the two solvents, then, we need to determine
the ratio of the Henry’s-law constants for the solute in the two solutions.

For these solutions, from Equation (15.8),

lim
(m2)A!0

( f2)A
(m2)A=m

W

2

¼ (k002 )A

and

lim
(m2)B!0

( f2)B
(m2)B=m

W

2
¼ (k002 )B

At equilibrium, ( f2)A ¼ ( f2)B, because both solutions are in equilibrium with the
same vapor, and

lim
m2!0

(m2)A
(m2)B

¼ (k002 )B
(k002 )A

(17:14)
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Thus, Equation (17.13) can be written as

(a2)B ¼ (a2)A lim
m2!0

(m2)B
(m2)A

(17:15)

If the activity in one solvent is known as a function of molality, and if the equili-
brium molalities in both solvents can be determined for a range of molalities,
Equation (17.15) can be used to calculate the activity in the other solvent. A value for

lim
m2!0

(m2)B
(m2)A

is obtained by plotting values of (m2)B/(m2)A at equilibrium against (m2)A and by
extrapolating to (m2)A ¼ 0, as in Figure 17.8.

17.4 ACTIVITY FROM MEASUREMENT OF CELL POTENTIALS

Although potential measurements are used primarily to determine activities of elec-
trolytes, such measurements can also be used to obtain information on activities of
nonelectrolytes. In particular, the activities of components of alloys, which are
solid solutions, can be calculated from the potentials of cells such as the following
for lead amalgam:

Pb(amalgam, X0
2); Pb(CH3COO)2, CH3COOH; Pb(amalgam, X2) (17:16)

In this cell, two amalgams with different mole fractions of lead act as electrodes in a
common electrolyte solution containing a lead salt. The activities of lead in these
amalgams can be calculated from emf measurements with this cell.

Figure 17.8. Extrapolation of distribution data to obtain the conversion factor for solute
activities.
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Ifwe adopt the convention ofwriting the chemical reaction in the cell as occurring so
that electronswillmove in the outside conductor from left to right, so that the reaction in
the left electrode is an oxidation and the reaction in the right electrode is a reduction, the
reaction at the left electrode is

Pb(amalgam, X0
2) ¼ Pb2þ þ 2e� (17:17)

and that at the right electrode is

Pb2þ þ 2e� ¼ Pb(amalgam, X2) (17:18)

As the electrolyte containing Pb2þ is common to both electrodes, the cell reaction,
that is, the sum of Reactions (17.17) and (17.18), is

Pb(amalgam, X0
2) ¼ Pb(amalgam, X2) (17:19)

As the two amalgams have the same solvent (mercury), we may choose the same
standard state for Pb in each amalgam. We choose a Henry’s-law standard state
because we have data for dilute amalgams and the solubility of Pb in Hg is
limited. Equation (16.18) then will represent the Gibbs function change for
Equation (17.19):

DGm ¼ RT ln
a2
a02

If concentrations in the alloy are expressed in mole fraction units, then
[Equation (16.7)]

a2 ¼ X2g2

As, from Equation (7.84),

DG ¼ �nFE
it follows that

�nFE ¼ RT ln
a2
a02

(17:20)

¼ RT ln
X2g2
a02

(17:21)

so

E ¼ � RT

nF
lnX2 � RT

nF
ln g2 þ

RT

nF
ln a02 (17:22)

The potentials are measured for a series of cells in which X2 is varied and X0
2 is held

constant. A typical series of data for lead amalgam is shown in Table 17.1.
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To obtain values of a2 or of g2 from these data, we rearrange Equation (17.22) to
the form

E þ RT

nF
lnX2 ¼ RT

nF
ln a02 �

RT

nF
lng2 (17:23)

or

nFE

RT
þ lnX2 ¼ ln a02 � lng2 (17:24)

TABLE 17.1. Electromotive Force of Pb (amalgam, X0
2 5 6.253 3 1024);

Pb(CH3COO)2, CH3COOH; Pb (amalgam, X2) at 2588888C
a [3]

X2 �E/Volts nFE/RT þ ln X2 1000a2 g

0.0006253 0.000000 27.3773 0.6099 0.975
0.0006302 0.000204 27.3854 0.6197 0.983
0.0009036 0.0004636 27.3700 0.8750 0.968
0.001268 0.008911 27.3640 1.220 0.962
0.001349 0.009659 27.3603 1.294 0.959
0.001792 0.013114 27.3453 1.693 0.945
0.002055 0.014711 27.3327 1.917 0.933
0.002744 0.018205 27.3155 2.516 0.917
0.002900 0.018886 27.3132 2.653 0.915
0.003086 0.019656 27.3110 2.817 0.913
0.003203 0.020068 27.3059 2.909 0.908
0.003729 0.021827 27.2908 3.335 0.894
0.003824 0.022111 27.2877 3.410 0.892
0.004056 0.022802 27.2826 3.598 0.887
0.004516 0.023954 27.2649 3.936 0.872
0.005006 0.025160 27.2557 4.323 0.864
0.005259 0.025692 27.2478 4.506 0.857
0.005670 0.026497 27.2353 4.798 0.846
0.006085 0.027256 27.2237 5.090 0.836
0.006719 0.028340 27.2090 5.538 0.824
0.007858 0.029951 27.1778 6.278 0.799
0.007903 0.030010 27.1767 6.306 0.798
0.008510 0.030771 27.1619 6.691 0.786
0.009737 0.032062 27.1277 7.399 0.760
0.01125 0.033437 27.0903 8.234 0.732
0.01201 0.033974 27.0668 8.586 0.715
0.01388 0.035226 27.0195 9.465 0.682
0.01406 0.035323 27.0142 9.537 0.678
0.01456 0.035609 27.0015 9.751 0.670
0.01615 0.036375 26.9575 10.35 0.641
0.01650(satd) 0.036394 26.9375 10.37 0.628

aM. M. Haring, M. R. Hatfield, and P. P. Zapponi, Trans. Electrochem. Soc. 75, 473 (1939).
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The left side of Equation (17.24) is evaluated from the data in Table 17.1, with n ¼ 2,
because two electrons are transferred per Pb transferred. Then this quantity is plotted
against X2 and extrapolated to X2 ¼ 0, as in Figure 17.9.

We can write a limiting form of Equation (17.24)

lim
x2!0

nFE

RT
þ lnX2

� �
¼ ln a02 (17:25)

Then the extrapolated value from Figure 17.9 is equal to ln a02. By a least-squares fit of
the most dilute points, which are essentially linear, we obtain a value of 27.3983+
0.0016.

Once a02 is known, a2 can be determined at various mole fractions from Equation
(17.20) in the form

E � RT

nF
ln a02 ¼ � RT

nF
ln a2

The results for the lead amalgams of the cell in Equation (17.16) are assembled in
Table 17.1. The activity coefficients also have been calculated. The graphical
representation of ln g2 is shown in the body of Figure 17.9.

From Equations (16.7) and (16.17), we can write

lim
x2!0

g2 ¼ lim
x2!0

a2
X2

¼ 1

Figure 17.9. Extrapolation of cell potential data from Table 17.1 to obtain a constant to cal-
culate activities of lead in lead amalgams.
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To test whether we really observe limiting behavior, we plot a2/X2 against X2, as in
Figure 17.10.

A rigorous test would require that we have points in very dilute solution with
values of a2/X2 equal to 1. We shall be satisfied with a linear extrapolation by
least-squares analysis of the seven-most dilute points to an intercept of 1.0029+
0.0033, which is equal to 1 within experimental error.

17.5 DETERMINATION OF THE ACTIVITY OF ONE
COMPONENT FROM THE ACTIVITY OF THE OTHER

The fundamental relationship between the chemical potentials of the two
components of a solution at a fixed temperature and pressure is the Gibbs–Duhem
Equation (9.34):

n1 dm1 þ n2 dm2 ¼ 0

From the relationship of the chemical potential to the activity [Equation (16.1)], we
can write Equation (9.34) as

n1 d ln a1 þ n2 d ln a2 ¼ 0 (17:26)

If Equation (17.26) is divided by (n1 þ n2), the result is

X1 d ln a1 þ X2 d ln a2 ¼ 0 (17:27)

Figure 17.10. A plot to test whether we can use Henry’s law to define a standard state for lead
in lead amalgams. Data from Table 17.1.
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Calculation of Activity of Solvent from That of Solute

If adequate data are available for the activity of the solute, the activity of the solvent
can be obtained by rearranging Equation (17.27) to

d ln a1 ¼ �X2

X1
d ln a2 (17:28)

and integrating. As a2 approaches zero as X2 approaches zero, ln a2 is an indetermi-
nate quantity at one of the limits of integration. Although both a2 and X2 approach
zero, their ratio a2/X2 ¼ g2 approaches one [Equation (16.3)]. Thus, it is necessary
to convert Equation (17.28) into a corresponding equation for the activity
coefficients.

As

X1 þ X2 ¼ 1
then

dX1 ¼ �dX2

and

dX1

X1
¼ � dX2

X1
¼ �X2

X1

dX2

X2

or

d lnX1 ¼ �X2

X1
d lnX2 (17:29)

The subtraction of Equation (17.29) from Equation (17.28) gives the expression

d ln
a1
X1

¼ �X2

X1
d ln

a2
X2

(17:30)

or

d lng1 ¼ �X2

X1
d ln g2 (17:31)

Integrating Equation (17.31) from the infinitely dilute solution to some finite concen-
tration, we obtain, with the assumption of a Raoult’s-law standard state for the solvent
and a Henry’s-law standard state for the solute,

ðlng1
0

d ln g1 ¼ �
ðln g2
0

X2

X1
d lng2

and

lng1 ¼ �
ðlng2
0

X2

X1
d lng2 (17:32)
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If X2/X1 is plotted against ln g2, the integration of Equation (17.32) can be carried out
graphically, or a numeric integration can be performed directly from tabulated values
of X2/X1 and ln g2.. (See Appendix A.)

Calculation of Activity of Solute from That of Solvent

To calculate the activity of the solute from that of the solvent, it is useful to rearrange
Equation (17.31) to the form

d ln g2 ¼ �X1

X2
d ln g1 (17:33)

which, on integration, gives

lng2 ¼ �
ðln g1
0

X1

X2
d lng1 (17:34)

However, the integral in Equation (17.34) is divergent because X1/X2 approaches
infinity in the limit of infinitely dilute solutions.

One method of overcoming this difficulty is as follows. Instead of setting the lower
limit in the integration of Equation (17.33) at infinite dilution, let us use a temporary
lower limit at a finite concentration X 0

2. Thus, in place of Equation (17.34), we obtain

ln
g2
g02

¼ �
ðln g1

ln g01

X1

X2
d ln g1 (17:35)

The evaluation of the integral in Equation (17.35) offers no difficulties because X1/X2

is finite at the lower limit. Using Equation (17.35), we can obtain precise values of
the ratio g2/g

0
2 as a function of X2. If g2/g02 is plotted against X2, for a solution of

water in dimethyl sulfoxide [4], as shown in Figure 17.11, where the reference
solution with X0

2 equal to 0.0365 was chosen, the values can be extrapolated to a
finite-limiting value.

From Equations (16.3) and (16.7), we know that, if Henry’s law is followed,

lim
x2!0

a2
X2

¼ lim
x2!0

g2 ¼ 1

Thus,

lim
x2!0

g2
g02

¼ 1
g02

(17:36)
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Once a value for g02, 0.9911 in this case, is obtained by extrapolation, values for g2
in each of the other solutions can be calculated from the values of g2/g

0
2 using

Equation (17.35).
The activity of the solvent often can be obtained by an experimental technique

known as the “isopiestic method” [5]. With this method we compare solutions of
two different nonvolatile solutes; for one of which, the reference solution, the activity
of the solvent has been determined previously with high precision. If both solutions
are placed in an evacuated container, solvent will evaporate from the solution with
higher vapor pressure and condense into the solution with lower vapor pressure
until equilibrium is attained. The solute concentration for each solution then is deter-
mined by analysis. Once the molality of the reference solution is known, the activity
of the solvent in the reference solution can be read from records of previous experi-
ments with reference solutions. As the standard state of the solvent is the same for all
solutes, the activity of the solvent is the same in both solutions at equilibrium. Once
the activity of the solvent is known as a function of m2 for the new solution, the
activity of the new solute can be calculated by the methods discussed previously
in this section.

17.6 MEASUREMENTS OF FREEZING POINTS

Perhaps the method of most general applicability for determining activities of none-
lectrolytes in solutions is the one based on measurements of the lowering
of the freezing point of a solution. As measurements are made of the properties of
the solvent, activities of the solute are calculated by methods described in the
preceding section.

Figure 17.11. Extrapolation of relative activity coefficients to obtain 1/g02 for the calculation
of solute activity coefficients. Data from Ref. 4. Dimethyl sulfoxide is the solvent, and water is
the solute.
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Elaborate procedures have been developed for obtaining activity coefficients from
freezing-point and thermochemical data. However, to avoid duplication, the details
will not be outlined here, because a completely general discussion, which is appli-
cable to solutions of electrolytes as well as to nonelectrolytes, is presented in
Chapter 21 of the Third Edition of this book [6].

EXERCISES

17.1. The data in Table 17.2 for the partial pressures (in mm Hg) of toluene and of
acetic acid at 69.94 8C have been taken from Ref. 7. For the purposes of this
exercise, assume that the partial pressure of each component is identical with
its fugacity.

a. Draw a graph of f1 versus X1. Indicate Raoult’s law by a dotted line.

b. Draw a graph of f2 versus X2. Indicate Raoult’s law by a dotted line. Plot
f2/X2 against X2 to observe whether the data permit a Henry’s-law stan-
dard state to be used. If permissible, draw the Henry’s-law line and calcu-
late the Henry’s-law constant for acetic acid in toluene.

c. If the calculation in (b) suggests the use of a Henry’s-law standard state,
calculate the activities and activity coefficients of acetic acid on the
basis of a k2 established from Henry’s law [see Equation (15.1)]. Plot
these values against X2.

TABLE 17.2. Partial Pressures of Toluene and Acetic Acid at 69.9488888C

X1

(Toluene)
X2

(Acetic Acid)
p1/(mm Hg)
(Toluene)

p2/(mm Hg)
(Acetic Acid)

0.0000 1.0000 0.0 136.0
0.1250 0.8750 54.8 120.5
0.2310 0.7690 84.8 110.8
0.3121 0.6879 101.9 103.0
0.4019 0.5981 117.8 95.7
0.4860 0.5140 130.7 88.2
0.5349 0.4651 137.6 83.7
0.5912 0.4088 154.2a 78.2
0.6620 0.3380 155.7 69.3
0.7597 0.2403 167.3 57.8
0.8289 0.1711 176.2 46.5
0.9058 0.0942 186.1 30.5
0.9565 0.0435 193.5 17.2
1.0000 0.0000 202.0 0.0

aThis figure evidently is a typographical error. The correct figure is near 145.2. It also is
likely (D. H. Volman, private correspondence) that the International Critical Tables did
not interpret correctly the mole fraction scale used by the original investigator [8].
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d. Calculate the activities and activity coefficients of acetic acid when the
pure liquid is taken as the standard state. Plot these values on the same
graph as in (c).

e. Calculate the activities and activity coefficients of toluene, the solvent in
these solutions, using a Raoult’s-law standard state.

17.2. The data in Table 17.3 are for vapor pressure and vapor and liquid compo-
sition of solutions of methyl tert-butyl ether (1) and acetonitrile (2), (9).
The symbol X1 represents the mole fraction of (1) in the liquid phase, and
y1 represents the mole fraction of (1) in the vapor phase. P is the equilibrium
vapor pressure of the solution. The temperature is 313.15 K.

a. Calculate the partial pressure of each component, and plot the partial
pressures and the total pressure against X1 on the same graph. Assume
that the partial pressures are a good approximation for the fugacities.

b. Plot p/X against X for each component to see whether Raoult’s law,
Henry’s law, or both are justified by the data for a choice of standard
state. Whichever is justified, draw the appropriate lines in the graph in (a).

c. Calculate the activities and activity coefficients justified by the data, and
plot them against X1.

d. Calculate Gm
E , and plot the values against X1.

e. Calculate ln g1/g2, and plot the results against X1.

TABLE 17.3. Vapor Pressure and Composition for Solutions of Methyl
t-Butyl Ether and Acetonitrile at 313.15 K.

X1 y1 P X1 y1 P

0.0000 0.0000 22.706 0.4000 0.6877 54.292
0.0122 0.1237 25.649 0.4561 0.7055 55.501
0.0189 0.1642 26.581 0.6203 0.7614 58.511
0.0263 0.2039 28.254 0.6891 0.7870 59.548
0.0339 0.2484 29.580 0.7381 0.8067 60.134
0.0485 0.2975 31.691 0.7792 0.8252 60.532
0.0669 0.3725 34.065 0.8278 0.8504 60.864
0.1036 0.4549 38.213 0.8539 0.8651 60.971
0.1406 0.5089 41.593 0.8810 0.8831 61.023
0.1652 0.5431 43.786 0.9119 0.9064 60.918
0.2110 0.5847 46.582 0.9360 0.9268 60.747
0.2372 0.6035 48.003 0.9540 0.9443 60.544
0.2490 0.6120 48.659 0.9673 0.9588 60.343
0.2773 0.6291 49.940 0.9781 0.9716 60.138
0.3060 0.6439 51.084 0.9846 0.9801 60.000
0.3262 0.6536 51.814 0.9902 0.9868 59.882
0.3501 0.6646 52.644 1.0000 1.0000 59.766
0.3742 0.6747 53.389
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f. On the basis of the plot in (e), choose an appropriate Redlich–Kister poly-
nomial to describe the dependence of Gm

E on X1. Plot the function on the
graph in (d). Comment on the relationship between the sign of B and the
maximum in the vapor pressure curve.

17.3. Table 17.4 lists the mole fraction of dimethyl sulfoxide in solutions of water
(2) in dimethyl sulfoxide (1), the total pressure, and the partial pressures of
water and dimethyl sulfoxide (4).

TABLE 17.4. Equilibrium Pressures and Liquid Composition
for Solutions of Water in Dimethyl Sulfoxide

XD p/torr pD pw

0 20.991 0 20.991
0.01013 20.750 0.0003 20.750
0.02994 20.301 0.0011 20.300
0.05004 19.794 0.0021 19.792
0.07242 19.226 0.0033 19.223
0.09065 18.602 0.0048 18.597
0.09596 18.511 0.0050 18.507
0.1264 17.431 0.0082 17.429
0.1585 16.201 0.013 16.189
0.1965 14.632 0.021 14.613
0.2325 13.114 0.031 13.088
0.2744 11.432 0.047 11.387
0.3130 9.989 0.065 9.925
0.3551 8.584 0.089 8.496
0.4011 7.251 0.119 7.133
0.4373 6.358 0.144 6.214
0.4772 5.490 0.173 5.318
0.5205 4.692 0.205 4.487
0.5689 3.933 0.241 3.692
0.6375 3.049 0.292 2.757
0.6636 2.778 0.310 2.468
0.6860 2.453 0.332 2.121
0.7337 2.120 0.358 1.762
0.7754 1.793 0.385 1.408
0.8098 1.546 0.406 1.140
0.8381 1.362 0.424 0.938
0.8673 1.181 0.441 0.740
0.8984 1.009 0.458 0.551
0.9304 0.848 0.475 0.373
0.9631 0.692 0.492 0.200
0.9632 0.684 0.493 0.191
1.000 0.512 0.512 0
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a. Calculate the activities a1 and activity coefficients g1 of dimethyl sulfox-
ide using a Raoult’s-law standard state.

b. Plot X1/X2 against ln g1.

c. Compute g2/g20 by numeric integration (see Appendix A), with 0.0368 as
the value of X2 for g20. Compute g2 at the same points.

d. Compute g2 at the same points using a Henry’s-law standard state.
Calculate KH for dimethyl sulfoxide from a plot of p2/X2 against X2.
Plot both sets of values of g2 on the same graph.

17.4. Potentials [10] of the cell

In(amalgam, X2), 0:01mHClO4, 0:01m In(SO4)3, aq:, Pt, H2 [g, p(H2)]

at 25.08C are given in Table 17.5, where X2 is the only quantity that
varies [10].

a. Plot E versus X2. Note the difficulty in choosing a limit as X2 approaches
zero.

b. Write the Nernst equation for the cell, and rearrange it so that all the
known variables are on one side. Designate the sum of all the constant
terms on the other side as E 00.

c. Plot (nFE )/(RT) þln X2 against X2, and extrapolate the initial linear
portion of the curve to X2 ¼ 0 to obtain the value of ln a02.

TABLE 17.5. Cell Potentials for Indium Amalgam
Cell at 25.088888C

X2 E/V

0.7000 0.2667
0.6441 0.26430
0.6360 0.26303
0.5222 0.25895
0.5000 0.25831
0.3998 0.25180
0.3040 0.24550
0.3000 0.24535
0.2000 0.23706
0.1626 0.23470
0.1000 0.22646
0.0841 0.22331
0.0500 0.21790
0.0388 0.21440
0.0100 0.20144
0.00920 0.20068
0.000940 0.17900
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d. Calculate the activities and activity coefficients of indium in the
amalgams.

17.5. At 42.058C, the enthalpy of mixing of one mole of water and one mole of
ethanol is 282.0 cal. The vapor pressure of water above the solution is
0.821 p1

† and that of ethanol is 0.509 p2
†.

a. Calculate the entropy of mixing for this solution.

b. Compute the excess entropy above that for the mixing of two components
that form an ideal solution.

17.6. Fenclová and Dohnal [11] have measured the liquid and vapor compositions
and total pressures of solutions of 1,1,2-trichlorotrifluoroethane (Freon) [1]
and n-hexane[2] at 308.15 K. Their results are given in Table 17.6.

a. Calculate activity coefficients for both components on the basis of
Raoult’s-law standard states.

b. Are the data adequate to determine activity coefficients on the basis of
Henry’s-law standard states?

c. Calculate Gm
E , and plot the values against X1.

TABLE 17.6. Vapor Pressures and Compositions for Solutions
of 1,1,2-trichlorotrifluoroethane and n-Hexane at 308.15 K

X1 (liquid) X1 (vapor) P (total)/kPa

0 0 30.735
0.0199 0.0558 31.953
0.0417 0.1107 33.203
0.0648 0.1629 34.508
0.0775 0.1903 35.184
0.1080 0.2486 36.688
0.1630 0.3393 39.445
0.2288 0.4288 42.435
0.2923 0.5002 45.087
0.3283 0.5377 46.568
0.3845 0.5884 48.703
0.4519 0.6432 51.034
0.5217 0.6940 53.274
0.5959 0.7442 55.509
0.6241 0.7625 56.321
0.7209 0.8228 58.978
0.7771 0.8572 60.391
0.8462 0.8994 62.059
0.9048 0.9363 63.452
0.9366 0.9568 64.123
0.9741 0.9819 64.952
1 1 65.403
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d. Calculate ln g1/g2, and plot the results against X1.

e. On the basis of the plot in (d), choose an appropriate Redlich–Kister poly-
nomial to describe the dependence of Gm

E on X1. Plot the function on the
graph in (c). Calculate Gm

E for each solution from the best polynomial.
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CHAPTER 18

CALCULATION OF PARTIAL MOLAR
QUANTITIES AND EXCESS MOLAR
QUANTITIES FROM EXPERIMENTAL
DATA: VOLUME AND ENTHALPY

In this chapter, we shall consider the methods by which values of partial molar
quantities and excess molar quantities can be obtained from experimental data.
Most of the methods are applicable to any thermodynamic property J, but special
emphasis will be placed on the partial molar volume and the partial molar enthalpy,
which are needed to determine the pressure and temperature coefficients of the chemi-
cal potential, and on the excess molar volume and the excess molar enthalpy, which
are needed to determine the pressure and temperature coefficients of the excess Gibbs
function. Furthermore, the volume is tangible and easy to visualize; hence, it serves
well in an initial exposition of partial molar quantities and excess molar quantities.

18.1 PARTIAL MOLAR QUANTITIES BY DIFFERENTIATION
OF J AS A FUNCTION OF COMPOSITION

The calculation of partial molar quantities, defined [as in Equation (9.12)] as

Jmi ¼ @J

@ni

� �
T ,P,nj

(18:1)

requires the differentiation of J as a function of composition.

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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A particularly simple case is shown in Figure 18.1, in which the volume is a linear
function of the mole number of glycolamide in a kilogram of water. In this case, the
partial molar volume of solute Vm2 is constant and is equal to the slope of the line.
The partial molar volume Vm2 represents the effective volume of the solute in sol-
ution, that is, the increase in volume per mole of solute added. From Equation
(9.27), written for the volume function,

V ¼ n1Vm1 þ n2Vm2 (18:2)

The linear dependence of V on n2 at constant n1 also indicates that Vm1 is constant and
is equal to Vm1

† , the molar volume of pure solvent.
In general, the value of Vm2 is not equal to the molar volume of pure solute. For

example, glycolamide (Figure 18.1) has an effective volume Vm2 in a dilute aqueous
solution of 56.2 cm3 mol21; the pure solid has a molar volume of 54.0 cm3 mol21.
For iodine, Vm2 as a solute in liquid perfluoro-n-heptane is 100 cm3 mol21,
whereas the solid has a molar volume of 51 cm3 mol21, and the supercooled liquid
has a molar volume of 59 cm3 mol21. Hydrogen has an effective volume in
aqueous solution, at 101.32 kPa (1 atm) and 258C, of 26 cm3 mol21, in contrast to
approximately 25,000 cm3 mol21 for the pure gas. Furthermore, Vm2 for hydrogen
(as well as for many other solutes) varies greatly with solvent; it is 50 cm3 mol21

in ether and 38 cm3 mol21 in acetone. Even more surprising are the effective
volumes of some salts in water. For NaCl, the molar volume of the crystal is
27 cm3 mol21 compared with 16.4 cm3 for Vm2. For Na2CO3, the molar volume of
the pure solid is about 42 cm3 mol21 compared with 26.7 cm3 mol21 for Vm2; that
is, Na2CO3 dissolved in water has a negative effective volume. These observations
show very clearly that Vm2 reflects not only the volume of the solute molecule, but
also the effect that the solvent–solute interaction has on the volume of the solvent.

Figure 18.1. Linear dependence of volume on concentration for dilute solutions of glycol-
amide in water. Based on data of Gucker et al. [1].
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Partial Molar Volume

For most solutions, the volume is not a linear function of the composition; the slope
of the volume-concentration curve and the value of Vm2 are functions of the compo-
sition, as illustrated in Figure 18.2. In this case, it can be observed that the volume
does not change by equal increments when equal quantities of solute are added
successively to a fixed quantity of solvent.

Thus, let us consider what must be the significance of the slope (@V=@n2)n1,T ,P
represented by the dashed line in Figure 18.2. According to the principles of calculus,
this slope represents the change in volume per mole of added solute n2 (temperature,
pressure, and moles of solvent n1 being maintained constant) at a fixed point on the
curve—in other words, at some specified value of n2. As the mass of solvent is 1 kg,
n2 is numerically equal to the molality m2. The value of n2 must be specified because
the slope depends on the position on the curve at which it is measured. In practice,
this slope, which we represent by Vm2, as in Equation (18.1), refers to either one
of the following two experiments.

1. Measure the change in total volume V of the solution when one mole of solute
is added to a very large quantity (strictly speaking, an infinite quantity) of the
solution at the desired concentration. Because very large quantities of solution
are used, the addition of one mole of solute does not change the concentration
of the solution appreciably. As in the description of equilibrium in Chapter 10,
we may refer to the “infinite copy model.”

2. Measure the change in total volume V of the solution when a small quantity of
the solute is added to the solution. Then calculate the change for one mole (that
is, divide DV by Dn2) as if no change in composition occurred when a whole
mole of solute was added. Repeat this procedure, but add a smaller quantity
Dn02 of solute and compute DV 0/Dn02. Repeat again with a still smaller quantity

Figure 18.2. Nonlinear dependence of volume on molality for dilute solutions of sulfuric acid
(H2SO4) in water (H2O). Based on data of I. M. Klotz and C. F. Eckert, J. Am. Chem. Soc. 64,
1878 (1942).
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of added solute. The limiting value

lim
Dn2!0

DV

Dn2
¼ @V

@n2

� �
T ,P,n1

(18:3)

gives Vm2.

These are two equivalent points of view concerning the meaning of Vm2. Clearly,
Vm2 does not correspond to the actual change in volume when a whole mole of solute
is added to a limited quantity of solution because Vm2 is the increase in V upward
along the dotted line in Figure 18.2, whereas the actual volume follows the solid
line. To calculate Vm2 from the data represented in Figure 18.2, numerical or graphi-
cal differentiation is necessary, or the data can be fitted to a polynomial equation as in
the procedures described in Appendix A.

Most frequently, volume data for solutions are tabulated as density r as a function
of composition. The procedure for obtaining Vm2 is illustrated by reference to the
densities and weight percent concentrations of ethanol–water mixtures (Table 18.1,
Columns 1 and 4 at 258C).

To obtain Vm2, that is, (@V=@n2)n1,T ,P, we need values of V for a fixed quantity n1 of
water and for variable quantities n2 of ethanol. For this purpose we convert the
relative weights given in Column 1 to relative numbers of moles, that is, to n2/n1
in Column 2. The numbers in Column 2 also are the moles of ethanol accompanying
one mole of water in each of the solutions listed in Column 1.

From this information and the density (Column 4), we can calculate the volume in
cubic centimeters that contains one mole of water. The mass of a solution containing
n2 moles of ethanol and one mole of water is

mass ¼ n2
n1

�M(C2H5OH)þ 1�M(H2O) (18:4)

where M is the molar mass. Hence, the volume per mole of water is

V ¼ mass
r

cm3 (mole H2O)
�1 (18:5)

Numeric values for these volumes of solution that contain a fixed quantity (one
mole) of water are listed in Column 5. The partial molar volumes can be determined
by computing the derivative of the quantity in Column 5, the volume of a quantity of
solution containing one mole of water and varying moles of ethanol, with respect to
the number of moles of ethanol per mole of water, the quantity in Column 2.

Numeric values for the volumes of solution containing a fixed quantity (one mole)
of ethanol are listed in Column 7. The partial molar volumes can be determined by
computing the derivative of the quantity in Column 7, the volume of a quantity of
solution containing one mole of ethanol and varying moles of water, with respect
to the number of moles of water per mole of ethanol, the quantity in Column 3.
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One way to perform this calculation is to fit the data to a polynomial by the method
of least squares (see Section A.1) and to differentiate that function. A quartic fit of the
data for one mole of water and varying moles of ethanol yields the function

V ¼18:187þ 50:997 n2=n1 þ 14:592 (n2=n1)
2

� 15:0949 (n2=n1)
3 þ 5:9914 (n2=n1)

4

This equation yields an expression for Vm2

Vm2 ¼50:997þ 29:18 n2=n1

� 45:285 (n2=n1)
2 þ 23:966 (n2=n2)

3

A quartic fit of the data for one mole of ethanol and varying moles of water yields the
function

V ¼57:930þ 16:451 n1=n2 þ 0:2312 (n1=n2)
2

� 0:01571 (n1=n2)
3 þ 0:0004360 (n1=n2)

4

This equation yields an expression for Vm1

Vm1 ¼16:451þ 0:4624 n1=n2

� 0:04713 (n1=n2)
2 þ 0:001090 (n1=n2)

3

The values of Vm2 can also be determined graphically from a chord-area plot (see
Section A.2) of the ratio of increments listed in Column 6 versus n2/n1 because

DV

Dn2

� �
n1

¼ DV

D(n2=n1)

� �
n1¼1

(18:6)

Figure 18.3 shows a curve of the derivative calculated from the quartic best fit of V
as a function of n1/n2, which are points from a numeric differentiation, and chords
from a graphical differentiation, which show good agreement among the three
methods. In the graphical differentiation, the partial derivative (@V=@n2)n1,T ,P can
be determined from a smooth curve drawn through the chords so that the sum of
the areas above the chords is equal to the sum of the areas below the chords.
Clearly the graphical differentiation that requires careful plotting on a very large
graph to match the precision of the data is less convenient than computer fitting of
the volume data to a function followed by differentiation.

The partial molar volumes for water in the ethanol solutions can be calculated by
analogous procedures. An interesting alternative method is the tangent method [2].
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Partial Molar Enthalpy

Absolute values of partial molar enthalpies cannot be determined, just as absolute
values of enthalpies cannot be determined. Thus, it is necessary to choose some
state as a reference and to express the partial molar enthalpy relative to that
reference state. The most convenient choice for the reference state usually is the
infinitely dilute solution. Without committing ourselves to this choice exclusively,
we will nevertheless use it in most of our problems.

The relative values of partial molar enthalpies are used so frequently that it has
become customary to use the special symbol Lmi to represent them. Thus, Lmi,
which is the relative partial molar enthalpy, is defined by the equation

Lmi ¼ Hmi � Hmi8 (18:7)

in which H8mi is the partial molar enthalpy of component i in the standard state, that is,
the infinitely dilute solution. For the solvent, H8m1 equals Hm1

† , which is the molar
enthalpy of the pure solvent. For the solute, H8m2 generally does not equal Hm2

† ,
which is the molar enthalpy of the pure solute.

Figure 18.3. Graphical differentiation to obtain Vm2 in ethanol–water solution compared with
derivative of quartic fit of V as function of n2/n1 and numeric differentiation. The solid curve
represents the result of differentiation of a fitted quartic polynomial of V as a function of n2/n1.
The squares represent the results of a numeric differentiation. The horizontal lines represent a
graphical differentiation.
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Relative partial molar enthalpies also can be visualized in terms of a diagram, such
as Figure 18.4. Although the absolute position of Hml or H8ml on the enthalpy scale
cannot be specified, the difference between them can be determined.

Enthalpies of Mixing

Experimental data from which relative partial molar enthalpies can be calculated
consist of enthalpy changes for mixing processes, which are commonly those that
give integral heats of solution. An example of an integral heat of solution is the
enthalpy change for the process of dissolving one mole of NaCl in 1000 g (55.51
moles) of pure H2O to give a 1-molal solution, as shown by Equation (18.8):

NaCl(s)þ 55:51H2O(l) ¼ solution of 1NaCl and 55:51H2O(l) (18:8)

For such a process

DH ¼ Hfinal � Hinitial (18:9)

For any extensive thermodynamic property of a solution [Equation (9.27)]

J ¼ n1Jm1 þ n2Jm2

Thus,

DH ¼ Hfinal � Hinitial ¼ n1Hm1 þ n2Hm2 � n1H
†
m1 � n2H

†
m2 (18:10)

in which Hm1
† and Hm2

† are the molar enthalpies of pure solvent and pure solute,
respectively. As H8m1 ¼ Hm1

† ,

DH ¼ n1(Hm1 � Hm18 )þ n2(Hm2 � H†
m2)

¼ n1Lm1 þ n2(Hm2 � H†
m2) (18:11)

Figure 18.4. Relative partial molar enthalpy.
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If we add (H8m2 2 H8m2) to the preceding equation, we obtain

DH ¼ n1Lm1 þ n2[Hm2 � Hm28 (H†
m2 � Hm28 )]

¼ n1Lm1 þ n2(Hm2 � Hm28 )� n2(H
†
m2 � Hm28 )

or

DH ¼ n1Lm1 þ n2Lm2 � n2L
†
m2 (18:12)

Differentiation of Equation (18.12) term by term with respect to n1 at constant
n2 yields

@DH

@n1

� �
n2

¼ Lm1 þ n1
@Lm1

@n1

� �
n2

þ n2
@Lm2

@n1

� �
n2

(18:13)

From the Gibbs–Duhem equation [Equation (9.33)]

n1dLm1 þ n2dLm2 ¼ 0 (18:14)

Consequently, the last two terms of Equation (18.13) are equal to zero, so that

@DH

Dn1

� �
n2

¼ Lm1 (18:15)

If DH is plotted against n1 at constant n2, a graphical differentiation by the chord-area
method will yield Lm1 as a function of composition. Alternatively, the data could be
fitted to a polynomial and the derivative of that polynomial then could be computed.

Differentiation of Equation (18.12) with respect to n2 at constant n1 yields

@DH

@n2

� �
n1

¼ n1
@Lm1

@n2

� �
n1

þ n2
@Lm2

@n2

� �
n1

þ Lm2 � L†m2

¼ Lm2 � L†m2 (18:16)

because the Gibbs–Duhem equation eliminates the first two terms of the equation. To
obtain Lm2 from the experimental data, it is necessary to have a value of Lm2

† , which is
the relative partial molar enthalpy of the pure solute.

As

lim
n2!0

Lm2 ¼ 0

we can observe that

lim
n2!0

@DH

@n2

� �
n1

¼ �L†m2 (18:17)

From the limiting value of the slope of a DH versus n2 plot, it is possible to calculate
Lm2
† . It follows that Lm2 at any concentration can be evaluated from

Lm2 ¼ @DH

@n2

� �
n1

� lim
n2!0

@DH

@n2

� �
n1

(18:18)
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Lewis and Randall [3] have recalculated some of Thomsen’s data on the heat
absorbed when n2 moles of gaseous HCl is dissolved in 1000 g of H2O. A plot of
DH as a function of n2 at constant n1 is shown in Figure 18.5.

To find Lm2 it is necessary to calculate (@DH=@n2)n1,T ,P at various molalities of
HCl. The data in Figure 18.5 have been fitted to a quadratic polynomial by the
method of least squares.1 The equation obtained is

DH ¼ (13:33+ 18:52)� (17375+ 7) n2 þ (216:94+ 0:41) (n2)
2

Therefore

lim
n2!0

dDH

dn2
¼ 17375 cal mol�1

Hence, the relative partial molar enthalpies of HCl in aqueous solutions can be
expressed by the equation

Lm2 ¼ @DH

@n2

� �
n1

þ 17,375

¼ �17,375þ 432n2 þ 17,375

¼ 432 n2 ¼ 432 m2 (18:19)

Thus, for a 10-molal solution, the value of Lm2 can be calculated from Equation
(18.19) as

Lm2 ¼ [432 cal (mol kg�1)�1][10:0mol kg�1] ¼ 4320 cal

Figure 18.5. Enthalpy of solution of n2 moles of gaseous HCl in 1 kg of H2O. Based on data
from Ref. 3.

1We can tabulate values of D(DH)/(Dn2), D(DDH )/(Dn2), and D(DDDH )/Dn2 and find that the third quan-
tity varies randomly about zero, which is a behavior that indicates that the second derivative of DH with
respect to n2 is constant within experimental error, or we can fit the data to polynomials of successively
higher powers until no significant improvement in standard deviation occurs for the coefficients.
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Although Thomsen’s data provide a basis for illustrating this method of calcu-
lation, they imply a relationship between DH and m2 at low molalities that is probably
not an accurate description of the system. A better functional relationship, which is
based on more modern data, will be discussed in Chapter 19.

Enthalpies of Dilution

Relative partial molar enthalpies can also be obtained from measurements of enthal-
pies of dilution. Humphrey et al. [4] have used enthalpy of dilution measurements to
calculate relative partial molar enthalpies in aqueous solutions of amino acids. Their
data for DHdil of aqueous solutions of serine are shown in Table 18.2, where mi is the
initial molality of the solution, mf is the molality after addition of a small amount of
solvent, and DHdil is equal to the measured DH divided by n2, which is the number of
moles of solute in the solutions.

If the initial solution contains n1 moles of solvent and n2 moles of solute, and if n01
moles of solvent are added,

DH ¼ (n1 þ n01)Hm1f þ n2Hm2f � (n1Hm1i þ n2Hm2i þ n01H
†
m1)

¼ n1(Hm1f � Hm1i)þ n2(Hm2f � Hm2i)þ n01(Hm1f � H†
m1) (18:20)

If we add (H8m1 2 H8m1) to the first parenthesis and (H8m2 2 H8m2) to the second
parenthesis, the result is

DH ¼ Lm2f � Lm2i (18:21)

and

DHdil ¼ DH

n2
¼ Lm2f

n2
� Lm2i

n2
(18:22)

TABLE 18.2. Enthalpies of Dilution of Aqueous Solutions of Serine [4]

mi mf DHdil mi mf DHdil

3.8317 1.7044 583.3 0.7716 0.3774 227.8
3.0292 1.3788 527.5 0.7716 0.5114 146.1
3.0292 0.8927 735.2 0.7716 0.2480 312.9
2.0104 0.9482 434.8 0.5862 0.3879 118.2
1.8084 0.8541 411.6 0.5862 0.2876 181.7
1.8084 0.5592 573.6 0.5862 0.1919 244.9
1.6801 0.7986 393.2 0.3829 0.1900 124.1
1.0127 0.4912 279.4 0.3829 0.1258 170.4
1.0127 0.3237 386.3
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If we assume that Lm2/n2 can be expressed as a polynomial in the molality m,

Lm2

n2
¼ A1mþ A2m

2 þ A3m
3 þ � � � (18:23)

then

DHdil ¼ A1(mf � mi)þ A2(m
2
f � m2

i )þ A3(m
3
f � m3

i )þ � � � (18:24)

The constants in Equations (18.23) and (18.24) can be determined by fitting DHdil to a
function of mf 2 mi with a least-squares fitting procedure (Section A.2). The
appropriate degree of the polynomial is found by increasing the number of terms as
long as the sum of square deviations decreases significantly. The results for the
data in Table 18.2 for a cubic polynomial are as follows: A1 ¼2723+ 5.5 J mol21

(mol kg21)21, A2 ¼ 137+ 3.4 J mol21 (mol kg21)22, and A3 ¼ 212 J mol21

(mol kg21)23. Then, from Equation (18.23)

Lm2 ¼ n2A1mþ n2A2m
2 þ n2A3m

3 þ � � � (18:25)

But,

n2 ¼ n1M1m (18:26)

where M1 is the molar mass (in kg) of the solvent. Therefore, for 1 kg of solvent, in
which case n1 ¼ 1/M1,

L ¼ n1M1A1m
2 þ n1M1A2m

3 þ n1M1A3m
4 þ � � �

¼ A1m
2 þ A2m

3 þ A3m
4 þ � � � (18:27)

Then,

Lm2 ¼ @L

n2

� �
T ,P,n1

¼ @L

@m

� �
T ,P,n1¼1=M1

¼ 2A1mþ 3A2m
2 þ 4A3m

3 þ � � � (18:28)

Of course, the expression for Lm2 is independent of the amount of solvent, because it is
an intensive variable. Then, for 1 kg of solvent, with n2 ¼ m and n1 ¼ 1/M1,

Lm1 ¼ L� n2Lm2

n1

¼ 1
n1

[A1m
2 þ A2m

3 þ A3m
4 � n2(2A1mþ 3A2m

2 þ 4A3m
3)]

¼ M1(A1m
2 þ A2m

3 þ A3m
4 � 2A1m

2 � 3A2m
3 � 4A3m

4)

¼ �M1(A1m
2 þ 2A2m

3 þ 3A3m
4) (18:29)

The values of Lm1 and Lm2 calculated fromEquations (18.28) and (18.29) are plotted in
Figures (18.6) and (18.7).
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Some authors (4,5,6,9,10) have used the apparent molar quantity FJ2, where

FJ2 ¼ J � J0
n2

¼ J � n1J†m1

n2
(18:30)

The apparent molar enthalpy FH2 has been used to derive relative partial molar
enthalpies from enthalpy of dilution data. The apparent molar enthalpy is defined as

FH2 ¼ H � n1H†
m1

n2
(18:31)

Figure 18.6. Relative partial molar enthalpy of water in serine solutions. Data from Ref. 4.

Figure 18.7. Relative partial molar enthalpy of serine in aqueous solutions. Data from Ref. 3.
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and the apparent relative molar enthalpy is

FL2 ¼ L� n1L†m1

n2
¼ L

n2
(18:32)

because Lm1
† is equal to zero. The procedure that we have described for the treatment

of enthalpy of dilution data is more direct, however. In addition, whenever the value
of FJ2 can be expressed as a polynomial in m,

FJ2 ¼ aþ bmþ cm2 (18:33)

the value of J for a solution containing 1 kg of solvent can also be expressed as a
polynomial in m, because then n2 ¼ n1 M1 m, and n1 ¼ 1/M1.

J ¼ n2FJ2 þ n1J
†
m1

¼ amþ bm2 þ cm3 þ J†m1

M1
(18:34)

18.2 PARTIAL MOLAR QUANTITIES OF ONE COMPONENT
FROM THOSE OF ANOTHER COMPONENT BY NUMERICAL
INTEGRATION

Rearrangement of Equation (9.33) leads to

dJm1 ¼ � n2
n1

dJm2 (18:35)

This equation can be integrated from the infinitely dilute solution (n2 ¼ 0) to any
finite concentration to give

ðJm1

Jm18

dJm1 ¼
ðJm2

Jm28

n2
n1

dJm2

or

Jm1 � Jm18 ¼ �
ðJm2

Jm28

n2
n1

dJm2 (18:36)

in which J8m1 represents the partial molar quantity of the solvent at infinite dilution of
the solute, that is, pure solvent in its standard state. (For example, for water at room
temperature, V8m1 ¼ Vm

† ¼ 18 cm3 mol21.) J8m2 is the partial molar quantity of the
solute in its standard state, which is the hypothetical standard state extrapolated
along the Henry’s-law line. For both volume and enthalpy, the standard-state quantity
has the same value as the quantity at infinite dilution. [See Equations (16.34)
and (16.38).]
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Partial Molar Volume

When Vm2 is available as a function of the composition (that is, as a function of n2 at
fixed n1), it is possible to calculate Vm1 by numerical integration (see Section A.2) of
Equation (18.39), applied specifically to volumes:

Vm1 � Vm18 ¼ �
ðVm2

Vm28

n2
n1

dVm2 (18:37)

Values of n2/n1 are plotted against Vm2, as in Figure 18.8, and a numerical integration
is carried out from tabulated values of n2/n1 and Vm2. If the intervals DVm2 are suffi-
ciently small

S
...
n2
n1

� �
DVm2 ffi

ðVm2

Vm28

n2
n1

dVm2 (18:38)

in which (
...
n2/n1) represents the average value of this ratio in the interval DVm2. As

Vm1
† is the molar volume of pure solvent, it can be calculated from the known

molar mass and density of the pure solvent.

Partial Molar Enthalpy

If Equation (18.37) is applied to relative partial molar enthalpies

Lm1 � Lm18 ¼ Lm1 ¼ �
ðLm2

Lm28

n2
n1

dLm2 (18:39)

By the same numerical procedure described for partial molar volumes, the relative
partial molar enthalpies of solvent can be evaluated from the values for the solute.

Figure 18.8. Sketch of data for numericl integration to determine Vm1 from Vm2.
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18.3 ANALYTIC METHODS FOR CALCULATION OF PARTIAL
MOLAR PROPERTIES

When the value of an intensive property J can be expressed as an algebraic function
of the composition, the partial molar quantities can be determined analytically.

Partial Molar Volume

In the case of valine in water [5] at 298.15 K and 1 atm, for example, V (the volume of
solution in cubic decimeters for 1000 g of water) can be expressed in terms of the
following series in the molality m2:

V ¼ 0:9999999þ 0:0920377m2 þ 0:00022207m2
2 (18:40)

or

V ¼ 0:9999999þ 0:0920377 n2 þ 0:00022207 n22 (18:41)

The value of Vm2 can be obtained by differentiation, because the quantity of solvent
is fixed:

Vm2 ¼ @V

@n2

� �
n1

¼ 0:920377þ 0:00044414 m2

¼ 0:920377þ 0:00044414 n2 (18:42)

where n2 is the number of moles of solute in 1 kg of solvent.
The partial molar volume of the solvent Vm1 can be obtained by the integration

illustrated in Equation (18.37). To evaluate dVm2 we merely need to differentiate
Equation (18.42):

dVm2 ¼ 0:00044414 dn2 (18:43)

Substituting from Equation (18.43) into Equation (18.37), we have

Vm1 � V†
m1 ¼ �

ðVm2

Vm28

n2
n1

dVm2 ¼ �
ðn2
0

n2
n1

0:00044414 dn2 (18:44)
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As n1 ¼ 1000/18.02 ¼ 55.51 and as Vm1
† ¼ 18.08 cm3 mol21

Vm1 ¼ 18:08� 1
n1

ðn2
0

0:00044414 n2dn2

¼ 18:08� 00022207
55:51

n22

¼ 18:08� 4:00054� 10�6 n22
( for 1000 g of solvent)

¼ 18:08� 4:00054� 10�6 m2
2 (18:45)

Partial Molar Enthalpy

Values of Lm1 for the HCl solutions for which Lm2 is given in Equation (18.19) also
can be obtained by analytical integration of Equation (18.19):

Lm1 ¼ � 1
55:51

ðm2

0

m2(432 dm2)

¼ �3:89m2
2 (cal mol�1) (18:46)

18.4 CHANGES IN J FOR SOME PROCESSES IN SOLUTIONS

We need to consider two kinds of processes involving solutions, other than chemical
changes. One kind is a transfer or differential process, and the other is a mixing or an
integral process.

Transfer Process

Consider the equation

glycine(s) ¼ glycine (m2 ¼ 1, aq) (18:47)

An infinitesimal transfer of glycine from the solid phase to the solution at constant
temperature, pressure, and composition of solution results in a corresponding
change dJ in the thermodynamic property J of the system composed of crystalline
glycine and a 1-molal aqueous solution of glycine. The application of Equation
(9.32) leads to the expression

dJ ¼ J†m2(s) dn2(s) þ Jm2(m2¼1) dn2 (18:48)
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As mass is conserved in the transfer,

�dn2(s) ¼ dn2(m2¼1) ; dn

and Equation (18.48) can be written as

dJ ¼ �J†m2(s)dnþ Jm2(m2¼1) dn

¼ [Jm2(m2¼1) � J†m2(s)] dn (18:49)

Equation (18.49) can be integrated to obtain the change in J for the solution of
one mole of glycine in an infinite volume of solution of molality m2:

ðJ2
J1

dJ ¼
ðn2þ1

n2

[Jm2(m2¼1) � J†m2(s)] dn (18:50)

or

DJ ¼ J2 � J1 ¼
ðn2þ1

n2

[Jm2(m2¼1) � J†m2(s)] dn (18:51)

It is characteristic of a differential process that the transfer occurs without a change in
the composition of any phase. If a finite change of state is to occur without a change
of composition, the aqueous solution of Equation (18.47) must have a volume suffi-
ciently large that the addition of one mole of solid glycine does not change the com-
position, so that Jm2(m2¼1), like Jm2(s)

† , is a constant. Then the integral on the right side
of Equation (18.51) can be evaluated as

DJ ¼ J2 � J1 ¼ Jm2(m2¼1) � J†m2(s) (18:52)

For the case in which J represents the volume of the system, we can use the data
(Table 18.3) of Gucker et al. [1] on the partial molar volumes in aqueous glycine

TABLE 18.3. Partial Molar Volumes in Aqueous
Solutions of Glycine

m/(mol kg21) Vm2/(cm
3 mol21) Vm1/(cm

3 mol21)

0 43.20 18.07
1 44.88 18.05
Pure solid 46.71
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solutions. Then we calculate DV for the change of state in Equation (18.47) as

DV ¼ Vm2(m2¼1) � V†
m2(s)

¼ 44:88 cm3 mol�1 � 46:71 cm3 mol�1

¼ �1:83 cm3 mol�1 (18:53)

Thus, the volume change for Equation (18.47) is the sum of the volume change
for the disappearance of one mole of solid glycine, 2Vm2(s)

† , and the volume
change for the addition of one mole of solid glycine to a large volume of solution
with m2 ¼ 1, Vm2.

A process analogous to that of Equation (18.47) is

H2O(1) ¼ H2O(solution, m2 of glycine ¼ 1) (18:54)

for which

DJ ¼ Jm1(m2¼1) � J†m1

or, for the volume,

DV ¼ Vm1(m2¼1) � V†
1

¼ 18:05 cm3 mol�1 � 18:07 cm3 mol�1

¼ �0:02 cm3 mol�1 (18:55)

Integral Process

More typical of common experience is a mixing process such as

glycine(s)þ 55:51H2O(l) ¼ solution
55:51H2O;
1 glycine;
m2 ¼ 1

2
4

3
5 (18:56)

for which

DJ ¼ Jfinal � Jinitial

But the expression for Jfinal and Jinitial includes terms for all components of the initial
and final phases, because the composition of the phases changes during the mixing
process. Thus,

DJ ¼ n1Jm1 þ n2Jm2 � n1J
†
m1 � n2J

†
m2(s) (18:57)
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which for Equation (18.56) becomes

DJ ¼ 55:51(Jm1 � J†m1)þ Jm2 � J†m2(s)

¼ 55:51(� :02)þ 44:88� 46:71

¼ �2:94 cm3 (18:58)

18.5 EXCESS PROPERTIES: VOLUME AND ENTHALPY

Excess Volume

As with other excess thermodynamic properties (Section 16.7), the excess volume is
defined as

VE
M ¼ DVmix � DV I

mix ¼ DVmix (18:59)

because DVmix
I , the volume change on mixing for an ideal solution, is equal to zero.

The values of VM
E can be measured directly with a dilatometer, or they can be calcu-

lated from density measurements of pure components and solutions. For mixtures of
components A and B

VE
M ¼ [XMA þ (1� X)MB]

r
� XMA

rA
� (1� X)MB

rB
(18:60)

where MA and MB are the molar masses of the components, rA and rB are the corre-
sponding densities, X is the mole fraction of A, and r is the density of the solution. As
with the excess Gibbs function, analytical expressions for excess volumes can be
obtained by fitting experimental data to a Redlich–Kister expression of the form

VE
M ¼ X(1� X) S

i¼N

i¼0
Ai(2X � 1)i (18:61)

where X is the mole fraction of component A and N is determined by fitting poly-
nomials with successively larger number of terms until an additional term does not
improve the sum of squares of deviations between experimental and calculated
values, which is a quantity provided by the fitting program (see Section A.1).

Excess Enthalpy

From Equation (16.58),

HE
M ¼ DHmix
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so experimental values of enthalpy of mixing give the excess enthalpies directly.
As with excess Gibbs function and excess volumes, the results can be fitted to a
Redlich–Kister expression of the form

HE
M ¼ X(1� X) S

i¼N

i¼0
Ai(2X � 1)i (18:62)

Enthalpy of dilution data can be used to calculate excess enthalpies by a procedure
analogous to that we used to calculate relative molar enthalpy from enthalpy of
dilution. We can describe the dilution of an aqueous solution of n1 moles of water
and n2 moles of solute S with (n1f 2 n1i) moles of water by the equation

[n1i H2Oþ n2 S]þ (n1f � n1i) H2O ¼ [n1f H2Oþ n2 S] (18:63)

For this process, the enthalpy of dilution is given by

DHdil ¼ n1fHm1f þ n2Hm2f � [n1iHm1i þ n2Hm2i þ (n1f � n1i)Hm18 ] (18:64)

Exercise (18.20) leads to the result

DHm,dil ¼ HE
mf � HE

mi (18:65)

For solutions for which the molality is a convenient measure of composition, it has
been suggested [6] that Hm

E can be expressed as a polynomial in m

HE
m ¼ h1mþ h2m

2 þ � � � (18:66)

Consequently,

DHm,dil ¼ h1(mf � mi)þ h2(mf � mi)
2 þ � � � (18:67)

The constants needed to obtain a value of Hm
E as a function of m can be obtained by

fitting the enthalpy of dilution data to Equation (18.67) by a nonlinear least-squares
method. (see Section A.1).

EXERCISES

18.1. Show that @J/@X1 is not identical with @J/@n1 if n2 is held constant in both
cases.

18.2. a. If V is the volume of a two-component solution containing 1 kg of solvent,
show that

Vm2 ¼ M2 � V(@r=@m2)T ,P
r
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in whichM2 is the molar mass of the solute, r is the density of the solution,
and m2 is the molality of solute.

b. Show that

Vm1 ¼
M1 1þ m2V

@r

@m2

� �
T ,P

" #

r

18.3. If c is the concentration in moles of solute per dm3 of solution, r is the density
of the solution, and r0 is the density of pure solvent, show that

a.
wV2 ¼ 1

c
� 1
r0

r

c
�M2

h i

b.
Vm2 ¼ M2 � (@r=@c)T ,P

r� c(@r=@c)T ,P

c. Vm1 ¼ M1

r� c(@r=@c)T ,P

d. For a particular two-component solution, the density can be expressed
as a linear function of the molar concentration of the solute. Prove that
Vm1 ¼ Vm1

† and Vm2 ¼ constant.

18.4. a. Verify the calculations in Table 18.1 for the solutions that are 20 and 25
mass percent ethanol.

b. Plot the volume per mole of water (Column 5) versus n2/n1.

c. Fit the data used to plot the graph in (b) to an appropriate polynomial
in n2/n1.

d. Plot the volume per mole of ethanol (Column 7) against n1/n2.

e. Fit the data used to plot the graph in (d) to an appropriate polynomial
in n1/n1.

f. As a method of checking the calculations in Table 18.1, calculate the
volume of 500 g of a 45% ethanol solution from the partial molar
volumes, and compare the value obtained with that which can be calcu-
lated directly by using the density.

g. Carry out a numeric integration of Vm1 as a function of n1/n2 to find the
difference between Vm2 in a 65% solution and Vm2 in a 25% solution.

h. Find Vm2 for a 25% solution from the fitted polynomial in (c), and add it to
the difference calculated in (g). Compare the sum with the value of Vm2 in
a 65% solution, which can be found from the fitted polynomial in (c).
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18.5. Using the data in Exercise 4 and the data for the density of pure H2O (0.99708
g cm23 at 258C) and of pure ethanol (0.78506 g cm23 at 258C), compute the
volume changes per mole of ethanol for the following processes:

a. C2H6O(l) ¼ C2H6O (45% aqueous ethanol)

b. H2O(l) ¼ H2O (45% aqueous ethanol)

18.6. Compute Vm ¼ V/(n1 þ n2) for each of the ethanol–water mixtures in
Table 18.1, and plot the value of Vm as a function of XH 2O. It can be
shown that the equation of the tangent line to the curve that you have
drawn is

Vm ¼ (Vm1 � Vm2)X1 þ Vm2

Fit the data for Vm as a function of X1 to this equation, and use this equation to
calculate the values of Vm1 and Vm2 in a 45% ethanol solution. Compare them
with the results in Exercise 4 (g and h).

18.7. a. Compute the volume change for the process

4:884 C2H6O(l)þ 15:264H2O(l)¼ 4:884C2H6O
15:264H2O

(in large quantity of
aqueous solution of

45% ethanol)

2
4

3
5

b. Compute the volume change for the process 4.884 C2H6O(l) þ
15.264 H2O(l) ¼ 500 g of aqueous solution of 45% ethanol

c. Compare the answers in (a) and (b). They should be the same, within
computational error. Why?

d. Write word statements that emphasize the differences in meaning among
the equations in Exercises 5(a), 5(b), 7(a), and 7(b).

18.8. The specific heats of aqueous solutions of glycolamide at 258C are listed in
Table 18.4. [Reprinted with permission from Ref. 1. Copyright 1941
American Chemical Society.]

a. Using the method of least squares, derive a polynomial expression for CPm

as a function of m2.

b. Derive an equation for the partial molar heat capacity of glycolamide
based on the least-squares equation for CPm.

c. Calculate numeric values of CPm(2) at the concentrations listed in
Table 18.4, and plot them as a function of m2.

d. Derive an equation for the partial molar heat capacity of water in aqueous
solutions of glycolamide, and plot calculated values as a function of m2.
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18.9. According to MacInnes and Dayhoff [7], the apparent molar volume of KI
in CH3OH can be expressed by the equation

wV2 ¼ 21:45þ 11:5m1=2
2

when V is expressed in cm3. The density of pure methanol is 0.7865 g cm23.

a. Derive the corresponding expression for the volume as a function of
molality for a solution that contains 1 kg of solvent.

b. Compute DVm for the process

CH3OH(l) ¼ CH3OH(soln, m2 ¼ 1)

18.10. For iodine in methanol solution, the partial molar volume of the solute is
essentially constant, independent of concentration, and is equal to 62.3 cm3

mol21 at 258C [7]. Solid I2 has a density of 4.93 g cm23, and pure methanol
has a density of 0.7865 g cm23 at 258C.
a. Compute DVm for I2(s) ¼ I2(m2 ¼ 1).

b. Compute DVm for I2(s) ¼ I2(m2 ¼ 0).

c. Compute DVm for I2(m2 ¼ 1) ¼ I2(m2 ¼ 0).

d. Compute DVm for CH3OH(l) ¼ CH3OH(soln, m2 ¼ 1).

e. Compute DVm for I2(s) þ 31.2 CH3OH(l) ¼ soln(m2¼ 1).

18.11. Gucker et al. [8] have found that the equation

FL2 ¼ 128:9m2

expresses the relative apparent molar enthalpy of aqueous solutions of sucrose
at 208C whenFL2 is in cal mol21. Derive expressions for L, the relative molar
enthalpy per kilogram of solvent, Lm2, and Lm1 as a function of the molality.

18.12. Prove that @Lm1/@T ¼ CPm(1) 2 CPm(1)
† .

TABLE 18.4. Specific Heats of Glycolamide (aq) at 2588888C

m2/(mol kg21) CPm/(cal g
21) mol21)

0.0000 (1.00000)
0.2014 0.99223
0.4107 0.98444
0.7905 0.97109
1.2890 0.95467
1.7632 0.94048
2.6537 0.91666
4.3696 0.87899
4.3697 0.87900
6.1124 0.84891
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18.13. With the aid of the data in Exercise 11 and the following equation for the rela-
tive molar enthalpy per kilogram of solvent at 308C (in units of cal mol21),

L ¼ 140:2m2
2

derive expressions for CPm(2) and CPm(1) for aqueous sucrose solutions at
258C. C†

pm(2) is 151.50 cal mol21 K21. What assumption must be made to
do the calculation with these data alone?

18.14. The heat absorbed when m2 moles of NaCl is dissolved in 1000 g of H2O is
given by the expression (for DH in cal kg21 of water).

DH ¼ (923 cal mol�1)m2 þ (476:1 cal mol�1:5 kg0:5)m3=2
2

� (726:1 cal mol�2 kg)m2
2 þ (243:5 cal mol�2:5 kg1:5)m5=2

2

a. Derive an expression for Lm2, and compute values of the relative partial
molar enthalpy of NaCl in 0.01 molal and 0.1 molal solutions.

b. Derive an expression for Lm1, and compute its value for 0.01 molal and
0.1 molal solutions.

c. If the expression in this exercise for DH per 1000 g of H2O is divided by
m2, the number of moles of solute in 1000 g of H2O, we obtain the heat
absorbed when one mole of NaCl is dissolved in enough water to give a
molality equal to m2. Show that this equation is

DHm (for 1 mole of NaCl) ¼ 923þ 476:1m1=2
2 � 726:1m2

þ 243:5m3=2
2

d. Calculate ð@DH=@n1Þn2 from the preceding expression. Derive an
equation for Lm1, and compare the result with that obtained in (b).

18.15. Table 18.5 lists the relative partial molar enthalpies of glycine and its aqueous
solutions at 258C. [Reprinted with permission from Ref. 9. Copyright 1940
American Chemical Society.]

a. The enthalpy of solution of an infinitesimal quantity of pure solid glycine
in a saturated aqueous solution is 3411 cal mol21. Show that L8m2(s) is
23765 cal mol21.

b. Calculate DHm for the addition of an infinitesimal quantity of solid glycine
to a 1-molal aqueous solution.

c. Calculate DHm for the addition of an infinitesimal quantity of solid glycine
to an infinitely dilute aqueous solution.

d. Calculate DHm for the addition of one mole of solid glycine to 1000 g of
pure water to form a 1-molal aqueous solution.
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18.16. At 258C the partial molar volume of urea [CO(NH2)2] solution in water is
found by a nonlinear least-squares fitting procedure to be the following func-
tion of m2 up to 17-molal concentration (with V in cm3 mol21), with exper-
imental data from Gucker et al. [10] and the form of the equation from Stokes:

V ¼ 1002:894þ 44:3838
m2

(1� 0:007413m2)
� 0:24613

m2
2

(1� 0:007413m2)2

þ 1:034� 10�8 m3
2

(1� 0:007413m2)3

Table 18.6 show the experimental results of Gucker et al. [10] for the molar
concentration of urea, the density r of the solutions in grams per liter, and the
partial molar volume of urea in cm3 calculated from the density data.

TABLE 18.5. Relative Molar Enthalpies of Glycine (s)
and Glycine (aq) at 2588888C

m2/(mol kg21) Lm1/(cal mol21) Lm2/(cal mol21)

1.000 1.537 2165.5
3.33 (saturated) 2354
Glycine (pure) 23765

TABLE 18.6. Density Data from Ref. 10 for
Aqueous Solutions of Urea

C/mol L21 r/g L21 Vm2/cm
3 mol21

0.00000 997.074 (44.218)
0.11394 998.892 44.250
0.15077 999.475 44.260
0.35215 1002.683 44.320
0.41500 1003.675 44.340
0.62386 1006.983 44.380
1.00812 1013.039 44.486
1.36866 1018.669 44.576
1.88532 1026.698 44.698
2.42107 1034.410 44.817
3.33355 1048.838 45.004
3.98193 1058.612 45.123
5.05362 1074.560 45.302
5.92297 1087.289 45.428
7.28543 1106.989 45.597
8.20690 1120.039 45.690
9.52555 1138.980 45.801
9.53161 1138.910 45.802
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a. Calculate the corresponding values of m2 at each concentration.

b. Plot Vm2 as a function of m2, and compare the experimental values with
a curve for a cubic polynomial fit and the curve for the nonlinear
equation above.

c. Calculate the residuals for both the cubic fit and the nonlinear equation,
and plot them. Explain on the basis of the residuals why the nonlinear
equation is a better fit even at low molalities.

d. Calculate V for 1 kg of solvent and Vm1 for each solution from values ofm2

and the density.

e. The density of solid urea is 1.335 g cm23 and the density of pure liquid
water is 0.988 g cm23. Calculate DVm for each of the following processes:

(i) urea(s) ¼ urea(aq soln, m2 ¼ 1.4615)

(ii) urea(s) þ 55.51 H2O(l) ¼ solution(m2 ¼ 1.4615)

18.17. Calado and Gomes de Azevedo (11) have measured the molar volume of
liquid mixtures of ethane and ethene at 161.39 K. Their values are shown
in Table 18.7.

a. Calculate the partial molar volumes of each component at the given mole
fractions.

b. Derive the relation between the partial molar volumes and the excess
volumes in the third column.

18.18. Mato et al. [12] measured the excess volume of solutions of methyl tert-
butyl ether [1] and chloroform [2] at 298.15 K. Their data are shown in
Table 18.8.

a. Plot Vm
E as a function of X1, and fit the data to an equation of the form

VE
m ¼ X1X2[Aþ B(2X1 � 1)þ C(2X1 � 1)2] (18:68)

b. Plot the fitted curve on the same graph.

TABLE 18.7. Molar Volume of Liquid Mixtures
of Ethane and Ethene at 161.39 K

X(ethene) Vm/cm
3 mol21 Vm

E/cm3 mol21

0.0000 52.548 0.000
0.2444 51.684 0.131
0.3253 51.365 0.141
0.4214 50.988 0.156
0.5357 50.519 0.153
0.6407 50.086 0.148
0.7115 49.793 0.142
0.7898 49.445 0.114
1.0000 48.475 0.000
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18.19. Palmer and Smith [13] have measured the equilibrium pressure P, liquid
composition X1, vapor composition Y1, and excess enthalpy for solutions of
acetonitrile [1] and benzene [2] at 458C. The data are shown in Table 18.9.

a. Calculate the partial pressure of each component, the activity of each
component in the liquid phase based on a Raoult’s-law standard state,
and the excess Gibbs function of each solution shown in the first three
columns. Plot the values of ln(g1/g2) against X1 to determine the kind
of Redlich–Kister polynomial to use for fitting the data. As that plot is
nonlinear, at least a two-parameter polynomial is needed. Fit your data
to a four-parameter polynomial, and compare graphically the calculated
function and the calculated values of GM

E from the vapor pressure data.

b. Plot the values of HM
E /(J mol21) against X1 from the data in the table.

Fit these data with an analogous four-parameter function, and plot the
calculated function on the same graph.

c. Use the functions you obtained for GM
E and HM

E to calculate SM
E as a func-

tion of X1. Plot the values of GM
E , HM

E , and TSM
E on the same graph.

Comment on the basis for the sign of TSM
E .

18.20. Show that the molar enthalpy of dilution DHdil/n2 is equal to Hmf
E 2 Hmi

E .

18.21. Reading and Hedwig [14] measured the enthalpy of dilution of aqueous
solutions of some dipeptides at 298.15 K. Their data for glycyl-L-valine are
given in Table 18.10. Fit the data to Equation (18.67), starting with a first-
power polynomial and adding terms until the sum of square deviations no
longer decreases, and use the constant(s) you obtain to express Hm

E as a
function of m. Plot the values calculated from the fitted function.

TABLE 18.8. Excess Volumes of Solutions of Methyl
tert-Butyl Ether and Chloform at 198.15 K

X1 Vm
E

0.0703 20.416
0.1525 20.718
0.2167 20.774
0.2927 20.958
0.377 21.004
0.476 21.051
0.5782 21.006
0.6053 20.986
0.6576 20.954
0.7776 20.734
0.7895 20.735
0.8209 20.585
0.8637 20.477
0.8681 20.427
0.9439 20.230
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TABLE 18.9. Vapor and Liquid Compositions, Equilibrium Pressures, and Excess
Enthalpies for Solutions of Acetonitrile and Benzene at 4588888C

X1 Y1 P/(atm) X1 HM
E /(cal) HM

E /J

0.0000 0.0000 0.2939 0.0000 0.0 0.0
0.0247 0.0682 0.3084 0.0848 33.0 138.1
0.0744 0.1531 0.3270 0.1778 59.7 249.8
0.2221 0.3018 0.3534 0.2537 78.1 326.8
0.3091 0.3670 0.3618 0.3309 94.0 393.3
0.4145 0.4361 0.3663 0.4048 105.8 442.7
0.5266 0.4962 0.3667 0.4812 114.1 477.4
0.5680 0.5146 0.3653 0.5403 117.4 491.2
0.6858 0.5987 0.3568 0.5708 117.9 493.3
0.7953 0.6759 0.3433 0.6025 117.5 491.6
0.8912 0.7749 0.3222 0.6431 114.4 478.6
0.9833 0.9516 0.2847 0.6460 115.2 482.0
1.0000 1.0000 0.2749 0.6805 111.3 465.7

0.7408 102.9 430.5
0.8016 89.1 372.8
0.8669 67.8 283.7
0.9361 36.6 153.1
1.0000 0.0 0.0

TABLE 18.10. Enthalpies of Dilution and Initial and Final Molalities
for Aqueous Solutions of Glycyl-L-Valine at 298.15 K

mi mf DHm,dil

0.3001 0.1478 2123.3
0.3001 0.0981 2168.2
0.2798 0.1380 2116.5
0.2798 0.0916 2157.9
0.2598 0.1283 2106.1
0.2390 0.1182 298.7
0.2390 0.0785 2133.4
0.2199 0.1087 292.2
0.2199 0.0723 2124.7
0.2002 0.0992 285.2
0.2002 0.0659 2112.5
0.1798 0.0892 275.6
0.1798 0.0593 299.1
0.1596 0.0793 265.8
0.1596 0.0527 286.4
0.1399 0.0696 258.1
0.1399 0.0463 274.3
0.1199 0.0597 250.0
0.1199 0.0397 267.6
0.1000 0.0499 244.2
0.1000 0.0322 256.8
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18.22. Kojitani and Akaogi [15] calculated the excess enthalpy of mixing of solid
Fe2SiO4 and Mg2Sio4 to form olivine solid solutions at 979 K from measure-
ments of the enthalpy of solution of the pure solids to form solid solutions
of known composition in molten 2PbO . B2O3 at the same temperature.
Their data are given in Table 18.11. The column labeled X1 shows the com-
position of the solid solutions, and X1 represents the mole fraction of
Mg2SiO4 in each sample.

a. Calculate the values of Hm
E for each solid solution.

b. Fit the data to a Redlich–Kister polynomial for a regular solution.

c. Plot the experimental points and the calculated equation on the same
graph.
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CHAPTER 19

ACTIVITY, ACTIVITY
COEFFICIENTS, AND
OSMOTIC COEFFICIENTS OF
STRONG ELECTROLYTES

In Chapters 16 and 17, we developed procedures for defining standard states for
nonelectrolyte solutes and for determining the numeric values of the corresponding
activities and activity coefficients from experimental measurements. The activity of
the solute is defined by Equation (16.1) and by either Equation (16.3) or Equation
(16.4) for the hypothetical unit mole fraction standard state (X28 ¼ 1) or the
hypothetical 1-molal standard state (m82 ¼ 1), respectively. The activity of the
solute is obtained from the activity of the solvent by use of the Gibbs–Duhem
equation, as in Section 17.5. When the solute activity is plotted against the appropriate
composition variable, the portion of the resulting curve in the dilute region in
which the solute follows Henry’s law is extrapolated to X2 ¼ 1 or (m2/m8) ¼ 1 to
find the standard state.

When activity data for a strong electrolyte such as HCl are plotted against
(m2/m8), as illustrated in Figure 19.1, the initial slope is equal to zero. Thus, an extra-
polation to the standard state yields a value of the activity in the standard state equal to
zero, which is contrary to the definition of activity in Equations (16.1) and (16.3).
Therefore, it is clear that the procedure for determining standard states must be
modified for electrolytes.

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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19.1 DEFINITIONS AND STANDARD STATES FOR DISSOLVED
ELECTROLYTES

Uni-univalent Electrolytes

As a plot of the activity of an electrolyte such as aqueous HCl against the first power
of m2/m8 gives a limiting slope of zero, we might examine graphs in which the
activity is plotted against other powers of the molality ratio. Such a plot is shown
in Figure 19.2, in which the activity of aqueous HCl is plotted against the square
of the molality ratio. The curve has a finite, nonzero limiting slope.

This result suggests that the appropriate form of the limiting law for uni-univalent
electrolytes (such as HCl) is

lim
mHCI!0

aHCI
(mHCI=m8)2

¼ 1 (19:1)

Figure 19.1. Activity as a function of molality ratio for aqueous HCl. Based on data from
Ref. 1, p. 336.

Figure 19.2. Activity as a function of the square of the molality ratio for aqueous HCl. The
data are the same as for Figure 19.1.
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which is a modified form of Henry’s law. To test for agreement with this form of
Henry’s law, we plot the ratio a/(m/m8)2 against (m/m8)2, as in Figure 19.3.

If followed in experimenrtally accessible dilute solutions, Henry’s law would be
manifested as a horizontal asymptote in a plot such as Figure 19.3 as the square
of the molality ratio goes to zero. We do not observe such an asymptote. Thus, the
modified form of Henry’s law is not followed over the concentration range that has
been examined. However, the ratio of activity to the square of the molality ratio
does extrapolate to 1, so that the data does satisfy the definition of activity
[Equations (16.1) and (16.2)]. Thus, the activity clearly becomes equal to the
square of the molality ratio in the limit of infinite dilution. Henry’s law is a limiting
law, which is valid precisely at infinite dilution, as expressed in Equation (16.19). No
reliable extrapolation of the curve in Figure 19.2 exists to a hypothetical unit molality
ratio standard state, but as we have a finite limiting slope at m2/m28 ¼ 0, we can use
that slope to guide us to the standard state; the appropriately modified Henry’s
law line is shown in Figure 19.2. No real state of the system corresponds to the stan-
dard state, but the properties of the standard state can be calculated from the Henry’s-
law constant.

Thus far, we have not introduced any assumptions about the dissociation of
electrolytes in order to describe their experimental behavior. As far as thermo-
dynamics is concerned, such details need not be considered. We can take the limiting
law in the form of Equation (19.1) as an experimental fact and derive thermodynamic
relationships from it. Nevertheless, in view of the general applicability of the ionic
theory, it is desirable to relate our results to that theory.

For example, the empirical relation between the activity and the molality ratio
can be understood on the assumption that the chemical potential of the electrolyte
is the sum of the chemical potentials of the constituent ions. That is, for HCl as
the solute,

mHCI ¼ mHþ þ mCI� (19:2)

Figure 19.3. A plot of the ratio of activity to the molality ratio to test for the validity of
Henry’s law.
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If we apply Equation (16.1), which is the definition of the activity, to Equation (19.2),
the result is

m8HCI þ RT ln aHCI ¼ m8Hþ þ RT ln aHþ þ m8CI� þ RT ln aCI� (19:3)

We can also assume that

m8HCI ¼ m8Hþ þ m8CI� (19:4)

so that

aHCI ¼ (aHþ )(aCI� ) (19:5)

The individual ion activities should follow the limiting relations

lim
mHCI!0

aHþ

mHþ=m8
¼ 1 (19:6)

and

lim
mHCI!0

aCI�

mCI�=m8
¼ 1 (19:7)

so the product of the limits is

lim
mHCI!0

(aHþ )(aCI� )
(mHþ=m8)(mCI�=m8)

¼ lim
mHCI!0

aHCI
(mHCI=m8)2

¼ 1

which is the relation found empirically.
No way exists within thermodynamics to determine the activity of a single ion

because we cannot vary the concentration of a single ion while keeping the
amounts of the other ions constant, because electroneutrality is required. As aþ
and a2 approach m2 at infinite dilution for a uni-univalent electrolyte, aþ must
equal a2 at infinite dilution. However, at any nonzero concentration, the difference
between aþ and a2 is unknown, although it may be negligibly small in dilute sol-
ution. Nevertheless, in a solution of any concentration, the mean activity of the
ions can be determined. By the mean activity a+, we refer to the geometric mean,
which for a uni-univalent electrolyte is defined by the equation

a+ ¼ (aþa�)1=2 ¼ a1=22 (19:8)

We can also define an activity coefficient gi for each ion in an electrolyte solution.
For each ion of a uni-univalent electrolyte,

gþ ¼ aþ
mþ=m8
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and

g� ¼ a�
m�=m8

(19:9)

These individual-ion activity coefficients have the desired property of approaching 1
at infinite dilution, because each ratio ai/(mi/m8) approaches 1. However, individual-
ion activity coefficients, like individual-ion activities, cannot be determined
experimentally. Therefore, it is customary to deal with the mean activity coefficient
g+ and the mean activity a+ which for a uni-univalent electrolyte can be related to
measurable quantities as follows:

g+ ¼ (gþg�)
1=2

¼ aþ
mþ=m8

� �
a�

m�=m8

� �� �1=2

¼ a+
m2=m8

¼ a1=22

m2=m8
(19:10)

where a+ is given by Equation (19.8). From Equations, (19.1), (19.8), and (19.10),
we can see that

lim
m2!0

g+ ¼ 1 (19:11)

Multivalent Electrolytes

Symmetrical Salts. For salts in which anions and cations have the same valence,
activities and related quantities are defined in exactly the same way as for uni-
univalent electrolytes. For example, for MgSO4, a finite limiting slope is obtained
when the activity is plotted against the square of the molality ratio. Furthermore,
mþ equals m2. Consequently, the treatment of symmetrical salts does not differ
from that just described for uni-univalent electrolytes.

Unsymmetrical Salts. As an example of unsymmetrical salts, let us consider a
salt such as BaCl2, which dissociates into one cation and two anions. By analogy
with the case of a uni-univalent electrolyte, we can define the ion activities by the
expression

a2 ¼ (aþ)(a�)(a�)

¼ (aþ)(a�)2 (19:12)

In this case, the mean ionic activity a+ also is the geometric mean of the individual-
ion activities:

a+ ¼ [(aþ)(a�)2]1=3 ¼ a1=32 (19:13)
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It is desirable that the individual-ion activities approach the molality ratio of the
ions in the limit of infinite dilution. That is,

lim
m2!0

aþ
mþ=m8

¼ lim
m2!0

aþ
m2=m8

¼ 1 (19:14)

and

lim
m2!0

a�
m�=m8

¼ lim
m2!0

a�
2m2=m8

¼ 1

It follows from Equations (19.13) and (19.14) that

lim
m2!0

a+ ¼ lim
m2!0

[(aþ)(a�)2]1=3

¼ [(m2=m8)(2m2=m8)2]1=3

¼ 41=3(m2=m8) (19:15)

It is also desirable that the mean ionic activity coefficient g+ approach unity in
the limit of infinite dilution. We can achieve this result if, as in Equation (19.9),
we define

gþ ¼ aþ
mþ=m8

and

g� ¼ a�
m�=m8

and

g+ ¼ [(gþ)(g�)
2]1=3

¼ aþ
mþ=m8

� �
a�

m�=m8

� �2" #1=3

¼ (aþ)(a�)2

(m2=m8)(2m2=m8)2

� �1=3

¼ a+
(41=3)(m2=m8)

(19:16)

Then, from Equations (19.15) and (19.16),

lim
m2!0

g+ ¼ 1
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For a uni-univalent electrolyte [Equation (19.10)]

g+ ¼ a+
m2=m8

To achieve a uniform definition of g+ for all electrolytes, it is convenient to define a
mean molality m+ (for BaCl2, for example) as

m+ ¼ [(m+)(m�)2]1=3

¼ [(m2)(2m2)
2]1=3

¼ 41=3m2 (19:17)

With this definition, the relationship for the mean activity coefficient

g+ ¼ a+
m+=m8

(19:18)

holds for any electrolyte.
It follows from Equation (19.13) and Equation (19.15) that

lim
m2!0

a2
(4m2=m8)3

¼ 1 (19:19)

Equation (19.19) is consistent with the empirical observation that a nonzero initial
slope is obtained when the activity of a ternary electrolyte such as BaCl2 is plotted
against the cube of (m2/m8). As the activity in the standard state is equal to 1, by
definition, the standard state of a ternary electrolyte is that hypothetical state of
unit molality ratio with an activity one-fourth of the activity obtained by extrapolation
of dilute solution behavior to m2/m8 equal to 1, as shown in Figure 19.4.

Figure 19.4. Establishment of the standard state for a ternary electrolyte. Data from R. N.
Goldberg and R. L. Nuttal, J. Phys. Chem. Ref. Data 7, 263 (1978).
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General Case. If an electrolyte AvþBv� dissociates into vþ positive ions of charge
Zþ and v2 negative ions of charge Z2 the general definitions for the activities and the
activity coefficients are

a2 ¼ (aþ)vþ (a�)v� (19:20)

a+ ¼ (a2)
1=(vþþv�) ¼ (a2)

1=v

¼ [(aþ)vþ (a�)v� ]1=v (19:21)
and

m+ ¼ [(mþ)vþ (m�)v� ]1=v

¼ [vþm2]
vþ (v�m2)

v� ]1=v (19:22)

The appropriate limiting law that is consistent with experimental observation is

lim
m2!0

a2
(m2=m8)v

¼ (vþ)vþ (v�)v� (19:23)

and, as before,

g+ ¼ a+
m+=m8

(19:24)

Table 19.1 summarizes the empirical expression of the limiting law and the
definitions of the ionic activities, molality ratios, and activity coefficients for a few
substances and for the general case of any electrolyte.

Mixed Electrolytes

In a solution of mixed electrolytes, the presence of common ions must be considered
when calculating the mean molality. For example, in a solution in which mNaCl ¼ 0.1
and mMgCl2

¼ 0.2, the mean molality m+, for NaCl is

m+NaCl ¼ [(mNaþ )(mCl� )]
1=2

¼ [(0:1)(0:5)]1=2

¼ 0:244mol kg�1

and for MgCl2

m+MgCl2 ¼ [(mMg2þ )(mCl� )
2]1=3

¼ [(0:2)(0:5)2]1=3

¼ 0:368mol kg�1
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Thus, when calculating the mean molality of an electrolyte in a mixture, we must use
the total molality of each ion, regardless of the source of the ion.

Both on the basis of empirical data and on the grounds of electrostatic theory, it
has been found convenient to introduce a quantity known as the ionic strength
when considering the effects of several electrolytes on the activity of one of them.

The contribution of each ion to the ionic strength I is obtained by multiplying the
molality of the ion by the square of its charge. One half the sum of these contributions
for all ions present is defined as the ionic strength. That is,

I ¼ 1
2

X
miz

2
i (19:25)

The factor one half has been included so that the ionic strength will be equal to the
molality for a uni-univalent electrolyte. Thus, for NaCl,

I ¼ 1
2

� �
[m2(1)

2 þ m2(1)
2]

¼ m2

However, for BaCl2,

I ¼ 1
2

� �
[m2(2)

2 þ 2m2(1)
2]

¼ 3m2

because mþ ¼ m2 and m2 ¼ 2m2, in which m2 is the molality of the electrolyte.
Several examples, together with a general formulation, are shown in Table 19.2.

19.2 DETERMINATION OF ACTIVITIES OF STRONG
ELECTROLYTES

All methods used in the study of nonelectrolytes also can be applied in principle to
the determination of activities of electrolyte solutes. However, in practice, several
methods are difficult to adapt to electrolytes because it is impractical to obtain data
for solutions sufficiently dilute to allow the necessary extrapolation to infinite
dilution. For example, some data are available for the vapor pressures of the hydrogen
halides in their aqueous solutions, but these measurements by themselves do not
permit us to determine the activity of the solute because significant data cannot be
obtained at concentrations below 4 molal.

TABLE 19.2. Relationships between Ionic Strength and Molality

Salt NaCl Na2SO4 AlCl3 MgSO4 AvþBv�

Ionic
Strength

m2 3 m2 6 m2 4 m2 1
2
v�

v�
vþ

þ 1

� �
z2�m2
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Activity data for electrolytes usually are obtained by one or more of three
independent experimental methods: measurement of the potentials of electrochemical
cells, measurement of the solubility, and measurement of the properties of the
solvent, such as vapor pressure, freezing point depression, boiling point elevation,
and osmotic pressure. All these solvent properties may be subsumed under the
rubric colligative properties.

A great deal of information on activities of electrolytes also has been obtained by
the isopiestic method, in which a comparison is made of the concentrations of
two solutions with equal solvent vapor pressure. The principles of this method
were discussed in Section 17.5.

Once activity coefficients have been determined at one temperature by one of the
methods mentioned above, calorimetric measurement of enthalpies of dilution can be
used to determine activity coefficients at other temperatures.

Measurement of Cell Potentials

For the cell composed of a hydrogen electrode and a silver–silver chloride
(Ag–AgCl) electrode immersed in a solution of HCl, represented by the notation

H2(g), HCl(m2), AgCl(s), Ag(s) (19:26)

the convention that we have adopted (see Section 17.4) describes the cell reaction as

1
2
H2(g)þ AgCl(s) ¼ HCl(m2)þ Ag(s) (19:27)

By this convention, the potential of the cell is defined as the potential of the electrode
on the right, at which reduction occurs, minus the potential of the electrode on the
left, at which oxidation occurs.

We know from Equation (7.84) that the free energy change of the reaction is
related to the cell potential by

DG ¼ �nFE

and from Equation (16.23) that DG is related to the activities of reactants and
products by

DG ¼ DG8þ RT ln
aHClaAg

a1=2H2
aAgCl

 !
(19:28)

Substituting from Equation (7.84) into Equation (19.28), we obtain

� nFE ¼ �nFE8þ RT ln
aHClaAg

a1=2H2
aAgCl

 !
(19:29)
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or

E ¼ E8� RT

nF
ln

aHClaAg

a1=2H2
aAgCl

(19:30)

If the pressure of hydrogen gas is maintained at the standard pressure of 1 bar, a
pressure that is essentially equal to the fugacity, then the hydrogen can be considered
to be in its standard state, with an activity equal to 1. As pure solid Ag and pure solid
AgCl are in their standard states, their activities also are equal to 1. Thus, Equation
(19.30) can be written as

E ¼ E8� RT

nF
ln aHCl (19:31)

Hence, the cell indicated by Equation (19.26) can be used to determine the activity of
dissolved HCl.

To apply Equation (19.31) to experimental data, we must specify our choice
of standard states, because the values of E8 and of aHCl depend on this choice.
We shall use the hypothetical unit molality ratio standard state obtained by
extrapolation from the infinitely dilute solution. By convention, m8 is taken equal
to 1 mol kg21.

From Equations (19.5), (19.9), (19.10), and (19.18), we can write, for
dissolved HCl,

aHCl ¼ (aHþ )(aCl� )

¼ [(mHþ=m8)gHþ ][mCl�=m8)gCl�]

¼ (m+=m8)2(g+)
2 (19:32)

Substituting from Equation (19.32) into Equation (19.31), we have

E ¼ E8� RT

nF

� �
ln (m+=m8)2(g+)

2

¼ E8� 2
RT

nF

� �
ln (m+=m8)(g+)

¼ E8� 2
RT

nF

� �
ln (m+=m8)� 2

RT

nF

� �
lng+ (19:33)

We defined the limiting behavior of g+ [Equation (19.11)] so that

lim
m2!0

g+ ¼ 1

Consequently

lim
m2!0

ln g+ ¼ 0
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and the third term on the right in Equation (19.33) becomes equal to zero in the limit
of infinite dilution. However, the limit as m2 goes to zero of ln(m+/m8) is indetermi-
nate, because the limit of m+ is equal to zero also, and the limit of E as m2 goes to
zero is indeterminate, as is illustrated in Figure 19.5.
Therefore, if we define a quantity E 0 by the equation

E 0 ¼ E þ 2
RT

nF
ln (m+=m8) (19:34)

we can rewrite Equation (19.33) in the form

E 0 ¼ E8� 2
RT

nF
lng+ (19:35)

The value of E 0 can be calculated from the experimental data with Equation
(19.34), and the ln g+ on the right of Equation (19.35) goes to zero at infinite
dilution. Therefore, an extrapolation of E 0 to zero molality should yield a value of
E8. That is,

lim
m2!0

E 0 ¼ lim
m2!0

E þ 2
RT

nF

� �
ln (m+=m8)

� �

¼ lim
m2!0

E8� 2
RT

nF

� �
ln g+

� �

¼ E8 (19:36)

If E 0 is plotted against the molality ratio, as in Figure 19.6, the values approach
the vertical axis with a very steep slope that makes extrapolation impossible. On
the other hand, if E 0 is plotted against the square root of the molality ratio, the

Figure 19.5. Potentials at 258C as a function of the molality ratio for the cell: H2, HCl(m2),
AgCl, Ag. Data from unpublished work of T. F. Young and N. Anderson, used with
permission.
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extrapolation can be carried out to yield a precise value of E8, as shown in
Figure 19.7. The choice of the square root was based both on experience with
other data for electrolytes and on electrostatic theory.

Having obtained E8, we can calculate mean activity coefficients from a rearrange-
ment of Equation (19.34) to the form

ln g+ ¼ nF

2RT

� �
(E8� E 0) (19:37)

The mean activity coefficient g+ for HCl is plotted against m2/m8 over a wide range
of concentration in Figure 19.8 as an example of the behavior of a uni-univalent

Figure 19.6. The quantity E 0 at 258C as a function of the molality ratio for the cell: H2,
HCl(m2), AgCl, Ag. Data from unpublished work of T. F. Young and N. Anderson, used
with permission.

Figure 19.7. Appropriate axes for the extrapolation of E 0 to determine E8. Original data the
same as in Figures 19.5 and 19.6.
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electrolyte in aqueous solution. From these data [2], the activity a2 has been calcu-
lated, and it is illustrated as a function of the square of the molality in Figure 19.9;
the dashed line indicates the limiting slope. The point on the dashed line correspond-
ing to (m2/m8) ¼ 1 is the activity of the hypothetical unit molality ratio standard state.

Solubility Measurements

As long as a pure solid A is in equilibrium with a dissolved solute A0 the activity of the
dissolved solute must be constant, because the activity of the solid as is constant at a
fixed temperature and pressure. Thus, any change in the solubility with the addition of

Figure 19.8. Mean activity coefficients of aqueous HCl at 258C. Based on data from Ref. 2.

Figure 19.9. Activities of aqueous HCl as a function of the square of the molality ratio. Based
on the same data as Figure 19.8.
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other electrolytes must be from changes in the activity coefficient g+ with changes in
the ionic strength. For the reaction

A(pure solid) ¼ A(solute in solution)

the equilibrium constant for a uni-univalent solute is

K ¼ a2
a2(s)

¼ a2
1

¼ aþa�

¼ a2+

¼ (C+=C8)2g2+ (19:38)

where we have used the molar concentration C instead of the molality m for this
example.

In logarithmic form, Equation (19.38) becomes

logK1=2 ¼ log (C+=C8)þ log g+ (19:39)

As

lim
I!0

g+ ¼ 1

then

lim
I!0

log (C+=C8) ¼ logK1=2 (19:40)

Figure 19.10. Variation of solubility of AgCl with ionic strength, from which activity coeffi-
cients can be calculated. Data from Ref. 3.
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To obtain a value of K by extrapolation, the appropriate functions to plot are the
logarithm of the concentration ratio against the square root of the ionic strength
I1/2. Such a graph is shown in Figure 19.10 for solutions of AgCl in various
aqueous electrolytes, based on the data of Popoff and Neuman [3]. From the extra-
polated value for the constant K, 1.66 � 10210, the following equation can be
written for the mean activity coefficient of AgCl (because C+ equals CAgCl):

log g+ ¼ �4:8941� log (CAgCl=C8) (19:41)

Colligative Property Measurement: The Osmotic Coefficient

As we saw in Section 17.5, the activity coefficient of a nonelectrolyte solute can be
calculated from the activity coefficient of the solvent, which, in turn, can be obtained
from the measurement of colligative properties such as vapor pressure lowering,
freezing point depression, or osmotic pressure. We used the Gibbs–Duhem equation
in the form [Equation (17.33)]

d ln g2 ¼ �X1

X2
d ln g1

The activity coefficients of solute and solvent are of comparable magnitudes in
dilute solutions of nonelectrolytes, so that Equation (17.33) is a useful relationship.
But the activity coefficients of an electrolyte solute differ substantially from
unity even in very dilute solutions in which the activity coefficient of the
solvent differs from unity by less than 1 � 1023. The data in the first three
columns of Table 19.3 illustrate the situation. It can be observed that the calculation
of the activity coefficient of solute from the activity coefficient of water would be
imprecise at best.

To deal with this problem, Bjerrum [4] suggested that the deviation of
solvent behavior from Raoult’s law be described by the osmotic coefficient g
rather than by the activity coefficient g1. The osmotic coefficient is defined by the
relationships

m1 ¼ m81 þ gRT ln X1 (19:42)

TABLE 19.3. Activity Coefficients and Osmotic Coefficientsa

[KNO3]/(mol dm23) g(KNO3) g(H2O) g(H2O)

0.01 0.8993 1.00001 0.9652
0.05 0.7941 1.00005 0.9252
0.1 0.7259 1.0002 0.8965
1.0 0.3839 1.0056 0.6891

aG. Scatchard, S. S. Prentice, and P. T. Jones, J. Am. Chem. Soc. 54, 2690 (1932). The activity coefficient
of the solute is based on the unit molarity ratio standard state, whereas the activity coefficient of the solvent
is based on the unit mole fraction standard state.
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and

lim
X1!1

g ¼ 1 (19:43)

The greater sensitivity, and hence usefulness, of g over g1, for solutions of electro-
lytes can be observed from the values in the third and fourth columns of Table 19.3.

Equating the expressions for m1 from Equation (16.1) and Equation (19.42)
we obtain

ln a1 ¼ g ln X1

or

g ¼ ln a1
ln X1

(19:44)

When the activity of the solvent is determined from a colligative property, then g can
be calculated with Equation (19.44). If we use osmotic pressure as an example, we
can combine Equation (15.33) and Equation (16.1) to obtain the expression

m†
1 (P0) ¼ m81(P)þ RT ln a1(P) (19:45)

where P0 is the pressure on the pure solvent and P is the pressure on the solution.
Therefore,

RT ln a1(P) ¼ m†
1 (P0)� m81(P) (19:46)

Each of the two terms on the right in Equation (19.46) refers to pure solvent at the
same temperature, but at a pressure of P0 for the first term and P for the second
term. Thus, the right side of Equation (19.46) is also given by

m†
1 (P0)� m81(P) ¼

ðP0

P

@m†
1

@P

� �
dp

¼
ðP0

P

V†
m1 dp (19:47)

As liquids are relatively incompressible, Vm1
† can be assumed to be independent of

pressure, and Equation (19.47) can be integrated to obtain

m†
1 (P0)� m81(P) ¼ V†

m1(P0 � P) (19:48)
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If we again define P 2 P0 as the osmotic pressure, p and substitute from Equation
(19.48) into Equation (19.46), we obtain

ln a1(P) ¼ �V†
m1P

RT
(19:49)

As indicated, the activity of solvent is at pressure P, and the small correction to
pressure P0 can be obtained if desired from Equation (16.33). Substituting from
Equation (19.49) into Equation (19.44), we find

g ¼ �V†
m1P=RT

ln X1
(19:50)

For a solution of electrolytes,

X1 ¼ n1
n1 þ

P
þ
nþ þP

�
n�

¼ n1
n1 þ vn2

(19:51)

where v ¼ v1 þ v2. From Equation (19.51)

lnX1 ¼ ln
n1

n1 þ vn2

� �

¼ ln
1

1þ (vn2=n1)

� �

¼ � ln [1þ (vn2=n1)] (19:52)

For the dilute solutions for which the osmotic coefficient is most useful, the natural
logarithm in Equation (19.52) can be expanded in a Taylor’s series, and terms of
higher powers can be neglected. The result is

lnX1 ¼ �vn2
n1

(19:53)

Substituting in Equation (19.50), we obtain

P ¼ (gvRT)
n2

n1V†
m1

� �
(19:54)

The product n1 Vm1
† is essentially equal to V, the volume of solution, for dilute

solutions, so that Equation (19.54) reduces to

P ¼ gvc2RT (19:55)
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It can be observed that g is the ratio between the observed osmotic pressure and the
osmotic pressure that would be observed for a completely dissociated electrolyte that
follows Henry’s law [see Equation (15.47)], hence the name, osmotic coefficient. A
similar result can be obtained for the boiling point elevation, the freezing point
depression, and the vapor pressure lowering.

Once values of g as a function of solution composition have been obtained, the
Gibbs–Duhem equation can be used to relate the osmotic coefficient of the solvent
to the activity coefficient of the solute. For this purpose, the chemical potential of
the solvent is expressed as in Equation (19.42), with the approximation given in
Equation (19.53), so that

m1 ¼ m81 � RTvg
n2
n1

(19:56)

If we describe the composition of the solution in terms of molalities, Equation (19.56)
becomes

m1 ¼ m81 � RTvgm2M1 (19:57)

and

dm1 ¼ �RTvM1(gdm2 þ m2dg) (19:58)

The chemical potential of the solute is

m2 ¼ m82 þ RT ln a2
¼ m82 þ RT ln(m+=m8)v þ RT ln(g+)v

¼ m82 þ vRT ln(m+=m8)þ vRT lng+ (19:59)

If vþ ¼ v2 ¼ 1, then m+ ¼ m2, and

dm2 ¼ vRTd ln m+ þ vRTd ln g+

¼ vRTd ln m2 þ vRTd ln g+ (19:60)

If we use the Gibbs–Duhem equation in the form

dm1 ¼ � n2
n1

� �
dm2

and we equate dm1 from Equation (19.58) with 2n2/n1 times dm2 from Equation
(19.60), we obtain

d ln g+ ¼ � 1� g

m2

� �
dm2 þ dg (19:61)
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which is Bjerrum’s equation. If Equation (19.61) is integrated from the infinitely
dilute solution to some finite but still dilute molality, the result is

ðln g+
0

d ln g+ ¼ �
ðm2

0

1� g

m2

� �
dm2 þ

ðg
1

dg (19:62)

or

ln g+ ¼ �
ðm2

0

1� g

m2

� �
dm2 þ (g� 1) (19:63)

The integral in Equation (19.63) is usually evaluated graphically or numerically.
Although both 1 2 g and m2 go to zero as m2 2 0, the ratio has a finite limit.
Such a finite limit is not apparent from a plot of (1 2 g)/m2 against m2 for electro-
lytes, as can be observed from Figure 19.11. But, if the integral in Equation
(19.63) is transformed to

2
ðm2
1=2

0

1� g

m1=2
2

 !
d (m1=2

2 ) (19:64)

The finite limit can be observed clearly, as in Figure 19.12.
At concentrations beyond the region of validity of the expressions we have used

for the osmotic coefficient, the activity coefficient of the solvent is sufficiently differ-
ent from 1 that it can be used to calculate the activity coefficient of the solute.

Figure 19.11. A plot of2(12 g)/m2 against m2 from the freezing point data for potassium
nitrate (KNO3) solutions in water. Data from G. Scatchard, S. S. Prentice, and P. T. Jones,
J. Am. Chem. Soc. 54, 2690 (1932). See Equation (19.63).
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Extension of Activity Coefficient Data to Additional Temperatures
with Enthalpy of Dilution Data

As with equilibrium constants [see Equation (10.24)], so it is sometimes convenient
to measure activity coefficients at one temperature and to obtain values at other temp-
eratures with the use of enthalpy data. From Equation (16.1)

m2 ¼ m82 þ RT ln a2

and, from Equation (19.21)

a2 ¼ av+

so that

m2 ¼ m82 þ RT ln av+

¼ m82 þ vRT ln a+

¼ m82 þ vRT ln g+
m+

m8

� �
¼ m8þ vRT ln g+ þ vRT ln

m+

m8

� �
(19:65)

If we divide Equation (19.65) by T, we have

m2

T
¼ m82

T
þ vR lng+ þ vR ln

m2

m8

� �
(19:66)

Figure 19.12. A plot of 2(12 g)/m1/2 against m1/2 from the same data as in Figure 19.11.
See Equation (19.64).
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If we differentiate Equation (19.66) with respect to 1/T, we have

@m2=T

@(1=T)

� �
P,m2

¼ @m82=T
@(1=T)

� �
P,m2

þ vR ln
@ ln g+
@(1=T)

� �
P,m2

(19:67)

From Equation (9.57)

@(m1=T

@(1=T)

� �
¼ �Hm1

Therefore, from Equations (19.67) and (9.57)

@ ln g+
@(1=T)

� �
P,m2

¼ (1=vR)(Hm2 � Ho
m)

¼ (1=vR) �Lm
T2

� �
(19:68)

We see from Section 18.1 that Lm2 can be calculated from data for enthalpies of
dilution fitted to a polynomial such as that in Equation (18.27). The result for Lm2

from Equation (18.28) is

Lm2 ¼ 2A1m2 þ 3A2m
2
2 þ � � �

Therefore

@ ln g+
@(1=T)

� �
P,m2

¼ 1
vRT2

(2A1m2 þ 3A2m
2
2 þ � � � ) (19:69)

If g is known as a function of m2 at some reference temperature T�, then g at other
temperatures can be calculated by integration of Equation (19.69):

ln (g=g�) ¼ � 1
vR

ðT
T�

2A1m2

T2
þ 3A2m2

2

T2
þ � � �

� �
d(1=T)

¼ � 1
vR

ðT
T�

2A1m2

T2
þ 3A2m2

2

T2
þ � � �

� �
� 1
T2

� �
dT

¼ 1
vR

ðT
T�

2A1m2

T4
þ 3A2m2

2

T4
� � �

� �
dT (19:70)

The data required to carry out such a calculation are the enthalpies of dilution as a
function of molality at each temperature of interest. The integration would have to
be carried out numerically. Enthalpy data for aqueous calcium chloride have been
reported by Simonson, et al. [5].
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19.3 ACTIVITY COEFFICIENTS OF SOME STRONG ELECTROLYTES

Experimental Values

With the experimental methods described, as well as with several others, the activity
coefficients of numerous strong electrolytes of various valence types have been cal-
culated. Many of these data have been assembled and examined critically by Harned
and Owen [2]. More recent evaluations for uni-univalent electrolytes have been made
by Hamer and Wu [6], and for uni-bivalent electrolytes by Goldberg [7]. Data used
by the authors in Refs. 6 and 7 are fitted to an expression of the form

logg ¼ �Ajzþz�jI1=2
1þ BI1=2

þ bI þ CI2 þ DI3 þ � � � (19:71)

where A is the Debye–Hückel constant, and b, B, C, and D are empirical constants
that result in a least squares best fit of the data. They use data from measurements of
cell potentials, colligative properties, solubilities, and isopiestic measurements.
Zemaitis et al. [8] have collected data for the activity coefficients of single strong
electrolytes and mixtures of strong electrolytes, and they have also presented a
review of the theoretical background.

The behavior of a few typical electrolytes is illustrated in Figure 19.13. By defi-
nition, g+ is one at zero molality for all electrolytes. Furthermore, in every case,
g+ decreases rapidly with increasing molality at low values of m2. However, the
steepness of this initial drop varies with the valence type of the electrolyte. For a
given valence type, g+ is substantially independent of the chemical nature of the con-
stituent ions, as long as m2 is below about 0.01. At higher concentrations, curves for
g+ begin to separate widely and to exhibit marked specific ion effects.

Theoretical Correlation

No adequate theoretical model based on the atomic characteristics of the ions has
been developed yet that is capable of accounting for the thermodynamic properties

Figure 19.13. Mean activity coefficients at 258C for some typical electrolytes in aqueous
solution.
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of aqueous solutions over a wide range of concentration. However, for dilute
solutions of completely ionized electrolytes, expressions have been derived [9] that
predict exactly the limiting behavior of activity coefficients in an infinitely dilute sol-
ution, and that provide very useful equations for describing these quantities at small,
finite concentrations. Although it is beyond the objectives of this text to consider the
development of the Debye–Hückel theory, it is desirable to present some of the final
results because they are of value in the treatment of experimental data.

According to the Debye–Hückel theory, in the limit of the infinitely dilute
solution, individual-ion activity coefficients are given by the equation

log gi ¼ �Az2i I
1=2 (19:72)

in which A is a constant for a given solvent at a specific temperature. Values of A for
aqueous solutions are listed in Table 19.4. Equation (19.72) has been found useful up
to I1/2 near 0.1, that is, for solutions with ionic strengths as high as 0.01. The mean
activity coefficient g+ is required for comparison with experimental data, and it can
be shown from Equation (19.72) that for an electrolyte with two kinds of ions1

log g+ ¼ �Ajzþz�jI1=2 (19:73)

in which zþ and z2 are the charge (equal to the valence) of the cation and anion,
respectively. The symbol, jzþz2j is used to indicate absolute value, without regard
to the sign of the charges.

TABLE 19.4. Values of Constants in Debye–Hückel
Equation for Activity Coefficients in Aqueous Solutionsa

T/K A B/109

273.15 0.4904 3.245
278.15 0.4940 3.254
283.15 0.4978 3.262
288.15 0.5017 3.269
293.15 0.5059 3.277
298.15 0.5102 3.285
303.15 0.5147 3.293
308.15 0.5193 3.302
313.15 0.5242 3.310
318.15 0.5292 3.318
323.15 0.5344 3.327
328.15 0.5399 3.335
333.15 0.5455 3.344

aFundamental constants and the densities of water used in calculating
these constants were obtained from Ref. 10. Experimental values of
the dielectric constant of water were obtained from Ref. 11.

1For the general case of any number of ions, see Ref. 1, p. 62.
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At ionic strengths near 0.01, it is convenient to use the more complete form of the
Debye–Hückel expression:

log g+ ¼ �Ajzþz�jI1=2
1þ BaiI1=2

(19:74)

in which A has the same significance as in Equation (19.73), B is a constant for a
given solvent at a specified temperature (Table 19.4), and ai may be thought of as
the “effective diameter,” in units of meters, of the ion in the solution . As no indepen-
dent method is available for evaluating ai, this quantity is an empirical parameter,
but the ai’s obtained from fitting experimental data to Equation (19.74) are of a
magnitude expected for ion sizes.

For solutions above I ¼ 0.1, various extensions of the Debye–Hückel theory
have been proposed. The Debye–Hückel theory assumes that all strong electrolytes
are ionized completely, takes into account only long-range electrostatic interactions
between ions, and considers the solvent as a dielectric continuum. Attempts have
been made to take account of ion association, ion–solvent interactions, and
short-range interactions between ions. Some of these efforts are described in a
monograph by Pitzer [12]. He has developed a set of semiempirical equations
based on statistical thermodynamic theory that have been used widely to correlate
data on activity and osmotic coefficients of electrolyte solutions over a wide range
of temperatures and pressures, primarily for use by geochemists and in complex
industrial processes (see, e.g., Ref. 13). An alternative statistical thermodynamic
model has been used by Liu et al. [14], but they have only used this model at
298.15 K. Newman [15] has reported a new derivation of the Debye–Hückel
limiting law from Kirkwood–Buff theory that permits extension to high concen-
trations of electrolyte with only two adjustable parameters. Horvath [16] described
methods for estimating and correlating the physical properties of aqueous electro-
lytes. Barthel et al. [17] have reviewed both experimental results and models for
solutions of electrolytes.

Raji Heyrovská [18] has developed a model based on incomplete dissociation,
Bjerrum’s theory of ion-pair formation, and hydration numbers that she has found
fits the data for NaCl solutions from infinite dilution to saturation, as well as
several other strong electrolytes. She describes the use of activity coefficients and
extensions of the Debye–Hückel theory as “best-fitting parameters” rather than as
“explaining the significance of the observed results.”

EXERCISES

19.1. Prove that the following equation is valid for an electrolyte that dissociates
into v particles:

@ ln g+
@T

� �
P,m2

¼ � Lm2
vRT2

(19:75)
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19.2. For the equilibrium between a pure solute and its saturated solution,

solute(pure) ¼ solute(satd soln)

the equilibrium constant K is given by

K ¼ a2,satd
a2,pure

¼ a2,satd
1

(19:76)

a. show that

@ ln a2,satd
@T

� �
P

¼ � L†m2

RT2
(19:77)

b. For the general case of an electrolyte that dissociates into v particles, show
that

v
@ lng+,satd

@T

� �
P

þ @ lnm+,satd

@T

� �
P

� �
¼ � L†m2

RT2
(19:78)

c. Considering ln g+ as a function of temperature and molality (pressure
being maintained constant), show that

@ lng+,satd

@T

� �
P

¼ @ ln g+
@T

� �
m2,P

þ @ ln g+
@m2

� �
T ,P

@m2,satd

@T

� �
(19:79)

d. Derive the equation

@ lng+
@T

� �
m2,P

þ @m2,satd

@T

� �
P

@ ln g+
@m2

� �
T ,P

þ 1
m2,satd

� �" #
� L†m2

RT2

(19:80)

e. Use Equation (19.75) written for a saturated solution and Equation (19.80)
to derive the following expression:

DHm,soln ¼ vRT2

m2,satd

@m2,satd

@T

� �
P

(19:81)

in which DHm,soln is the enthalpy change per mole of solute dissolved in
the nearly saturated solution.

f. To what does Equation (19.81) reduce if the solute is a nonelectrolyte?

19.3. Calculate the electromotive force of the cell pair

H2(g), HCl(m2 ¼ 4), AgCl, Ag� Ag, AgCl, HCl(m2 ¼ 10), H2(g)
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from vapor pressure data [1]. The value of pHCl is 0.2395 � 1024 atm for the
4-molal solution, and the value of pHCl is 55.26 � 1024 atm for the 10-molal
solution.

19.4. The potential at 258C of the cell

H2(g), HCl(m2 ¼ 0:002951), AgCl, Ag

is 0.52393 V when the apparent barometric height (as read on a brass scale) is
75.10 cm Hg at 23.88C and when the hydrogen is bubbled to the atmosphere
through a column of solution 0.68 cm high. Calculate the partial pressure of
the hydrogen in the cell, and the potential of the cell when the partial pressure
of hydrogen in the cell is 1 Bar.

19.5. Unpublished data of T. F. Young and N. Anderson [19] for the potentials at
258C of the cell

H2, HCl(m2), AgCl, Ag

are given in Table 19.5.

a. Plot E 0 N against an appropriate composition variable, draw a smooth
curve, and determine E8 by extrapolation.

b. On the graph in (a) show the geometric equivalent of the activity
coefficient.

c. Draw the asymptote predicted by the Debye–Hückel limiting law for the
curve in (a).

TABLE 19.5. Potentials of the Cell H2, HCl(m2), AgCl, Ag at 2588888Ca

m1/2
+ /(mol kg21)1/2 m+/(mol kg21)a E/V log(m+/m8) E 0/V

0.054322 0.0029509 0.52456 22.53005 0.22524
0.044115 0.0019461 0.54541 22.71083 0.22471
0.035168 0.0012368 0.56813 22.90770 0.22413
0.029908 0.0008945 0.58464 23.04842 0.22399
0.027024 0.0007303 0.59484 23.13650 0.22378
0.020162 0.0004065 0.62451 23.39094 0.22334
0.015033 0.00022599 0.65437 23.64591 0.22303
0.011631 0.00013528 0.68065 23.86877 0.22296
0.009704 0.00009417 0.69914 24.02606 0.22283
0.007836 0.00006140 0.72096 24.21185 0.22267
0.007343 0.00005392 0.72759 24.26827 0.22263
0.005376 0.000028901 0.75955 24.53909 0.22255

aIn the most dilute solutions studied, the molality of chloride ion was considerably greater than the molality
of the hydrogen ion, because of the solubility of AgCl. Therefore, the mean molality m+ is tabulated, rather
than the molality of either ion.
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d. Determine the mean activity coefficient of the ions of HCl at m+ ¼ 0.001,
0.01, and 0.1, respectively. Compare these values with those computed
from the Debye–Hückel limiting law.

e. What error is introduced into the calculated activity coefficients by an error
of 0.00010 V in E or E8?

19.6. Table 19.6 lists Popoff and Neuman’s values [3] of the solubility of silver
chloride (AgCl) in water containing “solvent” electrolytes at the concen-
trations indicated. According to the same authors, the solubility of silver
chloride in pure water is 1.278 � 1025 mole L21.

a. Using distinctive symbols to represent each of the four series of data, plot
(with reference to a single pair of axes) the solubility of silver chloride

TABLE 19.6. Values of the Solubility of Silver Chloride in Water Containing
Solvent Electrolytes at the Concentration Indicated [3]

Concentration of
Solvent Electrolyte/
(mole liter21)

Concentration of
AgCl/(1025 mole

liter21) I I1/2 2log[(AgCl)/C8]

KNO3

0.00001280 1.280 0.0000256 0.00506 4.8928
0.0002609 1.301 0.0002739 0.01655 4.8857
0.0005090 1.311 0.0005221 0.02285 4.8824
0.001005 1.325 0.001018 0.03191 4.8778
0.004972 1.385 0.004986 0.07061 4.8586
0.009931 1.427 0.009945 0.09972 4.8456

NaNO3

0.00001281 1.281 0.0000250 0.00506 4.8925
0.0002643 1.300 0.0002773 0.01665 4.8861
0.0005157 1.315 0.0005289 0.02300 4.8811
0.005039 1.384 0.005053 0.07108 4.8589
0.010076 1.428 0.010090 0.10045 4.8453

HNO3

0.0000128 1.280 0.0000256 0.00506 4.8928
0.0007233 1.318 0.0007365 0.02714 4.8801
0.002864 1.352 0.0028775 0.05364 4.8690
0.005695 1.387 0.005709 0.07556 4.8579
0.009009 1.422 0.009023 0.09499 4.8471

Ba(NO3)2
0.00000640 1.280 0.0000320 0.00566 4.8928
0.00003615 1.291 0.0001214 0.01102 4.8891
0.00121108 1.309 0.0006463 0.02542 4.8831
0.0007064 1.339 0.002133 0.04618 4.8732
0.001499 1.372 0.004511 0.06716 4.8627
0.002192 1.394 0.006590 0.08118 4.8557
0.003083 1.421 0.009263 0.09624 4.8474
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versus the concentration of each solvent electrolyte. On the same graph,
plot the solubility of silver chloride against three times the concentration
of barium nitrate.

b. Show that these data are in accordance with the ionic-strength principle.

c. Verify several of the tabulated values of the total ionic strength; then plot
the logarithm of the reciprocal of the solubility versus the square root of the
ionic strength.

d. Draw a line representing the Debye–Hückel limiting law for comparison
with the data.

e. Determine the activity of AgCl in a solution containing only silver chloride
and in solutions in which the ionic strength is 0.001 and 0.01, respectively.

f. Calculate the solubility product of silver chloride. What is the activity of
silver chloride in any of the saturated solutions?

19.7. From the vapor pressure data in the International Critical Tables [20], calculate
the activity of thewater in 1.0-, 2.0-, 2.8-, and 4.0-molal NaCl solutions at 258C.

19.8. Calculate the potential of each of the following cells at 258C. Use approxi-
mate values of the activity coefficient as calculated from the Debye–
Hückel limiting law.

a. H2, HCl(m2 ¼ 0.0001), Cl2–Cl2, HCl(m2 ¼ 0.001), H2.

b. Mg, MgSO4(m2 ¼ 0.001), Hg2SO4, Hg–Hg, Hg2SO4, MgSO4(m2 ¼
0.0001), Mg.

19.9. Table 19.7 contains data of Harned and Nims [21] for the cell Ag, AgCl,
NaCl(m2 ¼ 4), Na(amalgam)–Na(amalgam), NaCl(m2 ¼ 0.1), AgCl, Ag in
which both sodium amalgams have the same composition.

a. Write the cell reaction.

b. Calculate DHm2 or DLm2 for the reaction in (a) at 258C.
c. Compare the result in (b) with that which you would obtain from the direct

calorimetric data of Table 19.8 [23].

d. How precise is the result in (b) if E can be measured to +0.00010 V?

TABLE 19.7. Potentials for AgCl, Na(amalgam) Cells
at Several Temperatures

T/8C E/V (E/T)/(V/K)

15 0.18265 0.00063398
20 0.18663 0.00063675
25 0.19044 0.00063885
30 0.19407 0.00064028
35 0.19755 0.00064119
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e. Obtain activity coefficients for the solutions of NaCl in this cell [23].
Calculate the emf of the cell at 258C. Compare your result with the
value listed in Table 19.7.

19.10. The solubility (moles per kilogram of H2O) of cupric iodate, Cu(IO3)2, in
aqueous solutions of KCl at 258C, as determined by Keefer [24], is given
in Table 19.9.

a. Plot the logarithm to the base 10 of (mCu2þ )(mIO�
3
)2 against I1/2 and fit the

points to the equation

log (mCu2þ ) (mIO�
3
)2 ¼ Aþ B I1=2

1þ C I1=2
(19:82)

by a nonlinear fitting procedure (see Section A.2).

b. Use the Debye–Hückel coefficients in Table 19.4 and Equation (19.74) to
calculate ai in Equation (19.14).

TABLE 19.8. Relative Partial Molar Enthalpies
for NaCl(aq) at 2588888C

m2/(mol kg21) Lm2/(cal mol21) at 258C

0.1 96
0.2 84
0.3 57
0.4 20
0.5 216
1.0 2185
2.0 2455
2.5 2548
3.0 2611
4.0 2669
5.0 2688

TABLE 19.9. Solubility of Cupric Iodate in
Aqueous Solutions of KCl at 2588888C

mKCl/(mol kg21) m(satd)Cu(IO3)2/(10
23 mol kg21)

0.00000 3.245
0.00501 3.398
0.01002 3.517
0.02005 3.730
0.03511 3.975
0.05017 4.166
0.07529 4.453
0.1005 4.694
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c. Show that log K is equal to the constant A in Equation (19.82). Keefer
reports a value of 27.1353.

d. Draw a line representing the Debye–Hckel limiting law on the graph in (a).
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CHAPTER 20

CHANGES IN GIBBS FUNCTION FOR
PROCESSES IN SOLUTIONS

Deviations from ideality in real solutions have been discussed in some detail to
provide an experimental and theoretical basis for precise calculations of changes in
the Gibbs function for transformations involving solutions. We shall continue our
discussions of the principles of chemical thermodynamics with a consideration of
some typical calculations of changes in Gibbs function in real solutions.

20.1 ACTIVITY COEFFICIENTS OF WEAK ELECTROLYTES (1)

Let us consider a typical weak electrolyte, such as acetic acid, whose ionization can
be represented by the equation

HC2H3O2 ¼ Hþ þ C2H3O
�
2 (20:1)

We defined the activity coefficient for strong electrolytes in Chapter 19 in Equations
(19.9) and (19.24) as

gþ ¼ aþ
mþ=m8

g� ¼ a�
m�=m8

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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and

g+ ¼ a+
m+=m8

and disregarded the possibility of incomplete dissociation.
As it is possible to measure (or closely approximate) the ionic concentrations of a

weak electrolyte, it is convenient to define ionic activity coefficients for weak electro-
lytes in the same way, based on the actual ionic concentrations, mþ or m2. Thus,

gþ ¼ aþ
mþ=m8

g� ¼ a�
m�=m8

(20:2)

and

g+ ¼ (aþ)(a�)
(mþ)m�)

� �1=2 1
m8

� �
(20:3)

Similarly, for the undissociated species of molality mu,

gu ¼
au

(mu=m8)
(20:4)

The degree of dissociation a of a uni-univalent weak electrolyte such as acetic acid
is given by the equation

a ¼ mþ
ms

¼ m�
ms

(20:5)

where ms is the stoichiometric or total molality of acetic acid.

20.2 DETERMINATION OF EQUILIBRIUM CONSTANTS
FOR DISSOCIATION OF WEAK ELECTROLYTES

Three experimental methods that are capable of determining dissociation constants
with a precision of the order of tenths of 1% have been most commonly used.
Each of these methods—the cell potential method (2), the conductance method
(3), and the optical method (4)—provides data that can be treated approximately,
assuming that the solutions obey Henry’s law, or more exactly on the basis of the
methods developed in Chapter 19. We will apply the more exact procedures. As
the optical method can be used only if the acid and conjugate base show
substantial differences in absorption of visible or ultraviolet light, or differences in
raman scattering or with the use of indicators, we shall limit our discussion to the
two electrical methods.
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From Measurements of Cell Potentials

It is possible to select a cell that contains a weak acid in solution whose potential
depends on the ion concentrations in the solution and hence on the dissociation
constant of the acid. As an example, we will consider acetic acid in a cell that contains
a hydrogen electrode and a silver–silver chloride electrode:

H2(g, P ¼ 1bar); HC2H3O2(m2), NaC2H3O2(m3), NaCl(m4); AgCl(s), Ag(s)

(20:6)

As the reaction that occurs in this cell is [Equation (19.27)]

1
2 H2(g)þ AgCl(s) ¼ Ag(s)þ HCl(aq)

the cell potential must be given by the expression [from Equations (19.30)–(19.32)]

E ¼ E8� RT

F
ln aHCL

¼ E8� RT

F
ln
mHþmCl�gHþgCl�

(m8)2

As the molality mHþ depends on the acetic acid equilibrium, which we can indicate in
a simplified notation by the equation

Hac ¼ Hþ þ Ac� (20:7)

where Ac2 stands for the acetate ion, we can introduce the dissociation constant K for
acetic acid into the equation for the cell potential. For acetic acid, K is given by

K ¼ mHþmAc�

mHAc

gHþgAc�

gHAc

1
m8

� �
(20:8)

from which mHþ can be expressed in terms of the other variables and can be substi-
tuted into Equation (19.32). Thus, we obtain

E ¼ EW � RT

F
ln K

mHAc

mAc�

mCl�

m8
gCl�gHAc
gAc�

� �
(20:9)

This equation can be rearranged to the form

E � EW þ RT

F
ln
mHAcmCl�

mAc�m8
¼ �RT

F
lnK � RT

F
ln
gCl�gHAc
gAc�

;
�RT

F
ln K 0 (20:10)

in which

K 0 ; K
gCl�gHAc
gAc�

(20:11)
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All terms on the left in Equation (20.10) are known from previous experiments (see
Section 19.2 for the determination of E8) or can be calculated from the composition
of the solution in the cell. Thus [see Equation (20.6)],

mCl� ¼ m4 (20:12)

mHAc ¼ m2 � mHþ (20:13)

and

mAc� ¼ m3 þ mþ
H (20:14)

Generally, mHþ � m2 or m3, so it can be estimated from Equation (20.8) by inserting
an approximate value of K and neglecting the activity coefficients. Thus, it is possible
to obtain tentative values of 2(RT/F) ln K0 and hence K0 at various concentrations
of acetic acid, sodium acetate, and sodium chloride, respectively. The ionic strength I
can be estimated as

I ¼ m3 þ m4 þ mHþ (20:15)

It can be observed from the limiting behavior of activity coefficients [Equation
(19.11)] that

lim
I!0

gCl�gHAc
gAc�

¼ 1 (20:16)

Thus, if

� RT

F
lnK 0

or K0 is plotted against some function of the ionic strength and extrapolated to I ¼ 0,
the limiting form of Equation (20.10) is

lim
I!0

RT

F
ln K 0 ¼ RT

F
ln K (20:17)

and

lim
I!0

K 0 ¼ K (20:18)

It has been found that the ionic strength to the first power as the abscissa yields a
meaningful extrapolation.

A typical extrapolation of the data for acetic acid is illustrated in Figure 20.1.
At 258C the value of 1.755 � 1025 has been found for K by this method.

If the equilibrium constant is not already known fairly well, the K determined by
this procedure can be looked on as a first approximation. It then can be used
to estimate mHþ for substitution into Equations (20.13)–(20.15), and a second
extrapolation can be carried out. In this way a second value of K is obtained.
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Theprocess can then be repeated until successive estimates of K agree within the
precision of the experimental data. The iterative calculation can be programmed for
a computer.

From Conductance Measurements

Conductance measurements also have been used for the estimation of dissociation
constants of weak electrolytes. If we use acetic acid as an example, we find that
the equivalent conductance L shows a strong dependence on concentration, as illus-
trated in Figure 20.2. The rapid decline in L with increasing concentration is largely
from a decrease in the fraction of dissociated molecules.

In the approximate treatment of the conductance of weak electrolytes, the decrease
in L is treated as resulting only from changes in the degree of dissociation, a. On this
basis, it can be shown that an apparent degree of dissociation a0 can be obtained from

a0 ¼ L

L0
(20:19)

in which L0 is the equivalent conductance of the weak electrolyte at infinite dilution.
Hence, the apparent dissociation constant K0 is obtainable from the expression

K 0 ¼ C0
HþC0

Ac�

C0
HAcC8

¼ (a0C)(a0C)
(1� a0)CC8

¼ (a0)2C
(1� a0)C8

¼ (L=L0)2C
[1� (L=L0)]C8

(20:20)

Figure 20.1. Extrapolation of K0 values in the determination of the ionization constant of
acetic acid at 258C. Based on data from H. S. Harned and R. W. Ehlers, J. Am. Chem. Soc.
54, 1350 (1932).
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in which C is the total (stoichiometric) concentration of acetic acid in moles per liter.
Generally, L0 is evaluated from data at infinite dilution for strong electrolytes. Thus,
for acetic acid, L0 is obtained as follows:

L0(HAc) ¼ L0(H
þ þ Ac�)

¼ L0(H
þ þ Cl�)þ L0(Na

þ þ AC�)� L0(Na
þ þ Cl�)

¼ L0(HCl)þ L0(NaAc)� L0(NaCl)

(20:21)

However, for more precise calculations, it is necessary to consider that the mobi-
lity (hence, the conductance) of ions changes with concentration, even when dis-
sociation is complete, because of interionic forces. Thus, Equation (20.20) is
oversimplified in its use of L0 to evaluate a, because at any finite concentration,
the equivalent conductances of the Hþ and Ac2 ions, even when dissociation is
complete, do not equal L0.

To allow for the change in mobility resulting from changes in ion concentrations,
MacInnes and Shedlovsky [5] proposed the use of a quantity Le in place of L0.
The quantity Le is the sum of the equivalent conductances of the Hþ and Ac2

ions at the concentration Ci at which they exist in the acetic acid solution. For
example, for acetic acid Le is obtained from the equivalent conductances of HCl,
NaAc, and NaCl at a concentration Ci equal to that of the ions in the solution of
acetic acid. Thus, because

LHCl ¼ 426:04� 156:70C1=2 þ 165:5C(1� 0:2274C1=2) (20:22)

LNaAc ¼ 90:97� 80:48C1=2 þ 90:0C(1� 0:2274C1=2) (20:23)

Figure 20.2. Equivalent conductance of aqueous solutions of acetic acid at 258C. Based on
data from D. A. MacInnes and T. Shedlovsky, J. Am. Chem. Soc. 54, 1429 (1932).
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and

LNaCl ¼ 126:42� 88:53C1=2 þ 89:5C(1� 0:2274C1=2) (20:24)

the effective equivalent conductance Le of completely dissociated acetic acid is
given by

Le ¼ LHCl þ LNaAc � LNaCl

¼ 390:59� 148:65C1=2
i þ 166:0Ci(1� 0:22741C1=2

i ) (20:25)

Assuming that the degree of dissociation at the stoichiometric molar concentration C
is given by the expression

a00 ¼ L

Le
(20:26)

we obtain a better approximation for the dissociation constant than Equation (20.20):

K 00 ¼ C00
HþC00

AC�

C00
HAcC8

¼ (a00C)2

(1� a00)CC8
¼ (L=Le)2C

[1� (L=Le)]C8
(20:27)

Now if we insert appropriate activity coefficients, we obtain a third approximation
for the dissociation constant:

K 000 ¼ C00
HþC00

Ac�

C00
HAcC8

gHþgAc�

gHAc
(20:28)

This equation can be converted into logarithmic form to give

logK 000 ¼ logK 00 þ log
g2+
gu

� �
(20:29)

in which

g2+ ¼ gHþgAc� (20:30)
and

gu ¼ gHAc (20:31)

To evaluate log K00, it is necessary to know Le and, therefore, Ci. Yet to know Ci

we must have a value for a, which depends on a knowledge of Le. In practice, this
impasse is overcome by a method of successive approximations. To begin, we take
Le ¼ L0 and make a first approximation for a00 from Equation (20.26). With this
value of a00, we can calculate a tentative Ci, which can be inserted into Equation
(20.25) to give a tentative value of Le. From Equation (20.25) and Equation
(20.26), a new value of a00 is obtained, which leads to a revised value for Ci and sub-
sequently for Le. This method is continued until successive calculations give substan-
tially the same value of a00. Thus, for a 0.02000 molar solution of acetic acid, with an
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equivalent conductance of 11.563 ohms21 mol21 cm2, a first approximation for a is

a0 ¼ 11:563
390:59

¼ 0:029604

because L0 ¼ 390.50 ohms21 mol21 cm2. Therefore,

Ci ¼ a0C ¼ 0:029604(0:02000) ¼ 0:00059208mol L�1

and

C1=2
i ¼ 0:024333

Substitution of this value of Ci
1/2 into Equation (20.25) yields a value of

Le ¼ 387:07V�1 mol�1 cm2

Coupling this value with 11.563 for L, we obtain

a00 ¼ 11:563
387:07

¼ 0:029873

Ci ¼ 0:00059746mol L�1

C1=2
i ¼ 0:024443

and

Le ¼ 387:06 V�1 mol�1 cm2

A third calculation of a00 gives 0.029874, which is substantially the same as the result
of the second approximation; hence, it can be used in Equation (20.27). As with the
iterative procedure for calculating equilibrium constants from data on cell potentials,
the iterative procedure for conductance data can be programmed for a computer.

Once a value of log K00 is obtained, the value of log K can be determined by an
extrapolation procedure. From Equation (19.11),

lim
I!0

g2+ ¼ 1

and

lim
I!0

log g2+ ¼ 0

From Equation (16.4),

lim
I!0

gu ¼ lim
m2!0

gu ¼ 1
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and

lim
I!0

log gu ¼ 0

Thus, the limiting form of Equation (20.29) is

lim
I!0

log K 00 ¼ lim
I!0

log K 000 ¼ log K (20:32)

in which K is the thermodynamic dissociation constant.
The best functions to use in the extrapolation can be determined from the depen-

dence of g+
2 and gu on the ionic strength. Theoretically, little is known about the

dependence of gu on concentration (6), but from the Debye–Hückel theory, we
should expect log g+

2 to depend on I1/2, with the dependence approaching linearity
with increasing dilution.

The data for acetic acid, when log K00 is plotted against the square root of the ionic
strength (Fig. 20.3), provide a meaningful value for K by extrapolation. MacInnes and
Shedlovsky [5] report a value for K of 1.753 � 1025 at 258C.

An alternative method of extrapolation, in which the slope is reduced almost
to zero, can be carried out by the following modification of Equation (20.29). If
we separate the activity coefficients, we obtain

logK 000 ¼ log K 00 þ log g2+ � log gu (20:33)

We know from experiment that log gu is a linear function of I. The value of log g+
2

is described well by the Debye–Hückel limiting law in very dilute solution. Thus,
we can substitute the expression

log g2+ ¼ 2 logg+ ¼ 2[�0:509jzþz�jI1=2] ¼ �1:018 I 1=2 (20:34)

Figure 20.3. Extrapolation of ionization constants of acetic acid.
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into Equation (20.33) and can rearrange the resultant equation into the relationship

log K 000 þ log gu ¼ log K 00 � 1:018 I 1=2 ; log K 00 00 (20:35)

As both K00 and I1/2 can be calculated from experimental data, log K000 can be deter-
mined. A plot of log K000 against I gives a curve with small slope, such as illustrated in
Figure 20.4. The determination of the intercept in this graph is easier than it is in
Figure 20.3 for uni-univalent electrolytes, and the improvement is greater when the
dissociation process involves polyvalent ions.

Mesmer et al. [7] used conductance methods to determine ionization constants
over a wide range of temperatures and pressures.

An alternative procedure uses the Fuoss conductance–concentration function to
relate the measured conductance to the ionic concentrations at equilibrium (8).

20.3 SOME TYPICAL CALCULATIONS FOR DfG88888m

Standard Gibbs Function for Formation of Aqueous Solute: HCl

We have discussed in some detail the various methods that can be used to obtain the
standard Gibbs function of formation of a pure gaseous compound such as HCl(g).
As many of its reactions are carried out in aqueous solution, it also is desirable to
know DfG8m for HCl(aq).

Our problem is to find DG8m for the reaction

HCl (g, a ¼ f ¼ 1) ¼ HCl (aq, a2 ¼ 1) (20:36)

because to this DG8m we always can add DfG8m of HCl(g). Although in Equation
(20.36), aHCl is 1 on both sides, the standard states are not the same for the

Figure 20.4. Alternative method of extrapolation of ionization constants of acetic acid.
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gaseous and aqueous phases; hence, the chemical potentials are not equal. To obtain
DG8m for Reaction (20.36), we can break up the reaction into a set of transformations
for which we can find values of DGm.

We can write the following three equations, whose sum is equivalent to
Equation (20.36):

1. HCl(g, a ¼ f ¼ p ¼ 1 bar) ¼ HCl(g, p ¼ 0.2364 � 1024 bar),

DGm,298K ¼ RT ln
0:2364� 10�4 bar

1 bar
¼ �26:407 kJmol�1 (20:37)

in which 0.2364 � 1024 bar is the partial pressure of HCl(g) (9) in equilibrium
with a 4-molal solution of HCl.

2. HCl(g, p ¼ 0.2364 � 1024 bar) ¼ HCl(aq, m2 ¼ 4),

DGm,298K ¼ 0 (equilibrium reaction) (20:38)

3. HCl(aq, m2 ¼ 4, a 0
2 ¼ 49.66) ¼ HCl(aq, a2 ¼ 1),

DGm,298K ¼ RT ln
a2
a02

¼ RT ln
1

49:66
¼ �9:680 kJmol�1 (20:39)

The activity of HCl in a 4-molal solution required for the DGm in Equation (20.39)
was calculated from the mean activity coefficient, 1.762, taken from tables of
Harned and Owen [10], as follows:

a2 ¼ m2
+g+ ¼ (4)2(1:762)2 ¼ 49:66 (20:40)

Now we can obtain the standard Gibbs function change for Equations (20.36),
because the sum of Equations (20.37) through (20.39) yields

HCl(g, a ¼ 1) ¼ HCl(aq, a2 ¼ 1), DG8m,298K ¼ �36:384 kJmol�1 (20:41)

Having obtained the standard Gibbs function change accompanying the transfer
of HCl from the gaseous to the aqueous state, we can add it to the standard Gibbs
function for formation of gaseous HCl [11],

1
2 H2(g)þ 1

2 Cl2(g) ¼ HCl (g), DfG8m,298K ¼ �95:299 kJmol�1 (20:42)

and we can obtain the standard Gibbs function of formation of aqueous HCl:

1
2 H2(g)þ 1

2 Cl2(g) ¼ HCl(aq), DfG8m,298K ¼ �131:683 kJmol�1 (20:43)
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Standard Gibbs Function of Formation of Individual Ions: HCl

As it has been shown that the Gibbs function for formation of an individual ion has no
operational meanings [12], no way exists to determine such a quantity experimentally.
However, for the purposes of tabulation and calculation, it is possible to separate
DfG8m of an electrolyte arbitrarily into two or more parts, which correspond to the
number of ions formed, in a way analogous to that used in tables of standard electrode
potentials. In both cases, the standard Gibbs function for formation of aqueous Hþ is
defined to be zero at every temperature:

1
2 H2(g) ¼ Hþ(aq)þ e�, DfG8m ¼ 0 (20:44)

With this definition it is possible to calculate the standard Gibbs function of formation
of other ions. For example, for Cl2 ion, we proceed by adding appropriate equations
to Equation (20.44). For the reaction

HCl(aq, a2 ¼ 1) ¼ Hþ(aq, aþ ¼ 1)þ Cl�(aq, a� ¼ 1) (20:45)

DG8m is equal to zero because our definition of the individual ion activities [Equation
(20.5)] is

a2 ¼ (aþ)(a�)

If we add Equation (20.45) to Equation (20.43) and then subtract Equation (20.44),

1
2 H2(g)þ 1

2 Cl2(g) ¼ HCl(aq), DfG8m,298K ¼ �131:683 kJmol�1

HCl(aq) ¼ Hþ(aq)þ Cl�(aq) DfG8m ¼ 0

Hþ(aq)þ e� ¼ 1
2 H2(g) DfG8m ¼ 0

we obtain the standard Gibbs function for formation of Cl2 ion:

1
2 Cl2(g)þ e� ¼ Cl�(aq), Df G8m,298K ¼ �131:683 kJmol�1 (20:46)

This DfG8m corresponds to the value that can be calculated from the standard electrode
potential.

Standard Gibbs Function for Formation of Solid Solute
in Aqueous Solution

Solute Very Soluble: Sodium Chloride. As the standard Gibbs function for
formation of NaCl(s) is available [11], the DfG8m,298 for NaCl(aq) can be obtained
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by a summation of the following processes:

Na(s)þ 1
2 Cl2(g) ¼ NaCl(s)

DfG8m,298K ¼ �384:138 kJmol�1 (20:47)

NaCl(s) ¼ NaCl(aq, satd:, m2 ¼ 6:12)

DfGm ¼ 0 (equilibrium) (20:48)

NaCl(m2 ¼ 6:12, a02 ¼ 38:42) ¼ NaCl(a2 ¼ 1)

DfGm ¼ RT ln
1
a02

¼ �9:044 kJmol�1 (20:49)

NaCl(a2 ¼ 1) ¼ Naþ(aþ ¼ 1)þ Cl�(a� ¼ 1)

DG8m ¼ 0 (20:50)

Na(s)þ 1
2 Cl2(g) ¼ Naþ(aþ ¼ 1)þ Cl�(a� ¼ 1)

DfG8m,298K ¼ �393:182 kJmol�1 (20:51)

The value of a 0
2 in Equation (20.49) is obtained as follows:

a02 ¼ (aþ)(a�) ¼ (m+)2(g+)2

(m8)2
¼ (6:12)2(1:013)2

(1:00)2
¼ 38:42 (20:52)

From the standard Gibbs function of formation of the aqueous electrolyte, we also can
obtain that for the Naþ ion alone by subtracting Equation (20.46) from Equation
(20.51). Thus, we obtain

Na(s) ¼ Naþ(aq)þ e�

DfG8m,298K ¼ �261:796 kJmol�1 (20:53)

Slightly Soluble Solute: Silver Chloride. For AgCl we can add the following
equations:

Ag(s)þ 1
2 Cl2(g) ¼ AgCl(s)

DfG8m,298K ¼ 109:789 kJmol�1(11) (20:54)

AgCl(s) ¼ AgCl(aq, satd)

DGm ¼ 0 (20:55)

AgCl(ag, satd, a02 ¼ a0þa
0
�) ¼ Agþ(aþ ¼ 1)þ Cl�(a� ¼ 1)

DGm ¼ RT ln
(aþa�)

(a0þa0�)satd soln
¼ �RT lnKsp ¼ 55:669 kJmol�1 (20:56)

20.3 SOME TYPICAL CALCULATIONS FOR DfG8m 483



Ag(s)þ 1
2 Cl2(g) ¼ Agþ(aþ ¼ 1)þ Cl�(a� ¼ 1)

DfG8m,298K ¼ 54:120 kJmol�1 (20:57)

We can calculate a value for the Agþ ion by subtracting Equation (20.46) from
Equation (20.57). Thus, we obtain

Ag(s) ¼ Agþ(aþ ¼ 1)þ e�

DfG8m,298K ¼ 77:266 kJmol�1 (20:58)

Standard Gibbs Function for Formation of Ion of Weak Electrolyte

As part of a program to determine the Gibbs function changes in the reactions
by which glucose is oxidized in a living cell, Borsook and Schott (13) calculated
the Gibbs function for the formation at 258C of the first anion of succinic acid,
C4H5O4

2. The solubility of succinic acid in water at 258C is 0.715 mole
(kg H2O)

21. In such a solution the acid is 1.12% ionized (a ¼ 0.0112) and the
undissociated portion has an activity coefficient of 0.87. As we know that the first
dissociation constant of succinic acid is equal to 6.4 � 1025, we can calculate
DfG8m of the C4H5O4

2 ion by adding the following equations:

3H2(g)þ 4C(graphite)þ 2O2(g) ¼ C4H6O4(s)

DfG8m,298K ¼ 748:100 kJmol�1 (20:59)

C4H6O4(s) ¼ C4H6O4(aq, satd)

DGm ¼ 0 (equilibrium) (20:60)

C4H6O4(aq, satd, a
0
2) ¼ C4H6O4(a2 ¼ 1)

DGm ¼ RT ln (a2=a
0
2) ¼ 1:21 kJmol�1 (20:61)

C4H6O4(a2 ¼ 1) ¼ Hþ(aþ ¼ 1)þ C4H5O
�
4 (a� ¼ 1)

DG8m ¼ �RT lnK ¼ 24:0 kJmol�1 (20:62)

3H2(g)þ 4C(graphite) þ 2O2(g) ¼ Hþ(aþ ¼ 1)þ C4H5O
�
4 (a� ¼ 1)

DfG8m,298K ¼ �722:9 kJmol�1 (20:63)

The value in Equation (20.63) is also the standard change in Gibbs function for the
formation of the C4H5O4

2 ion because, by convention, the corresponding quantity for
Hþ is set equal to zero [see Equation (20.44)].
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For the Gibbs function change in Equation (20.61), a 0
2 of the undissociated species

of succinic acid in the saturated solution is obtained as follows:

a02 ¼ mugu ¼ mstoichiometric(1� a)gu
¼ (0:715)(1� 0:0112)(0:87) ¼ 0:615 (20:64)

Standard Gibbs Function for Formation of
Moderately Strong Electrolyte

Moderately strong electrolytes, such as aqueous HNO3, generally have been treated
thermodynamically as completely dissociated substances. Thus, for HNO3(aq), the
value for DfG8m of 2111.25 kJ mol21 listed in [Ref. 11] refers to the reaction

1
2 H2(g)þ 1

2 N2(g)þ 3
2 O2(g) ¼ Hþ(aq, a8þ ¼ 1)þ NO�

3 (aq, a8� ¼ 1) (20:65)

The activity of the nitric acid is defined by the equation

aHNO3 ¼ aHþaNO�
3
¼ m2

sg
2
+ (20:66)

in which ms is the stoichiometric (or total) molality of the acid.
Optical and nuclear magnetic resonance methods applicable to moderately strong

electrolytes have been made increasingly precise (14). By these methods, it has
proved feasible to determine concentrations of the undissociated species and hence
of the dissociation constants. Thus, for HNO3 in aqueous solution (14) at 258C, K
is 24. However, in defining this equilibrium constant, we have changed the standard
state for aqueous nitric acid, and the activity of the undissociated species is given by
the equation

a0HNO3
¼ mugu ¼ au (20:67)

in which the subscript “u” refers to the undissociated species. The standard states of
the ions are unchanged despite the change in the standard state of the undissociated
acid. The limiting law also is the same for the ions. Therefore, Equation (20.66) is no
longer applicable, and in its place, we have

aHþaNO�
3

au
¼ K ¼ 24 (20:68)

With the preceding considerations clearly in mind, we can calculate DfG8m of
undissociated HNO3. For this purpose, we can add the following equation to
Equation (20.65):

Hþ(aq, a8þ ¼ 1)þ NO�
3 (aq, a8� ¼ 1) ¼ HNO3(aq, a8u ¼ 1) (20:69)
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For this reaction

DG8m ¼ �RT ln
1
K

¼ 7:9 kJmol�1 (20:70)

The sum of Reactions (20.65) and (20.69) is

1
2 H2(g)þ 1

2 N2(g)þ 3
2 O2(g) ¼ HNO3(aq, au ¼ 1)

which is the formation of molecular, undissociated, aqueous HNO3, and the sum
of the DG8’s for Reactions (20.65) and (20.69) is the standard Gibbs function for
formation of molecular, undissociated, aqueous HNO3

DfG8m,298K ¼ �103:4 kJmol�1 (20:71)

Effect of Salt Concentration on Geological Equilibrium
Involving Water

In Section 13.3, we discussed the gypsum–anhydrite equilibrium [Equation (13.16)]

CaSO4 � 2H2O(s) ¼ CaSO4(s)þ 2H2O(l)

on the assumption that the liquid phase is pure water, and that DGm for the reaction is
dependent only on T, PS, and PF [Equation (13.17)]. If dissolved salt is in the water,
as is likely in a rock formation, the chemical potential and activity of the water (as
shown in Chapter 19) depend on the salt concentration, as does DGm for Equation
(13.16). The equation for DGm would be a modified form of Equation (13.17)
with a term taking into account possible variation in the activity of water, as
follows (with PS and PF much greater than 1 bar):

DGm(PF, PS, T) ¼ DGm(P ¼ 1, T , aH2O ¼ 1)

þ PS(DVm,S)þ PF(DVm,F)þ 2RT lnXH2OgH2O

(20:72)

The osmotic coefficient of water in NaCl solutions of varying concentration can be
calculated from data in Ref. 15. From the resulting values of the osmotic coefficients,
the effect of NaCl concentration on the equilibrium temperature for Equation (13.16)
can be determined. The results of some calculations for a constant pressure of 1 atm
are shown in Figure 20.5 (16).

General Comments

The preceding examples illustrate some methods that can be used to combine data for
the Gibbs functions for pure phases with information on the Gibbs function for con-
stituents of a solution to calculate changes in the Gibbs function for chemical
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reactions of those compounds in solution. The examples discussed, together with
some of the exercises at the end of this chapter, should help students apply the
same principles to particular problems in which they are interested.

20.4 ENTROPIES OF IONS

In dealing with solutions, it frequently may be necessary to obtain values of DG for a
process in solution for which only thermal data are available. If standard entropy
data also could be obtained for solutions, then it would be possible to calculate
DG8 from a calorimetric determination of DH8 and from Equation (7.26):

DG8 ¼ DH8� TDS8

For aqueous solutions of electrolytes, a concise method of tabulating such entropy
data is in terms of the individual ions, because entropies for the ions can be combined
to give information for a wide variety of salts. The initial assembling of the ionic
entropies generally is carried out by a reverse application of Equation (7.26); that
is, DfS8m of a salt is calculated from known values of DfG8m and DfH8m for that salt.
After a suitable convention has been adopted, the entropy of formation of the

Figure 20.5. Effect of NaCl concentration on the equilibrium temperature of the anhydrite–
gypsum reaction at 1 bar. Data from Ref. 16.
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cation and anion together then can be separated into the entropies for the
individual ions.

The Entropy of an Aqueous Solution of a Salt

From Equation (20.51), we have

Na(s)þ 1
2 Cl2(g) ¼ Naþ(aþ ¼ 1)þ Cl�(a� ¼ 1)

DfG8m,298K ¼ �393:182 kJmol�1

The enthalpy of formation of NaCl(s) is 2411.153 kJ mol21 (11). Hence, we
may write

Na(s)þ 1
2 Cl2(g) ¼ NaCl(s)

DfH8m,298K ¼ �411:153 kJmol�1 (20:73)

To this calculation, we need to add the enthalpy change for the reaction

NaCl(s) ¼ Naþ(aþ ¼ 1)þ Cl�(a� ¼ 1) (20:74)

As the enthalpy of the dissolved sodium chloride in its standard state according to
Henry’s law is that of the infinitely dilute solution, DHm for the reaction in
Equation (20.74) is

DHm ¼ H1
m2 � Hm2(s) ¼ H8m2 � Hm2(s) (20:75)

which, according to Equation (18.7), is 2Lm2(s). The relative partial molar enthalpy
of solid sodium chloride is 23.861 kJ mol21 (17). Thus, for the reaction in Equation
(20.51)

DG8m ¼ �393:188 kJmol�1

DH8m ¼ �407:292 kJmol�1
(20:76)

and

DS8m ¼ �47:31 Jmol�1K1

Entropy of Formation of Individual Ions

As in the case of Gibbs function changes, we also can divide the entropy change for a
reaction [such as Equation (20.51)] into two parts and can assign one portion to each
ion. As actual values of individual-ion entropies cannot be determined, we must
establish some convention for apportioning the entropy among the constituent ions.
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In treating the Gibbs functions for individual ions, we adopted the convention that
DfG8m of the hydrogen ion equals zero for all temperatures; that is [Equation (20.44)],

1
2 H2(g) ¼ Hþ(aq)þ e�, DfG8m ¼ 0

We also have shown previously [Equation (7.49)] that

@DG

@T

� �
P

¼ �DS

If Equation (20.44) is valid at all temperatures, it follows that the entropy change in
the formation of hydrogen ion from gaseous hydrogen must be zero; that is,

1
2 H2(g) ¼ Hþ(aq)þ e�, DfS8m ¼ � @Df G8m

@T

� �
P
¼ 0 (20:77)

Therefore, a consistent convention would set the standard entropy of aqueous Hþ ion
equal to 1

2 SH2ðgÞ 2 S8e (18) or 65.342 J mol21 K21 2 S8e (11).
Historically, the usefulness of ionic entropies first was emphasized by Latimer and

Buffington (19), who established the convention of setting the standard entropy of
hydrogen ion equal to zero; that is,

S8m,Hþ ; 0 (20:78)

Therefore, to maintain the validity of Equation (20.77), we should assign a value of
65.342 J mol21 K21, 1

2 S8m(H2), to S8m for a mole of electrons. In practice, half-
reactions are combined to calculate DS8m for an overall reaction in which no net
gain or loss of electrons occurs; hence, any value assumed for S8m of the electron
will cancel out. We will use Equation (20.78) and the consequent value for S8m for
the electron.

Having chosen a value for S8m,Hþ , we can proceed to obtain S8m,298K for the Cl2 ion
from any one of several reactions [for example, Equation (20.43)] for the formation of
aqueous Hþ and Cl2. Using values of 2131.386 kJ mol21 and 2167.159 kJ mol21

for DG8m and DH8m, respectively (11), we can calculate 2119.98 J mol21 K21 for
DS8m at 298.15 K. If we adopt the convention stated in Equation (20.78), and if
S8m,298 for Cl2(g) is taken as 223.066 J mol21 K21 and that for H2(g) is 130.684 J
mol21 K21, it follows that for Reaction (20.43)

DfS8m,298K ¼ S8m,Hþ þ S8m,Cl� � 1
2 S8m,H2 � 1

2 S8m,Cl2

¼ �120:0J mol�1K�1 (20:79)

Hence

S8m,Cl� ¼ 56:89 J mol�1K�1 (20:80)
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DfS8m,298K ¼ S8m,Naþ þ S8m,Cl� � S8m,Na(s) � S8m,Cl2(gas)

¼ �47:31 J mol�1K�1 (20:81)

Having a value for S8m;Cl� , we can proceed to obtain the entropy of formation
for Naþ(aq) from DS8m for Reaction (20.51). Consequently, with S8m,Na(s) ¼ 51.21 J
mol21 K21 (11),

S8m,Naþ ¼ 58:54 J mol�1 K�1 (20:82)

By procedures analogous to those described in the preceding two examples, we can
obtain entropies for many aqueous ions. A list of such values is assembled in
Table 20.1.

TABLE 20.1. Entropies of Aqueous Ions at 298.15 K [11]

Ion S8m/J mol21 K21 Ion S8m/J mol21 K21

Hþ (0.00) ClO2 42.0
Liþ 13.4 ClO2

2 101.3
Naþ 59.0 ClO3

2 162.3
Kþ 102.5 ClO4

2 182.0
Rbþ 121.50 BrO3

2 161.71
Csþ 133.05 IO3

2 118.4
NH4

þ 113.4 HS2 62.8
Agþ 72.68 HSO3

2 139.7
Ag(NH3)2

þ 245.2 SO3
22 229.0

Tlþ 125.5 HSO4
2 131.8

Mg2þ 2138.1 SO4
22 20.1

Ca2þ 253.1 NO2
2 123.0

Sr2þ 232.6 NO3
2 146.4

Ba2þ 9.6 H2PO4
2 90.4

Fe2þ 2137.7 HPO4
22 233.5

Cu2þ 299.6 PO4
32 2222.0

Zn2þ 2112.1 HCO3
2 91.2

Cd2þ 273.2 CO3
22 256.9

Hg2
2þ 84.5 C2O4

22 45.6
Sn2þ 217.0a CN2 94.1
Pb2þ 10.5 MnO4

22 191.2
Al3þ 2321.7 H2AsO4

2 117.0
Fe3þ 2315.9 CrO4

22 50.21
OH2 210.75
F2 213.8
Cl2 56.5
Br2 82.4
I2 111.3

aIn 3-M NaClO4. For entropies of aqueous ions at high temperatures see C. M. Criss and J. W. Cobble,
J. Am. Chem. Soc. 86, 5385 (1964).
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Ion Entropies in Thermodynamic Calculations

With tables of ion entropies available, it is possible to estimate a Gibbs function
change without the necessity of carrying out an experiment or seeking specific exper-
imental data. For example, without seeking data for the potential of calcium electro-
des, it is possible to calculate the calcium electrode potential or the Gibbs function
change in the reaction

Ca(s) þ 2Hþ(aq) ¼ Ca2þ(aq)þ H2(g) (20:83)

from the data in Table 20.1 plus a knowledge of DH8m of this reaction. Thus,

DS8m,298K ¼ S8m,Ca2þ þ S8m,H2 � S8m,Ca(s) � 2S8m,Hþ

¼ �53:1þ 130:684� 41:42� 0 ¼ 36:1 Jmol�1 K�1 (20:84)

As DH8m is 2542.83 kJ mol21 (11), we find a value of DG8m of 2542.07 kJ mol21.
Hence, E8 for Reaction (20.83) is 2.8090 V.

EXERCISES

20.1. The Gibbs function for formation of NH4
þ(aq) can be obtained from the

following information:

a. DfG8m of NH3(g) is 216.45 kJ mol21 at 298.15 K. That is,

1
2 N2(g)þ 3

2 H2(g) ¼ NH3(g, a ¼ f ¼ 1),

DfG8m ¼ �16:45 kJ mol�1
(20:85)

b. A graph of p/(m2/m82), where p is the partial pressure of NH3(g) in equi-
librium with the solution and m2 is the molality of undissociated ammonia
dissolved in water, extrapolates to a limit of 0.01764 atm (mol kg21)21 as
m2 approaches zero. If the fugacity is assumed to be equal to the partial
pressure, show that the Henry’s-law constant, k002 [Equation (15.8)] is
0.01764 atm. For this calculation, the quantity of ammonia that is disso-
ciated in solution is negligible (that is, the graph has a horizontal asymp-
tote at relatively high values of m2, where the fraction of NH4

þ ions is very
small).

c. Show that DG8m,298K must be 29.976 kJ mol21 for the reaction

NH3(g, a ¼ f ¼ 1) ¼ NH3(aq, a2 ¼ 1) (20:86)

Keep in mind that although a and a2 are both 1, they have not been defined
on the basis of the same standard state.
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d. The equilibrium constant for the reaction

NH3(aq)þ H2O(l) ¼ NHþ
4 (aq)þ OH�(aq) (20:87)

can be taken as 1.8 � 1025 and the standard Gibbs function of formation
of H2O(l) at 298.15 K is 2237.129 kJ mol21. Show that DfG8m,298K for
NH4

þ þ OH2 ions is 2236.4 kJ mol21.

e. If DfG8m,298K for OH2 is 2157.244 kJ mol21, show that the correspond-
ing quantity for NH4

þ is 279.24 kJ mol21.

20.2. Given the following information for CO2 and its aqueous solutions, and using
standard sources of reference for any other necessary information, calculate
the standard Gibbs function of formation at 298.15 K for the CO3

22 ion.
Henry’s-law constant [see Equations (15.8) and (15.9)] for solubility in
H2O ¼ 29.5 for p in atmospheres and m2 in moles (kg H2O)

21.

Ionization constants of H2CO3: K1 ¼ 3:5� 10�7

K2 ¼ 3:7� 10�11

20.3. The solubility of pure solid glycine at 258C in water is 3.33 moles
(kg H2O)

21. The activity coefficient of glycine in such a saturated solution
is 0.729. Data for the relative partial molar enthalpies of glycine in aqueous
solution are tabulated in Exercise 15 of Chapter 18. Given DfG8m and DfH8m
for solid glycine, complete Table 20.2.
Correct answers can be found in an article by Gucker et al. [20].

20.4. The solubility of a-D-glucose in aqueous 80% ethanol at 208C is 20 g L21,
that of b-D-glucose, 49 g L21 (21). If an excess of solid a-D-glucose is
allowed to remain in contact with its solution for sufficient time, some
b-D-glucose is formed, and the total quantity of dissolved glucose increases
to 45 g L21. If excess solid b-D-glucose remains in contact with its solution,
some a-D-glucose is formed in the solution, and the total concentration rises
to a limit, which we will refer to as Cb.

a. Assuming that the activity of each sugar is proportional to its concentration
and that neither substance has an appreciable effect on the chemical
potential of the other, determine DG8m for:

TABLE 20.2. Thermodynamic Data for Glycine and
its Aqueous Solutions

Glycine(s) Glycine(aq)

DfG8m 2370.54 kJ mol21

DfH8m 2528.31 kJ mol21

DfS8m
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(i) a-D-glucose(s) ¼ b-D-glucose(s)

(ii) a-D-glucose(s) ¼ a-D-glucose(solute)

(iii) a-D-glucose(solute) ¼ b-D-glucose(solute).

(iv) b-D-glucose(s) ¼ b-D-glucose(solute).

b. Compute the concentration Cb. Is such a solution stable? Explain.

20.5. The dissociation constant of acetic acid is 1.754 � 1025. Calculate the degree
of dissociation of 0.01-molar acid in the presence of 0.01-molar NaCl. Use the
Debye–Hückel limiting law to calculate the activity coefficients of the ions.
Take the activity coefficient of the undissociated acid as unity. In your calcu-
lation neglect the concentration of Hþ in comparison with the concentration
of Naþ.

20.6. When DG8m is calculated from an equilibrium constant K, what error would
result at 258C from an error of a factor of 2 in K?

20.7. a. What will happen to the degree of dissociation of 0.02-molar acetic acid if
NaCl is added to the solution? Explain.

b. What will happen to the degree of hydrolysis of 0.02-molar sodium acetate
if NaCl is added? Explain.

20.8. Two forms of solid A exist. For the transition A0 ¼ A00, DG8m ¼ 21000 J
mol21. A0 and A00 produce the same dissolved solute. Which is more
soluble? Calculate the ratio of the solubilities of A0 and A00.

20.9. Henry’s law is obeyed by a solute in a certain temperature range. Prove that
Lm2, Lm1, and the integral heat of dilution are zero within this range. Do
not assume that Henry’s-law constant is independent of temperature; gener-
ally, it is not.

20.10. The average value of Lm2 between 08C and 258C for NaCl in 0.01-molar
solution is about 188 J mol21. According to the Debye–Hückel limiting
law, g+ of NaCl in this solution at 258C is 0.89.

a. Calculate g+ at 08C from the thermodynamic relationship for the tempera-
ture coefficient of ln g+ [Equation (19.68)].

b. Calculate g+ at 08C from the Debye–Hückel limiting law at that tempera-
ture. Compare the result with that obtained in (a).

20.11. The activity coefficient of CdCl2 in 6.62-molal solution is 0.025. The poten-
tial of the cell

Cd, CdCl2(m2 ¼ 6:62), Cl2

is 1.8111 V at 258C. The 6.62-molal solution is a saturated one; it can exist in
equilibrium with solid CdCl2 . (5/2)H2O and H2O vapor at a pressure of 16.5
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mmHg. Calculate DG8m for the reaction

Cd(s)þ Cl2(g)þ (5=2)H2O(l) ¼ CdCl2 � (5=2)H2O(s)

For the solutions of Exercises 12 through 18, the Debye–Hückel limiting law
is sufficiently accurate, and the numbers in parentheses can be read as either
molality or molarity at this level of approximation. The temperature to be used
is 258C.

20.12. Calculate the potential of the cell pair

H2; HCl(0:001), KNO3(0:009); AgCl, Ag–Ag, AgCl; HCl(0:01); H2

20.13. Calculate the potential of the cell

H2; HCl(0:001), KCl(0:009); AgCl, Ag

using the fact that the cell

H2; HCl(0:001), AgCl, Ag

has a potential of 0.46395 V.

20.14. Calculate the potential of the cell pair

Ag, AgCl; KCl(0:01), TlCl(satd), Tl–Tl, TlCl(satd), KCl(0:001); AgCl, Ag

20.15. MacInnes and Shedlovsky [5] have made conductance measurements that
indicate that 0.02-molar acetic acid is 2.987% ionized. Assuming that the
activity coefficient of the undissociated acid is 1:

a. Compute the ionization constant of acetic acid.

b. Using this constant, calculate the degree of dissociation of 0.01-molar
acetic acid.

20.16. Two solutions contain only hydrochloric acid, acetic acid, and water. In the
first solution the concentration of acetate ion is 0.0004 molar; in the
second, it is 0.0001 molar. The total ionic strength in each solution is 0.01
molar. Compute the ratio of the activities of acetic acid in the two solutions.

20.17. Two solutions contain only sodium chloride, acetic acid, and water. In the first
solution, the concentration of acetate ion is 0.0004 molar; in the second, it is
0.0001 molar. The total ionic strength of each solution is 0.01. Compute the
ratio of the activities of acetic acid in the two solutions. What can be said
about the relative partial vapor pressures of the monomeric form of acetic
acid above the solutions? Of acetic acid dimer?
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20.18. The solubility in 0.0005-molar KNO3 of hexaamminecobalt(III)
hexacyanoferrate(III), [Co(NH3)6][Fe(CN)6], was found by La Mer et al.
[22] to be 3.251 � 1025 mol L21.

a. In what concentration of MgSO4 is its solubility the same?

b. What is its solubility in pure water? As the ionic strength is not known, the
problem can be solved by a method of successive approximations (or by a
graphical method).

c. Calculate its solubility in 0.0025-molar MgSO4. How much error is
introduced by neglecting the contribution of the complex salt itself to
the ionic strength?

d. The total molarity (C of the cobalt complex plus C of NaCl) of a solution
containing NaCl and saturated with the complex salt is 0.0049. Calculate
the molarities of each of the solutes.

20.19. Strong et al. [8] have determined the ionization constant of benzoic acid in
H2O as a function of temperature by conductance methods. Their data are
listed in Table 20.3, with the pKa based on a hypothetical standard state of
1 mol dm23. Temperature was controlled to +0.0028C.
To change pKa to a hypothetical standard state of 1 mol kg21, it is necess-

ary to add to each value log [rH2O=g dm�3], where r ¼ (999.83952 þ
16.945176t 2 7.9870401 � 1023t2 2 46.170461 � 1026t3 þ 105.56302 �
1029t4 2 280.54243 � 10212t5)/(1 þ 0.01687985t). Calculate pKa on the
molal scale, and calculate DG8m, and DY8m for each temperature. Plot log K,
DG8m. and DY8m as a function of temperature. Use the method of numeric

TABLE 20.3. Ionization Constants of Benzoic Acid as a
Function of Temperature

t/8C pKa

5 4.2245
10 4.2148
15 4.2076
20 4.2034
25 4.1998
30 4.2013
35 4.2061
40 4.2115
45 4.2190
50 4.2287
55 4.2400
60 4.2525
65 4.2665
70 4.2821
75 4.2991
80 4.3170
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differentiation described in Appendix A to obtain values of DH8m, DC8pm, and
DS8m. Also use the difference table method suggested by Ives and Mosley
[23], and compare the results with those obtained with numeric
differentiation.

20.20. The solubility of SrSO4 in water is 0.00087 molar. Calculate DG8m for

SrSO4(s) ¼ Srþ2(aq)þ SO2�
4 (aq)

20.21. A saturated solution of AgCl in water at 258C contains Agþ and Cl2, each at
the concentration 1.338 � 1025 mole (kg H2O)

21. It also contains dissolved
undissociated AgCl, whose dissociation constant is 0.49 � 1023.

a. Determine the mean activity coefficient of the Agþ and Cl2 ions from the
Debye–Hückel limiting law.

b. Calculate the concentration of undissociated AgCl. Assume that the
activity coefficient of undissociated AgCl is equal to 1.

c. Calculate DG8m for the reaction

AgCl(s) ¼ AgCl(aq, undissociated)

d. Compute the mean stoichiometric activity coefficient of the Agþ and Cl2

ions, which is equal to a/(ms/m8) . Why must it be less than the activity
coefficient calculated from the Debye–Hückel theory?
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CHAPTER 21

SYSTEMS SUBJECT TO A
GRAVITATIONAL OR A
CENTRIFUGAL FIELD

In most circumstances of interest to chemists, the dominant experimental variables are
temperature, pressure, and composition, and our attention has been concentrated on
the dependence of a transformation on these factors. On some occasions, however,
a transformation takes place in a field: gravitational, electrical, or magnetic; chemists
who work with macromolecules frequently use a centrifugal field in their work. It
behooves us, therefore, to see how we can approach such problems. As a gravitational
field is the most familiar in common experience, we shall focus initially on some
representative problems in this area.

21.1 DEPENDENCE OF THE GIBBS FUNCTION ON
EXTERNAL FIELD

In our exposition of the properties of the Gibbs function G (Chapter 7), we examined
systems with constraints on them in addition to the ambient pressure. We found that
changes in Gibbs function are related to the maximum work obtainable from an
isothermal transformation. In particular, for a reversible transformation at constant
pressure and temperature [Equation (7.79)],

dGT ,P ¼ DWnet

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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where DW is the net useful (non-PV) reversible work associated with the change in
Gibbs function.

Of course, the equality in Equation (7.79) is symmetric; that is, the equation
may be read in the mirror-image direction: If we perform reversible (non-PV) work
DWnet on a system at constant pressure and temperature, we increase its Gibbs
function by the amount dGT,P. For example, if we reversibly change the position x
of a body in the gravitational field of the earth [Fig. 21.1(a)], we perform an
amount of work given by

DWnet ¼ mgdx (21:1)

where m is the mass of the body, g is the gravitational acceleration, and x is positive in
the upward direction. It follows then from Equation (7.79) that

@G

@x

� �
T ,P

¼ mg ¼ force exerted on body that moves it against gravitational field

(21:2)

If we consider lowering a body down a shaft [Fig. 21.1(b)] it is convenient to change
our convention regarding the positive direction of x to downward. Hence,

@G

@x

� �
T ,P

¼ �mg (21:3)

Figure 21.1. Reversible processes in a gravitational field.
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More generally, for constraints other than gravity, we can also state that

DWnet in field ¼ ( force exerted against field) dx ; Fdx (21:4)

Consequently, it follows that

@G

@x

� �
T ,P

¼ force exerted against field ; F (21:5)

For a system of constant composition in which fields are absent, we found in
Chapter 7 that because the Gibbs functionG is a function of pressure and temperature,

G ¼ f (T , P)

we can write for the total differential [Equation (7.42)]

dG ¼ @G

@T

� �
P

dT þ @G

@P

� �
T

dP

Subsequently, when we examined systems in which composition, as well as T and P,
can be varied (but fields are still absent or constant), we found [Equation (9.2)] that

G ¼ f (T , P, n1, n2, . . . , ni)

where n1, n2, . . . are the moles of the respective components. So the total differential
now becomes [Equation (9.3)]

dG ¼ @G

@T

� �
P,ni

dT þ @G

@P

� �
T ,ni

dPþ S
@G

@ni

� �
T ,P,nj

dni

Now let us remove the constraint of a fixed field. To be concrete, let us move some
unit of material from one position in the gravitational field of the earth to another.
Under these circumstances, the Gibbs function G also depends on x, the position
in the field, so we may write for the most general circumstances

G ¼ f (T , P, ni, n2, . . . , ni, x) (21:6)

Consequently it follows that the total differential should be expressed as

dG ¼ @G

@T

� �
P,ni,x

dT þ @G

@P

� �
T ,ni,x

dPþ
X @G

@ni

� �
T ,P,nj,x

dni þ @G

@x

� �
T ,P,nj

dx

(21:7)
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and, from Equations (9.4)–(9.6), and (21.2)

dG ¼ �SdT þ VdPþ
X

midni þ mgdx (21:8)

21.2 SYSTEM IN A GRAVITATIONAL FIELD

Let us now analyze some specific systems. First, we examine a column of pure fluid
perpendicular to the surface of the earth [Fig. 21.1(c)] and at equilibrium. In this case,
it can be shown by the following argument that the pressure within the fluid varies
with position in the gravitational field.

The column of pure fluid [Fig. 21.1(c)] is at a constant temperature, and the
external pressure on it is constant. Thus, for the column of fluid

dG ¼ 0 (21:9)

for any transfer of fluid from one level to another.
Let us now analyze the contributions to dG if we take one mole of the pure fluid in

the column at position x and move it to the position x þ dx. At each level within the
column, the pressure is different (as the weight of fluid above it is different), although
it remains fixed at each level. Hence, as the temperature and the composition remain
fixed, when a unit of pure fluid is being moved from one position to another, Equation
(21.8) can be written as

dG ¼ dGm ¼ VmdPþMgdx ¼ 0 (21:10)

where Gm and Vm denote values of the respective properties per mole and M is the
molar mass. From this equation, we conclude that

@P

@x
¼ � M

Vm
g ¼ �rg (21:11)

where r is the density of the fluid. Thus, the pressure in the fluid is a function of x, and
for the column rising from the surface of the earth [Fig. 21.1(c)], the pressure
decreases as the distance x above the surface increases.

If the pure fluid were in the shaft extending below the surface [Fig. 21.1(b)], our
analysis would correspond in every detail to that in the column above the surface
except that the negative sign in Equation (21.11) would be replaced by a positive
sign, because x is positive in the direction of the gravitational field. Thus, the pressure
within the fluid would increase as the depth x down the shaft increases.

Let us examine now a column of a solution in the shaft of Figure 21.1(b). For
simplicity, we shall assume only one dissolved solute is in a single-component
solvent. If equilibrium has been attained, we find that the molality m of solute
varies with the depth, and we can derive an analytic expression for this dependence
of molality on depth.
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Consider the transfer of one mole of solute from one position x in the column at
equilibrium to another position x þ dx. The transfer of the solute, in a column of very
large cross section, does not change the molality at any position. The fluid in the shaft
is at equilibrium, its temperature is invariant, and the external pressure on it is fixed;
hence, dG ¼ 0. A mole of solute in solution has a molar Gibbs function Gm2. If the
solute is moved from one position x to another, x þ dx, it could undergo a change in
Gibbs function dGm2 resulting from the difference in pressure in the fluid, because of
the change of position in the gravitational field, and as a result of any change in
molality of solute at different levels. As, in our thought experiment, this transposition
is the only change being made in the system, we can write1 in place of Equation
(21.7), using ln m in place of ni,

dG ¼ dGm2 ¼ @Gm2

@ ln m

� �
P,x

d lnmþ @Gm2

@P

� �
lnm,x

dPþ @Gm2

@x

� �
lnm,P

dx

¼ 0 (21:12)

From Equation (15.11), we can obtain the following relation:

Gm2 ¼ RT ln (m=m8)þ G8m2;
@Gm2

@ lnm

� �
P,x

¼ RT (21:13)

From an equation analogous to Equation (9.25), it follows (see Exercise 4 of
Chapter 9) that

@Gm2

@P

� �
lnm,x

¼ Vm2 ¼ M2v2 (21:14)

where Vm2 is the partial molar volume of the solute, v2 is the partial specific volume of
the solute, and M2 is its molar mass. The dependence of Gibbs function G on the
gravitational field is expressed in Equation (21.3), which can be converted to

@Gm2

@x
¼ �M2g (2:15)

1In the absence of a field, Gm and m are identical. However, in the presence of a gravitational (or other)
field, that identity no longer is valid because of historical reasons. As defined by Gibbs (J. W. Gibbs,
The Collected Works of J. Willard Gibbs, Vol. 1, Longmans, Green and Co., New York, 1928,
pp. 144–150), the chemical potential m is not a function of position x in a field. On the other hand, as
used by G. N. Lewis (G. N. Lewis and M. Randall, Thermodynamics, McGraw-Hill, New York, 1923,
pp. 242–244), the partial molar Gibbs function Gm includes the energy associated with position x in a
field. For this reason we have expressed our derivations in terms of Gm. In a gravitational field (over dis-
tances for which g is essentially constant), Gm and m are related by the equation Gm ¼ mþMgx. Some
thermodynamicists define a “total chemical potential” mtotal or “gravitochemical potential” as the sum of
m þMgx; hence, they are essentially using Gm.
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because M2 and g are constants in the situation being analyzed. Recognizing that at
equilibrium dG ¼ 0, and substituting Equations (21.13) to (21.15) into Equation
(21.12), we find [see Equation (21.11)]

RT d ln m ¼ M2gdx�M2v2dP

¼ M2 gdx�M2v2rgdx
(2:16)

If we integrate Equation (21.16) from x ¼ 0 to x ¼ d, the result is

RT ln
mat depth d

mat surface
¼ M2g(1� v2r)d (21:17)

where d is the depth below the surface.
Thus, whether an increase or decrease in molality occurs at depth d, in comparison

with the surface, is determined by the factor (12 v2r). If v2r . 1, the molality of
solute will decrease with increasing depth. On the other hand, if v2r, 1, the molality
of solute will increase with increasing depth.

Let us illustrate this phenomenon with a practical example, the variation of oxygen
and of nitrogen equilibrium solubilities with depth in the ocean [1]. For seawater, the
density r depends on temperature and salinity, and it could vary from 1.025
to 1.035 g cm23. For dissolved oxygen, v2 ¼ 0.97 cm3 g21 in seawater at a water
temperature near 258C. If d is expressed in meters, then at the lower limit of the
water density, Equation (21.17) becomes

log10
md

msurface
¼ 3:2� 10�7d (21:18)

Thus, for example, at a depth of 1000 m, and a density of 1.025 g cm23, the solubility
of oxygen is 1.0007 times the solubility at the surface. If the density of the seawater is
as high as 1.035, then the solubility of oxygen at a depth of 1000 m is 1/1.007 times
the solubility at the surface, assuming that v2 is 0.97 cm3 g21.

On the other hand, the situation with nitrogen is markedly different. Here, vari-
ations in salinity and temperature have little effect on the factor (1 2 v2r) because
the v2 of nitrogen, 1.43 cm3 g21, is relatively so large. Thus, for nitrogen,
Equation (21.17) becomes

RT ln
md

msurface
¼ �2:4� 10�5d (21:19)

At a depth of 1000 m, the solubility of nitrogen decreases by 5–6%. In contrast to
oxygen, the (equilibrium) solubility of nitrogen always decreases progressively
with depth.
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21.3 SYSTEM IN A CENTRIFUGAL FIELD

Near the surface of the earth, the gravitational acceleration g is essentially constant.
For contrast, let us turn our attention next to a centrifugal field, where the acceleration
is very sensitive to the distance from the center of rotation.

The centrifugal force Fc at a distance r from the axis of rotation (Fig. 21.2) is

Fc ¼ mv2r (21:20)

where m is the mass of the entity being centrifuged and v is the angular velocity.
Thus, by an analysis similar to that presented for Equation (21.5), we find that

@G

@r

� �
P,T ,ni

¼ �mv2r (21:21)

because m and v are constant. This relation is analogous to that in the gravitational
field, with the angular acceleration v2r replacing the gravitational acceleration g.

Figure 21.2. (a) Schematic diagram of a sedimentation apparatus for determination of mole-
cular mass of a solute molecule. The sector-shaped container is actually mounted in a rotor that
spins about an axis of rotation A at an angular velocity v. The centrifugal field, Fc at any point
is directed along the axis r in the direction of increasing r. At any position r, the chord length is
fr, which increases with increasing r. The position of the liquid meniscus is indicated by a.
(b) Concentration distribution of solute in cell at sedimentation equilibrium.
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The negative sign on the right-hand side occurs because the Gibbs function decreases
as r increases; that is, work would have to be performed on the sedimenting particle to
bring it back from an axial position at large r to a position at small r.

If we now examine a cell (Fig. 21.2) containing a pure liquid (rather than a solution
as shown), then again (as in the case of a gravitational field) we can show that the
pressure in the pure fluid varies with position in the centrifugal field. Starting with
Equation (21.8) we obtain

VmdP�Mv2r dr ¼ 0 (21:22)

in place of Equation (21.10) for the gravitational field, where Vm is the molar volume
of the pure liquid. Thus, we conclude that

@P

@r
¼ M

Vm
v2r ¼ rv2r (21:23)

Therefore, the ambient pressure within the fluid in the cell in Figure 21.2 increases
with increasing distance from the axis of rotation.

Finally, we consider the behavior of a solute in a solution in the cell subjected to
the centrifugal field. At a suitable angular velocity, the tendency of the solute to sedi-
ment toward the bottom of the cell is countered by its tendency to diffuse backward
toward the meniscus, because the concentration increases with increasing r, as
indicated in Figure 21.2(b). At some time, a sedimentation equilibrium is attained.
A typical equilibrium concentration distribution is depicted in Figure 21.2(b).
Our aim is to find a quantitative analytical expression for this curve.

We consider a transfer at constant temperature of an infinitesimal amount of any
single solute i from a position r in the cell in the centrifugal field to a second position
r þ dr. For this transfer at equilibrium, at constant T and external P, dG ¼ 0, so we
write in place of Equation (21.12),

0 ¼ dGmi ¼ @Gmi

@P

� �
ci,ck ,r

dPþ @Gmi

@ci

� �
P,ck ,r

dci

þ
X
ki

@Gmi

@ck

� �
P,ci,r

dck þ @Gmi

@r

� �
P,ci,ck

dr

(21:24)

We distinguish between ci, the concentration of solute whose distribution we are
focusing on, and the ck’s, the concentrations of other solutes, because this type of
multicomponent system is of frequent practical interest. Since the development by
Svedberg [2], the ultracentrifuge has been used widely to determine the molecular
weight of a macromolecule from its concentration distribution at equilibrium.
The large molecule, natural or synthetic, which may be designated by i, is dissolved
frequently in an aqueous solution containing other solute species k to buffer the
solution or to provide an appropriate ionic strength.
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For the individual terms and factors on the right-hand side of Equation (21.24), we
may insert the following substitutions:

@Gmi

@P
¼ Vmi ¼ Mivi (21:25)

where vi is the partial specific volume of the solute;

dP ¼ rv2rdr (21:26)

Gmi ¼ RT ln ai þ G8mi (21:27)

@Gmi

@ci
¼ @ ln ai

@ci

� �
¼ RT

@ ln ci
@ci

þ @ ln gi
@ci

� �
(21:28)

@Gm,i

@ck

� �
ci

¼ RT
@ ln ai
@ck

� �
¼ RT

@ lngi
@ck

� �
(21:29)

@Gmi

@r
¼ �Miv

2r (21:30)

Although we shall carry along the term in Equation (21.28) for the variation of ln gi
with ci—for in practice the macromolecule concentration may cover a wide range
from meniscus to bottom of the cell (Fig. 21.2)—we shall assume that the change
in ln gi of the macromolecule with change in concentration of other solutes ck in
the solution is negligible to a good approximation. Within these specifications,
Equation (21.24) can be reduced to

0 ¼ Mivirv
2rdr þ RT

1
ci
þ @ lngi

@ci

� �� �
dci �Miv

2rdr (21:31)

which in turn can be converted into

1
r

1
ci

@ci
@r

� �
¼ v2

RT

Mi(1� vir)

1þ ci
@ ln gi
@ci

� �� � (21:32)

An alternative form is

@ ln ci
@(r2)

� �
¼ v2

2RT
Mi(1� vir)

1þ ci
@ ln gi
@ci

� �� � (21:33)

This equation suggests that a convenient graphical representation of the concentration
distribution of species i would be one plotting ln ci versus r

2. Three representative
possible curves are illustrated in Figure 21.3.

21.3 SYSTEM IN A CENTRIFUGAL FIELD 507



If the solute i is monodisperse—that is, if no dissociation or aggregation of the
(macro)molecules occurs and each one has exactly the same molecular weight at
every position in the cell—then Mi is the same for all macromolecular species in
the solution. If, furthermore, these solute molecules do not interact with each
other—that is, if they behave ideally—the term @ ln gi/@ci ¼ 0. Under these circum-
stances, ln ci varies linearly with r

2, as shown in line A of Figure 21.3. If the molecu-
lar weight of species i is unknown, it can be determined from the slope of line A,
because Equation (21.33) becomes

@ ln ci
@(r2)

� �
¼ v2

2RT
Mi(1� vir) (21:34)

Equilibrium ultracentrifugation has played a crucial role in establishing the molecular
weights of protein molecules on an ab initio basis [3,4], that is, without requiring
calibration with macromolecules of known molecular weight.

Should the macromolecules interact with each other, then @ ln gi/@ci does not
vanish. In actual experience, its value is almost always positive, largely because of
excluded volume effects. Then, ci[@ ln gi/@ci] will then increase in magnitude as
ci increases and r decreases. Thus, the downward curvature shown in curve B of
Figure 21.3 is typical of nonideal behavior.

It is also possible to observe upward curvature in a plot of ln ci versus r
2, as in

curve C of Figure 21.3. This curvature occurs when the macromolecules are polydis-
perse, that is, when they possess a range of molecular weights. Common sense tells
us, in this case correctly, that the heavier species in the class i will congregate toward
the bottom of the cell. As the slope depends onMi, curve C will become steeper as we
move toward the bottom of the cell, where r is greater.

Figure 21.3. Concentration distribution of solute in solution at sedimentation equilibrium.
Curve A represents ideal behavior of a monodisperse solute; curve B represents nonideality;
and curve C represents a polydisperse system.
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A mathematical analysis of equilibrium behavior in a polydisperse system leads to
the conclusion that from the slope at any point on curve C, we can obtain a weight
average molecular weight at that local concentration of solute i. Several software
programs are available for carrying out the necessary calculations [5].

EXERCISES

21.1. Suppose a shaft [Fig. 21.1(b)] is filled with a column of an ideal gas at a
uniform temperature T. Show that the variation of pressure P with depth d
from the top of the column is given by the equation

P ¼ P0e
(Mg=RT)d

where P0 is the pressure at the surface (that is, when d ¼ 0).

21.2. The partial specific volume v2 for hydrogen gas dissolved in water is exception-
ally large: 13.0 mL gm21. Find an equation for md/msurface for dissolved H2.

21.3. In one of his experiments, Perrin [6] counted a total of 13,000 particles of
gamboge and found average concentrations proportional to the numbers
listed in Table 21.1 at the given heights (h) above the bottom of the vessel.
The experiment was carried out at 298 K, and the density of the particles
was 0.2067 kg dm23 greater than that of the water in which they were sus-
pended. The mean radius of the particles was 2.12 � 1027 m. Calculate
Avogadro’s constant from these data.

TABLE 21.1. Variation of Concentration with Height

h/1026 m Relative Concentration

5 100
35 47
65 22.6
95 12

TABLE 21.2. Variation of Concentration with Radius

x/1023 m c/(g dm23)

49.0 1.30
49.5 1.46
50.0 1.64
50.5 1.84
51.0 2.06
51.5 2.31
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21.4. Pederson [7], a colleague of Svedberg’s, studied the sedimentation equilibrium
of lactoglobulin, a protein from milk, in the analytical ultracentrifuge. By
graphical integration of the concentration gradient curve obtained with a
Schlieren optical system, he calculated the concentration of protein c as a
function of position in the cell (see Table 21.2). The partial specific volume
of the protein was found to be 0.7514 dm3 kg21, and the density of the solution
was 1.034 kg dm23. The rotor was turning at a rate of 182.8 rps. Calculate the
molar mass.
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CHAPTER 22

ESTIMATION OF THERMODYNAMIC
QUANTITIES

In this chapter we shall review some empirical and theoretical methods of estimation
of thermodynamic quantities associated with chemical transformations.

22.1 EMPIRICAL METHODS

Precise thermodynamic data are available for relatively few compounds. However,
in many situations, it is desirable to have some idea of the feasibility or impossibility
of a given chemical transformation even though the necessary thermodynamic data
are not available. Several groups of investigators [1] have proposed empirical
methods of correlation that allow us to estimate the thermodynamic properties
required to calculate Gibbs functions and equilibrium constants. All of these
methods are based on the assumption that a given thermodynamic property, such
as entropy, of an organic substance can be resolved into contributions from each of
the constituent groups in the molecule. With tables of such group contributions
assembled from available experimental data, we can estimate the thermodynamic
properties of any molecule by adding the contributions of the constituent groups.
Additional corrections can be made for the effect of neighboring groups.

Generally, several alternative methods of choosing the groups exist into which a
specified molecule is resolved. In the Anderson–Beyer–Watson–Yoneda approach,
the thermodynamic properties in the ideal gaseous state are estimated by considering
a given compound as built up from a base group (such as one of those listed in

Chemical Thermodynamics: Basic Concepts and Methods, Seventh Edition. By Irving M. Klotz and
Robert M. Rosenberg
Copyright # 2008 John Wiley & Sons, Inc.
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Table 22.1), which has been modified by appropriate substitutions to yield the desired
molecule. Thus, aliphatic hydrocarbons can be built up from methane by repeated
substitutions of methyl groups for hydrogen atoms. Other compounds are formed
by substitution of functional groups for CHn groups. The heat capacity constants
are those for a cubic polynomial in the temperature, which are similar to those
discussed in Chapter 4.

In the method of Cohen and Benson [2], a group is defined as a polyvalent
atom of ligancy �2 together with all of its ligands. Cohen and Benson tabulates ther-
modynamic values for 37 hydrocarbon groups, 61 oxygen-containing groups, 59
nitrogen-containing groups, 46 halogen-containing groups, 53 sulfur-containing
groups, 57 organometallic groups, and 65 organophosphorus and organoboron
groups.

Whatever the method for dividing a compound into groups, the group values for
thermodynamic properties must be obtained from a database of experimental values.1

Each experimental value for a compound yields a linear equation in which the experi-
mental value is the sum of group contributions. Preferably, many more experimental
values should exist, the dependent variables in the linear equations, than the
total number of group values. Then, we have an overdetermined set of values of
the group contributions. The best values of the group contributions are obtained by
multivariable least-squares fitting of the equations to the experimental data [3].

We will consider in some detail only one of these procedures—that of Andersen,
Beyer, and Watson, as modified by Yoneda [4]—to illustrate the type of approach
used in these approximation methods.

Group Contribution Method of Andersen, Beyer,
Watson, and Yoneda

Like several other systems, this method is based on the assumption that a given ther-
modynamic property, such as entropy, of an organic substance can be resolved into

TABLE 22.1. Base-Group Properties

Heat Capacity Constants

Base Group DfH8m,298.15K S8m,298.15K a b c

Methane 274.85 186.19 16.69 65.61 29.96
Cyclopentane 277.24 292.88 241.92 473.71 2182.59
Cyclohexane 2123.14 298.24 252.22 599.78 2230.91
Benzene 82.93 269.20 222.51 402.54 2171.42
Naphthalene 150.96 335.64 228.41 623.25 2268.91

1Pedley provides group values and the experimental data from which they have been derived. J. Pedley,
Thermochemical Data and Structure of Organic Compounds–Vol. I, TRC Data Series, CRC Press,
Boca Raton, FL, 1994.
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contributions from each constituent group in the molecule. With tables of such
group contributions assembled from available experimental data, we can estimate
the thermodynamic properties of any molecule by adding the contributions of the
constituent groups.

The base groups of the Anderson–Beyer–Watson–Yoneda method are listed
in Table 22.1. They are modified by appropriate substitutions to yield the desired
molecule. Thus, aliphatic hydrocarbons can be built up from methane by repeated
substitutions of methyl groups for hydrogen atoms. Other compounds are
formed by substitution of functional groups for CHn groups. All values in the
tables are in units of J mol21 or J K21 mol21 as appropriate. The heat capacity
constants are similar to those discussed in Chapter 4 but for a quadratic polynomial
in T/1000.

The thermodynamic quantities for large, complex molecules are obtained by
adding the contributions of the appropriate substitution group to the value for the
base group. Table 22.2 gives the contributions for the primary substitution of a
CH3 group on a single carbon atom in each of the five base groups listed in
Table 22.1. For the cyclic base groups—cyclopentane, benzene, and naphthalene—
several carbon atoms are available for successive primary substitutions (no more
than one on each carbon atom), and the magnitude of the contribution depends
on the number and position of the added methyl groups as well as on the type of
base ring.

A second substitution of a methyl group for a hydrogen on a single carbon atom
of a base group is called a secondary substitution. These secondary replacements
have to be treated in more detail because the changes in thermodynamic properties
depend on the nature of the carbon atom on which the replacement is being
made and on the nature of the adjacent carbon atom. For this reason, these carbon
atoms are characterized by “type numbers,” as shown in Table 22.3. The thermodyn-
amic changes associated with secondary methyl substitutions then can be tabulated as
in Table 22.4. The number in Column A is the type number of the carbon atom on
which the second methyl substitution is made, and that in Column B is the highest
type of an adjacent carbon atom, with each number referring to the status of the
carbon atom before the substitution is made.

The effect of introducing multiple bonds in a molecule is treated separately. The
appropriate corrections have been assembled in Table 22.5 and require no special
comments, except perhaps to emphasize the additional contribution that must
be introduced every time a pair of conjugated double bonds is formed by any of
the preceding substitutions in this table.

The changes in properties accompanying the introduction of various functional
groups in place of one or two of the methyl groups on a given carbon are listed
in Table 22.6. Data from Table 22.1 and Table 22.2 give the contributions for the
appropriate methyl-substituted base groups. One should observe particularly
that the 55O structure requires replacement of two methyl groups, which must
be added before they can be substituted by55O. The symbol @ preceding a func-
tional group means that the values refer to the substitution of that group on an
aromatic ring.
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TABLE 22.2. Contributions of Primary CH3 Substitution Groups Replacing
Hydrogen on Carbon

Heat Capacity Constants

Base Group D(DHm) DSm Da Db Dc

Methane 29.83 43.30 9.92 103.81 243.51

Cyclopentane
a) First primary substitution 234.43 49.25 8.74 68.24 223.18
b) Second primary substitution
to form

1,1 226.61 17.15 26.02 116.36 255.56
1,2(cis) 217.87 24.02 23.64 110.46 253.22
1,2(trans) 225.02 24.69 22.47 107.57 252.13
1,3(cis) 224.18 24.69 22.47 107.57 252.13
1,3(trans) 221.92 24.69 22.47 107.57 252.13

Cyclohexane
a) First primary substitution 233.64 46.32 11.59 81.21 239.58
b) Second primary substitution
to form

1,1 224.23 20.46 213.51 111.42 241.00
1,2(cis) 215.40 29.96 27.99 100.00 238.70
1,2(trans) 223.22 26.36 25.82 103.30 243.22
1,3(cis) 227.99 25.90 26.32 95.14 233.01
1,3(trans) 219.79 31.67 24.31 88.41 232.17
1,4(cis) 219.87 25.90 24.31 88.41 232.17
1,4(trans) 227.82 20.25 28.41 107.61 244.02

Benzene
a) First primary substitution 235.48 47.91 5.77 64.43 219.50
b) Second primary substitution
to form

1,2 227.78 36.40 12.47 50.00 211.97
1,3 229.12 41.63 5.02 64.77 219.62
1,4 228.70 36.19 5.48 60.29 216.15
1,2,3 230.38 42.84 14.14 29.25 9.67
1,2,4 233.47 43.60 16.40 18.62 16.23
1,3,5 234.39 26.82 6.19 58.37 214.73

Naphthalene
a) First primary substitution
to form

1 234.10 41.80 6.36 37.36 232.09
2 234.85 44.39 10.67 61.76 220.17
b) Second primary substitution
to form

1,2 226.40 30.29 13.05 64.77 224.56
1,3 227.74 35.56 5.61 79.54 232.22
1,4 227.32 30.08 6.07 75.06 228.74
2,3 226.40 30.29 13.10 64.77 224.56
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The addition of a functional group requires more corrections for the type (as in
Table 22.3) of the carbon to which the functional group is attached. For example,
a keto group, 2C55O, is attached to a carbon atom of type 2, because that carbon
is also attached to two atoms other than hydrogen. An aldehyde group, 2C55O,
however, would have a correction for a type 1 carbon. The corrections would then
be two multiples and one multiple, respectively, of the entry in Table 22.7 for the
substituent. The determination of type number is made after the substitution.

Also, when multiple substitutions are made on the same carbon atom, primarily by
halogens, corrections must be made for the number of pairwise interactions among
the atoms substituted on the same carbon atom. Thus, when three halogen atoms
are substituted on a carbon atom, three pairwise interactions are possible and

TABLE 22.3. Type Numbers of Different
Carbon Atoms

Type Number Nature

1 2CH3

2 .CH2

3 .CH2
4 .C,
9 C in aromatic ring

TABLE 22.4. Contribution of Secondary Methyl Substitution

Type
Number Heat Capacity Constants

A B D(DHm) DSm Da Db Dc

1 1 221.09 43.68 23.68 98.16 242.26
1 2 220.59 38.87 1.46 81.42 231.46
1 3 215.36 36.61 20.96 91.63 238.95
1 4 215.36 36.61 20.96 91.63 238.95
1 9 219.66 45.31 1.55 88.53 237.66
2 1 228.74 21.46 22.09 95.69 241.67
2 2 226.57 27.32 20.63 90.67 237.53
2 3 222.22 27.36 24.90 97.61 241.63
2 4 220.67 27.49 21.21 92.05 237.99
2 9 224.35 28.07 23.18 90.37 236.32
3 1 231.46 11.76 22.76 107.70 249.25
3 2 228.62 17.99 26.90 111.71 251.67
3 3 220.75 25.94 26.90 111.71 251.71
3 4 223.68 4.56 24.18 129.54 266.32
3 9 226.11 28.07 23.18 90.37 236.32

22.1 EMPIRICAL METHODS 515



the entry in Table 22.7 must be multiplied by three for that case in addition to the type
correction. A % symbol preceding a functional group indicates that the substituent
can be added in either of two orientations and that the correct choice needs to be
made.

The procedure followed in the use of the tables of Andersen et al. [1], and Yoneda
[4] is illustrated below for the estimation of standard entropies. These tables also
include columns of base structure and group contributions for estimating
DfH8m,298.15K, the standard enthalpy of formation of a compound, as well as
columns for a, b, and c, the constants in the heat capacity equations that are quadratic
in the temperature. Thus it is possible to estimate DfG8m,298.15K by appropriate sum-
mations of group contributions to DfH8m,298.15K and to S8m,298.15K. Then, if information
is required at some other temperature, the constants of the heat capacity equations can
be inserted into the appropriate equations for DG8m as a function of temperature and
DG8m can be evaluated at any desired temperature (see Equation 7.68 and the relation
between DG8m and ln K ).

Typical Examples of Estimating Entropies

The use of Tables 22.1 through 22.7 will be illustrated by two examples.

TABLE 22.5. Multiple Bond Contributions Replacing Single Bonds

Heat Capacity Constants

Type of Bond or Correction D(DHm) DSm Da Db Dc

1 ¼ 1 136.98 210.04 0.50 232.76 3.72
1 ¼ 2 126.15 25.98 3.81 250.92 16.32
1 ¼ 3 116.90 0.71 12.80 271.38 27.91
2 ¼ 2(cis) 118.41 26.32 26.40 237.57 11.30
2 ¼ 2(trans) 114.43 211.38 9.16 267.53 26.78
2 ¼ 3 114.64 0.59 21.05 254.06 21.21
3 ¼ 3 115.90 22.09 5.90 295.86 57.53
1 ; 1 311.42 228.66 19.16 298.74 22.97
1 ; 2 290.79 220.79 16.53 2117.07 40.71
2 ; 2 274.22 223.93 12.84 2127.03 51.67
Adjacent double bonds 41.38 213.26 9.75 27.78 2.13
Conjugated double bonds 215.31 216.99 26.69 37.28 227.49
Double bond conjugated with
aromatic ring

27.20 29.50 5.36 29.08 5.19

Triple bond conjugated with
aromatic ring

8.8 220.1 23.8 4.6 0.4

Conjugated triple bonds 17.6 220.5 3.3 14.6 214.6
Conjugated double and triple bonds 13.8 25.9 12.6 22.2 9.6
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TABLE 22.6. Contributions of Functional Groups

Heat Capacity Constants

Functional Groupa D(DHm) DSm Da Db Dc

Oxygen
¼O(aldo) 210.13 254.39 17.11 2214.05 84.27
¼O(keto) 229.66 284.47 6.32 2148.49 36.65
2OH 2118.99 8.62 7.28 265.69 24.43
@OH 2146.48 21.26 12.01 249.79 24.27
2O2 285.48 25.27 13.26 285.31 38.58
@O2 297.78 215.1 18.0 269.5 38.1
2OOH 2103.3
2OO2 221.84
2COOH 2350.16 53.01 7.91 29.20 226.65
@COOH 2337.65 51.88 28.03 25.19 24.56
2COO2 2305.93 54.8 217.6 1.3 7.9
@COO2 2317.69 54.8 217.6 1.3 7.9
@OOC2 2310.12
2COOCO2 2469.95 116.86 25.27 124.64 269.25
2COO2CO2 2392.0
HCOO2 2275.85 71.76 7.91 29.20 226.65
2CO32 2490.24

Fluorine
2F 2154.18 216.61 4.23 276.57 24.56
@F 2165.23 218.03 6.49 259.50 18.37
@F(ortho) 2143.26 212.84 5.90 278.87 32.43
2COF 2355.47 57.3 14.2 218.0 4.6
@COF 2351.46

Chlorine
2Cl 2.05 25.90 7.45 264.85 14.94
@Cl 9.87 23.97 10.71 283.35 31.05
2COCl 2159.24 53.93 22.64 223.56 22.43
@COCl 2155.31

Bromine
2Br 49.54 13.10 11.13 249.92 13.05
@Br 57.57 7.28 12.30 270.33 28.91
2COBr 2105.73 68.6 20.9 243.5 9.2
@COBr 298.49

Iodine
2I 101.13 14.56 11.38 272.51 18.28
@I 115.10 8.8 12.6 292.9 34.3
2COI 238.03 88.3 23.4 233.1 9.6
@COI 231.0

(Continued)
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TABLE 22.6. Continued

Heat Capacity Constants

Functional Groupa D(DHm) DSm Da Db Dc

Sulfur
2SH 60.33 24.06 14.39 265.94 28.41
@SH 64.10 19.75 12.13 242.43 19.41
2S2 69.62 21.63 17.11 283.60 46.02
@S2 70.96 17.2 15.1 260.2 36.8
2SS2 79.83 63.47 35.61 258.41 20.42
2SO2 243.14
@SO2 239.7
2SO22 2279.91
@SO22 2276.48
2SO3H 21182.8
2OSO22 2379.53
2OSO32 2583.17

Nitrogen
2NH2 61.46 13.10 7.49 237.66 13.18
@NH2 39.41 2.05 8.83 214.39 4.39
2NH2 86.94 20.21 1.38 224.60 7.74
@NH2 57.57 211.3 2.5 21.3 20.8
55N, 110.67 25.86 0.04 218.58 4.39
@N, 80.67 216.7 1.3 4.6 24.2
55N55(keto) 187.0
2N55N2 266.1
2NHNH2 170.04 49.20
@NHNH2 153.51
2N(NH2)2 187.74 31.51
@N(NH2)2 171.1
2NHNH2 195.73 39.08
@NHNH2 179.1
2CN 172.55 6.69 14.31 253.39 14.69
@CN 171.38 3.93 17.78 247.57 20.17
2NC 234.89 17.3 17.6 247.7 20.1
55NOH 92.0
2CONH2 2153.64 77.4 15.1 23.8 212.6
@CONH2 2141.13
2CONH2 2128.0
@NHCO2 2158.3
2CON, 87.86
2NO2 11.51 45.52 4.77 4.64 214.56
@NO2 17.99 45.6 4.6 4.6 214.6
2ONO 20.67 54.81 10.33 6.32 216.07
2ONO2 236.69 72.38 17.24 31.84 229.12
2NCS 234.3 61.5

aThe symbol @ preceding a functional group means that the values refer to the substitution of that group on
an aromatic ring.
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TABLE 22.7. Corrections for Type Number and Multiple Substitutions of
Functional Groups

Heat Capacity Constants

Functional Groupa D(DHm) DSm Da Db Dc

Oxygen
¼O(aldo) 222.68 18.83 23.60 6.74 24.81
¼O(keto) 213.81 30.92 6.65 247.28 34.35
2OH 211.09 0.84 0.42 0.00 20.42
2O2 29.54 22.30 2.13 25.02 3.31
@O2 211.76 22.5 2.1 25.0 3.3
2OOH 8.4
2OO2 210.46
2COOH 6.44 35.90 0.0 0.0 0.0
%COO2 211.72 22.5 2.1 25.0 3.3
@COO2 7.49 22.5 2.1 25.0 3.3
2COOCO2 25.06 36.0 0.0 0.0 0.0
2COO2CO2 221.3
HCOO2 33.43 22.5 2.1 25.0 3.3
2CO32 21.21

Fluorine
2F 26.15 4.14 1.59 20.54 1.59
2F,2F 215.36 23.81 22.01 20.75 21.76
2F,2Cl 11.00 20.67 7.20 13.97 18.33
2F,2Br 17.53 6.82 4.14 216.78 4.39
2F,2I 17.24 20.38 7.03 26.49 4.23
2COF 1.7

Chlorine
2Cl 22.59 5.19 3.77 212.55 8.03
2Cl,2Cl 17.78 26.23 22.59 6.49 23.77
2CL,2Br 21.51 6.19 7.24 229.08 12.64
2Cl,2I 20.5 5.2 7.03 227.57 18.91
2COCl 1.88

Bromine
2Br 27.24 25.23 1.63 226.57 9.67
2Br,2Br 17.61 9.92 4.69 235.94 19.66
2Br,2I 20.5 7.95 21.59 232.38 16.07
2COBr 1.7

Iodine
2I 24.31 3.93 2.76 210.13 7.28
2I,2I 23.39 23.05 0.50 0.75 21.51
2COI 1.7

(Continued)
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TABLE 22.7. Continued

Heat Capacity Constants

Functional Groupa D(DHm) DSm Da Db Dc

Sulfur
2SH 21.13 1.59 1.46 21.21 21.59
2S2 23.56 20.17 20.17 4.52 23.77
@S2 21.17 20.4 20.4 4.6 23.8
2SS2 23.43 0.08 21.76 11.13 29.58
2SO2 28.24
@SO2 28.4
2SO22 21.13
@SO22 25.86
2SO3H 211.7
2OSO32 210.75

Nitrogen
2NH2 25.44 21.42 0.67 1.97 22.55
2NH2 29.75 21.3 0.8 2.1 22.5
@NH2 28.70 21.3 0.8 2.1 22.5
2N, 27.11 21.3 0.8 2.1 22.5
@N, 24.2 21.3 0.8 2.1 22.5
% ¼ N2 0.8
%2N ¼ 23.8
2N ¼ N2 23.8
2NHNH2 25.4 21.3
2N(NH2)2 25.4 21.3
@N(NH2)2 25.4
2NHNH2 25.4 21.3
@NHNH2 25.4 0.0
2CN 212.9 2.3 4.3 220.4 18.7
2NC 213.0 2.5 4.2 220.5 18.8
¼NOH 0.8
2CONH2 0.13 36.0 0.0 0.0 0.0
%2CONH22 25.0
%2NHCO2 29.6
@NHCO2 25.0
2NO2 29.46 0.0 0.0 0.0 0.0
2ONO 226.53 0.0 0.0 0.0 0.0
2ONO2 210.33 2.76 21.55 3.43 22.30
2NCS 23.8 21.3

a The symbol @ preceding a functional group means that the values refer to the substitution of that group on
an aromatic ring. A % symbol preceding a functional group indicates that the substituent can be added in
either of two orientations and that the correct choice needs to be made.
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Example 1. Estimate the entropy S8m,298.1K of trans-2-pentene(g).

Contribution

H
j

Base group, H22C22H
j
H

186.3

Primary CH3 substitution ! CH322CH3 43.3
Secondary CH3 substitutions ! CH322CH222CH222CH222CH3

Type numbers

Carbon A Carbon B DS8m298.15K

1 1 43.7
1 2 38.9
1 2 38.9
Introduction of double bond at 2-position:
2 2 trans 211.4
Summation of group contributions 339.7 J K21 mol21

Experimental value [5] 342.29 J K21 mol21

Example 2. Estimate the entropy S8m298.1K of acetaldehyde(g).

Contribution

H
j

Base group, H22C22H
j
H

186.3

Primary CH3 substitution ! CH322CH3 43.3
CH3

j
Secondary CH3 substitutions22CH22CH3

j
CH3

22.1 EMPIRICAL METHODS 521



Type numbers

Carbon A Carbon B DS8m,298.15K

1 1 43.7
2 1 21.5

Substitution of55O replacing 222CH3 groups

H
j

CH322C55O

254.4

Type correction 1 � 4.50 4.50
Summation of group contributions 244.9 J K21 mol21

Experimental value [5] 250.2 J K21 mol21

These examples illustrate the procedure used in the Andersen–Beyer–Watson–
Yoneda method. The first example shows moderate agreement; the second shows
poor agreement. Generally, it is preferable to consider the group substitutions in
the same order as has been used in the presentation of the tables. The best agreement
with experimental values, when they are known, has been obtained by using the
minimum number of substitutions necessary to construct the molecule. For cases
in which several alternative routes with the minimum number of substitutions are
possible, the average of the different results should be used.

Other Methods

Although the tables presented by Parks and Huffman [1] are based on older data, they
are often more convenient to use, because they are simpler and because they have
been worked out for the liquid and the solid states as well as for the gaseous
phase. A complete survey and analysis of methods of estimating thermodynamic
properties is available in Janz’s monograph [5], and in the work by Reid et al. [6].
Thermodynamicists should have a general acquaintance with more than one
method of estimating entropies so they can choose the best method for a particular
application.

Poling et al. [6] also describe methods for estimation of additional properties, such
as critical properties, P–V–T properties, and phase equilibria.

Accuracy of the Approximate Methods

Free energy changes and equilibrium constants calculated from the enthalpy and
entropy values estimated by the group-contribution method generally are reliable
only to the order of magnitude. For example, Andersen et al. [1] have found that
their estimated enthalpies and entropies usually differ from experimental values [7]
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by less than 16.7 kJ mol21 and 8.4 J mol21 K21, respectively. If errors of this mag-
nitude occurred cumulatively, the free energy change would be incorrect by approxi-
mately 19.2 kJ mol21 near 258C. Such an error in the free energy corresponds to an
uncertainty of several powers of 10 in an equilibrium constant. With few exceptions,
such an error is an upper limit. Nevertheless, it must be emphasized that approximate
methods of calculating these thermodynamic properties are reliable for estimating the
feasibility of a projected reaction, but they are not adequate for calculating equili-
brium compositions to better than the order of magnitude.

Equilibrium in Complex Systems

The computation of chemical equilibria in complex systems has been developed
extensively [8]. The computation requires a database of the Gibbs functions of for-
mation of all substances present in the system. The equilibrium is determined by
minimizing the total Gibbs function for the system, subject to the material balance
constraints for all elements in the system, using the thermodynamic database for
the compounds present. With the development of the Internet, several web pages
provide fee-based software for carrying out the minimization for complex systems
[9]. Geological systems are treated on the Java MELTS web page [10].

EXERCISES

22.1. a. Estimate S8m,298.15K for n-heptane (gas) by the group-contribution method
of Andersen, Beyer, Watson, and Yoneda. Compare with the result obtain-
able from the information in Exercise 12.15.

b. Estimate S8m,298.15K for liquid n-heptane from the rules of Parks and
Huffman. Compare with the result obtained in (a).

22.2. a. Using the group-contribution method of Andersen, Beyer, Watson, and
Yoneda, estimate S8m,298.15K for 1,2-dibromoethane(g).

b. Calculate the entropy change when gaseous 1,2-dibromoethane is
expanded from 1 atm to its vapor pressure in equilibrium with the liquid
phase at 298.15 K. Neglect any deviations of the gas from ideal behavior.
Appropriate data for vapor pressures have been assembled conveniently by
Boublı́k et al. [11], or in the NIST Chemistry Webbook [12].

c. Using the data given by Boublı́k et al. [11], or in the NIST Chemistry
Webbook [12], calculate the enthalpy of vaporization of 1,2-dibro-
moethane at 298.15 K.

d. Calculate the entropy S8m,298.15K for liquid 1,2-dibromoethane.

e. Compare the estimate obtained in (d) with that obtainable from the rules of
Parks and Huffman [1].

f. Compare the estimates of (d) and (e) with the value found by Pitzer [13].
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22.3. Precision measurements of enthalpies of formation and entropies are probably
accurate to perhaps 250 J mol21 and 0.8 J mol21 K21, respectively. Show
that either one of these uncertainties corresponds to a change of 10% in an
equilibrium constant at 258C.

22.4. It has been suggested [14] that 1,4-dicyano-2-butene might be prepared in the
vapor phase from the reaction of cyanogen with butadiene.

a. Estimate DfHm8 and Sm8 for dicyanobutene at 258C by the group-contri-
bution method.

b. With the aid of Table 22.8, calculate the equilibrium constant for the
suggested reaction.

22.5. a. Estimate DfHm8 and Sm8 for benzonitrile, C6H5CN(g), at 7508C by the
group-contribution method using benzene as the base compound.

b. Combining the result of (a) with published tables, estimate DGm8 at 7508C
for the reaction

C6H6(g)þ (CN)2(g) ¼ C6H5CN(g)þ HCN(g)

An estimate of 277.0 kJ mol21 has been reported by Janz [15].
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CHAPTER 23

CONCLUDING REMARKS

We have now concluded our consideration of the theory and methods of chemical
thermodynamics. Our primary objective, to establish the principles and procedures
by which the thermodynamic properties associated with a given transformation can
be determined, has been acheived, and we have learned how these quantities can be
used to judge the feasibility of that transformation.

However, in emphasizing these aspects of the subject, we have neglected numer-
ous broad fields in the realm of thermodynamics. Even within the areas to which we
have limited ourselves, we have omitted any discussion of surface reactions [1], and
we have paid only brief attention to problems of phase equilibria [2] and to electro-
chemical processes [3]. We also could have examined some topics of more theoretical
interest, such as relativity and cosmology [4]. Similarly, we could have considered
phase equilibria at high temperature and pressure [5].

Although we have indicated some applications of thermodynamics to biological
systems, more extensive discussions are available [6]. The study of equilibrium
involving multiple reactions in multiphase systems and the estimation of their
thermodynamic properties are now easier as a result of the development of computers
and appropriate algorithms [7].

The point of view adopted toward thermodynamics in this book is the classic or
phenomenological one. This approach is the most general but also the least illuminat-
ing in molecular insight. The three basic principles of phenomenological thermo-
dynamics are extracted as postulates from general experience, and no attempt is
made to deduce them from equations describing the mechanical behavior of material
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bodies. As it is independent of the laws governing the behavior of material bodies,
classic thermodynamics cannot be used to derive any of these laws. Generally,
thermodynamic reasoning leads to relationships between certain physical quantities,
but classic thermodynamics does not allow us to calculate a priori actual values of
any of the quantities appearing in these relationships.

The phenomenological approach was inaugurated a century and a half ago and
reached its fruition in theoretical formulation near the end of the nineteenth
century. Since then, the major extension has been toward an analysis of nonequi-
librium, nonisothermal processes. With the aid of additional phenomenological
postulates, such as linear relationships between certain rates and appropriate
forces, plus the Onsager reciprocity relationships, a conceptual system has been
developed that is capable of analyzing a broad class of irreversible processes
[8]. The laws of classic thermodynamics also have been recast in the form of
a Euclidean metric geometry whereby its formulas can be read from simple dia-
grams. It has been suggested that the relationship between the geometric represen-
tation of thermodynamics and the differential equations of Gibbs is analogous
to the relationship between the matrix mechanics of Heisenberg and the wave
mechanics of Schrodinger [9].

Parallel with the phenomenological development, an alternative point of view has
developed toward thermodynamics, a statistical–mechanical approach. Its philos-
ophy is more axiomatic and deductive than phenomenological. The kinetic theory
of gases naturally led to attempts to derive equations describing the behavior of
matter in bulk from the laws of mechanics (first classic, then quantum) applied
to molecular particles. As the number of molecules is so great, a detailed treatment
of the mechanical problem presents insurmountable mathematical difficulties, and
statistical methods are used to derive average properties of the assembly of molecules
and of the system as a whole.

In the field of thermodynamics, statistical mechanics has provided a molecular
model, which leads to a more concrete visualization of some of the abstract concepts
(such as entropy) of classic thermodynamics. In addition, it has developed means for
the analysis of microscopic fluctuation phenomena, such as Brownian motion and the
density fluctuations that are the basis of light scattering. Furthermore, it has extended
the range of thermodynamic reasoning to new kinds of experimental data such as
spectroscopic properties of matter, and it has been fundamental to the building of a
bridge between the thermodynamics and the kinetics of chemical reactions. For
these reasons, a knowledge of statistical thermodynamics is essential as a companion
to phenomenological thermodynamics for the effective solution of many current
problems and for the formulation of stimulating new questions [10].

In principle, quantum mechanics permits the calculation of molecular energies and
therefore thermodynamic properties. In practice, analytic solutions of the equations of
wave mechanics are not generally accessible, especially for molecules with many
atoms. However, with the advances in computer technology and programming, and
the development of new computational methods, it is becoming feasible to calculate
energies of molecules by ab initio quantum mechanics [11]. Furthermore, molecular
modeling with substantial complexity and molecular mechanics treatments for
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finding the minimum potential energy configurations of molecules are increasingly
successful in predicting a range of thermodynamic properties for large molecules
with complex structures [12]. Clearly, these procedures will occupy a dominant
position as we enter the twenty-first century.

Scientists are frequently tempted or encouraged to predict what new discoveries
will appear in the coming decades or century. Past attempts of this kind have
proved almost invariably disappointing. For example, the reader might look back
at the prediction of August Comte quoted in the preface of this edition in the light
of the current status of theoretical energetics. It behooves us to recall the famous
epigram (attributed to Niels Bohr):

Prediction is very difficult—especially of the future.
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APPENDIX A

PRACTICAL MATHEMATICAL
TECHNIQUES

Throughout our discussions we have emphasized the application of thermodynamic
methods to specific problems. Successful solutions of such problems depend on a
familiarity with practical analytical and graphical techniques as well as with the
theoretical methods of mathematics. We consider these practical techniques at this
point; references to them were made in earlier chapters for the solution of specific
problems.

A.1 ANALYTICAL METHODS

In many cases, it is possible to summarize data in terms of a convenient algebraic
expression. Such an equation is desirable because it summarizes concisely a great
deal of information. The data should be sufficiently precise, of course, to justify
the effort of obtaining an analytical expression.

Linear Least Squares (1)

In the method of linear least squares, the algebraic expression to which data are fitted
is linear in the least-squares parameter; the method can be used for any polynomial.
We will, as an example, fit a quadratic equation to a set of experimental data such as
that in Table A.1. The extension to polynomials with terms of more or fewer terms
will be obvious.
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We will assume that we have a series of data, such as equilibrium constants as a
function of pressure, to which we wish to fit the quadratic equation

y ¼ aþ bxþ cx2 (A:1)

We wish to obtain the best values of the constants a, b, and c for an equation of this
form. We should emphasize that the fitting of a set of data to a particular algebraic
expression does not indicate that the expression chosen is a “good” representation
for the data. A plot of the data should always be drawn to help choose an appropriate
expression. In the method we will use, it is assumed that all the error lies in the depen-
dent variable y and none in the independent variable x, although the theory also has
been developed for the case in which a significant error may appear in x (1).

With the method of least squares, we obtain three independent equations to be
solved for the three constants of the quadratic equation. The procedure follows
from the assumption that the best expression is the one for which the sum of the
squares of the residuals is a minimum. If we define the residual for the general
quadratic expression as

r ¼ y� (aþ bxþ cx2) (A:2)

in which x and y refer to experimentally determined values, then we should obtain an
equation for which

Sr2 ¼ a minimum (A:3)

This condition will be satisfied when the partial derivative of Sr2 with respect to each
of the constants a, b, and c, respectively, is zero. First, let us consider the partial

TABLE A.1. The Chemical Equilibrium of the
Ammonia Synthesis Reaction at High Temperatures
and Extreme Pressuresa

N2(g) þ 3H2(g) ¼ 2NH3(g)

P/atm KP at 723 K

10 0.00001452
30 0.00001490
50 0.00001505
100 0.00001616
300 0.00002480
600 0.00004238

aReprinted from A. T. Larson and R. L. Dodge, J. Am. Chem. Soc.
45, 367 (1924). Published 1924 by the American Chemical
Society.
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derivative with respect to a:

Sr2 ¼ [y1 � (aþ bx1 þ cx21)]
2 þ [y2 � (aþ bx2 þ cx22)]

2 þ � � � (A:4)

@

@a
Sr2

� �
b,c

¼ �2(y1 � a� bx1 � cx21)� 2(y2 � a� bx2 � cx22)� � � �

¼ �2(y1 þ y2 þ � � � )� 2(�na)� 2(�bx1 � bx2 � � � � )
� 2(�cx21 � cx21 � � � � ) (A:5)

Equating the right side of Equation (A.5) to zero gives

Sy ¼ naþ bSxþ cSx2 (A:6)

By a similar procedure, we can obtain the following expression from the partial
derivative of Sr2 with respect to the parameter b:

Syx ¼ aSxþ bSx2 þ cSx3 (A:7)

Similarly, the differentiation with respect to c leads to an expression that can be
reduced to

Syx2 ¼ aSx2 þ bSx3 þ cSx4 (A:8)

The three simultaneous equations, Equations (A.6)–(A.8), can be solved for the con-
stants a, b, and c.

The expressions for a, b, and c, in terms of determinants, are

a ¼

Sy Sx Sx2

Syx Sx2 Sx3

Syx2 Sx3 Sx4

������
������

n Sx Sx2

Sx Sx2 Sx3

Sx2 Sx3 Sx4

������
������

(A:9)

b ¼

n Sy Sx2

Sx Syx Sx3

Sx2 Syx2 Sx4

������
������

n Sx Sx2

Sx Sx2 Sx3

Sx2 Sx3 Sx4

������
������

(A:10)
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c ¼

n Sx Sy
Sx Sx2 Syx
Sx2 Sx3 Syx2

������
������

n Sx Sx2

Sx Sx2 Sx3

Sx2 Sx3 Sx4

������
������

(A:11)

The algebraic expressions for the coefficients a, b, and c in terms of the summations
calculated from the experimental values are

a ¼ Sy[Sx2Sx4 � (Sx3)2]þ Sx(Sx3Syx2 � Sx4Syx)þ Sx2(Sx3Syx� Sx2Syx2)

n[Sx2Sx4 � (Sx3)2]þ Sx(Sx3Sx2 � SxSx4)þ Sx2[SxSx3 � (Sx2)2]

b ¼ n(SyxSx4 � Sx3Syx2)þ Sy(Sx3Sx2 � SxSx4)þ Sx2(SxSyx2 � Sx2Syx)

n(Sx2Sx4 � (Sx3)2)þ Sx(Sx3Sx2 � SxSx4)þ Sx2(SxSx3 � (Sx2)2)

c ¼ n(Sx2Syx2 � Sx3Syx)þ Sx(Sx2Syx� SxSyx2)þ Sy[SxSx3 � (Sx2)2]

n[Sx2Sx4 � (Sx3)2]þ Sx(Sx3Sx2 � SxSx4)þ Sx2[SxSx3 � (Sx2)2]

The numerical values of a, b, and c can be found by direct substitution in the
algebraic expressions if care is taken to carry an apparently excessive number of sig-
nificant figures through the calculations, which involve taking small differences
between large numbers. Alternatively, the determinants in Equations (A.9)–(A.11)
can be evaluated by methods described in the references, or the linear equations,
(A.6)–(A.8) can be solved by matrix methods (2).

A least-squares fit to the data in Table A.1 leads to the following equation for KP as
a function of P:

KP ¼ 1:400� 10�5 þ 2:267� 10�8Pþ 4:121� 10�11P2 (A:12)

The method of least squares permits us to calculate the best function of a given
form for the set of data at hand, but it does not help us decide which form of analytic
function to choose. Inspection of a graph of the data is helpful in such a choice.
Figure A.1 shows the data of Table A.1 as well as the best straight line and the
best quadratic curve, with the latter represented by Equation (A.12), both are fitted
to the data by the method of least squares.

Nonlinear Least Squares

We shall not treat the methods of fitting nonlinear equations, those that are not linear
in the parameters, in detail, but we shall remind the reader that nonlinear least squares
does not lead to a closed solution for the parameters, as in linear least squares. The
method of nonlinear least squares requires a set of tentative values of the parameters,
followed by an iterative process that is stopped when successive results are close
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enough to satisfy the requirements of the user (1). Many software packages, such as
PSI-PLOT, Mathcad, Sigmaplot, and Origin, or spreadsheets such as Microsoft Excel
provide easy ways to carry out nonlinear least-squares fitting of complex functions.
They require of the user a function to fit and tentative values of the parameters
sought. The same packages also provide graphics capability, and linear least-
squares fitting, along with other mathematical and statistical methods.

Taylor reviews the use of least-squares methods to determine the best values of the
fundamental physical constants (3).

A.2 NUMERICAL AND GRAPHICAL METHODS

Experimental data of thermodynamic importance may be represented numerically,
graphically, or in terms of an analytical equation. Often these data do not fit into a
simple pattern that can be transcribed into a convenient equation. Consequently,
numerical and graphical techniques, particularly for differentiation and integration,
are important methods of treating thermodynamic data.

Numerical Differentiation

Let us consider a set of experimental determinations of the standard potential E8 at a
series of temperatures, such as is listed in Table A.2. A graph of these data
(Figure A.2) shows that the slope varies slowly but uniformly along the entire temp-
erature range. For thermodynamic purposes, as in the calculation of the enthalpy of
reaction in the transformation

1
2 H2(g)þ AgCl(s) ¼ Ag(s)þ HCl(aq)

Figure A.1. A plot of the data of Table A.1, and the best linear and quadratic curves fitted to
the data by the method of linear least squares.
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it is necessary to calculate precise values of the derivative @E8/@t. [See Equation
(7.88.)] Several procedures have been described in the literature for numerical
differentiation (4), but we shall use the method described by Savitzky and Golay
(5), which is designed for equally spaced values of the independent variable.
Errors in the table of convoluting integers given by Savitzky and Golay are corrected
by deLevie (6), and Madden has given general formulas for the computation of the
convoluting integers.

TABLE A.2. Standard Potentialsa for the Reaction

1
2H2(g) þ AgCl(s) ¼ Ag(s) þ HCl(aq)

t/8C E8/volt

0 0.23634
5 0.23392
10 0.23126
15 0.22847
20 0.22551
25 0.22239
30 0.21912
35 0.21563
40 0.21200
45 0.20821
50 0.20437
55 0.20035
60 0.19620

aH. S. Harned and R. W. Ehlers, J. Am. Chem. Soc. 55, 2179 (1933).

Figure A.2. Standard cell potentials for the reaction.
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This method is a simple extension of a procedure for filtering noise and smoothing
data by the method of least squares, as opposed to a simple moving average. In the
moving-average method, the average value of the dependent variable for an odd
number of evenly spaced points is substituted for the value at the central point of
the group. After dropping the first point of the group and adding the next point
after the original group, the procedure is repeated until all data points have been
treated. In the method of Savitzky and Golay (5), a least-squares fit to the same
odd number of points is obtained, and the calculated value is substituted for the
central point of the group. The process is repeated, dropping the initial point and
adding the next point after the original group, until all data points have been
treated. The number of points used in each group and the degree of the polynomial
used in the least-squares procedure depend on the complexity of the data; we will
use a five-point, quadratic polynomial fit to the data of Table A.2.

1
2 H2(g)þ AgCl(s) ¼ Ag(s)þ HCl(aq)

As the values of the independent variable are evenly spaced, the algebraic manipu-
lations can be simplified by using an index number for each point as the independent
variable. The residual square to be minimized is then

r2 ¼ [y� (aþ biþ ci2)]2 (A:13)

where i varies from 22 to þ2 in each group of five points. As the central point of the
group is that for which i ¼ 0, the calculated value of y for that point is equal to a, the
calculated value of the first derivative with respect to i at the central point is equal to
b, and the second derivative with respect to i at the central point is equal to 2c.

In the equations for a and b following Equation (A.11), we can use i (varying from
22 to þ2) for x, and y appears only to the first power; thus, the calculations lead to an
expression for the least-square constants for each group of five points as a linear func-
tion of the five y values, and these functions are as follows:

a ¼ (�3y�2 þ 12y�1 þ 17y0 þ 12y1 � 3y2)
35

(A:14)

and

b ¼ (�2y�2 � y�1 þ y1 þ 2y2)
10

(A:15)

To calculate the derivative with respect to x from b, we must also divide the derivative
with respect to i by the real interval in the independent variable Dx.

When this procedure is applied to the data in Table A.2, the results in Table A.3
are obtained. As values are obtained only for the central points of each group of
points, some points are lost at each end. The procedure is clearly most useful when
abscissa values are densely packed.
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Many software packages, such as PSI-PLOT, Mathcad, and Sigmaplot, can carry
out numerical differentiation simply and directly. Also, it is possible to fit the data to a
function by the method of least squares and then differentiate. It is best to compare the
results of several methods; if they agree, one has greater confidence in the results.

Numerical Integration

The procedure for numerical integration (7) is analogous to that for differentiation.Again
we will cite an example of its use in thermodynamic problems, the integration of heat
capacity data. Let us consider the heat capacity data for solid n-heptane listed in
Table A.4. A graph of these data (Fig. A.3) shows a curve for which it may not be con-
venient to use an analytical equation. Nevertheless, in connectionwith determinations of
certain thermodynamic functions, it may be desirable to evaluate the integral

ðT2
T1

CPmdT

Therefore, a numerical method is suitable.
Once again we consider small intervals of the independent variable T, as is indi-

cated in Figure A.3. At the midpoint of this interval, we have an average value of the
heat capacity C

...

Pm, which is indicated by the solid horizontal line in the figure. The
area of the rectangular formed by the two vertical lines and the solid horizontal
line between the experimental points is C

...

PmDT. If the interval chosen is so small
that the section of the curve that has been cut is practically linear, then the area
below this section of the curve is essentially the same as that of the rectangle.
Hence, it follows that the area under the curve between the limits T1 and T2 is

TABLE A.3. Smoothed Values of the Function and First Derivative of the
Data of Table A.2

t/8C E8/V E8/V(smooth) (dE8/dt)/(V/K)

0 0.23634
5 0.23392
10 0.23126 0.23127 20.000542
15 0.22847 0.22847 20.000576
20 0.22551 0.22551 20.000607
25 0.22239 0.22240 20.000641
30 0.21912 0.21911 20.000676
35 0.21563 0.21564 20.000710
40 0.21200 0.21199 20.000738
45 0.20821 0.20823 20.000764
50 0.20437 0.20436 20.000789
55 0.20035
60 0.19620
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given very closely by the sum of the areas of the rectangles taken over sufficiently short
temperature intervals. Because the area under the curve corresponds to the integral

ðT2
T1

CPmdT

it follows that

XT2
T1

C
...

PmDt ffi
ðT2
T1

CPmdt (A:16)

TABLE A.4. Heat Capacitiesa of Solid n-Heptane

T/K CPm/J mol21 K21 T/K CPm/J mol21 K21

10 1.979 100 92.772
15 6.125 110 99.161
20 11.866 120 105.286
25 18.405 130 111.156
30 25.163 140 116.922
35 31.890 150 122.784
40 38.221 160 129.131
45 44.279 170 136.394
50 50.024 180 144.499
60 60.509 182.55 146.595
70 69.848
80 78.287
90 86.048

aValues calculated from data of J. P. McCullough and J. F. Messerley, United States Bureau of Mines
Bulletin 596, 1961.

Figure A.3. Numerical integration of heat capacity curve.
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As the smoothed data in Table A.4 are given at closely successive, equally spaced
temperatures, we can use these values to form the temperature intervals. For C

...

Pm

between any two temperatures, we can take the arithmetic mean between the listed
experimental values. The values of DT and C

...

Pm then are tabulated as an example
in columns 3 and 4 of Table A.5. Column 5 lists the area for the given interval.
Finally, the sums of the areas of the intervals from 10.00 K are tabulated
in column 6. The areas between any two of the temperatures listed in column 1
can be obtained by subtraction.

If we wish to obtain the value of the integral at some intermediate temperature
not listed in Table A.5, we can plot the values in column 6 as a function of T and
read the values of the integral at the desired upper limit, or we can use a numerical
interpolation method (4).

More accurate methods of numerical integration are described in the references (5).

Use of the Digital Computer

Both the numerical and the analytical methods discussed in this chapter can be
tedious to carry out, especially with large collections of precise data. Fortunately,
the modern digital computer is ideally suited to carry out the repetitive arithmetic
operations that are involved. Once a program has been written for a particular
computation, whether it be numerical integration or the least-squares fitting of
experimental data, it is only necessary to provide a new set of data each time the
computation is to be calculated.

Although the details of computer programming are beyond the scope of this text,
the student unfamiliar with the subject is urged to consult one of the many books
available (8). Many programs designed to carry out the calculations described in
this section are available commercially for use on desktop personal computers.

Many calculations needed to produce the tables of data and results in this text can
conveniently be carried out without programming with the use of a spreadsheet,
several of which are available for personal computers.

TABLE A.5. Tabulation for Numerical Integration

1 2 3 4 5 6

T/K CPm DT C
...

Pm C
...

PmDT SC
...

PmDT

10.00 1.979 0.00
5.00 4.052 20.260

15.00 6.125 20.260
5.00 8.996 44.978

20.00 11.866 65.238
5.00 15.136 75.678

25.00 18.405 120.655
5.00 21.784 108.920

30.00 25.163 184.598
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Graphical Differentiation

Numerous procedures have been developed for graphical differentiation. A particu-
larly convenient one (9), which we call the chord-area method, is illustrated
using the same data (from Table A.2) to which we previously applied numerical
differentiation. It is clear from Figure A.2 that if we choose a sufficiently small temp-
erature interval, then the slope at the center of that interval will be given approxi-
mately by DE/Dt. In this example, with an interval of 58C, the approximation is
good. Then we proceed to tabulate values of DE8/Dt from 08C, as illustrated in
Table A.6 for the first few data. Note that values of DE8 are placed between the
values of E8 to which they refer, and the temperature intervals (58C) are indicated
between their extremities. Similarly, as DE8/Dt is an average value (for example,
20.000484) within a particular region (such as 08C to 58C), values in the fifth column
also are placed between the initial and the final temperatures to which they refer.

Having these average values of the slope, we now wish to determine the specific
values at any given temperature. As DE8/Dt is an average value, we draw it as a chord
starting at the initial temperature of the interval and terminating at the final tempera-
ture. A graph of these chords over the entire temperature region from 08C to 608C is
illustrated in Figure A.4. To find the slope @E8/@t, we draw a curve through these
chords in such a manner that the sum of the areas of the triangles, such as a, for
which the chords form the upper sides, is equal to the sum of the areas of the tri-
angles, such as a0, for which the chords form the lower sides. This smooth curve
gives @E8/@t as a function of the temperature. Some values at several temperatures
are shown in column 6 of Table A.6; they agree well with those given in
Table A.3, which were obtained by numerical differentiation.

In the preceding example, the chords have been taken for equal intervals, because
the curve changes slope only gradually and the data are given at integral temperatures
at equal intervals. Under these circumstances, the method of numerical differentiation
is actually preferable. In many cases, however, the intervals will not be equal nor
will they occur at whole numbers. For the latter cases, the chord-area method of
differentiation may be necessary, although considerable care is required to avoid
numerical errors in calculations.

TABLE A.6. Tabulation for Graphical Differentiation

1 2 3 4 5 6
t/8C E8 DE Dt DE8/Dt @E8/@t

0 0.23634 20.000476
20.00242 5 20.000484

5 0.23392 20.000509
20.00266 5 20.000532

10 0.23126 20.000543
20.00279 5 20.000558

15 0.22847 20.000576
20.00296 5 20.000592

20 0.22551 20.000610
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One other alternative for obtaining derivatives from experimental data is to fit the
data to a function by the method of least squares, either linear or nonlinear, and then
to obtain the derivative analytically. We carried out both procedures for Exercise
18.4(c), and the different procedures agreed very well. Another alternative is to use
a software package for numerical differentiation that does not require equal intervals
in the independent variable. In any case, it is preferable to use more than one method.

Graphical Integration

If the area under the curve in Figure A.3 needs to be determined without access to a
computer, graphical integration can be used. Once the curve has been plotted, the area
under the curve can be measured with a planimeter, or by cutting out the desired area,
weighing the paper, and comparing the weight to that of a sample of the same paper
of known area.

EXERCISES

A.1. Complete the calculations in Table A.6 for the graphical differentiation of the
data listed in Table A.2. Draw a graph corresponding to that of Figure A.4
but on a larger scale for more precise readings. Compare the results with
those obtained by differentiation of the polynomial function that best fits the
experimental data.

Figure A.4. Chord-area plot of slopes of curve of Figure A.2.
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A.2. Complete the calculations in Table A.5 for the numerical integration of the data
listed in Table A.4. Draw a graph of

ðT
0K

CPmdT

versus temperature. Compare the results with a numerical integration with a
software package.
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of, 224–25
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endergonic reactions, 182–84
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defined, 90
of an ideal gas, 90–94

Adiabatic flame temperature
defined, 75

Adiabatic system
defined, 31
irreversible expansion of an ideal gas,

change in entropy, 135–36
Joule–Thomson experiment, 98–102
reversible change in, 131
work in, 37–38
work and heat calculations for a

real gas, 104
Alloys
activities of components of, 393–97
enthalpies of formation, calculation from

enthalpies of solution, 74
Alpha function, for calculating the fugacity

of a real gas, 240–42
Ammonia, chemical equilibrium of the

synthesis of, table, 532
Analytic methods
for calculating fugacity of a real gas,

244–47
for calculating the change in the Gibbs

function for freezing of supercooled
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group contribution method of, 512–16
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Appearance potential, calculating bond
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Approximate method, for calculating
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for calculating the change in the Gibbs
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water, 202–3

for evaluating variation of heat of
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Aspartate transcarbamoylase (ATCase),
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transition of, 54–56

Avogadro’s law, 83

Base groups, of the Andersen–
Beyer–Watson–Yoneda method,
512–13

Benzene, thermodynamic data for,
table, 297

Benzoic acid, ionization constants of,
as a function of temperature,
table, 495

Benzothiophene, thermodynamic data for,
table, 279

Benzoylacetone, vapor pressure of, table,
209

Berthelot equation, for calculating deviation
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Biological systems
Gibbs function and useful work in,

181–85
osmotic work in, 349–50
rates of reactions in, 5

Biosynthetic work, exergonic reactions in
performing, 181–84

Bjerrum’s equation, 459
Bloch, W., work on limiting laws for

colligative properties, 344n
Body, defined, 31
Boiling-point elevation, van’t Hoff’s law

of, 350–53
Bond enthalpies
calculation of, 58–59
defined, 57
table, 59
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Born–Haber cycle, 74–75
Boyle’s law
derivation of heat capacity relationship

from, 93n
ideal gas law from, 82

Boyle temperature, defined, 106
Bureau of Mines, data on enthalpy of

solution, 56–57
Calorimetric measurements, calculation

of a standard Gibbs function from,
285–86

Caratheodory, C.
formulation of the second law of

thermodynamics, 154
use of mathematics in

thermodynamics, 9
Carbon
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graphite-to-diamond transition,

thermodynamics and kinetics of, 6
as a one-phase system, and the geology

of diamonds, 307–8
Carbon dioxide
formation of, standard change in the

Gibbs function for, 170–72
isotherms for, figure, 95

Carbon monoxide
exception to perfect crystal formation,

272
heat of formation of, determining with

Hess’s law, 44
Carbon tetrachloride, melting points of,

table, 207
Carnot, S.
analysis of the heat engine, 2
ideal heat engine of, 113

Carnot cycle, 113–20
reversible, applicability to any reversible

cycle, 126–27
temperature-entropy diagram for,

145–46
Carnot’s theorem, efficiency of a reversible

Carnot engine, 118–20
Cell potentials
activity from measurement of, 393–97
cell: AgCl, Na (amalgam), 467
cell: H2, HCl (m2), AgCl, Ag, table,

466
determining changes in the standard

Gibbs function from, 284

determining equilibrium constants for
dissociation of weak electrolytes
from, 473–75

extrapolation of data by least squares to
obtain a constant for calculating
activities, 396

for indium amalgam, 404
measurement of, 449–53

Centrifugal field, systems subject to,
505–9

Change, spontaneous, predicting the
direction of, 111–12. See also
Chemical reactions

Change of state
defined, 31
reversible, 36–37

Characteristic temperature (8, 17), 67
Charles’s law, ideal gas law from, 82
Chemical equilibrium, in ideal gas

mixtures, 231–32
Chemical potential (m)
of a component of an ideal gas mixture,

230–31
of the components of feldspar, 332
defined, 212–13
equality of, as a condition of transfer

equilibrium, 305–6
and escaping tendency, 219–20
of a pure solvent, relative to solvent in

solution, 345
relationship of fugacity to, 236
of a solute distributed between two

immiscible solvents, 340–41
of a solute in a saturated solution,

328–29
of a solute in the one-molal standard

state, 371–73
of a solution obeying Henry’s law,

338–39
of a strong electrolyte, as the sum of

chemical potentials of constituent
ions, 441–43

in systems of variable composition,
criteria for spontaneity and
equilibrium in, 215

of a vapor in equilibrium with a
condensed ideal solution, 320–21

Chemical reactions
application of the Gibbs function to,

281–301
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Chemical reactions (Continued )
defining the number of degrees of

freedom for, 306–7
and the Gibbs function, 170–72
irreversible, entropy change in,

138–39
spontaneous, and change in

enthalpy, 47
Chymotrypsinogen A, solubility curves in

different magnesium sulfate solutions,
315–16

Clapeyron, E., on ideal engines, 2
Clapeyron equation
application to two phases in equilibrium,

194–96, 307
general applicability of, 201

Clausius, R.
definition of entropy by, 112
on entropy and energy changes for

spontaneous change, 148
mathematical formulation of the second

law, 3, 113
statement of the second law, 112

Clausius–Clapeyron equation, application
to a two phase system, 196–98

Closed path
potential energy change for, 15–16
reversible, entropy change in, 129–30

Closed system, defined, 31
Coefficients
a

calculating for a van der Waals gas,
247–48

defined, 241
of compressibility for an ideal gas,

13–14
deviation, defined, 105
in heat capacity equations, table,

65–66
Joule–Thomson (mJ.T.), 100–101
of performance (b), for a refrigerator,

117–18n
of thermal expansion

defined, 107
for an ideal gas, 13–14

See also Temperature coefficient
Cohen and Benson method for estimating

thermodynamic quantities, 512
Colligative properties, defined, 449

Composition
partial molal quantities calculated

from J as a function of, 407–20
and vapor pressure, for solutions of

methyl-t-butyl ether and
acetonitrile, 402

Compressibility factor (Z )
defined, 94
for representing the behavior of pure

gases, 242–44
Compression of an ideal gas, work

performed and heat exchanged
in, 89

Condensed phase of an ideal solution,
dependence of fugacities on mole
fractions of components of, 320–21

Conductance measurements for estimating
dissociation constants of weak
electrolytes, 475–80

Conformational transitions
change in standard Gibbs functions for,

294
enthalpy of, from indirect calorimetric

measurements, 54–56
Conservation
of caloric, 1–2
of energy, line integral as a statement

of, 39
of heat plus work, historic perspective, 3

Constraints among the variables at transfer
equilibrium, 305–6

Conversion factors, 13–15
defined, 10
and fundamental constants, table, 12

Corresponding states of gases, 242–44
Critical constants, for real gases, 96–98
Critical solution curve, defined, 378
Critical state, defined, 94
Cycles
Carnot

forward, 114–16
reverse, 116–17

thermodynamic, aspartate
transcarbamolyase example, 55

Cyclic path. See Closed path
Cyclohexane, equilibrium data for chair to

boat conversion, table, 294
Cyclopropane, entropy at the boiling point,

269–70
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Cytochrome c and cytochrome f, example
of determining standard Gibbs
function from cell potentials, 284

Dalton’s law, for defining an ideal gas
mixture, 228

Debye equation, for heat capacities of
solids, 67

at low temperatures, 266
Debye–Hückel equation
for expressing activity coefficients for

strong electrolytes, 463–64
values of constants in, for activity

coefficients in aqueous solutions,
table, 463–64

Degree, of an homogeneous function,
defined, 18–19

Degrees of freedom
defined, 303
number of, for describing a

system, 306
for a two-component system, 309–10

Density, and partial volumes of ethanol-
water mixtures, 411

Dieterici equation of state, defined, 105
Differentiation
graphical methods for, chord-area

method, 541–42
numerical methods for, 535–38

Differentiation of energy, entropy as an
index of the state of, 147n–48

Digital computer, for repetitive calculations,
540

Dimethyl sulfoxide, water, equilibrium
pressure and liquid composition, table,
403

Diopside–anorthite two-component
system, reduced phase diagram for,
331

Efficiency (1)
of a heat engine

defined, 116
and temperature scales, 124–25

of a reversible Carnot engine, and the
thermodynamic temperature of heat
reservoirs, 122

Electrical work, from chemical
transformations, 179–80

Electrochemical cell, temperature-
dependence of the potential of,
180–81

Electrolytes
mixed, mean molality of a solution of,

446–48
strong, activity coefficients of, 462–64
uni-univalent, limiting law for,

440–43
Electromotive force, of a lead amalgam cell,

table, 393–97
Electron transfer chain, calculation of the

standard Gibbs function change in
cytochrome c and f, 284

Empirical methods, for estimating
thermodynamic quantities, 511–23

Endergonic reactions, defined, 181
Energetics, defined, 3–4
Energy (U )
defined, 38
and the first law, 37–38
natural independent variables of,

142–43
and work, adiabatic expansion of an ideal

gas, 90–92
Enthalpy (H )
changes in, defined, 45
defined, 44–45
excess, 426–27

on mixing two pure substances, 374
as a function of temperature, ideal gases,

83
Joule–Thomson, 239
partial molar, 413–14

analytic methods for calculating, 423
calculating by numerical integration,

421
of reactions, 47–52
of a solute in the one-molal standard

state, 371–73
standard, calculation of a standard Gibbs

function from, 287–90
standard partial molar, 368–69
of a van der Waals gas, 248–49

Enthalpy change
on adiabatic expansion of an ideal gas,

91–92
at constant pressure, relationship with

heat, 178–79
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Enthalpy change (Continued )
on irreversible isothermal expansion of

an ideal gas, 87
from mixing components to form an ideal

solution, 323, 326–27
molar, for the transition from solid solute

to supercooled liquid solute, 330
on reversible isothermal expansion of a

real gas, 104
on solution of naphthalene in benzene,

327–28
on transfering a component from one

ideal solution to another, 324
Enthalpy increment function, for selected

compounds, tables, 287–89
Enthalpy of combustion, enthalpy of

formation from, 53
Enthalpy of dilution
calculation of relative partial molar

enthalpy from, 417–20
data for extending activity coefficient

data to additional temperatures,
460–61

Enthalpy of formation, defined, 48–52
Enthalpy of mixing
calculation of relative partial molar

enthalpies from, 414–17
and a critical solution curve, 378–81

Enthalpy of phase transition, temperature
dependence of, 200–202

Enthalpy of reaction
from enthalpy of formation, 52–53
as a function of temperature, 68–72

Enthalpy of transition, from enthalpy of
combustion, 53–54

Entropy (S )
at 298 K, 265–73
absolute, defined, 266
as a measure of capacity for change in a

system, 112
of aqueous ions, table, 490
of an aqueous solution of a salt, 488
calculation of, 290
classic definition of, 3
defined, 125–26
defined as a mathematical function, 149
defining the second law in terms of,

113–20
estimate of, for trans-2-pentene, 521

of gases, general equations for, 142–44
of ions, 487–91
of liquid helium below its equilibrium

vapor pressure, 273–74
of a solute in the one-molal standard

state, 371–73
standard

at 298.15 K, selected substances,
275–76

defined, 266
for nonelectrolytes, 370–73

Entropy change
at constant temperature and volume, 160
for formation of an ideal solution from

pure components, 326–27
in irreversible flow of heat, 138
limit as temperature approaches zero,

Nernst postulate, 261
in mixing ideal gases

irreversible, 229–30
reversible, 228–29

sign of, in freezing of supercooled water,
205

for transfer of a component from one
ideal solution to another, 325

Entropy of formation, of individual ions,
488–90

Entropy of mixing
ideal, 378
at zero temperature, effect on statement of

the third law, 262
Enzymes, effect on reaction rate in living

cells, 5
Equations of state
defined, 31
Dieterici, 105
and ideal gas definition, 81–83
for ideal gases, 45–47
for a real gas, 94–98

Equilibrium diagram for gypsum–
anhydritie equilibrium, 314

Equilibrium
chemical

of ammonia synthesis, table, 532
in ideal gas mixtures, 231–32
in systems of variable composition,

221–23
in complex systems, 523
criteria for

550 INDEX



change in Gibbs function as,
162–63

Planck function as, 164
in systems of variable composition,

213–15
between an ideal solid solution and an

ideal liquid solution, 332–33
liquid–vapor, 198–200
mechanical, condition for, 304
between a pure solid and an ideal liquid

solution, 327–31
and spontaneity, in systems at constant

temperature, 159–64
tendency of systems to proceed toward,

112
thermal, defined, 305
transfer, for a system at constant

temperature and pressure, 305–6
two phases at, as a function of pressure

and temperature, 193–94
Equilibrium constant (K)
for ammonia synthesis, least squares

evaluation, 534
calculating a standard change in the

Gibbs function from, 282–83
and change in the Gibbs and

Planck function for real gas
reactions, 252

for dissociation of weak electrolytes,
472–80

for a mixture of ideal gases, 231–33
in terms of activity, 366–67
in terms of fugacity, 262

Equilibrium pressure
and liquid composition for water in

dimethyl sulfoxide, 403
of a pure condensed phase, for defining

the standard state for the component
in solution, 321

Equilibrium ultracentrifugation, for
establishing molecular weights of
protein molecules, 508

Equivalent conductance (Le), dependence
on concentration, 475–76

Escaping tendency, and chemical potential,
219–20. See also Fugacity

Estimation, of entropies, 521–22
Ethane and ethene, molar volume of liquid

mixtures of, table, 433

Ethanenitrile and 2,2,3-trimethylpentane,
liquid–liquid equilibrium curve for,
379–81

Ethanol–water mixtures, change in volume
with change in composition,
410–13

Euclidian metric geometry, for representing
the laws of classic thermodynamics,
528

Euler’s theorem, 18
for homogeneous functions, 19–21

of degree n, 216
Exact differentials, 15–18
and change of state, 39

Excess Gibbs functions
from experimental data, 385–406
for nonelectrolytes, 357–84

Excess thermodynamic properties,
426–27

deviations from ideality in terms of,
373–76

Exergonic reactions, defined, 181
Expansion of ideal gases
adiabatic, 90–94
isothermal, 84–90

Expansion of real gases, isothermal
reversible, 102–4

Experimental values
for activity coefficients, 462
methods for obtaining activity data for

electrolytes, 449
Extensive property (J )
defined, 10
in a two-component system, as a

homogeneous function of degree 1
of mole numbers, 216–19

Extent of reaction (j), defined, 221
External force, work defined in terms

of, 34, 36

Feldspar, reduced two-component phase
diagram for, 310

interpreting quantitatively, 332
First law, 29–41
complete statement of, 40

Fluid, change of pressure with respect to sea
level, 502

Force, operational definition of, 30,
33–36
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Formation, enthalpy of
from enthalpy of combustion, 52
from enthalpy of reaction, 52–53
standard states and tables, 48–52

Free energy
change in, relationship to the cell

potential, 449–53
Gibbs, defined, 162
Helmholtz, defined, 161

Free energy of mixing, excess, 373–74
as a function of composition,

374–76
Freezing-point depression, van’t

Hoff’s law of, 350–53
Freezing points, measuring, for determining

activities of nonelectrolytes in
solution, 400–401

Fugacity ( f )
of components in the vapor phase of

liquid–vapor or solid–vapor
equilibrium, 320–21

of components of gaseous solutions,
real gases, 249–52

defined, 236
historic origin of the concept of, 357
proportionality of a gas phase solute to

the mole fraction in the condensed
phase, 337–40

of a pure real gas, 236–39
of a real gas, calculating, 240–47

Fugacity coefficient (gi)
in gaseous solutions, 251
for pure gases, 243–44

Functional groups, contributions of, to
thermodynamic properties, 517–18

Fundamental constants, table, 12
Fuoss conductance–concentration function,

for relating measured conductance to
ionic concentration, 480

Gases
application of the first law to, 81–109
entropy of, 268–69
heat capacities of, 64–66
ideal, entropy of, 142–44
mixtures of, 227–57
real, entropy of, 143–44
standard state of, for defining activity,

359–60

Gas phase, in equilibrium with a condensed
phase at constant temperature and
pressure, 196–98

General formulation
for an exact differential, 16–17
for the first law, 38–40

Geological equilibrium, involving
water, effect of salt concentration
on, 486

Gibbs, J. Willard, 3
derivation of the phase rule by, 303
proposed fundamental thermodynamic

equation for an ideal gas, 152
on a temperature–entropy diagram, 145

Gibbs–Duhem equation
applying to Raoult’s law, to infer Henry’s

law, 343
for chemical potential changes of solute

and solvent in nonelectrolytes,
341–44

at constant temperature and pressure,
defined, 217–18

for defining osmotic pressure, 346
in expressing excess free energy as a

function of composition, 375
to relate chemical potentials of

components of a solution, 397
to relate the osmotic coefficient of a

solvent to the activity coefficient
of a solute, 458–59

use in calculating osmotic coefficient,
455

use in calculating partial molar
enthalpy, 415

Gibbs function (G)
application to chemical changes,

281–301
application to phase changes, 193–210
changes in

and choice of standard states for
solvents, 363

at constant pressure and temperature,
214

dependence on pressure and
temperature, 172–75, 177–78

dependence on temperature for
ionization of acetic acid, 235–36

and entropy change in mixing ideal
gases, 228–30
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and the equilibrium constant for real
gas reactions, 252

from mixing to form an ideal solution,
325

for processes in solution, 471–97
and chemical reactions, 172–74
defined, 162
dependence on an external field,

499–502
and the equilibrium constant, in terms

of activity, 365–66
equivalence to enthalpy at absolute

zero, 263
excess, from measurement of vapor

pressure, 388–90
increment in, 292–93

table, 293
partial molar, as the chemical potential,

213
Planck function as a temperature-

normalized form of, 164
plot against the progress variable,

221–22
properties of, 165–70
standard, for formation of an aqueous

solute, 480–82
in terms of activity, 365–66

Gibbs function of formation, calculating
from a Gibbs function of a reaction,
286–87

Gibbs function of mixing, 378–81
Gibbs–Helmholtz equation, defined,

180–81
Glasses, entropy at 0 K, glycerol example,

262–63
Glucose, active transport of, 350
Glycine
partial molar volume in aqueous

solutions, table, 424–25
relative molar enthalpies of, table, 432
thermodynamic data in aqueous solutions

of, table, 492
transfer process example of change in

the thermodynamic property J,
423–25

Glycolamide
specific heats of, table, 430
in water, volume as a linear function of

mole number, 408

Graphical methods
for calculating fugacity of a real gas,

240–44
for differentiation

chord-area method, for calculation of
the enthalpy, 541–42

to evaluate volume change of ethanol
in water, 412–13

for integration, 542
Gravitational field
dependence of the Gibbs function on,

500–501
exact differentials describing, example,

15–16
systems subject to, 499–510

Guggenheim, E. A., 376
Gypsum–anhydrite equilibrium, at varying

pressures, change in Gibbs function
for, 312–15

Heat (Q)
absorption in an isothermal reversible

expansion of a real gas, 103
at constant pressure, relationship with

enthalpy change, 178–79
at constant pressure versus constant

volume, 46
defined, 38
effects of mixing components that form

an ideal solution, 322–23
and the first law, 38
flow of, irreversible, entropy change in,

136–37
in an irreversible isothermal expansion of

an ideal gas, 87
Heat capacity, 60–68
at constant pressure, 61–62

change in an isothermal chemical
reaction, 263–64

and at constant volume, 62–64, 84
at constant volume, ideal gas,

90–92
data sources, 68
defined, 61
and Joule–Thomson enthalpy change,

for a gas, 239
limiting value at constant pressure or

constant volume as temperature
approaches zero, 264
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Heat capacity (Continued )
at low temperatures

Debye equation for, 266
methylammonium chloride example,

266–68
and phase transitions, 201–2

Heat engine
proportion of heat absorbed at the high

temperature converted to work, 116
thermodynamics arising from

descriptions of, 2, 113–20
Heat exchange, reversible, with the

surroundings, 134–35
Heat of formation, example of Hess’s law,

44
Heat of reaction, as a criterion of

spontaneity, approximate, 164
Heat of vaporization, in a two phase system,

197–98
Heat pump, Carnot engine as, 116–17
Helium, validity of third law for liquid at

0 K, 272
Helmholtz function (A)
defined, 161
properties of, 165–70

Henry’s law
application for a strong electrolyte,

440–43
for choice of standard state for a solute, to

define activity, 363–65
fugacity and, 337–40
as a limiting law, 346–47
on the molality scale, for calculating the

activity of a nonelectolyte solute,
385–88

Raoult’s law implying, 342–43
regular solutions and, 376–78
for a solute in a solution of

nonelectrolytes, and Raoult’s law
for the solvent, 342–43

Henry’s law constants, for calculating the
activity of a nonelectolyte solute,
391–93

n-Heptane
liquid, heat capacities of, table, 299
solid, heat capacities of, table, 539

Hess’s law
as a consequence of the first law, 45, 47
of constant heat summation, 43–44

n-Hexane, and 1,1,2–trichlorofluoroethane,
vapor pressures and compositions for
solutions of, 405

Historic perspective, xix–xxi
origins of thermodynamics, 1–7

Homogeneous functions, 18–21
Hooke’s law, reversible work for a spring’s

changing in length, example, 37
Hydrogen chloride, gaseous, enthalpy

change for solution in water, 416–17
Hydrogen gas
a for, graph, 241
heat capacities as a function of

temperature (graph), 271
pressure–volume properties of, table,

254

Ice
exception to formation of perfect crystals,

272
fusion of, change in entropy in, 132
irreversible phase transitions of, change

in entropy in, 137–38
Ideal gases
application of the first law to, 81–94
defined, 81–83
entropy of, 142–43
estimating thermodynamic quantities for,

511–12
fundamental thermodynamic equation for

(Gibbs), 152
irreversible adiabatic expansion of,

change in entropy, 135–36
irreversible isothermal expansion of,

change in entropy, 133–35
mixtures of

and equilibrium, 227–36
as a special case of an ideal solution,

326–27
total differential equations for describing,

12–13
Ideal gas temperature scale (T )
defined, 33
relationship with the thermodynamic

temperature scale, 122
Ideality, deviation from
Berthelot equation, 96
for isothermal expansion of real

gases, 94
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Joule–Thomson effect for measuring,
98–102

in terms of excess thermodynamic
functions, 373–75

virial function, 98
Ideal solutions, 319–35
formation from pure components,

entropy change in, 326–27
Index of exhaustion, entropy as, 146–50
Indium amalgam, cell potentials for, 404
Inert gas, effect of, on vapor pressure,

198–200
Infinite copy model
and activity, calculating molar free

energy change, 365–66
defined, 222
for an ideal gas mixture, 231–32
for ideal solution transfers, 324
for a solution, 409–13

Information, limitations of classic
thermodynamics for obtaining, 4–6

Integral heats of solution, example of
enthalpy changes for solution of NaCl
in water, 414–17

Integral process (mixing), and change in
extensive thermodynamic properties,
425–26

Integration
graphical methods for, 542
numerical methods for, 538–40

Intensive property (Jm), partial molar
variables, in a two-component system,
216–19

Intensive variables
defined, 10
for defining the composition of a phase,

304
partial molar quantities as, 216–19

International Temperature Scale of 1990
(ITS-90), 33

Intuitive understanding versus operational
definition, 29–31

Inversion temperature, Joule-Thomson,
101–2

Iodine, solutions of, in water and in carbon
tetrachloride, chemical potential of,
219–20

Ionic strength
defined, 448

and molality, table, 448
variation of solubility with, silver

chloride example, 454
Ionization constant, of acetic acid, 475
extrapolation of, 479–80

Ions, individual, entropy of formation of,
488–91. See also Electrolytes

Iron silicates, solid solutions with
magnesium silicates, enthalpies of
solution, table, 436

Irreversible processes
adiabatic expansion, of an ideal gas,

work done in, 94
change of heat and work in, as a criterion

of spontaneity, 111–12
the expansion of an ideal gas, 86–87
entropy changes in, 133–42

Isenthalpic change, Joule-Thomson
experiment, 99–100

Isobaric temperature change, reversible,
entropy change accompanying, 132

Isochoric temperature change, reversible,
change in entropy in, 133

Isolated system, criterion for, 163
Isopiestic method, for obtaining the activity

of a solvent, 400
Isopropyl alcohol, dissociation of,

calculation of the change in the Gibbs
function at 452.2 K, 281–84

Isothermal changes
and changes in the Gibbs, Helmholtz,

and Planck functions, 165–66
and changes in the Helmholtz functions,

175–77
cyclic, for reversible and irreversible

processes, 177
on formation of an ideal solution, entropy

change for, 326–27
in an ideal gas, thermodynamic quantities

for, table, 87–88
on irreversible expansion of an ideal gas,

133–36
isothermal, of an ideal gas, 84–90
reversible, entropy change for, 130–31

Isotherms, for real gases, 94

Joule, J., adiabatic work experiments
by, 37

Joule cycle, defined, 153
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Joule–Thomson coefficient (mJ.T.)
for an isenthalpic process, 100–102
relationship of the pressure coefficient of

the molar enthalpy of a gas to, 239
for a van der Waals gas, 249

Joule–Thomson effect
measuring deviations from ideal gas

behavior from, 98–102
for a van der Waals gas, 247–49

Kelvin, Lord William Thompson
formulation of the second law of

thermodynamics, 112
mathematical expression of the second

law, 3
naming of the field, 1

Kelvin–Planck statement of the second law,
117–18, 176–77

Kirkwood–Buff theory, derivation of the
Debye–Hückel limiting law from, 464

Law of corresponding states, reduced
variables and, 96–97

Lead amalgam, activities of components of,
393–97

Least squares
fitting data to a polynomial using,

ethanol-water mixture example, 412
linear, for evaluating polynomial

expressions, 531–34
nonlinear, 534–35

Lewis, G. N.
on escaping tendency, 219–20
fugacity defined by, 236, 357

Lewis and Randall
rule for approximation, to calculate

fugacity coefficients in a gaseous
solution, 251

statement of the third law, 262–63
L’Hopital’s rule, example of use of, 263
Limiting cases, treatment of, as a limitation

of thermodynamics, 6
Limiting laws
expression of boiling point elevation

of solutions with a nonvolatile
solvent, 352

expression of freezing point depression
of solutions with a nonvolatile
solvent, 353

Henry’s law, 343
Raoult’s law, 343
van’t Hoff’s law of osmotic pressure,

347–48
Line integral, defined, 16–17
Liquids
entropy calculations for, 266–68
heat capacities of, 68
standard states for, 360–65
supercooled, in an ideal solution, 327–28

Macroscopic systems, descriptions of, in
thermodynamics and classic
mechanics, 4–5

Margulies equation, for expressing different
degrees of nonideality for solutions,
376

Massieu function (J )
defined, 161–62
natural variables of, 185

Mathematical techniques, 531–43
for thermodynamics, 9–28

Mean activity (a+)
of ions of a strong electrolyte, 442
for unsymmetrical salts, 443–44

Mean activity coefficient (g+), 444–46
calculating from cell potential, 452–53
Debye-Hückel limiting law for

evaluating, 479–80
Mean molality (m+), for multivalent

electrolytes, defined, 444–46
Mechanical work, in living cells, 185
Membrane, selectively permeable,

separating phases of differing
composition, 345–50

Mercury, vapor pressure as a function of
temperature, 209

Methylammonium chloride, entropy of as a
function of temperature, typical
calculation, 266–68

Methyl substitution
contributions of, to thermodynamic

properties, table, 514
secondary, contributions to

thermodynamic properties, table,
515

Methyl-t-butyl ether
and acetonitrile, vapor pressure and

composition of solutions, 402

556 INDEX



and chloroform
excess volume of solutions of,

table, 434
vapor pressure and vapor composition

of, 388–90
Miscibility, limited, and regular solutions,

378–81
Miscibility gap, defined, 381
Mixing, thermodynamics of, 325–27.

See also Enthalpy of mixing; Entropy
of mixing

Mobility, change in, with changes in ion
concentration, 476–77

Molality, chemical potential as a function
of, in solutions of dilute
nonelectrolytes, 340

Molar entropies, comparison of calculation
methods, table, 271

Mole fraction, chemical potential as a
function of, for a solute in a saturated
solution, 328–29

Multiple bond, contributions of, on
replacing single bonds, table, 516

Multiple substitutions of functional groups,
corrections for, 519–20

Multivalent electrolytes, definitions and
standard states for, 443–46

Naphthalene, solution in benzene,
example of a pure solid in
equilibrium with and ideal liquid,
327–28

National Institute of Standards and
Technology, Thermodynamics
Research Center of, 49

Natural variables
for A, 168
for G, 167
for S, 142
for U, 142–43
for Y, 169

Nernst heat theorem, 260–61
Nernst’s distribution law, for dilute

solutions of nonelectrolytes,
340–41

Newton, I., definition of time, 30
Nitric acid, standard Gibbs function for

formation of undissociated HNO3,
485–86

Nonelectrolytes
activities of

excess Gibbs functions and standard
states for, 357–84

from experimental data, 385–406
dilute solutions of, 337–55

Nonreacting systems, phase rule for,
304–6

Number-average molar mass (Mn), defined,
348

Numerical methods
for differentiation, standard potential

example for demonstrating, 535–38
for evaluating the variation of heat of

reaction with temperature, 71
for integration

to determine activity coefficients,
460–61

determining partial molar quantities
of one component from those of
another, 420–21

heat capacity data as an example of,
538–40

Objectives, of chemical thermodynamics, 4
One-component systems, degrees of

freedom in, 307–9
Open system, defined, 31
Operational definition versus intuitive

understanding, 30–31
Osmotic coefficient (g)
defined, 458–59
to express deviation of solvent behavior

from Raoult’s law, 455–60
Osmotic pressure (P)
defined, 347
measuring, 457
van’t Hoff’s law of, 344–50

Osmotic work, in living cells, 185
Oxygen, pressure–volume properties of,

table, 255

Partial differentiation, 10–21
Partial molar entropy, of solute in the

standard state, 370–73
Partial molar properties (Jmi)
analytic methods for calculation,

422–23
defined, 213

INDEX 557



Partial molar properties (Jmi) (Continued )
of different components, relationships

among, 216–19
of a single component, relationships

among, 215–16
Partial molar quantities, calculating from

experimental data, 407–26
Partial pressure
of an ideal gas, defined, 231
of toluene and acetic acid, table, 401

trans-Pentene, estimating the entropyof, 521
Perfect crystal, defining, 272
Perpetual-motion machines
of the first kind and of the second

kind, 113
of the second kind, and the second law,

117–18
Pfaff equation, 9
Phase changes
application of the Gibbs and Planck

function to, 193–210
spontaneous, change in the Gibbs

function for, 202–5
See also Phase transitions

Phase diagram, for helium, 272–73
Phase rule, 303–17
defined, 306

Phases, number in a system, defined, 303
Phase transitions
irreversible, entropy change in, 137
reversible, entropy change in, 131–32
temperature dependence of enthalpy of,

200–202
Phenomenological approach, historic

development of, 528
N-(Phosphonacetyl)-L-aspartate (PALA),

binding to aspartate
transcarbamoylase, 54–56

Planck, M., 3
formulation of the third law, 261–62

Planck function (Y )
application to phase changes, 193–210
change in

at constant pressure and
temperature, 214

and equilibrium constant for an ideal
gas, 234

and equilibrium constant for
a real gas, 252

temperature dependence of ionization
of acetic acid, 235

defined, 163
properties of, 165–70
total differential for, 167

Poincaé, H., summary of operational
definitions, 30–31

Polyvinyl acetate in methyl ethyl
ketone, osmotic pressure data for,
table, 354

Power series
for expressing degrees of nonideality

for solutions, 375–76
for expressing nonideality for solutions,

coefficient B of, 378
Pressure
change of fugacity with, 237–38
chemical potential as a function of, for a

solute in a saturated solution,
328–29

constant
as a condition of mechanical

equilibrium, 304
and constant temperature, 162–64
and heat, 43–44
phase diagram for a two-component

system at, 312
dependence of activity on, 367
dependence of change in the Gibbs

function on, 172
low, fugacity at, 248
reduced, compressibility factor as a

function of, 242
temperature derivatives of, 264–65
varying, phase rule for two phases,

312–15
Principle of impotence, for describing

fundamental principles in the physical
sciences, 113

Process, defined, 31
Progress variable, defined, 221
Properties, of a body, defined, 31
Protein, conformational transition of, and

enthalpy, 54–56
Proton affinity, defined, 74–75
Pure phase system, partial molar quantities

for, 218–19
Pure substances, standard states

of, 360
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Raoult’s law
for choice of standard state for a solute,

363–65
defining an ideal solution in terms of,

319–21
difference from Henry’s law,

338–39
excess free energy of mixing of a solution

following, 376
for solvents in nonelectrolyte solutions,

and Henry’s law for the solute,
341–44

Reacting systems, phase rule for,
306–7

Reactions, enthalpy of, from bond
enthalpies, 59–60. See also Chemical
reactions

Real gases
application of the first law to, 94–104
entropy of, 143–44
mixtures of, calculating the fugacity of,

249–52
See also Ideal gases

Real solutions, activity coefficient as a
measure of deviation from ideality,
361. See also Ideal solutions

Reciprocity characteristic
equations derived from, for the Gibbs,

Helmholtz, and Planck functions,
169–70

for an exact differential, 17
Redlich–Kister expression
for excess property determination,

426–27
power series for representing solutions of

different degrees of ideality,
375–76

Redlich–Kwong equation, 96–97
calculating fugacity of a real gas from,

244–46
Reduced phase diagram, at constant

pressure, for a two-component
system, 331

Refrigerator, Carnot engine as,
116–17

Regular solutions
defined, 376
and Henry’s law, 376–78
and limited miscibility, 378–81

Relative partial molar enthalpy (Lmi)
for aqueous sodium chloride, table, 469
defined, 413–14
from enthalpies of dilution, 417–20

Reversibility
Carnot’s introduction of, 2
criterion for, and equilibrium, 159
of reactions in an electrical cell, 284
spontaneity and equilibrium, 159–64

Reversible cycle
entropy changes in, 130–33
S for any substance in, 127–29

Reversible process, defined, 84–85

Salt, entropy of an aqueous solution of,
486–91

Sargent cycle, defined, 153
Scatchard, G., 376
Second law, 111–57
alternative statement of, 117–18
defined, Clausius, 112–13
mathematical statement of, condensed, 134
stated as change in entropy, 159

Sedimentation equilibrium, concentration
distribution of solute in solution at,
graph, 508

Selenium chloride, enthalpy of formation
of, 59–60

Serine
enthalpies of dilution for aqueous

solutions, table, 417
relative partial molar enthalpy of, in water

solutions, graph, 419
Sign convention, for work, 34
Silicon dioxide, equilibrium relationships

among solid forms of, 307–8
Silver chloride
solubility in water containing solvent

electrolytes, table, 467
standard Gibbs function for formation of

solid solute, 483–84
Silver-copper system, as a two-component

system with limited solubility, 310–11
Sodium chloride, example of standard

Gibbs function for formation of
solid solute in aqueous solution,
482–83

Sodium-potassium system, phase diagram
at constant pressure, 312
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Solids
entropy calculations for, 266–68
heat capacities of, 67
homogeneous, determining the purity of,

315–16
pure, equilibrium with an ideal liquid

solution, 327–31
solubility of, to form ideal solutions, 328
standard states for, 360–65

Solid solution, entropy at 0K, silver
chloride, silver bromide example, 262

Solid-state reactions, enthalpy of, from
measurement of enthalpy of solution,
56–57

Solubility
change with pressure at a fixed

temperature, 328–29
change with temperature, 329–31
of cupric iodate in aqueous solutions,

table, 469
equilibrium, of oxygen and nitrogen,

change with depth in the ocean, 504
limited, in a two-component system

silver–copper example, 310–11
sodium–potassium example, 312

measuring, 453–55
Solute
activity of, 385–87

calculating from activity of the solvent,
399–400

from distribution between two
immiscible solvents, 391–93

dissolved, thermodynamic functions for,
table, 447

molality of
limiting condition for defining

activity, 358
thermodynamic properties in the

standard state, 371
mole fraction, limiting condition for

defining activity, 358
in solution, mole fraction scale and

choice of a standard state, 361–65
standard partial molar enthalpy for,

368–69
Solutions
determination of the activity in one

solvent from the activity in the
other, 397–400

enthalpy of solid-state reaction data from,
56–57

of real gases, approximating the fugacity
of, 251

Solvent
activity of, 385

calculating from the activity of the
solute, 398–99

two immiscible, activity of a solute
from distribution between,
391–93

limiting condition for defining
activity, 358

in a solution, standard state for, 360–61
standard partial molar enthalpy

for, 368
Solvent–solute interaction, effect on the

volume of the solvent and of the
solute, 408

Special relativity, time defined in, 30–31
Spontaneity
criteria for

escaping tendency, 222–23
Gibbs function change, 162
natural processes, 111–12
in systems of variable composition,

213–15
entropy change as an index of the

tendency toward, 148
of irreversible change, 159
Planck function as a criterion of, 164
of reactions, limitation of classic

thermodynamics in describing, 5
reversibility and equilibrium, 159–64

Spring, example of sign conventions for
work, 34

Standard cell potentials, variation with
temperature, H2 reaction with silver
chloride, 535

Standard enthalpy, calculation of a standard
Gibbs function from, 288–93

Standard entropy
calculation of a standard Gibbs function

from, 288–93
of the hydrogen ion, 489–90

Standard Gibbs function
calculation of change in

from calorimetric measurements,
285–86
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from equilibrium measurements,
281–84

from spectroscopic data, 290–93
calculations from, typical, 480–87
of formation

of an aqueous solute, hydrogen
chloride example, 480–82

determining changes in the Gibbs
function from, 286–87,
291–93

of individual ions, 482
of an ion of a weak electrolyte,

484–85
of a moderately strong electrolyte,

485–86
of solid solute in aqueous solution,

482–84
Standard state
choice of, for defining activities, 359–65
for a component in an ideal solution,

defined, 321
and enthalpy change, 47–48
for the Gibbs function, 170–72
Henry’s law, 387
for partial molal enthalpy, infinitely

dilute solutions as, 413–14
for a solute in a solution, 361–65

using molality to define activities,
364–65

for a ternary electrolyte, 445
for thermodynamic calculations, table,

372
State function
energy U, 39–40
enthalpy H, 45, 52–57
entropy S, 129–30
Gibbs function (G), 162
for a system of variable composition,

211–13
Statistical thermodynamics
defined, 5
entropy calculations resolving an

exception to the third law, 270–71
Stoichiometric coefficients, defined, 221–23
Strong electrolytes, 439–64
Successive approximations
for determining the dissociation constant

for a weak electrolyte, 477–79
acetic acid example, 474–75

Succinic acid, in water, Gibbs function
for formation of the first anion of,
484–85

Sucrose
heat capacities of, 279
synthesis of, change in the Gibbs

function in, 183–84
Sulfur, allotropic forms in equilibrium,

206
Surroundings of a system, defined, 31
Symmetrical salts, definition of activity

for, 443
Systems
of variable composition, 211–26
variables needed to describe the

state of, 304

Temperature
change of

in adiabatic expansion of an ideal gas,
91–94

in isobaric reversible expansion,
132–33

change in fugacity with, 238–39
change of solubility with, 329–31
constant

as a condition for thermal equilibrium,
305

effect of an inert gas on vapor pressure,
199–200

equilibrium and spontaneity at,
159–91

dependence on
of activity, 368–70
of change in the Gibbs function,

172–75, 234
of change in the standard Gibbs

function and lnK, 234–36
of equilibrium compositions of an

ideal solution, 333
of the equilibrium constant, in an ideal

gas mixture, 232–33
development of a scale for, 31–33
efficiency of a reversible Carnot engine

as a function of, 120
enthalpy of reaction as a function of,

68–72
natural thermodynamic definition

of, 143
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Temperature (Continued )
reduced, compressibility factor as a

function of, 242
variable, at constant total pressure,

effect of an inert gas on vapor
pressure, 200

variation of heat capacity with,
for gases, 64

Temperature coefficient
of the chemical potential, 322–23
of free energy with entropy or enthalpy,

applied to excess functions, 374
of a free energy change in an

electrochemical cell, 181
Temperature derivative, of the activity,

369–70
Temperature–entropy diagram, 144–46
Temperature interval, for equilibrium

between solid and liquid phases of an
ideal solution, 332

Temperature scale
operational definition of, 32–33
thermodynamic, 120–25

defined, 121
Theoretical correlation, for accounting for

thermodynamic properties of aqueous
solutions, 462–64

Thermally insulated state, defined, 31
Thermodynamic change, in adiabatic

expansion of an ideal gas,
table, 92

Thermodynamic functions, for dissolved
solutes, table, 447

Thermodynamic property (J )
changes in, on transfer or mixing in

solutions, 423–26
defining, ideal gas example, 18
enthalpy, 45
entropy, 113, 125–30
Gibbs, Helmholtz, and Planck functions

as, 165–70
of two ideal solutions with different mole

fractions, same components,
table, 324

Thermodynamic quantities, estimation of,
511–25

Thermometric property, magnitude of heat
exchanged in a Carnot cycle, 121

Third law, 259–80
apparent exceptions to, 270–73

defined, Lewis and Randall statement,
262

Time, operational and intuitive definitions
of, 30–31

Toluene, and acetic acid, partial pressures,
table, 401

Total differential
for A as a function of T and V, 168
equation for, 10–13

Gibbs, Helmholtz and Planck
functions, 166–67

Transfer, of a component from one ideal
solution to another, thermodynamics
of, 323–25

Transfer process (differential process),
changes in J for, 423–25

l transition, in liquid helium, 273–74
1,1,2-Trichlorofluoroethane, and n-hexane,

vapor pressures and compositions
for, 405

Triple point
defined, 307
of water, temperature at as a reference

temperature, 33, 121
Trouton’s rule, 60
Two-component systems, phase rule in,

309–16
Two-phase systems, Carnot cycle for,

water example, 156
Type numbers
corrections for, 519–20
to designate carbon atoms involved

in secondary substitutions, 513, 515

Units, SI, defined, 10–12
Uni-univalent electrolytes, definition and

standard states in solution, 440–43
Unsymmetrical salts, definition of activity

for, 443–45
Upper critical solution temperature, defined,

379–81
Urea, density data for aqueous solutions of,

table, 432

Valine, glycyl-L-, enthalpies of dilution
for aqueous solutions of, table, 435

van der Waals equation, 94–96
calculating thermodynamic quantities for

isothermal reversible expansion
with, 103–4
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for describing deviations from ideality,
94–96

entropy of a gas obeying, 144
Joule–Thomson inversion temperature

from, 102
for predicting the behavior of real gases,

247–49
van’t Hoff law
of freezing-point depression and boiling-

point elevation, 350–53
of osmotic pressure, 344–50

van’t Hoff mixing experiment, 228–29,
236–39

Vapor phase, of an ideal solution,
Raoult’s law for describing, 319–21

Vapor pressure
activity from measurements of, 385–88
Clapeyron’s equation for, 2
and composition, for solutions of

methyl-t-butyl ether and
acetonitrile, 402

effect of an inert gas on, 198–200
excess Gibbs function from

measurements of, 388–90
Planck function as a criterion of, 164

Variables
for expressing the phase rule, 303
of state, defined, 31
of thermodynamics, 10

Velocity of propagation of sound (w), in a
gas, defined, 106–7

Virial equation
for calculating the fugacity of a real gas,

244
for deviation from the ideal gas law,

98–99
Volume
change in

on mixing of pure components to form
an ideal solution, 321–22

for transfer of a component from one
ideal solution to another, 324

constant, with constant temperature, 160
excess

defined, 426
on mixing two pure substances, 374

as a linear function of mole number,
glycolamide in water example, 408

molar, change in, for transition from solid
solute to supercooled liquid, 329

partial molar, 409–13
analytic methods for calculating,

422–23
numerical integration for

calculating, 421
temperature derivatives of, 264–65

Volume–pressure isotherm, for a real and
ideal gases, graph, 240

Water
in dimethyl sulfoxide, equilibriumpressure

and liquid composition, 403
in equilibrium

with hydrogen and oxygen, as a
two-component system, 306–7

with its vapor, as a one-component
system, 306

vapor pressure of, graph, 195–96
in ethanol solutions, calculating partial

molar volume for, 412–13
formation of

enthalpy of and state of the product,
47–48

from gaseous hydrogen and oxygen,
entropy change in, 139, 270–71

relative partial molar enthalpy of, in
serine solutions, graph, 419

supercooled, change in the Gibbs
function on freezing of, 202–5

See also Ice
Work (W )
in adiabatic expansion of an ideal gas,

90–92
irreversible, 94

capacity to perform, loss in spontaneous
transformations, 146–48

change of dWnet, in spontaneous and
nonspontaneous transformations,
214

defined, 33–37
net, reversible in an electrical cell, 284
nonmechanical, and change in

enthalpy, 45
osmotic, in biological systems, 349–50
performed in mixing gases, 228–29
useful

and the Gibbs and Helmholtz
functions, 175–85

from reversible conversion of hydrogen
and chlorine to HCl, 179–80
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