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PREFACE

The aim of this book is to provide undergraduate students with an introduction to models
and theories of chemical bonding and geometry as applied to the molecules of the main group
elements. We hope that it will give the student an understanding of how the concept of the
chemical bond has developed from its earliest days, through Lewis's brilliant concept of the
electron pair bond up to the present day, and of the relationships between the various mod­
els and theories. We place particular emphasis on the valence shell electron pair (VSEPR)
and ligand close packing (LCP) models and the analysis of electron density distributions by
the atoms in molecules (AIM) theory.

Chapter I discusses classical models up to and including Lewis's covalent bond model
and Kossell's ionic bond model. It reviews ideas that are generally well known and are an
important background for understanding later models and theories. Some of these models,
particularly the Lewis model, are still in use today, and to appreciate later developments,
their limitations need to be clearly and fully understood.

Chapter 2 discusses the properties of bonds such as bond lengths and bond energies,
which provide much of the experimental information on which bonding concepts and ex­
planations of geometry have been mainly based. Again this is a brief summary at a fairly el­
ementary level, serving mainly as a review. No attempt is made to deal with the experimental
details of the many different experimental methods used to obtain the information discussed.

In the 1920s it was found that electrons do not behave like macroscopic objects that are
governed by Newton's laws of motion; rather, they obey the laws of quantum mechanics.
The application of these laws to atoms and molecules gave rise to orbital-based models of
chemical bonding. In Chapter 3 we discuss some of the basic ideas of quantum mechanics,
particularly the Pauli principle, the Heisenberg uncertainty principle, and the concept of elec­
tronic charge distribution, and we give a brief review of orbital-based models and modem
ab initio calculations based on them.

Chapter 4 discusses the well-known VSEPR model. Although this model can be regarded
as an empirical model that does not directly use quantum mechanical ideas, its physical ba­
sis is to be found in the Pauli principle. This dependence on a quantum mechanical concept
has not always been clearly understood, so we emphasize this aspect of the model. We have
tried to give a rather complete and detailed review of the model, which has been somewhat
modified over the years since it was first proposed in 1957.

xi



xii • Preface

It has long been recognized that steric interactions between large atoms or groups in a
molecule may affect the geometry, and about 40 years ago it was suggested that repulsive
interactions between even relatively small atoms attached to a central atom often constitute
an important factor in determining molecular geometry. Nevertheless, the importance of
ligand-ligand repulsions in determining the geometry of many molecules, which led to the
development of the ligand close-packing model, was not clearly established until quite re­
cently. This model, which provides an important and useful complement to the VSPER model,
is described in Chapter 5.

In recent years increasingly accurate information on the electron density distribution in
a molecule has become available from ab initio calculations and X-ray crystallographic stud­
ies. The atoms in molecules (AIM) theory developed by Bader and his coworkers from the
1970s on provides the basis for a method for analyzing the electron density distribution of
a molecule to obtain quantitative information about the properties of atoms as they exist in
molecules and on the bonds between them. This theory is discussed in Chapters 6 and 7. Un­
fortunately, AIM has remained until now a rather esoteric mathematical theory whose great
relevance to the understanding of bonding and molecular geometry has not been widely ap­
preciated. We give a pictorial and low-level mathematical approach to the theory suitable for
undergraduates.

Chapters 8 and 9 are devoted to a discussion of applications of the VSEPR and LCP
models, the analysis of electron density distributions to the understanding of the bonding and
geometry of molecules of the main group elements, and on the relationship of these models
and theories to orbital models. Chapter 8 deals with molecules of the elements of period 2
and Chapter 9 with the molecules of the main group elements of period 3 and beyond.

We welcome comments and suggestions from readers. Please send comments via e-mail to
either giJlespie@mcmaster.ca or pla@umist.ac.uk. For more information about our research, please
visit our web sites-Ronald Gillespie at http://www.chemistn..mcmaster.ca/faculty/gillespie and
Paul Popelier at http://www.ch.umist.ac.uk/popelier.htm.
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c H A T E R

THE CHEMICAL BOND: CLASSICAL

CONCEPTS AND THEORIES
•

• 1.1 Introduction

Whenever two or more atoms are held strongly together to form an aggregate that we call a
molecule, we say that there are chemical bonds between them. From the time that the con­
cepts of a molecule and a chemical bond were first developed, chemists have been intrigued
by the fundamental question: What is a chemical bond? And by other related questions such
as: What forces hold atoms together? Why do atoms combine in certain fixed ratios? and
What determines the three-dimensional arrangement of the atoms in a molecule? For many
years chemists had no clear answers to these questions. Today, as the result of using a vari­
ety of physical techniques, such as X-ray crystallography, electron diffraction, and microwave
spectroscopy, we have accumulated detailed information on several hundred thousand mol­
ecules. This information, together with the advance in our understanding of the fundamen­
tal laws of nature that was provided by the advent of quantum mechanics in the mid-lnOs,
has led to some reasonably good answers to these fundamental questions, as we discuss in
this book. But our understanding is still far from complete and, as new molecules are dis­
covered and synthesized, established ideas often need to be modified. So the nature of the
chemical bond is a subject that continues to intrigue chemists. In this chapter we will see
how ideas about the chemical bond and molecular geometry developed before the advent of
quantum mechanics. Many of these ideas, such as Lewis's electron pair, have been incor­
porated into the quantum mechanically based theories, and we still use them today.

• 1.2 Valence

Observations that compounds have fixed compositions and that therefore their atoms are
combined in fixed ratios led to the determination of atomic masses and later to the concept
that the atoms of a given element have a characteristic combining power; that is, each atom
can form a certain number of bonds called its valence. Because a hydrogen atom does not
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normally combine with more than one other atom, it is given a valence of I-it is said to be
univalent. A chlorine atom, which combines with one hydrogen atom to form the molecule
HCl, is also said to have a valence of 1, while an oxygen atom, which forms bonds with two
hydrogen atoms to give the molecule H20, is said to have a valence of 2, and so on. In other
words, the valence of an element is defined as the number of hydrogen or other univalent
atoms that it will combine with. For example, the formula of the methane molecule, CH4,

shows that carbon has a valence of 4, and the formula of boron trichloride, BCI3, shows that
boron has a valence of 3. Some elements have several valences. For example, sulfur has a
valence of 2 in SCI2, a valence of 4 in SF4 and S02, and a valence of 6 in SF6 and S03.

• 1.3 The Periodic Table of the Elements

The periodic table of the elements proposed by Mendeleev in 1869 was one of the great land­
marks in the development of chemistry. Mendeleev showed that when the elements that were
known at that time were arranged in order of their atomic weights

Li, Be, B, C, N, 0, F, Na, Mg, AI, Si, P, S, CI, K, Ca, ... ,

their properties varied in a very regular manner, similar properties recurring at definite in­
tervals. For example, in the series Li, Be, B, C, N, 0, F, the properties of these elements
change progressively from those of a metal to those of a nonmetal, and the valence increases
from 1 for Li up to 4 for carbon and then back to 1 for fluorine, as is illustrated by the for­
mulas of the fluorides of these elements: LiF, BeF2, BF3, CF4, NF3, OF2. F2. The next ele­
ment, sodium, has properties that closely resemble those of Li and begins a new series (Na,
Mg, AI, Si, P, S, Cl) in which each element has properties that closely resemble the corre­
sponding element in the first series, ending with chlorine, which has properties very similar
to those of fluorine. Similar series can also be recognized among the heavier elements.
Mendeleev took advantage of this regular recurrence of similar properties to arrange the el­
ements in the form of a table, known as the periodic table in which elements with similar
properties came in the same column of the table (Box 1.1). A modem version of Mendeleev's
table is shown in Figure 1.1.

Each vertical column in the table is called a group, and each horizontal row is called a
period. The number of elements in successive periods is

2, 8, 8, 18, 18, 32, (32)

Not all the possible 32 elements in the seventh period are known at the present time. Some
of them are very unstable (radioactive), having been synthesized from more stable elements
only in recent years, while some remain to be made. The groups numbered 1, 2, and 13-18
are known as the main groups, and the 10 groups 3-12, which start in the fourth period, are
called the transition groups. Some of the groups have special names. For example, the el­
ements in group I are known as the alkali metals, those in group 2 as alkaline earth metals,
those in group 17 as the halogens, and those in group 18 as the noble gases. Hydrogen ap­
pears in group 1 in Figure 1.1 but it is not an alkali metal, although it does become metal-
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.BOX1~J· ..
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Mendeleev's genius can be appreciated when we remember that only 62 elements were
known when he formulated the periodic table. To bring similar elements together in
the table, he ignored the atomic masses of a few elements, suggesting that they were
incorrect, and he was forced to leave some gaps, which he predicted would be occu­
pied by elements that had not then been discovered, some of whose properties he ven­
tured to predict. It was not until some of these elements were discovered and shown
to have properties that agreed well with Mendeleev's predictions that many chemists
overcame their initial skepticism about the value of the periodic table. Moreover, the
later redetermination of some atomic masses, the discovery of isotopes, and the real­
ization that the order of the elements is based on atomic numbers rather than atomic
masses, provided justification for the cases in which Mendeleev ignored the order of
atomic masses. Many modifications of Mendeleev's original table have been suggested,
but the table in Figure 1.1, which is widely used today, is not very different from that
originally proposed by Mendeleev; many additional elements have been incorporated,
but without changing the overall structure of the original table. The periodic table not
only gave chemists a very useful classification of the elements, but it played a vital
role in the elucidation of the structure of atoms and the understanding of valence. To­
day it still remains a most useful working tool for the chemist.

lic at high pressures. Alternatively it could be placed in group 17 because it forms the hy­
dride ion H- just as the halogens form halide ions such as Cl-. In fact, hydrogen is a unique
element with properties not shared by any other element. In some forms of the periodic table
it is not placed in any of the groups. If all the elements in either period 6 or 7 were shown
in one row, the table would have an inconvenient shape, so the 14 additional elements in pe­
riods 6 and 7 are listed at the bottom of the table. Those in period 6 are the lanthanide el­
ements, and those in period 7 are the actinide elements.

• 1.4 Structural Formulas

Which atoms in a molecule are bonded together was gradually worked out by chemists as
they developed the concept of valency. In 1858 Couper represented a bond between the two
atoms by a line, as in H-Cl, and this symbol is now universally used. Thus methane may
be represented as in Figure 1.2. On the basis of the concept of valence and the compositions
of molecules such as ethene (CZH4) and sulfur dioxide (SOz), it became clear that some atoms
such as carbon and sulfur can form two or even three bonds to another atom and the sym­
bols = and were universally adopted as the symbols for double and triple bonds (Figure
1.2). These ideas together with the recognition that carbon atoms in particular could form
chains and rings enabled Butlerov in 1864 and Kekule in 1865 to rationalize what had seemed
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Figure 1.1 The periodic table.
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Figure 1.2 Examples of structural formulas.

to be a bewildering variety of formulas for molecules of carbon. For example, Kekule was
able to rationalize the molecular formula C6H6for benzene by the formula in Figure 1.2. The
formulas in Figure 1.2, in which the number of lines connected to an atom equal its valence,
are examples of what we now call structural fonnulas.

Although the concept of valence worked particularly well for organic molecules and led to
a rapid development of organic chemistry, there were many substances, particularly inorganic
substances, whose compositions could not be satisfactorily accounted for. For example, some
compounds such as CoCl3N6H l8 and K2SiF6 had to be represented as "molecular compounds"
and given formulas such as CoCl3·6NH3 and 2KF'SiF4in which two or more molecules whose
compositions could be accounted for in terms of the simple concept of valence were supposed
to be held together in some unexplained way. The explanation of such compounds had to await
the development of a more fundamental understanding of the chemical bond.

• 1.5 Stereochemistry

Structural formulas show how the atoms are connected together in a molecule but not how
they are they are arranged in space. Indeed, before 1874 chemists had not seriously consid­
ered the possibility that the atoms in a molecule might have a definite arrangement in space.
In 1874 van't Hoff and Ie Bel independently proposed an explanation for the existence of
optical isomers-substances that exist in two forms that have identical physical properties
except that a solution of one rotates the plane of polarized light to the left and a solution of
the other to the right. At that time around 10 such substances were known, and they were
all compounds of carbon in which a carbon atom was bonded to four other different atoms
or groups of atoms; that is, they were molecules of the type CXIX2X3X4, where Xl, X2, X3,
and X4 are different atoms or groups. Van't Hoff and Ie Bel proposed that the individual
molecules of these substances must therefore exist in left- and right-handed forms that are
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CH3

1
/CIIIIII/I"OH

H ~C02H
(a) (b) (c)
Figure 1.3 Lactic acid. (a) Structural formula. (b) Left- and (c) right-handed enantiomeric forms.

Figure 1.4 Bent bonds in ethene and ethyne.

CI", /H
C-C

/ - "'CI
H

Figure 1.5 Geometric isomers: the cis and trans isomers of 1,2-dichloroethene.

mirror images of each other. One form interacts with polarized light to rotate its plane of po­
larization to the left, while the other rotates it to the right. Molecules of the type CX IX2X3X4

can exist in two mirror image forms only if the four bonds formed by carbon are not in the
same plane but are directed toward the comers of a tetrahedron, as shown for lactic acid in
Figure 1.3. We now call such molecules chiral molecules. Other types of molecule can also
be chiral, that is, can exist in right- and left-handed forms.

Double and triple bonds between carbon atoms were then represented by curved lines
between the two atoms, to maintain the tetrahedral angle at each atom as shown in Figure
1.4 These lines represent bent bonds. Consistent with this picture, it is found that ethene is
a planar molecule and that molecules of the type XYC=CXY, such as HCIC=CHCI, can
have two forms called geometric isomers. The groups X and Y are on the same side of the
molecule in a cis isomer and on opposite sides in a trans isomer (Figure 1.5). Thus the sub­
ject of stereochemistry, the study of the shape and geometry of molecules and its relation
to their properties, was born, and organic chemistry (the chemistry of carbon compounds)
blossomed as chemists worked out the three-dimensional structures of thousands of carbon­
containing molecules of increasing complexity just from a study of their compositions (for­
mulas), properties, and methods of synthesis.

• 1.6 The Shell Model

The first steps toward the understanding of the nature of the chemical bond could not be
taken until the composition and structure of atoms had been elucidated. The model of the
atom that emerged from the early work of Thomson, Rutherford, Moseley, and Bohr was of
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a central, very small, positively charged nucleus composed of positively charged protons and
neutral neutrons, surrounded by one or more negatively charged electrons moving at high
speed and effectively occupying a volume much larger than that of the nucleus. The atomic
number, Z, gives the number of protons in the nucleus and the number of electrons sur­
rounding the nucleus in a neutral atom.

The similarity in the properties of the elements in any particular group of the periodic
table led to the conclusion that the atoms of the elements in a given group must have simi­
lar electron arrangements. In particular the lack of reactivity of the noble gases-no com­
pounds of these elements were known at the time, and they were called the inert gases-led
both W. Kossel (1916) and Lewis (1916) to conclude that these substances have a particu­
larly stable arrangement of electrons. This in tum led to the development of the shell model
of the atom. In the shell model, the electrons in an atom are arranged in successive spheri­
cal layers or shells surrounding the nucleus. The outer shell is never found to contain more
than the number of electrons in the valence shell of a noble gas, namely two for helium, and
eight for neon and the other noble gases. A new shell is commenced with the following el­
ement, which is an alkali metal in group 1 and has one more electron than a noble gas. Thus
the arrangement of the electrons for the first 20 elements shown in Table 1.1 was deduced
in which the elements in a given group have the same number of electrons in their outer
shells. The shells are designated by the number n, which takes integral values starting with
n = 1. Sometimes, following an older convention, they are designated by the letters K, L,
M, N, ... The first three shells correspond to the first three periods of the periodic table.

Table 1.1 Shell Structure of the Atoms of the First 20 Elements

Number of Electrons
in Each Shell

Period Z Element n = I 2 3 4

I H I
2 He 2

2 3 Li 2 1
4 Be 2 2
5 B 2 3
6 C 2 4
7 N 2 5
8 0 2 6
9 F 2 7
10 Ne 2 8

3 II Na 2 8 I
12 Mg 2 8 2
13 Al 2 8 3
14 Si 2 8 4
15 P 2 8 5
16 S 2 8 6
17 Cl 2 8 7
18 Ar 2 8 8

4 19 K 2 8 8 1
20 Ca 2 8 8 2
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The outer shell is called the valence shell because it is these electrons that are involved in
bond formation and give the atom its valence.

The completed inner shells of electrons together with the nucleus constitute the core of
the atom. The core has a positive charge equal in magnitude to the number of electrons in
the valence shell. For example, the core charge of the carbon atom is +4, that of the fluo­
rine atom is + 7, and that of the silicon atom is +4. The completed inner shells of electrons
shield the nucleus. Thus, according to this model, the effective charge acting on the elec­
trons in the valence shell-the valence electrons-is equal to the core charge. For two rea­
sons, however, core charge is only an approximation to the actual effective charge acting on
the valence shell electrons: (I) the valence shell electrons repel each other, and (2) the con­
cept of separate successive shells is only an approximation because, as we shall see later,
the shells penetrate and overlap each other to some extent. Nevertheless, for the purposes of
qualitative discussion it is usually satisfactory to use the core charge.

Experimental support for the shell model has been provided by the determination of the
ionization energies of free atoms in the gas phase and by the analysis of the spectra of such
atoms. These measurements have given a picture of the arrangement of the electrons in an
atom in terms of their energies that is essentially the same as the one we describe in Chap­
ter 3, where we will see that this picture can also be deduced from the quantum mechanical
description of an atom. Quantum mechanics also shows us that electrons do not have fixed
positions in space but are in constant motion, following paths that cannot be determined. So
it is strictly speaking not correct to talk about the arrangement of the electrons. It is only
their energy, not their positions, that can be determined.

On the basis of the shell model, two apparently different models of the chemical bond
were proposed, the ionic model and the covalent model.

• 1.7 The Ionic Model of the Chemical Bond

In 1916 Kossel noted that the loss of an electron by an alkali metal gives a positive ion, such
as Na+ (2,8) or K+ (2,8,8), where the numbers in parentheses represent the number of elec­
trons in successive shells. So these ions have the same electron arrangement as a noble gas.
Similarly, the gain of an electron by a halogen gives a negative ion, such as a fluoride ion,
F-, (2,8) or a chloride ion, CI-, (2,8,8), also with the electron arrangement of a noble gas:
that is, an outer shell containing eight electrons. Kossel proposed that these ions are formed
because their valence shell electrons have the same stable arrangements as a noble gas. He
considered solid sodium chloride to consist of positive sodium ions (cations) and negative
chloride ions (anions) held together in a regular pattern by electrostatic attraction. Each crys­
tal of solid sodium chloride can be regarded as a single giant molecule, in which a very large
number of ions are arranged in a regular manner that continues through the crystal (Figure
1.6). Evidence that solids such as NaCI do consist of ions was provided by the observation
that these materials are conducting in the molten state and in solution in solvents of high di­
electric constant, such as water. In these states the ions are free to move independently of
each other under the action of an applied electric field. Sodium chloride is a nonconductor
in the solid state, because the ions are fixed in position.

Sodium chloride and many similar compounds are said to be ionic compounds held to­
gether by ionic bonds. However, even though the term "ionic bond" is widely used, it is a
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Na+O CI-
Figure 1.6 A space-filling model of crystalline sodium chloride.

vague and ill-defined concept. Electrostatic forces act in all directions and through relatively
long distances so that the attractive forces are not confined to just two neighboring oppo­
sitely charge ions. Moreover, there are also repulsive forces between ions of like charge.

Positive alkali metal ions are easily formed because the single valence electron of an al­
kali metal atom is held in the atom only rather weakly by the attraction of a small core charge
of + 1. In other words, alkali metal atoms have a low ionization energy. The two valence
electrons of a group 2 atom are also rather easily removed because they are attracted by a
core charge of only +2, and so they form doubly charged ions such as Mg2+ and Ca2+ and
ionic compounds such as MgCI2 and CaF2, which contain Mg2+ and CI- ions and Ca2+ and
F- ions respectively. The halogen atoms, each of which precedes a noble gas in the periodic
table, have space in their valence shells for one more electron and, as they have a high core
charge of + 7, they strongly attract an additional electron to form halide ions such as F- and
CI-. For example, the addition of an electron to a fluorine atom is an exothermic process
releasing 328 kJ mol- I of energy. Similarly the elements of group 16 have room in their va­
lence shells for two more electrons and they have a high core charge of +6 so they form
doubly charged ions such as 0 2- and S2- and ionic compounds such as Na20 and CaO. It
should be noted, however, that although the addition of one electron to an oxygen atom to
give the 0- ion is exothermic to the extent of 141 kJ mol-I, the addition of a second elec­
tron is an endothermic process absorbing 744 kJ mol-I, so that the overall process 0 + 2e~
0 2- is also endothermic to the extent of 603 kJ mol-I. An isolated oxide ion is therefore
unstable and spontaneously loses an electron, but it is stabilized in an ionic crystal by the
additional energy released when oppositely charged ions pack together to give a crystal. In­
deed this energy, called the lattice energy, makes an important contribution to the stability
of all ionic crystals.

The structures of ionic crystals are determined mainly by the ways in which oppositely
charged ions of different sizes and different charges can pack together to minimize the total
electrostatic energy. The sizes of ions are discussed in Chapter 2. Structures of some typi­
cal ionic crystals are given in Figure 1.7. In this figure the structures, expanded so that the
ions are no longer touching, are connected by lines that serve to emphasize the geometric
arrangement of the ions.
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Qs OZn

Figure 1.7 The structures of crystalline sodium chloride (NaCl), cesium chloride (CsCl), and zinc sul­
fide (ZnS).

Although the ionic model has been used almost exclusively to describe the bonding in
a large class of solids with infinite three-dimensional structures consisting of oppositely
charged ions, in which each crystal can be regarded as a giant molecule, the bonding in other
much smaller molecules may also be ionic, as we shall discuss later. A simple example is
provided by molecules such as NaCI and MgCI2, which are formed from solid sodium and
magnesium chlorides when they vaporize at high temperatures. To indicate their ionic na­
ture, they may be written as Na+CI- and C1-Mg2+C1-.

• 1.8 Covalent Bonds and Lewis Structures

Clearly the explanation of the chemical bond given by Kossel cannot apply to homonuclear mol­
ecules such as C12. Almost simultaneously with the publication of Kossel's theory, Lewis pub­
lished a theory that could account for such molecules. Like Kossel, Lewis was impressed with
the lack of reactivity of the noble gases. But he was also impressed by the observation that the
vast majority of molecules have an even number of electrons, which led him to suggest that in
molecules, electrons are usually present in pairs. In particular, he proposed that in a molecule
such as Cl2 the two atoms are held together by sharing a pair of electrons because in this way
each atom can obtain a noble gas electron arrangement, as in the following examples:

:¢):¢): H:H

Diagrams: of this type are called Lewis diagrams or Lewis structures. The bond between
the two atoms could be called a shared-electron-pair bond but it is now universally called a
covalent bond-a term introduced by Irving Langmuir (1919). In drawing Lewis structures,
the core of the atom is represented by the symbol of the element and the valence shell elec­
trons by one to eight dots, the first four arranged singly around the symbol for the core, with
additional electrons used to form pairs as follows:

Valence 1 2 3 4 3 2 0

·H He:

·Li ·Be· ·13· .¢. .~. :Q' :f.. :N:e:

·Na ·Mg· .AJ.. ·$i· f :$. :¢I· :Ar:
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Figure 1.8 Lewis structures.

The complete symbol for each element can be called its Lewis symbol. The number of un­
paired electrons in the symbol equals the number of bonds that the atom can form, that is,
its valence. Each unpaired electron can be paired with an unpaired electron in the Lewis sym­
bol of another element to form a shared pair or covalent bond. In this way the atoms of the
elements in groups 14-17, such as C, N, 0 and F, can attain a noble gas electron arrange­
ment as shown by the Lewis structures in Figure 1.8a. The elements in groups 1, 2, and 13
such as Li, Be, and B do not, however, achieve a noble gas electron arrangement even when
they form the maximum number of bonds (see Section 1.13). A covalent bond (a shared elec­
tron pair) is usually designated by a bond line rather than by a pair of dots (Figure 1.8b). As
we noted earlier, and as we will discuss in detail later, some elements have more than one
valence. The valence given by the number of unpaired electrons in the Lewis symbol for an
element, as illustrated above, is called its principal valence.

In a Lewis diagram, the pairs of electrons that are not forming bonds are called non­
bonding pairs or more usually lone pairs. A lone pair is usually designated by a pair of
dots but less commonly by a single line (Figure 1.8c). In the Lewis diagrams for the CF4,

NF3, OF2, and F2 molecules (Figure 1.9) each fluorine atom has three lone pairs, oxygen
two, and nitrogen one.

Lewis called the apparent tendency of atoms to acquire a noble gas electron arrange­
ment, either by forming ions or by sharing electron pairs, the rule of eight. Later Langmuir
called it the octet rule, and this is the term that is now generally used. Lewis did not regard
the rule of eight as being as important as the rule of two, according to which electrons are
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Figure 1.9 Lewis structures of some fluorides.

present in molecules in pairs (Box 1.2), because he found more exceptions to the octet rule
than to the rule of two. There are only a few exceptions to the rule of two, such as mole­
cules with an odd number of electrons (free radicals), whereas there are a large number of
exceptions to the octet rule (Section 1.13).

Because CX4 molecules have a tetrahedral geometry, Lewis postulated that the four pairs
of electrons in the valence shell of the carbon atom have a tetrahedral arrangement, thus giv­
ing the four covalent bonds a tetrahedral geometry. Later, when the angular geometry of the
OX2 molecules and the pyramidal geometry of NX3 molecules were established, it became
clear that the directed nature of covalent bonds in many molecules could be rationalized on
the basis of the tetrahedral arrangement of four pairs of electrons in the valence shell of an
atom (Figure 1.10). In contrast, ionic bonds are said to be nondirectional because Coulomb

.. eOXJ.2.
,LewIs 'and the EleetroriPai'r:'

Although Lewis had no clear idea of why electrons are found in molecules as pairs, or
how a shared pair of electrons holds two atoms together, the ideas of the shared elec­
tron pair-the covalent bond-and the octet rule enable us to understand the formulas
of a vast number of molecules and their relationship to the positions of the elements
in the periodic table. Because the formation of electron pairs seemed to contradict
Coulomb's law, according to which electrons repel each other so that they should keep
as far apart as possible, Lewis even suggested that Coulomb's law is not obeyed over
the very short distances between electrons in atoms and molecules. Although we now
know that Coulomb's law is obeyed for all distances between charges, in making the
assumption about the importance of electron pairs, Lewis displayed remarkable intu­
ition: electrons do indeed form pairs in most molecules, despite their mutual electro­
static repulsion. We now have much a much more detailed and exact knowledge about
the distribution of the electrons in molecules than is given by Lewis diagrams, but
Lewis diagrams showing bonding pairs and lone pairs are still widely used today, and
the electron pair remains a central concept in chemistry.
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~H ••

Figure 1.10 The tetrahedral, trigonal pyramidal, and angular geometries of the methane, ammonia,
and water molecules based on the tetrahedral arrangement of four electron pairs.

forces act in all directions. So the arrangement of anions around a cation in an ionic crystal
or molecule is not determined by the arrangement of electron pairs in the valence shell of
the cation but by the geometry that enables anions to pack as closely as possible around the
cation, thus decreasing the potential energy of the crystal.

As we have seen, some atoms, such as carbon, oxygen, and nitrogen, form double and
triple bonds. Lewis represented these bonds as consisting of two and three shared pairs, re­
spectively (Figure 1.11). Since the four pairs in an octet have a tetrahedral arrangement, a
double bond can be represented by two tetrahedra sharing an edge and a triple bond by two
tetrahedra sharing a face. These models agree with the observed planar geometry of ethene
and related molecules and the linear geometry of ethyne and related molecules (Figure
1.12).This model is similar to the bent-bond models in Figure 1.4 in that the tetrahedral
arrangement of bonds or electron pairs around each atom is maintained.

H

"'C/
H

H

··C/.. '"
H

H H

'" -C/
/C- '"

H H

H--C : : :C--H H-C==:C-H
Figure 1.11 Lewis structures of
ethene and ethyne.

•• ••

••
Figure 1.12 Structures of ethene and ethyne, based on the tetrahedral arrangement of four electron
pairs around each carbon atom.
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• 1.9 Polar Bonds and Electronegativity

Ionic bonds and covalent bonds appear, at first sight, to be of two completely different kinds.
However, Lewis maintained that there was no fundamental difference between them. He rec­
ognized that a shared electron pair is generally not shared equally between the two bonded
atoms unless they are atoms of the same kind. The atoms of the elements on the right side
of the periodic table attract electrons into their valence shells more strongly than those on
the left because they have higher core charges. Thus in a molecule such as H-Cl, the chlo­
rine atom acquires a greater "share" of the bonding electron pair than the hydrogen atom. In
effect it acquires more than an equal share of two electrons (more than the one electron that
would give it a zero charge but fewer than two), so it has a resulting small negative charge,
leaving the hydrogen atom with an equal and opposite small positive charge. The bond be­
tween the two atoms is then called a polar covalent bond, or simply a polar bond. We
might depict a nonpolar "pure covalent" bond by placing the shared pair midway between
the two bonded atoms and a polar covalent bond by placing the shared pair closer to the
atom that has the larger share of the pair. However, this not is a particularly convenient or

,~-8:oxA.J ...
'Bond tines:'

There has never been a really clear understanding of what a bond line stands for. Orig­
inally it was meant to indicate simply that the two atoms between which it is drawn
are held strongly together. However, it is now usually taken to indicate a shared pair
of electrons, that is, a covalent bond. In contrast, the presence of ionic bonds in a mol­
ecule or crystal is usually implied by the indication of the charges on the atoms, and
no bond line is drawn. This immediately raises the question of how polar a bond has
to be before the bond line is omitted. Whereas the structure of the LiF molecule would
normally be written as Li+F- without a bond line, even the highly ionic BeF2 is of­
ten written as F-Be-F rather than as F- Be2 + F-.

Even though it is well known that the bonds in these molecules are polar, writing
their structures with bond lines gives the impression that the bonding is predominately
covalent. However, omitting these lines for predominately ionic molecules leads to dif­
ficulty because it is then harder to clearly indicate their geometry. The solution to this
problem is not obvious, but we need to be aware that a bond line does not necessarily
imply a predominately covalent bond. In many ways it would be simplest to return to
the original use of a bond line, namely, to indicate that two atoms that are bonded to­
gether, whether the bonding is predominately covalent or predominately ionic.

Finally, we should note that the lines that are often drawn in illustrations of three­
dimensional ionic crystal structures to better show the relative arrangement of the ions
do not represent shared pairs of electrons, that is, they are not bond lines.
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generally useful representation, and a polar bond is usually represented by a bond line some­
times with the symbols 8+, representing a small positive charge (0 < 8 < I), and 8-, rep­
resenting a small negative charge, added to the appropriate atoms (Box 1.3).

In 1932 Pauling introduced the term eIectronegativity to describe

the power of an atom in a molecule to attract electrons to itself.

In general, metallic elements have low electronegativities-that is, they attract electrons only
weakly-while nonmetals have high electronegativities-that is, they attract electrons
strongly because they have high core charges. Because electronegativity is not defined in a
quantitative way it is, strictly speaking, not possible to assign a quantitative value for the
electronegativity of the atoms of an element. Nevertheless several attempts have been made
to devise quantitative scales that express the relative electronegativities of the elements. The
original scale is due to Pauling, who based it on the difference in the dissociation energy of
an AB molecule and the average of the dissociation energy of the A2 and B2 molecules. Mul­
liken based his scale on the average of the ionization energies and electron affinities of an
atom, while Allred and Rochow (1958) proposed a scale based on the force exerted on a
electron in the valence shell of an atom, which they took to be Zeffe2/r2 where Zeff is the ef­
fective nuclear charge, e is the unit of electric charge, and r is the covalent radius. We de­
fine "covalent radius" in Chapter 2, but essentially it is the size (radius) of an atom in the
bond direction. Still other scales have been proposed, but it is not possible to choose anyone
of these scales as being superior to the others because they are all defined in different ways,
none of which is the same as the qualitative definition given by Pauling. However, rather
surprisingly perhaps, considering the very different basis of each of the scales, they give
comparable relative values, so that when adjusted to cover the same range as the Pauling
values, they give similar values. So almost any of these scales is useful for making an ap­
proximate comparison of the electronegativities of the elements. Table 1.2 gives the set of
values due to Allred and Rochow. We quote these values to two significant figures only be­
cause there is no justification for using more precise values. Despite its qualitative nature,
the concept of electronegativity has proved very useful in the development of our ideas con­
cerning the chemical bond. The most important use of electronegativity values is to estimate
the polarity of bonds, that is, to obtain rough estimates of the charges on atoms in molecules.
Various theoretical methods have been proposed for calculating atomic charges, but they
give substantially different results because until recently, there has been no sound definition
of atomic charge and therefore, of course, no way of determining it experimentally. In Chap­
ter 6 we discuss how atomic charge can be clearly defined in terms of the electron density,
which can be both calculated and also determined experimentally by X-ray crystallography.

It is important to point out that almost all bonds are polar bonds, whether they are ap­
proximately described as covalent or ionic. The bonds in the molecules of the various forms
of the elements such as the diatomic molecules H2, C12, and N2, larger molecules such as P4

and Sg, and infinite molecules such as diamond may be described as "pure covalent" bonds
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Table 1.2 Electronegativity Values According to Allred and Rochow

Group

Period 2 13 14 IS 16 17 18

H He
2.2

2 Li Be B C N a F Ne
1.0 1.5 2.0 2.5 3.1 3.5 4.1

3 Na Mg Al Si P S CI Ar
1.0 1.2 1.3 1.7 2.1 2.4 2.8

4 K Ca Ga Ge As Se Br Kr
0.9 1.0 1.8 2.0 2.2 2.5 2.7 3.1

5 Rb Sr In Sn Sb Te I Xe
0.9 1.0 1.5 1.7 1.8 2.0 2.2 2.4

because the bonding electrons are necessarily shared equally and the atoms have a zero
charge. The C-C bonds in ethane (H3C-CH3) and the N-N bond in hydrazine (H2N­
NH2) are also pure covalent bonds because the carbon and nitrogen atoms are completely
equivalent and therefore attract the bonding electrons equally strongly. Even in a molecule
such as chloroethane (ClH2C-CH3), however, the two carbon atoms are not exactly equiv­
alent and do not therefore attract electrons equally strongly-they have slightly different elec­
tronegativities-and so the two carbon atoms have different small charges and the CC bond
has a small polarity. Such a bond is said to have a large covalent character and a small ionic
character. Conversely, when the difference in electronegativity of the bonded atoms is large,
the atoms are expected to have large charges and the bond between them may be regarded
as having a large ionic character. There are no "pure ionic" bonds because there is always
at least a small amount of sharing of electrons between any two ions. Although the terms
"ionic character" and "covalent character," like "electronegativity," are widely used, they
cannot be quantitatively defined and so their meaning is not entirely clear. The uncertainty
in the exact meaning of these terms has led to misunderstanding and controversy in discus­
sions of bonding. We return to the determination of the charges of atoms in molecules and
the concepts of ionic and covalent character in Chapters 6, 8, and 9.

We note in passing that two atoms of the same element in a molecule, such as the two
carbon atoms in CH3CH2Cl, may have slightly different electronegativities. As a result, it is,
strictly speaking, not possible to assign a fixed constant value for the electronegativity of an
atom, which is another reason for giving the values in Table 1.2 to only two significant
figures.

That the geometry of a covalent molecule is determined by the directional character of
the bonds whereas the geometry of an ionic crystal or molecule is determined by the pack­
ing of negative ions around a positive ion raises questions such as: What determines the
geometry of a polar covalent molecule? How directional is a polar covalent bond? Is the pla­
nar geometry of the BC!) molecule, in which the bonds are very polar, due to the directional
character of the B-Cl bonds or to the packing of an anion-like negatively charged Cl atoms
around a cation-like boron atom? We return to these questions in later chapters.
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• 1.10 Polyatomic Ions and Formal Charge

Polyatomic ions are groups of atoms that are held strongly together as in a molecule but have
an overall positive or negative charge. In other words, they are charged molecules. They are
found in ionic crystals in association with an ion of opposite charge. For example, ammo­
nium chloride, NH4CI, consists of polyatomic NH4 + ions (ammonium: Figure l.13a) and
chloride ions, and sodium tetrafluoroborate, NaBF4, consists of polyatomic BF4 - ions (tetra­
fluoroborate: Figure 1.13b) and sodium ions (Figure 1.13). The recognition of polyatomic
ions solved the problem of representing many of the so-called molecular compounds that we
mentioned in Section lA, such as 2KF'SiF4, which contains the polyatomic ion SiF6

2 - and
is therefore more correctly formulated as (K+h SiF6

2-.

In the Lewis diagram for a polyatomic ion the charge is often allocated specifically to
one of the atoms on the assumption that each bonding pair of electrons is shared equally be­
tween the two bonded atoms: that is, on the assumption that the bonding is purely covalent.
In the ammonium ion, four electrons, one from each bond, are allocated to the nitrogen atom
which, since it needs five electrons to balance its core charge of +5, has a resultant single
positive charge. One electron is allocated to each hydrogen atom, which is just sufficient to
balance the nuclear charge of + I, giving a resultant zero charge (Figure 1.14). In the tetra­
fluoroborate ion, four electrons, one from each bond, are allocated to the boron atom, which,
since it needs only three electrons to balance its core charge of +3, has a resultant charge
of -I. One electron is allocated to each fluorine atom, giving a resultant zero charge. It is
also necessary to allocate charges to atoms in some neutral molecules in order to write struc­
tures that obey the octet rule, for example, as in trimethylamine oxide (CH3hNO and the
molecule F3BNH3 (Figure 1.14).

The charges allocated in this way are called formal charges. They do not in general
show the actual charge distribution in a molecule or ion because of the polarity of most
bonds. Formal charges may even be of opposite sign to the real charge. For example, the
boron atom in BF4 - has a formal negative charge but, as we shall see later, because of the
high electronegativity of fluorine, the real charge on boron is positive. The concept offor­
mal charge is useful only for the purpose of the keeping track of electrons when one is writ­
ing Lewis structures that do not take account of bond polarity.

A nitrogen atom can form four bonds only if it loses an electron to become N+ so that
it is then isoelectronic with a carbon atom. Isoelectronic atoms or molecules have the same
number of valence electrons, arranged in the same way. Thus B-, C, and N + are isoelec­
tronic atoms and can each form four bonds. Some examples of isoelectronic molecules are
illustrated in Figure 1.15.

H
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H--N--H

I
H

(a)
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(b)

F

I
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I
F

Figure 1.13 Lewis structures of
(a) the ammonium ion NH4 + and
(b) the tetrafluoroborate ion
BF4 -·
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Figure 1.14 Formal charges: assigning one electron of each bonding pair to each of the bonded atoms
(a) leads to the formal charges in (b). Formal charges in some neutral molecules are shown in (c).
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Figure 1.15 Two sets of isoelectronic molecules.

1.1 I Oxidation Number (Oxidation State)

Polyatomic ions illustrate one of the difficulties with the concept of valence as we have de­
fined it. Boron, normally considered to have a valence of 3 because, for example, it forms
three bonds in molecules such as BCI3, and four bonds in BCI4 -. Is its valence then 4? Should
we assign a valence of 3 to boron only when it has a formal zero charge and a valence of 4
to boron when it has a negative formal charge? Difficulties such as this have led to the re­
placement of the concept of valence, particularly for the description of inorganic compounds,
by the concept of oxidation number, or oxidation state. The oxidation number of an atom
in a molecule is defined as the charge the atom would have if both the electrons in any bond
that it forms are transferred to the more electronegative of the two atoms, in other words, as
if the molecule were formulated as ionic. Thus boron in both BCl3 and BCI4 - has an oxi­
dation number of +III and chlorine an oxidation number of - I, while nitrogen in both NH3

and NH4 + has an oxidation number of -Ill and hydrogen an oxidation number of +1. Ro-



I. 12 Donor-Acceptor Bonds • 19

man numerals are usually used for oxidation numbers to distinguish them from charges. Ox­
idation numbers are also convenient for the description of the molecules of elements that
have several valences, such as sulfur. For example, the sulfur atom in S02 is in the +IV ox­
idation state whereas in S03 it is in the +VI oxidation state. In contrast to inorganic com­
pounds, which frequently have considerable ionic character, oxidation numbers are not very
useful for carbon compounds, which are predominately covalent and for which the constant
tetravalence of carbon is one of the cornerstones of organic chemistry.

Formal charge and oxidation number are two ways of defining atomic charge that are
based on the two limiting models of the chemical bond, the covalent model and the ionic
model, respectively. We expect the true charges on atoms forming polar bonds to be between
these two extremes.

• I. 12 Donor-Acceptor Bonds

Ammonia reacts with boron trichloride to form a molecule called an adduct or Lewis acid
base complex in which the lone pair on the ammonia molecule is shared with the boron atom
to form a covalent bond and completing an octet on boron (Figure 1.16):

We should note that the formation of this bond confers formal charges on the Band N atoms.
In this bond and many similar Lewis acid-base complexes both the electrons fonning the
bond come from the same atom rather than from different atoms, as in the formation of a
bond between two chlorine atoms. This type of bond is often called a donor-acceptor bond,
a dative bond, or a coordinate bond, and is sometimes given a special symbol-an alTOW
denoting the direction in which the electron pair is donated:

Molecules of this type are often called donor-acceptor complexes or sometimes charge
transfer complexes (because charge is transferred from the donor to the acceptor as the
nonbonding electron pair of the donor atom is shared with the acceptor atom). In other
words, there is a formal transfer of one electron, which is evident in the formal charges
on the atoms in the complex. Once formed, however, the bond is simply a covalent bond
consisting of a pair of shared electrons, whose origin is irrelevant to the nature of the
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I I
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Figure 1.16 The ammonia-boron trifluoride donor-acceptor complex: (a) donor Lewis base, (b) ac­
ceptor Lewis acid, (c) the donor-acceptor or Lewis acid-base complex.
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bond because all electrons are identical. Thus, although the concept of donor and accep­
tor molecules is useful, a special name and symbol for the bond formed between them is
not really necessary. Although there is no difference between a coordinate covalent bond
and a "normal" covalent bond in molecules in their equilibrium geometry, a difference
becomes evident when the bond is broken. Breaking a bond in a Cl2 molecule gives two
Cl atoms

:¢):¢):~ tl· + :¢).

In contrast breaking the bond in the H3N:BCI3 molecule gives two stable molecules H3N:
and BCI3. In the first case the bond breaks symmetrically while in the second case it breaks
unsynunetrically.

• I. 13 Exceptions to the Octet Rule:
Hypervalent and Hypovalent Molecules

Lewis recognized that certain molecules such a PCIs and SF6 are exceptions to the octet rule
because their Lewis structures indicate that the central atom has more than eight electrons
in its valence shell: 10 for the P atom in PCls and the S atom in SF4, and 12 for the S atom
in SF6 (Figure 1.17). Such molecules are called hypervalent because the valence of the cen­
tral atom is greater than its principal valence. To write a Lewis structure for such molecules,
the Lewis symbol for the hypervalent atom must be modified to show the correct number of
unpaired electrons. For the molecules in Figure 1.17 we would need to write the Lewis sym­
bols as follows:

. p.
..

·S· ·s·

Hypervalent molecules are relatively common for the elements of period 3 and beyond. It is
often said that they are formed only by the most electronegative ligands, in particular, F, Cl,
=0, and OX, with the nonmetals of period 3 and subsequent periods. But in many cases the
ligand atom attached to the central atom is carbon, as in As(CH3)s, and P(C6Hs)s, in which
the electronegativity of the central carbon atom (2.5) is only slightly greater than that of ei­
ther arsenic (2.2) or phosphorus (2.1). We will see later that the relative sizes of the central
atom and the ligand atoms are important in detennining the occurrence of hypervalent mol­
ecules, because these differences in size allow more than four such ligands to be packed
around a sufficiently large central atom.
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Figure 1.17 Some examples of hypervalent molecules that have more than eight electrons in the va­
lence shell of the centra] atom.
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Because the octet rule had proved so useful for understanding and describing the bond­
ing in so many molecules, and because this rule came to be regarded more as a law than as
a summary of observations, the bonding in hypervalent molecules has often been considered
to be in some way different from that in "ordinary" molecules that obey the octet rule. De­
spite the later discovery of the noble gas compounds (Box 1.4) and the preparation of many
other hypervalent molecules whose properties do not differ significantly from analogous non­
hypervalent (octet rule) molecules, it is still often believed that there is something abnormal
about the bonding in these molecules. The bonding in hypervalent molecules has been for­
mulated in terms of several different models to avoid violating the octet rule. There has been
considerable controversy concerning the relative merits of these models, which we will dis­
cuss in later chapters. We will see that much of this controversy has arisen as a consequence
of a lack of appreciation of the limitations of Lewis structures and an overemphasis on the
octet rule, and indeed no special descriptions of the bonding in hypervalent molecules are
necessary.

.. BOX 1.4 ...
The Octet Rule and the Noble Gases

Although the octet rule was first formulated on the basis of the observed lack of reac­
tivity of the noble gases, and the observation that in many molecules each atom has
eight electrons in its valence shell, it was often cited in later years as a reason for the
absence of any known compounds of the noble gases. This acceptance of the octet rule
as a law of nature rather than as an empirical rule even inhibited the continued search
for compounds of the noble gases after the initial failure of Moissan, in 1895, to find
any conditions under which fluorine, which he had discovered in 1886, would react
with a sample of argon provided by Ramsay, who first identified argon. Consequently
it came as a great surprise to most chemists when the first noble gas compound, XePtF6

was prepared in 1962 by Bartlett. Pauling, however, was one of the few chemists who
were not surprised. In the 1930s he had predicted, mainly on the basis of the existence
of molecules such as BrFs, IF7, and HsI06, that it should be possible to prepare anal­
ogous compounds of xenon including fluorides such as XeF6 . He persuaded his col­
leagues Yost and Kaye to attempt the preparation of this compound, by the reaction of
xenon and fluorine. Unfortunately they were unsuccessful. Although they may well
have prepared a very small amount of a xenon fluoride, they were unable to show this
definitively. Subsequently there appears to have been little interest in trying to repeat
this experiment. So it continued to be generally accepted that compounds of the noble
gases could not be prepared until Bartlett prepared XePtF6 by the reaction between
PtF6 and xenon. This discovery was followed rapidly by the preparation of a variety
of fluorides, oxides, and oxofluorides of xenon, such as XeF4, Xe03, and XeOF4. Since
then compounds of krypton, such as KrF2, as well as compounds with Xe-N and Xe­
C bonds, have also been prepared. All these molecules are necessmily hypervalent.
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Figure 1.18 Lewis structures of oxo acids and oxides of phosphorus and sulfur: (a) octet rule struc­
tures according to Lewis and (b) hypervalent structures.

Many common and well-known molecules such as the oxides and oxoacids of sulfur and
phosphorus in their higher oxidation states (e.g., S02, S03, H2S04, H3P04) must be regarded
as hypervalent if they are described by their classical structural formulas in which the bonds
to oxygen are double bonds (Figure 1.18). However, Lewis drew his diagrams for these mol­
ecules so that they obeyed the octet rule with a formal negative charge on oxygen and a cor­
responding formal charge on P, or S, although this was inconsistent with his recognition of
molecules such as PFs and SF6 as exceptions to the octet rule, and these octet rule structures
have been widely adopted.

There are also molecules that are exceptions to the octet rule because one of the atoms
has fewer, rather than more than, eight electrons in its valence shell in the Lewis structure
(Figure 1.19). These molecules are formed by the elements on the left-hand side of the pe­
riodic table that have only one, two, or three electrons in their valence shells and cannot
therefore attain an octet by using each of their electrons to form a covalent bond. The mol­
ecules LiF, BeCI2, BF3, and AICI3 would be examples. However, as we have seen and as
we will discuss in detail in Chapters 8 and 9, these molecules are predominately ionic. In
terms of a fully ionic model, each atom has a completed shell, and the anions obey the octet
rule. Only if they are regarded as covalent can they be considered to be exceptions to the
octet rule. Covalent descriptions of the bonding in BF3 and related molecules have therefore

CI--Be-CI

CI

I
AI

CI/ ""'CI

Figure 1.19 Some examples of molecules that are exceptions to the octet rule because the central atom
has fewer than eight electrons in its valence shell.
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been devised so that they appear to obey the octet rule, but we shall see later that these spe­
cial descriptions are unnecessary.

Molecules such as BeCI2 , BF3, and AlCI 3, which have space in their valence shells for
one or two more electron pairs and in which the central atom is positively charged, are good
acceptor molecules or Lewis acids (Section 1.12), forming polyatomic ions such as BF4 ­

and AICl4 - and donor-acceptor complexes such as BeC!z(OEt2h and BF3 ' NH3.

We should note that hydrogen never has more than two electrons in its valence shell in
the Lewis diagram of any of its molecules because its valence shell is filled by just two elec­
trons. Thus the octet rule is not applicable to hydrogen.

• 1.14 Limitations of the Lewis Model

Lewis structures, according to which the valence shell electrons in a molecule are arranged
in bonding and nonbonding pairs, have played a very important role in the development of
our understanding of the chemical bond, and indeed they still form a most useful basis for
the discussion of the properties of molecules. However, they have many limitations. We have
already noted that they do not provide a very convenient representation of molecules in which
the bonds are polar and that they are not useful for molecules in which the bonding is pre­
dominately ionic. Moreover, many molecules are exceptions to the octet rule, which has been
incorporated into the Lewis model even though Lewis himself recognized its limitations. And
there are molecules, such as the boranes, in which the bonding cannot be described in terms
of localized electron pairs. In the following chapters we will encounter other limitations, and
we will see that many controversies about bonding have arisen because of a failure to un­
derstand and recognize the limitations of Lewis structures.

However, there are more serious problems. A Lewis structure provides a static model of
the electron distribution, yet a fundamental theorem of electrostatics states that no system of
charges can be at equilibrium while the charges are at rest. A more realistic description of the
electron distribution must take into account the motion of the electrons and their wavelike na­
ture. In Chapter 3 we will see that the distribution of the electrons in atoms and molecules can­
not be described in classical terms but only in terms of quantum mechanics, according to which
we can determine no more than the probability of finding an electron at a given point. Thus
we describe the distribution of the electrons by a distribution of probability density, which can
be conveniently represented as a cloud of negative charge. We will see why, nevertheless, the
electron pair plays such a dominant role in the electronic structure of molecules and why the
picture of precisely located electron pairs provided by a Lewis structure is so useful, even
though only the average distribution of the electrons can be detenruned.
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• 2.1 Introduction

BOND

PROPERTIES
• • •

In Chapter I we discussed the origin and early development of the concept of the chemical
bond. With the subsequent development of X-ray crystallography, electron diffraction, and var­
ious spectroscopic techniques, it became possible for the ftrst time to obtain quantitative struc­
tural information on molecules and crystals, hence on their bonds. An enormous amount of
such information has been accumulated by these methods over the past 80 years. We can mea­
sure the distances between the atomic nuclei in a molecule and thus obtain the bond lengths,
as well as the angles between bonds (bond angles and torsional angles). These are the only
well-defined propelties of bonds that can be accurately determined unambiguously for any poly­
atomic molecule. Consequently bond lengths and bond angles have played a prominent role in
the discussion of the nature of the chemical bond. And this information is now being supple­
mented by data obtained from high-level ab initio calculations (Chapter 6), which in many
cases can now give values comparable to those obtained by experimental methods. Moreover,
these calculations can give us information on molecules that have not yet been prepared or had
their stmcture determined experimentally. This information is often particularly valuable for
comparison with known molecules. The major part of this chapter is devoted to bond lengths
and their interpretation to give information about the nature of bonds.

An important related property of a bond is its strength. The strength of a bond in a mol­
ecule can be measured by the stretching force constant, obtained either from the vibrational
spectmm of a molecule or by the dissociation energy obtained from the electronic spectrum
or, most often, from thermochemical measurements. However, accurate stretching force con­
stants can be obtained for diatomic molecules only because none of the bonds in a poly­
atomic molecule vibrate independently of the others. The vibrational spectrum of a poly­
atomic molecule can be analyzed by a method called normal coordinate analysis, but this
does not necessarily give such reliable or accurate force constant values as can be obtained
from a diatomic molecule. Similarly accurate bond dissociation energies can be obtained only
for diatomic molecules because breaking one bond in a polyatomic molecule affects the

25
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strength of all the neighboring bonds. As we shall see, there is usually a good correlation
between bond length and bond strength: in general. the shorter the bond between two given
atoms. the stronger it is.

The relationships between bond length, stretching force constant, and bond dissociation
energy are made clear by the potential energy curve for a diatomic molecule, the plot of
the change in the internal energy ~U of the molecule A2 as the internuclear separation is in­
creased until the molecule dissociates into two A atoms:

A typical potential energy curve for a diatomic molecule in its ground state is shown in Figure
2.1. Considering the reverse process, namely, the formation of the A2 molecule from two A atoms,
we see that the energy of the molecule decreases as the two atoms approach and the bond begins
to form, as the attraction between the bonding electrons and the nuclei increases. As the nuclei
approach each other, the repulsion between them increases and eventually becomes sufficiently
great that the total energy of the molecule passes through a minimum and begins to increase.

The minimum of the potential energy curve occurs at the equilibrium bond length, Te,

of the molecule. The depth of the minimum is the change in the electronic contribution to
the internal energy ~Uel for a hypothetical state of the molecule at 0 K that has no vibra­
tional, rotational or translational energy (i.e., the energy obtained from ab initio calculations).
The deeper the minimum, the more strongly the atoms are bonded together. For the hydro­
gen molecule, ~Uel = 458 kJ mol-I:

~Uel = 458 kJ mol- I

At 298 K ~U includes vibrational, rotational, and translational energy changes that total 25
kJ mol-I, of which the most important is the vibrational energy, so that the quantity ~U298

that is measured at 298 K is

~U298 = ~Uel - ~Uvib. rOI, Irans = 458 - 25 = 433 kJ mol-I

This is the quantity called the bond dissociation energy or bond energy.

D.U

or----r------;n------=====-

Figure 2.1 Plot of the energy change
/::;'U for the dissociation of a diatomic
molecule. /::;'Uci is the value for the hy­
pothetical state of the molecule at OK
that has no vibration, rotational or
translational energy. /::;'U298 is for the
value for the dissociation of the mol­
ecule at 298K and includes vibra­
tional. rotational and translational en­
ergy changes.
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The slope (gradient) of the curve on either side of the minimum shows how rapidly the
energy of the molecule rises as the bond is stretched or compressed, hence it governs the
force constant of the bond and (in combination with the masses) the vibrational frequency
of the bond. The steeper the curve on either side of the minimum, the greater the force con­
stant and (for given masses) the higher the vibrational frequency. A deep minimum usually
has steep sides so that a molecule with a large dissociation energy usually has a large force
constant, and vice versa. However, it should be realized that the force constant is a curva­
ture rather than a slope; that is, it is a second derivative of the energy with respect to dis­
placement. For example, the potential of the harmonic oscillator is a parabola with the
equation V = 1/2kx2, and the larger the force constant k, the more curved the parabola be­
comes.

Another important property of a molecule is its electric dipole moment. A molecule has
an electric dipole moment when the center of positive charge resulting from the nuclear
charges does not coincide with the center of negative charge due to the electrons. It is there­
fore a function of the bond lengths and angles and the electron distribution. It is, strictly
speaking, not a bond property, although we may think of each bond as having a bond dipole
that contributes to the overall dipole moment.

We discuss bond lengths in the next section, but we defer the discussion of bond angles
to Chapters 4 and 5, where we discuss all aspects of molecular geometry. In later sections
of this chapter we discuss bond strength in terms of bond enthalpies and force constants, the
determination of approximate values for these properties in polyatomic molecules, and the
determination and analysis of dipole moments .

• 2.2 Bond Lengths and Covalent Radii

The single most well-defined property of a chemical bond in a molecule is its length-the
distance between the nuclei of the two atoms that are bonded together-called the bond
length. However, it is important to realize that the experimentally measured length of a bond
is only an average value that has some uncertainty because of molecular-vibrations and ro­
tations. Moreover, different experimental techniques do not measure quite the same para­
meter. Electron diffraction gives the distance between two nuclei, but X-ray crystallography
gives the distance between the peaks of maximum electron density that are very close to but
not necessarily exactly at the position of the nucleus. Finally we should note that an exper­
imentally measured bond length is also necessarily slightly different from an ab initio cal­
culated bond length, which is the distance between two hypothetically motionless nuclei in
a free molecule. This distance is called the equilibrium bond length. We use "hypothetical"
because there is no motionless molecule in reality. Even at 0 K, all molecules possess a cer­
tain amount of energy, the zero-point energy of the ground vibrational state, and therefore
all the atoms have some motion. Whether we need to worry about the difference between
the equilibrium bond length and the experimentally determined average bond length and any
uncertainty in these values depends on the purpose for which we are using it. In most of the
discussions in this book we indicate whether the quoted value is an experimental or a cal­
culated value, but do not differentiate between different experimental methods. We consider
that the majority of the bond lengths we quote are accurate to within ± I pm and most of
the bond angles to ± 2°. More detailed discussions of the differences between interatomic
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distances obtained by different methods have been given by Gillespie and Hargittai (991)
and by Ebsworth, Rankin, and Craddock (1987).

Bond lengths have usually been, and still often are, measured in angstroms (A) but, with the
advent of SI units, the nanometer 00-9 m) and the picometer 00- 12 m) are now being used
more frequently. In this book we express bond lengths and other molecular dimensions in pi­
cometers, which is for many purposes a more convenient unit than the angstrom (1 A = 100 pm).

The length of the bond between two given atoms in predominately covalent molecules
often varies only slightly from one molecule to another, although there are many exceptions
to this generalization. If the exceptions are ignored, it is possible to divide the approximately
constant length of a given type of bond into a contribution from each atom that is known as
the covalent radius of the atom. Covalently radii are a useful property of an atom in a mol­
ecule because summing them for two atoms A and B gives an approximate value for the
length of a covalent A-B bond. This radius is sometimes called the atomic radius, but the
term "covalent radius" is to be preferred because it clearly refers to an atom forming a co­
valent bond in a molecule, not to the free atom. Table 2.1 gives values for the covalent radii
for elements in groups 13-18. Values are not given for the elements in groups 1 and 2, which
do not form any predominately covalent molecules, and they are not given for He, Ne, and
AI' because these elements are not known to form any stable molecules.

The covalent radii for most of the elements were obtained by taking one-half of the
length of a single bond between two identical atoms. For example, the covalent radius of
sulfur is obtained from the length of the S-S bond in the Ss molecule:

reS) = 1/2d(S-S) = 1/2 X 208 pm = 104 pm

And the covalent radius of carbon can be obtained from the C-C bond length in diamond:

r(C) = 1/2d(C-C) = 1/2 X 154 = 77 pm

For many molecules covalent radii are additive to within :±::2 pm. For example,

d(C-S) = r(C) + reS) = 77 + 104 pm = 181 pm

Table 2.1 Covalent Radii (pm) for the Elements in Groups 13-18

Group

/3 /4 /5 /6 /7 /8

H He

37
B C N 0 F Ne
88 77 70 65 60
Al Si P S CI Ar
143 117 110 104 99
Ga Ge As Se Br Kr
125 122 121 117 114 III
In Sn Sb Te I Xe
150 140 141 135 133 130
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which compares well with the experimentally determined values of 180.7 pm in S(CH3h and
181.4 pm in HSCH3.

There has been considerable uncertainty and disagreement concerning the values to be
adopted for the covalent radii of ° and F and to a lesser extent that of N because satisfac­
tory values cannot be obtained by taking one-half of the N-N, 0-0, and F-F bond lengths
(Box 2.1). Fortunately this is not of great importance because oxygen and fluorine in par­
ticular form very few predominately covalent molecules. Because the hydrogen atom has
only one electron and no inner core, its apparent radius in molecules is quite variable. The
value of 37 pm given in Table 2.1 was obtained from the length of the bond in H2, but in
many molecules it has a radius of approximately 30 pm.

• BOX 2.1 T
The Covalent Radii of Nitrogen, Oxygen, and Fluorine

Two different sets of values for these radii have commonly been given in the past:
those due to Schomaker and Stevenson (1941) and those due to Pauling (1960). These
values together with those from Table 2.1 are given in Table Box 2.1. The
Schomaker-Stevenson values were obtained from the lengths of the bonds in the N2H4,

H20 2 , and F2 molecules as they were known at that time. The most recent values for
the lengths of these bonds give only very slightly different values. However, it is widely
recognized that the F-F bond in F2 , the 0-0 bond in H20 2, and the N-N bond in
N2H4 are abnormally weak, as is shown by the following bond energies: F-F, 155;
Cl-CI, 240; 0-0, 142; S-S 260; N-N, 167; P-P, 201 kJ mol-I. So it is rea­
sonable to conclude that these bonds are also abnormally long and that therefore the
"normal" covalent radii of nitrogen, oxygen, and fluorine cannot be obtained from these
bond lengths.

The values for the covalent radii of Nand °given in the table d9 not differ sig­
nificantly from the Pauling values, but the value for fluorine is a little smaller. They
were obtained by extrapolation of the values for the other period 2 elements (Robin­
son et al., 1997). In any case the covalent radii of oxygen and fluorine are of little use
because, as we shall see later, essentially all bonds formed by these elements, except
the 0-0, O-F, and F-F bonds, which are abnormally weak and long, have too great
an ionic character to justify the use of covalent radii to calculate bond lengths.

Table Box 2.1 Values for the Covalent Radii of Nitrogen, Oxygen and Fluorine

Schomaker
Atom Pauling and Stevenson Table 2.1

N 70 74 70
0 66 74 65
F 64 72 60
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The concept that the atoms of an element have a constant characteristic covalent radius
is clearly only a rough approximation, inasmuch as we might expect that the radius of an
atom would depend, to some extent, on the oxidation state of the element and on the num­
ber and nature of the attached atoms or groups that are conveniently called ligands. Another
important limitation is that only homonuclear bonds are fully covalent. All bonds between
different atoms are polar, their ionic character depending on the difference in the elec­
tronegativities of the bonded atoms. We discuss the effect of polarity on bond lengths in Sec­
tion 2.5. It is common practice to deduce information about the nature of bonds from their
lengths by comparing an observed bond length with that calculated by adding the covalent
radii of the atoms forming the bond. Differences from the calculated values are then often
interpreted in terms of multiple-bond character (bond order) or polarity (ionic character).

• 2.3 Multiple Bonds and Bond Order

The order of a bond may be defined as the number of electron pairs that constitute the bond.
Thus the bond orders of single, double, and triple bonds are respectively 1, 2, and 3. As the
number of electron pairs forming the bond increases, the attraction of the bonding electrons for
the two atomic cores increases, so the bond strength increases and the bond length decreases.

A well-known example of the effect of bond order on bond length is provided by the bonds
in ethane, ethene, and ethyne, which have the lengths of 154, 134, and 120 pm,
respectively. Covalent radii for doubly and triply bonded atoms can be obtained from double and
triple bond lengths in the same way as for single bonds. Some values are given in Table 2.2.

2.3./ Resonance Structures

In many molecules the bonds between two given atoms have lengths that are intem1ediate
between those of single and double bonds or between double and triple bonds. A familiar
example is benzene for which the Lewis structure is

Table 2.2 Single. Double, and Triple Bond Radii (pm)

Single bond
Double bond
Triple bond

c

77
67
60

N

70
61
55

o

66
57
52

p

110
100

s

104
94
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which implies that there are alternate single and double bonds. However, all six CC bonds
have the same length of 140 pm, which is intermediate between that for a single bond and
a double bond, C-C and C=C, respectively. Clearly the Lewis structure for benzene is in­
adequate. We can get a better description of the bonding in benzene if we assume that the
structure of benzene is intermediate between the two possible Lewis structures

When Lewis structures are used in this way they are called resonance structures. The con­
cept of resonance, which was introduced by Pauling, has a quantum mechanical basis, but it
can be understood without going into its quantum mechanical basis at this point. The two
resonance structures for benzene imply that six of the electrons-those forming the second
component of each of the three double bonds-cannot be considered to be localized as pairs
in three of the six CC bonding regions, as in either of the two resonance structures; rather,
they are spread (delocalized) over all six bonding regions. Each bond can be thought of as
consisting of one shared pair and one-half a shared pair, in other words, three electrons.

H
I

H . C. H""'- .. /C .. C

C· . C
/ .. ""'-

H . C· H

I
H

So each bond has a bond order of 1.5, which is consistent with the observed bond length.
These two resonance structures are often called Kekule structures because they were first
proposed in 1865 by Kekule, who imagined that the molecule convelted very rapidly from
one form to the other. This, however, is not the case: the molecule never has either of the
Kekule structures but only a single structure, which is intermediate between these two hy­
pothetical structures and is approximately represented as follows:

where the circle represents the six delocalized electrons, and the H atoms and the CH bonds
have been omitted in accordance with a common convention.
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There are many other molecules in which some of the electrons are less localized than
is implied by a single Lewis structure and can therefore be represented by two or more res­
onance structures. For example, the three bonds in the carbonate ion all have the same length
of 131 pm, which is intermediate between that of the C-O single bond in methanol (143
pm) and that of the C=O double bond in methanal (acetaldehyde) (I21 pm). So the car­
bonate ion can be conveniently represented by the following three resonance structures:

In these structures one pair of electrons on each oxygen is a lone pair in two of the struc­
tures and a bond pair in the other structure. Thus two of the electrons associated with each
oxygen atom are not as localized as a single Lewis structure depicts. They behave partly as
a lone pair and partly as a bonding pair.

The need to use two or more resonance structures to describe the bonding in a molecule is
a reflection of the inadequacy of Lewis structures for describing the bonding in molecules in
which some of the electrons are not as localized as a Lewis structure implies.

Although there are better ways of describing delocalized electrons, because Lewis struc­
tures are simple, resonance structures are still often used in describing the bonding in a mol­
ecule. It is important to remember that despite its rather misleading name, resonance is not
a phenomenon. Resonance structures are simply a crude way of representing an electron dis­
tribution that cannot be described by a single Lewis structure. Nevertheless, resonance is
sometimes said to increase the stability of a molecule in the sense that the energy of a mol­
ecule is lower than that estimated for two or more equivalent resonance structures, such as
the Kekule structures of benzene, and the difference is called the resonance energy. How­
ever, the source of this extra stability is not a phenomenon associated with resonance but
rather the decreased repulsion energy that arises from the electrons being farther apart (i.e.,
more delocalized), than in either of the resonance structures, so that resonance energy is also
called delocalization energy.

Resonance or delocalization energy is not a real energy inasmuch as it is not something that
can be measured. lt is simply the difference between the actual energy of the molecule and
the energy of two or more hypothetical resonance structures.

Resonance structures have also been used to describe the polarity of bonds. For exam­
ple, H-CI can be described by the two resonance structures:

H-CI

The first represents a hypothetical HCI molecule with a purely covalent bond in which the
two bonding electrons are equally shared between the two atoms, and the second a hypo­
thetical molecule with a purely ionic bond in which both the bonding electrons have been
transferred to the chlorine atom. In this case the two resonance structures do not necessarily
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contribute equally to the description of the real structure, but they may be given weights ap­
propriate to describe the estimated or assumed polarity of the molecule. However, it is not
necessary to use resonance structures to describe a molecule such as H-Cl if we recognize
that a bond between atoms of different electronegativity is necessarily polar. To emphasize
the polarity, the common convention of adding 8+ and 8- signs to the appropriate atoms
can be followed, as in H8+_CI8-.

Multiple bonds between atoms with different electronegativities such as the C=O and
S=O bonds, are also necessarily polar. This polarity is frequently represented by resonance
structures such as

C=O and C+-0- S=O and S+-O-

where C=O represents a hypothetical purely covalent double bond and C+-0- represents
a covalent bond plus an ionic bond. This description of a polar double bond to oxygen is
somewhat limited in that it does not allow for the possibility that the oxygen might have a
charge of greater than 1.0, as we shall see later is indeed the case for some SO and PO bonds.
Thus the two resonance structures

x=O and

would give a more general description of a polar X=O bond. But the polarity can be equally
well represented by C8+=08-, although this representation is less commonly used for mul­
tiple bonds than for single bonds.

Before discussing the effect of bond polarity on bond lengths it will be convenient to
introduce the concept of an ionic radius .

.. 2.4 Ionic Radii

The concept of an ionic radius has proved useful for the discussion of the structures of ionic
crystals, which in many, but by no means all cases can be understood in terms of the possi­
ble packing arrangements of ions of different sizes, assuming that ions can be represented
as hard spheres with a constant characteristic radius. Because ionic bonds are necessarily be­
tween dissimilar atoms, the same technique used for obtaining covalent radii cannot be used
to obtain ionic radii. The problem is to find a method for dividing the interionic distance into
separate components for each ion. Once the radius of one ion has been obtained, the radius
of any other ion can then be obtained, assuming that the radii are additive. It is possible to
obtain some anion radii from the anion-anion distance in crystals containing large anions
and small cations in which there is good reason to believe that the anions are close-packed
and therefore touching each other, in which case one-half the distance between the anions
can be taken as the anion radius.

The 0 2 - ion has often been chosen as the basis for deducing a set of ionic radii because
it has the advantage of being found in combination with a wide range of elements. A widely
used set of ionic radii was given by Pauling based on a radius of 140 pm for the oxide ion
(Table 2.3). On the basis of these values, it is in principle possible to predict the interionic
distance in any crystal and, assuming that the larger ions (usually the anions) pack as closely
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Table 2.3 Pauling's Ionic Radii (pm)

Li+ Be2+ B3+ C4 + N3- 0 2- F-
60 31 20 15 171 140 136

Na+ Mg2+ AI3+ Si4 + p5+ S6+ P 3- s2- Cl-
95 65 50 41 34 29 212 184 181
K+ Ca2+ Ga3+ Ge4 + As5+ Se6+ As3- Se2- Br-

133 99 62 53 47 42 222 198 195
Rb+ Sr2+ In3+ Sn4 + Sb5+ Te6+ Sb3- Te2 - 1-

148 113 81 71 62 56 245 221 216
Cs+ Ba2+ T13+ Pb4 + Bi5+

169 135 95 84 74

as possible around the other ion (usually the cation), the geometric arrangement of the larger
ions can also be predicted. For example, a ratio of the radius of the central atom A to that
of the ligand X of 0.155 just allows 3 X ions to be packed around A in a trigonal planar
arrangement. When the ratio rA/rX = 0.225, four X ions can just be packed around an A ion
in a tetrahedral arrangement, and so on, as summarized in Table 2.4. Although there is a gen­
eral increase in the coordination number of a cation with increasing ionic radius, there are
many exceptions to predictions of ionic crystal structures made on the basis of radius ratios.
For example, all the alkali metal halides except CsCI, CsBr, and CsI have the sodium chlo­
ride six-coordinated structure, even though radius ratios based on the radii in Table 2.4 in­
dicate that only NaC!, NaBr, NaI, KBr, Kl, and RbI should have this structure.

An important reason for the exceptions to the radius ratio predictions is that ions are not
hard spheres but somewhat compressible, hence do not have a truly constant radius. Another
reason for the inadequacy of the radius ratio rules, particularly when the anions are much
larger than the cations, is that some structures are determined by the close packing of the an­
ions, leaving the cations in "holes" between the anions. In such a case more anions may be
packed around a cation of a given fixed radius than are predicted by the radius ratio, so that
although the anions are touching each other, they are not touching the cation. However, if

Table 2.4 Radius Ratios and Coordination Polyhedra

Coordination
Number

3
4

6

7
8

9
12

Minimum Radius
Ratio

0.155
0.225
0.414
0.528
0.592
0.645
0.668
0.732
0.732
0.902
1.000

Coordination
Polyhedron

Triangle
Tetrahedron
Octahedron
Trigonal prism
Capped octahedron
Square antiprism
Dodecahedron
Cube
Tricapped trigonal prism
Icosahedron
Cuboctahedron
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Table 2.5 Shannon's Ionic Radii (pm)

Coord. No. Li+ Be2+ B3+ C4 + N3- 0 2 - F-
2 135 128
3 17 \ 136 130
4 59 27 \I 138 131
6 76 \46 140 \33

Na+ Mgz+ A13+ Si4 + pH S6+ S2- CI-
4 99 48 39 3\ 26
6 102 72 53 52 43 184 181
8 116

K+ Ca2+ Ga3+ Ge4 + Ass+ Se6+ Sez- Br-

4 137 47 39 34 28
6 138 100 62 53 46 42 198 194
8 151 112

Rb+ Sr2+ In3+ Sn4 + Sb5 + Te6 + Tez- 1-

4 62 55 43
6 152 110 80 69 60 56 221 220
8 161 126 92 81

Cs+ Baz+ T13+ Pb4 + Bj5+

4 75 65
6 167 135 89 78 76
8 174 142 98 94

we assume that the cation is always touching the anion, the radius for the cation cannot be
constant but must increase with the coordination number. This is why Shannon has given a
set of cation radii for different coordination numbers. A selection of these values is given in
Table 2.5. Shannon obtained these values from the analysis of approximately 900 crystal
structures of oxides and fluorides and the assumption of a radius for a six-coordinated ox­
ide ion of 140 pm. These radii strictly apply only to fluorides and oxides, but to a reason­
able approximation they are useful for compounds with other anions. Because cation radii
increase with increasing coordination number of the ion, the sizes of cations should always
be compared for the same coordination number.

Ionic radii are quoted in Tables 2.3 and 2.5 for a large number of cations including those
of the elements in groups 13, 14, 15, and 16, which do not form predominately ionic bonds.
These values were obtained by subtracting the fluoride or oxide ion radius obtained from
predominantly ionic solids from the length of a bond that is not predominantly ionic. The
very small values for the radii of "cations" obtained in this way do not bear much relation
to the "real" size of the atom in the crystal or molecule.

A better idea of the "real" size of an ion in a molecule can now be obtained from a study
of electron density distributions, which it has recently become possible to obtain from ac­
curate X-ray crystallographic studies of crystals. Figure 2.2 shows a contour map of the elec­
tron density distribution obtained in an X-ray crystallographic study of crystalline sodium
chloride. The position of minimum electron density between two adjacent ions seems to be
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Radii (pm)

Pauling 95

Shannon 102

Minimum 117

Figure 2.2 A contour plot of the electron density in a plane through the sodium chloride crystal. The
contours are in units of 10-6 e pm- 3 Pauling shows the radius of the Na+ ion from Table 2.3. Shan­
non shows the radius of the Na+ ion from Table 2.5. The radius of the Na+ ion given by the position
of minimum density is 117 pm. The internuclear distance is 281 pm. (Modified with permission from
G. Schoknecht, Z. Natllrforsch 12A, 983, 1957 and J. E. Huheey, E. A. Keiter, and R. L. Keiter, In­
organic Chemistry, 4th ed., 1993, HarperCollins, New York.)

an obvious choice for identifying the boundary between two adjacent ions and thus for ob­
taining the radius of each ion. However, only a rather small number of crystal structures have
been determined with the precision necessary to obtain an accurate electron density map. So
ionic radii obtained in this way are not widely used at the present time. The radius of the
sodium ion (117 pm) obtained from the electron density distribution in this way is signifi­
cantly larger than either the Pauling or the Shannon radii while the radius of the chloride ion
(164 pm) is significantly smaller. We must remember, though, that the ionic radius as de­
fined by Pauling or Shannon is an arbitrary concept, which is useful provided we use a con­
sistent set of values. The sum of the Pauling radii of Na+ and Cl- predicts an interionic dis­
tance of 276 pm, while the Shannon radii predict an interionic distance of 283 pm, values
that are close to, but not exactly equal to, the observed distance of 281 pm.

The definition of the radius of an ion in a crystal as the distance along the bond to the
point of minimum electron density is identical with the definition of the radius of an atom
in a crystal or molecule that we discuss in the analysis of electron density distributions in
Chapter 6. The radius defined in this way does not depend on any assumption about whether
the bond is ionic or covalent and is therefore applicable to any atom in a molecule or crys­
tal independently of the covalent or ionic nature of the bond, but it is not constant from one
molecule or crystal to another. The almost perfectly circular form of the contours in Figure
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2.2 shows that the ions have almost perfectly spherical charge clouds, indicating that the
crystal is very nearly fully ionic, as we will discuss in detail in Chapter 6. In the next sec­
tion we discuss how the lengths of bonds are affected by their polarity.

• 2.5 The Lengths of Polar Bonds

Having discussed the lengths of covalent and ionic bonds, and the concepts of covalent and
ionic radii, we are in a position to discuss the lengths of polar bonds that are neither purely
covalent nor purely ionic. It has long been recognized that a polar bond is shorter than cal­
culated from the sum of the appropriate covalent radii. As was pointed out by Pauling, an
X-Y bond has a bond energy that is generally greater than the average of the x-x and
Y-Y bond energies (e.g., H2, 436; C12, 237; HCI, 431 kJ mol-I). Pauling attributed this
observation to the ionic character of the bond, that is, to the additional attraction between X
and Y due to their charges. He used these energy differences as the basis of his electroneg­
ativity scale. Since a polar bond is stronger than expected for the corresponding hypotheti­
cal "pure" covalent bond, we expect that it would be shorter than predicted by the sum of
the covalent radii, which should give the length of a "pure" covalent bond. Indeed many po­
lar bonds, particularly X-F and X-O bonds, are shorter, and often much shorter, than the
sum of the covalent radii. Schomaker and Stevenson (1940) proposed an empirical equation
based on the difference in electronegativities of the two bonded atoms, which they claimed
could be used to correct a bond length calculated from covalent radii. Their equation has the
form

dAB = rA + rB - k IXA - XBI

where dAB is the predicted bond length, rA and rB are the covalent radii (pm), and IXA - XBI
is the absolute difference in the (Pauling) electronegativities of A and B. The radii for F, N,
and 0 used in this equation are the Schomaker-Stevenson values (Box 2.1). Schomaker and
Stevenson gave the constant k the value of 9 pm. Subsequently, to achieve a better fit with
experimental data, Pauling modified this value to 8 pm for bonds involving one or two sec­
ond-period elements and to 6, 4, or 2 pm for bonds formed by an element from periods 3,
4, and 5, respectively, with a more electronegative element. Other modifications of the equa­
tion have also been proposed, but they are all empirical and the equation is most often used
in its original fonn.

During the years following the proposal of the Schomaker-Stevenson equation, a large
number of new bond lengths were accurately determined and many, particularly those to flu­
orine and oxygen, were found to be considerably shorter than the values predicted by the
Schomaker-Stevenson equation. Some examples are given in Table 2.6. This equation is
clearly not very useful for predicting bond lengths. One reason is that it is a purely empiri­
cal equation with no theoretical basis, being based on the rather small amount of experi­
mental data available at the time it was proposed. Another important reason for the defi­
ciency of the equation for X-O and X-F bonds in particular is that it is based on covalent
radii obtained from the lengths of the bonds in H20 2 and F2, which have long been recog­
nized as being abnormally long and weak. Thus, an important reason for having to apply sig-
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Table 2.6 Comparison of Observed Bond Lengths and Bond Lengths Calculated from the Sum
of Covalent Radii

Molecule or
Crystal

Si02• (SiH3)20
SiF4

BF3

PF3

SiC14

Bond

SiO
SiF
BF
PF
SiCI

Bond Lengths (pm)

Observed SS Equation" Table 2.lb

163 171 182
\55 169 \77
131 137 148
154 169 170
200 205 216

"Calculated from the Schomaker-Stevenson equation.

bS um of the covalent radii (Table 2.1).

nificant corrections to predict heteronuclear bond lengths from the sum of covalent radii
could simply be that the covalent radii that are used for F and 0 in particular are not valid.
Indeed, there is no satisfactory way of obtaining covalent radii for these particular elements.
This is not a serious problem, however, because the bonds between F or 0 and almost all
other elements are predominantly ionic and so there is little use for covalent radii for these
elements. In summary, it is clear that

because of the additional electrostatic attraction between the charges on the atoms, polar bonds
are stronger and shorter than the average of the two corresponding nonpolar covalent bonds.

• 2.6 Back-Bonding

As we have discussed, a correction to the length of a polar bond calculated from the sum of
covalent radii has often been made using the Schomaker-Stevenson (SS) equation. But when
it was found that in many cases even the corrected bond length was significantly longer than
the experimental length (Table 2.6), rather than questioning the validity of the SS equation,
or of the predominately covalent model on which it is based, Pauling suggested an additional
effect. He proposed that since multiple bonds are shorter than single bonds, X-F and x­
CI bonds often have double-bond character arising from the donation of halogen lone pair
electrons into the valence shell of the central atom A. This concept is usually called back­
bonding. We consider two typical examples, BF3 and SiF4. The bond length in BF3 is 130.7
pm. The bond length calculated from the SS equation is 137 pm (Table 2.6), and from the
covalent radii in Table 2.1 it is 148 pm. To account for this discrepancy and because boron
does not have a complete octet in BF3, it was proposed that BF3 be represented by the fol­
lowing three resonance structures:

F
+ /
F=B-

"F
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in which there is donation of an electron pair from fluorine into the valence shell of boron,
thus completing its octet and giving each bond 33% double-bond character or a bond order
of llh In these structures the boron has a formal negative charge and the fluorine a formal
positive charge.

The SiF bond in SiF4 has a length of 155.5 pm compared to the value of 169 pm calculated
using the Schomaker-Stevenson equation and the value of 177 pm calculated from the sum of
the covalent radii (Table 2.6). So Pauling wrote resonance structures such as the following:

F F F F+

+ I- I- 1- + L
F=Si-F F-Si-F F-Si=F F-Si-F

I ~+ I I
F F F

to account for the SiF bond length. If we add further resonance structures such as

+F=Si-F

I
F

F=B

"F
in an attempt to describe the polarity of the bonds, and to conform to the octet rule in the
case of SiF4 , the resonance description of these molecules becomes cumbersome and con­
fusing. Morever, these descriptions of the bonding in BF3 and SiF4 in which fluorine has a
formal positive charge are inconsistent with the large negative charge on fluorine that has
been calculated for these molecules, as we discuss in Chapter 6. There is no reason to think
that the lengths of these bonds cannot be adequately accounted for in terms of the large
charges on their atoms. We make the following conclusion:

The concept of back-bonding is not necessary to account for the lengths of polar bonds that
are shorter than the sum of the covalent radii. These bonds are short because of the attrac­
tion between the atoms due to their opposite charges.

Back-bonding has usually been discussed in terms of the orbital model (Chapter 3), and we
will revisit it again in later chapters. For the moment we need only emphasize that since the
apparently short bond lengths can be accounted for in terms of the polarity of the bonds.
Bond lengths do not provide any compelling evidence for the concept of back-bonding.

:. 2.7 Bond Dissociation Energies and Bond Enthalpies

The energy needed to rupture a bond in a molecule is important not only for understanding
the nature of a particular bond but also for understanding the reactivity of a molecule. How­
ever, this quantity cannot be obtained as directly and easily as bond lengths from experi­
mental measurements.

We saw in Figure 2.1 that the energy needed to lUpture the bond in a diatomic mole­
cule, the bond dissociation energy is the energy AVe). This is the energy that can be cal-
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culated by an ab initio calculation and refers to a molecule that has no vibrational, rotational,
or translational energy. In other words, the molecule is at 0 K and has no zero-point vibra­
tional energy. Experimentally we measure something slightly different, namely, I1U298, which
refers to the dissociation of a molecule at 298 K under constant volume conditions. Because
the majority of experimental measurements are carried out at constant pressure rather than
at constant volume, the quantity that is generally more accessible is the enthalpy change I1H,
which includes PI1V work and generally amounts to approximately 2.5 kJ mol-I. For the
dissociation of the hydrogen molecule at 298 K we have

I1H298 = I1U298 + P I1V = 433 + 2.5 kJ mol- 1 = 436 kJ mol- I

I1H298 is called the bond dissociation enthalpy or simply the bond enthalpy. Bond en­
thaIpies are often also called bond energies because the small difference between the
two values (ca. 2.5 kJ mol-I) can be ignored in many cases, particularly for polyatomic
molecules.

For polyatomic molecules, the dissociation energy can be measured directly only for the
weakest bond, and even then the value may only be approximate because the energies of the
other bonds in the molecule generally change when one bond is broken. To obtain the en­
ergies of other bonds, some assumptions must be made. For molecules of the type ABn with
only one type of bond, the enthalpy of atomization, that is, the enthalpy change for the
reaction

ABn(g) --7 A(g) + nB(g)

is the energy needed to break all n A-B bonds so that l/nth of this energy is the average
bond enthalpy for an AB bond. For example, the enthalpy of atomization of methane is
1663 kJ mol-I, so the average bond enthalpy of the C-H bond in methane is 415.8 kJ
mol-I. However the energy needed to break just one CH bond is not equal to this value:

I1W = 439 kJ mol- I

There is a discrepancy of 23.2 kJ mol-I between the two values because breaking one bond
leads to a redistribution of the electrons in the remaining 'CH3 molecule, so that the three
remaining CH bonds are slightly different from the four original CH bonds. Of course the
sum of the energies needed for this step and the following steps

'CH3 --7 'CH2 + H

'CH2 --7 'CH + H

'CH --7 'C' + H

is equal to the enthalpy of atomization of methane, namely, 1663 kJ mol-I.
When there are bonds of two or more kinds in a molecule, the determination of the bond

enthalpies is slightly more complicated and is based on the assumption that bond enthalpies
can be transferred from one molecule to another, at least to a reasonable approximation. For
example, the enthalpy of atomization of ethane, which is 2826 kJ mol-I, is the sum of six
C-H bond enthalpies and one C-C bond enthalpy. The C-C bond enthalpy can be de­
termined only if we make an assumption about the C-H bond enthalpy. If we make the rea-
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Table 2.7 Mean Bond Enthalpies (kJ mol-I): Homonuclear Bonds

H-H B-B C-C N-N 0-0 F-F
436 301 348 159 138 155

Si-Si p-p S-S CI-Cl
196 197 266 237

Ge-Ge As-As Se-Se Br-Br
163 177 193 190

Sn-Sn Sb-Sb Te-Te I-I
152 142 126 140

sonable assumption that it is the same as in methane, we obtain a value of 331.3 kJ mol- 1

for the C-C bond enthalpy in ethane. Values of bond enthalpies obtained in this way dif­
fer somewhat from molecule to molecule, but the average of a number of such values gives
a reasonably good approximation for the bond enthalpy for any given bond. Values of mean
bond enthalpies are given in Tables 2.7 and 2.8.

Table 2.9 gives mean bond enthalpies for multiple bonds. These bond enthalpy values
correlate well with bond order and bond length, increasing with increasing bond order, while
bond lengths decrease with increasing bond order. For two given atoms, double bonds are
invariably stronger-that is, they have higher bond enthalpies and are correspondingly shorter
than single bonds. Triple bonds are even stronger and shorter. However, a carbon-carbon
double bond is less than twice as strong as a single bond, and a triple bond is less than three
times as strong. This also applies to phosphorus-phosphorus bonds and to sulfur-sulfur bonds.
The two electron pairs in a double bond and the three pairs in a triple bond are closer to­
gether than if they were forming single bonds, and so there is an increased repulsion between
them that results in the bond enthalpy being smaller than the sum of two or three single­
bond enthalpies. However, this is not the case for NN and 00 bonds, where a double bond
is more than twice as strong as a single bond and a triple bond more than three times as

Table 2.8 Mean Bond Enthalpies (kJ mol-I): Heteronuclear Bonds

B C N 0 F Si P

X-H 413 389 463 565
x-a 523 335 113 143 184 464 368
X-F 613 485 283 184 155 565 490
X-Cl 456 326 201 205 249 381 326

S CI

207
284 239
253 239

Table 2.9 Mean Bond Enthalpies (kJ mol-I): Multiple Bonds

CC NN 00 CN CO

Single 348 159 138 293 335
Double 619 418 497 616 707
Triple 812 946 879 1070
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•• ••
/N===N"""

H H

•• ••:0--0:

H/ "'H
•• ••
0===0.•• •

Figure 2.3 Lewis diagrams of some molecules of nitrogen, oxygen, and showing the increased sepa­
ration of the lone pairs from the singly bonded, to the doubly bonded, and to the triply bonded mole­
cules.

strong. The usual explanation for this unexpected order of bond strengths is based on the un­
expected relative weakness of the N-N, 0-0, and F-F single bonds, which has been at­
tributed to strong repulsive interactions between the lone pairs in the crowded valence shells
of these very small period 2 molecules. In the doubly bonded molecules, the lone pairs are
further apart and their interaction is reduced. In the triply bonded molecules they are still
further apart and their interaction is further reduced (Figure 2.3). The much larger size of
period 3 atoms means that the magnitude of these repulsions is considerably reduced in their
molecules. Thus, for example, P=P double and P=P triple bonds, like C=C and C=C
bonds, have bond enthalpies that are less than twice the single-bond enthalpy and three times
the single-bond enthalpy, respectively. However, this explanation needs to be further stud­
ied by a detailed analysis of the electron distribution in these molecules.

It is interesting to note that the strongly polar B-F and Si-F bonds have the largest
known single-bond enthalpies, which must be a reflection of the nature of the bonds, as we
will discuss in Chapters 8 and 9.

• 2.8 Force Constants

The force constant that is associated with the stretching vibration of a bond is often taken as
a measure of the strength of the bond, although it is more correctly a measure of the curva­
ture of the potential energy function around the minimum (Figure 2.1): that is, the rigidity
of the bond. For a diatomic molecule, the frequency of vibration jJ is determined by the force
constant k and the reduced mass t-t = mlm2/(ml + m2), where m, and m2 are the masses of
the two atoms:

jJ = _1 (~)1/2
27T j..L

For polyatomic molecules, the stretching force constant for a particular bond cannot in gen­
eral be obtained in an unambiguous manner because any given vibrational mode generally
involves movements of more than two of the atoms, which prevent the expression of the ob­
served frequency in terms of the force constant for just one bond. The vibrational modes of
a polyatomic molecule can be analyzed by a method known a normal coordinate analysis to
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Table 2.10 Vibrational Stretching Frequencies and Force Constants

Diatomic Molecules Bonds

v (em-I) k (102Nm- l ) v (em-I) k (102Nm-')

H2 4395 5.70 ~-H 2960 4.79
N2 2360 22.98 -jC-H 3300 5.85
O2 1580 11.77 ---C~- 2050 15.6
CO 2138 18.47 )C=C 1650 9.6
F2 892 4.45 ---C=N 2100 17.7
CI2 546 3.19 )C=O 1700 12.1
Br2 319 2.46 -o-H 3680 7.66
12 215 1.76 )C---Cl 650 3.64
HF 4138 9.66
HCI 2991 5.16
HBr 2650 4.12
HI 2310 3.12

give values of the force constants of individual bonds. However, when it is reasonable to as­
sume that the stretching motion of one particular bond makes the main contribution to a par­
ticular nOffi1al mode, an approximate value for the stretching force constant of this bond can
be obtained by treating the molecule as a diatomic. Some typical values for bond stretching
force constants are given in Table 2.10. The values for bonds in polyatomic molecules are
useful as an approximate measure of the bond strength or, more exactly, the resistance of
the bond to stretching or compression. Because deep potential wells generally have steep
sides, strong bonds with large dissociation energies generally have high force constants, al­
though there is no general relationship between dissociation energies and force constants.

2.9 Dipole Moments

A point charge +q separated from an equal and opposite point charge -q by a distance d
constitutes an electric dipole. An electric dipole has a dipole moment p" which is a vector
with magnitude J.L = qd, which is assumed to be acting in the direction from +q to -q (Fig­
ure 2.4).

J.L =qd

•
d

Figure 2.4 The dipole moment of a hypothetical
purely ionic molecule with spherical ions.
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The dipole moment of a molecule can be obtained from a measurement of the variation
with temperature of the dielectric constant of a pure liquid or gaseous substance. In an electlic
field, as between the electrostatically charged plates of a capacitor, polar molecules tend to ori­
ent themselves, each one pointing its positive end toward the negative plate and its negative end
toward the positive plate. This orientation of the molecules partially neutralizes the applied field
and thus increases the capacity of the capacitor, an effect described by saying that the substance
has a dielectric constant greater than unity (80 for liquid water at 20°C). The dipole moments
of some simple molecules can also be determined very accurately by microwave spectroscopy.

A molecule has a dipole moment when the center of positive charge resulting from the
nuclear charges does not coincide with the center of negative charge due to the electrons.
Such molecules are called polar molecules. A homonuclear diatomic molecule, such as Ch,
has a centrosymmetric distribution of electrons so that it has a zero dipole moment. A het­
eronuclear diatomic molecule in general has an unsymmetrical electron distribution because
the different electronegativities of the two atoms result in a polar bond in which the atoms
carry partial charges, as discussed in Chapter 1.

Values of the dipole moment of some diatomic molecules are given in Table 2.11. The SI
unit of dipole moment is the coulomb-meter (C·m). This is a very large unit, so in Table 2.11
we use the unit 10-30 C·m. Dipole moments are often quoted in an older unit, the debye (D):
I D = 3.24 X 10-30 C·m. We can see from Table 2.11 that the dipole moment of a diatomic
molecule usually reflects the difference between the electronegativities of the two atoms.

Because the dipole moment of a diatomic molecule is qd, it would appear that if we
knew the interatomic distance (bond length) d, we should be able to calculate the atomic
charges ±q. For example, the bond length of the HCl molecule is 127 pm and the dipole
moment is 3.44 X 10-30 C'm, so we have

J.L = qd = 3.44 X 10-30 C'm

3.44 X 10-30 C'm I electron
q = 127 X 10- 12 m . 1.6 X 10 19 C = 0.17 electron

8(H) = +0.17 8(Cl) = -0.17

The simplicity of this argument has led to its being more widely used than is justified, and
atomic charges obtained in this way have been used as a measure of the ionic character of

Table 2.1 I Dipole Moments f-L
(em' m X 10-3°) of Diatomic Molecules

Molecule

HF
Hel
HBr
HI
Brz
BrCl
BrF

5.93
3.44
2.69
1.46
o
1.42
1.68
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a bond. For example, the HCI molecule is said to be 17% ionic or to have a 17% ionic char­
acter. In terms of two resonance structures

H-CI and

in which the first represents a pure covalent bond and the second a pure ionic bond, the ionic
structure is said to contribute 17%. Similarly, since the calculated charges for the hydrogen tlu­
oride molecule are :2::0.58, it has been said to have 58% ionic character. Although the charges
calculated in this way are qualitatively consistent with the electronegativity differences between
the atoms, they are not correct because the model on which they are based is oversimplified.
The model assumes that the charge distribution around each nucleus is spherical and so be­
haves like a point charge situated at the position of the nucleus. However, in a real molecule
the electronic charge cloud around an atom is dist0l1ed from a spherical shape so that the cen­
ter of negative charge on an atom does not coincide with the nucleus, creating a small dipole
called an atomic dipole. For example, if we form a diatomic molecule by placing a negative
ion next to a positive ion, the positive ion will attract the electron cloud of the negative ion
pulling it toward itself so that the center of negative charge no longer coincides with the nu­
cleus, thus creating an atomic dipole (Figure 2.5b). The positive ion is said to polarize the neg­
ative ion. Similarly, the negative ion pushes the electron density of the cation away, thus po­
larizing the cation and creating another atomic dipole, which is generally considerably smaller
than the atomic dipole created on the anion (Figure 2.5b). The measured dipole moment of a
molecule is then the sum of the charge transfer moment and the two atomic dipole moments
(Figure 2.5b) and so is smaller than the change transfer moment (Figure 2.5a).

Because atomic dipoles may be quite large, atomic charges calculated without taking
them into account may be considerably in enor. For example, the measured dipole moment
of CO is only 0.37 X 10-30 C'm, and its bond length is 113 pm which, if we ignore the
atomic dipoles gives the very small charges C( -0.020) and O( +0.020) despite the large elec­
tronegativity difference between carbon and oxygen, and acting in the direction opposite to

o o
change transfer moment

•
(a)

CJ
Atomic dipole....
(b)

CJ
Atomic dipole

•
Figure 2.5 (a) Hypothetical ionic molecule with spheri­
cal ions and the corresponding charge transfer moment.
(b) In a real molecule the ions are polarized leading
atomic dipoles in each atom that oppose the charge trans­
fer moment.
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Bond moments f.Lb = 4.93 X 10-30 Com

'0'-
H/~"'-H

Molecular dipole moment f.L = 6.03 X 10-30 Com

Figure 2.6 The dipole moment of
the water molecule can be resolved
into two OH bond moments. This
does not give the true value of the
bond moments because this proce­
dure ignores the atomic dipoles.

that expected from the electronegativities. This is because the rather large atomic dipoles on
carbon and oxygen oppose the ionic bond moment, as we will show in detail in Chapter 6.
We see that the concept of ionic character based on atomic charges calculated from dipole
moments is not soundly based. So the values for the ionic character of a molecule calculated
from these charges, like the charges themselves, are also not reliable.

In a polyatomic molecule, the measured dipole moment can be regarded as the vector
sum of a dipole moment due to each bond called the bond moment. For example, the di­
pole moment of the water molecule which is 6.03 X 10-30 C'm can be thought of as aris­
ing from two OH bond moments of magnitude 4.93 X 10-30 C'm making an angle of 104S
(the bond angle of the water molecule) with each other (Figure 2.6). Bond moments can be
obtained in this way from the dipole moments of many molecules and average values for a
few bonds are given in Table 2.12. Since, however, these listed values rest on the assump­
tion that bond moments can be transferred from one molecule to another, which is only ap­
proximately true and may be considerably in error if there are large atomic dipoles, are only
very approximate. Like many other bond properties (e.g., bond energies), bond moments are
only approximate average values and are only approximately additive.

Nevertheless, the concept of a bond moment is useful even if precise values are uncer­
tain. Because the dipole moment of a polyatomic molecule is the vector sum of the bond
moments, high-symmetry molecules can have a zero dipole moment because even though
they have very polar bonds, the vector sum of their bond moment is zero. In particular, we
see in Figure 2.7a,b that each of the tetrahedral CCI4 and the octahedral SF6 molecule has a
zero dipole moment. Of course if one of the ligands in a tetrahedral molecule is replaced by
another ligand, as in POCI3, the vector sum of the bond moments will then not in general be
zero (Figure 2.7). This dependence of the dipole moment on molecular symmetry can be
used to decide between possible molecular geometries. For example, bromine pentafluoride
has a dipole moment of 4.92 X 10-30 C'm, which shows that it cannot have a trigonal bipyra­
midal geometry but is consistent with a square pyramidal geometry (Figure 2.8).

Table 2.12 Some Bond Dipole Moments

Bond

0-H
N-H
C-F
C-Cl
C-D
C=O

Moment (J 0-30C . m)

-4.93
-4.34

4.89
5.15
2.78
7.8
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Figure 2.7 The dipole moments of the symmetrical SF6 and CCl4 molecules are zero because the vec­
tor sum of the bond moments is zero. In contrast the dipole moment of POCl3 is not zero because the
molecule is less symmetrical and the vector sum of the three CI bond moments is not equal and op­
posite to the CO bond moment.

Another example is provided by the ortho, meta, and para isomers of dichlorobenzene
(C6H4Clz), which can be identified by their dipole moments, which decrease from ortho to
meta to a zero value for the para isomer.

Ammonia (NH3), has a dipole moment of 5.0 X 10-30 C'm, while nitrogen trifluoride
(NF3), in which the bonds are expected to be much more polar than in NH3 owing to the
larger difference in electronegativities, has a much smaller dipole moment of only 0.80 X
10-30 C·m. This very small dipole moment is at first sight somewhat surprising, but NF3 is
another example of a molecule in which there is a large atomic dipole. In particular, the lone
pair on nitrogen gives a very asymmetric distribution of the electronic charge cloud around
nitrogen, producing a large atomic dipole, often called a lone pair dipole, that opposes the
NF bond dipoles, thus reducing the resultant dipole moment (Figure 2.9), whereas the atomic
dipole in NH3 reinforces the vector sum of the NH bond dipoles.

F

t F
F~Br~

• F

F

f.L=0

Figure 2.8 The dipole moment can be used to dis­
tinguish between different possible geometries. BrFs
has a nonzero dipole moment and cannot therefore
have the symmetrical trigonal bipyramidal geometry.
The observed dipole moment is consistent with a
square pyramidal geometry.

·t·
./~F

F "F

f.L = 4.76 X 10-3 C'm f.L = 0.78 X 10-30 C'm
Figure 2.9 The dipole moment of NH3 is much larger than that of NF3 because a large atomic dipole
adds to the vector sum of the NH bond dipoles, whereas a large atomic dipole opposes the vector sum
of the large NF atomic dipoles.



48 • Bond Properties

~ References

E. A. V. Ebsworth, D. W. H. Rankin, and S. Cradock, Structural Methods in Inorganic Chemistry,
1987, Blackwell, Edinburgh.

R. J. Gillespie, and I. Harginai, The VSEPR Model of Molecular Geometry, 1991, Allyn and Bacon,
Boston.

R. J. Gillespie, and E. A. Robinson, Inorg. Chem. 36, 3022, 1997.
L. Pauling, The Nature of the Chemical Bond. 3rd Ed. 1960 Cornell University Press. Chapter 7 dis­

cusses bond lengths and covalent radii. Chapter 9 discusses ionic radii.
V. Schomaker, and D. P. Stevenson, J. Am. Chern. Soc. 63, 37, (1941).
R. D. Shannon, Acta Crysallogr. 1325, 925, 1976.

~ Further Reading

J. E. Huheey, E. A. Keiter, and R. L. Keiter, Inorganic Chemistry 4th Ed. 1993, HarperCollins Chap­
ter 6.

D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, 1990, Freeman, New York,
Chapter 2.



c H A T E R

SOME BASIC CONCEPTS

OF QUANTUM MECHANICS
• • •

• 3.1 Introduction

No real understanding of the chemical bond is possible in terms of classical mechanics be­
cause very small particles such as electrons do not obey the laws of classical mechanics.
Their behavior is determined by quantum mechanics, which was developed in the second
half of the 1920s. This development culminated in a mathematical formalism that we still
use today. The interpretation of this formalism is still, however, a matter of debate, albeit
among a small group of physicists and philosophers. Most chemists use quantum mechan­
ics as a tool to obtain the wave function and conesponding energy and geometry of a mol­
ecule by solving the fundamental equation of quantum mechanics, called the Schrodinger
equation. This equation cannot be solved exactly for any atom or molecule other than a
hydrogen-like atom, so approximation methods must be used. These can produce solutions
of great accuracy given sufficient time and computer power, but obtaining more accurate so­
lutions more quickly at a reasonable cost remains a major challenge of present-day quantum
chemistry.

In this chapter we give a brief review of some of the basic concepts of quantum me­
chanics with emphasis on salient points of this theory relevant to the central theme of the
book. We focus particularly on the electron density because it is the basis of the theory of
atoms in molecules (AIM), which is discussed in Chapter 6. The Pauli exclusion principle
is also given special attention in view of its role in the VSEPR and LCP models (Chapters
4 and 5). We first revisit the perhaps most characteristic feature of quantum mechanics,
which differentiates it from classical mechanics: its probabilistic character. For that purpose
we go back to the origins of quantum mechanics, a theory that has its roots in attempts to
explain the nature of light and its interactions with atoms and molecules. References to more
complete and more advanced treatments of quantum mechanics are given at the end of the
chapter.

49
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• 3.2 Light, Quantization, and Probability

The debate about whether light should be described as a stream of particles or as an (elec­
tromagnetic) wave is older than quantum mechanics. Although Newton proposed that light
consists of particles, Huygens produced arguments that favored a wave theory. Over the fol­
lowing two centuries an overwhelming amount of evidence supporting the wave theory was
accumulated, and the debate culminated in Maxwell's complete quantitative wave theory of
all types of electromagnetic radiation.

However, Planck's explanation of blackbody radiation and Einstein's explanation of the
photoelectric effect reopened the debate because these explanations invoked the idea of quan­
tization. It was postulated that light is not just emitted or absorbed in light quanta but that it
travels through space as small bundles of energy called photons. Although photons are re­
garded as (massless) particles, their energy is remarkably expressed in terms of the frequency
of a wave. Indeed, the energy of the photon, is given by E = hv, where h = 6.626 X 10-34

J·s is a constant called the Planck constant, and v is the frequency of the light. Even though
a photon has no mass, it has a momentum, which depends on the wavelength A of the light
and is given by p = hiA. In summary, the energy of light is transmitted in the form of par­
ticle-like photons, which, however, have an energy that depends on the frequency of the light.

That light has a dual nature and behaves either like a wave or like a stream of particle­
like photons is a fact we must accept, although it is nonintuitive. But remember, we have no
direct experience of the behavior of very small particles such as electrons. Which model we
use depends on the observations we are making. The wave model is appropriate when we are
considering diffraction and interference experiments, but the particle (photon) model is essen­
tial when we are considering the interaction of light with individual atoms or molecules.

We now discuss a simple experiment that vividly illustrates the dual nature of light and
introduces the concept of probability. In Young's slit experiment (Figure 3.la), light from a
single source is passed through two closely spaced slits. An inteIference pattern of light and
dark lines (Figure 3.1 b) is observed on a screen placed in the path of the light coming from
the two slits. According to the wave theory, the interference pattern is produced by the in­
terference of the waves arriving from the two slits. At certain points the waves reinforce each
other, giving a wave of increased amplitude at other points the waves cancel each other, giv­
ing a resultant wave of decreased or zero amplitude.

Now, what happens if we use light of a very weak intensity and replace the screen by a
bank of detectors such as photomultipliers, each of which can detect the arrival of a single
photon? The photons are detected in what at first appears to be a random manner (Figure
3.2a,b). But if we observe the arrival of a sufficiently large number of photons at the bank
of detectors, the interference pattern begins to emerge (Figure 3.2c,d). A large number of
photons arrive at points corresponding to the bright lines-the maxima in the interference
pattern-while very few photons arrive at points corresponding to the dark regions between
the bright lines-the minima in the diffraction pattern (Figure 3.2e). We cannot say where
any individual photon will be detected, only that it has a high probability of being detected
at certain points. There is zero probability that the photon will be detected at the minima of
the diffraction pattern. We see that the wave theory describes the statistical result of ob­
serving a large number of photons. The behavior of any individual photon cannot be pre-
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Figure 3.1 (a) Schematic diagram (not to scale) of Young's double-slit experiment. The narrow slits
acts as wave sources. Slits SI and Sz behave as coherent sources that produce an inteJference pattern
on screen C. (b) The fringe pattern formed on screen C could look like this. (Reproduced with per­
mission from R. A. Serway Physics for Scientists and Engineers with Modern Physics, 3rd ed, 1990,
Saunders, Figure 37.1.)

dicted, but we can predict the probability of detecting a single photon at a particular point.
This probability is proportional to the intensity of the light, that is, to the square of the am­
plitude of the wave, at that point. This is a very important conclusion because it will prove
to be to valid for non-zero-mass particles as well, such as electrons.

• 3.3 The Early Quantum Model of the Atom

In 1913 Bohr proposed a model of the hydrogen atom to account for its spectrum. The spec­
trum of the hydrogen atom is called a line spectrum because it is not continuous but con­
tains only a few well-defined wavelengths. This line spectrum shows that the energy of the
electron in a hydrogen atom can have only certain definite energies-it is said to be quan­
tized. Bohr's model was a combination of Rutherford's model of the atom with ideas from
Planck's quantum theory, Einstein's photon theory of light, and some revolutionary postu-
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Figure 3.2 The cumulative pallern generated by photons sent one by one through a two-slit interfer­
ometer. Number of photons: (a) 10, (b) 100, (c) 3000, (d) 20,000, and (e) 70,000. (Reproduced with
permission from Tonomura et ai, Amer. J. Phys. 57, 117, 1987.)

lates that could not be justified within the framework of classical mechanics. Bohr proposed
that the single electron in the hydrogen atom revolves around the nucleus in a circular orbit.
According to Coulomb's law, the energy of the electron depends on its distance from the nu­
cleus. And so the larger the orbit, the greater the energy of the electron. According to clas­
sical mechanics, the electron can have any orbit, and therefore any energy. To explain the
line spectrum of hydrogen Bohr had to assume that only certain orbits and therefore celtain
energies are allowed.

By means of his model Bohr was able to account quantitatively for the spectrum of the
hydrogen atom. But he could not explain why only certain orbits are allowed, nor could he ac­
count for the electron's continual rotation around the nucleus with constant energy because,
according to electromagnetic theory, an electron rotating around a positive nucleus should emit
electromagnetic radiation, continuously losing energy and spiraling into the nucleus. Moreover,
attempts to expand the model to account for the spectra of atoms with more than one electron
were not successful. The Bohr theory of the hydrogen atom specified the precise path of the
electron, which is why it cannot be correct because, as we will see in the next section, the con­
cept of a well-defined orbit for an electron is not consistent with quantum mechanics.
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3.4 The Wave Nature of Matter and the Uncertainty Principle

In 1923 de Broglie made the bold suggestion that matter, like light, has a dual nature in that
it sometimes behaves like pmticles and sometimes like waves. He suggested that material
(i.e., non-zero-rest mass) particles with a momentum p = mv should have wave properties
and a corresponding wavelength given by

h h
A=-=-

p mv
(3.1)

There was no experimental evidence for the wave nature of matter until 1927, when evi­
del1Ce was provided by two independent experiments. Davisson found that a diffraction pat­
tern was obtained if electrons were scattered from a nickel surface, and Thomson found that
when a beam of electrons is passed through a thin gold foil, the diffraction pattern obtained
is very similar to that produced by a beam of X-rays when it passes through a metal foil.

In classical mechanics both the position of a pmticle and its velocity at any given in­
stant can be determined with as much accuracy as the experimental procedure allows. How­
ever, in 1927 Heisenberg introduced the idea that the wave nature of matter sets limits to the
accuracy with which these properties can be measured simultaneously for a very small par­
ticle such as an electron. He showed that LU, the product of the uncertainty in the measure­
ment of the position x, and t::..p, the uncertainty in the measurement of the momentum p, can
never be smaller than hl27T:

h
LUt::..p~­

27T
(3.2)

This relationship is called the uncertainty principle (Box 3.1).
If we increase the accuracy with which the position of the electron is determined by de­

creasing the wavelength of the light that is used to observe the electron, then the photon has
a greater momentum, since p = hiA. The photon can then transfer a larger amount of mo­
mentum to the electron, and so the uncertainty in the momentum of the electron increases.
Thus any reduction in the uncertainty in the position of the electron is accompanied by an
increase in the uncertainty in the momentum of the electron, in accordance with the uncer­
tainty principle relationship. We may summarize by saying that there is no way of accurately
measuring simultaneously both the position and velocity of an electron; the more closely we
attempt to measure its position, the more we disturb its motion and the less accurately there­
fore we are able to define its velocity.

3.5 The Schrodinger Equation and the Wave Function

The picture provided by de Broglie inspired Schrodinger to propose in 1926 a powerful equa­
tion called the Schrodinger wave equation, which describes the behavior of very small par­
ticles such as electrons. From this equation we can obtain the form of the wave, called the
wave function, and the corresponding energy E for any atomic or molecular system. Al­
though some textbooks give plausible derivations for the Schrodinger wave equation, it ac-
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.. BOX 3.1 ...
~pplying the UncertaintyPrincip_l~

The uncertainty principle is of importance only for very small particles such as single
electrons. This can be seen by comparing the accuracy with which we could determine
the position of a very small macroscopic object with the accuracy of the determina­
tion of the position of an even smaller electron. Consider a dust particle with a mass
of I /Lg = 10-9 kg, traveling in the wind with a speed of 10 m S-I. If the speed of the
particle is known with an accuracy of 0.1 %, then the uncertainty in its momentum, t::.p,
is 0.1 X 10-2 X 10-9 X 10 m s-I = I X 10- 1 kg m s- I. According to the uncertainty
principle, Llx t::.p ::::: hl27T, the uncertainty in the dust particle's position, Llx, is at least
(hl27T)/t::.p = I X 10-34 kg m2 s- IIl X 10- 11 kg m S-l = I X 10-23 m, which is ap­
proximately a hundred million times smaller than the dimensions of a nucleus. In con­
trast, consider an electron, which has a mass of only 9 X 10-31 kg, moving at the same
speed as the dust particle (which is very slow for an electron). If we know its veloc­
ity to the same accuracy, then a similar calculation shows that the corresponding un­
certainty in its position is at least 0.1 m. This uncertainty is about a billion times larger
than typical atomic dimensions.

tually cannot be derived from anything else. It must be accepted as a fundamental postulate
of quantum mechanics, just as Newton's equations are the fundamental postulates of classi­
cal mechanics. The justification for the Schrodinger equation, as with Newton's equations,
is that it gives results in agreement with experiment.

A compact and completely general form of the Schrodinger equation is as follows

Hl/J=El/J (3.3)

where l/J is the wave function, E is the energy, and H is an operator called the Hamiltonian
operator. The differential operators d/dx and d 2/dx2 are familiar examples of operators. The
name Hamiltonian comes from Hamilton's equations of classical mechanics, which employ
an analogous function to generalize Newton's laws of motion. The form of the Hamiltonian
depends on the system under consideration. For an atom, the Hamiltonian contains a kinetic
energy term and a potential energy term that results from the Coulomb attraction between
the electrons and the nucleus and interelectron repulsion, and is given by the classical ex­
pression for the potential energy.

By solving this equation for any particular system, we can obtain the wave function and
the corresponding energy E. In fact, an equation of this type in which an operator operates on a
function to give the function times a constant has many solutions. Each solution is called a state,
and the lowest energy state is called the ground state. Only certain of the possible solutions to
this equation are acceptable, namely, those for which l/J is a continuous single-valued function.
As we shall see shortly, ~ represents a probability density that, to be physically reasonable, must
change in a continuous way and must have only one value at each point in the system.
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Thus in principle we can obtain the wave function and the energy for any atomic or mol­
ecular system, but insuperable mathematical difficulties prevent us from obtaining exact so­
lutions to all but the very simplest one-electron systems. However, we can obtain approxi­
mate solutions, which are becoming increasingly easy to obtain and more accurate as modern
computers gain in speed and power. To illustrate the use of the Schrodinger equation, we
consider the simple case of a single palticle moving in one dimension. For this system, the
Hamiltonian operator H is

(3.4)

so that the Schrodinger equation for this system is

(3.5)

In this equation h is the Planck constant, m is the mass of the particle, and V is its potential
energy. Since V is constant for a particle with no forces acting on it, V may be omitted from
the equation, which simply means that the total energy E is only the kinetic energy. If we
define the constant

(3.6)

the Schrodinger equation 3.5 may be rewritten as follows, as a linear second-order differen­
tial equation:

A convenient form of the general solution of Equation (3.7) is

if; = A cos kx + B sin kx

(3.7)

(3.8)

where A and B are constants. Since there are no constrains or restrictions on k, it may have
any value, and so the energy E may have any positive value. This means that the energy of
a free particle is not quantized.

We now consider what happens when the particle is no longer free but is confined to a
limited region of space. We do this by assuming that V = 0 for the region x = 0 to x = I but
everywhere outside this region V = 00. Although this situation is physically unrealizable, it
is a mathematically simple and useful model known as the particle in a box (Figure 3.3). It
provides an illustration of some important quantum mechanical concepts without obscuring
the principles with mathematical details.

The only solution for Equation (3.5) when V = 0 is if; = O. So that if if; is to be single­
valued and continuous, it must be zero at the walls, that is, at x = 0 and x = l. Thus the po­
tential energy walls impose what are called boundary conditions on the form of the wave
function. Figure 3.3 shows (a) the particle-in-a-box potential, (b) a wave function, that sat­
isfies the boundary conditions and, (c) one that does not. We see that only certain wave func-
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Figure 3.3 (a) The potential energy function assumed in the
particle-in-a-one-dimensional-box model. (b) A wave function
satisfying the boundary conditions. (c) An unacceptable wave
function. (Reproduced with permission from P. A. Cox, Intro­
duction to Quantum Theory and Atomic Structure, 1996, Ox­
ford University Press, Oxford, Figure 2.6.)
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tions will satisfy the boundary conditions, and since each is associated with a particular en­
ergy, we see that the energy of the system is quantized. The possible values of the energy
follow from the boundary conditions and are given by the expression

(3.9)

where n, which can have any integral value greater than zero, is called a quantum number.
Substituting the allowed energies in Equation (3.4) gives

IjJ = B sin(n7Tx/l) (3.10)
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Figure 3.4 Particle-in-a-one-dimensional box. (a) The four lowest allowed energy levels (n = 1,2,3
and 4). (b) The corresponding wave functions l/In. (c) Probability densities l/In2
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The four lowest energy wave functions are shown in Figure 3.4. The energy of the particle
in its lowest energy state is called its zero-point energy. A wave has certain points at which
it has a zero value. These points are called nodes.

The wave functions of the particle in a box are analogous to the waveforms for the vi­
bration of the string that is fixed at both ends in a musical instrument. The string can vibrate
to give only the fundamental or lowest energy note and the successive higher harmonics,
which have an increasing number of nodes. In atomic and molecular systems, the energy is
similarly quantized. Only certain wave functions and the corresponding energies are allowed
because the electrons are confined to a certain region of space, like the violin string, as a
consequence of the boundary conditions, as we saw in the example of a particle in a box .

• 3.6 The Meaning of the Wave Function: Probability and Electron Density

What is the meaning of the wave function? How should it be interpreted? How can a par­
ticle also behave like a wave? These are questions that immediately come to mind.

Schrodinger was very much led by a comparison with real macroscopic waves, and he
thought that an electron or other particle actually spread out in space. However, difficulties
arose in trying to interpret a many-electron wave function in this way. Even for a single elec­
tron confined in a box, we can make the box as large as we like and it seems unreasonable
to suppose that a single particle such as an electron can be spread out over a very large re­
gion of space. Every time we detect an electron, it behaves as if it has the same mass and
charge, located in a very small region of space. An elegant solution to this dilemma was pro­
posed by Born, who linked a wave function to a probability density.

We prepared the ground for the Born interpretation of the wave function by looking at
the nature of light in Section 3.2, where we concluded that the behavior of photons is sta­
tistical. Since de Broglie showed that photons and electrons do not differ fundamentally from
the standpoint of quantum mechanics, we now surmise that a probabilistic interpretation of
the behavior of electrons may be successful as well. To sharpen the analogy, we argue as
follows. The probability of detecting a photon at a given point is proportional to the inten­
sity of the light at that point, which is proportional to the square of the amplitude of the light
wave. So the probability of finding particle at a given point must equally be proportional to
the square of the amplitude of a matter wave, that is to ljJ2. There are some systems for which
ljJ is a complex quantity. For these cases we must replace ljJ2 by ljJljJ*, where ljJ* is the com­
plex conjugate to ljJ.

It does not make much sense to talk about the probability of finding a particle at a cer­
tain point x.y.z in space because a point is infinitely small, and there are an infinite number
of points even in an extremely small volume, so that the probability of finding a particle at
anyone point must be zero. Instead we refer to the function P(x, y, z) = ljJ2 as the probabil­
ity density. P(x, y, z)dx dy dz (= PdT) is then the probability of finding the particle in the
small element of volume dx dy dz (= dT). Since the particle must be somewhere, we write

(311)

But what does this probability density mean in physical terms? The electron should not
be thought of as intrinsically smeared out as originally conceived by Schrodinger. In the Born
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interpretation, an electron is either here or there, as if it were a sharply defined point parti­
cle. But, there is no way of exactly predicting where the electron will be at a given instant­
its behavior is intrinsically probabilistic. Suppose that at a particular moment we were able
to determine exactly where the electron was and to mark its position with a minute dot in
space. We repeat the observation a very large number of times, and each time put a dot in
the appropriate place. What we obtained would look like a "cloud," with the greatest den­
sity of dots indicating where there is the greatest probability of finding the electron. Another
analogy is to imagine that we could take a time exposure photograph of the electron as it
moves around the atom. We would obtain a blurred picture of the electron that was bright­
est where the electron is most likely to be found and less bright where it is less likely to be
found-the electron would appear to be spread out in a cloud.

If we multiply the probability density P(x, y, z) by the number of electrons N, then we
obtain the electron density distribution or electron distribution, which is denoted by p(x,
y, z), which is the probability of finding an electron in an element of volume dT. When in­
tegrated over all space, p(x, y, z) gives the total number of electrons in the system, as ex­
pected. The real importance of the concept of an electron density is clear when we consider
that the wave function ljJ has no physical meaning and cannot be measured experimentally.
This is particularly true for a system with N electrons. The wave function of such a system
is a function of 3N spatial coordinates. In other words, it is a multidimensional function and
as such does not exist in real three-dimensional space. On the other hand, the electron den­
sity of any atom or molecule is a measurable function that has a clear interpretation and ex­
ists in real space.

. 3.7 The Hydrogen Atom and Atomic Orbitals

The simplest atomic system that we can consider is the hydrogen atom. To obtain the Hamil­
tonian operator for this three-dimensional system, we must replace the operator d 21dx2 by
the partial differential operator

a2 a2 a2
\72=_+_+-

ax2 ay 2 dz2

The potential energy of the electron is given by V = e2/(x2 + y2 + Z2)J/2, where (x2 + i + Z2)1/2

is the radial distance from the nucleus. So the Schrodinger equation for the hydrogen atom is

(3.12)

In this form the equation is rather cumbersome and not easily solved, so it is customary to
express it in spherical polar coordinates r, {}, and, </>, where r is the distance from the nu­
cleus and {} and </> are angular coordinates, rather than in the Cartesian coordinates x, y, and
z. The relationship of the polar coordinates to the Cartesian coordinates is shown in Figure
3.5. In this form V = e2lr, and the equation is easier to solve palticularly because it can be
expressed as the product R(r)8({})¢(</» of the three one-dimensional functions: R, the radial
function, and 8 and ¢, the angular functions. Corresponding to these three functions there
are three quantum numbers, designated n, l, and m.



3.7 The Hydrogen Atom and Atomic Orbitals • 59

z

x Figure 3.5 The relationship between polar coordinates and
Cartesian coordinates.

The solutions to the Schrodinger equation for the hydrogen atom, which are called or­
bitals, are given in all standard textbooks of quantum mechanics. Rather than repeating the
equations for these solutions, we illustrate them by means of diagrams. However, it is not
quite simple to depict these orbitals, because to do so completely would require four coor­
dinates, one for each of the three spatial coordinates and one for the wave function lj;, just
as we need two dimensions to depict the solutions of a one-dimensional wave function (Fig­
ure 3.3). But as we will see, we can easily illustrate the separate radial and angular func­
tions. The energy states of the hydrogen atom are given by Equation (3.13)

me4

E = where m = mass of the electron and go = permittivity of a vaccum (3.13)
11 8goh2 n2

which is also the expression found experimentally and deduced by Bohr, as we would ex­
pect if the equation gives a valid description of the atom. The energy depends only on the
value of the quantum number n. The radial function R(r) shows how the value of R varies
along any radius from the nucleus. The radial functions for the n = 1, n = 2, and n = 3 states
are shown in Figure 3.6. There are two radial functions for the n = 2 state cOiTesponding to
the two possible values of 0 and I for the quantum number I, which may take all integral
values up to n - I. The radial function for the I = 0 orbital has a maximum at the nucleus
and node at a point along the radius, whereas the 1 = 2 orbital has a node at the nucleus. Or­
bitals for which 1 = 0 are called s orbitals, those for which 1= 1 are called p orbitals. and
those for which I = 3 are called d orbitals.

For an s orbital the angular part of the wave function is constant

(8ct»s = constant (3.14)

which means that a plot of this function in a plane through the z axis is a circle and in three­
dimensions is a sphere (Figure 3.7a). There are three p orbitals corresponding to the value of
the third quantum number m, which may take the values ... I - 2, 1 - I, 0, 1 + I, I + 2,
... , which for I = I are the three values m = -1, 0, and -1. These three orbitals are dis­
tinguished as Pn Pyo and pz. For the pz orbital, the angular wave function act> varies as cos ():

(8ct»p = constant (cos () (3.15)

A plot of the angular function of act> against the value of () in a plane through the z axis has
the form of a plot of cos () and consists of two circles with a node in a line along the x axis
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Figure 3.6 Radial wave functions R for atomic orbitals with n = I, 2, and 3. (Reproduced with per­
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(a) (b)

(c)

Px Py Pz

Figure 3.7 (a) Plot of the angular function
(e~) = constant for an s orbital in plane
through the z axis. (b) Plot of (e~) = con­
stant (cos (:J) for a p orbital in a plane
through the z axis. (c) Three-dimensional
plots of the angular function (e~) for the
sand p orbitals. (Adapted with permission
from P. A. Cox, Introduction to Quantum
Theory and Atomic Structure, 1996, Ox­
ford University Press, Oxford, Figure 4.4.)
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(Figure 3.7b) and in three dimensions of two spheres with a node in the xy plane (Figure
3.7c). The plots for the 2px and 2py orbitals are the same except that they are oriented along
the x and y axes, respectively (Figure 3.7c).

To obtain pictures of the orbital rjJ = R8<1>, we would need to combine a plot of R with
that of 8<1>, which requires a fourth dimension. There are two common ways to overcome
this problem. One is to plot contour values of rjJ for a plane through the three-dimensional
distribution as shown in Figures 3.8a,c another is to plot the surface of one particular con­
tour in three dimensions, as shown in Figures 3.8b,d. The shapes of these surfaces are re­
fened to as the shape of the orbital. However, plots of the angular function 8<1> (Figure 3.7)
are often used to describe the shape of the orbital rjJ = R8<1> because they are simple to draw.
This is satisfactory for s orbitals, which have a spherical shape, but it is only a rough ap­
proximation to the true shape of p orbitals, which do not consist of two spheres but rather
two squashed spheres or "doughnut" shapes.

Often we are more interested in the electron density distribution rjJ2 = R28 2<t>2 than in
rjJ. Plots of R2 the electron density distribution along a radius for the two n = 2 states, are
shown in Figure 3.9a,b. Plots of (8<1»2 = constant cos2e (Figure 3.9c) show how the elec­
tron density varies with the angle e. They are similar to the plots for 8<1> except the plots
for the 2p orbitals are more elongated. The result of combining these two plots to obtain a
plot of rjJ2 can be shown as a contour plot as Figure 3.1 Ob,e. For an s orbital the plot of rjJ2
is spherical like the plot of rjJ but for a p orbital it has a shape rather different from that of
the angular part of rjJ, which may be described as two squashed spheres or doughnut shapes
separated by a plane in which rjJ2 is zero. We can also show the three-dimensional surface

(c)

(a) (b)

z

(d)

Figure 3.8 (a) Contour map of l/t
for a Is orbital. (b) The spherical
surface for a constant value of l/t
for a Is orbital. (c) Contour map
of l/t in a plane through the z axis
of the 2pz orbital. (d) The two sur­
faces of constant l/t for the 2pz or­
bital. Note the nodal surface in the
xy plane. The upper surface cone­
sponds to a positive value of l/t and
the lower surface to a negative
value of l/t. (Adapted with permis­
sion from R. McWeeny, Coulson's
Valence, 1979, Oxford University
Press, Oxford, Figures 2.3 and
2.7.)
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Figure 3.9 (a) Plots of the electron density R2 along a radius for (a) a 2s orbital and (b) a 2p orbital.
(c) Plots of (8<1»2 = (constant)cos2e. (Reproduced with permission from J. E. Huheey, E. A. Keiter,
and R. L. Keiter, Inorganic Chemistry, 4th ed., 1993, Harper Collins, Figures 2.2 and 2.6.)

of one of the outer contours as in Figure 3.IOc. An alternative and useful method for de­
picting a three-dimensional electron density distribution is to use a two-dimensional dot den­
sity diagram, where the density of the dots is proportional to the electron density in the cho­
sen plane, as in Figure 3.1 Oa,d. The shape of l/J2 is often called the orbital shape, although
strictly speaking it is the shape of the electron density distribution for the orbital.

We have gone into the correct shapes of the functions l/J (orbitals) and l/J2 (electron den­
sity distributions) in some detail because very approximate diagrams such as those in Fig­
ure 3.11 are often used to depict both l/J and ~. For example, the diagrams in Figure 3.11
are used to depict both the shapes of 2p orbitals and their electron density distributions. By
comparing Figures 3.7-3.11 we can see that the diagram in Figure 3.11 are only poor ap­
proximations to the true shapes of the functions l/J and l/J2 for the 2p electrons. Moreover they
do not show the rapid decrease in both l/J and l/J2 in a radial direction. Although these de­
pictions of orbital shapes are commonly used they can be quite misleading if their limita­
tions are not understood as we will see, for example, in Section 3.10. We briefly discuss 3d
orbitals, that are the orbitals for which n = 3 and I = 2 in Chapter 9.

Other atoms with only a single electron (He+, Li2+, etc.) are known as hydrogen-like
atoms. The Schrodinger equation for such a system is the same as that for the hydrogen atom
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Figure 3.10 Representations of the electron density l/J2 of the Is orbital and the 2p orbital of the hy­
drogen atom. (b,e) Contour maps for the xz plane. (c,f) Surfaces of constant electron density. (a,d) Dot
density diagrams: the density of dots is proportional to the electron density. (Reproduced with per­
mission from the Journal of Chemical Education 40, 256, 1963; and M. J. Winter, Chemical Bonding,
1994, Oxford University Press, Fig. l.lO and Fig. 1.11.)
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Figure 3.11 Conventional representations of the "shapes" of the p orbitals. They are used as approx­
imate representations of both l/J and l/J2. The sign of l/J is indicated by the shading. (Reproduced with
permission from and M. J. Winter, Chemical Bonding, 1994, Oxford University Press, Oxford.)
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except that the nuclear charge of + I must be replaced by the appropriate atomic number Z.
This decreases the size of the orbitals, but otherwise they have the same shape as the hy­
drogen atomic orbitals.

• 3.8 Electron Spin

The electron distribution in an atom or molecule containing more than one electron is de­
termined by the electrostatic repulsion between the electrons and the attraction of the nuclei
for the electrons. But there is another property of electrons that influences the electron den­
sity substantially, albeit in an indirect way. This property is called electron spin.

In 1925 Uhlenbeck and Goudsmit found that some puzzling features of atomic spectra
could be explained only if it was assumed that an electron has an intrinsic angular momen­
tum and therefore, because it is a charged particle, an intrinsic magnetic moment. This in­
trinsic angular momentum is a fundamental characteristic property of an electron, like its
mass and its charge, but it is a quantum mechanical property that has no classical analogue.
A useful model is to consider the electron as a sphere rotating about an axis through its cen­
ter. Because a rotating charge produces a magnetic field, it therefore has a magnetic mo­
ment. This intrinsic magnetic moment is called spin angular momentum or simply spin.
An electron can also have an angular momentum by virtue of its motion around the nucleus,
which is called its orbital angular momentum.

Thus because of its spin, an electron behaves like a magnetic dipole. Classically, a mag­
netic dipole, such as the bar magnet in a compass, can have any orientation, from the lowest
energy orientation in which it is pointing with the field to the highest energy orientation when
it is pointing against the field (in this case the earth's magnetic field). But, as suggested by Uh­
lenbeck and Goudsmit, and confirmed experimentally by Stern and Gerlach (Box 3.2), spin an­
gular momentum is quantized and can have just two values. We can imagine that the electron
can rotate, or spin, either clockwise or counterclockwise about an axis in space, such as that
provided by an external magnetic tield, so that its magnetic moment lines up in the direction
of the field or in the opposite direction. We should not, however, take this model literally be­
cause we have no way of observing an electron to see if it is a sphere or how it is spinning.

The magnetic forces between electrons are negligibly small compared to the electrosta­
tic forces, and they are of no importance in determining the distribution of the electrons in
a molecule and therefore in the formation of chemical bonds. The only forces that are im­
portant in determining the distribution of electrons in atoms and molecules, and therefore in
determining their properties, are the electrostatic forces between electrons and nuclei. Nev­
ertheless electron spin plays a very important role in chemical bonding through the Pauli
principle, which we discuss next. It provides the fundamental reason why electrons in mol­
ecules appear to be found in pairs as Lewis realized but could not explain.

• 3.9 The Pauli Principle

The wave function for any system is a function of both the spatial coordinates of the elec­
trons and of the spins of the electrons. It is convenient to describe the two possible values of
the spin angular momentum of an electron as the two possible values of its spin coordinate,
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..... BOX3~2T
The. experimental-Determination of -Spin

The earliest experiment to determine the spin of an electron was carried out in 1921 by
Stem and Gerlach. They passed a beam of neutral atoms, such as a Ag atom, which has
a single unpaired electron with spin angular momentum but no orbital angular momen­
tum, through an inhomogeneous magnetic field. Because classically we expect the mag­
netic dipoles to have a random orientation we would expect the beam of atoms to be
spread out uniformly. Remarkably the beam is split into just two beams as we see in the
figure. Because the two ends of the dipole are in slightly different field strengths, the di­
pole experiences a force either pulling it in the direction of the stronger field or repelling
it away from this direction, depending on the orientation of the dipole. The magnetic mo­
ment calculated from the separation of the two beams is exactly equal to that postulated
by Uhlenbeck and Goudsmit to explain various details of atomic spectra.

An even more direct proof would appear to be possible by passing a beam of elec­
trons through such an inhomogeneous field. However, this experiment has never been
successfully carried out because the effect is obscured by the large deflection produced
by the action of the field on a moving charge. This complication is avoided when a beam
of neutral atoms having one unpaired electron with no orbital magnetic moment is used.

The experimental arrangement for the Stem-Gerlach experiment is shown below.
(a) A beam of atoms is passed through an inhomogeneous magnetic field produced by
the specially shaped pole pieces. (b) The expected result for magnets that can take up
any orientation with respect to the field: the beam is spread out uniformly. (c) The ex­
perimental result for silver atoms, which have only one unpaired electron in the va­
lence shell. The beam is split up into two distinct beams. This result shows that the
magnetic moment due to the single valence shell electron can take up only two orien­
tations with respect to the field. (From R. 1. Gillespie, D. A. Humphreys, N. C. Baird,
and E. A. Robinson, Chemistry, 2nd ed., 1989, Allyn & Bacon, Boston.)

(a)

(b) (c)
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typically denoted as Q' and fJ. All electrons are identical, and therefore indistinguishable one
from another. It follows that the interchange of the positions and of the spins of any two elec­
trons in a system must leave the system unchanged. In palticular, the probability distribution
of the electrons, the electron density, must remain unchanged. In other words, ljJ2 must remain
unchanged when the space and spin coordinates of any two electrons are interchanged. This
requirement places a restriction on the wave function ljJ itself. Either ljJ must remain unchanged
or it must change sign. We say that ljJ must be either symmetrical or antisymmetrical to
electron interchange. In fact, only antisymmetrical wave functions are found to represent the
properties of electrons. That the wave function for any polyelectronic system must be anti­
symmetric to electron interchange (ljJ----> -ljJ on electron interchange) is a fundamental non­
classical property of electrons. It shares this property with other particles such as protons, neu­
trons, and neutrinos, which have half-integral spins and are collectively called fermions.
Particles, such as the Q' particle and the photon, that have integral spins (including zero) have
symmetrical wave functions (ljJ ----> ljJ on particle interchange) and are called bosons.

The requirement that electrons have antisymmetrical wave functions is called the Pauli
principle, which can be stated as follows:

An electronic wave function must be antisymmetric with respect to the interchange of any
two electrons.

No theoretical proof has been given of the Pauli principle. It is injected into current theories
of electronic structure as a working rule. It represents some deep property of electrons, and
indeed of all matter, which is not understood. A corollary of the Pauli principle is that no
two electrons with the same spin can ever be at the same point in space. If two electrons of
the same spin were at the same point in space, then on interchanging these two electrons,
the wave function would remain unchanged and in particular would not change sign as is re­
quired by the Pauli principle. However, electrons with opposite spin can be at the same point
in space, although the probability is very small owing to Coulomb repulsion. The main point,
however, is that there are two worlds that do not see each other in terms of the Pauli prin­
ciple: the set of Q' electrons and the set of fJ electrons. The only way these two sets can in­
teract is via the Coulomb repulsion interaction.

The effect of the Pauli principle on the distribution of electrons is well illustrated by an
example discussed by Lennard-Jones (I 954). He considered the distribution of three parti­
cles with the same spin that are electron-like but have no charge, such that there are no force
fields of any kind between them and that are confined to move in a circular ring. Because
these uncharged electron-like particles do not repel each other, we can isolate the effect the
Pauli principle alone has on this system. By considering three such particles located on a
ring, Lennard-Jones showed that the effect of the Pauli principle is that in the most proba­
ble arrangement, the particles are arranged at equal intervals around the ring, that is, at the
corners of an equilateral triangle. There is zero probability of any two of the particles being
at the same point. It can also be shown that for any arrangement of two of the particles, the
most probable position of the third is that in which it is as fa~ as possible from the other two
(Figure 3.12). In general we can say that electrons with the same spin keep as far apart as
possible and have a zero probability of being found at the same point in space. In contrast,
the Pauli principle has no effect on the relative arrangement of particles of opposite spin.
Because electrons of the same spin keep as far apart as possible, they behave as if there were
a repulsive force between them, which is sometimes called a Pauli force (Box 3.3).
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Figure 3.12 The distribution of a particle with zero charge constrained to move in a ring relative to
two others of the same spin. Plots a-c show the probability 1jJ2 of finding the third particle at a given
location on the ring which is a maximum when all three particles are located at 1200 intervals around
the ring. In d-f Q indicates the most probable location of the third particle with respect to the other
two. (Reproduced with permission from J. E. Lennard-Jones, Adv. Sci. II, No. 54, 1956.)

The shell structure of an atom is also a consequence of the operation of the Pauli prin­
ciple. As the charge on the nucleus increases with increasing atomic number, it would at first
sight appear that the electrons would be pulled closer to the nucleus. This would lead to the
atoms becoming smaller with increasing nuclear charge. But experiments show that they be­
come larger as we proceed down any group of the periodic table. Is this increase in atomic
size simply due to the increased number of electrons, which need more space as electrons
repel each other? The answer is no, because it can be shown that the effect of an increasing
nuclear charge more than compensates for the extra electron-electron repulsion resulting
from any additional electrons, so we would expect atoms to shrink with increasing nuclear
charge, which is not the case. No satisfactory explanation can be given on the basis of elec­
trostatic forces only. Ultimately, it is the operation of the Pauli principle that prevents the
electrons from all crowding toward the nucleus and leads to the formation of electron shells.

The Pauli principle is usually first met in a more restricted form called the Pauli exclu­
sion principle, which states that

No more than two electrons may occupy one orbital, and if two electrons are present they
must have opposite spins.
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.. BOX 3.3 T
The Pauli Force and Its Consequences

Electrons with the same spin behave as if there is a repulsive "force" acting between them,
This apparent "force" is sometimes called the Pauli force. However, it is preferable not
to speak of Pauli forces, since they are only apparent forces, not real forces like electro­
magnetic or gravitational forces, In fact, the Pauli principle implies that there is an inti­
mate interconnection between the constituent parts of matter in the universe. Stlictly speak­
ing, no part can be isolated from the rest, except in an idealized way, The Pauli force acts
at any time and over huge distances, much larger than atomic dimensions, but its effect
becomes dramatic only when electrons of the same spin happen to be close to each other.

Pauli forces can be said to affect the energy of a molecule, but only indirectly.
Kauzman has given a useful analogy: The Pauli principle determines the energy of a
molecule in much the same way that traffic lights affect the number of automobile ac­
cidents. Strictly speaking, traffic lights do not prevent accidents, they merely influence
the flow of traffic so that automobiles avoid one another. This decreases the number
of collisions, hence reduces the number of accidents. For conciseness, however, we or­
dinarily say that traffic lights prevent accidents. Similarly, the movements of electrons
are controlled in accordance with the Pauli principle, and these movements in tum af­
fect the energy of a molecule so that there appears to be a force acting between elec­
trons of opposite spin. The distIibution of electrons in an atom or a molecule, hence
the energy of the molecule and the electron distribution, are determined by the Pauli
principle, together with electromagnetic forces.

Although the Pauli principle seems to be a very abstract concept, we do in fact
have direct experience of it because it is responsible for the solidity of matter. Ac­
cording to our model of an atom in which a certain number of very small electrons are
moving around a very tiny nucleus, it would appear that most of the space around the
nucleus is empty. However, because of the Pauli principle, in any region of space

o­He
Weak attraction

o­He

co- -Strong repulsion
• nucleus • center of negative charge
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around a nucleus in which there is a high probability of finding a pair of electrons of
opposite spin, there is only a low probability of finding any other electrons. Since most
molecules have an equal number of electrons of opposite spin, no other electrons can
penetrate significantly into the region occupied by these electrons, and thus molecules
cannot penetrate into each other to a significant extent. Thus solid objects feel "hard"
to our touch. Molecules that are brought closely together repel each other because their
charge clouds cannot overlap to a significant extent.

The repulsion due to the Pauli principle can be illustrated by a very simple ex­
ample: two helium atoms that are brought very close together as represented diagra­
matically in the figure. At relatively large distances apart there are only weak attrac­
tive forces between the two. However, when the atoms are brought close together the
two charge clouds resist overlapping so that each charge cloud is distorted and pushed
away from the other and they no longer surround each nucleus symmetrically. The cen­
ter of action of the negative charge on each atom does not then coincide with the nu­
clear charge and it exerts a force on the nucleus pulling it away from the other nu­
cleus. In other words, the two atoms repel each other.

The connection between the Pauli exclusion principle and the more general Pauli principle
can be understood as follows. If two electrons with the same spin a were to occupy the same
orbital l/J, the total wave function for the system would be written If/'(x,, YI, 21) If/'(X2, Y2,
22). Exchanging the coordinates of the two electrons changes the wave function to 1/f'(X2, Y2,

Z2) If/'C-Cj, YI, ZI), which is the same as before. Since the wave function does not change sign,
it is forbidden by the Pauli principle. Hence two electrons with the same spin cannot be de­
scribed by the same wave function, or, in other words, an orbital cannot contain two elec­
trons with the same spin. As we shall see, this form of the Pauli principle is used in de­
scribing atoms and molecules in terms of orbitals .

• 3.10 Multielectron Atoms and Electron Configurations

We use the solutions of the Schrodinger equation for a hydrogen-like atom-in other words,
hydrogen-like orbitals-to give an approximate description of multielectron atoms. We add
electrons two at a time to successive hydrogen-like orbitals of increasing energy. In accor­
dance with the Pauli principle, only two electrons can be described by the same orbital, and
they must be of opposite spin. This imaginary procedure is known as the autbau (building­
up) principle. It gives only an approximate description of an atom because the electrostatic
repulsion between the electrons is ignored. Whereas in the hydrogen atom the energy of any
given state depends only on the principal quantum number /1, the energy of a state in a mul­
tielectron atom depends also on the quantum number l. This is because the electrons in in­
ner orbitals shield the nucleus from the electrons in the outer orbitals. For example, a 2s elec­
tron penetrates the 1s shell to a greater extent than a 2p orbital, as can be seen from Figure
3.6. So a 2p electron is more shielded from the nucleus than a 2s electron and so has a higher



Table 3.1 Electron Configurations of the Elements

Atomic Electron Atomic Electron
Period Number Element Configuration Period Number Element Configu ration

1 H Is1 52 Te [Kr) 4d lO5s25p4

2 He Is2 53 I [Kr] 4d105s25ps

3 Li [He)2s1 54 Xe [Kr] 4d lO5s25p6

4 Be [He] 2s2
55 Cs [Xe]6s1

5 B [He) 2s22p l 56 Ba [Xe] 6s2

2
6 C [He) 2s22p2 57 La [Xe]5d l 6s2
7 N [He) 2s22p3 58 Ce [Xe)4f2 6s2

8 0 [He] 2s22p4 59 Pr [Xe) 4f2 6s2

9 F [He] 2s22p5 60 Nd [Xe] 4f4 6s2

10 Ne [He) 2s22p6 61 Pm [Xe)4fs 6s2

II Na [Ne) 3s1 62 Sm [Xe) 4f6 6s2

12 Mg [Ne) 3s2 63 Eu [Xe)4f1 6s2

13 Al [Ne) 3s23p l 64 Gd [Xe) 4f15d 16s2

14 Si [Ne) 3s23p2 65 Tb [Xe)4f9 6s2

3
15 P [Ne] 3s23p3 66 Dy [Xe] 4f lO 6s2

16 S [Ne] 3s23p4 67 Ho [Xe)4f ll 6s2

17 Cl [Ne) 3s23p5 68 Er [Xe) 4f l2 6s2
6 69 Tm [Xe]4f I3 6s2

18 Ar [Ne] 3s23p6
70 Yb [Xe)4f 14 6s2

19 K [Ar]4s1 71 Lu [Xe] 4fl45d l6s2

20 Ca [Ar) 4s2 72 Hf [Xe] 4fl45d26s2

21 Sc [Ar] 3d l4s2 73 Ta [Xe) 4fl45d36s2

22 Ti [Ar] 3d24s2 74 W [Xe) 4fl45d46s2

23 V [Ar) 3d34s2 75 Re [Xe) 4fl45d56s2

24 Cr [Ar) 3ds4s1 76 Os [Xe) 4fl45d66s2

25 Mn [Ar) 3ds4s2 77 If [Xe) 4f l45d76s2

26 Fe [Ar) 3d64s2 78 Pt [Xe] 4fl45d96s I

4
27 Co [Ar) 3d74s2 79 Au [Xe] 4fl45d106s I
28 Ni [Ar) 3d84s2 80 Hg [Xe) 4[145d 106s2

29 Cu [Ar) 3d lO4s1 81 TI [Xe] 4fl45dlO6s26pl

30 Zn [Ar] 3d lO4s2 82 Pb [Xe) 4fl45dlO6s26p2

31 Ga [Ar] 3d I04s24pl 83 Bi [Xe) 4fl45d 106s26p3
32 Ge [Ar] 3d lO4s24p2 84 Po [Xe] 4fl45d106s26p4

33 As [Ar] 3d lO4s24p3 85 At [Xe)4f145d106s26p5

34 Se [Ar) 3d 104s24p4 86 Rn [Xe) 4fl45dlO6s26p6

35 Br [Ar) 3d I04s24p5
7s1

36 Kr [Ar) 3d 104s24p6 87 Fr [Rn)
88 Ra [Rn) 7s2

37 Rb [Kr) 5s 1 89 Ac [Rn)6d l 7s2

38 Sr [Kr) 5s2 90 Th [Rn) 6d2 7s2

39 Y [Kr] 4d l5s2 91 Pa [Rn] 5f26d17s2

40 Zr [Kr) 4d25s2 92 U [Rn] 5f36d 17s2

41 Nb [Kr) 4d45s 1 93 Np [Rn) 5f46d l7s2

42 Mo [Kr) 4d55s1 94 Pu [Rn) 5f6 7s2

43 Tc [Kr] 4d65s1 7 95 Am [Rn)W 7s2

5 44 Ru [Kr)4d 75s 1 96 Cm [Rn) 5f76d l7s2

45 Rh [Kr) 4d85s 1 97 Bk [Rn) 5[9 7s2

46 Pd [Kr)4d 1o 98 Cf [Rn) 5f'0 7s2

47 Ag [Kr] 4d J05s 1 99 Es [Rn] 5fll 7s2

48 Cd [Kr) 4d J05s2 100 Fm [Rn) 5f12 7s2

49 In [Kr) 4d J05s25pl !OI Md [Rn) 5[13 7s2

50 Sn [Kr] 4d J05s25p2 102 No [Rn] 5fl4 7s2

51 Sb [Kr) 4d J05s25p3 103 Lr [Rn) 5fl46d l7s2
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energy. Similarly, all p orbitals have a higher energy than the cOITesponding s orbital and d
orbitals have a still higher energy. The energies of the orbitals in a multielectron atom can
be obtained experimentally from atomic spectra and ionization energies. The electron con­

figurations of the atoms of the elements are given in Table 3.1.

3.1 I Bonding Models

The nuclei in a molecule are held together by the electrons, so the electron density provides
the fundamental basis for understanding bonding. Only relatively recently, however, has it be­
come possible to obtain reasonably accurate electron density distributions for molecules of
moderate size: either experimentally in a few cases by X-ray crystallography (Section 6.5) or,
more commonly and conveniently, from a rather accurate computed wave function. Conse­
quently we can now use the analysis and interpretation of electron distributions as a basis for
understanding bonding, as we describe in Chapter 6. In the past it was usual to obtain an ap­
proximate wave function by some approximation method and then use this wave function as
a basis for attempting to understand bonding. Two of these approximation methods-the va­
lence bond (VB) method and the molecular orbital (MO) method-have dominated the dis­
cussion of the chemical bond. Today the molecular orbital method is the more popular. It is
the method used for the vast majority of ab initio calculations (Section 3.12) because it is com­
putationally simpler and more economical than the valence bond method. However, many
chemists continue to use approximate valence bond descriptions of the bonding in a molecule.

The VB and the MO methods are rooted in very different philosophies of describing
molecules. Although at the outset each method leads to different approximate wave func­
tions, when successive improvements are made the two ultimately converge to the same wave
function. In both the VB and MO methods, an approximate molecular wave function is ob­
tained by combining appropriate hydrogen-like orbitals on each of the atoms in the mole­
cule. This is called the linear combination of atomic orbitals (LeAO) approximation.

3.11./ The Valence Bond Method

The VB method recognizes that characteristic lengths, energies, and force constants can be
attributed to the bonds in very many molecules, as we discussed in Chapter 2. We begin with
the atoms that form the molecule and pair up the unpaired electrons to form bonds. There
may be several ways in which the electrons can be paired up. For example, the unpaired
electrons in the 2px and 2py orbitals of the oxygen atom can each be paired with a single oc­
cupied hydrogen Is orbital. We might also pair the two hydrogen Is electrons to give the
following pairing schemes:

2px
/
1S

HI

o
2px 2pl'

Is----1s
HI H2

Localized bonding orbitals are then constructed from a linear combination of the orbital on
each of the paired atoms. To do this we use the principle of maximum overlap, which states
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--
H, H2

Figure 3.13 The formation of two bonding orbitals b l and b2 . (a) The overlap of the 2px and 2py or­
bitals of an oxygen atom with the Is orbitals of two hydrogen atoms HI and H2 leads (b) to the two
bonding orbitals, b l and b 2.

that an AO on one atom should overlap as much as possible with an orbital on the atom to
which it is bonded. The greater the overlap of the orbitals, the lower the energy of the mol­
ecule. Because the distance between the two H atoms is rather large, the overlap between
the two 1s orbitals is small, so this structure does not make an important contribution and is
usually neglected.

Figure 3.13 shows approximate representations of the 2px and 2py orbitals. To construct
the two bonding orbitals b l and b2 we place the H atoms along the directions of the 2px and
2py orbitals of the 0 atom to give maximum overlap of a 1s orbital of H with the 2px and
2py 0 orbitals (Figure 3.13). This bonding model implies a bond angle of 90° for the water
molecule, which is not in very good agreement with the observed angle of 104.5°.

To enhance the overlap between an orbital on oxygen and the Is orbital on hydrogen,
and in general to obtain orbitals consistent with the geometry of the molecule, Pauling in­
troduced the concept of hybridization. In this process, orbitals centered on the same atom
are combined to obtain new hybrid orbitals, each of which is more concentrated in one di­
rection than in the opposite direction and thus has a greater overlap with a ligand orbital
(Figure 3.14).

Figure 3.14 Hybrid orbitals hi and h2 formed from the sand p orbitals of the oxygen atom to corre­
spond to the bond angle of 104.5". These orbitals have a greater overlap with the hydrogen Is orbitals
than the atomic 2p orbitals and so form stronger bonds.
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For example, we can construct h I and hz, two hybrid orbitals for describing the bonds
in the water molecule, by taking the two combinations

(3.16)

where A is an adjustable mixing parameter. The value of A determines the relative contribu­
tions of the sand p orbitals and also the angle between the hybrids, which is given by 1 +
Azcosze, where e is the angle between the two hybrid orbitals. From the experimental value
of 104.5 0 for the bond angle in the water molecule, we find A = 0.80. Hence each of the two
hybrid orbitals contain 80% p, character and 20% s character. This hybridization gives two
orbitals that are more concentrated in the direction of the H atoms, and have a greater over­
lap with H" and Hz than the p orbitals in Figure 3.13 and are consistent with the observed
geometry.

Other hybrid orbitals that are commonly used in the valence bond description of bonds,
particularly for organic molecules, are the sp, spz, and Sp3 hybrids. The sp orbitals, which
have equal contributions from an s and a p orbital so that A = 0.5 and the angle between the
two hybrids is 1800

, are used, for example, in the description of the bonds in the ethyne mol­
ecule. The spz orbitals are constructed from equal contributions of an s and two p orbitals,
and the Sp3 orbital from equal contributions of the s and three p orbitals (Table 3.2). They
are used to describe the bonds in ethene and methane, where the bond angles are approxi­
mately 1200 and exactly 109.50

, respectively. Figure 3.15 illustrates the formation of an sp
hybrid orbital from the 2s and 2p orbitals and some popular representations of the shape of
this orbital. We can see that the very commonly used depiction of an sp orbital in Figure
3.15d is only a very rough approximation. The electron density distributions IjJz of sp, spz,
and Sp3 orbitals are shown in Figure 3.16 in the fonn of dot density diagrams. They all have
rather similar shapes and are also quite similar to other shapes of diagrams of IjJ (Figure 3.15).
In particular they are more concentrated in one direction along their axis than in the oppo­
site direction, and so they have a greater overlap with another orbital in this direction. Fig­
ure 3.17 shows the relative orientation of the sp, spz, and sp3 sets of hybrid orbitals. The
very approximate nature of these representations of hybrid orbitals and the corresponding
electron density distributions becomes clear when we realize that the total electron density
of four sp3 hybrid orbitals is spherical, as is the total electron density of the 2s and three 2p
orbitals. When the sp3 orbitals are used to construct four bonding orbitals in the methane
molecule by overlapping them with four hydrogen Is orbitals, the electron density is more

Table 3.2 Examples of Hybrid Orbitals Used to Describe Equivalent Bonds

Molecule

Ethyne Ethene Methane Water

Hybrid set 2(sp) 3(sp2) 4(Sp3) 2(S040p 1.60)

Hybrid so.spo.s SO.33pO.67 SO.25pO.75 sO.20pO.80

Bond angle 180° 120°3 109.5° 104.5°
,\b I v2 v3 2.0

"This description of the bonding orbitals is only an approximation: the experimental bond angle is 116°.

bEqualion 3.16.
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(a)

Node Node

(b)

/
/

(d)

Figure 3.15 An sp hybrid orbital. (a) left, radial functions for the 2s and 2p atomic orbitals; right, ra­
dial function for the sp hybrid orbital (b) left, the shapes of the 2s and 2p atomic orbitals as indicated
by a single contour value; right, the shape of the sp hybrid orbital as indicated by the same contour.
(c) The shape of a surface of constant electron density for the sp hybrid orbital. (d) Simplified repre­
sentation of (c). (Reproduced with permission from R. J. Gillespie, D. A. Humphreys, N. C. Baird, and
E. A. Robinson, Chemistry, 2nd Ed., 1989, Allyn and Bacon, Boston.)

concentrated along each bond axis and the total density is no longer spherical. Thus, these
approximate diagrams more closely represent the bonding orbitals in the molecules BeH2,

BH3, and CH4 than the hybrid orbitals from which they are constructed.
It is important to emphasize that:

• Hybridization is not a physical phenomenon. It is a mathematical operation that is used to
construct localized orbitals to describe the bonding in a molecule.



(a) (b) (c)

Figure 3.16 Dot density diagrams of sp, Sp2, and Sp3 orbitals. (Reproduced with permission from
M. J. Winter, Chemical Bonding, 1994, Oxford University Press, Oxford.)

(a)

x

z

(b)

x

/
/

/
/

/
/

/
/

/:------
I

------

z

y

(c)

Figure 3.17 Geometry of hybrid orbitals. (a) digonal sp hybrids oppositely directed along the same
axis; (b) trigonal sp2 hybrids pointing along three axes in a plane inclined at 120°; (c) tetrahedral Sp3
hybrids pointing towards the comers of a regular tetrahedron. (Reproduced with permission from R.
McWeeny, Coulson's Valence, 1979, Oxford University Press, Oxford.)
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• Hybridization does not in general predict the equilibrium geometry. On the contrary, the
construction of appropriate hybrid orbitals relies on a given or predetermined geometry.

For some molecules there are several reasonable pairing schemes. The total wave func­
tion is then a combination of the wave functions of each of these structures. For example,
there are two equivalent pairing schemes for benzene corresponding to the two Kekule struc­
tures. These pairing schemes contribute equally to the total wave function. These different
possible valence bond structures correspond to Lewis structures and are the resonance struc­
tures mentioned in Chapter I. The possibility of writing more than one pairing scheme im­
plies that the electrons are not as localized as the pairing scheme or Lewis structure assumes.
Such molecules are often more conveniently described by the molecular orbital method. Nev­
eltheless, resonance structures are still often used in the description of bonding because of
usefulness of the concept of localized bonds. However, when a large number of such struc­
tures are required for a satisfactory description, as is the case for the higher boranes, the
method becomes cumbersome and less useful.

3.11.2 The Molecular Orbital (MO) Method

The central feature of the MO method is that orbitals are constructed from all the atomic or­
bitals in the valence shells of each atom that have the correct symmetry to have a net over­
lap. Unlike the orbitals of the valence bond method, which are restricted to two atoms only,
the orbitals obtained by the MO method cover the whole molecule. These orbitals are then
arranged in their presumed or calculated order of increasing energy and each is filled with
two electrons of opposite spin in accordance with the Pauli exclusion principle and the auf­
bau principle. The use of atomic orbitals to construct molecular orbitals is, however, only a
rough approximation. An accurate molecular orbital description can be obtained only by

-means of ab initio calculations (Section 3.12). The molecular orbital description of a mole­
cule is particularly relevant for the description of electronic excitations in which the whole
molecule participates, as in electronic spectra and photoionization. The energies of the mol­
ecular orbitals of a molecule can be obtained from such spectra. It is not possible to say that
an excited electron came from a particular localized orbital because the whole molecule is
affected by the ionization or removal of an electron. It is sometimes claimed, because such
spectra can be described only in terms of an MO description, that the MO description of a
molecule is superior to the VB description, but this is not the case. We must use whichever
description is relevant to the phenomenon under discussion. If we are talking about bond
properties such as length and energy and about geometry, then a localized orbital (VB) de­
scription is more relevant than an MO description. Consequently we do not make much use
of the molecular orbital method in this book.

Double and triple bonds, particularly those in carbon molecules, are often described in
MO terms. Thus a double bond is described as consisting of a (J bond formed by the over­
lap of an sp hybrid orbital on each carbon atom and a 7T bond formed by the "sideways"
overlap of either the 2px or 2py orbitals (Figure 3.18). A (J orbital has cylindrical symmetry
like an atomic s orbital whereas a 7T orbital, like an atomic p orbital, has a planar node pass­
ing through the nucleus of each of the bonded atoms. A triple bond is similarly described as
consisting of a (J orbital and two 7T orbitals formed from both the 2px and 2py orbitals on



3.1 1 Bonding Models • 77

----
(a)

(-(rr

(b)

(c)

Figure 3.18 Conventional representations of 'TT orbitals. (a) The 'TT orbital in the ethene molecule.
(b) The two 'TT orbitals in the ethyne molecule. (c) A dot density diagram of the electron density in a
plane perpendicular to the bond axis in ethyne. (Reproduced with permission from M. J. Winter, Chem­
ical Bonding, 1994, Oxford University Press, Oxford.)

each carbon atom. (Figure 3.18). The inadequacy of the conventional representations of p
orbitals is clear from these diagrams-they do not show any "sideways" overlap of the p or­
bitals, which is sometimes artificially represented by dashed lines as in Figure 3.18b. Nor
do they show that the total 7T-electron density around the CC bond axis in ethyne is cylin­
drically symmetrical. These 7T orbitals are strictly speaking not molecular orbitals because
they are localized to just two carbon atoms. However, the terminology of the MO method is
used to distinguish this description from the alternative description that can be given in terms
of localized orbitals.

This alternative description follows from classical ideas and from a VB description uti­
lizing hybrid orbitals. According to this description, a double bond is described as consist­
ing of two bent bonds, sometimes called T bonds or banana bonds, formed by the overlap of
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Figure 3.19 Bent-bond representation of the double bond in ethene. The overlap of Sp3 orbitals on
each carbon atom produces to bend bond (T) orbitals.

Sp3 hybrid orbitals (Figure 3.19) and a triple bond as consisting of three bent or T bonds. The
very approximate conventional illustrations of bent bonds do not give a good picture of the
total electron density, which, in ethene, as we will see in Chapter 6, has a maximum value
along the bond axis and an elliptical cross section. The MO and VB descriptions are equiv­
alent because the set of (J and 'TT orbitals can be transformed into T orbitals by forming ap­
propriate linear combinations, as shown in Figure 3.20. We may use whichever description
is the most convenient for our purposes. The (J-'TT description is the most popular because it
can be easily extended to other unsaturated hydrocarbons and their derivatives (e.g., butadi­
ene, benzene), as discussed in any organic chemistry textbook. Note, however, that it is
strictly incorrect to say that a C=C double bond consists of a (J and a 'TT orbital, or that it
consists of two T bonds-these are only convenient descriptions. It is also strictly incorrect
to define a bond as being formed by the overlap of atomic or hybrid orbitals. This is simply
a convenient description of a hypothetical process.

The MO and VB methods provide altema+ive but equivalent descriptions of the bond­
ing in a molecule. A set of molecular orbitals can always be transformed into a correspond­
ing set of more localized orbitals, and vice versa. For example, according to the MO de-

0·0·0
C C

<J

+

1t

Figure 3.20 (a) The U-7T model of the C=C double bond. (b) Taking the sum and difference of these
orbitals produces two bent bond (T) orbitals.
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Figure 3.21 (a) Simplified representations of the two main bonding MOs of the water molecule.
(b) Simplified representations of the localized equivalent bonding MOs in water.

scription, the water molecule has two bonding molecular orbitals whose approximate shapes
are shown in Figure 3.21 a. By taking two linear combinations of these two orbitals, that is.
the sum and difference, we form two orbitals that are largely localized in each of the OH
bonding regions and correspond approximately to the two localized bonding orbitals of the
VB method (Figure 3.21 b). We can think of fully localized orbitals and molecular orbitals
as two limiting models. In real molecules electrons are not as localized as localized bonding
models assume, nor are they as fully delocalized as the simple MO theory indicates.

3.12 Ab Initio Calculations

Thus far we have discussed only the most rudimentary forms of the valence bond and mol­
ecular orbital descriptions of molecules, which are neveltheless widely used by many chemists
in the qualitative discussion of bonding and geometry. However, both these methods have
been highly developed to obtain very accurate solutions of the SchrOdinger equation and thus
accurate, geometries energies and wave functions for even rather large molecules. Commer­
cial quantum chemistry packages for calTying out these calculations have been available for
some time. Their user-friendliness and high level of automation have encouraged many re­
searchers to run them on personal computers and the results of such calculations are now a
valuable complement to experiment. They are becoming increasingly regarded as "black
boxes," just as experimental techniques are sometimes regarded. So it is not essential to have
a detailed understanding of the theory but it is important to have, at least, some understand­
ing of the reliability, accuracy, and limitation of the calculations. Because, in contrast to what
are known as semiempiricaI calculations, these calculations do not make use of any exper-
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imental parameters but only the fundamental properties of electrons and nuclei, they are
called ab initio (from first principles) calculations. We do not discuss semiempirical calcu­
lations, which are more easily carried out, but less accurate, because, although important in
the past, they are now less important than ab initio calculations.

In the following we give only a brief and nonmathematical description of the development
of the MO method to obtain geometries and wave functions. Since it is computationally both
more simple and more economical to carry out ab initio calculations within the MO formalism
(than working with the VB formalism), the MO method is the most commonly used.

Molecules in their ground state are typically treated using the so-called Born-Oppen­
heimer approximation. This approximation is also known as the clamped nuclei approxi­
mation because it views the electrons as moving in a field of fixed nuclei. In other words,
the total wave function, which is a function of nuclear and electronic coordinates, can be
separated into a nuclear wave function and an electronic wave function. This approximation
can be justified on the basis that electrons move much faster than nuclei and follow them
quasi-instantly.

The next important approximation in obtaining the wave function for an N-electron mol­
ecule is to write the N-electron wave function as a product of N one-electron wave functions
or orbitals. This product is called the Hartree product. In this approximation the electrons
do not see each other as individuals but only in an average way. More precisely, the proba­
bility of finding one electron in a small volume element is independent of the position of an­
other individual electron. However, the Hartree product is not a realistic wave function be­
cause it does not obey the Pauli principle. The Hartree product must be antisymmetrized
so that it changes sign when the labels of any two electrons are interchanged. The simplest
way to do this is to write the wave function in the form of a single determinant called a.
Slater determinant, because a determinant has the convenient property of changing sign
when any two of its columns are interchanged. A popular computational scheme for obtain­
ing an approximate wave function in this way is called the Hartree-Fock method. Because
this method replaces the instantaneous location of all the electrons other than the one con­
sidered by an average electron distribution, it neglects the correlation of the motion of the
electrons due to their electrostatic repulsion. Correcting for this discrepancy remains a ma­
jor challenge of quantum chemistry, as we discuss later.

The solution of the Hartree-Fock wave equation yields a set of Hartree-Fock orbitals,
each with a corresponding orbital energy. For a system with N electrons in N orbitals,
the NI2 lowest energy orbitals are called occupied orbitals, because each contains two elec­
trons. The remaining members of the set are called virtual or unoccupied orbitals. The
Hartree-Fock equation contains the potential due to the average distribution of electrons,
which itself depends on the solution of the Hartree-Fock equation. To break this vicious cir­
cle, we start with approximate orbitals that are based on reasonable assumptions, from which
we obtain an approximate potential enabling us to solve the Hartree-Fock equation. This
procedure yields improved orbitals, which are different from the approximate orbitals we
first used to construct the potential. We then use these improved orbitals to obtain a new po­
tential from which, by solving the Hartree-Fock equation, we again obtain new orbitals, and
so on. We repeat the procedure until the orbitals obtained differ insignificantly from those
that went into the Hartree-Fock equation in the preceeding step. In other words, we continue
the procedure until it ultimately converges iteratively to a self-consistent set of orbitals, which
is why this method is called the self-consistent field method.
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In practice, the Hartree-Fock equation is solved by starting with a set of basis func­
tions. Originally basis functions were simply hydrogen-like orbitals, but modern calculations
use linear combinations of highly modified orbitals as basis functions. The design of ade­
quate basis functions is more driven by computational efficiency than by physical arguments.
The larger and more complete the set of basis functions, the lower the Hartree-Fock energy
becomes until a limit is reached, called the Hartree-Fock limit.

The remaining difference between the exact energy and the energy corresponding to the
Hartree-Fock energy is called the correlation energy, and it is due to the electrostatic in­
teraction between the electrons. Various methods have been devised to calculate this energy
and thus approach more closely to the exact energy. All these methods, which are known by
various acromyms (e.g., MP2, CCSD, QCISD, IPA), lead to some improvement in the ac­
curate description of molecules, but at varying computational cost. Details can be found in
several standard texts.

Some alternative computational methods such as density functional theory (DFT) by­
pass the Hartree-Fock approximation. The basic idea behind DFT is that the energy of an
electronic system can be expressed solely in terms of the electron density (i.e., without ref­
erence to orbitals). The energy is then a "function" of the function p. Such a "function" is
correctly called a functional. However, its exact form is not known. Various methods have
been proposed for constructing an approximate functional from which an improved electron
density and energy can be obtained and the calculation repeated iteratively until the calcu­
lated electron density and the corresponding energy cease to change significantly, as in the
Hartree-Fock method. Cun-ently DFT is a very active area of research and is being increas­
ingly used in quantum chemistry. Many improved functionals have been designed that give
rather accurate wave functions and energies, as judged by the agreement between the mini­
mum energy geometry and the experimental geometry.

One of the major goals of modern quantum chemistry has been the calculation of mol­
ecular energies to an accuracy of ± 5-1 0 kJ mol-I, which is the accuracy to which molec­
ular energies can be obtained experimentally, and this goal has been attained in recent years.
One of the techniques to obtain this accuracy is called Gaussian 2 (G2). G2 is a technique
in which the energy of the molecule is incrementally decreased by increasing the number of
basis functions, by using successively more refined methods to compute the correlation en­
ergy, and by the adjustment of the geometry of the molecule. In this way the energy of the
lowest energy equilibrium geometry of the molecule is obtained, together with the corre­
sponding wave function.

Determination of the geometry in this way is now a valid alternative to experimental
methods. It is particularly useful for molecules that are so reactive or unstable that their
geometry cannot be easily determined and for molecules that have not yet been observed.

• 3.13 Postscript

Ab initio calculations give us a knowledge of the energy of a molecule in its equilibrium
ground state and its corresponding geometry and wave function. Unless it is a very reactive
or unstable molecule, its geometry can also be determined experimentally and provides a
good check on the accuracy of the calculated geometry. The wave function, however, which
is not a physical observable, cannot be determined by experiment. Moreover, it does not di-
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rectly give us any understanding of the bonding or geometry of a molecule. To attempt to
obtain such an understanding we need to interpret the wave function. The total wave func­
tion is composed of N two-electron molecular orbitals each of which extends over the whole
molecule. In order to interpret the wave function, it is usual to convert the molecular orbitals
into equivalent, more localized, orbitals that we can hope to identify with concepts such as
bonds and lone pairs. There are several criteria on the basis of which orbitals can be local­
ized and the choice of procedure is arbitrary so the localized orbitals thus obtained are not
unique and they are also not physically observable.

Alternatively, we can base our analysis on the electron density, which as we have seen, is
readily obtained from the wave function. The advantage of analyzing the electron density is that,
unlike the wave function, the electron density is a real observable property of a molecule that,
as we will see in Chapter 6, can be obtained from X-ray crystallographic studies. At the present
time however, it is usually simpler to obtain the electron density of a molecule from an ab ini­
tio calculations rather than determine it experimentally. Because this analysis is based on a real
physically observable property of a molecule, this approach appears to be the more fundamen­
tal. It is the approach taken by the atoms in molecules (ArM) theory, which we discuss in Chap­
ters 6 and 7, on which we base part of the discussion in Chapters 8 and 9.

Before discussing the AIM theory, we describe in Chapters 4 and 5 two simple models,
the valence shell electron pair (VSEPR) model and the ligand close-packing (LCP) model
of molecular geometry. These models are based on a simple qualitative picture of the elec­
tron distribution in a molecule, particularly as it influenced by the Pauli principle.
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c H A T E R

MOLECULAR GEOMETRY AND

THE VSEPR MODEL.. ..

• 4.1 Introduction

Stereochemistry, the study of the three-dimensional structures of molecules, was born in 1874
with the independent proposals by Ie Bel and van't Hoff that the four valences of carbon are
directed toward the corners of a tetrahedron. By means of this model they were able to ac­
count for the first time for the existence of chiral molecules. Their model was later extended
to other four-coordinated atoms such as silicon, to boron in ions such as BF4-, and to ni­
trogen in ions such as NH4 +. In his coordination theory Werner proposed in 1893 that six­
coordinated transition metal molecules and ions have an octahedral geometry. He proved this
in 1911 by separating the optical isomers of [Co(enhJCI3 and similar compounds. The tetra­
hedral geometry of many four-coordinated atoms and the octahedral geometry of many six­
coordinated atoms was clearly established by the early 1900s. Little information about other
molecular geometries, and no quantitative information, was available until the 1930s. The
development of physical methods for the direct determination of molecular geometry such
as X-ray and electron diffraction, and infrared and Raman spectroscopy in the 1930s led to
the confirmation of the tetrahedral geometry of most four coordinated molecules and the oc­
tahedral geometry of most six-coordinated molecules. The trigonal bipyramidal geometry of
some five-coordinated molecules was also established, and a few examples of square planar
four-coordinated molecules were discovered. More important, however, it became possible
for the first time to measure bond lengths, the distance between the nuclei of two atoms that
are bonded together, bond angles, the angles between bonds to the same atom, and torsional
angles, the angles between bonds on adjacent atoms. These are the only properties of bonds
that can be clearly defined and measured for bonds of all types in all molecules. These prop­
erties are therefore particularly useful for discussing the nature of bonds. In this chapter we
discuss molecular shapes and bond angles. Bond lengths and other related bond properties
were discussed in Chapter 2.

In 1940 Sidgwick and Powell surveyed the geometry of the singly bonded AXn mole­
cules whose structures were known at the time and showed that most of them could be ra-
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tionalized on the assumption that the geometry of an AXn molecule is determined by the to­
tal number of electron pairs, both bonding and nonbonding, in the valence shell of the cen­
tral atom A, as given by the Lewis structure for the molecule. They concluded that two pairs
of electrons in a valence shell have a linear arrangement, three pairs a triangular arrange­
ment, four pairs a tetrahedral arrangement, five pairs a trigonal bipyramidal arrangement,
and six pairs an octahedral arrangement. The paucity of structural information on molecules
with higher coordination numbers prevented them from reaching any firm conclusions about
the preferred arrangements of more than six electron pairs in a valence shell. They included
transition metal molecules in their discussion but noted that among these molecules there
were many exceptions to their generalizations.

Sidgwick and Powell's important proposal did not gain much attention until it was de­
veloped and extended by Gillespie and Nyholm in 1957 into what has subsequently become
known as the VSEPR (valence shell electron pair repulsion) model or sometimes as the
Gillespie-Nyholm rules. Gillespie and Nyholm were able to discuss a considerably larger
number of molecules, and they showed that the geometry of the vast majority of the mole­
cules of the main group elements, particularly those of the nonmetals, is consistent with the
electron pair arrangements proposed by Sidgwick and Powell. They showed that these elec­
tron pair arrangements are those that maximize the distances between the electron pairs and
that they are primarily a consequence of the operation of the Pauli principle. Moreover, by
considering the differences between lone pairs and bond pairs, and between single, double,
and triple bonds, as well as the effects of ligand electronegativity, they were able to give a
qualitative explanation of deviations of bond angles from the ideal values of 90, 109.5, and
1200 found in molecules with structures based on regular polyhedra. Since that time the num­
ber of molecules whose geometry can be rationalized by the VSEPR model has grown enor­
mously. Moreover, the model itself has undergone some modifications and improvements,
and its limitations have been more clearly understood.

This chapter is devoted to an account of the VSEPR model particularly as applied to
molecules of the main group elements.

• 4.2 The Distribution of Electrons in a Valence Shell

The fundamental assumption of the VSEPR model is that electron pairs adopt arrangements
that keep them as far apart as possible. They behave as if they repel each other. As we saw
in Chapter 3, this behavior is mainly a consequence of the Pauli principle and is not pri­
marily a result of electrostatic repulsion. We discussed in Chapter 3 the effect of the Pauli
principle on the distribution of same-spin electrons. We saw that if three electrons of the
same spin between which there are no force fields of any kind are constrained to move in a
circular ring their most probable arrangement is the one in which they are at equal intervals
around the ring-in other words, as far apmt as possible. This arrangement is reinforced by
the electrostatic repulsion between the electrons, but electrostatic repulsion it is not the main
reason for the adoption of this most probable arrangement, since this is determined primar­
ily by the Pauli principle. The argument can be extended to four electrons confined to move
on the surface of a sphere. Their most probable arrangement, which is due primarily to the
operation of the Pauli principle reinforced by electrostatic repulsion, is that in which they
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are at the vertices of a tetrahedron. Now we are ready to consider why electrons in mole­
cules appear to be found in pairs that are also arranged as far apart as possible.

The formation of electron pairs in molecules cannot be understood in terms of electro­
statics alone, as Lewis realized but could not explain; it can be understood, however, if both
electrostatics and the Pauli principle are taken into account. In most molecules there are equal
numbers of electrons of opposite spin. We first consider the very common case of a valence
shell containing eight electrons, four of a spin and four of f3 spin, and we assume that they
are at the same average distance from the nucleus. In accordance with the Pauli principle, in
the most probable relative arrangement of the four a electrons they are as far apart as pos­
sible-in other words, they are at the vertices of a tetrahedron (Figure 4.1). In a free atom
or ion, such as Ne, F-, or 0 2-, this most probable relative tetrahedral arrangement of the a
electrons does not have a fixed orientation. Thus there is an equal probability of finding an
a electron anywhere in the valence shell; in other words, the total electron density distribu­
tion of the four a electrons is spherical. Similarly, the most probable arrangement of the four
f3 electrons is at the vertices of a tetrahedron, which in a free atom or ion does not have any
fixed orientation in space. Thus their total electron density distribution is also spherical. From

a

a
a

(a) a

f3 a

a
f3

•
af3

a f3

f3

f3

(b) f3

af3

L_---\--Yaf3H

af3

(c) f3 a (d) H

Figure 4.1 The most probable relative arrangement of (a) four a-spin electrons, (b) four f3-spin elec­
trons, (c) four a- and four f3-spin electrons, and (d) four pairs of af3-spin electrons in the H20 mole­
cule.
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the point of view of the Pauli principle, there is no preferred arrangement of one spin set rel­
ative to the other. However, electrostatic repulsion, while reinforcing the tetrahedral arrange­
ment of each spin set, keeps the tetrahedra apart, so that the most probable relative arrange­
ment of the two spin sets is that in which they are occupying alternate comers of a cube
(Figure 4.1c). Nevertheless, because this relative arrangement of the electrons does not have
any fixed orientation in space, the overaH total charge distribution is spherical. It is inter­
esting to note that Lewis first proposed that the eight electrons of an octet have a cubic
arrangement, but he later abandoned this model for a tetrahedral arrangement of four pairs.
Lewis's first suggestion was essentially correct for a free atom or ion. As we shaH see, elec­
tron pairs are present only in molecules, not in free atoms or ions.

In a molecule the spherical electron distribution of a free atom is perturbed by the atoms
with which it is combined. Let us imagine, for example, that we start with a spherical oxide
ion 0 2 - and form a water molecule by bringing up two protons. Each proton attracts elec­
trons, but, as a consequence of the Pauli principle, only two electrons of opposite spin can
be attracted toward each hydrogen nucleus. If the hydrogen nuclei attract the oxygen valence
shell electrons sufficiently strongly, the tetrahedron of a electrons and the tetrahedron of f3
electrons win be brought into approximate coincidence, forming four electron pairs. Thus a
pair of electrons has a high probability of being found in each of the regions between the
oxygen core and a hydrogen nucleus. These two pairs are the bonding pairs. At the same
time, two nonbonding, or lone, pairs of electrons are also necessarily formed, so that there
are four electron pairs with an approximately tetrahedral arrangement-two bonding pairs
and two nonbonding or lone pairs (Figure 4.1d). Now the four regions in which there is a
high probability of finding a pair of electrons are fixed in space relative to the positions of
the H nuclei, so the overall electron density around the oxygen is no longer spherical but is
greater in the four tetrahedral directions than in other directions.

It is important to appreciate that two electrons of opposite spin do not attract each other
to form a pair. Rather, despite their mutual repulsion, they are brought into the same region
of space by the attraction of the positively charged ligand atom core. It is only two electrons
of opposite spin that can be brought together in this way. A third electron has a very low
probability of being found in this region, because it will have the same spin as one of the
electrons of the bonding pair. We see, therefore, why a bond is always associated with a pair
of electrons, as Lewis first realized but was unable to explain.

Similarly, if we bring up three protons to an N3- ion, we form the triangular pyramidal
NH3 molecule with a tetrahedral arrangement of three bonding pairs and one nonbonding pair,
and if we bring up four protons to a C4 - ion we form the tetrahedral C~ molecule (Figure 4.2).
However, if a proton combines with an F- ion, two electrons of opposite spin are brought to­
gether to fornl a bonding pair, but the two tetrahedra of same-spin electrons are free to rotate
around the HF bond axis so that nonbonding pairs are not formed. Instead, the six nonbonding
electrons are equally distributed in a ring perpendicular to the bond axis (Figure 4.3). In gen­
eral, in linear molecules, electrons of opposite spin are not all brought together in pairs. Only
those opposite-spin electrons that have a most probable location on the molecular axis are brought
into coincidence, leaving the remaining electrons equally distributed in a ring around the mol­
ecular axis. That some of the electrons are not paired in linear molecules provided the basis for
the double-quartet model proposed by Linnett in 1964. We discuss this model in Section 4.5.



88 • Molecular Geometry and the VSEPR Model
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Figure 4.2 The tetrahedral arrangement of four a{3 pairs of electrons in the NH3 and CH4 molecules.

•

H~
Figure 4.3 The most probable arrangement of the electrons in the va­
lence shell of fluorine in the HF molecule. Only one localized pair is
formed with the other electrons equally distributed in a ring behind the

o F nucleus.• a spin electron or 0 {3 spin electron.

We see that it is a consequence of the Pauli principle and bond formation that the elec­
trons in most molecules are found as pairs of opposite spin-both bonding pairs and non­
bonding pairs. The Pauli principle therefore provides the quantum mechanical basis for
Lewis's rule of two. It also provides an explanation for why the four pairs of electrons of an
octet have a tetrahedral arrangement, as was first proposed by Lewis, and why therefore the
water molecule has an angular geometry and the ammonia molecule a triangular pyramidal
geometry. The Pauli principle therefore provides the physical basis for the VSEPR model.

• 4.3 Electron Pair Domains

So far we have considered just the most probable angular arrangements of electrons in a va­
lence shell. But each electron can be found at locations other than its most probable loca­
tion with decreasing probability with increasing distance from its most probable location.
Each electron can be described by a charge cloud which is most dense at the most probable
location of the electron and becomes less dense with increasing distance from this most prob­
able location. Since both electrons of a bonding or nonbondihg electron pair have the same
probability distribution, they may be considered to form one two-electron charge cloud. In
accordance with the Pauli principle, there is a low probability of finding any other electrons
in the space that this electron pair occupies, and the more strongly this electron pair is lo­
calized, the more strongly it excludes other electron pairs from its space. When electron pairs
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are sufficiently localized, it is a useful, although rough, approximation to assume that each
charge cloud almost completely excludes other charge clouds. We call the region of space
occupied by a pair of electrons, that is, by the charge cloud of an a{3 pair of electrons, an
electron pair domain. An electron pair domain can be defined as the region of space in
which there is a high probability of finding an electron pair, or in which a large fraction of
an electron pair charge cloud is found. An electron pair domain surrounds the point at which
there is a maximum probability of finding a pair of electrons, that is, at which the electron
charge cloud is most concentrated. The density of the charge cloud is a maximum at this
point and the density decreases on moving away from this point. So in the water molecule
there are four electron pair domains that have a tetrahedral arrangement, two bonding do­
mains, and two lone pair domains.

We can see now why the static model of Lewis with four electron pairs in a tetrahedral
arrangement is so useful even though electrons are in rapid motion and do not occupy fixed
positions. Each electron pair occupies a reasonably well localized domain, and four domains
have a tetrahedral arrangement.

We have so far considered valence shells containing four pairs of electrons, but we can
extend the same arguments to other numbers of valence shell electron pairs. The most prob­
able arrangements of pairs of opposite spin electrons in the valence shell of an atom in a
molecule are two pairs, collinear; three pairs, equilateral triangular; four pairs, tetrahedral;
five pairs, trigonal bipyramidal; six pairs, octahedral. This is because, as we will now see,
these are the arrangements that keep the electron pairs as far apart as possible. We discuss
valence shells with more than six electron pairs in Chapter 9.

These electron pair domain arrangements can be modeled in several simple ways. For ex­
ample, they are the arrangements of a given number of points on the surface of a sphere in which
each point is at a maximum distance from its neighbors, and each point represents a pair of elec­
trons. This is the points·on-a-sphere model (Figure 4.4). The arrangements of two, three, four,
and six points, namely, linear, triangular, tetrahedral, and octahedral, are intuitively obvious and
easily proved. But the argument for the trigonal bipyrarnidal arrangement of five points is not
quite as simple, and its treatment is deferred until Section 4.6 The same arrangements are ob­
tained by the circles-on-a-sphere model in which a given number of equal circles are packed
on the surface of a sphere so that they occupy a maximum area of the surface (Figure 4.5). Yet
another useful model was first suggested by Kimball and later extensively developed by Henry
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Figure 4.4 The points-on-a-sphere model. The
most probable arrangements of two, three, four,
five, and six points on the surface of a sphere
that maximizes their distance apart.
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Figure 4.5 The octahedral arrangement of six equal circles on a sphere maxi­
mizes the area covered by the circles.

Bent in the 1960's. In this model, which Bent called the tangent sphere model, each electron
pair domain is represented by a sphere. The arrangements adopted by the spheres are those that
allow them to pack as closely as possible around a central spherical core. These sphere arrange­
ments are easily demonstrated with Styrofoam spheres connected by elastic bands, or with toy
balloons (Figures 4.6 and 4.7) They are found in nature in clusters of walnuts, for example (Fig­
ure 4.8). The intersection of the spheres with the spherical surface passing through the points of
contact of the spheres gives the circles-on-a-sphere model, and the centers of the circles or the
spheres give the points-on-a sphere model.

Attempts have been made to put the VSEPR model on a quantitative basis by describ­
ing the interaction between electron pairs in terms of force law of the type

a
Uij = -tk

( ij

where Uij is the repulsion energy between the points i and j, dij is the distance between the
two points, k is an integer, and a is a proportionality constant, to represent the interaction
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Figure 4.6 Styrofoam sphere models representing the arrangements of two, three, four, five, and six
valence shell electron pair domains.

Figure 4.7 BaJloon models representing the an'angements of two to six valence sheJl electron pair do­
mains.
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Figure 4.8 Walnut clusters: an illustration from nature of the packing of spherelike objects. (Repro­
duced with permission from In Our Image: Personal Symmetry in Discovery, 1999, 1. Hargittai and
M. Hargattai, Kluwer, New York.)

between the points in a points-on-a-sphere model. The geometry that has the minimum to­
tal repulsion energy can then be calculated for any value of k. This model has been discussed
in detail by Kepert. The difficulty with this model is that the appropriate value of k for any
particular molecule is not known. The lower limit is k = 1, which unrealistically assumes
only Coulombic repulsion between the domains considered as points. The geometry obtained
as k approaches infinity is the same as that given by Bent's tangent sphere model. Fortu­
nately for all except five and seven particles, the predicted arrangement is independent of
the value of k. The arrangements for two to nine particles are summarized in Table 4.1. An­
other difficulty with this model is that if there is more than one type of ligand, an empirical
parameter must to be introduced for each additional type of ligand as well as for a lone pair,
to make allowance for the distortions of the geometry produced by the additional ligand types
and lone pairs. Nevertheless, the model has proved useful, particularly for molecules con­
taining bidentate and multidentate ligands. For this type of molecule Kepert found that k =

6 gave the best agreement with experiment.
Although the electron domain model is, as we shall see, a very useful model, we must

remember that it is just that, a model-indeed a very approximate model. We cannot observe
the individual domains of electrons but only the total electron density distribution.

In the next section we discuss the geometry of molecules that have two, three, four, and six
valence shell electron pair domains for which all the foregoing models and all values of k pre­
dict the linear, triangular, tetrahedral, and octahedral arrangements of domains, respectively. The
tetrahedron and the octahedron are two of the five regular polyhedra (Figure 4.9). A polyhedron
is regular if its faces are equal polygons and each of its vertices has the same number of neigh­
boring vertices in the same anangement. The regular polyhedra have been known since classi­
cal times and are often called the Platonic solids because they played an important role in Plato's
natural philosophy. The tetrahedron and the octahedron, which have equilateral triangular faces
and also represent close-packed arrangements, are the two most important shapes in chemistry.
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Table 4.1 Minimum Energy Geometries for n Repelling Particles Constrained to Move on the
Surface of a Sphere

Number of particles

2
3
4
5
6

Arrangement'

Linear

Equilateral triangle

Tetrahedron

Trigonal bipyramidb

Octahedron

Number of particles

7
8
9

Arrangement'

Monocapped octahedronc.d

Square antiprismd

Tricapped trigonal

Prismd

'For 2, 3, 4, 6, 8, and 9 particles, the minimum energy arrangements are independent of the value of k in the force law Uij = ad;/

describing the interaction between the points, where dij is the distance between the points i and j.

bFor a value of k = "", which corresponds to a hard sphere model, the square pyramid has the same energy as the trigonal bipyra­
mid.

<For k = I. the pentagonal bipyramid has a lower energy than the monocapped oclahedron.

dThe geometries of these arrangements are described in Chapter 9.

tetrahedron

cube

dodecahedron

octahedron

icosahedron
Figure 4.9 The five regular polyhe­
dra.
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We discuss molecules with a valence shell containing five electron pair domains in Sec­
tion 4.6. The preferred arrangements of five valence shell domains, the tligonal bipyramid
and the square pyramid, are not regular polyhedra and therefore exhibit special features not
found in tetrahedral and octahedral molecules. Molecules with seven and more electron pair
domains in the valence shell of a central atom are not common, although they are of con­
siderable interest. They are restricted to the elements of period 4 and higher periods, with
very small ligands such as fluorine, and are discussed in Chapter 9.

• 4.4 Two, Three, Four, and Six Electron Pair Domain Valence Shells

A useful terminology for classifying molecules according to their geometry is to denote the
central atom by A, a singly bonded ligand by X, and an unshared electron pair by E. Thus
H20, F20, SCI2• and NH2- are all angular AX2E2 molecules; NH3, NCI3, PCI3, and H30+
are all triangular pyramidal AX3E molecules; and CH4, SiCI4, BF4-. and NH4+ are all tetra­
hedral AX4 molecules. Figure 4.10 shows tangent sphere models for AX4, AX3E, and AX2E2
molecules. Table 4.2 and Figure 4.11 summarize all the possible molecular shapes that re­
sult from valence shells containing two to six electron pair domains. The bond angles are
predicted to be 180, 120, 109.5, or 900

, respectively. However, the bond angles in many mol­
ecules are only approximately equal to these ideal angles. Qualitative predictions of the de­
viations from these ideal bond angles can be made in many cases by taking into account dif­
ferences in the sizes and shapes of the electron pair domains in a valence shell. We can think

x

x

x

x
x

x

x

x

x

Figure 4.10 AX4• AX3E. and AX2E2 molecules: (a) tangent sphere models or domain models with
spherical domains; B is a bonding pair and E is a lone pair and (b) conventional bond line structures.
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Table 4.2 Electron Pair Arrangements and the Geometry of AXnEm Molecules'

Number of Arrangement
Electron of Electron Class of Shape of
Pairs Pairs n m Molecule Molecule Examples

2 Linear 2 0 AX2 Linear BeHz, BeClz

3 Equilateral 3 3 AX3 Equilateral BCI3, AICI3

triangular triangular
2 I AX2E Angular SnCI2

4 Tetrahedral 4 0 AX4 Tetrahedral CH4, SiCl4
3 I AX3E Triangular NH3, PCl3

pyramidal
2 2 AX2E2 Angular H20, SClz

5 Trigonal 5 0 AXs Trigonal PCls, AsFs
bipyramidal bipyramidal

4 I AX4E Disphenoidal SF4
3 2 AX3E2 T-shaped CIF3

2 3 AX2E3 Linear XeF2

6 Octahedral 6 0 AX6 Octahedral SF6

5 I AXsE Square BrFs
pyramidal

4 2 AX4E2 Square XeF4
planar

all, number of bonding pairs: m. number of nonbonding pairs,

of an electron pair domain as a charge cloud of approximately constant volume but de­
formable in shape so that it has different shapes in different circumstances. In particular,

o Nonbonding or lone pairs have larger domains that occupy more angular space in the va­
lence shell of the central atom than the domains of the bonding pairs.

o Bonding domains decrease in size and occupy less angular space around a central atom, with
increasing electronegativity of the ligand and/or decreasing electronegativity of the central atom.

o Double-bond and triple-bond domains that consist of two and three electron pairs, respec­
tively, are larger than single-bond domains.

4.4. I The Effect of Lone Pairs on Bond Angles

Because a nonbonding pair is subject to the attraction of only one positively charged core,
as opposed to two for a bonding pair, it is pulled in toward the core and its domain tends to
surround the core as far as is permitted by the presence of the other valence electrons. In
other words, it occupies more angular space. In contrast, a bonding pair is subject to the at­
traction of two cores and therefore has a smaller and more contracted domain that takes up
less angular space around the core of A to an extent that depends on the electronegativity of
X. In general, for a given atom A, the domains of nonbonding pairs take up more of the
space around the core of A than the domains of bonding pairs. This is illustrated in Figure
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Figure 4.11 Molecular shapes based on the arrangements of two to six valence shell electron pairs.

4.12 for the tetrahedral arrangement of three bonding pairs and a lone pair in the NH3 mol­
ecule, showing how this causes the bond angle to be smaller than 109.5°.

Because lone pair domains are larger and more spread out around the central core than
bonding pair domains, the angles between bonding pair domains are smaller than the angles
between lone pair domains. Consequently:

In molecules with lone pairs, bond angles are smaller than the ideal values associated with
a given number of equivalent pairs, and they decrease with increasing number of lone pairs.

Hence bond angles in AX3E and AXzEz molecules are generally smaller than the ideal an­
gie of 109.5° as shown in Figure 4.12 and by the examples in Tables 4.3 and 4.4. However,
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Figure 4.12 Representation of the bonding and nonbonding
electron pair domains in the ammonia molecule, an AX3E mol­
ecule.

for (CH3hN, (CH3hO, and OCh in which oxygen or nitrogen is the central atom and has a
greater electronegativity than the ligands, the bond angle is larger than the tetrahedral angle.
In these molecules the oxygen and nitrogen valence shell electrons are not strongly local­
ized into pairs and ligand-ligand repulsions are responsible for the larger than expected bond
angles, as we will discuss in Chapter 5.

It should be noted that hydrogen, which like carbon is less electronegative than oxygen
and nitrogen, nevertheless gives bond angles that are less than tetrahedral, suggesting that it
localizes the electrons of the central atom to a greater extent than might be expected. That
this is the case is confirmed by the analysis of electron density distribution, as we will see
in Chapters 6 and 7. This unexpected behavior of hydrogen suggests that the assignment of
a constant value for the electronegativity of hydrogen may not be as good an approximation
as it seems to be for the other elements. Probably the ability of hydrogen to localize the elec­
trons of the central atom is enhanced by the short lengths of bonds to hydrogen and its lack

Table 4.3 Bond Angles n in Some Trigonal

Pyramidal AX3E Molecules

Molecule Bond Angle Molecule Bond Angle

NH3 107.3 PBr3 10l.l
PH3 93.8 AsBr3 99.8
AsH3 91.8 SbBr3 98.2
SbH3 91.7 PI3 102
NF3 102.2 AsI3 100.2
PF3 97.8 SbI3 99.3
AsF3 96.1 NMe3 110.9
SbF3 87.3 PMe3 98.6
NC13 107.1 AsMe3 96.0
PCI3 100.3 SbMe3 94.2
AsCI3 98.6 SF3+ 97.5
SbCl3 97.2 SeF3+ 94.5
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Table 4.4 Bond Angles n in Some Angular
AX2E2 Molecules

Molecule

H20
H2S

H2Se
H2Te
OF2

SF2

SeF2

OCI2

SCl2

SeCIz
TeCI2

OMe2
SMe2
SeMe2

Bond Angle

104.5
92.3
90.6
90.3

103.1
98.2
94

111.2
102.8
99.6
97.0

111.7
99.1
96.3

Molecule

CIF2 +

BrF2 +

ICl2+

HOF
HOCI
CF30F
CHJOH
CHJSH
CHJSeH
CH3SCl
CF3SF
CF2SCI
NH2­
NF2-

Bond Angle

96
92
93
97.3

102.5
104.8
108.6
96.5
95.5
98.9
97.1
98.9
99.4
96.7

of core electrons. Moreover, the small size of a hydrogen atom is another reason for the small
HAH angles, as we discuss in Chapter 5.

Similarly, the presence of the lone pair in AXsE molecules causes the bond angles to
be less than 90 0 (Table 4.5). Moreover, as we see in Figure 4.13 the equatorial bonds A­
Xeq that are adjacent to the lone pair are longer than the axial bond A-Xax . The larger space
requirement of the lone pair domain causes the four equatorial bond domains to move up to­
ward the apex of the square pyramid, thus decreasing the XaxAXeq bond angle, and it also
causes them to move away from A, thus increasing the AXeq bond lengths.

AX4Ez molecules always have a planar structure with two trans lone pairs and bond an­
gles of 90 0 (Figure 4.14). The known examples of such molecules are ICl4 -, ClF4 -, BrF4 -,

IF4-, and XeF4. This geometry allows the lone pair domains to occupy a maximum space
and the bond angles to attain a maximum value of 900

•

Table 4.5 Bond Lengths and Bond Angles in Some Square Pyramidal
AXsE Molecules

Bond Lengths (pm)

XeFs+(AgF4 -)

XeFs+(PtF6-)

CIFs
BrFs
IFs
TeFs-(Na+)
SbFs2 -(NH4 +h
SbCIs2-(NH4+h

Axial

182.6
181. 0
157
168.9
184.4
186.2
191.6
236

Equatorial

185.2
184.3
167
177.4
186.9
195.2
207.5

258-269

Bond Angle CO)

77.3
79
86
84.8
81.5
87.8
88.0
85
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(a) (b) (c)

Figure 4.13 Section through an octahedral an'angement of six bonding electron pair domains, illus­
trating the effect of replacing one of these bonding domains by a larger nonbonding domain on bond
lengths and bond angles (a) Four of the six equivalent bonding pairs in an octahedral arrangement. (b)
Three of five bonding pairs and a nonbonding pair. The four bonding pairs adjacent to the lone pair
are pushed up and away from the lone pair as also shown in (c), decreasing the bond angle and in­
creasing the length of the bonds adjacent to the lone pair.

x -+----_+_~ x

Figure 4.14 AX4E2 molecules have a planar structure with lWO trans lone pairs and bond angles of
90°. This geometry allows the lone pair domains to occupy a maximum of space in the valence shell
and the bond angles to attain a maximum value of 90°.

The nonequivalence in the size and shape of bonding and nonbonding electron pair do­
mains can alternatively be expressed in terms of the relative magnitude of their mutual Pauli
repulsions, which decrease in the following order:

lone pair: lone pair> lone pair: bond pair> bond pair: bond pair

The VSEPR model was originally expressed in these terms, but because Pauli repulsions are
not real forces and should not be confused with electrostatic forces, it is preferable to ex­
press the nonequivalence of electron pairs of different kinds in terms of the size and shape
of their domains, as we have done in this chapter.

4.4.2 The Effect of Ligand Electronegativity on Bond Angles

When a ligand is more electronegative than the central atom, it draws the bonding electron
density away from the central atom so that the space occupied by the bonding domain in the
valence shell of the central atom decreases with increasing difference of electronegativity
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Figure 4.15 The size of a bonding pair domain in the valence shell of A decreases with increasing
electronegativity of X.

between the ligand and the central atom (Figure 4.15). Consequently, in molecules in which
there are large lone pair domains on the central atom, the bonding domains are pushed more
closely together the greater the electronegativity of the ligand, so that

bond angles decrease with increasing electronegativity of the ligand or decreasing elec­
tronegativity of the central atom.

Many examples of this effect can be found in Tables 4.3, 4.4, and 4.5. For example, the bond
angle decreases from 102° in PI3 to 97.8° in PF3 as Xx increases, and from 102.3° in NF3 to
87.3° in SbF3 as XA decreases. We note also that in a series of group 5, or group 6 mole­
cules such as the chlorides of group 5 the largest decrease in the bond angle occurs from
NCI3 (107.1°) to PCI3 (lOOY), with only a much smaller decrease to SbCb (97.2°) consis­
tent with the large decrease in electronegativity from N (3.1) to P (2.1) and the much smaller
subsequent decrease to Sb (1.8).

It is also significant that the bond angles in period 2 molecules are not much smaller
than the tetrahedral angle, whereas those for molecules of the later periods approach values
of 90° and in a few cases are even smaller. This observation is consistent with period 2 mol­
ecules being able to accommodate only four electron pairs in their valence shell, whereas
the larger valence shells of the elements of period 3 and later periods may accommodate six
or even more electron pairs. This has important consequences for molecules of an element
from period 3 and beyond in which there are only four electron pair domains in the valence
shell, one of which is a lone pair. In such a molecule the bonding domains are easily pushed
together by the lone pair until the bond angle approaches the limiting value of 90° found in
the octahedral arrangement of six domains. So the bond angles in period 3 molecules that
have only four domains in the valence shell are generally much smaller than in the corre­
sponding period 2 molecule. In general it may be seen in Tables 4.3, 4.4, and 4.5 that bond
angles decrease with increasing size of the central atom as more space becomes available for
the electron pair domains, allowing the bonding domains to be pushed together more easily,
thus decreasing bond angles.

4.5 Multiple Bonds

In ethene each carbon atom has four electron pairs in its valence shell, which may be con­
sidered to occupy four domains with an approximately tetrahedral arrangement. Two of these
pairs are forming the double bond, so that the two tetrahedra are sharing an edge, giving an
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.
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Figure 4.16 Double bond: (a) Lewis model of two tetrahedra sharing an edge. (b) Domain model: the
two single electron pair domains of the double bond are pulled in toward each other by the attraction
of the two carbon cores forming one four-electron double-bond domain with a prolate ellipsoidal shape,
thereby allowing the two hydrogen ligands to move apart.

overall planar geometry (Figure 4.16a). This model is equivalent to the bent-bond model
(Figure 1.4). According to this model the double bond consists of two adjacent electron pair
domains, one on each side of the internuclear axis (Figure 4.16b). Because they lie off the
internuclear axis, the two domains of the double bond are attracted toward the internuclear
axis by both the carbon atoms. Thus the angle between the two domains is reduced to less
than 109° at each of the carbon atoms. The reduction in this angle increases the angle that
each of these two domains makes with each of the CH bonding domains, reducing the re­
pulsion on these domains and thus allowing them to separate to an angle larger than 109°.
Table 4.6 gives values for XCX bond angles in some X1C=CY1 molecules. In all cases the
bond angles are larger than 109°, consistent with this model.

Table 4.6 Bond Angles in Some X2C[dbond]CY2 Molecules

Bond Angles n
Bond

Molecule Bond Length (pm) X-C-X Y-C-y X-C=C Y-C=C

H2C=CH2 C-H 108.7 117.4 117.4 121.3 121.3
C=C 133.9

F2C=CH2 C-F 131.5 110.6 119.3 124.7 120.3
C-H 109.1
C=C 134.0

F2C=CF2 C-F 131.9 112.4 112.4 123.8 123.8
C=C 131.3

F2C=CCl2 C-F 131.5 112.1 119.6 124.0 120.5
C-CI 170.6
C=C 134.5

CI2C=CCI2 C-C1 171.9 115.6 115.6 122.2 122.2
C=C 135.5

Br2C=CBr2 C-Br 188.2 115.2 115.2 122.4 122.4
C=C 136.3

12C=CI2 C-I 210.6 114.2 114.2 122.9 122.9
C=C 136.3

Me2CvCMe2 C-C 151.1 113.2 113.2 123.4 123.4
C=C 135.1

Me2C=CH2 C-C 150.7 115.6 117.4 122.2 121.3
C-H 109.5



4.5 Multiple Bonds • 101

The bent-bond model for the double bond has sometimes been criticized because it ap­
pears to suggest that there is no electron density along the internuclear axis. However, we
should beware of interpreting such a bond diagram too literally, because each electron pair
domain occupies a considerable volume of space and the domains overlap. The two domains
are attracted toward the internuclear axis (i.e., toward each other) by the two carbon cores
(Figure 4.16). Consequently, they overlap so much that the total electron density resulting
from the two domains is a maximum along the internuclear axis, as we will see in Chapter
6. Thus instead of using two adjacent electron pair domains to represent the double bond, it
can alternatively be represented by a single four-electron domain in which the two electron
pairs cannot be distinguished. This domain has a greater extent in the direction perpendicu­
lar to the molecular plane than in the molecular plane, that is, it has an ellipsoidal cross sec­
tion (Figure 4.16b). This expected shape is consistent with the electron density distribution
in a double bond, discussed later in Chapter 6.

In the classical model of ethyne, one of the four tetrahedrally arranged electron pairs in
the valence shell of each carbon atom is used to form the CH bond and the remaining three
form the triple bond. In other words, the two tetrahedra are sharing a face so that the mole­
cule has an overall linear geometry as shown in Figure 4.17a. The corresponding domain
model would represent the triple bond by three adjacent electron pair domains, as shown in
Figure 4.17b. However, this is not a very realistic model because in a linear molecule the
multiple-bond electrons do not form pairs, just as we have seen for the nonbonding electrons
in HF (Figure 4.3). The two tetrahedra of opposite-spin electrons around each carbon in
ethyne are not brought into coincidence, except in the CH bonds, so that to minimize their
repulsion energy, the six electrons of the triple bond have a most probable distribution in
which they are equally distributed in a ring surrounding the CC axis (Figure 4.18). This is
the description of the molecule given by Linnett's double-quartet model (Box 4.1). The bond­
ing electrons have an equal probability of being found anywhere around this ring, giving an
overall electron density distribution with a circular cross section, which as we will see in
Chapter 6 is confirmed by the calculated electron density distribution. The classical de­
scription of a triple bond in a linear molecule is therefore misleading, while that given by

eo

(a)

~H

H-6H 00
(b) (c)

Figure 4.17 Triple bonds: (a) Lewis model of two
tetrahedra sharing a face, (b) three electron pair do­
mains, and (c) end-on view of the three electron pair
domains forming the triple bond.
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H~ ~H
H ~ C c ~ H

Figure 4.18 Model of ethyne showing that only the electrons of the C-H bonds are localized into
pairs. The remaining six electrons are evenly distributed in a ring around the C-C axis.

A BOX 4.1- 'Y
TheDouble.Quart~tModel

Linnett used the concept that an octet of valence shell electrons consists of two sets of
four opposite-spin electrons to show that in diatomic and other linear molecules the
two tetrahedra are not in general formed into four pairs as we have discussed for F2

and the CC triple bond in C2H2. This idea is the basis of the double-quartet model,
which Linnett applied to describe the bonding in a variety of molecules. It is particu­
larly useful for the description of the bonding in radicals, including in particular the
oxygen molecule, which has two unpaired electrons and is therefore paramagnetic This
unusual property is not explained by the Lewis structure

:0::0:

which assumes that all 12 electrons are paired and therefore predicts a diamagnetic
molecule. However, because oxygen is a diradical there must be seven electrons of a
spin and five of f3 spin. The set of seven a electrons will be at the vertices of two tetra­
hedra that share one vertex while the set of five f3 electrons will be at the vertices of
two tetrahedra sharing a face.

o a spin

• f3 spin

This gives an overall arrangement in which none of the electrons are paired and the
electron repulsion energy is less than in the Lewis structure, hence is the preferred
arrangement. All together there are four bonding electrons-three of a spin and one
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of f3 spin-so that there is effectively a double bond as in the Lewis structure.
The bonding in a diatomic molecule with a single unpaired electron such as NO

can be described in an analogous manner. In this case there are six electrons of (l' spin
and five of f3 spin, with the following arrangement.

o (l'spin

• f3 spin

Thus there are five bonding electrons giving a bond order of 2.5, consistent with the
bond length of 115 pm, versus 121 pm for the four-electron bond in O2 and 110 pm
for the six-electron bond in N2. For these and other related molecules, the double-quar­
tet model is a convenient and useful alternative to the conventional molecular orbital
model. Moreover, it shows that for a singly bonded terminal atom such as F or CI there
is a ring of six nonbonding electrons rather than three separate lone pairs. As we will
see in Chapters 7 and 8, this conclusion is confirmed by the analysis of electron den­
sity distributions.

the double-quartet model is a better approximation. Linear molecules are an exception to the
rule that electrons are found in pairs in molecules with an even number of electrons.

We saw in Chapter 2 (Table 2.9) that a CC double bond is not twice as strong as two
single CC bonds and a triple bond not three times as strong as three single CC bonds. The
relative weakness of CC double and triple bonds can be attributed to the increased repulsion
between the electrons when they are drawn closer together in a multiple-bond domain. If
one of the bonds in a double bond is broken, the remaining bond is stronger than half the
double-bond strength because the repulsion between the two electron pairs in the double bond
is no longer present.

The formation of a multiple bond requires that two or three pairs of electrons be at­
tracted into the same bonding region. This implies that these electrons must be sufficiently
strongly attracted to overcome their mutual repulsion. Thus strong multiple bonds are formed
only between the most electronegative atoms, in particular carbon, nitrogen, and oxygen.
Fluorine, having only a single unpaired electron, is limited to the formation of one single
bond. Other electronegative elements such as the elements in groups 15-18 in their higher
oxidation states form strong multiple bonds with oxygen, nitrogen, and carbon (Figure 4.19).
These multiple bonds differ from those between carbon, nitrogen, or oxygen atoms in that
they are very polar, which increases their strength.

The elements in groups 15-18 in period 3 and beyond also form multiple bonds with
each other. But because these elements have smaller electronegativities than the corre­
sponding elements of period 2, they are appreciably weaker than the multiple bonds between
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Figure 4.19 Molecules of phosphorus and sulfur with multiple bonds to carbon, nitrogen, and oxygen.

period 2 elements, as shown by the mean bond enthalpies in Table 2.8. Double bonds be­
tween the atoms of the elements of period 3 and beyond are also much more reactive than
period 2 double bonds. This is because the bonding electrons are less strongly held and be­
cause the valence shells of these elements are larger and less crowded than the valence shells
of period 2 elements and are therefore more susceptible to attack. Consequently these bonds
are generally found in stable molecules only when access to the multiple bond is blocked by
very large ligands.

We can use the concept of double- and triple-bond domains as the basis for a simple
and convenient method for predicting the shapes of molecules containing double and triple
bonds. Instead of considering the arrangement of a given number of single electron pair do­
mains in a valence shell, we consider the arrangement of the total number of domains (lone
pair, single-bond, double-bond, or triple-bond domains). According to this model,

the arrangement of the bonds around an atom depends only on the total number of domains
(lone pair, single bond, double bond, or triple bond) in the valence shell and is independent
of the bond order, that is, whether the bonds are single, double, or tliple, or of an interme­
diate character.

Figure 4.20 summarizes the predicted shapes, and gives examples, of molecules containing
multiple bonds. In each case the predicted geometry is in agreement with experiment. This
model is convenient for molecules with multiple bonds because it readily accommodates
molecules in which the bonds have only a partial multiple bond character, such as benzene
and the carbonate ion, in which the bonding is often described in terms of resonance struc­
tures (Chapter 2). For example, each carbon atom in benzene has three bonding domains in
its valence shell, as does the carbon atom in the carbonate ion, and in both cases these do­
mains have a planar triangular arrangement around the carbon atom.
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Figure 4.20 Predicted shapes of molecules containing multiple bonds.

Bond angles in molecules containing multiple bonds deviate from the ideal values be­
cause a double-bond domain is larger than a single-bond domain, and a triple-bond domain
is even larger. Thus

angles involving triple bonds are larger than those involving double bonds, which in tum are
larger than those between single bonds.
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The structure of dimethyl sulfate, (CH30hS02, provides a good examples because it has
three types of OSO bond angle that decrease in magnitude in the expected order (Figure
4.19), namely double bond-double bond> double bond-single bond> single bond-single
bond. Further examples are given in Figure 4.19. In most of these cases the single and dou­
ble bonds are to the atoms of different elements, but nevertheless the angles are in the se­
quence given above.

4.5.1 Comparison of the Domain and Orbital Models of Multiple Bonds

Since the advent of orbital models, the bent-bond model has been largely superseded by the
(J-'Tr model. The (J-'Tr model is more useful for delocalized systems such as aromatic mole­
cules. For simple molecules such as ethene, however, the bent-bond model is just as useful
and indeed has some advantages over the (J-'Tr model. For example, it predicts the planar
geometry of the ethene molecule, whereas the (J-'Tr model does not. Indeed, we can use the
(J-'Tr description of the bonding only when a molecule has a plane of symmetry through the
double bond. On the basis of the known planar geometry around each carbon, the (J-'Tr model
assumes that the three (J bonds are formed from sp2 hybrid orbitals. Then making the re­
maining singly occupied p orbitals on each carbon parallel to give maximum overlap gives
the molecule an overall planar geometry, as discussed in Chapter 3 (Figure 3.18).

In its simplest form, the bent-bond model predicts an XCX angle of 109° in ethene and
substituted ethenes. The (J-'Tr model is based on the assumption that the carbon atoms are
sp2-hybridized and that the XCX bond angle is therefore 120°. In most molecules the ob­
served angles have values intermediate between these two values (Table 4.6). We can un­
derstand this in tenns of the domain model because each of the two domains forming the
double bond is attracted toward the CC axis, reducing the angle between them, thus allow­
ing more space for the CX bonding domains. Consequently, the XCX bond angle increases
to a value larger than 109.5°. Alternatively, if we consider the double bond to be formed by
one four-electron domain so that each carbon atom has two single-bond domains and a dou­
ble-bond domain, we predict an angle between the single-bonds domains of somewhat less
than 120° because of the larger size of the double bond domain. Using the hybrid orbital
model, we can adjust the degree of hybridization between the limits of Sp2 and sp3 to match
the observed bond angle, but we cannot predict the angle.

The bent-bond model can be expressed in orbital tenns by assuming that the two com­
ponents of the double bond are formed from sp3 hybrids on the carbon atoms (Figure 3.19)
That this model and the (J-'7T model are alternative and approximate, but equivalent, descrip­
tions of the same total electron density distribution can be shown by converting one into the
other by taking linear combinations of the orbitals, as shown in Figure 3.20. But neither fonn
of the orbital model can predict the observed deviations from the ideal angles of 109° and 120°.

• 4.6 Five Electron Pair Valence Shells

Five points can be arranged on the surface of a sphere such that they are all equivalent, only
in a planar pentagonal arrangement, which does not maximize the distance between the points.
In other words, there is no regular polyhedron with five equivalent vertices. There are two
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Figure 4.21 Geometry of the trigonal bipyramidal and the square pyramidal arrangements of five points
on the surface of a sphere.

arrangements of five points that maximize the shortest distance between any pair of points, the
trigonal bipyramid and the square pyramid (Figure 4.21). In these two arrangements the shOlt­
est distance between any two points is '\12;, where r is the radius of the sphere. However, the
trigonal bipyramid has only six such shortest distances, whereas the square pyramid has eight.
On this basis, therefore, the trigonal bipyramid is the preferred geometry.

Similarly, five spheres (representing either bonding domains or lone pair domains) can
be packed around a spherical central core so that they are all equivalent only in the planar
pentagonal arrangement, which does not, however, allow them to get as close as possible to
the central core. The two geometries that allow them to get as close as possible to the cen­
tral core are the trigonal bipyramid and the square pyramid (Figure 4.21). In the square pyra­
mid geometry, each sphere in the base is touching three other spheres and the sphere at the
apex is touching four others, giving total of eight contacts. In the trigonal bipyramid geom­
etry the axial spheres are touching all three equatorial spheres but the equatorial spheres are
not touching each other, giving a total of only six contacts. On the basis of minimizing the
number of contacts, the trigonal bipyramidal geometry is preferred. With very few excep­
tions, the geometry of AXs, AX4E, AX3E2, and AX 3E3 molecules is based on the trigonal
bipyramidal arrangement of five domains. Some examples are given in Table 4.7.

Unlike the tetrahedron and the octahedron, which are regular solids with four and six
equivalent vertices, respectively, the trigonal bipyramid has two sets of vertices that are not
equivalent. The axial vertices have three close neighbors, whereas the equatorial veltices
have two close neighbors (the axial vertices) and two more that are farther away (the other
two equatorial vertices). This nonequivalence of the vertices of a trigonal bipyramid has sev­
eral important consequences

As we can see in Table 4.6:

The axial bonds in a trigonal bipyramidal molecule are longer than the equatorial bonds.

When five repelling points are situated on the surface of a sphere, they are not at true equi­
librium because the axial points suffer a greater repulsion from their neighbors than the equa­
torial points. Each axial point has three close neighbors at 900

, while an equatorial point has
only two close neighbors at 900 (the two axial points) and two neighbors further away at
1200

• Given that the repulsive force falls off very rapidly with distance, there is a greater to-
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Table 4.7 Bond Lengths and Bond Angles in Some AXnEs-n Molecules

Bond Lengths (pm) Bond angles (')

Molecule Axial Equatorial XaxAXax X.qAX.q

AXs
PCIs 214 202 180 120
PFs 157.7 153.4 180 120
SbCls 243 231 180 120
AsFs 171.1 165.6 180 120
Sb(CH3)s 220.9 213.5 180 120

AX4E
PF4 - 174 160 168.3 99.9
SF4 164.6 154.5 167.0 101.6
SeF4 177.1 168.2 169.2 100.6
1F4 + 184 177 160 92

AX3E2
CIF3 169.8 159.8 175
BrF3 181.0 1n.1 172.4
XeF3+ 190.5 183.5 160.9

AX2E3
XeF2 197.7 180
1C12 - 255 180

tal repulsive force on the axial points than on the equatorial points. Consequently, if the re­
straining spherical surface is removed and replaced by a force attracting the points toward
the center of the sphere, the axial points will move away from the center of the sphere, al­
lowing the equatorial points to move closer until equilibrium is attained. Thus in a trigonal
bipyramidal molecule the axial bonds are longer than the equatorial bonds. This difference
in bond lengths is simply a consequence of the geometry of the trigonal bipyramid and, as
we will see in Chapter 9, it cannot be explained by any orbital model.

Because the axial positions have more close neighbors than the equatorial positions, there
is more space available to a ligand or its bonding domain in an equatorial position than in
an axial position. Thus nonbonding domains and larger bonding domains preferentially oc­
cupy the equatorial positions. Consequently

in AXs, AX4E, and AX3E2 molecules in which there are ligands with different electronega­
tivities, the less electronegative ligands preferentially occupy the equatorial positions and the
more electronegative ligands preferentially occupy the axial positions.

Some examples are given in Figure 4.22.
Because there is more space available in the equatorial than in the axial positions,

the lone pair domains always occupy the equatorial positions in AXs."E" molecules.

Thus all AX4E molecules have the shape of a trigonal bipyramid with one missing vertex,
which can be formally called a disphenoid. It is sometimes described as the SF4 geometry
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Figure 4.22 The less electronegative ligands always preferentially occupy the less crowded equator­
ial sites of a trigonal bipyramid, leaving the more electronegative ligands in the more crowded axial
sites.
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Figure 4.23 Lone pairs always occupy the less crowded equatorial sites of a trigonal bipyramid. (a)
The disphenoidal geometry of the AX4E molecule SF4. (b) and (c) T-shaped AX3E2 molecules. (d) A
linear AX2E3.

(Figure 4.23). or as the "sawhorse" geometry. All AX3Ez molecules have a T shape, and all
AXzE3 molecules are linear (Figure 4.23). In all cases, because of the larger size of a lone
pair domain, the equatorial-equatorial bond angle is smaller than 1200 and the axial-equa­
torial bond angle is smaller than 900

•

With increasing size of the central atom, the lone pair domain is able to take up more
space in the valence shell of the central atom, pushing the ligands close together. So the bond
angles decrease with increasing size of the central atom just as we saw for AX3E and AXzEz
molecules. As we see by the examples in Figure 4.24, multiple bond domains occupy more
of the angular space around a core,

multiple bond domains always occupy the less crowded equatorial sites in an AXs molecule.
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Figure 4.24 Double bonds always occupy the less crowded equatorial sites of a trigonal bipyramid
and form larger bond angles than single bonds.

Figure 4.24 also shows that multiple bonds distort the bond angles in the same way as a lone
pair.

• 4.7 Limitations and Exceptions

There are a number of apparent exceptions to the VSEPR model, most of which can be clas­
sified into two main groups: those due to ligand-ligand interactions and those due to the non­
spherical cores found in transition metal molecules.

4.7./ Ligand-Ligand /nteraaions

We have already mentioned that the bond angles in N(CH3h, O(CH3h, and OCl2 are larger
than 109.5°. A similar exception is the Li20 molecule, which according to ab initio calcu­
lations is linear. As we shall see in Chapters 7 and 8, these exceptions arise because in these
molecules the ligands are not electronegative enough to localize the electrons in the valence
shell of the central atom into pairs. Therefore the VSEPR model is not valid for these mol­
ecules. In the case of Li20, the electrons in the valence shell of the central oxygen atom are
so poorly localized that the central oxygen is close to being a free oxide ion with a spheri­
cal electron density distribution. In such a case, the geometry is dominated by ligand-ligand
interaction, which is minimized in the observed linear geometry. In Chapter 5 we will see
that ligand-ligand interactions are also important in many molecules to which the VSEPR
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model applies. Consideration of these interactions gives us a still better understanding of the
geometry of these molecules.

The VSEPR model emphasizes the geometric arrangement of bonding and nonbonding
electron pairs as the major factor determining molecular geometry. The possibility that re­
pulsive interactions between the ligands might play an important role in determining the
geometry of molecules has also been considered from time to time. These interactions have
generally been regarded as relatively unimportant except for molecules with very bulky
ligands such as the I-butyl group. Recently, however, it has been shown that such interac­
tions may be much more important than has generally been supposed, and a new model of
molecular geometry, the ligand-close packing (LCP) model, has been developed based on
ligand-ligand repulsions. The LCP model is applicable to many molecules, but it is partic­
ularly useful for molecules with small central atoms such as those of period 2, and for mol­
ecules in which the ligands are insufficiently electronegative to strongly localize the elec­
trons in the valence shell of the central atom into pairs. It provides good explanations for
many of the exceptions to the VSEPR model, and it can give more quantitative predictions
of the deviations of bond angles from the ideal angles of 90, 109.5, and 1200 than the VSEPR
model. We discuss the LCP model in Chapter 5.

4.7.2 Transition Metal Molecules

The core of a transition metal in a molecule is generally not spherical because unlike the
core of a main group element, it does not consist of completed shells. The outer shell of the
core is often incomplete and contains nonbonding electrons. For example, in the series of
molecules ScCI2, TiCI2, VCI2, CrCh, MnCI2, ... , the transition metal has respectively I,
2, 3, 4, and 5, ... , nonbonding electrons. These nonbonding electrons are found in the outer
shell of the core rather than in the valence shell, as in a molecule of a main group element.
As we have seen, nonbonding or lone pair electrons in a valence shell have an important ef­
fect on bond angles and lengths, which is described by the VSEPR model. In contrast, the
nonbonding electrons in the core of a transition metal have a smaller and less direct effect
on molecular geometry. Because of the presence of these nonbonding electrons, the core gen­
erally does not have the spherical shape characteristic of the core of main group elements.
This nonspherical shape of the core affects the geometry of the molecule in a different man­
ner from that of nonbonding electrons in the valence shell of a nonmetal atom. We discuss
the geometry of transition metal molecules again in Chapter 9.
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c H A T E R

LIGAND-LIGAND INTERACTIONS

AND THE LIGAND

CLOSE-PACKING (LCP) MODEL
• • •

• 5.1 Introduction

The VSEPR model assumes that the geometry of a molecule is determined by the arrange­
ments of bonding and nonbonding electron pairs in the valence shell of an atom, and it may
therefore be called an electronic model. In this chapter we consider an apparently different
model that assumes that the geometry of a molecule is determined simply by the repulsive
interactions between the ligands and may therefore be called a steric model. According to
this model, the geometry of an AXll molecule is the geometry that allows n ligands to ap­
proach as closely as possible to the central atom A, that is, to adopt a close-packed arrange­
ment around A, thus minimizing the energy of the molecule. This model is called the lig­
and close-packing (LCP) model.

The close packing of anions around cations has long been recognized as one of the main
factors deterrrilning the structures of ionic crystals. Similarly, the structures of many mole­
cular solids are determined by the tendency of the molecules to pack together as closely as
possible under the influence of the relatively weak van der Waals attractive forces that act
between all closed-shell atoms and molecules. When the molecules reach their equilibrium
positions, this attractive force is just balanced by the repulsive "Pauli force" that arises from
the distortion of their electron distributions as they resist overlapping each other. We saw a
simple example of a "Pauli force" in Chapter 3. The repulsion between two helium atoms
resulting from the distortion of their charge clouds as they resist overlapping as the two He
atoms come together prevents the formation of a stable molecule.

To a first approximation, atoms in molecules may be regarded as hard spheres with a
segment cut off in the bonding direction, as in the familiar space-filling models. The radius
of the atom in a nonbonding direction is called the van der Waals radius. Half the distance
between two atoms of the same kind in adjacent molecules at equilibrium is taken as the van
der Waals radius (Figure 5.1). In assigning a fixed radius in this way, we assume that atoms

113
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I 2rcov I-I I
I I
I I

Figure 5.1 Van der Waals and covalent radii in a diatomic mole­
cule.

have a sphelical shape except in a nonbonding direction, which may not be correct, and that
they are incompressible, which is only very approximately true. The van der Waals radius
of an atom does not have a truly constant value because it depends to some extent on the
strength of the forces holding the molecules together. Moreover, atoms in molecules are not
truly spherical, so that they may have a different nonbonded radius in different directions,
and they may also be more compressible in one direction than another. Figure S.2a shows
the electron density distribution of the el2 molecule, a topic we discuss in more detail in

(a) (b)

Figure 5.2 (a) Electron density contour map of the CI2 molecule (see Chapter 6) showing that the chlo­
rine atoms in a CI2 molecule are not portions of spheres; rather, the atoms are slightly flattened at the
ends of the molecule. So the molecule has two van der Waals radii; a smaller van der Waals radius,
'2 = 190 pm, in the direction of the bond axis and a larger radius, 'I = 215 pm, in the perpendicular
direction. (b) Portion of the crystal structure of solid chlorine showing the packing of CI2 molecules
in the (100) plane. In the solid the two contact distances " + 'I and 'I + '2 have the values 342 pm
and 328 pm, so the two radii are " = 171 pm and '2 = 157, pm which are appreciably smaller than
the radii for the free CI2 molecule showing that the molecule is compressed by the intermolecular forces
in the solid state.
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Chapter 6. The outer contour in this map is for a density of 0.00 I au, which has been found
to represent fairly well the outer surface of a free molecule in the gas phase, giving a value
of 190 pm for the radius in the direction opposite the bond and 215 pm in the perpendicu­
lar direction. In the solid state molecules are squashed together by intermolecular forces giv­
ing smaller van der Waals radii. Figure 5.2b shows a diagram of the packing of the Ci l mol­
ecules in one layer of the solid state structure of chlorine. From the intermolecular distances
in the direction opposite the bond direction and perpendicular to this direction we can de­
rive values of J57 pm and 171 pm for the two radii of a chlorine atom in the Clz molecule
in the solid state. These values are much smaller than the values for the free molecule in the
gas phase. Clearly the Clz molecule is substantially compressed in the solid state. This ex­
ample show clearly that the van der Waals of an atom radius is not a well defined concept
because, as we have stated, atoms in molecules are not spherical and are also compressible.

Nevertheless values for the van der Waals radii of atoms are often quoted in textbooks
and some typical values are given in Table 5.1. Their accuracy is no more than :1:5 pm. We
see that the radius usually given for chlorine (180 pm) is substantially larger than the two
values given above for the Cl atom in the Clz molecule in the solid state. This discrepancy
arises because chlorine has a negative charge in most molecules other than Clz (a conse­
quence of its large electronegativity). As we discuss later in this chapter, the larger the neg­
ative charge of an atom the greater is its size. Indeed the often quoted value of 180 pm for
the van del' Waals radius of the chlorine atom is essentially the same as its ionic radius of
181 pm (Tables 2.4 and 2.6), implying that in most molecules a chlorine atom has a large
negative charge, as we will see later is indeed the case. Radii of the isolated free atoms ob­
tained from calculated electron densities (Chapter 6) are also given in Table 5.1. The radii
of isolated free atoms are larger than the van der Waals radii obtained for the solid state by
approximately 10 pm but they vary in the same way as the van der Waals radii.

Van der waals radii have been used in several different ways, although any conclusions
drawn from their use must be viewed with appropriate skepticism because of their approxi­
mate nature. For example, when two atoms in different molecules have an interatomic dis-

Table 5.1 Van der Waals, 1,3 Nonbonded Radii and Radii of Isolated

Free Atoms (pm)

Element

H
C

N
o
F
Si
P
S
CI

1,3 Nonbonded

Radius

Van der Waals

Radius

120

150
140
135

190
185
180

Radius of Isolated Gas
Phase Atom'

134
173
162
154
147
212
203
197
189

"From calculated electron densities (Chapter 6).

b 1,3 radii due to Bartell (1960).

cl,3 radii due 10 Glidewell (1975, 76).
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CI

CI

Figure 5.3 Steric interaction between the ortho chlorine
atoms in biphenyl prevents the two rings from adopting a
coplanar orientation.

tance that is substantially shorter than the sum of their van der Waals radii it is often con­
sidered that there is a bonding interaction between them. They have also been used to ac­
count for an otherwise unexpected geometry of a molecule. For example, two chlorine sub­
stituents in ortho positions in biphenyl in the expected planar conformation would be closer
together than the sum of their van der Waals radii. Hence the two rings twist out of the pla­
nar conformation to enable the two chlorine atoms to move further apart so that the repul­
sive force between them is reduced (Figure 5.3). Such effects are commonly called steric ef­
fects. The interactions that are usually considered in the discussion of steric effects are
between atoms that are not bonded to a common atom as in Figure 5.3. It has been less com­
monly recognized that the repulsive interactions between ligands bonded to a common atom,
as in AXil molecules, can be important in determining the bond lengths and angles in many
molecules. Such ligands are referred to as geminal ligands from the Latin gemini (twins).
We discuss the importance of repulsive interactions between germinal ligands in determin­
ing molecular geometry in the following section.

• 5.2 Ligand-Ligand Interactions

In an early electron diffraction investigation of the structure of 2-methylpropene (isobut­
ylene), Bartell and Bonham (1960) found that the three terminal carbon atoms are arranged
in an almost perfect equilateral triangle around the central carbon despite the considerable
difference in the single and double bond lengths (Figure 5.4). This result led Bartell to sug­
gest that the terminal carbon atoms are close-packed around the central carbon atom. He then

Figure 5.4 Geometrical parameters for 2-methylpropene (iso­
butene) determined by Bartell in 1960. The three terminal car­
bon atoms lie at the corners of an equilateral triangle.
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suggested that this close packing is responsible for the short length of 150.5 pm of the sin­
gle C-C bonds in (CH3hC=CH2 compared to the length of 154 pm for a C-C bond in a
four-coordinated molecule such as ethane. Three ligands can pack more closely than four.
resulting in correspondingly shorter bonds. Bartell pointed out that since this purely steric
effect could explain these short bonds, it is not necessary to resort to electronic explanations
such as a change in hybridization from Sp3 to Sp2, which in any case is a description rather
than an explanation. He followed up this suggestion by showing that he could account for
the interligand distances in a variety of substituted ethenes and ketones by attributing a con­
stant nonbonded radius to each of the ligand atoms, assuming that they could be regarded as
hard spheres. The radii that he determined are given in Table 5.1 (Bartell 1960). Some ex­
amples of the agreement between interligand distances and experimental values for the mol­
ecules that he studied are given in Figure 5.5.

Later Glidewell (1975, 1976) extended Bartell's radii to ligands that had not been stud­
ied by BartelL He called them 1, 3 radii because they are the radii relevant to the first and



I 18 • Ligand-Ligand Interactions and the Ligand Close-Packing (LCP) Model

I I
I I
Ie. I
I 2rl,3 I Figure 5.6 The intramolecular 1,3 radius fl.3 of B in an angular molecule AB2.

third atoms in a sequence of three bonded atoms (Figure 5.6). Some of his values are also
given in Table 5.1. These 1,3 radii are smaller than the corresponding van del' Waals radii.
Atoms bonded to a common atom (geminal atoms) are squeezed together more strongly than
atoms in separate molecules. The attractive force pulling the atoms toward the central atom
and therefore toward each other in a molecule is much stronger than the weak van del' Waals
forces acting between separate molecules or between atoms in the same molecule that are
not bonded to the same atom. Hargittai (1985) has drawn attention to the very nearly con­
stant distances between two given ligands in a number of related molecules, as would be ex­
pected from Bartell's close-packing model, but he noted that this constant interligand dis­
tance was not always equal to the sum of the Bartell radii. For example, Hargittai found a
very nearly constant value of 248 pm for the 0···0 distance in a wide variety of XYS02

molecules (Table 5.2), but he noted that this distance is considerably longer than the value
of 226 pm obtained from twice the 1,3 radius of oxygen.

Despite the apparent success of Bartell's radii and the appealing simplicity of the model,
the importance of ligand-ligand interaction in determining geometry was not widely accepted.
An important reason for the lack of enthusiasm for the model was that when it was applied
to molecules with central atoms other than the carbon atom, interligand distances often did
not agree with the sum of the Bartell radii, as we have just seen in the case of the S02 group.
This disagreement arises because the ligand radius of a ligand atom depends on the nature
of the atom to which it is bonded, as we discuss in the following section. The 1,3 radius of
oxygen bonded to sulfur, for example, is not the same as the radius deduced by Bartell be­
cause the latter applies only to oxygen bonded to carbon.

Table 5.2 SO Bond Lengths, OSO Bond Angles, and 0 .. ·0 Interatomic
Distances in Some XYS02 Molecules

5=0 Bond Length
Molecule (pm) OSO Angle (0) 0"·0 (pm)

FS02F 139.8 125.1 248
FS02OCH3 141.0 124.4 248
FS02CH3 141.1 123.1 248
CIS02CI 140.5 123.5 249
CIS02C6Hs 141.8 122.3 248
CIS02CH3 142.5 120.8 248
CIS02CF3 141.6 122.4 248
CIS02CCI3 142.1 121.5 248
CH3S02CH3 143.6 119.7 249
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• 5.3 The Ligand Close-Packing (LCP) Model

In 1997 and 1998 Gillespie and Robinson and their colleagues published the results of an
extensive study of interligand distances in a wide variety ofAXn molecules in which A is
from the second period and X is fluorine, chlorine, oxygen, or a hydroxy group. They showed
that the distance between two given ligands is remarkably constant for a given central atom
A. Some examples of F··· F interligand distances in some molecules of beryllium, boron. and
carbon are given in Table 5.3. We see that the F··· F distance is very constant in these mol­
ecules and independent of whether the central atom is three- or four-coordinated and of the
presence of other ligands. But the average F·· .F distance decreases as the central atom changes
from beryllium to boron to carbon. Similarly, constant C1···CI distances are found in the
chlorides of these elements (Table 5.4) and constant C"'C distances are found in molecules
with BCn and CCIl groups (Table 5.5).

These constant intramolecular distances between two X ligands are consistent with the
model of ligands as hard objects tightly packed around the central atom A. Each ligand can
then be considered to be touching its neighbors and can be assigned a nonbonded radius,
which is given by half the ligand-ligand distance. This nonbonded radius we call the in­
tramolecular ligand radius, or simply the ligand radius. On this basis we can assign a

Table 5.3 Bond Lengths. Bond Angles. and F···F Distances in Some
Molecules Containing BeFn, BFn, and CFn Groups

Coord.
Molecule No. A-F (pm) FAF CO) F.. ·F (pm)

BeF)- 3 149 120 258
BeF4z- 4 155.4 109.5 254

Mean 256
F)B 3 130.7 120.0 226
FzB-OH 132.3 118.0 227
FzB-NHz 132.5 117.9 227
FzB-CI 131.5 118.1 226
FzB-H 131.1 118.3 225
F4B- 4 138.2 109.5 226
F)B-CH)- 142.4 105.4 227
F)B-CF)- 139.1 109.9 228
F)B-PH) 137.2 112.1 228

Mean 226
CFJ+a 3 124.4 120 216

FzC=CFz 131.9 112.4 219
FzC=CClz 131.5 112.1 218
FzC=CHz 132.4 109.4 216
FzC=CHF 133.6 109.2 218
F4C 4 131.9 109.5 215
F)C-CF) 132.6 109.8 217
F)C-OF 131.9 109.4 215
F)CO- 139.2 IOU 215

Mean 216

'Ab initio calculated structure.
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Table 5.4 Bond Lengths. Bond Angles. and CI···CI Distances in Some

Molecules Containing BeC'", BCI", or CCln Groups

Coord. A-CI
Molecule No. (pm) CIACI n CI- ..CI (pm)

CI2Be(NCMeh 4 197.8 116.8 337
CI2Be(OEt2)2 197.8 116.6 337

Mean 337
BC!) 3 174.2 120.0 301
CI2B-BCI2 175.0 118.7 301
BCI4 - 4 183.3 109.5 299
H)N-BCI3 183.8 111.2 303
CsHsN-BCI3 183.7 110.1 301
Me)N-BCI3 183.1 109.3 299
Ph3P-BCI3 185.1 109.5 302

Mean 301
CI2CO 3 173.8 111.8 288
CI2C=CH2 171.8 112.4 286
CCl4 4 Inl 109.5 289
H2CCh 176.5 112.0 293
F2CCl2 174.4 112.5 290
Me2CCl2 179.9 108.3 292
CI3C-CCb 176.9 108.9 288
CbCH 175.8 111.3 290
CI)CF 176 109.7 291

Mean 290

Table 5.5 Bond Lengths. Bond Angles. and C···C Distances in Some
Molecules Containing BCn and CCn Groups

Coord. Bond Bond
Molecule No. Length (pm) Angle n C"'C (pm)

B(CH3h 3 157.8 120.0 273
(CH)hBNCO 156.3 123.6 276
(C6HShBCI 155.9 123.3 274

B(CH2CH3h 157.3 120.0 273
B(C6Hsh 158 120.0 274

Mean 274
(H3C1hC2=C(CH3h 3 1: 150.5 1-1: 113.2 251

2: 133.6 1-2: 123.4 250
(H3C'hC2=CH2 I: 150.7 I-I: 115.8 255

2: 134.2 1-2: 122.1 249
C)HS-C7H16 4 153.1 -153.9 111.9-112.9 254-255
(CH3hCHCI 152.7 112.7 254
(HCCI2hCH2 152.7 1]4.2 256
(H2CClhCH2 153.] I] 1.6 253
(BrCH2hCH2 152.7 111.4 252
Diamond 154.4 109.5 252

Mean 254
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Table 5.6 Ligand Radii (pm)

Central Atom

Ligand Be B C N

H 110 90 82
C 137 125 120
N 144 124 119
0 133 119 114
F 128 113 108 108
CI 168 151 144 142

value of 108 pm for the radius of an F ligand bonded to carbon, 113 pm for the radius of an
F ligand bonded to boron, and a radius of 128 pm for a F ligand bonded to beryllium. Table
5.6 gives values of the ligand radii for H, F, Cl, 0, N, and C bonded to Be, B, C and N.

Why does the radius of a given ligand depend on the atom to which it is bonded? With
decreasing electronegativity of the central atom, the ligand acquires a greater share of the
bonding electrons, thus increasing its negative charge. The size of the atom and therefore its
ligand radius increases as it acquires more electron density up to the limit at which it be­
comes a true ion. It then has its maximum radius, which would be expected to be the same
as its ionic crystal radius. We see in Table 5.6 that the ligand radius of a given ligand de­
creases from left to right across the periodic table as the electronegativity of the central atom
A increases and the ligand charge decreases. For example, the ligand radius of fluorine bonded
to beryllium, boron, and carbon decreases from 128 to 113 to 108 pm. These radii correlate
well with the charges on fluorine determined by the analysis of the electron density distrib­
ution (Chapter 6), which are -0.88 in BeF2, -0.81 in BF3, and -0.61 in CF4, As we can
see in Table 5.6, the radii for ligands attached to the weakly electronegative Be atom are
close to the ionic radii (Table 2.3) consistent with the expected high negative charges on the
much more electronegative ligands in these molecules. The charge on a given ligand atom
bonded to the same central atom also varies from molecule to molecule. As we shall see in
Chapter 8, however, this variation is much smaller than the change in the ligand charge as
the central atom changes, so it has only a very small and usually negligible effect on the lig­
and radius.

The ligand radii in Table 5.6 for ligands bonded to carbon agree well with Bartell's val­
ues, as would be expected, but the other radii are different. This is the reason for the lack of
success of the 1,3 radii when applied to a range of molecules. Glidewell had assumed that
the 1,3 radius was independent of the central atom, so the radii he obtained were not a con­
sistent set, since the radii for different ligands were obtained for different central atoms.

The constancy of the ligand radii, in contrast to van der Waals radii, suggests that gem­
inalligands on molecules of period 2 elements are squeezed together almost to their limit of
compressibility. The repulsive interaction between two atoms is usually represented by a
steeply rising potential such as that shown in Figure 5.7. This potential is often approxi­
mately represented by a function of the type

V = C/r12
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V(r) a b

t
Hard sphere model

Figure 5.7 The variation of the potential energy as two non­
bonded atoms approach each other: curve a, the hard sphere
model; curve b, a potential of the form V = C/r12.

where V is the potential energy, r the distance between the two atoms, and C a constant. This
potential energy curve is very steep at distances corresponding to interligand distances but
much less steep at distances corresponding to the distances between atoms in separate mol­
ecules, or to atoms in the same molecule that are not bonded to a common atom. Such atoms
are therefore much more compressible than geminal atoms. Consequently distances between
two atoms in two separate molecules that are "touching" each other in the solid state are
much more variable than the distances between the same two atoms when they are geminal
atoms in the same molecule.

• 5.4 Bond Lengths and Coordination Number

For AXn molecules with no lone pairs in the valence shell of A, both the VSEPR model and
the LCP model predict the same geometries, namely AX2 linear, AX3 equilateral triangu­
lar, AX4 tetrahedral, AXs trigonal bipyramidal, and AX6 octahedral. Indeed Bent's tangent
sphere model can be used equally as a model of the packing of spherical electron pair do­
mains and as a model of the close packing of spherical ligands around the core of the cen­
tral atom.

An important consequence of the LCP model is that bond lengths are expected to in­
crease with increasing coordination number from two to three to four to six.

Bond lengths in AXn molecules increase with increasing coordination number n.

This variation of bond length with coordination number is shown by the data in Tables 5.3
and 5.4 and in Figure 5.8. Because the two ligands in an AX2 molecule are not close-packed,
the bond distance in a two-coordinated molecule is not restricted by interactions between the
ligands. Thus we can think of it as the "natural" bond length for these two atoms. In three­
and four-coordinated molecules the bonds are longer because ligand-ligand repulsions pre­
vent them from reaching this shorter "natural" bond length. Although in a two-coordinated
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Figure 5,8 Bond lengths increase with increasing coordination number from 2 to 3 to 4.

molecule the ligands are not close-packed (i.e., are not "touching" each other), the linear
geometry of the molecule can still be attributed to ligand-ligand interactions, which are min­
imized in this geometry.

The increase in bond length with increasing coordination number provides a simple steric
explanation of why the bond length in BF3 is shorter than in BF4 -. We do not therefore need
the back-bonding model (described in Chapter 2) to explain this bond length difference. Ac­
cording to this model the bonds in BF3 are considered to have some double bond character
as a consequence of back-bonding, while the bonds in BF4 - are regarded as single bonds.
As we will discuss in Chapter 9, the large differences between the bond lengths of mole-
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cules such as SiF6
2 - (169.4 pm) and SiF4 (155.5 pm) and between PCI6 - (212 pm) and

PCI4 + (192 pm) can be similarly explained in terms of close packing of the ligands .

• 5.5 Molecules with Two or More Different Ligands

lnterligand distances between two different ligands in a molecule are given to a very good
approximation by the sum of the appropriate radii.

Examples in addition to those in Figure 5.5 are given in Tables 5.7-5.10. In these tables we
see that the F"'CI, F···a, CIoo·a, C"'F, and C"'CI interligand distances are all very nearly
constant, and their mean value in each case agrees well with the sum of the ligand radii. This
good agreement provides further strong evidence for the LCP model and confirms the va­
lidity and usefulness of the ligand radii. The interligand distances remain constant in these
molecules despite considerable differences in the bond lengths and bond angles. When a lig­
and X in an AXn molecule is replaced by a ligand Y, there will in general be a deviation
from a regular geometry, that is, from the ideal bond angles of 90, 109.5, and 120°. There

Table 5.7 Interligand Distances in Some Chlorofluorocarbon Molecules

Bond Lengths (pm)
Bond

Molecule C-F C-CI Angle (") F.. ·CI (pm)

FCCi} 133 176 109.3 253
F2CCl 2 134.5 174.4 109.5 253
F3CCI 132.8 175.1 110.4 254

F2CHCI 135.0 174.7 110.1 255
FCICO 133.4 172.5 108.8 250

Mean 253
Sum of ligand radii 252

Table 5.8 Interligand Distances in Some Oxofluorocarbon Molecules

Bond Lengths (pm)
Bond

Molecule C-F C-O Angle (0) O .. ·F (pm)

(CF3hO 132.7 136.9 110.2 221
CF3O- 139.2 122.7 116.2 223
CF30F 131.9 139.5 109.6 222
F2CO 131.7 117.0 126.2 222

FCH3CO 134.8 118.1 121.7 221
FCICO 133.4 117.3 123.7 221
FBrCO 131.7 117.1 125.7 222

Mean 222
Sum of ligand radii 222



5.5 Molecules with Two or More Different Ligands • 125

Table 5.9 Interligand Distances in Some Fluorocarbon Molecules

Bond Lengths (pm)
Bond angle

Molecule C-F c-c for CCF C.. ·F (pm)

F3C-CF) 132.6 154.5 109.8 234
(CF)hCH 133.6 156.6 110.9 237
(CF3)CCI 133.3 154.4 111.0 237
H)CCOF 136.2 150.5 110.5 236
F2C=CF2 131.9 131.1 123.8 232

F2C=CCh 131.5 134.5 124.0 235

F2C=CH2 131.6 132.4 125.2 234
rrans-FCH=CFH 134.4 132.9 119.3 231

Mean 234
Sum of ligand radii 232

are two reasons for the effect of the ligand Y on the bond angles: (I) it has a different size
(ligand radius), and (2) it forms a bond of a different length. Generally, larger ligands fOlm
longer bonds, and so these two factors often approximately cancel and their combined effect
on the bond angles may be relatively small, as shown by the nearly tetrahedral bond angles
in some chlorofluorocarbon molecules (Table 5.7). The largest effect on the bond angles is
seen when a ligand is replaced by another ligand of comparable size that nevertheless forms
a shorter bond. This is shown clearly when we compare F2A=O molecules with the corre­
sponding AF3 molecules and F3A=O molecules with the con'esponding AF4 molecule as in
Figure 5.9. In F2CO, despite the similar ligand radii of 0 and F, the FCO angle is 125.2°
and the FCF angle is 107.6°. This difference in bond angles is a consequence of the short
length of the CO bond (117.0 pm) compared to the CF bond (132.0 pm) and the requirement
that the ligands remain close-packed. The close packing of the ligands is shown by the in­
terligand distances, which are close to the sum of the ligand radii. Similarly, in POF3 the
FPF angles are smaller than the tetrahedral angle owing to the short length of the PO bond.
We note also that the AF bond length increases from CF3 + to F2CO and from PF4 + to F3PO.
In both cases, for the more strongly bonded oxygen ligand to reach its equilibrium distance

Table 5.10 Interligand Distances in Some Chlorocarbon Molecules

Molecule Bond Lengths (pm) CCI n C.. ·C1 (pm)

(CH3hCCI2 152.3 179.9 108.9 271

CH3CH2Cl 152.8 174.6 110.7 274
CH3COCI 150.8 179.8 112.2 275

OCIC-COC! 153.6 174.6 111.7 272
CI2C=CCI2 135.5 171.9 122.2 270
H2C=CHCl 135.5 172.8 121.1 269

CI2C=C=CH2 132.6 173.3 122.2 269
Mean 271

Sum of ligand radii 271
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Figure 5.9 Multiple bonds and
bond angles. Because multiple
bonds are short and strong, they
push away the singly bonded lig­
ands, increasing the angle they
make with the neighboring single
bonds and increasing the length of
these bonds. Alternatively, we can
imagine that the central atom is
pulled toward the more strongly
bound doubly bonded oxygen and
away from the center of the equi­
lateral triangle of the AX3 mole­
cule or the tetrahedron of the AX4

molecule when an X ligand is re­
placed by an 0 ligand.

from the central atom, it pushes away the more weakly bound fluorine ligands, increasing
the length of the A-X bond and decreasing the FAF bond angle. The short CF bond in
CF3+, like that in BF3 discussed in Chapter 2, was formerly attributed to double-bond char­
acter arising from back-donation of lone pair electrons from fluorine to the central atom.
However, ligand close packing provides an alternative explanation that must be at least an
important factor in the bond shortening and may be the only cause. Because multiple bonds
are considerably shorter than comparable single bonds, the angles between them are gener­
ally larger than between single bonds, as we saw in Figure 4.19. This explanation is an al­
ternative to the larger double bond domains of the VSEPR model. We will discuss further
examples of bond angles in molecules containing multiple bonds in Chapters 8 and 9.

• 5.6 Bond Angles in Molecules with Lone Pairs

It might at first sight appear that the LCP model is not consistent with the effect of lone pairs
on geometry that is so nicely accounted for by the VSEPR model. For example, the pack­
ing of three ligands around a central atom might be expected to lead to the same planar tri­
angular geometry for both an AX3 and an AX3E molecule. This would indeed be true for a
hypothetical purely ionic molecule consisting of three spherical X- anions packed around a
spherical central cation A. However, we will see that if the central atom in a real molecule
has unshared electrons, the central atom is not spherical. This is because the bonding elec­
tron density and the negative charge on the ligands interact with the unshared valence den­
sity, which would be spherical in the free ion, pushing it to one side of the core and creat­
ing lone pairs even in a very ionic molecule. This is illustrated in Figure 5.10 for the case
of PF3 in which we imagine three spherical F- ions approaching a spherical pH ion that
consists of a spherical p5+ core and two nonbonding electrons surrounding the core in a
spherical distribution. As the F- ions approach the pH ion, they distort the spherical distri-
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(a) (b) (c)

p5+ 2 electrons
"lone pair"

Figure 5.10 Representation of the formation of the lone pair in the PF3 molecule. (a) An isolated pH

ion consisting of a p5+ core sUD'ounded by two nonbonding electrons in a spherical distribution. (b)
Three approaching F- ions distort the distribution of the two valence shell electrons pushing them to
one side of the p5+ core. (c) When the F ligands reach their equilibrium positions, the two nonbond­
ing electrons are localized into a lone pair, which acts as a pseudo-ligand giving the PF3 molecule its
pyramidal geometry.

bution of the two nonbonding electrons, pushing them to one side and into a more localized
distribution-in other words, causing them to adopt the distribution of a typical nonbonding
domain. The three F ligands then avoid the lone pair domain, thus adopting a trigonal pyra­
midal geometry as predicted by the VSEPR model. The lone pair domains occupy part of
the valence shell, preventing the ligands from occupying this space. The lone pairs can there­
fore be regarded as pseudoligands, and as a result, the predicted AX 2E, AX3E, and AX2E2

geometries are the same as predicted by the VSEPR model.
Because of the tendency of the lone pair density to spread out as much as possible, the

ligands in AX2E, AX3E, and AX2E2 molecules are generally pushed into contact, giving the
same ligand-ligand distances as in AX3 and AX4 molecules (Figure 5.11). On the basis of
the assumption that lone pair domains are larger than bonding pair domains, the VSEPR
model predicts that in the presence of a lone pair, the bond angles will be smaller than in
the corresponding regular polyhedron. For example, the VSEPR model predicts a bond an­
gle smaller than 109.5° in an AX3E molecule and smaller than 90° in an AXsE molecule,
but it cannot make more quantitative predictions. The LCP model, however, enables us not
only to predict the interligand distances in such molecules but to also quantitatively predict
bond angles when the bond lengths are known.
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For example, the LCP model provides a simple explanation of the initially surprising
observation that the bond angles in HOX molecules are smaller than in both the H20 and
the X20 molecules (Figure 5.12). The small angle in the XOH molecules is a consequence
of the constant interligand distance and the different bond lengths. Knowing the bond lengths,
we can predict the bond angle. In contrast, the VSEPR model, on the basis of electronega­
tivity considerations, would predict, incorrectly, that HOX molecules will have bond angles
between those of the H20 and X20 molecules.

• 5.7 Weakly Electronegative Ligands

If the electronegativity of the ligands X is much less than the electronegativity of the cen­
tral atom A, the electrons in the valence shell of A are not well localized into pairs and there­
fore have a small or zero effect on the geometry. In such molecules the bonds are very ionic
in the sense A-X+, and the central atom A is essentially an anion with a spherical electron
density distribution. In this case the VSEPR model is not valid, and the geometry of the mol­
ecule is detennined by ligand-ligand repulsions.

For example, the LiOH and Li 20 molecules are linear, not angular like H20, because
the Li ligand is not sufficiently electronegative to localize the eight electrons in the valence
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Table 5.11 Calculated Geometries of the
A(OH)n Molecules of Period 2

Molecule A-O (pm) OAOn AOHn

LiOH 158.2 180.0
Be(OHh 142.3 180.0 134.5
B(OHh 136.8 120.0 112.8
C(OH)4 139.3 103.6, 112.5 106.9
N(OHh 141.3 103.8 102.6
O(OHh 144.4 100.3 98.7
FOH 143.2 98.6

shell of oxygen into four tetrahedrally arranged pairs. So in these molecules the ligand­
ligand interactions dominate and give the observed linear geometry. Table 5.11 shows that
as the electronegativity of A increases in a series of A(OH)n molecules, the increasing lo­
calization of the electrons on oxygen into pairs leads to a decrease in the calculated AOH
bond angle from 180° to a value less than the tetrahedral angle in FOH, as expected from
the VSEPR model.

In general, when the localization of the electrons on the central atom is so weak that ligand­
ligand repulsions dominate the geometly, bond angles in OX2E2 and NX3E molecules are
larger than tetrahedral and may reach the maximum possible angles of 180° in OX2E2 mol­
ecules and 120° in NX3E molecules (Table 5.12). For example, the Li20 molecule has a lin­
ear geometry and N(SiH3h has a planar geometry. The effect of increasing the electroneg­
ativity of X is shown by the bond angles in the molecules Li20 (180°, calc), (CH3hO (111.7°),
F20 (103.3°), and in the molecules Na20 (180°, calc.), (SiH3hO (144.1°), CI20 (110.9°).
As the nonbonding electrons become increasingly localized into lone pairs with increasing
electronegativity of the ligands in each of these series of molecules the bond angles approach
those predicted by the VSEPR model. The VSEPR description of the molecules AX2E2 and
AX3E when they have very weakly electronegative ligands X is not strictly valid because
the well-localized lone pairs denoted by E are not present. Molecules such as N(SiH3h and
O(SiH3h are often cited as exceptions to the VSEPR model and are used to question the va­
lidity of the model. However, they cannot be considered to be true exceptions because the
mOdel is not expected to be applicable to these molecules.

Table 5.12 Bond Angles and Bond Lengths in NX3E and OX2E2 Molecules

Molecule N-X (pm) XNXn Molecule O-X (pm) XOX (0)

NF3 136.5 102.3 F20 140.0 103.3
NCI3 175 106.8 H2O 95.8 104.3
NH3 101.5 107.2 CI10 170.0 110.9
N(CH3h 145.8 110.9 (CH3hO 141.0 111.7
N(CF3h 142.6 117.9 (SiH3hO 163.4 144.1
N(SiH3) 173.4 120.0 (Me3SihO 163 J48

Li 20 160 180
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• 5.8 Ligand-Ligand Interactions in Molecules of the
Elements of Periods 3-6

Almost all the examples discussed in the preceding sections have been drawn from mole­
cules of the period 2 elements because they have been more intensively studied and because
these provide good illustrations of the LCP model. The bonds in molecules of the period 3
elements are longer and weaker than the corresponding bonds formed by the period 2 ele­
ments. Consequently, in these molecules the interligand distances are generally larger than
in the corresponding period 2 molecules because the ligands are not squeezed so tightly to­
gether. The potential energy curve in Figure 5.7 is less steep at the interligand distances in
these molecules than in the period 2 molecules. The ligands are therefore softer and more
compressible than the same ligand in a period 2 molecule, which in tum give them a slightly
more variable ligand radius. Consequently interligand distances are somewhat more variable.
They have their smallest value in six-coordinated octahedral molecules in which the ligands
probably reach the effective limit of their compressibility, at least for molecules of the ele­
ments of periods 3 and 4.

Values of the ligand radii for the ligands F, CI, and 0 bonded to the period 3 atoms AI,
Si, P, and S are given in Table 5.13 for both four- and six-coordinated molecules. We see
that the radius for six-coordinated molecules is a little smaller than that for four-coordinated
molecules, where the ligands are less tightly packed. Although the concept of a unique lig­
and radius independent of coordination number is more an approximation for the elements
of period 3 and beyond than for period 2 elements, ligand-ligand interactions are still a very
important factor in determining the geometry of the molecules of these elements, as we can
see for the molecules PF3 , PF4 +, and POF3 in Figures 5.9 and 5.11 and as we will see in
other examples in Chapter 9.

• 5.9 Polyatomic Ligands

In the discussion in the preceding section we assumed that a ligand atom can be assigned a
single ligand radius. However, as we saw in Section 5.1, this assumption is not strictly cor­
rect even for monatomic ligands, such as F, CI and =0. We saw in Figure 5.2 that the van
der Waals radius varies a little with the direction in which it is measured. However, ligand

Table 5.13 Ligand Radii (pm) for F. CI. and 0 Ligands Bonded to Central Atoms of Some
Period 3 Elements

Six-Coordination Four-Coordination

Ligand AI Si P S AI Si P S

F 128 120 III 110 135 127 120 118
CI 160 151 148 145 172 160 156 155
0 134 132 126 121 140 132 126 124
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radii are less variable than van del' Waals radii and moreover the direction of intramolecu­
lar contacts measured from the bond direction varies only over limited range from approxi­
mately 45° in a six coordinated molecule to approximately 30° in a three-coordinated mol­
ecule. So we expect the variation of ligand radius with the contact direction for such ligands
to be very small and probably less than the accuracy to which ligand radii can be determined.
We can therefore attribute a constant unique ligand radius to a monatomic ligand or a linear
ligand, such as CN, which have an electron distribution that is symmetrical around the bond
axis. However, this is not the case for nonlinear polyatomic ligands, such as the OH ligand,
in which the oxygen does not have an electron distribution that is symmetrical around the
axis of the bond to the central atom. This causes a variation in the ligand radius with direc­
tion which, although small, is significant, and can have some important consequences. In
particular the contact distance with another ligand can vary with the orientation of the lig­
and. This is illustrated by the example of the two possible planar geometries for the B(OHh
molecule in Figure 5.13. The C3h geometry is the lowest energy geometry and is the exper­
imentally observed geometry. To account for the interligand distances in the two forms of
the B(OHh molecule we need to assign two radii to the oxygen atom; 1'1, in the direction
between the bonds to oxygen and 1'2, in the opposite direction, that is in the lone pair region.
As we can see from Figure 5.13 the three 0--0 distances in the C3h geometry are all equal
and are equal to the sum of the two radii 1'1 and 1'2. The three interligand distances in the Cs

structure are not all equal, because they are 1'1 + 1'1, 1'2 + 1'2, and 1'1 + 1'2. Consequently the
three bond angles are not equal to each other. From the interligand distances in the two struc­
tures of B(OHh the two radii are found to be 116 pm and 122 pm. Note that the value of
119 pm for the ligand radius of oxygen bonded to boron given in Table 5.5 is an average ra­
dius for oxygen in various OX groups and for terminal oxygen atoms as in the B033- ion.
It is interesting to note that the radius of oxygen in the direction of the lone pair region is
smaller than the radius in the direction between the two bonds. This observation is consis­
tent with the relative shapes of bonding pair domains and lone pair domains. Lone pair do­
mains are more spread out around the inner core than bond pair domains which are more ex­
tended towards the ligands. This picture of the electron distribution around an oxygen atom,
for example, is confirmed by calculated electron density distributions (Chapter 6).

An important consequence of the nonaxially symmetric electron distribution of the oxy­
gen atom in an angular OX ligand is that B(OX)4 molecules do not have a regular tetrahe-

/H

11\244~B~BP",

01 ----r,----r;- °1
232 pm

H H

C2

Figure 5.13 The C3h and Cs

geometries of the B(OHh mole­
cule.
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dral geometry. For example, the B(OH)4- ion has D2d not Td symmetry with two OBO an­
gles of 106.20 and four of 111.1 0

• These deviations from tetrahedral geometry have been
shown to be due to the nonaxially symmetrical electron density around the oxygen atom as
we discuss in more detail in Chapter 8. Other A(XY)4 and related molecules show similar
deviations from tetrahedral geometry because of the nonaxially symmetric electron density
around the X atom. The form of the electron distribution around a ligand may be important
in understanding other deviations from predicted geometries that have not thus far been eas­
ily explained.

• 5.10 Comparison of the LCP and VSEPR Models

At first sight the LCP and VSEPR models might appear to be very different and unrelated,
but it has perhaps become clear in the preceding discussion that this is not the case. In­
deed, the LCP model can be regarded as an extension and a refinement of the VSEPR
model in which bond pair-bond pair repulsions are replaced by ligand-ligand repulsions.
Both models lead to the same predictions of the general geometry of a molecule. In most
cases we cannot distinguish between the effects of bond pair-bond pair repulsions and lig­
and-ligand repulsions in determining geometry. Indeed the spherical electron pair domain
version of the VSEPR model and the ligand close-packing model, in which we consider
spherical anion-like ligands to be packed around a spherical cation-like central atom, are
mathematically identical and Bent's tangent sphere model applies equally to both. The very
important role of lone pairs in determining geometry remains the same in both models.
Moreover, the essential role of the Pauli principle in the formation of lone pairs is the same
in both models. The importance of the LCP model is twofold: it provides a better under­
standing of bond angles that is essentially quantitative for molecules of the period 2 ele­
ments, and it can predict the geometry of molecules to which the VSEPR model does not
apply. This advantage of the LCP model does not, however, mean that electron pair do­
main interactions are not important. The formation of localized electron pair domains is
an expression of the Pauli principle, and these domains are always present in the valence
shell of an atom in a molecule in which the attached ligands have a sufficiently great elec­
tronegativity. In a molecule in which ligand-ligand interactions were unimportant, the geo­
metrical arrangement of the localized electron pair domains would determine the geome­
try of the molecule. In a molecule in which there are no well-defined nonbonding electron
pairs in the valence shell of the central atom, ligand-ligand interactions dominate the geom­
etry. In the majority of molecules, both electron pair-electron pair and ligand-ligand in­
teractions are important in determining geometry. When the ligands are relatively small
compared to the central atom, electron pair-electron pair interactions are probably the more
important, but when the ligands are relatively large, no doubt ligand-ligand interactions
take precedence. For molecules of the period 2 elements that have small central atoms,
ligand-ligand interactions appear to dominate, as we have seen. When it is applicable, the
LCP model has the advantage of being able to predict the interligand distances on which
the bond lengths and bond angles depend, and thus it gives us a more quantitative under­
standing than the VSEPR model.
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c H A T E R

THE AIM THEORY AND THE

ANALYSIS OF THE ELECTRON DENSITY
• • •

• 6.1 Introduction

We have seen in Chapter 3 that ab initio calculations can give us very accurate solutions of
the SchrOdinger equation from which we can obtain the molecular wave function, and there­
fore the electron density distribution, as well as the corresponding energy and equilibrium
geometry of a molecule. However, this information, important as it is, does not provide us
directly with either the properties of the atoms as they exist in the molecule or of the bonds
between them. To obtain this information we have to analyze either the wave function or the
electron density. We have discussed some of the difficulties associated with the analysis of
the wave function in Chapter 3. The theory of atoms in molecules (AIM), which we describe
in this and the following chapter, provides a method for analyzing the electron density dis­
tribution (obtained either by an ab initio calculation or by X-ray crystallography) to provide
us with information about atoms as they exist in a molecule and on the bonds between them.

The importance of understanding the electron density is made clear by the Hell­
mann-Feynman theorem. We will see that this theorem shows us that all the properties of a
molecule are ultimately determined by the electron density distribution p.

• 6.2 The Hellmann-Feynman Theorem

The Hellmann-Feynman theorem demonstrates the central role of p, the electron density dis­
tribution, in understanding forces in molecules and therefore chemical bonding. The main
appeal and usefulness of this important theorem is that it shows that the effective force act­
ing on a nucleus in a molecule can be calculated by simple electrostatics once p is known.
The theorem can be stated as follows:

The force on a nucleus in a molecule is the sum of the Coulombic forces exerted by the other
nuclei and by the electron density distribution p.

134
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The only forces operating in a molecule are electrostatic forces. There are no mysterious
quantum mechanical forces acting in molecules.

Rather than giving the general expression for the Hellmann-Feynman theorem, we fo­
cus on the equation for a general diatomic molecule, because from it we can learn how p in­
fluences the stability of a bond. We take the internuclear axis as the z axis. By symmetry,
the x and y components of the forces on the two nuclei in a diatomic are zero. The force on
a nucleus 0' therefore reduces to the Z component only, Fz,A, which is given by

_ 2 cos (JA ZAZBe2

Fz,A - ZAe J dT per) ? - 2
ARAB

where RAB is the distance between the two nuclei, rA is the distance between nucleus A and
a given point with coordinates rex, y, z), e is the fundamental charge, ZA, ZB are the respec­
tive atomic numbers of the nuclei, and (JA and (JB are the angles between the position vec­
tor r and the internuclear axis (Figure 6.1), This formula shows that there are two contribu­
tions to the force on a nucleus: a term depending on the three-dimensional profile of the
electron density throughout the molecule and a nuclear repulsion term. The first term of this
expression also embodies the oft-quoted statement, "The electron density acts as glue hold­
ing the nuclei together in a stable chemical bond." However, the work of Berlin showed that
this is a misleading oversimplification,

Rab = distance between A and B

Figure 6.1 Binding and antibinding regions for a heteronuclear diatomic molecule consisting of two
nuclei A and B with ZA = Zs. The coordinate system is superimposed. The distance from a point with
coordinates (x,y,z) to nucleus A is rA and to nucleus B is rs. the distance between the nuclei is RAS

To obtain the 3D binding and antibinding regions rotate the figure about the internuclear axis.
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Berlin showed that a diatomic molecule can be partitioned into a binding region and
an antibinding region, as shown in Figure 6.1. These regions are separated by two surfaces
of revolution given by the function B:

(6.2)

All points in space that obey Equation (6.2) together fonn two surfaces whose shape depends
on the values of the atomic numbers of the nuclei in the diatomic moleule. An element of
electronic charge situated in either of these two surfaces exerts a zero force on the nuclei.
An element of charge at a point in the space where B(ZA, ZB, r) > 0 draws the two nuclei
together. In other words, charge present in the binding zone, where B(ZA, ZB, r) > 0, con­
tributes to the stability of the bound state of a molecule. On the other hand, charge in the
antibinding zone, where B(ZA, ZB, r) < 0, attracts one nucleus more strongly than the other,
and thus the nuclei are drawn apart.

A stable molecule at equilibrium can exist only if the attractive force from the binding
region balances both the nuclear repulsive force and the repulsive force due to charge in the
antibinding zone. Sufficient electronic charge must therefore be accumulated in the binding
region to produce a stable molecule. This requirement combined with the decrease in p with
increasing distance from a nucleus, leads electronic charge to be most concentrated along
the internuclear axis .

• 6.3 Representing the Electron Density

We have just seen that the equilibrium geometry and stability of a molecule are
determined by the electron density via the forces it exerts on the nuclei. Now we focus
on the representation of p and on how we can extract chemical information from it. In
contrast to the wave function, the electron density is an observable that can be measured
by X-ray crystallography (Section 6.5). Moreover, it is easier to understand than the
wave function thanks to the Born interpretation discussed in Chapter 3. Nevertheless, p
has generally been given relatively little attention in books on quantum chemistry in com­
parison to wavefunctions, energies, and geometries. This neglect is probably due to its
superficially trivial appearance: p is very high near the nuclei and appears to be feature­
less elsewhere. Figure 6.2, a relief map of p in the molecular plane of SCh, is typical of
many molecules. The huge peaks near the nuclear positions have been truncated for con­
venience at 15 au but are in reality about 200 times higher. The density near the nuclei
is so large that the outer regions of this density dominate and tend to obscure the rela­
tively very small, but nevertheless important, features of the density in the bonding
region.

We can conveniently think of p as a gas with a nonunifonn density, which is more com­
pressed and therefore more dense in some regions, and less compressed or less dense in other
regions. Since the electron density p(x, y, z) of a molecule varies in three dimensions, we
need a fourth dimension to represent it completely. Nevertheless we can get a good idea of
the behavior of p by plotting constant electron density envelopes.
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Figure 6.2 Relief map of the electron density in the molecular plane of Se12. The vertical direction
(z axis) is used to show the value of p, which depends on the two coordinates (x,y) describing the mol­
ecular plane. The value of p at the nuclear positions is of the order of 3 X 103 au but the peaks have
been truncated at 15 au. Note the dramatic behavior of the electron density in the vicinity of the nu­
clei: there are huge peaks appearing on a nearly flat landscape.

Let us consider constant p envelopes of SClz for three different values of p. The p =

0.001 au envelope encompasses the whole molecule (Figure 6.3a) and can be regarded as
the practical edge of the molecule. In general, this envelope agrees well with the van der
Waals surface determined from the molecule's nonbonded interactions with other molecules
in the gaseous phase. This surface encloses over 98% of the density in a typical hydrocar­
bon molecule. As we increase p further, the corresponding envelope shrinks and eventually
fails to encompass the whole molecule. When p > 0.133, au the envelope separates into three
surfaces, each encompassing only one nucleus (Figure 6.3b). When p = 0.133 au (Figure
6.3c), these three surfaces touch at only two special points, which we discuss later. Atomic
units (au) are described in Box 6.1.

Figure 6.4 shows a third and commonly used way of representing electron density pro­
files: the two-dimensional contour map. This map for the SClz molecule corresponds to the
relief map in Figure 6.2. Although this map is able to show very detailed information. we
are restricted to a particular choice of plane, or to a selection of planes. To obtain an ap­
proximately equally dense distribution of contour lines, contour values used in this book in­
crease in the nearly geometrical sequence, 10-3,2 X 10-3,4 X 10-3,8 X 10-3.2 X 10-2,
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(a) (b)

Figure 6.3 Constant electron density enve­
lope maps for SClz for three different con­
tour values (a) p = 0.001 au, (b) p = 0.200
au and (c) p = 0.133 au. (a) This constant
density envelope shows the practical outer
boundary of the molecule broadly corre­
sponding to the van der Waals envelope. (b)
This constant density envelope demonstrates
that for higher p values the envelope be­
comes disconnected into three surfaces each
encompassing a nucleus. (c) This constant
density envlope is plotted at the highest p
value for which the molecular envelope is
still connected or encompasses the whole
molecule.

4 X 10-2 , 8 X 10-2 , ... , au. Each subsequent contour value is then approximately twice
the value of the preceding contour value.

In the case of linear molecules, a two-dimensional contour map takes advantage of the
cylindrical symmetry of p to give an almost complete picture of the electron density. To rep­
resent p completely, we would need a contour map through the two nuclei and contour maps
in an infinite number of planes perpendicular to the molecular axis. Contour maps of p for
the CO and Ch molecules are given in Figure 6.5. There is a maximum in the electron den­
sity at each of the nuclei, and p decreases less rapidly along the internuclear axis than in any
other direction from either nucleus. In Cl2 (Figure 6.5a) the electron density reaches a min­
imum along the internuclear axis at the midpoint, but in CO (Figure 6.5b) the minimum is
somewhat closer to the carbon nucleus. This minimum has the same properties as the point
between the Sand CI nuclei in SCl2, where the two constant p envelopes have one point in
common (see Figure 6.3c, p = 0.133 au). If we gradually increase the p value of an enve-
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Figure 6.4 Contour plot of the electron
density in the molecular plane of SCI2 .

The outer contour line corresponds to
0.001 au and the next contour lines cor­
respond to values increasing according
to the pattern 2 X lon, 4 X IOn ,8 X IOn
where n varies from -3 to 2.

lope map of CO or C1 2, the envelope first encompasses the whole molecule and then shrinks
until it becomes disconnected. The envelope encompasses the two nuclei separately when
the P contour value is that of P at the respective minimum.

What is the behavior of the electron density in a plane perpendicular to the molecular
axis? In view of the cylindrical symmetry of a diatomic molecule, we find a pattern of cir­
cular contour lines, with values that increase toward the molecular axis. As a result, we can
regard the molecular axis as a line along which the electron density is higher than in any di­
rection away from the line. In a two-dimensional contour map or relief map, this line ap­
pears as a ridge of higher electron density connecting the peaks that surround the nuclei. In
other words, the electron density is more compressed along the molecular axis than along
any other line between the nuclei. In Figure 6.6, a relief map of P in CO in a plane con­
taining the molecular axis, we see this line of higher density as a ridge connecting the two
peaks.

• 6.4 Density Difference or Deformation Functions

An early attempt to obtain insight from the molecular electron density was to subtract a ref­
erence density from it. The resulting difference density, ~p(r), introduced by Daudel and
others is then simply :

~p(r) = Pmo!(r) - Prenr) (6.3)

where Pmol(r) is the electron density of the molecule and Prenr) is the reference density. A
common, reference density distribution is obtained by placing the calculated density of the
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A BOX 6.1 T
Atomic Units

The units we use in daily life, such as kilogram (or pound) and meter (or inch) are tai­
lored to the human scale. In the world of quantum mechanics, however, these units
would lead to inconvenient numbers. For example, the mass of the electron is 9.1095 X

10- 31 kg and the radius of the first circular orbit of the hydrogen atom in Bohr's the­
ory, the Bohr radius, is 5.2918 X 10- 11 m. Atomic units, usually abbreviated as au,
are introduced to eliminate the need to work with these awkward numbers, which re­
sult from the arbitrary units of our macroscopic world. The atomic unit of length is
equal to the length of the Bohr radius, that is, 5.2918 X 10- I I m, and is called the
bohr. Thus I bohr = 5.2918 X 10- 11 m. The atomic unit of mass is the rest mass of
the electron, and the atomic unit of charge is the charge of an electron. Atomic units
for these and some other quantities and their values in SI units are summarized in the
accompanying table.

There is another important reason for the existence of atomic units, namely, that
quantum mechanical expressions, such as the Schrodinger equation, become simpler.
When expressed in SI units, the Schrodinger equation for the hydrogen atom is

where 11 = hl27T, whereas in atomic units it becomes

Atomic Units

Quantity Name of Unit Symbol Value

Mass Electron rest mass Ine 9.1095 X 10- 31 kg
Length Bohr ao 5.2918 x 10- II m
Charge Elementary charge e 1.6022 X 10- 19 C

Energy Hartree E" 4.3598 X 1018 J
Charge density au of charge density e ao- 3 1.0812 X 10 12 C . m- 3

neutral spherical ground state atom at each nuclear positions. Although this theoretical ref­
erence density is electrostatically binding, it is a hypothetical entity, inasmuch as atoms in
molecules normally carry charges and the valence shell electrons are not spherically distrib­
uted. Moreover, this hypothetical reference density violates the Pauli exclusion principle be­
cause it allows the atomic densities to overlap unchanged. Crystallographers usually refer to
this difference density as the standard deformation density.
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(a) (b)
Figure 6.5 Contour plot of the electron density in a plane containing the nuclei of (a) CO and (b) Clz,
both drawn at the same scale. Along the internuclear axis, the electron density reaches its minimum
value at a point marked by a square. For Clz this is the midpoint.

Figure 6.6 Relief map of the
electron density for CO in a plane
containing the molecular axis.
The electron density falls off
more rapidly for displacements
perpendicular to the internuclear
axis than along the internuclear
axis.

Figure 6.7 shows the calculated electron density distributions for the Hz and N2 mole­
cules in their equilibrium geometry together with the standard deformation densities. There
is clearly a buildup of electron density in the bonding region in both molecules. In the N2

molecule there is also an increase in the electron density in the lone pair region and a de-
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Figure 6.7 (a) Contour map of the molecular electron densities H2 and N2 in a plane containing the
nuclei. (b) Contour maps of a density difference function in the same plane. The solid contour lines
indicate positive values. the dashed contour lines negative values. Electronic charge is accumulated in
the central bonding region in both molecules and in the lone pair regions of the N2 molecule. (Repro­
duced with permission from Bader. Nguyen, and Tal Rep. Prog. Phys. 44, 893, 1981.)

crease in the region between the lone pair density and the bonding density. However, the
standard defonnation density does not show an accumulation of density in the bonding re­
gion for all bonds. Figure 6.8a shows the standard deformation density for the F2 molecule,
which is negative in the bonding region. An F atom with a spherical electron density distri­
bution is obtained by averaging over all the possible configurations (ls)2(2s)2(2p)5. This av­
erage configuration has 5/3 = 1.66 electrons per valence p orbital. So when this density is
subtracted from the experimental density, 1.66 electrons are subtracted out in the bond re­
gion, more than compensating for the accumulation of density due to bond fonnation and
therefore causing a depletion of density in the bond region relative to the spherical atom ref­
erence state. The defonnation density in the 0---0 bonding region in hydrogen peroxide and
other peroxides is similarly negative. In this case the density of a spherical oxygen atom is
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(a) (b)

Figure 6.8 Deformation densities for the F2 molecule. (a) Standard deformation density. Note that
there is no charge buildup in the bonding region between the nuclei. (b) Modified deformation den­
sity: molecular density minus the density of atoms in the (I s)2(2s)2(2Px)2(2py)2( 2pz)1 reference state
showing a buildup of charge in the bonding region. (Reproduced with permission from P. Coppers
[1997].)

the average density of all the configurations (I s)2(2s)2(2p)4, and an average of 4/3 = 1.33
electrons per valence orbital is subtracted out in the bond region, again more than compen­
sating for the accumulation of density due to bond formation.

To remedy the foregoing defect, alternative reference densities have been designed. A
more appropriate reference state for fluorine is the valence configuration (I s)2(2s)2
(2p.Y(2py)2( 2pz) 1 with the z axis along the bond direction. In this case no density other than
that due to the electrons involved in the bonding is subtracted from the molecular density.
This reference state gives the deformation density for the F2 molecule shown in Figure 6.8b,
where we see a buildup of density in the bonding region. This is still only an approximate
model for the reference density and so still more refined reference densities have been de­
veloped and used, but we do not need to discuss them here. Further details can be found in
the book by Coppens (1997).

Clearly the fonn of a deformation density depends crucially on the definition of the ref­
erence state used in its calculation. A deformation density is therefore meaningful only in
terms of its reference state, which must be taken into account in its interpretation. As we will
see shortly, the theory of AIM provides information on bonding directly from the total mol­
ecular electron density, thereby avoiding a reference density and its associated problems. But
first we discuss experimentally obtained electron densities.

• 6.5 The Electron Density from Experiment

Unlike the wave function, the electron density can be experimentally determined via X-ray
diffraction because X-rays are scattered by electrons. A diffraction experiment yields an an­
gular pattern of scattered X-ray beam intensities from which structure factors can be obtained
after careful data processing. The structure factors F(H), where H are indices denoting a par­
ticular scattering direction, are the Fourier transfOlm of the unit cell electron density. There­
fore we can obtain per) experimentally via:
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1
per) = - I F(H) exp( -27TiH . r)

V H
(6.4)

where V is the unit cell volume.
If we are interested only in the determination of a molecular structure, as most chemists

have been, it suffices to approximate the true molecular electron density by the sum of the
spherically averaged densities of the atoms, as discussed in Section 6.4. A least-squares pro­
cedure fits the model reference density Pret<r) to the observed density pobs(r) by minimizing
the residual density Ap(r), defined as follows:

Ap(r) = pobs(r) - Pret<r) (6.5)

The model reference density Pref is a good approximation to the dominant part of P appear­
ing very close to the nuclei, and so Ap(r) will be very small everywhere and is assumed to
be experimental noise. If the peaks in P are located, then the nuclear positions are known
and the structure is resolved. Because they have no core, hydrogen atoms produce only very
small maxima, and thus their positions are difficult to locate with any accuracy. If it is im­
portant to locate their positions accurately, this can be done by neutron diffraction. Neutrons
are scattered by nuclei rather than electrons, and so the positions of the nuclei are obtained
directly. Neutron diffraction is particularly important for the accurate determination of the
positions of hydrogen atoms.

However, since the early 1970s crystallographers have gone beyond routine structure
determination and have attempted to deduce chemical features such as bonds and lone pairs
from the experimentally determined density. Recent advances in experimental techniques,
such as dedicated and improved synchrotron X-ray beams, sophisticated photographic de­
tectors, and methods for measuring X-ray diffraction at very low temperatures, have made
accurate high-resolution determinations of P faster and more reliable than in the past. These
methods can give an experimental density of such high quality that Ap(r) is not just noise
but contains chemically relevant information, provided a good reference density is used.

Figure 6.9 shows a contour plot of the deformation density obtained from an experi­
mentally determined density for tetrafluoroterephthalonitrile in the plane of the ring. The
density accumulated in the binding regions of all bonds, including the bonds to fluorine, can
be clearly seen, as well as the charge buildup in the lone pair zone of nitrogen and fluorine.
The buildup of the electron density in the C-F bonding region is rather small. Presumably
this small deformation density in the CF bonding region reflects the strong ionic character
of the bond as well as the inadequacy of the reference density.

In the next section we will see how the theory of AIM enables us to obtain chemical in­
sight directly from the experimental density as determined by experiment or by calculation,
thereby avoiding the need for deformation densities .

• 6.6 The Topology of the Electron Density

An important part of AIM is the analysis of the electron density using the branch of math­
ematics called topology. Topology is the study of geometrical properties and spatial relations
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Figure 6.9 (a) Standard deformation density of tetrafluoroterephthalonitrile in the molecular plane.
Contour interval is 0.1 e A-3, terminated at 1.5 e A-3. (b) Molecular diagram with a box around the
fragment shown in the deformation map (a). (Reproduced with permission from F. L. Hirshfeld, Acta
Crystallogr., B40, 613,1984.)

unaffected by continuous change of shape or size of objects. We can conveniently describe
the topology of p in terms of its gradient vector field and its critical points.

6.6.1 Gradient Vector Fields

To describe how a quantity varies over a region of space, we use the concept of afield. Grav­
itational, electrical, and magnetic fields are examples of vector fields, since a direction is as­
sociated with the quantity at each point in space. On the other hand, a scalar field is one in
which a scalar quantity is used to describe each point in space. For example, the variation
in temperature over a given region can be described by a scalar temperature field. The gra­
dient of a scalar quantity is a vector that points in the direction in which the scalar quantity
is increasing most rapidly. If we were in a submarine at the bottom of the ocean in pitch
blackness, looking for a hot spot where lava is escaping from the ocean floor, a thermome­
ter indicating the ocean temperature would allow us to move in the direction of the greatest
temperature increase, that is, in the direction of the gradient vector. An important property
of a gradient vector is that it is everywhere perpendicular to an envelope of constant scalar
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value, which in this case would be an envelope of constant temperature, or an isothermal
envelope.

There are many other examples of gradient vectors. Perhaps the most familiar example
is the direction of steepest ascent on a mountain. The shortest path to the top can be found
by taking the direction of steepest ascent at each point. In this way we trace out a path, called
a gradient path, that is everywhere perpendicular to the contours of constant height. Figure
6.10 shows two of an infinite number of gradient paths for an idealized mountain. The col­
lection of gradient paths is called the gradient vector field. Another example is the wind:
the gradient of the air pressure coincides with the local wind direction (ignoring the Corio­
lis effect). The wind blows along a gradient path in a direction perpendicular to the envelopes
of constant atmospheric pressure or to the contours called isobars on a two-dimensional map.
In the example of the submarine at the bottom of the ocean, the navigator could find the hot
spot by following a temperature gradient path that is perpendicular to the isotherms.

The electron density p is a scalar quantity that varies through space. The gradient of p,
denoted by yop, is a vector that points in the direction of steepest ascent. The operator yo is
the partial differential operator dUx/dX + dUy/dy + dUz/dX, where ux, uy, Uz are unit vectors.
If we evaluate yop at a given point and follow the vector over an infinitesimally short dis­
tance, we will move to a higher p value. The path traced by successively following and
reevaluating the gradient is a gradient path or line of steepest ascent. The collection of gra­
dient paths constitutes the gradient vector field of the electron density.

What does a typical gradient vector field in the electron density look like? For a free
atom, it looks just like the gradient vector field for the idealized mountain illustrated in Fig­
ure 6.10. The gradient vectorfield of ethene in the molecular plane is shown in Figure 6.11 b,
together with a contour plot of p in the same plane (Figure 6.11 a). All the gradient paths
shown originate at infinity and terminate at a nucleus. The gradient paths do not meet ex­
cept at a nucleus, and they are always perpendicular (orthogonal) to the contours. Each nu­
cleus acts as an attractor for a multitude of gradient paths, which constitute what we call
the basin of the attractor. The basins do not overlap, and the gradient vector field makes the
molecule naturally fall apart into disjoint atomic regions. In other words, the gradient vec­
tor field naturally partitions the electron density of a molecule into regions, which as we will
see, define the atoms as they exist in the molecule.

a

Figure 6.10 The topological map of an idealized mountain
represented by the circular contours of constant height on a
topological map. Two gradient paths or lines of steepest as­
cent (a) are shown, together with a path (b) that is not a line
of steepest ascent but is an easier route up the mountain. The
lines of steepest ascent-gradient paths--cross the contours
at right angles.
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(a) (b)
Figure 6.11 (a) Contour plot of p for the molecular plane of the ethene molecule. (b) The gradient
vector field of the electron density for the same plane. All the gradient paths shown originate at infin­
ity and terminate at one of the six nuclei.

6.6.2 Critical Points

Now we look at the electron density in another way, namely, in terms of its extrema, (i.e.
minima, maxima and saddle points), which are called critical points. A critical point is an
extremum in a function. In a one-dimensional function described by f(x), there are only two
types of critical point, maxima and minima, at which the first derivative of f(x), df(x)/dx,
vanishes (Figure 6.12). Thus at a one-dimensional critical point the slope of f(x) is zero. The
two types of critical point can be characterized by the curvature or second derivative of f(x),
dlf(x)/dx2, at these points. At a minimum, the slope changes from negative to positive, and
the curvature is positive. Conversely, the slope at a maximum changes from positive to neg­
ative, and the curvature is negative. The more pronounced this change of slope for a change
in x, the higher the absolute value of the curvature.

A two-dimensional function has extrema, of three types, namely maxima, minima, and
saddle points, which are illustrated in Figure 6.12. A three-dimensional function such as p
has four types of extrema: maxima, minima, and two types of saddle point (see Box 6.2).
The maxima in p almost always coincide with the nuclear positions, as they do in all the
molecules we discuss in this book. We encountered two examples of a saddle point in Sec­
tion 6.3. Along the internuclear axis in CO and CI2 (Figure 6.5) the electron density has a
minimum value at a point on the molecular axis between the two nuclei. In a direction per­
pendicular to the molecular axis, the density at this critical point is a maximum. This point
is a saddle point in p and is called a bond critical point. We showed before that there is a
value of p such that the corresponding constant density envelope just separates into two en­
velopes, each encompassing just one nucleus and just touching each other at one point (Fig­
ure 6.3c). We now identify this point as the bond critical point. In Figure 6.13, a relief map
of the electron density in the molecular plane of methanal, there are three bond critical points,
one between the carbon and oxygen nuclei and one between the carbon nucleus and each
hydrogen nucleus.
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Figure 6.12 Classification of all types of extremum or critical point that can occur in one-, two-, and
three-dimensional functions: a one-dimensional function can possess only a maximum or a minimum;
a two-dimensional function has maxima, minima, and one type of saddle point; a three-dimensional
function may have maxima, minima, and two types of saddle point. The alTOWS schematically repre­
sent gradient paths and their direction. At a maximum all gradient paths are directed toward the max­
imum, whereas at a minimum all gradient paths are directed away from the minimum. At a saddle point
a subset of the gradient paths are directed toward the saddle point, whereas another subset are directed
away from the saddle point (see Box 6.2 for more details).
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A BOX 6.2 •
Classification ofCritical Points.. ...

The classification of critical points in one dimension is based on the curvature or second
derivative of the function evaluated at the critical point. The concept of local curvature
can be extended to more than one dimension by considering partial second derivatives.
a2j/aQiaQj, where qi and qj are x or y in two dimensions, or x, y. or z in three dimensions.
These "partial" curvatures are dependent on the choice of the local axis system. There is
a mathematical procedure called matrix diagonalization that enables us to extract local
intrinsic curvatures independent of the axis system (Popelier 1999). These local intrin­
sic curvatures are called eigenvalues. In three dimensions we have three eigenvalues,
conventionally ranked as,\ 1 < '\2 < '\3. Each eigenvalue corresponds to an eigenvector,
which yields the direction in which the curvature is measured.

The number of nonzero eigenvalues of a critical point is called the rank r. For ex­
ample, a maximum in a three-dimensional function has rank 3. The sum of the signs of
the eigenvalues is called the signature s. A value of (+ I) is assigned to a positive eigen­
value, or maximum in the corresponding eigenvector direction, and (-I) to a negative
eigenvalue, or minimum in the corresponding eigenvector direction. We denote a critical
point by (r, s), so a maximum in a three-dimensional function that has a rank of 3 and a
signature of - 3 is denoted as a (3, - 3) critical point. A minimum in two-dimensional
function that has a rank of 2 has a signature of +2 and is denoted as a (2, -2) critical
point. A saddle point of rank 3 that is a maximum in two dimensions and a minimum in
one has a signature of -I. So it is a (3, -I) critical point. This explains the notation used
in Figure 6.12. In this book we are concerned primarily with critical points of rank 3 and
particularly with (3, - 3) critical points or maxima and (3, -I) critical points or saddle
points. We find (3, + I) critical points only in the center of cyclic molecules such as cy­
clopropane and (3, +3) critical points or minima only in the center of cage molecules such
as P4. The various types of critical points of rank 3 are summarized in the Table.

We can measure the extent electronic charge is preferentially accumulated by a
quantity called the ellipticity E. At the bond critical point it is defined in terms of the
negative eigenvalues (or curvatures), ,\ 1 and '\2 as E = (,\ 1/'\2) - I. As ,\ 1 < '\2 < 0,
we have that ,\ 1/'\2> I, and therefore the ellipticity is always positive. If E = °then
we have a circularly symmetric electron density, which is typically found at bond crit­
ical points in linear molecules.

Table Box 6.2

AI A2 A) (r. s)

Maximum (3, -3)
Nuclear attractor
Saddle point + (3, -1)
Bond critical point
Saddle point + + (3, +1)
Ring critical point
Minimum + + + (3, +3)
Cage critical point
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Figure 6.13 Relief map of the electron density for methanal (formaldehyde) in the molecular plane.
There is a bond critical point between the carbon and the oxygen nuclei, as well as between the car­
bon nucleus and each hydrogen nucleus. No gradient path or bond critical point can be seen between
the two hydrogen nuclei because there is no point at which the gradient of the electron density van­
ishes. There is no bond between the hydrogen atoms consistent with the conventional picture of the
bonding in this molecule.

(a) (b)
Figure 6.14 (a) The gradient vector field for ethene, showing a special set of extra gradient paths (cf. Fig­
ure 6.11 b) that are not attracted to any nucleus. The bond critical points are denoted by a dot. (b) The two
sets of special gradient paths superimposed on a contour map of p. One set, called bond paths, link the nu­
clei and the other set mark the boundaries of the atomic basins in this particular plane The black dots denote
the bond critical points. These gradient paths, like all gradient paths, are perpendicular to the contour lines.

In Figure 6.14a the gradient vector field of ethene in the molecular plane (shown in Fig­
ure 6.11) is augmented by a set of gradient paths that are not attracted to any nucleus. There
are two types of paths (Figure 6.l4b). Those that start at a bond critical point and termi­
nate at one of the neighboring nuclei and those that start at infinity and terminate at a bond
critical point. A set of gradient paths of this latter type define the surface between two
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atoms that is called the interatomic surface. An interatomic surface consists of a bundle of
gradient paths originating at infinity and terminating at a bond critical point. As a result, the
gradient paths constituting the interatomic surface do not belong to either atom. They lie be­
tween two neighboring atoms, hence the name of this surface. Figure 6.14 shows the inter­
section of five interatomic surfaces (four between e and H, and one between the two e
atoms) with the molecular plane in the ethene molecule.

The preceding analysis of the topology of the electron density in a molecule enables us
to to define both the atoms and the bonds in a molecule.

6.6.3 Atoms

At the heart of the AIM theory is the definition of an atom as it exists in a molecule. An
atom is defined as the union of a nucleus and the atomic basin that the nucleus dominates
as an attractor of gradient paths. An atom in a molecule is thus a portion of space bounded
by its interatomic surfaces but extending to infinity on its open side. As we have seen, it is
convenient to take the 0.00 I au envelope of constant density as a practical representation of
the surface of the atom on its open or nonbonded side because this surface corresponds ap­
proximately to the surface defined by the van der Waals radius of a gas phase molecule. Fig­
ure 6.15 shows the sulfur atom in Se12. This atom is bounded by two interatomic surfaces
(lAS) and the p = 0.00 1 au envelope. It is clear that atoms in mOlecules are not spherical.
The well-known space-filling models are an approximation to the shape of an atom as de­
fined by AIM. Unlike the space-filling models, however, the interatomic surfaces are gen­
erally not flat and the outer surface is not necessarily a part of a spherical surface.

6.6.4 Bonds

Now we focus on the gradient paths, which do not terminate at a nucleus, but rather link two
nuclei. For example, the bond critical point between e and H in Figure 6.14 is the origin of
two gradient paths. One gradient path terminates at the hydrogen nucleus, the other at the
carbon nucleus. This pair of gradient paths is called an atomic interaction line. It is found

Figure 6.15 Three-dimensional represen­
tation of the sulfur atom in SCI2 . This atom
is bounded by two interatomic surfaces
(lAS) and one surface of constant electron
density (p = 0.001 au). TopologicaJJy. an
atom extends to infinity on its nonbonded
side, but for practical reasons it is capped.
Each interatomic surface contains a bond
critical point (HCP).
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between every pair of nuclei that share a common interatomic surface. When the molecule
is in an equilibrium geometry-that is, when the forces on the nuclei vanish-the atomic in­
teraction line is called a bond path.

The network of bond paths for a molecule is called its molecular graph. It is identical
with the network of lines generated by linking together all pairs of atoms that are believed
to be bonded to one another according to conventional bonding ideas such as Lewis struc­
tures. A bond path can therefore be taken as the AIM definition of a bond.

However, a bond path is not identical to a bond in the sense used by Lewis, that is, to
a shared pair of electrons, also usually represented by a line-a bond line. Thus, a molecu­
lar graph is not identical to a structural formula or a Lewis structure: For example, double
and triple bonds are represented by only one bond path. Figure 6.16 illustrates the molecu­
lar graphs of a variety of molecules. There is no bond path between atoms that are not bonded
together: for example, no ridge of electron density can be seen between the two hydrogen
atoms in ethene or between the two hydrogen atoms in methanal (see Figures. 6.11 and 6.13).

Bond paths are usually but not always straight lines. For example, in a hydrocarbon con­
taining a small ring (e.g., cyclopropane), the bond paths are curved outward from the inter-
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Figure 6.16 Molecular graphs for some molecules in their equilibrium geometries. A bond critical
point is denoted by a black dot. The molecule HCCH is ethyne , H2CO is methanal, and H2CCH2 is
ethene. [Adapted with permission from Bader [1990], Fig. 2.8.]
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nuclear axis, consistent with the bent-bond model of such molecules. A bond path is ob­
served for predominately ionic bonds, for predominately covalent bonds, as well as for weak
bonds such as hydrogen bonds and for very weak donor-acceptor bonds such as that in the
molecule BF3'CO, which has a very long and weak B-C bond as we discuss in Chapter 8.
The existence of a bond path between two atoms tells us that these atoms are bonded to­
gether, but it does not tell us anything about the nature of the bond. We will see later what
information about the nature of a bond we can obtain from the critical point on the bond
path.

• 6.7 Atomic Properties

6.7./ Determination of Atomic Properties by Integration

Having defined an atom in a molecule, we can, at least in principle, determine any of the
properties of an atom in a molecule. The simplest to illustrate is the atomic volume, which
is simply the sum of all the volume elements that occupy all the space defined by the inter­
atomic surfaces and the p = 0.001 au contour. More exactly, it is the integral of all the vol­
ume elements dT over the atomic basin. If we denote the atomic basin by il, then the vol­
ume of the atom is given by.

v(il) = f dT (6.6)
n

Because of the irregular shape of an atom in a molecule, this integration is not trivial and
can be time-consuming. For many molecules, however, it can now be carried out on a per­
sonal computer in a reasonably short time. A discussion of integration procedures is given
by Popelier (1999).

Another property that is in principle easily evaluated is the electron population of the
atom N(il). This is obtained by integrating the density of a volume element over the atomic
basin:

N(il) = f rxiT (67)
n

The atomic charge q(il) is then simply obtained as Zn - N(il), or the electron population
subtracted from the charge of the nucleus inside the atomic basin.

The volume, electron population, and charge of the whole molecule can also be obtained
by the same method. Table 6. I gives the atomic volumes, populations, and charges of the
atoms in methanal. We see that the electron populations of the atoms and the corresponding
charges are additive to four decimal places.

The determination of atomic charges has been a controversial subject because there has
been disagreement on how the atoms in a molecule should be defined or, in other words,
how the electronic charge should be apportioned between the atoms. Proposed orbital meth­
ods for determining atomic charges include the natural bond orbital (NBO) method (Reed et
aI., 1985, 1988) and the Mulliken method (1985). However, these orbital methods have some
unsatisfactory features. There is a certain arbitrary character associated with them because,
as we saw in Chapter 3, the choice of orbitals to describe a given molecule is not unique and
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Table 6.1 The Volumes, Populations, and
Charges of the Atoms in Methanol

Atom v(fl) au N(fl) q

C 66.39 5.019 +0.891
0 138.36 9.060 -1.061
H 50.48 0.960 +0.040

Total 305.71 16.000 0.000

an atom cannot be completely satisfactorily defined in terms of orbitals which, even when
they are localized as much as possible, as in the NBO method, are not totally confined to a
single atom in a molecule. There are significant and sometimes large differences between
the charges calculated by different orbital-based methods and also between these charges and
AIM charges. A comparison of different methods of calculating charges has been given by
Wiberg and Rablen (1993). We quote only AIM charges in this book. We will see in Sec­
tion 6.10 that these charges provide a sound and consistent basis for understanding other
properties of the diatomic hydrides, such as the well-established predominately ionic char­
acter of LiH and the essentially nonpolar character of the CH bond.

AIM atomic charges are used and discussed extensively in Chapters 8 and 9. Concepts
such as covalent and ionic character and the associated concept of electronegativity arose,
as we saw in Chapter I, from descriptions of bonding based on Lewis structures, and from
the recognition that since the majority of bonds are polar, the atoms have charges. In prin­
ciple, the need for these concepts disappears when we have a complete knowledge of the
electron density distribution in a molecule, including the atomic charges. But the terms "ionic"
and "covalent" have been in use for so long and are so familiar that it is still useful, indeed
almost essential, to make use of them in the discussion and interpretation of p. We further
discuss the meaning and usefulness of these terms in Chapters 8 and 9.

6.7.2 Atomic Dipole Moments

It has often been assumed that atomic charges can be calculated from the measured dipole
moment of a diatomic molecule and the bond length. For this assumption to hold, however,
the center of negative charge of an atom would have to be situated at the nucleus, in other
words, atoms would have to be spherical. But we have seen that atoms in molecules are not
spherical, and so the center of negative charge is not centered at the nucleus. Each atom
therefore has a dipole moment called the atomic dipole moment (Chapter 2).

The atomic dipole moment can be obtained by integrating the moment of a volume el­
ement prndT over the atomic basin. The atomic dipole moment M(n), where rn is a vector
centered on the nucleus of the atom, is then

M(n) = L,prndT (6.8)

This moment measures the extent and direction of the shift of an atom's electronic charge
cloud with respect to the nucleus. The quantity M(n) can effectively be regarded as an in­
tra-atomic dipole moment. The intra-atomic dipole moment of each atom contributes to the
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total molecular dipole moment. But there is another contribution, namely, the interatomic di­
pole arising from point atomic charges located at the nuclear positions, which is called the
charge transfer moment MCT' The total molecular dipole moment M mol is given by

M mol = I q(n)Xn + I M(n) = MCT + Malom
n n

(6.9)

where MCT is the charge transfer moment, M alom is the collection of intra-atomic dipoles
(due to shifts in charge clouds), and Xn are the nuclear positions of the atoms, measured
from a common origin.

As mentioned above and discussed in Chapter 2, atomic charges were often obtained in
the past from dipole moments of diatomic molecules, assuming that the measured dipole mo­
ment equal to the bond length times the atomic charge. This method assumes that the mol­
ecular electron density is composed of spherically symmetric electron density distributions,
each centered on its own nucleus. That is, the dipole moment is assumed to be due only to
the charge transfer moment Mer, and the atomic dipoles Matom are ignored.

A good example of the importance of the contribution of the atomic dipoles is provided
by the CO molecule, which despite the considerable electronegativity difference between car­
bon and oxygen has an almost zero dipole moment. The calculated atomic charges are q(C) =

+ 1.147 and q(O) = -1.147, which are consistent with their electronegativities. The result­
ing dipole term MCT = qr = 2.440 au is compensated by two large atomic dipoles, counter
to the direction of charge transfer, expressed by Malom ' The atomic dipole moment of car­
bon is 1.64 au and that of oxygen is 0.84 au, so that the magnitude of the overall dipole mo­
ment M mol = 0.040 au. The large atomic dipole moment on carbon can be associated pri­
marily with the localized and strongly directed lone pair. The asymmetry of the electron
density of the carbon atom in CO can be clearly seen in Figure 6.5a.

Another example of the importance of atomic dipoles appeared in Chapter 2, where we
attributed the small dipole moment of NF3 to the moment produced by the lone pair on nitro­
gen, which makes an important contribution to the atomic dipole on nitrogen and opposes the
charge transfer moment due to the electronegativity difference between nitrogen and fluorine.

6.7.3 Additivity of Atomic Properties

An important advantage of the finite atoms defined by AIM is that they do not overlap, which
is not generally true for orbital-defined atoms. Each atom has a sharp and well-defined bound­
ary inside the molecule, given by its interatomic surfaces. The atoms fit exactly into each
other, leaving no gaps. In other words, the shape and the volume of the atoms are additive.
This is true also for other physical properties of an atom, such as the electron population and
the charge, as seen in Table 6.2 and as indeed has been shown to be true for all other prop­
erties. (Bader 1990, Popelier 1999).

• 6.8 Bond Properties

We have discussed the properties of atoms in molecules. What can we find out about the
bonds in a molecule? We have seen that the bond path shows us where bonds are located in
a molecule, that is, which atoms are bonded together because of the accumulation of eIec-
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Table 6.2 Atomic and Bond Properties of the Diatomic Hydrides of Periods 2 and 3"

Molecule v(A) v(H) R. rb(H) Pb q(A) M(A) M(H) MeT Mmol

HH 60.5 60.5 1.3792 0.6896 0.2700 0.0000 0.1140 -0.1140 0.0000 0.0000
HLi 36.1 196.7 3.0908 1.7234 0.0379 +0.8869 0.0092 0.4765 -2.7413 -2.2556

HBe 162.9 137.3 2.5469 1.4545 0.0952 +0.8323 1.4387 0.5497 -2.1198 -0.1314

HB 173.3 92.1 2.3163 1.2790 0.1916 +0.6679 1.8201 0.3630 -1.5471 +0.6360

HC 176.4 53.0 2.0941 0.7112 0.2807 -0.0235 0.7327 -0.1685 0.4921 +1.0563

HN 160.7 37.1 1.9347 0.5315 0.3360 -0.3036 0.2456 -0.1943 0.5874 +0.6387

HO 149.5 24.4 1.8111 0.3802 0.3717 -0.5427 -0.1192 -0.1684 0.9829 +0.6953
HF 135.0 15.7 1.7211 0.2848 0.3801 -0.7073 -0.3373 -0.1261 1.2174 +0.7540

HNa 109.0 177.4 3.6176 1.7091 0.0321 +0.7084 0.0568 0.1234 -2.5627 -2.3825

HMg 261.6 145.7 3.3043 1.6195 0.0500 +0.6870 1.4812 0.2424 -2.2701 -0.5465

HAl 267.9 126.4 3.1222 1.5896 0.0758 +0.7677 2.0537 0.2900 -2.3969 -0.0532

HSi 271.4 102.0 2.8634 1.4566 0.1171 +0.6903 1.7362 0.3003 -1.9766 +0.0599
HP 259.6 77.7 2.6655 1.311 0.1670 +0.4858 1.3047 0.1887 -1.2949 +0.1985
HS 251.4 52.8 2.5134 0.9044 0.2175 +0.0342 0.5100 -0.0713 -0.085 +0.353

HCI 241.6 39.4 2.3928 0.7071 0.2490 -0.2420 0.0360 -0.1253 0.5791 +0.4898

'I'(A) and I'(H) are the atomic volumes of A and H, Rc is the equilibrium bond length (au), rb(H) the bonding radii of H and A (au), Pt> is the bond critical poinl density (au), q(A) is the
charge on A, M(A) and M(H) are the intra-atomic dipole moments. Mer is the charge transfer dipole moment, and Mmol is the total dipole molecule, which is the sum of M(A), M(H), and
Mer·

AI! calculations were performed at the B3LYP/6-311 +G(2d.2p)/IHF/6-31(d) level.



6.9 The Diatomic Hydrides of Periods 2 and 3 • 157

tronic charge along the bond path. Since the magnitude and the form of the electron density
distribution vary along a bond, it is necessary to choose one particular point along the bond
as characteristic of the bond. The most obvious point to choose is the bond critical point, a
special and well-defined point that lies on the interatomic surface between the two atoms.
There are three properties of the electron density at the bond critical point that provide us
with useful information about the nature of the bond.

1. The value of the electron density at this point, the bond critical point density fJb.

2. The shape of the electron density distribution in a plane through the bond critical point
and perpendicular to the bond as measured by its ellipticity E.

3. The position of the bond critical point. The distance of this point from each of the nuclei
is a measure of the size of each atom, that is, its bonding radius rb.

Next, we illustrate these properties by discussing them together with some of the atomic
properties for the diatomic hydrides of the elements of periods 2 and 3.

• 6.9 The Diatomic Hydrides of Periods 2 and 3

6.9. I Bond Critical Point Density

The bond critical point density is a measure of the amount of electronic charge accumulated
at this point. It seems reasonable to assume that this reflects the amount of density shared be­
tween the two atoms. In classical terms, a covalent bond is associated with a pair of shared
electrons, so we could consider that the bond critical point density is a measure of the "cova­
lent" character of the bond. However, we should be cautious about using this term because it
cannot be clearly defined. Table 6.2 gives the values of fJb for the diatomic hydrides of peri­
ods 2 and 3. We see that the values of fJb for LiH and NaH are quite small and the values for
the other hydrides increase steadily down each period, suggesting that the covalent character
of the bond increases down each period. The atomic charges are also given in this table. We
see that they decrease from LiH and from NaH to very small values for CH and SH, which
are traditionally considered to have covalent bonds with very little polarity. These small charges
are consistent with the electronegativies of these elements (C, 2.5; S, 2.4; H, 2.2). It is cus­
tomary to associate the atomic charges with the "ionic" character or polarity of a bond, but
again this quantity cannot be clearly defined and cannot therefore be measured. In the series
LiH to HF, the charges reverse at CH and then increase up to HF. Similarly, the charges are
reversed in HCl and are larger than in SH. But fJb continues to increase right through both se­
ries even though the bonds become more "ionic" or polar, as indicated by the increasing atomic
charges. It is usually assumed that a bond becomes less covalent as it becomes more polar.
However, this is clearly not the case if we take fJb to be a measure of the covalent character of
the bond. We have to conclude that a bond can be both strongly covalent and very polar. But
we must be aware that these are telms that cannot be clearly defined. In contrast, the analysis
of the electron density according to AIM leads to two quantites that can be precisely defined
and measured, namely, fJb, the bond critical point density, and the atomic charge. We further
discuss these quantities and the ionic--covalent description of bonds in Chapters 8 and 9.
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Values of Ph for ethane, ethene and ethyne, which are 0.249, 0.356, and 0.427 respec­
tively, increase along this series consistent with the increasing bond order. However, Ph does
not increase proportionally with the bond order, as we might at first expect. One obvious
reason for this is that as the number of bonding electrons increases from a single to a dou­
ble to a triple bond, the increased repulsion between the large number of electrons spreads
the bonding density over a larger volume.

6.9.2 Bond Density Ellipticity

As we have seen, the electron density has a circular distribution around the axis of a diatomic
molecule and generally around any single bond-for example, as in ethane. However, in
ethene the electron density has an elliptical distribution around the CC bond (Figure 6.17),
having a larger value in a direction perpendicular to the molecular plane than in the molec­
ular plane. The magnitude of this ellipticity, which can be measured by the quantity E, de­
scribed in Box 6.2. It has a value of zero for ethane and any bond with a circular electron
density distribution, but a value of 0.30 in ethene at the bond critical point. The ellipticity
of the CC bonds in benzene is 0.23, which is consistent with the bonds having a consider­
able amount of double-bond character as suggested, for example, by the usual resonance
structures. The elliptical nature of the electron density distribution of the CC bond in ethene
is predicted by the classical bent-bond and VSEPR models, as well as by the (J"-7T model
(Chapter 3).

For planar molecules such as ethene and benzene, the ellipticity .E can be considered to
be a measure of the 7T character of a C-C bond, but this is not generally the case. The el­
lipticity of the triple bond in ethyne is zero, as expected for a linear molecule, even though
in the (J"-7T model ethyne is considered to have two 7T bonds (Chapter 3). This is because
the sum of the charge distributions of the electrons in the two 7T-bond orbitals is cylindri­
cally symmetric, which together with the charge distribution of the electrons in the (J" orbital
gives an overall cylindrically symmetric charge distribution. We must remember that the

Figure 6.17 Contour map of p in the interatomic
surface associated with the CC bond critical point in
ethene. The plane of the plot is perpendicular to the
molecular plane. The C and two H nuclei are pro­
jected onto the plane of the plot to indicate the ori­
entation of the molecule. We see that electronic
charge is preferentially accumulated in the direction
perpendicular to the molecular plane, giving an el­
liptical shape to the electron density in this plane.
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electron density distribution is a fundamental measurable property of a molecule, while the
(T-1T" model, the bent-bond model, and the VSEPR model are just models that may be used
to interpret this distribution. Conversely, these models enable us to predict the electron den­
sity distribution in a qualitative way.

6.9.3 Bonding Radius, rb

The distance from the bond critical point to each of the adjacent nuclei is a measure of the
size of each atom in the bonding direction, and so we call it the bonding radius, rbo This
radius is the same as the conventional covalent radius in the case of a homonuclear diatomic
molecule but not for any other molecule. The covalent radius of an atom is assumed to be
constant from molecule to molecule, whereas the bonding radius changes, as we can see from
the data for the period 2 and 3 hydrides in Table 6.2. The size of free neutral atoms decreases
across any period with increasing effective nuclear charge. The size of an atom in a mole­
cule also decreases with increasing positive atomic charge and conversely increases with in­
creasing magnitude of the negative atomic charge. We see that the bonding radius of the hy­
drogen atom decreases across both periods as the magnitude of its negative charge decreases
and then its positive charge increases.

The bonding radius of A in a diatomic hydride AH at first decreases across a period and
then increases because there is a competition between two opposing effects:

I. The nuclear charge increases across the period, which decrease the size of the atom and
therefore its bonding radius.

2. As its nuclear charge increases, A becomes more electronegative, thus attracting more
electron density from the hydrogen, with the result that its overall positive charge de­
creases and eventually becomes negative, which increases its size and bonding radius.

On the left of the period, effect 1 predominates, while on the right effect 2 predominates, so
that overall the bonding radius at first decreases and then increases again. However, the bond
length R decreases across the period because of the large decrease in the bonding radius of
hydrogen.

The changes in the size of an atom are shown both by the changes in the bonding ra­
dius and the nonbonding radius. These changes in atomic size can be clearly seen in the
contour maps of the diatomic hydrides given in Figures 6.18 and 6.19. In LiH and NaH
there is a large diffuse electron density on hydrogen and a smaller, much more tightly
bound density on the Li or Na atom. The almost spherical nature of the contours and the
large atomic charges in these molecules indicate their strongly ionic nature. In LiH, which
can be represented approximately by Li + H-, the contours on Li are much more closely
spaced than those on H, even though the atoms have close to two electrons each, reflecting
the contraction of the electron density as a consequence of the Li nuclear charge of +3,
compared to the H nuclear charge of + I. Proceeding across the table, the electron den­
sity around the A atom becomes increasingly contracted and the atoms become smaller,
as discussed earlier.

The large charge transfer from one atom to the other in the formation of a predominately
ionic molecule is accompanied by a polarization of the electronic charge of the atoms in a



CH

LiH

NH

BeH

OH

BH

FH

Scale (au)

012.14S
Figure 6.18 Contour maps of the ground state electronic charge distributions for the period 2 diatomic
hydrides (including Hz) showing the positions of the interatomic surfaces. The outer density contour
in these plots is 0.001 au. (Reproduced with permission from Bader [1990].)
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Figure 6.19 Contour maps of the ground state electronic charge distributions for the period 3 diatomic
hydrides showing the interatomic surfaces. (Reproduced with permission from Bader [1990].)
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direction counter to that of the charge transfer. The electronic charge distribution of the
negative ion is polarized toward the cation, while the charge distribution of the cation is
polarized away from the anion. These polarizations of the electron density are a neces­
sary consequence of charge transfer. They provide the force that opposes the attractive
force between the oppositely charged atoms, thus preserving equilibrium. The polariza­
tion of the cation is very small and not very evident in LiH and NaH because it occurs
in the tightly held charge distribution of what is essentially the core. It is much more ev­
ident for Be and B in BeH and BH (Figure 6.18), because they have, respectively, one
and two nonbonding electrons in the valence shell. We can think of this density situated
on the side of the atom opposite from the bond as the nonbonding density. The atomic
dipole moments M(A) and M(H), which are given in Table 6.2, are a measure of these
polarizations of the electron density. The sum of the atomic moments and the charge trans­
fer moment MeT gives the total molecular dipole moment M mol .

• 6.10 Summary

We have seen in this chapter how the analysis of the electron density distribution of a
molecule enables us to clarify and quantify some of the basic concepts relating to bond­
ing. We can put the concept of an atom as it exists in a molecule on a quantitative basis
The atom is defined by its interatomic surfaces and the p = 0.00 I au contour on its non­
bonded side, that is, as the union of its nucleus with its atomic basin. Then we showed
how we can evaluate all the properties of these atoms by the integration of the appropri­
ate property density over the atom. As examples, we discussed the atomic volume, the
atomic charge, and the atomic dipole moment and showed that these properties are addi­
tive to give the value of the property for the molecule. Then we showed how we can iden­
tify the bonds in a molecule with the bond paths: lines of increased electron density be­
tween atoms, seen as ridges of electron density in a contour or relief map of a molecular
plane containing the bond. The properties of a bond can be expressed in terms of the prop­
erties of the electron density at the bond critical point, in particular, the electron density
at the bond critical point Pb, the position of the bond critical point that is a measure of
the bonding radius rb of an atom, and the ellipticity E of the electron density, at this point.
The bond critical point, electron density, and atomic charges enable us to put the some­
what vague concepts of ionic and covalent character on a more quantitative basis. We
should note, however, that although we commonly speak of atoms and bonds as separate
entities, the AIM analysis partitions a molecule into its constituent atoms, and there is no
separate density than can be assigned to the bonds. The bonds appear only as a feature
of the electron density of each atom, i.e., the concentration of density along the bond path
connecting the two atoms.

In the following chapter we show how the topology of an important function of p, the
Laplacian, enables us to obtain additional information from the analysis of the electron den­
sity distribution.
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)#1' Appendix

The electron density distributions discussed in this book were obtained from wave functions
generated with the program GAUSSIAN [Gaussian 94, revision B.l, M. J. Frisch, G. W.
Trucks, H. B. Schlegel, P. M. W. Gill, B. G. Johnson, M. A. Robb, J. R. Cheeseman, T.
Keith, G. A. Petersson, 1. A. Montgomery, K. Raghavachari, M. A. AI-Laham, V. G. Za­
krzewski, J. V. Ortiz, J. B. Foresman, J. Cioslowski, B. B. Stefanov, A. Nanayakkara, M.
Challacombe, C. Y. Peng, P. Y. Ayala, W. Chen, M. W. Wong, J. L. Andres, E. S. Replogle,
R. Gomperts, R. L. Martin, D. J. Fox, J. S. Binkley, D. 1. Defrees, J. Baker, J. P. Stewart,
M. Head-Gordon, C. Gonzalez, and J. A. Pople, Gaussian, Inc., Pittsburgh, 1995].

AIM data have been obtained with the commercial computer program MORPHY98,
which is available from http://www.ch.umist.ac.uklmorphy. or with the AIMPAC suite of pro­
grams, developed by Bader's group at McMaster University (--:anada), which can be obtained
without charge from http://www.chemistry.mcmaster.ca/aimpac.

Since 1994 the commercial program GAUSSIAN (http://www.gaussian.com) has pro­
vided an option to perform a limited analysis of the electron density by the AIM method of
AIM utilities. For this purpose, GAUSSIAN 98 is more reliable than GAUSSIAN 94.
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• 7.1 Introduction

We have seen how we can extract useful information about the bonding in a molecule from
the topological analysis of the electron density. However, we have not made much progress
toward revealing the fundamental feature of chemical bonding postulated by Lewis, namely
the electron pair. According to Lewis structures, there are bonding electron pairs in the va­
lence shell of an atom in a molecule, and there are also nonbonding pairs or lone pairs in
the valence shell of many of the atoms in a molecule. So far we have not seen any evidence
for these electron pairs in our topological analysis of the electron density. We have seen that
there is a concentration of electron density along a bond path, which arises from the increased
probability of finding an electron in the region between the two bonded atoms. This increased
probability is a consequence of the attraction exerted by a ligand on the electrons of the cen­
tral atom. The Pauli principle allows only one electron of a given spin to be attracted close
to a ligand and prevents all the other electrons of the same spin from crowding into this re­
gion; an electron of opposite spin is also allowed to be attracted into this region, however.
So there is a higher probability of finding a pair of opposite-spin electrons in a bonding re­
gion than in other adjacent regions. Consequently, there is a concentration of electron den­
sity in this region. This increased probability of finding a pair of opposite-spin electrons in
a bonding region and the consequent concentration of electron density in this region is the
electron density equivalent of a Lewis bonding pair. But what evidence is there for lone
pairs? If we look carefully at the electron density contour map for SCl2 in Chapter 6 (Fig­
ure 6.4) we see slight bulges in the directions in which lone pairs on the sulfur atom are ex­
pected according to the VSEPR model. So it seems reasonable to associate these bulges with
the expected lone pairs. In the next section we will see how more convincing evidence for
bonding and nonbonding electron pairs can be obtained by studying an important function
of the electron density, the Laplacian.
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• 7.2 The Laplacian of the Electron Density

The Laplacian of the electron density, "i;ZP, is defined by

a2 p [;2 p a2 p
V2p=-+-+-ax2 ay2 az2 (7.1)

The Laplacian is constructed from second partial derivatives, so it is essentially a measure
of the curvature of the function in three dimensions (Chapter 6). The Laplacian of any scalar
field shows where the field is locally concentrated or depleted. The Laplacian has a nega­
tive value wherever the scalar field is locally concentrated and a positive value where it is
locally depleted. The Laplacian of the electron density, p, shows where the electron density
is locally concentrated or depleted. To understand this, we first look carefully at a one­
dimensional function and its first and second derivatives.

Figure 7.1 shows a hypothetical monotonically decreasing function mimicking a one­
dimensional electron density profile for a period 2 element. The value of the function f(x)
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Figure 7.1 Plots of a monotonically decreasing func­
tionf(x), its first and second derivative, and the neg­
ative of its second derivative. The slight "bulge" or
shoulder in f(x) is converted to a pronounced maxi­
mum in the negative of the second derivative -j"(x).
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decreases exponentially except for a very slight and hardly noticeable shoulder or bulge be­
tween points a and b on either side of point p. In the region between a and b, the value of
j(x) is greater than the average of its value at neighboring points. We say that the function
is locally concentrated in this region. As expected for a monotonically decreasing function,
its first derivative f'(x) is everywhere negative and shows more features than j(x) itself: in
particular, it has a point of inflection at p. Its second derivative r(x) shows still more fea­
tures and in particular has two zero values, which correspond to the two points of inflection
a and b, at which the function changes from being concave up to concave down. Most im­
portantly, the functionj"(x) is everywhere negative between a and b and has a minimum at
the point p. We see that the nearly invisible slight bulge in j(x) is much more evident as a
negative region with a well-defined minimum in the second derivative rex). Since we are
interested particularly in regions of locally increased electron density, it is more convenient
to consider the function -j"(x) = -d2j(x)ldx2. We see that the slight bulge in j(x) then be­
comes a well-defined maximum in this function.

The function -d2j(x)ldx2 can be said to act as a kind of magnifying glass in that it con­
verts the slight bulge in f(x) to a large and well-defined maximum. The region between the
two zero values of this function at a and b corresponds to the region in which the function
f(x) is locally concentrated. On either side of this region, -d2j(x)ldx2 is negative. These are
the regions where f(x) is locally depleted.

We can understand how -d2j(x)ldx2 shows us where j(x) is locally concentrated or de­
pleted in another way by approximating it by the finite difference formula:

" _ d2f(x) 2 [ j,,-(,--xo,,--+_~_X--,-)_+--=j,-(,-xo,,---_~_X-,---)]
-j (xo) - - -d-x2- = -(~-X-)-2 j(xo) - 2 (7.2)

This approximation becomes more accurate the smaller the interval ~x. The term Hj(xo +
~x) + j(xo - &)] is effectively the average of the function's values in the local neighbor­
hood of xo. As a result, -f"(x) will be positive if j(x) is greater than the values in its im­
mediate neighborhood (since (~xf > 0). In other words, if the function is locally concen­
trated, then -f"(x) > 0. On the other hand, if -f"(x) < 0, the function is locally depleted.

The foregoing considerations carryover to three dimensions when a similar but more
complicated finite difference formula is used. In particular, the value of per) is greater than
the average of its values over an infinitesimal sphere centered on r when \J2p is negative.
Thus charge is locally concentrated in any region in which \J2p is negative and locally de­
pleted in any region in which \J2p is positive. It is convenient, therefore, to define the func­
tion L = - \J2p, because then L is positive in a region of local charge concentration and neg­
ative in a region of local charge depletion.

7.3 The Valence Shell Charge Concentration

As for the one-dimensional case, the function L makes features emerge from the electron
density that p itself does not clearly show. What then does the function L reveal for the spher­
ical electron density of a free atom? Because of the spherical symmetry, it suffices to focus
on the radial dimension alone. Figure 7.2a shows the relief map of per) in a plane through
the nucleus of the argon atom. Figure 7.2b shows the relief map of L(r) for the same plane,
and Figure 7.2c the corresponding contour map. Since the electron density distribution is
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Figure 7.2 (a) Truncated version of the relief map of the electron density p for a plane containing the
nucleus of the argon atom. (b) Relief map of L = - \72 P for the same plane. (c) The corresponding
contour map. In addition to the spikelike maximum in L at the nucleus, there are two shells of charge
concentration. Outside each charge concentration there is a sheJl of charge depletion. Each successive
pair of regions of charge concentration and charge depletion corresponds to one of the three quantum
shells K, L, and M.

spherically symmetric, the same distribution is obtained for any plane through the nucleus.
The electron density has a single maximum at the nucleus and decays steeply and monoto­
nically along a radius from the nucleus, giving no indication of the existence of any electron
shells. In contrast, L(r) has a sharp inner spike centered on the nucleus surrounded by two
more pairs of alternate maxima and minima along any radial line. These three pairs of max­
ima and minima correspond to the K, L, and M (or n = I, 2, and, 3) shells. The outermost
shell of charge concentration and the associated shell of charge depletion together constitute
the valence shell.
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Figure 7.3a is a radial plot of the electron density p, for an isolated sulfur atom. Al­
though the ground state configuration 3s23p/3py13p) is not spherical, for an isolated atom
an average of the densities of all the possible co~figurations 3s23p4 must be taken, giving an
overall averaged density that is spherical. Indeed any isolated atom has a spherical electron
density distribution. The radial density distribution has the same form as that for the argon
atom, decreasing rapidly with increasing radial distance but showing no obvious feature cor­
responding to electron shells. Figure 7.3b shows the corresponding function L for the same
interval. It shows the same three regions of charge concentration and charge depletion cor­
responding to the K, L, and M shells we saw for the argon atom. In discussing molecules,
the topology of the outer (valence shell) charge concentration, the M shell in this case, is of
particular interest to us. This charge concentration is called the valence shell charge con­
centration (YSCC). The radius of maximum charge concentration in the YSCC of sulfur is
1.34 au (70.9 pm). The radii of the spheres of maximum charge concentration for other el­
ements are given in Table 7.1. It is clear from Table 7.1 that the radius of the maximum in
the valence shell charge concentration decreases across the periodic table and increases down
any group of the periodic table.

The inner shell charge concentrations of an atom in a molecule remain spherical, but the
outer valence shell charge concentration is always distorted from a spherical shape, some­
times just a little, but sometimes so extensively that it breaks up into separate charge con­
centrations and sometimes, in very polar molecules, it disappears completely. In Figure 7Aa
we show the contour map of L for SCI2 in the molecular plane. In Figure 7Ab, an enlarge­
ment of the map of the sulfur atom, we see the circular cross sections of the unchanged spher­
ical K and L inner shell charge concentrations, separated by regions of charge depletion. The
valence shell charge concentration is, however, apparently broken up into three separate
charge concentrations, each having a maximum. Two of these maxima are along the S-CI
bond paths so that the regions of charge concentration surrounding them are called bonding
charge concentrations (bonding CCs). Figure 7Ac shows L in the symmetry plane perpen­
dicular to the molecular plane. There is only a single region of charge concentration, with a
gap in the vicinity of the point C and two maxima in this plane. The region of increased
charge concentration surrounding each maximum is called a nonbonding charge concen­
tration (nonbonding CC). The maxima of the two nonbonding CCs and the two bonding
CCs have an approximately tetrahedral arrangement. The apparent third maximum, seen at
D in Figure 7Aa, is not a real maximum but is the saddle point between the two maxima in
the perpendicular plane shown in Figure 7Ac. For the sulfur atom, the valence shell charge
concentration, which is spherical in the free atom, is perturbed in the molecule, hence it is
no longer uniformly spherical but exhibits four maxima with an approximately tetrahedral
arrangement. The valence shell charge concentration of each of the chlorine atoms in Fig­
ure 7Ac exhibits two maxima in this plane, although as we will see they are not two sepa­
rate maxima in three dimensions but rather points on a ring of maximum charge of concen­
tration surrounding each chorine atom.

The four maxima and the saddle point are critical points in the function L(r) analogous
to the maxima and saddle points in per) discussed in Chapter 6. Every point on the sphere
of maximum charge concentration of a spherical atom is a maximum in only one direction,
namely, the nidial direction. In any direction in a plane tangent to the sphere, the function L
does not change; therefore the corresponding curvatures are zero. When an atom is part of
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Figure 7.3 Truncated representation of p versus the distance from the nucleus for a spherically sym­
metric electron density of a free sulfur atom ep). (b) Truncated representation of L(r) at the same scale
as (a). This function reveals the three shells K, L, and M constituting the sulfur atom. Each shell con­
sists of a region of local charge concentration (dark areas) and a region of local charge depletion (light
areas).
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Table 7.1 Radii rn (au) of Spheres of Maximum Charge Concentration for Quantum Shells n = 2
and 3

li Be B C N 0 Ne

r2 2.49 1.59 1.19 0.94 o.78 0.66 0.57 OjO

Na Mg AI Si P S CI Ar

r2 0.44 0.40 0.36 0.33 o .30 0.28 0.26 0.24
r3 3.44 2.55 2.08 1.76 1.52 1.34 1.20 1.08

(a)
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Nonboniling.cc

(b)

(c)

D

c

Figure 7.4 (a) Contour map of L in the molecular
plane of SClz. The solid lines indicate positive L val­
ues and dashed lines negative values. The contours
increase and decrease from a zero contour in steps ::!:
2 X 10", ::!:4 X lOn, ::!:8 X lon, beginning with n =
-3 and increasing in steps of unity. The maxima in
each VSCC are indicated by dots. The labels A-D
are referred to in the text. (b) Enlargement of L for
the region of the sulfur atom showing the regions of
charge concentration and depletion for each of the
electron shells of the sulfur atom. (c) Contour map
of L for the symmetry plane perpendicular to the
molecular plane passing through the sulfur nucleus
and bisecting the ClSCl angle; C and D refer to the
same features shown in (a).
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(a) (b)

Figure 7.5 The three-dimensional isosurface (a) for L(r) = 0 and (b) for L(r) = 0.60 for SClz.

a molecule, its outer sphere of maximum charge concentration loses its spherical symmetry,
so that in general it has a curvature in all three directions and now exhibits maxima and sad­
dle points. The maxima are points at which all the curvatures in L are negative, and the sad­
dle points are points at which two of the curvatures are negative and one is positive

We can gain more understanding of these plots of L by looking at some three­
dimensional envelopes of constant L value. Figure 7.5a shows the constant density envelope
for L = O. This envelope shows that each valence shell charge concentration is distorted from
a spherical shape but is not in fact broken up into separate regions of bonding and non­
bonding charge concentrations. In this view of the L = 0 envelope, we see only the hole at
C in the VSCC between the two bonding charge concentrations, of which we see a cross sec­
tion in Figure 7.4a, and one of the two very small holes (A and B in Figure 7.4a), between
the bonding CCs and the nonbonding CCs. Apart from these features, the L = 0 envelope of
the sulfur VSCC is continuous although not truly spherical. We can see more detail in the
L = 0.60 au envelope in Figure 7.5b, where the two nonbonding CCs in the VSCC of sul­
fur and the spherical inner core of each atom are separately visible. We also see clearly that
the two apparent maxima in the VSCC of each chlorine atom in the two dimensional con­
tour map of Figure 7.4b are points on a ring of maximum charge concentration in a torus of
nonbonding charge concentration that surrounds each chlorine atom.

• 7.4 The Laplacian and the VSEPR Model

The two bonding maxima and the two nonbonding maxima in the valence shell charge con­
centration of the sulfur atom in SCh have an approximately tetrahedral arrangement just like
the two bonding domains and the two nonbonding domains of the VSEPR model. As we
shall see, this correspondence is found for many other molecules, and so it seems reasonable
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to associate these regions of charge concentration with the bonding and nonbonding domains
of the VSEPR model discussed in Chapter 4. We now look in more detail at the relationship
between the valence shell charge concentrations and the VSEPR model.

We defined an electron pair domain in an approximate way as a region in which
there is a high probability of finding an a-spin electron and a ,B-spin electron, that is, a
pair of opposite-spin electrons. All the electrons in the valence shell of a free atom or
monatomic ion are completely delocalized. Each electron may be thought of as having a
domain that extends throughout the entire volume of the valence shell. Since these do­
mains are completely overlapping and indistinguishable, all the valence shell electrons
can be thought of as occupying the same spherical valence shell domain. An a-spin elec­
tron has the same probability of being found at any angle in the valence shell. Similarly,
a ,B-spin electron has the same probability of being found at any angle in the valence
shell. Same-spin electrons are kept apart by the operation of the Pauli principle and, to
a lesser extent, by electrostatic repulsion. Thus the most probable relative angular arrange­
ment of four same-spin electron is at the vertices of a tetrahedron. Since, however, this
tetrahedron can have any orientation, the overall electron density distribution is spheri­
cal in any isolated atom.

In a molecule, the nucleus of a ligand X perturbs this distribution by attracting electrons
in the valence shell of the central atom A. When an a-spin electron is attracted toward a li­
gand the Pauli principle ensures that four a-spin electrons will retain, at least approximately,
their most probable tetrahedral arrangement. The ,B-spin electrons are similarly attracted by
the ligands, and thus they adopt essentially the same most probable arrangement because the
Pauli principle has no influence on the relative arrangement of opposite-spin electrons and
does not prohibit opposite-spin electrons from being very close together or even in the same
location. Consequently there is an enhanced probability of finding both an a-spin electron
and a ,B-spin electron in each of the bonding regions and, because of the most probable tetra­
hedral arrangement of the two sets of opposite-spin electrons, also in certain nonbonding re­
gions, namely, those that are in tetrahedral directions with respect to the bonding regions.
The regions of an enhanced probability of finding an electron of 0' spin and electron of ,B
spin are the regions defined in Chapter 4 as the electron pair domains of the VSEPR model.
If electrons are found with a greater probability in certain regions of a molecule than in oth­
ers, there must be a greater concentration of electron density in these regions. It is in these
regions of greater concentration of electronic charge that we observe in the Laplacian of the
electron density. Hence the Laplacian of p provides a physical justification for the domains
of the VSEPR model-regions in which there is a high probability of finding a pair of elec­
trons of opposite spin. In each of the regions where L > a there are one or more maxima,
which are the points at which the concentration of charge is a maximum. These are accord­
ingly the points at which there is a maximum probability of finding an a-spin electron and
a ,B-spin electron-a pair of opposite-spin electrons.

We have seen that each chlorine atom in SCl2 has a single toroidal nonbonding charge
concentration rather than three separate nonbonding CCs corresponding to three nonbonding
domains. This also corresponds to the VSEPR model because, as was pointed out by Lin­
nett in his double-quartet model and as we discussed in Chapter 4, the Pauli principle does
not lead to the formation of three nonbonding domains in this case. Rather the six nonbonding
electrons have a maximum probability of being found anywhere in a ring perpendicular to
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the S-CI bond axis and so have a toroidal domain corresponding to the toroidal charge con­
centration shown in Figure 7.5b. We discussed a very similar situation in Chapter 4 with re­
spect to the HF molecule. A toroidal nonbonding domain and a corresponding toroidal charge
concentration in L is a feature of all monatomic ligands.

The same correspondence between the domains of the VSEPR model and the charge
concentrations in L is found in many other molecules, as we will now see.

7.4.1 The Water Molecule

Figure 7.6 shows contour plots of L for the water, ammonia, and methane molecules. In the
plot of L for the molecular plane of the water molecule we see that the region of valence
shell charge concentration extends over the whole molecule. The separate VSCCs are joined
to each other in the bonding regions. In the VSCC of oxygen there are two bonding max­
ima and an apparent third maximum. This apparent maximum is, however, the saddle point
between the two nonbonding maxima seen in the contour plot of L in the symmetry plane
perpendicular to the molecular plane. These four maxima have an approximately tetrahedral
arrangement. The two bonding maxima are the maxima of two bonding CCs that correspond
to the two bonding domains of the VSEPR model. The two nonbonding maxima are the max­
ima of two nonbonding CCs corresponding to the VSEPR nonbonding domains. The angle
of 138° between the maxima of the nonbonding CCs is larger than the angle of 103° be-

Figure 7.6 Contour maps of L
for H20, (left; in the molecular
plane; right, perpendicular to the
molecular plane), NH3 (in a
symmetry plane through Nand
one H), and CH4 (in a symmetry
plane through C and two H's).
The maxima in the valence shell
charge concentration are indi­
cated by the dots.
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tween the bonding CCs. These angles are consistent with the domain model according to
which the angular extension of a nonbonding domain is greater than that of a bonding do­
main, so that nonbonding domains subtend a greater angle at the nucleus than the bonding
domains.

7.4.2 The Ammonia and Methane Molecules

In the contour plot of L for a plane through the nitrogen atom and one hydrogen atom of the
ammonia molecule (Figure 7.6), we see one of the three bonding CCs in the valence shell CC
of nitrogen and a nonbonding Cc. The maxima of these four bonding CCs have an approxi­
mately tetrahedral an'angement. In the contour plot of L for a plane through the carbon and two
hydrogen atoms of the methane molecule, also shown in Figure 7.6, we see two of the four
bonding CCs in the VSCC of carbon. In this two-dimensional contour plot for CH4, what ap­
pears to be a nonbonding maximum is not a maximum in three dimensions; rather, it is the sad­
dle point between the two bonding charge concentrations that do not lie in this plane. The num­
ber and geometry of the CCs in the valence shell of the central atom in H20, NH3, and C~ are
the same as for the bonding and nonbonding domains of the VSEPR model.

7.4.3 The OF] Molecule

According to the VSEPR model the T-shaped CIF3 molecule has a trigonal bipyramidal
arrangement of three bonding electron pairs and two nonbonding electron pairs in the va­
lence shell of the central CI atom.

F---=C1~F

I
F

Correspondingly, the CIF3 molecule has three electron pair bonding domains and two non­
bonding electron pair domains with an overall approximately trigonal bipyramidal geome­
try. This arrangement of electron pair domains is recovered by the arrangement of three bond­
ing and two nonbonding charge concentrations in L(r) of the valence shell of the Cl atom.
Figure 7.7a plots L in the molecular plane. We see three bonding charge concentrations, each
with a maximum in the conesponding bond path and an apparent fourth maximum, which
is in fact the saddle point between the two nonbonding maxima on the chlorine atom (Fig­
ure 7.7b).

This exact conespondence between the number and geometrical arrangement of the elec­
tron pair domains of the VSEPR model and the number and geometrical arrangement of the
maxima in L does not hold for all molecules. The valence shell charge concentrations always
faithfully map the number and three-dimensional arrangement of the nonbonding or lone pair
domains, as we have seen for SCh, H20, NH3. and CIF3, but this is not always true for bond­
ing domains. In the Lewis and VSEPR models we consider that a single bonding pair of elec­
trons is shared between two bonded atoms, which implies that the valence shells of the two
bonded atom overlap or merge in the bonding region, leading us perhaps to expect to see
only one bonding charge concentration. Although we do frequently observe just one bond-
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Figure 7.7 Contour maps of L for CIF3: (a) in the plane of the molecule and (b) in the symmetry plane
through the equatorial fluorine atom.

ing charge concentration for each bond, sometimes we see two and sometimes no bonding
charge concentration at all. Why is this?

We must remember that the valence shell charge concentration is not identical with the
valence shell because there is also a region of "alence shell charge depletion outside the va­
lence shell charge concentration. In the formation of a bond, the two valence shells overlap
either a little or extensively. The valence shell charge depletion regions therefore necessar­
ily overlap, but the valence shell charge concentrations may not do so that there is then a
separate VSCC for each atom. In such cases there may be a bonding maximum in each va­
lence shell charge concentration, sometimes in only one of them, and occasionally in nei­
ther. In contrast, nonbonding electron pairs are always observed as nonbonding charge con­
centrations because nonbonding elecron pairs always remain in the valence shell of one atom
and are not shared with any other atom. We next discuss when and under what conditions
bonding charge concentrations are observed.

7.4.4 Predominantly Covalent Molecules

In a strong, short, predominately covalent bond between two atoms of equal or approximately
equal electronegativity, as in ethane, C2H6 (Figure 7.8), the two valence shell charge con­
centrations merge with each other to give a single region of bonding charge concentration,
usually with two maxima. These bonding maxima are situated equidistant from the bond crit­
ical point at the midpoint of the bond. In ethene, CZH4 (Figure 7.8), in which the CC bond
is shorter than in ethane, the two bonding maxima move closer together. In ethyne, C2H2,
the CC bond is still shorter, and the two maxima coalesce into a single bonding maximum.
The situation is similar in the N2 molecule (Figure 7.8), which also has a short bond and
only one region of bonding charge concentration in which there are two maxima as in ethene.
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Figure 7.8 Contour maps of L for the ethane, ethene (molecular plane), ethyne, and N2 molecules.

Although according to the Lewis model, the CC double bond consists of two shared
pairs and the CC triple bond in ethyne of three shared pairs, according to the VSEPR model
there is only one bonding domain that has a greater electron density along the bond axis than
along any other line between the two nuclei. This line of greater density is the bond path of
the AIM theory. There is only one bond path between the carbon atoms in ethane, ethene,
and ethyne, and it is along this bond path that the bonding charge concentrations are ob­
served. Although there are 'two bonding maxima for the CC bond in ethene, these do not
each correspond to one of the two electron pairs of the Lewis model. Rather, they are both
associated with a single bonding domain.

In each of these hydrocarbons we also see a C-H bonding charge concentration with
a maximum in the carbon valence shell corresponding to the C-H bonding domain, and
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in N2 we see a charge concentration corresponding to the lone pair domain on each nitro­
gen atom. We note also that hydrogen is a unique ligand in that its valence shell and its
core are identical, so that the C-H charge concentration also has a maximum at the hy­
drogen nucleus. This is the case for any A-H bond, as we can see in Figure 7.6 for H20,
NH3, and CH4 .

7.4.5 Predominately Ionic Molecules

Figure 7.9 gives contour plots of L for the molecules LiF, BeF2, BF3, and CF4. When there
is a large difference in the electronegativities of two bonded atoms, most of the electron den-
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Figure 7.9 Contour maps of L for the LiF, BeF2. BF3. and CF4 molecules.
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sity in the valence shell of the less electronegative element is transferred to the valence shell
of the more electronegative element. In the case of LiF this transfer is essentially complete,
so the molecule consists of a cation-like lithium atom bound to an anion-like fluorine atom.
No valence shell charge concentration is observed for the cation-like Li atom because it has
lost most of its electron density, so there is no bonding maximum. We see only the VSCC
for the essentially spherical core of this atom. The valence shell of the fluorine ligand is al­
most complete and therefore almost perfectly spherical, as we see in Figure 7.9, indicating
that its valence shell electrons are not significantly localized into pairs. In this predominately
ionic molecule in which, as we saw in Chapter 6, the bond critical point density is very small,
no bonding CCs are observed. The situation is very similar in the molecule BeF2 . As the
electronegativity of the central atom increases and the bond becomes shorter and more co­
valent, a small bonding charge concentration appears while a weak nonbonding toroidal CC
also becomes evident on each fluorine atom. In CF4, in which the bonds are more covalent
and still shorter than in BF3, four bonding charge concentrations with a tetrahedral arrange­
ment are observed, two of which can be seen in the contour plot of the plane through two
CH bonds (Figure 7.9). The nonbonding toroidal charge concentration of each fluorine atom
becomes more evident from BF3 to CF4 as the increased electronegativity of the central atom
increasingly localizes the nonbonding electrons of the fluorine ligands.

Figure 7.10 shows a contour plot of L for PF3 in a plane through the phosphorus atom
and one of the fluorine atoms. There are no bonding CCs in the valence shell of phospho­
rus, which is consistent with the large electronegativity difference between fluorine and phos­
phorus and the correspondingly large atomic charges (P, +2.28; F, -0.76), reflecting the
large ionic character of the bonding. Although much of the valence shell density has been
transferred to the ligands, the two nonbonding electrons remain in the phosphorus valence
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Figure 7.10 Contour map of L for
the PF3 molecule.



178 • The Laplacian of the Electron Density

shell and are observed in the plot of L as a nonbonding Cc. Because the nonbonding elec­
trons are not removed from the valence shell by the ligands, charge concentrations corre­
sponding to these lone pairs are always observed, as we saw for SCI2, H20, NH3, and CIF3

and as we wiIl see in many other examples in Chapters 8 and 9. These nonbonding or "lone
pair" charge concentrations are generally more spread out around the core and are closer to
the core and thus are consistent with the general shapes of the nonbonding and bonding do­
mains of the VSEPR model. Summarizing, we can make the foIlowing statements.

• Maxima are always observed in the VSCC of an atom in a molecule corresponding in num­
ber and geometrical arrangement to the nonbonding electron pair domains of the VSEPR
model.

• The nonbonding electrons of singly bonded monatomic ligands are not localized into pairs.
Rather, they form a ring of six nonbonding electrons, which give rise to a toroidal charge
concentration in the valence shell, consistent with the analogous toroidal domain of the
VSEPR model.

• There is not always an exact correspondence between the maxima in the VSCC and the
bonding domains of the VSEPR model. Whereas according to the VSEPR model a bond
has a single bonding domain, there may be:

1. A single bonding maximum in the VSCC of the more electronegative atom

2. Two bonding maxima, one in each VSCc.

3. One or two bonding maxima in a single shared VSCC in short covalent bonds

4. No bonding maxima in the case of predominately ionic bonds

Further examples of contour maps of L are discussed in Chapters 8 and 9.

7.5 Electron Pair Localization and the Lewis and VSEPR Models

Electrons in the core of an atom are fully localized into spherical shells but not into opposite­
spin pairs. In an isolated atom the valence shell electrons are similarly localized into a spher­
ical shell. The Laplacian shows that in each of these spherical shells there is a spherical re­
gion of charge concentration and a spherical region of charge depletion. But in these regions
there is no localization of electrons of opposite spin into pairs. There are no Lewis pairs or
electron pair domains in an inner shell. The domain of each electron is spherical and fully
delocalized through the shell.

In a molecule, the valence shells of the atoms are distorted from a spherical shape. In
particular, the valence shell charge concentration that is made evident in the Laplacian of p
develops maxima surrounded by regions of enhanced charge concentration in both the bond­
ing and nonbonding regions. These regions of charge concentration show where there is an
enhanced probability of finding both an a-spin electron and a f3-spin electron, that is, a pair
of opposite-spin electrons. There are no isolated electron pairs in an atom or a molecule, as
one might imagine on the basis of a naive consideration of a Lewis model. Nor are there fi­
nite regions in which a pair of opposite-spin electrons will certainly be found. So the elec­
tron pair domains of the VSEPR model are not finite regions of space, as it is convenient
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and often useful to assume. There are only regions of charge concentration resulting from
the enhanced probability of finding an electron of a spin and an electron of f3 spin in cer­
tain regions as a consequence of the perturbation produced by a bonded atom and the oper­
ation of the Pauli principle. A Lewis electron pair and a YSEPR electron pair domain are
very approximate but useful models for these charge concentrations.

Or we may say that the charge concentrations of the Laplacian of the electron density
provides the physical basis for these approximate models. Although electrons are not as lo­
calized into opposite-spin pairs in a molecule as the Lewis and YSEPR models assume. these
models nevertheless have proved to be very useful over a long period of time. The impor­
tance of the Laplacian of p is that it reveals the limitations of these models and enables us
to explain certain properties of molecules that are not consistent with the Lewis and YSEPR
domain models. Lewis's genius was in recognizing the importance of electron pairs long be­
fore there was any physical evidence for them. But the Laplacian takes us further, showing
us that electron pairs are not always present in molecules, and even when they are, they are
not as localized as the approximate models may suggest. The usefulness of the Laplacian in
providing a better understanding of bonding and molecular geometry will be evident again
in Chapters 8 and 9.

The Laplacian of p has many applications, but in this chapter we have been able to give
only a simple introduction to the Laplacian of p and to illustrate its usefulness in improving
our understanding of molecular geometry.

• 7.6 Summary

The function L, which is the negative of the Laplacian (i.e., the second differential) of the
electron density, shows where the electronic charge in an atom or molecule is either con­
centrated or depleted. Where L > 0, charge is concentrated; where L < 0, charge is depleted.
Free spherical atoms have spherical regions of charge concentration and depletion corre­
sponding to the electronic shells. The region of charge concentration corresponding to the
outer or valence shell is called the valence shell charge concentration (YSCC). In a mole­
cule, the valence shell charge concentration of an atom is perturbed, losing its spherical shape
with the formation of maxima, between which there are saddle points. These maxima show
where the electron density is most concentrated, while the saddle points between them indi­
cate where it is less concentrated. These regions of greater concentrations of electronic charge
are found in the bonding and nonbonding regions and are called bonding and nonbonding
charge concentrations, respectively.

Nonbonding charge concentrations are observed in the valence shell charge concen­
tration of all molecules that have lone pairs in the valence shell. Zero, one, or two bond­
ing charge concentrations are observed for each bond path, depending on the relative elec­
tronegativities of the bonded atoms and on the bond length. When the difference in
electronegativities is large and the bond is predominately ionic, most of the density of
the central atom is transferred to the ligand. As a result, there is insufficient electron den­
sity to form a valence shell charge concentration in the less electronegative atom. while
the ligand acquires an almost complete valence shell and therefore has an almost spher­
ical YSCC in which no maxima are observed. With decreasing electronegalivity differ-
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ence, one and then two bonding CCs, one in each valence shell charge concentration, may
be observed. In most predominately covalent molecules the two VSCCs merge to give a
single shared VSCC in which there are two maxima. But in covalent molecules with very
short bonds, such as the CC bond in ethyne, the two valence shell CCs merge to such an
extent that only one maximum is observed at the midpoint of the bond. The Laplacian of
p provides the physical basis for the Lewis and the VSEPR domain models and reveals
the limitations of these models.
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MOLECULES OF THE

ELEMENTS OF PERIOD 2

• 8.1 Introduction

In this chaiJter we discuss the bonding and geometry of the molecules of the elements of pe­
riod 2. These molecules differ in several important ways from the those of the elements of
period 3, which we discuss in the following chapter. One important difference is that the
great majority of the molecules of the elements of period 2 have a coordination number of
four or less. In contrast, the larger elements of period 3 and beyond can have coordination
numbers of five, six, and even higher. It is convenient, therefore, to discuss the molecules
of the period 2 elements first. Coordination numbers of greater than four for the period 2 el­
ements are found only in infinite structures in the solid state and in cluster molecules, as ex­
plained in Box 8.1. In discrete molecules in which the ligands are not bonded together as in
cluster molecules, the period 2 elements do not exceed a coordination number of four.

This chapter is based on the VSEPR and LCP models described in Chapters 4 and 5 and
on the analysis of electron density distributions by the AIM theory discussed in Chapters 6
and 7. As we have seen, AIM gives us a method for obtaining the properties of atoms in
molecules. Throughout the history of chemistry, as we have discussed in earlier chapters.
most attention has been focused on the bonds rather than on the atoms in a molecule. In this
chapter we will see how we can relate the properties of bonds, such as length and strength.
to the quantities we can obtain from AIM.

• 8.2 The Relationship Between Bond Properties and the AIM Theory

As its name implies. AIM enables us to calculate such properties of atoms in a molecule as
atomic charge, atomic volume, and atomic dipole. Indeed it shows us that the classical pic­
ture of a bond as an entity that is apparently independent of the atoms. like a Lewis bond
line or a "stick" in a ball-and-stick model, is misleading. There are no bonds in molecules
that are independent of the atoms. AIM identifies a bond as the line between two nuclei.

181



182 • Molecules of the Elements of Period 2

.. BOX 8.1 T
Coordination Numbers Greater Than Four .

for Period 2 Elements

Coordination numbers greater than four are found for some period 2 elements in non­
molecular solids and in some cluster molecules. For example lithium in crystalline lithium
chloride, which has the sodium chloride structure (Figure 1.7), has a coordination num­
ber of six. In this solid the bonding is predominately ionic and the coordination number
of six is an exception to the radius ratio rules (Chapter 2), which are based on the con­
cept of close packing of the anions around the lithium ion. In this structure it is the chlo­
ride ions that are close-packed and the lithium ion can be thought of as "rattling around"
in a cage of chloride ions. There are also a number of predominately ionic carbides and
nitrides such as A~C3 and Ca3N2, which are crystalline solids in which the carbon or ni­
trogen atom is surrounded by an octahedron of metal atoms.

There are only a few discrete molecules in which a period 2 element has a coor­
dination number greater than four. All are metal cage or cluster molecules such
as C06C(CO)t/-, Fe6C(CO) 162-, RU6C(CO)17 (shown in the figure), and
AU6C(P(C6H4Meh)62+, in which the carbon atom is encapsulated in an octahedral cage
of metal atoms and so has a coordination number of six. There are also trigonal prism
metal atom clusters that contain an encapsulated carbon atom such as C06C(CO)IS2-.
The coordination number of carbon in these molecules is dictated by the geometry of
the atoms that surround it rather than by any propelty of the carbon atom itself. There
are also examples of cluster molecules with other encapsulated main group atoms such
as the trigonal prismatic Co6N(CO)IS - and the octahedral C06H(CO)IS-, as well as
examples of metal clusters with five, seven, and more metal atoms containing encap­
sulated nonmetal atoms. The encapsulated atoms serve to provide the necessary num-
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bel' of electrons to give a stable cluster with a total number of electrons consistent with
the rules developed by Wade and extended by Mingos. These rules, which also apply
to some nonmetal clusters such as the boranes, have been partially justified by the mol­
ecular orbital approach. But this does not tell us anything about the nature of the bond­
ing between the central atom and the cluster of metal atoms. The possibility of apply­
ing the VSEPR and LCP models and the AIM theory to cluster molecules is still largely
a subject for future research.

called a bond path, that traverses the electron density distribution of each of the two bonded
atoms and along which the electron density is concentrated. There is a unique point along
the bond path at which it intersects the interatomic surface. This point, which we can con­
sider as belonging to neither atom, or to both of them, is called the bond critical point. The
electron density at this point, Pb, the bond critical point density, may be regarded as a char­
acteristic property of the bond.

We assume that the bond critical point density is an approximate measure of the amount of
density accumulated in the bonding region, that is, the amount of shared density. For bonds
that are conventionally regarded as predominately covalent, fJb has a large value, and for
bonds conventionally regarded as predominately ionic, Pb has a low value. In a hypothetical
purely ionic bond, the value of fJb would be zero.

8.2./ Bond Strengths and Lengths

The strength of a bond depends on the amount of electron density shared between the two
bonded atoms, that is, on the value of Pb. However, this is clearly not the only factor deter­
mining bond strength, for otherwise a predominately ionic bond would have a very small or
zero strength. In such a molecule, as in an ionic crystal, the attraction between the oppositely
charged atoms is an important factor in determining the bond strength. And this must also
be an important factor in any molecule in which the bonded atoms have opposite charges.
Since the vast majority of bonds are polar, both factors must be taken into account in dis­
cussing the strengths of most bonds.

As we have seen in earlier chapters, an important and much discussed bond property is
the bond length. The length of a bond depends on its strength, and it therefore also depends
on the bond critical point density and on the atomic charges.

We saw in Chapter 5 that the length of a bond also depends on the coordination num­
ber of the atom to which it is bonded, increasing with increasing coordination number. So
we can summarize the factors determining bond strengths and lengths as follows:

• The strength of a bond increases with increasing bond critical point density Pb and with
increasing charges of the bonded atoms.

• The length of a bond decreases with increasing bond critical point density and increasing
atomic charges, but increases with increasing coordination number of the atom to which
it is bonded.
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We can also discuss bond lengths in tenns of the sizes of the bonded atoms. The dis­
tance along the bond path from the nucleus of an atom to the bond critical point is a mea­
sure of the size of the atom in the bonding direction, which we call the bonding radius, rb'

The bond length is the sum of the bonding radii of each of the bonded atoms. The bonding
radius is a well-defined property of an atom in a molecule that can be obtained from the elec­
tron density distribution, in contrast to the arbitrarily defined covalent radius and ionic ra­
dius discussed in earlier chapters. It is applicable to any molecule, including molecules with
very polar bonds, for which the concepts of ionic radii and covalent radii break down. Un­
like the covalent and ionic radii, which are usually assumed to be constant from molecule to
molecule, the bonding radius of an atom is not constant and is independent of the molecule
in which it is situated.

• The length of a bond is equal to the sum of the bonding radii of the two bonded atoms.

• The bonding radius of an atom increases with increasing negative charge and decreases
with increasing positive charge, just as we have seen for its ligand radius.

Clearly not all these atomic and bond properties are independent of each other and it
can be difficult to disentangle one from another. Nevertheless we will find these properties
useful for discussing the properties of molecules, as we do for some typical molecules of the
period 2 elements in this chapter. In particular, the amount of accumulated or shared den­
sity, which we assume is approximately measured by the bond critical point density, repre­
sents what is commonly called the covalent contribution to the bonding. The atomic charges
represent what is commonly called the ionic contribution.

.. 8.3 The Nature of the Bonding in the Fluorides, Chlorides, and
Hydrides of Li, Be, B, and C

8.3./ Fluorides

Table 8.1 gives the experimental and calculated bond lengths and angles, the calculated atomic
charges, the bonding radii of A and F, and the bond critical point density Pb for the fluorides
of the period 2 elements, and some of their anions and cations. Contour maps of the elec­
tron density distributions for LiF, BeF2, BF3, and CF4 are given in Figure 8.1.

Atomic Charges. The negative charge of the fluorine ligands decreases steadily from -0.92
in LiF to zero in F2 as the electronegativity difference between the central atom and the lig­
and decreases (see Figure 8.2). The positive charge on the central atom increases with the
increasing number of ligands from +0.92 in LiF to +2.43 in BF3 and 2.45 in CF4 and then
decreases rapidly to zero in F2 (Figure 8.2). We see from the electron density plots of LiF
and BeF2 that almost all the electron density is concentrated in an almost spherical region
around each nucleus, so that each atom is very similar to an ion, consistent with the very
ionic nature of these molecules indicated by the large atomic charges. From LiF to CF4 an
increasingly large fraction of the density is transferred toward the interatomic surface, thereby
distorting the electron density distribution of each atom from its initially nearly spherical
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Table 8.1 Molecular Parameters, Atomic Charges, and Pb Values for Period 2 Fluorides

Bond Length, Bond Angle,
(pm) n Atomic Change Radii (pm)

Molecule Calc. Exp. Calc. Exp. Pb (au) -q(F) q(A) q(A)q(F) rbF r~

LiF 157.3 156.4 0.075 0.922 0.922 0.85 96.7 60.6
BeF2 137.8 140 180 180 0.145 0.876 1.752 1.54 88.1 49.7
BF3 131.4 130.7 120 120 0.217 0.808 2.433 1.96 86.9 44.5
CF4 132.6 131.9 109.5 109.5 0.309 0.612 2.453 1.50 86.6 46.9
NF3 138.2 138.5 101.9 102.3 0.314 0.277 0.834 0.68 74.9 63.3
OF2 140.4 140.5 104 103.1 0.295 0.133 0.266 0.04 72.5 68.0
F2 139.9 141.8 0.288 0 0 0 70.0 70.0

BeF3 - 147.6 149 120 120 0.104 0.914 1.75
BeF4

2 - 160.0 155.4 109.5 109.5 0.070 0.939 1.76
BF4 - 141.4 138.6 109.5 109.5 0.164 0.856 2.43
CF3 + 123.5 120 120 0.373 0.527 2.59
NF4+ 127.3 130 109.5 109.5 0.387 0.078 1.32

shape and increasing Pb (Table 8.1). That the central atom loses a large part of its valence
shell density in these molecules is clear from a comparison of the electron density distribu­
tion of BF3, for example, with that of the free boron atom in Figure 8.1. The boron atom is
much smaller in BF3 than the free boron atom and is very similar in size to the B3+ ion.

Bond Lengths and Bonding Radii. As the negative charge on the fluorine atom decreases
its size and in particular its bonding radius decreases (Figures 8.1 and 8.2). As the positive
charge of the central atom A increases from LiF to CF4 , its bonding radius decreases corre­
spondingly but then increases again to F2 as the charge on A decreases rapidly to zero. The
bond length, which is equal to the sum of the bonding radii, therefore decreases from 156.4
pm in LiF to 130.7 pm in BF3 and 131.9 pm in CF4 as both bonding radii decrease. Then
the bond length increases to an almost constant value for NF3, OF2, and F2 .as the increase
in the bonding radius of A roughly balances the decreasing bonding radius of fluorine
(Figure 8.2).

Bond Critical Point Density. The value of Pb increases rapidly from LiF to CF4 and then
becomes essentially constant at a rather large value of approximately 0.3. We note that the
change in Pb roughly paralells the change in the bond length, which decreases from LiF to
CF4 , increases to NF3, and then becomes essentially constant. The increasing bond critical
point density from LiF to CF4 indicates that the amount of shared density is increasing; that
is, the bonds are becoming more covalent.

8.3.2 Polar Bonds and Ionic-Covalent Character

As discussed in Chapter 1, chemists have long recognized two types of bonds; ionic and co­
valent. However, a purely ionic bond is a hypothetical concept because in any bond there is
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Figure 8.1 Contour maps of the electron density dis­
tribution of LiF, BeF2, BF3, CF4, and the isolated
boron atom, all on the same scale.
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Figure 8,2 Atomic and bond properties of the period 2 fluorides: D, bond length; 0, rbF; e, rbA; ...,
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at least some shared density; a purely covalent bond is rather rare because it is found only
when the two bonded atoms are the same and have the same charge. In a purely ionic bond,
the attraction between the two atoms is due only to their opposite charges, while in a pure
covalent bond it is due only to the electron density accumulated between their nuclei. The
vast majority of bonds have both characteristics. The bonded atoms have charges of oppo­
site sign, and there is a certain amount of density accumulated between their nuclei. Thus
the attraction between the two atoms is due both to the atomic charges and to the accumu­
lated density. Such bonds are often said to have both ionic and covalent character, and it is
usually assumed that if a bond is, say, 60% "ionic," it is 40% "covalent." This is not the
case, however. Neither of these concepts can be clearly defined, and it cannot be assumed
that there is a simple inverse relation between them. We have seen that from LiF to BF3 the
negative charge on fluorine decreases from -0.92 to -0.81, but the positive charge on A
increases from +0.92 to +2.43. Is the A-F bond becoming less ionic, as would usually be
assumed, or more ionic? At the same time, the amount of shared density, as indicated by the
value of fJb, increases (Table 8.1), so it might be said that the bond is becoming more cova­
lent. What is clear is that the attractive force between the two atoms increases because the
charge on A increases much more than the charge on F decreases, and because the amount
of accumulated density also increases. To say, as seems necessary, that the bond is becom­
ing more ionic as well as more covalent is contrary to the usual usage of these terms, illus­
trating that the meaning of these poorly defined terms is not at all clear. Only the actual
atomic charges and the bond critical point density can be given quantitative values and com­
pared from one molecule to another. Nevertheless it is useful to be able to describe bonds
in a qualitative manner, and so we will use the following descriptions:
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• Bonds between atoms with large charges and a small value of the bond critical point den­
sity are described as predominately ionic.

• Bonds between atoms with very small charges and a large bond critical point density are
described as predominately covalent.

• Many bonds have an intermediate character. They cannot be simply categorized as pre­
dominately ionic or predominately covalent and are described as polar.

The bonds in BF3 and CF4 are typical polar bonds. The large atomic charges and the
large amount of electron density in the internuclear region make their bonds very strong.
They have average bond enthalpies of 613 and 485 kJ mol-\, respectively (Table 2.8). The
CF bond is much stronger than a CC bond, which has an average bond enthalpy of 345 kJ
mol-\ because the CC bond is nonpolar and does not have the additional strength resulting
from the atomic charges. However, the CF bond is not as strong as the BF bond because the
BF bond is shorter and the atomic charges are a little larger. The short length and great
strength of the BF bond in BF3 is adequately accounted for by the large atomic charges and
high P'o values so there is no need to attribute it to back-bonding (Chapter 2).

Carbon tetrafluoride and all polyfluorinated hydrocarbons are very stable and inert mol­
ecules. This inertness can be attributed to the strength of the CF bonds and the close pack­
ing of the inert fluoride-like ligands around the carbon atom, which effectively prevent at­
tack by a nucleophile on the carbon atom. In contrast, even though BF3 has stronger bonds
than CF4, it is more reactive, forming adducts such as BFy NH3 because the boron atom is
only three-coordinated and there is space around it for an additional ligand.

8.3.3 Chlorides

Table 8.2 gives the experimental and calculated bond length and bond angles, and the cal­
culated atomic charges, bonding radii, and bond critical point densities for the chlorides of
the period 2 elements and some of their anions and cations. Plots of the electron density dis­
tributions for LiCI, BeCI2 , BCI3, and CCI4 are given in Figure 8.3.

Table 8.2 Molecular Parameters, Atomic Charges, and Pb Values for Period 2 Chlorides

Bond Length Bond Angle
(pm) (0) Atomic Charge Radii (pm)

Molecule Calc. Exp. Calc. Exp. Pb(au) q(CI) q(A) q(A)q(CI) r~ rbCI

LiCI 202.2 220.1 0.047 -0.91 +0.91 0.83 68.4 133.8
BeCI2 179.8 180 180 0.097 -0.84 + 1.68 1.41 56.8 123.0
BCI3 175.0 174.2 120 120 0.157 -0.64 +1.93 1.24 53.7 121.1
CCI4 179.7 177.1 109.5 109.5 0.182 -0.09 +0.35 0.03 81.8 97.1
NCI3 179.1 175.9 107.1 0.176 +0.08 -0.24 0.09 87.3 91.9
OCI2 172.8 170 112.8 111.2 0.184 +0.23 -0.46 0.11 87.7 85.1
FCI 166.5 162.8 0.187 +0.38 -0.38 0.14 87.8 78.6

BCI4 - 188.1 183.3 109.5 109.5 0.122 -0.70 + 1.81
CCh+ 165.8 120 120 0.235 +0.22 +0.33
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LiCl BeClz

Figure 8.3 Contour maps of the electron density distribution of LiCl, BeCI2, BCI3, and CCI4 .

Atomic Charges. The negative charge of the CI ligand decreases from LiCI to BCl3 and to
almost zero in CCI4 , consistent with the small electronegativity difference between Cl (2.8)
and C (2.5) and then becomes positive in NCI3, OCh, and FCI, since in these molecules the
electronegativity of the central atom is greater than that of chlorine (Figure 8.4). The charge
on the central atom A increases from Li to B, drops sharply to a small value for carbon, and
then becomes increasingly positive. The bonds in CCl4 have a very low polarity and are pre­
dominately covalent. The change from a predominately ionic bond in LiCI to a predomi­
nately covalent bond in CCl4 is also indicated by the increasing deviation of the electron den­
sity distribution of the atoms from a spherical shape as can be seen in Figure 8.3.
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Bonding Radii and Bond Lengths. The bonding radius of chlorine decreases with decreas­
ing negative charge and increasing positive charge from LiCI to FCI (Figure 8.4). The bond­
ing radius of A decreases with increasing positive charge from LiF to BF3 and then increases
slowly as the charge on A changes from a small positive value to a slowly decreasing neg­
ative value. As a consequence, the bond length decreases to BF3, increases to CF4, then
slowly decreases again. The A-CI bond length therefore continues to decrease after CCk

Bond Critical Point Density. The value of Pb increases from LiCI to CCI4 and then becomes
essentially constant in the following predominately covalent molecules. The bond critical
point density is lower than in the corresponding fluorides, and the A-CI bonds are longer
than the A-F bonds because of the larger size of the CI atom. It is a general observation
that longer bonds have lower bond critical point densities. Longer bonds are therefore also
generally weaker than shorter bonds. For example the B-CI bond enthalpy is 456 kJ mol- 1

compared to 613 kJ mol-\ for the shorter BF bond (Table 2.8). This difference in the strengths
of the BF and BCI bonds has an important effect on the Lewis acid strengths of BF3 and
BCI3 as we discuss in Box 8.2.

8.3.4 Hydrides

Table 8.3 gives the experimental and calculated bond length and angles, and the calculated
atomic charges, bonding radii, and the bond critical point densities, for the hydrides of the
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It has been known for long time that the Lewis acid strength of BCI3 is greater than
that of BF3, although the calculated charge on boron is +2.43 in BF3 but only + 1.93
in BCI3 (Tables 8.1 and 8.2). The commonly accepted explanation is that there is more
back-bonding (Chapter 2) in BF3 than in BCI3 because the 2p orbital on fluorine is
more comparable in size to the 2p orbital on boron than is the 3p orbital on chlorine.
However, the LCP model provides an alternative and simpler explanation. On coordi­
nation to a base such as NH3, the geometry of the BX3 molecule changes from three­
coordinated planar triangular to approximately tetrahedral and the BF and BCl bonds
increase in length accordingly. The BF bond increases in length from 130.7 pm to 136.7
pm in BF3·NH3 and the BCI bond increases in length from 174.2 pm to 183.7 pm in
BCI3.NH3 (Figure I). The stretching of the B-X bonds in the formation of a complex
is an endothennic process. So, because B-Cl bonds are weaker than B-F bonds,
more energy is needed to stretch a BF bond than a BCl bond. The greater strength of
a BF bond is shown by:

I. The average bond enthalpies, which are 613 kJ mol- 1 for a BF bond and 456 kJ
mol-I for a BCl bond.

2. The larger atomic charges in BF3 [q(B) = +2.43, q(F) = -0.81] than in BC!)
[q(B) = + 1.93, q(Cl) = -0.64].

3. The larger Ph value of 0.217 in BF3, compared to the value of 0.157 in BCl3

Since less energy is needed to stretch a BCl bond than a BF bond in forming a com­
plex with NH3, the energy gained in the formation of the BN bond is offset less by the
energy needed to stretch a BCI bond than by the energy needed to stretch a BF bond.
So the energy of fOlmation of a BF3 adduct is less than that of the conesponding BCI3
adduct, and consequently BCI3 is a stronger Lewis acid than BF3 (Rowsell et at.)
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In contrast, with very weak bases such as CO and MeCN, BF3 fOnTIS stronger com­
plexes than BCI3. In these weak complexes BX3'CO and BX3'NCMe the BC and BN
bonds are much longer, the BX3 molecule is not significantly distorted from planarity,
and the BX bond lengths remain almost unchanged as we can see in the table where
BX3 . CO and BX3 . NH3 are compared. The relative stabilities of these complexes de­
pends only on the charge on boron because no significant stretching of the BX bond is
involved. Hence BF3 fOnTIS stronger complexes with CO and other weak bases than BCl3

and so is the stronger Lewis acid. We note also that the BC bond in BF3 'CO and BCl3 'CO
is much longer than the BN bond in the corresponding NH3 complexes confirming that
the BF3 and BCl3 complexes with CO are much weaker than their complexes with NH3.

Table Box 8.2 Bond Lengths and Bond Angles in BF3 and BCI3 Complexes

BF3

BF3 ·CO
BF3·NH3

BCI3

BCI3 ·CO
BC13 'NH3

a

::lAb initio calculated values.

B-X (pm)

131.0
131.1 a

138.0
174.2
174.4
183.7

XBX C)

120
120
111.0
120
120
113.5

B-C(N) (pm)

288.6
171.2

322.1
161.0

Table 8.3 Geometrical Parameters, Atomic Charges, and Pb Values for the Hydrides of the
Period 2 Elements

Bond Lengths Bond angles
(pm) (0) Atomic Charges Radii (pm)

Molecule Exp. Calc. Exp. Calc. q(H) q(A) Pb(au) rbH r~

LiH 159.2 -0.91 +0.91 0.041 88.0 71.2
BeH2 132.6 180 180 -0.87 + 1.73 0.101 74.8 57.8
BH3 118.9 120 120 -0.70 +2.11 0.189 65.9 53.0
C~ 109.5 109.0 109.5 109.5 -0.04 +0.18 0.274 39.0 70.0
NH3 10l.5 101.6 107.2 107.9 +0.35 -1.05 0.332 28.1 73.5
OH2 95.8 96.3 104.5 106.3 +0.63 -1.25 0.362 20.5 75.8
FH 91.8 92.4 +0.78 -0.78 0.365 15.5 76.9

BH4 - 123.7 123.7 109.5 109.5 -0.67 +1.69
NH4 + 103.2 102.6 109.5 109.5 +0.48 -0.93
CH3+ 109.3 120 120 +0.28 +0.16
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period 2 elements. Contour plots of their electron density distributions are shown in Figure
8.5. Similar calculated data for the period 2 diatomic hydrides, most of which have not been
experimentally observed, were given in Table 6.2 and Figure 6.18.

Atomic Charges. The atomic charges in LiH, BeH2, and BH3 (Figure 8.6) are large, indi­
cating that these are very polar molecules, but both the charges decrease to very small val­
ues in CH4 . Thus the bonds in methane have a very low polarity and are predominately co­
valent, consistent with the very similar electronegativities of carbon and hydrogen. Although
the electronegativity of hydrogen is a little smaller than that of carbon, the hydrogen ligands

LiH

Figure 8.5 Contour maps of the electron density distribution of LiH, BeH2, BHJ , and CH4
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nevertheless have a small negative charge, suggesting that the electronegativity of hydrogen
should be assigned a slightly higher value than that of carbon. However, as we pointed out
earlier, electronegativity is only an approximate quantity that cannot be considered to have
a truly constant value from molecule to molecule. Moreover, this may be particularly true
for hydrogen, which is a unique atom in that hydrogen has no inner core electrons and no
nonbonding electrons, with the result that the electrons in its valence shell in a molecule act
as both bonding and nonbonding electrons. The charge on hydrogen is positive from NH3 to
HF, as expected from the greater electronegativity of N, 0, and F, and the bond polarity in­
creases again, but in the reverse sense.

Bonding Radii and Bond Lengths. As the charge on hydrogen decreases from a large neg­
ative value in LiH to a very small value in CH4 and then has an increasing positive value,
there is a considerable decrease in the size of the hydrogen ligand, as can be clearly seen
in Figure 8.6. The decrease in size of the hydrogen atom appears to be the most important
factor determining the decrease in bond length from LiH to FH, more than compensating
for the relatively small increase in the bonding radius of the central atom after BH3. This
large variation in the size of the hydrogen atom is a consequence of its lack of any core
electrons. We have seen a relatively large decrease in the ligand radius of hydrogen from
110 pm when bonded to boron to 82 pm when bonded to nitrogen (Table 5.6). The bond­
ing radius of hydrogen decreases even more sharply, from 65.9 pm in BH3 to 28.1 pm in
NH3. These results also show that little confidence can be placed on the value of 120 pm



8.3 The Nature of the Bonding in the Fluorides, Clorides, and Hydrides of Li, Be, B, and C • 195

for the van der Waals radius of hydrogen (Table 5.1), which must similarly vary greatly
with its charge.

8.3.5 Beryllium and Boron Hydrides

Neither of the simple molecules BeHz or BH3 is known. BeHz is a polymeric solid of
unknown structure. There are many boranes (boron hydrides). The simplest is BzH6 ,

which has a bridged structure with an approximately tetrahedral arrangement of the hy­
drogens around each boron. Contour plots of the electron density distribution are given
in Figure 8.7a,b, and the calculated and experimental geometrical parameters are given
in Figure 8.7c,d. The terminal ligand-ligand distances of 203 and 207 pm (Figure 8.6e)
are close to the values for the calculated structures of BH4 - (202 pm) and BH3 (203 pm).
The H··· H distance between the two bridging hydrogens is, however, only 194 pm. It ap­
pears that because the negatively charged bridging hydrogen atoms are attracted directly
toward each other by two positive boron atoms, their electron distributions are slightly
compressed. This allows the opposite HBH angle to open up to 121.8 0

, increasing the
H··· H distance to 207 pm. This opening up of the angle between the terminal hydrogens
in BzH6 is analogous to the opening up of the HCH angle in ethene as the two bonding
pairs of electrons of the double bond are pulled toward each other by the attraction of the
two positive carbon cores, merging to form a single four-electron domain as discussed in
Chapter 4.

The description of the bonding in BzH 6 has been the subject of discussion over many
years because there are only 12 valence electrons, which is fewer than the 16 electrons needed
for there to be two-electron bonds between each pair of adjacent atoms. BzH6 is a simple
example of a general class of molecules that are called electron deficient because there are
insufficient valence electrons to form a two-electron bond between each pair of bonded atoms.
In view of the large atomic charges, this molecule can to a rough first approximation be con­
sidered to be composed of an approximately tetrahedral arrangement of anion-like hydrogen
ligands around each of the two cation-like boron atoms (Figure 8.7f).

A Lewis-type covalent description can be given in terms of the two resonance structures
shown in Figure 8.7g. Another useful model is to consider BzH6as protonated BzH4z-, which
is isoelectronic with CZH4, using the bent-bond model of these molecules (Figure 8.7h). As
is often the case, the formal charges in this model of BzH 6 bear no relation to the real charges.
From the point of view of the VSEPR model it can be considered that there is an approxi­
mately tetrahedral arrangement of four electron pairs around each boron atom. Two of these
pairs are shared with the two tenninal hydrogen ligands and the other two are shared with
each of the bridging hydrogens (Figure 8.7i), fonning what are called two-electron, three­
center (2e,3c) bonds, as opposed to normal Lewis bonds, which may be described as 2e,2c
bonds. A hybrid orbital model description uses four sp3 hybrid orbitals on each boron atom
(Figure 8.7j). Two of these Sp3 orbitals are used to form the two terminal BH bonds and the
other two to form a bond with the bridging hydrogen, giving a three-center orbital extend­
ing over the bridging hydrogen and both boron atoms. This description does not account for
the deviations of the bond angles from the tetrahedral value, although it could be improved
by adjusting the ratio of the sand p contributions to the hybrid orbitals. But this is again a
description of the bonding, not an explanation of the geometry. Despite their apparent dif-
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ferences these models give a very approximate description of the same electron density dis­
tribution in Figure 8.7a,b.

The contour maps of the electron density in Figure 8.7a,b show a bond path between
each boron and the bridging hydrogens and between the boron atoms and the tenninal hy­
drogens. However, the bond paths to the bridging hydrogens cannot be identified with sin­
gle electron pair bonds; rather, the density of one electron pair is spread out over two boron
atoms and one bridging hydrogen as the approximate models attempt to depict, and is con­
centrated along two bond paths, forming two rather weak long bonds. There is no bond path
between the two boron atoms. There is, therefore, no bond between these two atoms, even
though the boron-boron distance (176 pm) is equal to twice the covalent radius of boron
(Table 2.1). But we must remember that because each boron is positively charged, its actual
radius is considerably smaller than that of a neutral boron atom. We are reminded once again
of the very approximate nature of covalent radii, which are often assumed to be constant
from one molecule to another despite changes in the atomic charge.

The many higher boranes such as BsH9 and B6H62- are similarly electron deficient and
cannot be described by a single Lewis structure. They can often be described in terms of a
combination of two- and three-center bonds. Alternatively, their structures can be rational­
ized by electron-counting schemes such as those proposed by Wade. Analysis of the elec­
tron density of these molecules by the AIM method shows that there are bond paths between
all adjacent pairs of atoms. So from the point of view of the AIM theory there are bonds be­
tween each adjacent pair of atoms, but these cannot all be regarded as Lewis two-center,
two-electron bonds as is the case in B2H6.

• 8.4 The Geometry of the Molecules of Be, B, and C

The hydrides, fluorides, and chlorides of Be, B, and C all have the expected AX2, AX3, and
A~ geometries consistent with both the VSEPR and LCP models. The data in Table 8.4 re­
mind us again of the importance of ligand close packing. Although the bond lengths increase
from three- to four-coordination, the interligand distances remain nearly constant. Moreover,
we can see from Tables 8.1-8.3 that the atomic charges in related molecules such BF3 and
BF4 - are very similar, which means that the large increase in bond length with increasing
coordination number in these molecules cannot be related to change in the atomic charges,
that is, to the ionic contribution to the bonding.

The localization of the valence shell electrons of the central atom into pairs that is the
basis of the VSEPR model can be clearly seen in the contour map of L for a plane through
the carbon atom and two Cl ligands for the CCI4 molecule given in Figure 8.8. There is a
maximum in the valence shell charge concentration of both carbon and chlorine along each

Figure 8.7 Diborane, 8 2H6. (a) Contour map of Pb in the plane of the terminal hydrogens. (b) Con­
tour map of Pb in the plane of the bridging hydrogens. (c) Calculated geometry. (d) Experimental geom­
etry. (e) Interatomic H···H distances. (f) Ionic model. (g) Resonance structures. (h) Protonated double­
bond model. (i) VSEPR domain model showing the two three-center, two-electron bridging domains.
(j) Hybrid orbital model.
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Table 8.4 Bond Length and Coordination Number in the Chlorides, Fluorides, and Hydrides of
Boron and Carbon

Fluorides Chlorides Hydrides

Bond Bond Bond
Length F···F Length CI···CI Length H···H

Molecule (pm) (pm) Molecule (pm) (pm) Molecule (pm) (pm)

BF3 130.7 226 BCI3 174.2 302 BH3
a 118.7 206

BF4 - 138.6 226 BCI4 - 183.3 299 BH4 - 123.7 202

CF3 +a 123.5 214 CCI3+ a 165.8 287 CH3 +a 109.3 189
CF4 131.9 215 CCl4 176.7 289 CH4 109.5 178

"Calculated data.

of the two CCI bonds in this plane. The apparent third maximum in the carbon VSCC on
the opposite side from the other two maxima is in fact a saddle point between the two max­
ima along each of the two bonds that do not lie in this plane. The four maxima in the car­
bon VSCC have a tetrahedral geometry, as expected. In the valence shell charge concentra­
tion of each chlorine ligand in CCI4 in the plane plotted in Figure 8.8 there appear to be two
maxima in addition to the bonding maximum. These are actually just cross-sections of a
toroidal CC that surrounds the chlorine atom that is very similar to the toroidal CC sur­
rounding each CI atom in SCI2, illustrated in Figure 6.3a. This CC results from the six non­
bonding electrons (see Chapters 4 and 7). The plots of L for BCI3, BeCI2, and LiCI in Fig­
ure 8 illustrate the gradual transition from predominately covalent bonding in CCl4 to
predominately ionic bonding in LiCi.

The tetrahedral AX4 geometry is common for both Be and B, and there are many ex­
amples, in addition to anions such as BF4 -. For example, Lewis acid-base complexes of BF3
and BCI3 with ammonia and many other bases and molecules such as the molecule
ChBe(Et20h, and BeCI2 in the solid state, which has a polymeric chain structure (Figure
8.9), all have a tetrahedral geometry around the central atom. And, of course, much of or­
ganic chemistry is based on the tetrahedral carbon atom.

• 8.5 Hydroxo and Related Molecules of Be, B, and C

Table 8.5 gives the bond lengths and the calculated atomic charges and bond critical point
densities for some hydroxo molecules of Be, B, and C. Figure 8.10 gives the geometrical pa­
rameters and electron density contour map for B(OHh which, as in the case of BF3, clearly
shows the transfer of a large amount of the valence shell density from the boron atom to the
hydroxide ligands. The values for the atomic charges of the central atom and the OH group
are very similar to, but slightly smaller than, the atomic charges for the corresponding fluo­
rides, consistent with the smaller electronegativity of 0 versus that of F. For example, the
charge on boron in B(OHh is +2.28 compared with +2.43 in BF3. The atomic charges vary
only slightly between the molecules and ions, just as they hardly change between BF3 and
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Figure 8.9 Examples of four-coordinated molecules of beryllium: (a) BeC12·2Et20 and (b) the poly­
meric molecule BeCI2.
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Table 8.5 Geometrical Parameters, Atomic Charges, and Pb Values for Some Be, B, and C
Hydroxo Molecules and Ions

Bond Lengths
(pm) Atomic Charges

Molecule Calc. Exp. Pb(au) -q(O) q(H) -q(OH) q(A)

Be(OHh 142.3 0.133 1.42 0.57 0.85 1.70
Be(OHh- 154.6 154.0 0.095 1.37 0.47 0.90 1.69
Be(OH)42 - 168.8 0.065 1.34 0.42 0.93 1.70
B(OH)z+ 125.5 0.267 1.34 0.69 0.65 2.31
B(OHh 136.9 136.3 0.204 1.32 0.56 0.76 2.28
B(OH)4- 148.3 147.7 0.153 1.30 0.48 0.82 2.28
CCOHh+ 128.1 0.358 1.05 0.64 0.41 2.23
C(OH)4 139.3 139.6" 0.289 1.04 0.54 0.50 1.99

"C(OMe)4-'

H

1200 Io 0
/ :\'CXB 136.3

H " ....
236 \ I

b\
\

O~
H

(a)

Figure 8.10 (a) Contour map of the electron density distribution of B(OHh (b) Geometry of B(OHh

BF4-. Thus the bond length increase from the A(OHh to the A(OH)4 molecules must be
due primarily to the increasing coordination number.

Table 8.6 gives the bond lengths and bond angles for the trihydroxides and the tetrahy­
droxides as well as for B(OMeh, ceOMe)4, and C(OPhk All the A(OXh molecules have
the expected equilateral triangular arrangement of the oxygen atoms, with OAO bond angles
of 120°. The OX groups all have the same coplanar orientation, so that in each case the over­
all symmetry is C311 • The tetrahydroxides as well as C(OMe)4 and C(OPh)4 all have equal
AO bond lengths, but they do not have a tetrahedral geometry because none of them has six
tetrahedral bond angles. In each case there is a set of two equal angles and a set of four dif­
ferent but equal angles. In B(OH)4 - there are four angles of 111.1 ° and two of 106.2°, giv-
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Table 8.6 Geometry of A(OXh and A(OX)4 Molecules

Molecule

Be(OHh-'
Be(OH)42 - •

B(OHh
B(OMeh
B(OH)4­
ecOHh+ •

ecOH)4'
ecOH)4'
ecOMe)4
ecOPh)4

"Calculated dala.

HO 106.2° OH
'~/.

14B.~/l.) 111.1"

HO OH

(a)

Bond Length (pm)

154.0
168.8
136.3
136.8
147.7
128.1
139.3
139.3
139.6
139.4

236

Bond Angles n
120

107.8 X 2 110.3 X 4
120
120

106.2 X 2 Ill.! X 4
120

104.3X2 112.IX4
107.2 X 4 114.2 X 2
106.9 X 4 114.6 X 2
I01.2X4 113.8X4

Symmetry

(c)

Figure 8.11 Geometry of the B(OH)4 - ion:
(a) bond lengths and bond angles, (b) interli­
gand distances, and (c) ball-and-stick model
showing the D2d symmetry.

ing the two different interligand distances of 244 and 236 pm (Figure 8.11). The shorter of
these distances is the same as in B(OHh

The deviation from a true tetrahedral geometry that we find for the molecules Be(OX)42-,

B(OX)4 -, and qOX)4 is common to all A(OX)4, A(NX2)4, and A(CX2Y)4 molecules, all of
which have two bond angles smaller than, and four greater than, 109.5° or two angles larger
than 109.5° and four smaller than 109.5°. In each case the overall symmetry of the mole­
cule, which depends on the relative orientation of the ligands, is D2d or S4' Some examples
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Table 8.7 Symmetries and Bond Angles in Some A(XY)4 Molecules with
Distorted~ Tetrahedral Structures

Bond Angles n
Molecule Symmetry XAX XAX

Be(OH)42- a D2d 107.8 X 2 110.3 X 4
B(OH)4- a D2d 106.2 X 2 IIl.lX4
B(OMe)4- D2d 101.7 X 2 113.5 X 4
B(OS02CI)4- 54 107.4 X 4 113.8 X 2
C(OH)4" D2d 104.3 X 2 112.l X 4
C(OH)4" 54 107.2 X 4 114.2 X 2
C(OMe)4 54 106.9 X 4 114.6 X 2
C(OC6Hs)4 D2d 10l.2 X 2 113.8 X 4
C(OC6H3Me2 - 3,5)4 D2d 100.9 X 2 114.0 X 4
C(SC6Hs)4 54 106.3 X 4 116.0 X 2
C(CH2OH)4 54 106.7 X 2 110.9 X 4
C(CH2CI)4 54 106.1 X 2 112.9 X 2
C(CH2CI)4 D2d 108.3 X 4 111.9 X 2

'Calculated data.

are given in Table 8.7. These unequal angles and correspondingly unequal interligand dis­
tances are not explained by the VSEPR model but can be explained by the LCP model.

The angles in the A(OX)4 molecules deviate from 109.5 0 because the density of the 0
atom is perturbed from axial symmetry by the ligand Y. In particular, the density is greater
in the direction between the A-O and O-X bonds than in the opposite direction between the
lone pairs, because the bonding density is more spread out and closer to the core than the
bonding density. It has been shown that as a consequence of this deviation of the density
from cylindrical symmetry, the four ligands cannot all pack as closely as possible around the
central atom in such a way that all the interligand distances are equal. As a result, the six
interligand angles are not equal to 109.5 0 but two are smaller and four are larger or vice
versa (Heard et aI., 2000).

• 8.6 The Nature of the CO and Other Polar Multiple Bonds

In Section 8.3 we discussed the information that the analysis of electron densities can
give on the nature of polar single bonds. In this section we look at the nature of the C=O
and other polar multiple bonds. Experimental geometries and calculated bond critical point
densities and atomic charges of molecules of the type XYCO in which the CO bond is de­
scribed as a double bond in their Lewis structures are given in Table 8.8. Consistent with
their formulation as double bonds, we can see from Table 8.8 that the CO bonds in these
molecules have lengths that are much shorter than the C-OH and C-OMe bonds in H2CO
and (MeOhCO, which are Lewis single bonds. Moreover, the bond critical point densities
Pb for the C=O bond are larger than for the C-OH, C-OMe, and C-F bonds, which are
single bonds in the Lewis structures. In all cases the charge on the c=o oxygen is larger
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Table 8.8 Experimental Geometry and Calculated Properties for Molecules with C=O Double
Bonds

Bond Lengths Bond Angles

(pm) (') Pb(au) Atomic Charges

Molecule eo ex xeo xex eo ex q(C) q(O) q(X)

H2CO 120.9 0.431 1.25 -1.24 O.OJ
F2CO 117.0 13 J.7 126.2 107.6 0.467 0.297 2.30 -1.09 -0.61
CI2CO 117.6 173.8 124.1 111.8 0.458 1.25 -1.05 -0.10
(HOhcoa 120.4 133.9 125.7 108.6 0.427 0.314 2.13 -1.17 -1.05
(MeOhCO 120.3 134.3 126.5 107.0
CO2 116.0 0.464 2.60 -1.30

aCalculaled structure.

than - 1.0, indicating that these are very polar double bonds. Because both the atomic charges
and the bond critical point density have large values, we expect these bonds to be very strong.
The C=O bond has an average bond enthalpy of 706 kJ mol-I, which is much larger than
that for a C-O bond (335 kJ mol-I) and even larger than that of the B-F bond (613 kJ
mol-I), which is the strongest known single bond. It is also larger than that of the nonpolar
C=C bond (619 kJ mol-I), consistent with the expected effect of the polarity of the bond
on its strength.

As we discussed in Chapter 5, the short length of the CO bond means that for the lig­
ands to remain close packed, the X ligands in an X2CO molecule are pushed away from the
carbon atom, which necessarily increases the length of the CX bonds and decreases the an­
gie between them. Figure 8.12 compares the bond lengths and bond angles in COF2 and
COCl2 with those in the CF3+ and CCl3+ molecules. That the ligands in all these molecules
are indeed close-packed is confirmed by the almost constant X.. ·X interligand distances,
which are close to the sum of the ligand radii. As a consequence, the CF bond in F2CO (131.7
pm) is longer than the CF bond in CF3+ (123.5 pm), while the F.. ·F distance has almost the
same value in both molecules. Similarly the CCI bond in COCh (173.8 pm) is longer than
in CCl3+ (165.8 pm), while the Cl· ..Cl distance is the same (288 pm) (Figure 8.12).

The limitations of conventional Lewis structures are evident if we consider that the
polarity of the C=O bond is usually described by means of the two resonance structures 1
and 2.

~
C=O

/
(1)

~ +
C-O

/
(2)

~ 2+ 2­
C 0

/
(3)

Considering that the charge on oxygen is very approximately -I, it would seem that we
have to conclude that structure 2 is the best representation of this bond. This structure im­
plies that the C=O bond consists of two very different bonds-a nonpolar covalent bond
represented by the bond line and a fully ionic bond represented by the two charges. How-
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Figure 8.12 The geometry of FlCO,
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ever, this is a purely arbitrary distinction. We can equally well describe the bond as consisting
of two partially shared electron pairs, and these two descriptions cannot be distinguished by
any experimental method. Moreover, structure 2 does not take into account the size of the ac­
tual charge on oxygen, which is somewhat greater than - I. An alternative and somewhat bet­
ter description of the bond could be given in terms of the two structures 1 and 3, representing
a fully covalent double bond and a fully ionic double bond. This description does not limit the
charge on oxygen to - I and is consistent with the short length and large bond critical point
density. In other words, the bond is best considered to be a very polar double bond.

8.6./ The OCF3 - Ion

The limitations of conventional Lewis structures are further exemplified by the bond lengths
in the OCF3 - molecule (Figure 8.13a), which has been the subject of much discussion be­
cause of the difficulty of representing the bonding by means of conventional Lewis stmc­
tures. The short CO bond length of 122.7 pm is not much longer than the CO bond in methanal
(120.9 pm), and this short length has been taken to indicate that the CO bond is a double
bond. Representing the CF bonds as single bonds then gives the Lewis structure 4, which is
not usually considered to be an acceptable Lewis stmcture because the carbon atom is pen­
tavalent and violates the octet mle. Because the CF bonds (139.2 pm) are considerably longer
than in CF4 (131.9 pm), it is generally considered that the bonding is best described in terms
of resonance stmctures such as 5 and three structures like 6, which obey the octet mle, with
5 being considered to be relatively unimportant because of the short length of the CO bond.
It is generally supposed that the length of the CF bonds is accounted for by the no-bond-

0 0- 0 0 0
II I II II II
C-

/C",,"'F /C""'F F- C",,~F /C F-/ ",,'''F
F ~FF F F F F F-

(4) (5) (6)
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116.5°
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./" '---"''''''' FF--216~~020 Figure 8.13 The geometry of (a) CF30­
and (b) CF30H.

single-bond resonance structures for the CF bond. However, these resonance structures only
describe the bonding in the molecule based on the observed geometry; they do not explain
the geometry. The explanation of the geometry can be found in the LCP model. As can be
seen from the interligand distances in Figure 8.13 the four ligands are close-packed with the
F···F and F.. ·O distances close to the sum of the ligand radii. Because the CO bond is so
short, the CF bonds are necessarily longer than in CF4. When an F ligand in CF4 is replaced
by an 0 ligand, which forms a much shorter bond, the fluorine ligands are pushed away from
the carbon, increasing the lengths of the CF bonds and increasing the OCF angle and de­
creasing the FCF angles so that the 0 .. ·F and F· .. F distances can achieve their close-packed
values. In the calculated structure of the corresponding alcohol CF30H (Figure 8.13b) the
CO bond, which is a Lewis single bond, is considerably longer than the CO bond in OCF3 -,
the CF bond is comparable in length to that in CF4, and the bond angles are close to tetra­
hedral.

The best Lewis-type representation of the bonding in OCF3- would therefore appear to
be as in 4, even though the carbon atom does not obey the octet rule. This molecule can be
considered to be a hypervalent molecule of carbon just like the hypervalent molecules of the
period 3 elements, such as SF6. We introduced the atom hypervalent in Chapter 2 and we
discuss it in more detail in Chapter 9. But it is important to emphasize that the bonds are
very polar. In short, OCF3- has one very polar CO double bond and three very polar CF
single bonds. A serious limitation of Lewis structures is that they do not give any indication
of the polarity of the bonds, and much of the discussion about the nature of the bonding in
this molecule has resulted from a lack of appreciation of this limitation.

8.6.2 The Carbonate Ion coi-
The bonding in the carbonate ion is usually represented by the three resonance structures 7-9

(9)
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giving a bond order of 1.3, which is considered to be consistent with the observed bond
length of 129.4 pm, which in turn is intermediate between the length of a double bond such
as that in H2CO (120.9 pm) and that of a single bond such as that in CH30H (141.6 pm).
However, this takes no account of the effect on the bond length of the coordination number
or of the bond polarity.

It is important to be aware that statements such as "The CO bonds in C03
2- are short

because there is resonance between structures 7, 8, and 9" are incorrect because resonance
is a not a phenomenon but a description of the bonding in terms of hypothetical Lewis struc­
tures.

Table 8.9 lists molecules with CO bonds that in Lewis structures are described as either
single or double, together with their lengths, bond critical point densities, and atomic charges.
We see that in general Lewis single bonds are longer than double bonds, which in turn are
longer than triple bonds. But the range of the lengths of single bonds overlaps those of or­
der 1.3 and 1.5 and comes very close to the range of the double bond lengths.

Several factors appear to affect these bond lengths:

Coordination number ofcarbon. Molecules in which the carbon is four-coordinated gen­
erally have longer CO bonds than those in which carbon is three-coordinated, which in
turn are longer than the bonds in CO2 and CO, consistent with the LCP model.

Table 8.9 Properties of Some CO Bonds

Bond Coord.
Lengths (pm) Atomic Charges No.

Molecule 8.0.° Calc. Exp. Pb(au) q(C) q(O) q(OH) C 0

HOCOz- 1 145.4 134.6 0.241 +2.05 -1.24 -0.55 3 2
CH30H I 140.0 0.287 +0.74 -1.24 -0.64 4 2
CH3OCH3 1 139.0 141.6 0.273 +0.78 -1.29 4 2
C(OH)4 I 139.3 0.289 + 1.98 -1.04 -0.50 4 2
FH2COH 1 136.1 0.290 +1.35 -1.26 -0.64 4 2
(HOhCO I 133.9 134.3 0.314 +2.13 -1.05 -0.60 3 2
CH3O- 1 132.6 0.332 + 1.44 -1.04 4 I

F3COH 1 132.8 0.337 +2.78 -1.24 -0.62 4 2
C032- 1.3 130.8 129.4 0.339 +2.10 -1.34 3 1
FH2CO- 1 J25.8 0.383 +1.48 -1.45 4 1
HOC02 - 1.5 125.1 0.385 +2.05 -1.24 3 1
hCO- I 122.7 0.437 +2.16 -1.26 4 I
(HOhCO 2 120.4 120.3 0.427 +2.13 -1.17 -0.60 3 1
H2CO 2 118.3 120.9 0.431 + 1.25 -\.24 3 1
CI2CO 2 117.2 117.6 0.458 + 1.25 -\.05 3 I
F2CO 2 117.1 117.2 0.467 +2.30 -1.29 3 1

COz 2 114.3 116.0 0.483 +2.59 -1.30 2 I

CO 3 II\.4 112.8 0.510 + 1.35 -1.35 1 1

'Bond order as given by the conventional Lewis structure. llalic indicates which of the two bonds the data is given for.
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Coordination number of oxygen. The CO bonds in molecules in which the oxygen is
two-coordinated as in OX ligands, which are described as Lewis single bonds, are gen­
erally longer than those in which the oxygen is one-coordinated (i.e., is in a terminal
position), and are described as C=O bonds, but there is no clear division between the
two groups.

Atomic charges. Although the atomic charges on carbon and oxygen in a CO bond are
large their effect on the bond length is often obscured by the other factors and is clear
only when closely related molecules are compared. For example, in the series F3CO-,
FH2CO-, and H3CO- (Table 8.9) the increase in the CO bond length from 122.7 to
125.8 to 132.6 pm correlates with decrease in the product of the C and 0 atomic charges
from 2.72 to 2.15 to 1.50. Similarly, in the series F3COH, FH2COH, H3COH, the in­
crease in the CO bond length from 132.8 to 136.1 to 140.0 correlates with the product
of the C and 0 atomic charges, which decreases from 3.45 to 1.70 to 0.50.

It is clear that the Lewis structures of these molecules are only very crude approxima­
tions and that there is no typical single C-O or double C=O bond length. The data in Table
8.9 show that the concept of bond order, based on two or more resonance structures, such
as the bond order of 1.3 in the carbonate ion, although a qualitatively useful idea, can have
no quantitative significance. In general, any attempt to explain the length of a bond in terms
of resonance structures is, at best, only a very rough approximation. Such structures assume
that electrons are either bonding or nonbonding, but the total electron density is a continu­
ous function in which different electrons cannot be distinguished. Therefore in principle all
the oxygen electrons may be involved to a greater or a lesser extent in a CO bond. The ef­
fective number of electrons that may be considered to be bonding electrons is, in general,
not just two, four, or six but can vary continuously. That nonbonding electrons cannot in
general be clearly distinguished from bonding electrons is also shown by the function L. As
we saw in Chapter 7 the charge concentrations attributed to the nonbonding and bonding
electrons in a molecule such as SC12 (Figure 7.3) are only maxima in a continuous charge
concentration.

We have seen in Chapter 6 (Figure 6.16) that there is only one bond path between car­
bon and oxygen in H2CO and this is the case for any CO bond, although this bond may be
due to one, two, or three or any intermediate number of electron pairs. In this respect a CO
bond is just like a CC bond.

A striking feature of the data in Table 8.9 is that the bond critical point density Pb is a
continuous and almost linear function of the bond length, as can be seen in Figure 8.14. Does
the bond length determine Pb or does Pb determine the bond length? As we have seen, bond
lengths appear to be determined by several factors, such as coordination number and atomic
charges, so it might appear that the bond critical point density is determined by the bond
length. However, the relationships between the various atomic and bond properties need fur­
ther investigation, and the question just posed is in general not easily answered

The foregoing considerations concerning CO bonds must clearly apply to all other bonds
to oxygen, which in a Lewis structure are described as either single, double, or triple (in­
cluding, e.g., BO, NO, PO, SO and CIO bonds). They also apply to bonds to nitrogen, which
similarly are described as single, double. or triple.
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Figure 8.14 Plot of Ph against bond length for some molecules with CO bonds.

8.6.3. The Carbon Monoxide Molecule CO

The nature of the bonding in this molecule has been the cause of considerable discussion.
Its short length (112.8 pm) and its great strength (bond dissociation enthalpy 1072 k:J mol-\)
are consistent with the usual triple-bond Lewis structure

:c-:::o:+

This structure has large formal charges on the atoms which are, however, opposite in
sign to the calculated charges of + 1.35 and - 1.35 (Table 8.9). Moreover, these large
charges suggest that the molecule should have a large dipole moment. However, large
atomic dipoles of 14.42 X 10- 30 Cm on the carbon atom and 9.00 X 10-30 C'm on the
oxygen atom can be calculated from the electron density distribution. They arise from
the polarization of the charge density of each of the atoms, as can be seen in the con­
tour maps of the electron density and its Laplacian shown in Figure 8.15. These atomic
dipole moments oppose the dipole moment of 24.39 all arising from the large atomic
charges all we have discussed in Chapters 2 and 6, giving an overall very small dipole
moment of only 0.97 X 10-30 C'm, in good agreement with the measured value of 0.37 X

10-30 C·m.
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co co
(a) (b)

Figure 8.15 Contour maps for the CO molecule: (a) the electron density distribution p and (b) the
Laplacian L.

• 8.7 Bonding and Geometry of the Molecules of Nitrogen

Nitrogen resembles the other elements in group 15, such as phosphorus. However, an impor­
tant difference between nitrogen and phosphorus is that five- and six-coordinated molecules of
nitrogen in its +V oxidation state such as NFs and NF6 - are not known, principally because
the nitrogen atom is too small to allow five or six fluorine atoms to be packed closely around
it. In contrast, there are many molecules of P(+V) with a coordination number of five or six
such as PFs, PCls, PF6-, and PCI6-. In molecules in which nitrogen is in the +III oxidation
state it uses only three of its electrons to form bonds, leaving an unshared or lone pair in its
valence shell. We first consider molecules in which nitrogen is in the +III oxidation state.

8.7.1 N(+III) Molecules

According to the VSEPR model, NX3E molecules are expected to have a triangular pyramidal
geometry. Experimental data for some NX3E molecules are given in Table 8.10 and Figure

Table 8.10 Bond Angles, Bond Lengths, and Interligand Distances in
NX3E Molecules

X'''X (pm)

Molecule N-X (pm) XNX (0) Observed Predicted

NH3 99.7 107.2 161 164
NFJ 136.5 102.3 212 214
NCIJ 175 106.8 280 284

N(CHJh 145.8 110.9 240 238
N(CF3h 142.6 117.9 244 238
N(SiH 3h 173.4 120.0 300
N(SCF3h 170.5 118.8 294
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Figure 8.17 Contour maps of p (top) and L (bottom) for NF3 and NCI3.



8.7 Bonding and Geometry of the Molecules of Nitrogen • 21 I

8.16. Only the molecules NH3, NF3, and NCb have bond angles that are smaller than tetrahe­
dral, while that in N(CH3h is very slightly larger than tetrahedral. The bond angles in these
molecules are close to or less than tetrahedral because in these molecules the electronega­
tivity of the ligand is greater than, or not much smaller than, that of nitrogen, so that the lone
pair is well localized and behaves like a pseudoligand. Contour maps of the electron density
and L are given in Figure 8.17 for NF3 and NCI3. In the maps of L there are in each case
three bonding CCs as well as a nonbonding (lone pair) CC in the valence shell of nitrogen,
making a total of four CCs in an approximately tetrahedral arrangement. These charge con­
centrations result from the partial localization of the valence shell electrons into four pairs,
consistent with the VSEPR model. Evidence for a nonbonding pair is also seen in the elec­
tron density maps, which show a distinct bulge in the electron density of the nitrogen atom
in the lone pair direction. In these molecules in which there is a well-localized lone pair, the
ligands are pushed together untill the ligand-ligand distance is twice the ligand radius.

The other molecules in Table 8.10, have bond angles that are larger than tetrahedral. In
N(SiH3h the electronegativity of nitrogen is considerably higher than that of silicon, so the
valence shell electrons of nitrogen are not strongly localized into bonding and nonbonding
pairs, as shown by the absence of well-defined nonbonding CC in the Laplacian map in Fig­
ure 8.18. As a consequence, ligand-ligand repulsions dominate the geometry, and the bond
angle attains the maximum value of 1200

• From the absence of any charge concentrations in
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Figure 8.18 Contour maps of p (top) and L (bottom) for N(SiH3)

in a plane through N, Si, and H.
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the valence shell of silicon, we see also that much of the valence shell electron density has
been transferred from the silicon atom to the much more electronegative nitrogen atom. The
reasons for the large bond angles in N(CF3h and N(SCF3) are not clear.

Table 8.11 gives the bond lengths and angles in some NX2YE molecules. The bond an­
gles and lengths are determined primarily by the close packing of the ligands and the lone
pair domain around the central nitrogen, as shown by the generally good agreement between
the observed interligand distances and those predicted from the ligand radii.

Molecules of the type ONXE where the NO bond is a Lewis double bond are expected to
be angular. Some molecules of this type are illustrated in Figure 8. 19. In each case the bond an­
gie is less than 120°, consistent with the presence of the lone pair. The bond angle in the nitro­
syl halides decreases with decreasing size of the halogen as expected, and the 0···Hal distance
is equal to the sum of the radii for ligands bonded to nitrogen. The bond length of 126 pm in
the nitrite ion N02- is intermediate between that of the Lewis double bonds in the nitrosyl halides
and the Lewis NO single bond in nitrous acid, H-O-N=O, consistent with the intermediate
nature of this bond as expressed by the two resonance structures. The N02 molecule in which
there is a single nonbonding electron on nitrogen, and which is an example of an NX2e mole­
cule, where e represents a single unpaired electron, has a bond angle (134°); this larger than 120°,
consistent with a single nonbonding electron having a smaller domain than a lone pair. The large
0···0 distance of 224 pm in this molecule suggests that the oxygen ligands are not close-packed
because of the small repulsive effect of the single nonbonding electron. In N02+ in which ni­
trogen is in the +V state there are no nonbonding electrons, so the molecule is linear.

8.7.2 N (+ V) Molecules

Although there are a relatively large number of N( +V) molecules, the absence of any with
a coordination number greater than four must be attributed to the small size of the nitrogen

Table 8.11 Bond Lengths, Bond Angles, and Interligand Distances in NX2YE Molecules

Interligand
Distances (pm)

Length Angle Ligand
Molecule Bond (pm) Angle (0) x···x Observed Predicted

NH2CH3 N-H lOLl HNH 105.8 H···H 161 164
N-C 147.7 HNC 112.1 H···C 208 202

NH(CH3h N-H 102.2 HNC 108.8 H···C 204 202
N-C 146.6 CNC II\.6 C"'C 243 240

NH2F N-H 102.9 HNH 10\.6 H···H 161 164
N-F 140.0 HNF 99.8 H···F 191 189

NF(CH3h N-F 144.7 CNC 112.0 C"'C 242 240
N-C 146.2 FNC 104.6 C···F 229 227

NF2CH3 N-F 14\.3 FNF 10\.0 F···F 218 214
N-C 144.9 FNC 103.6 C···F 229 227

NF2Cl N-F 138.2 FNF 103 F···F 216 214
N-CI 173.0 FNCI 105 F···Cl 248 247

NCI2CH3 N-Cl 174 CINCI 108 Cl",CI 282 280
N-C 142 CINC 109 CI···C 262 260
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Figure 8.19 The geometry of some ONXE molecules and NOi and N02+.

Table 8.12 Bond Lengths, Bond Angles, and Interligand Distances in Some N~ + and ONX)
Molecules

Bond Lengths (pm) Bond Angles (')

Interligand Distances

(pm)

Molecule

NH4 +
NF4 +

N(CH3)4+

ONF3

ON(CH3lJ
ONH3'

'Calculated data.

N-X

103.2
130
lSI
143.1
147.7
103.0

N-o

115.8
138.8
136.8

XNX

109.5
109.5
109.5
100.8
109.0
106.2

XNO

118.1
109.9
112.6

X"'X

161
212
247
216
240
165

X"'O

213

atom. NX4+ molecules have the expected tetrahedral geometry. Bond lengths and bond an­
gles for molecules of this type are given in Table 8.12. When the ligands are all the same,
they have a regular tetrahedral geometry as in NF4 + and N(CH3)4+. The NF bonds in NF4 +

(130 pm) are shorter than in NF3 (136.5 pm) because of the absence of the repulsive effect
of the lone pair. The lone pair occupies a larger domain than the bonding pairs, decreasing
the FNF bond angle and correspondingly increasing the bond length with the ligands re­
maining in contact, as shown by the F··· F distance, which is the same (212 pm) as in NF4+.
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Molecules of the type ONX3 are of particular interest because the NO bond in ONF3 is
very short (115.8 pm) (Figure 8.20), as we have seen is also the case for the CO bond in the
isoelectronic molecule OCF3- (122.7 pm). Hence the NF bonds are considerably longer than
in NF4+ and there are cOiTesponding considerable deviations in the bond angles from the
tetrahedral value, with the XNO angles being larger than the XNX angles. In ON(CH3h and
in the calculated structure of ONH3, in contrast, the NO bond is much longer (138.8 and
136.8 pm, respectively), and the NC and NH bonds are much closer to the lengths of the
corresponding bonds in N(CH3)4+ (151 pm) and NH4+ (103.2 pm) than in ONF3. Because
of its short length, the NO bond in ONF3 it is best considered to be a double bond like the
CO bond in COF3-, which we discussed in Section 8.6.1.

There are many molecules of the type XNOz, and all have the expected triangular pla­
nar geometry. They include the nitrate ion, nitric acid, nitryl fluoride, and several oxides of
nitrogen. Bond lengths, bond angles, and ligand-ligand distances are given in Figure 8.21
and Table 8.13. In the nitrate ion and XNOz molecules the 0·,,0 distances are close to the
average value of 218 pm and are consistent with the close packing of the 0 ligands around
the nitrogen with a ligand radius of 109 pm.

The representation of the bonding in the oxo molecules of nitrogen by means of Lewis
structures encounters the same problems we discussed at some length for CO bonds in Sec­
tion 8.6. NO bond lengths vary greatly from, for example, 141 pm for the HO-N bond in
HN03, which is formally a single bond to 115 pm in NOz +, which has formal double bonds,
and to 106 pm in NO+, in which the bond is formally a triple bond. The NO bonds in XNOz
molecules (Table 8.13) and in ONF3 have lengths in the range of 118-122 pm and so are
much closer in length to a double bond than a single bond, suggesting that the bonds would

o
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Figure 8.20 The geometry of ONF3, ON(CH3h and ONH3.
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Figure 8.21 The geometry of some XN02 molecules.
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Table 8.13 Bond Angles. Bond Lengths. and In­
terligand Distances in the N02 Group in XN02

Molecules

Molecule NO (pm) ONOn 0···0 (pm)

N03- 125 120 216
HN03 121,120 130 218
ONN02 122,120 130 219
02NN02 119 136 220
02NON02 ll8 133 217
FN02 118 136 217
CIN02 120 131 218

be better described as double bonds 10 rather than in the customary manner with resonance
structures based on the octet rule 11, provided we recognize that the double bonds in 10 are
highly polar.

/0
X-N

~o
(10)

0­
+/

X-N
~o

(II)

NX2 molecules have the expected linear geometry as shown in Figure 8.22 in which the
molecules are represented by their Lewis structures with double bonds. The short lengths of
the bonds are consistent with this very approximate picture, but the NN bonds vary in their
nature from molecule to molecule, as do CO and NO bonds. Although the azide ion is lin­
ear with equal bond lengths, in hydrogen azide and chlorine azide the two NN bonds have
different lengths, and azide group is slightly bent at the central nitrogen. The different bond
lengths are more consistent with the structure in which there is a double and a triple NN
bond (12) than the structure implied by the Lewis model, in which the central nitrogen has
an octet (13). No explanation has been given for this unexpected bond angle at the central
nitrogen, but it may well be due to an unsymmetrical electron density around the central ni­
trogen.

N=N=N:
/

X
(12)

.. +
N=N=N:

/ ..
X

(13)
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Figure 8.22 The geometry of some NXz molecules.

• 8.8 The Geometry of the Molecules of Oxygen

The possible geometries for oxygen are OX2E:2 angular, OX3E trigonal pyramidal (in which
oxygen has a formal positive charge), OX4 tetrahedral (in which oxygen has a formal dou­
ble positive charge), and OX2E angular (in which one of the ligands is doubly bonded in the
Lewis structure and oxygen has a formal single positive charge).

8.8.1 OX2E2 Angular Geometry

According to the VSEPR model, bond angles in OX2 molecules should be smaller than
the tetrahedral angle. However, we can see in Table 8.14 that only H20 and F20 have
bond angles that are less than the tetrahedral value, while CI 20 and (CH3hO have bond
angles that are slightly larger than tetrahedral. The remaining molecules in the table have
much larger bond angles. We noted very similar trends in the bond angles in NX3E mol­
ecules. Just as in N(SiH3h, the ligand atoms are considerably less electronegative than
the central atom so the valence shell electrons of oxygen are not well localized into pairs.
As a consequence, the bond angles in these molecules are determined primarily by lig­
and-ligand repulsions.

The large bond angle of 1440 in (H3SihO has been the subject of much discussion. Not
only is the bond angle large, but the bonds are short if they are compared to the sum of the
covalent radii, which is 182 pm. This apparently short bond length has often been interpreted
as indicating double-bond character resulting from the delocalization of the oxygen lone pair
electrons into vacant d orbitals on silicon, which can be represented by resonance structures
such as 14 or into Si-X antibonding orbitals, which can be approximately represented by
resonance structures such as 15.

H +6 H
"'Si~ "'Si/

H"'"A A······H
(14)
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Table 8.14 Bond Lengths, Bond Angles, and
Interligand Distances in OX2E2 Molecules

Molecule

H20
F20
ChO
(CH3hO
(SiH3hO
(GeH3hO
(CI 3SihO
(F3S ihO
(Me3SihO
(F2PhO
[(CH3hBhO

OX (pm)

95.8
140.9
170.0
141.0
163.4
176.6
159.2
158
163
153.3
135.9

xoxn

104.5
103.3
110.9
111.7
144.1
126.5
146
156
148
135.2
144

x 'X (pm)

152
220
280
234
311
315
304
309
313
292
258

Table 8.15 Bond Lengths, Bond Angles, Bond Critical Point Densities, and Atomic Charges for
(HnXhO Molecules

Bond

Bond Lengths (pm)a Angle' Atomic Charges

Molecule X-O X-H XOX (") Pb (au) q(O) q(X) q(H)

Li20 159.6 (160) 180.0 (180) 0.080 -1.82 +0.91
(HBehO 139.6 133.2 180.0 0.14R -1.79 + 1.74 -0.85
(H2BhO 135.4 119.0 126.9 0.209 -1.68 +2.27 -0.72
(H 3ChO 139.0 (141.0) 108.4(109.6) 113.9(111.7) 0.273 -1.29 +0.78 -0.05
(H2NhO 138.9 99.0 109.8 0.329 -0.51 -0.46 +0.36
(HO)20 136.5 94.5 107.8 0.357 -0.04 -0.62 +0.64
F20 133.6 (140.5) 103.5(103.1) 0.370 +0.33 -0.17
Na20 197.3 180.0 0.053 -1.77 +0.88
(HMghO 178.2 170.5 180.0 0.082 -1.77 +1.69 -0.81
(H2AlhO 167.1 157.5 180.0 0.11 3 -1.76 +2.45 -0.78
(H3SihO 162.1 (163.4) 147.2(148.6) 148.3(144.1) 0.141 -1.72 +3.05 -0.73
(H2PhO 163.6 140.9 129.8 0.161 -1.59 +1.97 -0.59
(HShO 165.4 132.8 119.1 0.190 -1.24 +0.75 -0.13
CI 20 166.5 (169.6) 112.8(111.2) 0.214 -066 +0.33

'Experimentally observed values are given in parentheses.

However, as we have seen, the comparison of the bond lengths with sum of the covalent
radii is not a valid procedure because bonding radii are dependent on the atomic charges,
which are large in this molecule.

The bond angles in these OX2 molecules can be better understood in the light of the in­
formation obtained from the results of the analysis of the calculated electron density distri­
bution given in Table 8.15 for the series of molecules LhO, (BeHhO, (BH2h 0, (CH 3hO,
(NH 2hO, (HOhO, F20, and the corresponding period 3 molecules. Most of these molecules
are unknown; for the known molecules F20, CI20, (CH3hO, (SiH 3hO, and Li20, however,
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there is good agreement between the calculated and experimental geometrical parameters.
The importance of the calculated properties of the unknown molecules is that they show that
molecules such as Li20 and [(CH3hSihO are not anomalous but follow the trends exhibited
in both these series. The bond angle decreases in each series from 180° to a value approxi­
mately equal to or less than the tetrahedral angle in both series and correlates well with the
electronegativity of the ligand. With increasing electronegativity of the ligands, the bonds
become more covalent and the valence shell electrons of oxygen become more localized.
The charges on the 0 and A atoms decrease from large values for the first members of each
series to rather small values for the later members consistent with the expected trend from
predominately ionic molecules to predominately covalent molecules. It is the strong attrac­
tion between the large charges on the 0 and Si atoms in (H3SihO that causes these bonds
to be very short and to be correspondingly strong as shown by the mean bond enthalpy of
the Si-O bond of 464 kJ mol-I (Table 2.8). We have noted before, in the case of BF3 for
example, the great strength and short lengths of very polar bonds in which the atomic charges
are large.

Contour plots of L, the Laplacian of the electron density for (CH3hO and (SiH3hO,
are given in Figure 8.23. For (CH3hO we see four well-developed charge concentrations,
but in (SiH3hO the valence shell charge concentration of the oxygen shows two very
weak bonding charge concentrations and what appears to be a very weak nonbonding
charge concentration. This latter feature is, however, just the cross section of a very weak
nonbonding CC that is spread out almost completely around the silicon atom in an almost
complete torus. These features of the Laplacian map show that the oxygen valence shell
electrons are only very poorly localized into pairs and therefore have only a small influ­
ence on the geometry, which is dominated by the repulsions between the SiH3 ligands.
In the linear Li20 molecule, which is predominately ionic, and in which the central oxy­
gen closely resembles an 0 2-, there is essentially no localization of the valence shell
electrons on oxygen into pairs so that the linear geometry is due entirely to ligand-ligand
repulsion.

The bond angle in digermoxane (H3GehO is smaller and the charge on oxygen smaller
than in (H3SihO, consistent with the greater electronegativity of germanium (2.0) than of
silicon (1.7). Moreover, the bond angle and charge on oxygen in (GeH3hO are close to those
in (H2PhO, which is consistent with the electronegativity of phosphorus (2.1), which is nearly
the same as that of germanium (Table 1.2).

We saw in Section 8.7 that the bond angle at nitrogen increases in a similar way with
decreasing electronegativity of the ligand in the series NF3 (102.3°), NH3 (107.2°), N(CH3h
(110.9°), and N(SiH3h (120°). NX3 molecules more easily achieve a planar geometry than
OX2 molecules achieve a linear geometry because the number of ligand-ligand repulsions
is greater in NX3 molecules than in OX2 and the corresponding increase in the bond angle
is smaller for NX3 molecules.

Figure 8.24 gives the bond lengths and angles for some HOX molecules. At first sight
it might seem surprising that the bond angles in these HOX molecules are smaller than in
both H20 and X20. But we can see that the X··· H interligand distances are close to the av­
erage of X··· X distances in the X20 molecules and the H.. ·H distance in the H20 molecule
consistent with the LCP model. The small angles in the XOH molecules are simply a con­
sequence of the different lengths of the HO and XO bonds.
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Figure 8.23 Contour plots of L for the oxygen atom in (CH3hO (a) in the molecular plane and (b)
perpendicular to the molecular plane, and for the oxygen atom in (SiH3hO (c) in the molecular plane
and (d) perpendicular to the molecular plane through the oxygen.

8.8.2 OX3E Trigonal Pyramidal Geometry

The hydronium ion H30+ has the trigonal pyramidal geometry, but the bond angles vary
over a wide range depending on the accompanying anion with which the H30+ ion is
hydrogen-bonded. Ethers such as dimethyl ether combine with many acceptor molecule such
as BF3 to form adducts in which oxygen is three-coordinated and is therefore expected to
have the AX3E trigonal pyramidal geometry as, for example, in BF3·0Me2 (Figure 8.25).

8.8.3 OX4 Tetrahedral Geometry

An unusual geometry for oxygen in discrete molecules. the OX4 tetrahedral geometry is found
in the oxotetracarboxylates of beryllium such as oxohexaacetatotetraberyllium Be40
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Figure 8.24 The geometry of the molecules FzO, HOF, and HzO, ClzO, and HOCI

Figure 8.25 The trigonal pyramidal OX3E molecule BF3·O(CH3)z.

Figure 8.26 The four-coordinated oxygen atom in
basic beryllium acetate OBe4(CH3COzk Three of
the acetate groups are shown as curved lines.

(CH3COO)6 (Figure 8.26). Although this geometry is independent of the nature of the BeO
bonds, they are expected to be predominately ionic in this molecule. The same geometry is
also found in many three-dimensional infinite structures such beryllium oxide.

• 8.9 The Geometry of the Molecules of Fluorine

Fluorine normally forms only one bond and so is usually a terminal ligand. Nevertheless flu­
orine often acts as a bridging atom, particularly in fluorides, for example, in Sb2Fll- (Fig-
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Figure 8.27 The Sb2F II - ion in which there is
a bridging fluorine linking two SbFs groups, each
antimony having an approximately octahedral
geometry.

ure 8.27). The bond angle at fluorine in the Sb2F 11 - ion in different crystal structures varies
from 1400 to 1800 consistent with the large difference between the electronegativities of f1u­
orine and antimony and the consequent very weak localization of the valence electrons of
tluorine into pairs. These bridging bonds are therefore very ionic. They occur frequently in
fluorides because the large charges on both atoms lead to a strong, predominately ionic,
F···Sb interaction.

~ Further Reading

For further information on bonding in the molecules of the period 2 elements, the fol­
lowing books are useful.

F. A. Cotton, G. Wilkinson, C. A. Murillo, and M. Bachman, Advanced Inorganic Chemistry, 6th ed.,
1999, Wiley, New York.
A comprehensive reference book that gives information on structure and also on the preparation
and properties of inorganic substances. Earlier editions are still a useful source of information, par­
ticularly on bonding models.

R. J. Gillespie and I. Harginai, The VSEPR Model of Molecular Geometry. 1991, Allyn & Bacon,
Boston.
Chapter 4 describes the VSEPR model for the main group second-period elements.

N. N. Greenwood and A. Earnshaw, Chemistry of the Elements. 1984, Pergamon Press, Oxford.
A comprehensive reference book; particularly strong on the main group elements.

J. E. Huheey, E. A. Keiter, and R. L. Keiter Inorganic Chemistry, 4th ed., 1993, HarperCollins, New
York.

D. M. P. Mingos, Essential Trends in Inorganic Chemistry, 1998, Oxford University Press, Oxford.
D. M. P. Mingos and D. J. Wales, Introduction to Cluster Chemistry. 1990, Prentice-Hall, Englewood

Cliffs, NJ.
A useful introduction to the structures of cluster molecules and the electron counting rules proposed
by Wade and others.

N. C. Norman, Periodicity and the p-Block Elements, 1994, Oxford University Press, Oxford.
D. F. Shriver, P. W. Atkins, and C. H. Langford, Inorganic Chemistry, 1990, Freeman, New York.
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MOLECULES OF THE ELEMENTS

OF PERIODS 3-6
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9.1 Introduction

As we have seen in earlier chapters, with the exception of the few molecules discussed in
Box 8.1 the elements of period 2 have four or fewer ligands. In contrast, there are a large
number of molecules of the elements in periods 3 and 4 that have coordination numbers of
five and six, and the still larger atoms of the elements of periods 5 and 6 can have coordi­
nation numbers as high as seven or eight. For example, sulfur forms the molecule SF6 and
phosphorus the molecule P(C6Hsh This important difference between the geometry of pe­
riod 2 molecules and those of period 3 and beyond is due very largely to the smaller size of
the atoms of the period 2 elements.

The Lewis diagrams of molecules with coordination numbers greater than four imply
that there are more than four electron pairs in the valence shell of the central atom and there­
fore they do not obey the octet rule. Many molecules from period 3 and beyond have lone
pairs in the valence shell of the central atom in their Lewis diagram and so may have more
than four pairs of electrons in their valence shell even though they have only four or fewer
ligands. For example, the molecule :Te(CH3hCI2 has five electron pairs in the valence shell
of Te. We will call the total number of ligands and lone pairs in a valence shell the
ligand-lone pair (LLP) coordination number, or LLPCN for short, to avoid confusion with
the conventional use of the term coordination number (CN), which denotes the number of
ligands only. So for the atoms of the period 2 elements for which LLPCN has a maximum
value of four the possible molecular types are AX2, AX3, AX2E, AX4, AX3E, and AX2E2.

The molecules of the elements of periods 3 and 4 can, however, have the following addi­
tional geometries that we do not find for the elements of period 2: for LLPCN = 5, AXs,
AX4E, AX3E2, and for LLPCN = 6, AX6, AXsE, AX4E2. There are no known examples of
AX3E3 molecules. Molecules with LLPCN ~ 7 have still other geometries, which we de­
scribe in Section 9.7.

Molecules that have more than four electron pairs in the valence shell of the central atom
in the Lewis diagram and therefore do not obey the octet rule are often called hypervalent

223
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molecules. Because of the importance of this type of molecule for the elements of period 3
and beyond, and because the meaning of the concept of hypervalence is often misunderstood
and has been the subject of much controversial discussion, we discuss hypervalent molecules
in the following section.

In the later sections we discuss the geometry of some typical molecules of the period 3
elements.

• 9.2 Hypervalence

Because they do not obey the octet rule, hypervalent molecules have often been thought to
involve some type of bonding that is not found in period 2 molecules. Ideas concerning the
nature of this bonding have developed along a somewhat tortuous path that it is interesting
and instructive to follow. We will in the end conclude that the nature of the bonding in these
molecules is not different in type from that in related period 2 molecules and that there is
therefore little justification for the continued use of this concept.

The simplest explanation of the existence of molecules with a LLP coordination num­
ber greater than 4 (i.e., hypervalent molecules) is that, as the central atom gets larger from
period 2, it is possible to pack an increasing number of ligands around the central atom. This
simple explanation has in the past been largely ignored in favor of arguments based on or­
bital models although it now is becoming increasingly accepted.

The octet rule was proposed by Lewis when he found that, on counting the electrons of
a bonding pair as contributing to the val~nce shell of both bonded atoms, in almost all the
molecules with which he was familiar, each atom, except hydrogen, had eight electrons in
its valence shell. He called this observation the rule of eight, although it later became known
as the octet rule. Lewis was aware of a small number of molecules such as PCls and SF6
that were exceptions to his octet rule, because in their Lewis structures they have ten and
twelve electrons respectively in the valence shell of the central atom. But he did not con­
sider these few exceptions to be of any great importance because he regarded the rule of two
(electrons in the vast majority of molecules are found in pairs) as fundamentally more im­
portant. Since that time many more hypervalent molecules have been discovered, and it is
no longer reasonable to consider them as minor, unimportant exceptions.

Lewis considered covalent and ionic bonds to be two extremes of the same general type
of bond in which an electron pair is shared between two atoms contributing to the valence
shell of both the bonded atoms. In other words, in writing his structures Lewis took no ac­
count of the polarity of bonds. As we will see much of the subsequent controversy con­
cerning hypervalent molecules has arisen because of attempts to describe polar bonds in terms
of Lewis structures.

Although, as proposed by Lewis, the octet rule is a purely empirical rule, the advent of
orbital models appeared to add some theoretical support to the octet rule. For period 2 ele­
ments a maximum of only four orbitals, the 2s and the three 2p orbitals, are available for
describing the bonds in terms of localized bonding and nonbonding orbitals, because other
orbitals such as 3s, 3p, and 3d have energies that are too high. As a consequence, the octet
rule came to be regarded more as a physical law than as a purely empirical rule. So it was
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assumed that hypervalent molecules are in some way special and have a type of bonding that
is different from that in "normal" molecules. Because it acquired the status of a physical law,
the octet rule exerted an important, but unjustified influence on ideas on bonding. For ex­
ample, because the free noble gas atoms have an octet of electrons in their valence shell, it
was for a long time believed that they were incapable of forming any compounds, although
Pauling had suggested in the 1930s that they might form molecules such as XeF6.

Not only molecules with LLPCN > 4, but all molecules of the elements in period 3 and
beyond in their higher valence states, 'including most of their numerous oxides, oxoacids,
and related molecules such as S03 and (HOhS04 should be regarded as hypervalent if AO
bonds are described as double bonds (1). However, Lewis did not regard these molecules as
exceptions to the octet rule because he wrote the Lewis structures of these molecules with
single bonds and the appropriate formal charges (2).

0 O~ ~O 0- 0- 0-
'-.... 1+

II ":s 12+ S

O.yS,::-O
, ....-:::S ,",

0::. 0/ "0- 0::.
HO OH HO OH

(I) (2)

For this reason the term "hypervalent" has often been restricted to the molecules of the ele­
ments of period 3 and beyond with LLCPN > 4. We have discussed the nature of AO bonds
with A a period 2 element in Section 8.6, where we concluded that they are best represented
as double bonds. We will later come to a similar conclusion with regard to AO bonds in
which A is an atom of an element from period 3 and beyond. On this basis molecules such
as S02(OHh would be classified as hypervalent, as would the period 2 molecules OCF3­
and ONF3 as discussed in Chapter 8.

Originally hypervalent molecules were accommodated in the valence bond model by
supposing that the 3d orbitals are available for bond formation by the period 3 elements
in addition to the 3s and 3p orbitals. Five or six localized bonding orbitals could then be
formed by the overlap of hybrid orbital such as sp3d and sp3d2 with a suitable ligand or­
bital (Box 9.1). However, this description of the bonding was later questioned because of
the relatively high energy of the 3d orbitals. Subsequently it was found in ab initio cal­
culations that only very small contributions from d-type basis function are needed to ob­
tain a minimum energy geometry in good agreement with experiment. As a consequence,
it is often stated that d orbitals make only a small contribution to the bonding in hyper­
valent molecules.

It is difficult to give a localized orbital description of the bonding in a period 3 hy­
pervalent molecule that is based only on the central atom 3s and 3p orbitals and the lig­
and orbitals, that is, a description that is consistent with the octet rule. One attempt to do
this postulated a new type of bond called a three-center, four-electron (3c,4e) bond. We
discuss this type of bond in Box 9.2, where we show that it is not a particularly useful
concept. Pauling introduced another way to describe the bonding in these molecules,
namely, in terms of resonance structures such as 3 and 4 in which there are only four co­
valent bonds. The implication of this description is that since there are only four cova-
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"'BOX 901 T
Hybrid Orbital Descriptions of the Bondirig

in Hypervalent Molecules'

When the electron configurations of the elements were worked out, it became clear
that the valence electrons of the period 2 elements must be accommodated in just four
orbitals, the 2s and the three 2p orbitals. In the localized orbital model it is assumed
that each bond can be described by a localized orbital formed by the overlap of one
orbital on each of the bonded atoms. According to this model, therefore, a period 2 el­
ement can form bonds with at most four ligands so that electron configurations ap­
peared to provide a justification for the octet rule.

Because the central atom in a hypervalent molecule of a period 3 element has more
than four pairs of electrons in its Lewis structure, it was assumed that to describe the
bonding in these molecules, it was necessary to use one or more of the 3d orbitals in
addition to the 3s and 3p orbitals. The shapes of the five d orbitals are shown in Fig­
ure 1. The d orbitals can be combined with the sand p orbitals to give suitable spd hy­
brids with the correct relative orientation to correspond to the known geometry. Like
sp hybrids, these orbitals are more localized in a particular direction than atomic or­
bitals and are therefore more suitable for forming localized bond orbitals. Each hybrid
orbital is combined with a ligand atomic orbital to give a localized orbital corresponding
to each of the bonds. The combination of one 3s, three 3p, and the 3dz2 and 3dxLy2
orbitals gives a set of six equivalent octahedral sp3d2 hybrid orbitals that are strongly
directed toward the vertices of an octahedron and so are convenient for describing the
bonding in molecules with an LLPCN of 6, which for main group elements always

y

y

~.....~-_x

z

z

z

Figure 1. Conventional diagrams of the shapes of the 3d orbitals (Reproduced with permission
from M. J. Winter, Chemical Bonding, 1994, Oxford Univ. Press, Oxford.
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sp3d zL y2dz2 sp3d z2 sp3d x2_y2

Figure 2. Diagrams showing the directions of the maxima of octahedral sp3d2 and trigonal
bipyramidal and square pyramidal sp3d hybrid orbitals.

have an octahedral geometry (Figure 2). However, other combinations of s, p, and two
d orbitals cOlTespond to other geometries. For example, the combination of the s, p,
and dx 2-/ and dX), orbitals gives a set of spd hybrid orbitals with a trigonal prism geom­
etry.

The combination of the s, three p, and the single dz2 orbital gives a set of trigonal
bipyramidal orbitals suitable for describing the bonding in molecules with LLPCN =

5, which with very few exceptions have a trigonal bipyramidal geometry. However,
because the five vertices of a trigonal bipyramid are not equivalent, there is no unique
set of equivalent sp3d hybrid orbitals having this geometry. Rather, there is a com­
plete range of possibilities ranging from two equivalent sd orbitals in the axial direc­
tions and three equatorial Sp2 orbitals in the equatorial directions to two equivalent ax­
ial sp orbitals and three equivalent equatorial spdz2 orbitals (Figure 2). The first of these
sets is usually chosen because its geometry corresponds better to the observed struc­
ture of these molecules in which the axial bonds are longer than the equatorial bonds,
but this feature of the geometry is not predicted by the hybrid orbital model.

A set of five sp3dx2 _,,2 orbitals have a square pyramidal geometry (Figure 2). Be­
cause there is no way ofdeciding whether the bonding should be described by sp3dz2

or sp3d.\2_/ hybrid orbitals without appealing to the experimentally determined geom­
etry, we see again that the orbital model is only a method for describing the bonding
in orbital terms, not a method for predicting the geometry.

The hybrid orbital model has been questioned because of the relatively high en­
ergy of the d orbitals, and it has been shown that, indeed, only a very small contri­
bution from d-type basis functions is needed to obtain a good ab initio wave func­
tion. So it was concluded that it is not appropriate to utilize d atomic orbitals in an
approximate atomic orbital based description of the bonding. As we discuss in Sec­
tion 9.2 and in Box 9.2 alternative approximate descriptions of the bonding in hy­
pervalent molecules can be given without making use of d orbitals. So the hybrid or­
bital model is no longer widely used, although it is still commonly found in more
elementary textbooks.
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The three-center, four-electron (3c, 4e) bond model, which is a combination of mole­
cular orbital and localized orbital models, was proposed to avoid the use of d orbitals
in the description of the bonding in hypervalent molecules. According to this model,
each of the shorter equatorial bonds (153.4 pm) in PFs is described by localized or­
bitals formed from an Sp2 hybrid orbital on the phosphorus atom and a p orbital on a
fluorine atom. The two longer axial bonds (157.7 pm) are together described by two
of the three molecular orbitals formed from a single p orbital on phosphorus and an p
orbital on each fluorine. The two lowest energy orbitals, namely, the bonding and non­
bonding orbitals, are occupied each by a pair of electrons while the anti-bonding or­
bital remains empty (Figure I).

In the nonbonding orbital two electrons are delocalized over the two fluorine atoms
and do not contribute to the bonding, which is due only to the two electrons in the
bonding orbitaL This type of 3c, 4e bond is often denoted by a dashed line, as shown
in Figure 2. Each P-F bond is effectively a half-bond, so this description of the bond­
ing is roughly equivalent to the two resonance structures 1 and 2:

P+--F
(1)

F--P+
(2)

According to this description, each fluorine carries a formal charge of -0.5. This model
of the bonding implies that the axial bonds are considerably weaker and longer than
the equatorial bonds and that the charges on the axial fluorine ligands are much larger
than those on the equatorial fluorine ligands. However, the difference in the bond
lengths is smaller than this model implies, and as we shall see in Section 9.3 the charges

~
(A) Out-of-ph,ase

anti-bonding

(A) Non-bonding :::><:::J (A)

~
(5) (5)

a:x=D (A) In-phase bonding

Isolated F-alom Molecular orbitals Isolated P-atom
orbitals of three-center bond p orbitals

Figure 1.

r;3c-4e
I

: "~"~I' F
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Sp2 I ________'

: ~F
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F

Figure 2.
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on the axial and equatorial fluorine atoms are very similar. The use of the term "three­
center, four-electron" type of bond tends to suggest that it is new type of bond found
only in hypervalent molecules, whereas it is only an alternative way of writing reso­
nance structures which are themselves not an entirely satisfactory way of representing
the bonding in hypervalent molecules.

The 3c, 4e bond has also been used in the description of the bonding in AX6 mol­
ecules in which all the bonds are identical. In such cases it is necessary to resort to three
resonance structures each of which has two 3c,4e bonds and two sp bonds (3,4, and 5:

F
F I F

"S"
F/I" F

F
(3)

F
F :........-F
/S"

F : 'F
F

(4)

In this case the model becomes a rather complicated mixture of the 3c,4e model and
the resonance model. There is therefore even less reason to use the model for describing
the bonding in octahedral molecules such as SF6 than there is for trigonal bipyramidal
molecules such as PFs. In summary the 3c,4e bond model gives only a very approxi­
mate and somewhat misleading description of the bonding in an AXs type of hyper­
valent molecule and is even less appropriate for describing other hypervalent mole­
cules. The 3c,4e bond is not a special type of bond. It simply provides an unnecessarily
complicated description of the bonding in hypervalent molecules in which there are
five or more polar bonds, that is bonds formed by the unequal sharing of a pair of elec­
trons. We note again the difficulties introduced by assuming that a bond line repre­
sents a purely covalent bond, that is an equally shared pair of electrons.

A satisfactory description of the bonding in hypervalent molecules can also be
given in terms of molecular orbitals but this does not directly correspond to the very
useful picture of five or more localized bonds (see, for example, Mingos, 1998, p. 250).

lent bonds, only one s and three p orbitals are needed in a valence bond or localized or­
bital description.

CI
Ct... 1+

P-Cl
- I

CI CI

(3)

Structures such as these imply that the bonds are polar, which is consistent with ligands
that are more electronegative than the central atom, as is often the case. When resonance
structures are written in this way, it is assumed that the bond lines represent fully covalent
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(nonpolar) bonds, while the other bonds are fully ionic. A molecule such as SF6 has six
equivalent bonds, so we would need 15 structures such as 4 to fully describe the six equally
polar bonds. This description implies a charge of +2.0 for the sulfur atom and a charge of
-0.33 for each fluorine atom, in contrast to the calculated charges of +3.55 for sulfur and
-0.59 for fluorine. So for a full and more accurate description of the bonding, we would
have to add further resonance structures with larger charges and fewer covalent bonds. Clearly
this type of description becomes very cumbersome and can be misleading. It is also clear
that the choice of structures such as 4 just because they obey the octet rule is not justified.

Much of the confusion in describing the bonding in hypervalent molecules has arisen
(I) because there is no generally accepted way of denoting the polar bonds in a structure and
(2) because the octet rule has not always been fully understood. Lewis recognized that in
most molecules the bonds are polar and the bonding electron pairs are not shared equally.
Whether an electron pair is shared equally or unequally, Lewis denoted it by a bond line. If
we do this, then resonance structures involving ionic bonds are not needed and 5 is an ac­
ceptable structure for SF6:

In a Lewis structure a shared pair denoted by a bond line counts as contributing to the va­
lence shell of both atoms, so that both atoms acquire an octet of electrons. Once we have in­
troduced the concepts of a polar bond and unequal sharing of a pair of electrons, the mean­
ing of the octet rule becomes less clear. The conventional Lewis structure of CF4 (6) obeys
the octet rule, but structures 7 and 8, which would be used to describe the polarity of the
bonds, do not.

F F F-

I
F"/C~ C 2+

F"/C", F/ '"F F F F F F
(6) (7) (8)

The use of resonance structures such as 7 and 8 to describe bond polarity led to a subtle
change in the meaning of the octet rule, namely, that an atom obeys the octet rule if it does
not have more than eight electrons in its valence shell. As a result, resonance structures such
as 7 and 8 are considered to be consistent with the octet rule. However, this is not the sense
in which Lewis used the octet rule. According to Lewis, a structure such as 7 would not obey
the octet rule because there are only three pairs of electrons in the valence shell of carbon,
just as BF3 does not obey the octet rule for the same reason. Clearly the octet rule as de­
fined by Lewis is not valid for hypervalent molecules, which do, indeed, have more than
four pairs of shared electrons in the valence shell of the central atom.
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A qualitative molecular orbital description of a hypervalent molecule such as SF6 which
uses only the sulfur 3s and 3p orbitals in the construction of the molecular orbital, is de­
scribed in several standard texts such as those by Mingos and by Huheey. According to this
description, eight of the valence electrons occupy four bonding orbitals, while the remain­
ing four occupy two nonbonding orbitals that are entirely composed of fluorine orbitals. This
description is then equivalent to the resonance structures 4 and is similarly consistent with
the polar character of the bonds. Although such a qualitative molecular orbital description
of the bonding is useful, it is based on delocalized orbitals that cover the whole molecule.
So it does not obviously accord with the well-defined and measurable properties such as
length, energy, and force constant that can be attributed to the SF bonds. Moreover, as we
shall see in Section 9.6, the AIM analysis of the electron density distribution shows that there
are six bond paths or concentrations of charge density between the sulfur atom and the six
fluorine atoms. SF6 has six polar bonds and therefore does not obey the octet rule as defined
by Lewis but the bonds are qualitatively the same as in CF4 which does obey the octet rule.

We can summarize the foregoing discussion of the octet rule and hypervalent molecules
as follows:

I. The octet rule is an empirical rule that is not as important as is often assumed, pm1icu­
lady in introductory textbooks.

2. Molecules of the elements of period 3 and beyond may have higher LLP coordination
numbers than four, and therefore considered to be hypervalent, because their atoms are
larger than those of the period 2 elements. In other words, more than a total of four lig­
ands and lone pairs can pack around a central atom if it is from period 3 and beyond.

3. Hypervalency is not a consequence of some special type of the bonding. The bonds in
hypervalent molecules are similar to those in any other molecules and may range from
predominately ionic to predominately covalent.

4. TIle term hypervalent is not very useful and is misleading if it is taken to indicate some
unusual or special type of bonding.

9.3 Bonding in the Fluorides, Chlorides, and Hydrides with
LLP Coordination Number up to Four

In this section we discuss the bonding of the fluorides, chlorides, and hydrides of the ele­
ments of periods 3 and beyond with LLP coordination numbers up to four with particular
emphasis on the elements of period 3. As might be expected these molecules show many
similarities to the corresponding period 2 molecules, and the differences can be mainly at­
tributed to the larger size and lower electronegativity of the atoms of a period 3 element
compared to the corresponding period 2 element.

In the following discussion we will see again the usefulness of the calculated atomic
charges in understanding the lengths and strengths and polar character of bonds. We will see
also that the atomic charges determine the "size" of an atom as expressed both by its bond­
ing radius and, as we have seen in discussing the LCP model (Chapter 4), by its ligand ra-
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dius. Moreover, these atomic charges correlate well with qualitative expectations from elec­
tronegativities, and they give a quantitative expression to the qualitative concept of polar
character.

9.3. I Fluorides

Figure 9.1 shows contour plots of the electron density distributions for AlF3, SiF4 , PF3 and
SF2, and Figure 9.2 gives the corresponding plots of the Laplacian L. The strongly polar
character of the bonds in AlF3, SiF4 , and PF3 is clearly evident in the almost spherical elec-

SF2

Figure 9.1 Contour plots of p for A1F3, SiF4 • PF3, and SF2.
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Figure 9.2 Contour plots of L for AIF3, SiF4, PF3, and SF2.

tron density around each nucleus. Because the bonding electron density in these molecules
is largely transferred to the ligands, we do not see any bonding charge concentrations in the
maps of L. The bulging of the electron density in the direction of the lone pairs c'an, how­
ever, be seen in the maps for PF3 and SF2 , and the corresponding lone pair charge concen­
trations are quite evident in the maps of L. Only in SF2 do we observe two small bonding
CCs as well as the expected lone pair CCs. In the maps of L for PF3 and SF2, the rather weak
localization of the nonbonding electrons of fluorine into a toroidal charge concentration can
also be seen, as was the case for the fluorides of the period 2 elements.
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Table 9.1 gives the calculated and experimental geometrical parameters, the bonding radii,
and the atomic charges and bond critical point densities for the fluorides NaF, ... , ClF and for
some fluoro cations and anions of these elements. Figure 9.3 shows graphically how these prop­
erties vary across the period. The negative charge on fluorine decreases from NaF to ClF with

Table 9.1 Calculated and Experimental Geometrical Parameters and Calculated Atomic Charges
and Bond Critical Point Densities for the Period 3 Fluorides

2

3

o

Atomic Charges Radii (pm)

Pb
(au) q(F) q(A) rb(F) rb(A)

0.051 - 0.91 0.91 104.1 90.2
0.080 -0.88 1.76 96.6 79.1
0.115 -0.85 2.25 92.6 71.1
0.154 -0.81 3.26 91.2 65.8
0.168 -0.76 2.28 93.9 64.9
0.182 -0.58 1.16 94.2 68.3
0.187 -0.38 0.38 87.8 78.6

0.176 -0.73 3.21 88.2 64.3
0.096 -0.89 2.56 96.6 73.4
0.056 -0.93 2.58 109.1 80.6
0.101 -0.88 3.26 101.3 71.6

Bond Angles n
Calc. Exp.

180 180
120 120
109.5 109.5
97.4 97.7
98.8 98.0

120
109.5 109.5
90 90
90 90

-+---'T'------,----.---------,.---,---r----,----t_ -1

Bond Lengths
(pm)

Molecule Calc. Exp.

NaF 194.3 192.6
MgF2 175.2 177
AIF3 163.9 163
SiF4 157.0 155.5
PF3 159.1 157
SF2 162.5 158.8
elF 166.5 162.8

SiF3+ 152.5
AIF4 - 169.9 165.8
AIF63- 189.7 181
SiF62- 172.9 169.4
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Figure 9.3 Atomic and bond properties of the period 3 fluorides: 0, bond length; 0, rbF; ., rbA; .A.,
qA; 6, qF.
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the increasing electronegativity of the A atom, while the positive charge on A increases with
the number of ligands up to SiF4 and then decreases again as the number of ligands decreases.
The bonding radii of A and F approximately follow the change in their charge, decreasing with
decreasing negative charge and increasing positive charge. Because the change in the bonding
radius of fluorine is rather small, the bond length decreases from NaF to SiF4 and then increases
again following the change in the bonding radius of A. As we pointed out in Chapter 2, the SiF
bond, which has a length of 155.5 pm in SiF4, is much shorter than the sum of the covalent radii
(177 pm), which gives the length of a hypothetical nonpolar bond. This short length can be at­
tributed mainly to the large positive charge on silicon, which considerably reduces the size of
the silicon atom compared to the neutral atom. The bond critical point density Pb is less than Pb
for the corresponding fluorides of the pel10d 2 elements, consistent with the greater length of
the bonds in the period 3 fluorides, and it increases continuously across the period, indicating
that the covalent character of the bonding increases from NaF to C1F.

We see that the SiF bond, in particular, has both a strong covalent character as indicated
by the high Pb value and a strong polar character as indicated by the large atomic charges.
The large amount of density accumulated in the bonding region, as indicated by the large Pb
value, and the large atomic charges are responsible for the great strength of the Si-F bond,
which has an average bond enthalpy of 565 kJ mol-I.

9.3.2 Chlorides

Contour maps of P and L for AlCI3, SiCI4, PCl3 , and SCl2 are given in Figures 9.4 and 9.5.
Experimental and calculated bond lengths and bond angles for the chlorides of period 3 are
given in Table 9.2. The variation in these properties across period 3 is shown in Figure 9.6.
The atomic charges vary in the same way as for the corresponding fluorides, but they are
smaller than in the corresponding fluorides (Table 9.1) because of the lower electronegativ­
ity of chlorine, while they are larger than those of the corresponding period 2 elements (Table
8.2) because of the smaller electronegativity of the period 3 elements. That these molecules
are more covalent than the corresponding fluorides is also shown by the appearance of bond­
ing charge concentrations in the contour maps of L for SiCI4 and the following molecules.
With increasing electronegativity of A, the bonding charge concentrations move from the
ligand in SiCl4 across the interatomic surface to the central atom in SCI2.

The bonding radius of A decreases to silicon and then increases again following the
change in its positive charge. The bonding radius of chlorine decreases continuously as its
charge decreases. Consequently the A-CI bond length decreases to Si and then is approx­
imately constant, as the decrease in the bonding radius of CI is roughly equal to the increase
in the bonding radius of A. The bond critical point density increases steadily across the pe­
riod as for the fluorides, but it is smaller than for the fluorides reflecting the greater length
of the bonds.

9.3.3 Hydrides

Table 9.3 gives the calculated and experimental bond lengths and bond angles and the cal­
culated atomic charges and bond critical point densities for the hydrides of the period 3 el-
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Figure 9.4 Contour plots of p
for AICI3, SiCI4, PC13, and SClz.

selz
Figure 9.5 Contour plots of L
for AICI3, SiCI4, PCI3, and SClz.
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Table 9.2 Experimental and Calculated Bond Lengths and Bond Angles and Calculated Atomic

Charges and Bond Critical Point Densities for the Period 3 Chlorides

Bond Lengths
(pm) Bond Angles n Atomic Charges Radii (pm)

Pb
Molecule Exp. Calc. Exp. Calc. (au) q(CI) q(A) rb(CI) rb(A)

NaCI 236 237.5 0.035 -0.87 +0.87 139.6 97.9
MgClz 217.8 180 180 0.057 -0.83 + 1.65 131.7 86.2
A1Cl3 206.8 208.3 120 120 0.079 -0.78 +2.33 129.3 79.0
SiC14 202.0 204.3 109.5 109.5 0.106 -0.69 +2.77 128.9 75.4
PC13 204.0 209.0 100.4 0.120 -0.43 + 1.29 120.1 88.9
SCh 201.5 206.1 102.7 0.133 -0.20 +0.40 108.9 97.2
Ch 199 203.4 0.140 0 0 101.7 10l.7

A1C14 - 213.5 109.5 109.5 0.065 -0.84 +2.37 135.5 81.5
SiCI3 + 196.5 120.0 0.085 -0.49 +2.44 119.2 77.4
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Figure 9.6 Atomic and bond properties of the period 3 chlorides: D, bond length; 0, rbCI, ., rbA;
., qCI, 1::::., qA.

ements. The variation of these properties across the period is shown in Figure 9.7. As we
expect, the negative charge on hydrogen decreases rapidly across the period, becoming
positive in Hel, while the charge on A increases from Na to Si and then decreases again.
The bonding radii follow these trends closely. The change in the bonding radius of H is
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Table 9.3 Calculated Bond Lengths and Bond Angles and Calculated Atomic Charges and Bond

Critical Point Densities for the Hydrides of the Period 3 Elements

Bond Lengths
(pm) Bond Angles n Atomic Charges Radii (pm)

Pb
Molecule Exp. Calc. Exp. Calc. (au) q(H) q(A) rb(A) rb(H)

NaH 191.6 0.025 -0.82 +0.82 71.2 88.0
MgH2 170.6 180 180 0.055 -0.81 + 1.61 57.8 74.8
AIH 3 157.7 120 120 0.084 -0.79 +2.36 53.0 65.9
SiH4 148.0 147.3 109.5 109.5 0.122 -0.72 +2.90 70.0 39.0
PH3 142.1 140.5 93.5 95.4 0.165 -0.57 + 1.69 73.5 28.1
SH2 133.6 132.6 92.1 94.1 0.221 -0.14 +0.28 75.8 20.5
C1H 127.4 126.4 0.257 +0.22 -0.22 76.9 15.5
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Figure 9.7 Atomic and bond properties of the period 3 hydrides: D, bond length; 0, rbH. e, rbA; A,
qA, 6, qH.

so large as its charge decreases from -0.82 to -0.14 and then becomes positive (+0.22)
that this is the major factor in causing the bond length to decrease continuously from NaH
to ClH. The bond critical point density increases across the period as the bonding changes
from predominantly ionic to polar as in SiH4 and then to predominantly covalent in H2S
and HC\.
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• 9.4 Geometry of the Fluorides, Chlorides, and Hydrides with
LLP Coordination Number Up to Four

Figure 9.8 summarizes the geometrical data for some PX 3 E, PX30, and PX4 + molecules
and includes the corresponding NX3E molecules for comparison. The bond angles are smaller
in the PX3E molecules than in the corresponding NX 3E molecules. These smaller angles are
due to the larger size of the phosphorus atom and the consequent greater length of the PX
bonds, which allows the ligands to subtend a smaller angle while remaining close-packed.
The charge on fluorine in PF3 is larger than in NF3 so we expect the X, ..X distance to be
larger than in NF3, as is observed.

The data in Table 9.4 show that four-coordinated AX4 molecules have longer bonds than
the corresponding three-coordinated AX 3 molecules, as expected from the LCP model. How­
ever, the X··· X distances are a little shorter in four- than in three-coordinated molecules and,
as we shall see in Section 9.6, they are shorter still in six-coordinated molecules. Whereas
the ligands in period 2 molecules can be treated as hard spheres, this appears not to be the
case for molecules of the elements of period 3 and beyond. The bonds in period 2 molecules
are shorter and stronger than in the corresponding period 3 molecules so that they are able
to pull the ligands together until they reach the effective limit of their compressibility. Thus
the interligand distance is essentially constant from molecule to molecule. However, the
weaker longer bonds of the molecules of period 3 elements are unable to squeeze the lig­
ands together as strongly and so they do not always reach equilibrium at the same X.. ,X dis­
tance. In the limiting case of zero ligand-ligand repulsions, the bonds would all have the
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Figure 9.8 The geometry of some NX3, PX3 , POX3, and PX4 + molecules.
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Table 9.4 Bond Lengths (pm) and Interligand Distances (pm) in AX) and~ Molecules

Molecule

AIF)
AICl)
AIH)
SiF)+
SiCI)+

Bond Length x .. ·x Molecule Bond Length x···x

163.0 282 AIF4 - 165.8 270
206.8 369 AICI4 - 217 354
157.7a 273 AIH4 - 161 259
152.5a 264 SiF4 155.5 253
196.5a 340 SiC14 204.3 333

SiH4 141.4 242

"Calculated.

CI
CI, .27: ~o~.~" ,~I
1240~AI I· }AI I 364

CI/ ~4:/ __ ~61
CI- - 358

same length independent of coordination number. In the other limiting case of the hard sphere
model, the interligand distances would all be the same. For the molecules in Table 9.4 we
see that the bond lengths increase a little from three- to four-coordination, while the lig­
and-ligand distances decrease a little, consistent with considerable repulsion between the lig­
ands, which are however somewhat compressible.

Unlike BCI3, AlCI 3 is very largely dimerized in the vapor state to AhCI6, which has the
structure shown in Figure 9.9. Both aluminum atoms are approximately tetrahedrally coor­
dinated. The terminal CI bonds have lengths of 206.6 pm, but the bridging bonds are con­
siderably longer (225.4 pm), which is a common feature of all bridging bonds. The attrac­
tion of the Cl atom by the two positively charged Al atoms pulls the Cl atoms together
strongly enough that the Cl·· ·CI distance across the ring (324 pm) is shorter than the other
Cl·· ·Cl contacts (364 and 358 pm) and shorter than the contacts in AICl4- (348 pm). This
short cross-ring Cl·· ·Cl distance, and the correspondingly small CIAICI angle of 91.00 allow
the angle between the terminal Cl ligands to open up to open up to 1240

• The same geo­
metric feature is found in the analogous B2H6 molecule (Chapter 8).

9.4./ Oxides, Hydroxides, and Other Oxomo/ecu/es

The oxides and hydroxides of Na, Mg, and AI are predominately ionic solids. The Si(OH)4
molecule readily loses water to give Si02, which is a three-dimensional solid that has very
strong bonds, presumably owing to large atomic charges and a high bond critical point den­
sity. Phosphorus, sulfur, and chlorine form a variety of hydroxides and oxides in most of
their oxidation states, with those formed in their higher oxidation being generally the more
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common and more stable molecules. In general, the simple hydroxides of these elements
such as P(OH)s, S(OH)6, and Cl(OHh are unknown, whereas the oxohydroxo molecules that
would be fOffiled from them by loss of water such as OP(OHh, 02S(OHh, and 03CJOH are
the well-known phosphoric, sulfuric, and perchloric acids in which the central atom is only
four-coordinated. Presumably the formation of these four-coordinated molecules is favored
by the reduction in ligand-ligand repulsions. Note that the larger iodine and tellurium atoms
form the stable six-coordinated molecules OI(OH)s and Te(OHk

Figure 9.8 gave geometrical data for some PX4 + and POX3 molecules (X = F, Cl, CH3)
and includes also the data for the corresponding PX3 and NX3 molecules for comparison, all
of which have a LLP coordination number offour. We see that the F"'F, CJ .. ·CJ, and C· ··C
distances are all essentially constant, consistent with the LCP model. From these distances
we can deduce the ligand radii given in Table 9.5. The interligand distances in the phos­
phorus molecules are larger than those in the corresponding molecules of nitrogen because
the charge on the halogen has a much larger negative value than in the corresponding nitro­
gen molecules where, because of the large electronegativity of nitrogen, fluorine has a small
negative charge and chlorine and methyl have positive charges.

Replacing a Cl or an F ligand in PF4 + and PCl4 + by a doubly bonded oxygen consid­
erably reduces the XPX bond angle and increases the length of the PX bonds, while the
X' .. X distance remains almost constant. In Chapter 8 we discussed the analogous effect of
replacing a fluorine ligand in NF4 + and CF4 with an oxygen ligand. According to the VSEPR
model, an oxygen ligand has this effect because the PO bonding domain is larger than a PX
domain. According to the LCP model, because the oxygen forms a shorter bond than either
F or Cl, it repels these ligands more strongly than they repel each other, thus increasing the
OPX angle and decreasing the XPX angles as explained for C=O bonds in Section 8.6. The
charge on oxygen is much larger than that on the halogen ligands, which presumably is the
main reason for the very short bond in all the POX3 molecules. The four-coordinated
molecules S02XY similarly have geometries that indicate that the ligands are close-packed.
Ligand-ligand distances for some molecules of this type are given in Table 9.6. We see that
these distances are remarkably constant for two given ligands, showing that the ligands are
close packed. From these distances we can deduce the ligand radii for ligands attached to
sulfur given in Table 9.5. These ligand radii are slightly smaller than the corresponding radii

Table 9.5 Ligand Radii (pm) for Period 3
Atoms with LLPCNs 4 and 6

Central Atoms

Ligand AI Si P 5 CI

F* 135 127 118 114 108
(127) (119) (Ill) (109)

0 132 126 124
C 154 142 136
Cl 177 167 157 155

'Values in parenlheses are for LLPCN = 6. All the others are for
LLPCN = 4.



242 • Molecules of the Elements of Periods 3-6

Table 9.6 Interligand Distances (pm) in Some
XYS02 Molecules

Molecule O···F O···CI O"'C 0···0

F2S02 239 245
Cl2SOz 280 250
FS02Cl 237 278 247
FSOzOH 237 248
(HOhS02 250
MeOS01F 237 250
MeOS01CI 278 249
MeS01F 238 260 248
MeS02C1 281 261 248
Me2S01 261 248

Mean 238 279 261 248
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Figure 9.10 The geometry of some S02X2 molecules.

for ligands attached to phosphorus, consistent with the expected slightly smaller negative
charge on the ligands due to the greater electronegativity of phosphorus than sulfur. Bond
lengths and bond angles for some of these molecules are given in Figure 9.10. We see that
the asa angle in these molecules is always larger than the other angles, as expected on the
basis of both the VSEPR and LCP models .

• 9.5 Molecules with an LLP Coordination Number of Five

Although they are much more common than was at one time believed, molecules of the non­
metallic elements with an LLP coordination number of greater than four are nevertheless rel­
atively rare. They are very largely limited to the halides, particularly the fluorides, chlorides,
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oxides, alkyls and aryls, in all of which the ligand atom (F, Cl, =0, and C) that is directly
attached to the central atom is small. The other atoms in a polyatomic ligand such as CH3
and CF3 are sufficiently distant from neighboring groups that they have little effect on the
bond angles. Similar molecules might be expected when the ligand atoms are 0 and N, as
in hydroxides and amides. Such molecules are, however, not known, apparently because they
are able to eliminate a stable small molecule such as H20 or NH3 to give a less crowded and
therefore preferred four-coordinated molecule. Thus the fluorides PFs and SF6 are known
but P(OH)s and S(OH)6 are not known because if formed they would presumably eliminate
water to give the corresponding four-coordinate oxoacids H3P04 and H2S04, Similarly, the
amide P(NH2h is not known, but there are many phosphorus(V)-nitrogen compounds in
which phosphorus is four-coordinated. Common examples are the cyclic phosphazenes such
as (PNChh (9).

Phosphorus pentaphenyl (PPhs) is a stable trigonal bipyramidal molecule, but P(CH3)s is not
known, although the four-coordinate Ph3C=CH2 is a stable molecule. We can imagine that
if P(CH3h were formed it would eliminate CH4 to give (CH3hP=CH2, as presumably hap­
pens in the attempted preparation of P(CH3h by the reaction (CH3hPI with CH3Li, which
gives (CH3hP=CH2, CH4 , and LiI rather than P(CH3)s. However, the slightly larger As
atom forms the stable pentamethyl As(CH3h.

9.5.1 AXs Molecules

Except for Sb(C6Hs)s and InCls2-, all the known AXs molecules have trigonal bipyramidal
geometries. Some examples are given in Table 9.7. Sb(C6Hs)s and InCls2- have a square pyra­
midal geometry, which as we saw in Chapter 4 is close in energy to the trigonal bipyramidal
geometry. The structures of Sb(C~sh and InCls2- were determined in the solid state, and
their unusual geometry is probably due to intermolecular interactions. This supposition is sup­
ported by the observation that in crystalline Sb(C6Hsk 1/2C6H6 the antimony pentaphenyl mol­
ecule has a very nearly trigonal bipyramidal geometry. As we discussed in Chapter 5, five lig­
ands or five bonding electron pairs cannot adopt a truly close-packed arrangement. If all the
bonds were the same length, the equatorial ligands would not be close-packed. In fact, the ax­
ial bonds are longer than the equatorial bonds, although the ratio of the two lengths varies from
one molecule to another (Table 9.7). The two axial ligands have three close neighbors at 90°,
while the two axial ligands have two close neighbors at 90° and two more at 120°. If all the
ligands were at the same distance from the nucleus, the total repulsion on the axial ligands
would be greater than on the equatorial ligands, so this would not be an equilibrium geome­
try. Equilibrium can be reached only if the axial ligands move to a greater distance from the
nucleus, allowing the equatorial ligands to move a little closer. So the axial bonds are always
longer than the equatorial bonds, although Bi(CH3h appear to be an exception, since the axial
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Table 9.7 Bond Lengths and Interligand Dis­
tances in AXs Molecules

Bond Lengths (pm) X···X (pm)

Molecule Axial Equatorial ax~q eq~q

SiF5 - 162.4 157.9 227 273
PFs 157.7 153.4 220 266
PCIs 212.7 202.3 294 350
AsF5 171.1 165.6 238 287
SbC15 233.8 227.7 326 394
Sb(CH3)s 226 214 311 371
Bi(CH3)s 225 227 320 293

bonds are apparently very slightly shorter than the axial bonds. If the axial ligands are in con­
tact with the equatorial ligands, then the equatorial ligands cannot be touching each other, so
that, as we can see in Table 9.7, the equatorial-equatorial interligand distances are always
greater than the axial-equatorial distances. The axial-equatorial interligand distances are close
to those in the corresponding AX6 molecules (Section 9.6), as we would expect with the axial
ligands in contact with the equatorial ligands. Decreasing the number of fluorine ligands adja­
cent to a given fluorine from four in PF6 - to three as in an axial bond in PFs reduces the to­
tal repulsion acting on this ligand, allowing the P-F bond to decrease in length from 159.5
pm in PF6 - to 157.7 pm in PFs, For the PF equatorial bonds, the number of close neighbors
is reduced from four to two, and so their length decreases even further to 153.4 pm. The Feq"'Fcq
distance of 266 pm is much larger than the Fcq.. ·Fax distance of 220 pm, showing that the equa­
torial ligands are not close-packed in this plane. They can be considered to be "touching" the
axial ligands but are not "touching" each other.

The difference in the axial and equatorial bond lengths has been discussed in terms of
the three-center, four-electron model (Box 9.2), but this model was postulated on the basis
of the known difference in axial and equatorial bond lengths and so does not provide an ex­
planation of this difference in bond lengths,

Figure 9.11 gives contour maps of p and L for PFs, and the calculated bond lengths,
atomic charges, and bond critical point electron densities are given in Figure 9.12. The cal­
culated bond lengths agree well with the experimental values (Table 9.7) The nearly spher­
ical contours around each of the atoms in the density map and the extremely small bonding
charge concentrations in the maps of L show that these molecules are very polar; the large
atomic charges also demonstrate this polarity. As might be expected, the charge on fluorine
is close to that in PF3 (Table 9.1), but the charge on phosphorus is considerably larger be­
cause of the larger number of F ligands.

The geometry ofAXs molecules with more than one type of ligand is of considerable
interest because there are two nonequivalent sites that the ligands may occupy. According
to the VSEPR model, the most electronegative ligands, which have the smaller bonding do­
mains, will occupy the more crowded axial sites. According to the LCP model, the smaller
ligands will occupy the more crowded axial sites. Generally, more electronegative ligands
are smaller than less electronegative ligands, so that both models usually lead to the same



9.5 Molecules with an LLP Coordination Number of Five • 245

" ". " .....

....... ' .
.......

(a)

.....

..........
.........

..........:..
....

(b)
Figure 9.11 Contour maps of p and L for PFs (a) in the equatorial plane and (b) in the axial plane
through an equatorial ligand.
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predictions. For example, we see in Figure 9.13 that in the chlorofluorides of phosphorus the
smaller and more electronegative fluorine ligands preferentially occupy the axial sites, and
in the methyl fluorides the larger and less electronegative methyl ligands preferentially oc­
cupy the equatorial sites.

The molecules (CF3)nPFs-n and (CF3)nPCIS-n are of particular interest (Figure 9.14).
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Figure 9.13 The geometry of some phosphorus chlorofluorides and some phosphorus methyl fluorides
in which the larger and less electronegative ligands occupy the equatorial sites.
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A value of 3.5 has been given for the electronegativity of the CF3 group, which is smaller
than that of fluorine but larger than that of chlorine. So on this basis we expect the CF3 lig­
and to preferentially occupy the axial sites in the (CF3)nPCIS-n molecules as observed, while
we expect the CF3 group to preferentially occupy the equatorial sites in the (CF3)nPFS-n mol­
ecules. However, the two possible isomers of CF3PF4 are in equilibrium, so they must have
very similar energies. Although the carbon atom in a methyl ligand is larger than a fluorine
ligand, the expected considerable positive charge on the carbon in the CF3 group reduces its
size so that it is probably comparable to that of a fluorine ligand. Consequently, there would
be little difference in the preference of the two ligands for the axial and equatorial sites. If
this is the case, it is not surprising that the two isomers have almost the same energy. The
two CF3 ligands (CF3hPF3 occupy the axial sites, whereas in (CF3hPFz the two fluorine lig­
ands are found in the axial sites. Although these geometries cannot be explained in detail,
they are consistent with a lack of preference between the two ligands for the two sites.

A still more interesting case is presented by the two molecules F4PH and F3PHZ, in
which hydrogen has a smaller electronegativity than fluorine but also a smaller size. In Fig­
ure 9.15 we see that the hydrogen ligand preferentially occupies an equatorial site in both
molecules. This behavior is consistent with the lower electronegativity of hydrogen than flu­
orine but not with its smaller size. Still more curiously, the axial F ligands are bent toward
the equatorial H ligands in both molecules, but the equatorial fluorine ligands are bent away
from the equatorial H ligand in PF4H while in F3PHz the equatorial bond angles hardly de­
viate from 1200

• These apparently contradictory observations could be explained in terms of
the VSEPR model if the P-H bonding domain were strongly flattened in the equatorial
plane, but more studies will be needed to confirm this suggestion or to provide an alterna­
tive explanation.

9.5.2 AX4 = Y Molecules

In AX4= Y molecules in which Y is a doubly bonded ligand, Y always occupies an equa­
torial site, consistent with the greater size of a double-bond domain and the generally shorter
length of A=O bonds. Some examples of A~=Y molecules are shown in Figure 9.16a.
The distortions of the bond angles from the ideal trigonal bipyramid angles are also consis­
tent with the greater size of a double bond domain than a single-bond domain and the shorter
A=O bond length. Both the axial bonds and the equatorial bonds are bent away from the
=0 ligand. As the electronegativity of the ligand decreases from OSF4 to HzCSF4 and the
bonding electrons move closer to the sulfur atom, the angles between the F ligands decrease.

One aspect of the geometry of these molecules that is of particular interest is that the
CHz and NH groups are in the axial plane. This geometry is consistent with a bent-bond
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Figure 9.16 (a) The geometry of OSF4, HNSF4, and H2CSF4. (b) Bent-bond models of OSF4 and
HNSF4.

model of the double bond in which the two components of the double bond lie in the equa­
torial plane, forming an approximately octahedral arrangement of six bonds around the sul­
fur atom (Figure 9.16b). This model is particularly appropriate for H2C=SF4, for which
the bond lengths and bond angles approach those of a regular octahedral molecule. Fig­
ure 9.17 shows the electron density distribution in a vertical plane through the bond crit­
ical point of the Y=S bond for each of these three molecules: the density has an almost
cylindrically symmetric shape for the S=O bond, as would be expected, but becomes in­
creasingly elliptical in HN=SF4 and H2C=SF4 . Finally, we note that there is an appre­
ciable difference in the length of the two axial SF bonds in HN=SF4 • This bond length

Figure 9.17 Contour maps of the electron density p in a plane through the bond critical point of the
double bond in the molecules (a) O=SF4, (b) HN=SF4, and (c) H2CSF4.
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difference is consistent with our earlier conclusion (Box 8.3) that the electron density is
greater in the direction between two bonds than in the opposite lone pair direction, so
that the nitrogen atom has a greater ligand radius in the direction of Fa than in the di­
rection of Fb . Accordingly the SFa bond is longer than the SFb bond and NSFa angle is
larger than the NSFb angle.

9.5.3 AX4E, AX3E2, and AX3E2 Molecules

In AX4E, AX3Ez, and AX3Ez molecules the lone pairs, like multiply bonded ligands, in­
variably occupy the equatorial positions, giving the AX4E molecules a disphenoidal geom­
etry, the AX3EZ, molecules a T-shaped geometry, and the AXzE3 molecules a linear geom­
etry, consistent with the greater size of a nonbonding pair domain than a bonding pair domain.
Some examples are given in Figures 9.18 and 9.19. In all these molecules the axial bonds
are longer than the equatorial bonds. The larger size of the lone pair domains causes the ob­
served distortion of the bond angles from the ideal values of 90° and 120°.

It is interesting that among molecules with an LLPCN of five or larger, only those, such
as XeFz, with an LLPCN of five are found to have as many as three lone pairs. This is pre-
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Figure 9.18 The geometry of some AX4E molecules.
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sumably because only in the equatorial positions of a trigonal bipyramid is sufficient space
available to accommodate three lone pair domains. In molecules with an LLP coordination
number of six or higher the six or more domains make angles of 90° or less with each other
so that there is not sufficient room for three large lone pair domains.

• 9.6 Molecules with LLP Coordination Number Six

All main group molecules having an LLP coordination number of six have structures based
on the octahedral arrangement of six domains and include AX6, AXsE, and A)4E2 mole­
cules. They are restricted to molecules with small electronegative ligands, in particular, F,
OH, N (in NF2) and C (in CH3 and CF3), and CI. Although NF2 and CF3 might be regarded
as rather large groups, the F atoms in adjacent groups are considerably further apart than the
carbon atoms, which therefore determine the effective size of the ligand and permit it to be
present in a six-coordinated molecule. The smallest of these ligands, namely fluorine, is by
far the most common ligand in AX6 molecules. Examples ofAX6 molecules are provided
by (I) anions of group 15 elements such as PF6-, PCl6-, SbF6-, and Sb(OH)6-, (2) neutral
molecules of group 16 elements such as SF6, SeF6, TeF6, Te(OH)6, and various substituted
SF6 molecules such as SFsCl, SFsCF3, and SFsNF2, and (3) cations of group 17 elements
such as and CIF6+, BrF6+, and IF6+.

In Section 9.2 we discussed several descriptions of the bonding in SF6. Figure 9.20 gives
contour plots of p and L for the SF6 molecule. There is a bond path between the sulfur atom
and each of the fluorine ligands, so there are six S-F bonds. These bonds have a consider­
able ionic character shown by the large atomic charges and the small bonding charge con­
centrations seen in the contour map of L, indicating that much of the electron density in the
valence shell of the sulfur atom has been transferred to the fluorine ligands.

AXsE molecules with one lone pair and AXs= Y molecules have a square pyramidal
geometry in which the XAX angles are less than 90°. Some examples are given in Figure
9.21. There is an interesting, but unexplained, difference between the effect of a lone pair

Figure 9.20 Contour plots of p and L for the SF6 molecule.
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Figure 9.22 The geometry of some AX4Ez molecules and of XeOF4 .

and a double bonded ligand on the AX bond lengths. Although both decrease the XAX bond
angles, a lone pair increases the length of the adjacent AX bonds relative to the trans bond
while a doubly bonded oxygen increases the length of the trans AX bond relative to the ad­
jacent bonds, at least in the single example of IOFs.

When there are two lone pairs, or a lone pair and a doubly bonded ligand, they always
occupy trans positions so as to minimize the interaction between them, as we see in Figure
9.22. So AX4Ez molecules have a square geometry. Examples include the ions ICI4 -, CIF4 -,

BrF4-, IF4-, and the dimeric molecule 12C16 . In this molecule the bridging bonds are longer
than the terminal bonds, as we have seen for AI2Cl6 and as is found for all doubly bridged
molecules. AX4=YE molecules have a square pyramidal geometry, and the single known
example is the molecule XeOF4, in which the fluorine ligands are bent slightly away from
the oxygen ligand.

9.7 Molecules with an LLP Coordination Number of Seven or Higher

9.7.1 AX7 Molecules

Calculations based on the 1/r'" (n = 6) repulsion law for the points-on-a-sphere model in
which the points can represent either electron pairs or ligands have shown that the pentago-
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Figure 9.23 The three lowest energy arrangements for seven points on the surface of a sphere assum­
ing a 1/,-6 repulsion law: (a) the capped octahedron, (b) the capped trigonal prism, and (c) the pentag­
onal bipyramid.

nal bipyramid, the capped octahedron, and capped trigonal prism (Figure 9.23) have almost
identical energies and can be interconverted in a process with essentially zero activation en­
ergy (Kepert, 1986). For lower values of n the pentagonal bipyramid has a slightly lower en­
ergy, while for n = 00 (the hard sphere model), as well as for n = 6, the capped trigonal prism
has the lowest energy. However, as for AXs molecules, the points-on-a-sphere model is not
valid because seven points, like five points, cannot all be equivalent, and if they are not con­
strained to lie on the surface of a sphere, some move closer and some move further from the
center of the sphere to attain a lower energy arrangement. So there appears to be no simple
way to predict the lowest energy geometry. In fact, all the known main group examples of
this type of molecule are based on the pentagonal bipyramidal geometry.

Molecules of this type are found only for the large atoms of the elements of periods
5 and beyond and in particular for Te, I, and Xe. Only the smallest ligands, namely, -F,
-OMe, and =0, have been found in these molecules, suggesting that seven coordination
is not possible with larger ligands. The structures of TeF7 -, MeOTeF6-, (MeOhTeFs-, IF7,

and IF60- have been determined experimentally by X-ray crystallography or electron dif­
fraction. They are shown in Figure 9.24. They all have the pentagonal bipyramidal geome­
try with shorter axial than equatorial bonds, consistent with axial positions being less crowded
than the equatorial positions. The axial positions have all their neighbors at ~90°, whereas
each equatorial ligand has two neighbors at _72°. The doubly bonded 0 ligand and the OMe
group are found in a less crowded axial site because the oxygen ligand radius is larger than
the fluorine ligand radius. The molecule TeOF62 - is also known and has been shown by
NMR spectroscopy to have a pentagonal bipyramidal geometry, but its structure has not been
fully determined. The equatorial bonds are not exactly the same length in all the molecules,
and they lie slightly above and below the equatorial plane, giving a slightly puckered ring
of five fluorine atoms, suggesting strongly that the ligands in these molecules are indeed
close-packed. This distortion of the equatorial ligands from a pentagonal planar geometry is
not shown in Figure 9.24.
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Figure 9.24 The pentagonal bipyramidal geometry of some AX7 molecules.

When there are seven identical or very similar ligands as in IF7 , TeF7-, Te(OMe)F6­
and Te(OMe)2FS-, NMR spectroscopy shows that the molecules are fluxional in solution:
the equatorial and axial ligands change places, probably through a capped octahedral transi­
tion state with C3v symmetry. The IOF6- molecule is not fluxional because the transition
state is expected to be of considerably higher energy, since the =0 ligand would be in a
more crowded equatorial site.

In the crystal structure of the (CH3)4N+ salt of CH30TeFs- the OTeFax angle is
176.r. In the crystal structure of the (CH3)4N+ salt of Te(OMehFs- the anion is found
in both the syn and anti forms (Figure 9.24) with an OTeO angle of 180.6° in the anti
form and of 172.8° in the syn form. The significant deviation of the angle between the
axial ligands from 1800 in Te(OMe)F6- and in syn-Te(OMehF- is consistent with the
unsymmetrical electron density distribution around the oxygen atom in the OMe group.
As we discussed in Box 8.3, the density is greater on the bonded side of the oxygen atom
than on the lone pair side so that the repulsion exerted by the equatorial ligands is greater
on the bonded side than on the nonbonded side. Consequently, the ligand-ligand distance
between the oxygen and the equatorial ligands is slightly smaller on the lone pair side of
the oxygen atom than on the bonded side, producing the small difference in the angles
between the axial ligands.

9.7.2 AX6E Molecules and Sterically Weak and Inactive Lone Pairs

The known molecules of type are SeF62-, BrF6-, IF6-, and XeF6 (Figure 9.25), together
with the ions SnX64-, PbX64-, SbX63-, BiX63-, SeX62-, and TeX62-, where X = Cl,
Br, or I. Of these molecules, SeF62-, IF62-. and XeF6 have distorted octahedral geome­
try with C3v symmetry, while the others are apparently octahedral. If the nonbonding pair
of electrons were fully sterically active, the AX6E molecules would be expected to have
a geometry based on the pentagonal bipyramid with a lone pair in a less crowded axial
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position. None of the molecules have this geometry. In the molecules with octahedral
geometry, the lone pair apparently has no effect on the geometry and is said to be steri­
cally inactive.

The molecules SeF6z-, IF6-, and XeF6 have a C3v geometry in which the lone pair ap­
pears to enlarge one of the faces of the octahedron and is said to be weakly stereochemically
active. The degree of distortion from octahedral geometry increases from BrF6- to SeF62 ­

to IF6-, as shown by the angle between opposing ligands, which decreases from 1800 in
BrF6- to 1740 in SeF6z- to 1640 in IF6-. The bonds that surround the apparent position of
the lone pair are longer and the angles between them are larger than on the opposite side of
the molecule. Although the bonds vary somewhat in length as a consequence of interionic
interactions in the solid state, the average length of the bonds surrounding the apparent po­
sition of the lone pair in SeC16z- is 200 pm, while the average length of the opposite bonds
is 186 pm. In the 19p NMR spectrum of XeF6 all six fluorine ligands appear to be equiva­
lent showing that XeF6 is a highly fluxional molecule. We can imagine a process in which
the unshared pair moves from one face of the octahedron to another, distorting each face in
tum.

It seems that if the ligands are sufficiently large, as when they are CI, Br, and I, or
the central atom is small enough, as in BrF6-, six of them form a close-packed octahe­
dral arrangement around the central atom so that there is no space available for a lone
pair. In these molecules the two nonbonding electrons remain around the core and do not
form a localized lone pair in the valence shell. We can think of these molecules as pre­
dominately ionic so that in SeCI6z-, for example, there is a central Se4 + ion surrounded
by six close-packed Ci- ions. The Ci·· ·CI distance in this molecule is 340 pm, giving a
CI radius of 170 pm, which is smaller than the ionic radius of 181 pm and consistent with
the expectation that the charge on CI will be slightly less than -I. Moreover, in all these
molecules the bonds are unexpectedly long. For example, the SeCI bond in SeC16z- has
a length of the 240 pm compared to 215.7 pm in SeClz. This long bond is consistent with
a model in which CI ligands with a charge of close to -1 are packed around a central
Se core with a charge close to +4 rather than close to +6 as would be appropriate if
the nonbonding pair was sterically active (Figure 9.26). We can regard BrF6- in the
same way. The bonds in BrF6-, which have an average length of 183 pm, are longer than
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Figure 9.26 (a) Close packing of four of the Cl ligands in the SeC16z- ion around a central Se42+
"core" consisting of the Se6+ core and two nonbonding electrons. (b) Close packing of four of the F
ligands in the SeF6z- around the Se4+ core, showing the distortion produced by the slight protrusion
of the domain of the two nonbonding electrons of the Se4+ core into the valence shell. (c) The C3v dis­
torted octahedral geometry of the SeF6z- ion. In (a) and (b) the large spheres are Cl- and F-, re­
spectively, the small black dots are Se6+, and the larger open circles represent the spherical or slightly
distorted domain of the 2 nonbonding electrons.

both the axial and equatorial bonds in BrFs, which have lengths of 170 and 177 pm,
respectively.

The molecules SeF6
z-, IF6-, and XeF6 can be regarded as intermediate between the oc­

tahedral molecules above and a molecule in which there are six ligands and a sterically ac­
tive lone pair. Because there is only a small amount of additional space available in the va­
lence shell, the nonbonding pair of electrons can be imagined as being extruded into the
valence shell only to a small extent, remaining largely delocalized around the central core.
Hence the nonbonding electrons produce only a small distortion of the geometry from octa­
hedral, increasing the angle between the adjacent fluorine ligands and increasing the length
of these bonds, as we saw in Figure 9.20.

9.7.3 AXsE2 Molecules

The molecule XeFsz- is the only known example of the AXsEz type of molecule. It has the
expected planar pentagonal geometry based on the pentagonal bipyramid with a lone pair in
each of the less-crowded axial positions and an Xe-F bond length of 201 pm (Figure 9.27).

F-"I-" F 1-
/ ~ /"":.-----Xe - F

F /~

F "I"
Figure 9.27 The AXsEz pentagonal bipyramidal geom­
etry of the XeFs- ion.
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(a) (b)

Figure 9.28 (a) Points-on-a­
sphere model of a square an­
tiprism. (b) The square antiprism
geometry of the IFg2- ion.

9.7.4 AX8 and AX8E Molecules

IFg- is the only known example of an AXg molecule among the main group elements and
XeFg2 - the only known example of an AXgE molecule. According to the points-on-a-sphere
model, the square antiprism is the lowest energy geometry for any value of n in the liT" force
law (Figure 9.28). The structures of the IFg- and XeFg2- ions have been determined by x­
ray crystallography of several of their salts. They both have an almost perfect square an­
tiprism geometry with very nearly equal bond lengths and bond angles. IFg- is an example
of an AXg molecule, while XeFg2-, which has an unshared pair of electrons and is an ex­
ample of an AXgE molecule, provides another example of a sterically inactive lone pair. The
steric inactivity of the unshared pair of electrons is not surprising in view of the high coor­
dination number. The Xe-F bonds in XeFg2 - have an average length of 202 pm, which is
considerably longer than the I-F bonds in IFg2 - (average length of 189 pm). This differ­
ence in bond length is consistent with the supposition that the nonbonding pair of electrons
has a spherical distribution surrounding an Xeg

+ central core and does not form a localized
lone pair in the valence shell.

The steric activity of a lone pair decreases as the number of ligands increases and
the steric crowding of the ligands increases, correspondingly. For example, the nonbonding
pair of electrons exerts a full steric effect in XeFs+ which has a square pyramidal geom­
etry, a weak effect in XeF6, which has a C3v distorted octahedral geometry, and no effect
in XeFg2-. The same trend is observed when the number of ligands remains the same but
the size of the central atom is reduced. For example, IF6 - and XeF6 have C3v distorted
octahedral structures with the lone pair occupying the capping position in a capped octa­
hedron, but BrF6- has a regular octahedral structure with a sterically inactive nonbond­
ing pair. Increased steric crowding resulting from an increased size of the ligand also re­
duces the steric effect of a nonbonding electron pair. For example, whereas SeF62- has
a C3v distorted octahedral geometry, SeC162- has a regular octahedral geometry .

• 9.8 Molecules of the Transition Metals

In contrast to the nonmetals of the main group, elements the transition metals form only a
relatively few compounds that are composed of simple isolated molecules, although they
form many complex ions that exist as crystalline solids with an appropriate counter anion.
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The tetrahedral and octahedral geometries are particularly common for these molecules and
complex ions, whereas the shapes produced by the presence of lone pairs in the valence shell
of a main group nonmetal such as the trigonal pyramidal AX3E shape, and the disphenoidal
AX4E shape, are not common. These observations suggest that close packing of the ligands
is a very important factor in determining the geometry of many molecules and complex ions
of the transition metals. But perhaps the most important reason for the common occurence
of the AXn shapes, and other shapes not observed for nonmetal molecules, and the compar­
ative rarity of the AXnEm shapes is that unpaired electrons are not in general found in the
valence shell of the transition metal atoms in their molecules. Rather they are found in the
outer shell of the core. For example, in the VCI) molecule the two unpaired nonbonding elec­
trons occupy the incompletely filled n = 3 shell which lies mainly inside the valence shell
of the vanadium atom. These two unpaired electrons cause only a small distortion of the
spherical shape of the core and a correspondingly very small distortion of the planar trian­
gular D3h geometry expected on the basis of ligand-ligand repulsions. The calculated geom­
etry of the ground state is planar with Czv symmetry rather than D3h or C3v as for an AX3E
molecule. the molecule has one bond angle of 1290 and two of 1150 and one bond of length
176.8 pm and two bonds of length 174.8 pm. (Solomonik et aI.). This distortion has, how­
ever, not been observed experimentally as it is obscured by the vibrational motion of the
molecule at ordinary temperatures. The molecule MnF3 with four unpaired electrons in the
core is distorted in the same way but more substantially so that it has a very nearly T-shape
geometry. An electron deffraction study showed that it has one bond of length 172.8 pm and
two of length 175.4 pm and one bond angle of 143.3 0 and two of 106.40 with which the cal­
culated structure is in good agreement (Hargittai et aI.).

Although the ligand field theory can be used to rationalize the geometry of some tran­
sition metal molecules and complex ions, the study of the shapes of transition metal mole­
cules in terms of the electron density distribution is still the subject of research and it has
not reached a sufficient stage of development to enable us to discuss it in this book.
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Distributions
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Advances in the power and speed of computers have made
ab initio and density functional theory (DFT) calculations
an almost routine procedure on a PC (1). From these calcu-
lations the equilibrium geometry, the energy, and the wave
function of a molecule can be determined. From the wave
function one can obtain all the properties of the molecule,
including the distribution of electronic charge, or electron
density. However, the electron density is often not calculated
or discussed, perhaps because it is not widely realized that
very useful information on bonding and geometry can be
obtained from it. It seems particularly important to discuss
electron densities in introductory chemistry courses because
students can grasp the concept of electron density much more
readily than the abstract mathematical concept of an orbital. It
is also not as widely understood as it should be that orbitals
are not physical observables but only mathematical constructs
that cannot be determined by experiment (2). In contrast, the
electron density distribution in a molecule or crystal can be
observed by electron diffraction and X-ray crystallography
(3); and it can also, and often more readily, be obtained from
ab initio and density functional theory calculations.

This article gives a simple introduction to the electron
densities of molecules and how they can be analyzed to ob-
tain information on bonding and geometry. More detailed
discussions can be found in the books by Bader (4 ), Popelier
(5), and Gillespie and Popelier (6 ). Computational details
to reproduce the results presented in this paper are presented
in Appendix 1.

The Electron Density

Quantum mechanics allows the determination of the
probability of finding an electron in an infinitesimal volume
surrounding any particular point in space (x,y,z); that is, the
probability density at this point. Since we can assign a prob-
ability density to any point in space, the probability density
defines a scalar field, which is known as the probability density
distribution. When the probability density distribution is
multiplied by the total number of electrons in the molecule,
N, it becomes what is known as the electron density distribution
or simply the electron density and is given the symbol ρ(x,y,z).
It represents the probability of finding any one of the N
electrons in an infinitesimal volume of space surrounding
the point (x,y,z), and therefore it yields the total number of
electrons when integrated over all space. The electron density
can be conveniently thought of as a cloud or gas of negative
charge that varies in density throughout the molecule. Such a
charge cloud, or an approximate representation of it, is often
used in introductory texts to represent the electron density
ψ2 of an atomic orbital. It is also often used incorrectly to
depict the orbital ψ itself. In a multielectron atom or molecule
only the total electron density can be experimentally observed
or calculated, and it is this total density with which we are

concerned in this paper. A more formal discussion of electron
density is presented in Appendix 2.

The electron density is key to the bonding and geometry
of a molecule because the forces holding the nuclei together
in a molecule are the attractive forces between the electrons and
the nuclei. These attractive forces are opposed by the repulsions
between the electrons and the repulsions between the nuclei.
In the equilibrium geometry of a molecule these electrostatic
forces just balance. The fundamentally important Hellman–
Feynman theorem (4–7) states that the force on a nucleus in a
molecule is the sum of the Coulombic forces exerted by the other
nuclei and by the electron density distribution ρ. This means
that the energy of interaction of the electrons with the nuclei
can be found by a consideration of the classical electrostatic
forces between the nuclei and the electronic charge cloud. There
are no mysterious quantum mechanical forces, and no other
force, such as the gravitational force, is of any importance in
holding the atoms in a molecule together. The atoms are held
together by the electrostatic force exerted by the electronic charge
on the nuclei. But it is quantum mechanics, and particularly
the Pauli principle, that determines the distribution of elec-
tronic charge, as we shall see.

The Representation of the Electron Density

The electron density (ρ) varies in three dimensions (i.e.,
it is a function of the three spatial coordinates [x,y,z]), so a
full description of how ρ varies with position requires a fourth
dimension. A common solution to this problem is to show how
ρ varies in one or more particular planes of the molecule.
Figure 1a shows a relief map of the electron density, ρ, of the
SCl2 molecule in the σv(xz) plane. The most striking features
of this figure are that ρ is very large in an almost spherical
region around each nucleus while assuming relatively very
small values, and at first sight featureless topology, between
these nuclear regions. The high electron density in the nearly
spherical region around each nucleus arises from the tightly
held core electrons; the relatively very small and more diffuse
density between these regions arises from the more weakly
held bonding electrons. In fact, it was necessary to truncate
the very high maxima in Figure 1a (at ρ = 2.00 au)1 to make
it possible to show the features of the electron density distri-
bution between the nuclei. In particular, there is a ridge of
increased electron density between the sulfur atom and each
of the chlorine atoms. The electron density has values of
3.123 × 103 and 2.589 × 103 au at the S and Cl nuclei, re-
spectively, but a value of only 1.662 × 10�1 au at the minimum
of the ridge between the peak around the sulfur nucleus and
each of the chlorine nuclei. This ridge of increased electron
density between the S atom and each of the Cl atoms, small as
it is, is the density in the bonding region that is responsible for
pulling the nuclei together. Along a line at the top of this ridge
the electron density is locally greater than in any direction
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away from the line. This line coincides with the bond between
the S and Cl atoms as it is normally drawn and is called a
bond path (4–6, 10). The point of minimum electron density
along the bond path is called the bond critical point.

Figure 1b shows a relief map of the electron density of the
water molecule. Its features are similar to those of the density
map for SCl2, but the electron density around the hydrogen
atoms is much smaller than around the oxygen atom, as we
would expect. The electron density at the maximum at the
oxygen nucleus has a value of 2.947 × 102 au, whereas that
at the hydrogen nucleus is only 4.341 × 10�1 au, which is only
slightly greater than the value of 3.963 × 10�1 au at the
minimum at the bond critical point. The very small electron
density surrounding the hydrogen nucleus is due to less than
one electron because the more electronegative oxygen atom
attracts electron density away from the hydrogen atom so that
it has a positive charge.

Another common way to represent the electron density
distribution is as a contour map, analogous to a topographic
contour map representing the relief of a part of the earth’s
surface. Figure 2a shows a contour map of the electron density
of the SCl2 molecule in the σv(xz) plane. The outer contour has
a value of 0.001 au, and successive contours have values of
2 × 10n, 4 × 10n, 8 × 10n au; n starts at �3 and increases in
steps of unity. Figure 2b shows a corresponding map for the
H2O molecule. Again we clearly see the large concentration of
density around each nucleus. The outer contour is arbitrary
because the density of a hypothetical isolated molecule extends
to infinity. However, the 0.001 au contour corresponds rather
well to the size of the molecule in the gas phase, as measured
by its van der Waals radius, and the corresponding isodensity
surface in three dimensions usually encloses more than 99%

of the electron population. Thus this outer contour shows
the shape of the molecule in the chosen plane. In a condensed
phase the effective size of a molecule is a little smaller. We
see more clearly here that the bond paths (the lines along
the top of the density ridges between the nuclei) coincide
with the bonds as they are normally drawn.

Figure 3 shows the electron density contour maps for
the period 2 fluorides LiF, BF3, CF4, OF2, and for the iso-
lated B atom. In LiF each atom is almost spherical, consis-
tent with the usual model of this molecule as consisting of
the ions Li+ and F �. The volume of the lithium atom is much
smaller than that of the F atom, again consistent with the ionic
model. We will see later that we can also obtain the atomic
charges from the electron density and that the charges on the
two atoms are almost ±1, again consistent with the represen-
tation of these atoms as ions. Moreover, there is a very small
distortion of the almost spherical density of each atom toward
its neighbor, giving a very low ridge of density between the
two nuclei indicating that the amount of electronic charge
in the bonding region is very small. Thus the bonding in this
molecule is close to the hypothetical purely ionic model,
which would describe the molecule as consisting of two
spherical ions held together by the electrostatic force between
their opposite charges.

As we proceed across period 2 the electron density of
the core of each atom remains very nearly spherical but the

Figure 1. Relief maps of the electron density of (a) SCl2 and (b) H2O
in the plane of the nuclei (density and distances from the origin of
the coordinate system in au). Isodensity contour lines are shown in
the order 0.001, 0.002, 0.004, 0.008 (four outermost contours);
0.02, 0.04, 0.08 (next three); 0.2, 0.4, 0.8 (next three). The density
is truncated at 2.00 au (innermost contour). These contours are
shown in blue, violet, magenta, and green, respectively, on the
figure in the table of contents (p 1028).

Figure 2. Contour maps of the electron density of (a) SCl2 and (b)
H2O. The density increases from the outermost 0.001 au isodensity
contour in steps of 2 × 10n, 4 × 10n, and 8 × 10n au with n start-
ing at �3 and increasing in steps of unity. The lines connecting the
nuclei are the bond paths, and the lines delimiting each atom are
the intersection of the respective interatomic surface with the plane
of the drawing. The same values for the contours apply to subse-
quent contour plots in this paper.

a

b
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outer regions of the atom become increasingly distorted from
a spherical shape, stretching out toward the neighboring atom
to give an increased electron density at the bond critical point
(ρb) (see Table 1). Figure 4 shows the electron density plots

for some chlorides of period 2. We see similar changes in the
electron density distribution for these molecules as we saw
for the fluorides.

For a three-dimensional picture of the electron density
distribution we can easily show a particular isodensity envelope
(i.e., a three dimensional surface corresponding to a given
value of the electron density). The 0.001-au envelope gives a
picture of the overall shape of the molecule as shown by the
examples in Figure 5. Making the outer 0.001-au envelope
transparent as in Figure 5 reveals an inner envelope, but
showing additional envelopes becomes increasingly difficult.
The particular inner surface shown in Figure 5 corresponds to
the bond critical-point isodensity envelope (ρb envelope), the
single envelope just encompassing all the nuclei. All isodensity
envelopes with ρ < ρb will form a continuous sheath of
density surrounding all the nuclei in the molecule, and all
isodensity envelopes with ρ > ρb will form a discontinuous
surface surrounding each nucleus separately. Thus the ρb
envelope is just about to break into separate surfaces, one
surrounding each atom, at higher values of ρ.

The ρb envelopes are also shown for some period 2
fluorides and chlorides in Figure 6. These surfaces show the
distortion of the electron density from a spherical shape even
more clearly than the contour maps in Figures 3 and 4. For
example, in Figure 6 one can see the distinctly tetrahedral
shape assumed by the part of the ρb envelope surrounding the
carbon atom in CCl4 owing to the distortion of the electron

Figure 3. Contour maps of the electron density of LiF, CF4, a free
ground state boron atom, BF3, OF2 in the σv(xz) plane (the plane
containing the three nuclei) and in the σv′ (yz) plane (the plane
bisecting ∠ FOF perpendicularly to the σv[xz] plane). (See legend
to Fig. 2 for contour values.)

NOTE: Data, taken from ref 6, were obtained using DFT/B3LYP
functional and a 6-311+G(2d,p) basis set.
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FiL 3.751 4.651 570.0 � 29.0 � 29.0

FeB 2 8.731 0.041 541.0 � 88.0 � 57.1

FB 3 4.131 7.031 712.0 � 18.0 � 34.2

FC 4 6.231 9.131 903.0 � 16.0 � 54.2

FN 3 2.831 5.831 413.0 � 82.0 � 38.0

FO 2 4.041 5.041 592.0 � 31.0 � 72.0

F2 9.931 8.141 882.0 � 0 � 0

lCiL 2.202 1.022 740.0 � 19.0 � 19.0

lCeB 2 8.971 — 790.0 � 48.0 � 86.1

lCB 3 0.571 2.471 751.0 � 46.0 � 39.1

lCC 4 7.971 1.771 281.0 � 90.0 � 53.0

lCN 3 1.971 9.571 671.0 � 80.0 � 42.0

lCO 2 8.271 0.071 481.0 � 32.0 � 64.0

lCF 5.661 8.261 781.0 � 83.0 � 83.0

Figure 4. Contour maps of the electron density of LiCl, BCl3, SCl2
in the σv(xz) plane (the plane containing the three nuclei) and in
the σv′(yz) plane [the plane bisecting ∠ Cl-S-Cl perpendicularly to the
σv(xz) plane], NCl3 in the σv plane (plane containing one N–Cl
bond and bisecting ∠ Cl-N-Cl formed by the remaining two bonds),
and Cl2. (See legend to Fig. 2 for contour values.)
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density in the four tetrahedral directions. In addition to the
distortion of the electron density toward each neighboring
atom we can see other changes. Proceeding across period 2
the ligand atoms have an increasingly squashed “onion” shape,
flattened on the opposite side from the central atom. These
changes can be understood in the light of the Pauli principle,
which is an important factor in determining the shape of the
electronic charge cloud. The Pauli principle is discussed
below and more formally in Appendix 3.

The Pauli Principle

The many-electron wave function (Ψ) of any system is
a function of the spatial coordinates of all the electrons and
of their spins. The two possible values of the spin angular
momentum of an electron—spin up and spin down—are
described respectively by two spin functions denoted as α(ω)
and β(ω), where ω is a spin degree of freedom or “spin
coordinate”. All electrons are identical and therefore indis-
tinguishable from one another. It follows that the interchange
of the positions and the spins (spin coordinates) of any two
electrons in a system must leave the observable properties of
the system unchanged. In particular, the electron density must
remain unchanged. In other words, Ψ2 must not be altered

when the space and spin coordinates of any two electrons
are interchanged.

This requirement places a restriction on the many-electron
wave function itself. Either Ψ remains unchanged or it must
only change sign. We say that Ψ must be either symmetric or
antisymmetric with respect to electron interchange. In fact, only
antisymmetric wave functions represent the behavior of an
ensemble of electrons. That the many-electron wave function
must be antisymmetric to electron interchange (Ψ → � Ψ
on electron interchange) is a fundamental nonclassical prop-
erty of electrons. They share this property with other elemen-
tary particles with half-integral spin such as protons, neutrons,
and positrons, which are collectively called fermions. Ensembles
of other particles, such as the α particle and the photon, have
symmetric many-particle wave functions (Ψ → Ψ on particle
interchange) and are called bosons.

The requirement that electrons (and fermions in general)
have antisymmetric many-particle wave functions is called
the Pauli principle, which can be stated as follows:

A many-electron wave function must be antisymmetric
to the interchange of any pair of electrons.

No theoretical proof of the Pauli principle was given originally.
It was injected into electronic structure theory as an em-
pirical working tool. The theoretical foundation of spin was
subsequently discovered by Dirac. Spin arises naturally in the
solution of Dirac’s equation, the relativistic version of
Schrödinger’s equation.

A corollary of the Pauli principle is that no two electrons
with the same spin can ever simultaneously be at the same
point in space. If two electrons with the same spin were at the
same point in space simultaneously, then on interchanging
these two electrons, the wave function should change sign as
required by the Pauli principle (Ψ → � Ψ). Since in this case the
two electrons have the same space and spin coordinates (i.e.,

Figure 5. Three-dimensional isodensity envelopes of (a) SCl2, (b)
H2O, and (c) Cl2. The outer envelope has the value of 0.001 au, the
van der Waals envelope; the inner one is the bond critical point
density envelope (ρb-envelope).

c
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Figure 6. Three-dimensional isodensity envelopes of the bond critical
point density (ρb-envelope) of LiF, BF3, NF3, BeCl2, CCl4, and OCl2.
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are indistinguishable), the many-electron wave function will
be unaffected by their interchange (Ψ → Ψ). This amounts
to saying that if two electrons have the same space and spin
coordinates, then Ψ = � Ψ, and the only way this could be
true is for Ψ to vanish. In other words, it is impossible to find
electrons of the same spin at the same location at the same
time. However, this restriction does not apply for electrons
of opposite spins. Electrons of opposite spin can be at the
same point in space simultaneously.

Since two electrons of the same spin have a zero prob-
ability of occupying the same position in space simulta-
neously, and since ψ is continuous, there is only a small prob-
ability of finding two electrons of the same spin close to each
other in space, and an increasing probability of finding them
an increasingly far apart. In other words the Pauli principle
requires electrons with the same spin to keep apart. So the
motions of two electrons of the same spin are not independent,
but rather are correlated, a phenomenon known as Fermi
correlation. Fermi correlation is not to be confused with the
Coulombic correlation sometimes referred to without its quali-
fier simply as “correlation”. Coulombic correlation results
from the Coulombic repulsion between any two electrons,
regardless of spin, with the consequent loss of independence
of their motion. The Fermi correlation is in most cases much
more important than the Coulomb correlation in determining
the electron density.

Electron Distribution in an Octet
As a simple but very important example, consider an

atom with a valence shell octet of electrons, four of one
spin (α electrons) and four of the opposite spin (β electrons).

The most probable distribution of the four α electrons—the
distribution that keeps them as far apart as possible—is at
the vertices of a tetrahedron (Fig. 7a). The most probable
arrangement of the four β electrons is also at the vertices of a
tetrahedron (Fig. 7b). In a free atom these two tetrahedra
are independent, so they can have any relative orientation
giving, an overall spherical density.

In a molecule, electrons are attracted toward a neigh-
boring nucleus but only electrons of opposite spin can be
attracted close to each other. In the valence shell of any singly
bonded ligand, not all the electrons are formed into pairs, as
was first pointed out by Linnett (11) and discussed in refs 6
and 12. Thus in a diatomic molecule such as HF or ClF the
two tetrahedra of α- and β-spin electrons on each atom are
brought into approximate coincidence at one vertex, forming a
bonding pair of electrons and increasing the electron density
in this region (Fig. 8).

Figure 8 shows only the most probable position of the
electrons, not their actual position. The increase in the prob-
ability of finding an electron in the bonding region depends
on the attractive force exerted by the neighboring atom—
that is, on its electronegativity. Thus the extent to which two
electrons of opposite spin are localized in the bonding region
varies from molecule to molecule, with the electronegativities
of the atoms. In diatomic molecules the two tetrahedra on
each atom are still free to rotate around this shared vertex,
so that the six nonbonding electrons are most probably
distributed in a circle around the direction of the bond and
on the opposite side from the bond, forming a torus of
increased density. This leaves a region of relatively depleted
electron density at the back of the atom opposite the bond,
which accounts for the flattening of the surface of constant
electron density in this nonbonding region (Fig. 6). In the Cl2
molecule, for example, the distance to the outer 0.001-au
contour from a Cl nucleus in a direction perpendicular to the
bond is 210 pm, but in the direction opposite to the bond it
has the appreciably smaller value of 185 pm. This characteristic
shape is found for any singly bonded atom whose electron
density is deformed toward a neighboring atom. It can also
be clearly seen in the contour maps in Figures 3 and 4.

Electron Density and the VSEPR Model
When there are two ligands, as in H2O, SCl2, OF2, or any

other AX2E2 molecule, the two tetrahedra (Figs. 7a and 7b) of
same-spin electrons lose their independence of one another and
are brought into approximate coincidence at all four vertices
(Fig. 7c). This results in the formation of two partially localized
bonding pairs (one to each of the two ligands X) and two
partially localized nonbonding pairs (E); the four pairs adopt
an approximately tetrahedral geometry (Fig. 7c). There is
therefore a concentration of electron density in the bonding
regions, which we observe as the distortion of the spherical
electron density distribution in the bonding directions as seen
in the σv(xz) plane of SCl2 and H2O (Fig. 2) and OF2 (Fig. 3).
The increased electron density due to the two localized lone
pairs is seen as bulges in the electron density in the σv′(yz)
plane of OF2 (Fig. 3) and SCl2 (Fig. 4). In OF2 the distance
to the outer 0.001 au contours from an F nucleus in a direc-
tion perpendicular to the bond pointing toward the open side
of the molecule in the σv(xz) plane is 166 pm, but in the
direction opposite to the bond it is 155 pm. In SCl2 those

Figure 7. Pauli principle for octet. (a) The most probable relative
arrangement of four α-spin electrons. (b) The most probable relative
arrangement of four β-spin electrons. Both arrangements may adopt
any relative orientation in space. (c) In the presence of the nuclei of
two combining ligands (X1, and X2), as in H2O or SCl2, the two
tetrahedra are brought into approximate coincidence at two apexes
(sufficient to bring all of the four apexes into coincidence) forming
two bonding pairs and two nonbonding pairs (E).
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Figure 8. Pauli principle for a diatomic
molecule (e.g., HF). In any diatomic mol-
ecule, the two tetrahedra (Figs. 7a and 7b)
of opposite spin electrons in the valence
shell of an atom are brought into coinci-
dence at only one apex, leaving the most
probable locations of the remaining six
electrons equally distributed in a ring.

FH

http://jchemed.chem.wisc.edu/
http://jchemed.chem.wisc.edu/Journal/Issues/2002/Sep/
http://jchemed.chem.wisc.edu/Journal/


Research: Science and Education

1146 Journal of Chemical Education  •  Vol. 79  No. 9  September 2002  •  JChemEd.chem.wisc.edu

values are 212 and 186 pm, respectively. In the σv(xz) plane
of the NCl3 molecule (Fig. 4) we see the distortion of the
electron density toward the chlorine ligand and a bulge in
the electron density in the lone pair region. The influence of
the Pauli principle on the distribution of electrons in a valence
shell provides the physical basis for the VSEPR model (6,
12), according to which the electrons in the valence shell of
an atom are in pairs, either bonding or nonbonding, that stay
as far apart as possible.

The Atoms in Molecules Theory

So far we have considered the shape of the electron
density of a limited inner region of each atom but not of the
complete atom. How do we find the shape of the complete
atom? In other words, how do we find the interatomic sur-
faces that separate one atom from another and define the size
and shape of each atom? The atoms in molecules (AIM)
theory developed by Bader and coworkers (4 ) provides a
method for doing this.

The AIM theory, which is solidly based on quantum
mechanics, differs from orbital-based theories in that it is
based directly on the electron density and interprets this den-
sity to provide information on bonding. The density may be
obtained experimentally or from theoretical electronic structure
calculation. Experimental densities of sufficient quality to
be analyzed by the AIM theory can be obtained from low-

temperature X-ray diffraction experiments using the
nonspherical multipolar refinement procedure pioneered by
Coppens (3). Theoretical densities must be calculated by high-
level ab initio or DFT methods (see Appendix 1). It has been
consistently shown that the numerical results based on AIM
converge to limiting values as the size of the basis set used in
the calculation increases.

For a homonuclear diatomic molecule such as Cl2 the
interatomic surface is clearly a plane passing through the
midpoint between the two nuclei—in other words, the point
of minimum density. The plane cuts the surface of the electron
density relief map in a line that follows the two valleys leading
up to the saddle at the midpoint of the ridge between the
two peaks of density at the nuclei. This is a line of steepest
ascent in the density on the two-dimensional contour map
for the Cl2 molecule (Fig. 9).

In all molecules other than homodiatomics the inter-
atomic surfaces are not planar, as seen in Figure 9 for CO and
FCl. These surfaces can be found by computing the gradient
paths of the electron density. In a relief map of the density in
a particular plane these are the paths of steepest ascent start-
ing at infinity and leading up to the maximum or peak at
each nucleus. Gradient paths are always orthogonal to the
contours of constant electron density and they never cross each
other. Figure 10 shows two gradient paths up an idealized
mountain. These are two of the infinite number of steepest
paths up the mountain. Throughout their length they are
perpendicular to the circular contours of equal height. Figure
10 also shows a longer, less steep path that is not perpendicular
to the contours. It not is not a gradient path.

The collection of all the gradient paths of the electron
density constitutes the gradient vector field of the molecular
electron density. Figure 11 shows the gradient vector field of
the electron density of the BCl3 molecule in the σh plane.
The collection of gradient paths that terminate at a given
nucleus defines a discrete region of space surrounding each
nucleus that is called the atomic basin. These basins define
the atoms as they exist in the molecule. Among the gradient

Figure 10. Gradient paths for an idealized mountain. Two gradient
paths (lines of steepest ascent) are shown (a), together with an
arbitrary path (b) that is not a line of steepest ascent but represents
an easier route up the mountain. The gradient paths cross the con-
tours at right angles.
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Figure 9. Contour maps of the electron density of (a) Cl2, (b) CO,
and (c) FCl. (See legend to Fig. 2 for contour values.)
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paths that constitute the gradient vector field are two sets of
unique paths: those that start at infinity but terminate at the
point of minimum density on the ridge of electron density
(the bond critical point) between two nuclei, and those that
start at this point and terminate at a nucleus. The complete
set of the gradient paths in three dimensions that terminate
at a bond critical point constitute the surface between the
atoms, the interatomic surface. This is also called a zero-flux
surface because no gradient paths cross it.

Figure 11 shows a few of the infinite number of gradient
paths that lie in the σh plane. The set of two gradient paths
that terminate at a bond critical point indicate the intersection
of the interatomic surfaces with this plane. In Figure 11 there
are six gradient paths that start at the bond critical point and
terminate at a nucleus. The two that start at the same bond
critical point trace a bond path between the boron atom and
a fluorine atom. Bond paths are found between every pair of
atoms in a molecule that we usually consider to be bonded
to each other, and not between atoms that are not bonded
together. The existence of a bond path between the nuclei of
two atoms that share an interatomic surface constitutes a clear
and rigorous definition of a bond between the two atoms
according to the AIM theory.

The interatomic (zero-flux) surfaces partition the molecule
into separate nonoverlapping atoms (atomic basins), which

extend to infinity on the open side of any exterior atom. For
the purpose of representing the electron density as a contour
map or an isosurface, or for determining the atomic volume,
it is convenient to take the 0.001-au envelope of constant
density as the practical representation of the surface of an
atom on its open (nonbonded) side. Normally, the outer
0.001-au isodensity envelope encloses more than 99% of the
electron population of the molecule (4 ). Integrating any
property density, such as the electron population, energy, or
volume, over the atomic basin yields the contribution of this
atom to the corresponding molecular property. The sum of
these atomic properties gives the corresponding molecular
property with high accuracy. For example, the sum of the
charges is accurately zero for a neutral molecule and the sum of
the atomic populations is accurately equal to the total number
of electrons. Moreover the properties of atoms or functional
groups, as defined by AIM, are often almost constant (i.e.,
transferable) when their immediate surrounding is similar as
is the case in homologous series for example. Therefore, these
atoms and groups contribute constant additive amounts to
every molecular property in a molecule, and they have been
shown to recover the empirical additivity schemes for several
experimental quantities, the heat of formation being an
example (13). An impressive recent example of using the
transferability and additivity of the properties of atoms and
functional groups is the calculation of the properties of a very
complex biological molecule, an opioid, from the properties
of a number of smaller fragments (14 ).

AIM Atomic Charges and Dipoles

The charge on each atom is the difference between the
total electron population, obtained by integrating the electron
density over the volume occupied by the atom, the atomic
volume, and the nuclear charge. The atomic charges for the
fluorides and chlorides of the period 2 elements are given in
Table 1. The charge on the fluorine ligand decreases across
the period from a value of nearly �1 in LiF to zero in F2. The
charge on the chlorine ligand similarly decreases from a value
of nearly �1 in LiCl to almost zero in CCl4 and then becomes
increasingly positive from NCl3 to FCl. Figure 12 shows that
the fluorine and chlorine charges correlate well with the elec-
tronegativity of the elements (15), bearing in mind the ap-
proximate nature of the electronegativity values. For example,
the charge on each of the atoms in CCl4 is nearly zero,
consistent with the very similar values of their electro-
negativity (Cl, 2.8; C, 2.5). The charge on the central atom
increases across period 2 with the increasing number of
ligands to a maximum at carbon for the fluorides and at
boron for the chlorides.

It is important to understand that the atomic charges
refer to atoms that are not spherical. Consequently the centroid
of electronic charge of an atom does not in general coincide with
the nucleus, and each atom therefore has an electric dipole
moment—or, more generally, an electric dipolar polarization
(since only the dipole moment of electrically neutral atoms
is origin independent).

The total dipole moment of a molecule is the resultant
of the vector sum of the atomic dipolar polarization (�ap) of
all the atoms in the molecule and of all the charge transfer
dipoles arising from the transfer of charge between bonded

Figure 11. (a) The density and (b) its corresponding gradient vector
field of BCl3. (See legend to Fig. 2 for contour values.)
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atoms (�ct). A charge transfer dipole is the product of the
position vector of the nucleus by its charge. Removal of the
origin dependence from �ct is discussed elsewhere (16 ). For
a diatomic molecule, say CO, this is given by the vector sum
of the two atomic polarization dipoles and the two charge
transfer dipoles; that is, the molecular dipole moment =
�ct(O) + �ct(C) + �ap(O) + �ap(C).

In the past the measured dipole moment of a diatomic
molecule was often assumed to be equal to the charge transfer
dipole moment, so that the atomic charges could be calcu-
lated if the bond length was known. However, this method does
not give correct atomic charges because it ignores the atomic
polarization dipoles, which may be very significant. In the
CO molecule the two atomic dipoles are large (�ap[O] +
�ap[C] = 2.523 au, negative end pointing to the C atom) and
they oppose the charge transfer dipoles (�ct[O] + �ct[C] =
2.485 au, negative end pointing to the O atom), almost
canceling them out, giving a very small overall molecular
dipole moment (0.038 au = 0.096 D)2 (see Fig. 13). The
negative end of the molecular dipole (experimental and cal-
culated) points to the C atom. In other words, the molecule
has the observed polarity C � O+, an apparent anomaly that is
only resolved if one takes into account both the charge transfer

and the atomic polarization terms. Even though the atoms bear
significant charges consistent with their respective electro-
negativities (C+1.170 O�1.170), when these charges are used to
calculate the �ct terms and are added to the �ap terms they
recover the magnitude and direction of the observed molecular
dipole. The dipole moment of any molecule can be expressed
and recovered from group contributions calculated in this
manner (16 ) using available Windows-based software (17 ).

Comparison between AIM Theory and Conventional
Models for Describing Bonding

We now compare how the atoms in a molecule and the
bonds between them are defined in the AIM theory and in
conventional bonding models.

Atoms
There is no clear rigorous definition of an atom in a

molecule in conventional bonding models. In the Lewis
model an atom in a molecule is defined as consisting of its
core (nucleus and inner-shell electrons) and the valence shell
electrons. But some of the valence shell electrons of each atom
are considered to be shared with another atom, and how these
electrons should be partitioned between the two atoms so as to
describe the atoms as they exist in the molecule is not defined.

Conventionally, the bonding electrons are arbitrarily
divided in two ways. One is to assume that the bonds are fully
ionic, which gives atomic charges that are called oxidation
numbers; the other is to assume that the bonds are fully co-
valent, which gives charges that are called formal charges.
Although both of these concepts have proved useful they do
not give real atomic charges. For molecules with polar bonds
there is no clearly defined method for partitioning the bonding
electrons between the bonded atoms that reflects the unequal
sharing of electrons or partial electron transfer. In localized

Figure 13. Contour plot of the electron density of CO, showing the
magnitudes and directions of atomic and charge transfer dipoles
(arrow length is proportional to magnitude). Arrow heads point to
the negative end. The molecular dipole moment is given by the
vector sum of charge transfer terms (�c.t.) and the atomic polariza-
tions (�a.p.). Values were obtained at the DFT level using the B3LYP
functional and the 6-311+G(3df) basis set. The SCF molecular
dipole = 0.096 D; the computed molecular dipole (� c.t.[O] +
�a.p.[O] + �c.t.[C] + �a.p.[C]) = 0.038 au = 0.096 D, close to the
experimental value of 0.110 D (15).

Figure 12. Electronegativity difference between the halogen atom
(X) and the atom to which it is bonded (A) in the halides of period
2 (AnX) as a function of the atomic charge of the halogen atom
q(X). (a) X = Cl; (b) X = F. Atom A of the halide is shown in the
figures. Charges were obtained at the DFT level using the B3LYP
functional and a 6-311+G(2d,p) basis set.

E
le

ct
ro

ne
ga

tiv
ity

 D
iff

er
en

ce

Charge of the Chlorine Atom

Li

Be

B

C

N

O

F1.2

0.6

0.0

-0.6

-1.2

-1.8

0.0-0.2 0.4 0.60.2-0.4-0.6-0.8-1.0

iE
le

ct
ro

ne
ga

tiv
ity

 D
iff

er
en

ce

Li

Be

B

C
N

O

F-0.2

-0.8

-1.4

-2.0

-2.6

-3.2

Charge of the Fluorine Atom
0.0-0.2-0.4-0.6-0.8-1.0

a

b

http://jchemed.chem.wisc.edu/Journal/
http://jchemed.chem.wisc.edu/Journal/Issues/2002/Sep/
http://jchemed.chem.wisc.edu/


Research: Science and Education

JChemEd.chem.wisc.edu  •  Vol. 79  No. 9  September 2002  •  Journal of Chemical Education 1149

orbital models such as the valence bond model, a free atom
is defined in terms of the atomic orbitals used to describe it;
but in molecule formation some of the orbitals are considered
to overlap with those of a neighboring atom to give bonding
orbitals, so again the atoms in the molecule are not clearly
defined. In the molecular orbital model the whole molecule
is described in terms of molecular orbitals and no attempt is
made to define the individual atoms.

In contrast, the AIM theory provides a clear definition
of an atom in a molecule as a space-filling object, from which
all its properties can be obtained. The properties of these atoms
are additive to give the corresponding molecular property.

Bonds
According to the Lewis model, a covalent bond consists

of a pair of shared electrons—that is, a pair of electrons that
belongs to the valence shell of each of the bonded atoms. In
other words the two valence shells are considered to overlap.
The electrostatic attraction of this pair of electrons for the two
nuclei is considered to provide the attractive force holding
the two nuclei together. According to the ionic model, two
ions (charged atoms) are held together by the Coulombic
attraction between their opposite charges. In other words, an
ionic bond is the electrostatic attraction between two ions
(charged atoms) with opposite charges.

These definitions are clear, but they do not apply to
the vast majority of real molecules in which the bonds are
neither purely ionic nor purely covalent. Lewis recognized
that a pair of electrons is generally not shared equally between
two electrons because the atoms generally have different powers
of attracting electrons, that is, they have different electro-
negativities, giving charges to both atoms. Such bonds are
considered to have some covalent character and some ionic
character and are known as polar bonds.

Polar bonds range from bonds between atoms that have
large but slightly less than integral charges and are therefore
close to the ionic limit to pure covalent bonds between

atoms of equal electronegativity such as the C–C bond in
ethane. Almost all bonds are polar. A pure ionic bond is an
ideal concept that is never observed; and pure covalent bonds
are very rare, inasmuch as the atoms in the vast majority of
molecules have different electronegativities and therefore have
nonzero charges. The attractive force in a polar bond can be
thought of as being due to both the shared electrons and the
atomic charges. In other words, a polar bond has both covalent
and ionic character. However, these terms have not been
clearly defined, so it is not possible to quantitatively evaluate
the covalent and ionic character of any given polar bond. A
proposed method for doing this based on determining atomic
charges from the dipole moment of a diatomic molecule is not
valid because it assumes that atoms are spherical and ignores
atomic dipoles. In short, the widely used terms ionic character
and covalent character cannot be clearly defined and therefore
cannot be measured, so they have only a rather vague and
approximate meaning.

In contrast, the AIM theory provides clear, unambiguous
values for the charges on atoms, which at first sight appear
to give us a clear definition of the ionic character of a bond.
However, considering the atomic charges of the period 2 fluo-
rides we see that, although the charge on fluorine decreases
across the period, the charge on the central atom first increases
up to CF4 before decreasing. The decreasing charge on the
ligand might be interpreted as showing that the bonds are
becoming less ionic, but the increasing charge on the central
atom could be interpreted as showing that the bonds are
becoming more ionic. Clearly, a knowledge of the atomic
charges does not enable us to define ionic character. All that
we know with certainty is the atomic charges, which, it seems
reasonable to assume, make a contribution to the strength of
the bonding in proportion to their product.

In addition to the attractive force provided by opposite
atomic charges, the electronic charge accumulated between
the nuclei of the two bonded atoms must also contribute to
the attraction between the two atoms. But because the region
in which charge is accumulated is not sharply defined, the
amount of the accumulated charge is not known. The AIM
theory does, however, provide a value of the electron density
at the bond critical point, ρb. We see in Table 1 that ρb for
the period 2 fluorides increases up to CF4 and then becomes
essentially constant. The value of ρb is an indication, but not
a quantitative measure, of the amount of electronic charge
in the bonding region and so can only be regarded as a rough
measure of the covalent character of a bond—which, as we
have said, has not been precisely defined.

Clearly the concepts of ionic and covalent character have
only an approximate qualitative significance. They cannot be
defined and therefore measured in any quantitative way.
Although they are widely used terms and have some qualitative
usefulness if used carefully they have caused considerable
misunderstanding and controversy. The AIM theory does,
however, provide properties that we can use to characterize a
bond quantitatively, such as the bond critical point density and
the atomic charges. It seems reasonable to assume that the
strength of a bond depends on both these quantities, increasing
as ρb and the product of the atomic charges increase.

These assumptions are consistent with the very large
bond strength of the BF bond in BF3, which is larger than that
of any other single bond. It has a bond dissociation enthalpy

Figure 14. Contour plot of the electron density of B2H6 in the plane
of the bridging hydrogen. Each hydrogen is connected to the two
boron atoms by a bond path to each. In contrast, the boron atoms
do not share a bond path linking them to one another. (See legend
to Fig. 2 for contour values.)
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of 613 kJ mol�1, compared, for example, to the C–C bond
dissociation enthalpy of only 348 kJ mol�1. Even though ρb
for the BF bond (0.217 au) is little smaller than that for the
C–C bond in ethane (0.249 au), the atomic charges on B
and F are +2.43 and �0.81, respectively, whereas the charges
on carbon in ethane are almost zero and of the same sign.
Although it is not consistent with current usage, the BF bond
can be described as having both a large covalent character
and a large ionic character, as has been pointed out in two
recent papers in this Journal (18, 19).

Bond paths are observed between bonded atoms in a
molecule and only between these atoms. They are usually
consistent with the bonds as defined by the Lewis structure
and by experiment. There are, however, differences. There is
only a single bond path between atoms that are multiply
bonded in a Lewis structure because the electron density is
always a maximum along the internuclear axis even in a Lewis
multiple bond. The value of ρb does, however, increase with
increasing Lewis bond order, as is shown by the values for
ethane (0.249 au), ethene (0.356 au), and ethyne (0.427 au),
which indicate, as expected, an increasing amount of electron
density in the bonding region.

In molecules that cannot be described by a single Lewis
structure, such as B2H6, and in which the electrons are there-
fore not as localized in individual bonds as a Lewis structure
assumes, there are nevertheless bond paths between the boron
atoms and each of the bridging hydrogen atoms (Fig. 14).
There is no direct bond between the boron atoms or between
the bridging hydrogen atoms. Moreover, electron density is
not accumulated in the center of each BHB triangle as might
be assumed from the 3-center, 2-electron model for these
bonds (6 ). A recent use of the concept of the bond path to
establish which atoms are bonded in a molecule when dis-
tance alone provides ambiguous answers was for a titanium
cyclopentadienyl complex, as discussed in ref 20.

Summary and Conclusions

1. Unlike an orbital, the electron density of a molecule
is a physical observable that can be obtained by experiment
and also by calculation using ab initio or density functional
theory methods.

2. The electron density is high in an almost spherical
region surrounding each nucleus and much lower and more
diffuse in the bonding region between.

3. The electron density can be most easily shown by
contour maps of suitably chosen planes or as envelopes of
constant density.

4. The electron density distribution is determined by the
electrostatic attraction between the nuclei and the electrons,
the electrostatic repulsion between the electrons, the Fermi
correlation between same spin electrons (due to the operation
of the Pauli principle), and the Coulombic correlation (due
to electrostatic repulsion).

5. The result of the operation of the Pauli principle is that
electrons with the same spin tend to keep apart and electrons
of opposite spin may come close to each other to form an
opposite-spin pair under the attraction of a nucleus.

6. The AIM theory provides a clear and rigorous defini-
tion of an atom as it exists in a molecule. It is the atomic
basin bounded by the interatomic surfaces. The interatomic

surfaces arise naturally from the topology of the electron
density.

7. The properties of an atom in a molecule, such as its
energy and charge, can be rigorously defined and evaluated
and are additive to give the property for the molecule.

8. The concept of a bond has precise meaning only in
terms of a given model or theory. In the Lewis model a bond
is defined as a shared electron pair. In the valence bond model
it is defined as a bonding orbital formed by the overlap of
two atomic orbitals. In the AIM theory a bonding interaction
is one in which the atoms are connected by a bond path and
share an interatomic surface.

9. Bond paths are normally found in cases in which there
is a bond as defined by Lewis. There is only one bond path
for a multiple bond irrespective of the bond order. The bond
order is, however, reflected in the value of ρbcp. Bond paths are
also found in molecules for which a single Lewis structure
cannot be written.

10. The concepts of ionic and covalent character of a bond
are vague and ill defined. The well-defined AIM-derived
quantities such as the integrated atomic charges and the bond
critical point density provide a quantitative characterization
of bonding (4 ).
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Notes

1. The abbreviation au stands for “atomic units”, which is a
system of units meant to simplify the equations of molecular and
atomic quantum mechanics. The units of the au system are combi-
nations of the fundamental units of mass (mass of the electron),
charge (charge of the electron), and Planck’s constant. By setting
these three quantities equal to unity one gets simpler equations. The
au system has a simple relation to the SI and Gaussian (cgs) systems of
units. For example, 1 au of length = a0 (Bohr radius) = 5.29 × 10�9

 cm =
0.529 Å; 1 au of charge = e = 1.602 × 10�19C = 4.803 × 10�10 esu;
1 au of charge density = e/a0

3 = 6.748 eÅ�3 = 1.081 × 1012 C m�3.
For a formal discussion of how the au system of units naturally
arises in quantum chemistry, see refs 8 and 9.

2. The experimental value for the magnitude of the C�O+

dipole is 0.110 D.
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Appendix 1. Computational Details

Unless otherwise stated, the results presented in this paper
were obtained as follows. Full geometry optimizations of the
molecules were performed at the density functional theory B3LYP/
6-311++G(3df,2pd) level, and the wave functions were obtained
at the same level as implemented in the program Gaussian94 (21).
The resulting densities were analyzed using the program Extreme
to locate the critical points. PROAIM was then used to integrate
the atomic properties up to the zero-flux surfaces, and GRIDV,
GRIDVEC, and CONTOR were used to obtain the plots. These
are all parts of the suite of programs known as AIMPAC (21–24).

Appendix 2. The Electron Density

A time-independent wave function is a function of the position
in space (r ≡ x,y,z) and the spin degree of freedom, which can be
either up or down. The physical interpretation of the wave function
is due to Max Born (25, 26 ), who was the first to interpret the
square of its magnitude, |ψ(r)|2, as a probability density function,
or probability distribution function. This probability distribution
specifies the probability of finding the particle (here, the electron)
at any chosen location in space (r) in an infinitesimal volume dV =
dx dy dz around r. The probability of finding the electron at r is
given by |ψ(r)|2dV, which is required to integrate to unity over
all space (normalization condition). A many-electron system, such
as a molecule, is described by a many-electron wave function
Ψ(r1,r2,r3,…,rN), which when squared gives the probability den-
sity of finding electron1 at r1, electron2 at r2, …, electronN at rN

simultaneously (i.e., the probability of a particular instantaneous
configuration of all electrons in the system). The probability of
finding, say, electron1 at r1 without specifying the location of the
N – 1 remaining electrons is found by integrating the many-electron
wave function over the coordinates of all electrons except electron1.
In other words, the probability of finding electron1 at r1, irrespective
of the positions of the remaining electrons in the molecules, is given
by ∫ |Ψ(r1,r2,…,rN)|2dr2 …drN, an integration that also implies a
summation over all spins. However, since electrons are indistinguish-
able and thus cannot be labeled, what is true for electron1 is true for
any electron in the system, and if we multiply the latter integral by
the number of electrons in the system we obtain a one-electron
density function, commonly known as the electron density:

ρ(r) = N∫Ψ2(r1,r2,…,rN)|2dr2 …drN (2.1)

This is the probability of finding a single electron, no matter which,
at r (i.e., at the specific spatial position x,y,z and having the specific
spin s) weighted by the total number of electrons in the system.
Integrating eq 2.1, the density, over all space with respect to the
coordinates of electron1, is

∫ρ(r)dr1 = N∫Ψ2(r1,r2,…,rN)dr1dr2 …drN (2.2)

That is, the integral of the density over all space yields the total
number of electrons in the molecule.

Appendix 3. The Pauli Principle

The Pauli exclusion principle requires that no two electrons
can occupy the same spin-orbital is a consequence of the more
general Pauli antisymmetry principle:

Any many-electron wave function must be antisymmetric
to the interchange of the spacial coordinates and spin
(collectively referred to as the vector q) of any pair of
electrons i and j.

This is written:
             ↓–––↓

Ψ(q1,q2,…,qi,…q j,…qn) = �Ψ(q1,q2,…,q j,…qi,…qn) (3.1)

where qk is the space and spin coordinates of the kth electron. If
two electrons have the same space and spin coordinates (i.e., q j =
qi, then:

             ↓–––↓
Ψ(q1,q2,…,qi,…q i,…qn) = �Ψ(q1,q2,…,q i,…q i,…qn) (3.2)

Which implies that the wave function is equal to its negative. Re-
arranging gives 2Ψ(q1,q2,…,q i,…q i,…qn) = 0, or simply Ψ = 0.
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The physical consequence of this is that two electrons of
the same spin have zero probability of occupying the same
position in space; that is, two same-spin electrons exclude each
other in space. Since Ψ is continuous, there is only a small
probability of finding two electrons of the same spin close to
each other in space; that is, the Pauli antisymmetry requirement

forces them to avoid each other as much as possible and as a
result two electrons of the same spin tend to maximize their
separation in space. In other words, the motion of two electrons
of the same spin is not independent but correlated, a correlation
known as Fermi correlation, which is a direct consequence of the
Pauli principle.
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ABSTRACT: This paper gives a simple pictorial introduction to the VSEPR model of molecular 
geometry and its physical basis: the Pauli exclusion principle.  The treatment of the VSEPR model 
range from a simple empirical set of rules to help freshmen students predicting the geometry of 
molecules to more advanced treatments based on a careful analysis of the electron density (for 
advanced undergraduate or graduate students).  The density can be readily calculated using ab intio or 
density functional theory (DFT) methods and it can also be obtained experimentally by X-ray 
crystallography.  Unlike an orbital model of a molecule, the electron density is a physical observable.  
There are therefore advantages in interpreting the electron density to obtain information about 
bonding, advantages which are not as widely appreciated as they deserve to be.  We also give a simple 
introduction to the quantum theory of Atoms in Molecules (AIM) and of its analysis of the electron 
density.  We show how it provides a clear, rigorous and unambiguous definition of an atom in 
molecule that can be used as the basis for calculating the charge of the atom and indeed any of its 
other properties. [Chem. Educ. Res. Pract. Eur.: 2001, 2, 73-90] 
 
KEY WORDS: VSEPR;  Pauli principle;  electron density; atoms-in-molecules (AIM); bonding 
theory; atomic properties; quantum chemistry; theoretical chemistry. 
 
 

INTRODUCTION 
 

Students usually begin their study of bonding and molecular geometry with Lewis 
structures and the VSEPR model.  Both are very approximate models of the distribution of 
the electrons, that is of the electron density in a molecule.  Now that electron densities can be 
easily calculated by ab initio and density functional theory (DFT) methods using readily 
available programs it is important to bring them into the discussion of bonding and molecular 
geometry at the undergraduate level.  Because the electron density is an experimentally 
accessible real physical property of a molecule it has the advantage of being more readily 
understood by a student than are orbitals which are  abstract  mathematical functions that 
have no direct physical meaning. 
 Although the VSEPR model is so well known it has not always been correctly 
presented and as a consequence of its development over the years it has a number of features 
that are not widely appreciated.  The purpose of this article is to draw attention to these 
features and to discuss the  relationship of the VSEPR model to the electron density.  The 
VSEPR model can be taught at various levels and with increasing sophistication from high 
school and beginning university general chemistry courses to higher level inorganic 
chemistry and quantum chemistry courses.   
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THE PAULI PRINCIPLE 
 

The fundamental basis for the VSEPR model is provided by the Pauli principle and 
not by electrostatics.  The fundamental assumption of the model is that the electron pairs in 
the valence shell of an atom keep as far apart as possible, in other words they appear to repel 
each other.  Electrons exhibit this behavior as a consequence of the Pauli exclusion principle 
of same spin electrons and not primarily as a consequence of their electrostatic repulsion.  
The role of the Pauli principle was clearly stated in the first papers on the VSEPR model 
(Gillespie & Nyholm, 1957; Gillespie & Nyholm, 1958) but this role has sometimes been 
ignored and the model has been incorrectly presented in terms of electrostatics. 
 Because the Pauli principle may not be easily understood by beginning students the 
model is best taught at the beginning level simply as an empirical model.  Starting with Lewis 
structures we add the rule that the electron pairs in a valence shell, both bonding and non-
bonding, behave as if they repel each other and therefore keep as far apart as possible; three 
pairs forming a planar triangle, four pairs a tetrahedron, five pairs a trigonal bipyramid and 
six pairs an octahedron.  This basic rule provides a rationale for many different basic 
molecular shapes.  To explain the deviations of the bond angles in molecules with lone pairs 
from the angles in the regular polyhedra we need to add the additional rule that electron pair 
repulsions increase in magnitude in the order bond pair - bond pair < bond pair - lone pair < 
lone pair - lone pair.  On the basis of these two simple rules we get a rationale for the overall 
geometry and the bond angles in a large number of AXnEm molecules where A is the central 
atom, X a ligand, and E a lone pair.   
 To go further than this we need to go a little more deeply into the physical basis of the 
model.  First we need to understand the role played by the Pauli principle.  In its most general 
form this can be stated as follows: 
 

(1) The wave function for an electronic system must be antisymmetric to electron 
interchange. 

 
In this form the Pauli principle cannot be understood by students who have not studied 
quantum mechanics and its consequences for the distribution of electrons in a molecule is not 
apparent.  Even before they take a course in quantum mechanics beginning university 
students are, however, introduced to the idea that the electrons in a molecule are in constant 
motion and that according to quantum mechanics we cannot determine the path of any one 
electron but only the probability of finding an electron in an infinitesimal volume 
surrounding any particular point in space.  It can be shown that a consequence of the Pauli 
principle is that  
 

(2) Electrons with the same spin have a zero probability of being found 
simultaneously at the same point in space, a low probability of being found close 
together, and are most probably to be found as far apart as possible.   

 
The more generally familiar forms that are usually presented to beginning students in their 
study of the orbital model for atoms:  
 

(3) No more than two electrons, which must be of opposite spin, can occupy an 
orbital. 

(4) No two electrons can be described by the same four quantum numbers. 
 
also follow from the more fundamental statement (1).  The concept of electron spin and the 
Pauli principle were first found necessary to account for atomic spectra and generally for the 
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behavior of electrons.  These do not follow directly from the Schrodinger formulation of 
quantum mechanics but they were simply incorporated into this formulation.  Later Dirac 
found that spin and the Pauli principle arise naturally in his relativistic treatment of quantum 
mechanics.  Statement (2) is the most convenient for discussing the physical basis of the 
VSEPR model and understanding electron densities.  In Appendix I we show how statement 
(2) follows from the statement (1) of  the Pauli principle.   
 Let us consider the common case of a valence shell containing eight electrons, four of 
one spin (α) and four of opposite spin (β).  Because same spin electrons keep as far apart as 
possible the most probable relative location of the four α electrons is at the vertices of a 
tetrahedron which, in a free atom, may have any orientation in space.  Similarly the most 
probable location of the four β electrons is at the vertices of another tetrahedron which may 
take any orientation with respect to the tetrahedron of α electrons so that there is an equal 
probability of finding an electron anywhere in the valence shell of the atom (Figure 1).  Thus 
any free atom or monoatomic ion with an octet of electrons in its valence shell, such as Ne, F- 

and O2- has a spherical total electron density (as does any other free atom or monoatomic ion 
or radical of course).  However, in a molecule in which a central atom is forming bonds to 
two or more ligands, the attraction of the nuclei of the combining atoms causes the α and β 
tetrahedra to come into approximate coincidence thereby increasing the probability that a pair 
of electrons will be found in the two bonding regions and also in the other two tetrahedral 
directions, that is the lone pair directions (Figure 1).  Consequently the electron density is no 
longer spherical.   

There are four regions of enhanced electron density corresponding to the four electron 
pairs and regions of diminished electron density between these regions.  It should be noted 
that pairs of electrons of opposite spin are not formed because of any special attraction 
between opposite spin electrons.  Indeed all electrons repel each other electrostatically.  As 
we have seen there are no electron pairs in a free atom or ion with an octet of electrons.  Pairs 
of opposite spin electrons are only formed by the attraction of the cores of ligand atoms.  This 
attraction overcomes the electrostatic repulsion between the electrons and pulls two electrons 
of opposite spin into a bonding region.  The Pauli principle prevents the formation of pairs of 
same spin electrons (Gillespie, 2000; Gillespie & Hargittai, 1991; Gillespie & Popelier, 2001; 
Gillespie & Robinson, 1996). 

 
       (a)              (b)             (c) 
 
FIGURE 1. Pauli principle for octet.  (a) The most probable relative arrangement of four α-spin 
electrons.  (b) The most probable relative arrangement of four β-spin electrons.  Both arrangements 
may adopt any relative orientation in space.  (c) In the presence of the nuclei of two combining 
ligands (X1, and X2), as in H2O or SCl2, the two tetrahedra are brought into approximate coincidence 
at the two bonding apexes (sufficient to bring all of the four apexes into coincidence) forming two 
bonding pairs and two non-bonding pairs (E).   
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ELECTRON PAIR DOMAINS 
 

The simplest form of the VSEPR model postulates that eight electrons in a valence 
shell form four pairs with a tetrahedral arrangement.  But we have just seen that there are not 
four fully localized lone pairs, rather there are four regions where there is an enhanced 
probability of finding an electron pair.  It is convenient to call a region where there is a high 
probability of finding an electron pair an electron pair domain (Gillespie, 2000; Gillespie & 
Hargittai, 1991; Gillespie & Popelier, 2001; Gillespie & Robinson, 1996).  An electron pair 
domain extends around the most probable position of the electron pair as determined by the 
Pauli principle, the probability of finding an electron pair decreasing with increasing distance 
from the most probable position.  We can think of each domain as having a boundary at some 
arbitrary value of the probability of finding an electron pair.  Although, clearly, this not a 
rigorous definition of a domain we can usefully assign these domains relative sizes and 
approximate shapes.  A lone pair domain can be thought of as generally larger than a bonding 
domain and also more spread out round the nucleus because the electrons are subject to the 
attraction of only one nucleus rather than two, as illustrated for the ammonia molecule in 
Figure 2.   

FIGURE 2. Representation of the bonding and nonbonding electron pair domains in an AX3E 
molecule (ammonia). 
 

A bonding domain takes up less space in the valence shell of the central atom because 
it is stretched out toward the ligand.  These differences in the relative sizes and shapes of lone 
pair and bonding pair domains provide a rationale for the relative sizes of the bond angles 
around a central atom in molecules with lone pairs that is an alternative to the purely 
empirical rule that electron pair repulsion increase in magnitude in the order bond pair - bond 
pair  < bond pair - lone pair < lone pair - lone pair.  The angles between ligands are always 
smaller than the angles involving lone pairs so that the bond angles in AX3E and AX2E2 are 
predicted to be < 109.5° as we see in Tables 1 and 2.  Moreover, the greater the 
electronegativity of the ligand atom and the smaller the electronegativity of the central atom 
the less space the bonding domain occupies in the valence shell of the central atom (Figure 
3).  Thus, bond angles decrease with increasing electronegativity of the ligands and 
decreasing electronegativity of the atom A as we can see from the examples in Table 1 and 2. 

 
 
 

N

107.3º

111.7º 
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FIGURE 3. The size of a bonding pair domain in the valence shell of A decreases with increasing 
electronegativity (χ) of X. 
 
 

TABLE 1. Bond angles in selected trigonal pyramidal AX3E molecules. 
 

Molecule Bond Angle (º) Molecule Bond Angle (º) 
NH3 107.3 PBr3 101.1 
PH3 93.8 AsBr3 99.8 
AsH3 91.8 SbBr3 98.2 
SbH3 91.7 PI3 102 
NF3 102.2 AsI3 100.2 
PF3 97.8 SbI3 99.3 
AsF3 96.1 NMe3 110.9 
SbF3 87.3 PMe3 98.6 
NCl3 107.1 AsMe3 96.0 
PCl3 100.3 SbMe3 94.2 
AsCl3 98.6 SF3

+ 97.5 
SbCl3 97.2 SeF3

+ 94.5 
 

 
 

TABLE 2. Bond angles in selected trigonal pyramidal AX2E2 molecules. 
 

Molecule Bond Angle (º) Molecule Bond Angle (º) 
H2O 104.5 ClF2

+ 96 
H2S 92.3 BrF2

+ 92 
H2Se 90.6 ICl2

+ 93 
H2Te 90.3 HOF 97.3 
OF2 103.1 HOCl 102.5 
SF2 98.2 CF3OF 104.8 
SeF2 94 CH3OH 108.6 
OCl2 111.2 CH3SH 96.5 
SCl2 102.8 CH3SeH 95.5 
SeCl2 99.6 CH3SCl 98.9 
TeCl2 97.0 CF3SF 97.1 
OMe2 111.7 CF2SCl 98.9 
SMe2 99.1 NH2

- 99.4 
SeMe2 96.3 NF2

- 96.7 
 
 

A X A AX X 

χA > χX χA = χX χA < χX 
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It is important to understand that electrons are not always paired.  We have seen that 
in a free atom the tetrahedron of α electrons may have any orientation with respect to the 
tetrahedron of β electrons so that there is no formation of pairs and the total electron density 
is spherical.  Although it is sometimes convenient to depict free atoms or ions such as Ne, F-, 
and O2- as having four pairs of electrons, this is strictly speaking not correct.  Similarly, in the 
valence7 shells of any singly bonded ligand not all the electrons are formed into pairs as was 
first pointed out by Linnett (Linnett, 1964).  For example, in the HF molecule, the tetrahedra 
of α and β electrons are brought into coincidence at only one vertex to form the single bond 
but the remaining three vertices are free to take up any relative position.  Thus the most 
probable positions of these electrons form a circle of unpaired electrons as we see in Figure 4.  

 
FIGURE 4. Pauli principle for a diatomic molecule e.g.HF.  In any diatomic molecule, the two 
Tetrahedra (Fig. 1a, 1b) of opposite spin electrons in the valence shell of an atom are brought into 
coincidence only at one apex, leaving the most probable locations of the remaining six electrons 
equally distributed in a ring. 
 

There are not therefore three lone pair nonbonding domains but a nonbonding domain 
containing six electrons having the form of a torus around the fluorine atom.  This is the 
situation for all atoms, except hydrogen atoms, in any diatomic molecule, as we have seen for 
the fluorine atom in HF, and for any singly bonded ligand. 
 In a molecule in which the ligands around a central atom are only weakly 
electronegative the electrons of the central atom are only weakly localized into pairs so that 
the central atom becomes more like a spherical negative ion.  Such poorly localized lone pairs 
have only a weak effect on the geometry of a molecule which is more determined by ligand-
ligand interaction than by the lone pairs.  An example is disiloxane H3SiOSiH3 in which the 
SiOSi bond angle of 154° is not in agreement with the VSEPR model which predicts a bond 
angle of <109.5°.  The large bond angle is a result of the weak pairing of the electrons on the 
central oxygen by the weakly electronegative SiH3 groups and also to the electrostatic 
repulsion between the SiH3 groups.  Another similar example is N(SiH3)3 which has a planar 
geometry rather than the pyramidal geometry predicted by the VSEPR model.  We note also 
that the only molecules in Tables 1 and 2 that have bond angles slightly greater than 109.5º 
are those in which the central atom is either oxygen or nitrogen both of which are very 
electronegative attached to less electronegative ligands. Further examples are given in 
(Gillespie, 2000; Gillespie & Popelier, 2001; Gillespie & Robinson, 1996).  In general the 
VSEPR rules only apply when the ligand has an electronegativity comparable to, or greater 
than, that of the central atom.   
 

LIGAND-LIGAND REPULSIONS 
 

The importance of ligand-ligand repulsions in determining molecular geometry has 
been somewhat overshadowed by the success of the VSEPR model.  We have just discussed 
two molecules in which ligand-ligand repulsions dominate the geometry.  In general, ligand-
ligand repulsions are particularly important in molecules with small central atoms such as the 

H F
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period 2 atoms, when the ligands are only weakly electronegative or large compared to the 
central atom, or when there are 5 or more ligands around a central atom (Gillespie, 
Bytheway, & Robinson, 1998; Gillespie & Robinson, 1998; Robinson, Johnson, Tang, & 
Gillespie, 1997).  With small central atoms such as B, C and N the effect of ligand-ligand 
repulsions is quite evident in the comparison of the bond lengths of AX3 and AX4 molecules.  
Three ligands can pack more closely around a central atom so the bonds are always shorter in 
an AX3 molecule such as BF3 than in the corresponding AX4  molecule BF4

- as shown by the 
examples in Table 3.   
 

TABLE 3. Bond lengths in AX3 and AX4 molecules. * 
 

AX3 molecules Length AX (pm) AX4 molecules Length AX (pm) 
BF3 130.7 BF4

- 138.2 
BCl3 174.2 BCl4

- 183.3 
B(OH)3 136.1 B(OH)4

- 148.1 
B(OCH3) 136.8 B(OCH3)4

- 145.8 
CF3

+ 124.4 CF4 131.9 
CCl3

+ 166.3 CCl4 177.1 
(HO)2CO 131.5 C(OH)4

- 138.4 
 

     * For more data and references to the source of the data in this table see references 4 and 8 
 

In such molecules we can think of the ligands as being hard approximately spherical 
objects and as having a constant interligand radius that is transferable from one molecule to 
another.  Table 4 gives values of the interligand radius for some common ligand atoms 
obtained by taking the mean of half the interligand distance between identical ligands in a 
number of different  molecules.  As we can see in Table 4, the radius of a given ligand atom 
depends on the nature of the central atom to which it is bonded.  The interligand radius 
increases with decreasing electronegativity of the central atom and the corresponding 
increase in the negative charge on the ligand.  The additivity of these radii is illustrated by the 
agreement between the experimental interligand distances and those calculated from the 
interligand radii as shown by the selected examples in Table 5.  In molecules with lone pairs, 
the lone pairs push the ligands together until they reach the interligand distance given by the 
sum of the ligand radii as illustrated by the examples in Figure 5.  According to this model 
geometry is determined by the packing of ligands around a central atom so it has been called 
the ligand close packing (LCP) model (Gillespie, Bytheway, & Robinson, 1998; Gillespie & 
Popelier, 2001; Gillespie & Robinson, 1998; Robinson, Johnson, Tang, & Gillespie, 1997) 
 

FIGURE 5. Bond angles (degrees), bond distances, and intramolecular contact distances (pm) in 
some AX3E and AX4 systems. 
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TABLE 4. Interligand radii (pm). 
 

             Central Atom 
Ligand Be B C N 
H - 110 90 82 
C - 137 125 120 
N 144 124 119 - 
O 133 119 114 - 
F 128 113 108 106 
Cl 168 151 144 142 

 
TABLE 5. Interligand distances in some oxofluorocarbon molecules. 
 

Molecule Bond length (pm) Bond angle (Ε) O—F (pm) 
 C-F C-O FCO  

CF3OCF3 132.7 136.9 110.2 221 
CF3O- 139.2 122.7 116.2 223 
CF3OF 131.9 139.5 109.6 223 
COF2 131.7 117.0 126.2 223 

CH3COF 134.2 118.1 121.4 223 
FCO.OF 132.4 117.0 126.5 223 
FOCCOF 132.9 118.0 124.2 233 

  sum of interligand radii 222 
 
 If we treat a lone pair domain as fulfilling the role of a ligand in the LCP model, this 
model and the VSEPR model lead to the same predictions.  In other words it is difficult to 
distinguish between the bond - bond and bond - lone pair repulsions of the VSEPR model and 
the ligand - ligand and ligand - lone pair repulsions of the LCP model.  An advantage of the 
LCP model is that it is more quantitative, particularly for period 2 molecules; if we know the 
bond lengths we can calculate the bond angle from the predicted interligand distance.  One 
difference between the two models is that the effect of the electronegativity of the ligand in 
the VSEPR model is replaced by the ligand size in the LCP model.  In most cases these two 
models lead to the same qualitative bond angle predictions because the most electronegative 
ligands such F and O are also the smallest.  We can see in Tables 1 and 2 that in the halides 
of P and S the bond angle increases with increasing size of the halogen as expected from the 
LCP model but also with decreasing electronegativity of the halogen as predicted by the 
VSEPR model. 
 
ELECTRON DENSITIES AND THE THEORY OF ATOMS-IN-MOLECULES (AIM) 

 
The VSEPR model and Lewis structures are very approximate models of the 

distribution of the electrons in a molecule.  We cannot determine the position of a particular 
electron in a molecule but we can determine the probability of finding an electron in an 
infinitesimal volume surrounding any particular point in space, that is the probability density.  
When the probability distribution of an electron is multiplied by the total number of electrons 
in the molecule we obtain what is known as the electron density distribution or simply the 
electron density.  We can think of the electrons in a molecule as forming a cloud of electronic 
charge that is more dense in some places than in others.  We can obtain the electron density 
of a molecule in the solid state by careful accurate X-ray crystallography.  However, given 
the power and speed of modern computers and the availability of programs for carrying out 
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ab initio and density functional calculations (DFT) it is usually simpler and more rapid to 
calculate the electron density of an isolated  molecule.  Many electron density maps have 
been published in the literature and a large number have been included in a recent textbook 
(Gillespie & Popelier, 2001).  Electron density maps can provide useful information about 
bonding and geometry and they can greatly enhance a student’s understanding of these topics.   
 The electron density (ρ) varies in three dimensions so a full description of how ρ 
varies throughout a molecule requires a fourth dimension. A common solution to this 
problem is to show how ρ varies in one or more particular planes of the molecule.  Figure 6a 
shows a relief map of the electron density, ρ, of the SCl2 molecule in the plane through all 
three atoms, the σh(xy) plane.  The most striking feature of this figure is that the electron 
density is very large in an almost spherical region around each nucleus but very small 
between these regions.  Indeed, the very large maxima have been truncated at 2.00au  in order 
to make it possible to show the features of the electron density between the nuclei (au stands 
for “atomic units”, discussed briefly in Appendix II).  In particular there is a ridge of 
increased electron density between the sulfur atom and each of the chlorine atoms.  The 
electron density has values of 3.123x103au and 2.589x103au at the S and Cl nuclei 
respectively but a value of only 1.662x10-1au at the minimum of the ridge between the peak 
around the sulfur nucleus and each of the chlorine nuclei.  This ridge of increased electron 
density between the S atom and each of the Cl atoms, small as it is, is the density in the 
binding region that is responsible for an attractive force between the nuclei.  Along a line 
along the top of this ridge the electron density is locally greater than in any direction away 
from the line.  This line coincides with the bond between the S and Cl atoms as it is normally 
drawn and is called a bond path, and the point of minimum electron density along the bond 
path is called the bond critical point (Bader, 1990).  Figure 6b shows a relief map of the 
electron density of the water molecule.  It shows similar features to the density map for SCl2 
although the electron density around the hydrogen atoms is much smaller than around the 
oxygen atom as we would expect.  The electron density at the maximum at the oxygen 
nucleus has a value of 2.947x102au, whereas that at the hydrogen nucleus is only 4.341x10-

1au, which is only slightly greater than the value of the density of 3.963x10-1au at the 
minimum at the bond critical point.  The very small electron density surrounding the 
hydrogen nucleus is due to even less than one electron because the more electronegative 
oxygen atom attracts electron density away from the hydrogen atom so that it has a positive 
charge. 

Another common method of representing the electron density distribution is as a 
contour map, just as we can use a topographic contour map to represent the relief of a part of 
the earth’s surface.  Figure 7a shows a contour map of the electron density of the SCl2  
molecule in the σh (xy) plane. The lines in which the interatomic surfaces, that are discussed 
later, cut this plane are also shown.  Figure 7b shows a corresponding map for the H2O 
molecule. 

Here we see clearly the large concentration of density around the oxygen nucleus, and 
the very small concentration around each hydrogen nucleus.  The outer contour is an arbitrary 
choice because the density of a hypothetical isolated molecule extends to infinity.  However, 
it has been found that the 0.001au contour corresponds rather well to the size of the molecule 
in the gas phase, as measured by its van der Waal’s radius, and the corresponding isodensity 
surface in three dimensions usually encloses more than 98% of the total electron population 
of the molecule (Bader, 1990).  Thus this outer contour shows the shape of the molecule in 
the chosen plane.  In a condensed phase the effective size of a molecule is a little smaller. 
Contour maps of some period 2 and 3 chlorides are shown in Figure 8.  We see that the 
electron densities of the atoms in the LiCl molecule are only very little distorted from the 
spherical shape of free ions consistent with the large ionic character of this molecule. In    
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(a)       (b) 
FIGURE 6. Isodensity contour maps of the electron density of SCl2 (a) and H2O (b) in the plane of 
the nuclei (density and distances from the origin of the coordinate system in au).  Isodensity contour 
linesare shown in coulor in the order 0.001, 0.002, 0.004, 0.008 (blue); 0.02, 0.04, 0.08 (violet); 0.2, 
0.4, 0.8 (magenta). The density is truncate at 2.00 au (green contour). 
 

          (a)             (b) 
FIGURE 7. Contour maps of the electron density of SCl2 (a) and H2O (b).  The density increases 
from the outermost 0.001au isodensity contour in steps of 2x10n, 4x10n, and 8x10n au with n starting 
at –3 and increasing in steps of unity.  The same values for the contours apply to subsequent contour 
plots in this paper.  The lines connecting the nuclei are the bond paths, and the lines delimiting each 
atom are the intersection of the respective interatomic surface with the plane of the drawing.  The 
bond critical points (intersections of each bond path with its associated interatomic surface) are 
depicted by heavy black dots. 
 
the more covalent molecules the electron density of each atom is more distorted in the 
bonding direction.  We also see the distortion of the electron density in the lone pair direction 
in NCl3 and in the two lone pair directions in the σv plane of the SCl2 molecule.  

If we wish to give a three dimensional picture of the electron density distribution we 
can easily show one particular surface, namely that for a given value of the electron density.  
If we choose the 0.001au surface we get a picture of the overall shape of the molecule as 
shown by the examples in Figure 9.  By making the outer 0.001au surface transparent as we 
have done in Figure 9 we can fairly easily show one inner surface, but showing further 
surfaces becomes increasingly difficult.  The particular inner surface in Figure 9 is for the 
density at the bond critical point at which the single surface encompassing all the nuclei at 
lower values of ρ just breaks into separate surfaces, one surrounding each atom and just 
touching at the bond critical point.  This surface only is shown for either the fluoride or the 
chloride of the period 2 elements Li to O in Figure 10. 
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FIGURE 8. Contour maps of the electron density of LiCl, BCl3, SCl2 in the σv(xz) plane (the plane 
containing the three nuclei) and in the σv’(yz) plane [the plane bisecting the Cl-S-Cl angle 
perpendicularly to the σv(xz) plane], NCl3 in the σv plane (plane containing one N-Cl bond and 
bisecting the Cl-N-Cl angle formed by the remaining two bonds), and Cl2.   
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  (a)          (b)            (c) 
FIGURE 9. Three-dimensional isodensity envelopes of (a) SCl2, (b) H2O, and (c) Cl2.  The outer 
envelope has the value of 0.001 au, the van der Walls envelope, and the inner one is the bond critical 
point density envelope (ρb-envelope). 
 
 

 
FIGURE 10. Three-dimensional isodensity envelopes of the bond critical point density (ρb-envelope) 
of LiF, BeCl2, BF3, CCl4, NF3, and OCl2. 

 
These surfaces show even more clearly than the contour maps the distortion of the 

electron density from a spherical shape.  The electron density of each atom is extended out 
towards its neighbor due to the concentration of the electron density along the bond direction 
as expected from the increased probability of finding a pair of electrons in this region.  The 
tetrahedral shape of this electron density isosurface in CCl4  is particularly striking.  In 
addition to the distortion of the electron density toward each neighboring atom we can see 
other changes.  The electron density of the ligand has an increasingly squashed shape with 
increasing electronegativity of the central atom being increasingly flattened on the opposite 
side of the ligand  atom from the bond direction, giving an overall “onion” shape.  These 
changes can be understood in the light of the Pauli principle as illustrated in Figure 4.  In this 
figure we see that the nonbonding electrons have a most probable location in a circle around 
the ligand so that the electron density is concentrated in this region and correspondingly 
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depleted at the back of the ligand atom opposite the bond giving the “onion” shape to this 
isodensity surface. 
 The value of the electron density at the bond critical point, ρb also gives us valuable 
information.  It can be taken as a measure of the electron density in the bonding region and 
therefore of the covalent character of the bond.  In Table 7 we see that ρb increases from LiF 
to CF4 as expected.  In general in a very polar molecule the value of ρb is typically small 
usually less than 0.1au while for a covalent single bond it has a higher value.   For example, 
0.25au for the C-C bond in ethane.  For double and triple bonds we expect still higher values 
for ρb.  For example, the value for the C=C double bond in ethene is 0.36au and for the C/C 
triple bond in ethyne is 0.43au. 
 

TABLE 7.  Period 2 fluorides and chlorides.* 
 

 
 
Molecule 

Bond length 
(pm) 
Calc.      Exp.

  
      
 ρb (au)

  
 
q(X) 

  
 
q(A) 

 
LiF 157.3 156.4 0.075 -0.92 +0.92
BeF2 137.8 140 0.145 -0.88 +1.75
BF3 131.4 130.7 0.217 -0.81 +2.43
CF4 132.6 131.9 0.309 -0.61 +2.45
NF3 138.2 138.5 0.314 -0.28 +0.83
OF2 140.4 140.5 0.295 -0.13 +0.27
F2 139.9 141.8 0.288 0 0 

 
LiCl 202.2 220.1 0.047 -0.91 +0.91
BeCl2 179.8 -- 0.097 -0.84 +1.68
BCl3 175.0 174.2 0.157 -0.64 +1.93
CCl4 179.7 177.1 0.182 -0.09 +0.35
NCl3 179.1 175.9 0.176 +0.08 -0.24
OCl2 172.8 170 0.184 +0.23 -0.46
FCl 166.5 162.8 0.187 +0.38 -0.38

*   Data, obtained at the DFT level using the B3LYP functional and a 6-311+G(2d,p) basis 
set, is taken from Ref. (4).  q(X) refers to the charge of the ligand X (here the halogen atom) 
and q(A) refers to the charge of the period 2 atom. 

 
 The point of minimum electron density along the bond path between two atoms, the 
bond critical point, is on the boundary between the two atoms, that is the interatomic surface.  
In the contour map of the density of SCl2 (Figure 7) we see that there are two valleys in the 
electron density, one on each side of the bond path leading up to the saddle point at which the 
bond critical point is situated.  A line along the bottom of each of these valleys is the line on 
which the two atoms meet in this particular plane - the interatomic line.  In three dimensions 
we have a corresponding interatomic surface.  The exact definition of this surface and the 
procedure by which such surfaces are found are described within the context of the theory of 
atoms in molecules (AIM) which is fully discussed in (Bader, 1990; Popelier, 2000).  More 
elementary and less mathematical descriptions of this theory have been given in several 
recent publications (Gillespie & Popelier, 2001; Matta & Gillespie, 2001).  We can see such 
surfaces in the familiar space-filling molecular models.  In these models the interatomic 
surfaces are assumed to be planar which is the case only in  homonuclear diatomic molecules; 
in general real interatomic surfaces are curved (Figure 8).  These interatomic surfaces define 
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the atoms as they exist in the molecule.  All the properties of an atom in a molecule are 
determined by their electron density.  A simple example is provided by the charge which can 
be obtained by finding the total number of electrons in the atom by integrating the density 
over the volume of the atom and then subtracting the nuclear charge.  The atomic charges in 
the fluorides and chlorides of the elements of periods 2 and 3 are given in Table 7.  We see 
that the ligand charges decrease as expected as the electronegativity of the central atom 
increases, while the positive charge of the central atom at first increases with increasing 
number of electronegative ligands but then decreases again as the electronegativity of the 
central atom increases.  In Figure 11 we see that the charge of the ligand is a smooth function 
of the electronegativity.  

Several methods have been used for analyzing the electron density in more detail than 
we have done in this paper.  These methods are based on different functions of the electron 
density and also the kinetic energy of the electrons but they are beyond the scope of this 
article.  They include the Laplacian of the electron density ( L = - ∇2ρ ) (Bader, 1990; 
Popelier, 2000), the electron localization function ELF (Becke & Edgecombe, 1990), and the 
localized orbital locator LOL (Schinder & Becke, 2000).  These methods could usefully be 
presented in advanced undergraduate quantum chemistry courses and at the graduate level.  
They provide further understanding of the physical basis of the VSEPR model, and give a 
more quantitative picture of electron pair domains.   
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FIGURE 11. Electronegativity difference between the halogen atom (X) and the atom to which it is 
bonded (A) in the halides of period 2 (AnX) as a function of the atomic charge of the halogen atom 
q(X). (Top) X = Cl, (Bottom) X = F.  Shown in the figures is atom A of the halide. Charges were 
obtained at the DFT level using the B3LYP functional and a 6-311+G(2d,p) basis set.   
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SUMMARY 
 

The VSEPR model is a useful tool for understanding chemical bonding and molecular 
geometry at all levels from high school through university.  It can first be introduced as an 
empirical model just after Lewis structures have been presented.  Then after some basic 
quantum mechanical ideas, in particular the concept of charge clouds and the Pauli principle, 
have been introduced the VSEPR model can be presented in a more sophisticated and less 
empirical manner in terms of electron pair domains.  At this level the electron density and its 
presentation in the form of two- and three- dimensional contour and surface maps can be 
introduced and discussed and shown to provide further support for, and understanding of, the 
VSEPR model.  The fundamental physical basis of the model can then be better understood, 
bond lengths and bond angles that deviate from the ideal values can be accounted  for, and 
exceptions to the basic rules such as the large bond angle in disiloxane, can then be 
understood.  At this point the importance of ligand-ligand repulsions and their relationship to 
the VSEPR model can be discussed and the ligand close packing (LCP) model introduced.  
Finally the AIM theory and the functions such as the Laplacian, ELF and LOL can be 
introduced at the advanced undergraduate or graduate levels. 
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APPENDIX I:  THE PAULI PRINCIPLE 
 

 The Pauli antisymmetry principle is a requirement a many-electron wavefunction 
must obey.  A many-electron wavefunction must be antisymmetric (i.e. changes sign) to the 
interchange of the spatial and spin coordinates of any pair of electrons i and j, that is: 
 

1 2 i j n 1 2 j i n( , ,..., ,..., ,..., ) = ( , ,..., ,..., ,..., ) ( .1)Ψ − Ψ Iq q q q q q q q q q  
 

where qk is the spatial and spin coordinates of the kth electron.  If two electrons have the same 
space and spin coordinates, i.e.  qj = qi = qk, then: 
 

1 2 k k n 1 2 k k n( , ,..., ,..., ,..., ) = ( , ,..., ,..., ,..., ) ( .2)Ψ − Ψ Iq q q q q q q q q q  
 

which means that the wavefunction is equal to its own negative.  The only function which is 
equal to its negative is zero, i.e. qj = qi= qk is an impossibility since the wavefunction would 
collapse.  In other words, two electrons of the same spin have zero probability of occupying 
the same position in space, i.e. two same-spin electrons exclude each other in space.  Since Ψ 
is continuous, every electron is surrounded by a region where there is very little chance of 
finding another electron of the same spin, this exclusion fading gradually as we move away 
from the electron in question.  Thus the physical consequence of the Pauli principle is that the 
movement of electrons of similar spin is not independent but rather correlated, since it 
requires them to avoid each other as much as possible.  This correlation is known as Fermi 
correlation which is a direct consequence of the Pauli principle.  Fermi correlation is not to 
be confused with the Coulomb correlation where the mere electrostatic repulsion of 
electrons, regardless of their respective spins, causes their movement to be correlated.  The 
Coulomb correlation is referred to simply as “correlation” by theoretical chemists. 
 

 
APPENDIX II:  THE ATOMIC UNITS SYSTEM 

 
 The atomic units system (au system) is a system of units meant to simplify the 
equations of molecular and atomic quantum mechanics.  The units of the au system are 
combinations of the fundamental units of mass (mass of the electron), charge (charge of the 
electron), and of Planck’s constant.  By setting these three quantities to unity one gets simpler 
equations.  Si in the usual SI system, Schrödinger equation takes the form: 
 

2
2

0

( .1)
2 4πε

 
− ∇ − Ψ = Ψ 

 

h

e

e E II
m r

 

 
 This equation can be cast into a dimentionless form in which all the quantities are 
expressed in atomic units: 
 

21 1 ' ' ' ( .2)
2 '

 − ∇ − Ψ = Ψ  
E II

r
 

 
 The au system has a simple relation to the SI and to the Gaussian (cgs) systems of 
units.  For example: 1 au of length = a0 (Bohr radius) = 5.29×10-9 cm = 0.529Å, 1 au of 
charge = e = 1.602×10-19C = 4.803×10-10 esu, 1 au of charge density = e/a0

3 = 6.748 eÅ-3 = 
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1.081×1012 Cm-3.  For a formal discussion of how the au system of units naturally arises in 
quantum chemistry the reader is referred to (Szabo & Ostlund, 1989). 
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