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Preface

Computer science and engineering curricula have been evolving at a faster pace to keep up with
the developments in the area. This often dictates that traditional courses will have to be com-
pressed to accommodate new courses. In particular, it is no longer possible in these curricula
to include separate courses on digital logic, assembly language programming, and computer
organization. Often, these three topics are combined into a single course. The current textbooks
in the market cater to the old-style curricula in these disciplines, with separate books available
on each of these subjects. Most computer organization books do not cover assembly language
programming in sufficient detail. There is a definite need to support the courses that combine
assembly language programming and computer organization. This is the main motivation for
writing this book. It provides a comprehensive coverage of digital logic, assembly language
programming, and computer organization.

Intended Use

This book is intended as an undergraduate textbook for computer organization courses offered
by computer science and computer engineering/electrical engineering departments. Unlike
other textbooks in this area, this book provides extensive coverage of assembly language pro-
gramming and digital logic. Thus, the book serves the needs of compressed courses.

In addition, it can be used as a text in vocational training courses offered by community
colleges. Because of the teach-by-example style used in the book, it is also suitable for self-
study by computer professionals and engineers.

vii
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Prerequisites

The objective is to support a variety of courses on computer organization in computer science
and engineering departments. To satisfy this objective, we assume very little background on
the part of the student. The student is assumed to have had some programming experience in a
structured, high-level language such as C or Java™. This is the background almost all students
in computer science and computer engineering programs typically acquire in their first year
of study. This prerequisite also implies that the student has been exposed to the basics of the
software-development cycle.

Features

Here is a summary of the special features that set this book apart:

Most computer organization books assume that the students have done a separate digital
logic course before taking the computer organization course. As a result, digital logic
is covered in an appendix to provide an overview. This book provides detailed cover-
age of digital logic, including sequential logic circuit design. Three complete chapters
are devoted to digital logic topics, where students are exposed to the practical side with
details on several example digital logic chips. There is also information on digital logic
simulators. Students can conveniently use these simulators to test their designs.

This book provides extensive coverage of assembly language programming, comprising
assembly language of both CISC and RISC processors. We use the Pentium as the rep-
resentative of the CISC category and devote more than five chapters to introducing the
Pentium assembly language. The MIPS processor is used for RISC assembly language
programming. In both cases, students actually write and test working assembly language
programs. The book’s homepage has instructions on downloading assemblers for both
Pentium and MIPS processors.

We introduce concepts first in simple terms to motivate the reader. Later, we relate these
concepts to practical implementations. In the digital logic part, we use several chips to
show the type of implementations done in practice. For the other topics, we consistently
use three processors—the Pentium, PowerPC, and MIPS—to cover the CISC to RISC
range. In addition, we provide details on the Itanium and SPARC processors.

Most textbooks in the area treat I/O and interrupts as an appendage. As a result, this
topic is discussed very briefly. Consequently, students do not get any practical experience
on how interrupts work. In contrast, we use the Pentium to illustrate their operation.
Several assembly language programs are used to explain the interrupt concepts. We also
show how interrupt service routines can be written. For instance, one example in the
chapter on interrupts replaces the system-supplied keyboard service routine by our own.
By understanding the practical aspects of interrupt processing, students can write their
own programs to experiment with interrupts.
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* Our coverage of system buses is comprehensive and up-to-date. We divide our coverage
into internal and external buses. Internal buses discussed include the ISA, PCI, PCI-X,
AGP, and PCMCIA buses. Our external bus coverage includes the EIA-232, SCSI, USB,
and IEEE 1394 (FireWire) serial buses.

 Extensive assembly programming examples are used to illustrate the points. A set of
input and output routines is provided so that the reader can focus on developing assembly
language programs rather than spending time in understanding how input and output can
be done using the basic I/O functions provided by the operating system.

* We do not use fragments of assembly language code in examples. All examples are
complete in the sense that they can be assembled and run to give a better feeling as to
how these programs work.

* All examples used in the textbook and other proprietary I/O software are available from
the book’s homepage (www.scs.carleton.ca/ sivarama/org book). In ad-
dition, this Web site also has instructions on downloading the Pentium and MIPS assem-
blers to give opportunities for students to perform hands-on assembly programming.

* Most chapters are written in such a way that each chapter can be covered in two or three
60-minute lectures by giving proper reading assignments. Typically, important concepts
are emphasized in the lectures while leaving the other material in the book as a reading
assignment. Our emphasis on extensive examples facilitates this pedagogical approach.

* Interchapter dependencies are kept to a minimum to offer maximum flexibility to instruc-
tors in organizing the material. Each chapter clearly indicates the objectives and provides
an overview at the beginning and a summary and key terms at the end.

Instructional Support

The book’s Web site has complete chapter-by-chapter slides for instructors. Instructors can use
these slides directly in their classes or can modify them to suit their needs. Please contact the
author if you want the PowerPoint source of the slides. Copies of these slides (four per page)
are also available for distribution to students. In addition, instructors can obtain the solutions
manual by contacting the publisher. For more up-to-date details, please see the book’s Web
page at www . scs.carleton.ca/ sivarama/org book.

Overview and Organization

The book is divided into eight parts. In addition, Appendices provide useful reference material.
Part 1 consists of a single chapter and gives an overview of basic computer organization and
design.

Part II presents digital logic design in three chapters—Chapters 2, 3, and 4. Chapter 2
covers the digital logic basics. We introduce the basic concepts and building blocks that we
use in the later chapters to build more complex digital circuits such as adders and arithmetic
logic units (ALUs). This chapter also discusses the principles of digital logic design using
Boolean algebra, Karnaugh maps, and Quine—McCluskey methods. The next chapter deals
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with combinational circuits. We present the design of adders, comparators, and ALUs. We
also show how programmable logic devices can be used to implement combinational logic
circuits. Chapter 4 covers sequential logic circuits. We introduce the concept of time through
clock signals. We discuss both latches and flip-flops, including master—slave JK flip-flops.
These elements form the basis for designing memories in a later chapter. After presenting some
example sequential circuits such as shift registers and counters, we discuss sequential circuit
design in detail. These three chapters together cover the digital logic topic comprehensively.
The amount of time spent on this part depends on the background of the students.

Part IIT deals with system interconnection structures. We divide the system buses into in-
ternal and external buses. Our classification is based on whether the bus interconnects compo-
nents that are typically inside a system. Part III consists of Chapter 5 and covers internal system
buses. We start this chapter with a discussion of system bus design issues. We discuss both syn-
chronous and asynchronous buses. We also introduce block transfer bus cycles as well as wait
states. Bus arbitration schemes are described next. We present five example buses including the
ISA, PCI, PCI-X, AGP, and PCMCIA buses. The external buses are covered in Part VIII, which
discusses the 1/O issues.

Part IV consists of three chapters and discusses processor design issues. Chapter 6 presents
the basics of processor organization and performance. We discuss instruction set architectures
and instruction set design issues. This chapter also covers microprogrammed control. In addi-
tion, processor performance issues, including the SPEC benchmarks, are discussed. The next
chapter gives details about the Pentium processor. The information presented in this chapter
is useful when we discuss Pentium assembly language programming in Part V. Pipelining and
vector processors are discussed in the last chapter of this part. We use the Cray X-MP system
to look at the practical side of vector processors. After covering the material in Chapter 6,
instructors can choose the material from Chapters 7 and 8 to suit their course requirements.

Part V covers Pentium assembly language programming in detail. There are five chapters
in this part. Chapter 9 provides an overview of the Pentium assembly language. All necessary
basic features are covered in this chapter. After reading this chapter, students can write simple
Pentium assembly programs without needing the information presented in the later four chap-
ters. Chapter 10 describes the Pentium addressing modes in detail. This chapter gives enough
information for the student to understand why CISC processors provide complex addressing
modes. The next chapter deals with procedures. Our intent is to expose the student to the un-
derlying mechanics involved in procedure calls, parameter passing, and local variable storage.
In addition, recursive procedures are used to explore the principles involved in handling recur-
sion. In all these activities, the important role played by the stack is illustrated. Chapter 12
describes the Pentium instruction set. Our goal is not to present the complete Pentium instruc-
tions, but a representative sample. Chapter 13 deals with the high-level language interface,
which allows mixed-mode programming in more than one language. We use C and assembly
language to illustrate the principles involved in mixed-mode programming. Each chapter uses
several examples to show how various Pentium instructions are used.

Part VI covers RISC processors in two chapters. The first chapter introduces the general
RISC design principles. It also presents details about two RISC processors: the PowerPC and
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Intel Itanium. Although both are considered RISC processors, they also have some CISC fea-
tures. We discuss a pure RISC processor in the next chapter. The Itanium is Intel’s 64-bit
processor that not only incorporates RISC characteristics but also several advanced architec-
tural features. These features include instruction-level parallelism, predication, and speculative
loads. The second chapter in this part describes the MIPS R2000 processor. The MIPS sim-
ulator SPIM runs the programs written for the R2000 processor. We present MIPS assembly
language programs that are complete and run on the SPIM. The programs we present here are
the same programs we have written in the Pentium assembly language (in Part V). Thus, the
reader has an opportunity to contrast the two assembly languages.

Part VII consists of Chapters 16 through 18 and covers memory design issues. Chapter 16
builds on the digital logic material presented in Part II. It describes how memory units can be
constructed using the basic latches and flip-flops presented in Chapter 4. Memory mapping
schemes, both full- and partial-mapping, are also discussed. In addition, we discuss how inter-
leaved memories are designed. The next chapter covers cache memory principles and design
issues. We use an extensive set of examples to illustrate the cache principles. Toward the end
of the chapter, we look at example cache implementations in the Pentium, PowerPC, and MIPS
processors. Chapter 18 discusses virtual memory systems. Note that our coverage of virtual
memory is from the computer organization viewpoint. As a result, we do not cover those as-
pects that are of interest from the operating-system point of view. As with the cache memory, we
look at the virtual memory implementations of the Pentium, PowerPC, and MIPS processors.

The last part covers the I/O issues. We cover the basic I/O interface issues in Chapter 19.
We start with I/O address mapping and then discuss three techniques often used to interface
with I/O devices: programmed I/O, interrupt-driven I/0O, and DMA. We discuss interrupt-driven
I/O in detail in the next chapter. In addition, this chapter also presents details about external
buses. In particular, we cover the EIA-232, USB, and IEEE 1394 serial interfaces and the SCSI
parallel interface. The last chapter covers Pentium interrupts in detail. We use programming
examples to illustrate interrupt-driven access to I/O devices. We also present an example to
show how user-defined interrupt service routines can be written.

The appendices provide a wealth of reference material needed by the student. Appendix A
primarily discusses computer arithmetic. Character representation is discussed in Appendix B.
Appendix C gives information on the use of I/O routines provided with this book and the Pen-
tium assembler software. The debugging aspect of assembly language programming is dis-
cussed in Appendix D. Appendix E gives details on running the Pentium assembly programs
on a Linux system using the NASM assembler. Appendix F gives details on digital logic sim-
ulators. Details on the MIPS simulator SPIM are in Appendix G. Appendix H describes the
SPARC processor architecture. Finally, selected Pentium instructions are given in Appendix 1.
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Chapter 1

Overview of
Computer Organization

Objectives
* To provide a high-level overview of computer organization;
» To discuss how architects, implementers, programmers, and users view the computer
system;
* To describe the three main components: processor, memory, and 1/O;
 To give a brief historical perspective of computers.

We begin each chapter with an overview of what you can expect in the chapter. This is our first
overview. The main purpose of this chapter is to provide an overview of the computer systems.
We start off with a brief introduction to computer systems from the user’s viewpoint.

Computer systems are complex. To manage this complexity, we use a series of abstractions.
The kind of abstraction used depends on what you want to do with the system. We present
the material in this book from three perspectives: from the computer architect’s view, from the
programmer’s view, and from the implementer’s view. We give details about these three views
in Sections 1.2 through 1.4.

A computer system consists of three major components: a processor, a memory unit, and
an input/output (I/O) subsystem. A system bus interconnects these three components. The next
three sections discuss these three components in detail. Section 1.5 provides an overview of
the processor component. The processors we cover in this book include the Pentium, MIPS,
PowerPC, Itanium, and SPARC. Section 1.6 presents some basic concepts about the memory
system. Later chapters describe in detail cache and virtual memories. Section 1.7 gives a brief
overview of how input/output devices such as the keyboard are interfaced to the system. A more

3
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Applications
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System
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System
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Figure 1.1 A user’s view of a computer system.

detailed description on I/O interfacing can be found in the last two chapters. We conclude the
chapter by providing a perspective on the history of computers.

1.1 Introduction

This book is about digital computer systems, which have been revolutionizing our society. Most
of'us use computers for a variety of tasks, from serious scientific computations to entertainment.
You are reading this book because you are interested in learning more about these magnificent
machines.

As with any complex project, several stages and players are involved in designing, imple-
menting, and realizing a computer system. This book deals with inside details of a computer
system, focusing on both hardware and software.

Computer hardware is the electronic circuitry that performs the actual work. Hardware
includes things with which you are already familiar such as the processor, memory, keyboard,
CD burner, and so on. Miniaturization of hardware is the most recent advance in the computer
hardware area. This miniaturization gives us such compact things as PocketPCs and Flash
memories.

Computer software can be divided into application software and system software. A user
interacts with the system through an application program. For the user, the application is the
computer! For example, if you are interested in browsing the Internet, you interact with the
system through a Web browser such as the Netscape™ Communicator or Internet Explorer. For
you, the system appears as though it is executing the application program (i.e., Web browser),
as shown in Figure 1.1.
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At the core is the basic hardware, over which a layer of system software hides the gory
details about the hardware. Early ancestors of the Pentium and other processors were called
microprocessors because they were less powerful than the processors used in the computers at
that time.

The system software manages the hardware resources efficiently and also provides nice
services to the application software layer. What is the system software? Operating systems
such as Windows™, UNIX™, and Linux are the most familiar examples. System software also
includes compilers, assemblers, and linkers that we discuss later in this book. You are probably
more familiar with application software, which includes Web browsers, word processors, music
players, and so on.

This book presents details on various aspects of computer system design and programming.
We discuss organization and architecture of computer systems, how they are designed, and how
they are programmed. In order to clarify the scope of this book, we need to explain these terms:
computer architecture, computer organization, computer design, and computer programming.

Computer architecture refers to the aspects with which a programmer is concerned. The
most obvious one is the design of an instruction set for the computer. For example, should
the processor understand instructions to process multimedia data? The answer depends on
the intended use of the system. Clearly, if the target applications involve multimedia, adding
multimedia instructions will help improve the performance. Computer architecture, in a sense,
describes the computer system at a logical level, from the programmer’s viewpoint. It deals
with the selection of the basic functional units such as the processor and memory, and how they
should be interconnected into a computer system.

Computer organization is concerned with how the various hardware components operate
and how they are interconnected to implement the architectural specifications. For example, if
the architecture specifies a divide instruction, we will have a choice to implement this instruc-
tion either in hardware or in software. In a high-performance model, we may implement the
division operation in hardware to provide improved performance at a higher price. In cheaper
models, we may implement it in software. But cost need not be the only deciding criterion.
For example, the Pentium processor implements the divide operation in hardware whereas the
next generation Itanium processor implements division in software. If the next version of Ita-
nium uses a hardware implementation of division, that does not change the architecture, only
its organization.

Computer design is an activity that translates architectural specifications of a system into
an implementation using a particular organization. As a result, computer design is sometimes
referred to as computer implementation. A computer designer is concerned with the hardware
design of the computer.

Computer programming involves expressing the problem at hand in a language that the com-
puter can understand. As we show later, the native language that a computer can understand is
called the machine language. But this is not a language with which we humans are comfort-
able. So we use a language that we can easily read and understand. These languages are called
high-level languages, and include languages such as Java™ and C. We do not devote any space
for these high-level languages as they are beyond the scope of this book. Instead, we discuss
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in detail languages that are close to the architecture of a machine. This allows us to study the
internal details of computer systems.

Computers are complex systems. How do we manage complexity of these systems? We
can get clues from looking at how we manage complex systems in life. Think of how a large
corporation is managed. We use a hierarchical structure to simplify the management: president
at the top and employees at the bottom. Each level of management filters out unnecessary details
on the lower levels and presents only an abstracted version to the higher-level management. This
is what we refer to as abstraction. We study computer systems by using layers of abstraction.

Different people view computer systems differently depending on the type of their interac-
tion. We use the concept of abstraction to look at only the details that are necessary from a
particular viewpoint. For example, if you are a computer architect, you are interested in the in-
ternal details that do not interest a normal user of the system. One can look at computer systems
from several different perspectives. We have already talked about the user’s view. Our interest
in this book is not at this level. Instead, we concentrate on the following views: (i) a program-
mer’s view, (ii) an architect’s view, and (iii) an implementer’s view. The next three sections
briefly discuss these perspectives.

1.1.1 Basic Terms and Notation

The alphabet of computers, more precisely digital computers, consists of 0 and 1. Each is
called a bit, which stands for the binary digit. The term byfe is used to represent a group of
8 bits. The term word is used to refer to a group of bytes that is processed simultaneously.
The exact number of bytes that constitute a word depends on the system. For example, in the
Pentium, a word refers to four bytes or 32 bits. On the other hand, eight bytes are grouped into
a word in the Itanium processor. The reasons for this difference are explained later. We use the
abbreviation “b” for bits, “B” for bytes, and “W” for words. Sometimes we also use doubleword
and quadword. A doubleword has twice the number of bits as the word and the quadword has
four times the number of bits in a word.

Bits in a word are usually ordered from right to left, as you would write digits in a decimal
number. The rightmost bit is called the least significant bit (LSB), and the leftmost bit is called
the most significant bit (MSB). However, some manufacturers use the opposite notation. For
example, the PowerPC manuals use this notation. In this book, we consistently write bits of a
word from right to left, with the LSB as the rightmost bit.

We use standard terms such as kilo (K), mega (M), giga (G), and so on to represent large
integers. Unfortunately, we use two different versions of each, depending on the number system,
decimal or binary. Table 1.1 summarizes the differences between the two systems. Typically,
computer-related attributes use the binary version. For example, when we say 128 megabyte
(MB) memory, we mean 128 x 229 bytes. Usually, communication-related quantities and time
units are expressed using the decimal system. For example, when we say that the data transfer
rate is 100 megabits/second (Mb/s), we mean 100 x 10 Mby/s.

Throughout the text, we use various number systems: binary, octal, and hexadecimal. Now
is a good time to refresh your memory by reviewing the material on number systems presented
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Table 1.1 Terms to represent large integer values

Term Decimal (base 10) | Binary (base 2)
K (kilo) 103 210
M (mega) 108 220
G (giga) 10° 230
T (tera) 1012 240
P (peta) 1018 250

in Appendix A. If the number system used is not clear from the context, we use a trailing
letter to specify the number system. We use “D” for decimal numbers, “B” for binary numbers,
“Q” for octal numbers, and “H” for hexadecimal (or hex for short) numbers. For example,
10110101B is an 8-bit binary number whereas 10ABH is a hex number.

1.2 Programmer’s View

A programmer’s view of a computer system depends on the type and level of language she
intends to use. From the programmer’s viewpoint, there exists a hierarchy from low-level lan-
guages to high-level languages. As we move up in this hierarchy, the level of abstraction in-
creases. At the lowest level, we have the machine language that is the native language of the
machine. This is the language understood by the machine hardware. Since digital computers use
0 and 1 as their alphabet, machine language naturally uses 1s and 0s to encode the instructions.
One level up, there is the assembly language as shown in Figure 1.2.

Assembly language does not use 1s and Os; instead, it uses mnemonics to express the in-
structions. Assembly language is a close relative of the machine language. In the Pentium,
there is a one-to-one correspondence between the instructions of the assembly language and its
machine language. For example, to increment the variable count, we would write

inc count

in Pentium assembly language. This assembly language instruction is translated into the ma-
chine language as

1111 1111 0000 0110 0000 1010 0000 OOOOB

which, as you can see, is very difficult to read. We improve the situation slightly by writing this
instruction in hexadecimal notation as

FFO60A00H
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Figure 1.2 A programmer’s view of a computer system.

Still, it is not a big help in understanding what this instruction does. Compared to the machine
language, assembly language is far better in understanding programs. Since there is one-to-
one correspondence between many assembly and machine language instructions, it is fairly
straightforward to translate instructions from assembly language to machine language.

Assembler is the software that achieves this code translation. MASM (Microsoft Assem-
bler), TASM (Borland Turbo Assembler), and NASM (Netwide Assembler) are some of the
popular assemblers for the Pentium processors. As a result, only a masochist would consider
programming in a machine language. However, life was not so easy for some of the early pro-
grammers. When microprocessors were first introduced, some programming was in fact done
in machine language!

Although Pentium’s assembly language is close to its machine language, other processors
use the assembly language to implement a virtual instruction set that is more powerful and
useful than the native machine language. In this case, an assembly language instruction could be
translated into a sequence of machine language instructions. We show several examples of such
assembly language instructions when we present details about the MIPS processor assembly
language in Chapter 15.

Assembly language is one step above machine language; however, it is still considered a
low-level language because each assembly language instruction performs a much lower-level
task compared to an instruction in a high-level language. For example, the following C state-
ment, which assigns the sum of four count variables to result
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Figure 1.3 Translation of higher-level languages into machine language is done by assemblers and com-
pilers. A compiler can translate a high-level language program directly into the machine language, or it
can produce the equivalent assembly language.

result = countl + count2 + count3 + count4;

is implemented in the Pentium assembly language as

mov AX,countl
add AX,count2
add AX,count3
add AX,count4
mov result,AX

A compiler translates instructions from a high-level language to the machine language, either
directly or via the assembly language (Figure 1.3).

Don’t worry about the assembly language details here. The point to take away is that several
assembly language instructions are required to implement a high-level language statement. As
a result, assembly language code tends to be much larger than the equivalent high-level lan-
guage code. Furthermore, assembly language instructions are native to a particular processor.
For example, a program written in the Pentium assembly language cannot be executed on the
PowerPC processor. Thus, assembly language programming is machine-specific, as shown in
Figure 1.2. This machine dependence causes code portability problems.

The PC systems maintain backward compatibility in the sense that programs that executed
on earlier Intel processors in the 1970s can still be run on current Pentium processors. This is
possible because Intel processors maintain backward compatibility. However, Apple systems do
not maintain such backward compatibility as the early Apple systems used Motorola processors,
whereas the recent ones use PowerPC processors. Since these two processors have different
instruction sets, programs that ran on one do not run on the other. Programming in assembly
language also requires detailed knowledge about the system such as processor instruction set,
memory organization, and so on.
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One of the important abstractions that a programmer uses is the instruction set architecture
(ISA). A machine language programmer views the machine at the level of abstraction provided
by the ISA. The ISA defines the personality of a processor and indirectly influences the overall
system design. The ISA specifies how a processor functions: what instructions it executes and
what interpretation is given to these instructions. This, in a sense, defines a logical processor.
If these specifications are precise, it gives freedom to various chip manufacturers to implement
physical designs that look functionally the same at the ISA level. Thus, if we run the same pro-
gram on these implementations, we get the same results. Different implementations, however,
may differ in performance and price.

Implementations of the logical processor, shown shaded in Figure 1.2, can be done directly
in the hardware or through another level of abstraction known as the microprogram. We use
the dashed box to indicate that the microprogramming level is optional. We further discuss this
topic in Section 1.5 and Chapter 6.

Two popular examples of ISA specifications are the SPARC and JVM. The rationale behind
having a precise ISA-level specification for the SPARC is to let multiple vendors design chips
that look the same at the ISA level. The JVM, on the other hand, takes a different approach. Its
ISA-level specifications can be used to create a software layer so that the processor looks like
a Java processor. Thus, in this case, we do not use a set of hardware chips to implement the
specifications, but rather use a software layer to simulate the virtual processor. Note, however,
that there is nothing stopping us from implementing these specifications in hardware (even
though this is not usually the case). Thus, the underlying difference is whether the specifications
are implemented in hardware or software.

Why create the ISA layer? The ISA-level abstraction provides details about the machine that
are needed by the programmers to make machine language programs work on the machine. The
idea is to have a common platform to execute programs. If a program is written in C, a compiler
translates it into the equivalent machine language program that can run on the ISA-level logical
processor. Similarly, if you write your program in FORTRAN, use a FORTRAN compiler to
generate code that can execute on the ISA-level logical processor. For us, the abstraction at
the ISA level is also important for one other reason. The ISA represents an interface between
hardware and lowest-level software, that is, at the machine language level.

1.2.1 Advantages of High-Level Languages

High-level languages such as C and Java are preferred because they provide a convenient ab-
straction of the underlying system suitable for problem solving. The advantages of program-
ming in a high-level language rather than in an assembly language include the following:

1. Program development is faster in a high-level language.
Many high-level languages provide structures (sequential, selection, iterative) that facili-
tate program development. Programs written in a high-level language are relatively small
and easier to code and debug.

2. Programs written in a high-level language are easier to maintain.
Programming for a new application can take several weeks to several months, and the
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lifecycle of such an application software can be several years. Therefore, it is critical
that software development be done with a view toward software maintainability, which
involves activities ranging from fixing bugs to generating the next version of the software.
Programs written in a high-level language are easier to understand and, when good pro-
gramming practices are followed, easier to maintain. Assembly language programs tend
to be lengthy and take more time to code and debug. As a result, they are also difficult to
maintain.

3. Programs written in a high-level language are portable.
High-level language programs contain very few machine-specific details, and they can be
used with little or no modification on different computer systems. In contrast, assembly
language programs are written for a particular system and cannot be used on a different
system.

1.2.2 Why Program in Assembly Language?

Despite these disadvantages, some programming is still done in assembly language. There are
two main reasons for this: efficiency and accessibility to system hardware. Efficiency refers to
how “good” a program is in achieving a given objective. Here we consider two objectives based
on space (space-efficiency) and time (time-efficiency).

Space-efficiency refers to the memory requirements of a program (i.e., the size of the code).
Program A is said to be more space-efficient if it takes less memory space than program B to
perform the same task. Very often, programs written in an assembly language tend to generate
more compact executable code than the corresponding high-level language version. You should
not confuse the size of the source code with that of the executable code.

Time-efficiency refers to the time taken to execute a program. Clearly, a program that runs
faster is said to be better from the time-efficiency point of view. Programs written in an assembly
language tend to run faster than those written in a high-level language. However, sometimes a
compiler-generated code executes faster than a handcrafted assembly language code!

As an aside, note that we can also define a third objective: how fast a program can be devel-
oped (i.e., the code written and debugged). This objective is related to programmer productivity,
and assembly language loses the battle to high-level languages.

The superiority of assembly language in generating compact code is becoming increasingly
less important for several reasons. First, the savings in space pertain only to the program code
and not to its data space. Thus, depending on the application, the savings in space obtained
by converting an application program from some high-level language to an assembly language
may not be substantial. Second, the cost of memory (i.e., cost per bit) has been decreasing
and memory capacity has been increasing. Thus, the size of a program is not a major hurdle
anymore. Finally, compilers are becoming “smarter” in generating code that competes well
with a handcrafted assembly code. However, there are systems such as mobile devices and
embedded controllers in which space-efficiency is still important.

One of the main reasons for writing programs in assembly language is to generate code that
is time-efficient. The superiority of assembly language programs in producing a code that runs
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Figure 1.4 The three main components of a computer system are interconnected by a bus.

faster is a direct manifestation of specificity. That is, handcrafted assembly language programs
tend to contain only the necessary code to perform the given task. Even here, a “smart” com-
piler can optimize the code that can compete well with its equivalent written in the assembly
language.

Perhaps the main reason for still programming in an assembly language is to have direct con-
trol over the system hardware. High-level languages, on purpose, provide a restricted (abstract)
view of the underlying hardware. Because of this, it is almost impossible to perform certain
tasks that require access to the system hardware. For example, writing an interface program,
called a device driver, to a new printer on the market almost certainly requires programming
in an assembly language. Since assembly language does not impose any restrictions, you can
have direct control over all of the system hardware. If you are developing system software (e.g.,
compiler, assembler, linker), you cannot avoid writing programs in assembly language.

In this book, we spend a lot time on the assembly language of Pentium and MIPS processors.
Our reasons are different from what we just mentioned. We use assembly language as a tool to
study the internal details of a computer.

1.3 Architect’s View

A computer architect looks at the design aspect from a high level. She uses higher-level build-
ing blocks to optimize the overall system performance. A computer architect is much like an
architect who designs buildings. For example, when designing a building, the building architect
is not concerned with designing the elevator; as far as the architect is concerned, the elevator is
a building block someone else designs. Similarly, a computer architect does not focus on low-
level issues. To give you an example, let’s look at a component called the arithmetic and logic
unit (ALU) that is in all processors. This unit performs arithmetic operations such as addition
and logical operations such as and. A computer architect, however, is not concerned with the
internal details of the ALU.

From the architect’s viewpoint, a computer system consists of three main components: a
processor or central processing unit (CPU), a memory unit, and input/output (I/O) devices. An
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Figure 1.5 Simplified block diagram of a computer system.

interconnection network facilitates communication among these three components, as shown in
Figure 1.4. An architect is concerned with the functional design of each of these components as
well as integration of the whole system. Thus we can categorize architects into several classes,
depending on their design goal. For example, a processor designer (or architect) is responsible
for the processor component. She may deal with issues such as whether the design should
follow the RISC philosophy or use the CISC design. We describe RISC and CISC designs in
Section 1.5, and a later chapter gives more detailed information on them. On the other hand, a
computer system architect designs the system using components such as the processor, memory
unit, and I/O devices.

The interconnection network is called the system bus. The term “bus” is used to represent
a group of electrical signals or the wires that carry these signals. As shown in Figure 1.5, the
system bus consists of three major components: an address bus, a data bus, and a control bus.

The address bus width determines the amount of physical memory addressable by the pro-
cessor. The data bus width indicates the size of the data transferred between the processor and
memory or an I/O device. For example, the Pentium processor has 32 address lines and 64
data lines. Thus, the Pentium can address up to 232, or 4 GB of memory. Furthermore, each
data transfer can move 64 bits of data. The Intel Itanium processor uses address and data buses
that are twice the size of the Pentium buses (i.e., 64-bit address bus and 128-bit data bus). The
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Registers Control unit

Processor

Figure 1.6 These three major components of a processor are interconnected by onchip buses. The
datapath of a processor, shown shaded, consists of its register set and the arithmetic and logic unit.

Itanium, therefore, can address up to 264

bits.

The control bus consists of a set of control signals. Typical control signals include memory
read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request, and
bus grant. These control signals indicate the type of action taking place on the system bus.
For example, when the processor is writing data into the memory, the memory write signal is
generated. Similarly, when the processor is reading from an I/O device, it generates the I/O read
signal.

The system memory, also called the main or primary memory, is used to store both program
instructions and data. Section 1.6 gives more details on the memory component.

As shown in Figure 1.5, the I/O subsystem interfaces the I/O devices to the system. 1/O
devices such as the keyboard, display screen, printer, and modem are used to provide user
interfaces. I/O devices such as disks are used as secondary storage devices. We present details
about the I/O subsystem in Chapters 19 and 20.

bytes of memory and each data transfer can move 128

1.4 Implementer’s View

Implementers are responsible for implementing the designs produced by computer architects.
This group works at the digital logic level. At this level, logic gates and other hardware circuits
are used to implement the various functional units.
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From the implementer’s viewpoint, the processor consists of the three components shown
in Figure 1.6. The control unit fetches instructions from the main memory and decodes them
to find the type of instruction. Thus, the control unit directly controls the operation of the
processor. The datapath consists of a set of registers and one or more arithmetic and logic
units (ALUs). Registers are used as a processor’s scratchpad to store data and instructions
temporarily. Because accessing data stored in the registers is faster than going to the memory,
optimized code tends to put most-often accessed data in processor registers. Obviously, we
would like to have as many registers as possible, the more the better. In general, all registers
are of the same size. For example, registers in a 32-bit processor like the Pentium are all 32 bits
wide. Similarly, 64-bit registers are used in 64-bit processors like the Itanium.

The number of processor registers varies widely. Some processors may have only about 10
registers, and others may have 100+ registers. For example, the Pentium has about 8§ data regis-
ters and 8 other registers, whereas the Itanium has 128 registers just for integer data. There are
an equal number of floating-point and application registers. We discuss the Pentium processor
in Chapter 7 and the Itanium in Chapter 14.

Some of the registers contain special values. For example, all processors have a register
called the program counter (PC). The PC register maintains a marker to the instruction that the
processor is supposed to execute next. Some processors refer to the PC register as the instruction
pointer (IP) register. There is also an instruction register (IR) that keeps the instruction currently
being executed. Although some of these registers are not available, most processor registers can
be used by the programmer.

The data from the register set are fed as input to the ALU through ALU input buses, as
shown in Figure 1.7. Here, we have two buses (A and B) to carry the input operands required
by the ALU. The ALU output is fed back to the register set using the C bus.

The memory interface consists of the four shaded registers. We have already mentioned the
PC and IR registers. The memory address register (MAR) holds the address of the memory and
the memory data register (MDR) holds the data.

The ALU hardware performs simple operations such as addition and logical and on the
two input operands. The ALU control input determines the operation to be done on the input
operands. The ALU output can be placed back in one of the registers or can be written into the
main memory. If the result is to be written into the memory, the ALU output should be placed
in MDR. This value in MDR is written at the memory address in MAR.

In RISC processors, the results are always written into a register. These types of processors
(e.g., MIPS and Itanium) have special instructions to move data between registers and memory.
CISC processors such as the Pentium do not enforce such a restriction. As we show in later
chapters, CISC processors allow the output to go either to one of the registers or to a memory
location.

Implementers are concerned with the design of these components. Figure 1.8 shows a sam-
ple implementation of a simple 1-bit ALU design using digital logic gates. This ALU can
perform logical AND and OR operations on the two inputs A and B; it can also perform two
arithmetic operations: addition (A + B + C;j;,) and subtraction (A — B — Cy,). Clearly, all of
this does not make sense to you right now. The idea in presenting this material is to convey the
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Figure 1.7 This datapath uses three internal buses to connect registers to the ALU.

high-level view, rather than the low-level details. We cover digital design details in Part II of
this book.

Implementers can choose to implement the architecture in several different ways. The im-
plementation, for example, can be done by using custom-designed chips, general-purpose pro-
grammable logic arrays (PLAs), or basic logic gates. An implementer optimizes implemen-
tation to achieve a specific objective such as minimization of cost or minimization of power
consumption (e.g., for handheld devices).

1.5 The Processor

The processor acts as the controller of all actions or services provided by the system. Processor
actions are synchronized to its clock input. A clock signal, which is a square wave, consists of
clock cycles. The time to complete a clock cycle is called the clock period. Normally, we use
the clock frequency, which is the inverse of the clock period, to specify the clock. The clock
frequency is measured in Hertz, which represents one cycle/second. Hertz is abbreviated as Hz.
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Figure 1.8 An example 1-bit ALU design. It can perform one of four functions, selected by F1F, inputs.

J«<—————— Execution cycle —————————=|

IF ID OF IE WB
Instruction | Instruction | Operand | Instruction | Result | Instruction | Instruction | Operand | Instruction | Result
fetch decode fetch execute | write back fetch decode fetch execute | write back

Instruction execution phase

Figure 1.9 An execution cycle consists of fetch, decode, and execution phases. The execution phase
consists of three steps.

Usually, we use mega Hertz (MHz) and giga Hertz (GHz) as in 1.8 GHz Pentium. We give more
details about the clock signal in Section 4.2 on page 111.
The processor can be thought of as executing the following cycle forever (see Figure 1.9):

1. Fetch an instruction from the memory,
2. Decode the instruction (i.e., determine the instruction type),
3. Execute the instruction (i.e., perform the action specified by the instruction).

Execution of an instruction involves fetching any required operands, performing the specified
operation, and writing the results back. This process is often referred to as the fetch-execute
cycle, or simply the execution cycle.

This raises several questions. Who provides the instructions to the processor? Who places
these instructions in the main memory? How does the processor know where in memory these
instructions are located?
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When we write programs—whether in a high-level language or in an assembly language—
we provide a sequence of instructions to perform a particular task (i.e., solve a problem). A
compiler or assembler will eventually translate these instructions to an equivalent sequence of
machine language instructions that the processor understands.

The operating system, which provides instructions to the processor whenever a user pro-
gram is not executing, loads the user program into the main memory. The operating system
then indicates the location of the user program to the processor and instructs it to execute the
program.

The features we have just described are collectively referred to as the von Neumann ar-
chitecture, which uses what is known as the stored program model. The key features of this
architecture are as follows:

* There is no distinction between instructions and data. This requirement has several main
implications:

1. Instructions are represented as numbers, just like the data themselves. This uniform
treatment of instructions and data simplifies the design of memory and software.

2. Instructions and data are not stored in separate memories; a single memory is used
for both. Thus, a single path from the memory can carry both data and instructions.

3. The memory is addressed by location, regardless of the type of data at that location.

* By default, instructions are executed in the sequential manner in which they are present in
the stored program. This behavior can be changed, as you know, by explicitly executing
instructions such as procedure calls.

In contrast to the single memory concept used in the von Neumann architecture, the Harvard
architecture uses separate memories for instructions and data. The term now refers to machines
that have a single main memory but use separate caches for instructions and data (see page 26).

1.5.1 Pipelining

What we have shown in Figure 1.9 is a simple execution cycle. In particular, notice that the
control unit would have to wait until the instruction is fetched from memory. Furthermore, the
ALU would have to wait until the required operands are fetched from memory. As we show
later in this chapter, processor speeds are increasing at a much faster rate than the improvements
in memory speeds. Thus, we would be wasting the control unit and ALU resources by keeping
them idle while the system fetches instructions and data. How can we avoid this situation? Let’s
suppose that we can prefetch the instruction. That is, we read the instruction before the control
unit needs it. These prefetched instructions are typically placed in a set of registers called the
prefetch buffers. Then, the control unit doesn’t have to wait.

How do we do this prefetch? Given that the program execution is sequential, we can prefetch
the next instruction in sequence while the control unit is busy decoding the current instruction.
Pipelining generalizes this concept of overlapped execution. Similarly, prefetching the required
operands avoids the idle time experienced by the ALU.
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S5: WB In 12 13 14 I5 I6

Figure 1.10 A pipelined execution of the basic execution cycle shown in Figure 1.9.

Figure 1.10 shows how pipelining helps us improve the efficiency. As we have seen in
Figure 1.9, the instruction execution can be divided into five parts. In pipelining terminology,
each part is called a stage. For simplicity, let’s assume that execution of each stage takes the
same time (say, one cycle). As shown in Figure 1.10, each stage spends one cycle in executing
its part of the execution cycle and passes the instruction on to the next stage. Let’s trace the
execution of this pipeline during the first few cycles. During the first cycle, the first stage S1
fetches the instruction. All other stages are idle. During Cycle 2, S1 passes the first instruction
I1 to stage S2 for decoding and S1 initiates the next instruction fetch. Thus, during Cycle 2, two
of the five stages are busy: S2 decodes I1 while S1 is busy with fetching 12. During Cycle 3,
stage S2 passes instruction I1 to stage S3 to fetch any required operands. At the same time, S2
receives 12 from S1 for decoding while S1 fetches the third instruction. This process is repeated
in each stage. As you can see, after four cycles, all five stages are busy. This state is called the
pipeline full condition. From this point on, all five stages are busy.

Figure 1.11 shows an alternative way of looking at pipelined execution. This figure clearly
shows that the execution of instruction I1 is completed in Cycle 5. However, after Cycle 5,
notice that one instruction is completed in each cycle. Thus, executing six instructions takes
only 10 cycles. Without pipelining, it would have taken 30 cycles.

Notice from this description that pipelining does not speed up execution of individual in-
structions; each instruction still takes five cycles to execute. However, pipelining increases the
number of instructions executed per unit time; that is, instruction throughput increases.

1.5.2 RISC and CISC Designs

We have briefly mentioned the two basic types of processor design philosophies: reduced in-
struction set computers (RISC) and complex instruction set computers (CISC). First, let us talk
about the trend line. The current trend in processor design is to use RISC philosophy. In the
1970s and early 1980s, processors predominantly followed the CISC designs. To understand
this shift from CISC to RISC, we need to look at the motivation for going the CISC way initially.
But first we have to explain what these two types of design philosophies are.
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Time (cycles) ———=

Instruction | 1 2 3 4 5 6 7 8 9 10
11 IF ID OF IE WB
12 IF ID OF IE WB
13 IF ID OF IE WB
14 IF ID OF IE WB
15 IF ID OF IE WB
16 IF ID OF IE WB

Figure 1.11 An alternative way of looking at the pipelined execution shown in Figure 1.10.

As the name suggests, CISC systems use complex instructions. What is a complex instruc-
tion? For example, adding two integers is considered a simple instruction. But, an instruction
that copies an element from one array to another and automatically updates both array subscripts
is considered a complex instruction. RISC systems use only simple instructions such as the ad-
dition. Furthermore, RISC systems assume that the required operands are in the processor’s
registers, not in main memory. As mentioned before, a CISC processor does not impose such
restrictions. So what? It turns out that characteristics like simple instructions and restrictions
like register-based operands not only simplify the processor design but also result in a proces-
sor that provides improved application performance. We give a detailed list of RISC design
characteristics and its advantages in Chapter 14.

How come the early designers did not think about the RISC way of designing processors?
Several factors contributed to the popularity of CISC in the 1970s. In those days, memory
was very expensive and small in capacity. For example, even in the mid-1970s, the price of a
small 16 KB memory was about $500. You can imagine the cost of memory in the 1950s and
1960s. So there was a need to minimize the amount of memory required to store a program.
An implication of this requirement is that each processor instruction must do more, leading to
complex instructions. This caused another problem. How can a processor be designed that
can execute such complex instructions using the technology of the day? Complex instructions
meant complex hardware, which was also expensive. This was a problem processor designers
grappled with until Wilkes proposed microprogrammed control in 1951 [39].

A microprogram is a small run-time interpreter that takes the complex instruction and gen-
erates a sequence of simple instructions that can be executed by hardware. Thus the hardware
need not be complex. Once it became possible to design such complex processors by using
microprogrammed control, designers went crazy and tried to close the semantic gap between
the instructions of the processor and high-level languages. This semantic gap refers to the fact
that each instruction in a high-level language specifies a lot more work than an instruction in
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Figure 1.12 The ISA-level architecture can be implemented either directly in hardware or through a mi-
croprogrammed control.

ISA'1 ISA2 ISA3
Microprogram 1 Microprogram 2 Microprogram 3
Hardware

Figure 1.13 Variations on the ISA-level architecture can be implemented by changing the microprogram.

the machine language. Think of a while loop statement in a high-level language such as C, for
example. If we have a processor instruction with the while loop semantics, we could just use
one machine language instruction. Thus, most CISC designs use microprogrammed control, as
shown in Figure 1.12.

RISC designs, on the other hand, eliminate the microprogram layer and use the hardware
to directly execute instructions. Here is another reason why RISC processors can potentially
give improved performance. One advantage of using microprogrammed control is that we can
implement variations on the basic ISA architecture by simply modifying the microprogram;
there is no need to change the underlying hardware, as shown in Figure 1.13. Thus, it is possible
to come up with cheaper versions as well as high-performance processors for the same family.
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Address Address
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2’2 FFFFFFFF
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2 00000002
1 00000001
0 00000000

Figure 1.14 Logical view of the system memory.

1.6 Memory

The memory of a computer system consists of tiny electronic switches, with each switch in one
of two states: open or closed. It is, however, more convenient to think of these states as 0 and 1,
rather than open and closed. Thus, each switch can represent a bit. The memory unit consists
of millions of such bits. In order to make memory more manageable, eight bits are grouped into
a byte. Memory can then be viewed as consisting of an ordered sequence of bytes. Each byte
in this memory is identified by its sequence number starting with 0, as shown in Figure 1.14.
This is referred to as the memory address of the byte. Such memory is called byte addressable
memory because each byte has a unique address.

The Pentium can address up to 4 GB (232 bytes) of main memory (see Figure 1.14). This
magic number comes from the fact that the address bus of the Pentium has 32 address lines. This
number is referred to as the memory address space. The memory address space of a system is
determined by the address bus width of the processor used in the system. The actual memory
in a system, however, is always less than or equal to the memory address space. The amount
of memory in a system is determined by how much of this memory address space is populated
with memory chips.

Although the 4-GB memory address space of the Pentium is large for desktop systems, it is
not adequate for server systems. To support this market, 64-bit processors support even larger
memory address space. Typically, these processors use 64-bit addresses. For example, the Intel
64-bit Itanium processor uses 64-bit addresses with an address space of 264 bytes.
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Figure 1.15 Block diagram of the system memory.

1.6.1 Basic Memory Operations

The memory unit supports two basic operations: read and write. The read operation reads
previously stored data and the write operation stores a new value in memory. Both of these
operations require a memory address. In addition, the write operation requires specification of
the data to be written. The block diagram of the memory unit is shown in Figure 1.15. The
address and data of the memory unit are connected to the address and data buses of the system
bus, respectively. The read and write signals come from the control bus.

Two metrics are used to characterize memory. Access time refers to the amount of time
required by the memory to retrieve the data at the addressed location. The other metric is the
memory cycle time, which refers to the minimum time between successive memory operations.

The read operation is nondestructive in the sense that one can read a location of the mem-
ory as many times as one wishes without destroying the contents of that location. The write
operation, however, is destructive, as writing a value into a location destroys the old contents of
that memory location. It seems only natural to think that the read operation is nondestructive.
You will be surprised to know that the DRAM you are familiar with has the destructive read
property. Thus, in DRAMs, a read has to be followed by a write to restore the contents.

Steps in a Typical Read Cycle:

1. Place the address of the location to be read on the address bus,

2. Activate the memory read control signal on the control bus,

3. Wait for the memory to retrieve the data from the addressed memory location and place
them on the data bus,

4. Read the data from the data bus,

5. Drop the memory read control signal to terminate the read cycle.

A simple Pentium read cycle takes three clock cycles. During the first clock cycle, Steps 1
and 2 are performed. The Pentium waits until the end of the second clock and reads the data and
drops the read control signal. If the memory is slower (and therefore cannot supply data within
the specified time), the memory unit indicates its inability to the processor and the processor
waits longer for the memory to supply data by inserting wait cycles. Note that each wait cycle
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introduces a waiting period equal to one system clock period and thus slows down the system
operation.

Steps in a Typical Write Cycle:

Place the address of the location to be written on the address bus,
Place the data to be written on the data bus,

Activate the memory write control signal on the control bus,
Wait for the memory to store the data at the addressed location,

vk W=

Drop the memory write signal to terminate the write cycle.

As with the read cycle, the Pentium requires three clock cycles to perform a simple write
operation. During the first clock cycle, Steps 1 and 3 are done. The idea behind initiating Step 3
ahead of Step 2 is to give advance notice to the memory as to the type of operation. Step 2
is performed during the second clock cycle. The Pentium gives memory time until the end of
the second clock and drops the memory write signal. If the memory cannot write data at the
maximum processor rate, wait cycles can be introduced to extend the write cycle to give more
time to the memory unit. We discuss hardware memory design issues in Chapter 16.

1.6.2 Byte Ordering

Storing data often requires more than a byte. For example, we need four bytes of memory to
store an integer variable that can take a value between 0 and 232 — 1. Let us assume that the
value to be stored is the one in Figure 1.16a.

Suppose that we want to store these 4-byte data in memory at locations 100 through 103.
How do we store them? Figure 1.16 shows two possibilities: least significant byte (Fig-
ure 1.16b) or most significant byte (Figure 1.16¢) is stored at location 100. These two byte
ordering schemes are referred to as the little endian and big endian. In either case, we always
refer to such multibyte data by specifying the lowest memory address (100 in this example).

Is one byte ordering scheme better than the other? Not really! It is largely a matter of
choice for the designers. For example, Pentium processors use the little-endian byte ordering.
However, most processors leave it up to the system designer to configure the processor. For
example, the MIPS and PowerPC processors use the big-endian byte ordering by default, but
these processors can be configured to use the little-endian scheme.

The particular byte ordering scheme used does not pose any problems as long as you are
working with machines that use the same byte ordering scheme. However, difficulties arise
when you want to transfer data between two machines that use different schemes. In this case,
conversion from one scheme to the other is required. For example, the Pentium provides two
instructions to facilitate such conversion: one to perform 16-bit data conversions and the other
for 32-bit data.

1.6.3 Two Important Memory Design Issues

When designing system memory, some major issues need to be addressed:
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Figure 1.16 Two byte ordering schemes commonly used by computer systems.

1. Slower Memories: Advances in technology and processor architecture led to extremely
fast processors. Technological advances pushed the basic clock rate into giga Hertz range.
Simultaneously, architectural advances such as multiple pipelines and superscalar designs
reduced the number of clock cycles required to execute an instruction. Thus, there is a
lot of pressure on the memory unit to supply instructions and data at faster rates. If
the memory can’t supply the instructions and data at a rate required by the processor,
what is the use of designing faster processors? To improve overall system performance,
ideally, we would like to have lots of fast memory. Of course, we don’t want to pay for
it. Designers have proposed cache memories to satisfy these requirements.

2. Physical Memory Size Limitation: Even though processors have a large memory address
space, only a fraction of this address space actually contains memory. For example, even
though the Pentium has 4 GB of address space, most PCs now have between 128 MB and
256 MB of memory. Furthermore, this memory is shared between the system and appli-
cation software. Thus, the amount of memory available to run a program is considerably
smaller. In addition, if you run more programs simultaneously, each application gets an
even smaller amount of memory. You might have experienced the result of this: terrible
performance.

Apart from the performance issue, this scenario also causes another more important prob-
lem: What if your application does not fit into its allotted memory space? How do you
run such an application program? This is the motivation for proposing virtual memory,
which we briefly describe later.
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Figure 1.17 Most current processors use separate caches for instructions and data with separate instruc-
tion and data buses.

Cache memory: Cache memory successfully bridges the speed gap between the processor and
memory. The cache is a small amount of fast memory that sits between the processor and the
main memory. Cache memory is implemented by using faster memory technology compared to
the technology used for the main memory. Abstractly, we can view the processor’s register set
as the fastest memory available to store data. The next best is the cache memory.

Cache memory is much smaller than the main memory. In PCs, for example, main memory
is typically in the 128 to 256 MB range, whereas the cache is in the range of 16 to 512 KB.

The principle behind the cache memories is to prefetch the instructions and data from the
main memory before the processor needs them. If we are successful in predicting what the
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processor needs in the near future, we can preload the cache and supply the instructions and
data from the faster cache. Early processors were designed with a common cache for both
instructions and data. Most processors now use two separate caches: one for instructions and
the other for data (Figure 1.17). This design uses separate buses for instructions and data. Such
architectures are commonly referred to as the Harvard architecture.

It turns out that predicting processor future accesses is not such a difficult thing. To success-
fully predict the processor access needs, we need to understand the access referencing behavior
of programs. Several researchers have studied program referencing behavior and shown that
programs exhibit a phenomenon known as locality in their referencing behavior. This behavior
can be exploited to successfully predict future accesses. In practice, we can predict with more
than 90% accuracy! Cache memory is discussed in detail in Chapter 17.

Virtual memory: Virtual memory was developed to eliminate the physical memory size restric-
tion mentioned before. There are some similarities between the cache memory and virtual mem-
ory. Just as with the cache memory, we would like to use the relatively small main memory and
create the illusion (to the programmer) of a much larger memory, as shown in Figure 1.18. The
programmer is concerned only with the virtual address space. Programs use virtual addresses
and when these programs are run, their virtual addresses are mapped to physical addresses at
run time.

The illusion of larger address space is realized by using much slower disk storage. Virtual
memory can be implemented by devising an appropriate mapping function between the virtual
and physical address spaces. As a result of this similarity between cache and virtual memories,
both memory system designs are based on the same underlying principles. The success of
the virtual memory in providing larger virtual address space also depends on the locality we
mentioned before.

Before the virtual memory technique was proposed, a technique known as overlaying was
used to run programs that were larger than the physical memory. In this technique, the pro-
grammer divides the program into several chunks, each of which could fit in the memory. These
chunks are known as the overlays. The whole program (i.e., all overlays) resides on the disk.
The programmer is responsible for explicitly managing the overlays. Typically, when an over-
lay in the memory is finished, it will bring in the next overlay that is required for program
execution. Needless to say, this is not something a programmer relishes. Virtual memory takes
this onerous task away from the programmer by automating the management of overlays with-
out involving the programmer. Typically, virtual memory implementations provide much more
functionality than the management of overlays. We discuss virtual memory in Chapter 18.

1.7 Input/Output

Input/output devices provide the means by which a computer system can interact with the out-
side world. Computer systems typically have several I/O devices, from slow devices such as
the keyboard to high-speed disk drives and communication networks. Irrespective of the type
of device, the underlying principles of interfacing an I/O device are the same. This interface
typically consists of an I/O controller.
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Figure 1.18 Virtual memory creates the illusion of a much larger memory to the programmer than what is
physically available in the system.

Some I/O devices such as printers, keyboards, and modems are used to communicate with
outside entities (could be a user or another computer). We also use /O devices such as disk
drives and CD writers to store data. Regardless of the intended purpose. the system commu-
nicates with the /O devices through the system bus, as shown in Figure 1.5 on page 13. An
10 controller acts as an interface between the system bus and the 1/O device, as shown in
Figure 1.19.

1/O controllers have three types of internal registers—a data register, a command register,
and a status register—as shown in Figure 1.19. When the processor wants to interact with an
/0 device, it communicates only with the associated I/O controller. A processor can access the
internal registers of an /O controller through what are known as the /O ports. An /O port is
a fancy name for the address of a register in an I/O controller. In that sense, the I/O port is like
the memory address we use to specify a memory location. Since /O ports appear as memory
addresses, why not assign some part of the memory address space. where there is no physical
memory, for /O ports? We certainly can. If we map VO ports like this, it 1s called memory-
mapped I/O. Most processors, including the PowerPC and MIPS, support only memoryv-mapped
Lo.

Sometimes we don’t want to take part of memory address space for /O ports, particularly
if the memory address space we have i1s small for our applications. This was the case, for
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Figure 1.19 Block diagram of a generic 1/O device interface.

example, when Intel introduced the 8086 processor. This processor had 20 address lines, which
means it could address only one megabyte (1 MB) of memory. That is not a large address space
considering that current PCs have 128 MB to 512 MB of physical memory.

In such cases, it is better to create a separate I/O address space. This mapping scheme is
called isolated I/O. Because the Pentium is backward compatible to the earlier 8086 proces-
sor, the Pentium still supports isolated I/O. In memory-mapped I/O, writing to an I/O port is
like writing to a memory location. Thus, memory-mapped I/O does not require any special
design consideration. Thus, all processors, including the Pentium, inherently support memory-
mapped I/O. In isolated I/O, special I/O instructions are needed to access the I/0 address space.
Details on these two mapping schemes and their impact on processor design are discussed in
Chapter 19.

I/0 ports provide the basic access to I/O devices via the associated I/O controller. We still
will have to devise ways to transfer data between the system and I/O devices using the I/O
ports. A simple way of transferring data is to ask the processor to do the transfer. In this
scheme of things, the processor is responsible for transferring data word by word. Typically, it
executes a loop until the data transfer is complete. This technique is called programmed 1/0.
One disadvantage of this scheme is that it wastes processor time. That is like asking a highly
paid CEO of a company to take care of the company’s reception area.

Is there another way of performing the I/O activity without wasting the processor’s time?
Carrying on with our analogy, we would naturally hire a receptionist and ask him to handle
these low-level chores. Computer systems also employ a similar technique. It is called direct
memory access (DMA). In DMA, the processor gives the command such as “transfer 10 KB to
I/O port 125” and the DMA performs the transfer without bothering the processor. Once the
operation is complete, the processor is notified. This notification is done by using an interrupt
mechanism. We use DMA to transfer bulk data, not for single word transfers. A special DMA
controller is used to direct the DMA transfer operations. We discuss these topics in detail in
Chapters 19 and 20.
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1.8 Interconnection: The Glue

You realize from our discussion so far that computer systems have several components intercon-
nected by buses. We can talk about buses at various levels. The processor uses several internal
buses to interconnect registers and the ALU. We also need interconnection to carry the control
unit’s signals. For example, in Figure 1.7, we used three buses (A, B, and C buses) to provide
the interconnection between the register set and the ALU. Similarly, in Figure 1.17, data and
instruction buses are used to connect various execution units to their caches. These are just two
examples; a processor may have several such buses. These buses are called the onchip buses
and are not accessible from outside the chip. We discuss the datapath in detail in Chapter 6.

The second type of buses is internal to a system. For example, the system bus shown in Fig-
ure 1.5 is typically inside the CPU box. Several bus standards have been proposed to facilitate
interchangeability of system components. These include the ISA, PCI, AGP, and PCMCIA. A
computer system typically has several of these buses (for a quick peek, look at Figure 5.14 on
page 167). Chapter 5 describes various internal buses.

External buses, on the other hand, are used to interface the devices outside a typical com-
puter system. Thus, by our classification, serial and parallel interfaces, universal serial bus
(USB), and IEEE 1394 (also known as the FireWire) belong to the external category. These
buses are typically used to connect I/O devices. External buses are discussed in Chapter 19.

Since the bus is a shared resource, we need to define how the devices connected to the bus
will use it. For this purpose, we define bus transaction as a sequence of actions to complete
a well-defined activity. Every bus transaction involves a master and a slave. Some examples
of such activities are memory read, memory write, I/O read, and burst read. During a bus
transaction, a master device will initiate the transaction and a slave device will respond to
the master’s request. In a memory read/write transaction, the processor is the master and the
memory is the slave. Some units such as memory can only act as slaves. Other devices can act
both as master and slave (but not at the same time). The DMA controller is an example. It acts
as a slave when receiving a command from the processor. However, during the DMA transfer
cycles, it acts as the master.

A bus transaction may perform one or more bus operations. For example, the Pentium burst
read transfers four words. Thus this bus transaction consists of four memory read operations.
Each operation may take several bus cycles. A bus cycle is the clock cycle of the bus clock.

Bus systems with more than one potential bus master need a bus arbitration mechanism to
allocate the bus to a bus master. The processor is the bus master most of the time, but the DMA
controller acts as the bus master during DMA transfers. In principle, bus arbitration can be done
either statically or dynamically. In the static scheme, bus allocation among the potential masters
is done in a predetermined way. For example, we might use a round-robin allocation that rotates
the bus among the potential masters. The main advantage of a static mechanism is that it is easy
to implement. However, since bus allocation follows a predetermined pattern rather than the
actual need, a master may be given the bus even if it does not need it. This kind of allocation
leads to inefficient use of the bus. Consequently, most bus arbitration implementations use a
dynamic scheme, which uses a demand-driven allocation scheme. We present details on bus
arbitration in Chapter 5.
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1.9 Historical Perspective

This section traces the history of computers from their mechanical era. Our treatment is very
brief. There are several sources that cover this material, including [8, 14, 9, 37, 28, 33].

1.9.1 The Early Generations

Before the vacuum tube generation, computing machines were either purely mechanical or elec-
tromechanical. Mechanical devices, called calculating machines, were built using gears and
powered by a hand-operated crank. Perhaps the most well-known mechanical system, called
the difference engine, was built by Charles Babbage (1792-1871). His analytical engine, a suc-
cessor of the difference engine, had many of the components we have in our current computers.
It had an ALU (it was called the mill), a memory (called the store), and input and output devices
of the time.

The move away from the mechanical gears and cranks took place in the 1930s with the avail-
ability of electromagnetic relays. George Stibitz, a Bell Telephone Laboratories mathematician,
developed the first demonstrable electromechanical machine. It was exhibited at a meeting
of the American Mathematical Society at Dartmouth College in 1940. Independently, Konrad
Zuse of Germany built several relay machines. But his work was kept secret due to Germany’s
involvement in World War II. His machines were later destroyed by the Allied bombing. Others
involved in the development of relay generation machines include John Atanasoff of lowa State
College.

1.9.2 Vacuum Tube Generation: Around the 1940s and 1950s

Vacuum tubes brought computers from the mechanical to the electronic era. Clearly, delays
were substantially reduced. Presper Eckert and John Mauchly of the University of Pennsylvania
designed the ENIAC (electronic numerical integrator and computer) system, which became
operational in World War II. It used about 18,000 vacuum tubes and could perform nearly 5000
additions per second. There was no concept of the program as we know it. Reprogramming the
machine took most of a day rewiring! It was under these circumstances that John von Neumann,
along with others, proposed the concept of the stored program that we use even today. The idea
was to keep a program in the memory and read the instructions from it, rather than hardwiring
the program. He also proposed an architecture that clearly identified the components we have
presented in this chapter: ALU, control, input, output, and memory. This architecture is known
as the von Neumann architecture.

Magnetic core memories were invented during this timeframe. Core memories were used
until the 1970s! Even today, we use the term core to mean the main memory. You might
have heard about “core dumps” to check the contents of main memory. There is also a current
research area that works on out-of-core computations. As mentioned before, Maurice Wilkes
proposed the microprogramming concept during this time.
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1.9.3 Transistor Generation: Around the 1950s and 1960s

The invention of the transistor at Bell Labs in 1948 has led to the next generation of computer
systems. Transistors have several significant improvements over the previous generation’s basic
building block, the vacuum tube. Compared to vacuum tubes, transistors are small in size,
consume substantially less power, and have much lower failure rates.

Magnetic core memories were still widely used for main memory. High-level languages
such as FORTRAN were developed to ease the programming of mathematical and scientific
applications. IBM became a dominant player during this period.

1.9.4 IC Generation: Around the 1960s and 1970s

The next generation systems benefited from our ability to put several transistors on a single sili-
con chip. This has led to the development of integrated circuits (ICs), in which an entire circuit
is fabricated on a single chip. Some of these ICs are still available on the market (see our discus-
sion of digital logic chips in the next chapter). Texas Instruments and Fairchild Semiconductor
made ICs for sale in 1958.

ICs quickly replaced the magnetic core memory. IBM still held its dominant position with
the introduction of mainframe systems. There have been developments on the operating system
front as well. Multiprogramming and time-sharing were proposed to improve response times
and system efficiency. The arrival of the disk drive definitely helped in this endeavor. IBM
introduced their System/360 model in the mid-1960s. Digital Equipment Corporation (DEC)
(now part of Compaq) started selling minicomputers to universities.

1.9.5 VLSI Generations: Since the Mid-1970s

Ever since ICs were made possible, the density has been growing at a phenomenal rate. By the
mid-1970s, more than 10,000 components could be fabricated on a single chip. This has led to
the development of smaller processors on a chip. These processors were called microprocessors,
to contrast them with the processors in mainframe systems from IBM and minicomputers from
DEC.

Intel produced the first microprocessor 4004 in 1971. It required only 23,000 transistors.
To gauge the progress made since then, compare this number with the number of transistors in
the Pentium when it was introduced in 1993: 3 million. We now have the technology to put 100
million transistors on a chip.

With the introduction of personal computers (PCs), several new players came into existence.
These are the names that need no introduction: Intel, Microsoft, Apple, and so on. As we
have discussed in this chapter, technological advances coupled with architectural improvements
continue to lead computer system design.

We are in the midst of an information revolution. If we can get biological computers to
work, that would qualify as the next generation. Imagine that in 20 years, the Pentiums and
PowerPCs will be looked upon as primitive processors!
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Figure 1.20 Transistor density in Intel processors.

1.10 Technological Advances

The current trend toward miniaturization has its roots in the IC concept. Every component of a
computer system has experienced phenomenal improvement over time. It is not only the compo-
nents that we discussed in this chapter—processor, memory, disk storage, and buses—but also
communications networks are experiencing similar growth. This integration of computer and
communication bodes well for the future generations of systems. This section briefly comments
on the rate of growth for some of these components.

The primary driving force for the improvement in processors and memory is our ability to
pack more and more transistors onto a single chip. Gordon Moore, cofounder of Intel, observed
in 1965 that the transistor count per chip was doubling every year. This observation, known as
Moore’s law, continued to hold into the early 1970s. Then things slowed down a bit as shown in
Figure 1.20. Until the 1990s, the transistor count doubled every 18 to 24 months. In the 1990s, it
slowed down further, doubling about every 2.5 years. This tremendous rate of growth in density
allows us to design more powerful processors and larger capacity memories. In addition, the
higher density has the following implications:

* We get increased reliability due to fewer external connections,
* Our ability to reduce the size is leading to the current emphasis on device miniaturization,

* We get increased speed due to shorter path lengths.

Memory capacities are also improving at a similar pace. Until the 1990s, dynamic RAMs
(DRAMs), which is what we use for our main memory, quadrupled every three years. This
rate of growth in capacity gives us the same average rate (of doubling every 18 months) as
the processors. The recent growth in density appears to have slowed down to quadrupling every
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Figure 1.22 Capacities of 3.5-in. and 2.5-in. form factor disk drives from IBM.

four to five years as shown in Figure 1.21. Disk drive capacities are also increasing substantially
as shown in Figure 1.22.

We talked a great deal about the capacities. From the capacity point of view, all three compo-
nents seem to progress in unison. However, when you look at the operational speed, processors
are way ahead of the memory access times for DRAMs. This speed differential is, in part, due
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1.11

to the improvements in architecture. For example, with pipelining and superscalar designs, we
can increase the rate of instruction execution. Currently, processors seem to improve at 25 to
40% per year, whereas memory access times are improving at about 10% per year. As we have
seen in this chapter, we need to bridge this gap. For example, we can use caches to bridge the
speed gap between processors and memory, and between memory and disk storage.

Summary and Outline

How one views a computer system depends on the type of use and level of interaction. A user
interested in running a specific application program does not need to know a lot of internal
system details. A rudimentary knowledge of how to turn the system on, how to execute a
program (e.g., point-and-click), and a few details about the user-level interface provided by the
system are sufficient. If you are a programmer, you need to know a lot more. Even within
this group, the kind of language you use determines the level of detail you need to know. An
assembly language programmer should know more details about the components such as the
processor, memory, and I/O subsystem. A Java programmer, on the other hand, need not know
all these details.

In this chapter, we have essentially presented an overview of computer system organization
and architecture. Our goal in presenting this information is to give you a gentle, high-level
introduction to the book’s subject matter. In that sense, this chapter serves as an introduction to
the entire book.

We have divided the rest of the book into seven parts. Part II covers digital logic design
concepts. It consists of three chapters that give details on the nuts and bolts of computer systems.
The first chapter of Part VII is also related to this part as it deals with the design at the digital
logic level. These four chapters give you a good grounding on the basic hardware devices used
to implement major functional units of a computer system.

System interconnects are covered mainly in Part III. This part consists of a single chapter,
which covers internal buses including PCI and PCMCIA. There are two other chapters that deal
with buses as well. Chapter 6 describes onchip buses required to implement the datapath of a
processor. External buses, including USB and IEEE 1394, are described in Chapter 19.

Processor details are covered in several parts. Part IV presents the basic processor design
issues, details about pipelining, and vector and Pentium processors. RISC processor details
are covered in Part VI. This part discusses the PowerPC, Intel Itanium, and MIPS. A complete
chapter is dedicated to MIPS assembly language programming. SPARC processor details are
given in Appendix H. Pentium assembly language programming is in Part V, which consists
of five chapters. In this part, we devote a complete chapter to describe the interaction between
assembly language and high-level languages. We use C as the representative of a high-level
language.

Memory design and related topics are presented in Part VII. This part consists of three
chapters. The first chapter describes memory design at the digital logic level. The remaining
two chapters give details on cache and virtual memories.
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Part VIII presents details on the I/O subsystem in two chapters. The first chapter covers
programmed I/O, DMA, and external buses. We use an example assembly language program
to describe how programmed I/O works. In the next chapter, we redo the same example using
interrupts to bring out the similarities and differences between programmed I/O and interrupt-
driven I/O. This chapter deals with the interrupt mechanism, focusing on the Pentium interrupts.
We use assembly language programs to explain some of the features of the interrupt mechanism.

The appendices provide a variety of reference information. Topics covered here include
computer arithmetic as well as details on assembling, linking, and debugging assembly lan-
guage programs. We also present details about digital circuit simulators and the MIPS simulator.
For your easy reference, Pentium instructions are given in one of the appendices.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to
test your understanding of the material presented in the chapter. The Index at the back of the
book gives the reference page numbers for these terms and concepts:

* Address bus * Microprogram

» Assembler * Memory access time

* Assembly language * Memory address space

* Bigendian * Memory cycle time

* Byte addressable memory * Memory operations

* Byte ordering * Memory read cycle

» CISC * Memory write cycle
 Control bus * Pipelining

» Data bus * Programmer productivity
* Datapath * RISC

» Execution cycle * Space-efficiency

» Harvard architecture * System bus

* 1/O controller * Time-efficiency

* 1/O ports + von Neumann architecture
« Little endian * Wait cycles

Machine language

1.12 Exercises

1-1 Describe the instruction execution cycle.

1-2 What are the main components of a system bus? Describe the functionality of each com-
ponent.

1-3 What is the purpose of providing various registers in a processor?

1-4 What is the relationship between assembly language and machine language?
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1-5
1-6
1-7
1-8
1-9
1-10
1-11

1-12
1-13
1-14

1-15
1-16
1-17
1-18

Exercises 37

Why is assembly language called a low-level language?

What are the advantages of high-level languages compared to assembly language?
Why do we still program in assembly language?

What is the purpose of the datapath in a processor?

What is the role of the microprogram?

What benefits do we get by using pipelining in a processor?

Explain why CISC processors tend to use microprogramming but not the RISC proces-
sors.

Describe the little-endian and big-endian byte ordering schemes.
What is a byte addressable memory?

If a processor has 16 address lines, what is the physical memory address space of this
processor? Give the address of the first and last addressable memory locations in hex.

What is the purpose of cache memory?
What is the purpose of virtual memory?
What is an I/O port?

What is bus arbitration?






Chapter 2

Digital Logic Basics

Objectives
* To introduce basic logic gates;
* To discuss properties of logical expressions;
* To show how logical expressions can be simplified and implemented;
* To illustrate the digital logic design process.

Viewing computer systems at the digital logic level exposes us to the nuts and bolts of the
basic hardware. We cover the necessary digital logic background in three chapters. In this first
chapter, we look at the basics of digital logic. We start off with a look at the basic gates such as
AND, OR, and NOT gates. The completeness property and implementation of these gates using
transistors are discussed next. We then describe how logical functions can be derived from the
requirement specifications.

We introduce Boolean algebra to manipulate logical expressions. Once a logical expres-
sion is obtained, we have to optimize (simplify) this expression so that we can use minimum
hardware to implement the logical function. There are several methods to simplify logical ex-
pressions. We present three methods: the algebraic, Karnaugh map, and Quine—McCluskey
methods. The first one is based on Boolean algebra and is difficult to use as a general method.
The Karnaugh map method is a graphical method suitable for simplifying logical expressions
with a small number of variables. The last method is a tabular one and is suitable for simplify-
ing logical expressions with a large number of variables. Furthermore, the Quine—McCluskey
method is suitable for automating the simplification process. Toward the end of the chapter, we
take a look at how we can implement logical functions using gates other than the three basic
gates.

41
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2.1 Introduction

The hardware that is responsible for executing machine language instructions can be built using
a large number of a few basic building blocks. These building blocks are called /ogic gates.
These logic gates implement the familiar logical operations such as AND, OR, NOT, and so on,
in hardware. For example, as we show later, we can build hardware circuits using only AND
and NOT gates or their equivalent. The purpose of this chapter is to provide the basics of the
digital hardware.

Logic gates are in turn built using transistors. One transistor is enough to implement a
NOT gate. But we need three transistors to implement the AND gate. In that sense, transistors
are the basic electronic components of digital hardware circuits. For example, the Pentium
processor introduced in 1993 consists of about 3 million transistors. In 2000, it was possible
to design chips that use 100 million transistors. How do the designers of these chips manage
such complexity? Obviously, they need a higher-level abstraction to aid the design process.
Of course, design automation is also a must. For example, logic gates such as AND and OR
represent a higher-level abstraction than the basic transistor level. After going through this
chapter, you will realize that even this level of abstraction is not good enough; there are still
millions of gates to handle in designing a processor. In the next two chapters, we discuss even
higher levels of abstractions.

Our discussion of digital logic design is divided into three chapters. This chapter deals with
the basics of digital logic gates and their implementation. As we mentioned, we need to devise
higher-level abstractions to reduce the complexity of digital circuit design. We look at two
higher levels of abstractions—combinational and sequential circuits—in the next two chapters.
In combinational circuits, the output of the circuit depends solely on the current inputs applied
to the circuit. The adder is an example of a combinational circuit. The output of an adder
depends only on the current inputs. On the other hand, the output of a sequential circuit depends
not only on the current inputs but also on the past inputs. That is, output depends both on the
current inputs as well as on how it got to the current state. For example, in a binary counter,
the output depends on the current value. The next value is obtained by incrementing the current
value (in a way, the current state represents a snapshot of the past inputs). That is, we cannot
say what the output of a counter will be unless we know its current state. Thus, the counter is
a sequential circuit. We discuss combinational circuits in Chapter 3 and sequential circuits in
Chapter 4. The circuits we design in this chapter are also combinational circuits.

2.2 Basic Concepts and Building Blocks

2.2.1 Simple Gates

You are familiar with the three basic logical operators: AND, OR, and NOT. Digital circuits
to implement these and other logical functions are called gates. Figure 2.1 shows the symbol
notation used to represent AND, OR, and NOT gates. We have also included the truth table
for each gate. A truth table is a list of all possible input combinations and their corresponding
output. For example, if you treat a logical zero as representing false and a logical 1 truth, you
can see that the truth table for the AND gate represents the logical AND operation.
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A B F
0 0 0
A
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B 1 0| 0
AND gate 1 L
A B F
0 0 0
A
D
B 1o 1
OR gate 1 L
_AlF
A % F 0] 1
NOT gate B
Logic symbol Truth table

Figure 2.1 Basic logic gates: Logic symbols and truth tables.

In logical expressions, we use the dot, +, and overbar to represent the AND, OR, and NOT
operations, respectively. For example, the output of the AND gate in Figure 2.1 is written as
F = A . B. Assuming that single letters are used for logical variables, we often omit the dot and
write the previous AND function as F = A B. Similarly, the OR function is written as F= A + B.
The output of the NOT gate is expressed as F = A. Some authors use a prime to represent the
NOT operation as in F = A’ mainly because of problems with typesetting the overbar.

The precedence of these three logical operators is as follows. The AND operator has a higher
precedence than the OR operator, whereas the unary NOT operator has the highest precedence
among the tree operators. Thus, when we write a logical expression such as F = A B + A B, it
implies F = (A (B)) + ((A) B). As in arithmetic expressions, we can use parentheses to override
the default precedence.

Even though the three gates shown in Figure 2.1 are sufficient to implement any logical
function, it is convenient to implement certain other gates. Figure 2.2 shows three popularly
used gates. The NAND gate is equivalent to an AND gate followed by a NOT gate. Similarly,
the NOR gates are a combination of OR and NOT gates. It turns out that, contrary to our
intuition, implementing the NAND and NOR gates requires only two transistors whereas the
AND and OR gate implementations require three transistors.

The exclusive-OR (XOR) gate generates a 1 output whenever the two inputs differ. This
property makes it useful in certain applications such as parity generation. Another interesting
and useful gate that is not shown here is the exclusive-NOR gate. This gate is equivalent to an
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Figure 2.2 Some additional useful gates.

XOR followed by a NOT gate. This gate output, which is a complement of the XOR gate, is
1 whenever the two inputs match. The exclusive-NOR gate is also called the equivalence or
coincidence gate. All the gates we have discussed here are available commercially (see page 50
for some sample gates).

2.2.2 Completeness and Universality
Number of Functions

Let us assume that we are working with two logical variables. We know that we can define
various functions on two variables. These include the AND, OR, NAND, NOR, and XOR func-
tions discussed in the last section. The question that we want to answer is: How many different
logical functions can we define on IV logical variables? Once we know the answer to this ques-
tion, we can use this information, for example, to make a statement about the universality of a
gate. For example, the NAND gate is universal. This means that we can implement any logical
function using only the NAND gates (we can use as many NAND gates as we want).

To get an intuition, let us focus on two variables. Since two variables can have four combi-
nations of inputs (i.e., four rows in the truth table) and we can assign a 1 or 0 as output for each
row, we can define 16 different functions as shown in Table 2.1.
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Table 2.1 Number of functions that can be defined on two logical variables

A B|F FA F» F3; Fy, Fs Fg F; Fg Fy Fio Fuu Fi2 Fi3 Fua Fis
0 0] O 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1
0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1
1 0| O 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1
1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Looking at this table, we see that some functions are useless (e.g., Fp and Fi5) as they
are independent of the input. There are some other functions that we can readily identify with
the logic gates described in the last section (e.g., F is the AND function, and Fjg is the XOR
function).

We can generalize this to N logical variables by noting that there are 2%V rows in the truth
table of an INV-variable logical expression. Thus, the number of functions that can be defined on
N variables is 227

Complete Sets

We say that a set of gates is complete if we can implement any logical function using only the
gates in this complete set. What this tells us is that, theoretically, we don’t need gates outside
this set to implement a logical function. Here are some complete sets:

{AND, OR, NOT}
{AND, NOT}
{OR, NOT}
{NAND}

{NOR}

A complete set is minimal if it does not contain redundant elements. That is, if we delete an
element from the set, it should not remain complete. In the above complete sets, we see that the
set AND, OR, NOT is not minimal as we can remove either AND or OR (but not both) to get
another complete set.

How do we prove that a set is complete? Essentially, we have to show that, using only
the gates in the set, we can construct AND, OR, and NOT gates. Figure 2.3 shows how we can
construct these three gates by using only the NAND gates. A similar proof'is given in Figure 2.4
for the NOR gates. NAND and NOR gates are called universal gates because we can implement
any logical function using only the NAND or NOR gates.

We close this section with a final note on equivalence proofs. It is not strictly necessary
to construct AND, OR, and NOT gates as we did in Figures 2.3 and 2.4. Assuming that we
proved the completeness of {AND, NOT} and {OR, NOT}, it is sufficient to construct either
AND and NOT or OR and NOT gates. We leave it as an exercise to show how OR gates can be
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Figure 2.3 Implementation of AND, OR, and NOT gates by using only NAND gates.
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Figure 2.4 Implementation of AND, OR, and NOT gates by using only NOR gates.

constructed using only AND and NOT gates. Similarly, you can show that the AND gate can
be constructed using only OR and NOT gates.

2.2.3 Implementation Details

Transistor Implementation

The concepts involved in implementing digital circuits can be described by looking at their
transistor implementations. Figure 2.5 shows a transistor with three connection points: base,
collector, and emitter. A transistor can be operated in either a linear or switching mode. In linear
mode, a transistor amplifies the input signal applied to the base. This is the mode the transistor
operates in your amplifier. In digital circuits, the transistor operates in the switching mode. In
this mode, the transistor acts as a switch between the collector and emitter points. The voltage
applied to the base input of the transistor determines whether the switch is open (open circuit
between collector and emitter points) or closed (short circuit between collector and emitter).
A high voltage (typically above 2 V) causes the transistor to act as a closed switch, and a low
voltage (typically below 0.8 V) forces the transistor to act as an open switch.
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Figure 2.5 A transistor.
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Figure 2.6 Implementation of simple gates: (a) NOT gate; (b) NAND gate; (c) NOR gate.

When the transistor behaves as described, it is fairly simple to build a NOT gate as shown
in Figure 2.6a. The collector of the transistor is tied to V. through a resistor. V. is typically
5 V. Assuming that 0 V represents logical 0 and +5 V represents a logical 1, we can see that the
single transistor implementation shown in Figure 2.6a corresponds to a NOT gate. When Vj,, is
low, there is an open circuit between the collector and emitter. Thus, no current flows through
the resistor. This causes the V4 to be +5 V. On the other hand, when a high voltage is applied
to Vin, there is a short circuit between the collector and emitter points, which results in a low
Vout .

It is left as an exercise to verify that the NAND gate is implemented by the circuit shown
in Figure 2.6b and the NOR gate by Figure 2.6¢. It is interesting to note that AND gate imple-
mentation actually requires three transistors as it is implemented as a NAND gate followed by
a NOT gate.
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Figure 2.7 Low and high logic voltage levels for TTL logic circuits.

In closing this section, we briefly mention the key technologies used to manufacture digital
circuits. There are two main semiconductor technologies: bipolar and MOS (metal oxide semi-
conductor). Bipolar implementations are, in general, faster than the MOS implementations.
The two major bipolar types are the TTL (transistor—transistor logic) and ECL (emitter-coupled
logic). Relatively speaking, TTL is slower than ECL circuits. If you open your PC and look at
the motherboard, you will see quite a few of these TTL chips (described next).

MOS technology allows us to build high-density chips as it consumes less power and takes
less space on the chip compared to their bipolar cousins. In MOS technology, transistors are
implemented in a different way than the bipolar implementations we have discussed. How-
ever, logically, it still acts as a switch. Even though NMOS, PMOS, and HMOS types exist,
CMOS (complementary MOS) is the dominant technology used to implement processors and
memories. For example, the Pentium processor uses about 3 million transistors.

Gallium arsenide (GaAs) technology provides an alternative to the semiconductor technol-
ogy. It has superior speed characteristics when compared to the bipolar technology. However,
GaAs technology poses several difficulties in manufacturing (such as poor reliability) that lim-
ited its applicability to high-density gate implementations such as microprocessors.

Examples of Logic Chips

A small set of independent logic gates (such as AND, NOT, NAND, etc.) are packaged into an
integrated circuit chip, or “chip” for short. The smallest of these ICs uses a 14-pin DIP (dual
inline package). Some example chips are shown in Figure 2.8. There are two rows of pins
(the reason why this package is called a dual inline package) numbered 1 through 14. Pin 7 is
Ground and pin 14 is V... A small notch or a dot is used for proper orientation of the chip (i.e.,
to identify pin 1).

The Vy, input should be less than 0.8 V to be treated as a low-level voltage and greater than
2 V for high level as shown in Figure 2.7. The voltage range in between these two levels is
forbidden. The output voltage levels produced are less than 0.4 V (for low level) and 2.4 V (for
high level). For positive logic, the low-voltage level is interpreted as 0 and the high level as 1.
For negative logic, the low-voltage level is treated as representing 1 and the high level as 0. By
default, we use the positive logic in our discussion.
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There is a propagation delay associated with each gate. This delay represents the time
required for the output to react to an input. The propagation delay depends on the complexity
of the circuit and the technology used. Typical values for the TTL gates are in the range of a
few nanoseconds (about 5 to 10 ns). A nanosecond (ns) is 109 second.

In addition to propagation delay, other parameters should be taken into consideration in
designing and building logic circuits. Two such parameters are fanin and fanout. Fanin specifies
the maximum number of inputs a logic gate can have. Fanout refers to the driving capacity of
an output. Fanout specifies the maximum number of gates that the output of a gate can drive.

These ICs are called small-scale integrated (SSI) circuits and typically consist of about
1 to 10 gates. Medium-scale integrated (MSI) circuits represent the next level of integration
(typically between 10 and 100 gates). Both SSI and MSI were introduced in the late 1960s.
LSI (large-scale integration), introduced in early 1970s, can integrate between 100 and 10,000
gates on a single chip. The final degree of integration, VLSI (very large scale integration), was
introduced in the late 1970s and is used for complex chips such as microprocessors that require
more than 10,000 gates.

2.3 Logic Functions
2.3.1 Expressing Logic Functions

Logic functions can be specified in a variety of ways. In a sense their expression is similar to
problem specification in software development. A logical function can be specified verbally.
For example, a majority function can be specified as: Output should be 1 whenever the majority
of the inputs is 1. Similarly, an even-parity function can be specified as: Output (parity bit) is 1
whenever there is an odd number of 1s in the input. The major problem with verbal specification
is the imprecision and the scope of ambiguity.

We can make this specification precise by using a truth table. In the truth table method, for
each possible combination of the input, we specify the output value. The truth table method
makes sense for logical functions as the alphabet consists of only 0 and 1. The truth tables for
the 3-input majority and even-parity functions are shown in Table 2.2.

The advantage of the truth table method is that it is precise. This is important if you are
interfacing with a client who does not understand other more concise forms of logic function
expression. The main problem with the truth table method is that it is cumbersome as the
number of rows grows exponentially with the number of logical variables. Imagine writing a
truth table for a 10-variable function!

We can also use logical expressions to specify a logical function. Logical expressions use
logical operators as discussed in Section 2.2. The logical expressions for our 3-input majority
and even-parity functions are shown below:

* 3-input majority function=AB+BC+AC,
* 3-input even-parity function=ABC+ABC+ABC+ABC.
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Table 2.2 Truth tables for the majority and even-parity functions

Majority function Even-parity function
A B C|F A B C|Fq
0 0 0] O 0 0 0] O
0 0 1|0 0 0 1] 1
0 1 0|0 0 1 0|1
0 1 1|1 0 1 1|0
1 0 0O 1 0 01
1 0 1|1 1 0 10
1 1 0|1 1 1 0|0
I 1 1|1 I 1 1|1

A B C

P
1 —= >
p

Figure 2.9 Three-input majority function.

An advantage of this form of specification is that it is compact while it retains the precision
of the truth table method. Another major advantage is that logical expressions can be manipu-
lated to come up with an efficient design. We say more on this topic in Section 2.7.1.

The final form of specification uses a graphical notation. Figure 2.9 shows the logical circuit
to implement the 3-input majority function. As with the last two methods, it is also precise but
is more useful for hardware engineers to implement the logical function.
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Figure 2.10 Three circuit designs to implement F = AB logical function.

2.3.2 Logical Circuit Equivalence

Logical functions can be implemented in a variety of ways. If two logical circuits are per-
forming the same logical function F, we say that these two circuits are equivalent. Establishing
logical circuit equivalence is important because it allows us to pick an efficient design for im-
plementation. By “efficient” we mean a circuit that uses a minimum number of gates. Later we
show that we can also talk about minimizing the number of chips rather than the gate count.

To illustrate the point, look at the three circuits shown in Figure 2.10. The legend of the
figure claims that all three are performing a simple AND operation. We discuss later how we
can verify this claim. If we take the claim to be true, these three circuits are equivalent. Here,
we obviously pick the first circuit that uses a single 2-input AND gate.

Now, how do we prove that these three logic circuits are equivalent? This is a two-step
process. First, we have to derive the logical expression for each circuit. Then, we have to show
that the three logical expressions are equivalent.

Deriving Logical Expressions

Deriving a logical expression from a given logical circuit involves tracing the path from input to
output and writing intermediate logical expressions along the path. The process is illustrated in
Figure 2.11. The output of the top OR gate is (A + B). Noting the inputs of the middle OR gate
are A and B, we write the logical expression for the output of this gate as (A + B). Continuing
the process finally leads us to the following expression for the logical function Fg,

F3=(A+B)(A+B)(A+B).
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L (A +B) (A +B)

B
F3 .
A _ (A+B)(A+B)(A+B)
{>Q—)T\ A+B

Figure 2.11 Deriving the logical expression from the circuit diagram.

Table 2.3 Truth table to prove that F; and F3 functions are equivalent

A B|F,=AB |F;=(A+ B)(A + B)(A + B)

_— = O O

0
1
0
1

—_ o O O

0
0
0
1

To show that this logical circuit is equivalent to a 2-input AND gate, we have to show that
the logical expression for F'3 reduces to A B. We focus on this aspect next.

Establishing Logical Equivalence

There are two ways of establishing logical equivalence of two functions. The first is the truth
table method. The other method involves manipulating logical expressions by applying Boolean
algebra rules. We discuss the truth table method now. The Boolean algebra method is described
in Section 2.4.2.

The truth table method is conceptually simple but tedious for logical expressions that involve
more than a few logical variables. The principle is to look at each possible combination of the
input and test if the two functions give the same output. If so, the two functions are equivalent.
This process is shown in Table 2.3. Notice the use of two output columns, one for each function.
Since the outputs of these two functions are identical, we conclude that functions F'; and F5 are
equivalent.

Since F; and F3 are derived from the circuits in Figures 2.10a and 2.10c¢, we conclude
that these two circuits are equivalent. We leave it as an exercise for the reader to show that
Figures 2.10a and 2.10b are equivalent.
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2.4 Boolean Algebra

This section discusses how we can use the Boolean algebra to manipulate logical expressions.
We need Boolean identities to facilitate this manipulation. These are discussed next. Following
this discussion, we show how the identities developed can be used to establish logical equiv-
alence. In Section 2.7.1, we show how these identities can also be used to simplify logical
expressions.

2.4.1 Boolean Identities

Table 2.4 presents some basic Boolean laws. For most laws, there are two versions: an and
version and an or version. If there is only one version, we list it under the and version. We can
transform a law from the and version to the or version by replacing each 1 witha 0, 0 witha 1,
+ with a -, and - with a +. This relationship is called duality.

The last law is particularly interesting as it is useful in moving negation in and out of logical
expressions. For example, de Morgan’s law is useful in coming up with a NAND or NOR gate
based design (see Section 2.10.1).

The complement law suggests that if = and y are complements of each other, the following
must be true: = - y = 0 and = 4+ y = 1. This observation is useful in proving de Morgan’s law
(see Exercise 2—12).

We can use the truth table method (as in Table 2.3) to show that these laws hold. We can
also prove some of these laws. To illustrate the process, we prove the absorption law.

v = 7@ty
= (z-z)+ (z-y) (Distribution law)
= z4+(z-y) (Idempotence law)
(z-1)+ (z-y) (Identity law)
z-(1+y) (Distribution law)
z-1 (Null law)

= x (Identity law).

Notice that in our attempt to prove the and version of the absorption law, we have also proved
the or version.

2.4.2 Using Boolean Algebra for Logical Equivalence

We can use a similar procedure to establish logical equivalence of two logical functions. Typi-
cally, we start with one function and derive the other function to show the logical equivalence.
As an example, we show that functions F'; and F'3 in Table 2.3 are equivalent.
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Table 2.4 Boolean laws
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Name and version or version
Identity z-1 =z z+0 =2
Complement -z =0 T+7T
Commutative Ty =y-x r+y =y+zw
Distribution z-(y+2) = (x-y)+(z-2) x4+ (y-2z) = (x+y) (x+2)
Idempotent Tr ==z T4z =x
Null z-0=0 z+1 =1
Involution T ==z —
Absorption z-(z+y) =z z+(z-y) =z
Associative z-(y-z) = (z-y) 2 z+(y+z2) = (z+y)+=2
de Morgan Ty =+7Yy X+y =Ty

AB = (A +B)(A + B) (A + B)

(AA+AB+BA+BB)

(AA + AB+ BA + BB)(A + B)

A A(B+B) 0

(A+ AB + B) +0) (A + B)
N————

A

(A + A +0) (A + B)
A

AA+B)=AA +AB=0+ AB=AB.

Sometimes it may be convenient to reduce both sides to the same expression in order to

establish equivalence.

2.5 Logic Circuit Design Process

To provide proper perspective to our discussion of the remaining topics in this chapter, we
briefly review a simplified digital circuit design process shown in Figure 2.12. As in the pro-
gramming activity, the input specification may be given in plain English. For example, this
description can be something like, “Design a circuit to implement the majority function on
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Problem Derive Derive logical Simplify logical Derive final
specification truth table expression expression logic circuit

Figure 2.12 A simple logic circuit design process.

three inputs.” This kind of description makes a lot of assumptions such as the definition of
the majority function. Even a simple function such as the majority function can be defined in
several ways. We have been using a simple majority function in our discussion with each input
having the same weight. However, we can define other majority functions. For example, the
weight of inputs may not be the same, or somebody may have veto power on the final outcome
as in the UN Security Council (see Exercises 2-9 and 2—10). Thus, our next job is to derive a
precise description of the problem from this imprecise (possibly incomplete) description of the
problem. If we are going to design a combinational logic circuit, for example, we can use a
truth table to precisely define the problem specification.

How do we get the final logic circuit from this truth table? We use two steps to get the final
circuit design as shown in Figure 2.12. We derive a logical expression from the truth table. The
logical expression may be in sum-of-products or product-of-sums form, as we show in the next
section. We, however, do not implement this logical expression directly as it may not be in a
minimal form to get an efficient design. We need to simplify this logical expression to minimize
implementation cost using one of the methods we discuss in Section 2.7. We derive the final
logic circuit design from this simplified logical expression.

Note that minimizing implementation is often interpreted as minimizing the number of
gates. To a degree of approximation, this is true. We follow this objective in our simplification
methodologies. Observe, however, that when implementing a digital circuit, we are actually
concerned with the number of chips required to implement the circuit, not the number of gates.

We do not need these two steps if we intend to implement the logical circuit using building
blocks like multiplexers and PLAs. In that case, our implementation follows directly from the
truth table. Multiplexers and PLAs are discussed in Chapter 3.

2.6 Deriving Logical Expressions from Truth Tables

We can write a logical expression from a truth table in one of two forms: sum-of-products (SOP)
and product-of-sums (POS) forms. In sum-of-products form, we specify the combination of
inputs for which the output should be 1. In product-of-sums form, we specify the combinations
of inputs for which the output should be 0. As in Section 2.4.1, you see the duality of these two
forms.

2.6.1 Sum-of-Products Form

In this form, each input combination for which the output is 1 is expressed as an and term. This
is the product term as we use - to represent the AND operation. These product terms are ORed
together. That is why it is called sum-of-products as we use + for the OR operation to get the
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final logical expression. In deriving the product terms, we write the variable if its value is 1 or
its complement if 0. We now consider two examples to illustrate this process.

Example 2.1: Let us first look at the 3-input majority function. The truth table is given in
Table 2.2 on page 51. There are four 1 outputs in this function. So, our logical expression will
have four product terms. The first product term we write is for row 4 with a 1 output. Since A
has a value of 0, we use its complement in the product term while using B and C as they have
1 as their value in this row. Thus, the product term for this row is A B C. The product term for
row 6 is A B C. Product terms for rows 7 and 8 are A B C and A B C, respectively. ORing these
four product terms gives the logical expression as

3-input majority function=ABC+ABC+ABC+ABC.

Example 2.2: From the truth table for the even-parity function given in Table 2.2 on page 51,
we can derive the following sum-of-products expression:

3-input even-parity function=ABC+ABC+ABC+ABC.

Notation: A notation that provides compact representation of logical expressions uses the dec-
imal values of the input combinations for which the output is 1. For example, the first term in
the majority function is written as 3 (for the combination 011). To indicate that it is a sum-of-
products expression, we use X as shown in the following expression:

3-input majority function =X (3, 5, 6, 7).
Similarly, we can write the even-parity function using the Sigma notation as
3-input even-parity function =% (1, 2, 4, 7).

2.6.2 Product-of-Sums Form

This is the dual form of the sum-of-products form. We essentially complement what we have
done to obtain the sum-of-products expression. Here we look for rows that have a 0 output.
Each such row input variable combination is expressed as an OR term. In this OR term, we use
the variable if its value in the row being considered is 0 or its complement if 1. We AND these
sum terms to get the final product-of-sums logical expression. The product-of-sums expression
for the two truth tables is given below:

Majority function=(A+B+C) (A+B+C)(A+B+C) (A+B+C),

Even-parity function=(A+B+C) (A+B+C)(A+B+C) (A+B+C).
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Notation: We can use a compact notation as we did with the sum-of-products expressions by
listing only those sum terms for which the output is zero. We use II to indicate that this is a
product-of-sums expression. The majority function expression can be written as

3-input majority function =11 (0, 1, 2, 4).
The even-parity function can be written using the Pi notation as

3-input even-parity function =1I (0, 3, 5, 6).

2.6.3 Brute Force Method of Implementation

The sum-of-products and product-of-sums logical expressions can be used to come up with
a crude implementation that uses only the AND, OR, and NOT gates. The implementation
process is straightforward. We first illustrate the process for sum-of-products expressions. For
each input, derive its complement using an inverter. Implement each product term by using
a single n-input AND gate, where n is the number of Boolean variables. Then, connect the
outputs of these AND gates to a single OR gate. The number of inputs to the OR gate is equal
to the number of product terms in the logical expression. The output of the OR gate represents
the logical function. Figure 2.13 shows the brute force implementation of the sum-of-products
expression for the even-parity function.

In a similar fashion, we can also implement product-of-sums expressions. In this imple-
mentation, we use an OR gate to implement each sum term and a single AND gate to get the
final output. Figure 2.14 shows an implementation of the product-of-sums expression for the
even-parity function. Since these two forms of logical expressions are representing the same
truth table, they are equivalent. As the two circuits given in Figures 2.13 and 2.14 implement
these two logical expressions, we know that these two circuits are equivalent as well.

2.7 Simplifying Logical Expressions

Let us now focus on how we can simplify the logical expressions obtained from the truth table.
Our focus is on sum-of-products expressions. There are three techniques: the algebraic ma-
nipulation, Karnaugh map, and Quine—McCluskey methods. Algebraic manipulation uses the
Boolean laws given on page 55 to derive a simplified logical expression. The Karnaugh map
method uses a graphical form and is suitable for simplifying logical expressions with a small
number of variables. The last method is a tabular method and is particularly suitable for simpli-
fying logical expressions with a large number of variables. In addition, the Quine-McCluskey
method can be used to automate the simplification process.

2.7.1 Algebraic Manipulation

In this method, we use the Boolean laws (see page 55) discussed in Section 2.4.1. The process is
very similar to that used to show logical equivalence of two functions. There is one big problem



Section 2.7 Simplifying Logical Expressions 59

A B C A B C

o
o
>

JUUU

Figure 2.13 Brute force method of implementing the logical sum-of-products expression for the 3-input
even-parity function.

A B C A B C

%
{>o
D>

1

1

| L
ﬁ}F

Figure 2.14 Brute force method of implementing the logical product-of-sums expression for the 3-input
even-parity function.
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though. Here we do not know what the target expression is. To illustrate this point, let us look
at the sum-of-products expression for the majority function. A straightforward simplification
leads us to the following expression:

Majority function=ABC + ABC + ABC + ABC
—_——— —
AB
=ABC + ABC + AB.

Do you know if this is the final simplified form? This is the hard part in applying algebraic
manipulation (in addition to the inherent problem of which rule should be applied). This method
definitely requires good intuition, which often implies that one needs experience to know if the
final form has been derived. In our example, the expression can be further simplified. We
start by rewriting the original logical expression by repeating the term A B C twice and then
simplifying the expression as shown below.

Majority function=ABC + ABC + ABC + ABC + ABC + ABC
—_——
Added extra

=ABC + ABC + ABC + ABC + ABC + ABC
BC AC AB
=BC+AC+AB.

This is the final simplified expression. In the next section, we show a simpler method to derive
this expression. Figure 2.9 on page 51 shows an implementation of this logical expression.

2.7.2 Karnaugh Map Method

This is a graphical method and is suitable for simplifying logical expressions with a small
number of Boolean variables (typically six or less). It provides a straightforward method to
derive minimal sum-of-products expressions. This method is preferred to the algebraic method
as it takes the guesswork out of the simplification process. For example, in the previous majority
function example, it was not straightforward to guess that we have to duplicate the term AB C
twice in order to get the final logical expression.

The Karnaugh map method uses maps to represent the logical function output. Figure 2.15
shows the maps used for 2-, 3-, and 4-variable logical expressions. Each cell! in these maps
represents a particular input combination. Each cell is filled with the output value of the func-
tion corresponding to the input combination represented by the cell. For example, the bottom
left-hand cell represents the input combination A = 1 and B = 0 for the two-variable map (Fig-
ure 2.15a), A=1, B =0, and C = 0 for the three-variable map (Figure 2.15b), and A=1, B=0,
C =0, and D = 0 for the four-variable map (Figure 2.15c¢).

The basic idea behind this method is to label cells such that the neighboring cells differ in
only one input bit position. This is the reason why the cells are labeled 00, 01, 11, 10 (notice

The pigeonholes are usually referred to as squares. We prefer cells as we later talk about square areas.
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AB 00 01 11 10
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B BC 01
A 0 1 A 00 01 11 10

0 0 11

1 1 10

(a) Two-variable K-map (b) Three-variable K-map (¢) Four-variable K-map

Figure 2.15 Maps used for simplifying 2-, 3-, and 4-variable logical expressions using the Karnaugh map
method.

the change in the order of the last two labels from the normal binary number order). What we
are doing is labeling with a Hamming distance of 1. Hamming distance is the number of bit
positions in which two binary numbers differ. This labeling is also called gray code. Why are
we so interested in this gray code labeling? Simply because we can then eliminate a variable as
the following holds:

ABCD + ABCD = ABD.

Figure 2.16 shows how the maps are used to obtain minimal sum-of-products expressions
for three-variable logical expressions. Notice that each cell is filled with the output value of the
function corresponding to the input combination for that cell. After the map of a logical function
is obtained, we can obtain a simplified logical expression by grouping neighboring cells with 1
into areas. Let us first concentrate on the majority function map shown in Figure 2.16a. The
two cells in the third column are combined into one area. These two cells represent inputs
ABC (top cell) and A B C (bottom cell). We can, therefore, combine these two cells to yield a
product term B C. Similarly, we can combine the three s in the bottom row into two areas of
two cells each. The corresponding product terms for these two areas are A C and A B as shown
in Figure 2.16a. Now we can write the minimal expression as B C + A C + A B, which is what
we got in the last section using the algebraic simplification process. Notice that the cell for
A B C (third cell in the bottom row) participates in all three areas. This is fine. What this means
is that we need to duplicate this term two times to simplify the expression. This is exactly what
we did in our algebraic simplification procedure.

We now have the necessary intuition to develop the required rules for simplification. These
simple rules govern the simplification process:

1. Form regular areas that contain 2° cells, where ¢ > 0. What we mean by a regular area is
that they can be either rectangles or squares. For example, we cannot use an “L” shaped
area.
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(a) Majority function (b) Even-parity function
Figure 2.16 Three-variable logical expression simplification using Karnaugh maps: (a) majority function;
(b) even-parity function.

2. Use a minimum number of areas to cover all cells with 1. This implies that we should
form as large an area as possible and redundant areas should be eliminated. The impor-
tance of eliminating redundancy is illustrated later using an example (see Figure 2.19).

Once minimal areas have been formed, we write a logical expression for each area. These
represent terms in the sum-of-products expressions. Write the final expression by connecting
the terms with OR.

In Figure 2.16a, we cannot form a regular area with four cells. Next we have to see if we
can form areas of two cells. The answer is yes. Let us assume that we first formed a vertical
area (labeled B C). That leaves two 1s uncovered by an area. So, we form two more areas to
cover these two 1s. We also make sure that we indeed need these three areas to cover all 1s.
Our next step is to write the logical expression for these areas.

When writing an expression for an area, look at the values of a variable that is 0 as well as 1.
For example, for the area identified by B C, the variable A has 0 and 1. That is, the two cells we
are combining represent A B C and A B C. Thus, we can eliminate variable A. The variables B
and C have the same value for the whole area. Since they both have the value 1, we write B C as
the expression for this area. It is straightforward to see that the other two areas are represented
by AC and AB.

If we look at the Karnaugh map for the even-parity function (Figure 2.16b), we find that we
cannot form areas bigger than one cell. This tells us that no further simplification is possible for
this function.

Notice that, in the three-variable maps, the first and last columns are adjacent. We did not
need this fact in our previous two examples. You can visualize the Karnaugh map as a tube,
cut open to draw in two dimensions. This fact is important because we can combine these two
columns into a square area as shown in Figure 2.17. This square area is represented by C.
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Figure 2.17 An example Karnaugh map that uses the fact that the first and last columns are adjacent.

You might have noticed that we can eliminate log,C variables from the product term, where
C' is the number of cells in the area. For example, the four-cell square in Figure 2.17 eliminates
two variables from the product term that represents this area.

Figure 2.18 shows an example of a four-variable logical expression simplification using the
Karnaugh map method. /¢ is important to remember the fact that first and last columns as well
as first and last rows are adjacent. Then it is not difficult to see why the four corner cells form
a regular area and are represented by the expression B D. In writing an expression for an area,
look at the input variables and ignore those that assume both 0 and 1. For example, for this
weird square area, looking at the first and last rows, we notice that variable A has 0 for the first
row and 1 for the last row. Thus, we eliminate A. Since B has a value of 0, we use B. Similarly,
by looking at the first and last columns, we eliminate C. We use D as D has a value of 0. Thus,
the expression for this area is BD. Following our simplification procedure to cover all cells
with 1, we get the following minimal expression for Figure 2.18a:

BD + ACD + ABD.

We also note from Figure 2.18 that a different grouping leads to different minimal expres-
sion. The logical expression for Figure 2.18b is

BD + ABC + ABD.

Even though this expression is slightly different from the logical expression obtained from
Figure 2.18a, both expressions are minimal and logically equivalent.

In general, we start making up areas from the largest possible to the smallest. This strategy
sometimes leads to redundancy as illustrated in Figure 2.19a. In this map, we first formed the
square area consisting of the middle four cells. Then we have added four rectangles, each with
two cells. Although these five areas cover all 1 cells, we notice that, after forming the four
rectangles, the square area is really redundant as shown in Figure 2.19b.
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Figure 2.18 Different minimal expressions will result depending on the groupings.
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Figure 2.19 Example illustrating the need for redundancy check.

The best way to understand the Karnaugh map method is to practice until you develop your
intuition. After that, it is unlikely you will ever forget how this method works even if you have

not used it in years.

Seven-Segment Display Example

To show the utility of the Karnaugh map method, consider designing a logic circuit to drive
a seven-segment display. This display unit that we are all familiar with (look at your VCR,
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Figure 2.20 Seven-segment LED display.

calculator—they are everywhere) consists of seven segments of LEDs (light emitting diodes)
as shown in Figure 2.20. Each diode emits light if current is passed through it. Depending on
the digit we want to display, we selectively light only those segments that form the digit. For
example, to display 7, we light segments a, b, and c.

Typically, a seven-segment decoder receives a BCD number and generates outputs for all
seven segments. In this example, let us design a logic circuit that drives the LED d. The input
to this circuit is a 4-bit BCD number. The truth table for this LED is shown in Table 2.5. In this
truth table, a 1 for the segment indicates it is on; a 0 means it is off. We assume that the input is
restricted to digits O through 9. Since the input values 10 through 15 are not given, the output
for these six input combinations can be either a 0 or a 1. For obvious reasons, these outputs are
called “don’t cares.” Such don’t care outputs simplify the logic significantly as we show in a
moment.

Figure 2.21a shows the Karnaugh map for this example. In this map, we are assuming that
the output should be 0 for the last six inputs, that is, 10 through 15 (see the shaded area in
Figure 2.21a). The simplified expression for this map is

ABC + ACD + ABC + ABD + ABCD.
We could have elected to cover the top left cell with an area that includes this cell and the
bottom left cell. In this case, we get

ABC + ACD + ABC + BCD + ABCD.
This is slightly different from the other logical expression but is equivalent to the other one.

Don’t Care Conditions

Since we don’t care about the output for the shaded cells in Figure 2.21a, we can further simplify
the last logical expression. We use “d” to represent the don’t care output of a cell. The simplified
expression for this map is

A + BD + CD + BC + BCD.
The nice thing about the d cells is that they can be used to form an area without covering all
such cells (as we would a 1 cell). That means, those d cells that are part of an area output a value
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Table 2.5 Truth table for segment 4

Number [ A B C D | Segmentd
0 0 0 0 O 1
1 0 0 0 1 0
2 0 0 1 0 1
3 0 0 1 1 1
4 0 1 0 0 0
5 0 1 0 1 1
6 0 1 1 0 1
7 0 1 1 1 0
8 1 0 0 O 1
9 1 0 0 1 1
10 1 0 1 O 0/1
11 1 0 1 1 0/1
12 1 1 0 0 0/1
13 1 1 0 1 0/1
14 1 1 1 0 0/1
15 1 1 1 1 0/1

of 1 and those that are not part of any area output 0. In our example, all d cells participate in at
least one area. Thus, in this design, segment d is turned on for inputs 10 through 15, whereas it
is turned off if we implement the logical expression obtained from Figure 2.21a.

A Seven-Segment Decoder/Driver Chip

In the last example, we have demonstrated how one can design a logic circuit to drive segment
d. We could design six other driver circuits for the remaining segments to complete the driver
circuit for a seven-segment display device. Because these display devices are ubiquitous, there
are chips available that take a BCD number as input and generate output to drive all seven
segments. One such chip is the 7449 chip (see Figure 2.22). This chip generates active-high
segment driver outputs. It has four input bits for the BCD number. The only additional input
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Figure 2.21 Karnaugh maps for segment d of the seven-segment display.

is the BI signal. When BI is 1, the seven-segment outputs (a to f) are activated to drive the
segments. The display assignments are shown in Figure 2.22a. When Bl is 0, all seven segments
are turned off (i.e., all seven outputs a to f are 0) irrespective of the BCD input. This input is
useful in suppressing leading zeros (i.e., is displayed as by blanking out the
three leading displays).

There is one difference between our logic for segment d and the output generated by the
7449 chip. We display 9 with the bottom horizontal LED on, whereas 7449 turns this LED off.
Similarly, digit 6 can be displayed in two different forms. Look at your calculator and see the
format it follows for digits 6 and 9.

2.7.3 Quine-McCluskey Method

The Karnaugh map method is not suitable for simplifying logical expressions with more than
four variables. To simplify logical expressions with a higher number of variables, we have to
use three-dimensional maps. We can push the Karnaugh map method to six variables but that’s
about it. The Quine—McCluskey method is a tabular method and is suitable for automating the
simplification process. The Quine-McCluskey simplification process involves two steps:

1. Obtain a simplified expression that is equivalent to the original expression. This expres-
sion need not be a minimal expression. This is done iteratively by looking at a pair of
terms that contain a variable and its complement. This is equivalent to forming areas of
size 2 in the Karnaugh map method. By iteratively applying this step, we form areas of
larger size.

2. The second step essentially eliminates redundant terms from the simplified expression
obtained in the last step. We needed this step even in the Karnaugh map method (e.g., see
Figure 2.19).
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Figure 2.22 The 7449 seven-segment display driver chip.

We now illustrate the process by means of an example. Let us consider the segment d logical
expression from the previous example. The logical expression can be written from the truth
table in Table 2.5 as

ABCD + ABCD + ABCD + ABCD + ABCD + ABCD + ABCD.

We can express this logical expression more succinctly by using the notation described on
page 57 as
(0, 2, 3, 5,6, 8, 9).

We start the Step 1 process by grouping the terms into the number of true conditions (i.e.,
number of 1s in the term) and sorting the groups as shown in column 1 of Table 2.6. We use a
horizontal line to separate the groups. The first group at the top of the table is labeled group 0
as it has no 1 bits in the terms. We start simplifying the expression by finding all pairs of terms
that differ in just one variable (i.e., form areas of size 2 cells). In effect, we are applying the
rule XY + XY = X. Since the groups are sorted by the number of 1s in the terms, it is sufficient
to compare the terms in two adjacent groups. That is, start with group 0 and compare each term
in group 0 with all terms in group 1. If a pair is found, checkmark both terms and write the new
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Table 2.6 Step 1: Finding prime implicants

Column 1 Column 2
Group0 ABCD / ABD
Groupl ABCD BCD

ABCD ABC
Group2 ABCD ACD

ABCD ABC

ABCD

ABCD

term in a new column (to be used in the next iteration). The new term is obtained by eliminating
the variable that differs in the pair. Repeat the process by comparing each term in group 1 to all
terms in group 2, and so on. Note that you will write a term into the next column only if it is not
already present (i.e., no duplicate terms are allowed). This iteration produces the entries shown
in column 2 of Table 2.6. This column represents the product terms for the areas with two cells.
There is one term that is not checkmarked in column 1 of Table 2.6. This corresponds to the
lone term we got from the Karnaugh map in Figure 2.21a.

We repeat the procedure on the column 2 entries. That is, we try to form areas of four cells.
However, for this example, we do not generate any new terms. This means that no areas of size
greater than two cells can be generated for this example. You can see that this condition is true
from the Karnaugh map in Figure 2.21a.

To complete Step 1, we collect all the terms that are not checkmarked from the table. These
terms are prime implicants. In our example, we have six prime implicants: one from column 1
with four variables and five from column 2, each with three variables.

Next we apply Step 2. This step eliminates any redundant terms from the set of prime
implicants. To facilitate this objective, we create another table (called the prime implicant
chart) with a row for each prime implicant and a column for each term in the original logical
expression (see Table 2.7). Put a x mark in the table if the prime implicant for the row is in the
column term. For example, the first column of the third row has an x mark as the row prime
implicant B C D is in A B C D. What this step does is to mark those input terms that are
represented by the prime implicant.

Next circle each x that is alone in a column. These prime implicants are called essential
prime implicants and should appear in any final minimal form expression. Then place a square
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Table 2.7 Step 2: Prime implicant chart for redundancy elimination

Input product terms

implicants | ¥3EH | ABcD | ABCD | ABCD | ABCD | ABCD | ABCD
CD X
ABD X X
X X

®

around all the xs in a row that has a (X). Thus, by using these prime implicants with a ), we
cover the input terms with and . Thus, if we end up with a table in which each column
has at least a (X) or a , we are done. This means that we get a single minimal form (i.e., there
are no alternative minimal forms). We write the final minimal expression by using these prime
implicants as sum-of-products terms.

If there are columns without a (X) or a , we select a minimum number of prime implicants
to cover these columns. In our example, the first column is without a () or a . This means
the term A B C D is not covered by the essential prime implicants. We need either the second
or the third prime implicant (both have a x in the AB CD column). Thus, we get two final
minimal expressions depending on whether the second or third prime implicant is selected.
This should make sense to you from the Karnaugh map procedure. Thus, if we selected A B D,
our simplified expression for this example is

We get the following expression if we selected B C D:

ABCD + BCD + ABC+ ACD + ABC.

These two expressions match the logical expressions we got with the Karnaugh map method.
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Don’t Care Conditions

How do we incorporate don’t care conditions into the Quine—McCluskey method? Let us see
how we handled the don’t cares in the Karnaugh map method. We treated the don’t cares as
1 when we needed to form areas, and yet we did not obligate ourselves to cover all the don’t
care cells. This precisely is what we will do in the Quine—McCluskey method as well. Since
Step 1 is used to form areas iteratively, we include the don’t care terms in this step as though
they were regular terms for which the function outputs 1. We don’t worry about the fact that
such inclusion of don’t care terms would generate some redundant terms (e.g., consisting of
only don’t care terms). We will depend on the next step to eliminate any such redundancies. In
Step 2, since we are not obligated to cover the don’t care terms, we do not list them. In other
words, there won’t be any columns created in the prime implicant chart for the don’t care terms.
In summary, we include the don’t care terms in the first step and apply the Step 1 procedure and
ignore them in Step 2 and apply the Step 2 procedure discussed before.

We illustrate the process by considering the seven-segment example used in the Karnaugh
map method. Using the Sigma notation we described on page 57, the logical expression for the
seven-segment example can be represented as

(0, 2, 3, 5, 6, 8, 9) + £d(10, 11, 12, 13, 14, 15),

where we use X d to represent the don’t care inputs.

By including all the don’t care terms, we get the entries in Column 1 of Table 2.8. By
following the procedure described before, we get the following terms that are not checked off:
one term from column 2, three terms from column 3, and a single-variable term from the last
column. Notice that this example generates several duplicates, all of which are eliminated.

Next construct the prime implicants chart, shown in Table 2.9. Here we do not include the
don’t care terms. From this table, we can see that all five terms are essential prime implicants.
Thus, we end up with just one final minimal expression

A+BD+CD+ BC+ BCD.
This matches the logical expression obtained with the Karnaugh map method (see page 65).

2.8 Generalized Gates

Even though we use multiple input gates as needed by our design, such gates may not be com-
mercially available to build digital circuits. Even when available, there may be reasons not to
use them. For example, we may have two of the four 2-input AND gates free in a 7408 chip.
In that case, if we need a 3-input AND gate, we would like to use these free gates rather than
adding a new chip. It is fairly easy to build higher-input gates using lower-input gates of the
same kind for AND and OR gates. An example of building a 3-input AND gate using two 2-
input AND gates is shown in Figure 2.23a. This process can be generalized to build arbitrarily
large input gates of this kind. You are asked in Exercise 2—23 to show that the same construction
procedure can be used even for the XOR gate.
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Table 2.8 Step 1: Finding prime implicants

Column 1 Column 2 Column 3 Column 4
ABCD ABD BD A
ABCD BCD BC
ABCD ABC CD
ABCD AcD AB
ABCD BCD AC
ABCD ABC AD
ABCD ABD AD
ABCD ACD AC
ABCD BCD AB
ABCD BCD
ABCD BCD
ABCD ABD
ABCD ACD

ABC
ACD
ABC
ABD
ACD /
ABD /
ABC

It is not as straightforward to build higher-input NAND or NOR gates using lower-input
gates of the same kind. As an example, we show in Figure 2.23b how a 3-input NAND gate
can be built using 2-input NAND gates. Note that it requires an additional inverter. A similar
procedure can be used for the NOR gate. The key point is that we have to invert the output of a
NAND gate before feeding it as input to the next NAND gate.

Since it is straightforward to build higher-input gates, we use them liberally in our logic
circuits knowing that such circuits can be easily implemented in practice. However, we should
be careful in designing such circuits as the propagation delay (discussed on page 49) associated
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Table 2.9 Step 2: Prime implicant chart for redundancy elimination

Prime

implicants ABCD A

Input product terms: No don’t care terms

CD | ABCD | ABCD | ABCD | ABCD | ABCD
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Figure 2.23 Constructing 3-input gates using 2-input gates.

with all equivalent circuits may not be the same. As an example, consider building a 4-input
OR gate using 2-input OR gates. We can build a 4-input OR gate by cascading a series of
three 2-input OR gates as shown in Figure 2.24a. The propagation delay of this circuit is three
gate delays. On the other hand, the series-parallel approach used to derive the circuit shown in
Figure 2.24b incurs only a two-gate propagation delay.

2.9 Multiple Outputs

So far we have considered logical functions with only a single output function. What if we
have to design a circuit that has to generate more than one output? For example, how do we
implement the truth table shown in Table 2.10? We can use the previous procedure by treating
the truth table in Table 2.10 as two truth tables.

We can write simplified logical expressions for these two functions as
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(b) Series-parallel implemetation

Figure 2.24 Two logically equivalent 4-input OR gates built with three 2-input OR gates: (a) series imple-
mentation involves three gate delays; (b) series-parallel implementation involves only two gate delays.

Table 2.10 Truth table with two output functions

A B C|F, F,
00 0|0 0
0 0 1|1 o0
0 1 0|1 o0
0 1 1]0 1
1 0 0|1 0
1 0 1|0 1
1 1 0|0 1
11 1|1 1

F,=ABC+ABC+ABC+ABC,
Fo=AB+BC+AC.

Even though we have not stated in words what these functions are supposed to be doing,
from our discussion so far we can readily identify that F; is the even-parity function and F5
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2.10

is the majority function. Interestingly, we can also assign another interpretation for these two
functions. This is also the truth table for the full adder with F'; representing the sum output and
F5 representing the carry output Cyyt. The three inputs represent two single-bit inputs and a
carry in C;,. We discuss adders in Chapter 3.

Implementation Using Other Gates

The synthesis process we have discussed so far uses the three basic gates—AND, OR, and
NOT—for implementation. In this section, we show how implementations using other gates
(such as NAND and NOR) can be obtained.

2.10.1 Implementation Using NAND and NOR Gates

It is sometimes useful to design logic circuits using only NAND gates. For example, implement-
ing (A + B) requires one OR gate (one 7432 chip) and one inverter (one 7406 chip). Noting
that this expression is equivalent to (A B), we can implement the logical expression using two
NAND gates; thus, only one 7400 chip is needed. As we have noted, NAND gates are universal
as any logic function can be implemented using only NAND gates. Similarly, we can also use
only NOR gates.

Let us see how we can derive a design that uses only NAND gates. As an example, consider
the expression (A B + C D). Implementing this expression requires two 2-input AND gates and
a 2-input OR gate. Since X = X, we can double negate the expression.

AB+CD = AB + CD.
Now apply de Morgan’s law to move the inner negation operation to yield
AB+CD = AB - CD.

Notice that the right-hand expression can be implemented using only NAND gates. Such an
implementation requires three 2-input NAND gates.

How do we apply this technique to a logical function that has more than two product terms?
Let us consider the simplified logical expression for the majority function. This function can be
written as

AB+BC+AC = AB +BC + AC
= AB+BC: -AC
= AB-BC: - AC.

We need three 2-input NAND gates and a 3-input NAND gate to implement this function (see
Figure 2.25).
We derive the following for the 3-input even-parity function:

ABC+ ABC+ ABC + ABC=ABC-ABC-ABC - -ABC.
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Figure 2.25 A majority function implementation using only NAND gates.
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Figure 2.26 Logic circuit for the 3-input even-parity function using the bubble notation.

This requires three 2-input NAND gates for implementing the inverters (to get A, B, and C),
four 3-input NAND gates for the inner terms, and a 4-input NAND for the outer negation.

We can apply a similar technique for product-of-sums expressions to come up with NOR-
only circuit designs.

Bubble Notation

In large circuits, drawing inverters can be avoided by following what is known as the “bub-
ble” notation. Remember that we have been using the bubble to represent negation. Using the
bubble notation simplifies the circuit diagrams. To appreciate the reduced complexity, com-
pare the bubble notation circuit for the 3-input even-parity function in Figure 2.26 with that in
Figure 2.13.
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Figure 2.27 Logic circuit implementations using the XOR gate.

2.10.2 Implementation Using XOR Gates

Exclusive-OR gates are very useful in implementing certain types of functions. Notice that
the XOR gate implements the logical expression of the form A B + A B. You can do pattern
recognition of sorts to search for this type of expression and implement it using the XOR gate.

Let us look at a couple of examples. As a first example, consider the 3-input even-parity
function. To use XOR gates, we have to transform the logical expression as follows:

b
o]

ABC + ABC + ABC + ABC = C( + AB) + C(AB + AB)

= C(AB + AB) + C(AB + AB)

o]

C(AB + AB) + C(AB + AB).

There is a big jump from the second expression to the final one. You can verify that

AB + AB =AB + AB.

We can see from this expression that we need just two 2-input XOR gates to implement the
even-parity function as shown in Figure 2.27a. We can implement this logic function by using
only half of the 7486 chip. Compare this circuit with the one in Figure 2.26 or in Figure 2.13.

You will often find the trick we have used here—that is, double negating and removing
the inner negation by applying de Morgan’s law—very useful in simplifying or manipulating
logical expressions into the desired form.

As another example, consider the two output functions in Table 2.10 on page 74. We can
transform the logical expression for F; so that we can implement it using two 2-input XOR
gates (Figure 2.27a). The second function

F,=BC+AB+AC
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can be implemented using two 2-input OR gates and two 2-input AND gates by writing it as
F;=BC+AB+CO).

We can, however, reduce the gate count by noting that XOR of A and B is available from the
implementation of F';. The required transformation to use this term is done as follows:

F, = BC + AB + AC
= BC+ AB(C +C) + AC(B + B)
= BC + ABC + ABC + ABC + ABC
= BC + A(BC + BC).

Implementation of F; and Fs are shown in Figure 2.27b. As we show in Chapter 3, this is
the full adder circuit.

Summary

We have introduced several simple logic gates such as AND, OR, NOT gates as well as NAND,
NOR, and XOR gates. Although the first three gates are considered the basic gates, we often
find that the other three gates are useful in practice.

We have described three ways of representing the logical functions: truth table, logical
expression, and graphical form. The truth table method is cumbersome for logical expressions
with more than a few variables. The number of rows in the truth table is equal to 2%V, where NV is
the number of logical variables. Logical expression representation is useful to derive simplified
expressions by applying Boolean identities. The graphical form is useful to implement logical
circuits.

Logical expressions can be written in one of two basic forms: sum-of-products or product-
of-sums. From either of these expressions, it is straightforward to obtain logic circuit imple-
mentations. However, such circuits are not the best designs as simplifying logical expressions
can minimize the component count.

Several methods are available to simplify logical expressions. We have discussed three of
them: the algebraic, Karnaugh map, and Quine-McCluskey methods.

Our focus has been on devising methodologies for implementing logical circuits using the
basic AND, OR, and NOT gates. However, in the last couple of sections, we have shown how
logic designs can be obtained so that other gates such as NAND and XOR can be used in the
implementation.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to
test your understanding of the material presented in the chapter. The Index at the back of the
book gives the reference page numbers for these terms and concepts:



Section 2.12 Web Resources 79

2.12

2.13

* AND gate * Multiple outputs

* Boolean algebra * NAND gate

» Bubble notation « NMOS, PMOS, HMOS, CMOS, GaAs
» Complete set * NOR gate

* de Morgan’s law * NOT gate

* Don’t cares * OR gate

 Even parity function ¢ Product-of-sums

* Fanin, Fanout * Propagation delay

* Generalized gates * Quine-McCluskey method

* Integrated circuits + Seven-segment display

» Karnaugh maps » SSI, MSI, LSI, VLSI

* Logic circuit design process * Sum-of-products

+ Logic circuit equivalence * Transistor implementation of gates
» Logical expression derivation ¢ Truth table

* Logical expression equivalence « TTL, ECL

+ Logical expression simplification * Universal gates

* Logical expressions * XOR gate

Majority function

Web Resources

You can use one of the following Web sites for information on IC chips. In particular, you get
all the data sheets for the TTL family of chips from these two sites:

Motorola URL: http://www.mot .com
Texas Instruments URL: http://www.ti.com.

Exercises

2—1 Implement the 2-input XOR gate using (a) only 2-input NAND gates and (b) only 2-input
NOR gates.

2-2 Implement the 2-input exclusive-NOR gate using (a) only 2-input NAND gates and (b)
only 2-input NOR gates.

2-3 Show how a NOT gate can be implemented using a 2-input XOR gate.

2—4 In the last exercise, you have shown how an XOR gate can act as an inverter. In this
exercise, show that a 2-input XOR gate can act as a buffer that simply passes input to the
output. Now explain why the XOR gate is called a programmable inverter.

2-5 Show how an AND gate can be implemented using OR and NOT gates.
2—6 Show how an OR gate can be implemented using AND and NOT gates.
2-7 Describe how the circuit in Figure 2.6b is implementing a NAND gate.
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Describe how the circuit in Figure 2.6¢ is implementing a NOR gate.

In our discussion of the 3-input majority function, we have assigned equal weight (i.e.,
1/3) to the three inputs. Suppose that one input has a weight of 1/2 and the other two
inputs have 1/4 each. Show the truth table for the weighted 3-input majority function.
Derive a simplified logical expression and show the corresponding implementation.
Another variation on the majority function assigns veto power to certain members. Inde-
pendent of how the others have voted, a member with veto power can defeat the motion.
Show the truth table for this 3-input majority function with only one member having veto
power. Derive a simplified logical expression and show the corresponding implementa-
tion.

Prove the following using only the first four laws in Table 2.4:

@z-z = =z

b z+zx = =z
(c)x-0 = 0.
dz+1 = 1.

Prove the and version of de Morgan’s law given in Table 2.4. Hint. It is useful to consider
the observation made about the complement law on page 54. Thus, to prove

Ty =T+7
it is sufficient to show that
(z-y) - @T+7) =0
and
(z-y) + (T+y) =1
are true.
Prove the or version of de Morgan’s law given in Table 2.4.

Write the and and or versions of de Morgan’s law for three variables. Verify your answer
using the truth table method.

Find how many 7400 chips are required to implement the 8-input NAND gate provided
by 7430. See Figure 2.8 on page 50.

Prove the following using the Boolean algebra method:
@ ((z+y)-(T+y) = 0.

b rx+yz = z+vy.

(c)AB + AB=AB + AB.

Give the truth table for the 3-input equivalence gate. Derive logical expressions in sum-
of-products and product-of-sum forms.

Using Boolean algebra show that the two logical expressions derived in the last exercise
are equivalent.

Show that the two logic circuits in Figures 2.10a and 2.10b are equivalent.
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Using Boolean algebra show that the following two expressions are equivalent:
ABC+ABC+ABC+ABC,
(A+B+C)(A+B+C)(A+B+C)(A+B+C).

These two expressions represent the majority function in sum-of-products and product-

of-sums form.

Using Boolean algebra show that the following two expressions are equivalent:
ABC+ABC+ABC+ABC,
(A+B+C)(A+B+C)(A+B+C)(A+B+C).

These two expressions represent the even-parity function in sum-of-products and product-

of-sums form.

Using Boolean algebra show that the following two expressions are equivalent:

ABC + ACD + ABC + ABD + ABCD,
A + BD + CD + BC + BCD.

Show how a 5-input XOR gate can be constructed using only 2-input XOR gates.

We want to build a logic circuit to generate the even-parity bit for 7-bit ASCII characters.

In transmitting an ASCII character, we transmit 7 ASCII bits and a parity bit to facili-

tate rudimentary error detection. Design such a circuit using 2-input XOR gates. What

modification would we make to this circuit if we wanted to generate odd parity?

Using Boolean algebra show that the two logical expressions obtained from Figures 2.18a

and 2.18b are equivalent. That is, show that the following two logical expressions are

equivalent:
BD + ACD + ABD,
BD + ABC + ABD.

Show the truth table of a function that outputs a 1 whenever the 3-bit input, treated as

representing a 3-bit unsigned binary number, is even. Derive a logical expression and

simplify it using Boolean algebra to show that a single inverter can implement this func-
tion.

Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit unsigned binary number, is divisible by 4. Derive a simplified logical

expression using the Karnaugh map method. Show an implementation of this function.

Redo the last exercise using the Quine-McCluskey method.

Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit unsigned binary number, is between 5 and 10 (both inclusive). Derive

a simplified logical expression using the Karnaugh map method. Show an implementation

of this function.

Redo the last exercise using the Quine—McCluskey method.

Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit signed binary number, is equal to +2, 4, or 5. Derive a simplified

logical expression using the Karnaugh map method. Show an implementation of this
function.

Redo the last exercise using the Quine—McCluskey method.






Chapter 3

Combinational Circuits

Objectives

* To describe higher-level building blocks that are useful in designing digital logic circuits;
* To introduce programmable logic devices to implement logic functions;
* To discuss principles involved in the design of arithmetic and logic units;

* To provide a sample of commercial combinational digital circuit ICs.

In the last chapter, we discussed the fundamentals of digital circuit design. Our design process
focused on the basic gates. This chapter focuses on combinational circuits, which provide a
higher level of abstraction that is useful in designing digital circuits and systems.

We describe several examples of combinational circuits that are commonly required in the
design of digital circuits. The combinational circuits we present in this chapter include mul-
tiplexers and demultiplexers, decoders and encoders, comparators, and adders. We show how
multiplexers can be used as universal building blocks to implement logical functions. Similarly,
decoders along with OR gates can also be used to implement any logical function.

In addition, we also discuss programmable logic devices that are useful for implementing
logic functions in a straightforward way. We present details on two programmable logic de-
vices: the programmable logic array and programmable array logic. These programmable logic
devices are useful for implementing logical functions with a minimum number of chips. Arith-
metic and logic units (ALUs) are also discussed to illustrate how design of complex digital
circuits can be simplified by using combinational circuits discussed in this chapter.

3.1 Introduction

We have so far focused on implementations using only the basic gates. One key characteristic of
the circuits that we have designed in the last chapter is that the output of the circuit is a function
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of the inputs. Such devices are called combinational circuits as the output can be expressed as a
combination of the inputs. We continue our discussion of combinational circuits in this chapter.
Although gate-level abstraction is better than working at the transistor level, a higher level
of abstraction is needed in designing and building complex digital systems. We now discuss
some combinational circuits that provide this higher level of abstraction.
Higher-level abstraction helps the digital circuit design and implementation process in sev-
eral ways. The most important ones are the following:

1. Higher-level abstraction helps us in the logical design process as we can use functional
building blocks that typically require several gates to implement. This, therefore, reduces
the complexity.

2. The other equally important point is that the use of these higher-level functional devices
reduces the chip count to implement a complex logical function.

The second point is important from the practical viewpoint. If you look at a typical motherboard,
these low-level gates take a lot of area on the printed circuit board (PCB). Even though the low-
level gate chips such as the ones shown in Figure 2.8 on page 50 were introduced in the 1970s,
you still find them sprinkled on your PCB along with your Pentium processor. In fact, they seem
to take more space. Thus, reducing the chip count is important to make your circuit compact.
The combinational circuits provide one mechanism to incorporate a higher level of integration.
To drive the point home, assume that you want an 8-input NAND gate. We could use a single
14-pin DIP chip 7430 to do the job (see Figure 2.8 on page 50). How many 14-pin chips do we
need to build the same using the 2-input NAND gate chip 74007

The reduced chip count also helps in reducing the production cost (fewer ICs to insert and
solder) and improving the reliability. Several combinational circuits are available for imple-
mentation. Here we look at a sampler of these circuits.

3.2 Multiplexers and Demultiplexers

A multiplexer (MUX) is characterized by 2" data inputs, n selection inputs, and a single output.
The block diagram representation of a 4-input multiplexer (4-to-1 multiplexer) is shown in
Figure 3.1. The multiplexer connects one of 2™ inputs, selected by the selection inputs, to the
output. Treating the selection input as a binary number, data input I; is connected to the output
when the selection input is ¢ as shown in Figure 3.1.

Figure 3.2 shows an implementation of a 4-to-1 multiplexer. If you look closely, it somewhat
resembles our logic circuit used by the brute force method for implementing sum-of-products
expressions (compare this figure with Figure 2.13 on page 59). This visual observation is useful
in developing our intuition about one important property of the multiplexers: they are universal
in the sense that we can implement any logical function using only multiplexers. So, we can
add one more entity to the complete set list on page 45. The best thing about using multiplexers
in implementing a logical function is that you don’t have to simplify the logical expression.
We can proceed directly from the truth table to implementation, using the multiplexer as the
building block.
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Figure 3.1 A 4-data input multiplexer block diagram and truth table.
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Figure 3.2 A 4-to-1 multiplexer implementation using the basic gates.

How do we implement a truth table using the multiplexer? Simple. Connect the logical
variables in the logical expression as selection inputs and the function outputs as constants
to the data inputs. To follow this straightforward implementation, we need a 2° data input
multiplexer with b selection inputs to implement a b variable logical expression. The process is
best illustrated by means of an example.

Figure 3.3 shows how an 8-to-1 multiplexer can be used to implement our two running
examples: the 3-input majority and 3-input even-parity functions. From these examples, you
can see that the data input is simply a copy of the output column in the corresponding truth table.
You just need to take care how you connect the logical variables: connect the most significant
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Figure 3.3 Two example implementations using an 8-to-1 multiplexer.

variable in the truth table to the most significant selection input of the multiplexer as shown in
Figure 3.3.

3.2.1 Implementation: A Multiplexer Chip

The 74151 is an example 8-to-1 multiplexer chip that is similar to the multiplexer we have used
to implement the majority and even-parity functions. The connection diagram and the logic
symbol are shown in Figure 3.4. The only additional input is the enable input (E). This active-
low input signal, after an internal inversion, goes as an additional input to all the AND gates
in the multiplexer implementation shown in Figure 3.2. Thus, when this input is 1, output is
forced to be high. For normal multiplexer operation, the enable input must be 0. Notice that
the 74151 provides both the normal output (O) and its complement (O). It is straightforward to
see that we can implement the majority and even-parity functions using a single chip for each
function.

A Note on the Notation: As we have just done, we often talk about low-active and high-active
inputs. A low-active input means that a 0 should be applied to the input in order to activate
the function. Similarly, a high-active means the input should be 1 to enable the function. We
indicate a low-active input by using an overbar as in E. There are several examples in this and
later chapters.

3.2.2 Efficient Multiplexer Designs

We can do better than the naive design described in the last section. We can actually implement
a b variable logical expression using a 2°~! data input multiplexer. For some functions, we
might need an additional inverter. The basic idea is to factor out one logical variable (say, X)
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Figure 3.4 The 74151 8-to-1 multiplexer chip.

from the truth table. This variable X or its complement may be required as a data input to the
multiplexer (thus, the need for an additional inverter to get X). In this design, the multiplexer
data input set consists of {0, 1, X, X}. Although any variable in the logical expression can
be eliminated, it is most convenient to factor out the rightmost (as it appears in the truth table)
logical variable.

The reduction process for the majority function is shown in Figure 3.5. On the left is the
original truth table with three variables. We eliminate variable C from this table to get the new
truth table with variables A and B. To derive the new truth table, we group two rows in which
the values of A and B match. Then look at the o