
Fundamentals of Computer Organization and Design

Sivarama P. Dandamudi

School of Computer Science

Carleton University

September 22, 2002

s

s

s

s s

s s s

s

y

c

y y y

y

s

y

s

y

s

s

y

y

y

y s

s

s s

—

s s k y

s

s y y

c y y

s

s y

s s s s y y

s

s y

k

To

my parents, Subba Rao and Prameela Rani,

my wife, Sobha,

and

my daughter, Veda

Preface

Computer science and engineering curricula have been evolving at a faster pace to keep up with

the developments in the area. This often dictates that traditional courses will have to be com-

pressed to accommodate new courses. In particular, it is no longer possible in these curricula

to include separate courses on digital logic, assembly language programming, and computer

organization. Often, these three topics are combined into a single course. The current textbooks

in the market cater to the old-style curricula in these disciplines, with separate books available

on each of these subjects. Most computer organization books do not cover assembly language

programming in sufficient detail. There is a definite need to support the courses that combine

assembly language programming and computer organization. This is the main motivation for

writing this book. It provides a comprehensive coverage of digital logic, assembly language

programming, and computer organization.

Intended Use
This book is intended as an undergraduate textbook for computer organization courses offered

by computer science and computer engineering/electrical engineering departments. Unlike

other textbooks in this area, this book provides extensive coverage of assembly language pro-

gramming and digital logic. Thus, the book serves the needs of compressed courses.

In addition, it can be used as a text in vocational training courses offered by community

colleges. Because of the teach-by-example style used in the book, it is also suitable for self-

study by computer professionals and engineers.

vii

viii Preface

Prerequisites
The objective is to support a variety of courses on computer organization in computer science

and engineering departments. To satisfy this objective, we assume very little background on

the part of the student. The student is assumed to have had some programming experience in a

structured, high-level language such as C or Java™. This is the background almost all students

in computer science and computer engineering programs typically acquire in their first year

of study. This prerequisite also implies that the student has been exposed to the basics of the

software-development cycle.

Features
Here is a summary of the special features that set this book apart:

• Most computer organization books assume that the students have done a separate digital

logic course before taking the computer organization course. As a result, digital logic

is covered in an appendix to provide an overview. This book provides detailed cover-

age of digital logic, including sequential logic circuit design. Three complete chapters

are devoted to digital logic topics, where students are exposed to the practical side with

details on several example digital logic chips. There is also information on digital logic

simulators. Students can conveniently use these simulators to test their designs.

• This book provides extensive coverage of assembly language programming, comprising

assembly language of both CISC and RISC processors. We use the Pentium as the rep-

resentative of the CISC category and devote more than five chapters to introducing the

Pentium assembly language. The MIPS processor is used for RISC assembly language

programming. In both cases, students actually write and test working assembly language

programs. The book’s homepage has instructions on downloading assemblers for both

Pentium and MIPS processors.

• We introduce concepts first in simple terms to motivate the reader. Later, we relate these

concepts to practical implementations. In the digital logic part, we use several chips to

show the type of implementations done in practice. For the other topics, we consistently

use three processors—the Pentium, PowerPC, and MIPS—to cover the CISC to RISC

range. In addition, we provide details on the Itanium and SPARC processors.

• Most textbooks in the area treat I/O and interrupts as an appendage. As a result, this

topic is discussed very briefly. Consequently, students do not get any practical experience

on how interrupts work. In contrast, we use the Pentium to illustrate their operation.

Several assembly language programs are used to explain the interrupt concepts. We also

show how interrupt service routines can be written. For instance, one example in the

chapter on interrupts replaces the system-supplied keyboard service routine by our own.

By understanding the practical aspects of interrupt processing, students can write their

own programs to experiment with interrupts.

Preface ix

• Our coverage of system buses is comprehensive and up-to-date. We divide our coverage

into internal and external buses. Internal buses discussed include the ISA, PCI, PCI-X,

AGP, and PCMCIA buses. Our external bus coverage includes the EIA-232, SCSI, USB,

and IEEE 1394 (FireWire) serial buses.

• Extensive assembly programming examples are used to illustrate the points. A set of

input and output routines is provided so that the reader can focus on developing assembly

language programs rather than spending time in understanding how input and output can

be done using the basic I/O functions provided by the operating system.

• We do not use fragments of assembly language code in examples. All examples are

complete in the sense that they can be assembled and run to give a better feeling as to

how these programs work.

• All examples used in the textbook and other proprietary I/O software are available from

the book’s homepage (www.scs.carleton.ca/˜sivarama/org_book). In ad-

dition, this Web site also has instructions on downloading the Pentium and MIPS assem-

blers to give opportunities for students to perform hands-on assembly programming.

• Most chapters are written in such a way that each chapter can be covered in two or three

60-minute lectures by giving proper reading assignments. Typically, important concepts

are emphasized in the lectures while leaving the other material in the book as a reading

assignment. Our emphasis on extensive examples facilitates this pedagogical approach.

• Interchapter dependencies are kept to a minimum to offer maximum flexibility to instruc-

tors in organizing the material. Each chapter clearly indicates the objectives and provides

an overview at the beginning and a summary and key terms at the end.

Instructional Support
The book’s Web site has complete chapter-by-chapter slides for instructors. Instructors can use

these slides directly in their classes or can modify them to suit their needs. Please contact the

author if you want the PowerPoint source of the slides. Copies of these slides (four per page)

are also available for distribution to students. In addition, instructors can obtain the solutions

manual by contacting the publisher. For more up-to-date details, please see the book’s Web

page at www.scs.carleton.ca/˜sivarama/org_book.

Overview and Organization
The book is divided into eight parts. In addition, Appendices provide useful reference material.

Part I consists of a single chapter and gives an overview of basic computer organization and

design.

Part II presents digital logic design in three chapters—Chapters 2, 3, and 4. Chapter 2

covers the digital logic basics. We introduce the basic concepts and building blocks that we

use in the later chapters to build more complex digital circuits such as adders and arithmetic

logic units (ALUs). This chapter also discusses the principles of digital logic design using

Boolean algebra, Karnaugh maps, and Quine–McCluskey methods. The next chapter deals

x Preface

with combinational circuits. We present the design of adders, comparators, and ALUs. We

also show how programmable logic devices can be used to implement combinational logic

circuits. Chapter 4 covers sequential logic circuits. We introduce the concept of time through

clock signals. We discuss both latches and flip-flops, including master–slave JK flip-flops.

These elements form the basis for designing memories in a later chapter. After presenting some

example sequential circuits such as shift registers and counters, we discuss sequential circuit

design in detail. These three chapters together cover the digital logic topic comprehensively.

The amount of time spent on this part depends on the background of the students.

Part III deals with system interconnection structures. We divide the system buses into in-

ternal and external buses. Our classification is based on whether the bus interconnects compo-

nents that are typically inside a system. Part III consists of Chapter 5 and covers internal system

buses. We start this chapter with a discussion of system bus design issues. We discuss both syn-

chronous and asynchronous buses. We also introduce block transfer bus cycles as well as wait

states. Bus arbitration schemes are described next. We present five example buses including the

ISA, PCI, PCI-X, AGP, and PCMCIA buses. The external buses are covered in Part VIII, which

discusses the I/O issues.

Part IV consists of three chapters and discusses processor design issues. Chapter 6 presents

the basics of processor organization and performance. We discuss instruction set architectures

and instruction set design issues. This chapter also covers microprogrammed control. In addi-

tion, processor performance issues, including the SPEC benchmarks, are discussed. The next

chapter gives details about the Pentium processor. The information presented in this chapter

is useful when we discuss Pentium assembly language programming in Part V. Pipelining and

vector processors are discussed in the last chapter of this part. We use the Cray X-MP system

to look at the practical side of vector processors. After covering the material in Chapter 6,

instructors can choose the material from Chapters 7 and 8 to suit their course requirements.

Part V covers Pentium assembly language programming in detail. There are five chapters

in this part. Chapter 9 provides an overview of the Pentium assembly language. All necessary

basic features are covered in this chapter. After reading this chapter, students can write simple

Pentium assembly programs without needing the information presented in the later four chap-

ters. Chapter 10 describes the Pentium addressing modes in detail. This chapter gives enough

information for the student to understand why CISC processors provide complex addressing

modes. The next chapter deals with procedures. Our intent is to expose the student to the un-

derlying mechanics involved in procedure calls, parameter passing, and local variable storage.

In addition, recursive procedures are used to explore the principles involved in handling recur-

sion. In all these activities, the important role played by the stack is illustrated. Chapter 12

describes the Pentium instruction set. Our goal is not to present the complete Pentium instruc-

tions, but a representative sample. Chapter 13 deals with the high-level language interface,

which allows mixed-mode programming in more than one language. We use C and assembly

language to illustrate the principles involved in mixed-mode programming. Each chapter uses

several examples to show how various Pentium instructions are used.

Part VI covers RISC processors in two chapters. The first chapter introduces the general

RISC design principles. It also presents details about two RISC processors: the PowerPC and

Preface xi

Intel Itanium. Although both are considered RISC processors, they also have some CISC fea-

tures. We discuss a pure RISC processor in the next chapter. The Itanium is Intel’s 64-bit

processor that not only incorporates RISC characteristics but also several advanced architec-

tural features. These features include instruction-level parallelism, predication, and speculative

loads. The second chapter in this part describes the MIPS R2000 processor. The MIPS sim-

ulator SPIM runs the programs written for the R2000 processor. We present MIPS assembly

language programs that are complete and run on the SPIM. The programs we present here are

the same programs we have written in the Pentium assembly language (in Part V). Thus, the

reader has an opportunity to contrast the two assembly languages.

Part VII consists of Chapters 16 through 18 and covers memory design issues. Chapter 16

builds on the digital logic material presented in Part II. It describes how memory units can be

constructed using the basic latches and flip-flops presented in Chapter 4. Memory mapping

schemes, both full- and partial-mapping, are also discussed. In addition, we discuss how inter-

leaved memories are designed. The next chapter covers cache memory principles and design

issues. We use an extensive set of examples to illustrate the cache principles. Toward the end

of the chapter, we look at example cache implementations in the Pentium, PowerPC, and MIPS

processors. Chapter 18 discusses virtual memory systems. Note that our coverage of virtual

memory is from the computer organization viewpoint. As a result, we do not cover those as-

pects that are of interest from the operating-system point of view. As with the cache memory, we

look at the virtual memory implementations of the Pentium, PowerPC, and MIPS processors.

The last part covers the I/O issues. We cover the basic I/O interface issues in Chapter 19.

We start with I/O address mapping and then discuss three techniques often used to interface

with I/O devices: programmed I/O, interrupt-driven I/O, and DMA. We discuss interrupt-driven

I/O in detail in the next chapter. In addition, this chapter also presents details about external

buses. In particular, we cover the EIA-232, USB, and IEEE 1394 serial interfaces and the SCSI

parallel interface. The last chapter covers Pentium interrupts in detail. We use programming

examples to illustrate interrupt-driven access to I/O devices. We also present an example to

show how user-defined interrupt service routines can be written.

The appendices provide a wealth of reference material needed by the student. Appendix A

primarily discusses computer arithmetic. Character representation is discussed in Appendix B.

Appendix C gives information on the use of I/O routines provided with this book and the Pen-

tium assembler software. The debugging aspect of assembly language programming is dis-

cussed in Appendix D. Appendix E gives details on running the Pentium assembly programs

on a Linux system using the NASM assembler. Appendix F gives details on digital logic sim-

ulators. Details on the MIPS simulator SPIM are in Appendix G. Appendix H describes the

SPARC processor architecture. Finally, selected Pentium instructions are given in Appendix I.

Acknowledgments
Several people have contributed to the writing of this book. First and foremost, I would like to

thank my wife, Sobha, and my daughter, Veda, for enduring my preoccupation with this project.

I thank Wayne Yuhasz, Executive Editor at Springer-Verlag, for his input and feedback in

xii Preface

developing this project. His guidance and continued support for the project are greatly appreci-

ated. I also want to thank Wayne Wheeler, Assistant Editor, for keeping track of the progress.

He has always been prompt in responding to my queries. Thanks are also due to the staff at

Springer-Verlag New York, Inc., particularly Francine McNeill, for its efforts in producing this

book. I would also like to thank Valerie Greco for doing an excellent job of copyediting the

text.

My sincere appreciation goes to the School of Computer Science at Carleton University for

allowing me to use part of my sabbatical leave to complete this book.

Feedback
Works of this nature are never error-free, despite the best efforts of the authors and others

involved in the project. I welcome your comments, suggestions, and corrections by electronic

mail.

Ottawa, Ontario, Canada Sivarama P. Dandamudi

December 2001 sivarama@scs.carleton.ca
http://www.scs.carleton.ca/˜sivarama

Contents

Preface vii

PART I: Overview 1

1 Overview of Computer Organization 3

1.1 Introduction . 4

1.1.1 Basic Terms and Notation . 6

1.2 Programmer’s View . 7

1.2.1 Advantages of High-Level Languages . 10

1.2.2 Why Program in Assembly Language? . 11

1.3 Architect’s View . 12

1.4 Implementer’s View . 14

1.5 The Processor . 16

1.5.1 Pipelining . 18

1.5.2 RISC and CISC Designs . 19

1.6 Memory . 22

1.6.1 Basic Memory Operations . 23

1.6.2 Byte Ordering . 24

1.6.3 Two Important Memory Design Issues . 24

1.7 Input/Output . 27

1.8 Interconnection: The Glue . 30

1.9 Historical Perspective . 31

1.9.1 The Early Generations . 31

1.9.2 Vacuum Tube Generation: Around the 1940s and 1950s 31

1.9.3 Transistor Generation: Around the 1950s and 1960s 32

1.9.4 IC Generation: Around the 1960s and 1970s 32

1.9.5 VLSI Generations: Since the Mid-1970s . 32

1.10 Technological Advances . 33

1.11 Summary and Outline . 35

1.12 Exercises . 36

xiii

xiv Contents

PART II: Digital Logic Design 39

2 Digital Logic Basics 41

2.1 Introduction . 42

2.2 Basic Concepts and Building Blocks . 42

2.2.1 Simple Gates . 42

2.2.2 Completeness and Universality . 44

2.2.3 Implementation Details . 46

2.3 Logic Functions . 49

2.3.1 Expressing Logic Functions . 49

2.3.2 Logical Circuit Equivalence . 52

2.4 Boolean Algebra . 54

2.4.1 Boolean Identities . 54

2.4.2 Using Boolean Algebra for Logical Equivalence 54

2.5 Logic Circuit Design Process . 55

2.6 Deriving Logical Expressions from Truth Tables . 56

2.6.1 Sum-of-Products Form . 56

2.6.2 Product-of-Sums Form . 57

2.6.3 Brute Force Method of Implementation . 58

2.7 Simplifying Logical Expressions . 58

2.7.1 Algebraic Manipulation . 58

2.7.2 Karnaugh Map Method . 60

2.7.3 Quine–McCluskey Method . 67

2.8 Generalized Gates . 71

2.9 Multiple Outputs . 73

2.10 Implementation Using Other Gates . 75

2.10.1 Implementation Using NAND and NOR Gates 75

2.10.2 Implementation Using XOR Gates . 77

2.11 Summary . 78

2.12 Web Resources . 79

2.13 Exercises . 79

3 Combinational Circuits 83

3.1 Introduction . 83

3.2 Multiplexers and Demultiplexers . 84

3.2.1 Implementation: A Multiplexer Chip . 86

3.2.2 Efficient Multiplexer Designs . 86

3.2.3 Implementation: A 4-to-1 Multiplexer Chip 87

3.2.4 Demultiplexers . 89

3.3 Decoders and Encoders . 89

3.3.1 Decoder Chips . 90

3.3.2 Encoders . 92

Contents xv

3.4 Comparators . 94

3.4.1 A Comparator Chip . 94

3.5 Adders . 95

3.5.1 An Example Adder Chip . 98

3.6 Programmable Logic Devices . 98

3.6.1 Programmable Logic Arrays (PLAs) . 98

3.6.2 Programmable Array Logic Devices (PALs) 100

3.7 Arithmetic and Logic Units . 103

3.7.1 An Example ALU Chip . 105

3.8 Summary . 105

3.9 Exercises . 107

4 Sequential Logic Circuits 109

4.1 Introduction . 109

4.2 Clock Signal . 111

4.3 Latches . 113

4.3.1 SR Latch . 114

4.3.2 Clocked SR Latch . 115

4.3.3 D Latch . 115

4.4 Flip-Flops . 116

4.4.1 D Flip-Flops . 116

4.4.2 JK Flip-Flops . 117

4.4.3 Example Chips . 119

4.5 Example Sequential Circuits . 120

4.5.1 Shift Registers . 120

4.5.2 Counters . 121

4.6 Sequential Circuit Design . 127

4.6.1 Binary Counter Design with JK Flip-Flops 127

4.6.2 General Design Process . 132

4.7 Summary . 140

4.8 Exercises . 143

PART III: Interconnection 145

5 System Buses 147

5.1 Introduction . 147

5.2 Bus Design Issues . 150

5.2.1 Bus Width . 150

5.2.2 Bus Type . 152

5.2.3 Bus Operations . 152

5.3 Synchronous Bus . 153

5.3.1 Basic Operation . 153

xvi Contents

5.3.2 Wait States . 154

5.3.3 Block Transfer . 155

5.4 Asynchronous Bus . 157

5.5 Bus Arbitration . 159

5.5.1 Dynamic Bus Arbitration . 159

5.5.2 Implementation of Dynamic Arbitration . 161

5.6 Example Buses . 165

5.6.1 The ISA Bus . 166

5.6.2 The PCI Bus . 168

5.6.3 Accelerated Graphics Port (AGP) . 180

5.6.4 The PCI-X Bus . 182

5.6.5 The PCMCIA Bus . 185

5.7 Summary . 190

5.8 Web Resources . 192

5.9 Exercises . 192

PART IV: Processors 195

6 Processor Organization and Performance 197

6.1 Introduction . 198

6.2 Number of Addresses . 199

6.2.1 Three-Address Machines . 199

6.2.2 Two-Address Machines . 200

6.2.3 One-Address Machines . 201

6.2.4 Zero-Address Machines . 202

6.2.5 A Comparison . 204

6.2.6 The Load/Store Architecture . 206

6.2.7 Processor Registers . 207

6.3 Flow of Control . 208

6.3.1 Branching . 208

6.3.2 Procedure Calls . 211

6.4 Instruction Set Design Issues . 213

6.4.1 Operand Types . 214

6.4.2 Addressing Modes . 215

6.4.3 Instruction Types . 216

6.4.4 Instruction Formats . 218

6.5 Microprogrammed Control . 219

6.5.1 Hardware Implementation . 225

6.5.2 Software Implementation . 226

6.6 Performance . 236

6.6.1 Performance Metrics . 237

6.6.2 Execution Time Calculation . 238

Contents xvii

6.6.3 Means of Performance . 238

6.6.4 The SPEC Benchmarks . 241

6.7 Summary . 246

6.8 Exercises . 247

7 The Pentium Processor 251

7.1 The Pentium Processor Family . 251

7.2 The Pentium Processor . 253

7.3 The Pentium Registers . 256

7.3.1 Data Registers . 256

7.3.2 Pointer and Index Registers . 257

7.3.3 Control Registers . 257

7.3.4 Segment Registers . 259

7.4 Real Mode Memory Architecture . 260

7.5 Protected Mode Memory Architecture . 265

7.5.1 Segment Registers . 265

7.5.2 Segment Descriptors . 266

7.5.3 Segment Descriptor Tables . 268

7.5.4 Segmentation Models . 269

7.5.5 Mixed-Mode Operation . 270

7.5.6 Which Segment Register to Use . 270

7.6 Summary . 270

7.7 Exercises . 271

8 Pipelining and Vector Processing 273

8.1 Basic Concepts . 274

8.2 Handling Resource Conflicts . 277

8.3 Data Hazards . 278

8.3.1 Register Forwarding . 279

8.3.2 Register Interlocking . 280

8.4 Handling Branches . 282

8.4.1 Delayed Branch Execution . 283

8.4.2 Branch Prediction . 283

8.5 Performance Enhancements . 286

8.5.1 Superscalar Processors . 287

8.5.2 Superpipelined Processors . 288

8.5.3 Very Long Instruction Word Architectures 290

8.6 Example Implementations . 291

8.6.1 Pentium . 291

8.6.2 PowerPC . 294

8.6.3 SPARC Processor . 297

8.6.4 MIPS Processor . 299

xviii Contents

8.7 Vector Processors . 299

8.7.1 What Is Vector Processing? . 300

8.7.2 Architecture . 301

8.7.3 Advantages of Vector Processing . 303

8.7.4 The Cray X-MP . 304

8.7.5 Vector Length . 306

8.7.6 Vector Stride . 308

8.7.7 Vector Operations on the Cray X-MP . 309

8.7.8 Chaining . 311

8.8 Performance . 312

8.8.1 Pipeline Performance . 312

8.8.2 Vector Processing Performance . 314

8.9 Summary . 315

8.10 Exercises . 317

PART V: Pentium Assembly Language 319

9 Overview of Assembly Language 321

9.1 Introduction . 322

9.2 Assembly Language Statements . 322

9.3 Data Allocation . 324

9.3.1 Range of Numeric Operands . 326

9.3.2 Multiple Definitions . 327

9.3.3 Multiple Initializations . 329

9.3.4 Correspondence to C Data Types . 330

9.3.5 LABEL Directive . 331

9.4 Where Are the Operands? . 332

9.4.1 Register Addressing Mode . 332

9.4.2 Immediate Addressing Mode . 333

9.4.3 Direct Addressing Mode . 334

9.4.4 Indirect Addressing Mode . 335

9.5 Data Transfer Instructions . 338

9.5.1 The mov Instruction . 338

9.5.2 The xchg Instruction . 339

9.5.3 The xlat Instruction . 340

9.6 Pentium Assembly Language Instructions . 340

9.6.1 Arithmetic Instructions . 340

9.6.2 Conditional Execution . 345

9.6.3 Iteration Instructions . 352

9.6.4 Logical Instructions . 354

9.6.5 Shift Instructions . 357

9.6.6 Rotate Instructions . 361

Contents xix

9.7 Defining Constants . 364

9.7.1 The EQU Directive . 364

9.7.2 The = Directive . 366

9.8 Macros . 366

9.9 Illustrative Examples . 368

9.10 Summary . 379

9.11 Exercises . 380

9.12 Programming Exercises . 383

10 Procedures and the Stack 387

10.1 What Is a Stack? . 388

10.2 Pentium Implementation of the Stack . 388

10.3 Stack Operations . 390

10.3.1 Basic Instructions . 390

10.3.2 Additional Instructions . 391

10.4 Uses of the Stack . 393

10.4.1 Temporary Storage of Data . 393

10.4.2 Transfer of Control . 394

10.4.3 Parameter Passing . 394

10.5 Procedures . 394

10.6 Assembler Directives for Procedures . 396

10.7 Pentium Instructions for Procedures . 397

10.7.1 How Is Program Control Transferred? . 397

10.7.2 The ret Instruction . 398

10.8 Parameter Passing . 399

10.8.1 Register Method . 399

10.8.2 Stack Method . 402

10.8.3 Preserving Calling Procedure State . 406

10.8.4 Which Registers Should Be Saved? . 406

10.8.5 Illustrative Examples . 409

10.9 Handling a Variable Number of Parameters . 417

10.10 Local Variables . 420

10.11 Multiple Source Program Modules . 426

10.11.1 PUBLIC Directive . 427

10.11.2 EXTRN Directive . 427

10.12 Summary . 430

10.13 Exercises . 431

10.14 Programming Exercises . 433

11 Addressing Modes 435

11.1 Introduction . 435

xx Contents

11.2 Memory Addressing Modes . 437

11.2.1 Based Addressing . 439

11.2.2 Indexed Addressing . 439

11.2.3 Based-Indexed Addressing . 441

11.3 Illustrative Examples . 441

11.4 Arrays . 448

11.4.1 One-Dimensional Arrays . 449

11.4.2 Multidimensional Arrays . 450

11.4.3 Examples of Arrays . 452

11.5 Recursion . 455

11.5.1 Illustrative Examples . 456

11.6 Summary . 464

11.7 Exercises . 464

11.8 Programming Exercises . 465

12 Selected Pentium Instructions 471

12.1 Status Flags . 472

12.1.1 The Zero Flag . 472

12.1.2 The Carry Flag . 474

12.1.3 The Overflow Flag . 477

12.1.4 The Sign Flag . 479

12.1.5 The Auxiliary Flag . 480

12.1.6 The Parity Flag . 481

12.1.7 Flag Examples . 483

12.2 Arithmetic Instructions . 484

12.2.1 Multiplication Instructions . 485

12.2.2 Division Instructions . 488

12.2.3 Application Examples . 491

12.3 Conditional Execution . 497

12.3.1 Indirect Jumps . 497

12.3.2 Conditional Jumps . 500

12.4 Implementing High-Level Language Decision Structures 504

12.4.1 Selective Structures . 504

12.4.2 Iterative Structures . 508

12.5 Logical Expressions in High-Level Languages . 510

12.5.1 Representation of Boolean Data . 510

12.5.2 Logical Expressions . 511

12.5.3 Bit Manipulation . 511

12.5.4 Evaluation of Logical Expressions . 511

12.6 Bit Instructions . 515

12.6.1 Bit Test and Modify Instructions . 515

12.6.2 Bit Scan Instructions . 516

Contents xxi

12.7 Illustrative Examples . 516

12.8 String Instructions . 526

12.8.1 String Representation . 526

12.8.2 String Instructions . 527

12.8.3 String Processing Examples . 536

12.8.4 Testing String Procedures . 540

12.9 Summary . 542

12.10 Exercises . 543

12.11 Programming Exercises . 545

13 High-Level Language Interface 551

13.1 Why Program in Mixed-Mode? . 552

13.2 Overview . 552

13.3 Calling Assembly Procedures from C . 554

13.3.1 Parameter Passing . 554

13.3.2 Returning Values . 556

13.3.3 Preserving Registers . 556

13.3.4 Publics and Externals . 557

13.3.5 Illustrative Examples . 557

13.4 Calling C Functions from Assembly . 562

13.5 Inline Assembly Code . 565

13.5.1 Compiling Inline Assembly Programs . 565

13.6 Summary . 566

13.7 Exercises . 567

13.8 Programming Exercises . 567

PART VI: RISC Processors 569

14 RISC Processors 571

14.1 Introduction . 572

14.2 Evolution of CISC Processors . 572

14.3 RISC Design Principles . 575

14.3.1 Simple Operations . 575

14.3.2 Register-to-Register Operations . 576

14.3.3 Simple Addressing Modes . 576

14.3.4 Large Number of Registers . 576

14.3.5 Fixed-Length, Simple Instruction Format 577

14.4 PowerPC Processor . 578

14.4.1 Architecture . 578

14.4.2 PowerPC Instruction Set . 581

14.5 Itanium Processor . 590

14.5.1 Architecture . 591

xxii Contents

14.5.2 Itanium Instruction Set . 594

14.5.3 Handling Branches . 604

14.5.4 Predication to Eliminate Branches . 605

14.5.5 Speculative Execution . 606

14.5.6 Branch Prediction . 610

14.6 Summary . 611

14.7 Exercises . 612

15 MIPS Assembly Language 615

15.1 MIPS Processor Architecture . 616

15.1.1 Registers . 616

15.1.2 General-Purpose Register Usage Convention 617

15.1.3 Addressing Modes . 618

15.1.4 Memory Usage . 619

15.2 MIPS Instruction Set . 619

15.2.1 Instruction Format . 620

15.2.2 Data Transfer Instructions . 621

15.2.3 Arithmetic Instructions . 623

15.2.4 Logical Instructions . 627

15.2.5 Shift Instructions . 627

15.2.6 Rotate Instructions . 628

15.2.7 Comparison Instructions . 628

15.2.8 Branch and Jump Instructions . 630

15.3 SPIM System Calls . 632

15.4 SPIM Assembler Directives . 634

15.5 Illustrative Examples . 636

15.6 Procedures . 643

15.7 Stack Implementation . 648

15.7.1 Illustrative Examples . 649

15.8 Summary . 657

15.9 Exercises . 658

15.10 Programming Exercises . 659

PART VII: Memory 663

16 Memory System Design 665

16.1 Introduction . 666

16.2 A Simple Memory Block . 666

16.2.1 Memory Design with D Flip-Flops . 667

16.2.2 Problems with the Design . 667

16.3 Techniques to Connect to a Bus . 669

16.3.1 Using Multiplexers . 669

Contents xxiii

16.3.2 Using Open Collector Outputs . 669

16.3.3 Using Tristate Buffers . 671

16.4 Building a Memory Block . 673

16.5 Building Larger Memories . 674

16.5.1 Designing Independent Memory Modules 676

16.5.2 Designing Larger Memories Using Memory Chips 678

16.6 Mapping Memory . 681

16.6.1 Full Mapping . 681

16.6.2 Partial Mapping . 682

16.7 Alignment of Data . 683

16.8 Interleaved Memories . 684

16.8.1 The Concept . 685

16.8.2 Synchronized Access Organization . 686

16.8.3 Independent Access Organization . 687

16.8.4 Number of Banks . 688

16.8.5 Drawbacks . 689

16.9 Summary . 689

16.10 Exercises . 690

17 Cache Memory 693

17.1 Introduction . 694

17.2 How Cache Memory Works . 695

17.3 Why Cache Memory Works . 697

17.4 Cache Design Basics . 699

17.5 Mapping Function . 700

17.5.1 Direct Mapping . 703

17.5.2 Associative Mapping . 707

17.5.3 Set-Associative Mapping . 708

17.6 Replacement Policies . 711

17.7 Write Policies . 713

17.8 Space Overhead . 715

17.9 Mapping Examples . 717

17.10 Types of Cache Misses . 718

17.11 Types of Caches . 719

17.11.1 Separate Instruction and Data Caches . 719

17.11.2 Number of Cache Levels . 720

17.11.3 Virtual and Physical Caches . 722

17.12 Example Implementations . 722

17.12.1 Pentium . 722

17.12.2 PowerPC . 724

17.12.3 MIPS . 726

xxiv Contents

17.13 Cache Operation: A Summary . 727

17.13.1 Placement of a Block . 727

17.13.2 Location of a Block . 728

17.13.3 Replacement Policy . 728

17.13.4 Write Policy . 728

17.14 Design Issues . 729

17.14.1 Cache Capacity . 729

17.14.2 Cache Line Size . 729

17.14.3 Degree of Associativity . 731

17.15 Summary . 731

17.16 Exercises . 733

18 Virtual Memory 735

18.1 Introduction . 736

18.2 Virtual Memory Concepts . 737

18.2.1 Page Replacement Policies . 738

18.2.2 Write Policy . 739

18.2.3 Page Size Tradeoff . 740

18.2.4 Page Mapping . 741

18.3 Page Table Organization . 741

18.3.1 Page Table Entries . 742

18.4 The Translation Lookaside Buffer . 743

18.5 Page Table Placement . 744

18.5.1 Searching Hierarchical Page Tables . 745

18.6 Inverted Page Table Organization . 746

18.7 Segmentation . 748

18.8 Example Implementations . 750

18.8.1 Pentium . 750

18.8.2 PowerPC . 754

18.8.3 MIPS . 756

18.9 Summary . 760

18.10 Exercises . 761

PART VIII: Input and Output 765

19 Input/Output Organization 767

19.1 Introduction . 768

19.2 Accessing I/O Devices . 770

19.2.1 I/O Address Mapping . 770

19.2.2 Accessing I/O Ports . 770

19.3 An Example I/O Device: Keyboard . 772

19.3.1 Keyboard Description . 772

19.3.2 8255 Programmable Peripheral Interface Chip 772

Contents xxv

19.4 I/O Data Transfer . 774

19.4.1 Programmed I/O . 775

19.4.2 DMA . 777

19.5 Error Detection and Correction . 784

19.5.1 Parity Encoding . 784

19.5.2 Error Correction . 785

19.5.3 Cyclic Redundancy Check . 787

19.6 External Interface . 791

19.6.1 Serial Transmission . 794

19.6.2 Parallel Interface . 797

19.7 Universal Serial Bus . 801

19.7.1 Motivation . 801

19.7.2 Additional USB Advantages . 802

19.7.3 USB Encoding . 803

19.7.4 Transfer Types . 803

19.7.5 USB Architecture . 805

19.7.6 USB Transactions . 807

19.8 IEEE 1394 . 810

19.8.1 Advantages of IEEE 1394 . 810

19.8.2 Power Distribution . 811

19.8.3 Transfer Types . 812

19.8.4 Transactions . 813

19.8.5 Bus Arbitration . 815

19.8.6 Configuration . 815

19.9 The Bus Wars . 820

19.10 Summary . 821

19.11 Web Resources . 823

19.12 Exercises . 823

20 Interrupts 825

20.1 Introduction . 826

20.2 A Taxonomy of Pentium Interrupts . 827

20.3 Pentium Interrupt Processing . 829

20.3.1 Interrupt Processing in Protected Mode . 829

20.3.2 Interrupt Processing in Real Mode . 829

20.4 Pentium Software Interrupts . 831

20.4.1 DOS Keyboard Services . 832

20.4.2 BIOS Keyboard Services . 837

20.5 Pentium Exceptions . 842

20.6 Pentium Hardware Interrupts . 847

20.6.1 How Does the CPU Know the Interrupt Type? 847

20.6.2 How Can More Than One Device Interrupt? 848

xxvi Contents

20.6.3 8259 Programmable Interrupt Controller 848

20.6.4 A Pentium Hardware Interrupt Example . 850

20.7 Interrupt Processing in the PowerPC . 855

20.8 Interrupt Processing in the MIPS . 857

20.9 Summary . 859

20.10 Exercises . 860

20.11 Programming Exercises . 862

APPENDICES 863

A Computer Arithmetic 865

A.1 Positional Number Systems . 865

A.1.1 Notation . 867

A.2 Number Systems Conversion . 868

A.2.1 Conversion to Decimal . 868

A.2.2 Conversion from Decimal . 870

A.2.3 Conversion Among Binary, Octal, and Hexadecimal 871

A.3 Unsigned Integer Representation . 874

A.3.1 Arithmetic on Unsigned Integers . 875

A.4 Signed Integer Representation . 881

A.4.1 Signed Magnitude Representation . 882

A.4.2 Excess-M Representation . 882

A.4.3 1’s Complement Representation . 883

A.4.4 2’s Complement Representation . 886

A.5 Floating-Point Representation . 887

A.5.1 Fractions . 887

A.5.2 Representing Floating-Point Numbers . 890

A.5.3 Floating-Point Representation . 891

A.5.4 Floating-Point Addition . 896

A.5.5 Floating-Point Multiplication . 896

A.6 Summary . 897

A.7 Exercises . 898

A.8 Programming Exercises . 900

B Character Representation 901

B.1 Character Sets . 901

B.2 Universal Character Set . 903

B.3 Unicode . 903

B.4 Summary . 904

C Assembling and Linking Pentium Assembly Language Programs 907

C.1 Structure of Assembly Language Programs . 908

Contents xxvii

C.2 Input/Output Routines . 910

C.2.1 Character I/O . 912

C.2.2 String I/O . 912

C.2.3 Numeric I/O . 913

C.3 Assembling and Linking . 915

C.3.1 The Assembly Process . 915

C.3.2 Linking Object Files . 924

C.4 Summary . 924

C.5 Exercises . 925

C.6 Programming Exercises . 925

D Debugging Assembly Language Programs 927

D.1 Strategies to Debug Assembly Language Programs 928

D.2 DEBUG . 930

D.2.1 Display Group . 930

D.2.2 Execution Group . 933

D.2.3 Miscellaneous Group . 934

D.2.4 An Example . 934

D.3 Turbo Debugger TD . 938

D.4 CodeView . 943

D.5 Summary . 944

D.6 Exercises . 944

D.7 Programming Exercises . 945

E Running Pentium Assembly Language Programs on a Linux System 947

E.1 Introduction . 948

E.2 NASM Assembly Language Program Template . 948

E.3 Illustrative Examples . 950

E.4 Summary . 955

E.5 Exercises . 955

E.6 Programming Exercises . 955

F Digital Logic Simulators 957

F.1 Testing Digital Logic Circuits . 957

F.2 Digital Logic Simulators . 958

F.2.1 DIGSim Simulator . 958

F.2.2 Digital Simulator . 959

F.2.3 Multimedia Logic Simulator . 961

F.2.4 Logikad Simulator . 962

F.3 Summary . 966

F.4 Web Resources . 966

F.5 Exercises . 967

xxviii Contents

G SPIM Simulator

and Debugger 969

G.1 Introduction . 969

G.2 Simulator Settings . 972

G.3 Running and Debugging a Program . 973

G.3.1 Loading and Running . 973

G.3.2 Debugging . 974

G.4 Summary . 977

G.5 Exercises . 977

G.6 Programming Exercises . 977

H The SPARC Architecture 979

H.1 Introduction . 979

H.2 Registers . 980

H.3 Addressing Modes . 982

H.4 Instruction Set . 984

H.4.1 Instruction Format . 984

H.4.2 Data Transfer Instructions . 984

H.4.3 Arithmetic Instructions . 986

H.4.4 Logical Instructions . 987

H.4.5 Shift Instructions . 988

H.4.6 Compare Instructions . 988

H.4.7 Branch Instructions . 989

H.5 Procedures and Parameter Passing . 993

H.5.1 Procedure Instructions . 993

H.5.2 Parameter Passing . 994

H.5.3 Stack Implementation . 995

H.5.4 Window Management . 996

H.6 Summary . 1000

H.7 Web Resources . 1000

H.8 Exercises . 1000

I Pentium Instruction Set 1001

I.1 Pentium Instruction Format . 1001

I.1.1 Instruction Prefixes . 1001

I.1.2 General Instruction Format . 1002

I.2 Selected Pentium Instructions . 1004

Bibliography 1033

Index 1037

Chapter 1

Overview of

Computer Organization

Objectives
• To provide a high-level overview of computer organization;

• To discuss how architects, implementers, programmers, and users view the computer

system;

• To describe the three main components: processor, memory, and I/O;

• To give a brief historical perspective of computers.

We begin each chapter with an overview of what you can expect in the chapter. This is our first

overview. The main purpose of this chapter is to provide an overview of the computer systems.

We start off with a brief introduction to computer systems from the user’s viewpoint.

Computer systems are complex. To manage this complexity, we use a series of abstractions.

The kind of abstraction used depends on what you want to do with the system. We present

the material in this book from three perspectives: from the computer architect’s view, from the

programmer’s view, and from the implementer’s view. We give details about these three views

in Sections 1.2 through 1.4.

A computer system consists of three major components: a processor, a memory unit, and

an input/output (I/O) subsystem. A system bus interconnects these three components. The next

three sections discuss these three components in detail. Section 1.5 provides an overview of

the processor component. The processors we cover in this book include the Pentium, MIPS,

PowerPC, Itanium, and SPARC. Section 1.6 presents some basic concepts about the memory

system. Later chapters describe in detail cache and virtual memories. Section 1.7 gives a brief

overview of how input/output devices such as the keyboard are interfaced to the system. A more

3

4 Chapter 1 Overview of Computer Organization

System

hardware

System

software

Applications

software

Figure 1.1 A user’s view of a computer system.

detailed description on I/O interfacing can be found in the last two chapters. We conclude the

chapter by providing a perspective on the history of computers.

1.1 Introduction
This book is about digital computer systems, which have been revolutionizing our society. Most

of us use computers for a variety of tasks, from serious scientific computations to entertainment.

You are reading this book because you are interested in learning more about these magnificent

machines.

As with any complex project, several stages and players are involved in designing, imple-

menting, and realizing a computer system. This book deals with inside details of a computer

system, focusing on both hardware and software.

Computer hardware is the electronic circuitry that performs the actual work. Hardware

includes things with which you are already familiar such as the processor, memory, keyboard,

CD burner, and so on. Miniaturization of hardware is the most recent advance in the computer

hardware area. This miniaturization gives us such compact things as PocketPCs and Flash

memories.

Computer software can be divided into application software and system software. A user

interacts with the system through an application program. For the user, the application is the

computer! For example, if you are interested in browsing the Internet, you interact with the

system through a Web browser such as the Netscape™ Communicator or Internet Explorer. For

you, the system appears as though it is executing the application program (i.e., Web browser),

as shown in Figure 1.1.

Section 1.1 Introduction 5

At the core is the basic hardware, over which a layer of system software hides the gory

details about the hardware. Early ancestors of the Pentium and other processors were called

microprocessors because they were less powerful than the processors used in the computers at

that time.

The system software manages the hardware resources efficiently and also provides nice

services to the application software layer. What is the system software? Operating systems

such as Windows™, UNIX™, and Linux are the most familiar examples. System software also

includes compilers, assemblers, and linkers that we discuss later in this book. You are probably

more familiar with application software, which includes Web browsers, word processors, music

players, and so on.

This book presents details on various aspects of computer system design and programming.

We discuss organization and architecture of computer systems, how they are designed, and how

they are programmed. In order to clarify the scope of this book, we need to explain these terms:

computer architecture, computer organization, computer design, and computer programming.

Computer architecture refers to the aspects with which a programmer is concerned. The

most obvious one is the design of an instruction set for the computer. For example, should

the processor understand instructions to process multimedia data? The answer depends on

the intended use of the system. Clearly, if the target applications involve multimedia, adding

multimedia instructions will help improve the performance. Computer architecture, in a sense,

describes the computer system at a logical level, from the programmer’s viewpoint. It deals

with the selection of the basic functional units such as the processor and memory, and how they

should be interconnected into a computer system.

Computer organization is concerned with how the various hardware components operate

and how they are interconnected to implement the architectural specifications. For example, if

the architecture specifies a divide instruction, we will have a choice to implement this instruc-

tion either in hardware or in software. In a high-performance model, we may implement the

division operation in hardware to provide improved performance at a higher price. In cheaper

models, we may implement it in software. But cost need not be the only deciding criterion.

For example, the Pentium processor implements the divide operation in hardware whereas the

next generation Itanium processor implements division in software. If the next version of Ita-

nium uses a hardware implementation of division, that does not change the architecture, only

its organization.

Computer design is an activity that translates architectural specifications of a system into

an implementation using a particular organization. As a result, computer design is sometimes

referred to as computer implementation. A computer designer is concerned with the hardware

design of the computer.

Computer programming involves expressing the problem at hand in a language that the com-

puter can understand. As we show later, the native language that a computer can understand is

called the machine language. But this is not a language with which we humans are comfort-

able. So we use a language that we can easily read and understand. These languages are called

high-level languages, and include languages such as Java™ and C. We do not devote any space

for these high-level languages as they are beyond the scope of this book. Instead, we discuss

6 Chapter 1 Overview of Computer Organization

in detail languages that are close to the architecture of a machine. This allows us to study the

internal details of computer systems.

Computers are complex systems. How do we manage complexity of these systems? We

can get clues from looking at how we manage complex systems in life. Think of how a large

corporation is managed. We use a hierarchical structure to simplify the management: president

at the top and employees at the bottom. Each level of management filters out unnecessary details

on the lower levels and presents only an abstracted version to the higher-level management. This

is what we refer to as abstraction. We study computer systems by using layers of abstraction.

Different people view computer systems differently depending on the type of their interac-

tion. We use the concept of abstraction to look at only the details that are necessary from a

particular viewpoint. For example, if you are a computer architect, you are interested in the in-

ternal details that do not interest a normal user of the system. One can look at computer systems

from several different perspectives. We have already talked about the user’s view. Our interest

in this book is not at this level. Instead, we concentrate on the following views: (i) a program-

mer’s view, (ii) an architect’s view, and (iii) an implementer’s view. The next three sections

briefly discuss these perspectives.

1.1.1 Basic Terms and Notation

The alphabet of computers, more precisely digital computers, consists of 0 and 1. Each is

called a bit, which stands for the binary digit. The term byte is used to represent a group of

8 bits. The term word is used to refer to a group of bytes that is processed simultaneously.

The exact number of bytes that constitute a word depends on the system. For example, in the

Pentium, a word refers to four bytes or 32 bits. On the other hand, eight bytes are grouped into

a word in the Itanium processor. The reasons for this difference are explained later. We use the

abbreviation “b” for bits, “B” for bytes, and “W” for words. Sometimes we also use doubleword

and quadword. A doubleword has twice the number of bits as the word and the quadword has

four times the number of bits in a word.

Bits in a word are usually ordered from right to left, as you would write digits in a decimal

number. The rightmost bit is called the least significant bit (LSB), and the leftmost bit is called

the most significant bit (MSB). However, some manufacturers use the opposite notation. For

example, the PowerPC manuals use this notation. In this book, we consistently write bits of a

word from right to left, with the LSB as the rightmost bit.

We use standard terms such as kilo (K), mega (M), giga (G), and so on to represent large

integers. Unfortunately, we use two different versions of each, depending on the number system,

decimal or binary. Table 1.1 summarizes the differences between the two systems. Typically,

computer-related attributes use the binary version. For example, when we say 128 megabyte

(MB) memory, we mean ��� � �
�� bytes. Usually, communication-related quantities and time

units are expressed using the decimal system. For example, when we say that the data transfer

rate is 100 megabits/second (Mb/s), we mean ���� ��
� Mb/s.

Throughout the text, we use various number systems: binary, octal, and hexadecimal. Now

is a good time to refresh your memory by reviewing the material on number systems presented

Section 1.2 Programmer’s View 7

Table 1.1 Terms to represent large integer values

Term Decimal (base 10) Binary (base 2)

K (kilo) ��
�

�
��

M (mega) ��
�

�
��

G (giga) ��
�

�
��

T (tera) ��
��

�
��

P (peta) ��
��

�
��

in Appendix A. If the number system used is not clear from the context, we use a trailing

letter to specify the number system. We use “D” for decimal numbers, “B” for binary numbers,

“Q” for octal numbers, and “H” for hexadecimal (or hex for short) numbers. For example,

10110101B is an 8-bit binary number whereas 10ABH is a hex number.

1.2 Programmer’s View
A programmer’s view of a computer system depends on the type and level of language she

intends to use. From the programmer’s viewpoint, there exists a hierarchy from low-level lan-

guages to high-level languages. As we move up in this hierarchy, the level of abstraction in-

creases. At the lowest level, we have the machine language that is the native language of the

machine. This is the language understood by the machine hardware. Since digital computers use

0 and 1 as their alphabet, machine language naturally uses 1s and 0s to encode the instructions.

One level up, there is the assembly language as shown in Figure 1.2.

Assembly language does not use 1s and 0s; instead, it uses mnemonics to express the in-

structions. Assembly language is a close relative of the machine language. In the Pentium,

there is a one-to-one correspondence between the instructions of the assembly language and its

machine language. For example, to increment the variable count, we would write

inc count

in Pentium assembly language. This assembly language instruction is translated into the ma-

chine language as

1111 1111 0000 0110 0000 1010 0000 0000B

which, as you can see, is very difficult to read. We improve the situation slightly by writing this

instruction in hexadecimal notation as

FF060A00H

8 Chapter 1 Overview of Computer Organization

Hardware

Microprogram control

Machine language

High-level languages

Application programs

Assembly language
Machine-specific

Machine-independent High-level languages

Low-level languages

Figure 1.2 A programmer’s view of a computer system.

Still, it is not a big help in understanding what this instruction does. Compared to the machine

language, assembly language is far better in understanding programs. Since there is one-to-

one correspondence between many assembly and machine language instructions, it is fairly

straightforward to translate instructions from assembly language to machine language.

Assembler is the software that achieves this code translation. MASM (Microsoft Assem-

bler), TASM (Borland Turbo Assembler), and NASM (Netwide Assembler) are some of the

popular assemblers for the Pentium processors. As a result, only a masochist would consider

programming in a machine language. However, life was not so easy for some of the early pro-

grammers. When microprocessors were first introduced, some programming was in fact done

in machine language!

Although Pentium’s assembly language is close to its machine language, other processors

use the assembly language to implement a virtual instruction set that is more powerful and

useful than the native machine language. In this case, an assembly language instruction could be

translated into a sequence of machine language instructions. We show several examples of such

assembly language instructions when we present details about the MIPS processor assembly

language in Chapter 15.

Assembly language is one step above machine language; however, it is still considered a

low-level language because each assembly language instruction performs a much lower-level

task compared to an instruction in a high-level language. For example, the following C state-

ment, which assigns the sum of four count variables to result

Section 1.2 Programmer’s View 9

High-level languages

Machine language

Compiler

Compiler Assembly language

Assembler

Figure 1.3 Translation of higher-level languages into machine language is done by assemblers and com-

pilers. A compiler can translate a high-level language program directly into the machine language, or it

can produce the equivalent assembly language.

result = count1 + count2 + count3 + count4;

is implemented in the Pentium assembly language as

mov AX,count1

add AX,count2

add AX,count3

add AX,count4

mov result,AX

A compiler translates instructions from a high-level language to the machine language, either

directly or via the assembly language (Figure 1.3).

Don’t worry about the assembly language details here. The point to take away is that several

assembly language instructions are required to implement a high-level language statement. As

a result, assembly language code tends to be much larger than the equivalent high-level lan-

guage code. Furthermore, assembly language instructions are native to a particular processor.

For example, a program written in the Pentium assembly language cannot be executed on the

PowerPC processor. Thus, assembly language programming is machine-specific, as shown in

Figure 1.2. This machine dependence causes code portability problems.

The PC systems maintain backward compatibility in the sense that programs that executed

on earlier Intel processors in the 1970s can still be run on current Pentium processors. This is

possible because Intel processors maintain backward compatibility. However, Apple systems do

not maintain such backward compatibility as the early Apple systems used Motorola processors,

whereas the recent ones use PowerPC processors. Since these two processors have different

instruction sets, programs that ran on one do not run on the other. Programming in assembly

language also requires detailed knowledge about the system such as processor instruction set,

memory organization, and so on.

10 Chapter 1 Overview of Computer Organization

One of the important abstractions that a programmer uses is the instruction set architecture

(ISA). A machine language programmer views the machine at the level of abstraction provided

by the ISA. The ISA defines the personality of a processor and indirectly influences the overall

system design. The ISA specifies how a processor functions: what instructions it executes and

what interpretation is given to these instructions. This, in a sense, defines a logical processor.

If these specifications are precise, it gives freedom to various chip manufacturers to implement

physical designs that look functionally the same at the ISA level. Thus, if we run the same pro-

gram on these implementations, we get the same results. Different implementations, however,

may differ in performance and price.

Implementations of the logical processor, shown shaded in Figure 1.2, can be done directly

in the hardware or through another level of abstraction known as the microprogram. We use

the dashed box to indicate that the microprogramming level is optional. We further discuss this

topic in Section 1.5 and Chapter 6.

Two popular examples of ISA specifications are the SPARC and JVM. The rationale behind

having a precise ISA-level specification for the SPARC is to let multiple vendors design chips

that look the same at the ISA level. The JVM, on the other hand, takes a different approach. Its

ISA-level specifications can be used to create a software layer so that the processor looks like

a Java processor. Thus, in this case, we do not use a set of hardware chips to implement the

specifications, but rather use a software layer to simulate the virtual processor. Note, however,

that there is nothing stopping us from implementing these specifications in hardware (even

though this is not usually the case). Thus, the underlying difference is whether the specifications

are implemented in hardware or software.

Why create the ISA layer? The ISA-level abstraction provides details about the machine that

are needed by the programmers to make machine language programs work on the machine. The

idea is to have a common platform to execute programs. If a program is written in C, a compiler

translates it into the equivalent machine language program that can run on the ISA-level logical

processor. Similarly, if you write your program in FORTRAN, use a FORTRAN compiler to

generate code that can execute on the ISA-level logical processor. For us, the abstraction at

the ISA level is also important for one other reason. The ISA represents an interface between

hardware and lowest-level software, that is, at the machine language level.

1.2.1 Advantages of High-Level Languages

High-level languages such as C and Java are preferred because they provide a convenient ab-

straction of the underlying system suitable for problem solving. The advantages of program-

ming in a high-level language rather than in an assembly language include the following:

1. Program development is faster in a high-level language.

Many high-level languages provide structures (sequential, selection, iterative) that facili-

tate program development. Programs written in a high-level language are relatively small

and easier to code and debug.

2. Programs written in a high-level language are easier to maintain.

Programming for a new application can take several weeks to several months, and the

Section 1.2 Programmer’s View 11

lifecycle of such an application software can be several years. Therefore, it is critical

that software development be done with a view toward software maintainability, which

involves activities ranging from fixing bugs to generating the next version of the software.

Programs written in a high-level language are easier to understand and, when good pro-

gramming practices are followed, easier to maintain. Assembly language programs tend

to be lengthy and take more time to code and debug. As a result, they are also difficult to

maintain.

3. Programs written in a high-level language are portable.

High-level language programs contain very few machine-specific details, and they can be

used with little or no modification on different computer systems. In contrast, assembly

language programs are written for a particular system and cannot be used on a different

system.

1.2.2 Why Program in Assembly Language?

Despite these disadvantages, some programming is still done in assembly language. There are

two main reasons for this: efficiency and accessibility to system hardware. Efficiency refers to

how “good” a program is in achieving a given objective. Here we consider two objectives based

on space (space-efficiency) and time (time-efficiency).

Space-efficiency refers to the memory requirements of a program (i.e., the size of the code).

Program A is said to be more space-efficient if it takes less memory space than program B to

perform the same task. Very often, programs written in an assembly language tend to generate

more compact executable code than the corresponding high-level language version. You should

not confuse the size of the source code with that of the executable code.

Time-efficiency refers to the time taken to execute a program. Clearly, a program that runs

faster is said to be better from the time-efficiency point of view. Programs written in an assembly

language tend to run faster than those written in a high-level language. However, sometimes a

compiler-generated code executes faster than a handcrafted assembly language code!

As an aside, note that we can also define a third objective: how fast a program can be devel-

oped (i.e., the code written and debugged). This objective is related to programmer productivity,

and assembly language loses the battle to high-level languages.

The superiority of assembly language in generating compact code is becoming increasingly

less important for several reasons. First, the savings in space pertain only to the program code

and not to its data space. Thus, depending on the application, the savings in space obtained

by converting an application program from some high-level language to an assembly language

may not be substantial. Second, the cost of memory (i.e., cost per bit) has been decreasing

and memory capacity has been increasing. Thus, the size of a program is not a major hurdle

anymore. Finally, compilers are becoming “smarter” in generating code that competes well

with a handcrafted assembly code. However, there are systems such as mobile devices and

embedded controllers in which space-efficiency is still important.

One of the main reasons for writing programs in assembly language is to generate code that

is time-efficient. The superiority of assembly language programs in producing a code that runs

12 Chapter 1 Overview of Computer Organization

Interconnect

CPU

Input/output

Memory

Figure 1.4 The three main components of a computer system are interconnected by a bus.

faster is a direct manifestation of specificity. That is, handcrafted assembly language programs

tend to contain only the necessary code to perform the given task. Even here, a “smart” com-

piler can optimize the code that can compete well with its equivalent written in the assembly

language.

Perhaps the main reason for still programming in an assembly language is to have direct con-

trol over the system hardware. High-level languages, on purpose, provide a restricted (abstract)

view of the underlying hardware. Because of this, it is almost impossible to perform certain

tasks that require access to the system hardware. For example, writing an interface program,

called a device driver, to a new printer on the market almost certainly requires programming

in an assembly language. Since assembly language does not impose any restrictions, you can

have direct control over all of the system hardware. If you are developing system software (e.g.,

compiler, assembler, linker), you cannot avoid writing programs in assembly language.

In this book, we spend a lot time on the assembly language of Pentium and MIPS processors.

Our reasons are different from what we just mentioned. We use assembly language as a tool to

study the internal details of a computer.

1.3 Architect’s View
A computer architect looks at the design aspect from a high level. She uses higher-level build-

ing blocks to optimize the overall system performance. A computer architect is much like an

architect who designs buildings. For example, when designing a building, the building architect

is not concerned with designing the elevator; as far as the architect is concerned, the elevator is

a building block someone else designs. Similarly, a computer architect does not focus on low-

level issues. To give you an example, let’s look at a component called the arithmetic and logic

unit (ALU) that is in all processors. This unit performs arithmetic operations such as addition

and logical operations such as and. A computer architect, however, is not concerned with the

internal details of the ALU.

From the architect’s viewpoint, a computer system consists of three main components: a

processor or central processing unit (CPU), a memory unit, and input/output (I/O) devices. An

Section 1.3 Architect’s View 13

I/O device

I/O device

I/O device

Address bus

Processor Memory

Data bus

Control bus

I/O

subsystem

Figure 1.5 Simplified block diagram of a computer system.

interconnection network facilitates communication among these three components, as shown in

Figure 1.4. An architect is concerned with the functional design of each of these components as

well as integration of the whole system. Thus we can categorize architects into several classes,

depending on their design goal. For example, a processor designer (or architect) is responsible

for the processor component. She may deal with issues such as whether the design should

follow the RISC philosophy or use the CISC design. We describe RISC and CISC designs in

Section 1.5, and a later chapter gives more detailed information on them. On the other hand, a

computer system architect designs the system using components such as the processor, memory

unit, and I/O devices.

The interconnection network is called the system bus. The term “bus” is used to represent

a group of electrical signals or the wires that carry these signals. As shown in Figure 1.5, the

system bus consists of three major components: an address bus, a data bus, and a control bus.

The address bus width determines the amount of physical memory addressable by the pro-

cessor. The data bus width indicates the size of the data transferred between the processor and

memory or an I/O device. For example, the Pentium processor has 32 address lines and 64

data lines. Thus, the Pentium can address up to �
��, or 4 GB of memory. Furthermore, each

data transfer can move 64 bits of data. The Intel Itanium processor uses address and data buses

that are twice the size of the Pentium buses (i.e., 64-bit address bus and 128-bit data bus). The

14 Chapter 1 Overview of Computer Organization

Control unit

. . .

Registers

ALU

Datapath

Processor

Figure 1.6 These three major components of a processor are interconnected by onchip buses. The

datapath of a processor, shown shaded, consists of its register set and the arithmetic and logic unit.

Itanium, therefore, can address up to �
�� bytes of memory and each data transfer can move 128

bits.

The control bus consists of a set of control signals. Typical control signals include memory

read, memory write, I/O read, I/O write, interrupt, interrupt acknowledge, bus request, and

bus grant. These control signals indicate the type of action taking place on the system bus.

For example, when the processor is writing data into the memory, the memory write signal is

generated. Similarly, when the processor is reading from an I/O device, it generates the I/O read

signal.

The system memory, also called the main or primary memory, is used to store both program

instructions and data. Section 1.6 gives more details on the memory component.

As shown in Figure 1.5, the I/O subsystem interfaces the I/O devices to the system. I/O

devices such as the keyboard, display screen, printer, and modem are used to provide user

interfaces. I/O devices such as disks are used as secondary storage devices. We present details

about the I/O subsystem in Chapters 19 and 20.

1.4 Implementer’s View
Implementers are responsible for implementing the designs produced by computer architects.

This group works at the digital logic level. At this level, logic gates and other hardware circuits

are used to implement the various functional units.

Section 1.4 Implementer’s View 15

From the implementer’s viewpoint, the processor consists of the three components shown

in Figure 1.6. The control unit fetches instructions from the main memory and decodes them

to find the type of instruction. Thus, the control unit directly controls the operation of the

processor. The datapath consists of a set of registers and one or more arithmetic and logic

units (ALUs). Registers are used as a processor’s scratchpad to store data and instructions

temporarily. Because accessing data stored in the registers is faster than going to the memory,

optimized code tends to put most-often accessed data in processor registers. Obviously, we

would like to have as many registers as possible, the more the better. In general, all registers

are of the same size. For example, registers in a 32-bit processor like the Pentium are all 32 bits

wide. Similarly, 64-bit registers are used in 64-bit processors like the Itanium.

The number of processor registers varies widely. Some processors may have only about 10

registers, and others may have 100+ registers. For example, the Pentium has about 8 data regis-

ters and 8 other registers, whereas the Itanium has 128 registers just for integer data. There are

an equal number of floating-point and application registers. We discuss the Pentium processor

in Chapter 7 and the Itanium in Chapter 14.

Some of the registers contain special values. For example, all processors have a register

called the program counter (PC). The PC register maintains a marker to the instruction that the

processor is supposed to execute next. Some processors refer to the PC register as the instruction

pointer (IP) register. There is also an instruction register (IR) that keeps the instruction currently

being executed. Although some of these registers are not available, most processor registers can

be used by the programmer.

The data from the register set are fed as input to the ALU through ALU input buses, as

shown in Figure 1.7. Here, we have two buses (A and B) to carry the input operands required

by the ALU. The ALU output is fed back to the register set using the C bus.

The memory interface consists of the four shaded registers. We have already mentioned the

PC and IR registers. The memory address register (MAR) holds the address of the memory and

the memory data register (MDR) holds the data.

The ALU hardware performs simple operations such as addition and logical and on the

two input operands. The ALU control input determines the operation to be done on the input

operands. The ALU output can be placed back in one of the registers or can be written into the

main memory. If the result is to be written into the memory, the ALU output should be placed

in MDR. This value in MDR is written at the memory address in MAR.

In RISC processors, the results are always written into a register. These types of processors

(e.g., MIPS and Itanium) have special instructions to move data between registers and memory.

CISC processors such as the Pentium do not enforce such a restriction. As we show in later

chapters, CISC processors allow the output to go either to one of the registers or to a memory

location.

Implementers are concerned with the design of these components. Figure 1.8 shows a sam-

ple implementation of a simple 1-bit ALU design using digital logic gates. This ALU can

perform logical AND and OR operations on the two inputs A and B; it can also perform two

arithmetic operations: addition (A + B + ���) and subtraction (A � B � ���). Clearly, all of

this does not make sense to you right now. The idea in presenting this material is to convey the

16 Chapter 1 Overview of Computer Organization

General-purpose

registers

T
o
 s

y
st

em
 b

u
s

MAR

MDR

PC

A bus B bus

A B

ALU

C

ALU control

C bus

IR

Memory interface registers

Figure 1.7 This datapath uses three internal buses to connect registers to the ALU.

high-level view, rather than the low-level details. We cover digital design details in Part II of

this book.

Implementers can choose to implement the architecture in several different ways. The im-

plementation, for example, can be done by using custom-designed chips, general-purpose pro-

grammable logic arrays (PLAs), or basic logic gates. An implementer optimizes implemen-

tation to achieve a specific objective such as minimization of cost or minimization of power

consumption (e.g., for handheld devices).

1.5 The Processor
The processor acts as the controller of all actions or services provided by the system. Processor

actions are synchronized to its clock input. A clock signal, which is a square wave, consists of

clock cycles. The time to complete a clock cycle is called the clock period. Normally, we use

the clock frequency, which is the inverse of the clock period, to specify the clock. The clock

frequency is measured in Hertz, which represents one cycle/second. Hertz is abbreviated as Hz.

Section 1.5 The Processor 17

Full

adder
C i C o

A

B

S

F 0

C out

I 3

I 1

I 0

I 2

M

U

X

O

C in F 0F 1

F

S 1 S 0

B A

Figure 1.8 An example 1-bit ALU design. It can perform one of four functions, selected by ���� inputs.

Instruction

fetch

Instruction

decode

Operand

fetch

Instruction

execute

Result

write back

Instruction

fetch

Instruction

decode

Operand

fetch

Instruction

execute

Result

write back

ID OF IE WBIF

Instruction execution phase

. . .

Execution cycle

Figure 1.9 An execution cycle consists of fetch, decode, and execution phases. The execution phase

consists of three steps.

Usually, we use mega Hertz (MHz) and giga Hertz (GHz) as in 1.8 GHz Pentium. We give more

details about the clock signal in Section 4.2 on page 111.

The processor can be thought of as executing the following cycle forever (see Figure 1.9):

1. Fetch an instruction from the memory,

2. Decode the instruction (i.e., determine the instruction type),

3. Execute the instruction (i.e., perform the action specified by the instruction).

Execution of an instruction involves fetching any required operands, performing the specified

operation, and writing the results back. This process is often referred to as the fetch-execute

cycle, or simply the execution cycle.

This raises several questions. Who provides the instructions to the processor? Who places

these instructions in the main memory? How does the processor know where in memory these

instructions are located?

18 Chapter 1 Overview of Computer Organization

When we write programs—whether in a high-level language or in an assembly language—

we provide a sequence of instructions to perform a particular task (i.e., solve a problem). A

compiler or assembler will eventually translate these instructions to an equivalent sequence of

machine language instructions that the processor understands.

The operating system, which provides instructions to the processor whenever a user pro-

gram is not executing, loads the user program into the main memory. The operating system

then indicates the location of the user program to the processor and instructs it to execute the

program.

The features we have just described are collectively referred to as the von Neumann ar-

chitecture, which uses what is known as the stored program model. The key features of this

architecture are as follows:

• There is no distinction between instructions and data. This requirement has several main

implications:

1. Instructions are represented as numbers, just like the data themselves. This uniform

treatment of instructions and data simplifies the design of memory and software.

2. Instructions and data are not stored in separate memories; a single memory is used

for both. Thus, a single path from the memory can carry both data and instructions.

3. The memory is addressed by location, regardless of the type of data at that location.

• By default, instructions are executed in the sequential manner in which they are present in

the stored program. This behavior can be changed, as you know, by explicitly executing

instructions such as procedure calls.

In contrast to the single memory concept used in the von Neumann architecture, the Harvard

architecture uses separate memories for instructions and data. The term now refers to machines

that have a single main memory but use separate caches for instructions and data (see page 26).

1.5.1 Pipelining

What we have shown in Figure 1.9 is a simple execution cycle. In particular, notice that the

control unit would have to wait until the instruction is fetched from memory. Furthermore, the

ALU would have to wait until the required operands are fetched from memory. As we show

later in this chapter, processor speeds are increasing at a much faster rate than the improvements

in memory speeds. Thus, we would be wasting the control unit and ALU resources by keeping

them idle while the system fetches instructions and data. How can we avoid this situation? Let’s

suppose that we can prefetch the instruction. That is, we read the instruction before the control

unit needs it. These prefetched instructions are typically placed in a set of registers called the

prefetch buffers. Then, the control unit doesn’t have to wait.

How do we do this prefetch? Given that the program execution is sequential, we can prefetch

the next instruction in sequence while the control unit is busy decoding the current instruction.

Pipelining generalizes this concept of overlapped execution. Similarly, prefetching the required

operands avoids the idle time experienced by the ALU.

Section 1.5 The Processor 19

Time (cycles)

Stage 1 2 3 4 7 85 6 109

S1: IF

S2: ID

S3: OF

S4: IE

S5: WB I3 I4 I5I1 I2 I6

I3 I4 I5I1 I2 I6

I3 I4 I5I1 I2 I6 . . .
I3 I4 I5I1 I2 I6 . . .

I3 I4 I5I1 I2 I6 . . .

. .

Figure 1.10 A pipelined execution of the basic execution cycle shown in Figure 1.9.

Figure 1.10 shows how pipelining helps us improve the efficiency. As we have seen in

Figure 1.9, the instruction execution can be divided into five parts. In pipelining terminology,

each part is called a stage. For simplicity, let’s assume that execution of each stage takes the

same time (say, one cycle). As shown in Figure 1.10, each stage spends one cycle in executing

its part of the execution cycle and passes the instruction on to the next stage. Let’s trace the

execution of this pipeline during the first few cycles. During the first cycle, the first stage S1

fetches the instruction. All other stages are idle. During Cycle 2, S1 passes the first instruction

I1 to stage S2 for decoding and S1 initiates the next instruction fetch. Thus, during Cycle 2, two

of the five stages are busy: S2 decodes I1 while S1 is busy with fetching I2. During Cycle 3,

stage S2 passes instruction I1 to stage S3 to fetch any required operands. At the same time, S2

receives I2 from S1 for decoding while S1 fetches the third instruction. This process is repeated

in each stage. As you can see, after four cycles, all five stages are busy. This state is called the

pipeline full condition. From this point on, all five stages are busy.

Figure 1.11 shows an alternative way of looking at pipelined execution. This figure clearly

shows that the execution of instruction I1 is completed in Cycle 5. However, after Cycle 5,

notice that one instruction is completed in each cycle. Thus, executing six instructions takes

only 10 cycles. Without pipelining, it would have taken 30 cycles.

Notice from this description that pipelining does not speed up execution of individual in-

structions; each instruction still takes five cycles to execute. However, pipelining increases the

number of instructions executed per unit time; that is, instruction throughput increases.

1.5.2 RISC and CISC Designs

We have briefly mentioned the two basic types of processor design philosophies: reduced in-

struction set computers (RISC) and complex instruction set computers (CISC). First, let us talk

about the trend line. The current trend in processor design is to use RISC philosophy. In the

1970s and early 1980s, processors predominantly followed the CISC designs. To understand

this shift from CISC to RISC, we need to look at the motivation for going the CISC way initially.

But first we have to explain what these two types of design philosophies are.

20 Chapter 1 Overview of Computer Organization

Time (cycles)

Instruction 1 2 3 4 7 85 6 109

I1

I2

I3

I4

OF IE WBIF ID

IF ID OF IE WB

IF ID OF IE WB

IF ID OF IE WB

IF ID OF IE WBI5

I6 IF ID OF IE WB

Figure 1.11 An alternative way of looking at the pipelined execution shown in Figure 1.10.

As the name suggests, CISC systems use complex instructions. What is a complex instruc-

tion? For example, adding two integers is considered a simple instruction. But, an instruction

that copies an element from one array to another and automatically updates both array subscripts

is considered a complex instruction. RISC systems use only simple instructions such as the ad-

dition. Furthermore, RISC systems assume that the required operands are in the processor’s

registers, not in main memory. As mentioned before, a CISC processor does not impose such

restrictions. So what? It turns out that characteristics like simple instructions and restrictions

like register-based operands not only simplify the processor design but also result in a proces-

sor that provides improved application performance. We give a detailed list of RISC design

characteristics and its advantages in Chapter 14.

How come the early designers did not think about the RISC way of designing processors?

Several factors contributed to the popularity of CISC in the 1970s. In those days, memory

was very expensive and small in capacity. For example, even in the mid-1970s, the price of a

small 16 KB memory was about $500. You can imagine the cost of memory in the 1950s and

1960s. So there was a need to minimize the amount of memory required to store a program.

An implication of this requirement is that each processor instruction must do more, leading to

complex instructions. This caused another problem. How can a processor be designed that

can execute such complex instructions using the technology of the day? Complex instructions

meant complex hardware, which was also expensive. This was a problem processor designers

grappled with until Wilkes proposed microprogrammed control in 1951 [39].

A microprogram is a small run-time interpreter that takes the complex instruction and gen-

erates a sequence of simple instructions that can be executed by hardware. Thus the hardware

need not be complex. Once it became possible to design such complex processors by using

microprogrammed control, designers went crazy and tried to close the semantic gap between

the instructions of the processor and high-level languages. This semantic gap refers to the fact

that each instruction in a high-level language specifies a lot more work than an instruction in

Section 1.5 The Processor 21

Hardware

Microprogram control

ISA level

Hardware

ISA level

(a) CISC implementation (b) RISC implementation

Figure 1.12 The ISA-level architecture can be implemented either directly in hardware or through a mi-

croprogrammed control.

Microprogram 1

ISA 1

Hardware

Microprogram 2

ISA 2

Microprogram 3

ISA 3

Figure 1.13 Variations on the ISA-level architecture can be implemented by changing the microprogram.

the machine language. Think of a while loop statement in a high-level language such as C, for

example. If we have a processor instruction with the while loop semantics, we could just use

one machine language instruction. Thus, most CISC designs use microprogrammed control, as

shown in Figure 1.12.

RISC designs, on the other hand, eliminate the microprogram layer and use the hardware

to directly execute instructions. Here is another reason why RISC processors can potentially

give improved performance. One advantage of using microprogrammed control is that we can

implement variations on the basic ISA architecture by simply modifying the microprogram;

there is no need to change the underlying hardware, as shown in Figure 1.13. Thus, it is possible

to come up with cheaper versions as well as high-performance processors for the same family.

22 Chapter 1 Overview of Computer Organization

32
2 -1

(in decimal)

Address Address

(in hex)

FFFFFFFF

FFFFFFFE

00000002

00000001

00000000

FFFFFFFD

2

1

0

Figure 1.14 Logical view of the system memory.

1.6 Memory
The memory of a computer system consists of tiny electronic switches, with each switch in one

of two states: open or closed. It is, however, more convenient to think of these states as 0 and 1,

rather than open and closed. Thus, each switch can represent a bit. The memory unit consists

of millions of such bits. In order to make memory more manageable, eight bits are grouped into

a byte. Memory can then be viewed as consisting of an ordered sequence of bytes. Each byte

in this memory is identified by its sequence number starting with 0, as shown in Figure 1.14.

This is referred to as the memory address of the byte. Such memory is called byte addressable

memory because each byte has a unique address.

The Pentium can address up to 4 GB (��� bytes) of main memory (see Figure 1.14). This

magic number comes from the fact that the address bus of the Pentium has 32 address lines. This

number is referred to as the memory address space. The memory address space of a system is

determined by the address bus width of the processor used in the system. The actual memory

in a system, however, is always less than or equal to the memory address space. The amount

of memory in a system is determined by how much of this memory address space is populated

with memory chips.

Although the 4-GB memory address space of the Pentium is large for desktop systems, it is

not adequate for server systems. To support this market, 64-bit processors support even larger

memory address space. Typically, these processors use 64-bit addresses. For example, the Intel

64-bit Itanium processor uses 64-bit addresses with an address space of ��� bytes.

Section 1.6 Memory 23

UNIT

MEMORY

Address

Read

Write

Data

Figure 1.15 Block diagram of the system memory.

1.6.1 Basic Memory Operations

The memory unit supports two basic operations: read and write. The read operation reads

previously stored data and the write operation stores a new value in memory. Both of these

operations require a memory address. In addition, the write operation requires specification of

the data to be written. The block diagram of the memory unit is shown in Figure 1.15. The

address and data of the memory unit are connected to the address and data buses of the system

bus, respectively. The read and write signals come from the control bus.

Two metrics are used to characterize memory. Access time refers to the amount of time

required by the memory to retrieve the data at the addressed location. The other metric is the

memory cycle time, which refers to the minimum time between successive memory operations.

The read operation is nondestructive in the sense that one can read a location of the mem-

ory as many times as one wishes without destroying the contents of that location. The write

operation, however, is destructive, as writing a value into a location destroys the old contents of

that memory location. It seems only natural to think that the read operation is nondestructive.

You will be surprised to know that the DRAM you are familiar with has the destructive read

property. Thus, in DRAMs, a read has to be followed by a write to restore the contents.

Steps in a Typical Read Cycle:

1. Place the address of the location to be read on the address bus,

2. Activate the memory read control signal on the control bus,

3. Wait for the memory to retrieve the data from the addressed memory location and place

them on the data bus,

4. Read the data from the data bus,

5. Drop the memory read control signal to terminate the read cycle.

A simple Pentium read cycle takes three clock cycles. During the first clock cycle, Steps 1

and 2 are performed. The Pentium waits until the end of the second clock and reads the data and

drops the read control signal. If the memory is slower (and therefore cannot supply data within

the specified time), the memory unit indicates its inability to the processor and the processor

waits longer for the memory to supply data by inserting wait cycles. Note that each wait cycle

24 Chapter 1 Overview of Computer Organization

introduces a waiting period equal to one system clock period and thus slows down the system

operation.

Steps in a Typical Write Cycle:

1. Place the address of the location to be written on the address bus,

2. Place the data to be written on the data bus,

3. Activate the memory write control signal on the control bus,

4. Wait for the memory to store the data at the addressed location,

5. Drop the memory write signal to terminate the write cycle.

As with the read cycle, the Pentium requires three clock cycles to perform a simple write

operation. During the first clock cycle, Steps 1 and 3 are done. The idea behind initiating Step 3

ahead of Step 2 is to give advance notice to the memory as to the type of operation. Step 2

is performed during the second clock cycle. The Pentium gives memory time until the end of

the second clock and drops the memory write signal. If the memory cannot write data at the

maximum processor rate, wait cycles can be introduced to extend the write cycle to give more

time to the memory unit. We discuss hardware memory design issues in Chapter 16.

1.6.2 Byte Ordering

Storing data often requires more than a byte. For example, we need four bytes of memory to

store an integer variable that can take a value between 0 and �
�� � �. Let us assume that the

value to be stored is the one in Figure 1.16a.

Suppose that we want to store these 4-byte data in memory at locations 100 through 103.

How do we store them? Figure 1.16 shows two possibilities: least significant byte (Fig-

ure 1.16b) or most significant byte (Figure 1.16c) is stored at location 100. These two byte

ordering schemes are referred to as the little endian and big endian. In either case, we always

refer to such multibyte data by specifying the lowest memory address (100 in this example).

Is one byte ordering scheme better than the other? Not really! It is largely a matter of

choice for the designers. For example, Pentium processors use the little-endian byte ordering.

However, most processors leave it up to the system designer to configure the processor. For

example, the MIPS and PowerPC processors use the big-endian byte ordering by default, but

these processors can be configured to use the little-endian scheme.

The particular byte ordering scheme used does not pose any problems as long as you are

working with machines that use the same byte ordering scheme. However, difficulties arise

when you want to transfer data between two machines that use different schemes. In this case,

conversion from one scheme to the other is required. For example, the Pentium provides two

instructions to facilitate such conversion: one to perform 16-bit data conversions and the other

for 32-bit data.

1.6.3 Two Important Memory Design Issues

When designing system memory, some major issues need to be addressed:

Section 1.6 Memory 25

MSB LSB

(b) Little-endian byte ordering (c) Big-endian byte ordering

102

101

102

101

(a) 32-bit data

1 0 0 1 1 0 0 0 1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1 0 1 1 0 1 1 1

1 0 1 1 0 1 1 1

1 0 0 1 1 0 0 0

1 1 1 1 0 1 0 0 0 0 0 0 1 1 1 1

1 1 1 1 0 1 0 0

0 0 0 0 1 1 1 1 1 1 1 1 0 1 0 0

0 0 0 0 1 1 1 1

Address

103

100

Address

100

103

Figure 1.16 Two byte ordering schemes commonly used by computer systems.

1. Slower Memories: Advances in technology and processor architecture led to extremely

fast processors. Technological advances pushed the basic clock rate into giga Hertz range.

Simultaneously, architectural advances such as multiple pipelines and superscalar designs

reduced the number of clock cycles required to execute an instruction. Thus, there is a

lot of pressure on the memory unit to supply instructions and data at faster rates. If

the memory can’t supply the instructions and data at a rate required by the processor,

what is the use of designing faster processors? To improve overall system performance,

ideally, we would like to have lots of fast memory. Of course, we don’t want to pay for

it. Designers have proposed cache memories to satisfy these requirements.

2. Physical Memory Size Limitation: Even though processors have a large memory address

space, only a fraction of this address space actually contains memory. For example, even

though the Pentium has 4 GB of address space, most PCs now have between 128 MB and

256 MB of memory. Furthermore, this memory is shared between the system and appli-

cation software. Thus, the amount of memory available to run a program is considerably

smaller. In addition, if you run more programs simultaneously, each application gets an

even smaller amount of memory. You might have experienced the result of this: terrible

performance.

Apart from the performance issue, this scenario also causes another more important prob-

lem: What if your application does not fit into its allotted memory space? How do you

run such an application program? This is the motivation for proposing virtual memory,

which we briefly describe later.

26 Chapter 1 Overview of Computer Organization

Floating-point

unit

Bus interface unit

cache

Instruction

unit

Integer

unit

System bus

Instruction Data

cache

Processor

Figure 1.17 Most current processors use separate caches for instructions and data with separate instruc-

tion and data buses.

Cache memory: Cache memory successfully bridges the speed gap between the processor and

memory. The cache is a small amount of fast memory that sits between the processor and the

main memory. Cache memory is implemented by using faster memory technology compared to

the technology used for the main memory. Abstractly, we can view the processor’s register set

as the fastest memory available to store data. The next best is the cache memory.

Cache memory is much smaller than the main memory. In PCs, for example, main memory

is typically in the 128 to 256 MB range, whereas the cache is in the range of 16 to 512 KB.

The principle behind the cache memories is to prefetch the instructions and data from the

main memory before the processor needs them. If we are successful in predicting what the

Section 1.7 Input/Output 27

processor needs in the near future, we can preload the cache and supply the instructions and

data from the faster cache. Early processors were designed with a common cache for both

instructions and data. Most processors now use two separate caches: one for instructions and

the other for data (Figure 1.17). This design uses separate buses for instructions and data. Such

architectures are commonly referred to as the Harvard architecture.

It turns out that predicting processor future accesses is not such a difficult thing. To success-

fully predict the processor access needs, we need to understand the access referencing behavior

of programs. Several researchers have studied program referencing behavior and shown that

programs exhibit a phenomenon known as locality in their referencing behavior. This behavior

can be exploited to successfully predict future accesses. In practice, we can predict with more

than 90% accuracy! Cache memory is discussed in detail in Chapter 17.

Virtual memory: Virtual memory was developed to eliminate the physical memory size restric-

tion mentioned before. There are some similarities between the cache memory and virtual mem-

ory. Just as with the cache memory, we would like to use the relatively small main memory and

create the illusion (to the programmer) of a much larger memory, as shown in Figure 1.18. The

programmer is concerned only with the virtual address space. Programs use virtual addresses

and when these programs are run, their virtual addresses are mapped to physical addresses at

run time.

The illusion of larger address space is realized by using much slower disk storage. Virtual

memory can be implemented by devising an appropriate mapping function between the virtual

and physical address spaces. As a result of this similarity between cache and virtual memories,

both memory system designs are based on the same underlying principles. The success of

the virtual memory in providing larger virtual address space also depends on the locality we

mentioned before.

Before the virtual memory technique was proposed, a technique known as overlaying was

used to run programs that were larger than the physical memory. In this technique, the pro-

grammer divides the program into several chunks, each of which could fit in the memory. These

chunks are known as the overlays. The whole program (i.e., all overlays) resides on the disk.

The programmer is responsible for explicitly managing the overlays. Typically, when an over-

lay in the memory is finished, it will bring in the next overlay that is required for program

execution. Needless to say, this is not something a programmer relishes. Virtual memory takes

this onerous task away from the programmer by automating the management of overlays with-

out involving the programmer. Typically, virtual memory implementations provide much more

functionality than the management of overlays. We discuss virtual memory in Chapter 18.

1.7 Input/Output
Input/output devices provide the means by which a computer system can interact with the out-

side world. Computer systems typically have several I/O devices, from slow devices such as

the keyboard to high-speed disk drives and communication networks. Irrespective of the type

of device, the underlying principles of interfacing an I/O device are the same. This interface

typically consists of an I/O controller.

1

110

1.5 on 13.

1

110

1.19.

110 110

110 110

110

no

110.

110.

Section 1.7 Input/Output 29

S
y

st
em

 b
u

s

Data bus

Address bus

Control bus

Status

Command

Data

I/O Device

I/O Controller

Figure 1.19 Block diagram of a generic I/O device interface.

example, when Intel introduced the 8086 processor. This processor had 20 address lines, which

means it could address only one megabyte (1 MB) of memory. That is not a large address space

considering that current PCs have 128 MB to 512 MB of physical memory.

In such cases, it is better to create a separate I/O address space. This mapping scheme is

called isolated I/O. Because the Pentium is backward compatible to the earlier 8086 proces-

sor, the Pentium still supports isolated I/O. In memory-mapped I/O, writing to an I/O port is

like writing to a memory location. Thus, memory-mapped I/O does not require any special

design consideration. Thus, all processors, including the Pentium, inherently support memory-

mapped I/O. In isolated I/O, special I/O instructions are needed to access the I/O address space.

Details on these two mapping schemes and their impact on processor design are discussed in

Chapter 19.

I/O ports provide the basic access to I/O devices via the associated I/O controller. We still

will have to devise ways to transfer data between the system and I/O devices using the I/O

ports. A simple way of transferring data is to ask the processor to do the transfer. In this

scheme of things, the processor is responsible for transferring data word by word. Typically, it

executes a loop until the data transfer is complete. This technique is called programmed I/O.

One disadvantage of this scheme is that it wastes processor time. That is like asking a highly

paid CEO of a company to take care of the company’s reception area.

Is there another way of performing the I/O activity without wasting the processor’s time?

Carrying on with our analogy, we would naturally hire a receptionist and ask him to handle

these low-level chores. Computer systems also employ a similar technique. It is called direct

memory access (DMA). In DMA, the processor gives the command such as “transfer 10 KB to

I/O port 125” and the DMA performs the transfer without bothering the processor. Once the

operation is complete, the processor is notified. This notification is done by using an interrupt

mechanism. We use DMA to transfer bulk data, not for single word transfers. A special DMA

controller is used to direct the DMA transfer operations. We discuss these topics in detail in

Chapters 19 and 20.

30 Chapter 1 Overview of Computer Organization

1.8 Interconnection: The Glue
You realize from our discussion so far that computer systems have several components intercon-

nected by buses. We can talk about buses at various levels. The processor uses several internal

buses to interconnect registers and the ALU. We also need interconnection to carry the control

unit’s signals. For example, in Figure 1.7, we used three buses (A, B, and C buses) to provide

the interconnection between the register set and the ALU. Similarly, in Figure 1.17, data and

instruction buses are used to connect various execution units to their caches. These are just two

examples; a processor may have several such buses. These buses are called the onchip buses

and are not accessible from outside the chip. We discuss the datapath in detail in Chapter 6.

The second type of buses is internal to a system. For example, the system bus shown in Fig-

ure 1.5 is typically inside the CPU box. Several bus standards have been proposed to facilitate

interchangeability of system components. These include the ISA, PCI, AGP, and PCMCIA. A

computer system typically has several of these buses (for a quick peek, look at Figure 5.14 on

page 167). Chapter 5 describes various internal buses.

External buses, on the other hand, are used to interface the devices outside a typical com-

puter system. Thus, by our classification, serial and parallel interfaces, universal serial bus

(USB), and IEEE 1394 (also known as the FireWire) belong to the external category. These

buses are typically used to connect I/O devices. External buses are discussed in Chapter 19.

Since the bus is a shared resource, we need to define how the devices connected to the bus

will use it. For this purpose, we define bus transaction as a sequence of actions to complete

a well-defined activity. Every bus transaction involves a master and a slave. Some examples

of such activities are memory read, memory write, I/O read, and burst read. During a bus

transaction, a master device will initiate the transaction and a slave device will respond to

the master’s request. In a memory read/write transaction, the processor is the master and the

memory is the slave. Some units such as memory can only act as slaves. Other devices can act

both as master and slave (but not at the same time). The DMA controller is an example. It acts

as a slave when receiving a command from the processor. However, during the DMA transfer

cycles, it acts as the master.

A bus transaction may perform one or more bus operations. For example, the Pentium burst

read transfers four words. Thus this bus transaction consists of four memory read operations.

Each operation may take several bus cycles. A bus cycle is the clock cycle of the bus clock.

Bus systems with more than one potential bus master need a bus arbitration mechanism to

allocate the bus to a bus master. The processor is the bus master most of the time, but the DMA

controller acts as the bus master during DMA transfers. In principle, bus arbitration can be done

either statically or dynamically. In the static scheme, bus allocation among the potential masters

is done in a predetermined way. For example, we might use a round-robin allocation that rotates

the bus among the potential masters. The main advantage of a static mechanism is that it is easy

to implement. However, since bus allocation follows a predetermined pattern rather than the

actual need, a master may be given the bus even if it does not need it. This kind of allocation

leads to inefficient use of the bus. Consequently, most bus arbitration implementations use a

dynamic scheme, which uses a demand-driven allocation scheme. We present details on bus

arbitration in Chapter 5.

Section 1.9 Historical Perspective 31

1.9 Historical Perspective
This section traces the history of computers from their mechanical era. Our treatment is very

brief. There are several sources that cover this material, including [8, 14, 9, 37, 28, 33].

1.9.1 The Early Generations

Before the vacuum tube generation, computing machines were either purely mechanical or elec-

tromechanical. Mechanical devices, called calculating machines, were built using gears and

powered by a hand-operated crank. Perhaps the most well-known mechanical system, called

the difference engine, was built by Charles Babbage (1792–1871). His analytical engine, a suc-

cessor of the difference engine, had many of the components we have in our current computers.

It had an ALU (it was called the mill), a memory (called the store), and input and output devices

of the time.

The move away from the mechanical gears and cranks took place in the 1930s with the avail-

ability of electromagnetic relays. George Stibitz, a Bell Telephone Laboratories mathematician,

developed the first demonstrable electromechanical machine. It was exhibited at a meeting

of the American Mathematical Society at Dartmouth College in 1940. Independently, Konrad

Zuse of Germany built several relay machines. But his work was kept secret due to Germany’s

involvement in World War II. His machines were later destroyed by the Allied bombing. Others

involved in the development of relay generation machines include John Atanasoff of Iowa State

College.

1.9.2 Vacuum Tube Generation: Around the 1940s and 1950s

Vacuum tubes brought computers from the mechanical to the electronic era. Clearly, delays

were substantially reduced. Presper Eckert and John Mauchly of the University of Pennsylvania

designed the ENIAC (electronic numerical integrator and computer) system, which became

operational in World War II. It used about 18,000 vacuum tubes and could perform nearly 5000

additions per second. There was no concept of the program as we know it. Reprogramming the

machine took most of a day rewiring! It was under these circumstances that John von Neumann,

along with others, proposed the concept of the stored program that we use even today. The idea

was to keep a program in the memory and read the instructions from it, rather than hardwiring

the program. He also proposed an architecture that clearly identified the components we have

presented in this chapter: ALU, control, input, output, and memory. This architecture is known

as the von Neumann architecture.

Magnetic core memories were invented during this timeframe. Core memories were used

until the 1970s! Even today, we use the term core to mean the main memory. You might

have heard about “core dumps” to check the contents of main memory. There is also a current

research area that works on out-of-core computations. As mentioned before, Maurice Wilkes

proposed the microprogramming concept during this time.

32 Chapter 1 Overview of Computer Organization

1.9.3 Transistor Generation: Around the 1950s and 1960s

The invention of the transistor at Bell Labs in 1948 has led to the next generation of computer

systems. Transistors have several significant improvements over the previous generation’s basic

building block, the vacuum tube. Compared to vacuum tubes, transistors are small in size,

consume substantially less power, and have much lower failure rates.

Magnetic core memories were still widely used for main memory. High-level languages

such as FORTRAN were developed to ease the programming of mathematical and scientific

applications. IBM became a dominant player during this period.

1.9.4 IC Generation: Around the 1960s and 1970s

The next generation systems benefited from our ability to put several transistors on a single sili-

con chip. This has led to the development of integrated circuits (ICs), in which an entire circuit

is fabricated on a single chip. Some of these ICs are still available on the market (see our discus-

sion of digital logic chips in the next chapter). Texas Instruments and Fairchild Semiconductor

made ICs for sale in 1958.

ICs quickly replaced the magnetic core memory. IBM still held its dominant position with

the introduction of mainframe systems. There have been developments on the operating system

front as well. Multiprogramming and time-sharing were proposed to improve response times

and system efficiency. The arrival of the disk drive definitely helped in this endeavor. IBM

introduced their System/360 model in the mid-1960s. Digital Equipment Corporation (DEC)

(now part of Compaq) started selling minicomputers to universities.

1.9.5 VLSI Generations: Since the Mid-1970s

Ever since ICs were made possible, the density has been growing at a phenomenal rate. By the

mid-1970s, more than 10,000 components could be fabricated on a single chip. This has led to

the development of smaller processors on a chip. These processors were called microprocessors,

to contrast them with the processors in mainframe systems from IBM and minicomputers from

DEC.

Intel produced the first microprocessor 4004 in 1971. It required only 23,000 transistors.

To gauge the progress made since then, compare this number with the number of transistors in

the Pentium when it was introduced in 1993: 3 million. We now have the technology to put 100

million transistors on a chip.

With the introduction of personal computers (PCs), several new players came into existence.

These are the names that need no introduction: Intel, Microsoft, Apple, and so on. As we

have discussed in this chapter, technological advances coupled with architectural improvements

continue to lead computer system design.

We are in the midst of an information revolution. If we can get biological computers to

work, that would qualify as the next generation. Imagine that in 20 years, the Pentiums and

PowerPCs will be looked upon as primitive processors!

Section 1.10 Technological Advances 33

1

10

100

1,000

10,000

100,000

1970 1975 1980 1985 1990 1995 2000

Year

T
h

o
u

sa
n

d
s

o
f

tr
an

si
st

o
rs

4004

80286

8086

Itanium
Pentium Pro
Pentium

80486

80386

Figure 1.20 Transistor density in Intel processors.

1.10 Technological Advances
The current trend toward miniaturization has its roots in the IC concept. Every component of a

computer system has experienced phenomenal improvement over time. It is not only the compo-

nents that we discussed in this chapter—processor, memory, disk storage, and buses—but also

communications networks are experiencing similar growth. This integration of computer and

communication bodes well for the future generations of systems. This section briefly comments

on the rate of growth for some of these components.

The primary driving force for the improvement in processors and memory is our ability to

pack more and more transistors onto a single chip. Gordon Moore, cofounder of Intel, observed

in 1965 that the transistor count per chip was doubling every year. This observation, known as

Moore’s law, continued to hold into the early 1970s. Then things slowed down a bit as shown in

Figure 1.20. Until the 1990s, the transistor count doubled every 18 to 24 months. In the 1990s, it

slowed down further, doubling about every 2.5 years. This tremendous rate of growth in density

allows us to design more powerful processors and larger capacity memories. In addition, the

higher density has the following implications:

• We get increased reliability due to fewer external connections,

• Our ability to reduce the size is leading to the current emphasis on device miniaturization,

• We get increased speed due to shorter path lengths.

Memory capacities are also improving at a similar pace. Until the 1990s, dynamic RAMs

(DRAMs), which is what we use for our main memory, quadrupled every three years. This

rate of growth in capacity gives us the same average rate (of doubling every 18 months) as

the processors. The recent growth in density appears to have slowed down to quadrupling every

34 Chapter 1 Overview of Computer Organization

1

10

100

1,000

10,000

100,000

1,000,000

1975 1980 1985 1990 1995 2000 2005

Year

C
ap

ac
it

y
 (

K
b

it
s)

16K

256K

64K

16M

1M

64M

4M

256M

Figure 1.21 Memory bit capacity of DRAMs.

0.01

0.1

1

10

100

1985 1990 1995 2000 2005

Year

C
ap

ac
it

y
 (

G
B

) 3.5-in. form factor

2.5-in. form factor

Figure 1.22 Capacities of 3.5-in. and 2.5-in. form factor disk drives from IBM.

four to five years as shown in Figure 1.21. Disk drive capacities are also increasing substantially

as shown in Figure 1.22.

We talked a great deal about the capacities. From the capacity point of view, all three compo-

nents seem to progress in unison. However, when you look at the operational speed, processors

are way ahead of the memory access times for DRAMs. This speed differential is, in part, due

Section 1.11 Summary and Outline 35

to the improvements in architecture. For example, with pipelining and superscalar designs, we

can increase the rate of instruction execution. Currently, processors seem to improve at 25 to

40% per year, whereas memory access times are improving at about 10% per year. As we have

seen in this chapter, we need to bridge this gap. For example, we can use caches to bridge the

speed gap between processors and memory, and between memory and disk storage.

1.11 Summary and Outline
How one views a computer system depends on the type of use and level of interaction. A user

interested in running a specific application program does not need to know a lot of internal

system details. A rudimentary knowledge of how to turn the system on, how to execute a

program (e.g., point-and-click), and a few details about the user-level interface provided by the

system are sufficient. If you are a programmer, you need to know a lot more. Even within

this group, the kind of language you use determines the level of detail you need to know. An

assembly language programmer should know more details about the components such as the

processor, memory, and I/O subsystem. A Java programmer, on the other hand, need not know

all these details.

In this chapter, we have essentially presented an overview of computer system organization

and architecture. Our goal in presenting this information is to give you a gentle, high-level

introduction to the book’s subject matter. In that sense, this chapter serves as an introduction to

the entire book.

We have divided the rest of the book into seven parts. Part II covers digital logic design

concepts. It consists of three chapters that give details on the nuts and bolts of computer systems.

The first chapter of Part VII is also related to this part as it deals with the design at the digital

logic level. These four chapters give you a good grounding on the basic hardware devices used

to implement major functional units of a computer system.

System interconnects are covered mainly in Part III. This part consists of a single chapter,

which covers internal buses including PCI and PCMCIA. There are two other chapters that deal

with buses as well. Chapter 6 describes onchip buses required to implement the datapath of a

processor. External buses, including USB and IEEE 1394, are described in Chapter 19.

Processor details are covered in several parts. Part IV presents the basic processor design

issues, details about pipelining, and vector and Pentium processors. RISC processor details

are covered in Part VI. This part discusses the PowerPC, Intel Itanium, and MIPS. A complete

chapter is dedicated to MIPS assembly language programming. SPARC processor details are

given in Appendix H. Pentium assembly language programming is in Part V, which consists

of five chapters. In this part, we devote a complete chapter to describe the interaction between

assembly language and high-level languages. We use C as the representative of a high-level

language.

Memory design and related topics are presented in Part VII. This part consists of three

chapters. The first chapter describes memory design at the digital logic level. The remaining

two chapters give details on cache and virtual memories.

36 Chapter 1 Overview of Computer Organization

Part VIII presents details on the I/O subsystem in two chapters. The first chapter covers

programmed I/O, DMA, and external buses. We use an example assembly language program

to describe how programmed I/O works. In the next chapter, we redo the same example using

interrupts to bring out the similarities and differences between programmed I/O and interrupt-

driven I/O. This chapter deals with the interrupt mechanism, focusing on the Pentium interrupts.

We use assembly language programs to explain some of the features of the interrupt mechanism.

The appendices provide a variety of reference information. Topics covered here include

computer arithmetic as well as details on assembling, linking, and debugging assembly lan-

guage programs. We also present details about digital circuit simulators and the MIPS simulator.

For your easy reference, Pentium instructions are given in one of the appendices.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Address bus

• Assembler

• Assembly language

• Big endian

• Byte addressable memory

• Byte ordering

• CISC

• Control bus

• Data bus

• Datapath

• Execution cycle

• Harvard architecture

• I/O controller

• I/O ports

• Little endian

• Machine language

• Microprogram

• Memory access time

• Memory address space

• Memory cycle time

• Memory operations

• Memory read cycle

• Memory write cycle

• Pipelining

• Programmer productivity

• RISC

• Space-efficiency

• System bus

• Time-efficiency

• von Neumann architecture

• Wait cycles

1.12 Exercises
1–1 Describe the instruction execution cycle.

1–2 What are the main components of a system bus? Describe the functionality of each com-

ponent.

1–3 What is the purpose of providing various registers in a processor?

1–4 What is the relationship between assembly language and machine language?

Section 1.12 Exercises 37

1–5 Why is assembly language called a low-level language?

1–6 What are the advantages of high-level languages compared to assembly language?

1–7 Why do we still program in assembly language?

1–8 What is the purpose of the datapath in a processor?

1–9 What is the role of the microprogram?

1–10 What benefits do we get by using pipelining in a processor?

1–11 Explain why CISC processors tend to use microprogramming but not the RISC proces-

sors.

1–12 Describe the little-endian and big-endian byte ordering schemes.

1–13 What is a byte addressable memory?

1–14 If a processor has 16 address lines, what is the physical memory address space of this

processor? Give the address of the first and last addressable memory locations in hex.

1–15 What is the purpose of cache memory?

1–16 What is the purpose of virtual memory?

1–17 What is an I/O port?

1–18 What is bus arbitration?

Chapter 2

Digital Logic Basics

Objectives
• To introduce basic logic gates;

• To discuss properties of logical expressions;

• To show how logical expressions can be simplified and implemented;

• To illustrate the digital logic design process.

Viewing computer systems at the digital logic level exposes us to the nuts and bolts of the

basic hardware. We cover the necessary digital logic background in three chapters. In this first

chapter, we look at the basics of digital logic. We start off with a look at the basic gates such as

AND, OR, and NOT gates. The completeness property and implementation of these gates using

transistors are discussed next. We then describe how logical functions can be derived from the

requirement specifications.

We introduce Boolean algebra to manipulate logical expressions. Once a logical expres-

sion is obtained, we have to optimize (simplify) this expression so that we can use minimum

hardware to implement the logical function. There are several methods to simplify logical ex-

pressions. We present three methods: the algebraic, Karnaugh map, and Quine–McCluskey

methods. The first one is based on Boolean algebra and is difficult to use as a general method.

The Karnaugh map method is a graphical method suitable for simplifying logical expressions

with a small number of variables. The last method is a tabular one and is suitable for simplify-

ing logical expressions with a large number of variables. Furthermore, the Quine–McCluskey

method is suitable for automating the simplification process. Toward the end of the chapter, we

take a look at how we can implement logical functions using gates other than the three basic

gates.

41

42 Chapter 2 Digital Logic Basics

2.1 Introduction
The hardware that is responsible for executing machine language instructions can be built using

a large number of a few basic building blocks. These building blocks are called logic gates.

These logic gates implement the familiar logical operations such as AND, OR, NOT, and so on,

in hardware. For example, as we show later, we can build hardware circuits using only AND

and NOT gates or their equivalent. The purpose of this chapter is to provide the basics of the

digital hardware.

Logic gates are in turn built using transistors. One transistor is enough to implement a

NOT gate. But we need three transistors to implement the AND gate. In that sense, transistors

are the basic electronic components of digital hardware circuits. For example, the Pentium

processor introduced in 1993 consists of about 3 million transistors. In 2000, it was possible

to design chips that use 100 million transistors. How do the designers of these chips manage

such complexity? Obviously, they need a higher-level abstraction to aid the design process.

Of course, design automation is also a must. For example, logic gates such as AND and OR

represent a higher-level abstraction than the basic transistor level. After going through this

chapter, you will realize that even this level of abstraction is not good enough; there are still

millions of gates to handle in designing a processor. In the next two chapters, we discuss even

higher levels of abstractions.

Our discussion of digital logic design is divided into three chapters. This chapter deals with

the basics of digital logic gates and their implementation. As we mentioned, we need to devise

higher-level abstractions to reduce the complexity of digital circuit design. We look at two

higher levels of abstractions—combinational and sequential circuits—in the next two chapters.

In combinational circuits, the output of the circuit depends solely on the current inputs applied

to the circuit. The adder is an example of a combinational circuit. The output of an adder

depends only on the current inputs. On the other hand, the output of a sequential circuit depends

not only on the current inputs but also on the past inputs. That is, output depends both on the

current inputs as well as on how it got to the current state. For example, in a binary counter,

the output depends on the current value. The next value is obtained by incrementing the current

value (in a way, the current state represents a snapshot of the past inputs). That is, we cannot

say what the output of a counter will be unless we know its current state. Thus, the counter is

a sequential circuit. We discuss combinational circuits in Chapter 3 and sequential circuits in

Chapter 4. The circuits we design in this chapter are also combinational circuits.

2.2 Basic Concepts and Building Blocks

2.2.1 Simple Gates

You are familiar with the three basic logical operators: AND, OR, and NOT. Digital circuits

to implement these and other logical functions are called gates. Figure 2.1 shows the symbol

notation used to represent AND, OR, and NOT gates. We have also included the truth table

for each gate. A truth table is a list of all possible input combinations and their corresponding

output. For example, if you treat a logical zero as representing false and a logical 1 truth, you

can see that the truth table for the AND gate represents the logical AND operation.

Section 2.2 Basic Concepts and Building Blocks 43

AND gate

OR gate

NOT gate

A F

B
F

A

A

B
F

A B F

0 0 0

0 1 0

1 0 0

1 1 1

A B F

0 0 0

0 1 1

1 0 1

1 1 1

A F

0 1

1 0

Logic symbol Truth table

Figure 2.1 Basic logic gates: Logic symbols and truth tables.

In logical expressions, we use the dot, +, and overbar to represent the AND, OR, and NOT

operations, respectively. For example, the output of the AND gate in Figure 2.1 is written as

F = A � B. Assuming that single letters are used for logical variables, we often omit the dot and

write the previous AND function as F = A B. Similarly, the OR function is written as F = A + B.

The output of the NOT gate is expressed as F = �. Some authors use a prime to represent the

NOT operation as in F = A� mainly because of problems with typesetting the overbar.

The precedence of these three logical operators is as follows. The AND operator has a higher

precedence than the OR operator, whereas the unary NOT operator has the highest precedence

among the tree operators. Thus, when we write a logical expression such as F = A � + � B, it

implies F = (A (�)) + ((�) B). As in arithmetic expressions, we can use parentheses to override

the default precedence.

Even though the three gates shown in Figure 2.1 are sufficient to implement any logical

function, it is convenient to implement certain other gates. Figure 2.2 shows three popularly

used gates. The NAND gate is equivalent to an AND gate followed by a NOT gate. Similarly,

the NOR gates are a combination of OR and NOT gates. It turns out that, contrary to our

intuition, implementing the NAND and NOR gates requires only two transistors whereas the

AND and OR gate implementations require three transistors.

The exclusive-OR (XOR) gate generates a 1 output whenever the two inputs differ. This

property makes it useful in certain applications such as parity generation. Another interesting

and useful gate that is not shown here is the exclusive-NOR gate. This gate is equivalent to an

44 Chapter 2 Digital Logic Basics

XOR gate

NOR gate

NAND gate

A

B

A

B

F

F

F
A

B

A B F

0 0 1

0 1 0

1 0 0

1 1 0

A B F

0 0 1

0 1 1

1 0 1

1 1 0

A B F

0 0 0

0 1 1

1 0 1

1 1 0

Logic symbol Truth table

Figure 2.2 Some additional useful gates.

XOR followed by a NOT gate. This gate output, which is a complement of the XOR gate, is

1 whenever the two inputs match. The exclusive-NOR gate is also called the equivalence or

coincidence gate. All the gates we have discussed here are available commercially (see page 50

for some sample gates).

2.2.2 Completeness and Universality

Number of Functions

Let us assume that we are working with two logical variables. We know that we can define

various functions on two variables. These include the AND, OR, NAND, NOR, and XOR func-

tions discussed in the last section. The question that we want to answer is: How many different

logical functions can we define on� logical variables? Once we know the answer to this ques-

tion, we can use this information, for example, to make a statement about the universality of a

gate. For example, the NAND gate is universal. This means that we can implement any logical

function using only the NAND gates (we can use as many NAND gates as we want).

To get an intuition, let us focus on two variables. Since two variables can have four combi-

nations of inputs (i.e., four rows in the truth table) and we can assign a 1 or 0 as output for each

row, we can define 16 different functions as shown in Table 2.1.

Section 2.2 Basic Concepts and Building Blocks 45

Table 2.1 Number of functions that can be defined on two logical variables

A B �� �� �� �� �� �� �� �� �� �	 ��� ��� ��� ��� ��� ���

0 0 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1

0 1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 1 1

1 0 0 0 1 1 0 0 1 1 0 0 1 1 0 0 1 1

1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1

Looking at this table, we see that some functions are useless (e.g., �� and ���) as they

are independent of the input. There are some other functions that we can readily identify with

the logic gates described in the last section (e.g., �� is the AND function, and �� is the XOR

function).

We can generalize this to � logical variables by noting that there are �
� rows in the truth

table of an� -variable logical expression. Thus, the number of functions that can be defined on

� variables is ��
�

.

Complete Sets

We say that a set of gates is complete if we can implement any logical function using only the

gates in this complete set. What this tells us is that, theoretically, we don’t need gates outside

this set to implement a logical function. Here are some complete sets:

�AND, OR, NOT�

�AND, NOT�

�OR, NOT�

�NAND�

�NOR�

A complete set is minimal if it does not contain redundant elements. That is, if we delete an

element from the set, it should not remain complete. In the above complete sets, we see that the

set AND, OR, NOT is not minimal as we can remove either AND or OR (but not both) to get

another complete set.

How do we prove that a set is complete? Essentially, we have to show that, using only

the gates in the set, we can construct AND, OR, and NOT gates. Figure 2.3 shows how we can

construct these three gates by using only the NAND gates. A similar proof is given in Figure 2.4

for the NOR gates. NAND and NOR gates are called universal gates because we can implement

any logical function using only the NAND or NOR gates.

We close this section with a final note on equivalence proofs. It is not strictly necessary

to construct AND, OR, and NOT gates as we did in Figures 2.3 and 2.4. Assuming that we

proved the completeness of �AND, NOT� and �OR, NOT�, it is sufficient to construct either

AND and NOT or OR and NOT gates. We leave it as an exercise to show how OR gates can be

46 Chapter 2 Digital Logic Basics

NOT gate

AND gate

B

A
F

A

B

F

OR gate

FA

Figure 2.3 Implementation of AND, OR, and NOT gates by using only NAND gates.

NOT gate

OR gate

AND gate

A F

B

A
F

A

B

F

Figure 2.4 Implementation of AND, OR, and NOT gates by using only NOR gates.

constructed using only AND and NOT gates. Similarly, you can show that the AND gate can

be constructed using only OR and NOT gates.

2.2.3 Implementation Details

Transistor Implementation

The concepts involved in implementing digital circuits can be described by looking at their

transistor implementations. Figure 2.5 shows a transistor with three connection points: base,

collector, and emitter. A transistor can be operated in either a linear or switching mode. In linear

mode, a transistor amplifies the input signal applied to the base. This is the mode the transistor

operates in your amplifier. In digital circuits, the transistor operates in the switching mode. In

this mode, the transistor acts as a switch between the collector and emitter points. The voltage

applied to the base input of the transistor determines whether the switch is open (open circuit

between collector and emitter points) or closed (short circuit between collector and emitter).

A high voltage (typically above 2 V) causes the transistor to act as a closed switch, and a low

voltage (typically below 0.8 V) forces the transistor to act as an open switch.

Section 2.2 Basic Concepts and Building Blocks 47

Base

Collector

Emitter

Figure 2.5 A transistor.

in2V

Vout

Vcc

in1V

Vcc

in1V

Vout

in2V

Vout

Vin

Vcc

(a) (b) (c)

Figure 2.6 Implementation of simple gates: (a) NOT gate; (b) NAND gate; (c) NOR gate.

When the transistor behaves as described, it is fairly simple to build a NOT gate as shown

in Figure 2.6a. The collector of the transistor is tied to �

 through a resistor. �

 is typically

5 V. Assuming that 0 V represents logical 0 and +5 V represents a logical 1, we can see that the

single transistor implementation shown in Figure 2.6a corresponds to a NOT gate. When ��� is

low, there is an open circuit between the collector and emitter. Thus, no current flows through

the resistor. This causes the ���� to be +5 V. On the other hand, when a high voltage is applied

to ���, there is a short circuit between the collector and emitter points, which results in a low

����.

It is left as an exercise to verify that the NAND gate is implemented by the circuit shown

in Figure 2.6b and the NOR gate by Figure 2.6c. It is interesting to note that AND gate imple-

mentation actually requires three transistors as it is implemented as a NAND gate followed by

a NOT gate.

48 Chapter 2 Digital Logic Basics

Undefined range

(forbidden)1

2

3

4

5

Low level

Volts

High level

Figure 2.7 Low and high logic voltage levels for TTL logic circuits.

In closing this section, we briefly mention the key technologies used to manufacture digital

circuits. There are two main semiconductor technologies: bipolar and MOS (metal oxide semi-

conductor). Bipolar implementations are, in general, faster than the MOS implementations.

The two major bipolar types are the TTL (transistor–transistor logic) and ECL (emitter-coupled

logic). Relatively speaking, TTL is slower than ECL circuits. If you open your PC and look at

the motherboard, you will see quite a few of these TTL chips (described next).

MOS technology allows us to build high-density chips as it consumes less power and takes

less space on the chip compared to their bipolar cousins. In MOS technology, transistors are

implemented in a different way than the bipolar implementations we have discussed. How-

ever, logically, it still acts as a switch. Even though NMOS, PMOS, and HMOS types exist,

CMOS (complementary MOS) is the dominant technology used to implement processors and

memories. For example, the Pentium processor uses about 3 million transistors.

Gallium arsenide (GaAs) technology provides an alternative to the semiconductor technol-

ogy. It has superior speed characteristics when compared to the bipolar technology. However,

GaAs technology poses several difficulties in manufacturing (such as poor reliability) that lim-

ited its applicability to high-density gate implementations such as microprocessors.

Examples of Logic Chips

A small set of independent logic gates (such as AND, NOT, NAND, etc.) are packaged into an

integrated circuit chip, or “chip” for short. The smallest of these ICs uses a 14-pin DIP (dual

inline package). Some example chips are shown in Figure 2.8. There are two rows of pins

(the reason why this package is called a dual inline package) numbered 1 through 14. Pin 7 is

Ground and pin 14 is �

. A small notch or a dot is used for proper orientation of the chip (i.e.,

to identify pin 1).

The ��� input should be less than 0.8 V to be treated as a low-level voltage and greater than

2 V for high level as shown in Figure 2.7. The voltage range in between these two levels is

forbidden. The output voltage levels produced are less than 0.4 V (for low level) and 2.4 V (for

high level). For positive logic, the low-voltage level is interpreted as 0 and the high level as 1.

For negative logic, the low-voltage level is treated as representing 1 and the high level as 0. By

default, we use the positive logic in our discussion.

Section 2.3 Logic Functions 49

There is a propagation delay associated with each gate. This delay represents the time

required for the output to react to an input. The propagation delay depends on the complexity

of the circuit and the technology used. Typical values for the TTL gates are in the range of a

few nanoseconds (about 5 to 10 ns). A nanosecond (ns) is ���� second.

In addition to propagation delay, other parameters should be taken into consideration in

designing and building logic circuits. Two such parameters are fanin and fanout. Fanin specifies

the maximum number of inputs a logic gate can have. Fanout refers to the driving capacity of

an output. Fanout specifies the maximum number of gates that the output of a gate can drive.

These ICs are called small-scale integrated (SSI) circuits and typically consist of about

1 to 10 gates. Medium-scale integrated (MSI) circuits represent the next level of integration

(typically between 10 and 100 gates). Both SSI and MSI were introduced in the late 1960s.

LSI (large-scale integration), introduced in early 1970s, can integrate between 100 and 10,000

gates on a single chip. The final degree of integration, VLSI (very large scale integration), was

introduced in the late 1970s and is used for complex chips such as microprocessors that require

more than 10,000 gates.

2.3 Logic Functions

2.3.1 Expressing Logic Functions

Logic functions can be specified in a variety of ways. In a sense their expression is similar to

problem specification in software development. A logical function can be specified verbally.

For example, a majority function can be specified as: Output should be 1 whenever the majority

of the inputs is 1. Similarly, an even-parity function can be specified as: Output (parity bit) is 1

whenever there is an odd number of 1s in the input. The major problem with verbal specification

is the imprecision and the scope of ambiguity.

We can make this specification precise by using a truth table. In the truth table method, for

each possible combination of the input, we specify the output value. The truth table method

makes sense for logical functions as the alphabet consists of only 0 and 1. The truth tables for

the 3-input majority and even-parity functions are shown in Table 2.2.

The advantage of the truth table method is that it is precise. This is important if you are

interfacing with a client who does not understand other more concise forms of logic function

expression. The main problem with the truth table method is that it is cumbersome as the

number of rows grows exponentially with the number of logical variables. Imagine writing a

truth table for a 10-variable function!

We can also use logical expressions to specify a logical function. Logical expressions use

logical operators as discussed in Section 2.2. The logical expressions for our 3-input majority

and even-parity functions are shown below:

• 3-input majority function = A B + B C + A C ,

• 3-input even-parity function = � � C + � B � + A � � + A B C .

50 Chapter 2 Digital Logic Basics

14

13

12

11

10

9

87

6

5

4

3

2

1

7400

Vcc

GND

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

7408

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

7432

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

7404

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

7402

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

7486

14

13

12

11

10

9

87

6

5

4

3

2

1

7420

Vcc

GND

14

13

12

11

10

9

87

6

5

4

3

2

1

7430

Vcc

GND

Figure 2.8 Some examples of commercial TTL logic circuits.

Section 2.3 Logic Functions 51

Table 2.2 Truth tables for the majority and even-parity functions

Majority function

A B C F�

0 0 0 0

0 0 1 0

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

1 1 1 1

Even-parity function

A B C F�

0 0 0 0

0 0 1 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

1 1 1 1

A B C

F

Figure 2.9 Three-input majority function.

An advantage of this form of specification is that it is compact while it retains the precision

of the truth table method. Another major advantage is that logical expressions can be manipu-

lated to come up with an efficient design. We say more on this topic in Section 2.7.1.

The final form of specification uses a graphical notation. Figure 2.9 shows the logical circuit

to implement the 3-input majority function. As with the last two methods, it is also precise but

is more useful for hardware engineers to implement the logical function.

52 Chapter 2 Digital Logic Basics

F1

A

B B

A

F2

F3

(b)

(c)

A

B

(a)

Figure 2.10 Three circuit designs to implement F = A B logical function.

2.3.2 Logical Circuit Equivalence

Logical functions can be implemented in a variety of ways. If two logical circuits are per-

forming the same logical function F, we say that these two circuits are equivalent. Establishing

logical circuit equivalence is important because it allows us to pick an efficient design for im-

plementation. By “efficient” we mean a circuit that uses a minimum number of gates. Later we

show that we can also talk about minimizing the number of chips rather than the gate count.

To illustrate the point, look at the three circuits shown in Figure 2.10. The legend of the

figure claims that all three are performing a simple AND operation. We discuss later how we

can verify this claim. If we take the claim to be true, these three circuits are equivalent. Here,

we obviously pick the first circuit that uses a single 2-input AND gate.

Now, how do we prove that these three logic circuits are equivalent? This is a two-step

process. First, we have to derive the logical expression for each circuit. Then, we have to show

that the three logical expressions are equivalent.

Deriving Logical Expressions

Deriving a logical expression from a given logical circuit involves tracing the path from input to

output and writing intermediate logical expressions along the path. The process is illustrated in

Figure 2.11. The output of the top OR gate is (A + B). Noting the inputs of the middle OR gate

are A and �, we write the logical expression for the output of this gate as (A + �). Continuing

the process finally leads us to the following expression for the logical function ��,

�� = (A + B) (A + �) (� + B).

Section 2.3 Logic Functions 53

F3

A

B

A

B
A + B

A + B

(A + B) (A + B)

(A + B) (A + B) (A + B)

A + B

Figure 2.11 Deriving the logical expression from the circuit diagram.

Table 2.3 Truth table to prove that �� and �� functions are equivalent

A B �� � �� �� � �� � �� �� � �� �� � ��

0 0 0 0

0 1 0 0

1 0 0 0

1 1 1 1

To show that this logical circuit is equivalent to a 2-input AND gate, we have to show that

the logical expression for �� reduces to A B. We focus on this aspect next.

Establishing Logical Equivalence

There are two ways of establishing logical equivalence of two functions. The first is the truth

table method. The other method involves manipulating logical expressions by applying Boolean

algebra rules. We discuss the truth table method now. The Boolean algebra method is described

in Section 2.4.2.

The truth table method is conceptually simple but tedious for logical expressions that involve

more than a few logical variables. The principle is to look at each possible combination of the

input and test if the two functions give the same output. If so, the two functions are equivalent.

This process is shown in Table 2.3. Notice the use of two output columns, one for each function.

Since the outputs of these two functions are identical, we conclude that functions �� and �� are

equivalent.

Since �� and �� are derived from the circuits in Figures 2.10� and 2.10
, we conclude

that these two circuits are equivalent. We leave it as an exercise for the reader to show that

Figures 2.10� and 2.10� are equivalent.

54 Chapter 2 Digital Logic Basics

2.4 Boolean Algebra
This section discusses how we can use the Boolean algebra to manipulate logical expressions.

We need Boolean identities to facilitate this manipulation. These are discussed next. Following

this discussion, we show how the identities developed can be used to establish logical equiv-

alence. In Section 2.7.1, we show how these identities can also be used to simplify logical

expressions.

2.4.1 Boolean Identities

Table 2.4 presents some basic Boolean laws. For most laws, there are two versions: an and

version and an or version. If there is only one version, we list it under the and version. We can

transform a law from the and version to the or version by replacing each 1 with a 0, 0 with a 1,

+ with a �, and � with a +. This relationship is called duality.

The last law is particularly interesting as it is useful in moving negation in and out of logical

expressions. For example, de Morgan’s law is useful in coming up with a NAND or NOR gate

based design (see Section 2.10.1).

The complement law suggests that if � and � are complements of each other, the following

must be true: � � � � � and � � � � �. This observation is useful in proving de Morgan’s law

(see Exercise 2–12).

We can use the truth table method (as in Table 2.3) to show that these laws hold. We can

also prove some of these laws. To illustrate the process, we prove the absorption law.

� � � � ��� ��

� �� � �� � �� � �� (Distribution law)

� �� �� � �� (Idempotence law)

� �� � �� � �� � �� (Identity law)

� � � �� � �� (Distribution law)

� � � � (Null law)

� � (Identity law).

Notice that in our attempt to prove the and version of the absorption law, we have also proved

the or version.

2.4.2 Using Boolean Algebra for Logical Equivalence

We can use a similar procedure to establish logical equivalence of two logical functions. Typi-

cally, we start with one function and derive the other function to show the logical equivalence.

As an example, we show that functions �� and �� in Table 2.3 are equivalent.

Section 2.5 Logic Circuit Design Process 55

Table 2.4 Boolean laws

Name and version or version

Identity � � � � � �� � � �

Complement � � � � � �� � � �

Commutative � � � � � � � �� � � � � �

Distribution � � �� � �� � �� � �� � �� � �� �� �� � �� � ��� �� � ��� ��

Idempotent � � � � � �� � � �

Null � � � � � �� � � �

Involution � � � —

Absorption � � ��� �� � � �� �� � �� � �

Associative � � �� � �� � �� � �� � � �� �� � �� � ��� �� � �

de Morgan � � � � �� � x � y � � � �

� � � �� � �� �� � ��
� �� �

�������������

�� � ��

� �� �
����

�

� � � � � �
� �� �

������

� � �
����

�

� �� � ��

� �� � � �� � ��
� �� �

�

� �� �� � ��

� �� � � � ��
� �� �

�

�� � ��

� � �� � �� � � � � � � � � � � � � � � �

Sometimes it may be convenient to reduce both sides to the same expression in order to

establish equivalence.

2.5 Logic Circuit Design Process
To provide proper perspective to our discussion of the remaining topics in this chapter, we

briefly review a simplified digital circuit design process shown in Figure 2.12. As in the pro-

gramming activity, the input specification may be given in plain English. For example, this

description can be something like, “Design a circuit to implement the majority function on

56 Chapter 2 Digital Logic Basics

Derive

truth table

Derive final

logic circuit

Derive logical

expression

Simplify logical

expression

Problem

specification

Figure 2.12 A simple logic circuit design process.

three inputs.” This kind of description makes a lot of assumptions such as the definition of

the majority function. Even a simple function such as the majority function can be defined in

several ways. We have been using a simple majority function in our discussion with each input

having the same weight. However, we can define other majority functions. For example, the

weight of inputs may not be the same, or somebody may have veto power on the final outcome

as in the UN Security Council (see Exercises 2–9 and 2–10). Thus, our next job is to derive a

precise description of the problem from this imprecise (possibly incomplete) description of the

problem. If we are going to design a combinational logic circuit, for example, we can use a

truth table to precisely define the problem specification.

How do we get the final logic circuit from this truth table? We use two steps to get the final

circuit design as shown in Figure 2.12. We derive a logical expression from the truth table. The

logical expression may be in sum-of-products or product-of-sums form, as we show in the next

section. We, however, do not implement this logical expression directly as it may not be in a

minimal form to get an efficient design. We need to simplify this logical expression to minimize

implementation cost using one of the methods we discuss in Section 2.7. We derive the final

logic circuit design from this simplified logical expression.

Note that minimizing implementation is often interpreted as minimizing the number of

gates. To a degree of approximation, this is true. We follow this objective in our simplification

methodologies. Observe, however, that when implementing a digital circuit, we are actually

concerned with the number of chips required to implement the circuit, not the number of gates.

We do not need these two steps if we intend to implement the logical circuit using building

blocks like multiplexers and PLAs. In that case, our implementation follows directly from the

truth table. Multiplexers and PLAs are discussed in Chapter 3.

2.6 Deriving Logical Expressions from Truth Tables
We can write a logical expression from a truth table in one of two forms: sum-of-products (SOP)

and product-of-sums (POS) forms. In sum-of-products form, we specify the combination of

inputs for which the output should be 1. In product-of-sums form, we specify the combinations

of inputs for which the output should be 0. As in Section 2.4.1, you see the duality of these two

forms.

2.6.1 Sum-of-Products Form

In this form, each input combination for which the output is 1 is expressed as an and term. This

is the product term as we use � to represent the AND operation. These product terms are ORed

together. That is why it is called sum-of-products as we use + for the OR operation to get the

Section 2.6 Deriving Logical Expressions from Truth Tables 57

final logical expression. In deriving the product terms, we write the variable if its value is 1 or

its complement if 0. We now consider two examples to illustrate this process.

Example 2.1: Let us first look at the 3-input majority function. The truth table is given in

Table 2.2 on page 51. There are four 1 outputs in this function. So, our logical expression will

have four product terms. The first product term we write is for row 4 with a 1 output. Since A

has a value of 0, we use its complement in the product term while using B and C as they have

1 as their value in this row. Thus, the product term for this row is �B C. The product term for

row 6 is A�C. Product terms for rows 7 and 8 are A B� and A B C, respectively. ORing these

four product terms gives the logical expression as

3-input majority function = �B C + A�C + A B� + A B C .

Example 2.2: From the truth table for the even-parity function given in Table 2.2 on page 51,

we can derive the following sum-of-products expression:

3-input even-parity function = � � C + � B � + A � � + A B C .

Notation: A notation that provides compact representation of logical expressions uses the dec-

imal values of the input combinations for which the output is 1. For example, the first term in

the majority function is written as 3 (for the combination 011). To indicate that it is a sum-of-

products expression, we use � as shown in the following expression:

3-input majority function = � (3, 5, 6, 7) .

Similarly, we can write the even-parity function using the Sigma notation as

3-input even-parity function = � (1, 2, 4, 7) .

2.6.2 Product-of-Sums Form

This is the dual form of the sum-of-products form. We essentially complement what we have

done to obtain the sum-of-products expression. Here we look for rows that have a 0 output.

Each such row input variable combination is expressed as an OR term. In this OR term, we use

the variable if its value in the row being considered is 0 or its complement if 1. We AND these

sum terms to get the final product-of-sums logical expression. The product-of-sums expression

for the two truth tables is given below:

Majority function = (A + B + C) (A + B +�) (A +�+ C) (�+ B + C) ,

Even-parity function = (A + B + C) (A +�+�) (�+ B +�) (�+�+ C) .

58 Chapter 2 Digital Logic Basics

Notation: We can use a compact notation as we did with the sum-of-products expressions by

listing only those sum terms for which the output is zero. We use � to indicate that this is a

product-of-sums expression. The majority function expression can be written as

3-input majority function = � (0, 1, 2, 4) .

The even-parity function can be written using the Pi notation as

3-input even-parity function = � (0, 3, 5, 6) .

2.6.3 Brute Force Method of Implementation

The sum-of-products and product-of-sums logical expressions can be used to come up with

a crude implementation that uses only the AND, OR, and NOT gates. The implementation

process is straightforward. We first illustrate the process for sum-of-products expressions. For

each input, derive its complement using an inverter. Implement each product term by using

a single �-input AND gate, where � is the number of Boolean variables. Then, connect the

outputs of these AND gates to a single OR gate. The number of inputs to the OR gate is equal

to the number of product terms in the logical expression. The output of the OR gate represents

the logical function. Figure 2.13 shows the brute force implementation of the sum-of-products

expression for the even-parity function.

In a similar fashion, we can also implement product-of-sums expressions. In this imple-

mentation, we use an OR gate to implement each sum term and a single AND gate to get the

final output. Figure 2.14 shows an implementation of the product-of-sums expression for the

even-parity function. Since these two forms of logical expressions are representing the same

truth table, they are equivalent. As the two circuits given in Figures 2.13 and 2.14 implement

these two logical expressions, we know that these two circuits are equivalent as well.

2.7 Simplifying Logical Expressions
Let us now focus on how we can simplify the logical expressions obtained from the truth table.

Our focus is on sum-of-products expressions. There are three techniques: the algebraic ma-

nipulation, Karnaugh map, and Quine–McCluskey methods. Algebraic manipulation uses the

Boolean laws given on page 55 to derive a simplified logical expression. The Karnaugh map

method uses a graphical form and is suitable for simplifying logical expressions with a small

number of variables. The last method is a tabular method and is particularly suitable for simpli-

fying logical expressions with a large number of variables. In addition, the Quine–McCluskey

method can be used to automate the simplification process.

2.7.1 Algebraic Manipulation

In this method, we use the Boolean laws (see page 55) discussed in Section 2.4.1. The process is

very similar to that used to show logical equivalence of two functions. There is one big problem

Section 2.7 Simplifying Logical Expressions 59

A B C A B C

F

Figure 2.13 Brute force method of implementing the logical sum-of-products expression for the 3-input

even-parity function.

A B C A B C

F

Figure 2.14 Brute force method of implementing the logical product-of-sums expression for the 3-input

even-parity function.

60 Chapter 2 Digital Logic Basics

though. Here we do not know what the target expression is. To illustrate this point, let us look

at the sum-of-products expression for the majority function. A straightforward simplification

leads us to the following expression:

Majority function � �B C � A�C � A B� � A B C
� �� �

��

� �B C � A�C � A B �

Do you know if this is the final simplified form? This is the hard part in applying algebraic

manipulation (in addition to the inherent problem of which rule should be applied). This method

definitely requires good intuition, which often implies that one needs experience to know if the

final form has been derived. In our example, the expression can be further simplified. We

start by rewriting the original logical expression by repeating the term A B C twice and then

simplifying the expression as shown below.

Majority function � �B C � A�C � A B� � A B C � A B C � A B C
� �� �

����� �����

� �B C � A B C
� �� �

��

� A�C � A B C
� �� �

��

� A B� � A B C
� �� �

��

� B C + A C + A B �

This is the final simplified expression. In the next section, we show a simpler method to derive

this expression. Figure 2.9 on page 51 shows an implementation of this logical expression.

2.7.2 Karnaugh Map Method

This is a graphical method and is suitable for simplifying logical expressions with a small

number of Boolean variables (typically six or less). It provides a straightforward method to

derive minimal sum-of-products expressions. This method is preferred to the algebraic method

as it takes the guesswork out of the simplification process. For example, in the previous majority

function example, it was not straightforward to guess that we have to duplicate the term A B C

twice in order to get the final logical expression.

The Karnaugh map method uses maps to represent the logical function output. Figure 2.15

shows the maps used for 2-, 3-, and 4-variable logical expressions. Each cell1 in these maps

represents a particular input combination. Each cell is filled with the output value of the func-

tion corresponding to the input combination represented by the cell. For example, the bottom

left-hand cell represents the input combination A = 1 and B = 0 for the two-variable map (Fig-

ure 2.15�), A = 1, B = 0, and C = 0 for the three-variable map (Figure 2.15�), and A = 1, B = 0,

C = 0, and D = 0 for the four-variable map (Figure 2.15
).

The basic idea behind this method is to label cells such that the neighboring cells differ in

only one input bit position. This is the reason why the cells are labeled 00, 01, 11, 10 (notice

1The pigeonholes are usually referred to as squares. We prefer cells as we later talk about square areas.

Section 2.7 Simplifying Logical Expressions 61

00 01 11 10

00

01

11

10

AB

CD

00 01 11 10

0

1

A

BC
0 1

0

1

A

B

(a) Two-variable K-map (b) Three-variable K-map (c) Four-variable K-map

Figure 2.15 Maps used for simplifying 2-, 3-, and 4-variable logical expressions using the Karnaugh map

method.

the change in the order of the last two labels from the normal binary number order). What we

are doing is labeling with a Hamming distance of 1. Hamming distance is the number of bit

positions in which two binary numbers differ. This labeling is also called gray code. Why are

we so interested in this gray code labeling? Simply because we can then eliminate a variable as

the following holds:

A B�D � A B C D � A B D .

Figure 2.16 shows how the maps are used to obtain minimal sum-of-products expressions

for three-variable logical expressions. Notice that each cell is filled with the output value of the

function corresponding to the input combination for that cell. After the map of a logical function

is obtained, we can obtain a simplified logical expression by grouping neighboring cells with 1

into areas. Let us first concentrate on the majority function map shown in Figure 2.16�. The

two cells in the third column are combined into one area. These two cells represent inputs

�B C (top cell) and A B C (bottom cell). We can, therefore, combine these two cells to yield a

product term B C. Similarly, we can combine the three 1s in the bottom row into two areas of

two cells each. The corresponding product terms for these two areas are A C and A B as shown

in Figure 2.16�. Now we can write the minimal expression as B C + A C + A B, which is what

we got in the last section using the algebraic simplification process. Notice that the cell for

A B C (third cell in the bottom row) participates in all three areas. This is fine. What this means

is that we need to duplicate this term two times to simplify the expression. This is exactly what

we did in our algebraic simplification procedure.

We now have the necessary intuition to develop the required rules for simplification. These

simple rules govern the simplification process:

1. Form regular areas that contain �� cells, where � � �. What we mean by a regular area is

that they can be either rectangles or squares. For example, we cannot use an “L” shaped

area.

62 Chapter 2 Digital Logic Basics

00 01 11 10

0

1

A

BC

0 0 1

1 10 1

BC

AC

AB

01 1

1 1

0

0 0

A B CA B C

A B CA B C

(a) Majority function (b) Even-parity function

A

BC
00 01 11 10

0

1

0

Figure 2.16 Three-variable logical expression simplification using Karnaugh maps: (a) majority function;

(b) even-parity function.

2. Use a minimum number of areas to cover all cells with 1. This implies that we should

form as large an area as possible and redundant areas should be eliminated. The impor-

tance of eliminating redundancy is illustrated later using an example (see Figure 2.19).

Once minimal areas have been formed, we write a logical expression for each area. These

represent terms in the sum-of-products expressions. Write the final expression by connecting

the terms with OR.

In Figure 2.16�, we cannot form a regular area with four cells. Next we have to see if we

can form areas of two cells. The answer is yes. Let us assume that we first formed a vertical

area (labeled B C). That leaves two 1s uncovered by an area. So, we form two more areas to

cover these two 1s. We also make sure that we indeed need these three areas to cover all 1s.

Our next step is to write the logical expression for these areas.

When writing an expression for an area, look at the values of a variable that is 0 as well as 1.

For example, for the area identified by B C, the variable A has 0 and 1. That is, the two cells we

are combining represent �B C and A B C. Thus, we can eliminate variable A. The variables B

and C have the same value for the whole area. Since they both have the value 1, we write B C as

the expression for this area. It is straightforward to see that the other two areas are represented

by A C and A B.

If we look at the Karnaugh map for the even-parity function (Figure 2.16�), we find that we

cannot form areas bigger than one cell. This tells us that no further simplification is possible for

this function.

Notice that, in the three-variable maps, the first and last columns are adjacent. We did not

need this fact in our previous two examples. You can visualize the Karnaugh map as a tube,

cut open to draw in two dimensions. This fact is important because we can combine these two

columns into a square area as shown in Figure 2.17. This square area is represented by �.

Section 2.7 Simplifying Logical Expressions 63

00 01 11 10

0

1

1 0 1

1 11 0

A

BC

1

C

A B

A B

Figure 2.17 An example Karnaugh map that uses the fact that the first and last columns are adjacent.

You might have noticed that we can eliminate ���
�
� variables from the product term, where

� is the number of cells in the area. For example, the four-cell square in Figure 2.17 eliminates

two variables from the product term that represents this area.

Figure 2.18 shows an example of a four-variable logical expression simplification using the

Karnaugh map method. It is important to remember the fact that first and last columns as well

as first and last rows are adjacent. Then it is not difficult to see why the four corner cells form

a regular area and are represented by the expression ��. In writing an expression for an area,

look at the input variables and ignore those that assume both 0 and 1. For example, for this

weird square area, looking at the first and last rows, we notice that variable A has 0 for the first

row and 1 for the last row. Thus, we eliminate A. Since B has a value of 0, we use �. Similarly,

by looking at the first and last columns, we eliminate C. We use � as D has a value of 0. Thus,

the expression for this area is ��. Following our simplification procedure to cover all cells

with 1, we get the following minimal expression for Figure 2.18�:

�� � A�D � ����

We also note from Figure 2.18 that a different grouping leads to different minimal expres-

sion. The logical expression for Figure 2.18� is

�� � A�� � ����

Even though this expression is slightly different from the logical expression obtained from

Figure 2.18�, both expressions are minimal and logically equivalent.

In general, we start making up areas from the largest possible to the smallest. This strategy

sometimes leads to redundancy as illustrated in Figure 2.19�. In this map, we first formed the

square area consisting of the middle four cells. Then we have added four rectangles, each with

two cells. Although these five areas cover all 1 cells, we notice that, after forming the four

rectangles, the square area is really redundant as shown in Figure 2.19�.

64 Chapter 2 Digital Logic Basics

00 01 11 10

00

01

11

10

AB

CD

A C DB D

0 0

1 0

1

0

0 0

0

1

1 1

0 0

11

A B D

00 01 11 10

00

01

11

10

AB

CD

B D

0 0

1 0

1

0

0 0

0

1

1 1

0 0

11

A B DA B C

(a) (b)

Figure 2.18 Different minimal expressions will result depending on the groupings.

00 01 11 10

00

01

11

10

AB

CD

(b) Minimal simplification

0 1

1 0

0

1

0 1

0

0

0 0

1 1

11

00 01 11 10

00

01

11

10

AB

CD

(a) Nonminimal simplification

0 1

1 0

0

1

0 1

0

0

0 0

1 1

11

Figure 2.19 Example illustrating the need for redundancy check.

The best way to understand the Karnaugh map method is to practice until you develop your

intuition. After that, it is unlikely you will ever forget how this method works even if you have

not used it in years.

Seven-Segment Display Example

To show the utility of the Karnaugh map method, consider designing a logic circuit to drive

a seven-segment display. This display unit that we are all familiar with (look at your VCR,

Section 2.7 Simplifying Logical Expressions 65

a

b

c

f
g

e

d

Figure 2.20 Seven-segment LED display.

calculator—they are everywhere) consists of seven segments of LEDs (light emitting diodes)

as shown in Figure 2.20. Each diode emits light if current is passed through it. Depending on

the digit we want to display, we selectively light only those segments that form the digit. For

example, to display 7, we light segments a, b, and c.

Typically, a seven-segment decoder receives a BCD number and generates outputs for all

seven segments. In this example, let us design a logic circuit that drives the LED d. The input

to this circuit is a 4-bit BCD number. The truth table for this LED is shown in Table 2.5. In this

truth table, a 1 for the segment indicates it is on; a 0 means it is off. We assume that the input is

restricted to digits 0 through 9. Since the input values 10 through 15 are not given, the output

for these six input combinations can be either a 0 or a 1. For obvious reasons, these outputs are

called “don’t cares.” Such don’t care outputs simplify the logic significantly as we show in a

moment.

Figure 2.21� shows the Karnaugh map for this example. In this map, we are assuming that

the output should be 0 for the last six inputs, that is, 10 through 15 (see the shaded area in

Figure 2.21�). The simplified expression for this map is

A�� � �C� � ��C � ��� � �B�D.

We could have elected to cover the top left cell with an area that includes this cell and the

bottom left cell. In this case, we get

A�� � �C� � ��C � ��� � �B�D.

This is slightly different from the other logical expression but is equivalent to the other one.

Don’t Care Conditions

Since we don’t care about the output for the shaded cells in Figure 2.21�, we can further simplify

the last logical expression. We use “d” to represent the don’t care output of a cell. The simplified

expression for this map is

A � �� � C� � �C � B�D.

The nice thing about the d cells is that they can be used to form an area without covering all

such cells (as we would a 1 cell). That means, those d cells that are part of an area output a value

66 Chapter 2 Digital Logic Basics

Table 2.5 Truth table for segment d

Number A B C D Segment d

0 0 0 0 0 1

1 0 0 0 1 0

2 0 0 1 0 1

3 0 0 1 1 1

4 0 1 0 0 0

5 0 1 0 1 1

6 0 1 1 0 1

7 0 1 1 1 0

8 1 0 0 0 1

9 1 0 0 1 1

10 1 0 1 0 0/1

11 1 0 1 1 0/1

12 1 1 0 0 0/1

13 1 1 0 1 0/1

14 1 1 1 0 0/1

15 1 1 1 1 0/1

of 1 and those that are not part of any area output 0. In our example, all d cells participate in at

least one area. Thus, in this design, segment d is turned on for inputs 10 through 15, whereas it

is turned off if we implement the logical expression obtained from Figure 2.21�.

A Seven-Segment Decoder/Driver Chip

In the last example, we have demonstrated how one can design a logic circuit to drive segment

d. We could design six other driver circuits for the remaining segments to complete the driver

circuit for a seven-segment display device. Because these display devices are ubiquitous, there

are chips available that take a BCD number as input and generate output to drive all seven

segments. One such chip is the 7449 chip (see Figure 2.22). This chip generates active-high

segment driver outputs. It has four input bits for the BCD number. The only additional input

Section 2.7 Simplifying Logical Expressions 67

00 01 11 10

00

01

11

10

AB

CD

(b) Simplification with don’t cares

0 1

1 d

1

0

d d

1

1

1 d

1 0

dd

(a) Simplification with no don’t cares

0 1

1 0

1

0

0 0

1

1

1 0

1 0

00

00 01 11 10

00

01

11

10

AB

CD

Figure 2.21 Karnaugh maps for segment d of the seven-segment display.

is the �� signal. When �� is 1, the seven-segment outputs (a to f) are activated to drive the

segments. The display assignments are shown in Figure 2.22�. When�� is 0, all seven segments

are turned off (i.e., all seven outputs a to f are 0) irrespective of the BCD input. This input is

useful in suppressing leading zeros (i.e., 00075 is displayed as 75 by blanking out the

three leading displays).

There is one difference between our logic for segment d and the output generated by the

7449 chip. We display 9 with the bottom horizontal LED on, whereas 7449 turns this LED off.

Similarly, digit 6 can be displayed in two different forms. Look at your calculator and see the

format it follows for digits 6 and 9.

2.7.3 Quine–McCluskey Method

The Karnaugh map method is not suitable for simplifying logical expressions with more than

four variables. To simplify logical expressions with a higher number of variables, we have to

use three-dimensional maps. We can push the Karnaugh map method to six variables but that’s

about it. The Quine–McCluskey method is a tabular method and is suitable for automating the

simplification process. The Quine–McCluskey simplification process involves two steps:

1. Obtain a simplified expression that is equivalent to the original expression. This expres-

sion need not be a minimal expression. This is done iteratively by looking at a pair of

terms that contain a variable and its complement. This is equivalent to forming areas of

size 2 in the Karnaugh map method. By iteratively applying this step, we form areas of

larger size.

2. The second step essentially eliminates redundant terms from the simplified expression

obtained in the last step. We needed this step even in the Karnaugh map method (e.g., see

Figure 2.19).

68 Chapter 2 Digital Logic Basics

BI

A
3

A
0

A
1

A
2

g

f

e

d

c

b

a

A
1

A
2

BI

A
3

A
0

0 1 2 3 4 5 6 7 8 9 11 1410 12 13 15

(c) Logic symbol

7449

14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

e

f

g

a

b

c

d

(b) Connection diagram

(a) Display designations

Figure 2.22 The 7449 seven-segment display driver chip.

We now illustrate the process by means of an example. Let us consider the segment d logical

expression from the previous example. The logical expression can be written from the truth

table in Table 2.5 as

���� � ��C� � ��C D � �B�D � �B C� � A��� � A��D .

We can express this logical expression more succinctly by using the notation described on

page 57 as

���� �� 	�
� �� ��
� �

We start the Step 1 process by grouping the terms into the number of true conditions (i.e.,

number of 1s in the term) and sorting the groups as shown in column 1 of Table 2.6. We use a

horizontal line to separate the groups. The first group at the top of the table is labeled group 0

as it has no 1 bits in the terms. We start simplifying the expression by finding all pairs of terms

that differ in just one variable (i.e., form areas of size 2 cells). In effect, we are applying the

rule X Y + X� = X. Since the groups are sorted by the number of 1s in the terms, it is sufficient

to compare the terms in two adjacent groups. That is, start with group 0 and compare each term

in group 0 with all terms in group 1. If a pair is found, checkmark both terms and write the new

Section 2.7 Simplifying Logical Expressions 69

Table 2.6 Step 1: Finding prime implicants

Column 1 Column 2

Group 0 � � � �
�

� � �

Group 1 � � C �
�

� � �

A � � �
�

� � C

Group 2 � � C D
�

� C �

� B � D A � �

� B C �
�

A � � D
�

term in a new column (to be used in the next iteration). The new term is obtained by eliminating

the variable that differs in the pair. Repeat the process by comparing each term in group 1 to all

terms in group 2, and so on. Note that you will write a term into the next column only if it is not

already present (i.e., no duplicate terms are allowed). This iteration produces the entries shown

in column 2 of Table 2.6. This column represents the product terms for the areas with two cells.

There is one term that is not checkmarked in column 1 of Table 2.6. This corresponds to the

lone term we got from the Karnaugh map in Figure 2.21�.

We repeat the procedure on the column 2 entries. That is, we try to form areas of four cells.

However, for this example, we do not generate any new terms. This means that no areas of size

greater than two cells can be generated for this example. You can see that this condition is true

from the Karnaugh map in Figure 2.21�.

To complete Step 1, we collect all the terms that are not checkmarked from the table. These

terms are prime implicants. In our example, we have six prime implicants: one from column 1

with four variables and five from column 2, each with three variables.

Next we apply Step 2. This step eliminates any redundant terms from the set of prime

implicants. To facilitate this objective, we create another table (called the prime implicant

chart) with a row for each prime implicant and a column for each term in the original logical

expression (see Table 2.7). Put a � mark in the table if the prime implicant for the row is in the

column term. For example, the first column of the third row has an � mark as the row prime

implicant � � � is in � � � �. What this step does is to mark those input terms that are

represented by the prime implicant.

Next circle each � that is alone in a column. These prime implicants are called essential

prime implicants and should appear in any final minimal form expression. Then place a square

70 Chapter 2 Digital Logic Basics

Table 2.7 Step 2: Prime implicant chart for redundancy elimination

Prime

implicants

Input product terms

���� ��C� ��C D �B�D �B C� A��� A��D

� B � D
�

� � � � �

� � � � �

� � C �

�

� C � �

�

A � � �

�

around all the �s in a row that has a
�

. Thus, by using these prime implicants with a
�

, we

cover the input terms with � and
�

. Thus, if we end up with a table in which each column

has at least a
�

or a � , we are done. This means that we get a single minimal form (i.e., there

are no alternative minimal forms). We write the final minimal expression by using these prime

implicants as sum-of-products terms.

If there are columns without a
�

or a � , we select a minimum number of prime implicants

to cover these columns. In our example, the first column is without a
�

or a � . This means

the term � � � � is not covered by the essential prime implicants. We need either the second

or the third prime implicant (both have a � in the ���� column). Thus, we get two final

minimal expressions depending on whether the second or third prime implicant is selected.

This should make sense to you from the Karnaugh map procedure. Thus, if we selected ���,

our simplified expression for this example is

� B � D � � � � � � � C � � C � � A � � �

We get the following expression if we selected ���:

� B � D � � � � � � � C � � C � � A � � �

These two expressions match the logical expressions we got with the Karnaugh map method.

Section 2.8 Generalized Gates 71

Don’t Care Conditions

How do we incorporate don’t care conditions into the Quine–McCluskey method? Let us see

how we handled the don’t cares in the Karnaugh map method. We treated the don’t cares as

1 when we needed to form areas, and yet we did not obligate ourselves to cover all the don’t

care cells. This precisely is what we will do in the Quine–McCluskey method as well. Since

Step 1 is used to form areas iteratively, we include the don’t care terms in this step as though

they were regular terms for which the function outputs 1. We don’t worry about the fact that

such inclusion of don’t care terms would generate some redundant terms (e.g., consisting of

only don’t care terms). We will depend on the next step to eliminate any such redundancies. In

Step 2, since we are not obligated to cover the don’t care terms, we do not list them. In other

words, there won’t be any columns created in the prime implicant chart for the don’t care terms.

In summary, we include the don’t care terms in the first step and apply the Step 1 procedure and

ignore them in Step 2 and apply the Step 2 procedure discussed before.

We illustrate the process by considering the seven-segment example used in the Karnaugh

map method. Using the Sigma notation we described on page 57, the logical expression for the

seven-segment example can be represented as

���� �� �� �� �� �� �	
 ������ ��� ��� ��� �
� ��	 �

where we use �� to represent the don’t care inputs.

By including all the don’t care terms, we get the entries in Column 1 of Table 2.8. By

following the procedure described before, we get the following terms that are not checked off:

one term from column 2, three terms from column 3, and a single-variable term from the last

column. Notice that this example generates several duplicates, all of which are eliminated.

Next construct the prime implicants chart, shown in Table 2.9. Here we do not include the

don’t care terms. From this table, we can see that all five terms are essential prime implicants.

Thus, we end up with just one final minimal expression

A
 � �
 C �
 � C
 B � D �

This matches the logical expression obtained with the Karnaugh map method (see page 65).

2.8 Generalized Gates
Even though we use multiple input gates as needed by our design, such gates may not be com-

mercially available to build digital circuits. Even when available, there may be reasons not to

use them. For example, we may have two of the four 2-input AND gates free in a 7408 chip.

In that case, if we need a 3-input AND gate, we would like to use these free gates rather than

adding a new chip. It is fairly easy to build higher-input gates using lower-input gates of the

same kind for AND and OR gates. An example of building a 3-input AND gate using two 2-

input AND gates is shown in Figure 2.23a. This process can be generalized to build arbitrarily

large input gates of this kind. You are asked in Exercise 2–23 to show that the same construction

procedure can be used even for the XOR gate.

72 Chapter 2 Digital Logic Basics

Table 2.8 Step 1: Finding prime implicants

Column 1 Column 2 Column 3 Column 4

� � � �
�

� � �
�

� � A

� � C �
�

� � �
�

� C

A � � �
�

� � C
�

C �

� � C D
�

� C �
�

A �
�

� B � D
�

� C �
�

A �
�

� B C �
�

A � �
�

A �
�

A � � D
�

A � �
�

A D
�

A � C �
�

A � �
�

A C
�

A B � �
�

� C D
�

A B
�

A � C D
�

B � D

A B � D
�

B C �
�

A B C �
�

A � D
�

A B C D
�

A � D
�

A � C
�

A C �
�

A B �
�

A B �
�

A C D
�

A B D
�

A B C
�

It is not as straightforward to build higher-input NAND or NOR gates using lower-input

gates of the same kind. As an example, we show in Figure 2.23b how a 3-input NAND gate

can be built using 2-input NAND gates. Note that it requires an additional inverter. A similar

procedure can be used for the NOR gate. The key point is that we have to invert the output of a

NAND gate before feeding it as input to the next NAND gate.

Since it is straightforward to build higher-input gates, we use them liberally in our logic

circuits knowing that such circuits can be easily implemented in practice. However, we should

be careful in designing such circuits as the propagation delay (discussed on page 49) associated

Section 2.9 Multiple Outputs 73

Table 2.9 Step 2: Prime implicant chart for redundancy elimination

Prime

implicants

Input product terms: No don’t care terms

���� ��C� ��C D �B�D �B C� A��� A��D

B�D
�

��

�
� �

C� �

�

�C �

�

A �

�

A

B

C

F = A B C

F = A B C

A

B

C

(b)

(a)

Figure 2.23 Constructing 3-input gates using 2-input gates.

with all equivalent circuits may not be the same. As an example, consider building a 4-input

OR gate using 2-input OR gates. We can build a 4-input OR gate by cascading a series of

three 2-input OR gates as shown in Figure 2.24�. The propagation delay of this circuit is three

gate delays. On the other hand, the series-parallel approach used to derive the circuit shown in

Figure 2.24� incurs only a two-gate propagation delay.

2.9 Multiple Outputs
So far we have considered logical functions with only a single output function. What if we

have to design a circuit that has to generate more than one output? For example, how do we

implement the truth table shown in Table 2.10? We can use the previous procedure by treating

the truth table in Table 2.10 as two truth tables.

We can write simplified logical expressions for these two functions as

74 Chapter 2 Digital Logic Basics

(a) Series implementation

(b) Series-parallel implemetation

F = A + B + C + D

A

B

C

D

B

C

D

A

F = A + B + C + D

Figure 2.24 Two logically equivalent 4-input OR gates built with three 2-input OR gates: (a) series imple-

mentation involves three gate delays; (b) series-parallel implementation involves only two gate delays.

Table 2.10 Truth table with two output functions

A B C �� ��

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

�� = � � C + � B � + A � � + A B C ,

�� = A B + B C + A C .

Even though we have not stated in words what these functions are supposed to be doing,

from our discussion so far we can readily identify that �� is the even-parity function and ��

Section 2.10 Implementation Using Other Gates 75

is the majority function. Interestingly, we can also assign another interpretation for these two

functions. This is also the truth table for the full adder with �� representing the ��� output and

�� representing the
���� output ����. The three inputs represent two single-bit inputs and a

carry in ���. We discuss adders in Chapter 3.

2.10 Implementation Using Other Gates
The synthesis process we have discussed so far uses the three basic gates—AND, OR, and

NOT—for implementation. In this section, we show how implementations using other gates

(such as NAND and NOR) can be obtained.

2.10.1 Implementation Using NAND and NOR Gates

It is sometimes useful to design logic circuits using only NAND gates. For example, implement-

ing (A + �) requires one OR gate (one 7432 chip) and one inverter (one 7406 chip). Noting

that this expression is equivalent to (��), we can implement the logical expression using two

NAND gates; thus, only one 7400 chip is needed. As we have noted, NAND gates are universal

as any logic function can be implemented using only NAND gates. Similarly, we can also use

only NOR gates.

Let us see how we can derive a design that uses only NAND gates. As an example, consider

the expression (A B + C D). Implementing this expression requires two 2-input AND gates and

a 2-input OR gate. Since � � �, we can double negate the expression.

A B + C D � �� � �� �

Now apply de Morgan’s law to move the inner negation operation to yield

A B + C D � �� � �� �

Notice that the right-hand expression can be implemented using only NAND gates. Such an

implementation requires three 2-input NAND gates.

How do we apply this technique to a logical function that has more than two product terms?

Let us consider the simplified logical expression for the majority function. This function can be

written as

A B + B C + A C � � � � � � � � �

� � � � � � � � �

� � � � � � � � � �

We need three 2-input NAND gates and a 3-input NAND gate to implement this function (see

Figure 2.25).

We derive the following for the 3-input even-parity function:

� � C � � B � � A � � � A B C � � � � � � � � � � � � � � � � .

76 Chapter 2 Digital Logic Basics

F

A B C

Figure 2.25 A majority function implementation using only NAND gates.

F

A B C

Figure 2.26 Logic circuit for the 3-input even-parity function using the bubble notation.

This requires three 2-input NAND gates for implementing the inverters (to get �, �, and �),

four 3-input NAND gates for the inner terms, and a 4-input NAND for the outer negation.

We can apply a similar technique for product-of-sums expressions to come up with NOR-

only circuit designs.

Bubble Notation

In large circuits, drawing inverters can be avoided by following what is known as the “bub-

ble” notation. Remember that we have been using the bubble to represent negation. Using the

bubble notation simplifies the circuit diagrams. To appreciate the reduced complexity, com-

pare the bubble notation circuit for the 3-input even-parity function in Figure 2.26 with that in

Figure 2.13.

Section 2.10 Implementation Using Other Gates 77

B

A

C
F

F 1

F 2

C

A

B

(b) Two-output function(a) Even-parity function (b) Two-output function(a) Even-parity function

Figure 2.27 Logic circuit implementations using the XOR gate.

2.10.2 Implementation Using XOR Gates

Exclusive-OR gates are very useful in implementing certain types of functions. Notice that

the XOR gate implements the logical expression of the form � B + A �. You can do pattern

recognition of sorts to search for this type of expression and implement it using the XOR gate.

Let us look at a couple of examples. As a first example, consider the 3-input even-parity

function. To use XOR gates, we have to transform the logical expression as follows:

� � C � � B � � A � � � A B C � C �� � � A B� � � �� B � A ��

� C �� � � A B� � � �� B � A ��

� C �� B � A �� � � �� B � A �� �

There is a big jump from the second expression to the final one. You can verify that

� � � A B � � B � A � �

We can see from this expression that we need just two 2-input XOR gates to implement the

even-parity function as shown in Figure 2.27�. We can implement this logic function by using

only half of the 7486 chip. Compare this circuit with the one in Figure 2.26 or in Figure 2.13.

You will often find the trick we have used here—that is, double negating and removing

the inner negation by applying de Morgan’s law—very useful in simplifying or manipulating

logical expressions into the desired form.

As another example, consider the two output functions in Table 2.10 on page 74. We can

transform the logical expression for �� so that we can implement it using two 2-input XOR

gates (Figure 2.27�). The second function

�� = B C + A B + A C

78 Chapter 2 Digital Logic Basics

can be implemented using two 2-input OR gates and two 2-input AND gates by writing it as

�� = B C + A (B + C) .

We can, however, reduce the gate count by noting that XOR of A and B is available from the

implementation of ��. The required transformation to use this term is done as follows:

�� � �� � �� � ��

� �� � �� �� � �� � �� �� � ��

� �� � ��� � ��� � ��� � ���

� �� � � ��� � �� � �

Implementation of �� and �� are shown in Figure 2.27�. As we show in Chapter 3, this is

the full adder circuit.

2.11 Summary
We have introduced several simple logic gates such as AND, OR, NOT gates as well as NAND,

NOR, and XOR gates. Although the first three gates are considered the basic gates, we often

find that the other three gates are useful in practice.

We have described three ways of representing the logical functions: truth table, logical

expression, and graphical form. The truth table method is cumbersome for logical expressions

with more than a few variables. The number of rows in the truth table is equal to �� , where� is

the number of logical variables. Logical expression representation is useful to derive simplified

expressions by applying Boolean identities. The graphical form is useful to implement logical

circuits.

Logical expressions can be written in one of two basic forms: sum-of-products or product-

of-sums. From either of these expressions, it is straightforward to obtain logic circuit imple-

mentations. However, such circuits are not the best designs as simplifying logical expressions

can minimize the component count.

Several methods are available to simplify logical expressions. We have discussed three of

them: the algebraic, Karnaugh map, and Quine–McCluskey methods.

Our focus has been on devising methodologies for implementing logical circuits using the

basic AND, OR, and NOT gates. However, in the last couple of sections, we have shown how

logic designs can be obtained so that other gates such as NAND and XOR can be used in the

implementation.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

Section 2.12 Web Resources 79

• AND gate

• Boolean algebra

• Bubble notation

• Complete set

• de Morgan’s law

• Don’t cares

• Even parity function

• Fanin, Fanout

• Generalized gates

• Integrated circuits

• Karnaugh maps

• Logic circuit design process

• Logic circuit equivalence

• Logical expression derivation

• Logical expression equivalence

• Logical expression simplification

• Logical expressions

• Majority function

• Multiple outputs

• NAND gate

• NMOS, PMOS, HMOS, CMOS, GaAs

• NOR gate

• NOT gate

• OR gate

• Product-of-sums

• Propagation delay

• Quine–McCluskey method

• Seven-segment display

• SSI, MSI, LSI, VLSI

• Sum-of-products

• Transistor implementation of gates

• Truth table

• TTL, ECL

• Universal gates

• XOR gate

2.12 Web Resources
You can use one of the following Web sites for information on IC chips. In particular, you get

all the data sheets for the TTL family of chips from these two sites:

Motorola URL: http://www.mot.com
Texas Instruments URL: http://www.ti.com .

2.13 Exercises
2–1 Implement the 2-input XOR gate using (a) only 2-input NAND gates and (b) only 2-input

NOR gates.

2–2 Implement the 2-input exclusive-NOR gate using (a) only 2-input NAND gates and (b)

only 2-input NOR gates.

2–3 Show how a NOT gate can be implemented using a 2-input XOR gate.

2–4 In the last exercise, you have shown how an XOR gate can act as an inverter. In this

exercise, show that a 2-input XOR gate can act as a buffer that simply passes input to the

output. Now explain why the XOR gate is called a programmable inverter.

2–5 Show how an AND gate can be implemented using OR and NOT gates.

2–6 Show how an OR gate can be implemented using AND and NOT gates.

2–7 Describe how the circuit in Figure 2.6� is implementing a NAND gate.

80 Chapter 2 Digital Logic Basics

2–8 Describe how the circuit in Figure 2.6
 is implementing a NOR gate.

2–9 In our discussion of the 3-input majority function, we have assigned equal weight (i.e.,

1/3) to the three inputs. Suppose that one input has a weight of 1/2 and the other two

inputs have 1/4 each. Show the truth table for the weighted 3-input majority function.

Derive a simplified logical expression and show the corresponding implementation.

2–10 Another variation on the majority function assigns veto power to certain members. Inde-

pendent of how the others have voted, a member with veto power can defeat the motion.

Show the truth table for this 3-input majority function with only one member having veto

power. Derive a simplified logical expression and show the corresponding implementa-

tion.

2–11 Prove the following using only the first four laws in Table 2.4:

(a) � � � � ��

(b) �� � � ��

(c) � � � � ��

(d) �� � � ��

2–12 Prove the and version of de Morgan’s law given in Table 2.4. Hint: It is useful to consider

the observation made about the complement law on page 54. Thus, to prove

� � � � �� �

it is sufficient to show that

�� � �� � ��� �� � �

and

�� � �� � ��� �� � �

are true.

2–13 Prove the or version of de Morgan’s law given in Table 2.4.

2–14 Write the and and or versions of de Morgan’s law for three variables. Verify your answer

using the truth table method.

2–15 Find how many 7400 chips are required to implement the 8-input NAND gate provided

by 7430. See Figure 2.8 on page 50.

2–16 Prove the following using the Boolean algebra method:

(a) ��� �� � ���� ��� � � .

(b) �� ��� � �� � .

(c) � � � A B � � B � A � .

2–17 Give the truth table for the 3-input equivalence gate. Derive logical expressions in sum-

of-products and product-of-sum forms.

2–18 Using Boolean algebra show that the two logical expressions derived in the last exercise

are equivalent.

2–19 Show that the two logic circuits in Figures 2.10� and 2.10� are equivalent.

Section 2.13 Exercises 81

2–20 Using Boolean algebra show that the following two expressions are equivalent:

�B C + A�C + A B� + A B C ,

(A + B + C) (A + B +�) (A +�+ C) (�+ B + C) .

These two expressions represent the majority function in sum-of-products and product-

of-sums form.

2–21 Using Boolean algebra show that the following two expressions are equivalent:

� � C + � B � + A � � + A B C ,

(A + B + C) (A +�+�) (�+ B +�) (�+�+ C) .

These two expressions represent the even-parity function in sum-of-products and product-

of-sums form.

2–22 Using Boolean algebra show that the following two expressions are equivalent:

A�� � �C� � ��C � ��� � �B�D �

A � �� � C� � �C � B�D �

2–23 Show how a 5-input XOR gate can be constructed using only 2-input XOR gates.

2–24 We want to build a logic circuit to generate the even-parity bit for 7-bit ASCII characters.

In transmitting an ASCII character, we transmit 7 ASCII bits and a parity bit to facili-

tate rudimentary error detection. Design such a circuit using 2-input XOR gates. What

modification would we make to this circuit if we wanted to generate odd parity?

2–25 Using Boolean algebra show that the two logical expressions obtained from Figures 2.18�

and 2.18� are equivalent. That is, show that the following two logical expressions are

equivalent:

�� � A�D � ��� ,

�� � A�� � ��� .

2–26 Show the truth table of a function that outputs a 1 whenever the 3-bit input, treated as

representing a 3-bit unsigned binary number, is even. Derive a logical expression and

simplify it using Boolean algebra to show that a single inverter can implement this func-

tion.

2–27 Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit unsigned binary number, is divisible by 4. Derive a simplified logical

expression using the Karnaugh map method. Show an implementation of this function.

2–28 Redo the last exercise using the Quine–McCluskey method.

2–29 Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit unsigned binary number, is between 5 and 10 (both inclusive). Derive

a simplified logical expression using the Karnaugh map method. Show an implementation

of this function.

2–30 Redo the last exercise using the Quine–McCluskey method.

2–31 Show the truth table of a function that outputs a 1 whenever the 4-bit input, treated as

representing a 4-bit signed binary number, is equal to��, ��, or ��. Derive a simplified

logical expression using the Karnaugh map method. Show an implementation of this

function.

2–32 Redo the last exercise using the Quine–McCluskey method.

Chapter 3

Combinational Circuits

Objectives
• To describe higher-level building blocks that are useful in designing digital logic circuits;

• To introduce programmable logic devices to implement logic functions;

• To discuss principles involved in the design of arithmetic and logic units;

• To provide a sample of commercial combinational digital circuit ICs.

In the last chapter, we discussed the fundamentals of digital circuit design. Our design process

focused on the basic gates. This chapter focuses on combinational circuits, which provide a

higher level of abstraction that is useful in designing digital circuits and systems.

We describe several examples of combinational circuits that are commonly required in the

design of digital circuits. The combinational circuits we present in this chapter include mul-

tiplexers and demultiplexers, decoders and encoders, comparators, and adders. We show how

multiplexers can be used as universal building blocks to implement logical functions. Similarly,

decoders along with OR gates can also be used to implement any logical function.

In addition, we also discuss programmable logic devices that are useful for implementing

logic functions in a straightforward way. We present details on two programmable logic de-

vices: the programmable logic array and programmable array logic. These programmable logic

devices are useful for implementing logical functions with a minimum number of chips. Arith-

metic and logic units (ALUs) are also discussed to illustrate how design of complex digital

circuits can be simplified by using combinational circuits discussed in this chapter.

3.1 Introduction
We have so far focused on implementations using only the basic gates. One key characteristic of

the circuits that we have designed in the last chapter is that the output of the circuit is a function

83

84 Chapter 3 Combinational Circuits

of the inputs. Such devices are called combinational circuits as the output can be expressed as a

combination of the inputs. We continue our discussion of combinational circuits in this chapter.

Although gate-level abstraction is better than working at the transistor level, a higher level

of abstraction is needed in designing and building complex digital systems. We now discuss

some combinational circuits that provide this higher level of abstraction.

Higher-level abstraction helps the digital circuit design and implementation process in sev-

eral ways. The most important ones are the following:

1. Higher-level abstraction helps us in the logical design process as we can use functional

building blocks that typically require several gates to implement. This, therefore, reduces

the complexity.

2. The other equally important point is that the use of these higher-level functional devices

reduces the chip count to implement a complex logical function.

The second point is important from the practical viewpoint. If you look at a typical motherboard,

these low-level gates take a lot of area on the printed circuit board (PCB). Even though the low-

level gate chips such as the ones shown in Figure 2.8 on page 50 were introduced in the 1970s,

you still find them sprinkled on your PCB along with your Pentium processor. In fact, they seem

to take more space. Thus, reducing the chip count is important to make your circuit compact.

The combinational circuits provide one mechanism to incorporate a higher level of integration.

To drive the point home, assume that you want an 8-input NAND gate. We could use a single

14-pin DIP chip 7430 to do the job (see Figure 2.8 on page 50). How many 14-pin chips do we

need to build the same using the 2-input NAND gate chip 7400?

The reduced chip count also helps in reducing the production cost (fewer ICs to insert and

solder) and improving the reliability. Several combinational circuits are available for imple-

mentation. Here we look at a sampler of these circuits.

3.2 Multiplexers and Demultiplexers
A multiplexer (MUX) is characterized by �

� data inputs, � selection inputs, and a single output.

The block diagram representation of a 4-input multiplexer (4-to-1 multiplexer) is shown in

Figure 3.1. The multiplexer connects one of �� inputs, selected by the selection inputs, to the

output. Treating the selection input as a binary number, data input �� is connected to the output

when the selection input is � as shown in Figure 3.1.

Figure 3.2 shows an implementation of a 4-to-1 multiplexer. If you look closely, it somewhat

resembles our logic circuit used by the brute force method for implementing sum-of-products

expressions (compare this figure with Figure 2.13 on page 59). This visual observation is useful

in developing our intuition about one important property of the multiplexers: they are universal

in the sense that we can implement any logical function using only multiplexers. So, we can

add one more entity to the complete set list on page 45. The best thing about using multiplexers

in implementing a logical function is that you don’t have to simplify the logical expression.

We can proceed directly from the truth table to implementation, using the multiplexer as the

building block.

Section 3.2 Multiplexers and Demultiplexers 85

I 1

I 0

I 2

S0S1

I 3

M

U

X

O

S0S1

I 2

I 3

I 1

I 00 0

0 1

1

1 1

0

O

Figure 3.1 A 4-data input multiplexer block diagram and truth table.

I 0

I 1

I 2

I 3

S1 S0

O

Figure 3.2 A 4-to-1 multiplexer implementation using the basic gates.

How do we implement a truth table using the multiplexer? Simple. Connect the logical

variables in the logical expression as selection inputs and the function outputs as constants

to the data inputs. To follow this straightforward implementation, we need a �
� data input

multiplexer with � selection inputs to implement a � variable logical expression. The process is

best illustrated by means of an example.

Figure 3.3 shows how an 8-to-1 multiplexer can be used to implement our two running

examples: the 3-input majority and 3-input even-parity functions. From these examples, you

can see that the data input is simply a copy of the output column in the corresponding truth table.

You just need to take care how you connect the logical variables: connect the most significant

86 Chapter 3 Combinational Circuits

I 0

I 1

I 2

I 3

S1

M

U

X

O

S0S2

I 4

I 5

I 6

I 7

F1

0

0

1

0

1

1

1

0

A B C

I 0

I 1

I 2

I 3

S1

M

U

X

1

1

0

1

0

0

1

0

A B C

O

S0S2

I 4

I 5

I 6

I 7

F2

Majority function Even-parity function

Figure 3.3 Two example implementations using an 8-to-1 multiplexer.

variable in the truth table to the most significant selection input of the multiplexer as shown in

Figure 3.3.

3.2.1 Implementation: A Multiplexer Chip

The 74151 is an example 8-to-1 multiplexer chip that is similar to the multiplexer we have used

to implement the majority and even-parity functions. The connection diagram and the logic

symbol are shown in Figure 3.4. The only additional input is the enable input (�). This active-

low input signal, after an internal inversion, goes as an additional input to all the AND gates

in the multiplexer implementation shown in Figure 3.2. Thus, when this input is 1, output is

forced to be high. For normal multiplexer operation, the enable input must be 0. Notice that

the 74151 provides both the normal output (O) and its complement (�). It is straightforward to

see that we can implement the majority and even-parity functions using a single chip for each

function.

A Note on the Notation: As we have just done, we often talk about low-active and high-active

inputs. A low-active input means that a 0 should be applied to the input in order to activate

the function. Similarly, a high-active means the input should be 1 to enable the function. We

indicate a low-active input by using an overbar as in �. There are several examples in this and

later chapters.

3.2.2 Efficient Multiplexer Designs

We can do better than the naive design described in the last section. We can actually implement

a � variable logical expression using a ���� data input multiplexer. For some functions, we

might need an additional inverter. The basic idea is to factor out one logical variable (say, X)

Section 3.2 Multiplexers and Demultiplexers 87

O

E

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

O

I 0

I 1

I 2

I 3

I 4

I 5

I 6

I 7

S0

2

S1

S

I 0

I 1

I 2

I 3

S1

M

U

X

E

O

O

S0S2

I 4

I 5

I 6

I 7

74151

(a) Connection diagram (b) Logic symbol

Figure 3.4 The 74151 8-to-1 multiplexer chip.

from the truth table. This variable X or its complement may be required as a data input to the

multiplexer (thus, the need for an additional inverter to get �). In this design, the multiplexer

data input set consists of �0, 1, X, ��. Although any variable in the logical expression can

be eliminated, it is most convenient to factor out the rightmost (as it appears in the truth table)

logical variable.

The reduction process for the majority function is shown in Figure 3.5. On the left is the

original truth table with three variables. We eliminate variable C from this table to get the new

truth table with variables A and B. To derive the new truth table, we group two rows in which

the values of A and B match. Then look at the output of these two rows: if both row outputs

are zero (one), the output in the new table is zero (one); otherwise, find the relation between the

output values of these two rows in the original table and the values of the variable C (you will

get this to be either C or �). For example, when A = 0 and B = 0, the output is zero independent

of the value of C. So the new truth table has zero as output. On the other hand, when A = 0 and

B = 1, the output is equal to the value of C. Thus, the output in the new table is C. Once we have

derived this reduced truth table, implementation is straightforward as shown in Figure 3.5.

The corresponding truth table reduction process for the even-parity function is shown in

Figure 3.6. The implementation of this function requires an inverter to get � (this inverter is not

shown in the figure).

3.2.3 Implementation: A 4-to-1 Multiplexer Chip

The 74153 is a dual 4-to-1 multiplexer chip, shown in Figure 3.7, that can be used to implement

our reduced truth tables. Even though the 74153 provides two 4-to-1 MUXs, the two are not

88 Chapter 3 Combinational Circuits

F1 F1A B C A B

0 0

0 0 1

0 1 0 0

0 1 1 1

1 0 0 0

1 0 1 1

1 1 0 1

0 0

0

1 1 1 1

0 0 0

0 1 C

1 0 C

1 1 1

Original truth table New truth table

I 1

I 0

I 2

S0S1

I 3

M

U

X

F1

BA

0

1

C

C
O

Figure 3.5 Derivation of the reduced truth table and its implementation for the majority function.

I 1

I 0

I 2

S0S1

I 3

M

U

X

BA

C

C
O F2

C

C

F1 F1A B C A B

0 0

0 0 1

0 1 0 1

0 1 1 0

1 0 0 1

1 0 1 0

1 1 0 0

0 0

1

1 1 1 1

0 0 C

0 1 C

1 0 C

1 1 C

Original truth table New truth table

Figure 3.6 Derivation of the reduced truth table and its implementation for the even-parity function.

independent; they both use the same select lines. Each MUX is similar to the 74151 MUX we

have seen before. The enable input can be used to disable or enable a MUX. We can use a single

74153 chip to implement both the majority function as well as the even-parity function on the

same set of logical variables. By using the enable inputs, we can implement these functions

on different logic variables at different times (but not concurrently). This chip, however, is

more suitable for implementing two outputs of a multiple output function (see Section 2.9).

For example, we can use a single 74153 chip to implement the two output functions given in

Table 2.10 on page 74.

Section 3.3 Decoders and Encoders 89

1S

aO

I 3a

E a

bO

74153

(a) Connection diagram

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

I 2a

I 1a

E

0S

I 3b

I 2b

I 1bI 0a

I 0b

b

M

U

X

S1 S0

bO

(b) Logic symbol

I 0b

I 1b

I 2b

I 3b

E b

E a

I 0a

I 1a

I 2a

I 3a

aO

Figure 3.7 The 74153 dual 4-to-1 multiplexer chip. The select lines are common to both multiplexers.

3.2.4 Demultiplexers

The demultiplexer (DeMUX) performs the complementary operation of a multiplexer. As in

the multiplexer, a demultiplexer has � selection inputs. However, the roles of data input and

output are reversed. In a demultiplexer with � selection inputs, there are �
� data outputs and

one data input. Depending on the value of the selection input, the data input is connected

to the corresponding data output. The block diagram and the implementation of a 4-data out

demultiplexer is shown in Figure 3.8.

A Demultiplexer Chip: Figure 3.9 shows the connection diagram and logic symbol for the

74138 demultiplexer chip. As we show in the next section, this chip acts as a decoder as well.

The logic symbol in Figure 3.9� does not have an explicit data input; instead, it has three enable

inputs (two low-active, �� and ��, and one high-active, ��). These three enable inputs are

ANDed as shown in Figure 3.9
, and the output of this AND gate is connected to all the AND

gates (similar to the data input line in Figure 3.8). We can use any of these enable inputs as a

data input, while holding the other two enable inputs at their active level. For example, you can

connect data input to �� while holding �� and �� low. The inputs ��, ��, and �� are used when

the chip functions as a decoder.

3.3 Decoders and Encoders
The decoder is another basic building block that is useful in selecting one-out-of-� lines. The

input to a decoder is an I-bit binary (i.e., encoded) number and the output is �� bits of decoded

90 Chapter 3 Combinational Circuits

O 0

O 1

O 2

O 3

I

SS 01

S0S1

O 0

O 1

O 2

O 3

IData in Data out

Control input

D
eM

u
x

Figure 3.8 Demultiplexer block diagram and its implementation.

data. Figure 3.10 shows a 2-to-4 decoder and its logical implementation. Among the �� outputs

of a decoder, only one output line is 1 at any time as shown in the truth table (Figure 3.10).

Decoders are also useful in implementing logic functions. Using a single decoder and a

set of OR gates, we can implement any logical function. The key idea is that each decoder

output is essentially a product term. Thus, if we OR those product terms for which the logical

function output is 1, we implement the sum-of-products expression for the logical function. As

an example, Figure 3.11 shows how the two logical functions shown in Table 2.10 on page 74

can be implemented using a decoder-OR combination. In Figure 3.11, we have relabeled �� as

Sum and �� as ����.

We can add decoder and OR as another set of logic devices to our universal set of NAND

gates, NOR gates, MUXs, and so on (see the discussion on complete sets on page 45).

3.3.1 Decoder Chips

The 74138 chip can be used as a decoder by activating the three enable inputs. If we connect the

two low-active enable inputs �� and �� to 0 and �� to high, this chip acts as a 3-to-8 decoder.

Figure 3.12 shows details about another decoder that provides two independent 2-to-4 de-

coders. Some key differences from our decoder implementation shown in Figure 3.10 are the

enable input as in the previous multiplexers and the low-active outputs. This means that de-

coder outputs are high except for the selected line. With these low-active outputs, we need to

use NAND gates instead of OR gates to implement a logical function. For example, a single

Section 3.3 Decoders and Encoders 91

E 1

E 0

E 2

Input to final

AND gates

1I

E 1

E 2

E 0

2I

2O

1O

0O

3O

4O

5O

6O

7O

0I

(a) Connection diagram

74138

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

4O

5O

6O

3O

2O

1O

7OE 2

E 1

E 0

0I

1I

2I

0O

(b) Logic symbol

D
eM

U
X

/D
ec

o
d
er

(c) Enable input logic details

Figure 3.9 The 74138 chip can be used both as a demultiplexer and a decoder.

O 0

O 1

O 2

O 3

I 1

I 0

Encoded

data in

Decoded

data out

D
ec

o
d
er

I 1 I 0 O 3 O 2 O 1 O 0

0 0

0

1 0

1 1

0 0 0 1

0 01

0 0 0

0

1

0

01

1

0

O 0

O 1

O 2

O 3

I 0

I 1

Figure 3.10 Decoder block diagram and its implementation.

74139 chip can be used along with NAND gates to implement two independent multiple output

logical functions, each with two variables.

92 Chapter 3 Combinational Circuits

C in outCA B Sum

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

O 1

O 2

O 7

O 6

O 5

O 4

O 3

O 0

C in

outC

I 0

I 2

I 1B

A

Sum

D
ec

o
d

er

Figure 3.11 Implementation of logical functions using decoder and OR gates.

I 0b

E b 3bO

2bO

0bO

1bO

I 1b
D

ec
o
d
er

D
ec

o
d
er

I 1a

I 0a

E a 3aO

2aO

1aO

0aO
E a

I 0a

2aO

I 1a

0aO

1aO

3aO

E b

I 0b

I 1b

0bO

1bO

2bO

3bO

74139

(a) Connection diagram

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

(b) Logic symbol

Figure 3.12 Dual decoder chip 74139.

3.3.2 Encoders

Encoders perform the reverse operation of decoders. Encoders take �� input lines and generate

a �-bit binary number on � output lines. The basic truth table of an encoder is similar to the

decoder with the inputs and outputs interchanged. The output of an encoder is valid as long as

only one of the inputs is 1. Encoders need a way to indicate when the output is valid so that

the presence of invalid inputs can be conveyed to the output side. This is typically done by an

additional output control line as shown in Figure 3.13. This figure also shows how an enable

Section 3.3 Decoders and Encoders 93

I 3 I 2 I 1 I 0 O 1 O 0

Enable
input

0 0 0 1 0 01 1

X X X 000 X 0

control signal
Input active

000

0 00

0 0 0

1

1

1

0 1

1

11

0

1

1

1

1

1

1

0 0 0 0 0 01 0

O 0

O 1

I 3

I 2

I 1

I 0

Enable

input

Input active

control signal

Figure 3.13 A 4-to-2 encoder.

I 3 I 2 I 1 I 0 O 1 O 0

Enable
input

Input active
control signal

0 0 0 1 01 0 1

X X X 000 X 0

X00

X X0

1

1

0

1

1

1

X X X1

1

11

0

1

1

1

1

0 0 0 0 01 0 0

I 3

I 2

I 1

I 0
O 0

O 1

Enable

input

Input active

control signal

Figure 3.14 A 4-to-2 priority encoder (“X” represents a don’t care input).

input can be incorporated into the logic. Notice that the output is valid only when the enable

input is high. Furthermore, the output is 00 when the input line �������� = 0001 or 0000. To

distinguish these two cases, we can use the valid-input control signal, which is one whenever at

least one of the four input signals is one.

The logic circuit shown in Figure 3.13 handles the binary case of no input or some valid

input present on the input lines. However, it does not handle the situations where more than one

input is high. For example, if �������� = 0110, 11 is the output of the encoder. Clearly this is

wrong. One way out of this situation is to assign priorities to the inputs and if more than one

input is high, the highest priority input is encoded. Priorities are normally assigned such that ��

has the lowest priority and �� has the highest. In our example, with �������� = 0110, the encoder

should output 10, as the highest priority input that has a one is ��. Such encoders are called

priority encoders. Figure 3.14 shows a 4-to-2 priority encoder.

94 Chapter 3 Combinational Circuits

A 0

B 0

A 1

B 1

A 2

B 2

A 3

B 3

A = B

Figure 3.15 A 4-bit comparator implementation using XOR gates.

3.4 Comparators
Comparators are useful for implementing relational operations such as =, �, �, and so on. For

example, we can use XOR gates to test whether two numbers are equal. Figure 3.15 shows a 4-

bit comparator that outputs 1 if the two 4-bit input numbers A =�������� and B =��������

match. However, implementing � and � is more involved than testing for equality. Although

equality can be established by comparing bit by bit, positional weights must be taken into con-

sideration when comparing two numbers for � and �. We leave it as an exercise to design such

a circuit.

3.4.1 A Comparator Chip

Figure 3.16 shows the connection diagram and logic symbol for the 7485 magnitude comparator

chip. It compares two 4-bit numbers and provides three outputs: ���� ,���� , and���� . An

interesting feature of this chip is that it takes three expander inputs: ���� , ���� , and ���� .

The functionality of this chip is that, when the two 4-bit numbers are not the same, it disregards

the expander inputs and the output is either A � B or A � B depending on the relationship

between the two numbers. When the two numbers are equal, it essentially copies the expander

inputs ���� , ���� , and ���� to the outputs���� , ���� , and ���� (for the truth table and

implementation, see the data sheet on the Web).

The expander inputs ���� , ���� , and ���� can be used to build larger magnitude com-

parators. For example, we can use a serial (ripple) expansion by connecting outputs of a chip as

the expander inputs of the next chip. Figure 3.17 shows how we can build an 8-bit magnitude

comparator using two 7485 chips. We can use a similar construction technique to expand to any

word length. Assuming that each chip introduces a delay of 10 ns, a � -bit comparator with se-

rial expansion introduces a delay of �������� � ��	� ns. For example, the 8-bit comparator

shown in Figure 3.17 introduces a delay of 20 ns. We can also use a parallel construction that

reduces this delay substantially. For more details, see the 7485 data sheet available on the Web.

Section 3.5 Adders 95

I A>B

B 3

OA>B

OA=B

OA<B

I A=B

I A<B

7485

(a) Connection diagram

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

3A

B 0

0

B 1

1

2

B 2

A

A

A

OA<B

OA=B

OA>B

I A>B

I A=B

I A<B

(b) Logic symbol

A 0

A 1

A 2

A

B 0

B 1

B 2

B 3

3

Figure 3.16 The 7485 four-bit magnitude comparator chip.

O
A

<
B

O
A

=
B

O
A

>
B

I
A

>
B

I
A

=
B

I
A

<
B

A
1

0 01

A
0

A
2

A B
0

B
1

B
2

B
33

O
A

<
B

O
A

=
B

O
A

>
B

I
A

>
B

I
A

=
B

I
A

<
B

7485 7485

A = B

Final result

A 0 A 1 A 2 A 3 B 0 B 1 B 2 B 3B 7B 6

A
0

A
1

A
2

A B
0

B
1

B
2

B
33

B 5B 4A 7A 6A 5A 4

A > B A < B

Figure 3.17 Serial construction of an 8-bit comparator using two 7485 chips.

3.5 Adders
We now look at adder circuits that provide the basic capability to perform arithmetic operations.

The simplest of the adders is called a half-adder, which adds two bits and produces a sum and

carry output as shown in Figure 3.18�. From the truth table it is straightforward to see that the

carry output C��� can be generated by a single AND gate and the sum output by a single XOR

gate.

96 Chapter 3 Combinational Circuits

C outC inA B Sum

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

C in

C out

B

A Sum

C out

C out

(b) Full-adder truth table and implementation

(a) Half-adder truth table and implementation

A B Sum

0 0

0 1

1 0

1 1

0

1

1

0

0

0

0

1

Sum

B

A

Figure 3.18 Full- and half-adder truth tables and implementations.

The problem with the half-adder is that we cannot use it to build adders that can add more

than two 1-bit numbers. If we want to use the 1-bit adder as a building block to construct larger

adders that can add two � -bit numbers, we need an adder that takes the two input bits and

a potential carry generated by the previous bit position. This is what the full-adder does. A

full adder takes three bits and produces two outputs as shown in Figure 3.18�. The full-adder

implementation follows the design shown in Section 2.10.2 (see Figure 2.27 on page 77).

Using full adders, it is straightforward to build an adder that can add two � -bit numbers.

An example 16-bit adder is shown in Figure 3.19. Such adders are called ripple-carry adders as

the carry ripples through bit positions 1 through 15. Let us assume that this ripple-carry adder

is using the full adder shown in Figure 3.18�. If we assume a gate delay of 5 ns, each full adder

takes three gate delays (=15 ns) to generate C���. Thus, the 16-bit ripple-carry adder shown in

Figure 3.19 takes �� � �� = 240 ns. If we were to use this type of adder circuit in a system, it

cannot run more than 1/240 ns = 4 MHz with each addition taking about a clock cycle.

How can we speed up multibit adders? If we analyze the reasons for the “slowness” of the

ripple-carry adders, we see that carry propagation is causing the delay in producing the final

� -bit output. If we want to improve the performance, we have to remove this dependency and

Section 3.5 Adders 97

R 0

C inC out C inC out C inC out

A 15

A

15B

B

B 1

B

A 1

A

. . . B 0

B

A 0

A

R 15

C 15

Overflow

signal

C 1C 14 C 0. . .

R 1. . .

S S S

0

Figure 3.19 A 16-bit ripple-carry adder using the full adder building blocks.

determine the required carry-in for each bit position independently. Such adders are called carry

lookahead adders. The main problem with these adders is that they are complex to implement

for long words. To see why this is so and also to give an idea of how each full adder can generate

its own carry-in bit, let us look at the logical expression that should be implemented to generate

the carry-in. Carry-out from the rightmost bit position C� is obtained as

C� � A� B� �

C� is given by

C� � C� �A� � B�� � A� B� �

By substituting A� B� for C�, we get

C� � A� B� A� � A� B� B� � A� B� �

Similarly, we get C� as

C� � C� �A� � B�� � A� B�

� A� A� B� A� � A� A� B� B� � A� A� B�

� B� A� B� A� � B� A� B� B� � B� A� B� � A� B� �

Using this procedure, we can generate the necessary carry-in inputs independently. The

logical expression for C� is a sum-of-products expression involving only A� and B�, � � � � �.

Thus, independent of the length of the word, only two gate delays are involved, since each

product term can be implemented by a single gate. The complexity of implementing such a cir-

cuit makes it impractical for more than 8-bit words. Typically, carry lookahead is implemented

at the 4- or 8-bit level. We can apply our ripple-carry method of building higher word length

adders by using these 4- or 8-bit carry lookahead adders. We illustrate the advantage of this

scheme next.

98 Chapter 3 Combinational Circuits

A 3

(b) Logic symbol

B 0

A

B 1

A 1

B 2

A 2

0

C 0

B 3

S 2

S 1

S 0

C 4

S 3
B 1

1A

S 0

A 0

B 0

C 0

S 1

2B

A 2

2S

3A

B 3

3S

C 4

74283

(a) Connection diagram

16

15

14

13

12

11

107

6

5

4

3

2

1 Vcc

GND 8 9

Figure 3.20 The 74283 adder is a 4-bit carry lookahead adder.

3.5.1 An Example Adder Chip

The 74283 is a 4-bit binary adder with internal carry lookahead. Figure 3.20 shows the con-

nection diagram and logic symbol for the 74283 chip. The data on a faster version of this chip

available from Motorola indicate that the maximum delay is about 10 ns to complete the addi-

tion. If we use four 74283 chips to build a 16-bit adder, it only takes about 40 ns to complete

the 16-bit addition (six times faster than our 240 ns ripple-carry adder).

3.6 Programmable Logic Devices
We have seen several ways of implementing sum-of-products expressions. Programmable logic

devices provide yet another way to implement these expressions. There are two types of these

devices that are very similar to each other. The next two subsections describe these devices.

3.6.1 Programmable Logic Arrays (PLAs)

PLA is a field programmable device to implement sum-of-product expressions. It consists of

an AND array and an OR array as shown in Figure 3.21. A PLA takes � inputs and produces

� outputs. Each input is a logical variable. Each output of a PLA represents a logical function

output. Internally, each input is complemented, and a total of �� inputs is connected to each

AND gate in the AND array through a fuse. The example PLA, shown in Figure 3.21, is a ���

PLA with two inputs and two outputs. Each AND gate receives four inputs: I�, ��, I�, and ��.

The fuses are shown as small white rectangles. Each AND gate can be used to implement a

product term in the sum-of-products expression.

Section 3.6 Programmable Logic Devices 99

I 0

P0 P1 P2 P3

I 1

F1

F0

AND array

OR array

Figure 3.21 An example PLA with two inputs and two outputs.

The OR array is organized similarly except that the inputs to the OR gates are the outputs

of the AND array. Thus, the number of inputs to each OR gate is equal to the number of AND

gates in the AND array. The output of each OR gate represents a function output.

When the chip is shipped from the factory, all fuses are intact. We program the PLA by

selectively blowing some fuses (generally by passing a high current through them). The chip

design guarantees that an input with a blown fuse acts as 1 for the AND gates and as 0 for the

OR gates.

Figure 3.22 shows an example implementation of functions F� and F�. The rightmost AND

gate in the AND array produces the product term A B. To produce this output, the inputs

of this gate are programmed by blowing the second and fourth fuses that connect inputs �

and �, respectively. Programming a PLA to implement a sum-of-products function involves

implementing each product term by an AND gate. Then a single OR gate in the OR array is

used to obtain the final function. In Figure 3.22, we are using two product terms generated by

the middle two AND gates (P� and P�) as inputs to both OR gates as these two terms appear in

both �� and ��.

To simplify specification of the connections, the notation shown in Figure 3.23 is used. Each

AND and OR gate input is represented by a single line. A� is placed if the corresponding input

is connected to the AND or OR gates as shown in the figure.

100 Chapter 3 Combinational Circuits

A B + A B + A B

A B + A B + A B

P0 P1 P2 P3

F1

F0

=

=

A

B

Figure 3.22 Implementation of functions F� and F� using the example PLA.

3.6.2 Programmable Array Logic Devices (PALs)

PLAs are very flexible in implementing sum-of-products expressions. However, the cost of

providing a large number of fuses is high. For example, a �� � �� PLA with a 50-gate AND

array and 12-gate OR array requires ����� � ���� fuses for the AND array and ����� � ���

fuses for the OR array for a total of 1800 fuses. We can reduce this complexity by noting that

we can retain most of the flexibility by cutting down the set of fuses in the OR array. This is the

rationale for PALs. Due to their cost advantage, most manufacturers produce only PALs.

PALs are very similar to PLAs except that there is no programmable OR array. Instead,

OR connections are fixed. Figure 3.24 shows a PAL with the bottom OR gate connected to the

leftmost two product terms and the other OR gate connected to the other two product terms.

As a result of these connections, we cannot implement the two functions shown in Figure 3.23.

This is the loss of flexibility that sometimes may cause problems but in practice is not such

a big problem. Next we discuss an example PAL to give you an idea about what is available

commercially. But the advantage of PAL devices is that we can cut down all the OR array fuses

that are present in a PLA. In the last example, we reduce the number of fuses by a third (from

1800 fuses to 1200).

Section 3.6 Programmable Logic Devices 101

A

B

A B + A B + A BF0 =

A B + A B + A BF1 =

P0 P1 P2 P3

Figure 3.23 A simplified notation to show implementation details of a PLA.

F0 = A B + A B

F1 = A B + A B

A

B

Figure 3.24 Programmable array logic device with fixed OR gate connections. We have used the simpli-

fied notation to indicate the connections in the AND array.

102 Chapter 3 Combinational Circuits

. . . .
.
.

Q

QD

I 1

I 0

I 2

I 3

M

U

X

S1 S0

F0F1

Internal inputs

to product terms

O

Clock

Sum-of-product logic

Programmable output logic cell

Output

enable

Figure 3.25 A typical programmable output cell of PAL devices.

An Example PAL

As an example of a PAL, we briefly describe the Texas Instruments TIBPAL22V10-10C PAL.

This is a ��� �� PAL device that uses titanium–tungsten fuses. It is packaged as a 24-pin DIP.

Internally, it consists of a 120-gate AND array and 10-gate OR array. As it takes 22 inputs,

the number of fuses in this chip is �� � ��� � ����! All this just for the AND array. Being

a PAL device, the OR array has fixed connections. This chip provides a variable number of

connections for the OR gates. There are two each of 8-, 10-, 12-, 14-, and 16-input OR gates

to provide flexibility in implementing logical functions. This means we can implement sum-of-

product expressions from 8 to 16 product terms.

An additional feature of this device is that it allows internal feedback through a programmable

output cell. A simplified version of this cell is shown in Figure 3.25. As shown in this figure, to

increase flexibility, it provides both registered (through a D flip-flop) and unregistered output of

an OR gate and its complement as output. The select-inputs �� and �� of the output multiplexer

are programmable through two fuses F� and F�. The output of the multiplexer goes through a

tristate inverter. We discuss tristate devices in Chapter 16. For now it is sufficient to know that

this inverter acts as an open circuit when the enable input is low, and acts as a normal inverter

if the enable input high.

How can we have a 24-pin chip that takes 22 inputs and produces 10 outputs? Furthermore,

we need two pins for Vcc and ground connections. The trick is to multiplex pins in time. That

is, 10 of these pins act both as input and output (for more details, see the data sheet).

Section 3.7 Arithmetic and Logic Units 103

Full

adder
C i C o

A

B

S

Full

adder
C i C o

A

B

S

I 3

I 1

I 0

I 2

M

U

X

O

inC F 1 F 0

F 0F 1

F

S 1 S 0

AB

0 0

0 1

1

1 1

0

A and B

A or B

A + B

F

A B

Figure 3.26 A simple 1-bit ALU that can perform addition, subtraction, AND, and OR operations. The

carry output of the circuit is incomplete in this figure as a better and more efficient circuit is shown in the

next figure. Note: “+” and “�” represent arithmetic addition and subtraction operations, respectively.

3.7 Arithmetic and Logic Units
We are now ready to design our own arithmetic and logic unit. The ALU forms the computa-

tional core of a processor, performing basic arithmetic and logical operations such as integer

addition, subtraction, and logical AND and OR functions. Figure 3.26 shows an example ALU

that can perform two arithmetic functions (addition and subtraction) and two logical functions

(AND and OR). We use a multiplexer to select one of the four functions. The implementation

is straightforward except that we implement the subtractor using a full adder by negating the B

input.

To implement the subtract operation, we first convert B to �B in 2’s complement represen-

tation. We get the 2’s complement representation by complementing the bits and adding 1. We

need an inverter to complement. The required 1 is added via ���.

Since the difference between the adder and subtractor is really the negation of the one input,

we can get a better circuit by using a programmable inverter. Figure 3.27 shows the final design

with the XOR gate acting as a programmable inverter. Remember that the XOR gate acts as an

104 Chapter 3 Combinational Circuits

Full

adder
C i C o

A

B

S

F 0

C out

I 3

I 1

I 0

I 2

M

U

X

O

C in F 0F 1

F

S 1 S 0

B A

Figure 3.27 A better 1-bit ALU that uses a single full adder for both addition and subtraction operations.

F 0

C inC out

F 1BA

F

F 0

C inC out

F 1BA

F

F 0

C inC out

F 1BA

F

R 0

. . .

A 15 B 15 A B 1 A 0 B 0 F 1 F 01

Carry out

R 1R 15

. . .

. . .

. . .

. . .

0

Figure 3.28 A 16-bit ALU built with the 1-bit ALU: The XOR gate sets ��� to 1 for the subtract operation.

Logical operations ignore the carry bits.

inverter when one of the inputs is one. We can use these 1-bit ALUs to get word-length ALUs.

Figure 3.28 shows an implementation of a 16-bit ALU using the 1-bit ALU of Figure 3.27.

To illustrate how the circuit in Figure 3.28 subtracts two 16-bit numbers, let us consider an

example with A = 1001 1110 1101 1110 and B = 0110 1011 0110 1101. Since B is internally

complemented, we get � = 1001 0100 1001 0010. Now we add A and � with the carry-in to

the rightmost bit set to 1 (through the XOR gate):

Section 3.8 Summary 105

1� carry-in from the XOR gate

A = 1001 1110 1101 1110
� = 1001 0100 1001 0010

A � B = 0011 0011 0111 0001

which is the correct value. If B is larger than A, we get a negative number. In this case, the

result will be in 2’s complement form. Also, with 2’s complement representation, we ignore

any carry generated out of the most significant bit.

3.7.1 An Example ALU Chip

Figure 3.29 shows an example 4-bit ALU chip. It supports 16 different functions. The exact

functions supported depend on whether we are using high-active (positive logic) or low-active

inputs (negative logic). The functions supported include arithmetic as well as logic functions.

When the mode control input (M) is high, it performs all 16 possible logic operations. Re-

call from Section 2.2.2 on page 44, with two inputs, we can have ��
�

� �� different logical

functions. When this input is low, it performs 16 different arithmetic operations on two 4-bit

numbers. For more details, see the data sheet for this chip.

3.8 Summary
Combinational circuits provide a higher level of abstraction than the basic circuits discussed in

the last chapter. Higher-level logical functionality provided by these circuits helps in the design

of complex digital circuits.

We have discussed several commonly used combinational circuits including multiplexers

and demultiplexers, decoders and encoders, comparators, adders, and ALUs. We have shown

how multiplexers can be used to implement any logical function. This proves that multiplexers

are universal just like the NAND and NOR gates. Similarly, decoders along with OR gates are

also universal.

We have also presented details about two types of programmable logic devices: PLAs and

PALs. These devices can also be used to implement any logical function. Both these devices

use internal fuses that can be selectively blown to program the device to implement a given

logical function. PALs reduce the complexity of the device by using fewer fuses than PLAs. As

a result, most commercial implementations of programmable logic devices are PALs.

Our discussion of ALU design suggests that complex digital circuit design can be simplified

by using the higher level of abstraction provided by the combinational circuits.

106 Chapter 3 Combinational Circuits

C n+4

A=B

G

P

3

4

5

6

8

7

22 21 20 19 1812 23

16

14

17

15

1311109

F 0 F 1 F 2 F 3

B 3A 3B 2A 2B 1A 1B 0A 0
C n

S 0

S 1

S 2

S 3

M

S 1

C n

B 0

A 0

2F

P

C n+4

74181

24

23

22

21

20

19

187

6

5

4

3

2

1 Vcc

8 17

(a) Connection diagram

9

10

11

12GND

16

15

14

13

S 3

S 2

S 0

M

0F

1F

A=B

G

3F

B 3

A 3

B 2

A 2

B

A 1

1

C n+4

A=B

G

P

3

4

5

6

8

7

22 21 20 19 1812 23

16

14

17

15

1311109

F 0 F 1 F 2 F 3

B 3A 3B 2A 2B 1A 1B 0A 0
C n

S 0

S 1

S 2

S 3

M

(b) Active low operands

(c) Active high operands

Figure 3.29 An example 4-bit ALU chip.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

Section 3.9 Exercises 107

• Adders

• ALUs

• Carry lookahead adders

• Comparators

• Decoders

• Demultiplexers

• Encoders

• Full adder

• Half-adder

• Multiplexers

• Programmable array logic devices

(PALs)

• Programmable logic arrays (PLAs)

• Ripple-carry adders

3.9 Exercises
3–1 In the two multiplexer implementations shown in Figure 3.3 does it matter how we con-

nect the inputs A, B, and C to the control inputs ��, ��, and ���

3–2 Prove that the 4-data input multiplexer is universal by showing how 2-input AND and

NOT gates can be implemented using this multiplexer.

3–3 Prove that the 2-data input multiplexer is universal by showing how 2-input AND and

NOT gates can be implemented using this multiplexer.

3–4 We have discussed even-parity implementation in Figure 3.3. Show how an odd-parity

function can be implemented using an 8-to-1 multiplexer.

3–5 Implement the odd-parity function of the last exercise using a 4-to-1 multiplexer. If you

need to, you can use one additional inverter in your implementation.

3–6 Implement the majority function described in Exercise 2–9 on page 80 using a 4-to-1

multiplexer. If you need to, you can use one additional inverter in your implementation.

3–7 Implement the majority function described in Exercise 2–10 on page 80 using a 4-to-1

multiplexer. If you need to, you can use one additional inverter in your implementation.

3–8 In Exercise 2–24 on page 81, you have designed an even-parity generator for the 7-bit

ASCII character using XOR gates. In this exercise, we want to generate the same using

multiplexers. Design a circuit to generate this parity using two 74151 multiplexer chips

and a 2-input XOR gate.

3–9 What is the major problem with ripple-carry adders? Despite this problem, why do we

still use them in practice?

3–10 Discuss the advantages and disadvantages of carry lookahead adders over ripple-carry

adders.

3–11 Show an implementation of the full adder by using two half-adders and a 2-input OR

gate.

3–12 Implement the full adder, shown in Figure 3.18, using a 74153 multiplexer chip.

3–13 Implement the priority encoder, shown in Figure 3.14, using a 74153 multiplexer chip.

3–14 Give the truth table for a full subtractor with three input bits (two data bits and a borrow

bit) analogous to the full adder. Implement it using a 74153 multiplexer chip.

108 Chapter 3 Combinational Circuits

3–15 Consider the seven-segment display shown in Figure 2.20 on page 65. Each segment is

a light emitting diode that is turned on (gives out light) if a logical 1 is given as input to

the driver circuit of the LED. Typically, a logical circuit converts a 4-bit BCD number

to display digits 0 through 9. Assume that the LED d is on to display digit 9. You can

assume that inputs 10 through 15 are not given to the circuit.

(a) Give the truth table for the logical circuit that drives LED d.

(b) Implement your truth table in part (a) using a single 8-to-1 multiplexer. Your solu-

tion should not use any additional logic gates.

3–16 Design a 2-bit comparator that outputs 1 when� � �, where A and B are 2-bit unsigned

numbers.

3–17 Design a 2-bit comparator that outputs 1 when� � �, where A and B are 2-bit unsigned

numbers.

3–18 Design a 2-bit comparator that outputs 1 when � � �, where A and B are 2-bit signed

numbers.

3–19 Give the truth table for a 2-bit by 2-bit multiplier. Assume that both 2-bit inputs are

unsigned numbers. Show an implementation using 74151 multiplexer chips.

3–20 Give the truth table for a 2-bit by 2-bit divider. Assume that both 2-bit inputs are unsigned

numbers. Show an implementation using 74151 multiplexer chips.

3–21 What is the difference between PLAs and PALs?

3–22 Show an implementation of a full adder and a full subtractor using a PLA (with three

inputs and two outputs). Use the simplified notation to express your design.

3–23 Implement the priority encoder, shown in Figure 3.14, using a PLA (with four inputs and

two outputs). Use the simplified notation to express your design.

3–24 Why is �� connected to the XOR gate in the 1-bit ALU shown in Figure 3.27?

3–25 What is the purpose of the XOR gate in the 16-bit ALU shown in Figure 3.28?

3–26 Show how the two output functions given in Table 2.10 (page 74) are implemented using

a single 74153 chip.

Chapter 4

Sequential Logic Circuits

Objectives
• To bring out the differences between combinational and sequential circuits;

• To introduce the basic building blocks—latches and flip-flops—that can store a single bit;

• To describe how simple flip-flops can be used to design more complex sequential circuits

such as counters and shift registers;

• To provide a methodology for designing general sequential circuits.

Our focus in the last two chapters was on the design of combinational circuits. In this chapter,

we concentrate on sequential circuits. In sequential circuits, current output depends on the

current inputs as well as the past history of inputs. This aspect makes the design of sequential

circuits more complex. We start the chapter with a high-level overview of sequential circuits

(Section 4.1). Since the behavior of these circuits depends on the past input sequence, we have

to introduce the notion of time. We discuss clock signals, which provide this timing information,

in Section 4.2. We start our discussion of sequential circuits with some simple circuits that

can store a single bit of information. These circuits include latches (Section 4.3) and flip-

flops (Section 4.4). The following section discusses more complex sequential circuits such as

counters and shift registers. We introduce the sequential circuit design process in Section 4.6.

We conclude the chapter with a summary.

4.1 Introduction
We discussed combinational circuits in the last two chapters. The defining characteristic of a

combinational circuit is that its output depends only on the current inputs applied to the circuit.

The output of a sequential circuit, on the other hand, depends both on the current input values

as well as the past inputs. This dependence on past inputs gives the property of “memory” for

sequential circuits.

109

110 Chapter 4 Sequential Logic Circuits

Feedback

Input
Output

Sequential circuit

Combinational

circuit

circuit

Feedback

Figure 4.1 Main components of a sequential circuit.

(b) Unstable circuit(a) Stable circuit

Figure 4.2 Stable and unstable circuits.

In general, the sequence of past inputs is encoded into a set of state variables. There is

a feedback path that feeds these variables to the input of a combinational circuit as shown in

Figure 4.1. Sometimes, this feedback consists of a simple interconnection of some outputs of

the combinational circuit to its inputs. For the most part, however, the feedback circuit consists

of elements such as flip-flops that we discuss later in this chapter. These elements themselves

are sequential circuits that can remember or store the state information.

Once we introduce feedback, we also introduce potential instability into the system. As a

simple example, consider the circuit shown in Figure 4.2�. This circuit is stable in the sense that

the output of each inverter can stay at a particular level. However, this circuit is indeterministic

as we cannot say what the output level of each inverter is. Outputs of the first and second

inverters could be 0 and 1, respectively. The outputs could also be 1 and 0, instead. In contrast,

you can verify that the circuit in Figure 4.2� is unstable.

We have discussed several methods to design a combinational circuit. For example, see the

design process described in Section 2.5 on page 55. The major step in designing a combinational

circuit is the simplification of logical expressions. We have discussed several methods including

intuition-based designs as well as more formal methods such as the Karnaugh map and Quine–

McCluskey methods.

Section 4.2 Clock Signal 111

For sequential circuits, the process is not as simple due to their dependence on the past

inputs. This makes it even more imperative to develop a theoretical foundation for designing

arbitrary sequential circuits. Towards the end of the chapter we discuss a method to give you an

idea of the process involved in designing sequential circuits. However, before we present this

method, we develop our intuition by looking at some simple sequential circuits such as latches

and flip-flops.

4.2 Clock Signal
Digital circuits can operate in asynchronous or synchronous mode. Circuits that operate in

asynchronous mode are independent of each other. That is, the time at which a change occurs in

one circuit has no relation to the time a change occurs in another circuit. Asynchronous mode of

operation causes serious problems in a typical digital system in which the output of one circuit

goes as input to several others. Similarly, a single circuit may receive outputs of several circuits

as inputs. Asynchronous mode of operation implies that all required inputs to a circuit may not

be valid at the same time.

To avoid these problems, circuits are operated in synchronous mode. In this mode, all

circuits in the system change their state at some precisely defined instants. The clock signal

in a digital system provides such a global definition of time instants at which changes can take

place. Implicit in this definition is the fact that the clock signal also specifies the speed at which

a circuit can operate.

A clock is a sequence of 1s and 0s as shown in Figure 4.3. We refer to the period during

which the clock is 1 as the ON period and the period with 0 as the OFF period. Even though we

normally use symmetric clock signals with equal ON and OFF periods as in Figure 4.3�, clock

signals can take asymmetric forms as shown in Figures 4.3� and
.

The clock signal edge going from 0 to 1 is referred to as the rising edge (also called the

positive or leading edge). Analogously, we can define a falling edge as shown in Figure 4.3�.

The falling edge is also referred to as a negative or trailing edge.

A clock cycle is defined as the time between two successive rising edges as shown in Fig-

ure 4.3. You can also treat the period between successive falling edges as a clock cycle.

Clock rate or frequency is measured in number of cycles per second. This number is referred

to as Hertz (Hz). The abbreviation MHz refers to millions of cycles per second. The clock

period is defined as the time represented by one clock cycle. All three clock signals in Figure 4.3

have the same clock period.

���
� ������ 	

���
� ���
���
�
�

For example, a clock frequency of 100 MHz yields a clock period of

���
��
	
� ���

Note that one nanosecond (ns) is equal to
��� second.

112 Chapter 4 Sequential Logic Circuits

1

0

1

0

(b) Smaller ON period

(a) Symmetric

(c) Smaller OFF period

1

0

Falling edge

Time

Time

Rising edge

Time

Clock
cycle

Figure 4.3 Three types of clock signals with the same clock period.

The clock signal serves two distinct purposes in a digital circuit. It provides the global

synchronization signal for the entire system. Each clock cycle provides three distinct epochs:

start of a clock cycle, end of a clock cycle, and an intermediate point at which the clock signal

changes levels. This intermediate point is in the middle of a clock cycle for symmetric clock

signals. The other equally important purpose is to provide timing information in the form of a

clock period (e.g., time to complete an operation such as logical AND).

We have mentioned in Chapter 2 that propagation delay represents the delay involved from

input to output (see page 49). A typical logic gate such as the AND gate has a propagation delay

of about 10 ns. To see how propagation delay affects timing signals, look at the circuit shown

in Figure 4.4�. Assuming that �� = 10 ns, the input clock signal is inverted and delayed at

input X to the AND gate. When we AND the two signals at the input of the AND gate, we get

a signal whose ON period is �� (see the signal labeled “X AND Input”). However, assuming

that the AND gate also has a propagation delay of ��, this signal appears at the output of the

AND gate with �� time delay as shown in Figure 4.4.

This discussion may lead you to believe that the propagation delay determines the maximum

clock frequency that a circuit can handle. A careful look at the propagation delay definition

convinces us that this is not true. The characteristic that limits the frequency is the input hold

time. Input hold time refers to the minimum time that the input signal should be held constant

for proper operation of the device. For simple gates, this input signal hold time is approximately

equal to the propagation delay. That is, the input should be held steady during the time of its

Section 4.3 Latches 113

X

Input
Output

∆T

∆T

(b) Timing diagram

Output

X AND Input

X

Input

(a) Circuit diagram

Figure 4.4 Effect of propagation delay on logic circuit output.

propagation. That’s why propagation delay appears to control the maximum frequency at which

a gate can operate.

For the sequential circuits that require a clock signal, data sheets also specify the minimum

value for clock ON and/or OFF periods. These periods are referred to as HIGH and LOW

periods. For example, the data sheet from Motorola for the 74F164 shift register chip specifies

that the ON and OFF periods should be at least 4 ns. This specification implies that this chip

cannot operate at frequencies higher than 1/8 ns = 125 MHz. The actual maximum frequency

rating for this chip is at least 80 MHz. Other conditions such as signal setup, hold times, and

the like contribute to the lower maximum frequency than what we got as 125 MHz.

4.3 Latches
It is time to look at some simple sequential circuits that can remember a single bit value. We

discuss latches in this section. Latches are level-sensitive devices in that the device responds to

the input signal levels (high or low). In contrast, flip-flops are edge-triggered. That is, output

changes only at either the rising or falling edge. We look at flip-flops in the next section.

114 Chapter 4 Sequential Logic Circuits

Q

Q
R

S

Q

S

R

Q

Q n+1

Q n

(c) Truth table

S R

0 0

0 1

1 0

1 1

0

1

0

(a) Circuit diagram (b) Logic symbol

Figure 4.5 A NOR gate implementation of the SR latch.

4.3.1 SR Latch

The SR latch is the simplest of the sequential circuits that we consider. It requires just two NOR

gates. The feedback in this latch is a simple connection from the output of one NOR gate to

the input of the other NOR gate as shown in Figure 4.5�. The logic symbol for the SR latch is

shown in Figure 4.5�.

A simplified truth table for the SR latch is shown in Figure 4.5
. The outputs of the two

NOR gates are labeled Q and � because these two outputs should be complementary in normal

operating mode. We use the notation �� to represent the current value (i.e., current state) and

���� to represent the next value (i.e., next state).

Let us analyze the truth table. Consider first the two straightforward cases. When S = 0 and

R = 1, we can see that independent of the current state, output Q is forced to be 0 as R is 1.

Thus, the two inputs to the upper NOR gate are 0. This leads � to be 1. This is a stable state.

That is, Q and � can stay at 0 and 1, respectively. You can verify that when S = 1 and R = 0,

another stable state Q = 1 and � = 0 results.

When both S and R are zero, the next output depends on the current output. Assume that

the current output is Q = 1 and � = 0. Thus, when you change inputs from S = 1 and R = 0 to

S = R = 0, the next state ���� remains the same as the current state ��. Now assume that the

current state is Q = 0 and � = 1. It is straightforward to verify that changing inputs from S = 0

and R = 1 to S = R = 0, leaves the output unchanged. We have summarized this behavior by

placing �� as the output for S = R = 0 in the first row of Figure 4.5
.

What happens when both S and R are 1? As long as these two inputs are held high, both

outputs are forced to take 0. We struck this state from the truth table to indicate that this input

combination is undesirable. To see why this is the case, consider what happens when S and R

inputs are changed from S = R = 1 to S = R = 0. It is only in theory that we can assume that both

inputs change simultaneously. In practice, there is always some finite time difference between

the two signal changes. If the S input goes low earlier than the R signal, the sequence of input

changes is SR = 11� 01� 00. Because of the intermediate state SR = 01, the output will be

Q = 0 and � = 1.

If, on the other hand, the R signal goes low before the S signal does, the sequence of input

changes is SR = 11� 10� 00. Because the transition goes through the SR = 10 intermediate

Section 4.3 Latches 115

Q

S

R

Q

CP

Q

(a) Circuit diagram(a) Circuit diagram

Q

R

Clock

S

(b) Logic symbol

Figure 4.6 Clocked SR latch.

state, the output will be Q = 1 and � = 0. Thus, when the input changes from 11 to 00, the

output is indeterminate. This is the reason we want to avoid this state.

The inputs S and R stand for “Set” and “Reset,” respectively. When the set input is high

(and reset is low), Q is set (i.e., Q = 1). On the other hand, if set is 0 and reset is 1, Q is reset or

cleared (i.e., Q = 0).

From this discussion, it is clear that this latch is level sensitive. The outputs respond to

changes in input levels. This is true for all the latches.

We notice that this simple latch has the capability to store a bit. To write 1 into this latch,

set SR as 10; to write 0, use SR = 01. To retain a stored bit, keep both S and R inputs at 0.

In summary, we have the capacity to write 0 or 1 and retain it as long as there is power to the

circuit. This is the basic 1-bit cell that static RAMs use. Once we have the design to store a

single bit, we can replicate this circuit to store wider data as well as multiple words. We look at

some of these design issues in Chapter 16.

4.3.2 Clocked SR Latch

A basic problem with the SR latch is that the output follows the changes in the input. If we want

to make the output respond to changes in the input at specific instants in order to synchronize

with the rest of the system, we have to modify the circuit as shown in Figure 4.6�. The main

change is that a clock input is used to gate the S and R inputs. These inputs are passed onto the

original SR latch only when the clock signal is high. The inputs have no effect on the output

when the clock signal is low. When the clock signal is high, the circuit implements the truth

table of the SR latch given in Figure 4.5
.

This latch is level sensitive as well. As long as the clock signal is high, the output responds to

the SR inputs. We show in the next section that we can design flip-flops that are edge-triggered.

4.3.3 D Latch

A problem with both versions of SR latches is that we have to avoid the SR = 11 input combi-

nation. This problem is solved by the D latch shown in Figure 4.7�. We use a single inverter

116 Chapter 4 Sequential Logic Circuits

Q

CP

D Q
Q n+1

1

0

1

D

0
Q

S

R

Q

CP

(a) Circuit diagram(a) Circuit diagram

D

Clock

(b) Logic symbol (c) Truth table

Figure 4.7 D latch uses an inverter to avoid the SR = 11 input combination.

Q

D Q

CP

Q Q

(a) Circuit diagram

CP

D Q QD

Clock

(b) Logic symbol

Figure 4.8 Positive edge-triggered D flip-flop.

to provide only complementary inputs at S and R inputs of the clocked SR latch. To retain the

value, we maintain the clock input at 0. The logic symbol and the truth table for the D latch

clearly show that it can store a single bit.

4.4 Flip-Flops
We have noted that flip-flops are edge-triggered devices whereas latches are level sensitive.

Unfortunately, even some manufacturers do not follow this distinction. Several books on digital

logic also propagate this confusion. We strictly follow the distinction between latches and flip-

flops. In this section, we look at two flip-flops: the D flip-flop and the JK flip-flop. We also

show a logic symbol notation to clearly distinguish flip-flops from latches.

4.4.1 D Flip-Flops

We show how one can convert the level-sensitive D latch of Figure 4.7 into an edge-triggered D

flip-flop. The necessary clue comes from Figure 4.4. We can see from this figure that the output

of this simple circuit is a small pulse, equal to the propagation delay of the inverter (typically

10 ns), at the rising edge of the input clock signal. Thus, if we feed this signal instead of the

original clock, we convert our D latch into a rising or positive edge-triggered D flip-flop.

Section 4.4 Flip-Flops 117

Q

(a)

D Q

CP

Q

(c)

D Q

CP

Q Q

(b)

D Q

CP

(d)

D Q

CP

Figure 4.9 Logic symbol notation for latches and flip-flops: (a) high level-sensitive latch; (b) low level-

sensitive latch; (c) positive edge-triggered flip-flop; (d) negative edge-triggered flip-flop.

In the logic symbol, we use an arrowhead on the clock input to indicate a positive edge-

triggered flip-flop as shown in Figure 4.8�. The absence of this arrowhead indicates a high

level-sensitive latch (see Figure 4.9�). We add a bubble in front of the clock input to indicate a

negative edge-triggered flip-flop (Figure 4.9�) or a low level-sensitive latch (Figure 4.9�).

As is obvious from the bubble notation, we can convert a high level-sensitive latch to a

low level-sensitive one by feeding the clock signal through an inverter. Recall that the bubble

represents an inverter (see page 76). Similarly, we can invert the clock signal to change a

negative edge-triggered flip-flop to a positive edge-triggered one.

4.4.2 JK Flip-Flops

We can design an edge-triggered flip-flop by using a master–slave design as shown in Fig-

ure 4.10�. This design uses two SR latches. The basic idea is to activate the master SR latch

during the clock ON period and transfer the output of the master latch to the final output during

the clock OFF period. The circuit shown in Figure 4.10� is a negative edge-triggered flip-flop.

The logic symbol shown in Figure 4.10� follows our notation to indicate this fact.

The feedback connections from the slave SR latch output to the JK input AND gates trans-

form the SR latch into the JK latch to avoid indeterminacy associated with 11-input combina-

tions in the SR latch.

To illustrate the working of this flip-flop, we have shown the timing diagram (Figure 4.10
)

that covers all six possibilities: JK = 01, 10, JK = 11 with �� = 0 and 1, and JK = 00 with

�� = 0 and 1. For clarity, we have not included � and �� in Figure 4.10
 as these two signals

are complementary to Q and Qm signals. We can see from this timing diagram that output

changes only at falling edges of the clock signal. You can also verify that changes to J and K

inputs during other times do not affect the output.

The JK flip-flop truth table is shown in Table 4.1. Unlike the SR latch, the JK flip-flop

allows all four input combinations. When JK = 11, the output toggles. This characteristic is

used to build counters, as we show in the next section.

For proper operation, the JK inputs should be applied at least �� time units before the falling

edge of the clock. The time �� is referred to as the setup time. A typical value for �� is about

20 ns for the 7476 chip, which is described next.

118 Chapter 4 Sequential Logic Circuits

Q

(b) Logic symbol

J

K

Q

CP

Q

S

R

Q

Master

Q

S

R

Q

Slave

Q
Qm

(a) Circuit diagram

Qm
J

K

Clock

Q

(c) Timing diagram

J

K

Clock

Q

Qm

Figure 4.10 JK master–slave flip-flop.

Section 4.4 Flip-Flops 119

Table 4.1 JK flip-flop truth table

J K ����

0 0 ��

0 1 0

1 0 1

1 1 ��

Q

Q

(a) 7477 (b) 7476

14

13

12

11

10

9

87

6

5

4

3

2

1

GNDVcc

16

15

14

13

12

11

107

6

5

4

3

2

1

8 9

GND

Vcc

CP

K

J C

S

Q

CP

K

J C

S

Q

D

CP

Q

D

CP

Q

D

CP

Q

D

CP

Q

Figure 4.11 Two example chips.

4.4.3 Example Chips

Several commercial latch and flip-flop chips are available. As with the basic gates we have seen

in Figure 2.8 on page 50, several units are packaged into a single chip. Figure 4.11 shows two

example chips.

The 7477 chip uses a 14-pin DIP package and provides four D latches, grouped into two

sets. Each set of two D latches shares their clock signal. The logic symbol indicates that this

is a high level-sensitive D latch. Such latches are useful in providing temporary storage. For

example, if we want to store an 8-bit datum from a peripheral device such as a printer, we can

use two 7477 chips in parallel to construct an 8-bit latch. All we have to do is tie the four clock

input signals together to have a single clock that latches the 8-bit datum into the latch.

120 Chapter 4 Sequential Logic Circuits

Q

J

K

Q

CK

Q

J

K

Q

CK

Q

J

K

Q

CK

Q

J

K

Q

CK

Serial

outSerial

in

Clock

Parallel out

Figure 4.12 A 4-bit shift register using JK flip-flops.

As the 7477 is level sensitive, the Q output follows the changes in the corresponding D input

while the clock signal is high. In practice, when the data are ready to be stored, a short pulse is

applied to the clock input.

The 7476 chip provides two completely independent JK flip-flops. From the logic symbol

we can observe that this is a negative edge-triggered flip-flop. The 7476 JK flip-flop also pro-

vides set (S) and clear (C) inputs. The set input, when active, sets the Q output to 1. An active

clear input clears the Q output (i.e., Q = 0). Because of the bubble associated with both S and C

inputs, at the chip level, both are low-active signals. For example, when a low level is applied

to pin 2, Q output of the top flip-flop (pin 15) will be set (Q = 1). Holding both S and C inputs

at low level results in an indeterminate state (similar to the 11-input combination scenario for

the SR latch of Figure 4.5) and should be avoided. We show some sample applications for the

flip-flops in the next section.

4.5 Example Sequential Circuits

4.5.1 Shift Registers

Shift registers, as the name suggests, shift data left or right with each clock pulse. Designing

a shift register is relatively straightforward as shown in Figure 4.12. This shift register, built

with positive edge-triggered JK flip-flops, shifts data to the right. For the first JK flip-flop, we

need an inverter so that the K input is the complement of the data coming in (“Serial in” input).

The data out, taken from the Q output of the rightmost JK flip-flop, is a copy of the input serial

signal except that this signal is delayed by four clock periods. This is one of the uses of the shift

registers.

Section 4.5 Example Sequential Circuits 121

We can also use a shift register for serial-to-parallel conversion. For example, a serial signal,

given as input to the shift register in Figure 4.12, produces a parallel 4-bit output (taken from the

four Q outputs of the JK flip-flops) as shown in Figure 4.12. Even though we have not shown

it here, we can design a shift register that accepts input in parallel (i.e., parallel load) as well

as serial form. Shift registers are also useful in implementing logical bit shift operations in the

ALU of a processor.

Although we can build shift registers using flip-flops, several shift register chips are com-

mercially available. Figure 4.13 shows an 8-bit serial-in, parallel-out shift register. This shift

register is implemented using D flip-flops. Notice that the clock signal applied to pin 8 goes

through an internal inverter. Thus, even though the D flip-flops are negative edge-triggered, the

shift register itself is positive edge-triggered at the pin level. This shift register also has a master

reset (��) signal that clears all eight outputs Q0 through Q7. The AND gate at the input side

allows us to use one of the two inputs (A or B) as an enable signal and the other for the data

input.

4.5.2 Counters

A counter is another example of a sequential circuit that is often used in digital circuit design. To

see how we can build a counter, let us consider the simplest of all counters: the binary counter.

A binary counter with � bits can count from 0 to �� � �. For example, a binary counter with

� � � can count from 0 to 7. After counting eight (with a count value of 7), the count value

wraps around to zero. Such a counter is called a modulo-8 counter. Another counter that is

useful with the decimal number system is the modulo-10 counter. Because designing binary

counters is simple, we first focus on the design of a modulo-8 counter.

We know that a modulo-8 counter requires 3 bits to represent the count value. In general,

a modulo-�� counter requires B bits (i.e., ���
�
�� bits). To develop our intuition, it is helpful

to look at the values 0 through 7, written in the binary form in that sequence. If you look at

the rightmost bit, you will notice that it changes with every count. The middle bit changes

whenever the rightmost bit changes from 1 to 0. The leftmost bit changes whenever the middle

bit changes from 1 to 0. These observations can be generalized to counters that use more bits.

There is a simple rule that governs the counter behavior: a bit changes (flips) its value whenever

its immediately preceding right bit goes from 1 to 0. This observation gives the necessary clue to

design our counter. Suppose we have a negative edge-triggered JK flip-flop. We know that this

flip-flop changes its output with every negative edge on the clock input, provided we hold both

J and K inputs high. Well, that is the final design of our 3-bit counter as shown in Figure 4.14.

We operate the JK flip-flops in the “toggle” mode with JK = 11. The Q output of one flip-

flop is connected as the clock input of the next flip-flop. The input clock, which drives our

counter, is applied to FF0. When we write the counter output as 	�	�	�, the count value

represents the number of clock negative edges. For example, the dotted line in Figure 4.14�

represents 	�	�	� = 011. This value matches the number of falling edges to the left of the

dotted line in the input clock.

122 Chapter 4 Sequential Logic Circuits

Q 7Q 6Q 5Q 4Q 3Q 2Q 1Q 0

Q 2

Q 0

Q 1

Q 3

Q 7

Q 6

Q 5

Q 4

MR

(b) Logic diagram

Clock

B

A
QD

C

CP

QD

C

CP

QD

C

CP

QD

C

CP

QD

C

CP

QD

C

CP

QD

C

CP

QD

C

CP

MR

(a) Connection diagram

CP

B

A 14

13

12

11

10

9

87

6

5

4

3

2

1 Vcc

GND

Figure 4.13 Details of the 74164 shift register.

Counters are also useful in generating clocks with different frequencies by dividing the input

clock. For example, the frequency of the clock signal at �� output is half of the input clock.

Similarly, frequencies of the signals at �� and �� are one-fourth and one-eighth of the counter

input clock frequency.

The counter design shown in Figure 4.14 is called a ripple counter as the count bits ripple

from the rightmost to the leftmost bit (i.e., in our example, from FF0 to FF2). A major problem

with ripple counters is that they take a long time to propagate the count value. To give a concrete

example, suppose that we are using the JK flip-flops provided by the 7476 chip to build a 16-bit

binary counter. The data sheet from Motorola for a version of this chip (74LS76A) states that

the maximum delay from clock to output is 20 ns. That means it takes 16 � 20 = 320 ns. Thus,

Section 4.5 Example Sequential Circuits 123

Q0 Q1 Q2

Q Q Q

(a) Circuit diagram

FF2FF0 FF1

Clock

High

J

K

Q

CP

J

K

Q

CP

J

K

Q

CP

Q0

Q2

Q1

(b) Timing diagram

Clock

Figure 4.14 A binary ripple counter implementation using negative edge-triggered JK flip-flop.

a system that uses this 16-bit counter cannot operate faster than about 1/320 ns � 3 MHz. We

have had a similar discussion about ripple carry adders in Section 3.5 on page 95.

How can we speed up the operation of the ripple binary counters? We apply the same

trick that we used to derive the carry lookahead adder in Section 3.5. We can design a counter

in which all output bits change more or less at the same time. These are called synchronous

counters. We can obtain a synchronous counter by manipulating the clock input to each flip-

flop. We observe from the timing diagram in Figure 4.14� that a clock input should be applied

to a flip-flop if all the previous bits are 1. For example, a clock input should be applied to FF1

whenever the output of FF0 is 1. Similarly, a clock input for FF2 should be applied when the

outputs of FF0 and FF1 are both 1. A synchronous counter based on this observation is shown in

Figure 4.15. The maximum delay in this circuit is one flip-flop delay (about 20 ns) and an AND

gate delay (about 10 ns). Thus, our synchronous counter can operate at 1/30 ns � 33 MHz, an

11-fold increase from the ripple counter design.

124 Chapter 4 Sequential Logic Circuits

QQ Q

Q0 Q1 Q2

High

HighHigh J

K

Q

CPClock

J

K

Q

CP

J

K

Q

CP

Figure 4.15 A synchronous modulo-8 counter.

Table 4.2 Function table for the counter chips

�� �� CET CEP Action on clock rising edge

L X X X Clear

H L X X Parallel load (�� � ��)

H H H H Count (increment)

H H L X No change (hold); TC is low

H H X L No change (hold)

H = High voltage level; L = Low voltage level; X = Don’t care.

Some Counter Chips

We present two example counter chips: the 74161 and 74160. The 74161 chip is a binary

modulo-16 synchronous counter that can operate at the 120 MHz count frequency. The other is

a modulo-10 synchronous counter. Modulo-10 counters are also called decade counters. Both

chips use the same connection layout and logic symbol as shown in Figure 4.16.

The 74161 is a 4-bit binary counter that cycles through 0 to 15 (Figure 4.16
). On the other

hand, the 74160 can be used in applications that require counting in the decimal system. As

shown in Figure 4.16�, the count value goes from 9 to 0 to implement the modulo-10 function.

These chips provide a way to initialize the counter. The ��, when held low, will clear the

output (equivalent to making the count value 0). We can also initialize the counter to a preset

value other than zero by using the preset enable (��) signal. As shown in the second row of

Section 4.5 Example Sequential Circuits 125

0P Q 0

Q 1

Q 2

Q 3

1P

2P

3P

3P0P 1P 2P

Q 0 Q 1 Q 2 Q 3

0 1 2 3 4

5

6

7

810 91112

13

14

15

(c) State diagram of 74161

0 1 2 3 4

5

6

7

810 91112

13

14

15

(d) State diagram of 74160

MR

PE

MR

PE

CEP

(a) Connection diagram

CP

CEP CET

TC

16

15

14

13

12

11

107

6

5

4

3

2

1

8 9GND

Vcc

(b) Logic symbol

CET TC

CP

Figure 4.16 Two synchronous counter chips: 74161 is a modulo-16 binary counter and 74160 is a modulo-

10 decade counter.

the function table (Table 4.2), we can load the four P inputs to the corresponding outputs by

applying a low level to �� while holding�� high. The other two clock enable inputs CET and

CEP should be high in order for the counter to count. If either of these two signals is low, the

counter clock is disabled and the current count holds.

The terminal count (TC) output is high when the CET is high and the counter is in its

maximum count state (15 for the binary counter and 9 for the decade counter). The TC output

126 Chapter 4 Sequential Logic Circuits

3P0P 1P 2P

Q 0 Q 1 Q 2 Q 3

3P0P 1P 2P

Q 0 Q 1 Q 2 Q 3

3P0P 1P 2P

Q 0 Q 1 Q 2 Q 3

3P0P 1P 2P

Q 0 Q 1 Q 2 Q 3

C 4

C 9 C 10 C 11C 8 C 13 C 14 C 15C 12

C 5 C 6 C 7C 1 C 2 C 3C 0

MR

PE

CEP

CET TC

CP

MR

PE

CEP

CET TC

CP

MR

PE

CEP

CET TC

CP

MR

PE

CEP

CET TC

CP

High High

High

Clock

High

Figure 4.17 A 16-bit multistage counter using four 4-bit synchronous counters.

can also be high for the decade counter chip when the counter is preset to one of the illegal

states 11, 13, or 15. The decade counter could also be in an illegal state when power is applied.

In any case, the counter returns to a legal counting sequence within two counts as shown in

Figure 4.16�.

The TC output signal is useful in implementing synchronous multistage counters. We can

use the TC output of a previous stage to enable the clock input of the next chip as shown

in Figure 4.17. Using four 74161 chips, we can build a 16-bit binary counter. The data sheet

guarantees maximum delay of 15 ns from clock CP to TC output. Since the stages are connected

in ripple counter fashion, the total delay is � � �� = 60 ns. This gives us a guaranteed operating

frequency for our 16-bit counter as 1/60 ns � 16.7 MHz. Note that this is the guaranteed

minimum value. The typical value will be higher than this value. The data sheet discusses a

better way to implement a multistage synchronous counter using the CET and CEP inputs.

Section 4.6 Sequential Circuit Design 127

4.6 Sequential Circuit Design
We now have the necessary background and intuition to start working on the sequential circuit

design process. To illustrate the concepts we focus on sequential circuits using JK flip-flops.

Recall that a sequential circuit consists of a combinational circuit that produces output and a

feedback circuit for state variable feedback (Figure 4.1). We use JK flip-flops for the feedback

circuit design. The design process, however, can be generalized to other devices such as SR

latches.

In the next two subsections, we consider designing counters using JK flip-flops. The first

counter example is the 3-bit binary counter we have discussed in the last section, except that

we derive a synchronous design. We use this example to introduce the design process. The

following section describes how we can use this process to design a general counter.

Counters are a special case of more general sequential circuits. Section 4.6.2 describes the

design process for general sequential circuits.

4.6.1 Binary Counter Design with JK Flip-Flops

We start our discussion with a simple 3-bit synchronous counter design example. In analyzing

a sequential circuit, we go from input to output. For example, we might know JK inputs and we

want to know the next state outputs. We use the JK flip-flop truth table for this purpose.

In designing a sequential circuit, we know the output state and we have to find the input

combination. For this purpose, we build an excitation table, which can be derived from the truth

table. Table 4.3� shows the truth table for the JK flip-flop. In this table, we have explicitly

included the present output ��. The excitation table consists of �� and ���� as well as J and

K inputs as shown in Table 4.3�. In this table, “d” indicates a don’t care input. For example, to

change the output from 0 to 1, the J input has to be 1, but the K input doesn’t matter (second

row in Table 4.3�). We use this excitation table extensively in designing sequential circuits in

the remainder of this chapter.

We can now write the combination of JK inputs that take the circuit from the current state to

the next state. To facilitate this process, we create a new table with several groups of columns

(Table 4.4). The first group is the current state output, the second group is the next state output,

and the last group consists of the JK inputs for each flip-flop in the circuit. For our 3-bit counter

example, we have three bits A B C to represent the current state output and another three bits

to represent the values of the next state as shown in Table 4.4. Since each bit is stored in a JK

flip-flop, we have three pairs of JK inputs corresponding to the three flip-flops A, B, and C.

Filling the entries of this table is straightforward. In our example, the next state is given

by (current state + 1) modulo 8. Then we will fill the JK inputs. To do this, look at the corre-

sponding bits in the current state and next state and write down the JK input combination from

the excitation table that gives the required transition from �� to ����. For example, for the

first row, current state and next state for the A bit is 0. Thus, we write �� = 0 and �� = d for

flip-flop A. As another example, in the last row, the A bit changes from 1 to 0. Thus, JK inputs

will have to be d1 (third row of the excitation table). This is the entry you see in the last row for

the JK inputs of the A flip-flop.

128 Chapter 4 Sequential Logic Circuits

Table 4.3 Excitation table derivation for the JK flip-flops

(a) JK flip-flop truth table

J K �� ����

0 0 0 0

0 0 1 1

0 1 0 0

0 1 1 0

1 0 0 1

1 0 1 1

1 1 0 1

1 1 1 0

(b) Excitation table for JK flip-flops

�� ���� J K

0 0 0 d

0 1 1 d

1 0 d 1

1 1 d 0

Table 4.4 Design table for the binary counter example

Present state Next state JK flip-flop inputs

A B C A B C �� �� �� �� �� ��

0 0 0 0 0 1 0 d 0 d 1 d

0 0 1 0 1 0 0 d 1 d d 1

0 1 0 0 1 1 0 d d 0 1 d

0 1 1 1 0 0 1 d d 1 d 1

1 0 0 1 0 1 d 0 0 d 1 d

1 0 1 1 1 0 d 0 1 d d 1

1 1 0 1 1 1 d 0 d 0 1 d

1 1 1 0 0 0 d 1 d 1 d 1

Section 4.6 Sequential Circuit Design 129

0 0 1

d dd d

A

BC
00 01 11 10

0

1

0

J = B C
A

d d d

0 00 1

A

BC
00 01 11 10

0

1

d

= B C
A

K

0 1 d

1 d0 d

A

BC
00 01 11 10

0

1

d

J = C
B

d d 1

d 0d 1

A

BC
00 01 11 10

0

1

0

B
K = C

d 1 1

1 dd 1

A

BC
00 01 11 10

0

1

d

C
K = 1

1 d d

d 11 d

A

BC
00 01 11 10

0

1

1

J = 1
C

Figure 4.18 Karnaugh maps to derive simplified logic expressions for the JK inputs.

Once we have identified the JK inputs for each flip-flop, all we have to do is to see if we

can simplify the logical expression for each input. This step is similar to the logical expression

simplification we have done in combinational circuit design. We can use any of the methods

discussed in Chapter 2. Here, we use the Karnaugh map method to simplify the logical expres-

sions for the six inputs of the three JK flip-flops. Figure 4.18 shows the six Karnaugh maps for

the JK inputs. Note that the cells in these Karnaugh maps represent the present state values for

A, B, and C.

As a final step, we write the logic circuit diagram based on these logical expressions. In

addition to the three JK flip-flops, we just need a 2-input AND gate to implement the 3-bit

synchronous counter as shown in Figure 4.19. Contrast this design with the synchronous counter

design shown in Figure 4.15. The main difference is that our new design uses the common clock

130 Chapter 4 Sequential Logic Circuits

QQ Q

J

K

Q

CK

A

J

K

Q

CK

C

J

K

Q

CK

B

High

Clock

Figure 4.19 Another 3-bit synchronous counter design.

while manipulating the JK inputs. The previous design, on the other hand, manipulates the clock

inputs while holding JK inputs high.

A More General Counter Design Example

The previous counter example is simple in the sense that the next state is always an increment of

the current state and there is a natural wraparound when the count reaches the maximum value.

We know that counters can behave differently. An example we have seen before is the decade

counter. In this counter, the next state after 9 is 0. How do we design such counters? We go

even a step further and show a counter that jumps states in no specific order. Once we show

how such a general counter can be designed, decade counter design becomes a special case of

this design process.

For our example, we consider designing a 3-bit synchronous counter with the state transi-

tions shown in Figure 4.20. The counter goes through the following states in a cycle:

0� 3� 5� 7� 6� 0.

This example counter is different from our binary counter example in certain respects. First,

not all states are present. This is similar to the decade counter example, which skips states 10

through 15. The other feature is that next state seems to be an arbitrary state (i.e., not a state

that can be obtained by incrementing the current state).

Despite these differences, the design process we have used for the binary counter example

applies. The design table to derive the JK inputs is shown in Table 4.5. One significant differ-

ence from the table used for the previous counter example and this is the presence of don’t care

values in the next state columns for states 1, 2, and 4 (shown by a dash in Table 4.5). Because

the next state for these three states is a don’t care, all JK inputs also assume don’t care inputs.

This would help us in simplifying the logical expressions for the JK inputs.

Section 4.6 Sequential Circuit Design 131

000

110

101111

011

Figure 4.20 State diagram for the general counter example.

Table 4.5 Design table for the general counter example

Present state Next state JK flip-flop inputs

A B C A B C �� �� �� �� �� ��

0 0 0 0 1 1 0 d 1 d 1 d

0 0 1 � � � d d d d d d

0 1 0 � � � d d d d d d

0 1 1 1 0 1 1 d d 1 d 0

1 0 0 � � � d d d d d d

1 0 1 1 1 1 d 0 1 d d 0

1 1 0 0 0 0 d 1 d 1 0 d

1 1 1 1 1 0 d 0 d 0 d 1

Figure 4.21 shows the Karnaugh maps to derive the simplified logical expressions for the

JK inputs. The final logical circuit for this counter is shown in Figure 4.22.

132 Chapter 4 Sequential Logic Circuits

0 d 1

d dd d

A

BC
00 01 11 10

0

1

d

1 d d

1 dd d

A

BC
00 01 11 10

0

1

d

J = B
A

J = 1
B

d d d

0 1d 0

A

BC
00 01 11 10

0

1

d

d d 1

d 1d 0

A

BC
00 01 11 10

0

1

d

1 d d

d 0d d

A

BC
00 01 11 10

0

1

d d d 0

0 dd 1

A

BC
00 01 11 10

0

1

d

J = A
C

= C
A

K

C
K = A B

B
K = A + C

Figure 4.21 Derivation of JK logical expressions for the general counter example.

4.6.2 General Design Process

The counter design example discussed in the last section is a special case of the more general

sequential circuit design process. A finite state machine can express the behavior of a sequential

circuit. A finite state machine consists of a set of (finite number of) states that the system can

take. State transitions are indicated by arrows with labels X/Y, where X represents the inputs

that cause the change in the system state and Y represents the output generated while moving

from the current state to the next state. Note that X and Y could represent multiple bits.

Example 4.1: Even-parity checker. Parity is used to provide rudimentary error detection capa-

bility. For example, we can associate a parity bit for each 7-bit ASCII character transmitted.

Even parity means that the total number of 1’s in the 8-bit group (7 data bits + 1 parity bit)

Section 4.6 Sequential Circuit Design 133

Q

J

K

Q

CK

Q

J

K

Q

CK

Q

J

K

Q

CKClock

High

C B A

C

B

A+C

A

AB

Figure 4.22 Logic circuit for the general counter example.

S0 S1 0/1

1/0

1/1

0/0

Figure 4.23 State diagram for the even-parity checker.

should be an even number. The receiver of the data also computes the parity and checks if the

data have been received properly. For a properly received 8-bit datum, the computed parity bit

should be 0. Parity provides single-bit error detection capability.

We have seen in Section 2.10.2 (see Figure 2.27 on page 77) that we can use XOR gates to

generate even parity. However, this circuit is not useful for us if the data are coming serially,

one bit at a time as on a modem line. If we want to use the XOR implementation, we need

to convert the serial input data to parallel form. The other alternative is to design a sequential

circuit that receives data in serial form and generates the parity bit.

A simple analysis leads us to the conclusion that the FSM needs to remember only one of

two facts summarizing the past input sequence: whether the number of 1’s is odd or even. Thus,

our FSM needs just two states as shown in Figure 4.23. In the FSM, state S0 represents the fact

that the input sequence so far has an even number of 1’s. The odd number of 1’s is represented

by state S1.

Now we have to look at the possible transitions between these two states. When the machine

is in state S0, if a 1 is received, the machine should move to S1. Also, it should output a 1 as

134 Chapter 4 Sequential Logic Circuits

S0

S1 S2

S3 S4 S5 S6

0/01/0

1/0
0/0

1/0 0/1

0/0

0/1

1/0 0/0

1/1

1/0

1/0 0/0

Figure 4.24 State diagram for the pattern recognition problem.

the parity bit for the data it has received so far. This transition is shown in the figure with label

1/1 to represent the fact that the input is 1 and the output is also 1. On the other hand, if a 0 is

received in state S0, it remains in that state with output 0.

Similarly, when in state S1, if a 0 is received as input, it remains in state S1 with a 1 as

output because the number of 1’s in the input so far is odd. A 1 input takes the machine from

S1 to S0 with 0 output.

If we want to carry this design forward, we need a single flip-flop to represent the two

states in the FSM. We leave the complete design of this machine as an exercise to be done after

reading this section (see Exercise 4–13). We show the design process on the next example,

which is more complex.

Example 4.2: Pattern recognition. As another example, consider designing a system for rec-

ognizing a specific bit pattern in the input bit sequence, which enters the system serially. The

particular system we wish to design outputs a 1 whenever the input bit sequence has exactly

two 0s in the last three input bits.

The system maintains a memory of the last two bits and looks at the next bit coming

in to determine the output. For example, the input sequence 010100101001000 produces

101111011111000 as the output sequence. In this example, we assume that the rightmost bit is

the first bit to enter the system.

The FSM for this example is shown in Figure 4.24. State S0 represents the initial state (i.e.,

no input has been received yet). From this state, whether the input is 0 or 1, the output is 0.

However, we need to remember the first input bit. Thus, we create two states S1 and S2. From

both S1 and S2, whatever the input is, the output is 0 as we have seen only two bits so far.

Notice that we visit these three states—S0, S1, and S2—only once during the initial phase.

Section 4.6 Sequential Circuit Design 135

After receiving the first two input bits, we can be in one of the four states—S3, S4, S5, or

S6—depending on the values of these two bits. For example, we will be in S6 if the first two

bits of the input sequence are 00. If the input is 01, we will be in state S4. We can summarize

the state information captured by these four states as follows:

S3: Last two bits are 11;

S4: Last two bits are 01;

S5: Last two bits are 10;

S6: Last two bits are 00.

Having this summary information helps us in adding the transitions to the FSM among these

states. For example, consider state S3. That means the last two bits are 11. Suppose the next

bit is 0. The last three bits have two 1’s and a 0. Therefore, the output should be 0. And what

should be the new state after receiving 0? Since the last two bits are 01, the new state should be

S4 as shown in Figure 4.24.

What if, when in state S3, the next bit is 1? In this case, the last three bits are 111 and hence

the output should be 0. Next state is the state that represents 11, which is S3 itself. This is

shown as a loop with a 1/0 label in the state diagram.

You can apply this method to complete all the transitions among the four states of the FSM

that represents the pattern recognition problem.

Steps in the Design Process

Our design process consists of the following steps:

1. Derive FSM: From the problem specification, derive a finite state machine representation

of the problem. Make sure that the FSM truly and accurately represents the problem

specification.

2. State Assignment: Assign binary states of the flip-flops to the FSM states. This step is

necessary to get an efficient implementation. This problem did not arise in our counter

design examples.

3. Design Table Derivation: Derive a design table for the state assignment selected in the

last step. This step is similar to the design tables used in the design of counters. However,

in a general sequential circuit, both input and output may be present.

4. Logical Expression Derivation: Derive logical expressions for the JK inputs and the log-

ical expression for the combinational circuit to generate the output. This step is similar

to the process described in the last section.

5. Implementation: As a final step, implement the logical expressions obtained in the last

step.

Since we already derived the FSM for our example, we look at the remaining steps next.

136 Chapter 4 Sequential Logic Circuits

State Assignment

The state diagram for the pattern recognition problem (Figure 4.24) consists of seven states—S0

through S6. That means we need three flip-flops to keep the state information. In general, the

number of flip-flops required is ����
�
��, where � is the number of states in the state diagram.

The problem we have now is: How do we assign the state diagram states to the flip-flop states?

Of course, we can randomly assign a bit pattern for each state or use a sequence based on the

state number. For example, we could assign 000 for S0, 001 for S1, and so on. The problem

is that such a state assignment might not lead to an efficient design in that the logic required to

drive the JK inputs as well as the logic required to generate the output might not be minimal.

To obtain a good design, we preset three heuristics that help us select a good state assign-

ment. We consider two states adjacent if the number of bit positions in which they differ is

exactly one. For example, 000 and 010 are adjacent whereas 010 and 001 are not. If you are

familiar with Hamming distance, adjacent states are states with a Hamming distance of one.

The three heuristics are summarized below:

1. States that have the same next state for a given input should be assigned adjacent states.

2. States that are the next states of the same state should be assigned adjacent states.

3. States that have the same output for a given input should be assigned adjacent states.

Why do these heuristics make sense? What we are suggesting by these heuristics is that

there can be only one variable change between adjacent states. The reason is that these states

will end up as neighbors in the Karnaugh map we use later (as we did with the counter examples)

to simplify the logical expressions. Having them together simplifies our logical expressions for

the JK inputs and the output.

Heuristic 1 says that all input states of a state should be assigned adjacent states so that they

form an area in the Karnaugh map. Similarly, all output states of a state should also be assigned

adjacent states. In heuristics 1 and 2, we fix the input (i.e., for the same input). These two

heuristics are useful in obtaining simplified expressions for the JK inputs. The last heuristic is

useful in simplifying the logical expression for the output.

Of course, it is not always possible to satisfy all three heuristics simultaneously. We try our

best in assigning adjacent states by giving priority, for example, to the frequency of adjacency

requirement.

We illustrate the process of state assignment with the pattern recognition example. We can

write the state table, shown in Table 4.6, from the state diagram of Figure 4.24. We can apply

our three heuristics to this table. Application of heuristic 1 suggests that states S1, S3, and S5

should be assigned adjacent states as they all have S4 as the next state when the input is 0 (i.e.,

X = 0). Similarly, when X = 0, S2, S4, and S6 should be assigned adjacent states as they all have

S6 as their next state. In our example, we get the same groupings even when X = 1. To indicate

that each group is applicable twice, we use superscript 2. When there is a state assignment

conflict, we use this weight to resolve the conflict.

Heuristic 1 Groupings: (S1, S3, S5�� (S2, S4, S6���

Section 4.6 Sequential Circuit Design 137

Table 4.6 State table for the pattern recognition example

Next state Output

Present state X = 0 X = 1 X = 0 X = 1

S0 S2 S1 0 0

S1 S4 S3 0 0

S2 S6 S5 0 0

S3 S4 S3 0 0

S4 S6 S5 1 0

S5 S4 S3 1 0

S6 S6 S5 0 1

Applying Heuristic 2 leads us to the following groupings:

Heuristic 2 Groupings: (S1, S2) (S3, S4�� (S5, S6���

Notice that the (S3, S4) group occurs three times: states S1, S3, and S5 lead to the same set

of states. Similarly, states S2, S4, and S6 lead to the (S5, S6) group.

When applying Heuristic 3, if the output is a single bit, it is sufficient to group the states

with a 1 output. Thus, we have

Heuristic 3 Groupings: (S4, S5).

We can use a Karnaugh map to get an assignment that satisfies as many adjacency requirements

as possible. The Karnaugh map used for the state assignment is shown in Figure 4.25. We start

with the assignment of 000 to S0. This initial assignment is arbitrary. From the groupings, we

see that there is a strong requirement for assigning adjacent states for S3 and S4 as well as for

S5 and S6. Each occurs three times in the groupings obtained by applying Heuristic 2. S1 and

S2 should also be assigned adjacent states.

For each assignment, we can use a column in the Karnaugh map to satisfy the adjacency

requirement. With this information, the assignment can be arbitrary within each column. Fur-

thermore, placement of these columns in the Karnaugh map can be done arbitrarily. However,

if we look at the groupings obtained with Heuristic 1, we see that S1, S3, and S5 should be

adjacent. Similarly, S2, S4, and S6 should be adjacent. Well, we cannot satisfy this require-

ment completely. We can only have two of these three states adjacent. Although this additional

138 Chapter 4 Sequential Logic Circuits

S0 S3 S5

S4 S2S6

A

BC
00 01 11 10

0

1

S1

Figure 4.25 Karnaugh map for the state assignment.

Table 4.7 State assignment

State A B C

S0 = 0 0 0

S1 = 0 1 0

S2 = 1 1 0

S3 = 0 0 1

S4 = 1 0 1

S5 = 0 1 1

S6 = 1 1 1

information restricts our state assignment within a column, it still gives us freedom as to the

placement of columns relative to S0. Heuristic 3 suggests that S4 and S5 should be assigned

adjacent states. We cannot satisfy this requirement as the adjacency requirements from Heuris-

tics 1 and 2 are much stronger.

This leads us to the final assignment shown in Table 4.7. Note that there are other equally

good state assignments for this example. In Exercise 4–14, you are asked to experiment with

other assignments.

Remaining Design Steps

The remaining steps mentioned in our design process are similar to the design process we have

used in the counter design examples. The only difference is that we have to add the inputs and

outputs to the design table as shown in Table 4.8. This table has three groups of variables. The

first group consists of the current state information A B C and the current input X. Because we

have a single bit input, we create two rows with the same A B C values, but with a different

Section 4.6 Sequential Circuit Design 139

Table 4.8 Design table for the pattern recognition example

Present

state

Present

state

Next

state

Present

state
JK flip-flop inputs

A B C X A B C Y �� �� �� �� �� ��

0 0 0 0 1 1 0 0 1 d 1 d 0 d

0 0 0 1 0 1 0 0 0 d 1 d 0 d

0 0 1 0 1 0 1 0 1 d 0 d d 0

0 0 1 1 0 0 1 0 0 d 0 d d 0

0 1 0 0 1 0 1 0 1 d d 1 1 d

0 1 0 1 0 0 1 0 0 d d 1 1 d

0 1 1 0 1 0 1 1 1 d d 1 d 0

0 1 1 1 0 0 1 0 0 d d 1 d 0

1 0 1 0 1 1 1 1 d 0 1 d d 0

1 0 1 1 0 1 1 0 d 1 1 d d 0

1 1 0 0 1 1 1 0 d 0 d 0 1 d

1 1 0 1 0 1 1 0 d 1 d 0 1 d

1 1 1 0 1 1 1 0 d 0 d 0 d 0

1 1 1 1 0 1 1 1 d 1 d 0 d 0

X value. For example, see the first two rows: the first row is used to indicate the next state

transition when A B C = 000 and the input X = 0; the second row identifies the next state if the

input is 1 instead. The number of rows we add with the same current state value is ��, where �

is the number of bits in the input.

The second group consists of the next state values and the current output. This output is the

one associated with the transition from the current state to the next. The third group consists of

the JK inputs as in the counter examples. These JK input values are filled using the excitation

table for the JK flip-flop (see Table 4.3� on page 128).

We use the Karnaugh map method to derive simplified expressions for the JK inputs. The

Karnaugh maps along with the simplified logic expressions for the JK inputs of the three flip-

flops are shown in Figure 4.26. At this point, we have all the information to design the feedback

140 Chapter 4 Sequential Logic Circuits

circuit of the final sequential circuit. Figure 4.28� shows this circuit consisting of three JK

flip-flops.

To complete the design of the sequential circuit, we need to design the combinational circuit

that generates the output Y. We again use a Karnaugh map whose cells are filled with values

from the Y column in Table 4.8. The Karnaugh map along with the simplified expression for Y

is shown in Figure 4.27. The logical expression for Y

� � ���� � ���� � ���

can be rewritten as

� � ����� � ��� � ��� �

An implementation of this expression is shown in Figure 4.28�.

Figure 4.28 clearly shows the two main components—the combinational logic circuit and

the sequential feedback circuit—of the sequential circuit block diagram shown in Figure 4.1 on

page 110.

4.7 Summary
In the last two chapters, we have focused on combinational circuits. In combinational circuits,

the output depends only on the current inputs. In contrast, output of a sequential circuit depends

both on the current inputs as well as the past history. In other words, sequential circuits are

state-dependent whereas the combinational circuits are stateless. The state-dependent behavior

of a sequential circuit can be described by means of a finite state machine.

Design of a sequential circuit is relatively more complex than designing a combinational

circuit. In sequential circuits, we need a notion of time. We have introduced a clock signal that

provides this timing information. Clocks also facilitate synchronization of actions in a large,

complex digital system that has both combinational and sequential circuits.

We have discussed two basic types of circuits: latches and flip-flops. The key difference be-

tween these two devices is that latches are level sensitive whereas flip-flops are edge-triggered.

These devices can be used to store a single bit of data. Thus, they provide the basic capability

to design memories. We discuss memory design in Chapter 16.

We have presented some example sequential circuits—shift registers and counters—that are

commonly used in digital circuit design. There are several other sequential circuit building

blocks that are commercially available.

We have given a detailed description of the sequential circuit design process. We have

presented the design process in two steps. To develop your intuition, we have discussed a

simple counter design using JK flip-flops. We have then presented a more complex, general

sequential circuit design process by using two examples.

Section 4.7 Summary 141

d d

d 1

d

d

0 0

d

d

d 0

d d

11

00 01 11 10

00

01

11

10

AB

CX

1 0

d 1

1

d

d d

d

0

d 1

d d

dd

00 01 11 10

00

01

11

10

AB

CX

d d

d d

d

1

0 0

1

d

d d

1 1

00

00 01 11 10

00

01

11

10

AB

CX

0 d

d d

0

1

1 d

d

d

d d

1 d

d1

00 01 11 10

00

01

11

10

AB

CX

d 0

d 0

d

d

d 0

0

0

d 0

d 0

0d

00 01 11 10

00

01

11

10

AB

CX

J = X
A

= X
A

K

J
B

= C + A

J = B
C C

K = 0

B
K = A

0 0

d d

1

1

d d

1

1

d d

0 0

dd

00 01 11 10

00

01

11

10

AB

CX

Figure 4.26 Karnaugh maps for the JK inputs.

142 Chapter 4 Sequential Logic Circuits

0 0

d 0

0

0

0 0

1

0

d 1

0 0

10

00 01 11 10

00

01

11

10

AB

CX

Y = A B C X + A B C X + A B X

Figure 4.27 Karnaugh map for the output.

B

C

Y

A

X

Q

J

K

Q

CK

Q

J

K

Q

CK

Q

J

K

Q

CK

(a)

C B A

B

X

X

Clock

X

A

A + C

(b)

Figure 4.28 Sequential circuit for the pattern recognition example.

Section 4.8 Exercises 143

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Binary counter design

• Clock cycle

• Clock frequency

• Clock period

• Clock signal

• Clocked SR latch

• Counters

• D flip-flops

• D latch

• Falling or trailing edge

• Flip-flops

• General counter design

• JK flip-flops

• Latches

• Rising or leading edge

• Sequential circuit design steps

• Shift registers

• SR latch

4.8 Exercises
4–1 What is main difference between a combinational circuit and a sequential circuit?

4–2 What is the purpose of the feedback circuit in a sequential circuit?

4–3 If the propagation delay is zero, what is the output of the circuit shown in Figure 4.4�?

4–4 Explain the reason for not allowing the input combination S = 1 and R = 1 in Figure 4.5.

4–5 We have shown an implementation of an SR latch in Figure 4.5� using two NOR gates.

Suppose we replace the NOR gates by NAND gates. Give the truth table for this new

circuit. Can you argue that this new circuit is essentially equivalent to the one in Fig-

ure 4.5�?

4–6 How is the D latch avoiding the input combination S = 1 and R = 1?

4–7 What is the difference between a latch and a flip-flop?

4–8 Using the 7476 JK flip-flop chips, construct a 4-bit binary counter. This circuit should

have a reset input to initialize the counter to 0.

4–9 Extend the 3-bit synchronous counter shown in Figure 4.15 to implement a 5-bit syn-

chronous counter.

4–10 Extend the 3-bit synchronous counter shown in Figure 4.19 to implement a 4-bit syn-

chronous counter.

4–11 Suppose that we are interested in a 4-bit binary counter that counts through only the even

values. That is, the counter starts at 0 and goes through 0� 2� 4� 6� 8� 10� 12

� 14� 0 and so on. Design such a counter using JK flip-flops.

4–12 In this exercise, implement a 3-bit gray code counter. A gray code is a sequence of

numbers in which successive numbers differ in only one bit position. An example 3-bit

gray code sequence is: 000, 001, 011, 010, 110, 111, 101, and 100. The code is cyclic,

144 Chapter 4 Sequential Logic Circuits

which means that the sequence repeats after 100. Design a counter to implement this gray

code sequence.

4–13 We have used the even-parity example to illustrate the general sequential circuit design

process. But we did not complete the design (see Example 4.1 on page 132). In this

exercise, complete the design of this circuit.

4–14 We have discussed several heuristics to assign states on page 136. Try a different state

assignment (possibly the worst) and carry the design through. Compare the final design

of your assignment with the one shown in Figure 4.28.

4–15 We have designed a sequential circuit to recognize exactly two zeros in the last three input

bits. Can you easily modify the sequential circuit to recognize exactly two ones in the

last three inputs?

4–16 Design a sequential circuit that recognizes the bit pattern 010 in an input bit stream. This

circuit outputs a 1 whenever the pattern 010 appears. Here is an example input bit stream

and the corresponding output of the sequential circuit:

Input: 111010100101010100101;

Output: 000101001010101001000.

As in our pattern recognition example on page 134, assume that the rightmost bit is the

first bit to enter the system.

4–17 This is a variation on the last exercise. We are interested in identifying the bit pattern 010

but not on a continuous basis. Once a 010 pattern is recognized, it skips these three bits

and looks for another 010 pattern as shown in the following example:

Input: 111010100101010100101;

Output: 000001000010001001000.

Design a sequential circuit for this problem.

4–18 Consider a vending machine that accepts nickels (5 cents) and dimes (10 cents). All

products cost 25 cents. The machine requires exact change (i.e., it will not give out

change). Design a sequential circuit that accepts 25 cents and activates a selection circuit.

Activating the selection circuit enables the user to select an item from the selection panel.

Since the machine will not give change, if someone gives three dimes, it will allow the

user to select an item (and keeps the extra 5 cents). Hint: You can represent the input

using two bits: one for the nickel and the other for dime. Then the input combination

01 represents insertion of a nickel; 10 represents insertion of a dime. If the input is 00,

it means that no coins have been inserted into the machine. Obviously, input 11 cannot

occur, as the machine does not allow insertion of two coins at the same time. You can

represent the output by a bit (selection circuit activated or not).

4–19 Modify the last exercise to make the machine give the change. Note that you need to take

care of the case when someone inserts three dimes. Do not worry if someone inserts six

or more nickels. You simply activate the selection circuit after inserting five nickels.

Chapter 5

System Buses

Objectives
• To discuss bus design issues;

• To illustrate the principles of synchronous and asynchronous buses;

• To describe the concepts of bus arbitration;

• To provide an overview of several example buses including the ISA, PCI, AGP, PCI-X,

and PCMCIA.

We have seen in Chapter 1 how the components of a system are connected by using a memory

bus consisting of address, data, and control lines. In this chapter, we expand on that discus-

sion and present several ways of interconnecting various system components such as the CPU,

memory, and I/O units. We categorize buses into internal and external buses. An external bus

is mainly used as an I/O device interface. Consequently, we defer our discussion of these buses

to Chapter 19, which discusses I/O issues. After a brief introduction to buses, we present some

basic issues in bus design (Section 5.2). Operationally, buses can be classified into two basic

types: synchronous and asynchronous. Most internal buses are of the synchronous type, dis-

cussed in Section 5.3. Asynchronous buses are briefly described in Section 5.4. A typical bus

system may have several devices, called bus masters, competing for the bus use. We need a

mechanism to arbitrate requests from several bus masters. We illustrate bus arbitration princi-

ples in Section 5.5. The next section describes several example buses. These are the ISA, PCI,

AGP, PCI-X, and PCMCIA buses. We conclude the chapter with a summary.

5.1 Introduction
A bus connects various components in a computer system. We use the term system bus to

represent any bus within a processor system. These buses are also referred to as internal buses.

147

148 Chapter 5 System Buses

System bus

. . .Memory I/O 1 I/O n

DMA controllerCPU

Figure 5.1 A simplified system block diagram showing components of the system bus. An example system

bus architecture, which gives more details, is shown in Figure 5.14.

As discussed in Chapter 1, a high-level view of a bus consists of an address bus for addressing

information, a data bus to carry data, and a control bus for various control signals.

External buses, on the other hand, are used to interface with the devices outside a typical

processor system. By our classification, serial and parallel interfaces, Universal Serial Bus

(USB), and FireWire belong to the external category. These buses are typically used to connect

I/O devices. We, therefore, defer a description of these external buses to Chapter 19. In this

chapter, we focus on internal buses.

Since the bus is a shared resource, we need to define how the devices connected to the bus

will use it. For this purpose, we define a bus transaction as a sequence of actions to complete

a well-defined activity. Some examples of such activities are memory read, memory write, I/O

read, burst read, and so on. During a bus transaction, a master device will initiate the transaction,

and a slave device will respond to the master’s request. In a memory read/write transaction, the

CPU is the master and memory is the slave. Some devices such as the memory can only act

as slaves. Other devices can act both as a master and slave (but not at the same time). A

bus transaction may perform one or more bus operations. For example, a Pentium burst read

transfers four words. Thus this bus transaction consists of four memory read operations. Each

operation may take several bus cycles. A bus cycle is the clock cycle of the bus clock.

Figure 5.1 shows dedicated buses connecting the major components of a computer system.

The system bus consists of address, data, and control buses. One problem with the dedicated bus

design is that it requires a large number of wires. We can reduce this count by using multiplexed

buses. For example, a single bus may be used for both address and data. In addition, the address

and data bus widths play an important role in determining the address space and data transfer

rate, respectively. We discuss these issues in the next section.

Section 5.1 Introduction 149

The control bus carries transaction-specific control information. Some typical control sig-

nals are given below:

• Memory Read and Memory Write: These two control signals are used to indicate that the

transaction is a memory read or write operation.

• I/O Read and I/O Write: These signals indicate that the transaction involves an I/O oper-

ation. The I/O read is used to read data from an I/O device. The I/O write, on the other

hand, is used for writing to an I/O device.

• Ready: A target device that requires more time to perform an operation typically uses this

signal to relate this fact to the requestor. For example, in a memory read operation, if the

memory cannot supply data within the CPU-specified time, it can let the CPU know that

it needs more time to complete the read operation. The CPU responds by inserting wait

states to extend the read cycle. We discuss this issue in detail later.

• Bus Request and Bus Grant: Since several devices share the bus, a device should first

request the bus before using it. The bus request signal is used to request the bus. This

signal is connected to a bus arbiter that arbitrates among the competing requests to use

the bus. The bus arbiter conveys its decision to allocate the bus to a device by sending the

bus grant signal to that device. Bus arbitration is discussed in Section 5.5.

• Interrupt and Interrupt Acknowledgment: These two signals are used to facilitate interrupt

processing. A device requesting an interrupt service will raise the interrupt signal. For

example, if you depress a key, the keyboard generates an interrupt request asking the

processor to read the key. When the processor is ready to service the interrupt, it sends

the interrupt acknowledgment signal to the interrupting device. A computer system has

several devices that require interrupt processing. Therefore, as with the bus arbitration,

we need a mechanism to arbitrate among the different interrupt requests. This arbitration

is usually done by assigning priorities to interrupts. We discuss interrupt processing in

detail in Chapter 20.

• DMA Request and DMA Acknowledgment: These two signals are used to transfer data

between memory and an I/O device in direct memory access mode. The normal mode

of data transfer between memory and an I/O device is via the processor. As an example,

consider transferring a block of data from a buffer in memory to an I/O device. To per-

form this transfer, the processor reads a data word from the memory and then writes to

the I/O device. It repeats this process until all data are written to the I/O device. This is

called programmed I/O. The DMA mode relieves the processor of this chore. The pro-

cessor issues a command to the DMA controller (see Figure 5.1) by giving appropriate

parameters such as the data buffer pointer, buffer size, and the I/O device id. The DMA

controller performs the data transfer without any help from the processor. Thus, the pro-

cessor is free to work on other tasks. Note that when the DMA transfer is taking place,

the DMA controller acts as the bus master. We discuss DMA in Chapter 19.

• Clock: This signal is used to synchronize operations of the bus and also provides timing

information for the operations. Section 5.3 gives more details on this topic.

• Reset: This signal initializes the system.

150 Chapter 5 System Buses

Buses can be designed as either synchronous or asynchronous buses. In synchronous buses,

a bus clock provides synchronization of all bus operations. Asynchronous buses do not use a

common bus clock signal; instead, these buses use handshaking to complete an operation by

using additional synchronization signals. Synchronous buses are described in Section 5.3, and

Section 5.4 discusses the asynchronous buses.

From this discussion, it is clear that the bus is shared on a transaction-by-transaction basis.

The bus is acquired before the beginning of a transaction and released after its completion. We

have skipped an important question: How do we allocate a bus for each bus transaction? A bus

arbiter does this allocation. We discuss bus arbitration in Section 5.5.

Several example buses are described in Section 5.6. This section describes some important

buses including the ISA, PCI, and PCMCIA buses. Looking at these buses gives you an idea

of the basic concepts involved in designing buses for computer systems. We discuss external

buses such as USB and FireWire in Chapter 19.

5.2 Bus Design Issues
Bus designers need to consider several issues to get the desired cost-performance tradeoff. We

have already touched upon some of the issues in the last section. For completeness, here is a

list of the bus design issues:

• Bus Width: Bus width refers to the data and address bus widths. System performance

improves with a wider data bus as we can move more bytes in parallel. We increase the

addressing capacity of the system by adding more address lines.

• Bus Type: As discussed in the last section, there are two basic types of buses: dedicated

and multiplexed.

• Bus Operations: Bus systems support several types of operations to transfer data. These

include the read, write, block transfer, read-modify-write, and interrupt.

• Bus Arbitration: Bus arbitration can be done in one of two ways: centralized or dis-

tributed.

• Bus Timing: As mentioned in the last section, buses can be designed as either synchronous

or asynchronous.

We discuss bus arbitration and timing issues in detail in later sections. In the remainder of this

section, we look at the first three design issues.

5.2.1 Bus Width

This design parameter mainly deals with the widths of the data and address buses. The control

bus width is dictated by various other factors. Data bus width determines how the data are trans-

ferred between two communicating entities (e.g., CPU and memory). Although the instruction

set architecture may have a specific size, the data bus need not correspond to this value. For

example, the Pentium is a 32-bit processor. This simply means that the instructions can work

on operands that are up to 32 bits wide. A natural correspondence implies that we should have

Section 5.2 Bus Design Issues 151

a 32-bit data bus. However, data bus width is a critical parameter in determining system perfor-

mance: the wider the data bus, the higher the bandwidth. Bandwidth refers to the rate of data

transfer. For example, we could measure bandwidth in number of bits transferred per second.

To improve performance, processors tend to use a wider data bus. For example, even though

the Pentium is a 32-bit processor, its data bus is 64 bits wide. Similarly, Intel’s 64-bit Itanium

processor uses a 128-bit wide data bus.

It is, however, not cheap to build systems with wider buses. They need more space on

the motherboard or backplane, wider connectors, and more pins on the chip. For economical

reasons, cheaper processor versions use smaller bus widths. For example, the IBM PC started

with the 8088 CPU, which is a 16-bit processor just like the 8086. Although the 8086 CPU uses

a 16-bit data bus, its cheaper cousin the 8088 uses only 8-bit data lines. Obviously, the 8088

needs two cycles to move a 16-bit value, 8-bits in each cycle.

While we are discussing system performance, we should mention that improvement could

also be obtained by increasing the clock frequency. A 1 GHz Pentium moves data at a much

faster rate than a 566 MHz Pentium. However, increasing the system clock leads to engineering

problems such as bus skew. Bus skew is caused by the fact that signals on different lines travel

at slightly different speeds. This difference in speed becomes a critical problem as we increase

the clock frequency. A 1 GHZ Pentium uses a clock period of 1 ns whereas a 100 MHz Pentium

can tolerate minor signal propagation delays as its clock period is 10 ns. Also, at these higher

clock frequencies, the length of wire matters as the wire delay becomes comparable to the clock

period.

The address bus determines the system memory addressing capacity. A system with �

address lines can directly address �� memory words. In byte-addressable memories, that means

�
� bytes. With each new generation of processors, we see a substantial increase in memory

addressing capacity. For example, the 8086 that was introduced in 1979 had 20 address lines.

Thus, it could address up to 1 MB of memory. Later, in 1982, Intel added four more address

lines when it introduced the 80286, which is also a 16-bit processor. This has increased the

addressing capacity to 16 MB. Finally, in 1985, Intel introduced their 32-bit processor with a

32-bit data bus and 32-bit address bus.

Why did they not use a 32-bit address bus in the first place? The answer lies in the market

economy and target application requirements. As mentioned, adding more address lines makes

the system more expensive. Considering that in those days, even a 16 KB RAM was priced at

about $500, it was important to keep the costs down. At these prices, having a large amount of

memory is out of question.

You would think that the 4 GB address space of the Pentium is very large. After all, you and

I have systems with less than 512 MB of memory. But there are applications (e.g., servers) that

need more address space. For these and other reasons, Intel’s 64-bit Itanium processor uses a

64-bit address bus. That’s a lot of address space and guarantees that we will not run into address

space problems for quite some time.

152 Chapter 5 System Buses

5.2.2 Bus Type

We have noted that we would like to have wider buses but they increase system cost. For

example, a 64-bit processor with 64 data and address lines requires 128 pins just for these two

buses. If you want to move 128 bits of data like the Itanium, we need 192 pins! Such designs

are called dedicated bus designs because we have separate buses dedicated to carry data and

address information. The obvious advantage of these designs is the performance we can get out

of them. To reduce the cost of such systems we might use multiplexed bus designs. In these

systems, buses are not dedicated to a function. Instead, both data and address information is

time multiplexed on a shared bus. We refer to such a shared bus as an address–data (AD) bus.

To illustrate how multiplexed buses can be used, let us look at memory read and write

operations. In a memory read, the CPU places the address on the AD bus. The memory unit

reads the address and starts accessing the addressed memory location. In the meantime, the

CPU removes the address so that the same lines can be used by memory to place the data. The

memory write cycle operates similarly except that the CPU would have to remove the address

and then place the data to be written on the AD lines. Obviously, multiplexed bus designs

reduce the cost but they also reduce the system performance. In a later section, we discuss the

PCI bus that uses multiplexed bus design.

5.2.3 Bus Operations

We have discussed the basic read and write operations. The slave in these operations can be

either the memory or an I/O device. These are simple operations that transfer a single word.

Processors support a variety of other operations. We mention a few of them here.

Processors provide block transfer operations that read or write several contiguous locations

of a memory block. Such block transfers are more efficient than transferring each individual

word. The cache line fill is an example that requires reading several bytes of contiguous memory

locations. We discuss caches in Chapter 17 but it is sufficient to know that data movement

between cache and main memory is in units of cache line size. If the cache line size is 32 bytes,

each cache line fill requires 32 bytes of data from memory. The Pentium uses 32-byte cache

lines. It provides a block transfer operation that transfers four 64-bit data from memory. Thus,

by using this block transfer, we can fill a 32-byte cache line. More details on the block transfer

are given in Section 5.3 on page 155.

Read-modify-write operations are useful in multiprocessor systems. In these systems, a

shared data structure or a section of code, called the critical section, must be accessed on a mu-

tually exclusive basis (i.e., one at a time). Read-modify-write operations support such accesses.

Typically, a binary lock variable is used to keep track of the usage of the critical section. Its

value is 0 if no one is in the critical section; 1 otherwise. A processor wanting to enter the

critical section must first check the lock. If the lock value is 0, it sets the lock to 1 and enters

the critical section. The problem is that reading the value of the lock and setting it to 1 must

be done atomically. That is, no other operation should be allowed in between these read and

write steps. Let us see what happens if we allow other operations. Suppose the lock value is 0.

Processor 1 reads this value but before it can write 1 to the lock variable, processor 2 reads zero

Section 5.3 Synchronous Bus 153

as well. Thus, both processors enter the critical section. We can avoid this scenario by using

the read-modify-write operation. In this case, a processor reads 0 and then updates the lock to

1 without allowing any other processor to intervene. Processors provide instructions such as

test-and-set to implement this type of atomic operation. From the hardware point of view, it is

implemented by a special bus lock signal (part of the control bus) that will not allow any other

processor to acquire the bus.

Several other bus operations exist. We conclude this section by briefly discussing the inter-

rupt operation. Interrupts are used to draw the attention of the processor for a service required

by an I/O device. Since the type of service required depends on the interrupting device, the

processor enters an interrupt cycle to get the identification of the interrupting device. From this

information, the processor executes an appropriate service needed by the device. For example,

when a key is depressed, the processor is interrupted, and the interrupt cycle is used to find

that the keyboard wants service (i.e., reading a key stroke). We discuss interrupts in detail in

Chapter 20.

5.3 Synchronous Bus
In synchronous buses, a bus clock signal provides the timing information for all actions on the

bus. Change in other signals is relative to the falling or rising edge of the clock. In this section

we discuss some sample memory read and write bus cycles. Our discussion in this section is

loosely based on the Pentium memory read and write cycles.

5.3.1 Basic Operation

Simple bus operations are single read and write cycles. The memory read operation is shown

in Figure 5.2. The basic read operation takes three clocks. The read cycle starts with the rising

edge of clock T1. During the T1 clock cycle, the CPU places a valid address of the memory

location to be read. Since the address is not a single line, we show the valid values by two lines,

as some address lines can be 0 and others 1. When we don’t care about the values, we show

them shaded. For example, the address values at the beginning of T1 are shown shaded, as we

don’t need a value. After presenting a valid address on the address bus, the CPU asserts two

control signals to identify the operation type:

• The IO/memory signal is made low to indicate a memory operation;

• The read/write line is also turned low to indicate a read operation.

These two lines together indicate that the current bus transaction is a memory read operation.

The CPU samples the ready line at the end of T2. This line is used by slower memories to

indicate that they need more time. We discuss wait states later. For now, assume that the

memory is able to access the data and does not need additional time. It asserts ready by making

it low. The CPU then reads the data presented by the memory on the data bus, removes the

address, and deactivates the IO/memory and read/write control signals.

The memory write cycle is similar to the read cycle (see Figure 5.3). Since this is a write

operation, the read/write signal is held high. The difference is that the CPU places data during

154 Chapter 5 System Buses

read/write

IO/memory

T2 T3T1

Clock

Data

ready

Valid address

To CPU

Address

Figure 5.2 Memory read operation with no wait states.

the T2 clock cycle. If the memory is able to write the data without additional wait cycles, it

asserts ready during the second clock cycle and writes the data. As in the read cycle, the CPU

removes the address and the IO/memory and read/write control signals during the third clock

cycle.

Reading from and writing to an I/O device are very similar to the corresponding memory

read and write cycles. If the I/O device is memory mapped, it is similar to reading a memory

location. In isolated I/O, we need a separate I/O line. This is the purpose of the IO/memory

line, which specifies whether the operation is an I/O operation or a memory operation. For now,

don’t worry about the I/O mapping details. We discuss this topic in Chapter 19.

5.3.2 Wait States

The default timing allowed by the CPU is sometimes insufficient for a slow device to respond.

For example, in a memory read cycle, if we have a slow memory it may not be able to supply

data during the second clock cycle. In this case, the CPU should not presume that whatever is

present on the data bus is the actual data supplied by memory. That is why the CPU always

reads the value of the ready line to see if the memory has actually placed the data on the data

bus. If this line is high, as in Figure 5.4, the CPU waits one more cycle and samples the ready

line again. The CPU inserts wait states as long as the ready line is high. Once this line is low,

it reads the data and terminates the read cycle. Figure 5.4 shows a read operation with one wait

state.

Section 5.3 Synchronous Bus 155

read/write

IO/memory

T2 T3T1

Clock

Address

Data

ready

Valid address

From CPU

Figure 5.3 Memory write operation with no wait states.

The write cycle with a single wait state is shown in Figure 5.5. The CPU keeps the data on

the data bus as long as the ready signal is not asserted. Other details remain the same as before.

5.3.3 Block Transfer

In block transfer mode, more than a single data item is transferred. As mentioned before, such

transfers are useful for cache line fills. Figure 5.6, based on the Pentium burst mode transfer,

shows a block data transfer of four reads. The processor places the address as in a single read

cycle and asserts the IO/memory and read/write control signals. In addition, another control

signal (block) is used to initiate the block transfer. In the Pentium, this control line is labeled

cache to indicate block transfer of data for a cache line fill.

We assume that the memory does not need wait states. The processor places only the initial

address of the data block. The address of the subsequent transfers must be calculated by external

hardware. Block transfer of data makes sense for aligned data. Since the Pentium performs

block transfers of 32 bytes, the initial address must be a multiple of 32. This means that the least

significant five address bits are zeros. The external hardware supplies a counter that increments

the address to cycle through the four addresses corresponding to the four data transfers. The

Pentium simplifies block data transfer by fixing all data transfers as either single cycle or four

cycles.

In general, block transfers may be of a varying number of cycles. In this case, the CPU

places the value of the number of cycles on the data bus.

156 Chapter 5 System Buses

read/write

IO/memory

T2 TwT1

Clock

Address

Data

ready

T3

Valid address

To CPU

Figure 5.4 Memory read operation with a single wait state.

read/write

IO/memory

T2 TwT1

Clock

Address

Data

ready

T3

Valid address

From CPU

Figure 5.5 Memory write operation with a single wait state.

Section 5.4 Asynchronous Bus 157

To CPU To CPU To CPU To CPU

read/write

IO/memory

T2 T2

Clock

Address

Data

ready

T2 T2 T3T1

Valid address

Figure 5.6 Block data transfer of data from memory.

5.4 Asynchronous Bus
In asynchronous buses, there is no clock signal. Instead, they use four-way handshaking to per-

form a bus transaction. This handshaking is facilitated by two synchronization signals: master

synchronization (MSYN) and slave synchronization (SSYN). We can summarize the operation

as follows:

1. Typically, the master places all the required data to initiate a bus transaction and asserts

the master synchronization signal MSYN.

2. Asserting MSYN indicates that the slave can receive the data and initiate the necessary

actions on its part. When the slave is ready with its reply, it asserts SSYN.

3. The master receives the reply and then removes the MSYN signal to indicate receipt. For

example, in a memory read transaction, the CPU reads the data supplied by the memory.

4. Finally, in response to the master deasserting MSYN, the slave removes its own synchro-

nization signal SSYN to terminate the bus transaction.

A sample asynchronous read transaction is shown in Figure 5.7. The CPU places the address

and two control signals to indicate that this is a memory read cycle. This is done by asserting

(i.e., making them low) IO/memory and read/write lines. The CPU asserts ���� after it has

placed all the required information on the system bus (point A in the figure). This triggers the

memory to initiate a memory read cycle. When the data are placed on the data bus, it asserts

���� to tell the CPU that the data are available (point B). In response to this, the CPU reads

the data from the data bus and removes the signals on all four lines. When the MSYN line is

deasserted (point C), which indicates that the CPU has read the data, memory removes the data

on the data lines. It also deasserts the SSYN (point D) to complete the read cycle.

158 Chapter 5 System Buses

SSYN

Data To CPU

read/write

IO/memory

MSYN

Valid address

A

B

C

D

Address

Figure 5.7 An asynchronous read bus transaction.

Asynchronous buses allow more flexibility in timing. In synchronous buses, all timing

must be a multiple of the bus clock. For example, if memory requires slightly more time than

the default amount, we have to add a complete bus cycle (see the wait cycle in Figure 5.4). Of

course, we can increase the bus frequency to counter this problem. But that introduces problems

such as bus skew, increased power consumption, the need for faster circuits, and so on.

Thus, choosing an appropriate bus clock frequency is very important for synchronous buses.

In determining the clock frequency, we have to consider all devices that will be attached to

the bus. When these devices are heterogeneous in the sense that their operating speeds are

different, we have to operate the bus at the speed of the slowest device in the system. As the

technology improves, bus clock frequency needs to be increased. For example, the PCI bus has

two versions: one uses the 33 MHz clock and the other 66 MHz.

The main advantage of asynchronous buses is that they eliminate this dependence on the

bus clock. However, synchronous buses are easier to implement, as they do not use handshak-

ing. Almost all system buses are synchronous, partly for historical reasons. In the early days,

the difference between the speeds of various devices was not so great as it is now. Since syn-

chronous buses are simpler to implement, designers chose them. Current systems use different

types of buses to interface with different components. For example, systems may have a local

cache bus for cache memory, another local bus for memory, and another bus such as the PCI for

other system components.

Section 5.5 Bus Arbitration 159

5.5 Bus Arbitration
Bus systems with more than one potential bus master need a bus arbitration mechanism to

allocate the bus to a bus master. Although the CPU is the bus master most of the time, the

DMA controller acts as the bus master during certain I/O transfers. In principle, bus arbitration

can be done either statically or dynamically. In static bus arbitration, bus allocation among the

masters is done in a predetermined way. For example, we might use a round-robin allocation

that rotates the bus among the masters. The main advantage of a static mechanism is that it is

easy to implement. However, since bus allocation follows a predetermined pattern rather than

the actual need, a master may be given the bus even if it does not need it. This kind of allocation

leads to inefficient use of the bus. Consequently, most implementations use a dynamic bus

arbitration, which uses a demand-driven allocation scheme. The rest of our discussion focuses

on dynamic bus arbitration.

5.5.1 Dynamic Bus Arbitration

In dynamic bus arbitration, bus allocation is done in response to a request from a bus master.

To implement dynamic arbitration, each master should have a bus request and grant lines. A

bus master uses the bus request line to let others know that it needs the bus to perform a bus

transaction. Before it can initiate the bus transaction, it should receive permission to use the bus

via the bus grant line. Dynamic arbitration consists of bus allocation and release policies.

Bus arbitration can be implemented in one of two basic ways: centralized or distributed.

In the centralized scheme, a central arbiter receives bus requests from all masters. The arbiter,

using the bus allocation policy in effect, determines which bus request should be granted. This

decision is conveyed through the bus grant lines. Once the transaction is over, the master holding

the bus would release the bus; the release policy determines the actual release mechanism.

In the distributed implementation, arbitration hardware is distributed among the masters. A

distributed algorithm is used to determine the master that should get the bus. Figure 5.8 shows

the design space for bus arbiter implementation. The following subsections discuss these issues

in detail.

Bus Allocation Policies

When several bus masters compete for the bus, the arbiter uses a bus allocation policy to deter-

mine the winner. The arbiter can be implemented either in centralized or distributed manner;

however, the policy itself is independent of the implementation. We can identify four types of

policies:

• Fixed Priority Policies: In this policy, each master is assigned a unique fixed priority.

When multiple masters request the bus, the highest priority master will get to use the

bus. Since the priority is always fixed, careful assignment of priorities is important;

otherwise, a higher-priority master can block bus requests from a lower-priority master

forever, leading to starvation. However, starvation should not be a problem if the bus

requests are intermittent. I/O device bus requests, mainly the DMA service, typically fall

160 Chapter 5 System Buses

Organization

Distributed

Centralized

Demand-based

Transaction-based

Allocation policy

Fixed-priority

Rotating-priority

Fair

Hybrid

Release policy

Preemptive

Nonpreemptive

Handling requests

Shared

Independent

Hybrid Hybrid

Handling grants

Daisy-chained

Independent

Bus arbitration

Figure 5.8 Design space for bus arbitration.

into this category. In such cases, fixed priority can be assigned based on the importance

(urgency) of the required service.

• Rotating Priority Policies: In this policy, priority of a master is not fixed. For example,

priority of a master can be a function of the time waiting to get the bus. Thus, the longer

a master waits, the higher the priority. An advantage of this policy is that it avoids star-

vation. Another variation of this policy would reduce the priority of the master that just

received service. We can turn this into a round-robin priority allocation by assigning each

master that just received service the lowest priority. Thus, each master, after releasing the

bus, waits for its turn by joining the queue.

• Fair Policies: Fairness is an important criterion in an allocation policy. In its basic form,

fairness does not allow starvation. The rotating priority policies, for example, are fair

policies. However, fair policies need not use priorities. Fairness can be defined in sev-

eral ways. For example, fairness can be defined to handle bus requests within a priority

class, or requests from several priority classes. Some examples of fairness are: (i) all bus

requests in a predefined window must be satisfied before granting requests from the next

window; (ii) a bus request should not be pending for more than� milliseconds. For ex-

ample, in the PCI bus, we can specify fairness by indicating the maximum delay to grant

a request.

• Hybrid Policies: We can incorporate both priority and fairness into a single policy. These

policies are also referred to as combined policies. As we show later, PCI bus arbitration

uses a hybrid policy.

Bus Release Policies

A bus release policy governs the conditions under which the current bus master releases the bus

for use by other bus masters. We can classify the release policies into either nonpreemptive or

preemptive policies:

Section 5.5 Bus Arbitration 161

• Nonpreemptive Policies: In these policies, the current bus master voluntarily releases the

bus. We describe two variations in implementing this policy:

– Transaction-Based Release: A bus master holding the bus releases the bus when its

current transaction is finished. This is the simplest policy to implement. If it wants

to use the bus for another transaction, it requests the bus again. By releasing the bus

after every transaction, fairness can be ensured.

– Demand-Based Release: A drawback with the previous release policy is that if

there is only one master that is requesting the bus most of the time, we have to

unnecessarily incur arbitration overhead for each bus transaction. This is typically

the case in single-processor systems. In these systems, the CPU uses the bus most

of the time; DMA requests are relatively infrequent. In demand-based release, the

current master releases the bus only if there is a request from another bus master;

otherwise, it continues to use the bus. Typically, this check is done at the completion

of each transaction. This policy leads to more efficient use of the bus.

• Preemptive Policies: A potential disadvantage of the nonpreemptive policies is that a bus

master may hold the bus for a long time, depending on the transaction type. For example,

long block transfers can hold the bus for extended periods of time. This may cause

problems for some types of services where the bus is needed immediately. Preemptive

policies force the current master to release the bus without completing its current bus

transaction.

5.5.2 Implementation of Dynamic Arbitration

Dynamic bus arbitration can be implemented either by a centralized arbiter or a distributed

arbiter. We first discuss centralized arbitration and then present details on distributed arbitration.

Centralized Bus Arbitration

Centralized arbitration can be implemented in several ways. We discuss three basic mechanisms

here: daisy-chaining, independent requests, and a hybrid scheme:

Daisy-Chaining: This scheme uses a single, shared bus request signal for all the masters as

shown in Figure 5.9. The bus request line is “wired-ANDed” so that the request line goes low

if one or more masters request the bus. See page 671 for a discussion of how multiple outputs

can be tied together to get the wired-AND functionality.

When the central arbiter receives a bus request, it sends out a bus grant signal to the first

master in the chain. The bus grant signals are chained through the masters as shown in Fig-

ure 5.9. Each master can pass the incoming bus grant signal to its neighbor in the chain if it

does not want to use the bus. On the other hand, if a master wants to use the bus, it grabs the

bus grant signal and will not pass it on to its neighbor. This master can then use the bus for its

bus transaction. Bus release is done by the release policy in effect.

162 Chapter 5 System Buses

Grant
in

Grant
out

Grant
in

Grant
out

Grant
in

Grant
out

Grant
in

Grant
outCentral

arbiter

Bus request

Bus master 1 Bus master 2 Bus master 3

Bus grant

Bus master 0

Requested? Requested? Requested?Requested?

Figure 5.9 A daisy-chained centralized bus arbiter. The incoming grant signal is passed on to the neighbor

in the chain only if it does not need the bus.

Daisy-chaining is simple to implement and requires only three control lines independent of

the number of hosts. Adding a new bus master is straightforward: simply add to the chain by

connecting the three control lines. This scheme has three potential problems:

• It implements a fixed-priority policy. From our discussion, it should be clear that the

master closer to the arbiter (in the chain) has a higher priority. In our example, master 0

has the highest priority and master 3 has the lowest. As discussed before, fixed-priority

can lead to starvation problems.

• The bus arbitration time varies and is proportional to the number of masters. The reason

is that the grant signal has to propagate from master to master. If each master takes �

time units to propagate the bus grant signal from its input to output, a master that is in

the �th position in the chain would experience a delay of �� � �� � � time units before

receiving the grant signal.

• This scheme is not fault tolerant. If a master fails, it may fail to pass the bus grant signal

to the master down the chain.

The next implementation mechanism avoids these problems at the expense of increased com-

plexity:

Independent Requests: In this implementation, the arbiter is connected to each master by

separate bus request and grant lines as shown in Figure 5.10. When a master wants the bus, it

sends its request through its own bus request line. Once the arbiter receives the bus requests

from the masters, it uses the allocation policy to determine which master should get the bus

next. Since the bus requests are received on separate lines, the arbiter can implement a variety

of allocation policies: a rotating-priority policy, a fair policy, or even a hybrid policy. As we

show later, PCI bus arbitration uses this implementation technique.

Section 5.5 Bus Arbitration 163

Bus master 1

R
E

Q

G
N

T
Bus master 2

R
E

Q

G
N

T

Bus master 3

R
E

Q

G
N

T

Central

arbiter

Bus master 0

R
E

Q

G
N

T

Figure 5.10 A centralized arbiter with independent bus request and grant lines.

This scheme avoids the pitfalls associated with the daisy-chain implementation. It provides

short, constant arbitration times and allows flexible priority assignment so that fairness can be

ensured. In addition, it provides good fault tolerance. If a master fails, the arbiter can ignore it

and continue to serve the other masters. Of course, there is no free lunch. This implementation

is complex. The number of control signals is proportional to the number of masters.

Hybrid Scheme: The preceding two implementation techniques represent two extremes. Daisy-

chaining is cheaper but has three potential disadvantages. Although the independent request/

grant lines scheme rectifies these problems, it is expensive to implement. We can implement a

hybrid scheme that is a combination of these two implementation techniques.

In this scheme, bus masters are divided into� classes. Separate bus request and grant lines

are used for each class as in the independent scheme. However, within each class, bus masters

are connected using daisy-chaining. The VME bus uses this scheme for bus arbitration. The

VME bus has four pairs of bus request/grant lines as shown in Figure 5.11.

The VME bus uses three allocation policies:

• Fixed-Priority: In this allocation policy, bus request 0 (BR0) is assigned the lowest pri-

ority and BR3 has the highest priority.

• Rotating-Priority: This is similar to the rotating priority discussed before. It uses this

priority scheme to implement round-robin allocation by assigning the lowest priority to

the master that just used the bus. Systems requiring fairness can use this allocation policy.

• Daisy-Chaining: We can also implement a pure daisy-chaining by connecting all the bus

masters to grant request line BR3. In this mode, the arbiter only responds to requests on

the BR3 line.

164 Chapter 5 System Buses

Grant
in

Grant
out

Bus master 0

Grant
in

Grant
out

Grant
in

Grant
out

Grant
in

Grant
out

arbiter

Central

Bus master 1 Bus master 2 Bus master 3

BR0#

BG0#

BR1#

BG1#

BR3#

BG3#

BCLR#

BBSY#

BR2#

BG2#

Bus request

Bus grant

. . .

. . .

. . .

. . .

. . .

. . .

Requested? Requested? Requested? Requested?

Figure 5.11 Bus arbitration scheme in the VME bus. All four classes share the bus busy (BBSY#) and

bus clear (BCLR#) signals.

The default release policy is the transaction-based, nonpreemptive release policy. However,

when fixed-priority allocation is used, preemptive release can be used when a higher priority

bus request arrives. To effect preemption, the arbiter asserts the bus clear (BCLR) line. The

current master releases the bus when the BCLR line is low.

Distributed Bus Arbitration

In distributed arbitration, bus masters themselves determine who should get the bus for the next

transaction cycle. The hardware to implement the arbitration policy is distributed among the

bus masters. We can have distributed versions of the daisy-chaining and independent request

schemes discussed before.

A careful look at the daisy-chaining scheme reveals that the central arbiter is simply initiat-

ing the grant signal. We can do the same without using a central arbiter as shown in Figure 5.12.

The bus request line is wired-ANDed so that this line goes low if one or more bus masters re-

quest the bus. The current bus master asserts the busy line. The grant line is daisy-chained

through the bus masters. The leftmost grant line is grounded so that the GIN# of the leftmost

master is asserted. The leftmost master that requests the bus receives GIN# as low but it will

not assert its GOUT# line. Thus, the masters to the right of this node will not get the bus.

We can also use separate bus request and grant lines that are shared by all the masters. The

example in Figure 5.13 shows how a system with four bus masters can implement distributed

bus arbitration. As in the centralized independent scheme discussed before, each bus master

Section 5.6 Example Buses 165

Grant
in

Grant
out

Grant
in

Grant
out

Grant
in

Grant
out

Grant
in

Grant
out

Bus master 1 Bus master 2 Bus master 3

Bus request

Busy

Bus grant

Bus master 0

GOUT#

GIN# GIN#

GOUT#

GIN#

GOUT#

GIN#

GOUT#

Requested? Requested? Requested?Requested?

Figure 5.12 A daisy-chained distributed bus arbiter.

Bus request 0

Bus request 1

Bus request 2

Bus request 3

Bus busy

Bus master 1 Bus master 2 Bus master 3Bus master 0

Figure 5.13 A distributed bus arbiter with separate bus request lines.

that needs the bus places a request on its private bus request line. Since all bus masters can

read these bus request lines, they can determine the bus master that should get the bus (i.e., the

highest priority master). This scheme is similar to the fixed-priority allocation policy. In order

to avoid starvation, the highest-priority master that has just used the bus will not raise its bus

request until all the other lower-priority masters have been allocated the bus. This honor system

would avoid the potential starvation problem.

5.6 Example Buses
We discuss five example buses in this section and start off with the old ISA bus. This bus was

proposed by Intel to match their X86 16-bit processor signal lines. It cannot support faster

devices. To make the bus independent of the processor, Intel again proposed the PCI bus. This

166 Chapter 5 System Buses

can operate at either the 33 or 66 MHz frequency. PC systems typically use both PCI and ISA

buses as shown in Figure 5.14. The PCI bus is able to support faster I/O devices, and it has been

extended to provide even higher bandwidth. We discuss the PCI-X bus in Section 5.6.4.

These buses are not suitable for mobile systems (e.g., laptops). These systems have stringent

space and power restrictions. The PCMCIA bus is used for these systems. We discuss this bus

in Section 5.6.5. We also describe the AGP port, which provides a high-bandwidth, low-latency

interface to support 3D video and full-motion video applications.

5.6.1 The ISA Bus

The Industry Standard Architecture (ISA) bus was closely associated with the system bus used

by the IBM PC. The 8088-based IBM PC used an 8-bit data bus. Note that the 8088 is a cheaper

version of the 8086 that uses the 8-bit data bus to save on the number of pins. Thus, the 8088

needs two cycles to transfer a 16-bit datum that the 8086 could transfer in a single cycle. Most

of the signals in the ISA bus are the same signals emitted by the 8088 processor.

In current systems, the ISA plays the role of I/O bus for slower devices. However, in the

IBM PC, the ISA bus was used to interface both memory and I/O devices. Since the IBM PC

used the 8088 processor, the first ISA bus had an 8-bit wide data path. This bus had 62 pins,

including 20 address lines, eight data lines, six interrupt signals, and one line each for memory

read, memory write, I/O read, and I/O write. In addition, it also had four DMA requests and four

DMA acknowledgment lines. DMA refers to direct memory access, which is a technique used

to transfer data between memory and an I/O device without bothering the CPU with the nitty-

gritty details of the transfer process. We cover DMA in detail in Chapter 19. In essence, the

8-bit ISA bus had copied the 8088 processor signals, with minor changes, onto the motherboard

to interface with the two other components: memory and I/O devices. This bus, therefore, is

not a processor independent standard bus.

When IBM introduced their PC/AT based on the 80286, the 8-bit ISA bus was not adequate

for two main reasons: the 286 provided 16-bit data lines and 24 address lines. That is, compared

to the 8088, the 286 provided 8 more data lines and 4 more address lines. Using the 8-bit ISA

bus meant the new system could not take advantage of the features of the 286 processor. On the

other hand, IBM could not devise an entirely new bus because of the backward compatibility

requirement. The solution IBM came up with was to extend the connector by adding 36 signals

to handle the additional data and address lines. This part of the ISA connector is referred to as

the 16-bit section (see Figure 5.15). In addition to the 8 data lines and 4 address lines, the 16-bit

section has five more interrupt request lines, and four more DMA request and acknowledgment

lines. There are a few more control signals, including signals to indicate whether the transfer is

8-bits or 16-bits in size. The PC/AT bus was accepted as the bus standard for the ISA.

The ISA system bus operates at 8.33 MHz clock. A zero-wait-state data transfer between

the processor and memory takes two bus clocks (i.e., approximately 2�125 ns = 250 ns). Since

it can transfer 2 bytes in each cycle, the maximum bandwidth is about 2/250 = 8 MB/s.1 This

1Throughout this chapter, we use MB to refer to ��
� bytes rather than the usual ��� bytes. Similarly, KB refers to ��

� bytes.

This is customary in the communications area.

Section 5.6 Example Buses 167

DVD

Frame

buffer

memory

Video memory

IDE hard

drive

IDE

CD ROM

System

BIOS

Memory

Level 2

cache

PCI bus

ISA bus

PCI slots

I/O

Keyboard

Mouse

Printer

Floppy

COM1

COM2

Sound

Mic

Memory busPCI

bridge

(north bridge)

CPU

AGP port

Local bus

Cache bus

LAN

Network

SCSI

Disks

GraphicsUSB

AGP

graphics

accelerator

ISA slots

. .
Monitor

. .
Monitor

PCI/ISA

bridge

(south bridge)

Figure 5.14 Architecture of a PC system with AGP, PCI, and ISA buses.

168 5

4

no

do by

132

5.14

110

110

19. on

5.6.2

by

on

1990, on

Section 5.6 Example Buses 169

Intel released its patents on PCI to public domain. Furthermore, Intel formed the PCI Special

Interest Group (PCISIG) to maintain and develop the standard. The original PCI specification,

developed by Intel, was released as Version 1.0. Version 2.0 was introduced in 1993 and Version

2.1 in 1995. As of this writing, the recent revision to the specifications is Version 2.2. PCI 2.2

introduced power management for mobile systems.

Unlike the ISA bus, the PCI bus is processor independent. A PCI bus can be implemented

as either a 32- or 64-bit bus operating at the 33 or 66 MHz clock frequency. The original 32-

bit PCI bus operated at 33 MHz (it is actually 33.33 MHz, or a clock period of 30 ns) for a

peak bandwidth of 133 MB/s. A 64-bit PCI operating at 66 MHz provides a peak bandwidth

of 528 MB/s. Due to technical design problems in implementing the 66 MHz PCI, most PCI

implementations use the 33 MHz clock for a bandwidth of about 266 MB/s.

Like the other PC buses, PCI is a synchronous bus. It uses a multiplexed address/data bus

to reduce the pin count. Because of this multiplexing, it needs just 64 pins for address and data

lines, even though the PCI bus supports 64-bit addresses and 64-bit data. In PCI terminology,

the master and slave are called the initiator and target, respectively. All transactions on the bus

are between an initiator and a target. The PCI bus uses a centralized arbiter with independent

request lines.

In addition to the two choices—32-bit or 64-bit, 33 MHz or 66 MHz—PCI cards can op-

erate at 5 V (older cards) or 3.3 V (newer ones). Figure 5.16 shows the 32- and 64-bit PCI

connectors. As shown in this figure, a 64-bit connector consists of the 32-bit connector and a

64-bit extension (somewhat similar to the ISA connector). The connectors are keyed so that a

3.3 V card cannot be inserted into a 5 V connector and vice versa. The 32-bit card has 120 pins.

The 64-bit version has an additional 64 pins. For more details on the connectors and the signals,

see [4].

Bus Signals

The PCI bus has two types of system signals—mandatory and optional—which are briefly de-

scribed below:

Mandatory Signals: These signals are divided into five groups: system signals, address/data/

command signals, transaction control signals, bus arbitration signals, and error reporting sig-

nals. Note that low-active signals are indicated by #.

System Signals:

• Clock Signal (CLK): The clock signal provides the timing information to all bus trans-

actions. PCI devices sample their inputs on the rising edge of the clock. The clock fre-

quency can be between 0 and 33 MHz. PCI devices may be operated at a lower frequency,

for example, to save power.

• Reset Signal (RST#): This signal is used for system reset. When this signal is asserted,

the system is brought to an initial state, including PCI configuration registers of all PCI

devices.

170 5

3.3

3.3

5

5

and

32

by

0, 1,

on.

0000 11 11

Section 5.6 Example Buses 171

interest in each data phase. The extreme case of null data phase is useful, for example, if

you want to skip one or more 32-bit values in the middle of a burst data transfer. If null

data transfer is not allowed, we have to terminate the current bus transaction, request the

bus again via the arbiter, and restart the transfer with a new address.

• Parity Signal (PAR): This line provides even parity for the AD and C/BE# lines. That is,

if the number of 1s in the 36 bits (32 AD bits and 4 C/BE# bits) is odd, PAR is 1; it is

zero otherwise. Parity provides a rudimentary error detection mechanism.

Transaction Control Signals:

• Cycle Frame (FRAME#): The current bus master drives this signal to indicate the start

of a bus transaction (when the FRAME# signal goes low). This signal is also used to

indicate the length of the bus transaction cycle. This signal is held low until the final data

phase of the bus transaction. Our later discussion of the read and write bus transactions

clarifies the function of this signal.

• Initiator Ready (IRDY#): The current bus master drives this signal. During the write

transaction, this signal indicates that the initiator has placed the data on the AD lines.

During the read transaction, asserting this signal indicates that the initiator is ready to

accept data.

• Target Ready (TRDY#): The current target drives this signal. This is the ready signal from

the target and complements the ready signal from the initiator. These two ready signals

are used to perform full handshaking in transferring data. During a write transaction,

the target asserts this signal to indicate that it is ready to accept data. During a read

transaction, the target uses this signal to indicate that valid data are present on the AD

lines.

Both IRDY# and TRDY# signals should be asserted for successful data transmission.

Otherwise, wait states are inserted until these two signals are low.

• Stop Transaction (STOP#): The current target drives this signal to let the initiator know

that the target wants to terminate the current transaction. There are several reasons for

the target to terminate a transaction. A simple example is that the target device does

not support a burst mode of data transfer. If the initiator starts a burst mode, the target

terminates the transfer after supplying data during the first data phase.

• Initialization Device Select (IDSEL): This is an input signal to a PCI device. The device

uses it as a chip select for configuration read and write transactions.

• Device Select (DEVSEL#): The selected target device asserts this signal to indicate to the

initiator that a target device is present.

• Bus Lock (LOCK#): The initiator uses this signal to lock the target to execute an atomic

transaction such as test-and-set type of instructions to implement semaphores.

172 Chapter 5 System Buses

Bus Arbitration Signals:

The PCI system uses centralized bus arbitration with independent request and grant lines. Each

PCI device has a request (REQ#) line and a grant (GNT#) line. These are point-to-point lines

from each PCI device to the bus arbiter.

• Bus Request (REQ#): When a device wants to use the PCI bus, it asserts its REQ# line to

the bus arbiter.

• Bus Grant (GNT#): This signal is asserted by the bus arbiter to indicate that the device

associated with the asserted GNT# line can have the bus for the next bus transaction.

In the PCI system, bus arbitration can overlap execution of another transaction. This overlapped

execution improves PCI bus performance.

Error Reporting Signals:

• Parity Error (PERR#): This error indicates a data parity error detected by a target during

a write data phase, or by the initiator during a read data phase. All devices are generally

expected to detect and report this error. There can be exceptions. For example, during a

video frame buffer transmission, a data parity error check could be ignored.

• System Error (SERR#): Any PCI device may generate this signal to indicate address

parity error and critical errors. In a PC system, SERR# is typically connected to the

NMI (nonmaskable interrupt) processor input. This error is reserved for catastrophic and

nonrecoverable errors.

Optional Signals: In addition, the following optional signals are defined by the PCI specifica-

tion:

64-Bit Extension Signals:

• Address/Data Lines (AD[32 to 63]): These lines are the extension of the basic 32-bit

address/data lines.

• Command Bus (C/BE#[4 to 7]): The command/byte enable lines are extended by four

more lines. During the address phase, these lines are used to provide additional com-

mands. During the data phase, these lines specify the bytes that the initiator intends to

transfer.

• Request 64-Bit Transfer (REQ64#): The initiator generates this signal to indicate to the

target that it would like 64-bit transfers. It has the same timing as the FRAME# signal.

• Acknowledge 64-Bit Transfer (ACK64#): The target, in response to the REQ64# signal,

indicates that it is capable of transferring 64 bits. This signal has the same timing as the

DEVSEL# signal.

• Parity Bit for Upper Data (PAR64): This bit provides the even parity for the upper 32

data bits (AD[32 to 63]) and four command lines (C/BE#[4 to 7]).

Section 5.6 Example Buses 173

Interrupt Request Lines:

PCI provides four lines (INTA#, INTB#, INTC#, and INTD#) for PCI devices to generate in-

terrupt service requests. Like the bus arbitration lines, these are not shared; rather, each device

has its own interrupt lines connected to an interrupt controller.

In addition, there are also signals to support the snoopy cache protocol and IEEE 1149.1

boundary scan signals to allow incircuit testing of PCI devices.

There is also an M66EN signal to indicate the bus clock frequency. This signal should be

held low for the 33 MHZ clock speed and high for the 66 MHz clock.

PCI Commands

The 32-bit PCI has four lines (C/BE#) to identify the bus transaction type. Typically, a command

value is placed on these four lines during the address phase. Commands include the following:

• I/O Operations: PCI provides two commands to support I/O operations: I/O Read and

I/O Write.

• Memory Operations: PCI provides two types of memory commands.

– Standard Memory Operations: Two commands, Memory Read and Memory Write,

allow standard read and write memory operations. All PCI devices should be able

to perform these actions.

– Bulk Memory Operations: Three additional memory commands to support block

transfer of data are available. These three commands are optional performance en-

hancement commands.

� Memory Read Line: Use this command if you want to transfer more than a

doubleword but less than the size of the cache line. The actual data transferred

are restricted to the cache line boundary (i.e., data transfer cannot cross the

cache line boundary). This command allows prefetching of data.

� Memory Read Multiple: This command is somewhat similar to the last one,

except that it allows cache line boundaries to be crossed in prefetching the

data. Thus, it is more flexible compared to the Memory Read Line command.

� Memory Write-and-Invalidate: This command is similar to the standard Mem-

ory Write command, except that it guarantees the transfer of a complete cache

line(s) during the current bus transaction.

• Configuration Operations: Every PCI device must have a 256-byte configuration space

that can be accessed by other PCI devices. Configuration space of a device maintains

information on the device. This information can be used for auto configuration for plug-

and-play operation. Two commands to read and write the configuration space are pro-

vided: Configuration Read and Configuration Write.

• Miscellaneous Operations: Two more commands are provided to support 64-bit ad-

dresses on a 32-bit PCI and to convey a special message to a target group:

174 Chapter 5 System Buses

Special Cycle Command: Special Command is used to broadcast a message to the targets

on the PCI bus. Two types of messages are conveyed by this command: Shutdown and

Halt.

Dual Address Cycle Command: This command allows a 32-bit initiator to use 64-bit

addresses to access memory beyond the 4 GB boundary. The 64-bit address is passed as

two 32-bit values.

– During the first cycle of the bus transaction, the lower 32 bits of the 64-bit address

are placed on the 32 AD lines. It uses the dual address cycle (DAC) command on

C/BE# lines to indicate that the current bus transaction uses two cycles to send the

64-bit address.

– During the second clock cycle, the higher 32 bits of the address are placed on the

AD lines and the normal bus command is placed on the C/BE# lines.

PCI Operations

As mentioned before, PCI transactions typically start with an address phase during which the

address and the type of bus transaction are announced. This phase is followed by one or more

data phases. To give you a clear idea of the type of PCI bus transactions, we discuss three

operations: a simple read, a simple write, and a burst read operation.

PCI Read Operation: Figure 5.17 illustrates the timing of a single data phase read operation.

The read bus transaction consists of a single-cycle address phase and a two-cycle data phase.

After a bus master has acquired the bus, it asserts FRAME# to start the read cycle. The initiator

places the address on the AD lines and the command (i.e., read command in this case) on the

C/BE# lines. At the end of T1 (on the rising edge), a PCI device uses the address to learn that

it is the target of the transaction. In order for the target to do this, the address and command

signals should be stable for at least Tsetup time units. We discuss this further later.

Shortly after this rising edge of T1, the initiator floats the AD bus in preparation for the

target to place data on the AD lines. In the figure, two circular arrows show this turnaround of

the bus. The initiator then asserts the IRDY# signal to indicate to the target that it is ready to

accept the data. At the same time, it changes the command on the C/BE lines to Byte Enable to

indicate the bytes it intends to transfer.

The initiator then deasserts the FRAME# signal to indicate that this is the last data phase.

In this example, we are reading only one 32-bit datum. In general, the FRAME# signal remains

asserted until the target is ready to complete the last data phase.

During the T3 cycle, the target asserts DEVSEL# to inform the initiator that a target device

is responding to its request. When it is ready to transmit the requested data, it asserts the TRDY#

signal.

When the initiator accepts the data, it removes the IRDY# signal. The target responds to this

acknowledgment by removing data from the AD bus and deasserting the TRDY# and DEVSEL#

signals. This completes the bus transaction.

Section 5.6 Example Buses 175

Read
command

T2 T3T1

CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Data phaseAddress phase

Byte enable

DataAddress

Figure 5.17 A single data phase PCI read operation. This operation can be used to read a 32-bit word.

PCI Write Operation: The single-phase PCI write operation is shown in Figure 5.18. Its

timing is very similar to that of the read operation. In the write operation, the data phase takes

only one clock. In contrast, the read operation’s data phase needs two clocks. This is due to the

fact that in a write operation the initiator provides data to the target. Thus, after the address has

been removed from the AD bus, the initiator can place the data to be written. We do not need

time to turn the bus around, which saves a clock cycle.

PCI Burst Read Operation: As an example of a bus transaction that transfers more than one

data word, we describe a burst mode read transaction. Its timing is shown in Figure 5.19. The

first three clock cycles are similar to the single-phase read operation described before. How does

the target know that the initiator wants more data phases? The initiator keeps the FRAME# low

to indicate that it wants another data phase. The initiator’s willingness to accept a new data

value is indicated by the asserted IRDY# signal.

The initiator and target use IRDY# and TRDY# signals to control the transfer speed. If the

target is not ready to provide data, it deasserts the TRDY# signal to introduce wait states. In

176 Chapter 5 System Buses

Write
command

T2T1

CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Address phase

Address

Data phase

Data

Byte enable

Figure 5.18 A single data phase PCI write operation.

Figure 5.19, the target deasserts TRDY# during T4 to insert a wait state (cycle T5). This wait

state extends the second data phase to two clocks. A no-wait-state data phase requires only one

clock, except for the first one during a read operation. As mentioned, the first data phase in a

read operation needs one additional clock cycle to turn the AD bus around.

In this example, the third data phase is also two clocks long because of the wait state re-

quested by the initiator. This wait state (T7) is inserted because the initiator deasserted the

IRDY# signal during the T6 clock. Wait states can also be inserted into a data phase by both the

initiator and target deasserting IRDY# and TRDY# concurrently.

PCI Bus Arbitration

PCI uses a centralized bus arbitration with independent grant and request lines (see Figure 5.10).

As mentioned before, each device has separate grant (GNT#) and request (REQ#) lines con-

nected to the central arbiter. The PCI specification does not mandate a particular arbitration

policy. However, it mandates that the policy should be a fair one to avoid starvation.

Section 5.6 Example Buses 177

command
Bus

T1

CLK

FRAME#

AD

C/BE#

IRDY#

TRDY#

DEVSEL#

Address phase

Address

T4 T7T2 T3

Data 2Data 1 Data 3

Data phase 1 Data phase 2

T8T5 T6

Byte enableByte enable Byte enable

Data phase 3

Figure 5.19 A PCI burst read operation: During the second data phase, a wait state (T5) is inserted due

to the target’s inability to supply data, indicated by making the TRDY# signal high during T4. The third

data phase also has a wait state (T7). This time it is the initiator that is not ready to accept the data as

indicated by deasserting IRDY# signal during T6.

Master

REQ#

asserts

Bus acquisition latency

Master

GNT#

receives
Master

FRAME#

asserts

Bus arbitration latency

Figure 5.20 Two delay components in acquiring the PCI bus: The arbitration takes place while another

master is using the bus. Thus, arbitration delay will not idle the PCI bus. The acquisition latency depends

on when the current bus master releases the bus.

A device that is not the current master can request the bus by asserting the REQ# line. The

arbitration takes place while the current bus master is using the bus. When the arbiter notifies a

master that it can use the bus for the next transaction, the master must wait until the current bus

master has released the bus (i.e., the bus is idle). The bus idle condition is indicated when both

FRAME# and IRDY# are high.

A master requesting the bus experiences the two delay components (shown in Figure 5.20)

from the time it intends to use the bus to the actual start of the bus transaction. However,

PCI uses hidden bus arbitration in the sense that the arbiter works while another bus master is

running its transaction on the PCI bus. This overlapped bus arbitration increases the PCI bus

utilization by not keeping the bus idle during arbitration.

178 Chapter 5 System Buses

bridge

21152

PCI-to-PCI

Secondary PCI bus

bridge

21152

PCI-to-PCI

Secondary PCI bus

PCI bridge

To CPU

Primary PCI bus

Figure 5.21 Building hierarchical PCI bus systems using the Intel 21152 PCI-to-PCI bridge chip.

PCI devices should request a bus for each transaction. However, a transaction may consist

of an address phase and one or more data phases. For efficiency, data should be transferred in

burst mode. Although we have not discussed it here, PCI specification has safeguards to avoid

a single master from monopolizing the bus and to force a master to release the bus.

Building Hierarchical PCI Buses

PCI allows hierarchical PCI bus systems. These are typically built using PCI-to-PCI bridges.

As an example of such a bridge, we present details on the Intel 21152 PCI-to-PCI bridge chip.

This chip connects two independent PCI buses: a primary and a secondary. Of the two PCI

buses, the one closer to the CPU is called the primary PCI bus; the other is called the secondary.

Each secondary PCI bus supports up to four PCI devices, as shown in Figure 5.21.

The 21152 chip allows concurrent operation of the two PCI buses. For example, a mas-

ter and target on the same PCI bus can communicate while the other PCI bus is busy. The

bridge also provides traffic filtering which minimizes the traffic crossing over to the other side.

Obviously, this traffic separation along with concurrent operation improves overall system per-

formance for bandwidth-hungry applications such as multimedia.

Since the 21152 is connecting two PCI buses, we need two bus arbiters: one for the primary

and the other for the secondary. On the primary side, the 21152 depends on an external arbiter

available in the system. It has an internal bus arbiter for the secondary side. If the designer

wishes, this internal arbiter can be disabled to allow an external arbiter.

Section 5.6 Example Buses 179

setupT = 7 ns
Tskew

T setup

33 MHz

3 ns

Cycle period = 30 ns

66 MHz

Cycle period = 15 ns

2 nsvalT = 11 ns prop

propval

T = 10 ns

T = 5 nsT = 6 ns

skewT = 1 ns

Figure 5.22 Various components of delay in a PCI cycle.

The internal arbiter implements a two-level rotating-priority arbitration policy. Bus masters

are divided into high- and low-priority groups. Remember that there can be at most five bus

masters—four PCI devices and the 21152—connected to the secondary bus. The entire low-

priority group is represented by a single entry in the high-priority group. Within the low-priority

group, priority rotates on a round-robin basis.

After initialization, the arbiter will have the four PCI devices in the low-priority group and

the 21152 in the high-priority group. That is, there will be two entries in the high-priority group:

one entry for the 21152 and the other for the four devices. This means that the 21152 gets the

highest priority every other transaction.

Implementation Challenges for the 66 MHZ PCI Bus

In closing our discussion on the PCI bus, we should mention that most PCI buses tend to operate

at 33 MHz clock speed. The main reason is that the 66 MHz implementation poses some serious

design challenges. To understand this problem, look at the timing of the two buses. The 33 MHz

bus cycle of 30 ns leaves about 7 ns of setup time for the target. In Figure 5.22, Tval represents

the time allowed for the output driver to drive the signal and Tprop represents the propagation

time. Tskew represents the delay from the rising edge of the CLK signal from one component to

another.

When we double the clock frequency, all values are cut in half. Since Tval is only 6 ns, a

66 MHz bus should be less loaded than the 33 MHz bus. Similarly, propagation and skew times

force shorter lengths for the 66 MHz bus. The reduction in Tsetup is important as we have only

3 ns for the target to respond. This fact is further discussed in a later section that examines the

PCI-X bus. As a result of this difficulty, most PCI buses tend to operate at 33 MHz clock speed.

180 Chapter 5 System Buses

5.6.3 Accelerated Graphics Port (AGP)

With the increasing demand for high-performance video due to applications such as 3D graphics

and full-motion video, the PCI bus is reaching its performance limit. In response to these

demands, Intel introduced the AGP to exclusively support high-performance 3D graphics and

full-motion video applications. The AGP is not a bus in the sense that it does not connect

multiple devices. The AGP is a port that precisely connects only two devices: the CPU and

video card.

To see the bandwidth demand of a full-motion video, let us look at a 640 � 480 resolution

screen. For true color, we need three bytes per pixel. Thus, each frame requires 640 * 480 * 3 =

920 KB. Full-motion video should use a frame rate of 30 frames/second. Therefore, the required

bandwidth is 920 * 30/1000 = 27.6 MB/s. If we consider a higher resolution of 1024 � 768,

it goes up to 70.7 MB/s. We actually need twice this bandwidth when displaying video from

hard disks or DVDs. This is due to the fact that the data have to traverse the bus twice: once

from the disk to the system memory and again from the memory to the graphics adaptor. The

32-bit, 33 MHz PCI with 133 MB/s bandwidth can barely support this data transfer rate. The

64-bit PCI can comfortably handle the full-motion video but the video data transfer uses half

the bandwidth. Since the video unit is a specialized subsystem, there is no reason for it to be

attached to a general-purpose bus like the PCI. We can solve many of the bandwidth problems

by designing a special interconnection to supply the video data. By taking the video load off

the PCI bus, we can also improve performance of the overall system. Intel proposed the AGP

precisely for these reasons.

The AGP specification is based on the 66 MHz PCI 2.1 specification. As such, it retains

many of the PCI signals. Like the PCI, it uses a 32-bit wide multiplexed address and data bus.

However, instead of running at the PCI speed of 33 MHz, AGP runs at full speed of 66 MHz.

Thus, the AGP provides a bandwidth of 264 MB/s. The AGP can operate in 2X mode in which

it transmits data on both rising and falling edges of the clock. Thus, it can provide up to four

times the 33 MHz PCI bandwidth (i.e., 528 MB). How does this compare with the system bus

of a Pentium PC? If we consider a 66 MHz motherboard, the bandwidth is 66 � 8 = 528 MB

as the Pentium uses a 64-bit wide bus. Current motherboards support a 100 MHz system bus,

which takes the processor system/memory bus bandwidth to about 800 MB. To exploit higher

memory bandwidths, the AGP can also run at 4X speed. This takes the bandwidth of the AGP

to more than 1 GB/s.

The AGP provides further performance enhancements by using pipelining and sideband

addressing. We first discuss the pipelining feature. Pipelining is a common technique designers

use to overlap several operations. The AGP uses the pipelined mode of data transfer from

memory in order to hide the memory latency. In nonpipelined data transfers (e.g., in the PCI), an

operation has to be complete before we can initiate the next one. In pipelined mode, operations

can overlap. Pipeline principles are discussed in detail in Chapter 8. The AGP has a special

signal called PIPE# to initiate pipelined data transfer.

The AGP uses PCI bus transactions as well as AGP-specific pipelined transactions. In fact,

AGP pipelined transactions can be intervened with regular PCI bus transactions. The access

Section 5.6 Example Buses 181

Pipelined

data

transfer

Intervene

cycles

Data 3

D1 D2

A3A2A1

D3

Data 1 Data 2

PCI DataPCI AddrAddr 3Addr 1 Addr 2

Pipelined AGP requests PCI transaction

Bus idle

Busy

Figure 5.23 AGP pipelined transmission can be interrupted by PCI transactions.

request portion of an AGP transaction uses the AD and C/BE# lines of the bus as in a PCI

transaction. However, AGP transactions use the PIPE# rather than the FRAME# signal.

AGP pipelined transmission can be interrupted by PCI transactions as shown in Figure 5.23.

In this figure, when the bus is idle, AGP obtains the bus and starts a pipelined transaction. As

a part of this transaction, it places the address A1, then address A2. The bus is turned around

and after a delay system memory places data D1 that corresponds to address A1. Then the AGP

supplies address A3 and the bus is turned around for data D2. After D2, a PCI master gets the

bus and the PCI transaction is completed. Once the PCI transaction is done, the interrupted AGP

pipeline transaction continues. Finally, after supplying data D3, the bus returns to the IDLE

state. Note that PCI transactions should not be intervened by other transactions. Intervention of

pipelined transactions is done by bus arbitration signals REQ# and GNT#.

A state diagram can express the bus operations using the four states shown in Figure 5.24.

The four states are IDLE, AGP, PCI, and PDT (pipelined data transfer). When the system bus is

IDLE, the standard PCI bus transaction can be initiated, as indicated by the transition between

the IDLE and PCI states in Figure 5.24. If the AGP requests a pipelined transfer, it will move

to the AGP state. The AGP master will output the address (or a sequence of addresses as in

Figure 5.23). When the system memory is ready to transmit data, it takes control of the bus and

transmits data. This causes a state change from the AGP to the PDT. While in the PDT state,

both AGP and PCI requests can interrupt the pipeline transfer, as shown in Figure 5.23. Once

the pipelined transfer is complete, the bus returns to the IDLE state.

From Figure 5.23 you can see the impact of the multiplexed address/data bus. For example,

we use the address/data bus to send address A3 by interrupting the data transfer. The AGP uses a

technique to partially demultiplex this bus. It is known as sideband addressing (SBA). Sideband

addressing accelerates data transfers by allowing the graphics controller to issue new addresses

and requests while the data are transferred from previous requests on the main address/data bus.

182 Chapter 5 System Buses

PCIAGP

Pipelined

data transfer

PDT

IDLE

AG
P pipeline initiate

AGP re
quest

Done

PCI request
Done

Pipeline

done

Done

PCI re
quest

Standard PCI transaction

Intervene PCI request

Figure 5.24 State diagram for the AGP bus operations.

In order to keep the cost down, the SBA port is only eight bits wide. More details on this are

available from the AGP specification [20].

In summary, the AGP offers the following advantages:

• The AGP provides a peak bandwidth that is four times the PCI bandwidth using features

such as pipelined data transfer, sideband addressing, and up to 4X data transmission.

• The AGP enables high-speed direct access to system memory by the graphics controller.

This access avoids the need for loading 3D operations data into the video memory.

• Since the video traffic is taken off the PCI bus, there will be less contention of the PCI

bus bandwidth by other I/O devices connected to the PCI bus.

Evolution of the AGP goes on! Intel recently announced an advanced AGP (AGP8X) that

doubles the data transfer frequency to 533 MHz. Since it still uses a 32-bit wide bus, it can

support data rates of about 2 GB/s.

5.6.4 The PCI-X Bus

The PCI bus is reaching its bandwidth limitation with faster I/O buses and networks. Although

the PCI bus can operate at a maximum of 66 MHz, most systems use the 33 MHz bus. As men-

tioned, the 64-bit, 33 MHz PCI bus offers a peak bandwidth of 266 MB/s. The 66 MHz version

proposed in PCI 2.2 can theoretically achieve a peak bandwidth of about 528 MB/s; there are

several technical design challenges that slowed its implementation. Even this bandwidth is not

adequate for future I/O needs. We give a couple of examples to illustrate the need for higher

bandwidth.

• Faster I/O Buses: With the advent of faster I/O buses, the bandwidth provided by a 64-bit,

66 MHz PCI bus is inadequate to support more than one or two such I/O channels. For

Section 5.6 Example Buses 183

example, the SCSI Ultra360 bus disk drive interface needs 360 MB/s bandwidth. Another

example is the proposed 2 Gbit/s Fibre Channel bus.

• Faster Networks: On the network side, a four-port gigabit Ethernet NIC can overwhelm

even the 64-bit, 66 MHz PCI bus. With the specification of the 10 Gbit/s expected around

2002, the PCI bus cannot handle such networks.

The PCI-X bus leverages existing PCI bus technology to improve the bandwidth from 133 MB/s

(32-bit, 33 MHz PCI) to more than 1 GB/s. This is achieved with a 64-bit, 133 MHz PCI-X

bus. As mentioned before, even though the PCI 2.2 specifies that PCI can run at the 66 MHz

frequency, there are several design challenges (see page 179).

How is PCI-X solving this problem? It uses a register-to-register protocol, as opposed to the

immediate protocol implemented by PCI. In the PCI-X register-to-register protocol, the signal

sent by the master device is stored in a register until the next clock. In our digital logic terms,

the signal is latched into a flip-flop. Thus the receiver has one full clock cycle to respond to

the master’s request. This makes it possible to increase the frequency to 133 MHz. At this

frequency, one clock period corresponds to about 7.5 ns, about the same period allowed for the

decode phase (Tsetup) in the 33 MHz PCI implementation. We get this increase in frequency

by adding one additional cycle to each bus transaction. This increased overhead is more than

compensated for by the increase in the frequency. For example, on the PCI bus, a transaction

with six no-wait-state data phases takes 9 clocks. On a 33 MHz PCI bus, this transaction will

take 270 ns to complete. The same transaction takes 10 clocks to complete on a PCI-X bus. At

133 MHz, it takes about 75 ns—about 3.5 times faster.

The PCI-X also gives flexibility by allowing the bus to operate at three different frequencies:

66 MHz, 100 MHz, and 133 MHz. The only restriction is that the PCI-X bus must operate at

frequencies higher than 50 MHz. The PCI-X bus supports up to 256 bus segments; each segment

can operate at its own frequency. System designers can trade off performance for connectivity.

Figure 5.25 shows three segments operating at three frequencies. As shown in this figure, a PCI-

X bus may operate at 133 MHz with one slot. It can have two connection slots by operating

at 100 MHz, or have four slots at 66 MHz, as shown in this figure. The reason for allowing

additional slots at lower frequency is that the signal can have more propagation time to go from

slot to slot. In contrast, the conventional PCI can have only two slots when operating at 66 MHz.

In addition to the register-to-register protocol that gives an extra clock cycle to decode,

PCI-X incorporates several enhancements to improve bus efficiency. Below, we discuss these

features briefly [10]:

• Attribute Phase: The PCI-X protocol has a new transaction phase called the attribute

phase that uses a 36-bit attribute field to describe the bus transaction in more detail than

the conventional PCI protocol. The details provided include the transaction size, relaxed

transaction ordering, and the identity of the transaction initiator. The conventional PCI

handles requests from multiple PCI devices in the order they were received. PCI-X allows

reorder of transactions based on the resources available and the importance of a transac-

tion. For example, audio and video transactions can have a higher priority so that timing

184 Chapter 5 System Buses

133 MHz

64-bit

1066 MB/s

PCI-X

to

PCI-X

bridge

PCI-X

to

PCI-X

bridge

PCI-X

to

PCI-X

bridge

PCI-X

bridge

Bus segment 3

Bus segment 1 133 MHz, 64-bit PCI-X bus

Bus segment 4100 MHz

64-bit

800 MB/s

66 MHz

64-bit

533 MB/s

Bus segment 2

Figure 5.25 PCI-X supports up to 256 segments; each segment can operate in 66 MHz, 100 MHZ, or

133 MHz.

constraints can be satisfied. Clearly, transaction identification makes this reordering pos-

sible.

The transaction size (byte count) is explicit in PCI-X. The conventional PCI protocol

does not specify this information as part of a transaction. Under conventional PCI, host-

to-PCI or PCI-to-PCI bridges use a default transaction size of either one or two cache

lines. Specification of transaction byte size allows better management of buffers and

other resources.

• Split Transaction Support: The conventional PCI transaction treats a request and the

corresponding reply as a transaction. It does allow delayed transactions but uses polling to

see if the target is ready to supply the requested data. In contrast, PCI-X splits the request–

reply into two transactions. The initiator of the transaction can send the request and, after

receiving the acknowledgment from the receiver, can work on other information. The

receiver, when ready to send the data, initiates a transaction to send the data. This split

transaction mode improves utilization of the bus.

• Optimized Wait States: In a conventional PCI, if a receiver cannot supply data, wait states

are introduced to extend the transaction cycle. The bus is held by the transaction during

these additional wait states. In a PCI-X, the split transaction mode allows the bus to be

released for other transactions. This leads to improved bus utilization.

Section 5.6 Example Buses 185

• Standard Block Size Movement: PCI-X allows transactions to disconnect only on 128-

bit boundaries. This allows for efficient pipelined data movement, particularly in the

movement of cache line data.

A PCI-X system can maintain backward compatibility with conventional PCI cards. A PCI-

X adaptor can operate in a PCI system, and vice versa. A PCI-X system can switch between

conventional PCI and PCI-X modes on a segment-by-segment basis, depending on the adaptors

connected to the segment. If any of the adaptors is a conventional PCI one, the entire segment

operates in the PCI mode. The operating frequency is adjusted to the slowest device on the

segment.

The performance of the PCI-X reported in [10] suggests that we can get up to 34% improve-

ment in throughput when using 4 KB reads on a 64-bit, 66 MHz bus. When we read 512-byte

blocks, the improvement in throughput reduces to about 14%.

5.6.5 The PCMCIA Bus

The PCMCIA bus was motivated by the desire to have a standard for memory cards. The Per-

sonal Computer Memory Card International Association (PCMCIA) released its first standard

(Release 1.0) in 1990. This standard is commonly called the PC Card standard. Release 2.0

added support for I/O devices. This is particularly useful for laptops to interface expansion I/O

devices such as hard drives, modems, and network cards.

PCMCIA cards have a small form factor. All cards have a length of 85.5 mm and width of

54 mm (the same as your credit card size). The thickness of the card varies depending on the

card type. Three card types are supported to accommodate various types of I/O devices.

• A type I card has a thickness of 3.3 mm. These cards are normally used for memory units

such as RAM, ROM, and FLASH memories.

• Type II cards are 5 mm thick. These cards are used to interface I/O devices such as

modems and network interface cards.

• Type III cards are slightly more than twice as thick as type II cards (10.5 mm thick). Type

III cards accommodate I/O devices such as hard drives that require more physical space.

Type I and II cards can also be extended to accommodate large external connectors. These cards

maintain the same internal dimensions as the standard type I and II cards.

All cards use the same 68-pin connector/socket pair. PC cards can be connected to a variety

of host buses. PC cards can use either 5 volts (standard) or 3.3 volts (low voltage). The standard

also includes a future nonspecified low voltage, referred to as X.X volts. For details on this, see

[2] and also Figure 5.26.

PCMCIA supports three address spaces: common, attribute, and I/O address spaces. Com-

mon address space is used for memory expansion and the attribute address space is used for

automatic configuration. Each address space is 64 MB, which implies that PCMCIA uses 26

address lines. PC cards use a 16-bit data bus. The PC Card standard also defines a 32-bit

standard called CardBus. Here we focus on the PC Card standard. For details on the CardBus

standard, see [7].

186 Chapter 5 System Buses

35

134

68
(a) Standard card connector

35

134

68
(b) Low-voltage card connector

Figure 5.26 PCMCIA connectors: Sockets are keys such that a low-voltage card cannot be inserted into

a 5 V standard socket.

To explain the basic operation of the PC card, we organize our discussion into two subsec-

tions. The first subsection describes the memory interface. The following subsection deals with

the I/O card interface.

Memory Interface

The memory interface consists of several groups of signals. We give a brief description of these

signals next.

Address signals: This group consists of address lines and two card enable signals.

• Address Lines (A0 to A25): These 26 address lines support a total of 64 MB of address

space. For 16-bit memories, A1 to A25 lines specify the address of a 16-bit word. The

lower address line A0 specifies the odd or even byte of the word.

• Card Enable Signals (CE1#, CE2#): These two signals are somewhat similar to the chip

select signal discussed in Chapter 16. These two low-active signals control how the data

are transferred. When both these signals are high (i.e., not asserted), no data transfer

takes place. In this case, the data path floats (high-Z state). When CE1# is asserted, data

transfer takes place on the lower data path (D0 to D7). Asserting CE2# indicates that the

data transfer takes place on the upper data path (D8 to D15). When both signals are low,

16-bit data transfer takes place on the data path (D0 to D15).

When CE1# = 1 and CE2# = 0, only the odd byte is transferred on the upper data path.

This combination is valid in the 16-bit mode only. In this case, the value of the address

bit A0 is ignored. When CE1# = 0, CE2# = 1, and A0 = 0, even byte transfer takes place

on the lower data path (D0 to D7). This combination is valid in both 8- and 16-bit modes.

However, in the 8-bit mode, A0 = 1 is also allowed. This causes the transfer of odd bytes

on the lower data path (D0 to D7). PCMCIA supports only 16-bit memory cards.

Section 5.6 Example Buses 187

Transaction Signals: As stated before, there are two memory address spaces: common and

attribute memory. PC Card specifies four types of memory transactions: common memory

read, common memory write, attribute memory read, and attribute memory write.

• Data Lines (D0 to D15): These 16 data lines are used to transfer data. As discussed, the

two card enable signals determine whether odd byte, even byte, or a word is transferred

on the data path.

• Output Enable (OE#): This is the memory read signal. This signal should be low when

reading from a PC card.

• Write Enable (WE#): This is the memory write signal. This signal should be low when

writing to a PC card. If the PC card memory requires special programming voltage (e.g.,

for a flash memory card), this line is used as the program command signal.

• Wait Signal (WAIT#): This signal serves the same purpose as the wait signal in system

buses. When a normal transaction requires more time, the WAIT# signal can be used to

extend the transaction cycle.

• Register Select (REG#): This signal selects whether the common memory or the attribute

memory should be the target. To access the attribute memory, this signal should be low. A

high REG# signal indicates that a read/write operation is targeted to the common memory.

PC Memory Card Status Signals: Memory cards typically have a write protect switch, just

like your floppy disk. When this switch is on, PC card memory becomes read-only. If the

memory is volatile, there is also space for a battery to prevent losing data when the memory

card is removed from the socket. A memory is said to be volatile if it requires power to retain

its contents. Flash memory is an example of a nonvolatile memory.

PCMCIA status signals are used to report the status of the PC card. This group of signals

includes the following:

• Card Detect Signals (CD1#, CD2#): These two signals indicate the presence of a PC

card in the socket. The CD1# is a low-active signal that indicates that one side of the PC

card is making contact with the socket. The CD2# signal indicates that the other side is

making contact. The interpretation of these two signals is shown below:

CD2# CD1# Interpretation

0 0 Card properly inserted

0 1 Card improperly inserted

1 0 Card improperly inserted

1 1 No card inserted

• Ready/Busy Signal (READY): A high on this signal indicates that the card is ready to be

accessed. When the card is busy executing a command or performing initialization, the

READY signal is low.

188 Chapter 5 System Buses

• Write Protect (WP): This signal gives the status of the write protect switch on the memory

card.

• Battery Voltage Detect Signals (BVD1, BVD2): These two signals indicate the status

of the PC memory card battery. If BVD1 is low, the battery cannot maintain the data

integrity. When BVD1 is high, the BVD2 value indicates whether the battery is in good

condition or nearing its replacement level. The interpretation of these two signals is

summarized below:

BVD2 BVD1 Interpretation

0 0 Battery cannot maintain data integrity

0 1 Battery replacement warning

1 0 Battery cannot maintain data integrity

1 1 Battery is in good condition

As an example of a transaction cycle, we show the common memory read cycle in Fig-

ure 5.27. Each transaction cycle consists of three phases: a setup phase to allow time for the

input signals to settle; a command execution phase to perform the action requested (e.g., mem-

ory read); and a hold phase for the target to read the data. Since we are reading a 16-bit word,

CE1#, CE2#, and A0 signals are all low. And, as we are reading from the common memory, the

REG# signal should be high. The output enable signal OE# is asserted after the setup time to

indicate that this is a read operation. For the same reason, the write enable signal WE# is high.

This transaction introduces no wait states as the WAIT# signal is high.

I/O Interface

I/O devices use either a type II or III card. To interface I/O cards, some memory interface

signals are changed. In particular, some reserved pins in the memory interface are used for I/O

purposes. Furthermore, four memory interface signals (READY, WP, BVD1, and BVD2) are

assigned different meanings. Here is a summary of the new signals for the I/O interface:

• I/O Read and Write (IORD#, IOWR#): These signals use pins 44 and 45, which are

reserved in the memory interface. They serve to define the transaction type as I/O read or

write. Thus, there can be six types of transactions as shown below:

Transaction type REG# WE# OE# IORD# IOWR#

Common memory read 1 1 0 1 1

Common memory write 1 0 1 1 1

Attribute memory read 0 1 0 1 1

Attribute memory write 0 0 1 1 1

I/O read 0 1 1 0 1

I/O write 0 1 1 1 0

Section 5.6 Example Buses 189

A0

CE2#
CE1#

Setup HoldCommand

Data

WE#

WAIT#

OE#

REG#

Cycle period

Address Valid address (A1 A25)

16-bit word (D0 D15)

Figure 5.27 A no-wait state 16-bit word common memory read cycle.

• Interrupt Request (IREQ#): This signal replaces the READY signal from the memory

interface. The PC card asserts this signal to indicate that it requires interrupt service. We

discuss interrupts in Chapter 20.

• I/O Size Is 16 Bits (IOIS16#): This replaces the write protect (WP) memory interface

signal. When asserted, this signal indicates that the I/O is a 16-bit device. A high on this

signal indicates an 8-bit I/O device.

• System Speaker Signal (SPKR#): This line sends the audio signal to the system speaker.

It replaces the BVD2 signal in the memory interface.

• I/O Status Change (STSCHG#): This signal replaces the BVD1 memory interface signal.

In a pure I/O PC card, we do not normally require this signal. However, in multifunc-

tion PC cards containing memory and I/O functions, this signal is needed to report the

status-signals removed from the memory interface (READY, WP, BVD1, and BVD2). A

configuration register (called the pin replacement register) in the attribute memory main-

tains the status of the signals removed from the memory interface. For example, since

BVD signals are removed, this register keeps the BVD information to report the status of

the battery. When a status change occurs, this signal is asserted. The host can read the

pin replacement register to get the status.

190 Chapter 5 System Buses

Reg#

CE1#
A0

IOWR#

WAIT#

Valid address (A1 A25)

Cycle period

Setup HoldCommand

Data

IOIS16#

IORD#

CE2#

Address

16-bit word (D0 D15)

Figure 5.28 A no-wait state 16-bit word I/O read cycle: To read only a byte of data, we have to make the

IOIS16# high and A0 identifies the byte (odd or even) to read.

An example of an I/O read transaction is shown in Figure 5.28. It is similar to the memory

read transaction. Typically, at the start of an I/O transaction, the addressing mode defaults to

the 8-bit mode. The three signals—REG#, A0, and CE1#—are asserted. When the IOIS16#

signal is asserted to indicate that this is a 16-bit I/O operation, the CE2# signal is asserted.

The remaining signals are straightforward to understand. If it is an 8-bit I/O read operation,

the IOIS16# and CE2# signals remain high. Then, as discussed earlier, the A0 address bit

determines whether the odd (A0 = 1) or even (A0 = 0) byte is transferred.

5.7 Summary
A bus is the link that connects various system components. In a typical computer system, we

find a hierarchy of buses: a memory bus, a local bus, a cache bus, and one or more expansion

buses. Each type of bus has several restrictions depending on the purpose of the bus. Bus

designers have to decide on several parameters such as bus width, bus type, bus clocking, type

of bus operations supported, and bus arbitrating mechanism.

Section 5.7 Summary 191

Bus width mainly refers to data bus and address bus widths. Higher data bus width increases

the data transfer rate. For example, the Pentium uses a 64-bit data bus, whereas the Itanium uses

a 128-bit data bus. Therefore, if all other parameters are the same, we can double the bandwidth

in the Itanium relative to the Pentium processor.

The address bus width determines the memory addressing capacity of the system. Typically,

32-bit processors such as the Pentium use 32-bit addresses, and 64-bit processors use 64-bit

addresses. Although the 4 GB address space provided by 32-bit processors seems large for a

PC, servers find this address space rather restrictive.

Bus type refers to dedicated or multiplexed buses. These offer a tradeoff between cost and

bandwidth. Dedicated buses are expensive but provide higher bandwidth compared to multi-

plexed buses. Bus clocking refers to timing the bus activities. We have discussed two basic

types: synchronous and asynchronous. In the synchronous bus, all activities are synchronized

to a common bus clock. Asynchronous buses, on the other hand, use full handshaking by means

of special synchronization signals. Asynchronous buses are more flexible and can handle het-

erogeneous devices (i.e., devices that operate at different speeds). Most buses, however, are

synchronous as it is easier to build a synchronous bus system.

All buses support basic bus operations such as the memory read, write, and I/O read and

write. Most buses also support additional operations such as the atomic read-modify-write and

block transfers.

Bus systems typically have more than one bus master. Thus, we need a bus arbitration

mechanism for bus allocation. We have discussed several dynamic bus arbitration schemes.

Bus arbiters can be centralized or distributed. Each type of bus arbiter can be built using daisy-

chaining or independent request lines. We can also use a hybrid scheme as in the VME bus.

In the last section, we have presented details on several example buses, the ISA, PCI, PCI-X,

and PCMCIA. We have also discussed the graphics port AGP that provides higher bandwidth

dedicated to 3D graphics applications.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Accelerated graphics port (AGP)

• Asynchronous bus

• Block transfer

• Bus arbitration

• Bus operations

• Bus types

• Bus width

• External buses

• ISA bus

• PC card bus

• PCI bus

• PCI-X bus

• PCMCIA bus

• Synchronous bus

• System bus design issues

• Wait states

192 Chapter 5 System Buses

5.8 Web Resources
Details on PCI and PCI-X buses are available at www.pcisig.com. Compaq also maintains

information on the PCI-X bus at http://www5.compaq.com/products/servers/
technology/pci-x-enablement.html. You can also search www.compaq.com for

details.

Details on the AGP are available at www.agpforum.org. Intel also maintains informa-

tion on the AGP at http://developer.intel.com/technology/agp.

Details on the PC Card (PCMCIA) bus are available at www.pc-card.com.

5.9 Exercises
5–1 What is a bus transaction?

5–2 What is a bus operation? How does this relate to the bus transaction?

5–3 What is the significance of address bus width?

5–4 What is the significance of data bus width?

5–5 We have discussed two bus types: dedicated and multiplexed. Discuss the advantages and

disadvantages of these two bus types.

5–6 Discuss the advantages and disadvantages of synchronous and asynchronous buses. Then

explain why most system buses are synchronous.

5–7 We have discussed synchronous and asynchronous buses. Why is it critical to select the

right clock frequency only in synchronous buses?

5–8 What is the purpose of the READY signal in a synchronous bus? Do we need this signal

in an asynchronous bus?

5–9 What is the main advantage of block transfer transactions?

5–10 Discuss the advantages of dynamic bus arbitration over a static arbitration scheme.

5–11 In the dynamic bus arbitration section, we discussed fair allocation policies. What hap-

pens if an allocation policy is not fair?

5–12 What are the advantages of preemptive bus release policies over their nonpreemptive

cousins?

5–13 What is the main advantage of demand-based bus release policy over transaction-based

release policy?

5–14 Compare the centralized and distributed implementations of dynamic bus arbitration poli-

cies.

5–15 What are some of the problems with the daisy-chaining scheme?

5–16 What are advantages of the hybrid bus arbitration scheme used in the VME bus?

5–17 We have stated that the ISA bus gets stepmotherly treatment in the bus hierarchy. Specif-

ically, discuss the reasons for using the ISA bus for slower I/O devices. Is there an

alternative bus that could replace it?

5–18 Explain why the PCI bus uses the multiplexed address/data bus.

Section 5.9 Exercises 193

5–19 What is the purpose of Byte Enable lines in the PCI bus?

5–20 The PCI bus uses IRDY# and TRDY# signals to control data flow. Then why does it

require the FRAME# signal?

5–21 Describe the PCI bus arbitration mechanism.

5–22 We have stated that using a PCI-to-PCI bridge improves system performance. We have

used the Intel 21152 chip to illustrate the specifics of such a bridge. Discuss why using

the 21152 bridge improves performance.

5–23 What are some of the difficulties in implementing the 66 MHz PCI bus? How is the

PCI-X bus overcoming these difficulties?

5–24 Explain the rationale for proposing the accelerated graphics port.

5–25 What are the reasons for allowing PCI requests to interrupt AGP pipelined requests?

5–26 What is the need for the STSCHG# signal in the PC Card bus?

Chapter 6

Processor Organization

and Performance

Objectives
• To introduce processor design issues;

• To describe flow control mechanisms used in RISC and CISC processors;

• To present details on microprogrammed control;

• To discuss performance issues.

This chapter looks at processor design and performance issues. We start our discussion with the

number of addresses used in processor instructions. This is an important design characteristic

that influences the instruction set design. This section also describes the load/store architecture

used by RISC and vector processors.

Flow control deals with branching, procedure calls, and interrupts. It is an important as-

pect that affects the performance of the overall system. In Section 6.3, we discuss the general

principles used to efficiently implement branching and procedure invocation mechanisms. We

discuss the interrupt mechanism in Chapter 20. Instruction set design issues are discussed in

Section 6.4.

The next section focuses on how the instructions are executed in hardware. A datapath is

used to execute instructions. We have already presented an example datapath in Chapter 1. To

execute instructions, we need to supply appropriate control signals for the datapath. We can

generate these control signals in one of two basic ways: we can design our hardware to directly

generate the control signals, or use what is known as the microprogram to issue necessary

control signals to the underlying hardware. Typically, RISC processors use the direct hardware

execution method, as their instructions are simple. The CISC processors, on the other hand,

197

198 Chapter 6 Processor Organization and Performance

depend on microprogrammed control in order simplify the hardware. These details are covered

in Section 6.5.

Section 6.6 discusses how the performance of the CPU can be quantified and measured.

This section also describes some sample performance benchmarks from the SPEC consortium.

The chapter concludes with a summary.

6.1 Introduction
Processor designs can be broadly divided into three types: RISC, CISC, and vector processors.

We briefly mentioned CISC and RISC processors in Chapter 1. We give a detailed discussion of

the RISC and CISC processors in Chapter 14. Vector processors exploit pipelining to the fullest

extent possible. We present details on vector processors in Chapter 8.

This chapter deals with three processor-related topics: instruction set design issues, mi-

croprogrammed control, and performance issues. In Chapter 1, we introduced the two main

components of the processor: the datapath and control. Although the processors designed in the

1970s consisted of these two components, current processors have many more onchip entities

such as caches and pipelined execution units. These features are discussed in other chapters of

this book. In this chapter, we mainly focus on the datapath and control. As well, we look at the

instruction set architecture and performance issues.

One of the characteristics that influences the ISA is the number of addresses used in the in-

structions. Since typical operations require two operands, we need three addresses: two source

addresses to specify the two input operands and a destination address to indicate where the re-

sult should be stored. Most processors specify three addresses. We can reduce the number of

addresses to two by using one address to specify a source address as well as the destination ad-

dress. The Pentium uses two-address format instructions. It is also possible to have instructions

that use one or even zero address. The one-address machines are called accumulator machines

and the zero-address machines are called stack machines. The relative advantages and draw-

backs of these schemes are discussed in Section 6.2.

RISC processors tend to use a special architecture known as the load/store architecture. In

this architecture, special load and store instructions are used to move data between the pro-

cessor’s internal registers and memory. All other instructions require the necessary operands

to be present in the registers. Vector processors originally used the load/store architecture. We

discuss vector processors in Chapter 8. The load/store architecture is described in Section 6.2.6.

Instruction set design involves several other issues. The addressing mode is another impor-

tant aspect that specifies where the operands are located. CISC processors typically allow a vari-

ety of addressing modes, whereas RISC processors support only a couple of addressing modes.

The addressing modes and number of addresses directly influence the instruction format. CISC

processors use variable-length instructions whereas the RISC processors use fixed-length in-

structions. The difference is mainly due to the fact that CISC processors use from simple to

complex addressing modes. These and other issues such as the instruction and operand types

are discussed in Section 6.4.

Section 6.2 Number of Addresses 199

As mentioned in Section 1.4, the datapath provides the basic hardware to execute instruc-

tions. We have given an example datapath on page 16. This datapath uses three internal buses.

The performance of the processor depends on the number of internal buses used. To execute in-

structions on the datapath, we have to provide appropriate control signals. These control signals

can be generated by implementing a finite state machine in hardware. Hardware implementa-

tion is used for simple, well-structured instructions. RISC processors take this approach. CISC

processors use a software approach that uses a microprogram for this purpose. Processors like

the Pentium use this approach. We discuss microprogrammed control in detail in Section 6.5.

Performance quantification is very important for both designers and users. Designers need

a way to compare performance of various designs in order to select an appropriate design.

Users need to know the performance in order to buy the best system that meets their needs.

The processor is a critical component that influences overall system performance. We discuss

processor performance metrics and standards in Section 6.6.

6.2 Number of Addresses
One of the characteristics of the ISA that shapes the architecture is the number of addresses

used in an instruction. Most operations can be divided into binary or unary operations. Binary

operations such as addition and multiplication require two input operands whereas the unary

operations such as the logical NOT need only a single operand. Most operations produce a

single result. There are exceptions, however. For example, the division operation produces two

outputs: a quotient and a remainder. Since most operations are binary, we need a total of three

addresses: two addresses to specify the two input operands and one to specify where the result

should go.

Most recent processors use three addresses. However, it is possible to design systems with

two, one, or even zero addresses. In the rest of this section, we give a brief description of these

four types of machines. In Section 6.2.5, we discuss their advantages and disadvantages.

6.2.1 Three-Address Machines

In three-address machines, instructions carry all three addresses explicitly. The RISC processors

we discuss in Chapters 14 and 15 use three addresses. Table 6.1 gives some sample instructions

of a three-address machine.

In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

mult T,C,D ; T = C*D

add T,T,B ; T = B + C*D

sub T,T,E ; T = B + C*D - E

add T,T,F ; T = B + C*D - E + F

add A,T,A ; A = B + C*D - E + F + A

200 Chapter 6 Processor Organization and Performance

Table 6.1 Sample three-address machine instructions

Instruction Semantics

add dest,src1,src2 Adds the two values at src1 and src2 and stores the

result in dest
M(dest) = [src1] + [src2]

sub dest,src1,src2 Subtracts the second source operand at src2 from the

first at src1 and stores the result in dest
M(dest) = [src1] � [src2]

mult dest,src1,src2 Multiplies the two values at src1 and src2 and

stores the result in dest
M(dest) = [src1] * [src2]

We use the notation that each variable represents a memory address that stores the value

associated with that variable. This translation from symbol name to the memory address is

done by using a symbol table. We discuss the function of the symbol table in Section 9.3.3 (see

page 330).

As you can see from this code, there is one instruction for each arithmetic operation. Also

notice that all instructions, barring the first one, use an address twice. In the middle three

instructions, it is the temporary T and in the last one, it is A. This is the motivation for using

two addresses, as we show next.

6.2.2 Two-Address Machines

In two-address machines, one address doubles as a source and destination. Usually, we use

dest to indicate that the address is used for destination. But you should note that this address

also supplies one of the source operands. The Pentium is an example processor that uses two

addresses. We discuss Pentium processor details in the next chapter. Table 6.2 gives some

sample instructions of a two-address machine.

On these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load T,C ; T = C

mult T,D ; T = C*D

add T,B ; T = B + C*D

sub T,E ; T = B + C*D - E

add T,F ; T = B + C*D - E + F

add A,T ; A = B + C*D - E + F + A

Section 6.2 Number of Addresses 201

Table 6.2 Sample two-address machine instructions

Instruction Semantics

load dest,src Copies the value at src to dest
M(dest) = [src]

add dest,src Adds the two values at src and dest and stores the

result in dest
M(dest) = [dest] + [src]

sub dest,src Subtracts the second source operand at src from the

first at dest and stores the result in dest
M(dest) = [dest] � [src]

mult dest,src Multiplies the two values at src and dest and stores

the result in dest
M(dest) = [dest] * [src]

Since we use only two addresses, we use a load instruction to first copy the C value into a

temporary represented by T. If you look at these six instructions, you will notice that the operand

T is common. If we make this our default, then we don’t need even two addresses: we can get

away with just one address.

6.2.3 One-Address Machines

In the early machines, when memory was expensive and slow, a special set of registers was

used to provide an input operand as well as to receive the result from the ALU. Because of

this, these registers are called the accumulators. In most machines, there is just a single accu-

mulator register. This kind of design, called accumulator machines, makes sense if memory is

expensive.

In accumulator machines, most operations are performed on the contents of the accumulator

and the operand supplied by the instruction. Thus, instructions for these machines need to

specify only the address of a single operand. There is no need to store the result in memory:

this reduces the need for larger memory as well as speeds up the computation by reducing the

number of memory accesses. A few sample accumulator machine instructions are shown in

Table 6.3.

In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

202 Chapter 6 Processor Organization and Performance

Table 6.3 Sample accumulator machine instructions

Instruction Semantics

load addr Copies the value at address addr into the accumulator

accumulator = [addr]

store addr Stores the value in the accumulator at the memory address

addr
M(addr) = accumulator

add addr Adds the contents of the accumulator and value at address addr
accumulator = accumulator � [addr]

sub addr Subtracts the value at memory address addr from the contents

of the accumulator

accumulator = accumulator � [addr]

mult addr Multiplies the contents of the accumulator and value at address

addr
accumulator = accumulator * [addr]

load C ; load C into the accumulator

mult D ; accumulator = C*D

add B ; accumulator = C*D+B

sub E ; accumulator = C*D+B-E

add F ; accumulator = C*D+B-E+F

add A ; accumulator = C*D+B-E+F+A

store A ; store the accumulator contents in A

6.2.4 Zero-Address Machines

In zero-address machines, locations of both operands are assumed to be at a default location.

These machines use the stack as the source of the input operands and the result goes back into

the stack. Stack is a LIFO (last-in-first-out) data structure that all processors support, whether

or not they are zero-address machines. As the name implies, the last item placed on the stack

is the first item to be taken out of the stack. A good analogy is the stack of trays you find in a

cafeteria. We discuss the stack later in this book (see Section 10.1 on page 388).

All operations on this type of machine assume that the required input operands are the top

two values on the stack. The result of the operation is placed on top of the stack. Table 6.4 gives

some sample instructions for the stack machines.

Notice that the first two instructions are not zero-address instructions. These two are special

instructions that use a single address and are used to move data between memory and stack.

Section 6.2 Number of Addresses 203

Table 6.4 Sample stack machine instructions

Instruction Semantics

push addr Places the value at address addr on top of the stack

push([addr])

pop addr Stores the top value on the stack at memory address addr
M(addr) = pop

add Adds the top two values on the stack and pushes the result onto

the stack

push(pop + pop)

sub Subtracts the second top value from the top value of the stack

and pushes the result onto the stack

push(pop � pop)

mult Multiplies the top two values in the stack and pushes the result

onto the stack

push(pop * pop)

All other instructions use the zero-address format. Let’s see how the stack machine translates

the arithmetic expression we have seen in the previous subsections. In these machines, the C

statement

A = B + C * D - E + F + A

is converted to the following code:

push E ; <E>

push C ; <C, E>

push D ; <D, C, E>

mult ; <C*D, E>

push B ; <B, C*D, E>

add ; <B+C*D, E>

sub ; <B+C*D-E>

push F ; <F, B+D*C-E>

add ; <F+B+D*C-E>

push A ; <A, F+B+D*C-E>

add ; <A+F+B+D*C-E>

pop A ; < >

On the right, we show the state of the stack after executing each instruction. The top element

of the stack is shown on the left. Notice that we pushed E early because we need to subtract it

from (B+C*D).

204 Chapter 6 Processor Organization and Performance

Stack machines are implemented by making the top portion of the stack internal to the

processor. This is referred to as the stack depth. The rest of the stack is placed in memory.

Thus, to access the top values that are within the stack depth, we do not have to access the

memory. Obviously, we get better performance by increasing the stack depth. Examples of

stack-oriented machines include the earlier Burroughs B5500 system and the HP3000 from

Hewlett–Packard. Most scientific calculators also use stack-based operands. For more details

on the HP3000 architecture, see [16].

6.2.5 A Comparison

Each of the four address schemes discussed in the previous subsections has certain advantages.

If you count the number of instructions needed to execute our example C statement, you notice

that this count increases as we reduce the number of addresses. Let us assume that the number of

memory accesses represents our performance metric: the lower the number of memory accesses,

the better.

In the three-address machine, each instruction takes four memory accesses: one access to

read the instruction itself, two for getting the two input operands, and a final one to write the

result back in memory. Since there are five instructions, this machine generates a total of 20

memory accesses.

In the two-address machine, each arithmetic instruction still takes four accesses as in the

three-address machine. Remember that we are using one address to double as a source and

destination address. Thus, the five arithmetic instructions require 20 memory accesses. In

addition, we have the load instruction that requires three accesses. Thus, it takes a total of 23

memory accesses.

The count for the accumulator machine is better as the accumulator is a register and reading

or writing to it, therefore, does not require a memory access. In this machine, each instruction

requires just two accesses. Since there are seven instructions, this machine generates 14 memory

accesses.

Finally, if we assume that the stack depth is sufficiently large so that all our push and pop

operations do not exceed this value, the stack machine takes 19 accesses. This count is obtained

by noting that each push or pop instruction takes two memory accesses, whereas the five

arithmetic instructions take one memory access each.

This comparison leads us to believe that the accumulator machine is the fastest. The com-

parison between the accumulator and stack machines is fair because both machines assume the

presence of registers. However, we cannot say the same for the other two machines. In partic-

ular, in our calculation, we assumed that there are no registers on the three- and two-address

machines. If we assume that these two machines have a single register to hold the temporary T,

the count for the three-address machine comes down to 12 memory accesses. The correspond-

ing number for the two-address machine is 13 memory accesses. As you can see from this

simple example, we tend to increase the number of memory accesses as we reduce the number

of addresses.

Section 6.2 Number of Addresses 205

8 bits 5 bits 5 bits

18 bits Opcode Rdest/Rsrc1 Rsrc2

8 bits 5 bits

13 bits Opcode Rdest/Rsrc2

8 bits Opcode

8 bits

2-address format

8 bits 5 bits 5 bits 5 bits

23 bits Opcode Rdest Rsrc2Rsrc1

3-address format

1-address format

0-address format

Figure 6.1 Instruction sizes for the four formats: This format assumes that the operands are located in

registers.

There are still problems with this comparison. The reason is that we have not taken the size

of the instructions into account. Since the stack machine instructions do not need to specify

the operand addresses, each instruction takes fewer bits to encode than an instruction in the

three-address machine. Of course, the difference between the two depends on several factors

including how the addresses are specified and whether we allow registers to hold the operands.

We discuss these issues shortly.

Figure 6.1 shows the size of the instructions when the operands are available in the regis-

ters. This example assumes that the processor has 32 registers like the MIPS processor and the

opcode takes 8 bits. The instruction size varies from 23 bits to 8 bits.

In practice, most systems use a combination of these address schemes. This is obvious from

our stack machine. Even though the stack machine is a zero-address machine, it uses load and

store instructions that specify an address. Some processors impose restrictions on where the

operands can be located. For example, the Pentium allows only one of the two operands to be

located in memory. Part V provides details on the Pentium instruction set.

RISC processors take the Pentium’s restriction further by allowing most operations to work

on the operands located in the processor registers. These processors provide special instruc-

tions to move data between the registers and memory. This architecture is called the load/store

architecture, which is discussed next.

206 Chapter 6 Processor Organization and Performance

104 bits Opcode destination address

8 bits 32 bits

source1 address source2 address

32 bits 32 bits

23 bits Opcode Rdest

8 bits 5 bits 5 bits 5 bits

Rsrc1 Rsrc2

Register format

Memory format

Figure 6.2 A comparison of the instruction size when the operands are in registers versus memory.

6.2.6 The Load/Store Architecture

In the load/store architecture, instructions operate on values stored in internal processor reg-

isters. Only load and store instructions move data between the registers and memory. RISC

machines as well as vector processors use this architecture, which reduces the size of the in-

struction substantially. If we assume that addresses are 32 bits long, an instruction with all three

operands in memory requires 104 bits whereas the register-based operands require instructions

to be 23 bits, as shown in Figure 6.2.

We discuss RISC processors in more detail in Part VI. We look at the vector processors in

Chapter 8. Table 6.5 gives some sample instructions for the load/store machines.

In these machines, the C statement

A = B + C * D - E + F + A

is converted to the following code:

load R1,B ; load B

load R2,C ; load C

load R3,D ; load D

load R4,E ; load E

load R5,F ; load F

load R6,A ; load A

mult R2,R2,R3 ; R2 = C*D

add R2,R2,R1 ; R2 = B + C*D

sub R2,R2,R4 ; R2 = B + C*D - E

add R2,R2,R5 ; R2 = B + C*D - E + F

add R2,R2,R6 ; R2 = B + C*D - E + F + A

store A,R2 ; store the result in A

Each load and store instruction takes two memory accesses: one to fetch the instruction and the

other to access the data value. The arithmetic instructions need just one memory access to fetch

the instruction, as the operands are in registers. Thus, this code takes 19 memory accesses.

Section 6.2 Number of Addresses 207

Table 6.5 Sample load/store machine instructions

Instruction Semantics

load Rd,addr Loads the Rd register with the value at address addr
Rd = [addr]

store addr,Rs Stores the value in Rs register at address addr
(addr) = Rs

add Rd,Rs1,Rs2 Adds the two values in Rs1 and Rs2 registers and places the

result in Rd register

Rd = Rs1 + Rs2

sub Rd,Rs1,Rs2 Subtracts the value in Rs2 from that in Rs1 and places the re-

sult in Rd register

Rd = Rs1 � Rs2

mult Rd,Rs1,Rs2 Multiplies the two values in Rs1 and Rs2 and places the result

in Rd register

Rd = Rs1 * Rs2

Note that the elapsed execution time is not directly proportional to the number of memory

accesses. Overlapped execution reduces the execution time for some processors. In particular,

RISC processors facilitate this overlapped execution because of their load/store architecture.

We give more details in Chapter 8.

In the RISC code, we assumed that we have six registers to load the values. However, you

don’t need this many registers. For example, once the value in R3 is used, we can reuse this

register. Typically, RISC machines tend to have many more registers than CISC machines. For

example, the MIPS processor has 32 registers and the Intel Itanium processor has 128 registers.

Both are RISC processors and are covered in Part VI.

6.2.7 Processor Registers

Processors have a number of registers to hold data, instructions, and state information. We can

classify the processors based on the structure of these registers and how the processor uses them.

Typically, we can divide the registers into general-purpose or special-purpose registers. Special-

purpose registers can be further divided into those that are accessible to the user programs and

those reserved for the system use. The available technology largely determines the structure

and function of the register set.

The number of addresses used in instructions partly influences the number of data registers

and their use. For example, stack machines do not require any data registers. However, as noted,

part of the stack is kept internal to the processor. This part of the stack serves the same purpose

208 Chapter 6 Processor Organization and Performance

that registers do. In three- and two-address machines, there is no need for the internal data

registers. However, as we have demonstrated before, having some internal registers improves

performance by cutting down the number of memory accesses. The RISC machines typically

have a large number of registers.

Some processors maintain a few special-purpose registers. For example, the Pentium uses

a couple of registers to implement the processor stack. Processors also have several registers

reserved for the instruction execution unit. Typically, there is an instruction register that holds

the current instruction and a program counter that points to the next instruction to be executed.

Throughout the book we present details on several processors. In total we describe five

processors—the Pentium, MIPS, PowerPC, Itanium, and SPARC. Of these five processors, only

the Pentium belongs to the CISC category. The rest are RISC processors. Our selection of

processors reflects the dominance of the RISC designs in newer processors and the market

domination of the Pentium. Pentium processor details are given in the next chapter. Part VI and

Appendix H give details on the RISC processors.

6.3 Flow of Control
Program execution, by default, proceeds sequentially. This default behavior is due to the se-

mantics associated with the execution cycle described in Section 1.5. The program counter

(PC) register plays an important role in managing the control flow. At a simple level, the PC

can be thought of as pointing to the next instruction. The processor fetches the instruction at the

address pointed to by the PC (see Figure 1.9 on page 17). When an instruction is fetched, the PC

is incremented to point to the next instruction. If we assume that each instruction takes exactly

four bytes as in MIPS and SPARC processors, the PC is automatically incremented by four

after each instruction fetch. This leads to the default sequential execution pattern. However,

sometimes we want to alter this default execution flow. In high-level languages, we use con-

trol structures such as if-then-else and while statements to alter the execution behavior

based on some run-time conditions. Similarly, the procedure call is another way we alter the

sequential execution. In this section, we describe how processors support flow control. We look

at both branch and procedure calls next. Interrupt is another mechanism to alter flow control,

which is discussed in Chapter 20.

6.3.1 Branching

Branching is implemented by means of a branch instruction. This instruction carries the address

of the target instruction explicitly. Branch instruction in processors such as the Pentium is also

called the jump instruction. We consider two types of branches: unconditional and conditional.

In both cases, the transfer control mechanism remains the same as that shown in Figure 6.3�.

Unconditional Branch

The simplest of the branch instructions is the unconditional branch, which transfers control to

the specified target. Here is an example branch instruction:

Section 6.3 Flow of Control 209

jump target
instruction y
instruction z

instruction x

instruction b
instruction c

target:
instruction a

(a) Normal branch execution (b) Delayed branch execution

jump target
instruction y
instruction z

instruction x

instruction b
instruction c

target:
instruction a

Figure 6.3 Control flow in branching.

branch target

Specification of the target address can be done in one of two ways: absolute address or PC-

relative address. In the former, the actual address of the target instruction is given. In the

PC-relative method, the target address is specified relative to the PC contents. Most processors

support absolute address for unconditional branches. Others support both formats. For example,

MIPS processors support absolute address-based branch by

j target

and PC-relative unconditional branch by

b target

In fact, the last instruction is an assembly language instruction, although the processor only

supports the j instruction.

The PowerPC allows each branch instruction to use either an absolute or a PC-relative ad-

dress. The instruction encoding has a bit—called the absolute address (AA) bit—to indicate the

type of address. As shown on page 589, if AA = 1, the absolute address is assumed; otherwise,

the PC-relative address is used.

If the absolute address is used, the processor transfers control by simply loading the spec-

ified target address into the PC register. If PC-relative addressing is used, the specified target

address is added to the PC contents, and the result is placed in the PC. In either case, since the

PC indicates the next instruction address, the processor will fetch the instruction at the intended

target address.

The main advantage of using the PC-relative address is that we can move the code from one

block of memory to another without changing the target addresses. This type of code is called

relocatable code. Relocatable code is not possible with absolute addresses.

210 Chapter 6 Processor Organization and Performance

Conditional Branch

In conditional branches, the jump is taken only if a specified condition is satisfied. For example,

we may want to take a branch if the two values are equal. Such conditional branches are handled

in one of two basic ways:

• Set-Then-Jump: In this design, testing for the condition and branching are separated. To

achieve communication between these two instructions, a condition code register is used.

The Pentium follows this design, which uses a flags register to record the result of the

test condition. It uses a compare (cmp) instruction to test the condition. This instruction

sets the various flag bits to indicate the relationship between the two compared values.

For our example, we are interested in the zero bit. This bit is set if the two values are the

same. Then we can use the conditional jump instruction that jumps to the target location

if the zero bit is set. The following code fragment, which compares the values in registers

AX and BX, should clarify this sequence:

cmp AX,BX ;compare the two values in AX and BX

je target ;if equal, transfer control to target

sub AX,BX ;if not, this instruction is executed

. . .

target:

add AX,BX ;control is transferred here if AX = BX

. . .

The je (jump if equal) instruction transfers control to target only if the two values

in registers AX and BX are equal. More details on the Pentium jump instructions are

presented in Part V.

• Test-and-Jump: Most processors combine the testing and branching into a single instruc-

tion. We use the MIPS processor to illustrate the principle involved in this strategy. The

MIPS provides several branch instructions that test and branch (for a quick peek, see

Table 15.9 on page 633). The one that we are interested in here is the branch on equal

instruction shown below:

beq Rsrc1,Rsrc2,target

This conditional branch instruction tests the contents of the two registers Rsrc1 and

Rsrc2 for equality and transfers control to target if equal. If we assume that the

numbers to be compared are in register t0 and t1, we can write the branch instruction

as

beq $t1,$t0,target

This single instruction replaces the two-instruction cmp/je sequence used by the Pen-

tium.

Some processors maintain registers to record the condition of the arithmetic and logical

operations. These are called condition code registers. These registers keep a record of the

Section 6.3 Flow of Control 211

status of the last arithmetic/logical operation. For example, when we add two 32-bit integers,

it is possible that the sum might require more than 32 bits. This is the overflow condition

that the system should record. Normally, a bit in the condition code register is set to indicate

this overflow condition. The MIPS, for example, does not use condition registers. Instead,

it uses exceptions to flag the overflow condition. On the other hand, the Pentium, PowerPC,

and SPARC processors use condition registers. In the Pentium, the flags register records this

information. In the PowerPC, this information is maintained by the XER register. SPARC

processors use a condition code register.

Some instruction sets provide branches based on comparisons to zero. Some example pro-

cessors that provide this type of branch instructions include the MIPS and SPARC processors.

Highly pipelined RISC processors support what is known as delayed branch execution. To

see the difference between the delayed and normal branch execution, let us look at the normal

branch execution shown in Figure 6.3�. When the branch instruction is executed, control is

transferred to the target immediately. The Pentium, for example, uses this type of branching.

In delayed branch execution, control is transferred to the target after executing the instruc-

tion that follows the branch instruction. For example, in Figure 6.3�, before the control is

transferred, the instruction instruction y (shown shaded) is executed. This instruction

slot is called the delay slot. For example, the SPARC uses delayed branch execution. In fact,

it also uses delayed execution for procedure calls. Why does this help? The reason is that by

the time the processor decodes the branch instruction, the next instruction is already fetched.

Thus, instead of throwing it away, we improve efficiency by executing it. This strategy requires

reordering of some instructions. In Appendix H, which gives the SPARC processor details, we

give examples of how it affects the programs.

6.3.2 Procedure Calls

The use of procedures facilitates modular programming. Procedure calls are slightly different

from the branches. Branches are one-way jumps: once the control has been transferred to the

target location, computation proceeds from that location, as shown in Figure 6.3. In procedure

calls, we have to return control to the calling program after executing the procedure. Control is

returned to the instruction following the call instruction as shown in Figure 6.4.

From Figures 6.3 and 6.4, you will notice that the branches and procedure calls are similar in

their initial control transfer. For procedure calls, we need to return to the instruction following

the procedure call. This return requires two pieces of information:

• End of Procedure: We have to indicate the end of the procedure so that the control can be

returned. This is normally done by a special return instruction. For example, the Pentium

uses ret and the MIPS uses the jr instruction to return from a procedure. We do the

same in high-level languages as well. For example, in C, we use the return statement to

indicate an end of procedure execution. High-level languages allow a default fall-through

mechanism. That is, if we don’t explicitly specify the end of a procedure, control is

returned at the end of the block.

• Return Address: How does the processor know where to return after completing a proce-

212 Chapter 6 Processor Organization and Performance

instruction x
call procA
instruction y
instruction z

procA:
instruction a
instruction b

instruction c
return

Called procedureCalling procedure

. . .

. . .

Figure 6.4 Control flow in procedure calls.

dure? This piece of information is normally stored when the procedure is called. Thus,

when a procedure is called, it not only modifies the PC as in a branch instruction, but also

stores the return address. Where does it store the return address? Two main places are

used: a special register or the stack. In processors that use a register to store the return

address, some use a special dedicated register, whereas others allow any register to be

used for this purpose. The actual return address stored depends on the processor. Some

processors such as the SPARC store the address of the call instruction itself. Others

such as the MIPS and the Pentium store the address of the instruction following the call
instruction.

The Pentium uses the stack to store the return address. Thus, each procedure call involves

pushing the return address onto the stack before control is transferred to the procedure code. The

return instruction retrieves this value from the stack to send the control back to the instruction

following the procedure call. A more detailed description of the procedure call mechanism is

found in Chapter 10.

MIPS processors allow any general-purpose register to store the return address. The return

statement can specify this register. The format of the return statement is

jr $ra

where ra is the register that contains the return address. The PowerPC, on the other hand, has

a dedicated register, called the link register (LR), to store the return address. Both the MIPS

and the PowerPC use a modified branch to implement a procedure call. The advantage of these

processors is that simple procedure calls do not have to access memory. In Appendix H, we

describe the procedure call mechanism used by the SPARC processor.

Most RISC processors that support delayed branching also support delayed procedure calls.

As in the branch instructions, control is transferred to the target after executing the instruction

that follows the call (see Figure 6.5). Thus, after the procedure is done, control should be

Section 6.4 Instruction Set Design Issues 213

instruction x
call procA
instruction y
instruction z

procA:
instruction a
instruction b

instruction c
return

Called procedureCalling procedure

. . .

. . .

Figure 6.5 Control flow in delayed procedure calls.

returned to the instruction after the delay slot (to instruction z in the figure). We show

some SPARC examples of this in Appendix H.

Parameter Passing

The general architecture dictates how parameters are passed on to the procedures. There are two

basic techniques: register-based or stack-based. In the first method, parameters are placed in

processor registers and the called procedure will read the parameter values from these registers.

In the stack-based method, parameters are pushed onto the stack and the called procedure would

have to pop them off the stack.

The advantage of the register method is that it is faster than the stack method. However,

because of the limited number of registers, it imposes a limit on the number of parameters.

Furthermore, recursive procedures cannot use the register-based mechanism. Because RISC

processors tend to have more registers, register-based parameter passing is used in PowerPC

and MIPS processors. The Pentium, due to the small number of registers, tends to use the

stack for parameter passing. We describe these two parameter passing mechanisms in detail in

Chapter 10.

Recent processors use a register window mechanism that allows a more flexible parameter

passing. The SPARC and Intel Itanium processors use this parameter passing mechanism. We

describe this method in detail in Chapter 14 and Appendix H.

6.4 Instruction Set Design Issues
There are several design issues that influence the instruction set of a processor. We have already

discussed one issue, the number of addresses used in an instruction. Recent processors, except

for the Pentium, use three-address instructions. The Pentium, as mentioned, uses the two-

address format. In this section, we discuss some other design issues.

214 Chapter 6 Processor Organization and Performance

6.4.1 Operand Types

Processor instructions typically support only the basic data types. These include characters,

integers, and floating-point numbers. Since most memories are byte addressable, representing

characters does not require special treatment. Recall that in a byte-addressable memory, the

smallest memory unit we can address, and therefore access, is one byte. We can, however,

use multiple bytes to represent larger operands. Processors provide instructions to load various

operand sizes. Often, the same instruction is used to load operands of different sizes. For

example, the Pentium instruction

mov AL,address /* Loads an 8-bit value */

loads the AL register with an 8-bit value from memory at address. The same instruction can

also be used to load 16- and 32-bit values as shown in the following two Pentium instructions.

mov AX,address /* Loads a 16-bit value */

mov EAX,address /* Loads a 32-bit value */

In these instructions, the size of the operand is indirectly given by the size of the register used.

The AL, AX, and EAX are 8-, 16-, and 32-bit registers, respectively. In those instructions that

do not use a register, we can use size specifiers. We show examples of this in Section 9.5.1 on

page 339. This type of specification is typical for the CISC processors.

RISC processors specify the operand size in their load and store operations. Note that only

the load and store instructions move data between memory and registers. All other instructions

operate on register-wide data. Below we give some sample MIPS load instructions:

lb Rdest,address /* Loads a byte */

lh Rdest,address /* Loads a halfword (16 bits) */

lw Rdest,address /* Loads a word (32 bits) */

ld Rdest,address /* Loads a doubleword (64 bits) */

The last instruction is available only on 64-bit processors. In general, when the size of the data

moved is smaller than the destination register, it is sign-extended to the size of Rdest. There

are separate instructions to handle unsigned values. For unsigned numbers, we use lbu and

lhu instead of lb and lh, respectively.

Similar instructions are available for store operations. In store operations, the size is reduced

to fit the target memory size. For example, storing a byte from a 32-bit register causes only the

lower byte to be stored at the specified address. SPARC processors also use a similar set of

instructions.

So far we have seen operations on operands located either in registers or in memory. In most

instructions, we can also use constants. These constants are called immediate values because

these values are available immediately as they are encoded as part of the instruction. In RISC

processors, instructions excluding the load and store use registers only; any nonregister value

is treated as a constant. In most assembly languages, a special notation is used to indicate

registers. For example, in MIPS assembly language, the instruction

Section 6.4 Instruction Set Design Issues 215

add $t0,$t0,-32 /* t0 = t0 - 32 */

subtracts 32 from the t0 register and places the result back in the t0 register. Notice the

special notation to represent registers. But there is no special notation for constants. Pentium

assemblers also use a similar strategy. Some assemblers, however, use the “#” sign to indicate

a constant.

6.4.2 Addressing Modes

Addressing mode refers to how the operands are specified. As we have seen in the last section,

operands can be in one of three places: in a register, in memory, or part of the instruction

as a constant. Specifying a constant as an operand is called the immediate addressing mode.

Similarly, specifying an operand that is in a register is called the register addressing mode. All

processors support these two addressing modes.

The difference between the RISC and CISC processors is in how they specify the operands

in memory. RISC processors follow the load/store architecture. Instructions other than load

and store expect their operands in registers or specified as constants. Thus, these instructions

use register and immediate addressing modes. Memory-based operands are used only in the

load and store instructions. In contrast, CISC processors allow memory-based operands for all

instructions. In general, CISC processors support a large variety of addressing modes. RISC

processors, on the other hand, support only a few, often just two, addressing modes in their

load/store instructions. Most RISC processors support the following two addressing modes to

specify the memory-based operands:

• The address of the memory operand is computed by adding the contents of a register and

a constant. If this constant is zero, the contents of the register are treated as the operand

address. In this mode, the memory address is computed as

Address = Register + constant.

• The address of the memory operand is computed by adding the contents of two registers.

If one of the register contents is zero, this addressing mode becomes the same as the one

above with zero constant. In this mode, the memory address is computed as

Address = Register + Register.

Among the RISC processors we discuss, the Itanium provides slightly different addressing

modes. It uses the computed address to update the contents of the register. For example, in

the first addressing mode, the register contents are replaced by the value obtained by adding the

constant to the contents of the register.

The Pentium provides a variety of addressing modes. The main motivation for this is the

desire to support high-level language data structures. For example, one of the Pentium’s ad-

dressing modes can be used to access elements of a two-dimensional array. We discuss the

addressing modes of the Pentium in Chapter 11.

216 Chapter 6 Processor Organization and Performance

6.4.3 Instruction Types

Instruction sets provide different types of instructions. We describe some of these instruction

types here.

Data Movement Instructions: All instruction sets support data movement instructions. The

type of instructions supported depends on the architecture. We can divide these instructions

into two groups: instructions that facilitate movement of data between memory and registers

and between registers. Some instruction sets have special data movement instructions. For

example, the Pentium has special instructions such as push and pop to move data to and from

the stack.

In RISC processors, data movement between memory and registers is restricted to load and

store instructions. Some RISC processors do not provide any explicit instructions to move data

between registers. This data transfer is accomplished indirectly. For example, we can use the

add instruction

add Rdest,Rsrc,0 /* Rdest= Rsrc + 0 */

to copy contents of Rsrc to Rdest. The Pentium provides an explicit mov instruction to copy

data. The instruction

mov dest,src

copies the contents of src to dest. The src and dest can be either registers or memory.

In addition, src can be a constant. The only restriction is that both src and dest cannot be

located in memory. Thus, we can use the mov instruction to transfer data between registers as

well as between memory and registers.

Arithmetic and Logical Instructions: Arithmetic instructions support floating-point as well

as integer operations. Most processors provide instructions to perform the four basic arith-

metic operations: addition, subtraction, multiplication, and division. Since the 2s complement

number system is used, addition and subtraction operations do not need separate instructions

for unsigned and signed integers. However, the other two arithmetic operations need separate

instructions for signed and unsigned numbers.

Some processors do not provide division instructions, whereas others support only partially.

What do we mean by partially? Remember that the division operation produces two outputs: a

quotient and a remainder. We say that the division operation is fully supported if the division

instruction produces both results. For example, the Pentium and MIPS provide full division

support. On the other hand, the SPARC and PowerPC only provide the quotient, and the Itanium

does not support the division instruction at all.

Logical instructions provide the basic bit-wise logical operations. Processors typically pro-

vide logical and and or operations. Other logical operations including the not and xor
operations are supported by most processors.

Most of these instructions set the condition code bits, either by default or when explicitly in-

structed. The common condition code bits, which record the status of the most recent operation,

are

Section 6.4 Instruction Set Design Issues 217

S — Sign bit (0 = positive, 1 = negative);

Z — Zero bit (0 = nonzero value, 1 = zero value);

O — Overflow bit (0 = no overflow, 1 = overflow);

C — Carry bit (0 = no carry, 1 = carry).

The sign bit is updated to indicate whether the result is positive or negative. Since the most

significant bit indicates the sign, the S bit is a copy of the sign bit of the result of the last

operation. The zero bit indicates whether the last operation produced a zero or nonzero result.

This bit is useful in comparing two values. For example, the Pentium instructions

cmp count,25 /* compare count to 25 */

je target /* if equal, jump to target*/

compare the value of count to 25 and set the condition code bits. The jump instruction checks

the zero bit and jumps to target if the zero bit is set (i.e., Z = 1). Note that the cmp instruction

actually subtracts 25 from count and sets the Z bit if the result is zero.

The overflow bit records the overflow condition when the operands are signed numbers.

The carry bit is set if there is a carry out of the most significant bit. The carry bit indicates an

overflow when the operands are unsigned numbers.

In the Pentium, the condition code bits are set by default. In other processors, two versions

of arithmetic and logical instructions are provided. For example, in the SPARC processor,

ADD does not update the condition codes, whereas the ADDcc instruction updates the condition

codes.

Flow Control and I/O Instructions: The flow control instructions include the branch and

procedure calls discussed before. Since we have already discussed these instructions, we do not

describe them. Interrupt is another flow control mechanism that is discussed in Chapter 20.

The type of input/output instructions provided by processors varies widely from processor

to processor. The main characteristic that influences the I/O instructions is whether the pro-

cessor supports isolated or memory-mapped I/O. Recall that isolated I/O requires special I/O

instructions whereas memory-mapped I/O can use the data movement instructions to move data

to or from the I/O devices (see Section 1.7 on page 27).

Most processors support memory-mapped I/O. The Pentium is an example of a processor

that supports isolated I/O. Thus, it provides separate instructions to perform input and output.

The in instruction can be used to read a value from an I/O port into a register. For example, the

instruction

in AX,io_port

reads a 16-bit value from the specified I/O port. Similarly, the out instruction

out io_port,AX

writes the 16-bit value in the AX register to the specified I/O port. More details on the Pentium

I/O instructions are given in Chapter 19.

218 Chapter 6 Processor Organization and Performance

72 bits Opcode destination address

8 bits 32 bits

source address

32 bits

18 bits Opcode Rdest

8 bits 5 bits 5 bits

Rsrc

Register format

Memory format

Figure 6.6 Instruction size depends on whether the operands are in registers or memory.

6.4.4 Instruction Formats

Processors use two types of basic instruction format: fixed-length or variable-length instruc-

tions. In the fixed-length encoding, all (or most) instructions use the same size instructions. In

the latter encoding, the length of the instructions varies quite a bit. Typically, RISC processors

use fixed-length instructions, and the CISC designs use variable-length instructions.

All 32-bit RISC processors discussed in this book use instructions that are 32-bits wide.

Some examples are the SPARC, MIPS, and PowerPC processors. The Intel Itanium, which

is a 64-bit processor, uses fixed-length, 41-bit wide instructions. We discuss the instruction

encoding schemes of all these processors throughout the book.

The size of the instruction depends on the number of addresses and whether these addresses

identify registers or memory locations. Figure 6.1 shows how the size of the instruction varies

with the number of addresses when all operands are located in registers. This format assumes

that eight bits are reserved for the operation code (opcode). Thus we can have 256 different

instructions. Each operand address is five bits long, which means we can have 32 registers.

This is the case in processors like the MIPS. The Itanium, for example, uses seven bits as it has

128 registers.

As you can see from this figure, using fewer addresses reduces the length of the instruction.

The size of the instruction also depends on whether the operands are in memory or in registers.

As mentioned before, RISC processors keep their operands in registers. In CISC processors like

the Pentium, operands can be in memory. If we use 32-bit memory addresses for each of the

two addresses, we would need 72 bits for each instruction (see Figure 6.6) whereas the register-

based instruction requires only 18 bits. For this and other efficiency reasons, the Pentium does

not permit both addresses to be memory addresses. It allows at most one address to be a memory

address.

The Pentium, which is a CISC processor, encodes instructions that vary from one byte to

several bytes. Part of the reason for using variable length instructions is that CISC processors

tend to provide complex addressing modes. For example, in the Pentium, if we use register-

based operands, we need just 3 bits to identify a register. On the other hand, if we use a

memory-based operand, we need up to 32 bits. In addition, if we use an immediate operand,

Section 6.5 Microprogrammed Control 219

we need a further 32 bits to encode this value into the instruction. Thus, an instruction that

uses a memory address and an immediate operand needs 8 bytes just for these two components.

You can realize from this description that providing flexibility in specifying an operand leads to

dramatic variations in instruction sizes.

The opcode is typically partitioned into two fields: one identifies the major operation type,

and the other defines the exact operation within that group. For example, the major operation

could be a branch operation, and the exact operation could be “branch on equal.” These points

become clearer as we describe the instruction formats of various processors in later chapters.

6.5 Microprogrammed Control
In the last section, we discussed several issues in designing a processor’s instruction set. Let

us now focus on how these instructions are executed in the hardware. The basic hardware is

the datapath discussed in Chapter 1 (e.g., see page 16). Before proceeding further, you need to

understand the digital logic material presented in Chapters 2 and 3.

We start this section with an overview of how the hardware executes the processor’s instruc-

tions. To facilitate our description, let’s look at the simple datapath shown in Figure 6.7. This

datapath uses a single bus to interconnect the various components. For the sake of concreteness,

let us assume the following:

• The A bus, all registers, and the system data and address buses are all 32 bits wide,

• There are 32 general-purpose registers G0 to G31,

• The ALU can operate on 32-bit operands.

Since we are using only a single bus, we need two temporary holding registers: registers A and

C. Register A holds the A operand required by the ALU. The output of the ALU is stored in

register C. If you have read the material presented on digital logic design in Part II, you will

see that the implementation of these registers is straightforward. A sample design is shown in

Figure 6.8. A set of 32 D flip-flops is used to latch the A operand for the ALU. As shown in

this figure, we use the control input Ain to clock in the data. The output of the A register is

always available to the A input of the ALU. A similar implementation for the C register uses

Cin as the clock input signal to store the ALU output. The output of this register is fed to the

A bus only if the control signal Cout is activated. Later on we show how these control signals

are used to execute processor instructions.

The memory interface uses the four shaded registers shown in Figure 6.7. These registers

interface to the data and address buses on the one side and to the A bus on the other. Figure 6.9

shows how these registers are interfaced to these buses. Details about the use of these registers

and the required control signals are discussed next.

• PC Register: This is the program counter register we have discussed before. It contains

the address of the next instruction to be executed. In our datapath, we assume that we can

place the PC contents on the system address bus. This register can also place its contents

220 Chapter 6 Processor Organization and Performance

A

.

.

.

MAR

MDR

PC

Memory interface registers

T
o
 s

y
st

em
 b

u
s

IR

A B

C

ALU control

C

A bus

.

.

G0

G1

G30

G31

General-purpose registers

ALU

Figure 6.7 An example 1-bus datapath.

on the A bus; in addition, we can write into this register from the A bus. We use PCin to

load the contents of the A bus into the PC register. The contents of the PC register can be

placed on the system address bus and A bus, simultaneously if required. The two control

signals, PCbout and PCout, independently control this operation.

• IR Register: The instruction register holds the instruction to be executed. The IR register

receives the instruction from the system data bus. Because of its simple interface, we just

need IRbin and IRout control signals.

• MAR Register: The memory address register is used to hold the address of an operand

stored in memory. This is used in addressing modes that allow an operand to be located in

memory. This register interface is similar to that of the PC register. It uses three control

signals as does the PC register: MARbout, MARin, and MARout.

Section 6.5 Microprogrammed Control 221

32

32

32

32

32

32

Ain

Cin

Cout

A B

ALU

C

ALU control

CP

A

D Q

CP

C

D Q

A bus

Figure 6.8 ALU circuit details: All datapaths are assumed to be 32 bits wide.

• MDR Register: The memory data register is used to hold the operand read from memory.

The address of the operand is in MAR. This register provides a bidirectional interface to

both the system data bus and the A bus. Thus, we need the four control signals shown in

Figure 6.9.

The general-purpose registers interface to the A bus only. Each of the 32 registers has two

control signals, Gxin and Gxout, where GX is in the range G0 to G31.

So how do we use this hardware to execute processor instructions? Let us consider the add
instruction

add Rd,Rs1,Rs2

to illustrate the control signals needed to execute instructions. This instruction adds the contents

of general-purpose registers Rs1 and Rs2 and stores the result in Rd. Suppose we want to add

the contents of registers 5 and 7 and place the result in register 9. That is, we want to execute

the following instruction:

add %G9,%G5,%G7

222 Chapter 6 Processor Organization and Performance

32

32MDRbin MDRin32

32

MDR

MDRbout MDRout

32 32

PCout

32

32MARin

32

3232

32

A bus

PC

PCin

Address busData bus

IRout

IR

IRbinPCbout

MARbout MARout

MAR

Figure 6.9 Implementation details of the memory interface.

Since we have only a single bus, we have to latch the contents of one of the two source registers

in our temporary holding register A. Then we can move the contents of the other register on to

the A bus to add the two values. We outline the sequence of steps involved in performing this

addition:

Section 6.5 Microprogrammed Control 223

1. We assert the G5out signal to place the contents of the general-purpose register G5 on the

A bus. Simultaneously, we assert the Ain signal to latch the A bus contents. Asserting

these two control signals simultaneously transfers contents of the G5 register to the A

register via the A bus.

2. We now have to place the contents of G7 on the A bus. We do this by asserting the G7out
control signal. Since the output of the A register is always available to the A input of the

ALU, we can now instruct the ALU to perform the addition by specifying appropriate

function control. The ALU output is latched into the C register by asserting the Cin
signal.

3. The final step is to write the value in the C register to G9. This transfer is achieved by

asserting Cout and G9in simultaneously. This step completes the addition operation.

Ideally, the time required to perform each of these steps should be the same. This defines our

cycle time. Although the actions taken in Steps 1 and 3 are similar (assume that each step takes

one cycle), the second step might require more time. It depends on the time needed by the ALU

to perform the addition operation. If this time is more than that required for the other two steps,

we can add more cycles to the second step. This is similar to the “wait” cycles inserted into a

memory read or write operation (see Section 5.3.2 on page 154).

In our description, we conveniently skipped one important question: How does the processor

know that it has to perform the addition operation? This information is obtained from the opcode

field of the instruction.

Now we show how instructions are fetched from memory. Instruction fetch involves placing

the PC contents on the system address bus and, after waiting for the memory to place the data

on the system data bus, reading the data into the IR register. We have to also update the PC to

point to the next instruction. We assume that each instruction is 32 bits wide. Updating the PC

means adding 4 to the PC contents. As in the add instruction execution, we detail the sequence

of steps involved below:

1. Assert PCbout to place the PC contents on the system address bus. Since we have to

update the PC contents to point to the next instruction, we use the services of the ALU to

do this. Therefore, we simultaneously pass the PC contents to the ALU via the A bus by

asserting the PCout signal. The ALU is asked to perform the add4 operation on its B

input. The add4 is a unary operator that adds 4 to the input. As in the add instruction

execution, the ALU output is latched into the C register by asserting the Cin signal.

2. We wait one clock cycle to give time for the memory to retrieve the instruction. We read

this instruction during the next clock cycle. During this cycle, we also load the updated

PC value by copying it from the C register. This transfer requires the Cout and PCin
signals.

3. Let us assume that the memory is able to place the data on the system data bus by this

clock cycle. All we have to do now is to copy the data into the IR register. We can

easily accomplish this by asserting the IRbin signal. This completes the instruction

fetch operation.

224 Chapter 6 Processor Organization and Performance

Load/store FSM

Call FSM

Instruction fetch & decode

Branch FSM

Register operations FSM

. . . .

Start

Figure 6.10 A high-level FSM for instruction execution.

The instruction in the IR register is decoded to find the operation to be performed (e.g., add).

The opcode field specifies the type of operation to be done. If, for example, the operation is

addition, we have to identify the source and destination registers and generate control signals to

perform the operation as explained before. The behavior of the fetch-decode-execute cycle can

be expressed by using a finite state machine. Recall that we have used finite state machines in

Chapter 4 to design digital logic circuits.

Figure 6.10 shows a high-level FSM for implementing the instruction execution cycle. The

first step is common to all instructions: the instruction must be fetched and decoded. After

decoding, the opcode identifies the group to which the instruction belongs. In this figure, we

have used typical instruction groups found on RISC machines. We have shown four example

instruction groups:

1. Load/Store Instructions: These instructions move data between registers and memory.

All other instructions operate on the data located in the registers. The FSM associated

with this group of instructions will further distinguish the various types of load and store

instructions.

2. Register Instructions: Instructions in this group include the arithmetic and logical instruc-

tions. All required operands are assumed to be in the processor’s internal registers. The

FSM for this group will generate the necessary control signals depending on the actual

instruction (such as add, which we have seen before).

3. Branch Instructions: These instructions alter the flow control of a program. The target of

the branch can be specified directly as a constant in the instruction or indirectly through

a register (see our discussion in Section 6.3.1). The branch FSM distinguishes among the

different types of branches and generates appropriate control signals.

4. Call Instructions: The last group we have shown is the procedure call instructions. As

mentioned in our discussion in Section 6.3.2, call instructions are related to the branch

Section 6.5 Microprogrammed Control 225

...IR

OR

array

AND

array

.

.

.

...Control counter

. . .

Control

word

...

PLA

clock

Status and

condition codes

Figure 6.11 Hardware implementation of the controller.

group but are more complicated as they have to return control after completing the pro-

cedure.

Depending on the processor instruction set, more instruction groups can be added. Since we

have covered FSMs in detail in Chapter 4, we do not discuss this topic in any more detail.

Instead, we look at hardware- and software-based implementations of such an FSM.

6.5.1 Hardware Implementation

From our discussion, it is clear that we can implement instructions by generating appropriate

control signals. The required control signals are described in the corresponding FSM. As de-

scribed in Chapter 4, we can implement the FSM in hardware. Figure 6.11 shows an example

implementation using a PLA.

The input to the PLA consists of three groups of signals. We need to feed the opcode so that

the circuit generates appropriate control signals for that instruction. This input comes from the

opcode field of the IR register.

The next group is the status and condition codes. This input is required for instructions

such as conditional branches. For example, branch on equal beq requires the zero flag input to

decide whether to take the branch.

The third input is driven by the clock input. The control counter keeps track of the steps

involved in executing an instruction. For example, in executing the add instruction, we identi-

fied three steps. We can use this counter to specify the control signals that should be generated

during each step.

226 Chapter 6 Processor Organization and Performance

If the instruction set is simple, hardware implementation is preferred. This is typically the

case for RISC processors. However, for complex instruction sets, this implementation is not

preferred. Instead, a program is used to generate the control signals. This is the approach taken

by CISC processors. We describe this approach next.

6.5.2 Software Implementation

The hardware approach is complex and expensive to implement for CISC machines. This was

particularly true in the 1960s and 1970s. Furthermore, hardware implementation is very rigid.

To avoid these problems, Wilkes and Stinger [40] proposed a software approach. If we look

closely, the FSM specifies the control signals that should be generated during each step. To see

what we mean, let’s rewrite the instruction fetch and add instruction control sequences.

Instruction Step Control signals

Instruction fetch S1 PCbout: read: PCout: ALU=add4: Cin;

S2 read: Cout: PCin;

S3 read: IRbin;

S4 Decodes the instruction and jumps to the appropriate

execution routine

add %G9,%G5,%G7 S1 G5out: Ain;

S2 G7out: ALU=add: Cin;

S3 Cout: G9in: end;

If we assume that each step can be executed in one cycle, we need three cycles to fetch the

instruction and at least one cycle to decode the instruction. Another three cycles are needed to

execute the add instruction. All signals in a single step can be asserted simultaneously. We

separate the signals by a colon (:) and use a semicolon (;) to indicate the end of a step. Most of

the signals are from the datapath shown in Figure 6.7, but there are some new signals that need

explanation. The read signal is used to generate the system control bus read signal. As we

have seen in Chapter 5, this signal initiates a memory read cycle.

In instruction fetch, we use the ALU function add4 to update the PC contents. This ALU

function adds 4 to the B input. In the add instruction, we use GXout and GXin to control

output and input to the general-purpose register GX. The end signal indicates that the instruction

execution has been completed and we should initiate another instruction fetch cycle.

To illustrate the use of the MAR and MDR registers, let us see how the instruction

add %G9,[%G5],%G7

Section 6.5 Microprogrammed Control 227

A if Microcode for instruction fetch

.

.

.

.
Microcode for opcode 2A 2

.

.
Microcode for opcode 1A 1

.

.
Microcode for opcode 0A 0

.

.

.

.
Microcode for other opcodes

Figure 6.12 A simple microcode organization.

is implemented. This instruction uses register indirect addressing to specify one of the operands,

and is very similar to the previous add instruction except that one of the operands is in memory.

The general-purpose register G5 gives the operand address. To execute this instruction, we need

to get this operand from memory. To do this, we place the contents of G5 in MAR and initiate a

memory read cycle by placing the address in MAR on the system address bus. After a cycle, the

operand from the memory is placed in MDR. From then on, we go through the same sequence

of steps as in the previous add instruction, as shown below:

Instruction Step Control signals

add %G9,[%G5],%G7 S1 G5out: MARin: MARbout: read;

S2 read;

S3 read: MDRbin: MDRout: Ain;

S4 G7out: ALU=add: Cin;

S5 Cout: G9in: end;

These examples suggest an alternative way of generating the control signals. Suppose that

we encode the signals for each step as a codeword. Then we can store these codewords as a

program just as with machine language instructions. Each such codeword is referred to as a

microinstruction and the sequence of codewords for an instruction constitutes a microroutine.

We can write a microprogram that implements the FSM we talked about before.

A straightforward way of structuring the microprogram is shown in Figure 6.12, which

shows a linear organization. The instruction fetch microroutine is shown first in this micropro-

228 Chapter 6 Processor Organization and Performance

Address

generator

Control

word

PCµ

...

...

Control store

Condition codes

IR

Clock

Figure 6.13 Microprogramming uses a control store to control the actions.

gram. After the instruction has been decoded, it jumps to the appropriate microroutine based on

the opcode. The execution of the microcode is sequential. When the end signal is encountered,

the instruction fetch routine is executed.

A microcontroller that executes this microprogram is shown in Figure 6.13. The micropro-

gram is stored in the control store. The microprogram counter (�PC) is similar to the program

counter we have for machine language programs. Like the PC, �PC specifies the codeword that

should be executed next. The address generation circuit is used to initiate the starting address

(i.e., the address of the instruction fetch microroutine) and to implement microprogram jumps.

For example, at the end of executing an instruction, the end signal causes initiation of the in-

struction fetch. If we assume that the instruction fetch microroutine is at address 0, the end
signal can be used to clear the address register to initiate an instruction fetch cycle.

The address generation circuit is also useful to generate the appropriate address depending

on the opcode from the IR register and conditional branch type of instructions by taking the

condition code inputs. The clock input steps the �PC through the microprogram.

The microprogram organization shown in Figure 6.12 makes the microprogram unnecessar-

ily long as common parts of the code are replicated due to its linear organization. An efficient

Section 6.5 Microprogrammed Control 229

Abz

Abn

Test Z; Jump to B if Z is set

Microcode for fall-through

.

.

Test N; Jump to B if N is set

.

.

A

B

.

.

Microcode for successful branch

Unconditional jump to A

Figure 6.14 Microcode organization to allow conditional branches in the microprogram.

way of organizing the microprogram is shown in Figure 6.14. In this organization, as in the

programs we write, we can keep only one copy of the common microcode. To use this or-

ganization, however, we have to augment each microinstruction with the address of the next

microinstruction. Thus, our control word gets longer than in the other organization. Since we

do not replicate the common code, we end up saving space in the control store.

Microinstruction Format

Each microinstruction consists of the control signals needed to execute that instruction on the

datapath. Let us consider the single-bus datapath shown in Figure 6.7. The microinstruction

format for this datapath is shown in Figure 6.15.

The first group of 12 signals comes from the control signals shown in Figure 6.9. These

signals control the memory interface. The next three bits control the A and C latches (see

Figure 6.8). The general-purpose registers are controlled by the 64 signals: two for each register.

We are assuming that the ALU can perform eight functions: add, add4, sub, BtoC, and, or,

shl, and shr. These functions are self-explanatory except for the following:

• The add4 function is used to update the PC contents. We have seen an example usage of

this function in the instruction fetch microroutine.

• The BtoC function copies the B input to the C output. This function, for example, is

useful for moving data from one register to another. However, in our single-bus datapath,

we can do this transfer without involving the ALU. For example, to copy contents of G5

to G6, we use the following microinstruction:

G5out: G6in;

230 Chapter 6 Processor Organization and Performance

ALU

latches

Misc.

signals

General-purpose

register signalsMemory interface signals

ALU functions

ad
d

ad
d

4

su
b

B
to

C

an
d

o
r

sh
l

sh
r

re
ad

w
ri

te

en
d

P
C

o
u

t

P
C

in

P
C

b
o

u
t

IR
o

u
t

IR
b

in

M
A

R
o

u
t

M
A

R
in

M
A

R
b

o
u

t

M
D

R
o

u
t

M
D

R
in

M
D

R
b

o
u

t

M
D

R
b

in

A
in

C
o

u
t

C
in

G
0

in

G
0

o
u

t

G
1

in

G
1

o
u

t

G
3

1
o

u
t

G
3

1
in

.
.

.

.
.

.

Figure 6.15 A simple microinstruction format for the datapath shown in Figure 6.7. In this organization,

there is one bit for each signal. This microcode organization is called the horizontal organization.

As we show next, depending on the encoding scheme used for the microinstructions, we

may not be able to specify both G5out and G6in in the same codeword. Furthermore,

as we show later, in 2- and 3-bus systems, such a transfer will have to go through the

ALU. In that case, we need a function to pass one of the ALU inputs to the output.

• The shl and shr functions shift left and right by one bit position, respectively.

These are some of the typical instructions provided by processors. Deriving microinstructions

in the format shown in Figure 6.15 is straightforward. For example, the codeword for

G5out: G6in;

consists of G5out = 1, G6in = 1, and all the other bits are zero.

The advantage of this microinstruction format is that it allows specification of many actions

in a single instruction. For example, we can copy the contents of the G0 register to registers G2

through G5 in one step, as shown below:

G0out: G2in: G3in: G4in: G5in: end;

The main problem with this format is the size of the microinstruction. In our example, we

need 90 bits for each codeword. This encoding scheme follows the horizontal organization.

Clearly, horizontal organization does not require any decoding of the information contained in

the microinstruction. These bits can be used directly to generate control signals.

We can reduce the codeword size by encoding the information in the microinstruction. For

example, instead of using 64 bits to control the 32 general-purpose registers, we could use

a 5-bit register number and a single bit to indicate in or out control. This type of encoding

Section 6.5 Microprogrammed Control 231

A
in

C
in

/o
u

t

ALU

function

re
ad

/w
ri

te

Next address

P
C

b
o

u
t

IR
b

in

M
A

R
b

o
u

t

M
D

R
b

o
u

t

M
D

R
b

in

R
in

/o
u

t

Register number

R
se

l

en
d

M
U

X
1

M
U

X
0

Figure 6.16 A vertical microcode organization.

scheme is called the vertical organization. Vertical organization can specify only a few func-

tions compared to horizontal organization. The microinstruction format, shown in Figure 6.16,

is organized along these lines. As you can see from this figure, the size of the codeword is sub-

stantially smaller: we need only 20 bits (excluding the Next address portion and the two MUX

signals). Of course, there is no free lunch. This format needs additional decoders and execution

takes more cycles. Since we can specify only one of the 32 general-purpose registers, even a

simple register-to-register copy takes two steps. For example, to copy the contents of G0 to G2,

we use the following microinstruction sequence:

G0out: ALU=BtoC: Cin;

Cout: G2in: end;

To further demonstrate the disadvantages of the vertical microcode organization, let’s look at

the copying example discussed before. To copy G0 to G2 through G5, we need several cycles:

G0out: ALU=BtoC: Cin;

Cout: G2in;

Cout: G3in;

Cout: G4in;

Cout: G5in: end;

This code also shows the need for the BtoC ALU function.

The semantics of the microinstruction format shown in Figure 6.16 requires some explana-

tion. The encoding scheme uses six bits for the register number. The reason is that we have 32

general-purpose register and four memory interface registers. When the most significant bit of

the “Register number” field is 0, the remaining five bits are taken as the register number of a

general-purpose register. When this bit is 1, each of the remaining four bits is used to indicate

one of the four memory interface registers—PC, IR, MAR, and MDR, as shown below:

Register number field Register specified

0xxxxx General-purpose register Gxxxxx

100001 PC register

100010 IR register

100100 MAR register

101000 MDR register

232 Chapter 6 Processor Organization and Performance

The first five bits are used to generate memory control signals for the four memory interface

registers. The Rin/out signal specifies the in (1) or out (0) direction of data movement on

the A bus. These actions take place only when the register selection signal Rsel is asserted.

When this bit is 0, no register is selected. For example, we set Rsel to 0 if we want to feed the

C register back to the A register. The read and write actions are combined into a single control

bit. Like the Rin/out bit, the Cin/out bit is used to control data movement to the C register.

For the A register, we just have a single Ain control bit.

The ALU functions are encoded using three bits as follows:

ALU function field Function specified

000 add

001 add4

010 sub

011 BtoC

100 and

101 or

110 shl

111 shr

Deriving microinstructions in the vertical format is simple. For example, the microinstruc-

tion

G0out: ALU=BtoC: Cin;

can be encoded as

Register number = 000000

Rin/out = 0

ALU function = 011

Cin/out = 1

All other fields in the instruction are zero.

The register number of a general-purpose register comes from two main sources:

• The machine instruction in IR specifies the registers that should be used in the current

instruction. In our case, we need three register specifications: two source registers Rs1
and Rs2 and a destination register Rd.

• The microinstruction can also specify one of these registers using the register number

field.

To select a particular register, we can use a multiplexer/decoder circuit such as the one shown in

Figure 6.17. The microinstruction controls the multiplexer function using the MUX1 and MUX0

Section 6.5 Microprogrammed Control 233

A busGeneral-purpose registers

.

.

G0

G1

G30

G31

5 55

Control

input

Rs2Rs1 RdOpcode . . .

MUX

Decode logic

IR

Figure 6.17 An example general register control circuit.

control bits. The decoder circuit takes the 5-bit multiplexer output and Rin/out and Rsel
control inputs from the microinstruction to enable and select a register. If the Rsel signal is

inactive, no G register is selected.

We mentioned before that, to provide complete support for microinstruction branching, we

need to add the next microinstruction address. The format shown in Figure 6.16 includes this

field. The microcontroller shown in Figure 6.18 shows how the vertically organized microcode

is executed.

The microinstruction register (�IR) holds the microinstruction. Since we are using the ver-

tical organization, we need to decode the microinstruction to generate the control signals. The

�PC provides the address of the microinstruction to the control store. The �PC can be loaded

from either the Next address field or from the start address generator. The start address

generator outputs the appropriate microroutine address depending on the opcode and control

codes.

The designer needs to weigh the pros and cons of the horizontal and vertical micropro-

gram organizations. For example, to provide improved performance, the horizontal scheme is

preferred, as it does not impose any restrictions on the concurrent use of the recourses in the

datapath. But the microprogram tends to be large, and the hardware cost increases. If the de-

signer wants a cheaper version, vertical organization may be used. The downside is the reduced

performance due to the restrictions imposed by the vertical scheme.

Datapaths with More Buses

In our discussions so far, we have used a single-bus datapath. The use of single bus forces

us to multiplex the bus to transfer operands, which takes more time to execute instructions.

Figure 6.19 shows a 2-bus datapath with one input bus (A bus) and one output bus (C bus).

234 Chapter 6 Processor Organization and Performance

n

n

nn

MUX

Control

store

Next address

Microinstruction decoder

Control

sequencer

Start

address

generator

PCµ

IRµ

Condition codes

m

Opcode

Control signals

. . .

IR

Figure 6.18 Microprogramming uses a control store to control the actions.

Since we have a separate output bus, we do not need the C register to capture the ALU output.

The availability of two buses reduces the time needed to execute instructions. To see the

impact of two buses, let us implement the add instruction:

add %G9,%G5,%G7

The microroutine for this instruction is shown below:

Section 6.5 Microprogrammed Control 235

.

.

.
.

.

G0

G1

G30

G31

General-purpose registers

T
o

 s
y

st
em

 b
u

s

MAR

MDR

PC

IR

A

ALU

C

A

Memory interface registers

B

ALU control

C bus A bus

Figure 6.19 An example 2-bus datapath.

Instruction Step Control signals

add %G9,%G5,%G7 S1 G5out: Ain;

S2 G7out: ALU=add: G9in;

Compared to the single-bus datapath, we reduce the number of steps by one. How do we execute

this instruction on the 3-bus datapath shown on page 16? We just need one step to execute this

instruction:

Instruction Step Control signals

add %G9,%G5,%G7 S1 G5outA: G7outB: ALU=add: G9in;

236 Chapter 6 Processor Organization and Performance

Notice that the 3-bus data path does not require the A and C registers. However, since the

registers are connected to both A and B buses, we have to specify which bus should receive the

register output. We use the notations G?outA and G?outB to indicate that register G? output

should be placed on the A bus and B bus, respectively.

6.6 Performance
Measuring performance of a computer system is a complex task. It is easy to define a set of very

complex performance metrics, but such metrics are not useful in practice. In addition, complex

metrics make performance measurement difficult. What we need is a simple yet representative

metric that captures the capabilities of the computer system for our usage. The keyword is our

usage, which means we want a metric that takes into account the kind of applications we run on

our system. For example, if we plan to run scientific applications involving lots of floating-point

calculations, there is no point in knowing how many integer calculations a given machine can

perform. Similarly, if our application almost always uses character manipulation, we don’t find

much use in knowing how many integer and floating-point calculations per second the system

can do. Thus, it is important to take the expected mix of applications, also called the workload,

into account and derive metrics that make sense for the target user group.

A workload typically consists of a suite of representative programs, which can be executed

to measure the time. If this suite of applications represents the target user application mix rea-

sonably, then we can compare the performance of different systems by comparing the execution

times for this particular workload. Obviously, if machine X executes the workload in 300 sec-

onds and machine Y takes 330 seconds, we say that machine X is better for this workload. You

should note that, if we change the workload, it is quite possible that machine Y performs better

than machine X for the new workload. The point to take away from this discussion is that the

workload is important in comparing the performance of different machines.

If your company is evaluating the performance of two computer systems from competing

manufacturers, you can run some typical programs from your application mix and compare the

execution times. However, not every company is going spend time and effort in evaluating the

machine they intend to buy. Furthermore, such a strategy does not always work. For example,

if you are a designer working on a new processor, it is not feasible to run programs during

the initial stages of the design process. Furthermore, there may not be an optimizing compiler

available for you to run the programs. Thus, we need some general-purpose metrics that give

us an idea of the relative performance of various systems.

We already mentioned that the workload is important. This implies that we should not define

a single metric and use it for all purposes. Standard bodies define a set of benchmark programs

that approximate the intended real-world applications. Benchmarks can be real programs taken

from sample applications or synthetic. In synthetic benchmarks, artificial programs are created

to exercise the system in a specific way. For example, the Whetstones and Dhrystones bench-

marks, described later, are examples of synthetic benchmarks. In Section 6.6.4, we describe

some real benchmarks from SPEC.

Section 6.6 Performance 237

6.6.1 Performance Metrics

Computer system performance can be measured by several performance metrics. The metrics

we use depend on the purpose as well as the component of the system in which we are interested.

For example, if you are interested in the network component, we can use network bandwidth,

which tells us the number of bits it can transmit per second. Two common metrics are used

for almost all components: response time and throughput. Response time expresses the time

needed to execute a task. For example, on a network, we may be interested in message delivery

time. In this context, message delivery time represents the response time.

Throughput refers to the rate of flow. Looking at the network example again, throughput of

the network represents the number of messages delivered per second. In this section, in order

to limit the scope of our discussion, we focus on the processor.

For processors, response time represents the time it takes for a job to complete its execution.

Response time includes the time to preprocess the job, any waiting time if the processor is busy

with other jobs, and the actual execution time.

As you can see from this discussion, the response time metric is something in which a user

is interested. When we say time, we usually mean the wall clock time, the amount of time the

user had to wait to finish the job. This time consists of the actual CPU time spent on the job and

waiting time that includes the time to access the disk and execute other jobs.

Throughput expresses the system capacity. For example, we say, “The system can execute

100 transactions per second,” to express its capacity. Throughput is a system metric, whereas

the response time is a single job metric. As a result of this orientation, users are interested in

minimizing response times for their jobs, whereas a system administrator strives to get higher

throughput from the system. Often, these two goals are conflicting. To minimize response time

to your job, you don’t want the system to run any other job, which wastes system resources. To

increase throughput, you want to run a certain number of jobs concurrently so that the system

resources are well utilized. A compromise is usually struck between these conflicting objec-

tives. In Section 6.6.4, we show that both response time and throughput are used to characterize

a system.

MIPS and MFLOPS are sometimes used as performance metrics. MIPS stands for millions

of instructions per second. Although it is a simple metric, it is practically useless to express

the performance of a system. Since instructions vary widely among the processors, a simple

instruction execution rate will not tell us anything about the system. For example, complex

instructions take more clocks than simple instructions. Thus, a complex instruction rate will

be lower than that for simple instructions. The MIPS metric does not capture the actual work

done by these instructions. MIPS is perhaps useful in comparing various versions of processors

derived from the same instruction set.

MFLOPS is another popular metric often used in the scientific computing area. MFLOPS

stands for millions of floating-point operations per second. This is a far better metric than MIPS

as it captures the number of operations in which the user is interested. This measure also takes

various system overheads to read operands, store results, and loop testing. We later look at more

useful metrics.

238 Chapter 6 Processor Organization and Performance

6.6.2 Execution Time Calculation

The time required to execute a program represents an intrinsic measure of a processor’s capa-

bility. Execution time depends on the following three factors:

• Instruction Count (IC): We need to know the number of instructions required to execute

the program. Obviously, the more instructions a program takes, the more time it needs

to execute the program. If all instructions of a processor take more or less the same

amount of time to execute, a simple instruction count is sufficient. If, on the other hand,

instruction execution times vary widely as in CISC processors, we need to get an effective

instruction count.

• Clocks per Instruction (CPI): This represents time in terms of CPU clocks required for

an average instruction. In RISC processors most instructions take the same number of

clocks. In CISC processors, however, the clock count depends on the instruction type. In

such cases, we can take the average value. We describe later a number of ways one can

compute averages.

• Clock Period (T): Clock period is defined as the time taken by a single clock cycle.

Given these three factors, we can estimate the execution time of a program as

Execution time � �� � ��� � � � (6.1)

We can then define performance of a system as

Performance �
�

Execution time
� (6.2)

These three factors provide us with an understanding of the impact of various improvements

on the performance. For example, we double the performance by increasing the clock rate from

500 MHz to 1 GHz, which reduces the clock period from 2 to 1 ns. In reality, application per-

formance is dependent on many other factors including the number of other programs running

on the system, the performance of the cache subsystem, and I/O subsystem latencies.

6.6.3 Means of Performance

We often want a single summarizing metric to get an idea of performance, even though we may

conduct several experiments. Once the appropriate workload has been identified and the per-

formance metric has been selected, we need to find a method to get a value for the performance

metric. There are several ways of obtaining such a metric. We start with the simplest of all,

the arithmetic mean. Suppose you run two programs to evaluate a system. If the individual

execution times are 100 seconds (for Program 1) and 80 seconds (for Program 2), we compute

the arithmetic mean as

Mean execution time �
��� � ��

�
� �� seconds.

Section 6.6 Performance 239

In general, the arithmetic mean of � numbers ��� ��� � � � � �� is computed as

Arithmetic mean �
�

�

��

���

�� �

where
�

�

���
�� � �� � �� � � � � � ��.

There is one implicit assumption in our arithmetic mean calculation of the two programs:

We assume that both programs appear equally likely in the target workload. Now suppose

we know that Program 2 appears three times more often than Program 1. What would be the

summary execution time that reflects this reality? Of course, we want to give three times more

weight to the execution time of Program 2. That is, the mean is computed as

Mean execution time �
�� ��� � �� ��

�
� �� seconds.

This is called the weighted arithmetic mean. This computation assigns a weight for each value.

This fact becomes clear if we rewrite the previous expression as

Mean execution time �
�

�
� ��� �

�

�
� �� � �� seconds.

This expression clearly shows that Program 1 execution time is given a weight of 1/4 and the

other program 3/4. The general formula is

Weighted mean execution time �

��

���

�� � �� �

where �� is the weight expressed as a fraction. In our example, Program 1 has a weight of 25%

and Program 2 has 75%. We express these weights as �� � ���� and �� � ��	�. Note that all

weights should add up to 1. That is,
�

�

���
�� � �. The normal arithmetic mean is a special

case of the weighted arithmetic mean with equal weights.

The weighted arithmetic mean is fine for metrics such as the response time to look at the

performance of a single system. When comparing relative performance of two systems, it does

cause problems. Let’s assume that the response time of each machine is expressed relative to

a reference machine. For example, most performance metrics from SPEC are expressed as a

ratio relative to a reference machine. Table 6.6 shows an example to demonstrate the problems

in using the arithmetic means. It lists the execution times of two programs on two machines (A

and B) and a reference machine (REF). The first two columns under “Normalized values” give

response time values normalized to the reference machine. That is, these values are obtained

by dividing the response time of machines A and B by the corresponding response times for the

reference machine.

When we use the arithmetic mean, we get 30.25 and 36 for machines A and B, respectively.

The next column, labeled “Ratio,” gives the ratio of B over A (i.e., 36/30.25) as 1.19. When we

compute the corresponding ratio using the normalized values, we get 1.16. Clearly, there is a

mismatch between the two values.

240 Chapter 6 Processor Organization and Performance

Table 6.6 Arithmetic versus geometric mean

Response time on machine Normalized values

REF A B Ratio A B Ratio

Program 1 10 11 12 1.1 1.2

Program 2 40 49.5 60 1.24 1.5

Arithmetic mean 30.25 36 1.19 1.17 1.35 1.16

Geometric mean 23.33 26.83 1.15 1.167 1.342 1.15

This is where the geometric mean is useful. The geometric mean of � numbers ��� ��� � � � � ��
is defined as

Geometric mean � �

���� ��
���

�� or

�
��
���

��

����
�

where
��

��� �� � �� � �� � � � � � ��. When we use the geometric mean, we get a matching

value of 1.15 for the two ratios computed from the normalized and the original values. This is

because the geometric mean has the property

Geometric mean����

Geometric mean����
� Geometric mean

�
��

��

�
�

Analogous to the weighted arithmetic mean, we can also define the weighed geometric mean as

Weighted geometric mean �
��
���

��
�� �

where �� is the weight as defined in the weighted arithmetic mean. The geometric mean can

be used to maintain consistency in summarizing normalized results. Unfortunately, geometric

means do not predict execution times. To see this, consider the execution times of two machines,

A and B, shown in Table 6.7. The arithmetic mean says that Machine A is about three times

faster than Machine B. On the other hand, the geometric mean suggests that both machines

perform the same. Why? The geometric mean keeps track of the performance ratio. Since

Program 1 runs 10 times faster on Machine A and Program B runs 10 times faster on Machine B,

by using the geometric mean we erroneously conclude that the average performance of the two

programs is the same.

The geometric mean, however, is useful when our metric is a ratio, like the throughput.

For example, the SPECviewperf benchmark from SPEC, which measures the 3D rendering

performance of systems running under OpenGL, uses the weighted arithmetic mean [34]. This

benchmark uses a throughputlike measure (frames/second) as the unit.

Section 6.6 Performance 241

Table 6.7 An example to demonstrate the drawback of the arithmetic mean

Response time on machine

A B

Program 1 20 200

Program 2 50 5

Arithmetic mean 35 102.5

Geometric mean 31.62 31.62

6.6.4 The SPEC Benchmarks

We mentioned two types of benchmarks: synthetic and real. Synthetic benchmarks are pro-

grams specifically written for performance testing. Whetstone and Dhrystone benchmark pro-

grams are two example synthetic benchmarks. The Whetstones benchmark, named after the

Whetstone Algol compiler, was developed in the mid-1970s to measure floating-point perfor-

mance. The performance is expressed in MWIPS, millions of Whetstone instructions per sec-

ond. The Dhrystone benchmark was developed in 1984 to measure integer performance. Both

these benchmarks are small programs. A drawback with these benchmarks is that they encour-

aged excessive optimization by compilers to distort the performance results.

As computer systems become more complex, we need to measure performance of various

components for different types of applications. The Standard Performance Evaluation Corpo-

ration (SPEC) was formed as a nonprofit consortium consisting of computer vendors, system

integrators, universities, research organizations, publishers, and consultants. The objective is to

provide benchmarks to measure performance of components as well as the system as a whole

for multiple operating systems and environments. These benchmarks would be based on real-

world applications. To give you an idea of the types of benchmarks provided, we describe some

sample benchmarks next.

SPEC CPU2000

This benchmark is used for measuring the processor performance, memory, and compiler. The

previous version, CPU95, was retired at the end of June, 2000. For this benchmark, applications

are classified as “integer” if they spend less than 1% of their time performing floating-point

calculations. This definition covers most nonscientific applications such as compilers, utilities,

and simulators [34, 18]. SPEC CPU2000 consists of 26 applications that span four languages:

C, C++, FORTRAN 77, and FORTRAN 90. SPEC CPU2000 consists of integer and floating-

point components.

242 Chapter 6 Processor Organization and Performance

Table 6.8 SPEC CINT2000 integer benchmarks

Benchmark Language Description

164.gzip C Compression (A GNU data compression program)

175.vpr C Integrated circuit computer-aided design program (It performs

field-programmable gate arrays (FPGA) circuit placement and

routing.)

176.gcc C Compiler (GNU C compiler)

181.mcf C Combinatorial optimization program (It performs single-depot

vehicle scheduling in public mass transportation.)

186.crafty C Game-playing program (chess)

197.parser C Word-processing program (a syntactic parser of English, which

has a dictionary of about 60,000 word forms)

252.eon C++ Computer visualization program (a probabilistic raytracer)

253.perlbmk C PERL programming language (The reference workload consists

of four scripts.)

254.gap C Group theory (an interpreter used to implement a language and

library designed mostly for computing in groups)

255.vortex C Object-oriented database (a single-user object-oriented

database transaction benchmark)

256.bzip2 C Compression (This is based on Julian Seward’s bzip2 version

0.1.)

300.twolf C Place and route simulator (a placement and global routing pack-

age used for creating the microchip lithography artwork)

CINT2000: This is an integer benchmark to measure the performance for integer operations.

This benchmark consists of the 12 applications shown in Table 6.8.

CFP2000: This is a floating-point benchmark that measures the performance for floating-point

operations. It consists of the 14 applications shown in Table 6.9. As you can see from this list,

these applications are all derived mainly from a scientific computation workload.

Performance is expressed relative to a reference machine, which is a 300 MHz Sun Ultra 5.

This machine gets a score of 100. Integer and floating-point performance of various Pentium

III and 4 processors is shown in Figure 6.20.

Section 6.6 Performance 243

Table 6.9 SPEC CFP2000 floating-point benchmarks

Benchmark Language Description

168.wupwise FORTRAN 77 Physics/quantum chromodynamics

171.swim FORTRAN 77 Shallow water modeling

172.mgrid FORTRAN 77 Multigrid solver (3D potential field)

173.applu FORTRAN 77 Parabolic/elliptic partial differential equations

177.mesa C 3D graphics library

178.galgel FORTRAN 90 Computational fluid dynamics

179.art C Image recognition/neural networks

183.equake C Seismic wave propagation simulation

187.facerec FORTRAN 90 Image processing (face recognition)

188.ammp C Computational chemistry

189.lucas FORTRAN 90 Number theory/primality testing

191.fma3d FORTRAN 90 Finite-element crash simulation

200.sixtrack FORTRAN 77 High energy nuclear physics accelerator design

301.apsi FORTRAN 77 Meteorology (pollutant distribution)

SPECmail2001

This is a standardized mail server benchmark designed to measure a system’s ability to ser-

vice email requests. It was developed by mail server vendors and research organizations to

enable performance evaluation of systems supporting the Post Office Protocol (POP3) and Sim-

ple Mail Transfer Protocol (SMTP). This benchmark uses both throughput and response time

to characterize a mail server system with realistic network connections, disk storage, and client

workloads. The benchmark focuses on the ISPs with 10,000 to 1,000,000 users. It can also be

used by vendors to test and finetune products under development.

Results from SPECmail2001 are based on a messages-per-minute rating that indicates the

load the mail server can sustain with a reasonable quality of service. For example, Mirapoint

MSR 2.8 has a SPECMail2001 rating of 2000 messages/minute. It uses a single 400 MHz

Pentium II processor with 32 KB of primary cache (16 KB of instruction cache and 16 KB data

cache) and 512 KB of secondary cache.

244 Chapter 6 Processor Organization and Performance

0

100

200

300

400

500

600

700

600 800 1000 1200 1400 1600 1800 2000

Clock rate (MHz)

S
P

E
C

in
t2

0
0

0

0

100

200

300

400

500

600

700

600 800 1000 1200 1400 1600 1800 2000

Clock rate (MHz)

S
P

E
C

fp
2

0
0

0

PIII

P4

P4

PIII

Figure 6.20 SPEC CPU2000 scores for Pentium III and 4 processors.

SPECMail2001 also specifies a response time limit for various actions such as SMTP con-

nect and POP delete, as shown in Table 6.10. The percentage compliance rating of MSR 2.8 is

also shown in this table.

Section 6.6 Performance 245

Table 6.10 SPECMail2000 results for Mirapoint MSR 2.8 mail server system

Function
Response time

limit (seconds)

Required percentage

compliance (%)

Percentage Compliance (%)

80% 100% 120%

SMTP Connect 5 � �� 100.00 100.00 98.02

SMTP Data 5 � �� 100.00 100.00 100.00

POP Connect 5 � �� 100.00 100.00 100.00

POP Status 5 � �� 100.00 100.00 100.00

POP Retrieve 5 � �� 100.00 100.00 100.00

POP Delete 5 � �� 100.00 100.00 100.00

Delivery Time 60 � �� 99.14 99.01 95.60

Error Rate N/A � � 0.15 0.14 1.13

SPECweb99

SPECweb99 is a benchmark used to measure the performance of HTTP servers. It measures

a server’s ability to handle HTTP GET requests from a number of external client drivers. The

metric used is the number of simultaneous connections that conform to the specified bit rate

limits. Each test is repeated three times for a reported result. The SPECweb99 metric is the

median result for the three iterations.

As an example of the SPECweb99 benchmark, we present the values for the Sun Fire 4810

that runs the iPlanet Web Server 6.0. This server, which uses 12 750 MHz UltraSPARC III with

96 KB of primary cache (32 KB instruction cache and 64 KB data cache) and 8 MB of secondary

cache, has a SPECweb99 rating of 8739 simultaneous connections. It uses 12 gigabit Ethernets

to support the Web activities. Table 6.11 gives the three iteration results for the throughput and

response time.

SPECjvm98

SPECjvm98 is the Java Virtual Machine benchmark suite that allows users to evaluate perfor-

mance of the JVM client platform. This benchmark evaluates performance of both hardware

and software components. It measures the efficiency of software components such as the JVM

and the just-in-time (JIT) compiler. It also takes into account hardware components including

the performance of the CPU for integer and floating-point operations, cache, and memory.

The SPECjvm98 benchmark suite consists of eight different applications. Five of these are

either real applications or derived from real applications. Each test measures the time it takes to

246 Chapter 6 Processor Organization and Performance

Table 6.11 Sun Fire SPECWeb99 results

Iteration
Conforming

connections

Conformance

(%)

Throughput

(operations/sec)

Response time

(msec)

1 8749 100.0 24414.4 358.2

2 8739 99.9 24188.4 361.5

3 8739 99.9 24184.7 361.6

load the program, verify the class files, compile on the fly if a JIT compiler is used, and execute

the test. Each test is run several times and a geometric mean is used to compute a composite

score for all tests. Test scores are normalized against a reference machine: a midrange IBM

PowerPC 604 with a 133 MHz processor.

6.7 Summary
When designing a processor, several design choices will have to be made. These choices are

dictated by the available technology as well as the requirements of the target user group. Pro-

cessor designers will have to make compromises in order to come up with the best design. This

chapter looked at some of the important design issues involved in such an endeavor. Other

design issues are covered in the rest of the book.

Here we looked at how the processor design at the ISA level gets affected by various design

choices. We stated that the number of addresses in an instruction is one of the choices that

can have an impact on the instruction set design. It is possible to have zero-, one-, two-, or

three-address instruction sets; however, most recent processors use the three-address format.

The Pentium, on the other hand, uses the two-address format.

The addressing mode is another characteristic that affects the instruction set. RISC pro-

cessors tend to use the load/store architecture and use simple addressing modes. Often, these

processors support just two addressing modes. CISC processors such as the Pentium provide a

wide variety of addressing modes.

Both of these choices—number of addresses and the complexity of addressing modes—

affect the instruction format. RISC processors use fixed-length instructions because they use

the load/store architecture and support simple addressing modes. CISC processors use variable-

length instructions to accommodate various complex addressing modes.

We also looked at how the instructions are executed in the underlying hardware. The hard-

ware consists of a datapath with one, two, or three internal buses. We have seen the tradeoffs

associated with the three types of datapaths. For simple instruction sets, typically used by RISC

processors, necessary control signals for the datapath can be generated by the hardware. For

complex instruction sets used by CISC processors, a software-based approach called micropro-

gram control is used. We have discussed in detail how the microprogrammed control works.

Section 6.8 Exercises 247

In the last section, we covered processor performance. We introduced the concept of clocks

per instruction and how it can be used to estimate the execution time of a program. We provided

information on quantifying the performance of processors. Synthetic benchmarks tend to be ex-

ploited to produce skewed performance results. The recent trend is to use real application-based

benchmarks to evaluate performance. Furthermore, benchmarks are specialized to the target ap-

plication. For example, there is a benchmark for mail servers, another for web servers, and so

on. To give you a concrete idea, we have presented several example benchmarks proposed by

the SPEC consortium.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• 0-address machines

• 1-address machines

• 2-address machines

• 3-address machines

• Absolute address

• Accumulator machines

• Addressing modes

• Arithmetic instructions

• Conditional branch

• Data movement instructions

• Delayed procedure call

• End of procedure

• Flow control instructions

• Immediate addressing mode

• Input/output instructions

• Instruction format

• Instruction set design issues

• Instruction types

• Isolated I/O

• Load/store architecture

• Load/store instructions

• Logical instructions

• Memory-mapped I/O

• Microcontroller

• Microprogrammed control

• Number of addresses

• Opcode

• Operand types

• Parameter passing

• PC-relative

• Procedure call

• Processor registers

• Register addressing mode

• Return address

• Stack depth

• Stack machines

• Unconditional branch

• Wait cycles

6.8 Exercises
6–1 We have discussed instructions with zero to three addresses. Discuss why modern RISC

processors use the three-address format.

6–2 The Pentium processor uses the two-address format. Do you support the decision made

by the Pentium designers in this regard? Justify your answer.

248 Chapter 6 Processor Organization and Performance

6–3 Discuss the advantages of the load/store architecture. Focus your discussion on why

current RISC processors use this architecture.

6–4 In Section 6.2.5, we have stated that 19 memory accesses are required to execute the

example expression under the assumption that the push and pop operations do not require

any memory accesses. Calculate the number of memory references required if the stack

depth is zero (i.e., all push/pop operations require memory access).

6–5 RISC processors tend to have a large number of registers compared to CISC processors.

Explain why.

6–6 What is the difference between normal and delayed branch execution? Why do some

processors use delayed branch execution?

6–7 Conditional branching can be done in one of two basic ways: set-then-jump or test-and-

jump. Discuss the advantages and disadvantages of these two methods.

6–8 During a procedure invocation, the return address must be saved in order to send the

control back to the calling program. Most RISC processors store the return address in a

register, whereas the Pentium uses the stack to store the return address. Discuss the pros

and cons of these two schemes.

6–9 Explain why RISC processors tend to use fixed-length instructions whereas the CISC

processors such as the Pentium do not.

6–10 We stated that the Pentium does not allow both operands to be located in memory. Explain

the rationale for this.

6–11 In the single-bus datapath shown in Figure 6.7 (page 220), both the PC and IR registers

are connected to the system bus. This allows the PC register to place the address on the

system bus and the IR register to receive the instruction from the system bus. Suppose that

these two registers are connected only to the A bus as are the general-purpose registers.

Describe the steps involved in placing the PC address on the system bus. Also explain

how the IR register will receive the instruction. What impact would this modification

have on the processor performance?

6–12 Suppose we want to implement the instruction

shl4 %G7,%G5

on the single-bus datapath shown in Figure 6.7. This instruction shifts the contents of G5
by four bit positions and stores the result in G7. Show how this instruction is implemented

using the table format we used for the add instruction.

6–13 Our example ALU does not have a multiply by 10 function. Show how we can implement

the following instruction:

mul10 %G7,%G5

This instruction multiplies the contents of G5 by 10 and places the result in G7. As-

sume that there will be no overflow. How many cycles do you need to implement this

instruction?

Section 6.8 Exercises 249

6–14 On the 2-bus datapath shown in Figure 6.19 (page 235) implement the data movement

instruction

mov %G7,%G5

to copy contents of G5 to G7.

6–15 What is wrong with performance metrics like MIPS? What are the circumstances in which

they are useful to compare the performance of processors?

6–16 What are real and synthetic benchmarks? Why is there a preference for the use of real

benchmarks in current standards?

6–17 What are the major problems with synthetic benchmarks such as Whetstones?

6–18 What is the need for having so many specialized benchmarks such as SPECmail2001 and

SPECweb99?

Chapter 7

The Pentium Processor

Objectives
• To describe the basic organization of the Intel Pentium processor;

• To introduce the Pentium real mode memory organization;

• To discuss the protected mode memory architecture.

We discussed processor design space in the last chapter. Now we look at Pentium processor

details. We present details of its registers and memory architecture. Other Pentium details are

discussed in later chapters.

We start our discussion with a brief history of the Intel architecture. This architecture en-

compasses the X86 family of processors. All these processors, including the Pentium, belong

to the CISC category. In the following section, we describe the Pentium processor signals.

Section 7.3 presents the internal register details of the Pentium. Even though the Pentium is

a 32-bit processor, it maintains backward compatibility to the earlier 16-bit processors. The

next two sections describe the real and protected mode memory architectures. The real mode

is provided to mimic the 16-bit 8086 memory architecture. Protected mode architecture is the

native mode for the Pentium. In both modes, the Pentium supports segmented memory archi-

tecture. In the protected mode, it also supports paging to facilitate implementation of virtual

memory. It is important for an assembly language programmer to understand the segmented

memory organization supported by the Pentium. We conclude the chapter with a summary.

7.1 The Pentium Processor Family
Intel introduced microprocessors way back in 1969. Their first 4-bit microprocessor was the

4004. This was followed by the 8080 and 8085. The work on these early microprocessors led

to the development of the Intel architecture (IA). The first processor in the IA family was the

8086 processor, introduced in 1979. It has a 20-bit address bus and a 16-bit data bus.

251

252 Chapter 7 The Pentium Processor

The 8088 is a less expensive version of the 8086 processor. The cost reduction is obtained

by using an 8-bit data bus. Except for this difference, the 8088 is identical to the 8086 processor.

Intel introduced segmentation with these processors. These processors can address up to four

segments of 64 KB each. This IA segmentation is referred to as the real mode segmentation and

is discussed in detail later in this chapter.

The 80186 is a faster version of the 8086. It also has a 20-bit address bus and 16-bit data bus,

but has an improved instruction set. The 80186 was never widely used in computer systems. The

real successor to the 8086 is the 80286, which was introduced in 1982. It has a 24-bit address

bus, which implies 16 MB of memory address space. The data bus is still 16 bits wide, but the

80286 has some memory protection capabilities. It introduced the protection mode into the IA

architecture. Segmentation in this new mode is different from the real mode segmentation. We

present details on this new segmentation later. It is backwards compatible in that it can run the

8086-based software.

Intel introduced its first 32-bit CPU—the 80386—in 1985. It has a 32-bit data bus and 32-

bit address bus. The memory address space has grown substantially (from 16 MB address space

to 4 GB). This processor introduced paging into the IA architecture. It also allowed definition

segments as large as 4 GB. This effectively allowed for a “flat” model (i.e., effectively turning

off segmentation). Later sections present details on this. Like the 80286, it can run all the

programs written for 8086 and 8088 processors.

The Intel 80486 was introduced in 1989. This is an improved version of the 80386. While

maintaining the same address and data buses, it combined the coprocessor functions for per-

forming floating-point arithmetic. The 80486 processor has added more parallel execution

capability to instruction decode and execution units to achieve a scalar execution rate of one

instruction per clock. It has an 8 KB onchip L1 cache. Furthermore, support for the L2 cache

and multiprocessing has been added. Later versions of the 80486 processors incorporated fea-

tures such as energy savings for notebooks.

The latest in the family is the Pentium series. It is not named 80586 because Intel found

belatedly that numbers couldn’t be trademarked! The first Pentium was introduced in 1993.

The Pentium is similar to the 80486 but uses a 64-bit wide data bus. Internally, it has 128- and

256-bit wide datapaths to speed internal data transfers. However, the Pentium instruction set

supports 32-bit operands like the 80486. The Pentium has added a second execution pipeline

to achieve superscalar performance by having the capability to execute two instructions per

clock. It has also doubled the onchip L1 cache, with 8 KB for data and another 8 KB for the

instructions. Branch prediction (discussed in the next chapter) has also been added.

The Pentium Pro processor has a three-way superscalar architecture. That is, it can execute

three instructions per CPU clock. The address bus has been expanded to 36 bits, which gives

it an address space of 64 GB. It also provides dynamic execution including out-of-order and

speculative execution. These features are discussed in Chapter 14. In addition to the L1 caches

provided by the Pentium, the Pentium Pro has a 256 KB L2 cache in the same package as the

CPU.

The Pentium II processor has added multimedia (MMX) instructions to the Pentium Pro

architecture. It has expanded the L1 data and instruction caches to 16 KB each. It has also

Section 7.2 The Pentium Processor 253

Table 7.1 Key characteristics of the IA family of processors (“Year” refers to the year of introduction;

“Frequency” refers to the frequency at introduction)

Processor Year

Frequency

(MHz)

Transistor

count

Register

width

Data bus

width

Maximum

address space

8086 1979 8 29 K 16 16 1 MB

80286 1982 12.5 134 K 16 16 16 MB

80386 1985 20 275 K 32 32 4 GB

80486 1989 25 1.2 M 32 32 4 GB

Pentium 1993 60 3.1 M 32 64 4 GB

Pentium Pro 1995 200 5.5 M 32 64 64 GB

Pentium II 1997 266 7 M 32 64 64 GB

Pentium III 1999 500 8.2 M 32 64 64 GB

added more comprehensive power management features including Sleep and Deep Sleep modes

to conserve power during idle times. Table 7.1 summarizes the key characteristics of the IA

family of processors.

Intel’s 64-bit Itanium processor is targeted for server applications. For these applications,

the Pentium’s memory address space is not adequate. The Itanium uses a 64-bit address bus to

provide substantially large address space. Its data bus is 128 bits wide. In a major departure,

Intel has moved from the CISC designs of Pentium processors to RISC orientation for their

Itanium processors. The Itanium also incorporates several advanced architectural features to

provide improved performance for the high-end server market. We discuss Itanium details in

Chapter 14.

In the rest of the chapter, we look at the basic architectural details of the Pentium processor.

Our focus is on the internal registers and memory architecture. Other Pentium details are cov-

ered in later chapters. For example, Chapter 20 discusses its interrupt processing details, and

Chapter 17 gives details on its cache organization.

7.2 The Pentium Processor
A block diagram of the Pentium showing the major signal groups is given in Figure 7.1. In the

following, we describe these signals. As mentioned in Chapter 2, the pound sign (#) is used to

indicate a low-active signal:

Data Bus (D0 to D63): This is the 64-bit data bus. The least significant byte is on data lines

D0 to D7, and the most significant byte is on lines D56 to D63.

254 Chapter 7 The Pentium Processor

Reset

Init

INTR

NMI

KEN#

WB/WT#Cache control

D/C#

LOCK#

CACHE#

W/R#

M/IO#

BRDY#

Data bus D0-D63

64

Bus

cycle

definition

BOFF#

BREQ

HOLD

HLDA

CLKClock

Bus arbitration

Interrupts

Initialization

AP

APCHK#Address parity

PEN#

PCHK#

DP0-DP7
8

Address bus A3-A31

8

29

Byte enable BE0#-BE7#

Data parity

Intel

processor

Pentium

Figure 7.1 Selected signals of the Pentium processor.

Address Bus (A3 to A31): These 29 lines represent the address bus. Since the data bus is

eight bytes wide, the least significant three address lines are not present. However, to precisely

identify a set of bytes to read or write, the byte enable signals (described next) are used. These

address lines are normally output signals. But external devices can drive these signals to perform

inquire cycles. These cycles use only address lines A5 to A31.

Byte Enable (BE0# to BE7#): These low-active signals identify the set of bytes to read or

write. Each byte enable signal identifies a byte (BE0 applies to D0 to D7, BE1 to D8 to D15,

� � �, BE7 to D56 to D63). Since each byte is individually identified, any combination of the

bytes can be specified.

Data Parity (DP0 to DP7): These eight lines are used to encode even parity for the eight data

bytes. There is one bit for each data byte on the data bus: DP0 applies to D0 to D7, DP1 to D8

to D15, and so on.

Parity Check (PCHK#): This signal indicates the result of a parity check on the data read by

the processor. Parity is checked only for the valid bytes (indicated by the byte enable signals).

Section 7.2 The Pentium Processor 255

Parity Enable (PEN#): This signal determines whether the parity check should be used. If

enabled, an exception is taken on a parity error in case of a data read.

Address Parity (AP): This signal represents the even parity for the address lines A5 to A31.

Address lines A3 and A4 are not included in the parity determination.

Address Parity Check (APCHK#): This signal indicates a bad address parity during inquire

cycles.

Memory/IO (M/IO#): This control signal defines the bus cycle as either memory (M/IO# = 1)

or I/O (M/IO# = 0) cycle.

Write/Read (W/R#): This control signal distinguishes between a read (W/R# = 0) and write

(W/R# = 1) cycle.

Data/Code (D/C#): This control signal distinguishes a data (D/C# = 1) access from a code

(D/C# = 0) access.

Cacheability (CACHE#): This output signal indicates internal cacheability of the current cycle

if it is a read cycle; it indicates burst write-back in the case of a write cycle.

Bus Lock (LOCK#): This output signal indicates the processor’s current sequence of bus cy-

cles should not be interrupted. It also indicates that the processor is running a read-modify-write

cycle (e.g., when executing a test-and-set type of instruction) where the external bus should not

be relinquished between the read and write cycles. LOCK# is typically used to implement

memory-based semaphores.

Interrupt (INTR): This input pin receives the external interrupt signal. As we show later in

this chapter, the processor will process the interrupt if the interrupt enable flag (IF) is set in the

EFLAGS register. For this reason, it is called the maskable interrupt.

Nonmaskable Interrupt (NMI): The Pentium receives external nonmaskable interrupt on this

pin. Interrupts are discussed in Chapter 20.

Clock (CLK): This pin receives the system clock that provides the fundamental timing infor-

mation to the processor. Other signals are sampled with reference to the clock signal.

Burst Ready (BRDY#): This input signal is used by external devices to extend the bus cycle

(i.e., to introduce wait states, as discussed in Chapter 5).

Bus Request (BREQ): The Pentium asserts this signal whenever a bus cycle is pending inter-

nally. This signal is used by external logic for bus arbitration (see Chapter 5).

256 Chapter 7 The Pentium Processor

Backoff (BOFF#): This input signal causes the Pentium to abort all pending bus cycles and

float the processor bus in the next clock. The processor remains in this state until BOFF# is

removed. The processor then restarts the aborted bus cycles. This signal can be used to resolve

deadlock between two bus masters.

Bus Hold (HOLD): This input signal will cause the Pentium to complete any outstanding bus

cycles and float most of the output and input/output pins of the processor bus and assert HLDA

(discussed next). This signal allows another bus master complete control of the processor bus.

Bus Hold Acknowledge (HLDA): This signal becomes active in response to the HOLD input.

HLDA indicates that the Pentium has given the bus another local bus master. The Pentium

continues with its execution from internal caches during the hold period.

Cache Enable (KEN#): This input signal is used to determine whether the system can support

a cache line fill during the current cycle. If this signal and CACHE# are asserted, the current

cycle is transformed into a cache line fill. These signals do not make any sense now as we have

not covered caches yet. We discuss cache memories in Chapter 17.

Write-Back/Write-Through (WB/WT#): This input signal indicates that the cache line should

use the write-back or write-through policy, on a line by line basis. We discuss cache write

policies in Chapter 17.

Reset (RESET): This signal forces the Pentium to begin execution in a known state. After

RESET, the Pentium starts execution at FFFFFFF0H. It invalidates all internal caches.

Initialization (INIT): Like the RESET signal, INIT also forces the Pentium to begin execution

in a known state. However, internal caches and floating-point registers are not flushed. RESET,

not INIT, should be used after powerup.

7.3 The Pentium Registers
The Pentium has ten 32-bit and six 16-bit registers. These registers are grouped into general,

control, and segment registers. The general registers are further grouped into data, pointer, and

index registers.

7.3.1 Data Registers

There are four 32-bit data registers that can be used for arithmetic, logical, and other operations

(see Figure 7.2). These four registers are unique in that they can be used as follows:

• Four 32-bit registers (EAX, EBX, ECX, EDX); or

• Four 16-bit registers (AX, BX, CX, DX); or

• Eight 8-bit registers (AH, AL, BH, BL, CH, CL, DH, DL).

Section 7.3 The Pentium Registers 257

15 7 0

AH

BH

CH

DH

AL

BL

CL

DL

AX Accumulator

BX Base

CX Counter

DX Data

31 16

EDX

ECX

EBX

EAX

32-bit registers

8

16-bit registers

Figure 7.2 Data registers of the Pentium processor (16-bit registers are shown shaded).

As shown in Figure 7.2, it is possible to use a 32-bit register and access its lower half of the

data by the corresponding 16-bit register name. For example, the lower 16 bits of EAX can be

accessed by using AX. Similarly, the lower two bytes can be individually accessed by using the

8-bit register names. For example, the lower byte of AX can be accessed as AL and the upper

byte as AH.

The data registers can be used without constraint in most arithmetic and logical instructions.

However, some registers have special functions when executing specific instructions. For ex-

ample, when performing a multiplication operation, one of the two operands should be in the

EAX, AX, or AL register depending on the operand size. Similarly, the ECX or CX register is

assumed to contain the loop count value for iterative instructions.

7.3.2 Pointer and Index Registers

Figure 7.3 shows the four 32-bit registers in this group. These registers can be used either as 16-

or 32-bit registers. The two index registers play a special role in string processing instructions

(discussed in Chapter 12). In addition, they can be used as general-purpose data registers.

The pointer registers are mainly used to maintain the stack. Even though they can be used

as general-purpose data registers, they are almost exclusively used for maintaining the stack.

The Pentium’s stack implementation is discussed in Chapter 10.

7.3.3 Control Registers

This group of registers consists of two 32-bit registers: the instruction pointer register and the

flags register. The processor uses the instruction pointer register to keep track of the location of

the next instruction to be executed. The instruction pointer can be used either as a 16-bit register

(IP), or as a 32-bit register (EIP). IP is used for 16-bit addresses and EIP for 32-bit addresses

(see Sections 7.4 and 7.5 for details on the Pentium memory architecture).

When an instruction is fetched from memory, the instruction pointer is updated to point to

the next instruction. This register is also modified during the execution of an instruction that

transfers control to another location in the program (such as a jump, procedure call, or interrupt).

258 Chapter 7 The Pentium Processor

Index registers

0

Source index

Destination indexDI

SI

151631

ESI

EDI

Pointer registers

0

Stack pointer

Base pointer

SP

BP

1631 15

EBP

ESP

Figure 7.3 Index and pointer registers of the Pentium processor.

The flags register can be considered as either a 16-bit FLAGS register, or a 32-bit EFLAGS

register. The FLAGS register is useful in executing 8086 processor code. The EFLAGS register

consists of 6 status flags, 1 control flag, and 10 system flags, as shown in Figure 7.4. Bits of this

register can be set (1) or cleared (0). The Pentium provides instructions to set and clear some

flags. For example, the clc instruction clears the carry flag, and the stc instruction sets it.

The six status flags record certain information about the most recent arithmetic or logical

operation. For example, if a subtract operation produces a zero result, the zero flag (ZF) bit

would be set (i.e., ZF = 1). Chapter 12 discusses the status flags in detail.

The control flag is useful in string operations. This flag determines whether a string opera-

tion should scan the string in the forward or backward direction. The function of the direction

flag is described in Chapter 12, which discusses the string instructions supported by the Pen-

tium.

The 10 system flags control the operation of the processor. A detailed discussion of all 10

system flags is beyond the scope of this book. Here we briefly discuss a few flags in this group.

The two interrupt enable flags—the trap enable flag (TF) and the interrupt enable flag (IF)—are

useful in interrupt-related activities. For example, setting the trap flag causes the processor to

single step through a program, which is useful in debugging programs. These two flags are

covered in Chapter 20, which discusses the interrupt processing mechanism of the Pentium.

The ability to set and clear the identification (ID) flag indicates that the processor supports

the CPUID instruction. The CPUID instruction provides information to software about the

vendor (Intel chips use a “GenuineIntel” string), processor family, model, and so on. The

virtual-8086 mode (VM) flag, when set, emulates the programming environment of the 8086

processor.

The last flag that we discuss is the alignment check (AC) flag. When this flag is set, the

processor operates in alignment check mode and generates exceptions when a reference is made

to an unaligned memory address. Section 16.7 provides further information on data alignment

and its impact on application performance.

Section 7.3 The Pentium Registers 259

F
AZ

F
S
F

T
F

I
F

O
F

D
F

1
0

1
1

1
2

1
4

1
5

1
6

1
3

1
9

1
8

1
7

2
0

2
1

2
2

IO
PL

N
T

R
F

V
M

A
C

V
I
P

V
I
F

Flags register

100

0123456789

0 0

FLAGS

0 0 0 0 0 0 0 00
C
F

P
FD

I

EFLAGS

EIP

15 01631

IP

Control flags

DF = Direction flag

Status flags

CF = Carry flag

PF = Parity flag

ZF = Zero flag

SF = Sign flag

OF = Overflow flag

VIP = Virtual interrupt pending

System flags

NT = Nested task

RF = Resume flag

VM = Virtual 8086 mode

AC = Alignment check

ID = ID flag

TF = Trap flag

IF = Interrupt flag

VIF = Virtual interrupt flag

IOPL = I/O privilege level

3
1

AF = Auxiliary carry flag

Instruction pointer

Figure 7.4 Flags and instruction pointer registers of the Pentium processor.

7.3.4 Segment Registers

The six 16-bit segment registers of the Pentium are shown in Figure 7.5. These registers support

the segmented memory organization of the Pentium. In this organization, memory is partitioned

into segments, where each segment is a small part of the memory. The processor, at any point in

time, can only access up to six segments of the main memory. The six segment registers point

to where these segments are located in the memory.

Your program is logically divided into two parts: a code part that contains only the instruc-

tions, and a data part that keeps only the data. The code segment (CS) register points to where

your instructions are stored in the main memory, and the data segment (DS) register points

to your data segment location. The stack segment (SS) register points to the program’s stack

segment (further discussed in Chapter 10).

260 Chapter 7 The Pentium Processor

CS

DS

SS

ES

Code segment

Data segment

Stack segment

15 0

Extra segment

FS

GS

Extra segment

Extra segment

Figure 7.5 The six segment registers of the Pentium processor.

The last three segment registers—ES, GS, and FS—are additional segment registers that can

be used in a similar way as the other segment registers. For example, if a program’s data could

not fit into a single data segment, we could use two data segment registers to point to the two

data segments.

7.4 Real Mode Memory Architecture
The Pentium supports sophisticated memory architecture under real and protected modes. The

real mode, which uses 16-bit addresses, is provided to run programs written for the 8086. In

this mode, the Pentium supports the segmented memory architecture. The protected mode

uses 32-bit addresses and is the native mode of the Pentium. In protected mode, the Pentium

supports both segmentation and paging. Paging is useful in implementing virtual memory; it is

transparent to the application program, but segmentation is not. We do not look at the paging

features here. Paging details are presented in Chapter 18, which discusses virtual memory. We

discuss protected mode memory architecture in the next section, and devote the rest of this

section to describing the real-mode segmented memory architecture.

As mentioned, the Pentium behaves as a faster 8086 in the real mode. The memory address

space of the 8086 processor is 1 MB. To address a memory location, we have to use a 20-bit

address. The address of the first location is 00000H; the last addressable memory location is

at FFFFFH. Recall that numbers expressed in the hexadecimal number system are indicated by

suffix H (see Appendix A).

Since all registers in the 8086 are 16 bits wide, the address space is limited to �
��, or 65,536

(64 K) locations. As a consequence, the memory is organized as a set of segments. Each

segment of memory is a linear contiguous sequence of up to 64 K bytes. In this segmented

memory organization, we have to specify two components to identify a memory location: a

segment base and an offset. This two-component specification is referred to as the logical

address. The segment base specifies the start address of a segment in memory and the offset

specifies the address relative to the segment base. The offset is also referred to as the effective

address. The relationship between the logical and physical addresses is shown in Figure 7.6.

Section 7.4 Real Mode Memory Architecture 261

Physical address

11000

11450

Offset

(450)

Segment base

(1100)

Figure 7.6 Relationship between logical and physical addresses of memory (all numbers are in hex).

Notice from Figure 7.6 that the segment base address is 20 bits long (11000H). So how

can we use a 16-bit register to store the 20-bit segment base address? The trick is to store the

most significant 16 bits of the segment base address and assume that the least significant four

bits are all 0. In the example, we would store 1100H as the segment base. The implied four

least significant zero bits are not stored. This trick works but imposes a restriction on where

a segment can begin. Segments can begin only at those memory locations whose address has

the least significant four bits as 0. Thus, segments can begin at 00000H, 00010H, 00020H, � � �,

FFFE0H, FFFF0H. Segments, for example, cannot begin at 00001H or FFFEEH.

In the segmented memory organization, a memory location can be identified by its logi-

cal address. We use the notation segment:offset to specify the logical address. For example,

1100:450H identifies the memory location (i.e., 11450H), as shown in Figure 7.6. The latter

value to identify a memory location is referred to as the physical memory address.

Programmers have to be concerned with logical addresses only. However, when the CPU

accesses the memory, it has to supply the 20-bit physical memory address. The conversion

of logical address to physical address is straightforward. This translation process, shown in

Figure 7.7, involves adding four least significant zero bits to the segment base value and then

adding the offset value. When using the hexadecimal number system, simply add a zero digit

to the segment base address at the right and add the offset value. As an example, consider the

logical address 1100:450H. The physical address is computed as follows:

262 Chapter 7 The Pentium Processor

19 0

0

0 0 0 0

19 15

34

16

19 0

0 0 0 0

ADDER

Offset value

Segment register

20-bit physical memory address

Figure 7.7 Physical address generation in the 8086.

11000 (add 0 to the 16-bit segment base value)

+ 450 (offset value)

11450 (physical address).

For each logical memory address, there is a unique physical memory address. The converse,

however, is not true. More than one logical address can refer to the same physical memory

address. This is illustrated in Figure 7.8, where logical addresses 1000:20A9H and 1200:A9H

refer to the same physical address 120A9H. In this example, the physical memory address

120A9H is mapped to two segments.

In our discussion of segments, we never said anything about the actual size of a segment.

The main factor limiting the size of a segment is the 16-bit offset value, which restricts the

segments to at most 64 K bytes in size. In the real mode, the Pentium sets the size of each

segment to exactly 64 K bytes.

Programmers view the memory address space as a group of segments. At any instance,

a program can access up to six segments. (The 8086 actually supported only four segments:

segment registers FS and GS were not present in the 8086 processor.) Typically two of these

segments contain code and data. The third segment is used for the stack. If necessary, other

segments may be used, for example, to store data, as shown in Figure 7.9.

Section 7.4 Real Mode Memory Architecture 263

120A9

Segment base

Segment base

(1200)

Offset (A9)

(20A9)

Offset

(1000)

Segment 2Segment 1

Figure 7.8 Two logical addresses map to the same physical address (all numbers are in hex).

CODE

STACK

CS

SS

DS

ES

FS

GS

DATA

DATA

DATA

DATA

Figure 7.9 The six segments of the memory system.

264 Chapter 7 The Pentium Processor

(a) Adjacent (b) Disjoint (c) Partially overlapped (d) Fully overlapped

Figure 7.10 Various ways of placing segments in the memory.

Assembly language programs typically use at least two segments: code and stack segments.

If the program has data (which almost all programs do), a third segment is also needed to store

data. Those programs that require additional memory can use the other segments.

The six segment registers of the Pentium point to the six segments, as shown in Figure 7.9.

As described earlier, segments must begin on 16-byte memory boundaries. Except for this

restriction, segments can be placed anywhere in memory. The segment registers are independent

and segments can be contiguous, disjoint, partially overlapped, or fully overlapped, as shown in

Figure 7.10.

Even though programmers view memory as a group of segments and use the logical address

to specify a memory location, all interactions between the processor and memory must use

physical addresses. We have seen the process involved in translating a given logical address

to the corresponding physical address (see page 261). The Pentium has dedicated hardware to

perform the address translation, as illustrated in Figure 7.7.

Here is a summary of the real-mode memory architecture:

• Segments are exactly 64 K bytes in size.

• A segment register contains a pointer to the segment base.

• Default operand size and effective addresses are 16 bits long.

• Stack operations use the 16-bit SP register.

• Stack size is limited to 64 KB.

• Paging is not available. Thus, the processor uses the linear address as the physical address

(see Figure 7.11).

Section 7.5 Protected Mode Memory Architecture 265

32-bitLogical

address linear

address

Page

translation

32-bit

physical

address

Segment

translation

Figure 7.11 Logical to physical address translation process in the protected mode.

Keep in mind that this list gives the default attributes. It is, however, possible to change some

of these defaults. Section 7.5.5 discusses how 32-bit operands and addresses can be used in the

real mode.

7.5 Protected Mode Memory Architecture
In protected mode, the Pentium supports a more sophisticated segmentation mechanism in ad-

dition to paging. In this mode, the segment unit translates a logical address into a 32-bit linear

address. The paging unit translates the linear address into a 32-bit physical address, as shown

in Figure 7.11. If no paging mechanism is used, the linear address is treated as the physical

address. In the remainder of this section, we focus on the segment translation process only.

Paging is discussed in Chapter 18.

Protected mode segment translation is different from that in real mode. In real mode, the

physical address is 20 bits long. The physical address is obtained directly from the contents

of the selected segment register and the offset, as illustrated on page 261. In protected mode,

contents of the segment register are taken as an index into a segment descriptor table to get

a descriptor. The segment translation process is shown in Figure 7.12. Segment descriptors

provide the 32-bit segment base address, its size, and access rights. To translate a logical address

to the corresponding linear address, the offset is added to the 32-bit base address. The offset

value can be either a 16-bit or 32-bit number.

7.5.1 Segment Registers

Every segment register has a “visible” part and an “invisible” part, as shown in Figure 7.13.

When we talk about segment registers, we are referring to the 16-bit visible part. The visible part

is referred to as the segment selector. There are direct instructions to load the segment selector.

These instructions include mov, pop, lds, les, lss, lgs, and lfs. These instructions are

discussed in later chapters and in Appendix I. The invisible part of the segment registers is

automatically loaded by the processor from a descriptor table (described next).

As shown in Figure 7.12, the segment selector provides three pieces of information:

• Index: The index selects a segment descriptor from one of two descriptor tables: a local

descriptor table or a global descriptor table. Since the index is a 13-bit value, it can select

one of ��� � ���� descriptors from the selected descriptor table. Since each descriptor,

shown in Figure 7.14, is 8 bytes long, the processor multiplies the index by 8 and adds

the result to the base address of the selected descriptor table.

266 Chapter 7 The Pentium Processor

ADDER

031

031

SEGMENT SELECTOR

TI RPLINDEX

15 3 1 02

OFFSET

DESCRIPTOR TABLE

BASE ADDRESS

LIMIT

ACCESS RIGHTS
Segment

descriptor

LINEAR ADDRESS

32-bit base address

Figure 7.12 Protected mode address translation.

• Table Indicator (TI): This bit indicates whether the local or global descriptor table should

be used.

0 = Global descriptor table,

1 = Local descriptor table.

• Requester Privilege Level (RPL): This field identifies the privilege level to provide pro-

tected access to data: the smaller the RPL value, the higher the privilege level.

7.5.2 Segment Descriptors

A segment descriptor provides the attributes of a segment. These attributes include its 32-

bit base address, 20-bit segment size, as well as control and status information, as shown in

Figure 7.14. Here we provide a brief description of some of the fields shown in this figure.

• Base Address: This 32-bit address specifies the starting address of a segment in the 4 GB

physical address space. This 32-bit value is added to the offset value to get the linear

address (see Figure 7.12).

Section 7.5 Protected Mode Memory Architecture 267

CS

SS

DS

ES

FS

GS

Invisible part

Segment selector

Segment selector

Segment selector

Segment selector

Segment selector

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment base address, size, access rights, etc.

Segment selector

Visible part

Figure 7.13 Visible and invisible parts of segment registers.

1

1

LIMIT

19:16
/

D

3

B

2

4

2

1

2

2

2

13 0

1

9

1

6

1

5

2

4

1

3

1

2

D

P

L

1

V

L

A

BASE ADDRESS 15:00 SEGMENT LIMIT 15:00

BASE 31:24 BASE 23:16TYPE0G

0151631

078

P S

+0

+4

Figure 7.14 A segment descriptor.

• Granularity (G): This bit indicates whether the segment size value, described next, should

be interpreted in units of bytes or 4 KB. If the granularity bit is zero, segment size is

interpreted in bytes; otherwise, in units of 4 KB.

• Segment Limit: This is a 20-bit number that specifies the size of the segment. Depending

on the granularity bit, two interpretations are possible:

1. If the granularity bit is zero, segment size can range from 1 byte to 1 MB (i.e., ���

bytes), in increments of 1 byte.

2. If the granularity bit is 1, segment size can range from 4 KB to 4 GB, in increments

of 4 KB.

• D/B Bit: In a code segment, this bit is called the D bit and specifies the default size for

operands and offsets. If the D bit is 0, default operands and offsets are assumed to be 16

bits; for 32-bit operands and offsets, the D bit must be 1.

In a data segment, this bit is called the B bit and controls the size of the stack and stack

pointer. If the B bit is 0, stack operations use the SP register and the upper bound for the

268 Chapter 7 The Pentium Processor

stack is FFFFH. If the B bit is 1, the ESP register is used for the stack operations with a

stack upper bound of FFFFFFFFH.

Typically, this bit is cleared for the real mode operation and set for the protected mode

operation. Section 7.5.5 describes how 16- and 32-bit operands and addresses can be

mixed in a given mode of operation.

• S Bit: This bit identifies whether the segment is a system segment or an application

segment. If the bit is 0, the segment is identified as a system segment; otherwise, as an

application (code or data) segment.

• Descriptor Privilege Level (DPL): This field defines the privilege level of the segment.

It is useful in controlling access to the segment using the protection mechanisms of the

Pentium processor.

• Type: This field identifies the type of segments. The actual interpretation of this field

depends on whether the segment is a system or application segment. For application

segments, the type depends on whether the segment is a code or data segment. For a data

segment, type can identify it as a read-only, read-write, and so on. For a code segment,

type identifies it as an execute-only, execute/read-only, and so on.

• P bit: This bit indicates whether the segment is present. If this bit is 0, the processor

generates a segment-not-present exception when a selector for the descriptor is loaded

into a segment register.

7.5.3 Segment Descriptor Tables

A segment descriptor table is an array of segment descriptors shown in Figure 7.14. There are

three types of descriptor tables:

• The global descriptor table (GDT);

• Local descriptor tables (LDT);

• The interrupt descriptor table (IDT).

All three descriptor tables are variable in size from 8 bytes to 64 KB. The interrupt descriptor

table is used in interrupt processing and is discussed in Chapter 20. Both LDT and GDT can

contain up to �
��

� ���� 8-bit descriptors. As shown in Figure 7.12, the upper 13 bits of

a segment selector are used as an index into the selected descriptor table. Each table has an

associated register that holds the 32-bit linear base address and a 16-bit size of the table. LDTR

and GDTR registers are used for this purpose. The LDTR and GDTR can be loaded using lldt
and lgdt instructions. Similarly, the values of LDTR and GDTR registers can be stored by

sldt and sgdt instructions. These instructions are typically used by the operating system.

The global descriptor table contains descriptors that are available to all tasks within the

system. There is only one GDT in the system. Typically, the GDT contains code and data used

by the operating system. The local descriptor table contains descriptors for a given program.

There can be several LDTs, each of which may contain descriptors for code, data, stack, and so

on. A program cannot access a segment unless there is a descriptor for the segment in either the

current LDT or GDT.

Section 7.5 Protected Mode Memory Architecture 269

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

LIMITACCESS

BASE ADDRESS

CS

SS

DS

ES

FS

GS

CODE

STACK

DATA

DATA

DATA

DATA

Figure 7.15 Segments in a multisegment model.

7.5.4 Segmentation Models

Remember that the 8086 segments are limited to 64 KB. However, in the Pentium, it is possible

to span a segment over the entire physical address space. As a result, we can effectively make

the segmentation invisible by mapping all segment base addresses to zero and setting the size

to 4 GB. Such a model is called a flat model and is used in programming environments such as

UNIX.

Another model that uses the capabilities of segmentation to the full extent is the multiseg-

ment model. Figure 7.15 shows an example mapping of six segments. A program, in fact, can

have more than just six segments. In this case, the segment descriptor table associated with the

program will have the descriptors loaded for all the segments defined by the program. How-

ever, at any time, only six of these segments can be active. Active segments are those that

have their segment selectors loaded into the six segment registers. A segment that is not active

can be made active by loading its selector into one of the segment registers, and the processor

automatically loads the associated descriptor (i.e., the “invisible part” shown in Figure 7.13).

The Pentium generates a general-protection exception if an attempt is made to access memory

beyond the segment limit.

270 Chapter 7 The Pentium Processor

7.5.5 Mixed-Mode Operation

Our previous discussion of real and protected modes of operation suggests that we can use either

16-bit or 32-bit operands and addresses. The D/B bit indicates the default size. The question

is: Is it possible to mix these two? For instance, can we use 32-bit registers in the 16-bit mode

of operation? The answer is yes! The Pentium provides two size override prefixes—one for the

operands and the other for the addresses—to facilitate such mixed mode programming. Details

on these prefixes are provided in Chapter 11.

7.5.6 Which Segment Register to Use

This discussion applies to both real and protected modes of operation. In generating a physical

memory address, the Pentium uses different segment registers depending on the purpose of the

memory reference. Similarly, the offset part of the logical address comes from a variety of

sources.

Instruction Fetch: When the memory access is to read an instruction, the CS register provides

the segment base address. The offset part is supplied either by the IP or EIP register, depending

on whether we are using 16-bit or 32-bit addresses. Thus, CS:(E)IP points to the next instruction

to be fetched from the code segment.

Stack Operations: Whenever the processor is accessing the memory to perform a stack opera-

tion such as push or pop, the SS register is used for the segment base address, and the offset

value comes from either the SP register (for 16-bit addresses) or the ESP register (for 32-bit

addresses). For other operations on the stack, the BP or EBP register supplies the offset value.

A lot more is said about the stack in Chapter 10.

Accessing Data: If the purpose of accessing memory is to read or write data, the DS register is

the default choice for providing the data segment base address. The offset value comes from a

variety of sources depending on the addressing mode used. Addressing modes are discussed in

Chapter 11.

7.6 Summary
We described the architecture of the Pentium processor. The Pentium can address up to 4 GB

of memory. It provides real and protected mode memory architectures. In the real mode, the

Pentium supports 16-bit addresses and the memory architecture of the 8086 processor.

The protected mode is the native mode of the Pentium processor. In this mode, the Pentium

supports both paging and segmentation. Paging is useful in implementing virtual memory and

is not considered here. We discussed the segmented memory architecture in detail, as these

details are necessary to program in the assembly language.

Section 7.7 Exercises 271

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Address translation

• Effective address

• Flat segmentation model

• Instruction fetch

• Instruction pointer

• Linear address

• Logical address

• Memory architecture

• Mixed mode operation

• Multisegment segmentation model

• Override prefix

• Paging

• Pentium alignment check flag

• Pentium control registers

• Pentium data registers

• Pentium flags register

• Pentium index registers

• Pentium interrupt flag

• Pentium pointer registers

• Pentium registers

• Pentium trap flag

• Physical address

• Protected mode architecture

• Real mode architecture

• Segment descriptor

• Segment descriptor tables

• Segment registers

• Segmentation

• Segmentation models

• Segmented memory organization

7.7 Exercises
7–1 What is the purpose of providing various registers in a CPU?

7–2 What are the three address spaces supported by the Pentium?

7–3 What is a segment? Why does the Pentium support segmented memory architecture?

7–4 Why is segment size limited to 64 KB in the real mode?

7–5 In the real mode, segments cannot be placed anywhere in memory. Explain the reason for

this restriction.

7–6 In the real mode, can a segment begin at the following physical addresses?

(a) 1235AH (b) 53535H

(c) 21700H (d) ABCD0H

7–7 What is the maximum size of a segment in the protected mode?

7–8 We stated that the Pentium can access up to six segments at a time. What is the hardware

reason for this limitation?

7–9 In the protected mode, segment size granularity can be either 1 byte or 4 KB. Explain the

hardware reason for this restriction.

7–10 What is the purpose of the TI field in the segment descriptor?

272 Chapter 7 The Pentium Processor

7–11 We looked at two descriptor tables: GDT and LDT. What is the maximum number of

descriptors each table can have? Explain the hardware reason for this restriction.

7–12 Describe the logical to physical address translation process in the real mode.

7–13 Describe the logical to linear address translation process in the protected mode.

7–14 Discuss the differences between the segmentation architectures supported in the real and

protected modes.

7–15 If a processor has 16 address lines, what is the physical memory address space of this

processor? Give the address of the first and last addressable memory locations in hex.

7–16 Convert the following logical addresses to physical addresses. All numbers are in hex-

adecimal. Assume the real address mode.
(a) 1A2B:019A (b) 3911:200

(c) 2591:10B5 (d) 1100:ABCD

Chapter 8

Pipelining and

Vector Processing

Objectives
• To introduce the principles of pipelining;

• To illustrate how resource conflicts are handled in pipelined systems;

• To give instruction pipeline details of some example processors;

• To describe vector processing basics;

• To present details on the Cray X-MP vector machine;

• To discuss performance of pipelined and vector processors.

We briefly introduced the concept of pipelining in Chapter 1. Pipelining essentially allows

overlapped execution of multiple operations. We begin this chapter with an introduction to the

basic concepts of pipelining. Since pipelining is a highly coordinated activity, resource conflicts

in the pipeline can seriously degrade its performance by causing pipeline stalls. We give some

example scenarios that can potentially cause such stalls.

Several types of hazards cause pipeline stalls. We discuss three types: resource hazards,

data hazards, and control hazards. When two or more instructions in the pipeline require the

same resource, a resource hazard occurs. In Section 8.2, we describe some solutions for resource

hazards. Data dependencies among the instructions lead to the data hazards. Section 8.3 gives

some examples and possible solutions to minimize the impact of data dependencies on the

pipeline performance.

Pipelining performs best when the execution is sequential. Pipeline performance deterio-

rates if the control flow is altered. Thus, it becomes important to devise ways to handle branches.

Section 8.4 discusses several ways to handle such control hazards. The next section presents

273

274 Chapter 8 Pipelining and Vector Processing

Unpack Align Add Normalize

Instruction
decode

Operand
fetch

Instruction
execution

Result
write back

(b) Floating-point add pipeline stages

(a) Instruction pipeline stages

Instruction execution phase

IE EBIF OFID

Instruction

Execution cycle

fetch

Figure 8.1 For pipelining, we have to divide the work into several smaller, preferably equal, parts.

three performance enhancements including superscalar, superpipelining, and VLIW processors.

Instruction pipeline implementations of the Pentium, PowerPC, SPARC, and MIPS processors

are given in Section 8.6.

Section 8.7 gives details on vector processors. They use special vector registers. These

registers can hold small arrays of floating-point numbers. Vector processors use pipelining in

every aspect. They use pipelined transfer of data from memory to vector registers and over-

lapped execution of various integer and floating-point operations. These details are presented in

Section 8.7. Performance of pipelined and vector processors is briefly discussed in Section 8.8.

The last section gives a summary of the chapter.

8.1 Basic Concepts
We briefly described the pipeline concept in Chapter 1. Pipelining allows overlapped execution

to improve throughput. The pipeline concept can be applied to various functions of a computer

system. We have introduced instruction pipelining in Chapter 1 through an example (see Sec-

tion 1.5.1 on page 18). Before proceeding further, it is a good idea to refresh your memory by

reviewing the material presented in that section.

The key idea behind pipelining is to divide the work into smaller pieces and use assembly

line processing to complete the work. In the instruction execution pipeline shown on page 17,

we divided the execution cycle into five steps. For easy reference, we have reproduced these

five steps in Figure 8.1�. In pipeline terminology, each step is called a stage because we will

eventually have a dedicated piece of hardware to perform each step.

Pipelining can also be applied to arithmetic operations. As an example, we show a floating-

point add pipeline in Figure 8.1�. The floating-point add unit has several stages:

1. Unpack: The unpack stage partitions the floating-point numbers into the three fields dis-

cussed in Section A.5.3: the sign field, exponent field, and mantissa field. Any special

cases such as not-a-number (NaN), zero, and infinities are detected during this stage.

Section 8.1 Basic Concepts 275

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

4 6 8

1 2 3 4 5 6 7 8 9 12 13 20Clock cycle

Clock cycle 1 2 3 5 7

10 11 161514 17 18 19

I1

I2

I4

I2

I3

I4

I1

I3

(a) Serial execution

(b) Pipelined execution

Figure 8.2 Pipelining overlaps execution among the stages. This improves instruction execution rate,

even though each instruction takes the same amount of time.

2. Align: This stage aligns the binary points of the two mantissas by right-shifting the man-

tissa with the smaller exponent.

3. Add: This stage adds the two aligned mantissas.

4. Normalize: This stage packs the three fields of the result after normalization and rounding

into the IEEE-754 floating-point format. Any output exceptions are detected during this

stage.

Pipelining works best if we divide the work into equal parts so that each stage takes the

same amount of time. Each stage performs its part by taking input from the previous stage.

Figure 8.2 summarizes our discussion from Section 1.5.1.

Pipelining substantially reduces the execution time by overlapping execution of several in-

structions. In the example shown in this figure, serial execution takes 20 clock cycles to execute

four instructions I1 through I4. On the other hand, pipelined execution takes only 8 clock cy-

cles. However, pipelining requires hardware support. For the five-stage instruction pipeline, we

need four buffers as shown in Figure 8.3. Each of these buffers holds only one value, the output

produced by the previous stage. This is possible because the pipeline follows the just-in-time

principle. In some processors, the ID stage uses the IF stage buffers by placing the decoded in-

struction back in the B1 buffer. As we show later, just-in-time arrival of input causes problems

because any delay in one stage can seriously affect the entire pipeline flow.

276 Chapter 8 Pipelining and Vector Processing

B1 B2 B3 B4

fetch
Instruction

decode
Operand

fetch
Instruction
execution

Result
write back

Instruction

Figure 8.3 Pipelines typically do not require substantial buffering as they use the just-in-time concept.

4 6 81 2 3 5 7

I2

I4

I3

ID

IF

WBIEIF

WBIEOFID

WBIEOFIDIF

9 10

ID OF IE WBIF

OF

Clock cycle

I1

Figure 8.4 A delay in any stage can cause pipeline stalls.

What we have shown in Figure 8.2 is an ideal scenario. Several factors can adversely affect

the performance of a pipeline. For starters, it is not always possible to divide the work into

equal parts. In that case, the slowest stage determines the flow rate in the entire pipeline.

What are some of the reasons for not having equal work for all stages? Sometimes this is

due to a complex step that cannot be subdivided conveniently. In some instances, it may be

due to the operation that takes a variable amount of time to execute. For example, consider

the operand fetch (OF) step in the instruction pipeline. The time required to execute this step

depends on where the operands are located: in registers, cache memory, or main memory. If the

operands are in registers rather than in memory, it takes less time. In some cases, the complexity

of the operation depends on the type of operation performed by the instruction. For example,

an integer addition operation may take only one cycle but a multiplication operation may take

several cycles.

To illustrate the impact of the variable stage time on pipelined execution, let’s assume that

the operand fetch of the I2 instruction takes more time: three clock cycles rather than one.

Figure 8.4 shows how the increased execution time for I2’s OF stage causes the pipeline to stall

for two clock cycles. As you can see from this figure, the stalled pipeline reduces the overall

throughput. One of the goals in designing a pipeline is to minimize pipeline stalls.

Pipeline stalls can be caused by several factors. These are called hazards. There are three

types of hazards: resource, data, and control hazards. Resource hazards result when two or

more instructions in the pipeline want to use the same resource. Such resource conflicts can

result in serialized execution, reducing the scope for overlapped execution. Resource hazards,

sometimes referred to as structural hazards, are discussed in the next section.

Section 8.2 Handling Resource Conflicts 277

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

4 6 8Clock cycle 1 2 3 5 7

I2

I4

I1

I3 Idle

9

ID OF IE WBIF

Figure 8.5 This scenario describes a memory conflict caused by the instruction fetch of I3 and memory-

resident operand fetch of I1.

Data hazards are caused by data dependencies among the instructions in the pipeline. As

a simple example, suppose that the result produced by instruction I1 is needed as an input to

instruction I2. We have to stall the pipeline until I1 has written the result so that I2 reads the

correct input. If the pipeline is not designed properly, data hazards can produce wrong results by

using incorrect operands. Therefore, we have to worry about the correctness first. We can use

a technique called interlocking to ensure that only correct operands are used. There is another

technique called forwarding that actually improves the performance by reducing the amount

of time the pipeline is stalled waiting for the result of a previous instruction. We discuss data

hazards in Section 8.3.

Thus far, we assumed sequential flow control. What happens if the flow control is altered,

say, due to a branch instruction? If the branch is not taken, we can proceed with the instructions

in the pipeline. But, if the branch is taken, we have to throw away all the instructions that are

in the pipeline and fill the pipeline with instructions at the branch target. These hazards are

referred to as the control hazards, which are caused by control dependencies. We describe some

possible solutions used to minimize the impact of control dependencies in Section 8.4.

8.2 Handling Resource Conflicts
To see why resource conflicts cause problems, consider the pipelined execution shown in Fig-

ure 8.2�. Let’s ignore the cache and assume that both data and instructions are stored in a

single-ported main memory. That is, memory supports only one read or write operation at a

time. Thus, we can read from memory either an instruction or an operand (but not both at the

same time). If an operand of I1 is in memory, the instruction fetch of I3 and operand fetch of I1

cause a memory conflict. The instruction fetch unit idles for one clock cycle, another example

of a pipeline stall (see Figure 8.5).

You can also imagine resource conflicts if we have only one ALU and multiple instructions

want to use it. The solution for the resource hazards is to minimize the conflicts by increasing

the available resources. For example, if we have separate access paths to get instructions and

data, we could have avoided the conflict shown in Figure 8.5: the Harvard architecture uses

separate buses for data and instruction memories. Also, providing separate instruction and data

278 Chapter 8 Pipelining and Vector Processing

Instruction queue

dispatch

Instruction

Operand
fetch

B2 B3 B4

Instruction
execution

Result
write back

fetch

Instruction

Figure 8.6 The impact of resource conflicts can be minimized by using a queue to buffer the instructions.

caches helps reduce the resource conflict. These topics are discussed in Chapter 17. We also

later show that multiple resources are used to reduce resource conflicts.

Prefetching is another technique we can use to handle resource conflicts. As we have seen

before, pipelining typically uses the just-in-time mechanism so that only a simple buffer is

needed between the stages (see Figure 8.3). We can minimize the performance impact if we

relax this constraint by allowing a queue instead of a single buffer. We illustrate this technique

for our pipeline example. Suppose we replace buffer B1 by an instruction queue, as shown

in Figure 8.6. The instruction fetch unit can prefetch instructions and place them in the in-

struction queue. The decoding unit will have ample instructions even if the instruction fetch is

occasionally delayed because of a cache miss or resource conflict.

8.3 Data Hazards
Data dependencies can deteriorate performance of a pipeline by causing stalls. As a simple

example, consider the following instruction sequence:

I1: add R2,R3,R4 /* R2 = R3 + R4 */

I2: sub R5,R6,R2 /* R5 = R6 � R2 */

The sum computed by the add instruction is used as input to the sub instruction. This data

dependency between I1 and I2 causes the pipeline to stall, as shown in Figure 8.7.

When two instructions access registers or memory locations in a conflicting mode, data

dependency exists. A conflicting access is one in which one or both instructions alter the data.

Depending on the type of conflicting access, we can define the following dependencies:

• Read-After-Write (RAW): This dependency exists between two instructions if one instruc-

tion writes into a register or a memory location that is later read by the other instruction.

• Write-After-Read (WAR): This dependency exists between two instructions if one instruc-

tion reads from a register or a memory location that is later written by the other instruc-

tion.

Section 8.3 Data Hazards 279

Clock cycle 4 6 81 2 3 5 7

I2

I4

I1

I3

9

WBIEOFIDIF

WBIEOFIDIF

10

ID OF IE WBIF

ID OF IE WBIF

Figure 8.7 Data dependency between instructions I1 and I2 causes the pipeline to stall for two clock

cycles.

• Write-After-Write (WAW): This dependency exists between two instructions if one in-

struction writes into a register or a memory location that is later written by the other

instruction.

There is no conflict in allowing read-after-read (RAR) access. Data dependencies have two

implications:

• Correctness Issue: We have to detect this dependency and stall the sub instruction from

executing until add has written the sum into the R2 register. Otherwise, we end up using

an incorrect R2 value in sub.

• Efficiency Issue: Pipeline stall can be long if we don’t come up with a trick.

There are two techniques used to handle data dependencies: register interlocking and register

forwarding. We first discuss the register forwarding method as most processors use this tech-

nique to reduce pipeline stalls. Later we show how the Pentium handles these three types of

dependencies.

8.3.1 Register Forwarding

This technique, also called bypassing, works if the two instructions involved in the dependency

are in the pipeline. The basic idea is to provide the output result as soon as it is available in the

datapath. This technique is demonstrated in Figure 8.8. For example, if we provide the output

of I1 to I2 as we write into the destination register of I1, we will reduce the number of stall

cycles by one (see Figure 8.8�). We can do even better if we feed the output from the IE stage

as shown in Figure 8.8�. In this case, we completely eliminate the pipeline stalls.

How do we implement this forwarding in hardware? To understand the implementation let’s

look at the single-bus datapath shown in Figure 6.7 (page 220). It is redrawn in Figure 8.9 to

give details that are relevant to our discussion here. The add instruction execution involves

moving the R3 contents to the A register and placing the R4 contents on the A bus. Once this

is done, the ALU would produce the sum after the propagation delay through it. However, this

result will not be available for a couple of more cycles, as it has to be latched into the C register

and then into the final output register R2. If we provide feedback from the C register (“Forward

280 Chapter 8 Pipelining and Vector Processing

ID OF IE WBIF

ID OF IE WBIF

(b) Forward scheme 2

(a) Forward scheme 1

4 6 8Clock cycle 1 2 3 5 7

I2

I4

I1

I3

Clock cycle 4 6 81 2 3 5 7

I2

I4

I1

I3

9

IF

ID OF IE WBIF

ID OF IE WB

IF OF IE WBID

ID OF IE WBIF

OF IE WBIF ID

ID OF IE WBIF

Figure 8.8 We can minimize the stalls if we provide the output of I1 to I2 as soon as possible.

1” path in Figure 8.9), we can save one clock cycle as in Figure 8.8�. We can further improve as

in Figure 8.8� by providing a path to connect the output of the ALU to its input (the “Forward 2”

path).

Register forwarding requires changes to the underlying hardware as shown in Figure 8.9. In

this figure, the output of the ALU is fed back to its two inputs. Of course, we need a multiplexer

and associated control circuit to properly route the ALU output. These details are not shown in

this figure.

8.3.2 Register Interlocking

This is a general technique to solve the correctness problem associated with data dependencies.

In this method, a bit is associated with each register to specify whether the contents are correct.

If the bit is 0, the contents of the register can be used. Instructions should not read contents

of a register when this interlocking bit is 1, as the register is locked by another instruction.

Figure 8.10 shows how the register interlocking works for the add/sub example on page 278.

I1 locks the R2 register for clock cycles 3 to 5 so that I2 cannot proceed reading an incorrect

R2 value. Clearly, register forwarding is more efficient than the interlocking method.

The Intel Itanium processor associates a bit (called NaT—not-a-thing) similar to the inter-

locking bit with the general-purpose registers. The Itanium uses this to support speculative

execution. We give more details in Chapter 14.

Section 8.3 Data Hazards 281

A B

ALU

C

Forward 2

C

A

Forward 1

Figure 8.9 The forwarding technique requires support in hardware.

Clock cycle

R2 is locked

4 6 81 2 3 5 7

I2

I4

I1

I3

9

WBIEOFIDIF

WBIEOFIDIF

10

ID OF IE WBIF

ID OF IE WBIF

Figure 8.10 Register interlocking uses a lock bit to indicate whether the result can be used.

Register forwarding can be used only when the required values are already in the pipeline.

Interlocking, however, can handle data dependencies of a general nature. For example, in the

code

load R3,count ;R3 = count

add R1,R2,R3 ;R1 = R2 + R3

the add instruction should not use the contents of R3 until the load has placed the count
value in R3. Register forwarding is not useful for this scenario.

282 Chapter 8 Pipelining and Vector Processing

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

Clock cycle 4 6 81 2 3 5 7

I2

I4

Ib

I3

9

ItBranch target instruction

Branch instruction

Discarded instructions

Clock cycle 4 6 81 2 3 5 7

I2

Ib

9

Branch instruction

Discarded instruction

It

(a) Branch decision is known during the IE stage

(b) Branch decision is known during the ID stage

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

ID OF IE WBIF

Branch target instruction

Figure 8.11 Impact of a branch instruction on the pipeline.

8.4 Handling Branches
Flow altering instructions such as branch require special handling in pipelined processors. Fig-

ure 8.11� shows the impact of a branch instruction on our pipeline. Here we are assuming that

instruction Ib is a branch instruction; if the branch is taken, it transfers control to instruction

It. If the branch is not taken, the instructions in the pipeline are useful. However, for a taken

branch, we have to discard all the instructions that are in the pipeline at various stages. In our

example, we have to discard instructions I2, I3, and I4. We start fetching instructions at the

target address. This causes our pipeline to do wasteful work for three clock cycles. This is

called the branch penalty.

How can we reduce this branch penalty? If you look at Figure 8.11 closely, you will notice

that we wait until the execution (IE) stage before initiating the instruction fetch at the target

address. We can reduce the delay if we can determine this earlier. For example, if we find

whether the branch is taken along with the target address information during the decode (ID)

stage, we would just pay a penalty of one cycle, as shown in Figure 8.11�.

In our example, only one instruction (I2) needs to be discarded. But can we get the necessary

information at the decode stage? For most branch instructions, the target address is given as part

of the instruction. So computation of the target address is relatively straightforward. But it may

not be that easy to determine whether the branch is taken during the decode stage. For example,

we may have to fetch the operands and compare their values to determine whether the branch is

taken. This means we have to wait until the IE stage. We can use branch prediction strategies

discussed in Section 8.4.2 to make an educated guess.

Section 8.4 Handling Branches 283

8.4.1 Delayed Branch Execution

We have shown in Figure 8.11� that we can reduce the branch penalty to one cycle. Delayed

branch execution effectively reduces the branch penalty further. The idea is based on the obser-

vation that we always fetch the instruction following the branch before we know whether the

branch is taken. Why not execute this instruction instead of throwing it away? This implies

that we have to place a useful instruction in this instruction slot. This instruction slot is called

the delay slot. In other words, the branching is delayed until after the instruction in the delay

slot is executed. Some processors like the SPARC and MIPS use delayed execution for both

branching and procedure calls.

When we apply this technique, we need to modify our program to put a useful instruction

in the delay slot. We illustrate this by using an example. Consider the following code segment:

add R2,R3,R4

branch target

sub R5,R6,R7

... . . .

target:

mult R8,R9,R10

... . . .

If the branch is delayed, we can reorder the instructions so that the branch instruction is

moved ahead by one instruction, as shown below:

branch target

add R2,R3,R4 /* Branch delay slot */

sub R5,R6,R7

... . . .

target:

mult R8,R9,R10

... . . .

Programmers do not have to worry about moving instructions into the delay slots. This job is

done by the compilers and assemblers. When no useful instruction can be moved into the delay

slot, a no operation (NOP) is placed.

We should also note that when the branch is not taken, we do not want to execute the

delay slot instruction (i.e., we want to nullify the delay slot instruction). Some processors like

the SPARC provide this nullification option. We give more details and examples of delayed

execution in Appendix H, which describes the SPARC processor.

8.4.2 Branch Prediction

Branch prediction is traditionally used to handle the branch problem. We discuss three branch

prediction strategies: fixed, static, and dynamic.

284 Chapter 8 Pipelining and Vector Processing

Table 8.1 Static branch prediction accuracy

Instruction type

Instruction

distribution (%)

Prediction:

Branch taken?

Correct prediction

(%)

Unconditional branch 70 � 0.4 = 28 Yes 28

Conditional branch 70 � 0.6 = 42 No 42 � 0.6 = 25.2

Loop 10 Yes 10 � 0.9 = 9

Call/return 20 Yes 20

Overall prediction accuracy = 82.2%

Fixed Branch Prediction

In this strategy, prediction is fixed. These strategies are simple to implement and assume that

the branch is either never taken or always taken. The Motorola 68020 and VAX 11/780 use

the branch-never-taken approach. The advantage of the never-taken strategy is that the proces-

sor can continue to fetch instructions sequentially to fill the pipeline. This involves minimum

penalty in case the prediction is wrong. If, on the other hand, we use the always-taken approach,

the processor would prefetch the instruction at the branch target address. In a paged environ-

ment, this may lead to a page fault, and a special mechanism is needed to take care of this

situation. Furthermore, if the prediction were wrong, we would have done lot of unnecessary

work.

The branch-never-taken approach, however, is not proper for a loop structure. If a loop iter-

ates 200 times, the branch is taken 199 out of 200 times. For loops, the always-taken approach

is better. Similarly, the always-taken approach is preferred for procedure calls and returns.

Static Branch Prediction

From our discussion, it is obvious that, rather than following a fixed strategy, we can improve

performance by using a strategy that is dependent on the branch type. This is what the static

strategy does. It uses instruction opcode to predict whether the branch is taken. To show why

this strategy gives high prediction accuracy, we present sample data for commercial environ-

ments. In such environments, of all the branch-type operations, the branches are about 70%,

loops are 10%, and the rest are procedure calls/returns. Of the total branches, 40% are uncondi-

tional. If we use a never-taken guess for the conditional branch and always-taken for the rest of

the branch-type operations, we get a prediction accuracy of about 82% as shown in Table 8.1.

The data in this table assume that conditional branches are not taken about 60% of the time.

Thus, our prediction that a conditional branch is never taken is correct only 60% of the time.

This gives us ��� ��� � ����% as the prediction accuracy for conditional branches. Similarly,

loops jump back with 90% probability. Since loops appear about 10% of the time, the prediction

Section 8.4 Handling Branches 285

Table 8.2 Impact of using the knowledge of past � branches on prediction accuracy

Type of mix

� Compiler Business Scientific

0 64.1 64.4 70.4

1 91.9 95.2 86.6

2 93.3 96.5 90.8

3 93.7 96.6 91.0

4 94.5 96.8 91.8

5 94.7 97.0 92.0

is right 9% of the time. Surprisingly, even this simple static prediction strategy gives us about

82% accuracy!

Dynamic Branch Prediction

Dynamic strategy looks at the run-time history to make more accurate predictions. The basic

idea is to take the past � branch executions of the branch type in question and use this informa-

tion to predict the next one. Will this work in practice? How much additional benefit can we

derive over the static approach? The empirical study by Lee and Smith [25] suggests that we

can get significant improvement in prediction accuracy. A summary of their study is presented

in Table 8.2. The algorithm they implemented is simple: The prediction for the next branch is

the majority of the previous � branch executions. For example, for � � �, if two or more times

branches were taken in the past three branch executions, the prediction is that the branch will

be taken.

The data in Table 8.2 suggest that looking at the past two branch executions will give us over

90% prediction accuracy for most mixes. Beyond that, we get only marginal improvement. This

is good from the implementation point of view: we need just two bits to take the history of the

past two branch executions. The basic idea is simple: keep the current prediction unless the

past two predictions were wrong. Specifically, we do not want to change our prediction just

because our last prediction was wrong. This policy can be expressed using the four-state finite

state machine shown in Figure 8.12.

In this state diagram, the left bit represents the prediction and the right bit indicates the

branch status (branch taken or not). If the left bit is zero, our prediction would be branch “not

taken”; otherwise we predict that the branch will be taken. The right bit gives the actual result

of the branch instruction. Thus, a 0 represents that the branch instruction did not jump (“not

taken”); 1 indicates that the branch is taken. For example, state 00 represents that we predicted

that the branch would not be taken (left zero bit) and the branch is indeed not taken (right zero

286 Chapter 8 Pipelining and Vector Processing

01

Predict

no branch

00

PredictNo branch

no branch

Branch

No branch

B
ra

n
ch

N
o

 b
ra

n
ch

Branch

No branch

11

Predict

branch

10

Predict

branch

Branch

Figure 8.12 State diagram for branch prediction.

bit). Therefore, as long as the branch is not taken, we remain in state 00. If our prediction

is wrong, we move to state 01. However, we will still predict “branch not taken” as we were

wrong only once. If our prediction is right, we go back to state 00. If our prediction is wrong

again (i.e., two times in a row), we change our prediction to “branch taken” and move to state

10. You can verify that it always takes two wrong predictions in a row to change our prediction.

Implementation of this strategy requires maintaining two bits for each branch instruction,

as shown in Figure 8.13�. These two bits correspond to the two bits of the finite state machine

in Figure 8.12. This works well for direct branch instructions, where the address of the target

is specified as part of the instruction. However, in indirect branch instructions, the target is

not known until instruction execution. Therefore, predicting whether the branch is taken is not

particularly useful to fill the pipeline if we do not know the target address in advance. It is

reasonable to assume that the branch instruction, if the branch is taken, jumps to the same target

address as the last time. Thus, if we store the target address along with the branch instruction,

we can use this target address to prefetch instructions to fill the pipeline. This scenario is

shown in Figure 8.13�. In Section 8.6, we look at some processors that use the dynamic branch

prediction strategy.

8.5 Performance Enhancements
We look at several techniques to improve performance of a pipelined system: (i) superscalar

processors, (ii) superpipelined systems, and (iii) very long instruction word (VLIW) architec-

tures. We start our discussion with the superscalar processors. Superpipelined systems improve

the throughput by increasing the pipeline depth. VLIW architectures encode multiple opera-

tions into a long instruction word. The hardware can then schedule these operations on multiple

functional units without any run-time analysis.

Section 8.5 Performance Enhancements 287

Valid

bit

Branch

instruction

address

Prediction

bits

.

.

.

.

Valid

bit

Branch

instruction

address

.

.

.

.

Prediction

bits

Target

address

.

.

.

.

(a) (b)

Figure 8.13 Implementation of dynamic branch prediction: (a) Using a 2-bit branch history; (b) Including

the target address facilitates prefetching.

8.5.1 Superscalar Processors

Superscalar processors improve performance by replicating the pipeline hardware. One simple

technique is to have multiple pipelines. Figure 8.14 shows a dual pipeline design, somewhat

similar to that present in the Pentium. We discuss the Pentium instruction pipeline details in

Section 8.6. The instruction fetch unit fetches two instructions each cycle and loads the two

pipelines with one instruction each. Since these two pipelines are independent, instruction

execution can proceed in parallel.

When we issue more than one instruction, we have to worry about the dependencies dis-

cussed before. Section 8.6 gives details on how the Pentium processor handles these data de-

pendencies.

In our pipeline example, we assumed that all stages take the same amount of time. What

if the instruction execution takes more time? In reality, this stage takes a variable amount of

time. Although simple integer instructions can be executed in one cycle, complex instructions

such as integer division and floating-point operations can take longer (often by several cycles).

If we have only one execution unit at stage 4, execution of these complex instructions can bring

the pipeline to a crawl! We can improve the situation by providing multiple execution units,

linked to a single pipeline, as shown in Figure 8.15. In this figure, we are using four execution

units: two integer units and two floating-point units. Such designs are referred to as superscalar

processors. We discuss instruction pipeline details of four processors in Section 8.6.

288 Chapter 8 Pipelining and Vector Processing

Instruction

decode

unit

Operand

fetch

unit

Instruction

execution

unit

Result

write back

unit

Instruction

decode

unit

Operand

fetch

unit

Instruction

execution

unit

Result

write back

unit

U pipeline

V pipeline

Common

instruction

fetch unit

Figure 8.14 A dual pipeline based on the five stages used in Figure 8.1�.

Result

write back

unit

Instruction

fetch

unit

Instruction

decode

unit

Operand

fetch

unit

Integer

execution

unit 1

Integer

execution

unit 2

Floating-point

execution

unit 1

Floating-point

execution

unit 2

Figure 8.15 A superscalar pipeline with four functional units.

8.5.2 Superpipelined Processors

Superpipelined processors divide each processor cycle into two or more subcycles. A new

instruction is fetched in each subcycle. The performance advantage of the superpipelined ap-

proach is shown in Figure 8.16. Part (�) of this figure is similar to that shown in Figure 8.2�.

As you can see from Figure 8.16�, the five instructions complete two cycles earlier than in the

pipelined version. After the pipeline is full, the superpipeline version executes two instructions

per cycle (i.e., one instruction per subcycle).

Section 8.5 Performance Enhancements 289

IF ID OF IE WB

IF ID OF IE WB

IF ID OF IE WB

IF ID OF IE WB

IF2 ID2 IE2 WB2ID1 OF1 OF2 IE1 WB1IF1

IF2 ID2 IE2 WB2ID1 OF1 OF2 IE1 WB1IF1

IF2 ID2 IE2 WB2ID1 OF1 OF2 IE1 WB1IF1

IF2 ID2 IE2 WB2ID1 OF1 OF2 IE1 WB1IF1

IF2 ID2 IE2 WB2ID1 OF1 OF2 IE1 WB1IF1

I1

I2

I3

I4

IF ID OF IE WB

1 3 4 5 6 7 8 9

I5

1 2 3 4 5 6 7

I1

I2

I3

I4

I5

2Clock cycle

Clock cycle

(a) Pipelined execution

(b) Superpipelined execution

Figure 8.16 Superpipelined execution tends to achieve better performance by dividing each step into

substeps.

As an example of a superpipelined processor, we present CPU pipeline details of the MIPS

R4000 processor (see Table 8.3). It uses an eight-stage instruction pipeline; each stage takes

half of the master clock cycle. Thus, execution of each instruction takes four master clock

cycles.

The instruction fetch and memory access stages are split into two suboperations. The EX

stage computes the operations. In load and store operations, the ALU computes the address

during this stage. For the branch instructions, the ALU determines whether the branch is taken

(and computes the target address) during the EX stage. The TC stage is used to check the tag

field of the cache. The cache tag field is described in Chapter 17.

We have demonstrated that superpipelining increases the throughput of the pipeline. How-

ever, deeper pipelines increase the problems associated with data and control dependencies. We

return to this topic in Section 8.8.1.

290 Chapter 8 Pipelining and Vector Processing

Table 8.3 Pipeline stages of the MIPS R4000 processor

IF1 Instruction fetch, first half

IF2 Instruction fetch, second half

RF Decode instruction and fetch register operands

EX Instruction execution

DF1 Data fetch (load/store), first half

DF2 Data fetch (load/store), second half

TC Load/store check

WB Write back

8.5.3 Very Long Instruction Word Architectures

One of the ways to improve performance of a processor is to increase the number of functional

units. We have seen this principle in action with the superscalar processors. When we have mul-

tiple resources, scheduling instructions to keep these units busy is important to realize higher

performance. There is no use in having a large number of functional units if we cannot keep

them busy doing useful work. Thus instruction scheduling is very important. In most proces-

sors, instruction scheduling is done at run-time by looking at the instructions in the instruction

queue. Instruction scheduling needs to take the available resources and instruction dependen-

cies into account. For example, if we have one integer add unit and a single floating-point add

unit, we can schedule one integer add instruction and another floating-point add instruction. Ob-

viously, we cannot schedule two integer add instructions or two floating-point add instructions.

In the code sequence

add R1,R2,R3 ;R1 = R2+R3

sub R5,R6,R7 ;R5 = R6-R7

and R4,R1,R5 ;R4 = R1 AND R5

we cannot schedule these three instructions even if we have add, subtract, and logical AND

functional units due to the dependency between the and and add/sub instructions. We can

schedule add and sub in one instruction cycle and the and instruction can be scheduled in the

next cycle.

Instruction scheduling is more complex than this case might suggest. For example, we can

use out-of-order scheduling as in the following:

add R1,R2,R3 ;R1 = R2+R3

sub R5,R6,R7 ;R5 = R6-R7

and R4,R1,R5 ;R4 = R1 AND R5

xor R9,R9,R9 ;R9 = R9 XOR R9

Section 8.6 Example Implementations 291

We can schedule these four instructions in two cycles:

Cycle 1: add, sub, xor

Cycle 2: and

Even though we schedule the xor instruction ahead of the and, this out-of-order execution does

not cause any semantic problems. Such out-of-order execution allows us to exploit instruction

level parallelism (ILP) to improve performance. We further discuss ILP in Chapter 14.

Very long instruction word (VLIW) architectures move the job of instruction scheduling

from run-time to compile-time. An advantage of such a scheme is that we can do more com-

prehensive offline analysis to determine the best scheduling, as we have complete knowledge of

the program. Also notice that this shift from run-time to compile-time also means moving from

hardware to software. This transfer of complexity from hardware to software leads to simpler,

more efficient, and easier-to-design processors. At the same time, we get all the flexibility that

we normally associate with a software-based approach to handle difficult tasks.

Each VLIW instruction consists of several primitive operations that can be executed in par-

allel. Each word in a VLIW processor may be tens of bytes wide. For example, the Multiflow

TRACE system uses a 256-bit instruction word. It packs 7 different operations into each word.

A more powerful model of the TRACE system uses 1024-bit instructions and packs as many as

28 operations.

Branches and memory access (load and store operations) invariably cause performance

problems. These processors can minimize the branch prediction errors by executing all branch

results and then selecting the result that corresponds to the taken branch.

Load/store latencies can be minimized by using what is known as speculative loading. Intel

incorporated some of these concepts in their Itanium processor. The Itanium uses a 128-bit

data bus. Thus, each memory read can bring 128 bits called instruction bundles. Each bundle

consists of three 40-bit instructions. The remaining 8 bits are used to carry information on the

three packed instructions. The compiler is responsible for packing instructions that do not have

any conflicts into each bundle such that these instructions can be executed in parallel. There is

no need to do run-time analysis to schedule these instructions. The Itanium also uses branch

elimination and speculative loading techniques. These details are discussed in Chapter 14.

8.6 Example Implementations
In this section, we look at the instruction pipeline details of four processors: the Pentium,

PowerPC, SPARC, and MIPS. Among these four processors, only the Pentium is the CISC

processor; the other three are RISC processors.

8.6.1 Pentium

The Pentium uses a dual pipeline design, similar to the one shown in Figure 8.14, to achieve su-

perscalar execution. Figure 8.17 shows the block diagram of the Pentium processor. It uses dual

integer pipelines, called U- and V-pipes, and a floating-point pipeline. As shown in Figure 8.18,

the integer pipeline has five stages. These five stages perform the following functions:

292 Chapter 8 Pipelining and Vector Processing

128

Integer

ALU

(U-pipe)

Integer

ALU

(V-pipe)

Instruction
prefetch buffers

Branch

prediction

unit

32

Integer register file

32

Data cache

FP multiplier

FP divider

Floating-point unit

Floating-point

register file

Bus

unit

System bus

FP adder

Instruction cache

interface

Figure 8.17 A block diagram of the Pentium processor (from [1]).

PF D1 D2 E WB

PF D1 D2 E X1 X2 WF ER

(b) Floating-point pipeline

(a) Integer pipeline

Figure 8.18 Integer and floating-point pipelines of the Pentium processor.

1. Prefetch (PF): This stage fetches instructions and stores them in the instruction buffer.

Since the Pentium uses variable-length instructions, alignment of instructions to the cache

line is taken care of by the instruction buffers.

2. First Decode (D1): This stage decodes the instruction and generates either a single con-

trol word (for simple operations) or a sequence of control words (for complex operations).

Instructions that require only a single control word can be executed directly. These in-

structions are called “simple” instructions. Complex instructions require several control

words. As we have seen in Chapter 6, these control word sequences are generated by a

microprogrammed control unit.

Section 8.6 Example Implementations 293

3. Second Decode (D2): The control words generated in the D1 stage are decoded in this

stage. This stage also generates the necessary operand addresses.

4. Execute (E): This stage either accesses the data cache to get operands or executes instruc-

tions in the ALU and other functional units. Which action is taken depends on the type of

instruction. If the operands of an instruction are in registers, the D2 stage is executed and

the operation is performed during the E stage and the result is written back to the register

set. For a memory operand, D2 calculates the operand address and the E stage fetches

the operand from the data cache. In the case of a cache hit, the data are available at the

end of this stage. Another E stage is inserted to execute the operation, after which the

result is written back. In the case of a cache miss, data need to be fetched from memory.

Chapter 17 describes how cache misses are handled.

5. Write Back (WB): This stage essentially writes the result back into the register set or data

cache.

The Pentium’s floating-point pipeline has eight stages (see Figure 8.18). The first three

stages are the same as in the integer pipeline. The next five stages are described below:

• Operand Fetch (OF): During this stage, the FPU accesses the data cache and the floating-

point register file to fetch the necessary operands for the floating-point operation.

• First Execute (X1): During this step, the initial operation is performed. If the data are

read from the data cache, they are written to the floating-point register file.

• Second Execute (X2): The X2 stage continues the floating-point operation initiated during

the X1 stage.

• Write Float (WF): The FPU completes the floating-point operation and writes the result

to the floating-point register file.

• Error Reporting (ER): This stage is used for error detection and reporting. Additional

processing may be required to complete execution.

The dual pipeline allows execution of two instructions in the U- and V-pipelines. The U-

pipeline is called the main pipeline. This pipeline can execute any Pentium instruction. The

V-pipeline can only execute simple instructions. Thus, the Pentium can issue two instructions

per clock cycle under certain conditions. Its instruction issue uses the following algorithm to

resolve dependencies between the two instructions [1]:

Decode two consecutive instructions I1 and I2

if (I1 and I2 are simple instructions) AND

(I1 is not a branch instruction) AND

(destination of I1 �� source of I2) AND

(destination of I1 �� destination of I2)

then

Issue I1 to U-pipe and I2 to V-pipe

else

Issue I1 to U-pipe.

294 Chapter 8 Pipelining and Vector Processing

Since this algorithm issues only simple instructions to the U- and V-pipes, it eliminates most

resource dependencies. We can also avoid read-after-write (RAW) and write-after-write (WAW)

dependencies as the source and destination registers of the V-pipe instruction differ from the

destination register of the U-pipe instruction. We don’t have to worry about the write-after-read

(WAR) dependency because reads occur in an earlier pipeline stage than writes. The pipeline

avoids control dependencies by not issuing an instruction to the V-pipe whenever a branch

instruction is issued to the U-pipe.

There can be problems with resource and data dependencies between memory references.

For details on how these conflicts are resolved, see [1].

The Pentium uses dynamic branch prediction. It maintains a 256-entry branch target buffer

with a structure similar to the one shown in Figure 8.13�.

8.6.2 PowerPC

The PowerPC 604 processor has 32 general-purpose registers (GPRs) and 32 floating-point reg-

isters (FPRs). It has three basic types of execution units: integer, floating-point, and load/store

units. In addition, it has a branch processing unit and a completion unit. The PowerPC 604

follows the superscalar design mentioned earlier. It can issue up to four instructions per clock.

The general block diagram is shown in Figure 8.19.

The integer units consist of two single-cycle integer units (SCIUs) and a multicycle integer

unit (MCIU). Most integer instructions are executed by the two SCIUs and take only a single

cycle to execute. Integer multiplication and division operations are executed by the MCIU.

A multiplication of two 32-bit integers takes 4 cycles whereas the division operation takes as

many as 20 cycles. The floating-point unit (FPU) handles both single- and double-precision

floating-point operations.

The load/store unit (LSU) provides a single-cycle, pipelined access to the cache. It has a

dedicated hardware adder to perform effective address (EA) calculations. It also performs align-

ment and precision conversion for floating-point numbers and alignment and sign-extension of

the integers. As shown in Figure 8.19, the LSU uses a 4-entry load miss buffer and a 6-entry

store buffer.

The branch processing unit (BPU) uses dynamic branch prediction. It maintains a 512-entry

branch history table with two prediction bits (see Figure 8.13�). It also keeps a 64-entry branch

target address cache. In other words, the two attributes in Figure 8.13� are maintained in two

separate tables.

It uses a six-stage instruction pipeline as shown in Figure 8.20:

1. Fetch (IF): As the name implies, this stage is responsible for instruction fetch and deter-

mining the address of the next instruction. The fetch unit maintains an 8-entry instruction

buffer between the fetch and dispatch units (see Figure 8.19). This 6-entry buffer is di-

vided into two 4-entry decode and dispatch buffers. The instruction fetch unit can fetch

up to four instructions (128 bits) from the instruction cache per cycle.

2. Decode (ID): This stage performs all time-critical instruction decoding of the instructions

in the instruction buffer. It moves instructions from the four-instruction decode buffer into

the dispatch buffer as space becomes available.

Section 8.6 Example Implementations 295

Store queue Load queue

D-MMU D-cache

.

General-purpose

registers

.

Reorder buffers (16)

.

Instruction unit

128 bits
128 bits

72-bit data bus

Fetch unit

Instruction

queue (8 words)

Reservation
station

Reservation Reservation
stationstation

unit (LSU)

Address

calculation

Reservation
station

Load/store

Data MMU Data cache

Multiple

cycle integer

unit

(MCIU)

Single

cycle integer

units

(SCIUs)

Floating-point

unit

(FPU)

Rename buffers (12)

I-MMU

Memory

management

unit (instruction)

Dispatch

unit

Branch

processing

unit I-cache

Instruction cache

Bus

interface

unit

36-bit address bus

Completion unit

Rename buffers (8)

Floating-point

registers

Figure 8.19 A block diagram of the PowerPC 604 processor.

3. Dispatch (DS): The dispatch unit performs non-time-critical decoding of instructions. Its

main job is to see which of these instructions can be scheduled. It also fetches the source

operands from the appropriate registers and dispatches the operands with the instruction

to the execution unit.

296 Chapter 8 Pipelining and Vector Processing

Fetch

(IF)

CRU

BPU

FPU

MCIU

SCIU2

LSU

Dispatch

(DS)

Complete

(C)

Write back

(W)(ID)

SCIU1

Execute stage

Decode

Figure 8.20 PowerPC instruction pipeline.

4. Executed (E): Time spent in the execution stage is determined by the type of operation

performed. Potentially, there can be up to seven instructions in execution at the seven

execution units shown in Figure 8.20.

5. Complete (C): The completion stage is responsible for maintaining the correct instruction

order of execution. We give more details shortly.

6. Write-Back (W): This stage writes back data from the rename buffers that were written

by the complete stage. Details about the rename buffers are given next.

To understand how these resources are usefully utilized to improve performance, let us see

the general instruction flow. The instruction fetch unit gets up to four instructions from the

instruction cache into the instruction buffer. Branch instructions are forwarded to the branch

processing unit. Dynamic branch prediction is done during the fetch, decode, and dispatch

stages.

The dispatch unit takes instructions from the end of the instruction queue. If the instruc-

tions can be dispatched, it fetches the operands and sends them either to the associated reserva-

tion station or directly to the execution unit. The PowerPC 604 processor maintains a 2-entry

reservation station for each execution unit. The reservation stations act as buffers between the

dispatch and execution units. Reservation stations allow the dispatch unit to dispatch instruc-

tions even if the operands are not yet available. Integer units allow out-of-order execution of

Section 8.6 Example Implementations 297

instructions within an integer unit as well as among the three integer units. Reservation stations

for other execution units allow only in-order execution.

Since multiple instructions are in execution, some taking more time than others, the results

of these instructions cannot be directly written to the destination registers. Instead, we have

to hold these results in temporary registers until it is safe to write to the destination processor

registers. These temporary registers are called the rename registers because they pretend to be

a processor register given in the instruction. As shown in Figure 8.19, the PowerPC 604 pro-

cessor provides 12 and 8 rename registers for the general-purpose and floating-point registers,

respectively.

When an instruction is dispatched, the dispatch unit reserves space for the instruction in

the 16-entry completion buffer. The completion buffer is organized as a FIFO buffer. Thus, it

examines the instructions in this buffer in the order they were dispatched. This ensures that the

instructions are retired strictly in program order. The process of retiring an instruction involves

writing the value from the rename register to the appropriate processor register and freeing

the rename register for use by other instructions. The completion unit can retire up to four

instructions in a clock cycle.

8.6.3 SPARC Processor

Sun’s UltraSPARC is a superscalar processor that implements the 64-bit SPARC-V9 architec-

ture. It is capable of executing up to four instructions per cycle. Figure 8.21 shows the main

components of the UltraSPARC processor.

The prefetch and dispatch unit (PDU) performs the standard instruction fetch and dispatch

function discussed before. Like the PowerPC, UltraSPARC has an instruction buffer that can

store up to 12 instructions. In addition, the PDU also contains branch prediction logic that

implements a dynamic branch prediction scheme. Dynamic branch prediction is done using a

two-bit history as shown in Figure 8.13�.

The integer execution unit has two ALUs, a multicycle integer multiplier, and a multicycle

divider. In addition, this unit contains eight register windows and four sets of global registers.

Details on these registers are presented in Appendix H.

The floating-point unit has add, multiply, and divide/square root subunits. It can issue and

execute two floating-point instructions per cycle. Most floating-point instructions are pipelined

with a throughput of one per cycle. The latency is independent of the precision (single or dou-

ble). The divide and square root operations are not pipelined and take 12 (for single-precision)

or 22 (for double-precision) cycles. These long latency instructions do not stall the proces-

sor. The floating-point instructions that follow the divide/square root instruction can be issued,

executed, and retired.

UltraSPARC also supports graphics instructions and provides hardware support to execute

these instructions quickly. The graphics unit (GRU) supports operations such as single-cycle

pixel distance and data alignment.

The load/store unit is similar to the one we have seen in the PowerPC processor. Like the

PowerPC, it also has load and store buffers. One load or store can be issued per cycle.

298 Chapter 8 Pipelining and Vector Processing

Floating-point unit (FPU)

Grouping

logic and annex

Integer execution unit (IEU)

Memory management unit

(MMU)

iTLB dTLB

Prefetch and dispatch unit

(PDU)

Instruction Instruction

cachebuffer

External

cache

System bus

FP multiply

FP add

External cache unit (ECU)

Memory interface unit (MIU)

Load/store unit (LSU)

Load
buffer

Integer registers

registers
FP

Store
buffer

Data
cache

FP divide

Graphics unit (GRU)

Figure 8.21 A block diagram of the UltraSPARC processor.

UltraSPARC uses the 9-stage instruction pipeline shown in Figure 8.22. Three additional

stages are added to the integer pipeline in order to simplify pipeline synchronization with the

floating-point pipeline.

The first two stages are the standard fetch and decode stages. The UltraSPARC fetches and

decodes four instructions per cycle. The decoded instructions are placed back in the instruction

buffer. A pair of pointers is used to manage the instruction buffer so that instructions are issued

in order to the next stage.

The grouping stage groups and dispatches up to four instructions per cycle. From these four

valid instructions, it can send up to two floating-point or graphics instructions. The grouping

stage is also responsible for integer data forwarding (see Section 8.3.1) and for handling pipeline

stalls due to interlocks.

The cache access stage is used by the load and store operations to get data from the data

cache. ALU operations generate condition code values during this stage. Floating-point and

graphics instructions start their execution during this phase. The next two stages�� and�� are

Section 8.7 Vector Processors 299

N3Fetch Decode Group Execute Cache N1 N2 Write

Integer pipeline

N3Fetch Decode Group X1 X2 X3 Write

Floating-point and graphics pipeline

Register

Figure 8.22 UltraSPARC’s integer and floating-point pipelines.

used to complete load and store operations. These two stages also perform other tasks that are

not covered here. The �� stage is used to resolve traps. Traps and interrupts are discussed in

Chapter 20. The last stage (write stage) is used to write the results to the integer and floating-

point registers.

8.6.4 MIPS Processor

The MIPS R4000 processor internal details are shown in Figure 8.23. We look at its instruction

set and registers in Chapter 15. As mentioned before, the R4000 uses superpipelined design for

the instruction pipeline. Its pipeline runs at twice the processor clock.

Like the SPARC processor, it uses an 8-stage instruction pipeline for both integer and

floating-point instructions. The floating-point unit has three functional units: adder, multiplier,

and divider. The multiplier and divider units use the adder during the final stages. Other than

this restriction, the adder operations can overlap the multiplier and divider instructions. The

divider unit is not pipelined; it allows only one operation at a time. The multiplier is pipelined

and allows up to two instructions.

The multiplier unit can start a new double-precision multiplication every four cycles; single-

precision operations can begin every three cycles. The adder can start a floating-point operation

every three cycles. We have described its instruction pipeline details in Section 8.5.2.

8.7 Vector Processors
Vector machines are special-purpose systems targeted for high-performance scientific compu-

tations in which matrix and vector arithmetic operations are quite common. What is a vector? It

is a linear array of numbers: integers or floating-point numbers. From a programming language

perspective, a vector is a one-dimensional array. That does not mean that vector processors

work only one-dimensional arrays. As we show later in this section, we can treat a column of a

two-dimensional matrix as a vector.

300 Chapter 8 Pipelining and Vector Processing

FPU

FPU registers

Pipeline bypass

FP multiplier

FP divider

FP adder/square root

CP0

Exception/control

registers

Memory

management

registers

Translation lookaside

CPU

CPU registers

ALU

Load/store unit

Interger multiplier/divider

Address unit

PC incrementer

Instruction

cache

Data

cache

buffers

Pipeline control

Figure 8.23 A block diagram of the MIPS R4000 processor.

8.7.1 What Is Vector Processing?

Vector machines are designed to operate at the vector level. To illustrate vector operations, let’s

assume that we have two vectors A and B, each with 64 elements. The number of elements in

a vector is called the vector size. In our example, the vector size is 64. We write our vectors A

and B as

� � ��� ��� � � � � ���� �
� � ��� ��� � � � � ���� �

Suppose that we want to add these two vectors and place the result in vector C. Note that adding

two vectors involves adding the corresponding elements as shown below:

� � ��� � �� � ��� �� � ��� � � � � ���� � ���� �
In high-level programming languages, we perform the vector addition by using a loop that

iterates � times, where � is the vector size. In the C language, we can write this code as

Section 8.7 Vector Processors 301

for(i=0; i<n; i++)

C[i] = A[i] + B[i];

This for loop iterates � times. The addition operation in this code is called the scalar oper-

ation. Vector processor instructions specify vector operations. For example, we just need one

vector instruction to add vectors A and B. A typical vector instruction specifies four fields—

three registers and an operation:

VOP Vd Vs1 Vs2

which performs Vd = Vs1 VOP Vs2. As you can see from this format, it uses the three-

address format discussed in Chapter 6. Here is what a vector addition instruction V3 = V2 + V1

looks like in the Cray X-MP assembly language:

V3 V2 + V1

We need some more details before we can use vector instructions for A � B. We discuss the

necessary Cray machine details later. As this example illustrates, a single vector instruction

replaces the entire loop. There is no need to increment the index variable � and test it for the

boundary condition (in our example, whether it is less than 64) to jump back. Due to this

and their exploitation of pipelining, vector processors give superior performance for scientific

computations.

8.7.2 Architecture

A vector machine consists of a scalar unit and a vector unit. The scalar unit works on scalars and

has an architecture similar to that in the traditional processors. The vector unit is responsible

for performing vector operations. Similar to the move from CISC to RISC designs, vector

architectures have also progressed from the memory–memory architecture to the vector–register

architecture.

The first vector machines used the memory–memory architecture. In this architecture, all

vector operations receive the input operands from memory and store the result in memory. The

first vector machine CDC Star 100 used this architecture.

Most of the current vector machines including the machines from Cray, NEC, Fujitsu, Hi-

tachi, and Convex use the vector–register approach. This architecture is analogous to the RISC

approach. All vector operations are done on vectors located in vector registers. The result is

stored in a vector register as well. As with the RISC processors, special load and store instruc-

tions move vectors between vector registers and memory.

Architecture of a vector–register machine is shown in Figure 8.24, which is based on the

Cray 1 system. It consists of five components: vector registers, scalar registers, vector functional

units, vector load/store unit, and main memory.

Vector Registers: We have already mentioned the need for vector registers to hold the input

and result vectors. The Cary 1 and most vector processors have eight vector registers. Each

register can hold 64 elements of 64 bits each.

302 Chapter 8 Pipelining and Vector Processing

Main memory

Vector load/store unit

Shift

Logical

Integer add

FP reciprocal

FP multiply

FP add

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . . 63210

64 elements of 64 bits each

V0

V1

V2

V3

V4

V5

V6

V7

Vector functional units. . .

. . .

Scalar registers

. . .

Vector length register

Vector registers

Figure 8.24 A typical vector processor architecture (based on the Cray 1).

Some processors such as the Fijitsu VP 200 allow the total available register space of 8 K

elements into a programmable set of vector registers ranging from 8 to 256. When using eight

vector registers, each register can hold 1024 64-bit elements; at the other end, with 256 registers,

each can hold only 32 elements.

As shown in Figure 8.24, each register has two read ports and one write port to allow a high

degree of overlap among vector operations on different vector registers.

Scalar Registers: The scalar registers provide scalar input to vector operations. For instance,

when multiplying all elements of a matrix by a constant, a scalar register supplies the constant.

For example, to compute

B = 5 * X + Y

the constant 5 is stored in a scalar register, and vectors X and Y are stored in two vector registers.

The scalar registers are also used to compute addresses for the vector load/store unit.

Section 8.7 Vector Processors 303

Vector Load/Store Unit: This unit is responsible for movement of data between vector registers

and memory. This unit is pipelined to facilitate overlapped read and write operations from

memory. As well, it will mask the high latency associated with main memory access. This

unit supports two basic operations: a load vector operation to move a vector from memory to a

vector register and a store vector to move a vector to the memory. One load/store unit is typical,

however, several vector processors have more than one such unit. For example, the NEC SX/2

has eight vector load/store units.

Vector Functional Units: Vector processors contain several vector functional units for floating-

point, integer, and logical operations. For example, the Cray 1 has 6 functional units as shown in

Figure 8.24. The NEC SX/2 has 16 functional units: 4 integer add/logical, 4 FP multiply/divide,

4 FP add, and 4 shift units. Note that these processors have other functional units for scalar

operations, which are not our focus here.

Memory: The memory unit is different in organization than the ones we use in other proces-

sors. The memory organization should allow pipelined transfer of data to and from memory.

Interleaved memory is used to support pipelined transfer of data from memory. We describe

interleaved memories in Section 16.8 (see page 684).

8.7.3 Advantages of Vector Processing

Even though vector processing is not for general-purpose computation, it does offer significant

advantages for scientific computing applications. To illustrate the performance advantages of-

fered by vector systems, let’s look at the simple vector addition example we have discussed

before.

• Flynn’s bottleneck can be reduced by using vector instructions as each vector instruction

specifies a lot of work. As we have seen in the previous example, vector instructions can

specify the work equivalent of an entire loop. Thus, fewer instructions are required to

execute programs. This reduces the bandwidth required for instruction fetch.

• Data hazards can be eliminated due to the structured nature of the data used by vector

machines. We can determine the absence of a data hazard at compile-time, which not only

improves performance but also allows for planned prefetching of data from memory. The

next point elaborates on this advantage.

• Memory latency can be reduced by using pipelined load and store operations. For exam-

ple, when we fetch the first element in a 64-element addition operation, we can schedule

fetching the remaining 63 elements from memory. By using interleaved memory designs,

vector machines can amortize the high latency associated with memory access over the

entire vector. We discuss interleaved memories on page 684.

• Control hazards are reduced as a result of specifying a large number of iterations in a sin-

gle vector instruction. The number of iterations depends on the size of the vector registers.

For example, if the machine has 64-element vector registers, each vector instruction can

specify work equivalent to 64 loop iterations.

304 Chapter 8 Pipelining and Vector Processing

• Pipelining can be exploited to the maximum extent. This is facilitated by the absence

of data and control hazards. Vector machines not only use pipelining for integer and

floating-point operations but also to feed data from one functional unit to another. This

process, known as chaining, is discussed on page 311. In addition, as mentioned before,

load and store operations also use pipelining.

As you can see from this discussion, vector machines restrict the type of data to vectors, which

exhibit known access patterns and reduce data and control hazards. This characteristic of the

input data is heavily exploited by using pipelining in every aspect of the system operation.

8.7.4 The Cray X-MP

The first prototype of the Cray X-MP was introduced in 1982. It can support up to four CPUs.

The processors communicate with each other through shared communication register clusters.

In this section, we present an overview of its CPU architecture. For more details, see [30].

The Cray X-MP shares many of the RISC characteristics discussed in Chapter 1 (page 19).

Vector processors use the load/store architecture. In this architecture, all operations are done

on operands that are in either scalar or vector registers. Special load and store instructions are

responsible for moving data between main memory and the processor registers.

As the Cray machine is targeted for scientific computations, all data in memory are 64

bits wide. It uses 22-bit addresses, where each address specifies a 64-bit word. Instructions

are encoded into either a 16- or 32-bit format. In the Cray’s terminology, a 16-bit instruction

encoding is called one parcel, and the 32-bit encoding is two parcels.

The Cray X-MP has three types of registers: address, scalar, and vector registers. It has

eight 24-bit address registers A0 to A7. These registers are mainly used for holding memory

addresses for load and store operations. The use of 24-bit address registers may seem strange

as the X-MP uses 22-bit addresses. The reason is that up to four instructions can be at the

addressed location. Thus, we need two additional bits to identify one of the four instructions

that could be packed into a 64-bit word.

The Cray X-MP uses pipelined execution for address, scalar, and vector operations. It has

several address, scalar, and vector functional units. The address section of the processor has two

functional units to perform address arithmetic operations. Details about the address functional

units are shown below:

Address functional unit Number of stages

24-bit integer ADD 2

24-bit integer MULTIPLY 4

The Cray provides several instructions to manipulate addresses. Here are some example address

instructions in the Cray assembly language (CAL) format:

Ai Aj+Ak (Ai = Aj+Ak)

Ai Aj*Ak (Ai = Aj*Ak)

Section 8.7 Vector Processors 305

Table 8.4 Sample Cray X-MP scalar functional units

Scalar functional unit Number of stages

Integer ADD (64-bit) 3

64-bit SHIFT 2

128-bit SHIFT 3

64-bit LOGICAL 1

POP/PARITY (population or parity) 4

POP/PARITY (leading zero count) 3

Ai Aj�Ak (Ai = Aj�Ak)

Ai �Ak (Ai = �Ak)

Ai Aj+1 (Ai = Aj+1)

Ai Aj�1 (Ai = Aj�1)

Ai expr (Ai = expr)

The last instruction can be used to assign constant values (expr) to A registers. As we show

later, address registers are also used for holding short integers. For example, address registers

are used to hold the shift count for shift instructions.

The scalar section of Cary X-MP has eight 64-bit scalar registers (S0 to S7) and four types

of functional units: ADD, LOGICAL, SHIFT, and POP/PARITY. The first three operations are

the standard addition, logical, and shift operations. The POP/PARITY unit counts the number

of ones or zeros or determines parity. Table 8.4 shows the number of stages used in each scalar

functional unit.

Some example scalar instructions are given below:

Si Sj+Sk (Si = Sj+Sk)

Si Sj!Sk (Si = Sj OR Sk)

Si Si>Ak (Si = Si>>Ak)

The first instruction places the sum of Sj and Sk in the Si register. The second instruction

performs the logical bitwise OR operation, and the third one right-shifts the contents of Si by

Ak positions.

Like the Cray-1 shown in Figure 8.24, the X-MP has eight 64-element vector registers V0 to

V7. Each vector register can hold 64 words (each word is 64 bits wide). Table 8.5 summarizes

the details of the vector functional units. For now, ignore the last two columns in this table.

A sample of the Cray X-MP vector instructions is shown in Table 8.6. Each vector instruc-

tion works on the first VL elements. The VL value is in the vector length register (see Fig-

ure 8.24). The first group of instructions in this table shows the types of addition instructions

provided by the X-MP. Similar instructions are available for multiplication and subtraction op-

erations. Multiplication and subtraction instructions use * and � operators, respectively. There

306 Chapter 8 Pipelining and Vector Processing

Table 8.5 Sample Cray X-MP vector functional units

Vector functional unit Number of stages Available to chain Vector results

Integer ADD (64-bit integer) 3 8 VL + 8

64-bit SHIFT (64-bit logical) 3 8 VL + 8

128-bit SHIFT (128-bit logical) 4 9 VL + 9

Full vector 64-bit LOGICAL 2 7 VL + 7

Second vector 64-bit LOGICAL 4 9 VL + 9

POP/PARITY 5 10 VL + 10

Floating ADD 6 11 VL + 11

Floating MULTIPLY 7 12 VL + 12

Reciprocal approximation 14 19 VL + 19

is no division operation. Instead, X-MP provides the reciprocal operation as shown in Table 8.6.

We have shown only the logical AND operation in this table. The Cray X-MP also provides

instructions to perform logical OR (!) and XOR (\) operations.

8.7.5 Vector Length

In our discussion so far, we have not said anything about the size of the actual vector. We

conveniently assumed that the size of the vector register is equal to the size of the vector we

have. What happens if this is not true? In particular, we have to handle two cases: the vector

size is less than the vector register size, and the vector size is larger than the vector register size.

For concreteness, we assume 64-element vector registers as provided by the Cray systems. We

first look at the simpler of these two problems.

Handling Smaller Vectors

If our vector size is smaller than 64, we have to let the system know that it should not operate

on all 64 elements in the vector registers. This is fairly simple to do by using the vector length

register. The VL register holds the valid vector length. All vector operations are done on the

first VL elements (i.e., elements in the range 0 to VL � 1). There are two instructions to load

values into the VL register:

VL 1 (VL = 1)

VL Ak (VL = Ak where k ��0)

For example, if the vector length is 40, the following code can be used to add two vectors in

registers V3 and V4:

Section 8.7 Vector Processors 307

Table 8.6 Sample Cray X-MP instructions

Instruction Meaning Description

Vi Vj+Vk Vi = Vj+Vk
Integer add

Add corresponding elements (in the range 0 to VL � 1)

from Vj and Vk vectors and place the result in vector

Vi

Vi Sj+Vk Vi = Sj+Vk
Integer add

Add the scalar Sj to each element (in the range 0 to

VL�1) of Vk vector and place the result in vector Vi

Vi Vj+FVk Vi = Vj+Vk
Floating-point add

Add corresponding elements (in the range 0 to VL �
1) from Vj and Vk vectors and place the floating-point

result in vector Vi

Vi Sj+FVk Vi = Sj+Vk
Floating-point add

Add the scalar Sj to each element (in the range 0 to VL� 1) of Vk vector and place the floating-point result in

vector Vi

Vi ,A0,Ak Vi = M(A0)+Ak
Vector load with

stride Ak

Load into elements 0 to VL � 1 of vector register Vi
from memory starting at address A0 and incrementing

addresses by Ak

Vi ,A0,1 Vi = M(A0)+1
Vector load with

stride 1

Load into elements 0 to VL � 1 of vector register Vi
from memory starting at address A0 and incrementing

addresses by 1

,A0,Ak Vi Vi = M(A0)+Ak
Vector store with

stride Ak

Store elements 0 to VL � 1 of vector register Vi in

memory starting at address A0 and incrementing ad-

dresses by Ak

,A0,1 Vi Vi = M(A0)+1
Vector store with

stride 1

Store elements 0 to VL � 1 of vector register Vi in

memory starting at address A0 and incrementing ad-

dresses by 1

Vi Vj&Vk Vi = Vj&Vk
Logical AND

Perform bitwise-AND operation on corresponding ele-

ments (in the range 0 to VL� 1) from Vj and Vk vectors

and place the result in vector Vi

Vi Sj&Vk Vi = Sj&Vk
Logical AND

Perform bitwise-AND operation on 0 to VL � 1 ele-

ments of Vk and scalar Sj and place the result in vector

Vi

Vi Vj>Ak Vi = Vj>>Ak
Right-shift by Ak

Right-shift 0 to VL � 1 elements of Vj by Ak and place

the result in vector Vi

Vi Vj<Ak Vi = Vj<<Ak
Left-shift by Ak

Left-shift 0 to VL � 1 elements of Vj by Ak and place

the result in vector Vi

308 Chapter 8 Pipelining and Vector Processing

A1 40 (A1 = 40)

VL A1 (VL = 40)

V2 V3+FV4 (V2 = V3 + V4)

Since we cannot write

VL 40

we have to use the two-instruction sequence to load 40 into the VL register. The last instruction

specifies floating-point addition of vectors V3 and V4. Since the VL is 40, only the first 40

elements are added.

Handling Larger Vectors

The VL register is useful for handling smaller vector sizes, but it does not help for larger vector

sizes. Suppose we have 200-element vectors (i.e., � � ���). How do we use the vector

instructions to add two such vectors? The case of larger vectors is handled by a technique

known as strip mining.

In strip mining, the vector is partitioned into strips of 64 elements. This leaves one odd-size

piece that may be less than 64 elements. The size of this piece is given by (� mod 64). We

load each strip into a vector register and apply the vector addition instruction. The number of

strips is given by ������ � �. For our example, we divide the 200 elements into four pieces:

three pieces with 64 elements and one odd piece with 8 elements. We use a loop that iterates

four times: in one of the iterations, we set VL to 8 and the remaining three iterations will set

the VL register to 64.

8.7.6 Vector Stride

To understand vector stride, we have to consider how the elements are stored in memory. Let’s

first look at vectors. Since vectors are one-dimensional arrays, storing a vector in memory is

straightforward: vector elements are stored as sequential words in memory. If we want to fetch

40 elements, we read 40 contiguous words from memory. These elements are said to have a

stride of 1. That is, to get to the next element, we add 1 to the current element. Note that the

distance between successive elements is not measured in bytes; rather in number of elements.

We will need nonunit vector strides for multidimensional arrays. To see why, let’s focus on

two-dimensional matrices. If we want to store a two-dimensional matrix in memory, we have

to linearize it. We can do this in one of two ways: row-major or column-major order. Most

languages, except FORTRAN, use the row-major order. In this ordering, elements are stored

in row order: row 0, row 1, row 2, and so on. In the column-major order, which is used by

FORTRAN, elements are stored column by column: column 0, column 1, and so on. As an

example, consider the following 4�4 matrix:

� �

�
���

�� �� �	 ��

�� �� �	 ��

	� 	� 		 	�

�� �� �	 ��

�
��� �

Section 8.7 Vector Processors 309

(b) Column-major order

11 21 31 41 12 32 42 13 23 33 43 14 24 34 44

Column 0 Column 1 Column 2 Column 3

(a) Row-major order

11 12 13 14 21 22 23 24 31 32 33 34 41 42 43 44

Row 0 Row 1 Row 2 Row 3

22

Figure 8.25 Memory layout of vector A.

This matrix is stored in memory as shown in Figure 8.25. For more details on accessing indi-

vidual elements, see Section 11.4.2 (page 450).

Assuming row-major order for storing, how do we access all elements of column 0? Clearly,

these elements are not stored contiguously. We have to access 0, 4, 8, and 12 elements in the

memory array. Since successive elements are separated by 4 elements, we say that the stride is

4. Vector machines provide load and store instructions that take the stride into account. We can

see from Table 8.6 that X-MP supports both unit and nonunit stride access. For example, the

instruction

Vi ,A0,Ak

loads vector register Vi with stride Ak. Since unit stride is very common, a special instruction

Vi ,A0,1

is provided. Similar instructions are available for storing vectors in memory.

8.7.7 Vector Operations on the Cray X-MP

All vector units produce a result on each clock once the pipeline is full. Pipelined operations

on the Cray X-MP proceed in three phases: setup, execution, and shutdown. During the setup

phase, the functional unit is programmed to perform the appropriate operation and the connec-

tions to the source and destination vector registers are established. The setup time for all vector

units is three clock cycles. The pipeline performs the computation during the execution phase.

The number of cycles required to complete the computation depends on the vector length and

the number of stages in the functional unit. The final shutdown phase represents the time differ-

ence between when the final result comes out of the pipeline and when the destination register

can be used for another operation. For the X-MP, the shutdown phase also takes three clock

cycles.

With this information, it is relatively straightforward to estimate the number of clock cycles

required to execute a piece of code. We illustrate the process by means of examples.

310 Chapter 8 Pipelining and Vector Processing

Instruction

Shutdown phase

1 2 3 4 5 6 7 8 9 10 11 13 1412 15 16 17 18 19

VL A1

A1 5 I E

I E

I S S S F F F F F R1 R2 R3 R4 R5 D D DV2 V3 + FV4

Setup phase

Figure 8.26 Timing analysis of a simple vector addition operation.

Example 8.1 A simple vector add operation.

As a first example, consider the following code that adds the first five elements of vectors V2

and V3 and places the result in V1:

A1 5

VL A1 (VL = 5)

V1 V2+FV3

The timing for this code is shown in Figure 8.26. The first instruction takes two clock cycles:

one for instruction fetch and the other for execution. The second instruction fetch is done during

the second clock cycle. It also takes two clocks. The vector instruction is fetched in clock cycle

3. This is followed by a three-cycle setup phase (shown by S). The floating-point add unit is a

six-stage pipeline (see Table 8.5). Thus, for the next five clocks, the pipeline gets filled (shown

by F). The first result comes out during clock 12. We get one result out for the next four clock

cycles. The last three cycles are for the shutdown (D) phase. �

From this example, we can see that the add operation is completed in 16 clocks, excluding

the instruction fetch. That is, 16/5 = 3.2 clocks per addition. We reduce the overhead by

increasing the vector length. In general, the number of clocks required to add VL size vectors

is

� � � � �VL� �� � � �

The first three cycles are for the startup phase. The six cycles are the number of stages in the add

pipeline. Thus, by nine clocks, the result is out. The remaining (VL � 1) results will require

(VL� 1) clocks as we get one result per clock. The last three cycles are for the shutdown phase.

For example, if we use 64 element vectors, the number of clocks for each addition reduces to

75/64 � 1.2 clocks.

By generalizing the previous expression to an �-stage pipeline functional unit, we get

Number of clock required � � � �� �VL� �� � � � VL � �� � �

This matches with the expression given in the last column of Table 8.5.

The next example shows how overlapped execution among multiple functional units im-

proves the performance.

Section 8.7 Vector Processors 311

Instruction 1 2 3 4 5 6 7 8 9 10 11 13 1412 15 16 17 18 19

VL A1

A1 5 I

I E

V2 V3 + FV4 I S S S F F F F F R1 R2 R3 R4 R5 D D D

V5 V6 * FV7 I S S S F F F F F R1 R2 R3 R4 R5 D D DF

20 21

E

Figure 8.27 Overlapped execution of floating-point addition and multiplication operations.

Example 8.2 Overlapped execution of vector operations.

In this example, we consider two vector operations that are independent. These instructions can

be executed in any order.

A1 5

VL A1 (VL = 5)

V1 V2+FV3 (Floating-point addition of V2 and V3)

V4 V5*FV6 (Floating-point multiplication of V5 and V6)

The timing for this code is shown in Figure 8.27. The first three rows are exactly the same as in

the previous example. The floating-point multiply unit is a seven-stage pipeline. Thus, the first

result is available during clock cycle 14. As in the add instruction, there are three clocks for the

setup phase and three for the shutdown phase.

This example illustrates the overlapped execution of the floating-point add and multiply

units. We get significant performance gains by this overlapped execution. Without overlapping

these two operations, we would have required 16 clocks for the addition and 17 clocks for the

multiplication. Using overlapped execution, we complete both operations in 18 clocks. �

8.7.8 Chaining

We have demonstrated in the last example that overlapped execution is important to get per-

formance gains. Since there is no conflict on the vector registers used by the addition and

multiplication operations, we could overlap the execution of the two operations. What happens

if there is a conflict as in the following example?

A1 5

VL A1 (VL = 5)

V1 V2+FV3 (Floating-point addition of V2 and V3)

V4 V5*FV1 (Floating-point multiplication of V5 and V1)

The multiplication operation takes values from V1, which are produced by the addition oper-

ation. Due to this dependency, we cannot independently schedule these two instructions. As

we have seen, sequential execution of these two instructions takes 16 + 17 = 33 clocks. This is

where chaining is useful.

312 Chapter 8 Pipelining and Vector Processing

Instruction 1 2 3 4 5 6 7 8 9 10 11 13 1412 15 16 17 18 19

VL A1

A1 5 I E

I E

V2 V3 + FV4 I S S S F F F F F R1 R2 R3 R4 R5 D D D

V5 V2 * FV7 I S S S

20 21

H H H H H H H

Multiply unit on hold

22 23 24 25 26 27 28

F F F F F R1 R2 R3 R4 R5 D D DF

Figure 8.28 A vector chaining example.

Chaining allows feeding of data from one operation to the next without waiting for the first

operation to complete. For example, once the first result of addition is placed in V1, we could

make that value available for the multiplication instruction. The Cray X-MP allows using the

first result after two clock cycles of delay.

Example 8.3 A chaining example.

To understand how chaining speeds up execution, let’s consider the example code given be-

fore. The execution timing is shown in Figure 8.28. The first three rows are the same as in

the previous examples. The vector multiplication instruction uses chaining to get values from

the V1 vector register. The addition operation produces the first result R1 during clock cycle

12. This result is available for use by the multiplication two clocks later. Until that time, the

multiplication pipeline is in the hold (H) state. From that point onward, execution proceeds in

the normal fashion. Thus, by using chaining, we complete both operations in 25 cycles. This

is significantly faster than executing without chaining: 33 cycles versus 25 cycles, about 24%

improvement. �

8.8 Performance
This section briefly discusses the performance of pipelined and vector processors.

8.8.1 Pipeline Performance

Performance of pipelined execution depends on the number of stages in the pipeline as well as

the number of computations performed (e.g., vector length). Speedup is used to measure the

relative performance of the pipelined system with the corresponding nonpipelined system. The

speedup is defined as

Speedup �
Nonpipelined execution time

Pipelined execution
�

Ideally, an �-stage pipeline should give a speedup of �. However, the pipeline would not operate

at full capacity all the time due to the following:

• Pipeline Fill: When the computation is initiated, the pipeline is empty. It takes � cycles

to fill an �-stage pipeline. Until that time, all stages of the pipeline are not busy.

Section 8.8 Performance 313

1

2

3

4

5

6

7

8

9

0 20 40 60 80 100 120 140 160

Number of elements, N

S
p
ee

d
u
p

n = 9

n = 6

n = 3

Figure 8.29 Pipeline performance as a function of the vector size � .

• Pipeline Drain: At the trailing end of computation, no further input enters the pipeline.

However, we have to drain the pipeline to get out all the results. Again, during this

draining phase, all stages are not busy.

To compute speedup, let us assume that we perform � computations. Each computation takes

��� time units. Thus, on a nonpipelined system, it takes ����� time. If we use an �-stage

pipeline, we get the first result out in ��� time. But after that the pipeline is full and produces

one result every � time units. Thus, we need an additional �� � ��� time for the remaining

�� � �� results. Therefore, on a pipelined system, we need

�� � � �� � ��� � ���� � ��� �

We can now compute the speedup as

Speedup �
��� � �

���� � ���
�

���

��� � �
�

By rewriting the above expression, we get

Speedup �
�

�

�
� �

�
�

�

���

�

We get the ideal speedup of � as � � �. This condition implies that we are ignoring the

“fill” and “drain” effects on the pipeline performance. At the other extreme, if � � �, we get

a speedup of 1, which agrees with our assertion that pipelining does not improve the execution

time of a single computation. Figure 8.29� shows the speedup as a function of � in an �-stage

pipeline.

314 Chapter 8 Pipelining and Vector Processing

1

1

S
p
ee

d
u
p

Number of stages, n

Figure 8.30 Pipeline speedup as a function of pipeline depth �.

This expression also tells us that we can improve the speedup by increasing the number of

stages �. Instead of using an �-stage pipeline, we can design a ��-stage pipeline where each

stage does half of the work done by one stage in the previous design. The speedup is than given

by

Speedup �
�

�

�
�

�

��
� �

����

�

If we ignore other factors, we improve speedup as we increase the number of pipeline stages.

The number of pipeline stages is also called the pipeline depth. This can be seen from Fig-

ure 8.29. For example, when we increase the pipeline depth � from 3 to 6, the speedup nearly

doubles. Further increase in speedup is obtained by increasing the pipeline depth to 9 stages.

It may appear from this that by increasing the pipeline depth, we can improve the perfor-

mance. However, in practice, larger pipeline depth reduces performance (see Figure 8.30). This

reduction is mainly contributed by the data and control hazards. The probability of a pipeline

stall occurring due to these dependencies increases with the pipeline depth. Both these depen-

dencies will cause the work in the pipeline to be thrown out. In addition, longer pipelines mean

more time for branching when control hazards occur.

8.8.2 Vector Processing Performance

As we have seen in the Cray X-MP machine, vector systems use pipelining for address, scalar,

vector, and load/store operations. Thus, the performance gains we get are based on the perfor-

mance improvements due to pipelining. In this section, we look at the impact of vector register

length on the performance of vector machines. As mentioned on page 308, we have to resort to

strip mining to handle any mismatch between the actual vector and the vector register size VL.

Section 8.9 Summary 315

64 128 192 256 320

Number of elements

S
p

ee
d

u
p

Figure 8.31 Vector processors exhibit “saw-tooth” shaped performance sensitivity to vector length.

We get improved speedup as the vector size increases from 1 to VL. This is due to the

amortization of the pipeline fill cost. As an example, consider a 10-stage pipeline with 64-

element vector registers (VL = 64). Neglecting all other influences, nonpipelined operation on

64 elements takes 640 time units. On a pipelined unit, it takes 10 + 63 = 73 time units giving

us a speedup of 640/73 = 8.77. Now look at what happens to the speedup when we increase

the vector size by one element. On the nonpipelined unit, it takes 650 time units, whereas the

pipelined unit takes 10 + 63 + 10 = 83. Thus, the speedup drops to 650/83 = 7.83. Similarly,

you can verify that the speedup reaches 8.77 for 128-element vectors but drops to 8.27 for 129

elements. Thus, the performance peaks at multiples of VL but drops immediately after that,

leading to the “saw-tooth” shaped performance shown in Figure 8.31. As with the pipeline

performance, practical issues such as the time needed to load the vector registers would give

much worse performance than that we can get from an ideal pipeline. For more details on

pipeline and vector performance, see [19, 31, 30].

8.9 Summary
We have demonstrated that pipelining can significantly improve the performance of a processor.

The key factor is the overlapped execution of multiple operations. Although pipelining does not

reduce the time needed to perform a single operation, it does increase the throughput using

overlapped execution. Pipelining involves highly coordinated movement of data from stage to

stage. Any delay in one stage can seriously affect the performance of the whole pipeline.

We have discussed three types of resource conflicts—resource, data, and control hazards—

that can cause pipeline stalls. We have looked at potential solutions to these resource conflicts.

All processors use pipelining to derive better performance. We have presented details about

four processors—the Pentium, PowerPC, SPARC, and MIPS.

316 Chapter 8 Pipelining and Vector Processing

Performance of a pipelined processor can be improved by using superscalar, superpipelined,

and VLIW techniques. The MIPS processor uses the superpipeline design whereas the other

two processors use superscalar designs. It should, however, be noted that processors tend to use

some features of each of these techniques. In Chapter 14, we discuss the architecture of Intel’s

64-bit Itanium processor that uses some VLIW design features.

Vector processors exploit pipelining fully to get substantial performance improvement.

These machines are best suited for scientific computations wherein the structured data allow

pipelined designs for most operations including the load and store operations. These machines

use vector registers that can hold a small vector. The strip mining technique can be used to

process larger vectors. We have presented details about the Cray X-MP processor. Performance

of pipelined and vector processors is briefly discussed in the last section.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Branch prediction

• Bypassing

• Column-major order

• Completion buffer

• Control hazards

• Data hazards

• Delay slot

• Delayed branch execution

• Dual pipeline

• Dynamic branch prediction strategy

• Fixed branch prediction strategy

• Floating-point addition pipeline

• Flynn’s bottleneck

• Hazards

• Instruction execution

• Load/store unit

• Memory–memory architecture

• Nullification

• Pipeline stages

• Pipeline stalls

• Read-after-write (RAW) dependency

• Register forwarding

• Register interlocking

• Rename registers

• Resource hazards

• Retiring instructions

• Row-major order

• Scalar registers

• Static branch prediction strategy

• Strip mining

• Structural hazards

• Superpipelined processor

• Superscalar

• Vector chaining

• Vector length

• Vector processor architecture

• Vector–register architecture

• Vector registers

• Vector stride

• VLIW

• Write-after-read (WAR) dependency

• Write-after-write (WAW) dependency

Section 8.10 Exercises 317

8.10 Exercises
8–1 What is the disadvantage of having heterogeneous pipeline stages (i.e., not all stages

require the same amount time to process)?

8–2 Describe the three major resource conflicts that can potentially stall the pipeline.

8–3 Explain how instruction prefetching can minimize stalls due to resource conflicts.

8–4 What is the reason for data hazards? How can we minimize their adverse impact on

pipeline performance?

8–5 Explain why branching affects performance of a pipeline.

8–6 What are some of the techniques used to reduce the penalty associated with branching?

8–7 What is the motivation for introducing delayed branch execution in processors like the

MIPS and SPARC?

8–8 Why do we need nullification in delayed branch execution?

8–9 Discuss the three branch prediction strategies presented in this chapter.

8–10 Why does the static prediction strategy give improved prediction accuracy over the fixed

strategy?

8–11 Compared to the static branch prediction strategy, dynamic strategy leads to better pre-

diction accuracy. Explain why.

8–12 Discuss the advantages and disadvantages of static and dynamic branch prediction strate-

gies.

8–13 What is the reason for selecting 2-bit states in the finite state machine shown in Fig-

ure 8.12?

8–14 Explain the basic features of a superscalar processor.

8–15 Explain why superscalar designs give better performance.

8–16 What is the difference between the superscalar and superpipelined processors?

8–17 How are vector processors different from the traditional processors?

8–18 What are the reasons for getting substantial performance improvements with vector pro-

cessing?

8–19 What is the purpose of the vector length register in vector processors?

8–20 Explain how larger vectors (that exceed the vector register size) are processed to take

advantage of vector processing.

8–21 Why is it necessary to have vector load and store instructions that support vector stride?

8–22 Explain the chaining techniques used in vector processors.

8–23 For the Cray X-MP machine, give the timing diagram (similar to that in Figure 8.27 on

page 311) in executing the following code:

A1 10

VL A1 (VL = 10)

V1 V2 + V3 (Integer addition of V2 and V3)

V4 V5 + FV6 (Floating-point addition of V5 and V6)

318 Chapter 8 Pipelining and Vector Processing

For details on the integer and floating-point addition pipelines, see Table 8.5 on page 306.

8–24 For the Cray X-MP machine, give the timing diagram (similar to that in Figure 8.28 on

page 312) in executing the following code:

A1 10

VL A1 (VL = 10)

V1 V2 + V3 (Integer addition of V2 and V3)

V4 V5 + FV6 (Floating-point addition of V5 and V6)

V7 V4 * FV1 (Floating-point multiplication of V4 and V1)

For details on the integer and floating-point pipelines, see Table 8.5 on page 306.

8–25 Explain why increasing the pipeline depth beyond a certain point deteriorates its perfor-

mance.

8–26 Explain the basic reason for the saw-tooth shaped performance of vector processors.

Chapter 9

Overview of

Assembly Language

Objectives
• To introduce the basics of the Pentium assembly language;

• To discuss data allocation statements of the assembly language;

• To describe the Pentium data transfer instructions;

• To provide an overview of the Pentium instruction set;

• To examine how constants and macros are defined in the assembly language;

• To present examples of the Pentium assembly language programs.

The objective of this chapter is to review the basics of the Pentium assembly language. Assem-

bly language statements can either instruct the CPU to perform a task, or direct the assembler

during the assembly process. The latter statements are called assembler directives. Section 9.2

discusses the format and types of assembly language statements.

Assemblers provide several directives to reserve storage space for variables. These direc-

tives are discussed in Section 9.3. A typical assembly language instruction consists of an op-

eration code to indicate the type of operation to be performed and the specification of required

operands. Section 9.4 describes some basic addressing modes used to specify operands.

The Pentium instruction set can be divided into several groups of instructions. Section 9.5

discusses the instructions that transfer data, including mov, xchg, and xlat instructions. Sec-

tion 9.6 provides an overview of some of the Pentium instructions belonging to the other groups.

Later chapters discuss other instructions supported by Pentium.

321

322 Chapter 9 Overview of Assembly Language

Section 9.7 describes the assembler directives to define constants, numeric as well as string.

Assemblers also provide a mechanism to define macros. These details are presented in Sec-

tion 9.8. Several assembly language program examples are given in Section 9.9. The chapter

concludes with a summary.

9.1 Introduction
Assembly language is a low-level programming language that is directly influenced by the in-

struction set and architecture of a processor. Assembly language code must be translated into the

processor’s machine language. This translation is done by a piece of software called the assem-

bler. MASM (Microsoft assembler), TASM (Borland turbo assembler), and NASM (Netwide

Assembler) are some of the popular assemblers available for the Intel processors.

Compared to assembly language, high-level languages (HLLs) such as C offer several ad-

vantages in program development, as discussed in Chapter 1 (see page 10). The three main

advantages are: faster program development, easier program maintenance, and portability. We

have also noted that there are two main reasons why programming is still done in assembly

language: efficiency and accessibility to system hardware.

Our objective here is to use the assembly language as a tool to study computer organization.

In this part of the book, we look at the Pentium assembly language to study the Pentium pro-

cessor. We have described the basic architecture of the Pentium in Chapter 7. In a later part,

we study the MIPS assembly language. Thus, you will have exposure to both CISC and RISC

processors and their assembly languages.

In this part of the book, we write assembly language programs using the MASM/TASM

syntax. NASM, however, uses a slightly different syntax. We describe NASM in detail in

Appendix E.

9.2 Assembly Language Statements
Assembly language programs are created out of three different classes of statements. Statements

in the first class tell the CPU what to do. These instructions are called executable instructions,

or instructions for short. Each executable instruction consists of an operation code (opcode for

short). Executable instructions cause the assembler to generate machine language instructions.

Each executable statement typically generates one machine language instruction.

The second class of statements provides information to the assembler on various aspects of

the assembly process. These instructions are called assembler directives or pseudoops. Assem-

bler directives are nonexecutable and do not generate machine language instructions.

The last class of statements, called macros, is used as a shorthand notation for a group of

statements. Macros permit the assembly language programmer to name a group of statements

and refer to the group by the macro name. During the assembly process, each macro is replaced

by the group of statements that it represents and is assembled in place. This process is referred

to as macro expansion. We use macros to provide the basic input and output capabilities to

standalone assembly language programs. We briefly discuss macros in Section 9.8. A more

detailed discussion is in [11].

Section 9.2 Assembly Language Statements 323

Assembly language statements are entered one per line in the source file. Even though up

to 128 characters can be used in a line, it is good practice to limit a line to 80 characters so

that it can be displayed on the screen. Except for a few statements, most assembly language

statements require far fewer characters than 80.

All three classes of the assembly language statements use the same format:

[label] mnemonic [operands] [;comment]

The fields in the square brackets are optional in some statements. As a result of this format, it

is a common practice to align the fields to aid readability.

Label: This is an optional field. The label field serves two distinct purposes: it is used to

represent either an identifier or a constant. When a label appears in an executable instruction,

it is used as a marker to identify the instruction. Then, for example, you can make the program

execution jump to the labeled instruction. In this case, the label represents the memory address

of the instruction. When used with certain assembler directives such as EQU, the label represents

a constant.

Mnemonic: This is a required field and identifies the purpose of the statement. In certain lines

of code, this field is not required. Examples include lines consisting of a comment, or a label,

or a label and a comment.

Operands: Operands specify the data to be manipulated by the statement. The number of

operands required depends on the specific statement or directive. For instance, executable state-

ments may have zero, one, two, or three operands.

Comment: This is an optional field and serves the same purpose as comments in a high-level

language. Comments play a more important role in assembly language, as it is a low-level

language. Assembler ignores all comments. Comments begin with a semicolon (;) and extend

until the end of the line. Since the readability of assembly language programs is poor, comments

should be generously added to improve readability. It is good programming practice to explain

the functionality of a group of statements by several lines of comments and then add brief

comments to selected code lines within the group. This is the practice followed in this book.

Now let us look at some sample assembly language statements.

repeat: inc result ;increment result by 1

The label repeat can be used to refer to this particular statement. The mnemonic inc in-

dicates increment operation, which is done on the data stored in memory at result. The

comment simply explains what the instruction is doing. We avoid such self-explanatory com-

ments. The following assembler directive defines the constant CR. The ASCII carriage return

value is assigned to it by the EQU directive.

CR EQU 0DH ;carriage return character

324 Chapter 9 Overview of Assembly Language

In the previous two examples, the label field has two different forms. The label in the

executable instruction is followed by a colon (:) but not in the directive statement. Labels and

other names can be formed from upper and lowercase letters (a to z, A to Z), digits (0 through

9), and special characters (_, %, ?, $, ., @).

A name may not begin with a digit and if a period is used, it must be the first character. For

example, jump2 and repeat are valid but not go.back and 2_jump. Other characters may

be used in any position. Among the special characters, the underscore character is frequently

used to aid readability. Certain reserved words that have special meaning to the assembler are

not allowed as names. These include mnemonics such as inc and EQU.

The assembler is normally case insensitive. For example, labels repeat and REPEAT are

treated the same. The assembler can be made case sensitive by using an option (e.g., the /ml
option with TASM). We follow the convention that the source code is normally in lowercase

except for the directive mnemonics and constants defined in the program.

The fields in a statement must be separated by at least one space or tab character. If you

want, you can use more spaces and tabs, but the assembler ignores them. It is good programming

practice to use blank lines and spaces to improve the readability of assembly language programs.

As a result, you rarely see in this book a statement containing all four fields in a single line. In

particular, we almost always write labels on a separate line unless doing so destroys the program

structure. Thus, our first example statement would be written as

repeat:

inc result

9.3 Data Allocation
In high-level languages, allocation of storage space for variables is done indirectly by specifying

the data types of each variable used in the program. For example, in C the following declarations

allocate different amounts of storage space for each variable.

char response; /* 1 byte is allocated */

int value; /* 2 bytes are allocated */

float total; /* 4 bytes are allocated */

double average_value; /* 8 bytes are allocated */

These variable declarations not only specify the amount of storage required, but also indicate

how the stored bit pattern should be interpreted. As an example, consider the following two

statements in C:

unsigned value_1;

int value_2;

Both variables will have two bytes reserved for storage. However, the bit pattern stored in them

would be interpreted differently. For instance, the bit pattern (8DB9H)

1000 1101 1011 1001

Section 9.3 Data Allocation 325

stored in value_1 is interpreted as representing 36,281, whereas the same bit pattern at

value_2 would be interpreted as �29,255.

In assembly language, allocation of storage space is done by the define assembler direc-

tive. The define directive can be used to reserve and initialize one or more bytes. However,

no interpretation is attached to the contents of these bytes. It is entirely up to the program to

interpret the bit pattern.

The general format of a storage allocation statement is

[variable-name] define-directive initial-value [,initial-value],...

The square brackets indicate optional items. The variable-name is used to identify the

storage space allocated. The assembler associates an offset value for each variable name defined

in the data segment. Note that no colon (:) follows the variable name (unlike a label identifying

an executable statement).

The define directive takes one of the five basic forms:

DB Define Byte ;allocates 1 byte

DW Define Word ;allocates 2 bytes

DD Define Doubleword ;allocates 4 bytes

DQ Define Quadword ;allocates 8 bytes

DT Define Ten Bytes ;allocates 10 bytes

Let us look at some examples now. The statement

sorted DB ’y’

allocates a single byte of storage and initializes to character y. Our assembly language program

can refer to this data location by its name sorted. If you just want to reserve storage space

without initialization, you can write

sorted DB ?

You can also use numbers to initialize. For example,

sorted DB 79H

or

sorted DB 1111001B

is equivalent to

sorted DB ’y’

Note that the ASCII value for y is 79H. We use the suffix “H” to indicate a hexadecimal

number and “B” for a binary number. The following data definition statement allocates two

bytes of contiguous storage and initializes to 25159:

326 Chapter 9 Overview of Assembly Language

value DW 25159

The decimal value 25159 is automatically converted to its 16-bit binary equivalent (6247H).

Since the Pentium uses little-endian byte ordering, this 16-bit number is stored in memory as

address: x x+1

contents: 47 62

You can also use negative values, as in the following example:

balance DW -29255

Since 2’s complement representation is used to store negative values, �29,255 is converted to

8DB9H and is stored as

address: x x+1

contents: B9 8D

The statement

total DD 542803535

would allocate four contiguous bytes of memory and initialize it to 542803535 (205A864FH),

as shown below:

address: x x+1 x+2 x+3

contents: 4F 86 5A 20

9.3.1 Range of Numeric Operands

The numeric operand of define directives can take both signed and unsigned numbers. The valid

range depends on the number of bytes allocated. The following table shows the valid range for

the numeric operands:

Directive Valid range

DB �128 to 255 (i.e., ��� to �
� � �)

DW �32,768 to 65,535 (i.e., ���� to �
�� � �)

DD �2,147,483,648 to 4,294,967,295 (i.e., ���� to �
�� � �)

or a short floating-point number (32 bits)

DQ ���� to �
�� � �

or a long floating-point number (64 bits)

Section 9.3 Data Allocation 327

Using a constant that is outside the specified range can result either in an assembler error,

or in assigning a wrong value. For example, the statement

byte1 DB 256

causes an assembly time error. In general, the assembler can accept a value in the range ����
to ����. However, 8 bits are not sufficient for the values between ���� and ����. Therefore,

the assembler converts the number into 2’s complement representation using 16 bits and stores

the lower byte. For example,

byte2 DB -200 ; stores 38H

stores 38H because the 2’s complement representation of �200 is FF38H.

Similarly, the statement

word1 DW -60000 ; stores 15A0H

assigns 15A0H because������ is outside the range of signed numbers that can be represented

using 16 bits. Therefore, as in the last example, ������ is converted to its 2’s complement

equivalent using 32 bits (FFFF15A0H), and the lower word is stored.

Short and long floating-point numbers are represented using 32 or 64 bits, respectively. See

Appendix A for details. We can use DD and DQ directives to assign real numbers, as shown in

the following examples:

float1 DD 1.234

real2 DQ 123.456

9.3.2 Multiple Definitions

Assembly language programs typically contain several data definition statements. For example,

look at the following assembly language program fragment:

sorted DB ’y’ ; ASCII of y = 79H

value DW 25159 ; 25159D = 6247H

total DD 542803535 ; 542803535D = 205A864FH

When several data definition statements are used as above, the assembler allocates contigu-

ous memory locations for the variables. The memory layout for the three variables is

address: x x+1 x+2 x+3 x+4 x+5 x+6

contents: ��
����

������

�� ��
� �� �

���	�

�� �� �� �	
� �� �

�����

Multiple data definitions can be abbreviated. For example, the following sequence of eight

DB directives

328 Chapter 9 Overview of Assembly Language

message DB ’W’

DB ’E’

DB ’L’

DB ’C’

DB ’O’

DB ’M’

DB ’E’

DB ’!’

can be abbreviated as

message DB ’W’,’E’,’L’,’C’,’O’,’M’,’E’,’!’

or even more compactly as

message DB ’WELCOME!’

Here is another example showing how abbreviated forms simplify data definitions. The

definition

message DB ’B’

DB ’y’

DB ’e’

DB 0DH

DB 0AH

can be written as

message DB ’Bye’,0DH,0AH

Similar abbreviated forms can be used with the other define directives. For instance, an

eight-element marks array can be defined and initialized to zero by

marks DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

DW 0

which can be abbreviated as

marks DW 0, 0, 0, 0, 0, 0, 0, 0

Section 9.3 Data Allocation 329

9.3.3 Multiple Initializations

In the previous example, if the class size is 90, it is inconvenient to define the array as described.

The DUP directive allows multiple initializations to the same value. Using DUP, the marks
array can be defined as

marks DW 8 DUP (0)

The DUP directive is useful in defining arrays and tables. Here are some examples using the

DUP directive.

table1 DW 10 DUP (?) ;10 words,uninitialized

name1 DB 30 DUP (’?’) ;30 bytes,each byte

; initialized to ?

name2 DB 30 DUP (?) ;30 bytes,uninitialized

message DB 3 DUP (’Bye!’) ;12 bytes,initialized

; to Bye!Bye!Bye!

The DUP directive may also be nested. For example, to allocate storage space containing

??!!!!!??!!!!!***??!!!!!***??!!!!!

we can write

stars DB 4 DUP (3 DUP (’*’), 2 DUP (’?’), 5 DUP (’!’))

A two-dimensional 10 � 5 matrix (10 rows, 5 columns) can be defined as

matrix DW 10 DUP (5 DUP (0))

The initialization values of define directives can also be expressions, as shown in the following

example:

max_marks DW 7*25

This statement is equivalent to

max_marks DW 175

The assembler evaluates such expressions at assembly time and assigns the resulting value.

Use of expressions to specify initial values is not preferred because it affects the readability of

the program. However, there are certain situations where using an expression actually helps

clarify the code. In our example, if max_marks represents the sum of seven assignment marks

where each assignment is marked out of 25 marks, it is preferable to use the expression 7 * 25

rather than 175.

330 Chapter 9 Overview of Assembly Language

Table 9.1 Symbol table for the example data segment

Name Offset

value 0

sum 2

marks 6

message 26

char1 40

Symbol Table

When we allocate storage space using a data definition directive, we usually associate a sym-

bolic name with it for reference. The assembler, during the assembly process, assigns an offset

value to each symbolic name. For example, consider the following data definition statements:

.DATA

value DW 0

sum DD 0

marks DW 10 DUP (?)

message DB ’The grade is:’,0

char1 DB ?

As we have indicated, the assembler assigns contiguous memory space for the variables.

The assembler uses the same ordering of variables that is present in the source code. Thus,

finding the offset value of a variable is a simple matter of counting the number of bytes allocated

to the variables preceding it. For example, the offset of marks is 6 because value and sum
are allocated 2 and 4 bytes, respectively. The symbol table for this data segment is shown in

Table 9.1.

9.3.4 Correspondence to C Data Types

The correspondence between the data definition directives and Turbo C data types is shown in

Table 9.2. Some examples using the DB, DW, and DD directives are shown in Table 9.3.

Two consecutive apostrophes can be used in a string to specify a single apostrophe, as in

message DB ’John’’s’

This statement reserves six bytes of storage and initializes it to John’s. TASM and MASM

also allow the use of double quotation marks to specify a string of characters, as in

message DB ’’John’s’’

In a string that is delineated by double quotation marks, two consecutive double quotation

marks can be used to stand for a single one. Since double quotation marks are used to specify

strings in C (which is different from the sense used here to specify a string of characters), we

exclusively use only apostrophes in our programs.

Section 9.3 Data Allocation 331

Table 9.2 Correspondence between Turbo C data types and data definition directives

Directive C data type

DB char
DW int, unsigned
DD float, long
DQ double
DT Not used to specify a data type but used to

store intermediate float values

Table 9.3 Some example data definition declarations

C declaration Assembly language data definition

char ch_1; ch_1 DB ?

char string1[30]; string1 DB 30 DUP (?)

char name1[25] = ‘‘John’’; name1 DB ’John’,0,20 DUP (?)

int value = 50; value DW 50;

int array[20]; array DW 20 DUP (?)

long total = 0; total DD 0

9.3.5 LABEL Directive

The LABEL directive provides another way to name a memory location without actually defin-

ing any data. The syntax is

name LABEL type

where type specifies the variable type. The standard types BYTE, WORD, DWORD, QWORD,

and TBYTE can be used to label 1-, 2-, 4-, 8-, and 10-byte data.

In the example

.DATA

count LABEL WORD

Lo_count DB 0

Hi_count DB 0

.CODE

. . .

mov Lo_count,AL

mov Hi_count,CL

. . .

332 Chapter 9 Overview of Assembly Language

the two bytes of memory Lo_count and Hi_count can also be referenced as a 16-bit number

count. We can also individually manipulate the lower and upper halves of count.

The LABEL directive is also useful in creating an alias of another data type, as shown in the

following example:

.DATA

byte_count LABEL BYTE

count DW 0

.CODE

. . .

mov byte_count,CL

. . .

If the LABEL directive is not used in this example, we have to use the PTR directive (discussed

in Section 9.5.1) to rewrite the mov statement as

mov BYTE PTR count,CL

9.4 Where Are the Operands?
Most assembly language instructions require specification of operands. The Pentium assembly

language provides several ways to specify the operands. These are called addressing modes.

This section introduces some of the basic addressing modes required to write simple assembly

language programs.

An operand may be in one of the following locations:

• In a register internal to the CPU;

• In the instruction itself;

• In main memory (usually in the data segment);

• At an I/O port (discussed in Chapter 19).

Specification of an operand that is in a register can be done by register addressing mode,

whereas immediate addressing mode refers to specifying an operand that is part of the instruc-

tion. We describe two basic addressing modes to specify an operand located in memory. These

addressing modes are called memory addressing modes. Chapter 11 discusses the remaining

memory addressing modes in detail.

9.4.1 Register Addressing Mode

In this addressing mode, CPU registers contain the operands. For example, the instruction

mov EAX,EBX

requires two operands and both are in the CPU registers. The syntax of the move (mov) instruc-

tion is

Section 9.4 Where Are the Operands? 333

mov destination,source

The mov instruction copies the contents of source to destination. The contents of

source, however, are not destroyed. Thus,

mov EAX,EBX

copies the contents of the EBX register into the EAX register. In this example, mov is operating

on 32-bit data. However, we can also use the mov instruction to copy 16- and 8-bit data, as

shown in the following examples:

mov BX,CX

mov AL,CL

The register addressing mode is the most efficient way of specifying operands for two rea-

sons:

• The operands are in the registers and no memory access is required.

• Instructions using the register mode tend to be shorter, as only 3 bits are needed to identify

a register. In contrast, we need at least 16 bits to identify a memory location.

As a consequence, good compilers attempt to place frequently accessed data items in regis-

ters. As an example, consider the following pseudocode:

total := 0

for (i = 1 to 400)

total = total + marks[i]

end for

Even if the compiler allocates memory for variables i and total, it should move these vari-

ables to registers for the duration of the for loop. At the end of the loop, we can copy the

values of these registers to memory. This arrangement is more efficient than accessing variables

i and total directly from memory during each iteration.

9.4.2 Immediate Addressing Mode

In this addressing mode, data are specified as part of the instruction. As a result, even though

the data are in memory, they are located in the code segment, not in the data segment. This

addressing mode is typically used to specify a constant, either directly or via the EQU directive

(discussed in Section 9.7). In the example

mov AL,75

the source operand 75 is specified in the immediate addressing mode and the destination operand

is specified in the register addressing mode. Such instructions are said to use mixed mode

addressing.

Immediate addressing mode is also faster because the operand is fetched into the instruction

queue along with the instruction during the instruction fetch cycle. This prefetch, therefore,

reduces the time required to get the operand from memory.

334 Chapter 9 Overview of Assembly Language

9.4.3 Direct Addressing Mode

Operands specified in a memory addressing mode require access to the main memory, usually

to the data segment. As a result, they tend to be slower than either of the last two addressing

modes.

Recall that to locate a data item in a data segment, we need to specify two components:

the data segment base address and an offset value within the segment. Recall that the offset

is sometimes referred to as the effective address. The start address of the segment is typically

found in the DS register. Thus, various memory addressing modes differ in the way the offset

is specified.

In direct addressing mode, the offset is specified directly as part of the instruction. In as-

sembly language programs, the value is usually indicated by the variable name of the data item

referenced. The assembler will translate the name to its offset value during the assembly process

using the symbol table as described on page 330.

This addressing mode is the simplest of all the memory addressing modes. The examples

that follow assume the following data definition statements:

response DB ’Y’ ;reserves one byte and

;initializes with y

table1 DW 20 DUP (0) ;reserves 40 bytes and

;initializes to 0

name1 DB ’Jim Ray’ ;reserves 7 bytes and

;initializes to Jim Ray

Here are some example mov instructions:

mov AL,response ;copies character y into AL register

mov response,’N’ ;N is written into the byte represented

;by response (Y is lost)

mov name1,’K’ ;writes K as the first character of

;name1, which now reads Kim Ray

mov table1,56 ;56 is written in the first two bytes

;of table1, which contains 56 and 19 zeros

This last statement is equivalent to table1[0]=56 in C.

The Pentium instruction set does not allow both operands to be located in memory. As a

result, instructions in high-level languages involving more than one variable would require a

sequence of assembly language instructions. For example, the C code

total_marks = assign_marks + test_marks + exam_marks

is translated into a sequence of four directly addressed assembly language instructions:

Section 9.4 Where Are the Operands? 335

mov EAX,assign_marks

add EAX,test_marks

add EAX,exam_marks

mov total_marks,EAX

Even though we are using variable names in the above examples, the assembler will actually

replace these variables by their offset values during the assembly process.

We look at the add instruction later in this chapter. For now, it is sufficient to understand

that this instruction adds the two operands and stores the result in the first operand (i.e., the

EAX register in our add instructions).

9.4.4 Indirect Addressing Mode

The direct addressing can be used to access simple variables. The main drawback of this ad-

dressing mode is that it is not useful for accessing complex data structures such as arrays and

records that are used in high-level languages. For example, it is not useful for accessing the

second element of table1, as in

table1[1] = 99

The indirect addressing mode remedies this deficiency. In this addressing mode, offset of the

data is in one of the general registers. For this reason, this addressing mode is sometimes called

the register indirect addressing mode.

The indirect addressing mode is not required for variables having only a single element

(e.g., response). But for variables such as table1 containing several elements, the starting

address of the data structure can be loaded into, say, the BX register so that BX can act as a

pointer to an element in table1. By manipulating the contents of the BX register, we can

access different elements of table1. Note that we use 16-bit segments in which the offset is

16 bits long (see Chapter 7).

The fact that a register is holding the offset is indicated by enclosing it within square brackets

[], as in

mov AX,[BX]

This is different from

mov AX,BX

which implies that the second operand is in BX.

For 16-bit segments, only BX, BP, SI, and DI registers are allowed to hold the offset. For

32-bit segments, all eight 32-bit registers (i.e., EAX, EBX, ECX, EDX, ESI, EDI, EBP, and

ESP) can be used. However, even with 16-bit segments, we can use all eight 32-bit registers by

using the address size override prefix (more details on page 437). For instance,

mov AX,[ECX]

is valid, but not

mov AX,[CX] ; not valid

336 Chapter 9 Overview of Assembly Language

Loading the Offset

How do we get the starting address of table1? A statement like

mov BX,table1

will not work because this statement copies the first element of table1 into the BX register.

Remember that the symbolic name table1 refers to the offset of the first element of table1.

The OFFSET directive should be used whenever the offset of a variable is needed. Thus,

mov BX,OFFSET table1

copies the offset of table1 into the BX register. The following code assigns 100 to the first

element and 99 to the second element of table1. Note that BX is incremented by 2 because

each element of table1 requires two bytes.

mov BX,OFFSET table1 ; copy address of table1 to BX

mov [BX],100 ; table1[0] := 100

add BX,2 ; BX := BX + 2

mov [BX],99 ; table1[1] := 99

Chapter 11 discusses other memory addressing modes that can perform this task in a better

way. In summary, we have discussed the following four addressing modes:

Addressing mode Valid example Invalid example

Register mov EAX,EBX mov AX,EBX

Immediate mov ECX,155 mov 155,ECX

Direct mov table1,DX mov response,name1

Indirect mov [BX],EAX mov [BX],[AX]

Referenced Default Segments

The register indirect addressing mode can be used to specify data items that are located either

in the data segment or in the stack segment.

16-Bit Addresses: By default, effective address in registers BX, SI, or DI is taken as the offset

value into the data segment (i.e., relative to the DS segment register). On the other hand, if

BP and SP registers are used, the offset is used to access a data item from the stack segment

(i.e., relative to the SS segment register). As we show in Chapter 10, BP is used in the register

indirect addressing mode to access arguments from the stack in procedure calls.

32-Bit Addresses: By default, effective address in registers EAX, EBX, ECX, EDX, ESI, and

EDI is relative to the DS data segment. The SS stack segment is used if EBP and ESP registers

are used.

In all cases, stack operations such as push and pop refer to the stack segment. In addition,

the destination of string instructions uses the ES data segment register (see Chapter 12 for details

on string instructions).

Section 9.4 Where Are the Operands? 337

Overriding Default Segments

We can override the default segment association by a segment override prefix. For example,

add AX,SS:[BX]

can be used to access a data item from the stack whose offset relative to the SS register is given

in the BX register. For an example that uses the SS overriding prefix, see Program 10.6 on

page 419. Similarly, the BP register can be used as an offset into the data segment by

add AX,DS:[BP]

The CS, ES, FS, and GS segment registers can also be used to override the default associa-

tion, even though the CS register is not used frequently. For example, the program on page 501

uses the CS overriding prefix. To summarize, the Pentium provides the following segment

override prefixes:

Opcode Segment override prefix

2EH CS

36H SS

3EH DS

26H ES

64H FS

65H GS

We cannot use these override prefixes to affect the default segment association in the fol-

lowing cases:

• Destination of string instructions always uses the ES segment.

• Stack push and pop instructions always use the SS segment.

• Instruction fetches always use the CS segment.

Another Way to Load Effective Address

We have seen that the OFFSET directive can be used to load the effective address. The effective

address can also be loaded into a register by the lea (load effective address) instruction. The

syntax of this instruction is

lea register,source

It copies the address of source into register. Thus,

lea BX,table1

can be used instead of the

338 Chapter 9 Overview of Assembly Language

mov BX,OFFSET table1

instruction. The difference is that lea computes the offset values at run-time, whereas mov
with OFFSET resolves the offset value at assembly time. For this reason, we try to use the latter

whenever possible. However, lea offers more flexibility as to the types of source operands.

For example, we can write

lea BX,array[SI]

to load BX with the address of an element of arraywhose index is in the SI register. However,

mov BX,OFFSET array[SI]

does not make sense.

9.5 Data Transfer Instructions
We now discuss some of the data transfer instructions supported by the Pentium. Specifically,

we describe mov, xchg, and xlat instructions. Other data transfer instructions such as movsx
and movzx are discussed in Chapter 12.

9.5.1 The mov Instruction

We have already introduced the mov instruction, which requires two operands and has the syn-

tax

mov destination,source

The data are copied from source to destination, and the source operand remains un-

changed. Both operands should be of the same size. The mov instruction can take one of the

following five forms:

mov register,register

Restrictions:

• Destination register cannot be CS or (E)IP registers.

• Both registers cannot be segment registers.

mov register,immediate

Restriction: Register cannot be a segment register.

mov memory,immediate

mov register,memory

mov memory,register

There is no move instruction to transfer data from memory to memory, as the Pentium does

not allow it. However, as we show in Chapter 12, memory-to-memory data transfer is possible

if we use string instructions.

Section 9.5 Data Transfer Instructions 339

Ambiguous Moves: PTR Directive

Moving an immediate value into memory sometimes causes ambiguity as to the size of the

operand. For example, in the statements

mov BX,OFFSET table1

mov SI,OFFSET name1

mov [BX],100

mov [SI],100

it is not clear whether a word (2 bytes) or a byte equivalent of 100 is to be written in the memory.

The PTR directive can be used to clarify. WORD PTR can be used to identify a word operation

and BYTE PTR for a byte operation. Using the PTR directive, we can write

mov WORD PTR [BX],100

mov BYTE PTR [SI],100

WORD and BYTE are called type specifiers. Some of the type specifiers available are

Type specifier Bytes addressed

BYTE 1

WORD 2

DWORD 4

QWORD 8

TBYTE 10

9.5.2 The xchg Instruction

The xchg instruction exchanges 8-, 16-, or 32-bit source and destination operands. The syntax

is similar to that of the mov instruction. Here are some examples:

xchg EAX,EDX

xchg response,CL

xchg total,DX

As in the mov instruction, both operands cannot be located in memory. Thus,

xchg response,name1 ; illegal

is invalid.

The xchg instruction is convenient because we do not need a third register to hold a tem-

porary value in order to swap two values. For example, we need three mov instructions

mov ECX,EAX

mov EAX,EDX

mov EDX,ECX

340 Chapter 9 Overview of Assembly Language

to perform xchg EAX,EDX. Thus, xchg is the most efficient way to exchange two 8-, 16-, or

32-bit values. This instruction is especially useful in sorting applications. The xchg instruction

is also useful in implementing semaphores for process synchronization, as well as for swapping

the two bytes of 16-bit data to perform conversions between little-endian and big-endian forms,

as in the following example:

xchg AL,AH

The Pentium provides the bswap (byte swap) instruction to perform such conversions on

32-bit data. The format is

bswap 32-bit register

This instruction works only on the data located in a 32-bit register. It can be used to convert

numbers from big-endian to little-endian format and vice versa.

9.5.3 The xlat Instruction

The xlat (translate) instruction can be used to perform character translation. For example, it

can be used to translate character codes from ASCII to EBCDIC and vice versa. The xlat has

the form

xlatb

To use the xlat instruction, the BX register must be loaded with the starting address of the

translation table and AL must contain an index value into the table. The xlat instruction adds

contents of the AL to the BX and reads the byte at the resulting address. This byte replaces the

index value in the AL register. Since the 8-bit AL register provides the index into the translation

table, the number of entries in the table is limited to 256. An application of xlat is given in

Example 9.8 on page 374.

9.6 Pentium Assembly Language Instructions
This section discusses some of the remaining assembly language instructions. The instructions

presented here allow you to write meaningful assembly language programs. Other Pentium

instructions are discussed in Chapter 12.

9.6.1 Arithmetic Instructions

The Pentium provides several instructions to perform simple arithmetic operations. In this sec-

tion, we describe five instructions to perform addition, subtraction, and comparison. Arithmetic

instructions update the status flags, shown on page 259, to record the result of the operation. In

Chapter 12, we discuss how the arithmetic instructions affect the status flags. That chapter also

looks at the Pentium multiplication and division instructions.

Section 9.6 Pentium Assembly Language Instructions 341

Increment/Decrement Instructions

These instructions can be used to either increment or decrement the operands. The inc (in-

crement) instruction adds one to its operand, and the dec (decrement) instruction subtracts one

from its operand. Both instructions take a single operand. The operand can be either in a reg-

ister or in memory. It does not make sense to use an immediate operand such as inc 55 or

dec 109.

The general format of these instructions is

inc destination

dec destination

where destination may be an 8-, 16-, or 32-bit operand.

inc BX ;increment the 16-bit register

dec DL ;decrement the 8-bit register

Let us assume that BX and DL have 1057H and 5AH, respectively. After executing the

above two instructions, BX and DL will have 1058H and 59H, respectively. If the initial values

of BX and DL were FFFFH and 00H, after executing the two statements the contents of BX and

DL would be changed to 0000H and FFH, respectively.

Consider the following program:

.DATA

count DW 0

value DB 25

.CODE

inc count ;unambiguous

dec value ;unambiguous

move BX,OFFSET count

inc [BX] ;ambiguous

mov SI,OFFSET value

dec [SI] ;ambiguous

In the above example,

inc count

dec value

are unambiguous because the assembler knows from the definition of count and value that

they are WORD and BYTE operands. However,

inc [BX]

dec [SI]

are ambiguous because BX and SI registers merely point to an object in memory but the actual

object type (whether a WORD or BYTE) is not clear. We have to resort to the PTR directive to

clarify, as shown below:

inc WORD PTR [BX]

dec BYTE PTR [SI]

342 Chapter 9 Overview of Assembly Language

Add Instructions

The add instruction can be used to add two 8-, 16-, or 32-bit operands. The syntax is

add destination,source

As with the mov instruction, add can also take the five basic forms depending on how the two

operands are specified. The semantics of the add instruction are

destination = destination + source

As a result, destination loses its contents before the execution of add but the contents of

source remain unchanged. The examples given in the table below assume the following data

definitions:

.DATA

value DB 0F0H

count DW 3746H

Before add After add

Instruction Source Destination Destination

add AX,DX DX = AB62H AX = 1052H AX = BBB4H

add BL,CH BL = 76H CH = 27H BL = 9DH

add value,10H — value = F0H value = 00H

add DX,count count = 3746H DX = C8B9H DX = FFFFH

Note: If we are specifying a hex number that begins with A to F, we have to prefix a zero so

that the assembler does not think it is a label. This is the reason for using 0F0H instead of F0H

in the DB directive to define count.

In general,

inc EAX

is preferred to

add EAX,1

as the inc version requires less memory space to store the instruction. However, both instruc-

tions typically execute at about the same speed.

The second version of the addition instruction is the adc (add with carry) instruction. This

instruction has the general format

adc destination, source

and performs

Section 9.6 Pentium Assembly Language Instructions 343

destination = destination + source + CF

The only difference between add and adc is that the adc instruction adds the contents of

the carry flag (CF). The adc instruction is useful in performing addition of long multiword

numbers (i.e., numbers that take more than 32 bits).

The Pentium provides three instructions to manipulate the carry flag, which are useful with

instructions like adc.

stc set carry flag sets CF (CF = 1)

clc clear carry flag clears CF (CF = 0)

cmc complement carry flag inverts CF value

All three instructions affect only the carry flag and have no effect on the other flags. These

three instructions are also useful in conjunction with the rotate instructions we discuss later. An

example that uses stc and clc instructions is given on page 483.

Example 9.1 An example 64-bit addition.

Assume that EBX:EAX and EDX:ECX contain two 64-bit numbers. The notation EBX:EAX

is used to indicate that the higher-order 32 bits are in EBX and the lower-order 32 bits in EAX.

We can perform this 64-bit addition as shown below:

add EAX,ECX ; add the lower 32 bits

adc EBX,EDX ; add the higher 32 bits with carry

The 64-bit result of this addition will be in EBX:EAX registers. �

Subtract Instructions

The sub (subtract) instruction can be used to subtract two 8-, 16-, or 32-bit numbers. The

syntax is

sub destination,source

The source operand is subtracted from the destination operand and the result is placed

in the destination.

destination = destination � source

Some examples are given below:

Before sub After sub

Instruction Source Destination Destination

sub AX,DX DX = AB62H AX = 1052H AX = 64F0H

sub BL,CH CH = 27H BL = 76H BL = 4FH

sub value,10H — value = F0H value = E0H

sub DX,count count = 3746H DX = C8B9H DX = 9173H

344 Chapter 9 Overview of Assembly Language

The second subtract instruction sbb (subtract with borrow) is the adc counterpart. The

syntax is

sbb destination, source

and performs

destination = destination � source � CF

The second subtract operation is done only if CF is 1. As with the adc instruction, sbb is

useful in performing a subtract operation on numbers that are longer than 32 bits.

Next we look at the negate (neg) instruction. This single-operand instruction

neg destination

subtracts the destination operand from 0. Thus, this instruction effectively reverses the sign of

an integer and is meaningful only with signed numbers.

destination = 0 � destination

The neg instruction updates all six status flags. The carry flag is always set except when the

operand is zero, in which case it is cleared.

There is a slight problem when negating the smallest number that can be represented. Re-

member that, with 8 bits, we can represent signed integers in the range �128 to +127. What

happens if we try to negate �128, as in the following example:

mov AL,�128
neg AL

Since +128 is out of range, the overflow flag will be set and there will be no change in the

operand value (it remains �128). A similar situation arises with 16- and 32-bit operands.

With add and neg instructions, we can implement

sub destination, source

as a sequence of

neg source

add destination, source

However, the former is more efficient and convenient. Furthermore, it aids in program reada-

bility.

Compare Instruction

The cmp (compare) instruction is used to compare two operands (equal, not equal, and so on).

The compare instruction

Section 9.6 Pentium Assembly Language Instructions 345

cmp destination, source

subtracts the source operand from the destination operand but does not alter any of the two

operands, as shown below:

destination � source

The flags are updated as if the sub operation were performed. The main purpose of the cmp
instruction is to update the flags so that a subsequent conditional jump instruction can test these

flags. Although both sub and cmp instructions take the same number of clocks in most cases,

cmp requires one less clock if the destination is memory. This is because cmp does not write

the result in memory, whereas the sub instruction does.

The cmp instruction is used in conjunction with conditional jump instructions for decision

making. This is the topic of the next section.

9.6.2 Conditional Execution

The Pentium instruction set contains several branching and looping instructions to construct

programs that require conditional execution. In this section, we present a subset of these in-

structions. Other instructions are discussed in Chapter 12.

Unconditional Jump

The unconditional jump instruction jmp, as its name implies, tells the processor that the next

instruction to be executed is located at the label that is given as part of the instruction. This

jump instruction has the form

jmp label

where label identifies the next instruction to be executed. We can specify the target either

directly or indirectly leading to direct and indirect jumps. The majority of the jumps are of the

direct type. Here, we focus our attention on the direct jump instruction. Indirect jumps are

discussed in Section 12.3.1.

In the code fragment

. . .

mov CX,10

jmp CX_init_done

init_CX_20:

mov CX,20

CX_init_done:

mov AX,CX

repeat1:

dec CX

. . .

jmp repeat1

. . .

346 Chapter 9 Overview of Assembly Language

both the jmp instructions directly specify the target. Recall that, in assembly language pro-

grams, we only specify the target address by using a label and let the assembler figure out the

exact value by using its symbol table.

The instruction

jmp CX_init_done

transfers control to an instruction that follows it. This is called the forward jump. On the other

hand, the instruction

jmp repeat1

is a backward jump, as the control is transferred to an instruction that precedes the jump instruc-

tion.

Relative Address

The address specified in a jump instruction is not the absolute address of the target instruction.

Rather, it specifies the relative displacement in bytes between the target instruction and the

instruction following the jump instruction.

In order to see why this is so, we have to understand how jumps are executed. Recall that

the IP register always points to the next instruction to be executed (see Chapter 7). Thus, after

fetching the jmp instruction, the IP is automatically advanced to point to the instruction follow-

ing the jmp instruction. Execution of jmp involves changing the IP from where it is currently

pointing to the target instruction location. This is achieved by adding the difference (i.e., rel-

ative displacement) to the IP contents. This works fine because the relative displacement is a

signed number: a positive displacement implies a forward jump, and a negative displacement

indicates a backward jump.

The specification of the relative address as opposed to the absolute address of the target

instruction is appropriate for dynamically relocatable code (i.e., for position-independent code).

This way we could move the code to a different location without changing the code.

The code

forever: jmp forever

is a valid statement that results in an infinite loop. Incidentally, this is a backward jump.

Where Is the Target?

If the target of a jump instruction is located in the same segment as the jump instruction itself,

it is called an intrasegment jump; if the target is located in another segment, it is called an

intersegment jump.

Our previous discussion has assumed an intrasegment jump. In this case, the jmp simply

performs the following action:

IP = IP � relative-displacement.

Section 9.6 Pentium Assembly Language Instructions 347

In the case of an intersegment jump, also called the far jump, the CS is also changed to point

to the target segment, as shown below:

CS = target-segment,

IP = target-offset.

Both target-segment and target-offset are specified directly in the instruction. Thus, for 16-bit

segments, the instruction encoding for the intersegment jump takes five bytes: one byte for the

specification of the opcode, two bytes for the target-segment, and another two bytes for the

target-offset specification.

The majority of jumps are of the intrasegment type. Therefore, the Pentium provides two

ways to specify intrasegment jumps depending on the distance of the target location, that is,

depending on the value of the relative displacement.

If the relative displacement, which is a signed number, can fit in a byte, a jump instruction

can be encoded by using just two bytes: one byte for the opcode and the other for the relative

displacement. This means that the relative displacement should be within �128 to +127 (the

range of a signed 8-bit number). This form is called the short jump.

If the target is outside this range, two or four bytes are used to specify the relative displace-

ment. A two-byte displacement is used for 16-bit segments, and a four-byte displacement for

32-bit segments. As a result, the jump instruction requires either three or five bytes to encode

in the machine language. This form is called the near jump.

If we want to use the short jump form, we can inform the assembler by using the operator

SHORT, as shown below:

jmp SHORT CX_init_done

The question that naturally arises at this point is: What if the target is not within �128 or

+127 bytes? The assembler will inform us with an error message that the target can’t be reached

with a short jump.

In fact, specification of SHORT for the jump instruction

jmp SHORT repeat1

on page 345 is redundant, as the assembler can automatically select the SHORT jump, if appro-

priate, for all backward jumps. However, for forward jumps, the assembler needs our help. This

is because the assembler does not know the relative displacement of the target when it must

decide whether to use the short form. Therefore, when appropriate, we use the SHORT operator

for forward jumps.

Example 9.2 Example encodings of short and near jumps.

Figure 9.1 shows some example encodings for short and near jump instructions. This listing

consists of four columns:

348 Chapter 9 Overview of Assembly Language

. . .

8 0005 EB 0C jmp SHORT CX_init_done

9 0007 B9 000A mov CX,10

10 000A EB 07 90 jmp CX_init_done

11 init_CX_20:

12 000D B9 0014 mov CX,20

13 0010 E9 00D0 jmp near_jump

14 CX_init_done:

15 0013 8B C1 mov AX,CX

16 repeat1:

17 0015 49 dec CX

18 0016 EB FD jmp repeat1

. . .

. . .

84 00DB EB 03 jmp SHORT short_jump

85 00DD B9 FF00 mov CX, 0FF00H

86 short_jump:

87 00E0 BA 0020 mov DX, 20H

88 near_jump:

89 00E3 E9 FF27 jmp init_CX_20

. . .

Figure 9.1 Example encoding of jump instructions.

Column 1 Line number;

Column 2 Address in hex;

Column 3 Machine language encoding;

Column 4 Assembly language statement.

For example, for the first jmp statement, the line number is 8, its address is 0005H, and the

jmp instruction is encoded as EB0C. Next we discuss the machine language encoding of the

jump instruction.

The forward short jump on line 8 is encoded in the machine language as EB 0C, where EB
represents the opcode for the short jump. The relative offset to target CX_init_done is 0CH.

From the code, you can see that this is the difference between the address of the target (address

0013H) and the instruction on line 9 (address 0007H). Another example of a forward short jump

is given on line 84.

The backward instruction on line 18 also uses the short jump form. In this case, the assem-

bler can decide whether the short or near jump is appropriate. The relative offset is given by

FDH (= �3D), which is the offset from the instruction at address 18H to repeat1 at 15H.

For near jumps, the opcode is E9H, and the relative offset is a 16-bit signed integer. The

relative offset of the forward near jump on line 13 is 00D0H, which is equal to 00E3H� 0013H.

The relative offset of the backward near jump on line 89 is given by 000DH� 00E6H = FF27H,

which is equal to �217D.

Section 9.6 Pentium Assembly Language Instructions 349

The jump instruction encoding on line 10 requires some explanation. Since this is a forward

jump and we have not specified that it could be a short jump, the assembler reserves three bytes

for a near jump (the worst case scenario). At the time of actual encoding, the assembler knows

the target location and therefore uses the short jump version. Thus, EB 07 represents the

encoding, and the third byte is not used and contains a nop (no operation) instruction (opcode

= 90H). �

Conditional Jumps

In conditional jump instructions, program execution is transferred to the target instruction only

when the specified condition is satisfied. The general format is

j<cond> label

where <cond> identifies the condition under which the target instruction at label should be

executed. Usually, the condition being tested is the result of the last arithmetic/logic operation.

For example, the code

read_char:

mov DL,0

. . .

(code for reading a character into AL)

. . .

cmp AL,0DH ;compare the character to CR

je CR_received ;if equal, jump to CR_received

inc CL ;otherwise, increment CL and

jmp read_char ;go back to read another

; character from keyboard

CR_received:

mov DL,AL

. . .

reads characters from the keyboard until the carriage return (CR) key is pressed. The character

count is maintained in the CL register. The two instructions

cmp AL,0DH ;0DH is ASCII for carriage return

je CR_received ;je stands for jump on equal

perform the required conditional execution. How does the processor remember the result of the

cmp operation when it is executing the je instruction? One of the purposes of the flags register

is to provide such short-term memory between instructions. Let us look at the actions taken by

the processor in executing these two instructions.

Remember that the cmp instruction subtracts 0DH from the contents of the AL register.

Although the result is not saved anywhere, the operation sets the zero flag (ZF = 1) if the two

operands are the same. If not, ZF = 0. The ZF retains this value until another instruction that

affects the ZF is executed. Note that not all instructions affect all the flags. In particular, the

mov instruction does not affect any of the flags.

350 Chapter 9 Overview of Assembly Language

Thus, when the je instruction is executed, the processor checks the ZF and program ex-

ecution jumps to the labeled instruction if ZF = 1. To cause the jump, the Pentium loads the

(E)IP register with the target instruction address. Recall that the (E)IP register points to the next

instruction to be executed. Therefore, when the character read is CR, instead of fetching the

instruction

inc CL

it will fetch the

mov DL,AL

instruction.

Here are some of the conditions tested by conditional jump instructions:

je jump if equal

jg jump if greater

jl jump if less

jge jump if greater or equal

jle jump if less than or equal

jne jump if not equal

Conditional jumps can also test the values of flags. Some examples are as follows:

jz jump if zero (i.e., if ZF = 1)

jnz jump if not zero (i.e., if ZF = 0)

jc jump if carry (i.e., if CF = 1)

jnc jump if not carry (i.e., if CF = 0)

Note that je is synonymous with the jz instruction. Similarly, jne is synonymous with the

jnz instruction.

As an example, consider the following code:

go_back:

inc AL

. . .

. . .

cmp AL,BL

statement-1

mov BL,77H

Table 9.4 shows the actions taken depending on statement-1.

The conditional jump instructions we have discussed so far treat the operands as signed

numbers. There is another set of conditional jump instructions for operands that are unsigned

numbers. But until these instructions are discussed in Chapter 12, the conditional jump instruc-

tions introduced here are sufficient to write simple assembly language programs.

Section 9.6 Pentium Assembly Language Instructions 351

Table 9.4 Some examples of conditional jump instructions

statement-1 AL BL Action taken

je go_back 56H 56H Program control is transferred to

inc AL

jg go_back 56H 55H Program control is transferred to

inc AL

jg go_back 56H 56H No jump; executes the next instruction

jl go_back mov BL,77H

jle go_back 56H 56H Program control is transferred to

jge go_back inc AL

jne go_back 27H 26H Program control is transferred to

jg go_back inc AL
jge go_back

A Note on Conditional Jumps

All conditional jump instructions are encoded into the machine language using only 2 bytes

(like the short jump instruction). As a consequence, all these jumps should be short jumps.

That is, the target instruction of a conditional jump must be 128 bytes before or 127 bytes after

the instruction following the conditional jump instruction itself.

What if the target is outside this range?

If the target is not reachable by using a short jump, we can use the following trick to overcome

this limitation. In the instruction sequence

. . .

target:

. . .

cmp AX,BX

je target ; target is not a short jump

mov CX,10

. . .

if target is not reachable by short jump, it should be replaced by

. . .

target:

. . .

cmp AX,BX

jne skip1 ; skip1 is a short jump

352 Chapter 9 Overview of Assembly Language

jmp target

skip1:

mov CX,10

. . .

We have negated the test condition (je becomes jne) and used an unconditional jump to

transfer control to the target. Recall that jmp has short as well as near versions.

9.6.3 Iteration Instructions

Iteration can be implemented with jump instructions. For example, the following code can be

used to execute <loop body> 50 times.

mov CL,50

repeat1:

. . .

<loop body>

. . .

dec CL

jnz repeat1 ;jumps back to repeat1

. . . ; as long as dec CL does

. . . ; not result in CL = 0

The Pentium, however, provides a group of loop instructions to support iteration. The syntax

of the basic loop instruction is

loop target

where target is a label that identifies the target instruction of the jump (repeat1 in our

example).

This instruction assumes that the CX register contains the loop count. When executing

the loop instruction, it decrements the CX register and jumps to the target instruction if

CX �� 0. Using this instruction, we can write the previous example as

mov CX,50

repeat:

. . .

<loop body>

. . .

loop repeat

loop_exit:

. . .

A problem with the above code is that if we set CX to 0, the loop iterates ��� times, not zero

times. This is not what we expect!

The instruction jcxz provides a remedy for this situation by testing the CX register. The

syntax of this instruction is

Section 9.6 Pentium Assembly Language Instructions 353

jcxz target

which tests the CX register and if it is zero, transfers control to the target instruction. Thus, it is

equivalent to

cmp CX,0

jz target

except that jcxz does not affect any of the flags, whereas the cmp/jz combination affects

the status flags. If the operand size is 32 bits, we can use the jecxz instruction instead of

jcxz. Both instructions, however, use the same opcode E3H. The operand size determines the

register—CX or ECX—used.

By using this instruction, the previous example can be written as

mov CX,50

jcxz loop_exit

repeat:

. . .

<loop body>

. . .

loop repeat

loop_exit:

. . .

Notes on Execution Times:

1. The functionality of the loop instruction can be replaced by

dec CX

jnz target

Surprisingly, the loop instruction is slower than the corresponding dec/jnz instruc-

tion pair. The loop instruction takes five or six clocks depending on whether the jump

is taken. The dec/jnz instruction pair takes only two clocks. Of course, the loop
instruction is better for program readability.

2. Similarly, the jcxz instruction takes five or six clocks, whereas the equivalent

cmp CX,0

jz target

takes only two clocks. Thus, for code optimization, these complex instructions should be

avoided.

The Pentium also has two conditional loop instructions: loope/loopz and loone/
loopnz. These instructions are similar to the unconditional loop instruction, except these

instructions loop back based on the value of the zero flag. The format of the three loop instruc-

tions along with the action taken is shown below.

354 Chapter 9 Overview of Assembly Language

Mnemonic Meaning Action

loop target Loop CX = CX � 1

if CX �� 0

jump to target

loope target Loop while equal CX = CX � 1

loopz target Loop while zero if (CX �� 0 and ZF = 1)

jump to target

loopne target Loop while not equal CX = CX � 1

loopnz target Loop while zero if (CX �� 0 and ZF = 0)

jump to target

9.6.4 Logical Instructions

The Pentium instruction set provides five logical instructions: and, or, xor, test, and not.

The syntax of these instructions is

and destination,source

or destination,source

xor destination,source

test destination,source

not destination

The and, or, and xor are binary operators and perform bitwise and, or, and xor logical

operations. The not is a unary operator that performs bitwise complement operations. We

discuss the need for the test instruction later.

The binary logical operations set the destination by performing the specified bitwise logical

operation on the source and destination operands. The logical not operation simply flips the

bits: a 1 in input becomes a 0 in the output, and vice versa.

Here are some examples explaining their operation (all numbers are expressed in binary):

and AL,BL or AL,BL xor AL,BL not AL

AL BL AL AL AL AL

1010 1110 1111 0000 1010 0000 1111 1110 0101 1110 0101 0001

0110 0011 1001 1100 0000 0000 1111 1111 1111 1111 1001 1100

1100 0110 0000 0011 0000 0010 1100 0111 1100 0101 0011 1001

1111 0000 0000 1111 0000 0000 1111 1111 1111 1111 0000 1111

Section 9.6 Pentium Assembly Language Instructions 355

Logical instructions also set some of the flags and therefore can be used in conjunction with

conditional jump instructions to implement decision making in assembly language programs.

We discuss this topic in Chapter 12.

Use of Logical Instructions

Logical instructions are typically used to implement compound logical expressions and bitwise

logical operations of high-level languages. In addition, logical operators are useful in bit ma-

nipulations. Here we give a brief review of their bit manipulation capabilities. We discuss their

use in high-level languages in Chapter 12.

The and instruction is useful to clear one or more bits. For example,

and AX,3FFFH

clears the two most significant bits of the AX register. The and operation can also be used to

isolate one or more bits of a byte, word, or doubleword. We present an example of this use later.

The or instruction is useful to set one or more bits. For example,

or AX,8000H

sets the most significant bit of the AX register while leaving the remaining 15 bits unaltered.

Another example use of the or instruction is given on page 509.

We can use the xor instruction to toggle one or more bits. The statement

xor AX,5555H

toggles the even bits of the AX register. Another use of the xor instruction is to initialize

registers to 0. We can, of course, do this by

mov AX,0

but the same result can be achieved by

xor AX,AX

This works no matter what is in the AX register. These two instructions, however, are not exactly

equivalent. The xor instruction affects flags, whereas the mov instruction does not. Note that

we can also use the sub instruction to do the same. All three instructions take one clock cycle

to execute, even though the mov instruction requires more bytes to encode the instruction.

In the following example, we test the least significant bit of the data in the AL register, and

the program control is transferred to the appropriate code depending on the value of this bit.

. . .

. . .

and AL,01H

je bit_is_zero

<code to be executed

356 Chapter 9 Overview of Assembly Language

when the bit is one>

jmp skip1

bit_is_zero:

<code to be executed

when the bit is zero>

skip1:

<rest of the code>

To understand how the jump is effective in this example, let us assume that AL = 10101110B.

The instruction

and AL,01H

makes the result 0 and stores it in the AL register. At the same time, the logical operation also

sets the zero flag (i.e., ZF = 1) because the result is zero. Recall that je tests the ZF and jumps

to the target location if ZF = 1. In this example, it is more appropriate to use jz (jump if zero).

Thus,

jz bit_is_zero

can replace the

je bit_is_zero

instruction. The conditional jump je is an alias for jz.

Need for the Test Instruction: A problem with using the and instruction for testing, as in the

last example, is that it modifies the destination operand. For instance, in the last example,

and AL,01H

changes the contents of AL to either 0 or 1 depending on whether the least significant bit is 0 or

1, respectively.

To avoid this problem, we can use the test instruction. Similar to the and instruction,

this instruction also performs the logical bitwise and operation except that the source and des-

tination operands are not modified in any way. However, test sets the flags just as the and
instruction would. Therefore, we can use

test AL,01H

instead of

and AL,01H

in the last example. Like the cmp instruction, test takes one clock less to execute than and
if the destination operand is in memory.

Section 9.6 Pentium Assembly Language Instructions 357

9.6.5 Shift Instructions

The Pentium provides two types of shift instructions: logical shifts and arithmetic shifts. Within

each type, left and right shifts are supported.

Logical Shift Instructions

The shl (shift left) instruction can be used to left-shift a destination operand. Each left-shift

causes the leftmost bit to move to the carry flag (CF), and the vacated rightmost bit is filled with

a zero as shown below:

SHL

7Bit position: 6 5 4 3 2 1 0

0CF

The shr (shift right) instruction works similarly but shifts bits to the right, as shown below:

CF

7 6 5 4 3 2 1 0

0SHR

Bit position:

The general format of these instructions is

shl destination,count shr destination,count

shl destination,CL shr destination,CL

The destination can be an 8-, 16-, or 32-bit operand stored either in a register or in memory.

The second operand specifies the number of bit positions to be shifted. The first format can be

used to directly specify the number of bit positions to be shifted. The count value can range

from 0 to 31. The second format can be used to indirectly specify the shift count, which is

assumed to be in the CL register. The CL register contents are not changed by these instructions.

In general, the first format is faster!

Even though the shift count can be between 0 and 31, it does not make sense to use count

values of zero or greater than 7 (for an 8-bit operand), 15 (for a 16-bit operand), or 31 (for a

32-bit operand). As indicated, the Pentium does not allow the specification of the shift count to

be greater than 31. If a greater value is specified, the Pentium takes only the least significant 5

bits of the number as the shift count. Some examples are shown in Table 9.5.

The following code tests the least significant bit of the AL register:

. . .

shr AL,1

jnc bit_is_zero

<code to be executed

when the bit is one>

jmp skip1

bit_is_zero:

358 Chapter 9 Overview of Assembly Language

Table 9.5 Some examples of shift instructions (all numbers are expressed in binary)

Before shift After shift

Instruction AL or AX AL or AX CF

shl AL,1 1010 1110 0101 1100 1

shr AL,1 1010 1110 0101 0111 0

mov CL,3
shl AL,CL 0110 1101 0110 1000 1

mov CL,5
shr AX,CL 1011 1101 0101 1001 0000 0101 1110 1010 1

<code to be executed

when the bit is zero>

skip1:

<rest of the code>

. . .

If the AL register contains a 1 in the least significant bit position, this bit will be in the carry

flag (CF) after the shr instruction has been executed. We can then use a conditional jump

instruction that tests the carry flag.

Usage: The shift instructions are useful mainly in these situations:

1. To manipulate bits,

2. To multiply and divide unsigned numbers by a power of two.

Arithmetic Shift Instructions

This set of shift instructions

sal (Shift Arithmetic Left)

sar (Shift Arithmetic Right)

can be used to shift signed numbers left or right, as shown below:

7Bit position: 6 5 4 3 2 1 0

0CFSAL

CF

7 6 5 4 3 2 1 0Bit position:

SAR

Section 9.6 Pentium Assembly Language Instructions 359

Table 9.6 Doubling of signed numbers

Signed binary number Decimal value

00001011 +11

00010110 +22

00101100 +44

01011000 +88

11110101 –11

11101010 –22

11010100 –44

10101000 –88

Shifting left by one bit position corresponds to doubling the number, and shifting right by

one bit position corresponds to halving it. As with the logical shift instructions, the CL register

can be used to specify the count value. The general format is

sal destination,count sar destination,count

sal destination,CL sar destination,CL

Doubling Signed Numbers

Doubling a signed number by shifting it left by one bit position may appear to cause problems

because the leftmost bit is used to represent the sign of the number. It turns out that this is

not a problem at all! See the examples presented in Table 9.6 to develop your intuition. The

first group presents the doubling effect on positive numbers and the second group shows the

doubling effect on negative numbers. In both cases, a 0 replaces the vacated bit. Why isn’t

shifting out the sign bit causing problems? The reason is that signed numbers are sign-extended

to fit a larger than required number of bits. For example, if we want to represent numbers in the

range of �� and ��, 3 bits are sufficient to represent this range. If we use a byte to represent

the same range, the number is sign-extended by copying the sign bit into the higher-order 5 bits,

as shown below:

�� =

sign bit
copied
� �� �

00000 011B

�� =

sign bit
copied
� �� �

11111 101B �

Clearly, doubling a signed number is no different than doubling an unsigned number. Thus, no

special left-shift instruction is needed for signed numbers. In fact, sal and shl are one and

the same instruction: sal is an alias for shl.

360 Chapter 9 Overview of Assembly Language

Table 9.7 Division of signed numbers by 2

Signed binary number Decimal value

01011000 +88

00101100 +44

00010110 +22

00001011 +11

10101000 ���
11010100 ���
11101010 ���
11110101 ���

Halving Signed Numbers

Can we also forget about treating the signed numbers differently in halving a number? Unfor-

tunately, we cannot. When we are right-shifting a signed number, the vacated left bit should be

replaced by a copy of the sign bit. This rules out the use of shr for signed numbers. See the

examples presented in Table 9.7. The sar instruction does precisely this; the sign bit is copied

into the vacated bit on the left.

Remember that the shift right operation performs integer division. For example, right-

shifting 00001011B (+11D) by a bit results in 00000101B (+5D).

Double-Shift Instructions

The Pentium provides two double-shift instructions for 32-bit and 64-bit shifts. These two

instructions operate on either word or doubleword operands and produce a single word or dou-

bleword result, respectively. The double-shift instructions require three operands, as shown

below:

shld dest,src,count ; left shift

shrd dest,src,count ; right shift

The operands dest and src can be either a word or doubleword. The dest operand can be

in a register or memory, but the src operand must be in a register. The shift count can be

specified as in the other shift instructions, either as an immediate value or in the CL register.

A significant difference between shift and double-shift instructions is that the src operand

supplies the bits in double-shift instructions, as shown below:

Section 9.6 Pentium Assembly Language Instructions 361

CF dest (register or memory)

src (register)

src (register)

dest (register or memory) CF

15/3115/31

15/31 15/31

0

0 0

0

shrd

shld

Note that the bits shifted out of the src operand go into the dest operand. However, the

src operand itself is not modified by the double-shift instructions. Only the dest operand is

updated appropriately. As in the shift instructions, the last bit shifted out is stored in the carry

flag. Later we present an example that demonstrates the use of the double-shift instructions (see

Example 9.3 on page 363).

9.6.6 Rotate Instructions

A drawback with the shift instructions is that the bits shifted out are lost. There may be situa-

tions where we want to keep these bits. The rotate family of instructions provides this facility.

These instructions can be divided into two types: rotate without involving the carry flag (CF),

or through the carry flag. We briefly discuss these two types of instructions next.

Rotate Without Carry

There are two instructions in this group:

rol (rotate left)

ror (rotate right)

The format of these instructions is similar to the shift instructions and is given below:

rol destination,count ror destination,count

rol destination,CL ror destination,CL

The rol instruction performs left rotation with the bits falling off on the left placed on the

right side, as shown below:

7Bit position: 6 5 4 3 2 1 0

CFROL

The ror instruction performs right rotation, as shown below:

CF

7 6 5 4 3 2 1 0Bit position:

ROR

362 Chapter 9 Overview of Assembly Language

In both instructions, the CF will catch the last bit rotated out of the destination. The exam-

ples in the following table illustrate the rotate operation:

Before execution After execution

Instruction AL or AX AL or AX CF

rol AL,1 1010 1110 0101 1101 1

ror AL,1 1010 1110 0101 0111 0

mov CL,3
rol AL,CL 0110 1101 0110 1011 1

mov CL,5
ror AX,CL 1011 1101 0101 1001 1100 1101 1110 1010 1

As a further example, consider encryption of a byte by interchanging the upper and lower

nibbles (i.e., 4 bits). This can be done either by

ror AL,4 or by rol AL,4

Rotate Through Carry

The instructions

rcl (rotate through carry left)

rcr (rotate through carry right)

include the carry flag in the rotation process. That is, the bit that is rotated out at one end goes

into the carry flag and the bit that was in the carry flag is moved into the vacated bit, as shown

below:

7Bit position: 6 5 4 3 2 1 0

CFRCL

CF

7 6 5 4 3 2 1 0Bit position:

RCR

Some examples of rcl and rcr are given next.

Section 9.6 Pentium Assembly Language Instructions 363

Before execution After execution

Instruction AL or AX CF AL or AX CF

rcl AL,1 1010 1110 0 0101 1100 1

rcr AL,1 1010 1110 1 1101 0111 0

mov CL,3
rcl AL,CL 0110 1101 1 0110 1101 1

mov CL,5
rcr AX,CL 1011 1101 0101 1001 0 1001 0101 1110 1010 1

The rcl and rcr instructions provide flexibility in bit rearranging. Furthermore, these

are the only two instructions that take the carry flag bit as an input. This feature is useful in

multiword shifts. For example, assume that we want to right-shift the 64-bit number stored in

EDX:EAX (the lower 32 bits are in EAX) by one bit position. This can be done by

shr EDX,1

rcr EAX,1

The shr instruction moves the least significant bit of EDX to the carry flag. The rcr
instruction copies this carry flag value into the most significant bit of EAX during the rotation

process.

Example 9.3 Shifting 64-bit numbers.

As we show in Chapter 12, multiplication and division by a power of two can be performed

faster if we use shift operations rather than multiplication or division instructions. Shift in-

structions operate on operands of size up to 32 bits. What if the operand to be manipulated is

bigger?

Since the shift instructions do not involve the carry flag as input, we have two alternatives:

either use rcl or rcr instructions, or use the double-shift instructions for such multiword

shifts. As an example, assume that we want to multiply a 64-bit unsigned number by 16. The

64-bit number is assumed to be in the EDX:EAX register pair with EAX holding the least

significant 32 bits.

Rotate Version:

mov CX,4 ; shift by 4 bits

shift_left:

shl EAX,1 ; moves leftmost bit of EAX to CF

rcl EDX,1 ; CF goes to rightmost bit of EDX

loop shift_left

364 Chapter 9 Overview of Assembly Language

Double-Shift Version:

shld EDX,EAX,4 ; EAX is unaffected by shld

shl EAX,4

Similarly, if we want to divide the same number by 16, we can use the following code:

Rotate Version:

mov CX,4 ; shift by 4 bits

shift_right:

shr EDX,1 ; moves rightmost bit of EDX to CF

rcr EAX,1 ; CF goes to leftmost bit of EAX

loop shift_right

Double-Shift Version:

shrd EAX,EDX,4 ; EDX is unaffected by shld

shr EDX,4

�

9.7 Defining Constants
Assemblers provide two directives—EQU and�—to define constants, numeric as well as literal

constants. The EQU directive can be used to define numeric constants and strings, whereas the

� directive can be used to define numeric constants only.

9.7.1 The EQU Directive

The syntax of the EQU directive is

name EQU expression

which assigns the result of the expression to name. This directive serves the same purpose

as #define in C. For example, we can use

NUM_OF_STUDENTS EQU 90

to assign 90 to NUM_OF_STUDENTS. It is customary to use capital letters for these names in

order to distinguish them from variable names. Once NUM_OF_STUDENTS is defined, we can

write

. . .

mov CX,NUM_OF_STUDENTS

. . .

cmp AX,NUM_OF_STUDENTS

. . .

Section 9.7 Defining Constants 365

to move 90 into the CX register and to compare AX with 90. Defining constants this way has

certain advantages:

1. Such definitions increase program readability. This can be seen by comparing the state-

ment

mov CX,NUM_OF_STUDENTS

with

mov CX,90

The first statement clearly indicates that we are moving the class size into the CX register.

2. Multiple occurrences of a constant can be changed from a single place. For example, if

the class size changes from 90 to 100, we need to change the value in the EQU statement

only. If we didn’t use the EQU statement, we would have to scan the source code and

make appropriate changes. A risky and error-prone process!

The operand of an EQU statement can be an expression that evaluates at assembly time. We

can, for example, write

NUM_OF_ROWS EQU 50

NUM_OF_COLS EQU 10

ARRAY_SIZE EQU NUM_OF_ROWS * NUM_OF_COLS

to define ARRAY_SIZE to be 500.

Strings can be defined in a similar fashion as shown in the following example:

JUMP EQU jmp

Here JUMP is an alias for jmp. Thus, a statement like

JUMP read_char

will be assembled as

jmp read_char

The angle brackets (< and >) can be used to define strings that could potentially be inter-

preted as an expression. For example,

ARRAY_SIZE EQU <NUM_OF_ROWS * NUM_OF_COLS>

forces the assembler to treat

NUM_OF_ROWS * NUM_OF_COLS

as a string and not evaluate it.

A Restriction: The symbols that have been assigned a value or a string cannot be reassigned

another value or string in a given source module. If such redefinitions are required, you should

use the = directive, which is discussed next.

366 Chapter 9 Overview of Assembly Language

9.7.2 The = Directive

The � directive is similar to the EQU directive. The syntax, which is similar to that of the EQU
directive, is

name � expression

There are two key differences:

1. A symbol that is defined by the = directive can be redefined. Therefore, the following

code is valid.

COUNT � 0

. . .

. . .

COUNT � 99

2. The = directive cannot be used to assign strings or to redefine keywords or instruction

mnemonics. For example,

JUMP � jmp

is not valid. For these purposes, you should use the EQU directive.

9.8 Macros
Macros provide a means by which a block of text (code, data, etc.) can be represented by a

name (called the macro name). When the assembler encounters that name later in the program,

the block of text associated with the macro name is substituted. This process is referred to as

macro expansion. In simple terms, macros provide a sophisticated text substitution mechanism.

In assembly language, macros can be defined with MACRO and ENDM directives. The macro

text begins with the MACRO directive and ends with the ENDM directive. The macro definition

syntax is

macro_name MACRO [parameter1, parameter2, � � �]

macro body

ENDM

In the MACRO directive, the parameters are optional, which is indicated by the square brack-

ets []. macro_name is the name of the macro that, when used later in the program, causes

macro expansion. To invoke or call a macro, use the macro_name and supply the necessary

parameter values. The format is

macro_name [argument1, argument2, � � �]

Example 9.4 A parameterless macro.

Here is our first macro example that does not require any parameters. Since using left-shift to

multiply by a power of two is more efficient than using multiplication, let us write a macro to

do this.

Section 9.8 Macros 367

multAX_by_16 MACRO

sal AX,4

ENDM

The macro code consists of a single sal instruction, which will be substituted whenever the

macro is called. Now we can invoke this macro by using the macro name multAX_by_16, as

in the following example:

. . .

mov AX,27

multAX_by_16

. . .

When the assembler encounters the macro name multAX_by_16, it is replaced (i.e., text

substituted) by the macro body. Thus, after the macro expansion, the assembler finds the code

. . .

mov AX,27

sal AX,4

. . .

�

Macros with Parameters

Just as with procedures, using parameters with macros aids in writing more flexible and useful

macros. The number of parameters is limited by how many can fit in a single line. The previous

macro always multiplies AX by 16. By using parameters, we can generalize this macro to

operate on a byte, word, or doubleword located either in a general-purpose register or memory.

The modified macro is

mult_by_16 MACRO operand

sal operand,4

ENDM

The parameter operand can be any operand that is valid in the sal instruction. To multi-

ply a byte in the DL register

mult_by_16 DL

can be used. This causes the following macro expansion:

sal DL,4

Similarly, a memory variable count (whether it is a byte, word, or doubleword) can be

multiplied by 16 using

mult_by_16 count

368 Chapter 9 Overview of Assembly Language

Such a macro call will be expanded as

sal count,4

Now, at least superficially, mult_by_16 looks like any other assembly language instruc-

tion, except that we have defined it. These are referred to as macro-instructions.

The 8086 processor does not allow specification of the shift count greater than 1 as an

immediate value. For this processor, we have to redefine the macro as

mult_by_16_8086 MACRO operand

sal operand,1

sal operand,1

sal operand,1

sal operand,1

ENDM

TASM, however, allows you to write immediate shift count values greater than 1 and replaces

them by the equivalent set of shift instructions.

Example 9.5 Memory-to-memory data transfer macro.

We know that the Pentium does not allow memory-to-memory data transfer. We have to use

an intermediate register to facilitate such a data transfer. We can write a macro to perform

memory-to-memory data transfers using the basic instructions of the processor. Let us call this

macro, which exchanges the values of two memory variables, Wmxchg to exchange words of

data in memory.

Wmxchg MACRO operand1, operand2

xchg AX,operand1

xchg AX,operand2

xchg AX,operand1

ENDM

This three-instruction sequence exchanges the memory words operand1 and operand2
while leaving AX unaltered. �

9.9 Illustrative Examples
This section presents five examples to illustrate the use of the assembly language instructions

discussed in this chapter. In order to follow these examples, you should be able to understand

the difference between binary values and character representations. For example, when using a

byte to store a number, number 5 is stored as

00000101B

On the other hand, character 5 is stored as

Section 9.9 Illustrative Examples 369

00110101B

Character manipulation is easier if you understand this difference and the key characteristics of

ASCII, as discussed in Appendix B. Appendix C provides necessary information to assemble

these programs with MASM and TASM. The corresponding information for NASM is given in

Appendix E.

Example 9.6 Displays the ASCII value of the input key in binary.

This program reads a key from the keyboard and displays its ASCII value in binary. It then

queries the user as to whether he wants to quit. Depending on the response, the program either

requests another character or terminates.

To display the binary value of the ASCII code of the input key, we test each bit starting with

the most significant bit (i.e., leftmost bit). We use the mask variable, initialized to 80H (i.e.,

1000 0000B), to test only the most significant bit. Let’s assume that the character is in the

AL register. If its most significant bit is 0, the code

test AL,mask

sets ZF. In this case, a 0 is displayed by directing program flow using the jz instruction. Oth-

erwise, a 1 is displayed. The mask is then divided by two, which is equivalent to right-shifting

mask by one bit position. Thus, we are ready for testing the second most significant bit. The

process is repeated for each bit of the ASCII value. The pseudocode of the program is as fol-

lows:

main()
read_char:

display prompt message

read input character into char
display output message text

mask := 80H �AH is used to store mask�
count := 8 �CX is used to store count�
repeat

if ((char AND mask) = 0)

then

write 0

else

write 1

end if

mask := mask/2 �can be done by shr�
count := count � 1

until (count = 0)

display query message

read response

370 Chapter 9 Overview of Assembly Language

if (response = ’Y’)

then

goto done
else

goto read_char
end if

done:
return

end main

The assembly language program shown in Program 9.1 follows the pseudocode in a straight-
forward way. Note that the Pentium provides an instruction to perform integer division. How-
ever, shr is about 17 times faster than the divide instruction to divide a number by 2! More
details about the division instructions are given in Chapter 12.

Program 9.1 Conversion of ASCII to binary representation

1: TITLE Binary equivalent of characters BINCHAR.ASM

2: COMMENT |

3: Objective: To print the binary equivalent of

4: ASCII character code.

5: Input: Requests a character from keyboard.

6: Output: Prints the ASCII code of the

7: | input character in binary.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: char_prompt DB ’Please input a character: ’,0

12: out_msg1 DB ’The ASCII code of ’’’,0

13: out_msg2 DB ’’’ in binary is ’,0

14: query_msg DB ’Do you want to quit (Y/N): ’,0

15:

16: .CODE

17: INCLUDE io.mac

18: main PROC

19: .STARTUP

20: read_char:

21: PutStr char_prompt ; request a char. input

22: GetCh AL ; read input character

23: nwln

24: PutStr out_msg1

25: PutCh AL

26: PutStr out_msg2

27: mov AH,80H ; mask byte = 80H

28: mov CX,8 ; loop count to print 8 bits

Section 9.9 Illustrative Examples 371

29: print_bit:

30: test AL,AH ; test does not modify AL

31: jz print_0 ; if tested bit is 0, print it

32: PutCh ’1’ ; otherwise, print 1

33: jmp skip1

34: print_0:

35: PutCh ’0’ ; print 0

36: skip1:

37: shr AH,1 ; right shift mask bit to test

38: ; next bit of the ASCII code

39: loop print_bit

40: nwln

41: PutStr query_msg ; query user whether to terminate

42: GetCh AL ; read response

43: nwln

44: cmp AL,’Y’ ; if response is not ’Y’

45: jne read_char ; read another character

46: done: ; otherwise, terminate program

47: .EXIT

48: main ENDP

49: END main

Example 9.7 Displays the ASCII value of the input key in hexadecimal.

The objective of this example is to show how numbers can be converted to characters by using

character manipulation. This and the next example are similar to the previous one except that

the ASCII value is printed in hex. In order to get the least significant hex digit, we have to mask

off the upper half of the byte and then perform integer to hex digit conversion. The example

shown below assumes that the input character is L, whose ASCII value is 4CH:

L
������� 01001100B

���� �	

���
 ����
�� 00001100B

����
�
�� ���
�� C �

Similarly, to get the most significant hex digit we have to isolate the upper half of the byte

and move these four bits to the lower half, as shown below:

L
�����
�� 01001100B

���� �	
����
 ����
�� 01000000B

�����
����
� ���������
�� 00000100B

����
�
�� ���
�� 4 �

Notice that shifting right by four bit positions is equivalent to performing integer division by

16. The pseudocode of the program shown in Program 9.2 is as follows:

372 Chapter 9 Overview of Assembly Language

main()
read_char:

display prompt message

read input character into char
display output message text

temp := char
char := char AND F0H �mask off lower half �

char := char/16 � shift right by 4 positions �

�The last two steps can be done by shr �
convert char to hex equivalent and display

char := temp �restore char �
char := char AND 0FH �mask off upper half �

convert char to hex equivalent and display

display query message

read response

if (response = ’Y’)

then

goto done
else

goto read_char
end if

done:
return

end main

To convert a number between 0 and 15 to its equivalent in hex, we have to divide the process

into two parts depending on whether the number is below 10. The conversion using character

manipulation can be summarized as follows:

if (number � 9)

then

write (number + ’0’)

else

write (number + ’A’ � 10)

end if

If the number is between 0 and 9, we have to add the ASCII value of character 0 to convert it

to its equivalent character. For instance, if the number is 5 (00000101B), it should be converted

to character 5, whose ASCII value is 35H (00110101B). Therefore, we have to add 30H, which

is the ASCII value of 0. This is done in Program 9.2 by

add AL,’0’

on line 34. If the number is between 10 and 15, we have to convert it to a hex digit between A

and F. You can verify that the required translation is achieved by

Section 9.9 Illustrative Examples 373

number � 10 � ASCII value of character A

In Program 9.2, this is done by

add AL,’A’�10
on line 37.

Program 9.2 Conversion to hexadecimal by character manipulation

1: TITLE Hex equivalent of characters HEX1CHAR.ASM

2: COMMENT |

3: Objective: To print the hex equivalent of

4: ASCII character code.

5: Input: Requests a character from keyboard.

6: Output: Prints the ASCII code of the

7: | input character in hex.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: char_prompt DB ’Please input a character: ’,0

12: out_msg1 DB ’The ASCII code of ’’’,0

13: out_msg2 DB ’’’ in hex is ’,0

14: query_msg DB ’Do you want to quit (Y/N): ’,0

15:

16: .CODE

17: .486

18: INCLUDE io.mac

19: main PROC

20: .STARTUP

21: read_char:

22: PutStr char_prompt ; request a char. input

23: GetCh AL ; read input character

24: nwln

25: PutStr out_msg1

26: PutCh AL

27: PutStr out_msg2

28: mov AH,AL ; save input character in AH

29: shr AL,4 ; move upper 4 bits to lower half

30: mov CX,2 ; loop count - 2 hex digits to print

31: print_digit:

32: cmp AL,9 ; if greater than 9

33: jg A_to_F ; convert to A through F digits

34: add AL,’0’ ; otherwise, convert to 0 through 9

35: jmp skip

36: A_to_F:

374 Chapter 9 Overview of Assembly Language

37: add AL,’A’-10 ; subtract 10 and add ’A’

38: ; to convert to A through F

39: skip:

40: PutCh AL ; write the first hex digit

41: mov AL,AH ; restore input character in AL

42: and AL,0FH ; mask off the upper half byte

43: loop print_digit

44: nwln

45: PutStr query_msg ; query user whether to terminate

46: GetCh AL ; read response

47: nwln

48: cmp AL,’Y’ ; if response is not ’Y’

49: jne read_char ; read another character

50: done: ; otherwise, terminate program

51: .EXIT

52: main ENDP

53: END main

Example 9.8 Displays ASCII value of the input key in hexadecimal using the xlat instruction.

The objective of this example is to show how the use of xlat simplifies the solution of the last

example. In this example, we use the xlat instruction to convert an integer value in the range

between 0 and 15 to its equivalent hex digit. The code is shown in Program 9.3. To use xlat
we have to construct a translation table, which is done by the following statement (line 17):

hex_table DB ’0123456789ABCDEF’

We can then use the integer value as an index into the table. For example, an integer value of 10
points to A, which is the equivalent hex digit. In order to use the xlat instruction, BX should
point to the base of the hex_table (line 32) and AL should have an integer value between 0
and 15. The rest of the program is straightforward to follow.

Program 9.3 Conversion to hexadecimal by using the xlat instruction

1: TITLE Hex equivalent of characters HEX2CHAR.ASM

2: COMMENT |

3: Objective: To print the hex equivalent of

4: ASCII character code. Demonstrates

5: the use of xlat instruction.

6: Input: Requests a character from keyboard.

7: Output: Prints the ASCII code of the

8: | input character in hex.

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

Section 9.9 Illustrative Examples 375

12: char_prompt DB ’Please input a character: ’,0

13: out_msg1 DB ’The ASCII code of ’’’,0

14: out_msg2 DB ’’’ in hex is ’,0

15: query_msg DB ’Do you want to quit (Y/N): ’,0

16: ; translation table: 4-bit binary to hex

17: hex_table DB ’0123456789ABCDEF’

18:

19: .CODE

20: .486

21: INCLUDE io.mac

22: main PROC

23: .STARTUP

24: read_char:

25: PutStr char_prompt ; request a char. input

26: GetCh AL ; read input character

27: nwln

28: PutStr out_msg1

29: PutCh AL

30: PutStr out_msg2

31: mov AH,AL ; save input character in AH

32: mov BX,OFFSET hex_table ; BX := translation table

33: shr AL,4 ; move upper 4 bits to lower half

34: xlatb ; replace AL with hex digit

35: PutCh AL ; write the first hex digit

36: mov AL,AH ; restore input character to AL

37: and AL,0FH ; mask off upper 4 bits

38: xlatb

39: PutCh AL ; write the second hex digit

40: nwln

41: PutStr query_msg ; query user whether to terminate

42: GetCh AL ; read response

43: nwln

44: cmp AL,’Y’ ; if response is not ’Y’

45: jne read_char ; read another character

46: done: ; otherwise, terminate program

47: .EXIT

48: main ENDP

49: END main

Example 9.9 Conversion of lowercase letters to uppercase.

This example demonstrates how indirect addressing can be used to access elements of an array.

It also illustrates how character manipulation can be used to convert lowercase letters to up-

percase. The program receives a character string from the keyboard and converts all lowercase

376 Chapter 9 Overview of Assembly Language

letters to uppercase and displays the string. Characters other than the lowercase letters are not

changed in any way. The pseudocode of Program 9.4 is as follows:

main()
display prompt message

read input string
index := 0

char := string[index]
while (char �� NULL)

if ((char � ’a’) AND (char � ’z’))

then

char := char + ’A’ � ’a’

end if

display char
index := index + 1

char := string[index]
end while

end main

You can see from Program 9.4 that the compound condition if requires two cmp instructions

(lines 27 and 29). Also the program uses the BX register in indirect addressing mode and always

holds the pointer value of the character to be processed. In Chapter 11, we show a better way

of accessing elements of an array. The end of the string is detected by

cmp AL,0 ; check if AL is NULL

je done

and is used to terminate the while loop (lines 25 and 26).

Program 9.4 Conversion to uppercase by character manipulation

1: TITLE uppercase conversion of characters TOUPPER.ASM

2: COMMENT |

3: Objective: To convert lowercase letters to

4: corresponding uppercase letters.

5: Input: Requests a character string from keyboard.

6: | Output: Prints the input string in uppercase.

7: .MODEL SMALL

8: .STACK 100H

9: .DATA

10: name_prompt DB ’Please type your name: ’,0

11: out_msg DB ’Your name in capitals is: ’,0

12: in_name DB 31 DUP (?)

13:

14: .CODE

Section 9.9 Illustrative Examples 377

15: INCLUDE io.mac

16: main PROC

17: .STARTUP

18: PutStr name_prompt ; request character string

19: GetStr in_name,31 ; read input character string

20: nwln

21: PutStr out_msg

22: mov BX,OFFSET in_name ; BX := address of in_name

23: process_char:

24: mov AL,[BX] ; move the char. to AL

25: cmp AL,0 ; if it is the NULL character

26: je done ; conversion done

27: cmp AL,’a’ ; if (char < ’a’)

28: jl not_lower_case ; not a lowercase letter

29: cmp AL,’z’ ; if (char > ’z’)

30: jg not_lower_case ; not a lowercase letter

31: lower_case:

32: add AL,’A’-’a’ ; convert to uppercase

33: not_lower_case:

34: PutCh AL ; write the character

35: inc BX ; BX points to next char.

36: jmp process_char ; go back to process next char.

37: nwln

38: done:

39: .EXIT

40: main ENDP

41: END main

Example 9.10 Sum of the individual digits of a number.

This example shows how decimal digits can be converted from their character representations

to equivalent binary. The program receives a number (maximum 10 digits) and displays the

sum of the individual digits of the input number. For example, if the input number is 45213,

the program displays � � � � � � � � � � ��. Since ASCII assigns a special set of contiguous

values to the 10-digit characters, it is straightforward to get their numerical value (as discussed

in Appendix B). All we have to do is to mask off the upper half of the byte. In Program 9.5 this

is done by the and instruction

and AL,0FH

on line 28.

Alternatively, we can also subtract the character code for 0

sub AL,’0’

For the sake of brevity, we leave writing the pseudocode of Program 9.5 as an exercise.

378 Chapter 9 Overview of Assembly Language

Program 9.5 Sum of individual digits of a number

1: TITLE Add individual digits of a number ADDIGITS.ASM

2: COMMENT |

3: Objective: To find the sum of individual digits of

4: a given number. Shows character to binary

5: conversion of digits.

6: Input: Requests a number from keyboard.

7: | Output: Prints the sum of the individual digits.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: number_prompt DB ’Please type a number (<11 digits): ’,0

12: out_msg DB ’The sum of individual digits is: ’,0

13: number DB 11 DUP (?)

14:

15: .CODE

16: INCLUDE io.mac

17: main PROC

18: .STARTUP

19: PutStr number_prompt ; request an input number

20: GetStr number,11 ; read input number as a string

21: nwln

22: mov BX,OFFSET number ; BX := address of number

23: sub DX,DX ; DX := 0 -- DL keeps the sum

24: repeat_add:

25: mov AL,[BX] ; move the digit to AL

26: cmp AL,0 ; if it is the NULL character

27: je done ; sum is done

28: and AL,0FH ; mask off the upper 4 bits

29: add DL,AL ; add the digit to sum

30: inc BX ; increment BX to point to next digit

31: jmp repeat_add ; and jump back

32: done:

33: PutStr out_msg

34: PutInt DX ; write sum

35: nwln

36: .EXIT

37: main ENDP

38: END main

Section 9.10 Summary 379

9.10 Summary
In this chapter, we presented the basics of Pentium assembly language programming. We dis-

cussed three types of assembly language statements:

1. Executable statements instruct the CPU as to what to do;

2. Assembler directives facilitate the assembly process by giving information to the assem-

bler;

3. Macros provide a sophisticated text substitution facility.

We have discussed assembler directives to allocate storage space for data variables and to

define numeric and string constants. Most assembly language instructions require one or more

operands. Specification of operands is referred to as the addressing mode. We have described

four addressing modes to specify the operands. In a later chapter, we discuss the remaining

addressing modes supported by the Pentium.

We have presented an overview of the Pentium instruction set. Although we have discussed

in detail the data transfer instructions, we have provided only an overview of the remaining

instructions of the Pentium instruction set. The next three chapters present a detailed discussion

of these instructions.

In the last section, we have given several examples to illustrate the basics of the assembly

language programs. These examples follow the structure of the standalone assembly language

program described in Appendix C. The information included in this chapter gives you enough

knowledge to write reasonable assembly programs. The exercises of this chapter are designed

so that you can work on them using only the material presented in this chapter.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• = directive

• Addressing modes

• Assembler directives

• Backward jump

• Conditional jumps

• Data allocation

• Default segments

• Direct addressing mode

• Direct jumps

• Effective address

• EQU directive

• Executable instructions

• Far jump

• Forward jump

• Immediate addressing mode

• Intersegment jump

• Intrasegment jump

• MACRO directive

• Macro expansion

• Macro instructions

• Macro parameters

• Macros

• Near jump

• Override prefix

380 Chapter 9 Overview of Assembly Language

• Overriding default segments

• PTR directive

• Register addressing mode

• Relative address

• SHORT directive

• Short jump

• Symbol table

• Type specifier

• Unconditional jump

9.11 Exercises
9–1 Why doesn’t the CPU execute assembler directives?

9–2 What is the difference between the following two data definition statements?

int1 DB 2 DUP (?)

int2 DW ?

9–3 On page 338, we have stated that

mov BX,OFFSET array[SI]

does not make sense. Explain why?

9–4 For each of the following statements, what is the amount of storage space reserved (in
bytes)? Also indicate the initialized data. Verify your answers using your assembler.

(a) table DW 100 DUP (-1)

(b) nest1 DB 5 DUP (2 DUP (’%’), 3 DUP (’$’))

(c) nest2 DB 4 DUP (5 DUP (2 DUP (1),3 DUP (2)))

(d) value DW -2300

(e) count DW 40000

(f) msg1 DB ’Finder’’s fee is:’,0

(g) msg2 DB ’Sorry! Invalid input.’,0DH,0AH,0

9–5 What are the three assembler directives that allow macro definition? Discuss the differ-

ences and similarities among them.

9–6 What are the advantages of allowing parameters in a macro definition?

9–7 What is an addressing mode? Why does Pentium provide several addressing modes?

9–8 We discussed four addressing modes in this chapter. Which addressing mode is the most

efficient one? Explain why.

9–9 Can we use the immediate addressing mode in the inc instruction? Justify your answer.

9–10 What are the differences between direct and indirect addressing modes?

9–11 In the 16-bit addressing mode, which registers can be used in the indirect addressing

mode? Also specify the default segments associated with each register used in this mode.

9–12 Discuss the pros and cons of using the lea instruction as opposed to using the mov
instruction along with the OFFSET assembler directive.

9–13 On page 368, we have stated that the Wmxchg macro does not alter the contents of the

AX. Verify that this is true.

Section 9.11 Exercises 381

9–14 Use the following data definitions to answer this question:

.DATA

num1 DW 100

num2 DB 225

char1 DB ’Y’

num3 DD 0

Identify whether the following instructions are legal or illegal. Explain the reason for
each illegal instruction:

(a) mov EAX,EBX (b) mov EAX,num2

(c) mov BL,num1 (d) mov DH,char1

(e) mov char1,num2 (f) mov IP,num1

(g) add 75,EAX (h) cmp 75,EAX

(i) sub char1,’A’ (j) xchg AL,num2

(k) xchg AL,23 (l) inc num3

9–15 Assume that the registers are initialized to

EAX = 12345D, EBX = 9528D

ECX = �1275D, EDX = �3001D

What is the destination operand value (in hex) after executing the following instructions.
(Note: Assume that the four registers are initialized as shown above for each question.)

(a) add EAX,EBX (b) sub AX,CX

(c) and EAX,EDX (d) or BX,AX

(e) not EDX (f) shl BX,2

(g) shl EAX,CL (h) shr BX,2

(i) shr EAX,CL (j) sub CX,BX

(k) add CX,DX (l) sub DX,CX

9–16 In each of the following code fragments, state whether mov AX,10 or mov BX,1 is

executed:

(a) (b)

mov CX,5 mov CX,5

sub DX,DX mov DX,10

cmp DX,CX shr DX,1

jge jump1 cmp CX,DX

mov BX,1 je jump1

jmp skip1 mov BX,1

jump1: jmp skip1

mov AX,10 jump1:

skip1: mov AX,10

. . . skip1:

. . .

382 Chapter 9 Overview of Assembly Language

(c) (d)

mov CX,15BAH mov CX,5

mov DX,8244H not CX

and DX,CX mov DX,10

jz jump1 cmp CX,DX

mov BX,1 jg jump1

jmp skip1 mov BX,1

jump1: jmp skip1

mov AX,10 jump1:

skip1: mov AX,10

. . . skip1:

. . .

9–17 Describe in one sentence what the following code is accomplishing in terms of number

manipulation:

(a) (b)

not AX not AX

add AX,1 inc AX

(c) (d)

sub AH,AH sub AH,AH

sub DH,DH sub DH,DH

mov DL,AL mov DL,AL

add DX,DX mov CL,3

add DX,DX shl DX,CL

add DX,AX shl AX,1

add DX,DX add DX,AX

9–18 Do you need to know the initial contents of the AX register in order to determine the con-

tents of the AX register after executing the following code? If so, explain why. Otherwise,

find the AX contents.

(a) (b)

mov DX,AX mov DX,AX

not AX not AX

or AX,DX and AX,DX

9–19 The inc and dec instructions do not affect the carry flag. Explain why it is really not

required.

9–20 Suppose the add instruction is not available. Show how we can use the adc instruction

to implement the add instruction. Of course, you can use other instructions as well.

9–21 Suppose the adc instruction is not available. Show how we can use the add instruction

to implement the adc instruction. Of course, you can use other instructions as well.

9–22 Show how you can implement multiplication by 12 by using four additions. You can use

registers for temporary storage.

9–23 What is the use of the neg instruction?

Section 9.12 Programming Exercises 383

9–24 Show how you can implement the neg instruction with an add instruction.

9–25 The logical and operation can be implemented by using only or and not operations.

Show how this can be done. You can use as many or and not operations as you want.

But try to implement by using only three not and one or operation. Is this question

related to the digital logic material covered in Chapter 2?

9–26 The logical or operation can be implemented by using only and and not operations.

Show how this can be done. You can use as many and and not operations as you want.

But try to implement by using only three not and one and operation. As in the last

question, cast this question in the digital logic context.

9–27 Explain how and and or logical operations can be used to “cut and paste” a specific set

of bits.

9–28 Suppose the instruction set did not support the not instruction. How do you implement

it using only and and or instructions?

9–29 Can we use the logical shift instructions shl and shr on signed data?

9–30 Can we use the arithmetic shift instructions sal and sar on unsigned data?

9–31 Give an assembly language program fragment to copy low-order 4 bits from the AL

register and higher-order 4 bits from the AH register into the DL register. You should

accomplish this using only the logical operations of Pentium.

9–32 Repeat the above exercise using only the shift/rotate operations of the Pentium instruction

set.

9–33 Show the assembly language program fragment to complement only the odd bits of the

AL register using only the logical operations.

9–34 Repeat the above exercise using only the shift/rotate operations of the Pentium instruction

set.

9.12 Programming Exercises
9–P1 The program on page 373, Program 9.2, uses uppercase letters A through F for the hex

digits. Modify the program to use the lowercase letters instead.

9–P2 The program on page 374, Program 9.3, uses uppercase letters A through F for the hex

digits. Modify the program to use the lowercase letters instead. Since you did the same

thing in the last exercise, which do you think is a better program to do changes like this?

Explain why.

9–P3 Modify the program of Example 9.6 so that, in response to the query

Do you want to quit (Y/N):

the program terminates only if the response is Y or y, continues with a request for another

character only if the response to the query is N or n, and otherwise repeats the query.

9–P4 Modify the program of Example 9.6 to accept a string and display the binary equivalent of

the input string. As in the example, the user should be queried about program termination.

384 Chapter 9 Overview of Assembly Language

9–P5 Modify the addigits.asm program such that it accepts a string from the keyboard

consisting of digit and nondigit characters. The program should display the sum of the

digits present in the input string. All nondigit characters should be ignored. For example,

if the input string is

ABC1?5wy76:˜2

the output of the program should be

sum of individual digits is: 21

9–P6 Write an assembly language program to encrypt digits as shown below:

input digit: 0 1 2 3 4 5 6 7 8 9;

encrypted digit: 4 6 9 5 0 3 1 8 7 2.

Briefly discuss whether you would use the xlat instruction. Your program should accept

a string consisting of digit and nondigit characters. The encrypted string should be dis-

played in which only the digits are affected. Then the user should be queried whether she

wants to terminate the program. If the response is either ’y’ or ’Y’, you should terminate

the program; otherwise, you should request another input string from the keyboard.

The encryption scheme given here has the property that when you encrypt an already en-

crypted string, you get back the original string. Use this property to verify your program.

9–P7 Using only the assembly language instructions discussed so far, write a program to accept

a number in hexadecimal form and display the decimal equivalent of the number. The

following is a typical interaction of your program (user input is shown in bold):

Please input a positive number in hex (4 digits max.): A10F

The decimal equivalent of A10FH is 41231

Do you want to terminate the program (Y/N): Y

You should refer to Appendix A for an algorithm to convert from base � to decimal.

Hints:

1. Required multiplication can be done by the shl instruction.

2. Once you have converted the hex number into the equivalent in binary using the

algorithm of Appendix A, you can use the PutInt routine to display the decimal

equivalent.

9–P8 Repeat the previous exercise with the following modifications: the input number is given

in decimal and the program displays the result of (integer) dividing the input by 4. You

should not use the GetInt routine to read the input number. Instead, you should read

the input as a string using GetStr. A typical interaction of the program is (user input is

shown in bold):

Please input a positive number (�65,535): 41231

41231/4 = 10307

Do you want to terminate the program (Y/N): Y

Section 9.12 Programming Exercises 385

Remember that the decimal number is read as a string of digit characters. Therefore,

you will have to convert it to binary form to store internally. This conversion requires

multiplication by 10 (see Appendix A). We haven’t discussed multiplication instruction

yet (and you should not use it even if you are familiar with it). But there is a way of doing

multiplication by 10 using only the instructions discussed in this chapter. (If you have

done the exercises of this chapter, you already know how!)

9–P9 Write a program that reads an input number (given in decimal) between 0 and 65,535

and displays the hexadecimal equivalent. You can read the input using the GetInt
routine. As with the other programming exercises, you should query the user for program

termination.

9–P10 Modify the last program to display the octal equivalent of the input number.

Chapter 10

Procedures and the Stack

Objectives
• To introduce the stack and its implementation in the Pentium;

• To describe stack operations and the use of the stack;

• To present procedures and parameter passing mechanisms;

• To discuss separate assembly of source program modules.

The last chapter gave an introduction to the assembly language programs. Here we discuss

how procedures are written in the assembly language. Procedures are important programming

constructs that facilitate modular programming. The stack plays an important role in proce-

dure invocation and execution. Section 10.1 introduces the stack concept and the next section

discusses how the stack is implemented in the Pentium. Stack operations—push and pop—are

discussed in Section 10.3. Section 10.4 discusses stack uses.

After a brief introduction to procedures (Section 10.5), assembly language directives for

writing procedures are discussed in Section 10.6. Section 10.7 presents the Pentium instructions

for procedure invocation and return. Parameter passing mechanisms are discussed in detail in

Section 10.8. The stack plays an important role in parameter passing. Using the stack it is

relatively straightforward to pass a variable number of parameters to a procedure (discussed in

Section 10.9). The issue of local variable storage in procedures is discussed in Section 10.10.

Although short assembly language programs can be stored in a single file, real application

programs are likely to be broken into several files, called modules. The issues involved in

writing and assembling multiple source program modules are discussed in Section 10.11. The

last section provides a summary of the chapter.

387

388 Chapter 10 Procedures and the Stack

1000 1000

1001

1000

1001

1002

1000

1001

1002

Empty

stack

After

inserting

1000

After

inserting

1001

After

inserting

1002

After

inserting

1003

1003

Figure 10.1 An example showing stack growth: Numbers 1000 through 1003 are inserted in ascending

order. The arrow points to the top-of-stack.

10.1 What Is a Stack?
Conceptually, a stack is a last-in-first-out (LIFO) data structure. The operation of a stack is

analogous to the stack of trays you find in cafeterias. The first tray removed from the stack

of trays would be the last tray that had been placed on the stack. There are two operations

associated with a stack: insertion and deletion. If we view the stack as a linear array of elements,

stack insertion and deletion operations are restricted to one end of the array. Thus, the only

element that is directly accessible is the element at the top-of-stack (TOS). In stack terminology,

insert and delete operations are referred to as push and pop operations, respectively.

There is another related data structure, the queue. A queue can be considered as a linear

array with insertions done at one end of the array and deletions at the other end. Thus, a queue

is a first-in-first-out (FIFO) data structure.

As an example of a stack, let us assume that we are inserting numbers 1000 through 1003

into a stack in ascending order. The state of the stack can be visualized as shown in Figure 10.1.

The arrow points to the top-of-stack. When the numbers are deleted from the stack, the numbers

will come out in the reverse order of insertion. That is, 1003 is removed first, then 1002, and

so on. After the deletion of the last number, the stack is said to be in the empty state (see

Figure 10.2).

In contrast, a queue maintains the order. Suppose that the numbers 1000 through 1003 are

inserted into a queue as in the stack example. When removing the numbers from the queue, the

first number to enter the queue would be the one to come out first. Thus, the numbers deleted

from the queue would maintain their insertion order.

10.2 Pentium Implementation of the Stack
The memory space reserved in the stack segment is used to implement the stack. The registers

SS and (E)SP are used to implement the Pentium stack. If 16-bit address size segments are used

as we do in this book, SP is used as the stack pointer, and ESP is used for 32-bit address size

segments. In the rest of the chapter, our focus is on 16-bit segments.

Section 10.2 Pentium Implementation of the Stack 389

1000

1001

1002

1000

1001

1002

1000

1001

1000

Empty

stack

Initial

stack

After

1003

removing

After

1002

removing

After

1001

removing

After

1000

removing

1003

Figure 10.2 Deletion of data items from the stack: The arrow points to the top-of-stack.

The top-of-stack, which points to the last item inserted into the stack, is indicated by SS:SP,

with the SS register pointing to the beginning of the stack segment, and the SP register giving

the offset value of the last item inserted.

The key Pentium stack implementation characteristics are as follows:

• Only words (i.e., 16-bit data) or doublewords (i.e., 32-bit data) are saved on the stack,

never a single byte.

• The stack grows toward lower memory addresses. Since we graphically represent mem-

ory with addresses increasing from the bottom of a page to the top, we say that the stack

grows “downward.”

• Top-of-stack always points to the last data item placed on the stack. TOS, which is

represented by SS:SP, always points to the lower byte of the last word inserted into the

stack.

The statement

.STACK 100H

creates an empty stack as shown in Figure 10.3a, and allocates 256 (i.e., 100H) bytes of memory

for stack operations. When the stack is initialized, TOS points to a byte just outside the reserved

stack area. It is an error to read from an empty stack as this causes a stack underflow.

When a data item is pushed onto the stack, SP is first decremented by two, and then the

word is stored at SS:SP. Since the Pentium uses little-endian byte order, the higher-order byte is

stored in the higher memory address. For instance, when we push 21ABH, the stack expands by

two bytes, and SP is decremented by two to point to the last data item, as shown in Figure 10.3b.

The stack shown in Figure 10.3c results when we expand the stack further by four more bytes

by pushing the doubleword 7FBD329AH onto the stack.

The stack full condition is indicated by the zero offset value (i.e., the SP register is 0000H).

If we try to insert a data item into a full stack, stack overflow occurs. Both stack underflow and

overflow are programming errors and should be handled with care.

390 Chapter 10 Procedures and the Stack

SP

(256)

Empty stack

(256 bytes)

? ?

? ?

? ?

? ?

? ?

.

.

.
.
.
.

.

.

.

SS SS
SS ? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

? ?

A B

2 1

? ?

? ?

2 1

A B

7 F

B D

TOS

SP

(254)

21ABH

After pushing After pushing

3 2

9 ATOS

SP

(250)

7FBD329AH

(b) (c)(a)

TOS

Figure 10.3 Stack implementation in the Pentium: SS:SP points to the top-of-stack.

Retrieving a 32-bit data item from the stack causes the offset value to increase by four to

point to the next data item on the stack. For example, if we retrieve a doubleword from the

stack shown in Figure 10.4a, we get 7FBD329AH from the stack and SP is updated, as shown

in Figure 10.4b. Notice that the four memory locations retain their values. However, since TOS

is updated, these four locations will be used to store the next data value pushed onto the stack,

as shown in Figure 10.4c.

10.3 Stack Operations

10.3.1 Basic Instructions

The stack data structure allows two basic operations: insertion of a data item into the stack

(called the push operation) and deletion of a data item from the stack (called the pop operation).

The Pentium allows these two operations on word or doubleword data items. The syntax is

push source

pop destination

The operand of these two instructions can be a 16- or 32-bit general-purpose register, segment

register, or a word or doubleword in memory. In addition, source for the push instruction

Section 10.3 Stack Operations 391

2 1

.

.

.
.
.
.

.

.

.

SS ? ?

? ?

2 1

A B

TOS

SP

(252)

5 6

8 9

5689H

After pushing

SS ? ?

? ?

A B

7 F

B D

SS ? ?

? ?

A B

2 1

TOS

SP

(254)

7 F

B D

Initial stack

(two data items)

3 2

9 A

3 2

9 A

3 2

9 A

After removing

7FBD329AH

TOS

SP

(250)

(a) (b) (c)

Figure 10.4 An example showing stack insert and delete operations.

can be an immediate operand of size 8, 16, or 32 bits. Table 10.1 summarizes the two stack

operations.

On an empty stack created by

.STACK 100H

the statements

push 21ABH

push 7FBD329AH

would result in the stack shown in Figure 10.4a. Executing the statement

pop EBX

on this stack would result in the stack shown in Figure 10.4b with the register EBX receiving

7FBD329AH.

10.3.2 Additional Instructions

The Pentium supports two special instructions for stack manipulation. These instructions can

be used to save or restore the flags and general-purpose registers.

392 Chapter 10 Procedures and the Stack

Table 10.1 Stack operations on 16- and 32-bit data

push source16 SP = SP � 2

(SS:SP) = source16

SP is first decremented by 2 to modify TOS.

Then the 16-bit data from source16 is copied

onto the stack at the new TOS. The stack ex-

pands by 2 bytes.

push source32 SP = SP � 4

(SS:SP) = source32

SP is first decremented by 4 to modify TOS.

Then the 32-bit data from source32 is copied

onto the stack at the new TOS. The stack ex-

pands by 4 bytes.

pop dest16 dest16 = (SS:SP)

SP = SP + 2

The data item located at TOS is copied to

dest16. Then SP is incremented by 2 to up-

date TOS. The stack shrinks by 2 bytes.

pop dest32 dest32 = (SS:SP)

SP = SP + 4

The data item located at TOS is copied to

dest32. Then SP is incremented by 4 to update

TOS. The stack shrinks by 4 bytes.

Stack Operations on Flags

The push and pop operations cannot be used to save or restore the flags register. For this, the

Pentium provides two special versions of these instructions:

pushf (push 16-bit flags)

popf (pop 16-bit flags)

These instructions do not need any operands. For operating on the 32-bit flags register (EFLAGS),

we can use pushfd and popfd instructions.

Stack Operations on All General-Purpose Registers

The Pentium also provides special pusha and popa instructions to save and restore the eight

general-purpose registers. The pusha saves the 16-bit general-purpose registers AX, CX, DX,

BX, SP, BP, SI, and DI. These registers are pushed in the order specified. The last register

pushed is the DI register. The popa restores these registers except that it will not copy the SP

value (i.e., the SP value is not loaded into the SP register as part of the popa instruction). The

corresponding instructions for the 32-bit registers are pushad and popad. These instructions

are useful in procedure calls, as we show in Section 10.8.4.

Section 10.4 Uses of the Stack 393

10.4 Uses of the Stack
The stack is used for three main purposes: as a scratchpad to temporarily store data, for transfer

of program control, and for passing parameters during a procedure call.

10.4.1 Temporary Storage of Data

The stack can be used as a scratchpad to store data on a temporary basis. For example, consider

exchanging the contents of two 32-bit variables that are in the memory: value1 and value2.

We cannot use

xchg value1,value2 ; illegal

because both operands of xchg are in the memory. The code

mov EAX,value1

mov EBX,value2

mov value1,EBX

mov value2,EAX

works, but it uses two 32-bit registers. This code requires four memory operations. However,

due to the limited number of general-purpose registers, finding spare registers that can be used

for temporary storage is nearly impossible in almost all programs.

What if we need to preserve the contents of the EAX and EBX registers? In this case, we

need to save these registers before using them and restore them as shown below:

. . .

;save EAX and EBX registers on the stack

push EAX

push EBX

;EBX and ECX registers can now be used

mov EAX,value1

mov EBX,value2

mov value1,EBX

mov value2,EAX

;restore EBX and ECX registers from the stack

pop EBX

pop EAX

. . .

This code requires eight memory accesses. Because the stack is a LIFO data structure, the

sequence of pop instructions is a mirror image of the push instruction sequence.

An elegant way of exchanging the two values is

push value1

push value2

pop value1

pop value2

394 Chapter 10 Procedures and the Stack

Notice that the above code does not use any general-purpose registers and requires eight

memory operations as in the other example. Another point to note is that push and pop
instructions allow movement of data from memory to memory (i.e., between data and stack

segments). This is a special case because mov instructions do not allow memory-to-memory

data transfer. Stack operations are an exception. String instructions, discussed in Chapter 12,

also allow memory-to-memory data transfer.

Stack is frequently used as a scratchpad to save and restore registers. The necessity often

arises when we need to free up a set of registers so they can be used by the current code. This

is often the case with procedures as we show in Section 10.8.

It should be clear from these examples that the stack grows and shrinks during the course

of a program execution. It is important to allocate enough storage space for the stack, as stack

overflow and underflow could cause unpredictable results, often causing system errors.

10.4.2 Transfer of Control

The previous discussion concentrated on how we, as programmers, can use the stack to store

data temporarily. The stack is also used by some instructions to store data temporarily. In

particular, when a procedure is called, the return address of the instruction is stored on the stack

so that the control can be transferred back to the calling program. A detailed discussion of this

topic is in Section 10.7.

10.4.3 Parameter Passing

Another important use of the stack is to act as a medium to pass parameters to the called pro-

cedure. The stack is extensively used by high-level languages to pass parameters. A discussion

on the use of the stack for parameter passing is deferred until Section 10.8.

10.5 Procedures
A procedure is a logically self-contained unit of code designed to perform a particular task.

These are sometimes referred to as subprograms and play an important role in modular pro-

gram development. In high-level languages such as Pascal, there are two types of subprograms:

procedures and functions. There is a strong similarity between a Pascal function and a mathe-

matical function. Each function receives a list of arguments and performs a computation based

on the arguments passed onto it and returns a single value. Procedures also receive a list of argu-

ments just as the functions do. However, procedures, after performing their computation, may

return zero or more results back to the calling procedure. In C language, both these subprogram

types are combined into a single function construct.

In the C function

int sum (int x, int y)

{

return (x + y);

}

Section 10.5 Procedures 395

the parameters x and y are called formal parameters and the function body is defined based on

these parameters. When this function is called (or invoked) by a statement like

total = sum (number1, number2);

the actual parameters—number1 and number2—are used in the computation of the function

sum.

There are two types of parameter passing mechanisms: call-by-value and call-by-reference.

In the call-by-value mechanism, the called function (sum in our example) is provided only the

current value of the arguments for its use. Thus, in this case, the values of these actual parame-

ters are not changed in the called function; these values can only be used as in a mathematical

function. In our example, the sum function is invoked by using the call-by-value mechanism,

as we simply pass the values of number1 and number2 to the called function sum.

In the call-by-reference mechanism, the called function actually receives the addresses (i.e.,

pointers) of the parameters from the calling function. The function can change the contents of

these parameters—and these changes will be seen by the calling function—by directly manipu-

lating the actual parameter storage space. For instance, the following swap function

void swap (int *a, int *b)

{

int temp;

temp = *a;

*a = *b;

*b = temp;

}

assumes that swap receives the addresses of the two parameters from the calling function.

Thus, we are using the call-by-reference mechanism for parameter passing. Such a function can

be invoked by

swap (&data1, &data2);

Often both types of parameter passing mechanisms are used in the same function. As an

example, consider finding the roots of the quadratic equation

��� � ���
 � � �

The two roots are defined as

����� �
���

�
�� � ��

��
�

����� �
���

�
�� � ��

��
�

The roots are real if �� � ��
, and imaginary otherwise.

Suppose that we want to write a function that receives �, �, and
 and returns the values of

the two roots (if real) and indicates whether the roots are real or imaginary.

396 Chapter 10 Procedures and the Stack

int roots (double a, double b, double c,

double *root1, double *root2)

{

int root_type = 1;

if (4 * a * c <= b * b){ /* roots are real */

*root1 = (�b + sqrt(b*b � 4*a*c))/(2*a);

*root2 = (�b � sqrt(b*b � 4*a*c))/(2*a);

}

else /* roots are imaginary */

root_type = 0;

return (root_type);

}

The function roots receives parameters a, b, and c by the call-by-value mechanism, and

root1 and root2 parameters are passed using the call-by-reference mechanism. A typical

invocation of roots is

root_type = roots (a, b, c, &root1, &root2);

In summary, procedures receive a list of parameters, which may be passed either by the

call-by-value or by the call-by-reference mechanism. If more than one result is to be returned

by a called procedure, the call-by-reference parameter passing mechanism should be used.

10.6 Assembler Directives for Procedures
Assemblers provide two directives to define procedures in the assembly language: PROC and

ENDP. The PROC directive (stands for procedure) signals the beginning of a procedure, and

ENDP (end procedure) indicates the end of a procedure. Both these directives take a label that

is the name of the procedure. In addition, the PROC directive may optionally include NEAR or

FAR to indicate whether the procedure is a NEAR procedure or a FAR procedure. The general

format is

proc-name PROC NEAR

to define a near procedure, and

proc-name PROC FAR

to define a far procedure.

A procedure is said to be a near procedure if the calling and called procedures are both

located in the same code segment. On the other hand, if the calling and called procedures are

located in two different code segments, they are called far procedures. Near procedures involve

intrasegment calls, and far procedures involve intersegment calls. Here we restrict our attention

to near procedure calls.

When NEAR or FAR is not included in the PROC directive, the procedure definition defaults

to the NEAR procedure. A typical procedure definition is

Section 10.7 Pentium Instructions for Procedures 397

proc-name PROC

. . .

<procedure body>

. . .

proc-name ENDP

where proc-name in both PROC and ENDP statements must match.

10.7 Pentium Instructions for Procedures
The Pentium provides call and ret (return) instructions to write procedures in assembly

language. The call instruction can be used to invoke a procedure, and has the format

call proc-name

where proc-name is the name of the procedure to be called. The assembler replacesproc-name
by the offset value of the first instruction of the called procedure.

10.7.1 How Is Program Control Transferred?

The offset value provided in the call instruction is not the absolute value (i.e., offset is not

relative to the start of the code segment pointed to by the CS register), but a relative displacement

in bytes from the instruction following the call instruction. Let us look at the following

example:

offset machine code

(in hex) (in hex)

main PROC

. . .

cs:000A E8000C call sum

cs:000D 8BD8 mov BX,AX

. . .

main ENDP

sum PROC

cs:0019 55 push BP

. . .

sum ENDP

avg PROC

. . .

cs:0028 E8FFEE call sum

cs:002B 8BD0 mov DX,AX

. . .

avg ENDP

398 Chapter 10 Procedures and the Stack

The call instruction of main is located at CS:000AH and the next instruction at CS:000DH.

The first instruction of the procedure sum is at CS:0019H in the code segment. After the call
instruction has been fetched, the IP register points to the next instruction to be executed (i.e.,

IP = 000DH). This is the instruction that should be executed after completing the execution of

sum. The processor makes a note of this by pushing the contents of the IP register onto the

stack.

Now, to transfer control to the first instruction of the sum procedure, the IP register would

have to be loaded with the offset value of the

push BP

instruction in sum. To do this, the processor adds the 16-bit relative displacement found in the

call instruction to the contents of the IP register. Proceeding with our example, the machine

language encoding of the call instruction, which requires three bytes, is E8000CH. The first

byte E8H is the opcode for the call and the next two bytes give the (signed) relative displace-

ment in bytes. In this example, it is the difference between 0019H (offset of the push BP
instruction in sum) and 000DH (offset of the instruction mov BX,AX in main). Therefore,

0019H� 000DH = 000CH. Adding this difference to the contents of the IP register (after fetch-

ing the call instruction) leaves the IP register pointing to the first instruction of sum.

Note that the procedure call in main is a forward call, and therefore the relative displace-

ment is a positive number. As an example of a backward procedure call, let us look at the sum
procedure call in the avg procedure. In this case, the program control has to be transferred

back. That is, the displacement is a negative value. Following the explanation given in the last

paragraph, we can calculate the displacement as 0019H � 002BH = FFEEH. Since negative

numbers are expressed in 2’s complement notation, FFEEH corresponds to�12H (i.e., �18D),

which is the displacement value in bytes.

The following is a summary of the actions taken during a near procedure call:

SP = SP � 2 ; push return address onto the stack

(SS:SP) = IP

IP = IP + relative displacement ; update IP to point to the procedure

The relative displacement is a signed 16-bit number to accommodate both forward and back-

ward procedure calls.

10.7.2 The ret Instruction

The ret (return) instruction is used to transfer control from the called procedure to the call-

ing procedure. Return transfers control to the instruction following the call (instruction

mov BX,AX in our example). How will the processor know where this instruction is located?

Remember that the processor made a note of this when the call instruction was executed.

When the ret instruction is executed, the return address from the stack is recovered. The

actions taken during the execution of the ret instruction are

IP = SS:SP ; pop return address at TOS into IP

SP = SP + 2 ; update TOS by adding 2 to SP

Section 10.8 Parameter Passing 399

An optional integer may be included in the ret instruction, as in

ret 6

The details on this optional number are covered in Section 10.8.2, which discusses the stack-

based parameter passing mechanism.

10.8 Parameter Passing
Parameter passing in assembly language is different and more complicated than that used in

high-level languages. In assembly language, the calling procedure first places all the parame-

ters needed by the called procedure in a mutually accessible storage area (usually registers or

memory). Only then can the procedure be invoked. There are two common methods depending

on the type of storage area used to pass parameters: register method or stack method. As their

names imply, the register method uses general-purpose registers to pass parameters, and the

stack is used in the other method.

10.8.1 Register Method

In the register method, the calling procedure places the necessary parameters in the general-

purpose registers before invoking the procedure. Next, let us look at a couple of examples

before considering the advantages and disadvantages of passing parameters using the register

method.

Example 10.1 Parameter passing by call-by-value using registers.

In this example, two parameter values are passed to the called procedure via the general-purpose
registers. The procedure sum receives two integers in the CX and DX registers and returns the
sum of these two integers via AX. No check is done to detect the overflow condition. The
program, shown in Program 10.1, requests two integers from the user and displays the sum on
the screen.

Program 10.1 Parameter passing by call-by-value using registers

1: TITLE Parameter passing via registers PROCEX1.ASM

2: COMMENT |

3: Objective: To show parameter passing via registers

4: Input: Requests two integers from the user.

5: | Output: Outputs the sum of the input integers.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: prompt_msg1 DB ’Please input the first number: ’,0

10: prompt_msg2 DB ’Please input the second number: ’,0

11: sum_msg DB ’The sum is ’,0

12:

400 Chapter 10 Procedures and the Stack

13: .CODE

14: INCLUDE io.mac

15:

16: main PROC

17: .STARTUP

18: PutStr prompt_msg1 ; request first number

19: GetInt CX ; CX := first number

20: nwln

21: PutStr prompt_msg2 ; request second number

22: GetInt DX ; DX := second number

23: nwln

24: call sum ; returns sum in AX

25: PutStr sum_msg ; display sum

26: PutInt AX

27: nwln

28: done:

29: .EXIT

30: main ENDP

31:

32: ;---

33: ;Procedure sum receives two integers in CX and DX.

34: ; The sum of the two integers is returned in AX.

35: ;---

36: sum PROC

37: mov AX,CX ; sum := first number

38: add AX,DX ; sum := sum + second number

39: ret

40: sum ENDP

41: END main

Example 10.2 Parameter passing by call-by-reference using registers.

This example shows how parameters can be passed by call-by-reference using the register

method. The program requests a character string from the user and displays the number of

characters in the string (i.e., string length). The string length is computed by the function

str_len. This function scans the input string for the NULL character while keeping track of

the number of characters in the string. The pseudocode is shown below:

str_len (string)

index := 0

length := 0

while (string[index] �� NULL)

index := index + 1

length := length + 1 � AX is used for string length�

Section 10.8 Parameter Passing 401

end while

return (length)

end str_len

The str_len function receives a pointer to the string in BX and returns the string length

in the AX register. The program listing is given in Program 10.2. The main procedure executes

mov BX,OFFSET string

to place the address of string in BX (line 23) before invoking the procedure on line 24. Note
that even though the procedure modifies the BX register during its execution, it restores the
original value of BX, pointing to the string, by saving its value initially on the stack (line 37)
and restoring it (line 46) before returning to the main procedure.

Program 10.2 Parameter passing by call-by-reference using registers

1: TITLE Parameter passing via registers PROCEX2.ASM

2: COMMENT |

3: Objective: To show parameter passing via registers

4: Input: Requests a character string from the user.

5: | Output: Outputs the length of the input string.

6:

7: BUF_LEN EQU 41 ; string buffer length

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: string DB BUF_LEN DUP (?) ;input string < BUF_LEN chars.

12: prompt_msg DB ’Please input a string: ’,0

13: length_msg DB ’The string length is ’,0

14:

15: .CODE

16: INCLUDE io.mac

17:

18: main PROC

19: .STARTUP

20: PutStr prompt_msg ; request string input

21: GetStr string,BUF_LEN ; read string from keyboard

22: nwln

23: mov BX,OFFSET string ; BX := string address

24: call str_len ; returns string length in AX

25: PutStr length_msg ; display string length

26: PutInt AX

27: nwln

28: done:

29: .EXIT

30: main ENDP

402 Chapter 10 Procedures and the Stack

31:

32: ;---

33: ;Procedure str_len receives a pointer to a string in BX.

34: ; String length is returned in AX.

35: ;---

36: str_len PROC

37: push BX

38: sub AX,AX ; string length := 0

39: repeat:

40: cmp BYTE PTR [BX],0 ; compare with NULL char.

41: je str_len_done ; if NULL we are done

42: inc AX ; else, increment string length

43: inc BX ; point BX to the next char.

44: jmp repeat ; and repeat the process

45: str_len_done:

46: pop BX

47: ret

48: str_len ENDP

49: END main

Pros and Cons of the Register Method

The register method has its advantages and disadvantages. These are summarized here.

Advantages:

1. The register method is convenient and easier for passing a small number of parameters.

2. This method is also faster because all the parameters are available in registers.

Disadvantages:

1. The main disadvantage is that only a few parameters can be passed by using registers, as

there are a limited number of general-purpose registers available in the CPU.

2. Another problem is that the general-purpose registers are often used by the calling pro-

cedure for some other purpose. Thus, it is necessary to temporarily save the contents

of these registers on the stack to free them for use in parameter passing before calling

a procedure, and restore them after returning from the called procedure. In this case, it

is difficult to realize the second advantage listed above, as the stack operations involve

memory access.

10.8.2 Stack Method

In this method of parameter passing, all parameters required by a procedure are pushed onto the

stack before the procedure is called. As an example, let us consider passing the two parameters

required by the sum procedure shown in Program 10.1. This can be done by

Section 10.8 Parameter Passing 403

? ?

number1

number2

SP
TOS

Return address

Figure 10.5 Stack state after the sum procedure call: Return address is the IP value pushed onto the

stack as part of executing the call instruction.

push number1

push number2

call sum

After executing the call instruction, which automatically pushes the IP contents onto the stack,

the stack state is shown in Figure 10.5.

Reading the two arguments—number1 and number2—is tricky. Since the parameter

values are buried inside the stack, first we have to pop the IP value to read the required two

parameters. This, for example, can be done by

pop AX

pop BX

pop CX

in the sum procedure. Since we have removed the return address (IP) from the stack, we will

have to restore it by

push AX

so that TOS is pointing to the return address.

The main problem with this code is that we need to set aside general-purpose registers to

copy parameter values. This means that the calling procedure cannot use these registers for

any other purpose. Worse still, what if you want to pass 10 parameters? One way to free up

registers is to copy the parameters from the stack to local data variables, but this is impractical

and inefficient.

The best way to get parameter values is to leave them on the stack and read them from the

stack as needed. Since the stack is a sequence of memory locations, SP + 2 points to number2,

and SP + 4 to number1. Unfortunately, in 16-bit addressing mode

mov BX,[SP+2]

is not allowed. However, we can increment SP by two and use SP in indirect addressing mode,

as shown below:

404 Chapter 10 Procedures and the Stack

add SP,2

mov BX,[SP]

A problem with this solution is that it is very cumbersome, as we have to remember to

update SP to point to the return address on the stack before the end of the procedure.

In the 32-bit addressing mode, we can use ESP with a displacement to point to a parameter

on the stack. For instance,

mov BX,[ESP+2]

can be used, but this causes another problem. The stack pointer register is updated by the push

and pop instructions. As a result, the relative offset changes with the stack operations performed

in the called procedure. This is not a desirable situation.

There is a better alternative: we can use the BP register instead of SP to specify an offset

into the stack segment. For example, we can copy the value of number2 into the AX register

by

mov BP,SP

mov AX,[BP+2]

This is the usual way of pointing to the parameters on the stack. Since every procedure uses

the BP register to access parameters, the BP register should be preserved. Therefore, we should

save the contents of the BP register before executing the

mov BP,SP

statement. We, of course, use the stack for this. Note that

push BP

mov BP,SP

causes the parameter displacement to increase by two bytes, as shown in Figure 10.6�.

The information stored in the stack—parameters, return address, and the old BP value—is

collectively called the stack frame. As we show on page 421, the stack frame also consists of

local variables if the procedure uses them. The BP value is referred to as the frame pointer (FP).

Once the BP value is known, we can access all items in the stack frame.

Before returning from the procedure, we should use

pop BP

to restore the original value of BP. The resulting stack state is shown in Figure 10.6�.

The ret statement discussed in Section 10.7.2 causes the return address to be placed in the

IP register, and the stack state after ret is shown in Figure 10.6
.

Now the problem is that the four bytes of the stack occupied by the two parameters are

no longer useful. One way to free these four bytes is to increment SP by four after the call

statement, as shown below:

Section 10.8 Parameter Passing 405

? ?

number1

number2

Return address

BP

BP + 2

BP + 4

BP + 6

BP, SP

(a) Stack after saving BP

? ?

number1

number2

Return addressSP

(b) Stack after pop BP

? ?

number1

number2SP

(c) Stack after ret

Figure 10.6 Changes in stack state during a procedure execution.

push number1

push number2

call sum

add SP,4

For example, the Turbo C compiler uses this method to clear parameters from the stack. The

above assembly language code segment corresponds to the

sum(number2, number1);

function call in C.

Rather than adjusting the stack by the calling procedure, the called procedure can also clear

the stack. Note that we cannot write

sum PROC

. . .

add SP,4

ret

sum ENDP

because when ret is executed, SP should point to the return address on the stack.

The solution lies in the optional operand that can be specified in the ret statement. The

format is

ret optional-value

which results in the following sequence of actions:

IP = (SS:SP)

SP = SP + 2 + optional-value

The optional-value should be a number (i.e., immediate). Since the purpose of the op-

tional value is to discard the parameters pushed onto the stack, this operand takes a positive

value.

406 Chapter 10 Procedures and the Stack

Who Should Clean Up the Stack?

We have discussed the following ways of discarding the unwanted parameters on the stack:

1. clean-up is done by the calling procedure, or

2. clean-up is done by the called procedure.

If procedures require a fixed number of parameters, the second method is preferred. In this

case, we write the clean-up code only once in the called procedure independent of the number of

times this procedure is called. We follow this convention in our assembly language programs.

However, if a procedure receives a variable number of parameters, we have to use the first

method. We discuss this topic in detail in a later section.

10.8.3 Preserving Calling Procedure State

It is important to preserve the contents of the registers across a procedure call. The necessity

for this is illustrated by the following code:

. . .

mov CX,count

repeat:

call compute

. . .

. . .

loop repeat

. . .

The code invokes the compute procedure count times. The CX register maintains the num-

ber of remaining iterations. Recall that, as a part of the loop instruction execution, the CX

register is decremented by 1 and, if not 0, starts another iteration.

Suppose, now, that the compute procedure uses the CX register during its computation.

Then, when compute returns control to the calling program, CX would have changed, and the

program logic would be incorrect.

Since there are a limited number of registers and registers should be used for writing efficient

code, registers should be preserved. The stack is used to save registers temporarily.

10.8.4 Which Registers Should Be Saved?

The answer to this question is simple: Save those registers that are used by the calling procedure

but changed by the called procedure. This leads to the following question: Which procedure,

the calling or the called, should save the registers?

Usually, one or two registers are used to return a value by the called procedure. Therefore,

such register(s) do not have to be saved. For example, in Turbo C, an integer C function returns

the result in the AX register; if the function returns a long int data type result, which requires

32 bits, both the AX and DX registers are used.

Section 10.8 Parameter Passing 407

In order to avoid the selection of the registers to be saved, we could save, blindly, all regis-

ters each time a procedure is invoked. For instance, we could use the pusha instruction (see

page 392). But such an action may result in unnecessary overhead, as pusha takes five clocks

to push all eight registers, whereas an individual register push instruction takes only one clock.

Recall that producing efficient code is an important motivation for using the assembly language.

If the calling procedure were to save the necessary registers, it needs to know the registers

used by the called procedure. This causes two serious difficulties:

1. Program maintenance would be difficult because, if the called procedure were modified

later on and a different set of registers used, every procedure that calls this procedure

would have to be modified.

2. Programs tend to be longer because if a procedure is called several times, we have to

include the instructions to save and restore the registers each time the procedure is called.

For these reasons, we assume that the called procedure saves the registers that it uses and re-

stores them before returning to the calling procedure. This also conforms to modular program

design principles.

When to Use pusha

The pusha instruction is useful in certain instances, but not all. We identify some instances

where pusha is not useful. First, what if some of the registers saved by pusha are used

for returning results? For instance, Turbo C uses the AX register for returning a 16-bit result

and the DX:AX register pair for a 32-bit result. In this case pusha is not really useful, as

popa destroys the result to be returned to the calling procedure. Second, since pusha takes

five clocks whereas a single push takes only a single clock, pusha is efficient only if you

want to save more than four registers. In some instances where you want to save only one

or two registers, it may be worthwhile to use the push instruction. Of course, the other side

of the coin is that pusha improves readability of code and reduces memory required for the

instructions.

When pusha is used to save registers, it modifies the offset of the parameters. Note that

pusha

mov BP,SP

causes the stack state, shown in Figure 10.7, to be different from that shown in Figure 10.6� on

page 405. You can see that the offset of number1 and number2 increases.

Pentium’s ENTER and LEAVE Instructions

The Pentium has two instructions to facilitate stack frame allocation and release on procedure

entry and exit. The enter instruction can be used to allocate a stack frame on entering a

procedure. The format is

enter bytes,level

408 Chapter 10 Procedures and the Stack

? ?

number1

number2

Return address

BP + 2

BP, SP

BP BP + 4

BP + 6

BP + 8

BP + 10

BP + 12

BP + 14

BP + 16

BP + 18

BP + 20

AX

CX

DX

BX

SP

SI

DI

Figure 10.7 Stack state after pusha.

The first operand bytes specifies the number of bytes of local variable storage we want on the

new stack frame. We do not need local variable space until Example 10.8 on page 424. Until

then, we set the first operand to zero. The second operand level gives the nesting level of the

procedure. If we specify a nonzero level, it copies level stack frame pointers into the new

frame from the preceding stack frame. In all our examples, we set the second operand to zero.

Thus, when the operand-size is 16 bits, the statement

enter XX,0

is equivalent to

push BP

mov BP,SP

sub SP,XX

As usual, if the operand size is 32 bits, EBP and ESP are used instead of BP and SP registers,

respectively. Even when the operand-size is 16 bits, enter uses EBP and ESP if the stack size

attribute is 32 bits.

The leave instruction releases the stack frame allocated by the enter instruction. It does

not take any operands. When the operand size is 16 bits, the leave instruction effectively

performs the following:

mov SP,BP

pop BP

Section 10.8 Parameter Passing 409

We use the leave instruction before the ret instruction as shown in the following template

for procedures:

proc-name PROC

enter XX,0

. . .

procedure body

. . .

leave

ret YY

proc-name ENDP

As we show on page 424, the XX value is nonzero only if our procedure needs some local

variable space on the stack frame. The value YY is used to clear the arguments passed on to the

procedure.

10.8.5 Illustrative Examples

In this section, we use three examples to illustrate the use of the stack for parameter passing.

Example 10.3 Parameter passing by call-by-value using the stack.

This is the stack counterpart of Example 10.1, which passes two integers to the procedure sum.

The procedure returns the sum of these two integers in the AX register, as in Example 10.1. The

program listing is given in Program 10.3.

The program requests two integers from the user. It reads the two numbers into the CX and

DX registers using GetInt (lines 20 and 23). Since the stack is used to pass the two numbers,

we have to place them on the stack before calling the sum procedure (see lines 25 and 26). The

state of the stack after the control is transferred to sum is shown in Figure 10.5 on page 403.

As discussed in Section 10.8.2, the BP register is used to access the two parameters from

the stack. Therefore, we have to save BP itself on the stack. We do this by using the enter
instruction (line 40), which changes the stack state to that in Figure 10.6� on page 405.

The original value of BP is restored at the end of the procedure using the leave instruction

(line 43). Accessing the two numbers follows the explanation given in Section 10.8.2. Note that

the first number is at BP + 6, and the second one at BP + 4. As in Example 10.1, no overflow

check is done by sum. Control is returned to main by

ret 4

because sum has received two parameters requiring a total space of four bytes on the stack.

This ret statement will clear number1 and number2 from the stack.

410 Chapter 10 Procedures and the Stack

Program 10.3 Parameter passing by call-by-value using the stack

1: TITLE Parameter passing via the stack PROCEX3.ASM

2: COMMENT |

3: Objective: To show parameter passing via the stack.

4: Input: Requests two integers from the user.

5: | Output: Outputs the sum of the input integers.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: prompt_msg1 DB ’Please input the first number: ’,0

10: prompt_msg2 DB ’Please input the second number: ’,0

11: sum_msg DB ’The sum is ’,0

12:

13: .CODE

14: .486

15: INCLUDE io.mac

16:

17: main PROC

18: .STARTUP

19: PutStr prompt_msg1 ; request first number

20: GetInt CX ; CX = first number

21: nwln

22: PutStr prompt_msg2 ; request second number

23: GetInt DX ; DX = second number

24: nwln

25: push CX ; place first number on stack

26: push DX ; place second number on stack

27: call sum ; returns sum in AX

28: PutStr sum_msg ; display sum

29: PutInt AX

30: nwln

31: done:

32: .EXIT

33: main ENDP

34:

35: ;---

36: ;Procedure sum receives two integers via the stack.

37: ; The sum of the two integers is returned in AX.

38: ;---

39: sum PROC

40: enter 0,0 ; save BP

41: mov AX,[BP+6] ; sum = first number

42: add AX,[BP+4] ; sum = sum + second number

43: leave ; restore BP

Section 10.8 Parameter Passing 411

44: ret 4 ; return and clear parameters

45: sum ENDP

46: END main

Example 10.4 Parameter passing by call-by-reference using the stack.

This example shows how the stack can be used for parameter passing using the call-by-reference

mechanism. The procedure swap receives two pointers to two characters and interchanges

them. The program, shown in Program 10.4, requests a string from the user and displays the

input string with the first two characters interchanged.

In preparation for calling swap, the main procedure places the addresses of the first two

characters of the input string on the stack (lines 25 to 28). The swap procedure, after saving

the BP register as in the last example, can access the pointers of the two characters at BP + 4

and BP + 6. Since the procedure uses the BX register, we save it on the stack as well. Note that,

once the BP is pushed onto the stack and the SP value is copied to BP, the two parameters (i.e.,

the two character pointers in this example) are available at BP + 4 and BP + 6, irrespective of the

other stack push operations in the procedure. This is important from the program maintenance

point of view.

Program 10.4 Parameter passing by call-by-reference using the stack

1: TITLE Parameter passing via the stack PROCSWAP.ASM

2: COMMENT |

3: Objective: To show parameter passing via the stack.

4: Input: Requests a character string from the user.

5: Output: Outputs the input string with the first

6: | two characters swapped.

7:

8: BUF_LEN EQU 41 ; string buffer length

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: string DB BUF_LEN DUP (?) ;input string < BUF_LEN chars.

13: prompt_msg DB ’Please input a string: ’,0

14: output_msg DB ’The swapped string is: ’,0

15:

16: .CODE

17: .486

18: INCLUDE io.mac

19:

20: main PROC

21: .STARTUP

22: PutStr prompt_msg ; request string input

412 Chapter 10 Procedures and the Stack

23: GetStr string,BUF_LEN ; read string from the user

24: nwln

25: mov AX,OFFSET string ; AX = string[0] pointer

26: push AX ; push string[0] pointer on stack

27: inc AX ; AX = string[1] pointer

28: push AX ; push string[1] pointer on stack

29: call swap ; swaps the first two characters

30: PutStr output_msg ; display the swapped string

31: PutStr string

32: nwln

33: done:

34: .EXIT

35: main ENDP

36:

37: ;---

38: ;Procedure swap receives two pointers (via the stack) to

39: ; characters of a string. It exchanges these two characters.

40: ;---

41: swap PROC

42: enter 0,0

43: push BX ; save BX - procedure uses BX

44: ; swap begins here. Because of xchg, AL is preserved.

45: mov BX,[BP+6] ; BX = first character pointer

46: xchg AL,[BX]

47: mov BX,[BP+4] ; BX = second character pointer

48: xchg AL,[BX]

49: mov BX,[BP+6] ; BX = first character pointer

50: xchg AL,[BX]

51: ; swap ends here

52: pop BX ; restore registers

53: leave

54: ret 4 ; return and clear parameters

55: swap ENDP

56: END main

Example 10.5 Bubble sort procedure.

There are several algorithms to sort an array of numbers. The particular algorithm that we are

using here is called the bubble sort algorithm. Next we describe the algorithm to sort numbers

in ascending order.

Bubble Sort: The bubble sort algorithm consists of several passes through the array of numbers

to be sorted. Each pass scans the array, performing the following actions:

• Compare adjacent pairs of data elements.

• If they are out of order, swap them.

Section 10.8 Parameter Passing 413

Initial state: 4 3 5 1 2
After 1st comparison: 3 4 5 1 2 (4 and 3 swapped)
After 2nd comparison: 3 4 5 1 2 (no swap)
After 3rd comparison: 3 4 1 5 2 (5 and 1 swapped)

End of first pass: 3 4 1 2 5 (5 and 2 swapped)

Figure 10.8 Actions taken during the first pass of the bubble sort algorithm.

Initial state: 4 3 5 1 2
After 1st pass: 3 4 1 2 5 (5 in its final position)
After 2nd pass: 3 1 2 4 5 (4 in its final position)
After 3rd pass: 1 2 3 4 5 (array in sorted order)

After the final pass: 1 2 3 4 5 (final pass to check)

Figure 10.9 Behavior of the bubble sort algorithm.

The algorithm terminates if, during a pass, no data elements are swapped. If at least a single

swap is done during a pass, it will initiate another pass to scan the array.

Figure 10.8 shows the behavior of the algorithm during the first pass. The algorithm starts

by comparing the first and second data elements (4 and 3). Since they are out of order, 4 and

3 are interchanged. Next, the second data element 4 is compared with the third data element 5,

and no swapping takes place as they are in order. During the next step, 5 and 1 are compared

and swapped and finally 5 and 2 are swapped. This terminates the first pass. The algorithm has

performed� �� comparisons, where� is the number of data elements in the array. At the end

of the first pass, the largest data element 5 is moved to its final position in the array.

Figure 10.9 shows the state of the array after each pass. Notice that after the first pass, the

largest number (5) is in its final position. Similarly, after the second pass, the second largest

number (4) moves to its final position, and so on. This is why this algorithm is called the bubble

sort: during the first pass, the largest element bubbles to the top, the second largest bubbles to

the top during the second pass, and so on. Even though the array is in sorted order after the third

pass, one more pass is required by the algorithm to detect that the array is sorted.

The number of passes required to sort an array depends on how unsorted the initial array

is. If the array elements are already in sorted order, only a single pass is required. At the other

extreme, if the array is completely unsorted (i.e., elements are initially in the descending order),

the algorithm requires a number of passes equal to one less than the number of elements in the

array. The pseudocode for the bubble sort algorithm is shown in Figure 10.10.

Bubble Sort Program: This program requests a set of up to 20 nonzero integers from the user

and displays them in sorted order. The input can be terminated earlier by typing a zero.

The logic of the main program is straightforward. The read_loop (lines 26 to 34) reads

the input integers. Since the CX is initialized to MAX_SIZE, which is set to 20 in this program,

414 Chapter 10 Procedures and the Stack

bubble_sort (arrayPointer, arraySize)

status := UNSORTED

#comparisons := arraySize

while (status = UNSORTED)

#comparisons := #comparisons � 1

status := SORTED

for (i = 0 to #comparisons)

if (array[i] � array[i+1])

swap �th and (�� �)th elements of the array

status := UNSORTED

end if

end for

end while

end bubble_sort

Figure 10.10 Pseudocode for the bubble sort algorithm.

the read_loop iterates a maximum of 20 times. Typing a zero can also terminate the read-

ing of input integers. The zero input condition is detected and the loop is terminated by the

statements on lines 29 and 30.

The bubble_sort procedure receives the size of the array to be sorted and a pointer to

the array. These two parameters are pushed onto the stack (lines 36 and 37) before calling the

bubble_sort procedure. The print_loop (lines 41 to 47) displays the sorted array.

In the bubble-sort procedure, the CX register is used to keep track of the number of

comparisons while DX maintains the status information. The SI register points to the �th ele-

ment of the input array.
The while loop condition is tested by lines 92 to 94. The for loop body corresponds to

lines 79 to 90 and 96 to 101. The rest of the code follows the pseudocode. Note that the array
pointer is available in the stack at BP + 18 and its size at BP + 20, as we use pusha to save all
registers. Also notice that this program uses only the 16-bit addressing modes.

Program 10.5 Bubble sort program to sort integers in ascending order

1: COMMENT | Bubble sort procedure BBLSORT.ASM

2: Objective: To implement the bubble sort algorithm.

3: Input: A set of nonzero integers to be sorted.

4: Input is terminated by entering zero.

5: | Output: Outputs the numbers in ascending order.

6: CRLF EQU 0DH,0AH

7: MAX_SIZE EQU 20

8: .MODEL SMALL

9: .STACK 100H

Section 10.8 Parameter Passing 415

10: .DATA

11: array DW MAX_SIZE DUP (?) ; input array for integers

12: prompt_msg DB ’Enter nonzero integers to be sorted.’,CRLF

13: DB ’Enter zero to terminate the input.’,0

14: output_msg DB ’Input numbers in ascending order:’,0

15:

16: .CODE

17: .486

18: INCLUDE io.mac

19: main PROC

20: .STARTUP

21: PutStr prompt_msg ; request input numbers

22: nwln

23: mov BX,OFFSET array ; BX := array pointer

24: mov CX,MAX_SIZE ; CX := array size

25: sub DX,DX ; number count := 0

26: read_loop:

27: GetInt AX ; read input number

28: nwln

29: cmp AX,0 ; if the number is zero

30: je stop_reading ; no more numbers to read

31: mov [BX],AX ; copy the number into array

32: add BX,2 ; BX points to the next element

33: inc DX ; increment number count

34: loop read_loop ; reads a max. of MAX_SIZE numbers

35: stop_reading:

36: push DX ; push array size onto stack

37: push OFFSET array ; place array pointer on stack

38: call bubble_sort

39: PutStr output_msg ; display sorted input numbers

40: nwln

41: mov BX,OFFSET array

42: mov CX,DX ; CX := number count

43: print_loop:

44: PutInt [BX]

45: nwln

46: add BX,2

47: loop print_loop

48: done:

49: .EXIT

50: main ENDP

51: ;---

52: ;This procedure receives a pointer to an array of integers

53: ; and the size of the array via the stack. It sorts the

54: ; array in ascending order using the bubble sort algorithm.

416 Chapter 10 Procedures and the Stack

55: ;---

56: SORTED EQU 0

57: UNSORTED EQU 1

58: bubble_sort PROC

59: pusha

60: mov BP,SP

61:

62: ;CX serves the same purpose as the end_index variable

63: ; in the C procedure. CX keeps the number of comparisons

64: ; to be done in each pass. Note that CX is decremented

65: ; by 1 after each pass.

66: mov CX, [BP+20] ; load array size into CX

67: mov BX, [BP+18] ; load array address into BX

68:

69: next_pass:

70: dec CX ; if # of comparisons is zero

71: jz sort_done ; then we are done

72: mov DI,CX ; else start another pass

73:

74: ;DX is used to keep SORTED/UNSORTED status

75: mov DX,SORTED ; set status to SORTED

76:

77: ;SI points to element X and SI+2 to the next element

78: mov SI,BX ; load array address into SI

79: pass:

80: ;This loop represents one pass of the algorithm.

81: ;Each iteration compares elements at [SI] and [SI+2]

82: ; and swaps them if ([SI]) < ([SI+2]).

83: mov AX,[SI]

84: cmp AX,[SI+2]

85: jg swap

86: increment:

87: ;Increment SI by 2 to point to the next element

88: add SI,2

89: dec DI

90: jnz pass

91:

92: cmp DX,SORTED ; if status remains SORTED

93: je sort_done ; then sorting is done

94: jmp next_pass ; else initiate another pass

95:

96: swap:

97: ; swap elements at [SI] and [SI+2]

98: xchg AX,[SI+2]

99: mov [SI],AX

Section 10.9 Handling a Variable Number of Parameters 417

100: mov DX,UNSORTED ; set status to UNSORTED

101: jmp increment

102:

103: sort_done:

104: popa

105: ret 4 ; return and clear parameters

106: bubble_sort ENDP

107: END main

10.9 Handling a Variable Number of Parameters
Procedures in C can be defined to accept a variable number of parameters. The input and output

functions, scanf and printf, are the two common procedures that take a variable number of

parameters. In this case, the called procedure does not know the number of parameters passed

onto it. Usually, the first parameter in the parameter list specifies the number of parameters

passed. This parameter should be pushed onto the stack last so that it is just below the return

address independent of the number of parameters passed.

In assembly language procedures, a variable number of parameters can be easily handled

by the stack method of parameter passing. Only the stack size imposes a limit on the number of

parameters that can be passed. The next example illustrates the use of the stack to pass variable

numbers of parameters in assembly language programs:

Example 10.6 Passing a variable number of parameters via the stack.

In this example, the procedure variable_sum receives a variable number of integers via the

stack. The actual number of integers passed is the last parameter pushed onto the stack before

calling the procedure. The procedure finds the sum of the integers and returns this value in the

AX register.

The main procedure in Program 10.6 requests input from the user. Only nonzero values are

accepted as valid input (entering a zero terminates the input). The read_number loop (lines

26 to 33) reads input numbers using GetInt and pushes them onto the stack. The CX register

keeps a count of the number of input values, which is passed as the last parameter (line 35)

before calling the variable_sum procedure. The state of the stack at line 56, after executing

the enter instruction, is shown in Figure 10.11.

The variable_sum procedure first reads the number of parameters passed onto it from

the stack at BP + 4 into the CX register. The add_loop (lines 63 to 66) successively reads

each integer from the stack and computes their sum in the AX. Note that on line 64 we use a

segment override prefix. If we write

add AX,[BX]

the contents of the BX are treated as the offset value into the data segment. However, our

parameters are located in the stack segment. Therefore, it is necessary to indicate that the offset

418 Chapter 10 Procedures and the Stack

parameter N 1
.

.

.

.

.

.

Number of parameters

N parameters

BP + 8

BP + 6

BP + 4

BP, SP

BP + 2

BP

Return address

N

parameter 1

parameter 2

parameter N

Figure 10.11 State of the stack after executing the enter statement.

in BX is relative to SS (and not DS). The segment override prefixes—CS:, DS:, ES:, FS:, GS:,

and SS:—can be placed in front of a memory operand to indicate a segment other than the

default segment.

In this example, we have deliberately used the BX to illustrate the use of segment override

prefixes. We could have used the BP itself to access the parameters. For example, the code

add BP,6

sub AX,AX

add_loop:

add AX,[BP]

add BP,2

loop add_loop

can replace the code at lines 61 to 66. A disadvantage of this modified code is that, since we

have modified the BP, we no longer can access, for example, the parameter count value in the

stack. For this example, however, this method works fine. A better way is to use an index

register to represent the offset relative to the BP. We defer this discussion until Chapter 11,

which discusses the addressing modes of the Pentium.

Another interesting feature is that the parameter space on the stack is cleared by main.

Since we pass a variable number of parameters, we cannot use ret to clear the parameter

space. This is done in main by lines 38 to 40. The CX is first incremented to include the count

parameter (line 38). The byte count of the parameter space is computed on line 39. This value

is added to the SP register to clear the parameter space (line 40).

Section 10.9 Handling a Variable Number of Parameters 419

Program 10.6 Program to illustrate passing a variable number of parameters

1: TITLE Variable # of parameters passed via stack VARPARA.ASM

2: COMMENT |

3: Objective: To show how variable number of parameters

4: can be passed via the stack.

5: Input: Requests variable number of nonzero integers.

6: A zero terminates the input.

7: | Output: Outputs the sum of input numbers.

8: CRLF EQU 0DH,0AH ; carriage return and line feed

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: prompt_msg DB ’Please input a set of nonzero integers.’,CRLF

13: DB ’You must enter at least one integer.’,CRLF

14: DB ’Enter zero to terminate the input.’,0

15: sum_msg DB ’The sum of the input numbers is: ’,0

16:

17: .CODE

18: .486

19: INCLUDE io.mac

20:

21: main PROC

22: .STARTUP

23: PutStr prompt_msg ; request input numbers

24: nwln

25: sub CX,CX ; CX keeps number count

26: read_number:

27: GetInt AX ; read input number

28: nwln

29: cmp AX,0 ; if the number is zero

30: je stop_reading ; no more nuumbers to read

31: push AX ; place the number on stack

32: inc CX ; increment number count

33: jmp read_number

34: stop_reading:

35: push CX ; place number count on stack

36: call variable_sum ; returns sum in AX

37: ; clear parameter space on the stack

38: inc CX ; increment CX to include count

39: add CX,CX ; CX = CX * 2 (space in bytes)

40: add SP,CX ; update SP to clear parameter

41: ; space on the stack

420 Chapter 10 Procedures and the Stack

42: PutStr sum_msg ; display the sum

43: PutInt AX

44: nwln

45: done:

46: .EXIT

47: main ENDP

48:

49: ;---

50: ;This procedure receives variable number of integers via the

51: ; stack. The last parameter pushed on the stack should be

52: ; the number of integers to be added. Sum is returned in AX.

53: ;---

54: variable_sum PROC

55: enter 0,0

56: push BX ; save BX and CX

57: push CX

58:

59: mov CX,[BP+4] ; CX = # of integers to be added

60: mov BX,BP

61: add BX,6 ; BX = pointer to first number

62: sub AX,AX ; sum = 0

63: add_loop:

64: add AX,SS:[BX] ; sum = sum + next number

65: add BX,2 ; BX points to the next integer

66: loop add_loop ; repeat count in CX

67:

68: pop CX ; restore registers

69: pop BX

70: leave

71: ret ; parameter space cleared by main

72: variable_sum ENDP

73: END main

10.10 Local Variables
So far in our discussion, we have not considered how local variables can be used in a procedure.

To focus our discussion, consider the following C code:

int compute(int a, int b)

{

int temp, N;

. . .

. . .

}

Section 10.10 Local Variables 421

The variables temp and N are local variables that come into existence when the procedure

compute is invoked and disappear when the procedure terminates. Thus, these local variables

are dynamic. We could reserve space for the local variables in a data segment. However, such

space allocation is not desirable for two reasons:

1. Space allocation done in the data segment is static and remains active even when the

procedure is not.

2. More important, it does not work with recursive procedures (i.e., procedures that call

themselves).

For these reasons, space for local variables is reserved on the stack. For the C function, the

stack may look like

BP 4

BP 2

BP + 6

BP + 4

BP + 2

BP

a

b

Return address

old BP

temp

N

Parameters

Local variables

SP

The above figure shows the contents of the stack frame. In high-level languages, it is also re-

ferred to as the activation record because each procedure activation requires all this information.

The BP value, also called the frame pointer, allows us to access the contents of the stack frame.

For example, parameters a and b can be accessed at BP + 6 and BP + 4, respectively. Local

variables temp and N can be accessed at BP � 2 and BP � 4, respectively.

To aid program readability, we can use the EQU directive to name the stack locations. Thus,

we can write

mov BX,a

mov temp,AX

instead of

mov BX,[BP+6]

mov [BP-2],AX

after establishing temp and a labels by using the EQU directive, as shown below.

a EQU WORD PTR [BP+6]

temp EQU WORD PTR [BP-2]

422 Chapter 10 Procedures and the Stack

We now look at two examples, both of which compute Fibonacci numbers. However, one

example uses registers for local variables, and the other uses the stack.

Example 10.7 Fibonacci number computation using registers for local variables.

The Fibonacci sequence of numbers is defined as

fib(1) = 1,

fib(2) = 1,

fib(�) = fib(�� �) + fib(�� �) for � � �.

In other words, the first two numbers in the Fibonacci sequence are 1. The subsequent numbers

are obtained by adding the previous two numbers in the sequence. Thus,

1, 1, 2, 3, 5, 8, 13, 21, 34, � � �,

is the Fibonacci sequence of numbers.

In this and the next example, we write a procedure to compute the largest Fibonacci number

that is less than or equal to a given input number. The main procedure requests this number

and passes it on to the fibonacci procedure.
The fibonacci procedure keeps the last two Fibonacci numbers in local variables. These

are mapped to registers AX and BX. The higher of the two Fibonacci numbers is kept in the BX.
The fib_loop successively computes the Fibonacci number until it is greater than or equal to
the input number. Then the Fibonacci number in AX is returned to the main procedure.

Program 10.7 Fibonacci number computation with local variables mapped to registers

1: TITLE Fibonacci numbers (register version) PROCFIB1.ASM

2: COMMENT |

3: Objective: To compute Fibonacci number using registers

4: for local variables.

5: Input: Requests a positive integer from the user.

6: Output: Outputs the largest Fibonacci number that

7: | is less than or equal to the input number.

8:

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: prompt_msg DB ’Please input a positive number (>1): ’,0

13: output_msg1 DB ’The largest Fibonacci number less than ’

14: DB ’or equal to ’,0

15: output_msg2 DB ’ is ’,0

16:

17: .CODE

Section 10.10 Local Variables 423

18: INCLUDE io.mac

19:

20: main PROC

21: .STARTUP

22: PutStr prompt_msg ; request input number

23: GetInt DX ; DX = input number

24: nwln

25: call fibonacci

26: PutStr output_msg1 ; display Fibonacci number

27: PutInt DX

28: PutStr output_msg2

29: PutInt AX

30: nwln

31: done:

32: .EXIT

33: main ENDP

34:

35: ;---

36: ;Procedure fibonacci receives an integer in DX and computes

37: ; the largest Fibonacci number that is less than or equal to

38: ; the input number. The Fibonacci number is returned in AX.

39: ;---

40: fibonacci PROC

41: push BX

42: ; AX maintains the smaller of the last two Fibonacci

43: ; numbers computed; BX maintains the larger one.

44: mov AX,1 ; initialize AX and BX to

45: mov BX,AX ; first two Fibonacci numbers

46: fib_loop:

47: add AX,BX ; compute next Fibonacci number

48: xchg AX,BX ; maintain the required order

49: cmp BX,DX ; compare with input number in DX

50: jle fib_loop ; if not greater, find next number

51: ; AX contains the required Fibonacci number

52: pop BX

53: ret

54: fibonacci ENDP

55: END main

424 Chapter 10 Procedures and the Stack

Example 10.8 Fibonacci number computation using the stack for local variables.

In this example, we use the stack for storing the two Fibonacci numbers. The variable fib_lo
corresponds to fib(�� �) and fib_hi to fib(�).

The code

push BP

mov BP,SP

sub SP,4

saves the BP value and copies the SP value into the BP as usual. It also decrements the SP by

4, thus creating four bytes of storage space for the two local variables fib_lo and fib_hi.

This three-instruction sequence can be replaced by the

enter 4,0

instruction. As mentioned before, the first operand specifies the number of bytes reserved for

local variables.

At this point, the stack allocation is

BP 2

BP + 4

BP + 2

BP BP

? ?

FIB_LO

FIB_HI

Local variables

Return address

SPBP 4

The two local variables can be accessed at BP � 2 and BP � 4. The two EQU statements,

on lines 40 and 41, conveniently establish labels for these two locations. We can clear the local

variable space and restore the BP value by

mov SP,BP

pop BP

instructions. The leave instruction performs exactly this. Thus, the leave instruction on

line 59 automatically clears the local variable space. The rest of the code follows the logic of

Example 10.7.

Section 10.10 Local Variables 425

Program 10.8 Fibonacci number computation with local variables mapped to the stack

1: TITLE Fibonacci numbers (stack version) PROCFIB2.ASM

2: COMMENT |

3: Objective: To compute Fibonacci number using the stack

4: for local variables.

5: Input: Requests a positive integer from the user.

6: Output: Outputs the largest Fibonacci number that

7: | is less than or equal to the input number.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: prompt_msg DB ’Please input a positive number (>1): ’,0

12: output_msg1 DB ’The largest Fibonacci number less than ’

13: DB ’or equal to ’,0

14: output_msg2 DB ’ is ’,0

15:

16: .CODE

17: .486

18: INCLUDE io.mac

19:

20: main PROC

21: .STARTUP

22: PutStr prompt_msg ; request input number

23: GetInt DX ; DX := input number

24: nwln

25: call fibonacci

26: PutStr output_msg1 ; print Fibonacci number

27: PutInt DX

28: PutStr output_msg2

29: PutInt AX

30: nwln

31: done:

32: .EXIT

33: main ENDP

34:

35: ;---

36: ;Procedure fibonacci receives an integer in DX and computes

37: ; the largest Fibonacci number that is less than the input

38: ; number. The Fibonacci number is returned in AX.

39: ;---

40: FIB_LO EQU WORD PTR [BP-2]

41: FIB_HI EQU WORD PTR [BP-4]

42: fibonacci PROC

43: enter 4,0 ; space for two local variables

44: push BX

426 Chapter 10 Procedures and the Stack

45: ; FIB_LO maintains the smaller of the last two Fibonacci

46: ; numbers computed; FIB_HI maintains the larger one.

47: mov FIB_LO,1 ; initialize FIB_LO and FIB_HI to

48: mov FIB_HI,1 ; first two Fibonacci numbers

49: fib_loop:

50: mov AX,FIB_HI ; compute next Fibonacci number

51: mov BX,FIB_LO

52: add BX,AX

53: mov FIB_LO,AX

54: mov FIB_HI,BX

55: cmp BX,DX ; compare with input number in DX

56: jle fib_loop ; if not greater, find next number

57: ; AX contains the required Fibonacci number

58: pop BX

59: leave ; clears local variable space

60: ret

61: fibonacci ENDP

62: END main

10.11 Multiple Source Program Modules
In the program examples we have seen so far, the entire assembly language program is in a

single file. This is fine for short example programs. Real application programs, however, tend

to be large, consisting of hundreds of procedures. Rather than keeping such a massive source

program in a single file, it is advantageous to break it into several small pieces, where each piece

of source code is stored in a separate file or module. There are three advantages associated with

multimodule programs:

• The chief advantage is that, after modifying a source module, it is only necessary to

reassemble that module. On the other hand, if you keep only a single file, the whole file

has to be reassembled.

• Making modifications to the source code is easier with several small files.

• It is safer to edit a short file; any unintended modifications to the source file are limited

to a single small file.

If we want to separately assemble modules, we have to precisely specify the intermodule in-

terface. For example, if a procedure is called in the current module but is defined in another

module, we have to state that fact so that the assembler will not flag such procedure calls as

errors. Assemblers provide two directives—PUBLIC and EXTRN—to facilitate separate as-

sembly of source modules. These two directives are discussed in the following sections. A

simple example follows this discussion.

Section 10.11 Multiple Source Program Modules 427

10.11.1 PUBLIC Directive

The PUBLIC directive makes the associated label(s) public and therefore available to other

modules of the program. The format is

PUBLIC label1, label2, ...

Almost any label can be made public. These include procedure names, memory variables, and

equated labels, as shown in the following example:

PUBLIC error_msg, total, sample

. . .

.DATA

error_msg DB ‘‘Out of range!’’,0

total DW 0

. . .

.CODE

. . .

sample PROC

. . .

sample ENDP

Note that when you make a label public, it is not necessary to specify the type of label.

10.11.2 EXTRN Directive

The EXTRN directive can be used to tell the assembler that certain labels are not defined in the

current source file (i.e., module), but can be found in other modules. Thus, the assembler leaves

“holes” in the corresponding .obj file that the linker will fill in later. The format is

EXTRN label:type

where label is a label that is made public by a PUBLIC directive in some other module. The

type specifies the type of label, some of which are listed in Table 10.2.

The PROC type should be used for procedure names if simplified segment directives such

as .MODEL and .STACK are used. In this case, the appropriate procedure type is automati-

cally included. For example, when the .MODEL is SMALL, the PROC type defaults to NEAR
type. Assuming the labels error_msg, total, and sample are made public, as in the last

example, the following example code makes them available in the current module:

.MODEL SMALL

. . .

EXTRN error_msg:BYTE, total:WORD

EXTRN sample:PROC

. . .

Note that the directive is spelled EXTRN (not EXTERN).

428 Chapter 10 Procedures and the Stack

Table 10.2 Some example type specifiers

Type Description

UNKNOWN Undetermined or unknown type

BYTE Data variable (size is 8 bits)

WORD Data variable (size is 16 bits)

DWORD Data variable (size is 32 bits)

QWORD Data variable (size is 64 bits)

FWORD Data variable (size is 6 bytes)

TBYTE Data variable (size is 10 bytes)

PROC A procedure name

(Near or Far according to .MODEL)

NEAR A near procedure name

FAR A far procedure name

Example 10.9 A two-module example to find string length.

We now present a simple example that reads a string from the user and displays the string length
(i.e., number of characters in the string). The source code consists of two procedures: main
and string_length. The main procedure is responsible for requesting and displaying
the string length information. It uses GetStr, PutStr, and PutInt I/O routines. The
string_length procedure computes the string length. The entire source program is split
between two modules: the main procedure is in the module1.asm file, and the procedure
string_length is in the module2.asm file. A listing of module1.asm is given in
Program 10.9. Notice that on line 16, we declare string_length as an externally defined
procedure by using the EXTRN directive.

Program 10.9 The main procedure defined in module1.asm calls the sum procedure defined in

module2.asm

1: TITLE Multimodule program for string length MODULE1.ASM

2: COMMENT |

3: Objective: To show parameter passing via registers.

4: Input: Requests two integers from keyboard.

5: | Output: Outputs the sum of the input integers.

6: BUF_SIZE EQU 41 ; string buffer size

7: .MODEL SMALL

8: .STACK 100H

9: .DATA

10: prompt_msg DB ’Please input a string: ’,0

11: length_msg DB ’String length is: ’,0

Section 10.11 Multiple Source Program Modules 429

12: string1 DB BUF_SIZE DUP (?)

13:

14: .CODE

15: INCLUDE io.mac

16: EXTRN string_length:PROC

17: main PROC

18: .STARTUP

19: PutStr prompt_msg ; request a string

20: GetStr string1,BUF_SIZE ; read string input

21: nwln

22: mov BX,OFFSET string1 ; BX := string pointer

23: call string_length ; returns string length in AX

24: PutStr length_msg ; display string length

25: PutInt AX

26: nwln

27: done:

28: .EXIT

29: main ENDP

30: END main

Program 10.10 This module defines the sum procedure called by main

1: TITLE String length procedure MODULE2.ASM

2: COMMENT |

3: Objective: To write a procedure to compute string

4: length of a NULL terminated string.

5: Input: String pointer in BX register.

6: | Output: Returns string length in AX.

7: .MODEL SMALL

8: .CODE

9: PUBLIC string_length

10: string_length PROC

11: ; all registers except AX are preserved

12: push SI ; save SI

13: mov SI,BX ; SI := string pointer

14: repeat:

15: cmp BYTE PTR [SI],0 ; is it NULL?

16: je done ; if so, done

17: inc SI ; else, move to next character

18: jmp repeat ; and repeat

19: done:

20: sub SI,BX ; compute string length

21: mov AX,SI ; return string length in AX

430 Chapter 10 Procedures and the Stack

22: pop SI ; restore SI

23: ret

24: string_length ENDP

25: END

Program 10.10 gives the module2.asm program listing. This module consists of a sin-

gle procedure. By using the PUBLIC directive, we make this procedure public (line 9) so that

other modules can use this procedure. The string_length procedure receives a pointer to

a NULL-terminated string in BX and returns the length of the string in AX. The procedure pre-

serves all registers except for AX. Note that the END statement (last statement) of this module

does not have a label, as this is not the procedure that begins the program execution.

We can assemble each source code module separately producing the corresponding .obj
files. We can then link the .obj files together to produce a single .exe file. For example,

using the Turbo Assembler, the following sequence of commands will produce the executable

file:

TASM module1 � Produces module1.obj

TASM module2 � Produces module2.obj

TLINK module1+module2+io � Produces module1.exe

TASM, by default, assumes the .asm extension and TLINK assumes the .obj extension. The

above sequence assumes that you have io.obj in your current directory. If you are using

Microsoft Assembler, replace TASM with MASM and TLINK with LINK.

10.12 Summary
The stack is a last-in-first-out data structure that plays an important role in procedure invocation

and execution. It supports two operations: push and pop. Only the element at the top-of-stack is

directly accessible through these operations. The Pentium uses the stack segment to implement

the stack. The top-of-stack is represented by SS:SP. In the Pentium implementation, the stack

grows toward lower memory addresses (i.e., grows downward).

The stack serves three main purposes: temporary storage of data, transfer of control during

a procedure call and return, and parameter passing.

When writing procedures in assembly language, parameter passing has to be explicitly han-

dled. Parameter passing can be done via registers or the stack. Although the register method is

efficient, the stack-based method is more general. Also, when the stack is used for parameter

passing, handling a variable number of parameters is straightforward. We have demonstrated

this by means of an example.

As with parameter passing, local variables of a procedure can be stored either in registers or

on the stack. Due to the limited number of registers available, only a few local variables can be

mapped to registers. The stack avoids this limitation, but it is slow.

Section 10.13 Exercises 431

Real application programs are unlikely to be short enough to keep in a single file. It is

advantageous to break large source programs into more manageable chunks. Then we can

keep each chunk in a separate file (i.e., modules). We have discussed how such multimodule

programs are written and assembled into a single executable file.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Activation record

• Bubble sort

• Call-by-reference

• Call-by-value

• ENDP directive

• EXTRN directive

• FAR procedures

• Frame pointer

• Local variables

• NEAR procedures

• Parameter passing

• Parameter passing—register method

• Parameter passing—stack method

• PROC directive

• PUBLIC directive

• Segment override

• Stack frame

• Stack operations

• Stack overflow

• Stack underflow

• Top-of-stack

• Variable number of parameters

10.13 Exercises
10–1 What are the defining characteristics of a stack?

10–2 Discuss the differences between a queue and a stack.

10–3 What is top-of-stack? How is it represented in the Pentium?

10–4 What is stack underflow? Which stack operation can potentially cause stack underflow?

10–5 What is stack overflow? Which stack operation can potentially cause stack overflow?

10–6 What are the main uses of the stack?

10–7 In Section 10.4.1 on page 393, we have discussed two ways of exchanging value1 and

value2. Both methods require eight memory accesses. Can you write a code fragment

that does this exchange using only six memory accesses? Make sure that your code does

not alter the contents of any registers. Hint: Use the xchg instruction.

10–8 In the Pentium, can we invoke a procedure through the call instruction without the pres-

ence of a stack segment? Explain.

10–9 What is the main difference between a near procedure and a far procedure?

10–10 What are the two most common methods of parameter passing? Identify the circum-

stances under which each method is preferred.

432 Chapter 10 Procedures and the Stack

10–11 What are the disadvantages of passing parameters via the stack?

10–12 Can we pass a variable number of parameters using the register parameter passing method?

Explain the limitations and the problems associated with such a method.

10–13 We have stated on page 404 that placing the code

push BP

mov BP,SP

at the beginning of a procedure is good for program maintenance. Explain why.

10–14 In passing a variable number of parameters via the stack, why is it necessary to push the

parameter count last?

10–15 Why are local variables of a procedure not mapped to the data segment?

10–16 How is storage space for local variables created in the stack?

10–17 A swap procedure can exchange two elements (pointed to by SI and DI) of an array using

xchg AX,[DI]

xchg AX,[SI]

xchg AX,[DI]

The above code preserves the contents of the AX register. This code requires six memory

accesses. Can we do better than this in terms of the number of memory accesses if we

save and restore the AX using push and pop stack operations?

10–18 The bubble sort example discussed in this chapter used a single source file. In this exer-

cise you are asked to split the source code of this program into two modules: the main
procedure in one module, and the bubble sort procedure in the other. Then assemble and

link this code to produce the .exe file. Verify the correctness of the program.

10–19 Verify that the following procedure is equivalent to the string_length procedure

given in Section 10.11. Which procedure is better and why?

string_length1 PROC

push BX

sub AX,AX

repeat:

cmp BYTE PTR [BX],0

je done

inc AX

inc BX

jmp repeat

done:

pop BX

ret

string_length1 ENDP

Section 10.14 Programming Exercises 433

10.14 Programming Exercises
10–P1 Write an assembly language program that reads a set of integers from the keyboard and

displays their sum on the screen. Your program should read up to 20 integers (except zero)

from the user. The input can be terminated by entering a zero or by entering 20 integers.

The array of input integers is passed along with its size to the sum procedure, which

returns the sum in the AX register. Your sum procedure need not check for overflow.

10–P2 Write a procedure max that receives three integers from main and returns the maximum

of the three in AX. The main procedure requests the three integers from the user and

displays the maximum number returned by the max procedure.

10–P3 Extend the last exercise to return both maximum and minimum of the three integers re-

ceived by your procedure minmax. In order to return the minimum and maximum values,

your procedure minmax also receives two pointers from main to variables min_int
and max_int.

10–P4 Extend the last exercise to handle a variable number of integers passed on to the minmax
procedure. The main procedure should request input integers from the user. Positive

or negative values, except zero, are valid. Entering a zero terminates the input integer

sequence. The minimum and maximum values returned by the procedure are displayed

by main.

10–P5 Write a procedure to perform string reversal. The procedure reverse receives a pointer

to a character string (terminated by a NULL character) and reverses the string. For exam-

ple, if the original string is

slap

the reversed string should read

pals

The main procedure should request the string from the user. It should also display the

reversed string as output of the program.

10–P6 Write a procedure locate to locate a character in a given string. The procedure receives

a pointer to a NULL-terminated character string and the character to be located. When

the first occurrence of the character is located, its position is returned to main. If no

match is found, a negative value is returned. The main procedure requests a character

string and a character to be located and displays the position of the first occurrence of the

character returned by the locate procedure. If there is no match, a message should be

displayed to that effect.

10–P7 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading blank characters in the string. For example, if the

input string is (� indicates a blank character)

� � � � �Read��my�lips.

it will be modified by removing all leading blanks as

Read��my�lips.

434 Chapter 10 Procedures and the Stack

10–P8 Write a procedure that receives a string via the stack (i.e., the string pointer is passed to

the procedure) and removes all leading and duplicate blank characters in the string. For

example, if the input string is (� indicates a blank character)

� � � � �Read� � �my� � � � �lips.

it will be modified by removing all leading and duplicate blanks as

Read�my�lips.

10–P9 Write a program to read a number (consisting of up to 28 digits) and display the sum of

the individual digits. Do not use GetInt to read the input number; read it as a sequence

of characters. A sample input and output of the program is

Input: 123456789
Output: 45

10–P10 Write a procedure to read a string, representing a person’s name, in the format

first-name�MI�last-name

and displays the name in the format

last-name,�first-name�MI

where � indicates a blank character. As indicated, you can assume that the three names—

first name, middle initial, and last name—are separated by single spaces.

10–P11 Modify the last exercise to work on an input that can contain multiple spaces between

the names. Also, display the name as in the last exercise but with the last name in all

capital letters.

Chapter 11

Addressing Modes

Objectives
• To discuss in detail various addressing modes supported by the Pentium;

• To illustrate the usefulness of these addressing modes in supporting high-level language

features;

• To describe how arrays are implemented and manipulated in assembly language;

• To show how recursive procedures are written in assembly language.

In assembly language, specification of data required by instructions can be done in a variety of

ways. In Chapter 9, we discussed four different addressing modes: register, immediate, direct,

and indirect. The last two addressing modes specify operands in memory. However, operands

located in memory can be specified by several other addressing modes. Section 11.2 describes

these memory addressing modes in detail, and Section 11.3 gives examples to illustrate their

use.

Arrays are important for organizing a collection of related data. Although one-dimensional

arrays are straightforward to implement, multidimensional arrays are more involved. These

issues are discussed in Section 11.4. Section 11.4.3 gives some examples to illustrate the use of

addressing modes in processing one- and two-dimensional arrays.

Recursion is introduced in Section 11.5. We use a couple of examples to illustrate the

principles involved in writing recursive procedures in assembly language.

11.1 Introduction
CISC processors support a large number of addressing modes compared to RISC processors.

RISC processors use the load/store architecture. In this architecture, assembly language instruc-

tions take their operands from the processor registers and store the results in registers. This is

435

436 Chapter 11 Addressing Modes

Based-Indexed

with displacement

[BX + SI + disp]

[BX + DI + disp]

[BP + SI + disp]

[BP + DI + disp]

Based-Indexed

with no displacement

[BX + SI] [BP + SI]

[BX + DI] [BP + DI]

Based-IndexedRegister Indirect

[BX] [BP] [SI] [DI]

Memory

IndirectDirect

[disp]

Based

[BP + disp]

Indexed

[DI + disp]

[BX + disp] [SI + disp]

Figure 11.1 Memory addressing modes for 16-bit addresses.

what we called register addressing mode in Chapter 9. These processors use special load and

store instructions to move data between registers and memory. As a result, RISC processors

support very few (often just two) addressing modes.

The Pentium, being a CISC processor, provides several addressing modes. The three main

ones are as follows:

• Register Addressing Mode: In this addressing mode, as discussed in Chapter 9, processor

registers provide the input operands, and results are stored back in registers. Since the

Pentium uses a two-address format, one operand specification acts as both source and

destination. This addressing mode is the best way of specifying the operands, as the

delay in accessing the operands is minimal.

• Immediate Addressing Mode: This addressing mode can be used to specify at most one

source operand. The operand value is encoded as part of the instruction. Thus, the

operand is available as soon as the instruction is read.

• Memory Addressing Modes: When an operand is in memory, the Pentium provides a

variety of addressing modes to specify it. Recall that we have to specify the logical

address in order to specify the location of a memory operand. The logical address consists

of two components: segment base and offset. Note that offset is also referred to as the

effective address. Memory addressing modes differ in how they specify the effective

address.

We have already discussed the direct and register indirect addressing modes in Chapter 9. The

direct addressing mode gives the effective address directly in the instruction. In the indirect

addressing mode, the effective address is in one of the general-purpose registers. This chapter

discusses the remaining memory addressing modes.

Section 11.2 Memory Addressing Modes 437

[(Index scale) + disp]

[Base + (Index scale) + disp]

*

Addressing Modes

Register Immediate Memory

IndirectDirect

[disp]

IndexedRegister Indirect Based-Indexed

Based-Indexed

[Base]

Based

[Base + disp]

Based-Indexed

with no scale factor
[Base + Index + disp]

with scale factor

*

Figure 11.2 Addressing modes of the Pentium for 32-bit addresses.

11.2 Memory Addressing Modes
The primary motivation for providing different addressing modes is to efficiently support high-

level language constructs and data structures. The actual memory addressing modes available

depend on the address size used (16 bits or 32 bits). The memory addressing modes available

for 16-bit addresses are the same as those supported by the 8086. Figure 11.1 shows the default

memory addressing modes available for 16-bit addresses. The Pentium supports a more flexible

set of addressing modes for 32-bit addresses. These addressing modes are shown in Figure 11.2

and are summarized below:

Segment + Base + (Index * Scale) + displacement

CS EAX EAX 1 No displacement

SS EBX EBX 2 8-bit displacement

DS ECX ECX 4 32-bit displacement

ES EDX EDX 8

FS ESI ESI

GS EDI EDI

EBP EBP

ESP

The differences between 16-bit and 32-bit addressing are summarized in Table 11.1. How

does the processor know whether to use 16- or 32-bit addressing? As discussed in Chapter 7, it

uses the D bit in the CS segment descriptor to determine if the address is 16 or 32 bits long (see

page 267). It is, however, possible to override these defaults. The Pentium provides two size

override prefixes:

66H Operand size override prefix

67H Address size override prefix

438 Chapter 11 Addressing Modes

Table 11.1 Differences between 16-bit and 32-bit addressing

16-bit addressing 32-bit addressing

Base register BX EAX, EBX, ECX, EDX

BP ESI, EDI, EBP, ESP

Index register SI EAX, EBX, ECX, EDX

DI ESI, EDI, EBP

Scale factor None 1, 2, 4, 8

Displacement 0, 8, 16 bits 0, 8, 32 bits

By using these prefixes, we can mix 16- and 32-bit data and addresses. Remember that our

assembly language programs use 16-bit data and addresses. This, however, does not restrict us

from using 32-bit data and addresses. For example, when we write

mov AX,123

the assembler generates the following machine language code:

B8 007B

However, when we use a 32-bit operand, as in

mov EAX,123

the following code is generated by the assembler:

66 | B8 0000007B

The assembler automatically inserts the operand size override prefix (66H).

The greatest benefit of the address size override prefix is that we can use all the addressing

modes provided for 32-bit addresses in the 16-bit addressing modes. For instance, we can use a

scale factor, as in the following example:

mov AX,[EBX+ESI*2]

The assembler automatically inserts the address size override prefix (67H) as shown below:

67 | 8B 04 73

It is also possible to mix both override prefixes as demonstrated by the following example.

The assembly language statement

mov EAX,[EBX+ESI*2]

Section 11.2 Memory Addressing Modes 439

causes the assembler to insert both operand and address size override prefixes:

66 | 67 | 8B 04 73

Remember that with 16-bit addresses, our segments are limited to 64 KB. Even though we have

used 32-bit registers EBX and ESI in the last two examples, offsets into the segment are still

limited to 64 KB (i.e., offset should be less than or equal to FFFFH). The processor generates

a general protection fault if this value is exceeded. In summary, the address size prefix only

allows us to use the additional addressing modes of the Pentium with 16-bit addresses.

11.2.1 Based Addressing

In the based addressing mode, one of the registers acts as the base register in computing the

effective address of an operand. The effective address is computed by adding the contents of

the specified base register with a signed displacement value given as part of the instruction.

For 16-bit addresses, the signed displacement is either an 8- or a 16-bit number. For 32-bit

addresses, it is either an 8- or a 32-bit number.

Based addressing provides a convenient way to access individual elements of a structure.

Typically, a base register can be set up to point to the base of the structure and the displacement

can be used to access an element within the structure. For example, consider the following

record of a course schedule:

Course number Integer 2 bytes

Course title Character string 38 bytes

Term offered Single character 1 byte

Room number Character string 5 bytes

Enrollment limit Integer 2 bytes

Number registered Integer 2 bytes

Total storage per record 50 bytes

In this example, suppose we want to find the number of available spaces in a particular

course. We can let the BX register point to the base address of the corresponding course record

and use displacement to read the number of students registered and the enrollment limit for the

course to compute the desired answer. This is illustrated in Figure 11.3.

This addressing mode is also useful in accessing arrays whose element size is not 2, 4, or 8

bytes. In this case, the displacement can be set equal to the offset to the beginning of the array,

and the base register holds the offset of a specific element relative to the beginning of the array.

11.2.2 Indexed Addressing

In this addressing mode, the effective address is computed as

(Index * scale factor) + signed displacement.

440 Chapter 11 Addressing Modes

displacement

46 bytes

(50 bytes)

First course record

(50 bytes)

Second course record

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Enrollment

registered

Room #

Title

Course #

2

2

5

1

38

2

Term

Term

SSA + 50

SSA + 100

SSA

Structure Starting Address

Figure 11.3 Course record layout in memory.

For 16-bit addresses, no scaling factor is allowed (see Table 11.1 on page 438). For 32-bit

addresses, a scale factor of 2, 4, or 8 can be specified. Of course, we can use a scale factor in

the 16-bit addressing mode by using an address size override prefix.

The indexed addressing mode is often used to access elements of an array. The beginning

of the array is given by the displacement, and the value of the index register selects an element

within the array. The scale factor is particularly useful to access arrays of elements whose size

is 2, 4, or 8 bytes.

The following are valid instructions using the indexed addressing mode to specify one of

the operands.

add AX,[DI+20]

mov AX,marks_table[ESI*4]

add AX,table1[SI]

In the second instruction, the assembler would supply a constant displacement that represents

the offset of marks_table in the data segment. Assume that each element of marks_table
takes four bytes. Since we are using a scale factor of four, ESI should have the index value. For

example, if we want to access the tenth element, ESI should have nine as the index value starts

with zero.

If no scale factor is used as in the last instruction, SI should hold the offset of the element

in bytes relative to the beginning of the array. For example, if table1 is an array of four-byte

Section 11.3 Illustrative Examples 441

elements, SI register should have 36 to refer to the tenth element. By using the scale factor, we

avoid such byte counting.

11.2.3 Based-Indexed Addressing

Based-Indexed with No Scale Factor

In this addressing mode, the effective address is computed as

Base + Index + signed displacement.

The displacement can be a signed 8- or 16-bit number for 16-bit addresses; it can be a signed

8- or 32-bit number for 32-bit addresses.

This addressing mode is useful in accessing two-dimensional arrays with the displacement

representing the offset to the beginning of the array. This mode can also be used to access arrays

of records where the displacement represents the offset to a field in a record. In addition, this

addressing mode is used to access arrays passed on to a procedure. In this case, the base register

could point to the beginning of the array, and an index register can hold the offset to a specific

element.

Assuming that BX points to table1, which consists of four-byte elements, we can use the

code

mov AX,[BX+SI]

cmp AX,[BX+SI+4]

to compare two successive elements of table1. This type of code is particularly useful if the

table1 pointer is passed as a parameter.

Based-Indexed with Scale Factor

In this addressing mode, the effective address is computed as

Base + (Index * scale factor) + signed displacement.

This addressing mode provides an efficient indexing mechanism into a two-dimensional array

when the element size is 2, 4, or 8 bytes.

11.3 Illustrative Examples
We now present two examples to illustrate the usefulness of the various addressing modes. The

first example sorts an array of integers using the insertion sort algorithm, and the other example

implements a binary search to locate a value in a sorted array. Example 11.1 uses only the

16-bit addressing modes (see Figure 11.1), whereas Example 11.2 uses both 16-bit and 32-bit

addressing modes.

442 Chapter 11 Addressing Modes

Example 11.1 Sorting an integer array using the insertion sort.

This example requests a set of integers from the user and displays these numbers in sorted order.

The main procedure reads a maximum of MAX_SIZE integers (lines 23 to 30). It accepts only

nonnegative numbers. Entering a negative number terminates the input (lines 26 and 27).

The main procedure passes the array pointer and its size (lines 32 to 36) to the insertion sort

procedure. The remainder of the main procedure displays the sorted array returned by the sort

procedure. Note that the main procedure uses the indirect addressing mode on lines 28 and 43.

There are several sorting algorithms to sort an array of numbers. Here we use the insertion

sort algorithm. We discuss another sort algorithm later (see Example 11.6 on page 458). The

basic principle behind the insertion sort is simple: insert a new number into the sorted array in

its proper place. To apply this algorithm, we start with an empty array. Then insert the first

number. Now the array is in sorted order with just one element. Next insert the second number

in its proper place. This results in a sorted array of size two. Repeat this process until all the

numbers are inserted. The pseudocode for this algorithm, shown below, assumes that the array

index starts with 0:

insertion_sort (array, size)

for (i = 1 to size�1)

temp := array[i]

j := i � 1

while ((temp � array[j]) AND (j � 0))

array[j+1] := array[j]

j := j � 1

end while

array[j+1] := temp

end for

end insertion_sort

Here, index i points to the number to be inserted. The array to the left of i is in sorted order.
The numbers to be inserted are the ones located at or to the right of index i. The next number to
be inserted is at i. The implementation of the insertion sort procedure, shown in Program 11.1,
follows the pseudocode.

Program 11.1 Insertion sort

1: TITLE Sorting an array by insertion sort INS_SORT.ASM

2: COMMENT |

3: Objective: To sort an integer array using insertion sort.

4: Input: Requests numbers to fill array.

5: | Output: Displays sorted array.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: MAX_SIZE EQU 100

Section 11.3 Illustrative Examples 443

10: array DW MAX_SIZE DUP (?)

11: input_prompt DB ’Please enter input array: ’

12: DB ’(negative number terminates input)’,0

13: out_msg DB ’The sorted array is:’,0

14:

15: .CODE

16: .486

17: INCLUDE io.mac

18: main PROC

19: .STARTUP

20: PutStr input_prompt ; request input array

21: mov BX,OFFSET array

22: mov CX,MAX_SIZE

23: array_loop:

24: GetInt AX ; read an array number

25: nwln

26: cmp AX,0 ; negative number?

27: jl exit_loop ; if so, stop reading numbers

28: mov [BX],AX ; otherwise, copy into array

29: add BX,2 ; increment array address

30: loop array_loop ; iterates a maximum of MAX_SIZE

31: exit_loop:

32: mov DX,BX ; DX keeps the actual array size

33: sub DX,OFFSET array ; DX := array size in bytes

34: shr DX,1 ; divide by 2 to get array size

35: push DX ; push array size & array pointer

36: push OFFSET array

37: call insertion_sort

38: PutStr out_msg ; display sorted array

39: nwln

40: mov CX,DX

41: mov BX,OFFSET array

42: display_loop:

43: PutInt [BX]

44: nwln

45: add BX,2

46: loop display_loop

47: done:

48: .EXIT

49: main ENDP

50:

51: ;---

52: ; This procedure receives a pointer to an array of integers

53: ; and the array size via the stack. The array is sorted by

54: ; using insertion sort. All registers are preserved.

444 Chapter 11 Addressing Modes

55: ;---

56: SORT_ARRAY EQU [BX]

57: insertion_sort PROC

58: pusha ; save registers

59: mov BP,SP

60: mov BX,[BP+18] ; copy array pointer

61: mov CX,[BP+20] ; copy array size

62: mov SI,2 ; array left of SI is sorted

63: for_loop:

64: ; variables of the algorithm are mapped as follows.

65: ; DX = temp, SI = i, and DI = j

66: mov DX,SORT_ARRAY[SI] ; temp := array[i]

67: mov DI,SI ; j := i-1

68: sub DI,2

69: while_loop:

70: cmp DX,SORT_ARRAY[DI] ; temp < array[j]

71: jge exit_while_loop

72: ; array[j+1] := array[j]

73: mov AX,SORT_ARRAY[DI]

74: mov SORT_ARRAY[DI+2],AX

75: sub DI,2 ; j := j-1

76: cmp DI,0 ; j >= 0

77: jge while_loop

78: exit_while_loop:

79: ; array[j+1] := temp

80: mov SORT_ARRAY[DI+2],DX

81: add SI,2 ; i := i+1

82: dec CX

83: cmp CX,1 ; if CX = 1, we are done

84: jne for_loop

85: sort_done:

86: popa ; restore registers

87: ret 4

88: insertion_sort ENDP

89: END main

Since the sort procedure does not return any value to the main program in registers, we can

use pusha (line 58) and popa (line 86) to save and restore registers. As pusha saves all eight

16-bit registers on the stack, the offset is appropriately adjusted to access the array size and

array pointer parameters (lines 60 and 61).

The while loop is implemented by lines 69 to 78, and the for loop is implemented by

lines 63 to 84. Note that the array pointer is copied to the BX (line 60), and line 56 assigns a

convenient label to this. We have used the based-indexed addressing mode on lines 66, 70, and

Section 11.3 Illustrative Examples 445

73 without any displacement and on lines 74 and 80 with displacement. Based addressing is

used on lines 60 and 61 to access parameters from the stack.

Example 11.2 Binary search procedure.

Binary search is an efficient algorithm to locate a value in a sorted array. The search process

starts with the whole array. The value at the middle of the array is compared with the number

we are looking for: if there is a match, its index is returned. Otherwise, the search process

is repeated either on the lower half (if the number is less than the value at the middle), or on

the upper half (if the number is greater than the value at the middle). The pseudocode of the

algorithm is given below:

binary_search (array, size, number)

lower := 0

upper := size � 1

while (lower � upper)

middle := (lower + upper)/2

if (number = array[middle])

then

return (middle)

else

if (number � array[middle])

then

upper := middle � 1

else

lower := middle + 1

end if

end if

end while

return (0) �number not found�

end binary_search

The listing of the binary search program is given in Program 11.2. The main procedure is similar
to that in the last example. The lower and upper index variables are mapped to the AX and CX
registers. The number to be searched is stored in the DX, and the array pointer is in the BX.
Register SI keeps the middle index value.

Program 11.2 Binary search

1: TITLE Binary search of a sorted integer array BIN_SRCH.ASM

2: COMMENT |

3: Objective: To implement binary search of a sorted

4: integer array.

5: Input: Requests numbers to fill array and a

446 Chapter 11 Addressing Modes

6: number to be searched for from user.

7: Output: Displays the position of the number in

8: the array if found; otherwise, not found

9: | message.

10: .MODEL SMALL

11: .STACK 100H

12: .DATA

13: MAX_SIZE EQU 100

14: array DW MAX_SIZE DUP (?)

15: input_prompt DB ’Please enter input array (in sorted order): ’

16: DB ’(negative number terminates input)’,0

17: query_number DB ’Enter the number to be searched: ’,0

18: out_msg DB ’The number is at position ’,0

19: not_found_msg DB ’Number not in the array!’,0

20: query_msg DB ’Do you want to quit (Y/N): ’,0

21:

22: .CODE

23: .486

24: INCLUDE io.mac

25: main PROC

26: .STARTUP

27: PutStr input_prompt ; request input array

28: nwln

29: sub ESI,ESI ; set index to zero

30: mov CX,MAX_SIZE

31: array_loop:

32: GetInt AX ; read an array number

33: nwln

34: cmp AX,0 ; negative number?

35: jl exit_loop ; if so, stop reading numbers

36: mov array[ESI*2],AX ; otherwise, copy into array

37: inc SI ; increment array index

38: loop array_loop ; iterates a maximum of MAX_SIZE

39: exit_loop:

40: read_input:

41: PutStr query_number ; request number to be searched for

42: GetInt AX ; read the number

43: nwln

44: push AX ; push number, size & array pointer

45: push SI

46: push OFFSET array

47: call binary_search

48: ; binary_search returns in AX the position of the number

49: ; in the array; if not found, it returns 0.

50: cmp AX,0 ; number found?

Section 11.3 Illustrative Examples 447

51: je not_found ; if not, display number not found

52: PutStr out_msg ; else, display number position

53: PutInt AX

54: jmp user_query

55: not_found:

56: PutStr not_found_msg

57: user_query:

58: nwln

59: PutStr query_msg ; query user whether to terminate

60: GetCh AL ; read response

61: nwln

62: cmp AL,’Y’ ; if response is not ’Y’

63: jne read_input ; repeat the loop

64: done: ; otherwise, terminate program

65: .EXIT

66: main ENDP

67:

68: ;---

69: ; This procedure receives a pointer to an array of integers,

70: ; the array size, and a number to be searched via the stack.

71: ; It returns in AX the position of the number in the array

72: ; if found; otherwise, returns 0.

73: ; All registers, except AX, are preserved.

74: ;---

75: binary_search PROC

76: enter 0,0

77: push EBX

78: push ESI

79: push CX

80: push DX

81: xor EBX,EBX ; EBX = 0

82: mov BX,[BP+4] ; copy array pointer

83: mov CX,[BP+6] ; copy array size

84: mov DX,[BP+8] ; copy number to be searched

85: xor AX,AX ; lower = 0

86: dec CX ; upper = size-1

87: while_loop:

88: cmp AX,CX ;lower > upper?

89: ja end_while

90: sub ESI,ESI

91: mov SI,AX ; middle = (lower + upper)/2

92: add SI,CX

93: shr SI,1

94: cmp DX,[EBX+ESI*2] ; number = array[middle]?

95: je search_done

448 Chapter 11 Addressing Modes

96: jg upper_half

97: lower_half:

98: dec SI ; middle = middle-1

99: mov CX,SI ; upper = middle-1

100: jmp while_loop

101: upper_half:

102: inc SI ; middle = middle+1

103: mov AX,SI ; lower = middle+1

104: jmp while_loop

105: end_while:

106: sub AX,AX ; number not found (clear AX)

107: jmp skip1

108: search_done:

109: inc SI ; position = index+1

110: mov AX,SI ; return position

111: skip1:

112: pop DX ; restore registers

113: pop CX

114: pop ESI

115: pop EBX

116: leave

117: ret 6

118: binary_search ENDP

119: END main

Since the binary search procedure returns a value in the AX register, we cannot use the

pusha instruction as in the last example. This example also demonstrates how some of the

32-bit addressing modes can be used with 16-bit segments. For example, on line 94, we use a

scale factor of two to convert the index value in SI to byte count. Also, a single comparison

(line 94) is sufficient to test multiple conditions (i.e., equal to, greater than, or less than). If the

number is found in the array, the index value in SI is returned via AX (line 110).

11.4 Arrays
Arrays are useful in organizing a collection of related data items, such as test marks of a class,

salaries of employees, and so on. We have used arrays of characters to represent strings. Such

arrays are one-dimensional: only a single subscript is necessary to access a character in the

array. Next we discuss one-dimensional arrays. High-level languages support multidimensional

arrays. Multidimensional arrays are discussed in Section 11.4.2.

Section 11.4 Arrays 449

11.4.1 One-Dimensional Arrays

A one-dimensional array of test marks can be declared in C as

int test_marks [10];

In C, the subscript always starts at zero. Thus, the mark of the first student is given by

test_marks[0] and that of the last student by test_marks[9].

Array declaration in high-level languages specifies the following five attributes:

• Name of the array (test_marks),

• Number of the elements (10),

• Element size (2 bytes),

• Type of element (integer), and

• Index range (0 to 9).

From this information, the amount of storage space required for the array can be easily calcu-

lated. Storage space in bytes is given by

Storage space = number of elements * element size in bytes.

In our example, it is equal to 10 * 2 = 20 bytes. In assembly language, arrays are implemented

by allocating the required amount of storage space. For example, the test_marks array can

be declared as

test_marks DW 10 DUP (?)

An array name can be assigned to this storage space. But that is all the support you get in

assembly language! It is up to you as a programmer to “properly” access the array taking into

account the element size and the range of subscripts.

You need to know how the array is stored in memory in order to access elements of the

array. For one-dimensional arrays, representation of the array in memory is rather direct: array

elements are stored linearly in the same order as shown in Figure 11.4. In the remainder of this

section, we use the convention used for arrays in C (i.e., subscripts are assumed to begin with

0).

To access an element we need to know its displacement value in bytes relative to the be-

ginning of the array. Since we know the element size in bytes, it is rather straightforward to

compute the displacement from the subscript value:

displacement = subscript * element size in bytes.

For example, to access the sixth student’s mark (i.e., subscript is 5), you have to use 5 * 2 = 10

as the displacement value into the test_marks array. Section 11.4.3 presents an example

that computes the sum of a one-dimensional integer array. If the array element size is 2, 4, or 8

bytes, we can use the scale factor to avoid computing displacement in bytes.

450 Chapter 11 Addressing Modes

High memory

Low memory

test_marks[9]

test_marks[8]

test_marks[7]

test_marks[6]

test_marks[5]

test_marks[4]

test_marks[3]

test_marks[2]

test_marks[1]

test_marks[0] test_marks

Figure 11.4 One-dimensional array storage representation.

11.4.2 Multidimensional Arrays

Programs often require arrays of more than one dimension. For example, we need a two-

dimensional array of size 50 � 3 to store test marks of a class of 50 students taking three tests

during a semester. For most programs, arrays of up to three dimensions are adequate. In this

section, we discuss how two-dimensional arrays are represented and manipulated in assembly

language. Our discussion can be generalized to higher-dimensional arrays.

For example, a 5 � 3 array to store test marks can be declared in C as

int class_marks[5][3]; /* 5 rows and 3 columns */

Storage representation of such arrays is not as direct as that for one-dimensional arrays. Since

the memory is one-dimensional (i.e., linear array of bytes), we need to transform the two-

dimensional structure to a one-dimensional structure. This transformation can be done in one

of two common ways:

• Order the array elements row-by-row, starting with the first row,

• Order the array elements column-by-column, starting with the first column.

The first method, called the row-major ordering, is shown in Figure 11.5a. Row-major or-

dering is used in most high-level languages including C and Pascal. The other method, called

the column-major ordering, is shown in Figure 11.5b. Column-major ordering is used in FOR-

TRAN. In the remainder of this section, we focus on the row-major ordering scheme.

Why do we need to know the underlying storage representation? When we are using a

high-level language, we really do not have to bother about the storage representation. Access

Section 11.4 Arrays 451

class_marks class_marks[0,0]

High memory

class_marks[0,1]

class_marks[0,2]

class_marks[1,0]

class_marks[1,1]

class_marks[1,2]

class_marks[2,0]

class_marks[2,1]

class_marks[2,2]

class_marks[3,0]

class_marks[3,1]

class_marks[3,2]

class_marks[4,0]

class_marks[4,1]

class_marks[4,2]

class_marks class_marks[0,0]

High memory

class_marks[2,1]

class_marks[4,2]

class_marks[1,0]

class_marks[2,0]

class_marks[3,0]

class_marks[4,0]

class_marks[0,1]

class_marks[1,1]

class_marks[3,1]

class_marks[4,1]

class_marks[0,2]

class_marks[1,2]

class_marks[2,2]

class_marks[3,2]

Low memory

(a) Row-major order (b) Column-major order

Low memory

Figure 11.5 Two-dimensional array storage representation.

to arrays is provided by subscripts: one subscript for each dimension of the array. However,

when using assembly language, we need to know the storage representation in order to access

individual elements of the array for reasons discussed next.

In assembly language, we can allocate storage space for the class_marks array as

class_marks DW 5*3 DUP (?)

This statement simply allocates the 30 bytes required to store the array. Now we need a formula

to translate row and column subscripts to the corresponding displacement. In C language, which

uses row-major ordering and subscripts start with zero, we can express displacement of an

element at row i and column j as

displacement = (i * COLUMNS + j) * ELEMENT_SIZE,

where COLUMNS is the number of columns in the array and ELEMENT_SIZE is the number

452 Chapter 11 Addressing Modes

of bytes required to store an element. For example, displacement of class_marks[3,1] is

(3 * 3 + 1) * 2 = 20. The next section gives an example to illustrate how two-dimensional arrays

are manipulated.

11.4.3 Examples of Arrays

This section presents two examples to illustrate manipulation of one- and two-dimensional ar-

rays. These examples also demonstrate the use of advanced addressing modes in accessing

multidimensional arrays.

Example 11.3 Finding the sum of a one-dimensional array.

This example shows how one-dimensional arrays can be manipulated. Program 11.3 finds the
sum of the test_marks array and displays the result.

Program 11.3 Computing the sum of a one-dimensional array

1: TITLE Sum of a long integer array ARAY_SUM.ASM

2: COMMENT |

3: Objective: To find sum of all elements of an array.

4: Input: None.

5: | Output: Displays the sum.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: test_marks DD 90,50,70,94,81,40,67,55,60,73

10: NO_STUDENTS EQU ($-test_marks)/4 ; number of students

11: sum_msg DB ’The sum of test marks is: ’,0

12:

13: .CODE

14: .486

15: INCLUDE io.mac

16: main PROC

17: .STARTUP

18: mov CX,NO_STUDENTS ; loop iteration count

19: sub EAX,EAX ; sum := 0

20: sub ESI,ESI ; array index := 0

21: add_loop:

22: mov EBX,test_marks[ESI*4]

23: PutLInt EBX

24: nwln

25: add EAX,test_marks[ESI*4]

26: inc ESI

27: loop add_loop

28:

29: PutStr sum_msg

Section 11.4 Arrays 453

30: PutLInt EAX

31: nwln

32: .EXIT

33: main ENDP

34: END main

Each element of the test_marks array, declared on line 9, requires four bytes. The array

size NO_STUDENTS is computed on line 10 using the predefined location counter symbol $.

The predefined symbol $ is always set to the current offset in the segment. Thus, on line 10,

$ points to the byte after the array storage space. Therefore, ($-test_marks) gives the

storage space in bytes and dividing this by four gives the number of elements in the array. We

are using the indexed addressing mode with a scale factor of four on lines 22 and 25. Remember

that the scale factor is only allowed in the 32-bit mode. As a result, we have to use ESI rather

than the SI register.

Example 11.4 Finding the sum of a column in a two-dimensional array.

Consider the class_marks array representing the test scores of a class. For simplicity, as-
sume that there are only five students in the class. Also, assume that the class is given three tests.
As we have discussed before, we can use a 5 � 3 array to store the marks. Each row represents
the three test marks of a student in the class. The first column represents the marks of the first
test, the second column represents the marks of the second test, and so on. The objective of this
example is to find the sum of the last test marks for the class. The program listing is given in
Program 11.4.

Program 11.4 Finding the sum of a column in a two-dimensional array

1: TITLE Sum of a column in a 2-dimensional array TEST_SUM.ASM

2: COMMENT |

3: Objective: To demonstrate array index manipulation

4: in a two-dimensional array of integers.

5: Input: None.

6: | Output: Displays the sum.

7: .MODEL SMALL

8: .STACK 100H

9: .DATA

10: NO_ROWS EQU 5

11: NO_COLUMNS EQU 3

12: NO_ROW_BYTES EQU NO_COLUMNS * 2 ; number of bytes per row

13: class_marks DW 90,89,99

14: DW 79,66,70

15: DW 70,60,77

16: DW 60,55,68

17: DW 51,59,57

454 Chapter 11 Addressing Modes

18:

19: sum_msg DB ’The sum of the last test marks is: ’,0

20:

21: .CODE

22: .486

23: INCLUDE io.mac

24: main PROC

25: .STARTUP

26: mov CX,NO_ROWS ; loop iteration count

27: sub AX,AX ; sum = 0

28: ; ESI = index of class_marks[0,2]

29: sub EBX,EBX

30: mov ESI,NO_COLUMNS-1

31: sum_loop:

32: add AX,class_marks[EBX+ESI*2]

33: add EBX,NO_ROW_BYTES

34: loop sum_loop

35:

36: PutStr sum_msg

37: PutInt AX

38: nwln

39: done:

40: .EXIT

41: main ENDP

42: END main

To access individual test marks, we use based-indexed addressing with a displacement on

line 32. Note that even though we have used

class_marks[EBX+ESI*2]

it is translated by the assembler as

[EBX+(ESI*2)+constant]

where the constant is the offset of class_marks. For this to work, the EBX should store

the offset of the row in which we are interested. For this reason, after initializing the EBX to

zero to point to the first row (line 29), NO_ROW_BYTES is added in the loop body (line 33).

The ESI register is used as the column index. This works for row-major ordering.

Section 11.5 Recursion 455

11.5 Recursion
We have seen how procedures can be implemented in the Pentium assembly language. We now

look at recursive procedures. A recursive procedure calls itself, either directly or indirectly. In

direct recursion, procedure P makes another call to itself. In indirect recursion, procedure P

makes a call to procedure Q, which in turn calls procedure P. The chain of calls could be longer

before a call is made to procedure P.

Recursion is a powerful tool that allows us to express our solution elegantly. Some appli-

cations can be naturally expressed using recursion. Computing a factorial is a classic example.

Factorial �, denoted �!, is the product of positive integers from 1 to �. For example,

5! = 1 � 2 � 3 � 4 � 5.

The factorial can be formally defined as

factorial(0) = 1,

factorial(�) = � * factorial(�� �) for � � �.

Recursion shows up in this definition as we define factorial(�) in terms of factorial(� � �).

Every recursive function should have a termination condition to end recursion. In this example,

when � � �, recursion stops. How do we express such recursive functions in programming

languages? Let us first look at how this function is written in C:

int fact(int n)

{

if (n == 0)

return(1);

return(n * fact(n-1));

}

This is an example of direct recursion. How is this function implemented? At the conceptual

level, its implementation is not any different from implementing other procedures. Once you

understand that each procedure call instance is distinct from the others, the fact that a recursive

procedure calls itself does not make a big difference.

Each active procedure maintains an activation record, which is stored on the stack. The

activation record, as explained on page 421, consists of the arguments, return address, and

local variables. The activation record comes into existence when a procedure is invoked and

disappears after the procedure is terminated. Thus, for each procedure that is not terminated,

an activation record that contains the state of that procedure is stored. The number of activation

records, and hence the amount of stack space required to run the program, depends on the depth

of recursion.

Figure 11.6 shows the stack activation records for factorial(3). As you can see from this

figure, each call to the factorial function creates an activation record.

456 Chapter 11 Addressing Modes

Activation

record for A

Activation

record for B

Activation

record for C

Activation

record for D

(b)(a)

A

B

C

D

factorial(0) = 1

factorial(1) = 1

factorial(2) = 2

factorial(3) = 6n = 3

n = 1

n = 0

n = 2

Call Return

Recursion termination

factorial(0) = 1

factorial(2) = 2 factorial(1)

*factorial(1) = 1 factorial(0)

*

factorial(3) = 3 factorial(2)*

Figure 11.6 Recursive computation of factorial(3).

11.5.1 Illustrative Examples

To illustrate the principles of recursion, we give two examples. The first computes the factorial

function. The second example implements the popular quicksort algorithm.

Example 11.5 Recursive procedure to compute the factorial function.

An implantation of the factorial function is shown in Program 11.5. The main function provides

the user interface. It requests a positive number from the user. If a negative number is given

as input, the user is prompted to try again. The positive number, which is read into the BX, is

passed on to procedure fact.

The fact procedure receives the number � in the BL register. It essentially implements

the C code given before. One minor difference is that this procedure terminates when � � �.

This termination would save one recursive call. When the BL is less than or equal to 1, the

AX register is set to 1 to terminate recursion. The activation record in this example consists

of the return address pushed onto the stack by the call instruction. Since we are using the

BL register, it is decremented before the call (line 53) and restored after the call (line 55). The

multiply instruction

mul BL

multiplies the contents of the BL and AL registers and places the 16-bit result in the AX register.

We discuss the multiplication instruction in Chapter 12.

Section 11.5 Recursion 457

Program 11.5 Recursive computation of factorial(�)

1: TITLE Factorial - Recursive version FACT.ASM

2: COMMENT |

3: Objective: To demonstrate principles of recursion.

4: Input: Requests an integer N from the user.

5: Output: Outputs N!

6: |

7:

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: prompt_msg DB ’Please enter a positive integer: ’,0

12: output_msg DB ’The factorial is: ’,0

13: error_msg DB ’Sorry! Not a positive number. Try again.’,0

14:

15: .CODE

16: INCLUDE io.mac

17:

18: main PROC

19: .STARTUP

20: PutStr prompt_msg ; request the number

21:

22: try_again:

23: GetInt BX ; read number into BX

24: nwln

25: cmp BX,0 ; test for positive number

26: jge num_ok

27: PutStr error_msg

28: nwln

29: jmp try_again

30:

31: num_ok:

32: call fact

33:

34: PutStr output_msg ; output result

35: PutInt AX

36: nwln

37:

38: done:

39: .EXIT

40: main ENDP

41:

42: ;--

43: ;Procedure fact receives a positive integer N in BX register.

44: ;It returns N! in AX register.

458 Chapter 11 Addressing Modes

45: ;--

46: fact PROC

47: cmp BL,1 ; if N > 1, recurse

48: jg one_up

49: mov AX,1 ; return 1 for N < 2

50: ret ; terminate recursion

51:

52: one_up:

53: dec BL ; recurse with (N-1)

54: call fact

55: inc BL

56: mul BL ; AX = AL * BL

57:

58: ret

59: fact ENDP

60: END main

Example 11.6 Sorting an array of integers using the quicksort algorithm.

Quicksort is one of the most popular sorting algorithms; it was proposed by C.A.R. Hoare in

1960. Once you understand the basic principle of the quicksort, you will see why recursion

naturally expresses it.

At its heart, quicksort uses a divide-and-conquer strategy. The original sort problem is

reduced to two smaller sort problems. This is done by selecting a partition element � and

partitioning the array to be sorted into two subarrays: all elements less than � are placed in

one subarray and all elements greater than � are in the other. Now, we have to sort these two

subarrays, which are smaller than the original array. We apply the same procedure to sort these

two subarrays. This is where the recursive nature of the algorithm shows up. The quicksort

procedure to sort an � -element array is summarized below:

1. Select a partition element �.

2. Assume that we know where this element � should be in the final sorted array. Let it be

at array[i]. We give details of this step shortly.

3. Move all the other elements that are less than � into positions array[0] � � � array[i-1].

Similarly, move those elements that are greater than � into positions array[i+1] � � �

array[N-1]. Note that these two subarrays are not sorted.

4. Now apply the quicksort procedure recursively to sort these two subarrays until the array

is sorted.

How do we know the final position of the partition element � without sorting the array? We

don’t have to sort the array; we just need to know the number of elements either before or after

it. To clarify the working of the quicksort algorithm, let us look at an example. In this example,

Section 11.5 Recursion 459

and in our quicksort implementation, we pick the last element as the partition value. Obviously,

the selection of the partition element influences performance of the quicksort. There are several

better ways of selecting the partition value; you can get these details in any textbook on sorting.

Initial state: 2 9 8 1 3 4 7 6�� Partition element;

After 1st pass: 2 1 3 4 6 7 9 8 Partition element 6 is in its final place.

The second pass works on the following two subarrays:

1st subarray: 2 1 3 4;

2nd subarray: 7 9 8.

To move the partition element to its final place, we use two pointers � and �. Initially, �

points to the first element, and � points to the second to last element. Note that we are using the

last element as the partition element. The index � is advanced until it points to an element that

is greater than or equal to �. Similarly, � is moved backward until it points to an element that is

less than or equal to �. Then we exchange the two values at � and �. We continue this process

until � is greater than or equal to �. The quicksort pseudocode is shown below:

quick_sort (array, lo, hi)

if (hi � lo)

� := array[hi]

i := lo

j := hi

while (i � j)

while (array[i] � �)

i := i + 1

end while

while (array[j] � �)

j := j � 1

end while

if (i � j)

array[i]�� array[j] /* exchange values */

end if

end while

array[i]�� array[hi] /* exchange values */

quick_sort (array, lo, i�1)

quick_sort (array, i�1, hi)

end if

end quick_sort

The quicksort program is shown in Program 11.6. The input values are read by the read

loop (lines 28 to 35). This loop terminates if the input is zero. As written, this program can

cause problems if the user enters more than 200 integers. You can easily remedy this problem

460 Chapter 11 Addressing Modes

by initializing the CX with 200 and using the loop instruction on line 35. The three arguments

are placed in the BX (array pointer), ESI (lo) and EDI (hi) registers (lines 39 to 41). After the

quicksort call on line 42, the program outputs the sorted array (lines 45 to 54).
The quicksort procedure follows the pseudocode. Since we are not returning any values,

we use pusha to preserve all registers (line 66). The two inner while loops are implemented
by the LO and HI WHILE loops. The exchange of elements is done by using three xchg
instructions (lines 93 to 95 and 99 to 101). The rest of the program follows the pseudocode in a
straightforward manner.

Program 11.6 Sorting integers using the recursive quicksort algorithm

1: TITLE Sorting integers using quicksort QSORT.ASM

2: COMMENT |

3: Objective: Sorts an array of integers using

4: quick sort. Uses recursion.

5: Input: Requests integers from the user.

6: Terminated by entering zero.

7: | Output: Outputs the sorted arrray.

8:

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: prompt_msg DB ’Please enter integers. ’,0DH,0AH

13: DB ’Entering zero terminates the input.’,0

14: output_msg DB ’The sorted array is: ’,0

15:

16: array1 DW 200 DUP (?)

17:

18: .CODE

19: .486

20: INCLUDE io.mac

21:

22: main PROC

23: .STARTUP

24: PutStr prompt_msg ; request the number

25: nwln

26: mov EBX, OFFSET array1

27: xor EDI,EDI ; EDI keeps a count of input numbers

28: read_more:

29: GetInt AX ; read a number

30: nwln

31: mov [EBX+EDI*2],AX ; store it in array

32: cmp AX,0 ; test if it is zero

33: je exit_read

34: inc EDI

Section 11.5 Recursion 461

35: jmp read_more

36:

37: exit_read:

38: ; prepare arguments for procedure call

39: mov EBX,OFFSET array1

40: xor ESI,ESI ; ESI = lo index

41: dec EDI ; EDI = hi index

42: call qsort

43:

44: PutStr output_msg ; output sorted array

45: write_more:

46: ; since qsort preserves all registers, we will

47: ; have valid EBX and ESI values.

48: mov AX,[EBX+ESI*2]

49: cmp AX,0

50: je done

51: PutInt AX

52: nwln

53: inc ESI

54: jmp write_more

55:

56: done:

57: .EXIT

58: main ENDP

59:

60: ;--

61: ;Procedure qsort receives a pointer to the array in BX.

62: ;LO and HI are received in ESI and EDI, respectively.

63: ;It preserves all the registers.

64: ;--

65: qsort PROC

66: pusha

67: cmp EDI,ESI

68: jle qsort_done ; end recursion if hi <= lo

69:

70: ; save hi and lo for later use

71: mov ECX,ESI

72: mov EDX,EDI

73:

74: mov AX,[EBX+EDI*2] ; AX = xsep

75:

76: lo_loop: ;

77: cmp [EBX+ESI*2],AX ;

78: jge lo_loop_done ; LO while loop

79: inc ESI ;

462 Chapter 11 Addressing Modes

80: jmp lo_loop ;

81: lo_loop_done:

82:

83: dec EDI ; hi = hi-1

84: hi_loop:

85: cmp EDI,ESI ;

86: jle sep_done ;

87: cmp [EBX+EDI*2],AX ; HI while loop

88: jle hi_loop_done ;

89: dec EDI ;

90: jmp hi_loop ;

91: hi_loop_done:

92:

93: xchg AX,[EBX+ESI*2] ;

94: xchg AX,[EBX+EDI*2] ; x[i] <=> x[j]

95: xchg AX,[EBX+ESI*2] ;

96: jmp lo_loop

97:

98: sep_done:

99: xchg AX,[EBX+ESI*2] ;

100: xchg AX,[EBX+EDX*2] ; x[i] <=> x[hi]

101: xchg AX,[EBX+ESI*2] ;

102:

103: dec ESI

104: mov EDI,ESI ; hi = i-1

105: ; We will modify the ESI value in the next statement.

106: ; Since the original ESI value is in EDI, we will use

107: ; DSI value to get i+1 value for the second qsort call.

108: mov ESI,ECX

109: call qsort

110:

111: ; EDI has the i value

112: inc EDI

113: inc EDI

114: mov ESI,EDI ; lo = i+1

115: mov EDI,EDX

116: call qsort

117:

118: qsort_done:

119: popa

120: ret

121: qsort ENDP

122: END main

Section 11.5 Recursion 463

Recursion Versus Iteration

In theory, every recursive function has an iterative counterpart. To see this, let us write the

iterative version to compute the factorial function.

int fact_iterative(int n)

{

int i, result;

if (n == 0)

return (1);

result = 1;

for(i = 1; i <= n; i++)

result = result * i;

return(result);

}

From this example, it is obvious that the recursive version is concise and reflects the mathemat-

ical definition of the factorial function. Once you get through the initial learning problems with

recursion, recursive code is easier to understand for those functions that are defined recursively.

Some such examples we have seen are the factorial function, Fibonacci number computation,

binary search, and quicksort.

This leads us to the question of when to use recursion. To answer this question, we need to

look at the potential problems recursion can cause. There are two main problems with recursion:

• Inefficiency: In most cases, recursive versions tend to be inefficient. You can see this

point by comparing the recursive and iterative versions of the factorial function. The

recursive version induces more overheads to invoke and return from procedure calls. To

compute� �, we need to call the factorial function about� times. In the iterative version,

the loop iterates about � times.

Recursion could also introduce duplicate computation. For example, to compute the Fi-

bonacci number

fib(5) = fib(4) + fig(3)

a recursive procedure computes fib(3) two times, fib(2) two times, and so on.

• Demands More Memory: Recursion tends to require more memory. This can be seen

from the simple factorial example. For large � , the demand for stack memory can be

excessive. In some cases, the limit on the available memory may make the recursive

version unusable.

On the positive side, however, note that recursion leads to better understanding of the code for

those naturally recursive problems. In this case, recursion should be used as it aids in program

maintenance.

464 Chapter 11 Addressing Modes

11.6 Summary
The addressing mode refers to the specification of operands required by an assembly language

instruction. We discussed several memory addressing modes supported by the Pentium. We

showed by means of examples how various 16- and 32-bit addressing modes are useful in sup-

porting features of high-level languages.

Arrays are useful for representing a collection of related data. In high-level languages, pro-

grammers do not have to worry about the underlying storage representation used to store arrays

in memory. However, when manipulating arrays in assembly language, we need to know this

information. This is so because accessing individual elements of an array involves computing

the corresponding displacement value. Although there are two common ways of storing a mul-

tidimensional array—row-major or column-major order—most high-level languages, including

C, use the row-major order. We presented examples to illustrate how one- and two-dimensional

arrays are manipulated in assembly language.

We have introduced recursion by means of factorial and quicksort examples. We redo these

two examples in the MIPS assembly language in Chapter 15.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Activation record

• Address size override prefix

• Based addressing mode

• Based-indexed addressing mode

• Binary search

• Column-major order

• Fibonacci numbers

• Indexed addressing mode

• Insertion sort

• Location counter

• Multidimensional arrays

• One-dimensional arrays

• Operand size override prefix

• Quicksort

• Recursion

• Row-major order

11.7 Exercises
11–1 Explain why the register addressing mode is the most efficient of all the addressing modes

supported by the Pentium.

11–2 Discuss the restrictions imposed by the immediate addressing mode.

11–3 Where (i.e., in which segment) are the data, specified by the immediate addressing mode,

stored?

11–4 Describe all the 16-bit addressing modes that you can use to specify an operand that is

located in memory.

11–5 Describe all the 32-bit addressing modes that you can use to specify an operand that is

located in memory.

Section 11.8 Programming Exercises 465

11–6 When is it necessary to use the segment override prefix?

11–7 When is it necessary to use the operand size override prefix?

11–8 When is it necessary to use the address size override prefix?

11–9 Is there a fundamental difference between the based and indexed addressing modes?

11–10 What additional flexibility does the based-indexed addressing mode have over based or

indexed addressing modes?

11–11 Given the following declaration of table1

table1 DW 10 DUP (0)

fill in the blanks in the following code:

mov SI, _______ ; SI = displacement of 5th element

; (i.e., table1[4] in C)

mov AX,table1[SI]

cmp AX, _______ ; compare 5th and 4th elements

11–12 What is the difference between row-major and column-major orders for storing multidi-

mensional arrays in memory?

11–13 In manipulating multidimensional arrays in assembly language, why is it necessary to

know their underlying storage representation?

11–14 How is the class_marks array in Program 11.4 stored in memory: row-major or

column-major order?

11–15 How would you change the class_marks declaration in order to store it in column-

major order?

11–16 Assuming that subscripts begin with 0, derive a formula for the displacement (in bytes)

of the element in row � and column � in a two-dimensional array that is stored in column-

major order.

11–17 Suppose that the array A is a two-dimensional array stored in row-major order. Assume

that a low value can be specified for each subscript. Derive a formula to express the

displacement (in bytes) of A[�,�].

11.8 Programming Exercises
11–P1 What modifications would you make to the insertion sort procedure discussed in Sec-

tion 11.3 to sort the array in descending order? Make the necessary modifications to the

program and test it for correctness.

11–P2 Modify Program 11.3 to read array input data from the user. Your program should be able

to accept up to 25 nonzero numbers from the user. A zero terminates the input. Report

error if more than 25 numbers are given.

11–P3 Modify Program 11.4 to read marks from the user. The first number of the input indicates

the number of students in class (i.e., number of rows), and the next number represents

the number of tests given to the class (i.e., number of columns). Your program should be

able to handle up to 20 students and five tests. Report error when exceeding these limits.

466 Chapter 11 Addressing Modes

11–P4 Write a complete assembly language program to read two matrices A and B and display

the result matrix C, which is the sum of A and B. Note that the elements of C can be

obtained as

���� �℄ � ���� �℄ ����� �℄ �

Your program should consist of a main procedure that calls the read_matrix proce-

dure twice to read data for A and B. It should then call the matrix_add procedure,

which receives pointers to A, B, C, and the size of the matrices. Note that both A and B

should have the same size. The main procedure calls another procedure to display C.

11–P5 Write a procedure to perform multiplication of matrices A and B. The procedure should

receive pointers to the two input matrices (A of size ���, B of size �� �), the product

matrix C, and values �, �, and �. Also, the data for the two matrices should be obtained

from the user. Devise a suitable user interface to input these numbers.

11–P6 Modify the program of the last exercise to work on matrices stored in the column-major

order.

11–P7 Write a program to read a matrix (maximum size 10 � 10) from the user, and display the

transpose of the matrix. To obtain the transpose of matrix A, write rows of A as columns.

Here is an example:

If the input matrix is �
���

�� �� �	
�

�� �� 	
 ��

�� �	
� �

�� 	
 �� �

�
��� �

the transpose of the matrix is

�
���

�� �� �� ��

�� �� �	 	

�	 	

� ��

� �� �
 �

�
��� �

11–P8 Write a program to read a matrix (maximum size 10 � 15) from the user, and display

the subscripts of the maximum element in the matrix. Your program should consist of

two procedures: main is responsible for reading the input matrix and for displaying

the position of the maximum element. Another procedure mat_max is responsible for

finding the position of the maximum element. Parameter passing should be done via the

stack. For example, if the input matrix is

�
���

�� �� �	
�

�� �� 	
 ��

�� �	
� �

�� 	
 �� �

�
���

the output of the program should be

Section 11.8 Programming Exercises 467

The maximum element is at (2,3),

which points to the largest value 90.

11–P9 Write a program to read a matrix of integers, perform cyclic permutation of rows, and dis-

play the result matrix. Cyclic permutation of a sequence ��� ��� ��� � � � � ���� is defined

as ��� ��� � � � � ����� ��. Apply this process for each row of the matrix. Your program

should be able to handle up to 12 � 15 matrices. If the input matrix is

�
���

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� 	�

�
��� �

the permuted matrix is �
���

�� �� �� 	�

�� �� �� ��

�� �� �� ��

�� �� 	� ��

�
��� �

11–P10 Generalize the last exercise to cyclically permute by a user-specified number of elements.

11–P11 Write a complete assembly language program to do the following:

• Read the names of students in a class into a one-dimensional array.

• Read test scores of each student into a two-dimensional marks array.

• Output a letter grade for each student in the format:

student name letter grade

You can use the following information in writing your program:

• Assume that the maximum class size is 20.

• Assume that the class is given four tests of equal weight (i.e., 25 points each).

• Test marks are rounded to the nearest integer so you can treat them as integers.

• Use the following table to convert percentage marks (i.e, sum of all four tests) to a

letter grade:

Marks range Grade

85–100 A

70–84 B

60–69 C

50–59 D

0–49 F

468 Chapter 11 Addressing Modes

11–P12 Modify the program for the last exercise to also generate a class summary stating the

number of students receiving each letter grade in the following format:

A = number of students receiving A,

B = number of students receiving B,

C = number of students receiving C,

D = number of students receiving D,

F = number of students receiving F.

11–P13 If we are given a square matrix (i.e., a matrix with the number of rows equal to the

number of columns), we can classify it as the diagonal matrix if only its diagonal elements

are nonzero; as an upper triangular matrix if all the elements below the diagonal are 0;

and as a lower triangular matrix if all elements above the diagonal are 0. Some examples

are:

Diagonal matrix: �
���

�� � � �

� �� � �

� � �� �

� � � ��

�
��� �

Upper triangular matrix: �
���

�� �� �� ��

� �� 	� ��

� � �� ��

� � � ��

�
��� �

Lower triangular matrix: �
���

�� � � �

		 �� � �

�� �� �� �

�� �� �� �	

�
��� �

Write an assembly language program to read a matrix and output the type of matrix.

11–P14 The Fibonacci function is defined as

fib(1) = 1,

fib(2) = 1,

fib(�) = fib(�� �) + fib(�� �) for � � �.

We have written iterative versions of this function in Chapter 10 (see page 422). Write

a program to recursively compute fib(�). Your main program should request a positive

integer � from the user and output fib(�). If the user enters a negative number, prompt

her to try again.

Section 11.8 Programming Exercises 469

11–P15 Ackermann’s function ������ is defined for � � � and � � � as

���� �� = � � � for � � �,

���� �� = ���� �� �� for � � �,

������ = ���� �� ������ ��� for � � �� � � �.

Write a recursive procedure to compute this function. Your main program should handle

the user interface to request � and � and display the final result.

11–P16 Write a program to solve the Towers of Hanoi puzzle. The puzzle consists of three pegs

and � disks. Disk 1 is smaller than disk 2, which is smaller than disk 3, and so on. Disk

� is the largest. Initially, all � disks are on peg 1 such that the largest disk is at the

bottom and the smallest at the top (i.e., in the order � , � � �, � � �, 3, 2, 1 from bottom to

top). The problem is to move these � disks from peg 1 to peg 2 under two constraints:

You can move only one disk at a time and you must not place a larger disk on top of a

smaller one. We can express a solution to this problem by using recursion. The function

move(N, 1, 2, 3)

moves� disks from peg 1 to peg 2 using peg 3 as the extra peg. There is a simple solution

if you concentrate on moving the bottom disk on peg 1. The task move(N, 1, 2, 3)
is equivalent to

move(N-1, 1, 3, 2)

move the remaining disk from peg 1 to 2

move(N-1, 3, 2, 1)

Even though the task appears to be complex, we write a very elegant and simple solution

to solve this puzzle. Here is a version in C.

void move (int n, int x, int y, int z)

{

if (n == 1)

printf("Move the top disk from peg %d to %d\n", x, y};

else

move(n-1, x, z, y)

printf("Move the top disk from peg %d to %d\n", x, y};

move(n-1, z, y, x)

}

int main (void)

{

int disks;

scanf("%d", &disks);

move(disks, 1, 2, 3);

}

Test your program for a very small number of disks (say, less than 6). Even for 64 disks,

it takes hundreds of thousands of years on whatever PC you have!

Chapter 12

Selected Pentium

Instructions

Objectives
• To discuss how status flags are affected by arithmetic and logic instructions;

• To present the Pentium’s multiplication and division instructions;

• To describe conditional execution instructions and how they are useful in implementing

high-level language decision structures;

• To show how logical expressions are implemented in high-level languages;

• To give details about the Pentium’s string processing instructions.

We discussed several Pentium instructions in the last three chapters. We now look at some of

the remaining instructions. We start this chapter with a detailed discussion of the six status

flags—zero, carry, overflow, sign, parity, and auxiliary flags. We have already used these flags

informally. The discussion here will help us understand how some of the conditional jump in-

structions are executed by the Pentium. The next section deals with multiplication and division

instructions. The Pentium instruction set includes multiplication and division instructions for

both signed and unsigned integers.

We have already covered the basic jump instructions in Chapter 9. In Section 12.3, we look

at indirect and conditional jump instructions. The following section discusses how selection

and iterative constructs of high-level languages are implemented using assembly instructions.

Section 12.5 gives details on implementing logical expressions in high-level languages. In addi-

tion to the logical instructions discussed in Chapter 9, the Pentium provides several bit test and

scan instructions. These instructions are briefly reviewed in Section 12.6. The following section

presents several examples to illustrate the use of the instructions discussed in this chapter.

471

472 Chapter 12 Selected Pentium Instructions

The Pentium instruction set contains several string instructions. These are discussed in

Section 12.8.2. In this section, we also look at repeat prefixes that facilitate block movement of

data. Some string processing examples are given in Section 12.8.3. The chapter concludes with

a summary.

12.1 Status Flags
Six flags in the flags register, described in Chapter 7, are used to monitor the outcome of the

arithmetic, logical, and related operations. By now you are familiar with the purpose of some

of these flags. The six flags are the zero flag (ZF), carry flag (CF), overflow flag (OF), sign flag

(SF), auxiliary flag (AF), and parity flag (PF). For obvious reasons, these six flags are called the

status flags.

When an arithmetic operation is performed, some of the flags are updated (set or cleared)

to indicate certain properties of the result of that operation. For example, if the result of an

arithmetic operation is zero, the zero flag is set (i.e., ZF = 1). Once a flag is set or cleared, it

remains in that state until another instruction changes its value.

Note that not all assembly language instructions affect all the flags. Some instructions affect

all six status flags, whereas other instructions affect none of the flags. And there are other

instructions that affect only a subset of these flags. For example, the arithmetic instructions

add and sub affect all six flags, but inc and dec instructions affect all but the carry flag. The

mov, push, and pop instructions, on the other hand, do not affect any of the flags.

Here is an example illustrating how the zero flag changes with instruction execution:

;initially, assume that ZF is 0

mov AL,55H ; ZF is still 0

sub AL,55H ; result is zero

; Thus, ZF is set (ZF = 1)

push BX ; ZF remains 1

mov BX,AX ; ZF remains 1

pop DX ; ZF remains 1

mov CX,0 ; ZF remains 1

inc CX ; result is 1

; Thus, ZF is cleared (ZF = 0)

As we show later, these flags can be tested either individually or in combination to affect the

flow control of a program.

In understanding the workings of these status flags, you should know how signed and un-

signed integers are represented. At this point, it is a good idea to review the material presented

in Appendix A.

12.1.1 The Zero Flag

The purpose of the zero flag is to indicate whether the execution of the last instruction that

affects the zero flag has produced a zero result. If the result was zero, ZF = 1; otherwise, ZF = 0.

This is slightly confusing! You may want to take a moment to see through the confusion.

Section 12.1 Status Flags 473

Although it is fairly intuitive to understand how the sub instruction affects the zero flag, it

is not so obvious with other instructions. The following examples show some typical cases.

The code

mov AL,0FH

add AL,0F1H

sets the zero flag (i.e., ZF = 1). This is because, after executing the add instruction, the AL

would contain zero (all eight bits zero). In a similar fashion, the code

mov AX,0FFFFH

inc AX

also sets the zero flag. The same is true for the following code:

mov AX,1

dec AX

Related Instructions

jz jump if zero (jump is taken if ZF = 1)

jnz jump if not zero (jump is taken if ZF = 0)

Usage

There are two main uses for the zero flag: testing for equality, and counting to a preset value.

Testing for Equality: The cmp instruction is often used to do this. Recall that cmp performs

subtraction. The main difference between cmp and sub is that cmp does not store the result of

the subtract operation. cmp performs the subtract operation only to set the status flags.

Here are some examples:

cmp char,’$’ ; ZF = 1 if char is $

Similarly, two registers can be compared to see if they both have the same value.

cmp AX,BX

Counting to a Preset Value: Another important use of the zero flag is shown below. Consider

the following code:

sum := 0

for (i = 1 to M)

for (j = 1 to N)

sum := sum + 1

end for

end for

474 Chapter 12 Selected Pentium Instructions

The equivalent code in the assembly language is written as follows (assume that both �

and � are � 1):

sub AX,AX ; AX = 0 (AX stores sum)

mov DX,M

outer_loop:

mov CX,N

inner_loop:

inc AX

loop inner_loop

dec DX

jnz outer_loop

exit_loops:

mov sum,AX

In the above example, the inner loop count is placed in the CX register so that we can use

the loop instruction to iterate. Incidentally, the loop instruction does not affect any of the

flags.

Since we have two nested loops to handle, we are forced to use another register to keep

the outer loop count. We use the dec instruction and the zero flag to see if the outer loop has

executed� times. This code is more efficient than initializing the DX register to one and using

the code

inc DX

cmp DX,M

jle outer_loop

in place of the dec/jnz instruction combination.

12.1.2 The Carry Flag

The carry flag records the fact that the result of an arithmetic operation on unsigned numbers is

out of range (too big or too small) to fit the destination register or memory location. Consider

the example

mov AL,0FH

add AL,0F1H

The addition of 0FH and F1H would produce a result of 100H that requires 9 bits to store, as

shown below:

00001111B (0FH = 15D)

11110001B (F1H = 241D)

1 00000000B (100H = 256D)

Since the destination register AL is only 8 bits long, the carry flag would be set to indicate that

the result is too big to be held in AL.

Section 12.1 Status Flags 475

To understand when the carry flag would be set, it is helpful to remember the range of

unsigned numbers that can be represented. The range is given below for easy reference:

Size (bits) Range

8 0 to 255

16 0 to 65,535

32 0 to 4,294,967,295

Any operation that produces a result that is outside this range sets the carry flag to indicate

an underflow or overflow condition. It is obvious that any negative result is out of range, as

illustrated by the following example:

mov AX,12AEH ;AX = 4782D

sub AX,12AFH ;AX = 4782D - 4783D

Executing the above code will set the carry flag because 12AFH� 12AFH produces a nega-

tive result (i.e., the subtract operation generates a borrow), which is too small to be represented

using unsigned numbers. Thus, the carry flag is set to indicate this underflow condition.

Executing the code

mov AL,0FFH

inc AL

or the code

mov AX,0

dec AX

does not set the carry flag as we might expect because inc and dec instructions do not affect

the carry flag.

Related Instructions

Conditional jumps are as follows:

jc jump if carry (jump is taken if CF = 1)

jnc jump if not carry (jump is taken if CF = 0)

Usage

The carry flag is useful in several situations:

• To propagate carry or borrow in multiword addition or subtraction operations.

• To detect overflow/underflow conditions.

• To test a bit using the shift/rotate family of instructions.

476 Chapter 12 Selected Pentium Instructions

To Propagate Carry/Borrow: The assembly language arithmetic instructions can operate on

8-, 16-, or 32-bit data. If two operands, each more than 32 bits, are to be added, the addition has

to proceed in steps by adding two 32-bit numbers at a time. The following example illustrates

how we can add two 64-bit unsigned numbers. For convenience, we use the hex representation.

1 � carry from lower 32 bits

� = 3710 26A8 1257 9AE7H
� = 489B A321 FE60 4213H

7FAB C9CA 10B7 DCFAH

To accomplish this, we need two addition operations. The first operation adds the least

significant (lower half) 32 bits of the two operands. This produces the lower half of the result.

This addition operation could produce a carry that should be added to the upper 32 bits of the

input. The other add operation performs the addition of the most significant (upper half) 32

bits and any carry generated by the first addition. This operation produces the upper half of the

64-bit result. An example to add two 64-bit numbers is given on page 343.

Similarly, adding two 128-bit numbers involves a four-step process, where each step adds

two 32-bit words. The sub and other operations also require multiple steps when the data size

is more than 32 bits.

To Detect Overflow/Underflow Conditions: In the previous example of � � �, if the second

addition produces a carry, the result is too big to be held by 64 bits. In this case, the carry flag

would be set to indicate the overflow condition. It is up to the programmer to handle such error

conditions.

Testing a Bit: When using shift and rotate instructions (introduced in Chapter 9), the bit that

has been shifted or rotated out is captured in the carry flag. This bit can be either the most

significant bit (in the case of a left-shift or rotate), or the least significant bit (in the case of

a right-shift or rotate). Once the bit is in the carry flag, conditional execution of the code is

possible using conditional jump instructions that test the carry flag: jc (jump on carry) and

jnc (jump if no carry).

Why inc and dec Do Not Affect the Carry Flag

We have stated that the inc and dec instructions do not affect the carry flag. The rationale for

this is twofold:

1. The instructions inc and dec are typically used to maintain iteration or loop count.

Using 32 bits, the number of iterations can be as high as 4,294,967,295. This number is

sufficiently large for most applications. What if we need a count that is greater than this?

Do we have to use add instead of inc? This leads to the second, and the main, reason.

2. The condition detected by the carry flag can also be detected by the zero flag. Why?

Because inc and dec change the number only by 1. For example, suppose that the ECX

register has reached its maximum value 4,294,967,295 (FFFFFFFFH). If we then execute

Section 12.1 Status Flags 477

inc ECX

we would normally expect the carry flag to be set to 1. However, we can detect this

condition by noting that ECX = 0, which sets the zero flag. Thus, setting the carry flag is

really redundant for these instructions.

12.1.3 The Overflow Flag

The overflow flag, in some respects, is the carry flag counterpart for the signed number arith-

metic. The main purpose of the overflow flag is to indicate whether an operation on signed

numbers has produced a result that is out of range. It is helpful to recall the range of numbers

that can be represented using 8, 16, and 32 bits. For your convenience, the range of the numbers

is given below:

Size (bits) Range

8 �128 to +127

16 �32,768 to +32,767

32 �2,147,483,648 to +2,147,483,647

Executing the code

mov AL,72H ; 72H = 114D

add AL,0EH ; 0EH = 14D

will set the overflow flag to indicate that the result 80H (128D) is too big to be represented

as an 8-bit signed number. The AL register will contain 80H, the correct result if the two 8-bit

operands are treated as unsigned numbers. But AL contains an incorrect answer for 8-bit signed

numbers (80H represents �128 in signed representation, not +128 as required).

Here is another example that uses the sub instruction. The AX register is initialized to �5,

which is FFFBH in 2’s complement representation using 16 bits.

mov AX,0FFFBH ; AX = -5

sub AX,7FFDH ; subtract 32,765 from AX

Execution of the above code will set the overflow flag as the result

(�5)�(32,765) = �32,770,

which is too small to be represented as a 16-bit signed number.

Note that the result will not be out of range (and hence the overflow flag will not be set)

when we are adding two signed numbers of opposite sign or subtracting two numbers of the

same sign.

Signed or Unsigned: How Does the System Know?

The values of the carry and overflow flags depend on whether the operands are unsigned or

signed numbers. Given that a bit pattern can be treated both as representing a signed and an

478 Chapter 12 Selected Pentium Instructions

unsigned number, a question that naturally arises is: How does the system know how your

program is interpreting a given bit pattern? The answer is that the processor does not have a

clue. It is up to our program logic to interpret a given bit pattern correctly. The processor,

however, assumes both interpretations and sets the carry and overflow flags. For example, when

executing

mov AL,72H

add AL,0EH

the processor treats 72H and 0EH as unsigned numbers. And since the result 80H (128) is

within the range of 8-bit unsigned numbers (0 to 255), the carry flag is cleared (i.e., CF = 0). At

the same time, 72H and 0EH are also treated as representing signed numbers. Since the result

80H (128) is outside the range of 8-bit signed numbers (�128 to +127), the overflow flag is set.

Thus, after executing the above two lines of code, CF = 0 and OF = 1. It is up to our program

logic to take whichever flag is appropriate. If you are indeed representing unsigned numbers,

disregard the overflow flag. Since the carry flag indicates a valid result, no exception handling

is needed.

mov AL,72H

add AL,0EH

jc overflow

no_overflow:

(no overflow code here)

. . .

overflow:

(overflow code here)

. . .

If, on the other hand, 72H and 0EH are representing 8-bit signed numbers, we can disregard

the carry flag value. Since the overflow flag is 1, our program will have to handle the overflow

condition.

mov AL,72H

add AL,0EH

jo overflow

no_overflow:

(no overflow code here)

. . .

overflow:

(overflow code here)

. . .

Related Instructions

Conditional jumps are as follows:

Section 12.1 Status Flags 479

jo jump on overflow (jump is taken if OF = 1)

jno jump on no overflow (jump is taken if OF = 0)

In addition, a special software interrupt instruction

into interrupt on overflow

is provided to test the overflow flag. Interrupts are discussed in Chapter 20.

Usage

The main purpose of the overflow flag is to indicate whether an arithmetic operation on signed

numbers has produced an out-of-range result. The overflow flag is also affected by shift, mul-

tiply, and divide operations. More details on some of these instructions can be found in later

sections of this chapter.

12.1.4 The Sign Flag

As the name implies, the sign flag indicates the sign of the result of an operation. Therefore, it

is useful only when dealing with signed numbers. Recall that the most significant bit is used to

represent the sign of a number: 0 for positive numbers and 1 for negative numbers. The sign

flag gets a copy of the sign bit of the result produced by arithmetic and related operations. The

following sequence of instructions

mov AL,15

add AL,97

will clear the sign flag (i.e., SF = 0) because the result produced by the add instruction is a

positive number: 112D (which in binary is 01110000, where the leftmost bit representing the

sign is zero).

The result produced by

mov AL,15

sub AL,97

is a negative number and sets the sign flag to indicate this fact. Remember that negative numbers

are represented in 2s complement notation (see Appendix A). As discussed in Appendix A, the

subtract operation can be treated as the addition of the corresponding negative number. Thus,

15 � 97 is treated as 15 � (�97), where, as usual, �97 is expressed in 2s complement form.

Therefore, after executing the above two instructions, the AL register contains AEH, as shown

below:

00001111B (8-bit signed form of 15)

+ 10011111B (8-bit signed number for �97)

10101110B

Since the sign bit of the result is 1, the result is negative and is in 2s complement form. You

can easily verify that AEH is the 8-bit signed form of �82, which is the correct answer.

480 Chapter 12 Selected Pentium Instructions

Related Instructions

Conditional jumps are as follows:

js jump on sign (jump is taken if SF = 1)

jns jump on no sign (jump is taken if SF = 0)

The js instruction causes the jump if the last instruction that updated the sign flag produced a

negative result. The jns instruction causes the jump if the result was nonnegative.

Usage

The main use of the sign flag is to test the sign of the result produced by arithmetic and related

instructions. Another use for the sign flag is in implementing counting loops that should iterate

until (and including) the control variable is zero. For example, consider the following code:

for (i = M downto 0)

�loop body�

end for

This can be implemented without using a cmp instruction as follows:

mov CX,M

for_loop:

. . .

<loop body>

. . .

dec CX

jns for_loop

If we do not use the jns instruction, we have to use

cmp CX,0

jl for_loop

in its place.

From the user point of view, the sign bit of a number can be easily tested by using a logical

or shift instruction. Compared to the other three flags we have discussed so far, the sign flag is

used relatively infrequently in user programs. However, the processor uses the sign flag when

executing conditional jump instructions on signed numbers (details are in Section 12.3.2 on

page 500).

12.1.5 The Auxiliary Flag

The auxiliary flag indicates whether an operation has produced a result that has generated a

carry out of or a borrow into the low-order four bits of 8-, 16-, or 32-bit operands. In computer

jargon, four bits are referred to as a nibble. The auxiliary flag is set if there is such a carry or

borrow; otherwise it is cleared.

In the example

Section 12.1 Status Flags 481

mov AL,43

add AL,94

the auxiliary flag is set because there is a carry out of bit 3, as shown below:

1 � carry generated from lower to upper nibble

43D = 00101011B

94D = 01011110B

137D = 10001001B

You can verify that executing the following code will clear the auxiliary flag:

mov AL,43

add AL,84

Since the following instruction sequence

mov AL,43

sub AL,92

generates a borrow into the low-order 4 bits, the auxiliary flag is set. On the other hand, the

instruction sequence

mov AL,43

sub AL,87

clears the auxiliary flag.

Related Instructions and Usage

There are no conditional jump instructions that test the auxiliary flag. However, arithmetic

operations on numbers expressed in decimal form or binary coded decimal (BCD) form use the

auxiliary flag. Some related instructions are as follows:

aaa ASCII adjust for addition

aas ASCII adjust for subtraction

aam ASCII adjust for multiplication

aad ASCII adjust for division

daa Decimal adjust for addition

das Decimal adjust for subtraction

For details on these instructions and BCD numbers, see Appendices A and I.

12.1.6 The Parity Flag

This flag indicates the parity of the 8-bit result produced by an operation; if this result is 16 or

32 bits long, only the lower-order 8 bits are considered to set or clear the parity flag. The parity

flag is set if the byte contains an even number of 1 bits; if there are an odd number of 1 bits, it

is cleared. In other words, the parity flag indicates an even parity condition of the byte.

Thus, executing the code

482 Chapter 12 Selected Pentium Instructions

mov AL,53

add AL,89

will set the parity flag because the result contains an even number of 1s (four 1 bits), as shown

below:

53D = 00110101B
89D = 01011001B

142D = 10001110B

The instruction sequence

mov AX,23994

sub AX,9182

on the other hand, clears the parity flag, as the low-order 8 bits contain an odd number of 1s

(five 1 bits), as shown below:

23994D = 01011101 10111010B
+ �9182D = 11011100 00100010B

14813D = 00111001 11011100B

Related Instructions

Conditional jumps are as follows:

jp jump on parity (jump is taken if PF = 1)

jnp jump on no parity (jump is taken if PF = 0)

The jp instruction causes the jump if the last instruction that updated the parity flag produced

an even parity byte; the jnp instruction causes the jump for an odd parity byte.

Usage

This flag is useful for writing data encoding programs. As a simple example, consider trans-

mission of data via modems using the 7-bit ASCII code. To detect simple errors during data

transmission, a single parity bit is added to the 7-bit data. Assume that we are using even parity

encoding. That is, every 8-bit character code transmitted will contain an even number of 1 bits.

Then, the receiver can count the number of 1s in each received byte and flag transmission error

if the byte contains an odd number of 1 bits. Such a simple encoding scheme can detect single

bit errors (in fact, it can detect an odd number of single bit errors).

To encode, the parity bit is set or cleared depending on whether the remaining 7 bits contain

an odd or even number of 1s, respectively. For example, if we are transmitting character A,

whose 7-bit ASCII representation is 41H, we set the parity bit to 0 so that there is an even

number of 1s. In the following examples, the parity bit is the leftmost bit:

A = 01000001

Section 12.1 Status Flags 483

Table 12.1 Examples illustrating the effect on flags

Code AL CF ZF SF OF PF

Example 1 mov AL,-5
sub AL,123 80H 0 0 1 0 0

Example 2 mov AL,-5
sub AL,124 7FH 0 0 0 1 0

Example 3 mov AL,-5
add AL,132 7FH 1 0 0 1 0

add AL,1 80H 0 0 1 1 0

Example 4 sub AL,AL 00H 0 1 0 0 1

Example 5 mov AL,127
add AL,129 00H 1 1 0 0 1

For character C, the parity bit is set because its 7-bit ASCII code is 43H.

C = 11000011

Here is a procedure that encodes the 7-bit ASCII character code present in the AL register.

The most significant bit (i.e., leftmost bit) is assumed to be zero.

parity_encode PROC

shl AL

jp parity_zero

stc ; CF = 1

jmp move_parity_bit

parity_zero:

clc ; CF = 0

move_parity_bit:

rcr AL

parity_encode ENDP

12.1.7 Flag Examples

Here we present two examples to illustrate how the status flags are affected by the arithmetic

instructions. You can verify the answers by using a debugger (see Appendix D for information

on debuggers).

Example 12.1 Add/subtract example.

Table 12.1 gives some examples of add and sub instructions and how they affect the flags.

Updating of ZF, SF, and PF is easy to understand. The ZF is set whenever the result is zero; SF

484 Chapter 12 Selected Pentium Instructions

is simply a copy of the most significant bit of the result; and PF is set whenever there are an

even number of 1s in the result. In the rest of this section, we focus on the carry and overflow

flags.

Example 1 performs �5 � 123. Note that �5 is represented internally as FBH, which is

treated as 251 in unsigned representation. Subtracting 123 (=7BH) leaves 80H (=128) in AL.

Since the result is within the range of unsigned 8-bit numbers, CF is cleared. For the overflow

flag, the operands are interpreted as signed numbers. Since the result is �128, OF is also

cleared.

Example 2 subtracts 124 from �5. For reasons discussed in the previous example, the CF

is cleared. The OF, however, is set because the result is �129, which is outside the range of

signed 8-bit numbers.

In Example 3, the first add statement adds 132 to �5. However, when treating them as

unsigned numbers, 132 is actually added to 251, which results in a number that is greater than

255D. Therefore, CF is set. When treating them as signed numbers, 132 is internally represented

as 84H (=�124). Therefore, the result �129 is smaller than �128. Therefore, the OF is also

set. After executing the first add instruction, AL will have 7FH. The second add instruction

increments 7FH. This sets the OF, but not CF.

Example 4 causes the result to be zero irrespective of the contents of the AL register. This

sets the zero flag. Also, since the number of 1s is even, PF is also set in this example.

The last example adds 127D to 129D. Treating them as unsigned numbers, the result 256D

is just outside the range, and sets CF. However, if we treat them as representing signed numbers,

129D is stored internally as 81H (=�127). The result, therefore, is zero and the OF is cleared.

Example 12.2 A compare example.

This example shows how the status flags are affected by the compare instruction discussed in

Chapter 9 on page 344. Table 12.2 gives some examples of executing the

cmp AL,DL

instruction. We leave it as an exercise to verify (without using a debugger) the flag values.

12.2 Arithmetic Instructions
For the sake of completeness, we list the arithmetic instructions supported by the Pentium:

Addition: add, adc, inc
Subtraction: sub, sbb, dec, neg, cmp
Multiplication: mul, imul
Division: div, idiv
Related instructions: cbw, cwd, cdq, cwde, movsx, movzx

We have already looked at the addition and subtraction instructions in Chapter 9. Here we

discuss the remaining instructions. There are a few other arithmetic instructions that operate on

decimal and BCD numbers. Details of these instructions can be found in Appendix I.

Section 12.2 Arithmetic Instructions 485

Table 12.2 Some examples of cmp AL,DL

AL DL CF ZF SF OF PF AF

56 57 1 0 1 0 1 1

200 101 0 0 0 1 1 0

101 200 1 0 1 1 0 1

200 200 0 1 0 0 1 0�105 �105 0 1 0 0 1 0�125 �124 1 0 1 0 1 1�124 �125 0 0 0 0 0 0

12.2.1 Multiplication Instructions

Multiplication is more complicated than the addition and subtraction operations for two reasons:

1. First, multiplication produces double-length results. That is, multiplying two �-bit values

produces a ��-bit result. To see that this is indeed the case, consider multiplying two

8-bit numbers. Assuming unsigned representation, FFH (255D) is the maximum number

that the source operands can take. Thus, the multiplication produces the maximum result,

as shown below:

11111111 � 11111111 � 11111110 11111111.

(255D) (255D) (65025D)

Similarly, multiplication of two 16-bit numbers requires 32 bits to store the result, and

two 32-bit numbers require 64 bits for the result.

2. Second, unlike the addition and subtraction operations, multiplication of signed numbers

should be treated differently from that of unsigned numbers. This is because the resulting

bit pattern depends on the type of input, as illustrated by the following example:

We have just seen that treating FFH as the unsigned number results in multiplying 255D

� 255D.

11111111 � 11111111 � 11111110 11111111.

Now, what if FFH is representing a signed number? In this case, FFH is representing

�1D and the result should be 1, as shown below:

11111111 � 11111111 = 00000000 00000001.

As you can see, the resulting bit patterns are different for the two cases.

486 Chapter 12 Selected Pentium Instructions

Thus, the Pentium provides two multiplication instructions: for unsigned numbers and for

signed numbers. We first discuss the unsigned multiplication instruction, which has the format

mul source

The source operand can be in a general-purpose register or in memory. Immediate operand

specification is not allowed. Thus,

mul 10 ; invalid

is an invalid instruction. The mul instruction works on 8-, 16-, and 32-bit unsigned numbers.

But where is the second operand? The Pentium assumes that it is in the accumulator. If the

source operand is a byte, it is multiplied by the contents of the AL register. The 16-bit result is

placed in the AX register, as shown below:

8-bit

source
AL AH AL

High-order 8 bits Low-order 8 bits

If the source operand is a word, it is multiplied by the contents of the AX register and the

doubleword result is placed in DX:AX, with the AX register holding the lower-order 16 bits, as

shown below:

source

16-bit
AX DX AX

High-order 16 bits Low-order 16 bits

If the source operand is a doubleword, it is multiplied by the contents of the EAX register

and the 64-bit result is placed in EDX:EAX, with the EAX register holding the lower-order 32

bits, as shown below:

EAX
source

32-bit
EDX EAX

High-order 32 bits Low-order 32 bits

The mul instruction affects all six status flags. However, it updates only the carry and

overflow flags. The remaining four flags are undefined. The carry and overflow flags are set if

the upper half of the result is nonzero; otherwise, they are both cleared.

Setting of the carry and overflow flags does not indicate an error condition. Instead, this

condition implies that AH, DX, or EDX contains significant digits of the result.

For example, the code

mov AL,10

mov DL,25

mul DL

Section 12.2 Arithmetic Instructions 487

will clear both the carry and overflow flags, as the result of the mul instruction is 250, which

can be stored in the AL register (and the AH register contains 00000000). On the other hand,

executing

mov AL,10
mov DL,26
mul DL

will set the carry and overflow flags indicating that the result is more than 255.

For signed numbers, we have to use the imul (integer multiplication) instruction, which

has the same format1 as the mul instruction

imul source

The behavior of the imul instruction is similar to that of the mul instruction. The only differ-

ence to note is that the carry and overflow flags are set if the upper half of the result is not the

sign extension of the lower half. To understand sign extension in signed numbers, consider the

following example. We know that �66 is represented using 8 bits as

10111110.

Now, suppose that we can use 16 bits to represent the same number. Using 16 bits, �66 is

represented as

1111111110111110.

The upper 8 bits are simply sign-extended (i.e., the sign bit is copied into these bits), and doing

so does not change the magnitude.

Following the same logic, the positive number 66, represented using 8 bits as

01000010

can be sign-extended to 16 bits by adding eight leading zeros as shown below:

0000000001000010.

As with the mul instruction, setting of the carry and overflow flags does not indicate an

error condition; it simply indicates that the result requires double length.

Here are some examples of the imul instruction. Execution of

mov DL,0FFH ; DL = -1

mov AL,42H ; AL = 66

imul DL

causes the result

1The imul instruction supports several other formats, including specification of an immediate value. We do not discuss these

details; see Intel’s Pentium Developer’s Manual.

488 Chapter 12 Selected Pentium Instructions

1111111110111110

to be placed in the AX register. The carry and overflow flags are cleared, as AH contains the

sign extension of the AL value. This is also the case for the following code:

mov DL,0FFH ; DL = -1

mov AL,0BEH ; AL = -66

imul DL

which produces the result

0000000001000010 (+66)

in the AX register. Again, both the carry and overflow flags are cleared.

In contrast, both flags are set for the following code:

mov DL,25 ; DL = 25

mov AL,0F6H ; AL = -10

imul DL

which produces the result

1111111100000110 (�250).

12.2.2 Division Instructions

The division operation is even more complicated than multiplication for two reasons:

1. Division generates two result components: a quotient and a remainder.

2. In multiplication, by using double-length registers, overflow never occurs. In division,

divide overflow is a real possibility. The Pentium generates a special software interrupt

when a divide overflow occurs.

As with multiplication, two versions of the divide instruction are provided to work on unsigned

and signed numbers.

div source (unsigned)

idiv source (signed)

The source operand specified in the instruction is used as the divisor. As with the multiplication

instruction, both division instructions can work on 8-, 16-, or 32-bit numbers. All six status flags

are affected and are undefined. None of the flags are updated. We first consider the unsigned

version.

If the source operand is a byte, the dividend is assumed to be in the AX register and 16 bits

long. After division, the quotient is returned in the AL register and the remainder in the AH

register, as shown below:

Section 12.2 Arithmetic Instructions 489

16-bit dividend

and

AX

Divisor

source

Quotient Remainder

8-bit

AL AH

For word operands, the dividend is assumed to be 32 bits long and in DX:AX (upper 16 bits

in DX). After the division, the 16-bit quotient will be in the AX and the 16-bit remainder in the

DX, as shown below:

AX

AX

Quotient

DX

Remainder

source

16-bit

Divisor

and

DX

32-bit dividend

For 32-bit operands, the dividend is assumed to be 64 bits long and in EDX:EAX. After the

division, the 32-bit quotient will be in the EAX and the 32-bit remainder in the EDX, as shown

below:

and

EDX

Divisor

source

Quotient RemainderEAX

EAX EDX

32-bit

64-bit dividend

Example 12.3 8-bit division.

Consider dividing 251 by 12 (i.e., 251/12), which produces 20 as the quotient and 11 as the

remainder. The code

mov AX,251

mov CL,12

div CL

leaves 20 (14H) in the AL register and 11 (0BH) in the AH register. �

Example 12.4 16-bit division.

Consider the 16-bit division: 5147/300. Executing the code

490 Chapter 12 Selected Pentium Instructions

xor DX,DX ; clear DX

mov AX,141BH ; AX = 5147D

mov CX,012CH ; CX = 300D

div CX

leaves 17 (12H) in the AX and 47 (2FH) in the DX. �

Now let us turn our attention to the signed division operation. The idiv instruction has the

same format and behavior as the unsigned div instruction including the registers used for the

dividend, quotient, and remainder.

The idiv instruction introduces a slight complication when the dividend is a negative num-

ber. For example, assume that we want to perform the 16-bit division: �251/12. Since �251

= FF14H, the AX register is set to FF14H. However, the DX register has to be initialized to

FFFFH by sign-extending the AX register. If the DX is set to 0000H as we did in the unsigned

div operation, the dividend 0000FF14H is treated as a positive number 65300D. The 32-bit

equivalent of �251 is FFFFFF14H. If the dividend is positive, DX should have 0000H.

To aid sign extension in instructions such as idiv, the Pentium provides several instruc-

tions:

cbw (convert byte to word)

cwd (convert word to doubleword)

cdq (convert doubleword to quadword)

These instructions take no operands. The first instruction can be used to sign-extend the AL

register into the AH register and is useful with the 8-bit idiv instruction. The cwd instruction

sign extends the AX into the DX register and is useful with the 16-bit idiv instruction. The

cdq instruction sign extends the EAX into the EDX. In fact, both cwd and cdq use the same

opcode 99H, and the operand size determines whether to sign-extend the AX or EAX register.

For completeness, we mention three other related instructions. The cwde instruction sign

extends the AX into the EAX much as the cbw instruction. Just like the cwd and cdq, the same

opcode 98H is used for both cbw and cwde instructions. The operand size determines which

one should be applied. Note that cwde is different from cwd in that the cwd instruction uses

the DX:AX register pair, whereas cwde uses the EAX register as the destination.

The Pentium also provides the following two move instructions:

movsx dest,src (move sign-extended src to dest)

movzx dest,src (move zero-extended src to dest)

In both these instructions, dest has to be a register, whereas the src operand can be in a

register or memory. If the source is an 8-bit operand, the destination has to be either a 16- or

32-bit register. If the source is a 16-bit operand, the destination must be a 32-bit register.

Here are some examples of the idiv instruction:

Example 12.5 Signed 8-bit division.

The following sequence of instructions will perform the signed 8-bit division �95/12:

Section 12.2 Arithmetic Instructions 491

mov AL,-95

cbw ; AH = FFH

mov CL,12

idiv CL

The idiv instruction will leave �7 (F9H) in the AL and �11 (F5H) in the AH. �

Example 12.6 Signed 16-bit division.

Suppose that we want to divide �5147 by 300. The sequence

mov AX,-5147

cwd ; DX = FFFFH

mov CX,300

idiv CX

will perform this division and leave �17 (FFEFH) in AX and �47 (FFD1H) in DX as the

remainder. �

Use of Shifts for Multiplication and Division

Shifts are more efficient to execute than the corresponding multiplication or division instruc-

tions. As an example, consider multiplying a signed 16-bit number in the AX register by 32.

Using the mul instruction, we can write

; multiplicand is assumed to be in AX

mov CX,32 ; multiplier in CX

mul CX

This two-instruction sequence takes 12 clock cycles. Of this, mul takes about 11 clock cycles.

Let us look at how we can perform this multiplication with the sal instruction.

; multiplicand is assumed to be in AX

sal AX,5 ; shift left by 5 bit positions

This code executes in just one clock cycle. This code also requires fewer bytes to encode.

Whenever possible, use the shift instructions to perform multiplication and division by a power

of two.

12.2.3 Application Examples

To demonstrate the application of the arithmetic instructions and flags, we write two procedures

to input and output signed 8-bit integers in the range of �128 to +127. These procedures are as

follows:

GetInt8 Reads a signed 8-bit integer from the keyboard into AL

register;

PutInt8 Displays a signed 8-bit integer that is in AL register.

The following two subsections describe these procedures in detail.

492 Chapter 12 Selected Pentium Instructions

PutInt8 Procedure

Our objective here is to write a procedure that displays the signed 8-bit integer that is in the

AL register. In order to do this, we have to separate individual digits of the number to be

displayed and convert them to their ASCII representation. The steps involved are illustrated by

the following example, which assumes that AL has 108.

separate 1� convert to ASCII� 31H� display

separate 0� convert to ASCII� 30H� display

separate 8� convert to ASCII� 38H� display

Separating individual digits is the heart of the procedure. This step is surprisingly sim-

ple! All we have to do is repeatedly divide the number by 10, as shown below (for a related

discussion, see Appendix A):

Quotient Remainder

108/10 = 10 8

10/10 = 1 0

1/10 = 0 1

The only problem with this step is that the digits come out in the reverse order. Therefore,

we need to buffer them before displaying. The pseudocode for the PutInt8 procedure is

shown below:

PutInt8 (number)

if (number is negative)

then

display ’�’ sign

number := �number �reverse sign�

end if

index := 0

repeat

quotient := number/10 �integer division�

remainder := number % 10 �% is modulo operator�

buffer[index] := remainder + 30H

�save the ASCII character equivalent of remainder�

index := index + 1

number := quotient

until (number = 0)

repeat

index := index � 1

display digit at buffer[index]

until (index = 0)

end PutInt8

Section 12.2 Arithmetic Instructions 493

Program 12.1 The PutInt8 procedure to display an 8-bit signed number (in getput.asm file)

1: ;---

2: ;PutInt8 procedure displays a signed 8-bit integer that is

3: ;in AL register. All registers are preserved.

4: ;---

5: PutInt8 PROC

6: enter 3,0 ; reserves 3 bytes of buffer space

7: push AX

8: push BX

9: push SI

10: test AL,80H ; negative number?

11: jz positive

12: negative:

13: PutCh ’-’ ; sign for negative numbers

14: neg AL ; convert to magnitude

15: positive:

16: mov BL,10 ; divisor = 10

17: sub SI,SI ; SI = 0 (SI points to buffer)

18: repeat1:

19: sub AH,AH ; AH = 0 (AX is the dividend)

20: div BL

21: ; AX/BL leaves AL = quotient & AH = remainder

22: add AH,’0’ ; convert remainder to ASCII

23: mov [BP+SI-3],AH ; copy into the buffer

24: inc SI

25: cmp AL,0 ; quotient = zero?

26: jne repeat1 ; if so, display the number

27: display_digit:

28: dec SI

29: mov AL,[BP+SI-3] ; display digit pointed by SI

30: PutCh AL

31: jnz display_digit ; if SI<0, done displaying

32: display_done:

33: pop SI ; restore registers

34: pop BX

35: pop AX

36: leave ; clears local buffer space

37: ret

38: PutInt8 ENDP

The PutInt8 procedure shown in Program 12.1 follows the logic of the pseudocode. Some

points to note are the following:

494 Chapter 12 Selected Pentium Instructions

• The buffer is considered as a local variable. Thus, we reserve three bytes on the stack

using the enter instruction (see line 6).

• The code

test AL,80H

jz positive

tests whether the number is negative or positive. Remember that the sign bit (the leftmost

bit) is 1 for a negative number.

• Reversal of sign is done by the

neg AL

instruction on line 14.

• Note that we have to initialize AH with 0 (line 19), as the div instruction assumes a

16-bit dividend in the AX register when the divisor is an 8-bit number.

• Conversion to ASCII character representation is done on line 22 using

add AH,’0’

• SI is used as the index into the buffer, which starts at [BP � 3]. Thus, [BP � SI � 3]

points to the current byte in the buffer (line 29).

• The repeat while condition (index � 0) is tested by

jnz display_digit

on line 31.

GetInt8 Procedure

The GetInt8 procedure reads a signed integer and returns the number in the AL register. Since

only 8 bits are used to represent the number, the range is limited to �128 to +127 (both inclu-

sive). The key part of the procedure converts a sequence of input digits received in character

form to its binary equivalent. The conversion process, which involves repeated multiplication

by 10, is illustrated for 158:

Input digit Numeric value Number = number * 10 � numeric value

Initial value — 0

’1’ (31H) 1 0 * 10 � 1 = 1

’5’ (35H) 5 1 * 10 � 5 = 15

’8’ (38H) 8 15 * 10 � 8 = 158

The pseudocode of the GetInt8 procedure is as follows:

Section 12.2 Arithmetic Instructions 495

GetInt8()
read input character into char

if ((char = ’�’) OR (char = ’+’))

then

sign := char

read the next character into char

end if

number := char � ’0’ �convert to numeric value�

count := 2 �number of remaining digits to read�

repeat

read the next character into char

if (char �� carriage return)

then

number := number * 10 + (char � ’0’)

else

goto convert_done
end if

count := count � 1

until (count � 0)

convert_done:
�check for out-of-range error�

if ((number � 128) OR ((number � 128) AND (sign �� ’�’)))

then

out of range error

set carry flag

else �number is OK�

clear carry flag

end if

if (sign = ’�’)

then

number = �number �reverse sign�

end if

end GetInt8

Program 12.2 The GetInt8 procedure to read a signed 8-bit integer (in getput.asm file)

1: ;---

2: ;GetInt8 procedure reads an integer from the keyboard and

3: ;stores its equivalent binary in AL register. If the number

4: ;is within -128 and +127 (both inclusive), CF is cleared;

5: ;otherwise, CF is set to indicate out-of-range error.

6: ;No error check is done to see if the input consists of

7: ;digits only. All registers are preserved except for AX.

496 Chapter 12 Selected Pentium Instructions

8: ;---

9: CR EQU 0DH

10:

11: GetInt8 PROC

12: push BX ; save registers

13: push CX

14: push DX

15: sub DX,DX ; DX = 0

16: sub BX,BX ; BX = 0

17: get_next_char:

18: GetCh DL ; read input from keyboard

19: cmp DL,’-’ ; is it negative sign?

20: je sign ; if so, save the sign

21: cmp DL,’+’ ; is it positive sign?

22: jne digit ; if not, process the digit

23: sign:

24: mov BH,DL ; BH keeps sign of input number

25: jmp get_next_char

26: digit:

27: sub AX,AX ; AX = 0

28: mov BL,10 ; BL holds the multiplier

29: sub DL,’0’ ; convert ASCII to numeric

30: mov AL,DL

31: mov CX,2 ; maximum two more digits to read

32: convert_loop:

33: GetCh DL

34: cmp DL,CR ; carriage return?

35: je convert_done ; if so, done reading the number

36: sub DL,’0’ ; else, convert ASCII to numeric

37: mul BL ; multiply total (in AL) by 10

38: add AX,DX ; and add the current digit

39: loop convert_loop

40: convert_done:

41: cmp AX,128

42: ja out_of_range ; if AX > 128, number out of range

43: jb number_OK ; if AX < 128, number is valid

44: cmp BH,’-’ ; if AX = 128, must be a negative;

45: jne out_of_range ; otherwise, an invalid number

46: number_OK:

47: cmp BH,’-’ ; number negative?

48: jne number_done ; if not, we are done

49: neg AL ; else, convert to 2’s complement

50: number_done:

51: clc ; CF = 0 (no error)

52: jmp done

Section 12.3 Conditional Execution 497

53: out_of_range:

54: stc ; CF = 1 (range error)

55: done:

56: pop DX ; restore registers

57: pop CX

58: pop BX

59: ret

60: GetInt8 ENDP

The assembly language code for the GetInt8 procedure is given in Program 12.2. The proce-

dure uses GetCh to read input digits into the DL register.

• The character input digits are converted to their numeric equivalent by subtracting ’0’ on

line 29.

• The multiplication is done on line 37, which produces a 16-bit result in AX. Note that

the numeric value of the current digit (in DX) is added (line 38) to detect the overflow

condition rather than the 8-bit value in DL.

• When the conversion is done, AX will have the absolute value of the input number.

Lines 41 to 45 perform the out-of-range error check. To do this check, the following

conditions are tested:

AX � 128 � out of range

AX = 128 � input must be a negative number to be a valid

number; otherwise, out of range

The ja (jump if above) and jb (jump if below) on lines 42 and 43 are conditional jumps

for unsigned numbers. These two instructions are discussed in the next section.

• If the input is a negative number, the value in AL is converted to 2’s complement repre-

sentation by using the neg instruction (line 49).

• The clc (clear CF) and stc (set CF) instructions are used to indicate the error condition

(lines 51 and 54).

12.3 Conditional Execution
In Chapter 9, we have presented some of the Pentium instructions that support conditional exe-

cution. In that chapter, we briefly discussed the direct unconditional jump and some conditional

jump instructions. Here we look at the indirect jump and the remaining conditional jump in-

structions.

12.3.1 Indirect Jumps

So far, we have used only the direct jump instruction. In direct jump, the target address (i.e., its

relative offset value) is encoded into the jump instruction itself (see Figure 9.1 on page 348).

We limit our discussion to jumps within a segment.

498 Chapter 12 Selected Pentium Instructions

In an indirect jump, the target address is specified indirectly either through memory or a

general-purpose register. Thus, we can write

jmp CX

if the CX register contains the offset of the target. In indirect jumps, the target offset is the

absolute value (unlike in direct jumps, which use relative offset values). We give an example

next.

Example 12.7 An example with an indirect jump.

The objective here is to show how we can use the indirect jump instruction. To this end, we

show a simple program that reads a digit from the user and prints the corresponding choice.

The listing is shown in Program 12.3. An input between 0 and 9 is valid. Any other input to

the program may cause the system to hang up or crash. Inputs 0 through 2 display the selection

class (see lines 23 to 25). Other inputs terminate the program.

In order to use the indirect jump, we have to build a jump table of pointers (see lines 11 to

20). The input digit is converted to act as an index into this table and is used by the indirect

jump instruction (line 40). Since the range of the index value is not checked, an input like ‘a’

produces an index value that is outside the range of the jump table. This can lead to unexpected

system behavior. In one of the exercises, you are asked to remedy this problem.

Program 12.3 An example demonstrating the use of the indirect jump

1: TITLE Sample indirect jump example IJUMP.ASM

2: COMMENT |

3: Objective: To demonstrate the use of indirect jump.

4: Input: Requests a digit character from the user.

5: WARNING: Typing any other character may

6: crash the system!

7: | Output: Appropriate class selection message.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: jump_table DW code_for_0 ; indirect jump pointer table

12: DW code_for_1

13: DW code_for_2

14: DW default_code ; default code for digits 3-9

15: DW default_code

16: DW default_code

17: DW default_code

18: DW default_code

19: DW default_code

20: DW default_code

21:

22: prompt_msg DB ’Type a character (digits ONLY): ’,0

Section 12.3 Conditional Execution 499

23: msg_0 DB ’Economy class selected.’,0

24: msg_1 DB ’Business class selected.’,0

25: msg_2 DB ’First class selected.’,0

26: msg_default DB ’Not a valid code!’,0

27:

28: .CODE

29: INCLUDE io.mac

30: main PROC

31: .STARTUP

32: read_again:

33: PutStr prompt_msg ; request a digit

34: sub AX,AX ; AX = 0

35: GetCh AL ; read input digit and

36: nwln

37: sub AL,’0’ ; convert to numeric equivalent

38: mov SI,AX ; SI is index into jump table

39: add SI,SI ; SI = SI * 2

40: jmp jump_table[SI] ; indirect jump based on SI

41: test_termination:

42: cmp AL,2

43: ja done

44: jmp read_again

45: code_for_0:

46: PutStr msg_0

47: nwln

48: jmp test_termination

49: code_for_1:

50: PutStr msg_1

51: nwln

52: jmp test_termination

53: code_for_2:

54: PutStr msg_2

55: nwln

56: jmp test_termination

57: default_code:

58: PutStr msg_default

59: nwln

60: jmp test_termination

61: done:

62: .EXIT

63: main ENDP

64: END main

500 Chapter 12 Selected Pentium Instructions

Multiway Conditional Statements

In high-level languages, a two- or three-way conditional execution can be easily expressed

by if statements. For large multiway conditional execution, writing the code with nested if
statements is tedious and errorprone. High-level languages such as C provide a special construct

for multiway conditional execution. In this section we look at the C switch construct.

Example 12.8 Multiway conditional execution in C.

Consider the following code:

switch (ch)

{

case ’0’:

count[0]++; /* increment count[0] */

break;

case ’1’:

count[1]++;

break;

case ’2’:

count[2]++;

break;

case ’3’:

count[3]++;

break;

default:

count[4]++;

}

The semantics of the switch statement are as follows. If characterch is 0, the count[0]++
statement is executed. The break statement is necessary to escape from the switch state-

ment. Similarly, if ch is 1, count[1] is incremented, and so on. The default case state-

ment is executed if ch is not one of the values specified in other case statements.

Turbo C produces the assembly language code shown in Figure 12.1. The jump table is

constructed in the code segment (lines 31 to 34). As a result, the CS segment override prefix is

used in the indirect jump statement on line 11. Register BX is used as an index into the jump

table. Since each entry in the jump table is two bytes long, BX is multiplied by two using shl
on line 10. �

12.3.2 Conditional Jumps

Conditional jump instructions can be divided into three groups:

1. Jumps based on the value of a single arithmetic flag,

2. Jumps based on unsigned comparisons, and

3. Jumps based on signed comparisons.

Section 12.3 Conditional Execution 501

1: _main PROC NEAR

2: . . .

3: . . .

4: mov AL,ch

5: cbw

6: sub AX,48 ; 48 = ASCII for 0

7: mov BX,AX

8: cmp BX,3

9: ja default

10: shl BX,1 ; BX = BX * 2

11: jmp WORD PTR CS:jump_table[BX]

12: case_0:

13: inc WORD PTR [BP-10]

14: jmp SHORT end_switch

15: case_1:

16: inc WORD PTR [BP-8]

17: jmp SHORT end_switch

18: case_2:

19: inc WORD PTR [BP-6]

20: jmp SHORT end_switch

21: case_3:

22: inc WORD PTR [BP-4]

23: jmp SHORT end_switch

24: default:

25: inc WORD PTR [BP-2]

26: end_switch:

27: . . .

28: . . .

29: _main ENDP

30: jump_table LABEL WORD

31: DW case_0

32: DW case_1

33: DW case_2

34: DW case_3

35: . . .

Figure 12.1 Assembly language code for the switch statement.

Jumps Based on Single Flags

The Pentium instruction set provides two conditional jump instructions—one for jumps if the

flag tested is set, and the other for jumps when the tested flag is cleared—for each arithmetic

flag except the auxiliary flag. Since we have discussed some of these instructions in Chapter 9,

we just summarize them in Table 12.3.

502 Chapter 12 Selected Pentium Instructions

Table 12.3 Jumps based on single flag value

Mnemonic Meaning Jumps if

Testing for zero: jz Jump if zero ZF = 1

je Jump if equal

nz Jump if not zero ZF = 0

jne Jump if not equal

jcxz Jump if CX = 0 CX = 0

(no flags tested)

Testing for carry: jc Jump if carry CF = 1

jnc Jump if no carry CF = 0

Testing for overflow: jo Jump if overflow OF = 1

jno Jump if no overflow OF = 0

Testing for sign: js Jump if (negative) sign SF = 1

jns Jump if no (negative) sign SF = 0

Testing for parity: jp Jump if parity PF = 1

jpe Jump if parity is even

jnp Jump if not parity PF = 0

jpo Jump if parity is odd

Jumps Based on Unsigned Comparisons

When comparing two numbers

cmp num1,num2

it is necessary to know whether these numbers num1 and num2 are representing signed or

unsigned numbers in order to establish a relationship between them. As an example, assume

that AL = 10110111B and DL = 01101110B. Then the statement

cmp AL,DL

should appropriately update flags to yield that AL � DL if we are treating their contents as

unsigned numbers. This is because, in unsigned representation, AL = 183 and DL = 110.

However, if the contents of AL and DL are treated as signed numbers, AL � DL as the AL

register is storing a negative number (�73), and the DL register is storing a positive number

(+110).

Note that when using a cmp statement such as

cmp num1,num2

Section 12.3 Conditional Execution 503

Table 12.4 Jumps based on unsigned comparison

Mnemonic Meaning Condition tested

je Jump if equal ZF = 1

jz Jump if zero

jne Jump if not equal ZF = 0

jnz Jump if not zero

ja Jump if above CF = 0 and ZF = 0

jnbe Jump if not below or equal

jae Jump if above or equal CF = 0

jnb Jump if not below

jb Jump if below CF = 1

jnae Jump if not above or equal

jbe Jump if below or equal CF = 1 or ZF = 1

jna Jump if not above

we are always comparing num1 to num2 (e.g., num1 � num2, num1 � num2, etc.). There are

six possible relationships between two numbers:

num1 � num2

num1 �� num2

num1 � num2

num1 � num2

num1 � num2

num1 � num2.

For unsigned numbers, the carry and zero flags record the necessary information to establish

one of the above six relationships.

The six conditional jump instructions (along with six aliases) and the flag conditions tested

are shown in Table 12.4. Notice that “above” and “below” are used for � and � relationships

for unsigned comparisons, reserving “greater” and “less” for signed comparisons, as we have

seen in Chapter 9.

Jumps Based on Signed Comparisons

The � and �� comparisons work with either signed or unsigned numbers, as we essentially

compare the bit pattern for a match. For this reason, je and jne also appear in Table 12.6 for

signed comparisons.

504 Chapter 12 Selected Pentium Instructions

Table 12.5 Examples with Snum1 � Snum2

Snum1 Snum2 ZF OF SF

56 55 0 0 0

56 �55 0 0 0�55 �56 0 0 0

55 �75 0 1 1

For signed comparisons, three flags record the necessary information: sign flag (SF), over-

flow flag (OF), and zero flag (ZF). Testing for � and �� simply involves testing whether the ZF

is set or cleared, respectively. With the signed numbers, establishing � and � relationships is

somewhat tricky.

Let us assume that we are executing the following cmp instruction:

cmp Snum1,Snum2

Conditions for Snum1 � Snum2

Table 12.5 shows some examples in which Snum1 � Snum2 holds. It appears from these

examples that Snum1 � Snum2 holds if ZF = 0 and OF = SF. We cannot just use the OF = SF

condition because, if two numbers are equal, ZF = 1 and OF = SF = 0. In fact, these conditions

do imply the “greater than” relationship between Snum1 and Snum2. As shown in Table 12.6,

these conditions are tested for the jg conditional jump.

Conditions for Snum1 � Snum2

As in the previous case, we first develop our intuition by means of a few examples. Table 12.7

shows some examples in which the condition Snum1 � Snum2 holds.

It appears from these examples that Snum1 � Snum2 holds if ZF = 0 and OF �� SF. In this

case, ZF = 0 is redundant, and the condition reduces to OF �� SF. As indicated in Table 12.6,

this is the condition tested by the jl conditional jump instruction.

12.4 Implementing High-Level Language Decision Structures
In this section, we see how the jump instructions can be used to implement high-level language

selection and iterative structures.

12.4.1 Selective Structures

Most high-level languages provide the if-then-else construct that allows selection from

two alternative actions. The generic format of this type of construct is as follows:

Section 12.4 Implementing High-Level Language Decision Structures 505

Table 12.6 Jumps based on signed comparison

Mnemonic Meaning Condition tested

je Jump if equal ZF = 1

jz Jump if zero

jne Jump if not equal ZF = 0

jnz Jump if not zero

jg Jump if greater ZF = 0 and SF = OF

jnle Jump if not less or equal

jge Jump if greater or equal SF = OF

jnl Jump if not less

jl Jump if less SF �� OF

jnge Jump if not greater or equal

jle Jump if less or equal ZF = 1 or SF �� OF

jng Jump if not greater

Table 12.7 Examples with Snum1 � Snum2

Snum1 Snum2 ZF OF SF

55 56 0 0 1

�55 56 0 0 1

�56 �55 0 0 1

�75 55 0 1 0

if (condition)

then

true-alternative

else

false-alternative

end if

The true-alternative is executed when the condition is true; otherwise, the false-alternative is

executed. In C, the format is

if (condition)

{

statement-T1

statement-T2

506 Chapter 12 Selected Pentium Instructions

...

statement-Tn

}

else

{

statement-F1

statement-F2

...

statement-Fn

};

We now consider some example C statements and the corresponding assembly language

code generated by the Turbo C compiler.

Example 12.9 An if example with a relational operator.

Consider the following C code, which assigns the larger of value1 and value2 to bigger.

All three variables are declared as integers (int data type):

if (value1 > value2)

bigger = value1;

else

bigger = value2;

The Turbo C compiler generates the following assembly language code (we have embellished

the code a little to improve readability):

mov AX,value1

cmp AX,value2

jle else_part

then_part:

mov AX,value1 ; redundant

mov bigger,AX

jmp SHORT end_if

else_part:

mov AX,value2

mov bigger,AX

end_if:

. . .

. . .

In this example, the condition testing is done by the compare and conditional jump instruc-

tions. The label then_part is really not needed but included to improve readability of the

code. The first statement in the then_part is redundant, but Turbo C generates it anyway.

This is an example of the kind of inefficiencies introduced by compilers. �

Section 12.4 Implementing High-Level Language Decision Structures 507

Example 12.10 An if example with a logical AND operator.

The following code tests whether ch is a lowercase character. The condition in this example

is a compound condition of two simple conditional statements connected by the logical and
operator.

if ((ch >= ’a’) && (ch <= ’z’))

ch = ch - 32;

(Note: && stands for the logical and operator in C.) The corresponding assembly language

code generated by Turbo C is (the variable ch is mapped to the DL register):

cmp DL,’a’

jb not_lower_case

cmp DL,’z’

ja not_lower_case

lower_case:

mov AL,DL

add AL,224

mov DL,AL

not_lower_case:

. . .

The compound condition is implemented by two compare and conditional jump instructions.

Notice that ch - 32 is implemented by

add AL,224 ;AL = AL ������

Since jb and ja are used, the characters are treated as unsigned numbers. Also, there is redun-

dancy in the code generated by the compiler. An advantage of using the assembly language is

that we can avoid such redundancies. �

Example 12.11 An if example with a logical OR operator.

Consider the following code with a compound condition using the logical or operator:

if ((index < 1) || (index > 100))

index = 0;

(Note: || stands for the logical or operator in C.) The assembly language code generated is

cmp CX,1

jl zero_index

cmp CX,100

jle end_if

zero_index:

xor CX,CX ; CX = 0

end_if:

. . .

Turbo C maps the variable index to the CX register. Also, the code uses the exclusive-or

(xor) logical operator to clear CX. �

508 Chapter 12 Selected Pentium Instructions

12.4.2 Iterative Structures

High-level languages provide several looping constructs, including while, repeat-until,

and for loops. Here we briefly look at how we can implement these iterative structures using

the assembly language instructions.

While Loop

The while loop tests a condition before executing the loop body. For this reason, this loop

is called the pretest or entry-test loop. The loop body is executed repeatedly as long as the

condition is true.

Example 12.12 A while loop example.

Consider the following C code:

while(total < 700)

{

<loop body>

}

Turbo C generates the following assembly language code:

jmp while_cond

while_body:

. . .

< instructions for

while loop body >

. . .

while_cond:

cmp BX,700

jl while_body

end_while:

. . .

The variable total is mapped to the BX register. An initial unconditional jump transfers

control to while_cond to test the loop condition. �

Repeat-Until Loop

This is a post-test or exit-test loop. This iterative construct tests the repeat condition after

executing the loop body. Thus, the loop body is executed at least once.

Example 12.13 A repeat-until example.

Consider the following C code:

Section 12.4 Implementing High-Level Language Decision Structures 509

do

{

<loop body>

}

while (number > 0);

The Turbo C compiler generates the following assembly language code:

loop_body:

. . .

< instructions for

do-while loop body >

. . .

cond_test:

or DI,DI

jg loop_body

end_do_while:

. . .

The variable number is mapped to the DI register. To test the loop condition, it uses or rather

than the cmp instruction. �

For Loop

The for loop is also called the counting loop because it iterates a fixed number of times. The

for loop in C is much more flexible and powerful than the basic counting loop. Here we

consider only the basic counting for loop.

Example 12.14 Upward counting for loop.
for (i = 0; i < SIZE; i++) /* for (� = 0 to SIZE�1) */

{

<loop body>

};

Turbo C generates the following assembly language code:

xor SI,SI

jmp SHORT for_cond

loop_body:

. . .

< instructions for

the loop body >

. . .

inc SI

for_cond:

cmp SI,SIZE

jl loop_body

. . .

510 Chapter 12 Selected Pentium Instructions

As with the while loop, an unconditional jump transfers control to for_cond to first test the

iteration condition before executing the loop body. The counting variable i is mapped to the SI

register. �

Example 12.15 Downward counting for loop.
for (i = SIZE-1; i >= 0; i--) /* for (� = SIZE�1 downto 0) */

{

<loop body>

};

Turbo C generates the following assembly language code:

mov SI,SIZE-1

jmp SHORT for_cond

loop_body:

. . .

< instructions for

the loop body >

. . .

dec SI

for_cond:

or SI,SI

jge loop_body

. . .

The counting variable i is mapped to the SI register. Since our termination condition is i = 0,

the or instruction is used to test this condition as in Example 12.13. �

12.5 Logical Expressions in High-Level Languages
Some high-level languages such as Pascal provide Boolean data types. Boolean variables can

assume one of two values: true or false. Other languages such as C do not explicitly

provide Boolean data types. This section discusses Boolean data representation and evaluation

of compound logical expressions.

12.5.1 Representation of Boolean Data

In principle, only a single bit is needed to represent the Boolean data. However, such a rep-

resentation, although compact, is not convenient, as testing a variable involves isolating the

corresponding bit.

Most languages use a byte to represent the Boolean data. If the byte is zero, it represents

false; otherwise, true. Note that any value other than 0 can represent true.

In C language, which does not provide an explicit Boolean data type, any data variable can

be used in a logical expression to represent Boolean data. The same rules mentioned above

apply: if the value is 0, it is treated as false, and any nonzero value is treated as true. Thus,

for example, we can use integer variables as Boolean variables in logical expressions.

Section 12.5 Logical Expressions in High-Level Languages 511

12.5.2 Logical Expressions

The logical instructions are useful in implementing logical expressions of high-level languages.

For example, C provides the following four logical operators:

C operator Meaning

&& AND

|| OR

ˆ Exclusive-OR

˜ NOT

To illustrate the use of logical instructions in implementing high-level language logical ex-

pressions, let us look at the following C example:

if (˜(X && Y) ˆ (Y || Z))
X = Y + Z;

The corresponding assembly language code generated by the Turbo C compiler is shown in

Figure 12.2.

The variable X is mapped to [BP�12], Y to CX, and Z to [BP�14]. The code on lines 1 to

8 implements partial evaluation of (X && Y). That is, if X is false, it doesn’t test the Y value.

This is called partial evaluation, which is discussed on page 513. The result of the evaluation,

0 or 1, is stored in AX. The not instruction is used to implement the ˜ operator (line 10), and

the value of ˜(X && Y) is stored on the stack (line 11).

Similarly, lines 13 to 21 evaluate (Y || Z), and the result is placed in AX. The value of

˜(X && Y) is recovered to DX (line 23), and the xor instruction is used to implement the

ˆ operator (line 24). If the result is zero (i.e., false), the body of the if statement is skipped

(line 25).

12.5.3 Bit Manipulation

Some high-level languages provide bitwise logical operators. For example, C provides bitwise

and (&), or (|), xor (ˆ), and not (˜) operators. These can be implemented by using the

logical instructions provided in the assembly language.

The C language also provides shift operators: left shift (<<) and right shift (>>). These

operators can be implemented with the assembly language shift instructions.

Table 12.8 shows how the logical and shift families of instructions are used to implement

the bitwise logical and shift operators of the C language. The variable mask is assumed to be

in the SI register.

12.5.4 Evaluation of Logical Expressions

Logical expressions can be evaluated in one of two ways: by full evaluation, or by partial

evaluation. These methods are discussed next.

512 Chapter 12 Selected Pentium Instructions

1: cmp WORD PTR [BP-12],0 ; X = false?

2: je false1 ; if so, (X && Y) = false

3: or CX,CX ; Y = false?

4: je false1

5: mov AX,1 ; (X && Y) = true

6: jmp SHORT skip1

7: false1:

8: xor AX,AX ; (X && Y) = false

9: skip1:

10: not AX ; AX = ˜(X && Y)

11: push AX ; save ˜(X && Y)

12: ; now evaluate the second term

13: or CX,CX ; Y = true?

14: jne true2 ; if so, (Y || Z) = true

15: cmp WORD PTR [BP-14],0 ; Z = false?

16: je skip2

17: true2:

18: mov AX,1 ; (X || Y) = true

19: jmp SHORT skip3

20: skip2:

21: xor AX,AX ; (X || Y) = false

22: skip3:

23: pop DX ; DX = ˜(X && Y)

24: xor DX,AX ; ˜(X && Y) ˆ (Y || Z)

25: je end_if ; if zero, whole exp. false

26: if_body:

27: mov AX,CX ; AX = Y

28: add AX,WORD PTR [BP-14] ; AX = Y + Z

29: mov WORD PTR [BP-12],AX ; X = Y + Z

30: end_if:

31: . . .

Figure 12.2 Assembly language code for the example logical expression.

Full Evaluation

In this method of evaluation, the entire logical expression is evaluated before assigning a value

(true or false) to the expression. Full evaluation is used in Pascal.

For example, in full evaluation, the expression

if ((X � ’a’) AND (X � ’z’)) OR ((X � ’A’) AND (X � ’Z’))

is evaluated by evaluating all four relational terms and then applying the logical operators. For

example, the Turbo Pascal compiler generates the assembly language code shown in Figure 12.3

for this logical expression.

Section 12.5 Logical Expressions in High-Level Languages 513

Table 12.8 Examples of bitwise operators

C statement Assembly language code

mask = mask>>2 shr SI,2
(right-shift mask by two bit positions)

mask = mask<<4 shl SI,4
(left-shift mask by four bit positions)

mask = ˜mask not SI
(complement mask)

mask = mask & 85 and SI,85
(bitwise and)

mask = mask | 85 or SI,85
(bitwise or)

mask = mask ˆ 85 xor SI,85
(bitwise xor)

Partial Evaluation

The final result of a logical expression can be obtained without evaluating the whole expression.

The following rules help us in this:

1. In an expression of the form

cond1 AND cond2

the outcome is known to be false if one input is false. For example, if we follow the

convention of evaluating logical expressions from left to right, as soon as we know that

cond1 is false, we can assign false to the entire logical expression. Only when cond1
is true do we need to evaluate cond2 to know the final value of the logical expression.

2. Similarly, in an expression of the form

cond1 OR cond2

the outcome is known if cond1 is true. The evaluation can stop at that point. We need to

evaluate cond2 only if cond1 is false.

This method of evaluation is used in C. The assembly language code for the previous logical

expression, produced by the Turbo C compiler, is shown in Figure 12.4. The code does not use

any logical instructions. Instead, the conditional jump instructions are used to implement the

logical expression. Partial evaluation clearly results in efficient code.

514 Chapter 12 Selected Pentium Instructions

1: cmp ch,’Z’

2: mov AL,0

3: ja skip1

4: inc AX

5: skip1:

6: mov DL,AL

7: cmp ch,’A’

8: mov AL,0

9: jb skip2

10: inc AX

11: skip2:

12: and AL,DL

13: mov CL,AL

14: cmp ch,’z’

15: mov AL,0

16: ja skip3

17: inc AX

18: skip3:

19: mov DL,AL

20: cmp ch,’a’

21: mov AL,0

22: jb skip4

23: inc AX

24: skip4:

25: and AL,DL

26: or AL,CL

27: or AL,AL

28: je skip_if

29: << if body here >>

30: skip_if:

31: << code following the if >>

Figure 12.3 Assembly language code for full evaluation.

Partial evaluation also has an important advantage beyond the obvious reduction in evalua-

tion time. Suppose X and Y are inputs to the program. A statement such as

if ((X > 0) AND (Y/X > 100))

. . .

can cause a divide-by-zero error if X = 0 when full evaluation is used. However, with partial

evaluation, when X is zero, (X > 0) is false, and the second term (Y/X > 100) is not

evaluated at all. This is used frequently in C programs to test if a pointer is NULL before

manipulating the data to which it points.

Section 12.6 Bit Instructions 515

1: cmp ch,’a’

2: jb skip1

3: cmp ch,’z’

4: jbe skip2

5: skip1:

6: cmp ch,’A’

7: jb skip_if

8: cmp ch,’Z’

9: ja skip_if

10: skip2:

11: << if body here >>

12: skip_if:

13: << code following the if >>

Figure 12.4 Assembly language code for partial evaluation.

Of course, with full evaluation we can rewrite the last condition to avoid the divide-by-zero

error as

if (X > 0)

if (Y/X > 100)

. . .

12.6 Bit Instructions
The Pentium provides bit test and modification instructions as well as bit scan instructions. This

section briefly reviews these two instruction groups. An example that uses these instructions is

given later (see Example 12.19).

12.6.1 Bit Test and Modify Instructions

There are four bit test instructions. Each instruction takes the position of the bit to be tested.

The least significant bit is considered as bit position zero. A summary of the four instructions

is given below:

Instruction Effect on Selected Bit

bt (Bit Test) No effect

bts (Bit Test and Set) Selected bit� 1

btr (Bit Test and Reset) Selected bit� 0

btc (Bit Test and Complement) Selected bit� NOT(Selected bit)

516 Chapter 12 Selected Pentium Instructions

All four instructions copy the selected bit into the carry flag. The format of these instructions

is the same. We use the bt instruction to illustrate the format,

bt operand,bit_pos

where operand can be a word or doubleword located either in a register or memory. The

bit_pos specifies the bit position to be tested. It can be specified as an immediate value or in

a 16- or 32-bit register. Instructions in this group affect only the carry flag. The other five status

flags are undefined following a bit test instruction.

12.6.2 Bit Scan Instructions

Bit scan instructions scan the operand for a 1 bit and return the bit position in a register. There

are two instructions: one to scan forward and the other to scan backward. The format is

bsf dest_reg,operand ;bit scan forward

bsr dest_reg,operand ;bit scan reverse

where operand can be a word or doubleword located either in a register or memory. The

dest_reg receives the bit position. It must be a 16- or 32-bit register. The zero flag is set if

all bits of operand are 0; otherwise, the ZF is cleared and the dest_reg is loaded with the

bit position of the first 1 bit while scanning forward (for bsf), or reverse (for bsr). These two

instructions affect only the zero flag. The other five status flags are undefined following a bit

scan instruction.

12.7 Illustrative Examples
In this section, we present four examples to show the use of the selection and iteration instruc-

tions discussed in this chapter. The first example uses linear search for locating a number in

an unsorted array, and the second example sorts an array of integers using the selection sort

algorithm. The last two examples show how multiplication can be done using shift and add

instructions.

Example 12.16 Linear search of an array of integers.

In this example, the user is asked to input an array of nonnegative integers and a number to be

searched. The program uses linear search to locate the number in the unsorted array.

The main procedure initializes the input array by reading a maximum of MAX_SIZE num-

ber of nonnegative integers into the array. The user, however, can terminate the input by entering

a negative number. The loop instruction, with CX initialized to MAX_SIZE (line 29), is used

to iterate a maximum of MAX_SIZE times. The other loop termination condition (i.e., a neg-

ative input) is tested on lines 33 and 34. The rest of the main program queries the user for a

number and calls the linear search procedure to locate the number. This process is repeated as

long as the user appropriately answers the query.
The linear search procedure receives a pointer to an array, its size, and the number to be

searched via the stack. The search process starts at the first element of the array and proceeds

Section 12.7 Illustrative Examples 517

until either the element is located or the array is exhausted. We use the loopne to test these
two conditions for termination of the search loop. CX is initialized (line 83) to the size of the
array. In addition, a compare (line 88) tests if there is a match between the two numbers. If so,
the zero flag is set and loopne terminates the search loop. If the number is found, the index
of the number is computed (lines 92 and 93) and returned in AX.

Program 12.4 Linear search of an integer array

1: TITLE Linear search of integer array LIN_SRCH.ASM

2: COMMENT |

3: Objective: To implement linear search of an integer

4: array; demonstrates the use of loopne.

5: Input: Requests numbers to fill array and a

6: number to be searched for from user.

7: Output: Displays the position of the number in

8: the array if found; otherwise, not found

9: | message.

10: .MODEL SMALL

11: .STACK 100H

12: .DATA

13: MAX_SIZE EQU 100

14: array DW MAX_SIZE DUP (?)

15: input_prompt DB ’Please enter input array: ’

16: DB ’(negative number terminates input)’,0

17: query_number DB ’Enter the number to be searched: ’,0

18: out_msg DB ’The number is at position ’,0

19: not_found_msg DB ’Number not in the array!’,0

20: query_msg DB ’Do you want to quit (Y/N): ’,0

21:

22: .CODE

23: .486

24: INCLUDE io.mac

25: main PROC

26: .STARTUP

27: PutStr input_prompt ; request input array

28: mov BX,OFFSET array

29: mov CX,MAX_SIZE

30: array_loop:

31: GetInt AX ; read an array number

32: nwln

33: cmp AX,0 ; negative number?

34: jl exit_loop ; if so, stop reading numbers

35: mov [BX],AX ; otherwise, copy into array

36: inc BX ; increment array address

37: inc BX

518 Chapter 12 Selected Pentium Instructions

38: loop array_loop ; iterates a maximum of MAX_SIZE

39: exit_loop:

40: mov DX,BX ; DX keeps the actual array size

41: sub DX,OFFSET array ; DX = array size in bytes

42: sar DX,1 ; divide by 2 to get array size

43: read_input:

44: PutStr query_number ; request number to be searched for

45: GetInt AX ; read the number

46: nwln

47: push AX ; push number, size & array pointer

48: push DX

49: push OFFSET array

50: call linear_search

51: ; linear_search returns in AX the position of the number

52: ; in the array; if not found, it returns 0.

53: cmp AX,0 ; number found?

54: je not_found ; if not, display number not found

55: PutStr out_msg ; else, display number position

56: PutInt AX

57: jmp SHORT user_query

58: not_found:

59: PutStr not_found_msg

60: user_query:

61: nwln

62: PutStr query_msg ; query user whether to terminate

63: GetCh AL ; read response

64: nwln

65: cmp AL,’Y’ ; if response is not ’Y’

66: jne read_input ; repeat the loop

67: done: ; otherwise, terminate program

68: .EXIT

69: main ENDP

70:

71: ;---

72: ; This procedure receives a pointer to an array of integers,

73: ; the array size, and a number to be searched via the stack.

74: ; If found, it returns in AX the position of the number in

75: ; the array; otherwise, returns 0.

76: ; All registers, except AX, are preserved.

77: ;---

78: linear_search PROC

79: enter 0,0

80: push BX ; save registers

81: push CX

82: mov BX,[BP+4] ; copy array pointer

Section 12.7 Illustrative Examples 519

83: mov CX,[BP+6] ; copy array size

84: mov AX,[BP+8] ; copy number to be searched

85: sub BX,2 ; adjust index to enter loop

86: search_loop:

87: add BX,2 ; update array index

88: cmp AX,[BX] ; compare the numbers

89: loopne search_loop

90: mov AX,0 ; set return value to zero

91: jne number_not_found ; modify it if number found

92: mov AX,[BP+6] ; copy array size

93: sub AX,CX ; compute array index of number

94: number_not_found:

95: pop CX ; restore registers

96: pop BX

97: leave

98: ret 6

99: linear_search ENDP

100: END main

Example 12.17 Sorting of an array of integers using the selection sort algorithm.

The main program is very similar to that in the last example, except for the portion that displays

the sorted array. The sort procedure receives a pointer to the array to be sorted and its size via

the stack. It uses the selection sort algorithm to sort the array in ascending order. The basic idea

is as follows:

1. Search the array for the smallest element,

2. Move the smallest element to the first position by exchanging values of the first and

smallest element positions,

3. Search the array for the smallest element from the second position of the array,

4. Move this element to position 2 by exchanging values as in Step 2,

5. Continue this process until the array is sorted.

The selection sort procedure implements the following algorithm:

selection_sort (array, size)

for (position = 0 to size�2)

min value := array[position]

min position := position

for (j = position+1 to size�1)

if (array[j] � min value)

then

min value := array[j]

520 Chapter 12 Selected Pentium Instructions

min position := j

end if

end for

if (position �� min position)

then

array[min position] := array[position]

array[position] := min value

end if

end for

end selection_sort

The selection sort procedure shown in Program 12.5 implements this pseudocode with the

following mapping of variables: position is maintained in SI and DI is used for the index

variable j. min_value is maintained in DX and min_position in AX. The number of

elements to be searched for finding the minimum value is kept in CX.

Program 12.5 Sorting of an array of integers using the selection sort algorithm

1: TITLE Sorting an array by selection sort SEL_SORT.ASM

2: COMMENT |

3: Objective: To sort an integer array using selection sort.

4: Input: Requests numbers to fill array.

5: | Output: Displays sorted array.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: MAX_SIZE EQU 100

10: array DW MAX_SIZE DUP (?)

11: input_prompt DB ’Please enter input array: ’

12: DB ’(negative number terminates input)’,0

13: out_msg DB ’The sorted array is:’,0

14:

15: .CODE

16: .486

17: INCLUDE io.mac

18: main PROC

19: .STARTUP

20: PutStr input_prompt ; request input array

21: mov BX,OFFSET array

22: mov CX,MAX_SIZE

23: array_loop:

24: GetInt AX ; read an array number

25: nwln

26: cmp AX,0 ; negative number?

Section 12.7 Illustrative Examples 521

27: jl exit_loop ; if so, stop reading numbers

28: mov [BX],AX ; otherwise, copy into array

29: add BX,2 ; increment array address

30: loop array_loop ; iterates a maximum of MAX_SIZE

31: exit_loop:

32: mov DX,BX ; DX keeps the actual array size

33: sub DX,OFFSET array ; DX = array size in bytes

34: sar DX,1 ; divide by 2 to get array size

35: push DX ; push array size & array pointer

36: push OFFSET array

37: call selection_sort

38: PutStr out_msg ; display sorted array

39: nwln

40: mov CX,DX

41: mov BX,OFFSET array

42: display_loop:

43: PutInt [BX]

44: nwln

45: add BX,2

46: loop display_loop

47: done:

48: .EXIT

49: main ENDP

50:

51: ;---

52: ; This procedure receives a pointer to an array of integers

53: ; and the array size via the stack. The array is sorted by

54: ; using the selection sort. All registers are preserved.

55: ;---

56: SORT_ARRAY EQU [BX]

57: selection_sort PROC

58: pusha ; save registers

59: mov BP,SP

60: mov BX,[BP+18] ; copy array pointer

61: mov CX,[BP+20] ; copy array size

62: sub SI,SI ; array left of SI is sorted

63: sort_outer_loop:

64: mov DI,SI

65: ; DX is used to maintain the minimum value and AX

66: ; stores the pointer to the minimum value

67: mov DX,SORT_ARRAY[SI] ; min. value is in DX

68: mov AX,SI ; AX = pointer to min. value

69: push CX

70: dec CX ; size of array left of SI

71: sort_inner_loop:

522 Chapter 12 Selected Pentium Instructions

72: add DI,2 ; move to next element

73: cmp DX,SORT_ARRAY[DI] ; less than min. value?

74: jle skip1 ; if not, no change to min. value

75: mov DX,SORT_ARRAY[DI] ; else, update min. value (DX)

76: mov AX,DI ; & its pointer (AX)

77: skip1:

78: loop sort_inner_loop

79: pop CX

80: cmp AX,SI ; AX = SI?

81: je skip2 ; if so, element at SI is its place

82: mov DI,AX ; otherwise, exchange

83: mov AX,SORT_ARRAY[SI] ; exchange min. value

84: xchg AX,SORT_ARRAY[DI] ; & element at SI

85: mov SORT_ARRAY[SI],AX

86: skip2:

87: add SI,2 ; move SI to next element

88: dec CX

89: cmp CX,1 ; if CX = 1, we are done

90: jne sort_outer_loop

91: popa ; restore registers

92: ret 4

93: selection_sort ENDP

94: END main

Example 12.18 Multiplication using only shifts and adds.

The objective of this example is to show how multiplication can be done entirely by shift and

add operations. We consider multiplication of two unsigned 8-bit numbers. In order to use the

shift operation, we have to express the multiplier as a power of 2. For example, if the multiplier

is 64, the result can be obtained by shifting the multiplicand left by six bit positions (because

�
� � ��).

What if the multiplier is not a power of 2? In this case, we have to express this number as

a sum of powers of 2. For example, if the multiplier is 10, it can be expressed as 8 � 2, where

each term is a power of 2. Then the required multiplication can be done by two shifts and one

addition.

The question now is: How do we express the multiplier in this form? If we look at the

binary representation of the multiplicand (10D = 00001010B), there is a 1 in bit positions with

weights 8 and 2. Thus, for each 1 bit in the multiplier, the multiplicand should be shifted left by

a number of positions equal to the bit position number. In the above example, the multiplicand

should be shifted left by 3 and 1 bit positions and then added. This procedure is formalized in

the following algorithm:

Section 12.7 Illustrative Examples 523

mult8 (number1, number2)

result := 0

for (i = 7 downto 0)

if (bit(number2, i) = 1)

result := result + number1 * �
�

end if

end for

end mult8

The function bit returns the �th bit of number2. The program listing is given in Pro-
gram 12.6.

Program 12.6 Multiplication of two 8-bit numbers using only shifts and adds

1: TITLE 8-bit multiplication using shifts SHL_MLT.ASM

2: COMMENT |

3: Objective: To multiply two 8-bit unsigned numbers

4: using SHL rather than MUL instruction.

5: Input: Requests two unsigned numbers from user.

6: | Output: Prints the multiplication result.

7: .MODEL SMALL

8: .STACK 100H

9: .DATA

10: input_prompt DB ’Please input two short numbers: ’,0

11: out_msg1 DB ’The multiplication result is: ’,0

12: query_msg DB ’Do you want to quit (Y/N): ’,0

13:

14: .CODE

15: INCLUDE io.mac

16: main PROC

17: .STARTUP

18: read_input:

19: PutStr input_prompt ; request two numbers

20: GetInt AX ; read the first number

21: nwln

22: GetInt BX ; read the second number

23: nwln

24: call mult8 ; mult8 uses SHL instruction

25: PutStr out_msg1

26: PutInt AX ; mult8 leaves result in AX

27: nwln

28: PutStr query_msg ; query user whether to terminate

29: GetCh AL ; read response

30: nwln

31: cmp AL,’Y’ ; if response is not ’Y’

524 Chapter 12 Selected Pentium Instructions

32: jne read_input ; repeat the loop

33: done: ; otherwise, terminate program

34: .EXIT

35: main ENDP

36:

37: ;---

38: ; mult8 multiplies two 8-bit unsigned numbers passed on to

39: ; it in registers AL and BL. The 16-bit result is returned

40: ; in AX. This procedure uses only SHL instruction to do the

41: ; multiplication. All registers, except AX, are preserved.

42: ;---

43: mult8 PROC

44: push CX ; save registers

45: push DX

46: push SI

47: xor DX,DX ; DX = 0 (keeps mult. result)

48: mov CX,7 ; CX = # of shifts required

49: mov SI,AX ; save original number in SI

50: repeat1: ; multiply loop - iterates 7 times

51: rol BL,1 ; test bits of number2 from left

52: jnc skip1 ; if 0, do nothing

53: mov AX,SI ; else, AX = number1*bit weight

54: shl AX,CL

55: add DX,AX ; update running total in DX

56: skip1:

57: loop repeat1

58: rol BL,1 ; test the rightmost bit of AL

59: jnc skip2 ; if 0, do nothing

60: add DX,SI ; else, add number1

61: skip2:

62: mov AX,DX ; move final result into AX

63: pop SI ; restore registers

64: pop DX

65: pop CX

66: ret

67: mult8 ENDP

68: END main

The main program requests two numbers from the user and calls the procedure mult8
and displays the result. The main program then queries the user whether to quit and proceeds

according to the response.

The mult8 procedure multiplies two 8-bit unsigned numbers and returns the result in AX.

It follows the algorithm discussed on page 523. The multiply loop (lines 50 to 57) tests the

most significant seven bits of the multiplier. The least significant bit is tested on line 58. Notice

Section 12.7 Illustrative Examples 525

that the procedure uses rol rather than shl to test each bit (lines 51 and 58). The use of rol
automatically restores the BL register after eight rotates. �

Example 12.19 Multiplication using only shifts and adds—version 2.

In this example, we rewrite the mult8 procedure of the last example by using the bit test and

scan instructions. In the previous version, we used a loop (see lines 50 to 57) to test each bit.

Since we are interested only in 1 bits, we can use a bit scan instruction to do this job. The

modified mult8 procedure is shown below:

1: ;---

2: ; mult8 multiplies two 8-bit unsigned numbers passed on to

3: ; it in registers AL and BL. The 16-bit result is returned

4: ; in AX. This procedure uses only SHL instruction to do the

5: ; multiplication. All registers, except AX, are preserved.

6: ; Demonstrates the use of bit instructions BSF and BTC.

7: ;---

8: mult8 PROC

9: push CX ; save registers

10: push DX

11: push SI

12: xor DX,DX ; DX = 0 (keeps mult. result)

13: mov SI,AX ; save original number in SI

14: repeat1:

15: bsf CX,BX ; returns first 1 bit position in CX

16: jz skip1 ; if ZF=1, no 1 bit in BX - done

17: mov AX,SI ; else, AX = number1*bit weight

18: shl AX,CL

19: add DX,AX ; update running total in DX

20: btc BX,CX ; complement the bit found by BSF

21: jmp repeat1

22: skip1:

23: mov AX,DX ; move final result into AX

24: pop SI ; restore registers

25: pop DX

26: pop CX

27: ret

28: mult8 ENDP

The modified loop (lines 14 to 21) replaces the loop in the previous version. This code is more

efficient because the number of times the loop iterates is equal to the number of 1 bits in BX.

The previous version, on the other hand, always iterates seven times. Also note that we can

replace the btc instruction on line 20 by a btr instruction. Similarly, the bsf instruction on

line 15 can be replaced by a bsr instruction. �

526 Chapter 12 Selected Pentium Instructions

12.8 String Instructions
Even though the instructions we discuss here are called string instructions, they are not used

just for string processing. In fact, these instructions can be used for block movement of data.

12.8.1 String Representation

A string can be represented either as a fixed-length string or as a variable-length string. In the

fixed-length representation, each string occupies exactly the same number of character posi-

tions. That is, each string has the same length, where the length refers to the number of char-

acters in the string. In such a representation, if a string has fewer characters, it is extended by

padding, for example, with blank characters. On the other hand, if a string has more characters,

it is usually truncated to fit the storage space available.

Clearly, if we want to avoid truncation of larger strings, we need to fix the string length

carefully so that it can accommodate the largest string. In practice, it may be difficult to guess

this value. A further disadvantage is that memory space is wasted if the majority of strings are

shorter than the fixed length used.

The variable-length representation avoids these problems. In this scheme, a string can have

as many characters as required (usually, within some system-imposed limit). Associated with

each string, there is a string length attribute giving the number of characters in the string. The

length attribute is given in one of two ways:

1. Explicitly storing the string length, or

2. Using a sentinel character.

These two methods are discussed next.

Explicitly Storing String Length

In this method, the string length attribute is explicitly stored along with the string, as shown in

the following example:

string DB ’Error message’

str_len DW $ - string

where $ is the location counter symbol that represents the current value of the location counter.

In this example, $ points to the byte after the last character of string. Therefore,

$ - string

gives the length of the string. Of course, we could also write

string DB ’Error message’

str_len DW 13

However, if we modify the contents of string later, we have to update the string length value

as well. On the other hand, by using $ - string, we let the assembler do the job for us at

assembly time.

Section 12.8 String Instructions 527

Using a Sentinel Character

In this method, strings are stored with a trailing sentinel character. Therefore, there is no need

to store string length explicitly. The assumption here is that the sentinel character is a special

character that cannot appear within a string. We normally use a special, nonprintable character

as the sentinel character. We have been using the ASCII NULL character (00H) to terminate

strings. Such NULL-terminated strings are called ASCIIZ strings. Here are two example strings:

string1 DB ’This is OK’,0

string2 DB ’Price = $9.99’,0

The zero at the end represents the ASCII NULL character. The C language, for example, uses

this representation to store strings. In the remainder of this chapter, we will use this representa-

tion for storing strings.

12.8.2 String Instructions

The Pentium provides five main string-processing instructions. These can be used to copy a

string, to compare two strings, and so on. The five basic instructions are as follows:

Mnemonic Meaning Operand(s) required

LODS Load string Source

STOS Store string Destination

MOVS Move string Source and destination

CMPS Compare strings Source and destination

SCAS Scan string Destination

Specifying Operands: As indicated, each string instruction requires a source operand, a desti-

nation operand, or both. For 32-bit segments, string instructions use the ESI and EDI registers

to point to the source and destination operands, respectively. The source operand is assumed

to be at DS:ESI in memory, and the destination operand at ES:EDI in memory. For 16-bit seg-

ments, the SI and DI registers are used instead of the ESI and EDI registers. If both operands

are in the same data segment, we can let both DS and ES point to the data segment to use the

string instructions. String instructions do not allow segment override prefixes.

Variations: Each string instruction can operate on 8-, 16-, or 32-bit operands. As part of execu-

tion, string instructions automatically update (i.e., increment or decrement) the index register(s)

used by them. For byte operands, source and destination index registers are updated by one.

These registers are updated by two and four for word and doubleword operands, respectively.

In this chapter, we focus on byte operand strings. String instructions derive much of their power

from the fact that they can accept a repetition prefix to repeatedly execute the operation. These

prefixes are discussed next. The direction of string processing—forward or backward—is con-

trolled by the direction flag.

528 Chapter 12 Selected Pentium Instructions

Repetition Prefixes

There are three prefixes that fall into two categories: unconditional or conditional repetition.

These are as follows:

Unconditional repeat
rep REPeat

Conditional repeat
repe/repz REPeat while Equal

REPeat while Zero

repne/repnz REPeat while Not Equal

REPeat while Not Zero

None of the flags are affected by these instructions.

rep

This is an unconditional repeat prefix and causes the instruction to repeat according to the value

in the CX register. The semantics of rep are as follows:

while (CX �� 0)

execute the string instruction;

CX := CX–1;

end while

The CX register is first checked and if it is not 0, only then is the string instruction executed.

Thus, if CX is 0 to start with, the string instruction is not executed at all. This is in contrast

to the loop instruction, which first decrements and then tests if CX is 0. Thus, with loop,

CX = 0 results in a maximum number of iterations, and usually a jcxz check is needed.

repe/repz

This is one of the two conditional repeat prefixes. Its operation is similar to that of rep except

that repetition is also conditional on the zero flag (ZF), as shown below:

while (CX �� 0)

execute the string instruction;

CX := CX–1;

if (ZF = 0)

then

exit loop

end if

end while

The maximum number of times the string instruction is executed is determined by the con-

tents of CX, as in the rep prefix. But the actual number of times the instruction is repeated

Section 12.8 String Instructions 529

is determined by the status of ZF. As shown later, conditional repeat prefixes are useful with

cmps and scas string instructions.

repne/repnz

This prefix is similar to the repe/repz prefix except that the condition tested for termination

is ZF = 1.

while (CX �� 0)

execute the string instruction;

CX := CX–1;

if (ZF = 1)

then

exit loop

end if

end while

Direction Flag

The direction of a string operation depends on the value of the direction flag. Recall that this

is one of the bits of the flag’s register (see page 259). If the direction flag (DF) is clear (i.e.,

DF = 0), string operations proceed in the forward direction (from head to tail of a string);

otherwise, string processing is done in the opposite direction.

Two instructions are available to explicitly manipulate the direction flag:

std set direction flag (DF = 1)

cld clear direction flag (DF = 0)

Neither of these instructions requires any operands. Each instruction is encoded using a single

byte and takes two clock cycles to execute.

Usually it does not matter whether the string processing direction is forward or backward.

For sentinel character-terminated strings, the forward direction is preferred. However, there are

situations where one particular direction is mandatory. For example, if we want to shift a string

right by one position, we have to start with the tail and proceed toward the head (i.e., in the

backward direction) as in the following example:

Initial string� a b c 0 ?

After one shift� a b c 0 0

After two shifts� a b c c 0

After three shifts� a b b c 0

Final string� a a b c 0

530 Chapter 12 Selected Pentium Instructions

If we proceed in the forward direction, only the first character is copied through the string, as

shown below:

Initial string� a b c 0 ?

After one shift� a a c 0 ?

After two shifts� a a a 0 ?

After three shifts� a a a a ?

Final string� a a a a a

String Move Instructions

There are three basic instructions in this group: movs, lods, and stos. Each instruction can

take one of four forms. We start our discussion with the first instruction.

Move a String (movs): The movs instruction can be written in one of the following formats:

movs dest_string,source_string

movsb

movsw

movsd

Using the first form, we can specify the source and destination strings. This specification will

be sufficient to determine whether it is a byte, word, or doubleword operand. However, this

form is not used frequently.

In the other three forms, the suffix b, w, or d is used to indicate byte, word, or doubleword

operands. This format applies to all the string instructions.

movsb — move a byte string

ES:DI := (DS:SI) ; copy a byte

if (DF = 0) ; forward direction

then

SI := SI+1

DI := DI+1

else ; backward direction

SI := SI–1

DI := DI–1

end if

Flags affected: none

The movs instruction is used to copy a value (byte, word, or doubleword) from the source

string to the destination string. As mentioned earlier, DS:SI points to the source string and

Section 12.8 String Instructions 531

ES:DI to the destination string. After copying, the SI and DI registers are updated according to

the value of the direction flag and the operand size. Thus, before executing themovs instruction,

all four registers should be set up appropriately. (This is necessary even if you use the first

format.) Note that our focus is on 16-bit segments. For 32-bit segments, we have to use ESI

and EDI registers.

For word and doubleword operands, the index registers are updated by two and four, re-

spectively. This instruction, along with the rep prefix, is useful for copying a string. More

generally, we can use them to perform memory-to-memory block transfers. Here is an example

that copies string1 to string2.

.DATA

string1 DB ’The original string’,0

strLen EQU $ - string1

string2 DB 80 DUP (?)

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,strLen ; strLen includes NULL

mov SI,OFFSET string1

mov DI,OFFSET string2

cld ; forward direction

rep movsb

To make ES point to the data segment, we need to copy the contents of DS into ES. Since the

Pentium does not allow the instruction

mov ES,DS

we have to use a temporary register (we are using AX) for this purpose. Since the movs
instruction does not change any of the flags, conditional repeat (repe or repne) should not

be used with this instruction.

Load a String (lods): This instruction copies the value at DS:SI from the source string to

AL (for byte operands, lodsb), AX (for word operands, lodsw), or EAX (for doubleword

operands, lodsd).

lodsb — load a byte string

AL := (DS:SI) ; copy a byte

if (DF = 0) ; forward direction

then

SI := SI+1

else ; backward direction

SI := SI�1

end if

Flags affected: none

532 Chapter 12 Selected Pentium Instructions

Use of the rep prefix does not make sense, as it will leave only the last value in AL,

AX, or EAX. This instruction, along with the stos instruction, is often used when processing

is required while copying a string. This point is elaborated upon after describing the stos
instruction.

Store a String (stos): This instruction performs the complementary operation. It copies the

value in AL (for stosb), AX (for stosw), or EAX (for stosd) to the destination string

(pointed to by ES:DI) in memory.

stosb — store a byte string

ES:DI := AL ; copy a byte

if (DF = 0) ; forward direction

then

DI := DI+1

else ; backward direction

DI := DI�1

end if

Flags affected: none

We can use the rep prefix with the stos instruction if our intention is to initialize a block

of memory with a specific character, word, or doubleword value. For example, the code

.DATA

array1 DW 100 DUP (?)

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,100

mov DI,OFFSET array1

mov AX,-1

cld ; forward direction

rep stosw

initializes array1 with ��. Of course, we could have done the same with

array1 DW 100 DUP (-1)

at assembly time if we wanted to initialize only once.

In general, the rep prefix is not useful with lods and stos instructions. These two

instructions are often used in a loop to do value conversions while copying data. For example,

if string1 only contains letters and blanks,

mov CX,strLen

mov SI,OFFSET string1

mov DI,OFFSET string2

Section 12.8 String Instructions 533

cld ; forward direction

loop1:

lodsb

or AL,20H

stosb

loop loop1

done:

. . .

can convert it to a lowercase string. Note that blank characters are not affected because 20H

represents blank in ASCII, and the

or AL,20H

instruction does not have any effect on it. The advantage of lods and stos is that they

automatically increment SI and DI registers.

String Compare Instruction: The cmps instruction can be used to compare two strings.

cmpsb — compare two byte strings

Compare the two bytes at DS:SI and ES:DI and set flags

if (DF = 0) ; forward direction

then

SI := SI�1

DI := DI�1

else ; backward direction

SI := SI�1

DI := DI�1

end if

Flags affected: As per cmp instruction

The cmps instruction compares the two bytes, words, or doublewords at DS:SI and ES:DI

and sets the flags just as the cmp instruction by performing

(DS:SI)� (ES:DI)

We can use conditional jumps such as ja, jg, jc, and the like to test the relationship of the

two values. As usual, SI and DI registers are updated according to the value of the direction

flag and operand size. The cmps instruction is typically used with the repe/repz or the

repne/repnz prefix.

The code

.DATA

string1 DB ’abcdfghi’,0

strLen EQU $ - string1

534 Chapter 12 Selected Pentium Instructions

string2 DB ’abcdefgh’,0

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,strLen

mov SI,OFFSET string1

mov DI,OFFSET string2

cld ; forward direction

repe cmpsb

leaves SI pointing to g in string1 and DI to f in string2. Therefore, adding

dec SI

dec DI

leaves SI and DI pointing to the first character that differs. Then we can use, for example,

ja str1Above

to test if string1 is greater (in the collating sequence) than string2. This, of course, is

true in this example.

To find the first matching instance, we can use repne/repnz. These prefixes make cmps
continue comparison as long as the comparison fails; the loop terminates when a match is found.

For example,

.DATA

string1 DB ’abcdfghi’,0

strLen EQU $ - string1 - 1

string2 DB ’abcdefgh’,0

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,strLen

mov SI,OFFSET string1 + strLen - 1

mov DI,OFFSET string2 + strLen - 1

std ; backward direction

repne cmpsb

inc SI

inc DI

leaves SI and DI pointing to the first character that matches in the backward direction.

Scanning a String: The scas (scanning a string) instruction is useful in searching for a par-

ticular value or character in a string. The value should be in AL (for scasb), AX (for scasw),

or EAX (for scasd), and ES:DI should point to the string to be searched.

Section 12.8 String Instructions 535

scasb — scan a byte string

Compare AL to the byte at ES:DI and set flags

if (DF = 0) ; forward direction

then

DI := DI�1

else ; backward direction

DI := DI�1

end if

Flags affected: As per cmp instruction

As with the cmps instruction, the repe/repz or the repne/repnz prefix can be used.

.DATA

string1 DB ’abcdefgh’,0

strLen EQU $ - string1

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,strLen

mov DI,OFFSET string1

mov AL,’e’ ; character to be searched

cld ; forward direction

repne scasb

dec DI

This program leaves DI pointing to e in string1. The following example can be used to

skip initial blanks.

.DATA

string1 DB ’ abc’,0

strLen EQU $ - string1

.CODE

.STARTUP

mov AX,DS ; set up ES

mov ES,AX ; to the data segment

mov CX,strLen

mov DI,OFFSET string1

mov AL,’ ’ ; character to be searched

cld ; forward direction

repe scasb

dec DI

This program leaves DI pointing to the first nonblank character (a in the example) in string1.

536 Chapter 12 Selected Pentium Instructions

12.8.3 String Processing Examples

We now give some examples that illustrate the use of the string instructions discussed in this

chapter. All these procedures are available in the string.asm file. These procedures receive

the parameters via the stack. A string pointer is received in segment:offset form (i.e.,

two words from the stack), which is loaded into either DS:SI or ES:DI using lds or les
instructions. Details on these instructions are given next.

LDS and LES Instructions

The syntax of these instructions is

lds register,source

les register,source

where register should be a 16-bit general-purpose register, and source is a pointer to a

32-bit memory operand. The instructions perform the following actions:

lds
register = (source)

DS = (source + 2)

les
register = (source)

ES = (source + 2)

The 16-bit value at source is copied to register and the next 16-bit value (i.e., at

source+2) is copied to the DS or ES register. Both instructions affect none of the flags. By

specifying SI as the register operand, lds can be conveniently used to set up the source string.

Similarly, the destination string can be set up by specifying DI with les. For completeness,

you should note that the Pentium also supports lfs, lgs, and lss instructions to load the

other segment registers.

Examples

Next we give two simple string-processing procedures. These procedures use the carry flag

(CF) to report not a string error. This error results if the input given to the procedure is not a

string with length less than the constant STR_MAX defined in string.asm. The carry flag is

set if there is an input error; otherwise, it is cleared.

The following constants are defined in string.asm:

STR_MAX EQU 128

STRING1 EQU DWORD PTR [BP+4]

STRING2 EQU DWORD PTR [BP+8]

Example 12.20 Write a procedure str len to return the string length.

String length is the number of characters in a string, excluding the NULL character. We use the

scasb instruction and search for the NULL character. Since scasb works on the destination

Section 12.8 String Instructions 537

string, les is used to load the string pointer into ES and DI registers from the stack. STR_MAX,

the maximum length of a string, is moved into CX, and the NULL character (i.e., 0) is moved

into the AL register. The direction flag is cleared to initiate a forward search. The string length

is obtained by taking the difference between the end of the string (pointed to by DI) and the

start of the string available at [BP+4]. The AX register is used to return the string length.

;---

;String length procedure. Receives a string pointer

;(seg:offset) via the stack. If not a string, CF is set;

;otherwise, string length is returned in AX with CF = 0.

;Preserves all registers.

;---

str_len PROC

enter 0,0

push CX

push DI

push ES

les DI,STRING1 ; copy string pointer to ES:DI

mov CX,STR_MAX ; needed to terminate loop if BX

; is not pointing to a string

cld ; forward search

mov AL,0 ; NULL character

repne scasb

jcxz sl_no_string ; if CX = 0, not a string

dec DI ; back up to point to NULL

mov AX,DI

sub AX,[BP+4] ; string length in AX

clc ; no error

jmp SHORT sl_done

sl_no_string:

stc ; carry set => no string

sl_done:

pop ES

pop DI

pop CX

leave

ret 4 ; clear stack and return

str_len ENDP

Example 12.21 Write a procedure str mov to move a string (string1) left or right by num
number of positions.

The objective of this example is to show how a particular direction of string copying is impor-

tant. This procedure receives a pointer to string1 and an integer num indicating the number

of positions the string value is to be moved within the string. A positive num value is treated

as a move to the right and a negative value as a move to the left. A 0 value has no effect. Note

538 Chapter 12 Selected Pentium Instructions

that the pointer received by this function need not point to the beginning of string1. It is

important to make sure that there is enough room in the original string in the intended direction

of the move.

;---

;String move procedure. Receives a signed integer

;and a string pointer (seg:offset) via the stack.

;The integer indicates the number of positions to move

;the string:

; -ve number => left move

; +ve number => right move

;If string1 is not a string, CF is set;

;otherwise, string is moved left or right and returns

;a pointer to the modified string in AX with CF = 0.

;Preserves all registers.

;---

str_mov PROC

enter 0,0

push CX

push DI

push SI

push DS

push ES

; find string length first

lds SI,STRING1 ; string pointer

push DS

push SI

call str_len

jnc sv_skip1

jmp sv_no_string

sv_skip1:

mov CX,AX ; string length in CX

inc CX ; add 1 to include NULL

les DI,STRING1

mov AX,[BP+8] ; copy # of positions to move

cmp AX,0 ; -ve number => left move

jl move_left ; +ve number => right move

je finish ; zero => no move

move_right:

; prepare SI and DI for backward copy

add SI,CX ; SI points to the

dec SI ; NULL character

mov DI,SI ; DI = SI + # of positions to move

add DI,AX

std ; backward copy

rep movsb

Section 12.8 String Instructions 539

; now erase the remainder of the old string

; by writing blanks

mov CX,[BP+8] ; # of positions moved

; DI points to the first char of left-over string

mov AL,’ ’ ; blank char to fill

; direction flag is set previously

rep stosb

jmp SHORT finish

move_left:

add DI,AX

cld ; forward copy

rep movsb

finish:

mov AX,[BP+8] ; add # of positions to move

add AX,[BP+4] ; to string pointer (ret value)

clc ; no error

jmp SHORT sv_done

sv_no_string:

stc ; carry set => no string

sv_done:

pop ES

pop DS

pop SI

pop DI

pop CX

leave

ret 6 ; clear stack and return

str_mov ENDP

To move left, we let SI point to the same character of string1 as the pointer received

by the procedure. We set DI = SI + num. Since num is negative for a left move, DI points to

where the character pointed by SI should move. A simple forward copy according to the string

length (plus one) will move the string value. The extraneous characters left will not cause any

problems, as a NULL terminates the moved value, as shown below,

string1 before str_mov
� � � �abcd0

string1 after str_mov with the string pointing to a and num = ��

� �abcd0d0

where � indicates a blank.

To move right, we let SI point to the NULL character of string1 and DI to its right by

num positions. A straightforward copy in the backward direction will move the string to its

destination position. However, this leaves remnants of the old values on the left, as shown in

the following example:

540 Chapter 12 Selected Pentium Instructions

string1 before str_mov
� �abcd0��

string1 after str_mov with the string pointing to a and num = 2

� �ababcd0

To eliminate this problem, str_mov erases the contents of the remaining characters of the

original value by filling them with blanks. In this example, the first ab characters will be filled

with blanks.

12.8.4 Testing String Procedures

Now we turn our attention to testing the string procedures developed in the last section. A

partial listing of this program is given in Program 12.7. You can find the full program in the

str_test.asm file.

Our main interest in this section is to show how an indirect procedure call would substan-

tially simplify calling the appropriate procedure according to user selection. Let us first look at

the indirect call instruction for 16-bit segments.

Indirect Procedure Call

In our discussions so far, we have been using only direct procedure calls, where the offset of the

target procedure is provided directly. In indirect procedure calls, this offset is given with one

level of indirection as in the indirect jump (see Section 12.3.1). That is, the call instruction itself

will contain either a memory address (through a label), or a 16-bit general-purpose register. The

actual offset of the target procedure is obtained either from the memory or register. For example,

we could use

call BX

if BX contains the offset of the target procedure. When this call instruction is executed, the

BX register contents are used to load IP in order to transfer control to the target procedure.

Similarly, we can use

call target_proc_ptr

if the word in memory at target_proc_ptr contains the offset of the target procedure.

Back to the Example

To facilitate calling the appropriate string procedure, we keep the procedure pointers in the

proc_ptr_table table. The user query response is used as an index into this table to get the

target procedure offset. The BX register is used as the index into this table. The instruction

call proc_ptr_table[BX]

causes the indirect procedure call. The rest of the program is straightforward.

Section 12.8 String Instructions 541

Program 12.7 String test program str test.asm

. . .

.DATA

proc_ptr_table DW str_len_fun,str_cpy_fun,str_cat_fun

DW str_cmp_fun,str_chr_fun,str_cnv_fun

DW str_mov_fun

MAX_FUNCTIONS EQU ($ - proc_ptr_table)/2

choice_prompt DB ’You can test several functions.’,CR,LF

DB ’ To test enter’,CR,LF

DB ’String length 1’,CR,LF

DB ’String copy 2’,CR,LF

DB ’String concatenate 3’,CR,LF

DB ’String compare 4’,CR,LF

DB ’Locate character 5’,CR,LF

DB ’Convert string 6’,CR,LF

DB ’Move string 7’,CR,LF

DB ’Invalid response terminates program.’,CR,LF

DB ’Please enter your choice: ’,0

invalid_choice DB ’Invalid choice - program terminates.’,0

string1 DB STR_MAX DUP (?)

string2 DB STR_MAX DUP (?)

. . .

.CODE

. . .

main PROC

.STARTUP

mov AX,DS

mov ES,AX

query_choice:

xor BX,BX

PutStr choice_prompt ; display menu

GetCh BL ; read response

nwln

sub BL,’1’

cmp BL,0

jb invalid_response

cmp BL,MAX_FUNCTIONS

jb response_ok

invalid_response:

PutStr invalid_choice

jmp SHORT done

542 Chapter 12 Selected Pentium Instructions

response_ok:

shl BL,1 ; multiply BL by 2

call proc_ptr_table[BX] ; indirect call

jmp query_choice

done:

.EXIT

main ENDP

. . .

END main

12.9 Summary
We have discussed the utility of the six status flags in detail. In particular, these flags are useful

in supporting conditional execution. We have presented details of the Pentium’s multiplication

and division instructions. Both instructions support operations on signed and unsigned integers.

The Pentium supports a variety of unconditional and conditional jump instructions. We

have introduced some of these instructions in Chapter 9. Here we looked at the indirect jump

and conditional jump instructions. We have presented details on selection and iterative con-

structs in order to see how the jump instructions are useful in implementing these high-level

language constructs. In particular, we have seen how compilers use the assembly instructions to

implement these high-level language constructs. Similarly, we have presented details on logical

expressions.

The Pentium supports several string instructions. These instructions are useful not only for

manipulating strings but also for moving blocks of data. By using the repeat prefixes, we can

efficiently implement string manipulation and block movement.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Auxiliary flag

• Bit manipulation

• Carry flag

• Conditional jump

• Direction flag

• Indirect jump

• Indirect procedure call

• Linear search

• Logical expressions—full evaluation

• Logical expressions—partial

evaluation

• Overflow flag

• Parity flag

• Selection sort

• Sign flag

• Status flags

• String representation

• Zero flag

Section 12.10 Exercises 543

12.10 Exercises
12–1 What is the significance of the carry flag?

12–2 What is the significance of the overflow flag?

12–3 Suppose the sign flag is not available. Is there a way to detect the sign of a number? Is

there more than one way?

12–4 When is the parity flag set? What is a typical application that uses this flag?

12–5 When subtracting two numbers, suppose the carry flag is set. What does it imply in terms

of the relationship between the two numbers?

12–6 In the last example, suppose the overflow flag is set. What does it imply in terms of the

relationship between the two numbers?

12–7 Is it possible to set both the carry and zero flags? If so, give an example that could set

both these flags; otherwise, explain why not.

12–8 Is it possible to set both the overflow and zero flags? If so, give an example that could set

both these flags; otherwise, explain why not.

12–9 When the zero flag is set, the parity flag is also set. The converse, however, is not true.

Explain with examples why this is so.

12–10 The zero flag is useful in implementing countdown loops (loops in which the counting

variable is decremented until zero). Justify the statement by means of an example.

12–11 Fill in the blanks in the following table:

AL CF ZF SF OF PF

mov AL,127
add AL,-128

mov AL,127
sub AL,-128

mov AL,-1
add AL,1

mov AL,127
inc AL

mov AL,127
neg AL

mov AL,0
neg AL

You do not have to fill in the lines with the mov instruction. The AL column represents

the AL value after executing the corresponding instruction.

544 Chapter 12 Selected Pentium Instructions

12–12 Fill in the blanks in the following table:

Before execution After execution

Instruction AL BL AL ZF SF PF

and AL,BL 79H 86H

or AL,BL 79H 86H

xor AL,BL 79H 86H

test AL,BL 79H 86H

and AL,BL 36H 24H

or AL,BL 36H 24H

xor AL,BL 36H 24H

test AL,BL 36H 24H

12–13 Assuming that the value in AL is a signed number, fill in the blanks in the following table:

Before execution After execution

Instruction AL CF AL CF

shl AL,1 �1 ?

rol AL,1 �1 ?

shr AL,1 50 ?

ror AL,1 50 ?

sal AL,1 �20 ?

sar AL,1 �20 ?

rcl AL,1 �20 1

rcr AL,1 �20 1

12–14 Assuming that the CL register is initialized to three, fill in the blanks in the following

table:

Before execution After execution

Instruction AL CF AL CF

shl AL,CL 76H ?

sal AL,CL 76H ?

rcl AL,CL 76H 1

rcr AL,CL 76H 1

ror AL,CL 76H ?

rol AL,CL 76H ?

12–15 Explain why multiplication requires two separate instructions to work on signed and un-

signed data.

Section 12.11 Programming Exercises 545

12–16 We have stated that, if we use double-length registers, multiplication does not result in an

overflow. Prove this statement for 8-, 16-, and 32-bit operands.

12–17 We have discussed how the ZF, OF, and SF flags can be used to establish relationships

such as � and � between two signed numbers (see Table 12.6 on page 505). Show that

the following conditions are equivalent:

Condition given in Table 12.6 Equivalent condition

jg ZF = 0 and SF = OF ((SF xor OF) or ZF) = 0

jge SF = OF (SF xor OF) = 0

jl SF �� OF (SF xor OF) = 1

jle ZF = 1 or SF �� OF ((SF xor OF) or ZF) = 1

12–18 What are the advantages and disadvantages of the fixed-length string representation?

12–19 What are the advantages and disadvantages of the variable-length string representation?

12–20 Discuss the pros and cons of storing the string length explicitly versus using a sentinel

character for storing variable-length strings.

12–21 We can write procedures to perform string operations without using the string instruc-

tions. What is the advantage of using the string instructions? Explain why.

12–22 Why doesn’t it make sense to use the rep prefix with the lods instruction?

12–23 Explain why it does not make sense to use conditional repeat prefixes with lods, stos,

or movs string instructions.

12–24 Both loop and repeat prefixes use the CX register to indicate the repetition count. Yet

there is one significant difference between them in how they use the CX value. What is

this difference?

12–25 Identify a situation in which the direction of string processing is important.

12–26 Identify a situation in which a particular direction of string processing is mandatory.

12–27 Suppose that the lds instruction is not supported by the Pentium. Write a piece of code

that implements the semantics of the lds instruction. Make sure that your code does not

disturb any other registers.

12–28 Compare the space and time requirements of lds and the code you have written in the

last exercise. To do this exercise, you need to refer to the Pentium data book.

12–29 What is the difference between the direct and indirect procedure calls?

12.11 Programming Exercises
12–P1 Write a program to multiply two signed 8-bit numbers using only shift and add instruc-

tions. Your program can read the two input numbers with GetInt and display the result

by PutInt.

546 Chapter 12 Selected Pentium Instructions

12–P2 In Appendix A, we discuss the format of short floating-point numbers. Write a program

that reads the floating-point internal representation from the user as a string of eight hex-

adecimal digits and displays the three components—mantissa, exponent, and sign—in

binary. For example, if the input to the program is 429DA000, the output should be

sign = 0

mantissa = 1.0011101101

exponent = 110.

12–P3 Modify the program for the last exercise to work with the long floating-point representa-

tion.

12–P4 Suppose you are given an integer that requires 16 bits to store. You are asked to find

whether its binary representation has an odd or even number of 1s. Write a program that

reads an integer (it should accept both positive and negative numbers) from the user and

outputs whether it contains an odd or even number of 1s. Your program should also print

the number of 1s in the binary representation.

12–P5 Modify the indirect jump program given in Program 12.3 on page 498 so that it works for

any input without hanging up or crashing the system. That is, make the program safe to

run.

12–P6 Suppose you are given a positive integer. You can add individual digits of this number to

get another integer. Now apply the same procedure to the new integer. If we repeat this

procedure, eventually we will end up with a single digit. Here is an example:

7391928 = 7 � 3 � 9 � 1 � 9 � 2 � 8 = 39

39 = 3 � 9 = 12

12 = 1 � 2 = 3.

Write a program that reads a positive integer from the user and displays the single digit

as obtained by the above procedure. For the example, the output should be 3.

Your program should detect negative number input as an error and terminate after dis-

playing an appropriate error message.

12–P7 Repeat the above exercise with the following modification. Use multiplication instead of

addition. Here is an example:

7391928 = 7 * 3 * 9 * 1 * 9 * 2 * 8 = 27216

27216 = 2 * 7 * 2 * 1 * 6 = 168

168 = 1 * 6 * 8 = 48

48 = 4 * 8 = 32

32 = 3 * 2 = 6.

12–P8 The PutInt8 procedure has used repeated division by 10. Alternatively, you can display

an 8-bit number by first dividing it by 100 and displaying the quotient; then divide the

remainder by 10 and display the quotient and remainder (in that order). Modify the

PutInt8 procedure to incorporate this method. Discuss the pros and cons of the two

methods.

Section 12.11 Programming Exercises 547

12–P9 Write a program to multiply a two-dimensional matrix in the following way: multiply all

elements in row � by ������. That is, multiply row 1 by ��, row 2 by ��, row 3 by ��,

and so on. Your program should be able to read matrices of size up to 10 � 10. You

should query the user for number of rows, number of columns, and then read the matrix

element values. These values should be within the range of 8-bit signed numbers (i.e.,

between �128 to +127). Internally, use words to store the number so that there will not

be overflow problems with the multiplication. Make sure to do proper error checking, for

example, asking for more than 10 rows or columns, entering an out-of-range value, and

so on.

12–P10 We know that

� � � � � � � � ��� �
� � �� � ��

�
�

Write a program that requests � as input and computes the left- and the right-hand sides

of the equation, verifies that they are equal, and displays the result.

12–P11 Write a program that reads a set of test scores as input and outputs the truncated average

value (i.e., discard any fraction generated). The input test scores cannot be negative.

So use this condition to terminate the input. Furthermore, assume that the first number

entered is not the test score but the maximum score that can be obtained for that test. Use

this information to display the average test score as a percentage. For example, if the

average is 18 and the maximum obtainable test score is 20, the average is 90 percent.

12–P12 Modify the above program to round the average test score. For example, if the average

is 15.55, it should be rounded to 16.

12–P13 Modify the average test score program to display the fractional part as well. Display the

average test score in dd.dd format.

12–P14 Write a program to convert temperature from Celsius to Fahrenheit. The formula is

� �
�

�
� � � �� �

12–P15 Write a program to read length �, width � , and height � of a box (all integers). It

computes and displays the volume and surface area of the box.

Volume = ��� �� ,

Surface volume = �� ���� � ��� �� ��� �

12–P16 Write an assembly language program to read a string of characters from the user. It

counts the number of vowels and displays the value. For each vowel, the count includes

both uppercase and lowercase letters. For example, the input string

Advanced Programming in UNIX Environment

produces the following output:

548 Chapter 12 Selected Pentium Instructions

Vowel Count

a or A 3

e or E 3

i or I 4

o or O 2

u or U 1

12–P17 Do the last exercise using an indirect jump. Hint: Use xlat to translate vowels to five

consecutive numbers so that you can use the number as an index into the jump table.

12–P18 Suppose that we want to list uppercase and lowercase vowels separately (i.e., a total of

10 count values). Modify the programs of the last two exercises to do this. After doing

this exercise, express your opinion on the usefulness of the indirect jump instruction.

12–P19 Merge sort is a technique to combine two sorted arrays. Merge sort takes two sorted

input arrays X and Y—say, of size� and �—and produces a sorted array Z of size���

that contains all elements of the two input arrays. The pseudocode of merge sort is as

follows:

mergesort (X, Y, Z, m, n)

i := 0 �index variables for arrays X, Y, and Z�

j := 0

k := 0

while ((i � m) AND (j � n))

if (X[i] � Y[j]) �find largest of two�

then

Z[k] := X[i] �copy and update indices�

k := k+1

i := i+1

else

Z[k] := Y[j] �copy and update indices�

k := k+1

j := j+1

end if

end while

if (i � m) �copy remainder of input array�

while (i � m)

Z[k] := X[i]

k := k+1

i := i+1

end while

else

while (j � m)

Section 12.11 Programming Exercises 549

Z[k] := Y[j]

k := k+1

j := j+1

end while

end if

end mergesort

The merge sort algorithm scans the two input arrays while copying the smallest of the

two elements from X and Y into Z. It updates indices appropriately. The first while loop

terminates when one of the arrays is exhausted. Then the other array is copied into Z.

Write a merge sort procedure and test it with two sorted arrays. Assume that the user will

enter the two input arrays in sorted (ascending) order. The merge sort procedure receives

the five parameters via the stack.

Chapter 13

High-Level Language

Interface

Objectives
• To review motivation for writing mixed-mode programs;

• To discuss the principles of mixed-mode programming;

• To describe how assembly language procedures are called from C;

• To illustrate how C functions are called from assembly language procedures;

• To explain how inline assembly language code is written.

Thus far, we have written standalone assembly programs. This chapter considers mixed-mode

programming. In this mode, part of a program is written in a high-level language and part in

assembly language. We use C and Pentium assembly languages to illustrate how such mixed-

mode programs are written. The motivation for mixed-mode programming is discussed in Sec-

tion 13.1. Section 13.2 gives an overview of mixed-mode programming, which can be done

either by inline assembly code or by separate assembly modules. The inline assembly method

is discussed in Section 13.5. Other sections focus on the separate assembly module method.

Section 13.3 describes the mechanics involved in calling assembly language procedures

from a C program. This section presents details about parameter passing, returning values to

C functions, and so on. Section 13.4 shows how a C function can be called from an assembly

language procedure. The last section summarizes the chapter.

551

552 Chapter 13 High-Level Language Interface

13.1 Why Program in Mixed-Mode?
Mixed-mode programming refers to writing parts of a program in different languages. In this

chapter we focus on programming in C and assembly languages. Thus, in our case, part of

a program is written in C and the other part in the Pentium assembly language. We use the

Borland C++ compiler and Turbo Assembler to explain the principles involved in mixed-mode

programming. This discussion can be easily extended to a different set of languages and com-

pilers/assemblers.

In Chapter 9, we discussed several reasons why one would want to program in assembly

language. Although it is possible to write a program entirely in assembly language, there are

several disadvantages in doing so. These include

• Low productivity,

• High maintenance cost, and

• Lack of portability.

Low productivity is due to the fact that assembly language is a low-level language. As a

result, a single high-level language instruction may require several assembly language instruc-

tions. It has been observed that programmers tend to produce the same number of lines of

debugged and tested source code per unit time irrespective of the level of the language used. As

the assembly language requires more lines of source code, programmer productivity tends to be

low.

Programs written in assembly language are difficult to maintain. This is a direct conse-

quence of it being a low-level language. In addition, assembly language programs are not

portable.

As a result of these pros and cons, some programs are written in mixed-mode using both

high-level and low-level languages. System software often requires mixed-mode programming.

In such programs, it is possible for a high-level procedure to call a low-level procedure and vice

versa. The remainder of the chapter discusses how mixed-mode programming is done in C and

assembly languages. Our goal is to illustrate only the principles involved. Once these principles

are understood, the discussion can be generalized to any type of mixed-mode programming.

13.2 Overview
There are two ways of writing mixed-mode C and assembly programs: inline assembly code

or separate assembly modules. In the inline assembly method, the C program module can con-

tain assembly language instructions. Most C compilers allow embedding assembly language

instructions within a C program by prefixing them with asm to let the compiler know that it

is an assembly language instruction. This method is useful if you have only a small amount

of assembly code to be embedded. Otherwise, separate assembly modules are preferred. Sec-

tion 13.5 discusses how the inline assembly method works with an example. Until then, we

focus on separate assembly modules.

When separate modules are used for C and assembly languages, each module can be trans-

lated into the corresponding object (.obj) file. To do this translation, we use a C compiler for

Section 13.2 Overview 553

COMPILER ASSEMBLER

LINKER

Object file

C source file Assembly source file

Object file

Executable file

sample1.c sample2.asm

sample1.obj sample2.obj

sample1.exe

Figure 13.1 Steps involved in compiling mixed-mode programs.

the C modules and an assembler for the assembly modules, as shown in Figure 13.1. Then the

linker can be used to produce the executable (.exe) file from these object files.

Suppose our mixed-mode program consists of two modules:

• One C module, file sample1.c, and

• One assembly module, file sample2.asm.

The process involved in producing the executable file is shown in Figure 13.1. We can instruct

the Borland C++ compiler to initiate this cycle with the following:

bcc sample1.c sample2.asm

This command instructs the compiler to first compile sample1.c to sample1.obj and

then invoke the TASM assembler to assemble sample2.asm to sample2.obj. The linker

TLINK is finally invoked to link sample1.obj and sample2.obj to produce the exe-

cutable file sample1.exe.

554 Chapter 13 High-Level Language Interface

a

b

c

d

IP

. . .

TOS, SP IP

. . .

SP, TOS

d

c

b

a

Right-pusherLeft-pusher

Figure 13.2 Two ways of pushing parameters onto the stack.

13.3 Calling Assembly Procedures from C
Let us now discuss how we can call an assembly language procedure from a C program. The

first thing we have to know is what communication medium is used between the C and assembly

language procedures, as the two procedures may exchange parameters and results. You are right

if you guessed it to be the stack.

Given that the stack is used for communication purposes, we still need to know how the

C function places the parameters on the stack, and where it expects the assembly language

procedure to return the result. In addition, we should also know which registers we can use

freely without worrying about preserving their values. Next we discuss these issues in detail.

13.3.1 Parameter Passing

There are two ways in which arguments (i.e., parameter values) are pushed onto the stack: from

left to right or from right to left. Most high-level languages such as FORTRAN and Pascal push

the arguments from left to right. These are called left-pusher languages. C, on the other hand,

pushes arguments from right to left. Thus, C is a right-pusher language. The stack state after

executing

sum(a,b,c,d)

is shown in Figure 13.2. From now on, we consider only right-pushing of arguments as we

focus on the C language.

To see how Borland C++ pushes arguments onto the stack, take a look at the following C

program (this is a partial listing of Example 13.1):

int main(void)

{

int x=25, y=70;

int value;

extern int test(int, int, int);

Section 13.3 Calling Assembly Procedures from C 555

value = test (x, y, 5);

. . .

. . .

}

This program is compiled (use -S option to generate the assembly source code) as follows:

; int x=25, y=70;

;

mov word ptr [bp-2],25

mov word ptr [bp-4],70

;

; int value;

; extern int test(int, int, int);

;

; value = test (x, y, 5);

;

push 5

push word ptr [bp-4]

push word ptr [bp-2]

call near ptr _test

add sp,6

mov word ptr [bp-6],ax

The compiler assigns space for variables x, y, and value on the stack at BP�2, BP�4,

and BP�6, respectively. When the test function is called, the arguments are pushed from

right to left, starting with the constant 5. Also notice that the stack is cleared of the arguments

by the C program after the call by

add sp,6

So, when we write our assembly procedures, we should not bother clearing the arguments

from the stack as we did in our programs in the previous chapters. This convention is used

because C allows a variable number of arguments to be passed in a function call. However, we

should note that the arguments are cleared by the called procedure if we use Pascal instead of

C. The Borland C++ compiler allows you to specify the desired parameter passing mechanism

(C or Pascal). For example, by using the -p option to use Pascal calls, the same program is

compiled as

; int x=25, y=70;

;

mov si,25

mov word ptr [bp-2],70

;

; int value;

; extern int test(int, int, int);

556 Chapter 13 High-Level Language Interface

Table 13.1 Registers used to return values

Return value type Register used

unsigned char AX

char AX

unsigned short AX

short AX

unsigned int AX

int AX

unsigned long DX:AX

long DX:AX

near pointer AX

far pointer DX:AX

;

; value = test (x, y, 5);

;

push si

push word ptr [bp-2]

push 5

call near ptr TEST

mov di,ax

We can clearly see that left pushing of arguments is used. In addition, the stack is not cleared

of the arguments. Thus, in this case, it is the responsibility of the called procedure to clear the

arguments on the stack, which is what we have been doing in our assembly programs in the

previous chapters.

13.3.2 Returning Values

We can see from the C and Pascal assembly codes given in the last subsection that the AX

register returns the value of the test function. In fact, the AX is used to return 8- and 16-bit

values. To return a 32-bit value, use the DX:AX pair with the DX holding the upper 16 bits.

Table 13.1 shows how various values are returned to the Borland C++ function. This list does

not include floats and doubles. These are returned via the 8087 stack. We do not discuss these

details.

13.3.3 Preserving Registers

In general, the called assembler procedure can use the registers as needed, except that the fol-

lowing registers should be preserved:

BP, SP, CS, DS, SS

Section 13.3 Calling Assembly Procedures from C 557

In addition, if register variables are enabled, both SI and DI registers should also be preserved.

When register variables are enabled, both SI and DI registers are used for variable storage, as

shown below:

; int x=25, y=70;

;

mov si,25

mov word ptr [bp-2],70

;

; int value;

; extern int test(int, int, int);

;

; value = test (x, y, 5);

;

push 5

push word ptr [bp-2]

push si

call near ptr _test

add sp,6

mov di,ax

Compare this version, with register variables enabled, to the previous version given on page 555.

Instead of using the stack, SI and DI are used to map variables x and value, respectively. Since

we never know whether the C code was compiled with or without enabling the register variables,

it is good practice to preserve SI and DI registers as well.

13.3.4 Publics and Externals

Mixed-mode programming involves at least two program modules: a C module and an assem-

bly module. Thus, we have to declare those functions and procedures that are not defined in

the same module as external. Similarly, those procedures that are accessed by another mod-

ule should be declared as public, as discussed in Chapter 10. Before proceeding further, you

may want to review the material on multimodule programs presented in Chapter 10. Here we

mention only those details that are specific to the mixed-mode programming involving C and

assembly language.

In C, all external labels should start with an underscore character (_). The C and C++

compilers automatically append the required underscore character to all external functions and

variables. A consequence of this characteristic is that when we write an assembly procedure

that is called from a C program, we have to make sure that we prefix an underscore character to

its name.

13.3.5 Illustrative Examples

We now look at three examples to illustrate the interface between C and assembly programs.

We start with a simple example, whose C part has been dissected in the previous subsections.

558 Chapter 13 High-Level Language Interface

Example 13.1 Our first mixed-mode example.

This example passes three parameters to the assembly language function test. The C code is

shown in Program 13.1 and the assembly code in Program 13.2. Since the test procedure is

called from the C program, we have to prefix an underscore character to the procedure name.

The function test is declared as external in the C program (line 11) and public in the assembly

program (line 7). Since C clears the arguments from the stack, the assembly procedure uses

a simple ret to transfer control back to the C program. Other than these differences, the

assembly procedure is similar to several others we have written before.

Program 13.1 An example illustrating assembly calls from C: C code (in file testex c.c)

1: /**

2: * A simple example to illustrate C and assembly language *

3: * interface. The test function is written in assembly *

4: * language (in file testex_a.asm). *

5: **/

6: #include <stdio.h>

7: int main(void)

8: {

9: int x=25, y=70;

10: int value;

11: extern int test(int, int, int);

12:

13: value = test (x, y, 5);

14: printf("result = %d\n", value);

15: return 0;

16: }

Program 13.2 An example illustrating assembly calls from C: Assembly code (in file testex a.asm)

1: ;--

2: ; Assembly program for the test function - called from the

3: ; C program in file testex_c.c

4: ;--

5: .MODEL SMALL

6: .CODE

7: .486

8: PUBLIC _test

9: _test PROC

10: enter 0,0

11: mov AX,[BP+4] ; get argument1 x

12: add AX,[BP+6] ; add argument2 y

13: sub AX,[BP+8] ; subtract argument3 from sum

Section 13.3 Calling Assembly Procedures from C 559

14: leave

15: ret ; stack cleared by C function

16: _test ENDP

17: END

Example 13.2 An example to show parameter passing by call-by-value as well as call-by-

reference.

This example shows how pointer parameters are handled. The C main function requests three

integers and passes them to the assembly procedure. The C program is given in Program 13.3.

The assembly procedure min_max, shown in Program 13.4, receives the three integer values

and two pointers to variables minimum and maximum. It finds the minimum and maximum of

the three integers and returns them to the main C function via the two pointer variables. The

minimum value is kept in AX and the maximum in DX. The code given on lines 29 to 32 in

Program 13.4 stores the return values by using the BX register in the indirect addressing mode.

Program 13.3 An example with the C program passing pointers to the assembly program: C code (in file

minmax c.c)

1: /**

2: * An example to illustrate call-by-value and *

3: * call-by-reference parameter passing between C and *

4: * assembly language modules. The min_max function is *

5: * written in assembly language (in file minmax_a.asm). *

6: **/

7: #include <stdio.h>

8: int main(void)

9: {

10: int value1, value2, value3;

11: int minimum, maximum;

12: extern void min_max (int, int, int, int*, int*);

13:

14: printf("Enter number 1 = ");

15: scanf("%d", &value1);

16: printf("Enter number 2 = ");

17: scanf("%d", &value2);

18: printf("Enter number 3 = ");

19: scanf("%d", &value3);

20:

21: min_max(value1, value2, value3, &minimum, &maximum);

22: printf("Minimum = %d, Maximum = %d\n", minimum, maximum);

23: return 0;

24: }

560 Chapter 13 High-Level Language Interface

Program 13.4 An example with the C program passing pointers to the assembly program: Assembly code

(in file minmax a.asm)

1: ;--

2: ; Assembly program for the min_max function - called from

3: ; the C program in file minmax_c.c. This function finds the

4: ; minimum and maximum of the three integers received by it.

5: ;--

6: .MODEL SMALL

7: .CODE

8: .486

9: PUBLIC _min_max

10: _min_max PROC

11: enter 0,0

12: ; AX keeps minimum number and DX maximum

13: mov AX,[BP+4] ; get value 1

14: mov DX,[BP+6] ; get value 2

15: cmp AX,DX ; value 1 < value 2?

16: jl skip1 ; if so, do nothing

17: xchg AX,DX ; else, exchange

18: skip1:

19: mov CX,[BP+8] ; get value 3

20: cmp CX,AX ; value 3 < min in AX?

21: jl new_min

22: cmp CX,DX ; value 3 < max in DX?

23: jl store_result

24: mov DX,CX

25: jmp store_result

26: new_min:

27: mov AX,CX

28: store_result:

29: mov BX,[BP+10] ; BX := &minimum

30: mov [BX],AX

31: mov BX,[BP+12] ; BX := &maximum

32: mov [BX],DX

33: leave

34: ret

35: _min_max ENDP

36: END

Section 13.3 Calling Assembly Procedures from C 561

Example 13.3 String processing example.

This example illustrates how global variables, declared in C, are accessed by assembly pro-

cedures. The string variable is declared as a global variable in the C program, as shown in

Program 13.5 (line 9). The assembly language procedure computes the string length by access-

ing the global string variable, as shown in Program 13.6. The procedure call is parameterless

in this example (see line 16 of the C program). The string variable is declared as an external

variable in the assembly code (line 7) with an underscore, as it is an external variable.

Program 13.5 A string processing example: C code (in file string c.c)

1: /**

2: * A string processing example. Demonstrates processing *

3: * global variables. Calls the string_length *

4: * assembly language program in file string_a.asm file. *

5: **/

6: #include <stdio.h>

7: #define LENGTH 256

8:

9: char string[LENGTH];

10: int main(void)

11: {

12: extern int string_length (void);

13:

14: printf("Enter string: ");

15: scanf("%s", string);

16: printf("string length = %d\n", string_length());

17: return 0;

18: }

Program 13.6 A string processing example: Assembly code (in file string a.asm)

1: ;---

2: ; String length function works on the global string

3: ; (defined in the C function). It returns string length.

4: ;---

5: .MODEL SMALL

6: .DATA

7: EXTRN _string:byte

8: .CODE

9: PUBLIC _string_length

10: _string_length PROC

562 Chapter 13 High-Level Language Interface

11: mov AX,0 ; AX keeps the character count

12: mov BX,OFFSET _string ; load BX with string address

13: repeat:

14: cmp BYTE PTR[BX],0 ; compare with NULL character

15: jz done

16: inc AX ; increment string length

17: inc BX ; inc. BX to point to next char.

18: jmp repeat

19: done:

20: ret

21: _string_length ENDP

22: END

13.4 Calling C Functions from Assembly
So far, we have considered how a C function can call an assembler procedure. Sometimes it is

desirable to call a C function from an assembler procedure. This scenario often arises when we

want to avoid writing assembly code for performing complex tasks. Instead, a C function could

be written for those tasks. This section illustrates how we can access C functions from assembly

procedures. Essentially, the mechanism is the same: we use the stack as the communication

medium, as shown in the next example.

Example 13.4 An example to illustrate a C function call from an assembly procedure.

The main C function requests a set of marks of a class and passes this array to the assembly
procedure stats, as shown in Program 13.7. The stats procedure computes the minimum,
maximum, and rounded average marks and returns these three values to the C main function
(see Program 13.8). To compute the rounded average mark, the C function find_avg is called
from the assembly procedure. The required arguments total and size are pushed onto the
stack (lines 42 and 43) before calling the C function on line 44. Since the convention for C calls
for the caller to clear the stack, line 45 adds 4 to SP to clear the two arguments passed onto the
find_avg C function. The rounded average integer is returned in the AX register.

Program 13.7 An example to illustrate C calls from assembly programs: C code (in file marks c.c)

1: /**

2: * An example to illustrate C program calling assembly *

3: * procedure and assembly procedure calling a C function. *

4: * This program calls the assembly language procedure *

5: * in file MARKS_A.ASM. The program outputs minimum, *

6: * maximum, and rounded average of a set of marks. *

7: **/

8: #include <stdio.h>

9:

Section 13.4 Calling C Functions from Assembly 563

10: #define CLASS_SIZE 50

11:

12: int main(void)

13: {

14: int marks[CLASS_SIZE];

15: int minimum, maximum, average;

16: int class_size, i;

17: int find_avg(int, int);

18: extern void stats(int*, int, int*, int*, int*);

19:

20: printf("Please enter class size (<50): ");

21: scanf("%d", &class_size);

22: printf("Please enter marks:\n");

23: for (i=0; i<class_size; i++)

24: scanf("%d", &marks[i]);

25:

26: stats(marks, class_size, &minimum, &maximum, &average);

27: printf("Minimum = %d, Maximum = %d, Average = %d\n",

28: minimum, maximum, average);

29: return 0;

30: }

31: /***

32: * Returns the rounded average required by the assembly

33: * procedure STATS in file MARKS_A.ASM.

34: ***/

35: int find_avg(int total, int number)

36: {

37: return((int)((double)total/number + 0.5));

38: }

Program 13.8 An example to illustrate C calls from assembly programs: Assembly code (in file

marks a.asm)

1: ;--

2: ; Assembly program example to show call to a C function.

3: ; This procedure receives a marks array and class size

4: ; and returns minimum, maximum, and rounded average marks.

5: ;--

6: .MODEL SMALL

7: EXTRN _find_avg:PROC

8: .CODE

9: .486

10: PUBLIC _stats

564 Chapter 13 High-Level Language Interface

11: _stats PROC

12: enter 0,0

13: push SI

14: push DI

15: ; AX keeps minimum number and DX maximum

16: ; Marks total is maintained in SI

17: mov BX,[BP+4] ; BX := marks array address

18: mov AX,[BX] ; min := first element

19: mov DX,AX ; max := first element

20: xor SI,SI ; total := 0

21: mov CX,[BP+6] ; CX := class size

22: repeat1:

23: mov DI,[BX] ; DI := current mark

24: ; compare and update minimum

25: cmp DI,AX

26: ja skip1

27: mov AX,DI

28: skip1:

29: ; compare and update maximum

30: cmp DI,DX

31: jb skip2

32: mov DX,DI

33: skip2:

34: add SI,DI ; update marks total

35: add BX,2

36: loop repeat1

37: mov BX,[BP+8] ; return minimum

38: mov [BX],AX

39: mov BX,[BP+10] ; return maximum

40: mov [BX],DX

41: ; now call find_avg C function to compute average

42: push WORD PTR[BP+6] ; push class size

43: push SI ; push total marks

44: call _find_avg ; returns average in AX

45: add SP,4 ; clear stack

46: mov BX,[BP+12] ; return average

47: mov [BX],AX

48: pop DI

49: pop SI

50: leave

51: ret

52: _stats ENDP

53: END

Section 13.5 Inline Assembly Code 565

13.5 Inline Assembly Code
In the inline assembly method, assembly language statements are embedded into the C code.

Such assembly statements are identified by placing the asm keyword before the assembly lan-

guage instruction. The end of an inline asm statement is indicated by either a semicolon (;) or a

newline. Multiple assembly language instructions can be written on the same asm line provided

they are separated by semicolons, as shown below:

asm xor AX,AX; mov AL,DH

If there are multiple assembly language instructions, we can also use braces to compound

them, as shown below:

asm {

xor AX,AX

mov AL,DH

}

Make sure to place the first brace on the same line as the asm keyword. To include comments on

asm statements, we use C-style comments. We cannot use assembly language-style comments

that start with a semicolon.

13.5.1 Compiling Inline Assembly Programs

Borland C++ can handle inline assembly code in one of two ways:

• Convert the C code first into assembly language and then invoke TASM to produce the

object (.obj) file. We call this the TASM method.

• Use the built-in assembler (BASM) to assemble the asm statements in the C code. We

call this the BASM method.

The compiling process using these two methods is shown in Figure 13.3. The BASM ap-

proach is restricted in the sense that only 16-bit instructions can be used. If we use 32-bit

Pentium instructions, the Borland C++ compiler generates an error message. Then we can ei-

ther simplify the inline code to avoid the instructions that BASM will not accept, or use the other

method that invokes TASM. Using the BASM method does not require any special attention to

compile an inline program.

In the TASM method, we can use the -B compiler option so that the compiler first gen-

erates an assembly language file and then invokes TASM to assemble it into the .obj file.

Alternatively, we can include

#pragma inline

at the beginning of the C file to instruct the compiler to use the -B option. The TASM method

has the advantage of utilizing the capability of TASM, and hence we are not restricted to a

subset of the assembly language instructions as in the BASM method.

566 Chapter 13 High-Level Language Interface

LINKER

Object file

Executable file

COMPILER

BASM method TASM method

COMPILER

LINKER

ASSEMBLER

Object file

Executable file

C source file

C source file

sample.c

sample.obj

sample.exe

sample.c

sample.asm

sample.obj

sample.exe

Assembly file

Figure 13.3 Steps involved in compiling mixed-mode programs with inline assembly code.

13.6 Summary
We introduced the principles involved in mixed-mode programming. We discussed the main

motivation for writing mixed-mode programs. This chapter focused on mixed-mode program-

ming involving C and the assembly language. Using the Borland C++ compiler and Turbo

Assembler software, we demonstrated how assembly language procedures are called from C,

and vice versa. Once you understand the principles discussed in this chapter, you can easily

handle any type of mixed-mode programming activity.

Section 13.7 Exercises 567

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• #pragma directive

• Inline assembly

• Left-pusher language

• Mixed-mode programs

• Parameter passing

• Right-pusher language

13.7 Exercises
13–1 Why do we need to write mixed-mode programs?

13–2 Find out details about how you can compile mixed-mode programs with your compiler

(if it is other than the Borland C++ compiler).

13–3 Describe how parameters are passed from a C calling function to an assembly language

procedure.

13–4 For your compiler, describe how 8-, 16-, and 32-bit values are returned to a C function.

13–5 For your compiler, which registers should be preserved by an assembly procedure?

13–6 What is the difference between right-pusher and left-pusher languages (as far as parame-

ter passing is concerned)?

13–7 Explain why, in C, the calling function is responsible for clearing the stack.

13–8 What are the pros and cons of inline assembly as opposed to separate assembly modules?

13–9 What are the significant differences between the BASM and TASM methods for writing

inline assembly code?

13.8 Programming Exercises
13–P1 Write a program that requests a string and a substring from the user and reports the lo-

cation of the first occurrence of the substring in the string. Write a C main program to

receive the two strings from the user. Have the C main program then call an assembly lan-

guage procedure to find the location of the substring. This procedure should receive two

pointers to strings string and substring and search for substring in string.

If a match is found, it returns the starting position of the first match. Matching should be

case sensitive. A negative value should be returned if no match is found. For example, if

string = Good things come in small packages.

and

substring = in

the procedure should return 8, indicating a match of in in things.

568 Chapter 13 High-Level Language Interface

13–P2 Write a program to read a matrix (maximum size 10 � 10) from the user, and display the

transpose of the matrix. To obtain the transpose of matrix A, write rows of A as columns.

Here is an example:

If the input matrix is �
���

�� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� 	�

�
��� �

the transpose of the matrix is

�
���

	� �� �� ��

�� �� �� ��

�� �� �� ��

�� �� �� 	�

�
��� �

The C part of your program is responsible for getting the matrix and for displaying the

result. The transpose should be done by an assembly procedure. Devise an appropriate

interface between the two procedures.

13–P3 Write a mixed-mode program that reads a string of characters as input and displays the

number of alphabetic characters (i.e., A to Z and a to z) and number of digit characters

(i.e., 0 to 9). The C main function prompts the user for a string and passes this string to

an assembly procedure (say, count), along with two pointers for the two counts to be

returned. The assembly procedure count calls the C library functions isalpha and

isdigit to determine if a character is an alpha or digit character, respectively.

13–P4 We know that

	
 �
 �
 � � �
� �
� � ��
 	

�
�

Write a program that requests � as input and computes the left- and the right-hand sides

of the equation, verifies that they are equal, and displays the value. Organize your pro-

gram as follows. The C main function should request the � value and also display the

output. It should call an assembly procedure that verifies the equation and returns the

value to the C main function. The assembly program computes the left-hand side and

calls a C function to compute the right-hand side (it passes the � value to the C func-

tion). If the left-hand side is equal to the right-hand side, the assembly procedure returns

the result of the calculation. Otherwise, a negative value is returned to the main C func-

tion.

Chapter 14

RISC Processors

Objectives
• To discuss the motivation for RISC processors;

• To present RISC design philosophy;

• To give details on PowerPC and Itanium processors;

• To discuss advanced processor features such as speculative execution and predication;

• To look at branch handling strategies.

As our discussion of the Pentium processor architecture and its instruction set indicates, the Pen-

tium supports several complex instructions and a variety of addressing modes. A large number

of addressing modes are provided to efficiently support manipulation of complex data struc-

tures such as multidimensional arrays and structures. Such processors are referred to as CISCs

(complex instruction set computers). RISC (reduced instruction set computer) processors, on

the other hand, use simple instructions and addressing modes. We start the chapter with an in-

troduction to RISC processors. Section 14.2 describes the historical reasons for designing CISC

processors. In this section, we also identify the reasons for the popularity of RISC designs. The

next section discusses the principal characteristics of RISC processors, which include simple in-

structions and few addressing modes. RISC processors use the load/store architecture in which

only the load and store instructions access memory. All other instructions get their operands

from registers and write their results into registers.

We discuss two commercial processors that follow the RISC design philosophy. Sec-

tion 14.4 gives details on the PowerPC processor, and the Intel 64-bit Itanium processor is

discussed in Section 14.5. The Itanium has several interesting features such as speculative exe-

cution and predication. These features are discussed in detail. We conclude the chapter with a

summary.

571

572 Chapter 14 RISC Processors

14.1 Introduction
The Pentium processor, discussed in the previous chapters, belongs to what is known as the

complex instruction set computer (CISC) design. The obvious reason for this classification is

the “complex” nature of its instruction set architecture (ISA). We define in the next couple of

sections what we mean by complex ISA. For now, it is sufficient to know that the Pentium ISA

provides a lot of support for higher-level languages (HLLs) at the expense of increased instruc-

tion set complexity. Two examples of complexity are the large number of addressing modes

provided and wide range of operations—from simple to complex—supported. The motivation

for designing such a complex instruction set is to provide an instruction set that closely supports

the operations and data structures used by HLLs. However, the side effects of this design effort

are far too serious to ignore.

The decision of CISC processor designers to provide a variety of addressing modes leads

to variable-length instructions. For example, instruction length increases if an operand is in

memory as opposed to in a register. This is because we have to specify the memory address as

part of instruction encoding, which takes many more bits. As we show later, this complicates

instruction decoding and scheduling. The side effect of providing a wide range of instruction

types is that the number of clocks required to execute instructions also varies widely. This again

leads to problems in instruction scheduling and pipelining.

For these and other reasons, in the early 1980s designers started looking at simple ISAs.

Since these ISAs tend to produce instruction sets with far fewer instructions, they coined the

term reduced instruction set computer (RISC). Even though the main goal was not to reduce the

number of instructions, but the complexity, the term has stuck.

There is no precise definition of what constitutes a RISC system. However, we can identify

certain characteristics that are present in most RISC systems. We identify these RISC design

principles after looking at why the designers took the route of CISC in the first place. Since

CISC and RISC have their advantages and disadvantages, modern processors take features from

both classes. For example, the PowerPC, which follows the RISC philosophy, has quite a few

complex instructions.

We look at two RISC processors in this chapter: the PowerPC and the Intel IA-64 Itanium

processors. The next chapter describes another RISC processor—the MIPS processor—in de-

tail, including its assembly language programming.

14.2 Evolution of CISC Processors
The evolution of CISC designs can be attributed to the desire of early designers to efficiently

use two of the most expensive resources, memory and processor, in a computer system. In

the early days of computing, memory was very expensive and small in capacity. Even in the

mid-1970s, the cost of 16 KB RAM was about $500. This forced the designers to devise high-

density code: that is, each instruction should do more work so that the total program size can

be reduced. Since instructions are implemented in hardware, this goal could not be achieved

until the late 1950s due to implementation complexity. In 1953, Wilkes and Stinger proposed

microprogramming to deal with the complexity of implementing complex instructions [40].

Section 14.2 Evolution of CISC Processors 573

Table 14.1 Characteristics of some CISC and RISC processors

CISC RISC

Characteristic VAX 11/780 Intel 486 MIPS R4000

Number of instructions 303 235 94

Addressing modes 22 11 1

Instructions size (bytes) 2–57 1–12 4

Number of general-purpose registers 16 8 32

The introduction of microprogramming facilitated cost-effective implementation of com-

plex instructions by using microcode. Microprogramming has not only aided in implementing

complex instructions, it has also provided some additional advantages. Since microprogrammed

control units use small fast memories to hold the microcode, the impact of memory access la-

tency on performance could be reduced. Microprogramming also facilitates development of

low-cost members of a processor family by simply changing the microcode.

Another advantage of implementing complex instructions in microcode is that the instruc-

tions can be tailored to high-level language constructs such as while loops. For example, the

Pentium’s loop instruction can be used to implement for loops. Similarly, memory block

copying can be implemented by its string instructions. Thus, by using these complex instruc-

tions, we are closing the “semantic gap” that exists between HLLs and machine languages.

So far, we have concentrated on the memory resource. In the early days, effective processor

utilization was also important. High code density also helps improve execution efficiency. As

an example, consider the Pentium’s string instructions, which autoincrement the index registers.

Each string instruction typically requires two instructions on a RISC processor. As another

example, consider the VAX-11/780, the ultimate CISC processor. It was introduced in 1978

and supported 22 addressing modes as opposed to 11 on the Intel 486 that was introduced

more than a decade later. The VAX instruction size can range from 2 to 57 bytes, as shown in

Table 14.1.

To illustrate how code density affects execution efficiency, consider the autoincrement ad-

dressing mode of the VAX processor. In this addressing mode, a single instruction can read

data from memory, add contents of a register to it, write back the result to the memory, and

increment the memory pointer. Actions of this instruction are summarized below:

(R2) � (R2)+ R3; R2 � R2+1

In this example, the R2 register holds the memory pointer. To implement this CISC instruction,

we need four RISC instructions:

R4 � (R2) ; load memory contents

R4 � R4+R3 ; add contents of R3

(R2) � R4 ; store the result

R2 � R2+1 ; increment memory address

574 Chapter 14 RISC Processors

The CISC instruction, in general, executes faster than the four RISC instructions. That, of

course, was the reason for designing complex instructions in the first place. However, execution

of a single instruction is not the only measure of performance. In fact, we should consider the

overall system performance. We explore this topic further in the following pages.

Why RISC?

Designers make choices based on the available technology. As the technology—both hardware

and software—evolves, design choices also evolve. Furthermore, as we get more experience

in designing processors, we can design better systems. The RISC proposal is a response to

the changing technology and the accumulation of knowledge from the CISC designs. CISC

processors were designed to simplify compilers and to improve performance under constraints

such as small and slow memories. The rest of the section identifies some of the important

observations that motivated designers to consider alternatives to CISC designs.

Simple Instructions

The designers of CISC architectures anticipated extensive use of complex instructions because

they close the semantic gap. In reality, it turns out that compilers mostly ignore these instruc-

tions. Several empirical studies have shown that this is the case. One reason for this is that

different high-level languages use different semantics. For example, the semantics of the C

for loop is not exactly the same as that in Pascal. Thus, compilers tend to synthesize the code

using simpler instructions.

Few Data Types

CISC ISA tends to support a variety of data structures from simple data types such as integers

and characters to complex data structures such as records and structures. Empirical data suggest

that complex data structures are used relatively infrequently. Thus, it is beneficial to design a

system that supports a few simple data types efficiently and from which the missing complex

data types can be synthesized.

Simple Addressing Modes

CISC designs provide a large number of addressing modes. The main motivations are (i) to sup-

port complex data structures and (ii) to provide flexibility to access operands. For example, the

Pentium provides “based-indexed addressing with scale-factor” to access complex data struc-

tures such as multidimensional arrays (see Chapter 11 for details). The Pentium also allows

one of the source operands to be in the memory or register. Although this allows flexibility, it

also introduces problems. First, it causes variable instruction execution times, depending on the

location of the operands. Second, it leads to variable-length instructions. For example, on the

Pentium, instruction length can range from 1 to 12 bytes. Variable instruction lengths lead to

inefficient instruction decoding and scheduling.

Section 14.3 RISC Design Principles 575

Large Register Set

Several researchers have studied the characteristics of procedure calls in HLLs. We quote two

studies—one by Patterson and Sequin [29] and the other by Tanenbaum [35]—in this section.

Several other studies, in fact, support the findings of these two studies.

Patterson and Sequin’s study of C and Pascal programs found that procedure call/return

constitutes about 12 to 15% of HLL statements. As a percentage of the total machine lan-

guage instructions, call/return instructions are about 31 to 33%. More interesting is the fact

that call/return generates nearly half (about 45%) of all memory references. This is under-

standable as procedure call/return instructions use memory to store activation records. An ac-

tivation record consists of parameters, local variables, and return values (see our discussion on

page 421). In the Pentium, for example, the stack is extensively used for these activities. This

explains why procedure call/return activities account for a large number of memory references.

Thus, it is worth providing efficient support for procedure calls and returns.

In another study, Tanenbaum [35] found that only 1.25% of the called procedures had more

than six arguments. Furthermore, more than 93% of them had less then six local scalar variables.

These figures, supported by other studies, suggest that the activation record is not large. If we

provide a large register set, we can avoid memory references for most procedure calls and

returns. In this context, we note that the Pentium’s eight general-purpose registers are a limiting

factor in providing such support. The Itanium, which is described later in this chapter, provides

a large register set (128 registers), and most procedure calls on the Itanium can completely avoid

accessing memory.

14.3 RISC Design Principles
The best way to understand RISC is to treat it as a concept to design processors. Although

initial RISC processors had fewer instructions compared to their CISC counterparts, the new

generation of RISC processors has hundreds of instructions, some of which are as complex as

the CISC instructions. It could be argued that such systems are really hybrids of CISC and

RISC. In any case, there are certain principles that most RISC designs follow. We identify the

important ones in this section. Note that some of these characteristics are intertwined. For

example, designing an instruction set in which each instruction takes only one clock cycle to

execute demands register-based operands, which in turn suggests that we need a large number

of registers.

14.3.1 Simple Operations

The objective is to design simple instructions so that each can execute in one cycle. This prop-

erty simplifies processor design. Note that a cycle is defined as the time required to fetch two

operands from registers, perform an ALU operation, and store the result in a register. The

advantage of simple instructions is that there is no need for microcode and operations can be

hardwired. In terms of efficiency, these instructions should execute with the same efficiency

as microinstructions of a CISC machine. If we design the cache subsystem properly to cap-

576 Chapter 14 RISC Processors

ture these instructions, the overall execution efficiency can be as good as a microcoded CISC

machine.

Complex operations such as multiply and divide should be interpreted. For example, the Ita-

nium provides a multiply instruction but does not have a divide instruction. On the other hand,

the PowerPC provides both multiply and divide instructions. This reinforces our contention that

the basic features we are discussing here should be viewed as concepts rather than treating them

as “must have” features in a RISC implementation.

14.3.2 Register-to-Register Operations

A typical CISC instruction set includes not only register-to-register operations, but also register-

to-memory and memory-to-memory operations. The Pentium, for instance, allows register-to-

register as well as register-to-memory operations; it does not allow memory-to-memory opera-

tions. The VAX 11/780, on the other hand, allows memory-to-memory operations as well.

RISC processors allow only special load and store operations to access memory. The

rest of the operations work on a register-to-register basis. This feature simplifies instruction set

design as it allows execution of instructions at a one-instruction-per-cycle rate. Restricting most

instruction operands to registers also simplifies the control unit. The three RISC processors we

discuss in this part of the book—PowerPC, Itanium, and MIPS—use this load/store architec-

ture. The SPARC processor, another RISC processor described in Appendix H, also uses the

load/store architecture. This architecture was the basis for the Cray vector computer systems.

14.3.3 Simple Addressing Modes

Simple addressing modes allow fast address computation of operands. Since RISC processors

employ register-to-register instructions, most instructions use register-based addressing. Only

the load and store instructions need a memory addressing mode. RISC processors provide very

few addressing modes: often just one or two. They provide the basic register indirect addressing

mode, often allowing a small displacement that is either relative or absolute.

The Itanium supports three register addressing modes to access memory. The address can

be obtained directly from a register by adding the contents of two registers, or by adding a 9-bit

constant to the contents of a register. The PowerPC and MIPS support simple register-indirect

addressing modes.

14.3.4 Large Number of Registers

Since RISC processors use register-to-register operations, we need to have a large number of

registers. A large register set can provide ample opportunities for the compiler to optimize

their usage. Another advantage with a large register set is that we can minimize the overhead

associated with procedure calls and returns.

To speed up procedure calls, we can use registers to store local variables as well as for pass-

ing arguments. Local variables are accessed only by the procedure in which they are declared.

Local variables come into existence at the time of a procedure call and die when the procedure

exits. General-purpose registers of a processor can be divided into register windows, with each

Section 14.3 RISC Design Principles 577

Incoming

parameter

registers

Local

variable

registers

Outgoing

parameter

registers

Incoming

parameter

registers

Local

variable

registers

Outgoing

parameter

registers

Global

registers

call/return

Register window at level K

Register window at level (K + 1)

Figure 14.1 Register windows storing activation records can avoid memory access to speed up procedure

call and return. The Intel Itanium, for instance, reserves the first 32 registers for global variables, and the

remaining 96 registers can be used for local variables and parameters.

window allocated to a procedure invocation. The registers are organized as a circular buffer.

To reduce overhead, outgoing parameter registers of a procedure can be overlapped with the

incoming parameter registers of the called procedure as shown in Figure 14.1.

The circular buffer scheme avoids memory access for local variables. However, we also

need to find a way to store global variables, which are accessed by more than one procedure. A

simple solution is to store global variables in memory so that all procedures can access them.

A better way is to reserve a set of general registers for global variables; this way, we can

completely avoid accessing memory for procedure calls and returns. For example, the Itanium

reserves the first 32 of the 128 registers for global variables. The remaining 96 registers can be

used to store local variables and parameters. The Itanium also uses parameter register mapping

similar to the scheme shown in Figure 14.1. More details on the Itanium processor are given in

Section 14.5.

14.3.5 Fixed-Length, Simple Instruction Format

RISC processors use fixed-length instructions. Variable-length instructions can cause imple-

mentation and execution inefficiencies. For example, we may not know if there is another word

that needs to be fetched until we decode the first word. Along with fixed-length instruction size,

RISC processors also use a simple instruction format. The boundaries of various fields in an

instruction such as opcode and source operands are fixed. This allows for efficient decoding

and scheduling of instructions. For example, both PowerPC and MIPS processors use six bits

for opcode specification.

578 Chapter 14 RISC Processors

Other Features

Most RISC implementations use the Harvard architecture, which allows independent paths for

data and instructions. Harvard architecture thus doubles the memory bandwidth. However,

processors typically use the Harvard architecture only at the CPU-cache interface. This requires

two cache memories: one for data and the other for instructions.

RISC processors, like their CISC counterparts, use pipelining to speed up the instruction

unit. Since RISC architectures use fixed-length instructions, the pipelines tend to have fewer

stages than comparable CISC processors. Since RISC processors use simple instructions, there

will be more instructions in a program than in their CISC counterparts. This increase in the

number of instructions tends to increase dependencies, data as well as control dependencies.

A unique feature of RISC instruction pipelines is that their implementation is visible at the

architecture level. Due to this visibility, pipeline dependencies can be resolved by software,

rather than in hardware. In addition, prefetching and speculative execution can also be employed

easily due to features such as fixed-size instructions and simple addressing modes. We discuss

these issues in detail when we describe the Itanium architecture.

14.4 PowerPC Processor
In this section, we present an overview of the PowerPC architecture and its instruction set. The

Intel Itanium processor is discussed in the next section. Both the Itanium and PowerPC are

more complex than the MIPS processor, which is discussed in detail in the next chapter. There

is also an opportunity to use a simulator to run MIPS programs. The MIPS follows the RISC

design principles much more closely than PowerPC and Itanium processors. After reading this

chapter and the next, you will see a lot of commonality among these three RISC processors.

You will also notice several significant differences among their principal characteristics.

Motorola, IBM, and Apple jointly developed the PowerPC architecture. IBM developed

many of the concepts in 1975 for a prototype system. An unsuccessful commercial version

of this prototype was introduced around 1986. Four years later, IBM introduced the RS/6000

family of processors based on these principles. The PowerPC architecture is based on IBM’s

POWER architectures implemented by the RS/6000 family of processors.

14.4.1 Architecture

The PowerPC is based on the load/store architecture and satisfies many of the RISC character-

istics mentioned before. The PowerPC family of processors is available in both 32- and 64-bit

implementations. Since we want to compare RISC processors with the Pentium, we discuss the

32-bit implementation in this section.

Registers

The PowerPC, being a RISC processor, provides a large number of general-purpose registers

compared to the Pentium. The PowerPC has 32 general-purpose registers for integer data (GPR0

to GPR31). An equal number of registers are available for floating-point data (FPR0 to FPR31),

Section 14.4 PowerPC Processor 579

.

.

.

General-purpose

registers

GPR0 (32/64)

GPR1 (32/64)

GPR31 (32/64)

.

.

.

FPR0 (64)

FPR1 (64)

FPR31 (64)

Floating-point

registers

CR (32)

Condition register

XER (32)

XER register

CTR (32/64)

Count register

LR (32/64)

Link registerFloating-point status

and control register

FPSCR (32)

Figure 14.2 PowerPC registers: General-purpose, link, and count registers are 32-bits wide in 32-bit

implementations and 64-bits wide in 64-bit implementations. The other registers are of fixed size inde-

pendent of the implementation.

as shown in Figure 14.2. The integer registers (GPRs) are 32-bits wide, and the floating-point

registers (FPRs) are 64-bits wide. In addition, we also look the following four special registers:

• Condition Register (CR): This is somewhat similar to the flags register in the Pentium.

The 32-bit register is divided into eight CR fields of 4 bits each (CR0 to CR7). CR0 is

used to capture the result of an integer instruction. The 4 bits in each CR field represent

“less than” (LT), “greater than” (GT), “equal to” (EQ), and “overflow” (SO) conditions.

CR1 is used to capture floating-point exceptions. The remaining CR fields can be used

for either integer or floating-point instructions to capture integer or floating-point LT, GT,

EQ, and SO conditions. Branch instructions are available to test a specific CR field bit.

Instructions can specify the CR field that should be used to set the appropriate bit.

• XER Register (XER): The 32-bit XER register serves two distinct purposes. Bits 0, 1, and

2 are used to record summary overflow (SO), overflow (OV), and carry (CA). The OV bit

is similar to the overflow flag bit in the Pentium. It records the fact that an overflow has

occurred during the execution of an instruction. The SO bit is different in the sense that it

is set whenever the OV bit is set. However, once set, the SO bit remains set until a special

instruction is executed to clear it. The CA bit is similar to the carry bit in the Pentium. It

is set by add and subtract arithmetic operations and shift right instructions.

Bits 25 to 31 are used as a 7-bit byte count to specify the number of bytes to be trans-

ferred between memory and registers. This field is used by Load String Word Indexed

(lswx) and Store String Word Indexed (stswx) instructions. Using just one lswx in-

struction we can load 128 contiguous bytes from memory into all 32 general-purpose

registers. Similarly, reverse transfer can be done by stswx instruction.

• Link Register (LR): The 32-bit link register is used to store the return address in a pro-

cedure call. Procedure calls are implemented by branch (bl/bla) or conditional branch

(bc/bca) instructions. For these instructions, the LR register receives the effective ad-

dress of the instruction following the branch instruction. This is similar to the call

580 Chapter 14 RISC Processors

instruction in the Pentium, except for the fact that the Pentium places the return address

on the stack.

• Count Register (CTR): The 32-bit CTR register holds the loop count value (similar to

the ECX register in the Pentium). Branch instructions can specify a variety of conditions

in many more ways than in the Pentium. For example, a conditional branch instruction

can decrement CTR and branch only if CTR �� 0 or if CTR = 0. Even more complex

branch conditions can be tested. More details on the branch instruction are presented on

page 589.

Of these four registers, 64-bit implementations use 64-bit LR and CTR registers. The other two

registers remain as 32-bit registers even in 64-bit implementations.

Like the Pentium, 32-bit implementations of the PowerPC use segmentation. As a result,

a set of 16 segmentation registers are available, each 32-bits wide. The 64-bit implementa-

tions use a 64-bit address space register (ASR) instead. We have not shown these registers in

Figure 14.2.

Addressing Modes

Load and store instructions support three addressing modes. We can specify three general-

purpose registers rA, rB, and rD/rS in load/store instructions. Registers rA and rB are used

to compute the effective address. The third register is treated as either the destination register

rD for load operations or the source register rS for store operations. We discuss the instruction

format in the next section.

• Register Indirect Addressing: This addressing mode uses the contents of the specified

general-purpose register rA as the effective address. Interestingly, we can also specify 0
for rA, which generates the address 0.

Effective address = Contents of rA.

• Register Indirect with Immediate Index Addressing: In this addressing mode, instructions

contain a signed 16-bit immediate index value imm16. The effective address is computed

by adding this value to the contents of a general-purpose register rA specified in the

instruction. As in the last addressing mode, a 0 can be specified in place of rA. In this

case, the effective address is the immediate value given in the instruction. Thus, it is

straightforward to convert indirect addressing to direct addressing.

Effective address = Contents of rA or 0 + imm16.

• Register Indirect with Index Addressing: Instructions using this addressing mode specify

two general-purpose registers rA and rB. The effective address is computed as the sum

of the contents of these two registers. As in the other addressing modes, we can specify

0 in place of rA.

Effective address = Contents of rA or 0 + Contents of rB.

Section 14.4 PowerPC Processor 581

It is interesting to see how the addressing modes of the Pentium and PowerPC compare. The

Pentium supports six memory addressing modes in 32-bit mode (see Figure 11.2 on page 437).

The PowerPC also seems to support most of these addressing modes. The exceptions are that we

cannot use a scale factor for the index and the based-indexed addressing mode cannot specify a

displacement.

We show in the next chapter that MIPS processors support even fewer addressing modes.

14.4.2 PowerPC Instruction Set

Unlike the Pentium, the PowerPC uses a fixed-length instruction format that is characteristic of

RISC processors. Only load and store instructions access data in memory.

Instruction Format

All PowerPC instructions are encoded into four bytes. Instructions are assumed to be word-

aligned, so that the processor can ignore the least significant two bits of all instruction addresses.

As shown in Figure 14.3, bits 0 to 5 specify the primary opcode. Many instructions also have

an extended opcode. The remaining bits are used for various fields depending on the instruction

type. Here we discuss some basic instruction formats.

Most instructions use the register format shown in Figure 14.3�. In arithmetic, logical, and

other similar instruction types, registers rA and rB specify the source operands and rD specifies

the destination register. The OE and rC bits are explained on page 584.

The immediate format shown in Figure 14.3� is used by instructions that specify an im-

mediate operand. For example, the addi instruction, described in the next section, uses this

format.

The format shown in Figure 14.3
 is used by branch instructions. The unconditional branch

format allows specification of a 24-bit target address. This figure also shows the format used

by direct and indirect conditional branch instructions. The AA bit is used to indicate whether

the address is an absolute address or a relative address. The LK bit is used to link the return

address so that we can use the branch instruction for procedure calls. More details on the branch

instruction fields, including the BO and BI fields, are given on page 589.

The format of load/store instructions is shown in Figure 14.3�. The first format is used by

load/store instructions that specify the address in the first two addressing modes on page 580. As

mentioned before, these instructions use rA and the signed 16-bit operand (imm16) to compute

the effective address. The second format is used by load/store instructions that use the index

addressing mode (i.e., the third addressing mode on page 580).

We have skipped several other formats used by the PowerPC to encode instructions. The

PowerPC manual [26] contains a more detailed description of the instruction formats.

Data Transfer Instructions

The PowerPC supports a variety of load and store instructions to move data between memory

and registers. We discuss some of these instructions to convey the type of instructions available.

As in the Pentium, load/store instructions do not affect any of the status bits.

582 Chapter 14 RISC Processors

Dr rA r B

3130

r C

(b) Immediate format

opcode

0 5 6 10 11 15 16 31

rD rA

Register indirect with indexing mode

(d) Load/store format

(c) Branch format

16-bit signed/unsigned immediate value

Direct conditional branch

opcode

0 5 6 10 11 15 16 3029

LKAA14-bit immediate displacementBI

31

Indirect conditional branch

opcode

0 5 6 10 11 15 16

LKBI count/link register specification0 0 0 0 0

20 21 30 31

BO

BO

opcode LK

0 5 6 31

AA

29 30

24-bit immediate displacement

Unconditional branch

Register indirect mode

0 5 6 10 11 15 16 31

rD

opcode

0 5 6 10 11 15 16

optionsrD

312120

rA

rA rB

16-bit signed displacementopcode

(a) Register format

opcode

0 5 6

OE

2110 11 15 16 2220

suboperation specification

Figure 14.3 Sample PowerPC instruction formats.

Load instructions operate on byte, half-word, and word data. Note that load instructions

that operate on floating-point numbers are also available, but we do not discuss them here. The

following is a list of load instructions that work on byte data:

lbz rD,disp(rA) Load Byte and Zero

lbzu rD,disp(rA) Load Byte and Zero with Update

Section 14.4 PowerPC Processor 583

lbzx rD,rA,rB Load Byte and Zero Indexed

lbzux rD,rA,rB Load Byte and Zero with Update Indexed

The first instruction lbz loads the byte at the effective address (EA) into the lower-order byte

of rD. The remaining three bytes in rD are cleared (i.e., zeroed). The EA is computed as the

sum of the contents of rA and the displacement disp. Note that if we specify 0 for rA, disp
is used as the effective address.

The second instruction lbzu performs the same operation as the lbz instruction. In addi-

tion, it loads the computed effective address into rA (i.e., it updates rA with EA).

The last two instructions use the indexed addressing mode. The effective address is com-

puted as the sum of the contents of registers rA and rB. Except for the computation of the EA,

lbzx is similar to the lbz instruction, and lbzxu is similar to the lbzu instruction.

To move halfwords, there are four instructions corresponding to the four-byte load instruc-

tions. Halfword instructions use the mnemonics lhz, lhzu, lhzx, and lhzux. Similarly,

word instructions use the mnemonics lwz, lwzu, lwzx, and lwzux.

When loading halfwords, instead of zeroing the upper two bytes, we can also sign-extend

halfword to word. Remember that sign extension copies the sign bit to the remaining higher

order bits. We can use the following load instructions to sign extend the halfword in rD:

lha rD,disp(rA) Load Halfword Algebraic

lhau rD,disp(rA) Load Halfword Algebraic with Update

lhax rD,rA,rB Load Halfword Algebraic Indexed

lhaux rD,rA,rB Load Halfword Algebraic with

Update Indexed

The PowerPC provides some interesting multiword load instructions. As an example, con-

sider the following instruction:

lmw rD,disp(rA) Load Multiple Words

It loads � consecutive words from memory starting at EA, which is computed as in the previous

instructions. Since the target is a register, what is �? This instruction loads words starting with

rD and proceeds until r31. For example, if we specify r20 as rD, 12 consecutive words from

memory are loaded into registers r20, r21, � � �, r31.

There is a store instruction corresponding to each load instruction to move data to memory.

For example, to move a byte into memory, these instructions can be used:

stb rD,disp(rA) Store Byte

stbu rD,disp(rA) Store Byte with Update

stbx rD,rA,rB Store Byte Indexed

stbux rD,rA,rB Store Byte with Update Indexed

There are corresponding instructions to store halfwords: sth, sthu, sthx, and sthux. Sim-

ilar instructions are available to store words. To store multiple words, we can use the following:

584 Chapter 14 RISC Processors

stmw rD,disp(rA) Store Multiple Words

This instruction has the same semantics as the lmw instruction except for the direction of data

movement.

Arithmetic Instructions

The PowerPC supports the four basic arithmetic instructions: add, subtract, multiply, and divide.

We start our discussion with the addition instructions.

Addition Instructions

The basic add instruction

add rD,rA,rB

adds contents of registers rA and rB and stores the result in rD. Status and overflow bits of

the CR0 field as well as the XER register are not altered. Three variations on the basic add are

possible to affect these bits:

add. rD,rA,rB LT, GT, EQ, SO bits of CR0 field are altered

addo rD,rA,rB SO and OV bits of XER register are altered

addo. rD,rA,rB LT, GT, EQ, SO bits of CR0 field and

SO and OV bits of XER register are altered

The OE bit in Figure 14.3� indicates whether the SO and OV bits of the XER register are

altered (OE = 1) or not (OE = 0). Thus, this bit is set for the last two add instructions (addo and

addo.) and cleared for the other two instructions.

The Rc bit specifies if the LT, GT, EQ, SO bits of CR0 field should be altered. This bit is

set for those instructions that alter these bits. Thus, rc = 1 for the two “dot” versions of the add

instruction (add. and addo.).

These four add instructions do not affect the carry (CA) bit in the XER register. To alter

the carry bit, we have to use addc, addc., addco, and addco. instructions. The other

bits are updated as in the basic add instruction variations. Yet another variation is the adde
instruction. The instruction

adde rD,rA,rB

adds contents of registers rA, rB and the CA bit of the XER register. As usual, the result goes

into the rD register. Like the add instruction, it does not alter any of the status bits. We can use

adde., addeo, or addeo. to affect these status and condition bits.

We can also have an immediate operand specified in an add instruction. The add instruction

addi rD,rA,Simm16

is similar to the add instruction except that the second operand is a signed 16-bit immediate

value. It does not affect any status/condition bits. If rA is specified as 0, it uses the value 0,

Section 14.4 PowerPC Processor 585

not the contents of GPR0. Thus, we can use the addi instruction to implement load immediate

(li), load address (la), and subtract immediate (subi) as shown below:

li rD,value equivalent to addi rD,0,value

la rD,disp(rA) equivalent to addi rD,rA,disp

subi rD,rA,value equivalent to addi rD,rA,-value

Since the processor does not directly support these instructions, we refer to these instruc-

tions as pseudoinstructions. The assembler translates these pseudoinstructions to equivalent

processor instructions. As we show in the next chapter, the MIPS also uses pseudoinstructions

to simplify assembly language programming.

Subtract Instructions

Subtract instructions use the mnemonic subf standing for “subtract from.” The subtract in-

struction

subf rD,rA,rB /* rD = rB�rA */

subtracts the contents of rA from rB and places the result in the rD register. As with the add
instruction, no status/condition bits are affected. We can also use the simplified mnemonic sub
for this instruction. Other subtract instructions—subf., subfo, and subfo.—are available

to alter these bits as in the add instruction.

To alter the carry (CA) bit, use subfc instead of the subfmnemonic. Similarly, to include

carry, use the subfe mnemonic. There is no “subtract immediate” instruction as it can be

implemented using the addi instruction, as explained before.

As does the Pentium, the PowerPC also provides the negate instruction. The negate instruc-

tion

neg rD,rA /* rD = 0�rA */

essentially negates the sign of the integer in the rA register. The processor actually performs a

2’s complement operation (i.e., complements the bits of rA and adds 1).

Multiply Instructions

The PowerPC multiply instruction is slightly different from that of the Pentium in that it does

not produce the full 64-bit result. Remember that we get a 64-bit result when multiplying two

32-bit integers. The PowerPC provides two instructions to get the lower- and higher-order 32

bits of the 64-bit result. First, we look at the signed integers. The instruction

mullw rD,rA,rB

multiplies the contents of registers rA and rB and stores the lower-order 32 bits of the result in

rD register. We have to use

586 Chapter 14 RISC Processors

mulhw rD,rA,rB

to get the higher-order 32 bits of the result.

For unsigned numbers, we have to use mulhwu instead of mulhw to get the higher-order

32 bits of the result. The lower-order 32 bits are given by mullw for both signed and unsigned

integers.

There is also a multiply immediate instruction that takes an immediate value. The format is

mulli rD,rA,Simm16

The immediate value Simm16 is a 16-bit signed integer. Note that this operation produces a

48-bit result. But the mulli instruction stores only the lower 32 bits of the result.

Divide Instructions

As with the Pentium, two divide instructions—one for signed integers and the other for unsigned

integers—are provided. The instruction

divw rD,rA,rB /* rD = rA/rB */

stores the quotient of rA/rB in rD. The operands are treated as signed integers. The remainder is

not available. To get both quotient and remainder, we have to use the following three-instruction

sequence:

divw rD,rA,rB /* quotient in rD */

mullw rX,rD,rB

subf rC,rX,rA /* remainder in rC */

For unsigned integers, use the divwu (divide word unsigned) instruction instead.

Logical Instructions

The PowerPC instruction set has several logical instructions including and, or, nor, nand,

equ, and xor instructions. It does not have the not instruction; however, the not operation

can be implemented using the nor instruction.

We give the complete set of and instructions provided by the PowerPC:

and rA,rS,rB and. rA,rS,rB

andi. rA,rS,Uimm16 andis. rA,rS,Uimm16

andc rA,rS,rB andc. rA,rS,rB

The and instruction performs bit-wise AND of rS and rB and places the result in the rA
register. The condition register field CR0 is not affected. The and. instruction is similar

to and but updates the LT, GT, EQ, and SO bits of the CR0 field. This is true with all the

instructions ending in a period. The andi takes a 16-bit unsigned integer as one of the source

operands. The andis. instruction is similar to andi. except that the immediate value is

Section 14.4 PowerPC Processor 587

left-shifted by four bit positions before ANDing. In the andc instruction, the contents of rB
are complemented before performing the AND operation.

The logical or instruction also has six versions like the and instruction. The only differ-

ence is that the immediate versions do not update the CR0 field. That is, the immediate or
instructions are ori and oris with no period. We can use the or instruction to move register

contents as shown below:

mr rA,rS is equivalent to or rA,rS,rS

A no-operation (nop) is implemented as

ori 0,0,0

The NAND instructions (nand and nand.) perform a NOT operation followed by an AND

operation. Similarly, NOR instructions (nor and nor.) perform a NOT operation after an OR

operation.

The PowerPC instruction set includes four xor instructions as shown below:

xor rA,rS,rB xor. rA,rS,rB

xori rA,rS,Uimm16 xoris rA,rS,Uimm16

The semantics of these four instructions is similar to the and instructions, except for the actual

operation performed.

In addition, the PowerPC provides the eqv (equivalence) logical function. The equivalence

function is defined as the exclusive-NOR operation (i.e., the output of XOR is complemented;

see page 44). Two instructions—eqv and eqv.— are available.

Shift and Rotate Instructions

The PowerPC provides four types of shift instructions to shift left or right. Each type of instruc-

tion is available in two forms: one that does not affect the four status bits in CR0 and the other

that updates these four bits (i.e., the “dot” version). We first discuss the left-shift instruction.

The slw (shift left word) instruction

slw rA,rS,rB

left-shifts the contents of rS by the shift count value specified in rB, and the result is placed in

rA. Shifted bits on the right receive zeros. For the shift count, only the least significant five bits

are taken from the rB register. We can use slw. to update the four status bits in CR0.

There are two shift right instructions—srw and srw.—that are similar to the two left-

shift instructions except for the direction of shift. Zeros replace the vacated bits on the left.

These two right-shift instructions perform logical shift operations. In logical shifts, vacated bits

receive zeros. On the other hand, in arithmetic right-shift, vacated bits receive the sign bit. For

details on the differences and the need for logical and arithmetic shift operations and why we

need them only for the right-shifts, see our discussion in Section 9.6.5 on page 357.

588 Chapter 14 RISC Processors

The PowerPC provides two types of arithmetic right-shift operations: one type assumes that

the shift count is in a register as in the previous shift instructions, and the other type can accept

the shift count as an immediate value.

The register versions use the following format:

sraw rA,rS,rB

sarw. rA,rS,rB

The instructions

srawi rA,rS,count

sarwi. rA,rS,count

use the 5-bit immediate value count as the shift count. One difference between the arithmetic

shift instructions and the other shift instructions is that these four arithmetic instructions affect

the carry (CA) bit in the XER register.

The PowerPC provides several rotate left instructions. We describe only one of them to see

an interesting feature of this instruction. The rlwnm (rotate left word then AND with mask)

instruction takes five operands as shown below:

rlwnm rA,rS,rB,MB,ME

The contents of rS are rotated left by the count value specified in the lower-order five bits of rB.

A mask value that contains 1s from the MB bit to the ME bit and 0s in all the other bit positions is

generated. The rotated value is ANDed with the mask value and the result is placed in rA. This

instruction is useful to extract and rotate bit fields. It is straightforward to implement a simple

rotate left instruction as shown below:

rotlw rA,rS,rB is equivalent to rlwnm rA,rS,rB,0,31

Comparison Instructions

We describe two compare instructions: for comparing signed numbers and unsigned numbers.

Each of these instructions is available in two formats: register version and immediate version.

We first look at the signed compare instructions. This instruction compares two numbers and

updates the specified CRx field of the CR register. The format is

cmp crfD,rA,rB

If the contents of rA are less than the contents of rB, the LT bit in the crfD is set: if greater,

the GT bit is set; otherwise, the EQ bit is set. It also updates the SO field. The CR0 field is used

if no CR field is specified as shown below:

cmpd rA,rB is equivalent to cmp 0,rA,rB

The immediate version of this statement

cmpi crfD,rA,Simm16

takes an immediate 16-bit signed integer in place of rB. To treat the operands as unsigned inte-

gers, we can use cmpl (compare logical) and cmpli (compare logical immediate) instructions.

Section 14.4 PowerPC Processor 589

Branch Instructions

The PowerPC implements branch and procedure invocation operations using more flexible

branch instructions than the Pentium’s branch instructions. Branch instruction encodings are

shown in Figure 14.3 on page 582.

As in the other instructions, the most significant 6 bits are used for op-code. The remaining

26 bits are used for specifying the target. Since all instructions take four bytes and are aligned,

the least significant 2 bits are always zero. These 2 bits are used to make the branch instruc-

tion more flexible. The AA bit is used to indicate whether the address is the absolute address

(AA = 1) or PC-relative address (AA = 0). In the absolute address mode, the 26-bit value is

treated as the branch target address. In the PC-relative mode, this value is used as an offset

relative to the contents of the program counter (PC). Thus, the PC-relative mode works as do

the Pentium’s jump instructions.

The second bit LK is used to convert the branch instruction into a procedure call instruc-

tion. When the LK bit is set, the return address (i.e., the address of the instruction following the

branch) is placed in the link (LR) register.

There are four unconditional branch variations, depending on the values specified for the

AA and LK bits:

b target (AA = 0, LK = 0) Branch

ba target (AA = 1, LK = 0) Branch Absolute

bl target (AA = 0, LK = 1) Branch then Link

bla target (AA = 1, LK = 1) Branch Absolute then Link

All instructions transfer control to the target address. The last two instructions, bl and bla,

also load the LR register with the address of the instruction following the branch instruction.

Thus, these instructions are similar to the Pentium’s call instruction.

There are also three types of conditional branch instructions. The first type uses direct

address as do the previous branch instructions. The remaining two types use register indirect

branching. One uses the count register (CTR) to supply the target address, and the other uses

the link register (LR) for this purpose. This last type of branch where the target is given by the

link register is essentially used to return from a procedure.

Just as with the unconditional branch instructions, four versions are available:

bc BO,BI,target (AA = 0, LK = 0) Branch Conditional

bca BO,BI,target (AA = 1, LK = 0) Branch Conditional Absolute

bcl BO,BI,target (AA = 0, LK = 1) Branch Conditional then Link

bcla BO,BI,target (AA = 1, LK = 1) Branch Conditional Absolute

then Link

The BO (branch options) operand, which is five bits long, specifies the condition under which

the branch is taken. The BI (branch input) operand specifies the bit in the CR field that should

be used as the branch condition.

590 Chapter 14 RISC Processors

We can specify the following nine different branch conditions:

• Decrement CTR; branch if CTR �� 0 and the condition is false.

• Decrement CTR; branch if CTR � 0 and the condition is false.

• Decrement CTR; branch if CTR �� 0 and the condition is true.

• Decrement CTR; branch if CTR � 0 and the condition is true.

• Branch if the condition is false.

• Branch if the condition is true.

• Decrement CTR; branch if CTR �� 0.

• Decrement CTR; branch if CTR � 0.

• Branch always.

The link register-based branch instructions are shown below:

bclr BO,BI (LK = 0) Branch Conditional to Link Register

bclrl BO,BI (LK = 1) Branch Conditional to Link Register then Link

The BO and BI operands play the same role as in the previous direct conditional branch instruc-

tions. For these instructions, the target address is taken from the LR register. These instructions

are used to return from a procedure call.

The final two branch instructions

bcctr BO,BI (LK = 0) Branch Conditional to Count Register

bcctrl BO,BI (LK = 1) Branch Conditional to Count Register then Link

use the CTR register instead of the LR register.

You can see from this description that the PowerPC does not closely adhere to all the princi-

ples of the RISC philosophy. Although it uses simple addressing modes and fixed-size instruc-

tions, some of its instructions are not simple. For example, the lswx and stlwx instructions

mentioned on page 579 are not simple by any stretch of the imagination. For more details on

the PowerPC processor, see the PowerPC manual [26]. Next we look at the architecture of the

Intel Itanium processor.

14.5 Itanium Processor
Intel has moved from CISC designs of Pentium processors to RISC orientation for their 64-bit

processors. Intel has finally decided to use the Itanium for their 64-bit processors. Like the

PowerPC, the Itanium also uses the load/store architecture. Furthermore, the RISC features

present in the PowerPC are also present. Because of these similarities, we briefly give the

instruction set details of the Itanium.

In addition to the standard RISC features, the Itanium incorporates several advanced ar-

chitectural features to improve performance. We discuss these features in this chapter as the

Itanium provides a convenient platform. More specifically, we discuss instruction-level paral-

lelism, register stacks, speculative execution, and predication to improve instruction reordering.

Section 14.5 Itanium Processor 591

The Itanium’s ISA is based on the EPIC (explicit parallel instruction computing) design

philosophy. Of course, it also maintains backward compatibility to the IA-32 ISA. EPIC design

features include the following:

• Explicit Parallelism: The ISA provides necessary support for the compiler to convey in-

formation on the instructions that can be executed in parallel. In traditional architectures,

hardware extracts this instruction-level parallelism (ILP) within a fairly small window of

instructions (or reorder buffer). In contrast, the Itanium allows the compiler to do the job.

Since ILP extraction is done in software, a more detailed analysis can be done on a much

larger window at compile time.

The Itanium also provides hardware support to execute instructions in parallel by reading

three instructions as a bundle. The compiler packs only instructions that have no de-

pendencies into a bundle. Thus, the processor does not have to spend time in analyzing

the instruction stream to extract ILP. We present details on this and other features of the

Itanium later in this chapter.

• Features to Enhance ILP: Since the Itanium allows the compiler to detect and extract ILP,

we can use more elaborate methods to improve ILP. Two such schemes are speculative

execution and predication. Speculative execution allows high-latency load instructions to

be advanced so that the latency can be masked. Branch handling is improved by using

predication. In some instances, branch instructions can be completely eliminated. We

present details on these two techniques later.

• Resources for Parallel Execution: It is imperative that to successfully exploit the ILP

detected by the compiler, the processor should provide ample resources to execute in-

structions in parallel. The Itanium provides a large number of registers and functional

units. It has 128 integer registers and another 128 floating-point registers. The large

number of registers, for example, can be effectively used to make procedure calls and re-

turns very efficient. Most procedure calls/returns need not access memory for parameter

values and local and global variables.

To summarize, Itanium architecture improves performance by

• Increasing instruction-level parallelism by providing large register sets and a three-instruction

wide word;

• Hiding memory latency by speculative loads;

• Improving branch handling by using predication; and

• Providing hardware support for efficient procedure calls and returns.

14.5.1 Architecture

The Itanium supports both integer and floating-point data types. Integer data types can be

1-, 2-, 4-, or 8-bytes wide. With a few exceptions, integer operations are done on 64-bit data.

Furthermore, registers are always written as 64 bits. Thus, 1-, 2-, and 4-byte operands loaded

from memory are zero-extended to 64 bits. Floating-point data types include IEEE single,

double, and double-extended formats.

592 Chapter 14 RISC Processors

.

.

.

1

pr63

pr1

pr0

Predicate registers

IP (64 bits)

CFM (38 bits)

Instruction pointer

Current frame marker

User mask

6 bits

.

.

.

82 bits

fr0 (set to +0.0)

fr1 (set to +1.0)

fr127

Floating-point

registers

.

.

.

General-purpose

registers

64 bits

gr0 (always 0)

gr1

gr127

.

.

.

0

NaT

64 bits

...
br0

br1

br7

Branch registers

.

.

.

64 bits

ar0

ar1

ar127

Application

registers

Figure 14.4 Itanium registers: The general-purpose register gr0 and its NaT bit are hardwired to zero.

Similarly, the first two floating registers are set to 0 and 1. The predicate register pr0 is set to 1.

Registers

The Itanium has 128 general registers, which are labeled gr0 through gr127 as shown in

Figure 14.4. Each register is 64-bits wide. In addition, a bit is associated with each register to

indicate whether the register is free or contains something valid. This bit is called NaT, which

stands for Not-a-Thing. We explain later how this bit is used in speculative loading.

The general registers are divided into static and stacked registers. Static registers are com-

prised of the first 32 registers: gr0 through gr31. Of these, gr0 is essentially a read-only

register. This register always provides a zero value when used as a source operand. Writing to

this register generates an “illegal operation” fault.

General registers gr32 through gr127 are classified as stacked registers. These registers

are available for use by a program as a register stack frame.

The eight 64-bit branch registers, br0 through br7, hold the target address for indirect

branches. These registers are used to specify the target address for conditional branch, proce-

dure call, and return instructions.

Section 14.5 Itanium Processor 593

The user mask (UM) register is used to control memory access alignment, byte ordering

(little-endian or big-endian), and user-configurable performance monitors. If the byte order

bit is 0, little-endian order is used; otherwise, big-endian order is assumed. In IA-32 memory

accesses, data access always uses little-endian order as does the Pentium and ignores this bit.

The uses of the remaining registers—predicate registers, applications registers, and current

frame marker—are discussed later. The instruction pointer register plays the same role as the

IP register in the Pentium.

Addressing Modes

The Itanium provides three addressing modes as does the PowerPC. As mentioned in Sec-

tion 14.3, RISC processors provide only a few, simple addressing modes. Since the Itanium

follows the load/store architecture, only the load and store instructions can access memory.

These instructions use three general registers: r1, r2, and r3. Two of these registers, r2 and

r3, are used to compute the effective address. The third register r1 either receives (in load) or

supplies (in store) the data. Since these three addressing modes are very similar to the PowerPC

addressing modes, we briefly describe them here:

• Register Indirect Addressing: In this mode, load and store instructions use the contents

of r3 as the effective address.

Effective address = Contents of r3.

• Register Indirect with Immediate Addressing: In this addressing mode, the effective ad-

dress is computed by adding the contents of r3 and a signed 9-bit immediate value imm9
specified in the instruction. The computed effective address is placed in r3.

Effective address = Contents of r3 + imm9,

r3 = Effective address.

• Register Indirect with Index Addressing: In this addressing mode, two general registers

r2 and r3 are used to compute the effective address as in the PowerPC. As in the previous

addressing mode, r3 is updated with the computed effective address.

Effective address = Contents of r3 + Contents of r2,

r3 = Effective address.

These three addressing modes appear to be similar to the PowerPC modes; the update feature

of the last two addressing modes gives more flexibility. For example, we can use the second ad-

dressing mode to access successive elements of an array by making imm9 equal to the element

size.

594 Chapter 14 RISC Processors

Procedure Calls

The Itanium provides hardware support for efficient procedure invocation and return. Unlike

the Pentium procedure calls, an Itanium procedure call typically does not involve the stack.

Instead, it uses a register stack for passing parameters, local variables, and the like. For this

purpose, the 128 general register set is divided into two subsets:

• Static Registers: The first 32 registers, gr0 though gr31, are called static registers.

These registers are used to store the global variables and are accessible to all procedures.

• Stacked Registers: The upper 96 registers, gr32 through gr127, are called stack reg-

isters. These registers, instead of the stack, are used for passing parameters, returning

results, and storing local variables.

A register stack frame is the set of stacked registers visible to a given procedure. This stack

frame is partitioned into local area and output area. The size of each area can be specified by

each procedure by using the alloc instruction. The local area consists of input area and space

for local variables of the procedure. The input area is used to receive parameters from the caller

and the output area is used to pass parameters to the callee. When a procedure is called, the

alloc instruction can be used to allocate the required number of registers for the local and

output areas. As mentioned, local includes storage to receive arguments in addition to local

variable storage. The Itanium aligns the caller’s output area with the callee’s local area so that

passing of parameters does not involve actual copying of register values (see Figure 14.1 on

page 577). Furthermore, the Itanium uses register renaming. That is, independent of the actual

set of registers allocated to a procedure, the allocated register set is renamed such that the first

register is always labeled as gr32.

The current frame marker (CFM) register maintains information on the current stack frame.

It keeps two values: size of frame (SOF) and size of locals (SOL). As the names indicate,

SOF gives the total stack frame size, and SOL specifies the local area size. The difference

(SOF � SOL) is the output area size. The alloc statement takes three immediate values that

specify the size of inputs, locals, and outputs. The SOF value is determined by adding these

three values; SOL is given by the sum of the first two values (i.e., size of inputs and locals).

Another interesting feature is that a procedure’s stack frame can be up to 90 registers. What

happens if some of the registers are allocated to other procedures? Itanium uses a hardware

mechanism called a register stack engine (RSE) to transparently manage registers. When allo-

cation exceeds the available registers on the stack, it moves data from the registers to memory.

The stored registers are restored when returning from the procedure. This mechanism is trans-

parent, but the cost is not. If we use RSE to move data between registers and memory, the

overhead is similar to what we see in processors like the Pentium that use the stack for activa-

tion records.

14.5.2 Itanium Instruction Set

Instruction Format

A typical Itanium instruction uses a three-operand format. The general syntax is

Section 14.5 Itanium Processor 595

[(qp)] mnemonic[.comp] dests = srcs

The syntax is quite different from what we have seen before for the Pentium and PowerPC

processors. The optional qualifying predicate (qp) specifies a predicate register that indicates

whether the instruction should be executed. Recall that the Itanium has 64 1-bit predicate

registers (see Figure 14.4). A instruction is executed only if the specified predicate register

has a true (1) value; otherwise, the instruction is treated as a NOP (no operation). If a predicate

register is not specified in an instruction, predicate register p0 is used, which is always true.

Note that some instructions cannot be predicated.

The mnemonic field identifies an instruction and is similar to the mnemonic field in Pen-

tium and PowerPC instructions. However, for some instructions, mnemonic identifies only a

generic instruction such as comparison. Such instructions require more information to com-

pletely specify the operation. For example, we have to specify the type of comparison: equality,

greater than, and so on. One or more completers comp can be used for this purpose. Completers

indicate optional variations on the basic operation. dests is typically a register to receive the

result. Most instructions require two source operands and srcs specifies these input operands.

Some examples of Itanium instructions are given below:

Simple Instruction add r1 = r2,r3
Predicated instruction (p4)add r1 = r2,r3
Instruction with an immediate value add r1 = r2,r3,1
Instruction with completers cmp.eq p3 = r2,r4

cmp.gt p2,p3 = r3,r4
br.cloop.sptk loop_back

Each instruction is encoded using 41 bits as shown in Figure 14.5. This figure and Fig-

ure 14.5 show some sample Itanium instruction formats. In every instruction, the least signif-

icant 6 bits are used to specify one of the 64 predicate registers. The leftmost 4 bits specify a

major opcode that identifies a major operation group such as comparison, floating-point opera-

tion, and so on. Opcode extension fields are used to specify subcases of the major operations.

In the register format, source and destination register specification take a total of 21 bits. Each

register specification needs 7 bits as Itanium has 128 registers (see Figure 14.5�).

The Itanium supports three types of immediate formats: 8-, 14-, and 22-bit immediate values

can be specified. In the immediate format, the sign of the immediate value is always placed in

the fifth leftmost bit (the S bit in Figure 14.5�). When a 22-bit immediate value is specified, the

destination register must be one of the first four registers (r0 through r3), as we have only two

bits to specify this register.

Two sample compare instruction formats are presented in Figure 14.5
. As we show later,

compare instructions can specify two predicate registers p1 and p2. In a typical compare oper-

ation, the two source operands are compared, and the result is placed in p1 and its complement

in p2. The c bit extends the opcode to specify the complement compare relation. For example,

if the encoding with c = 0 represents a “less than” comparison, c = 1 converts this to a “greater

than or equal to” type of comparison.

596 Chapter 14 RISC Processors

Major
opcode

64 7779

Opcode extension r3 imm7 r1 qpS

1

8-bit immediate format

Major
opcode

64 779

imm9 imm7 r1 qpS

1

22-bit immediate format

r3imm5

25

Major
opcode

Opcode
extension

64 777

r3 imm7 r1 qp

1

14-bit immediate format

imm6

63

S

Major
opcode

Opcode
extension

64 77

r3 r2 qp

Basic compare format

p2

6

c

1

p1

64

Major
opcode

Opcode
extension

64 77

r3 imm7 qpS

1

p2

63

c

1

p1

6

Major
opcode

(b) Immediate formats

(c) Compare formats

Compare immediate format

41 bits

64 77710

Opcode extension r3 r2 r1 qp

(a) Register format

Figure 14.5 Sample Itanium instruction formats.

Figure 14.5� shows a sample format for branch and call instructions. Each instruction takes

a 21-bit signed IP-relative displacement to the target. Note that the Itanium also supports indi-

rect branch and call instructions. For both instructions, d and wh fields are opcode extensions

to specify hints. The d bit specifies the branch cache deallocation hint, and the wh field gives

the branch whether hint. These two hints are discussed later in this section (see page 604).

Section 14.5 Itanium Processor 597

41 bits

Major
opcode

64

qpS

1

IP-relative branch format

d wh

1 2

btypep

331

imm20

20

Major
opcode

Major
opcode

64 77

r3 qp

Register indirect format

r1

6

x

1

hint

27

Opcode extension

Major
opcode

64 77

r3 r2 qp

Register indirect with index format

r1

6

x

1

hint

27

Opcode extension

Major
opcode

64

qpS

1

IP-relative call format

d wh

1 2

b1p

331

imm20

20

(d) Branch and call formats

(e) Integer load formats

64 77

r3 imm7 qp

Register indirect with immediate format

r1

61

hint

2

im
m

1

S Opcode extension

61

Figure 14.5 Continued.

In the branch instruction, the btype field indicates the type of branch instruction (e.g.,

branch on equality, less than, etc.). In the call instruction, the b1 field specifies the register that

should receive the return address.

The integer load instruction formats are shown in Figure 14.5�. The x bit is used for opcode

extension. In the indexed addressing mode, the 9-bit immediate value is split into three pieces:

S, imm1, and imm7. The hint field, which gives the memory reference hint, is discussed on

page 600.

Instruction-Level Parallelism

The Itanium enables instruction-level parallelism by letting the compiler/assembler explicitly

indicate parallelism by providing run-time support to execute instructions in parallel, and by

598 Chapter 14 RISC Processors

providing a large number of registers to avoid register contention. First we discuss the in-

struction groups, and then see how the hardware facilitates parallel execution of instructions by

bundling nonconflicting instructions together.

Itanium instructions are bound into instruction groups. An instruction group is a set of

instructions that do not have conflicting dependencies among them (read-after-write or write-

after-write dependencies, as discussed on page 278), and may execute in parallel. The compiler

or assembler can indicate instruction groups by using the ;; notation. Let us look at a simple

example to get an idea. Consider evaluating a logical expression consisting of four terms. For

simplicity, assume that the results of these four logical terms are in registers r10, r11, r12,

and r13. Then the logical expression in

if (r10 || r11 || r12 || r13) {

/* if-block code */

}

can be evaluated using or-tree reduction as

or r1 = r10,r11 /* Group 1 */

or r2 = r12,r13;;

or r3 = r1,r2;; /* Group 2 */

other instructions /* Group 3 */

The first group performs two parallel OR operations. Once these results are available, we can

compute the final value of the logical expression. This final value in r3 can be used by other

instructions to test the condition. Since we have not discussed Itanium instructions, it does not

make sense to explain these instructions at this point. We have some examples in a later section.

In any given clock cycle, the processor executes as many instructions from one instruction

group as it can, according to its resources. An instruction group must contain at least one

instruction; the number of instructions in an instruction group is not limited. Instruction groups

are indicated in the code by cycle breaks (;;). An instruction group may also end dynamically

during run-time by a taken branch.

An advantage of instruction groups is that they reduce the need to optimize the code for each

new microarchitecture. Processors with additional resources will take advantage of the existing

ILP in the instruction group.

By means of instruction groups, compilers package instructions that can be executed in par-

allel. It is the compiler’s responsibility to make sure that instructions in a group do not have

conflicting dependencies. Armed with this information, instructions in a group are bundled to-

gether as shown in Figure 14.6. Three instructions are collected into 128-bit, aligned containers

called bundles. Each bundle contains three 41-bit instruction slots and a 5-bit template field.

The main purpose of the template field is to specify mapping of instruction slots to execution

instruction types. Instructions are categorized into six instruction types: integer ALU, non-ALU

integer, memory, floating-point, branch, and extended. A specific execution unit may execute

each type of instruction. For example, floating-point instructions are executed by the F-unit,

Section 14.5 Itanium Processor 599

04687127 86 45 45

Instruction slot 1 Template

41 bits 41 bits 41 bits 5 bits

Instruction slot 2 Instruction slot 0

Figure 14.6 Itanium instruction bundle format.

branch instructions by the B-unit, and memory instructions such as load and store by the M-

unit. The remaining three types of instructions are executed by the I-unit. All instructions,

except extended instructions, occupy one instruction slot. Extended instructions, which use

long immediate integers, occupy two instruction slots.

Data Transfer Instructions

The Itanium’s load and store instructions are more complex than those in a typical RISC pro-

cessor. The Itanium supports speculative loads to mask high latency associated with reading

data from memory.

The basic load instruction takes one of the three forms shown below depending on the

addressing mode used:

(qp) ldSZ.ldtype.ldhint r1 = [r3] /* No update form */

(qp) ldSZ.ldtype.ldhint r1 = [r3],r2 /* Update form 1 */

(qp) ldSZ.ldtype.ldhint r1 = [r3],imm9 /* Update form 2 */

The load instruction loads SZ bytes from memory, starting at the effective address. The SZ
completer can be 1, 2, 4, or 8 to load 1, 2, 4, or 8 bytes. In the first load instruction, register

r3 provides the address. In the second instruction, contents of r3 and r2 are added to get the

effective address. The third form uses a 9-bit signed immediate value, instead of register r2. In

the last two forms, as explained on page 593, the computed effective address is stored in r3.

The ldtype completer can be used to specify special load operations. For normal loads,

the completer is not specified. For example, the instruction

ld8 r5 = [r6]

loads eight bytes from the memory starting from the effective address in r6. As mentioned

before, the Itanium supports speculative loads. Two example instructions are shown below:

ld8.a r5 = [r6] /* advanced load */

ld8.s r5 = [r6] /* speculative load */

We defer a discussion of these load instruction types to a later section that discusses the specu-

lative execution model of Itanium.

The ldhint completer specifies the locality of the memory access. It can take one of the

following three values:

600 Chapter 14 RISC Processors

ldhint Interpretation

None Temporal locality, level 1

nt1 No temporal locality, level 1

nta No temporal locality, all levels

A prefetch hint is implied in the two “update” forms of load instructions. The address in r3
after the update acts as a hint to prefetch the indicated cache line. In the “no update” form of

load, r3 is not updated and no prefetch hint is implied. Level 1 refers to the cache level. We

have not covered temporal locality and cache memory details. Details on cache memory are

in Chapter 17. For now, it is sufficient to view the ldhint completer as giving a hint to the

processor as to whether a prefetch is beneficial.

The store instruction is simpler than the load instruction. There are two types of store

instructions, corresponding to the two addressing modes, as shown below:

(qp) stSZ.sttype.sthint r1 = [r3] /* No update form */

(qp) stSZ.sttype.sthint r1 = [r3],imm9 /* Update form */

The SZ completer can have four values as in the load instruction. The sttype can be none

or rel. If the rel value is specified, an ordered store is performed. The sthint gives a

prefetch hint as in the load instruction. However, it can be either none or nta. When no value

is specified, temporal locality at level 1 is assumed. The nta has the same interpretation as in

the load instruction.

The Itanium also has several move instructions to copy data into registers. We describe three

of these instructions:

(qp) mov r1 = r3

(qp) mov r1 = imm22

(qp) movl r1 = imm64

These instructions move the second operand into the r1 register. The first two mov instruc-

tions are actually pseudoinstructions. That is, these instructions are implemented using other

processor instructions. As we show in the next chapter, the MIPS processor also has several

pseudoinstructions. The movl is the only instruction that requires two instruction slots within

the same bundle.

Arithmetic Instructions

The Itanium provides only the basic integer arithmetic operations: addition, subtraction, and

multiplication. There is no divide instruction, either for integers or floating-point numbers.

Division is implemented in software. Let’s start our discussion with the add instruction:

(qp) add r1 = r2,r3 /* register form */

(qp) add r1 = r2,r3,1 /* plus 1 form */

(qp) add r1 = imm,r3 /* immediate form */

Section 14.5 Itanium Processor 601

In the plus 1 form, the constant 1 is added as well. In the immediate form, imm can be a 14- or

22-bit signed value. If we use a 22-bit immediate value, r3 can be one of the first four general

registers GR0 through GR3 (i.e., only 2 bits are used to specify the second operand register as

shown in Figure 14.5).

The immediate form is a pseudoinstruction that selects one of the two processor immediate

add instructions,

(qp) add r1 = imm14,r3

(qp) add r1 = imm22,r3

depending on the size of the immediate operand size and value of r3.

The move instruction

(qp) mov r1 = r3

is implemented as

(qp) add r1 = 0,r3

The move instruction

(qp) mov r1 = imm22

is implemented as

(qp) add r1 = imm22,r0

Remember that r0 is hardwired to value zero.

The subtract instruction sub has the same format as the add instruction. The contents of

register r3 are subtracted from the contents of r2. In the minus 1 form, the constant 1 is also

subtracted. In the immediate form, imm is restricted to an 8-bit value.

The instruction shladd (shift left and add)

(qp) shladd r1 = r2,count,r3

is similar to the add instruction, except that the contents of r2 are left-shifted by count bit

positions before adding. The count operand is a 2-bit value, which restricts the shift to 1-, 2-,

3-, or 4-bit positions.

Integer multiply is done using the xma instruction and floating-point registers. This instruc-

tion multiplies two 64-bit integers and adds the product to another 64-bit value.

Logical Instructions

Logical operations AND, OR, and XOR are supported by three logical instructions. There is

no NOT instruction. However, the Itanium has an and-complement (andcm) instruction that

complements one of the operands before performing the bitwise-AND operation.

All instructions have the same format. We illustrate the format of these instructions for the

and instruction:

602 Chapter 14 RISC Processors

(qp) and r1 = r2,r3

(qp) and r1 = imm8,r3

The other three operations use the mnemonics or, xor, and andcm. The and-complement

instruction complements the contents of r3 and ANDs it with the first operand (contents of r2
or immediate value imm8).

Shift Instructions

Both left- and right-shift instructions are available. The shift instructions

(qp) shl r1 = r2,r3

(qp) shl r1 = r2,count

left-shift the contents of r2 by the count value specified by the second operand. The count

value can be specified in r3 or given as a 6-bit immediate value. If the count value in r3 is

more than 63, the result is all zeros.

Right-shift instructions use a similar format. Since right-shift can be arithmetic or logical

depending on whether the number is signed or unsigned, two versions are available. The register

versions of the right-shift instructions are shown below:

(qp) shr r1 = r2,r3 (signed right shift)

(qp) shr.u r1 = r2,r3 (unsigned right shift)

In the second instruction, the completer u is used to indicate unsigned shift operation. We can

also use a 6-bit immediate value for shift count as in the shl instruction.

Comparison Instructions

The compare instruction uses two completers as shown below:

(qp) cmp.crel.ctype p1,p2=r2,r3

(qp) cmp.crel.ctype p1,p2=imm8,r3

The two source operands are compared and the result is written to the two specified destination

predicate registers. The type of comparison is specified by crel. We can specify one of 10

relations for signed and unsigned numbers. The relations “equal” (eq) and “not equal” (neq)

are valid for both signed and unsigned numbers. For signed numbers, there are four relations to

test for: “�” (lt), “�” (le), “�” (gt), and “�” (ge). The corresponding relations for testing

unsigned numbers are ltu, leu, gtu, and geu. The relation is tested as “r2 rel r3”.

The ctype completer specifies how the two predicate registers are to be updated. The

normal type (default) writes the comparison result in the p1 register and its complement in the

p2 register. This would allow us to select one of the two branches (we show an example on

page 605). ctype allows specification of other types such as and and or. If or is specified,

both p1 and p2 are set to 1 only if the comparison result is 1; otherwise, the two predicate

registers are not altered. This is useful for implementing OR-type simultaneous execution.

Similarly, if and is specified, both registers are set to 0 if the comparison result is 0 (useful for

AND-type simultaneous execution).

Section 14.5 Itanium Processor 603

Branch Instructions

As does the PowerPC, the Itanium uses branch instruction for traditional jump as well as proce-

dure call and return. The generic branch is supplemented by a completer to specify the type of

branch. The branch instruction supports both direct and indirect branching. All direct branches

are IP relative (i.e., the target address is relative to the IP value as in the Pentium). Some sample

branch instruction formats are shown below:

IP Relative Form:

(qp) br.btype.bwh.ph.dh traget25 (Basic form)

(qp) br.btype.bwh.ph.dh b1=traget25 (Call form)

br.btype.bwh.ph.dh traget25 (Counted loop form)

Indirect Form:

(qp) br.btype.bwh.ph.dh b2 (Basic form)

(qp) br.btype.bwh.ph.dh b1=b2 (Call form)

As can be seen, branch uses up to four completers. The btype specifies the type of branch.

The other three completers provide hints and are discussed later.

For the basic branch, btype can be either cond or none. In this case, the branch is taken if

the qualifying predicate is 1; otherwise, the branch is not taken. The IP-relative target address

is given as a label in the assembly language. The assembler translates this into a signed 21-bit

value that gives the difference between the target bundle and the bundle containing the branch

instruction. Since the target pointer is to a bundle of 128 bits, the value (target25�IP) is

shifted right by 4 bit positions to get a 21-bit value. Note that the format shown in Figure 14.5�

(page 597) uses a 21-bit displacement value.

To invoke a procedure, we use the second form and specify call for btype. This turns

the branch instruction into a condition call instruction. The procedure is invoked only if the

qualifying predicate is true. As part of the call, it places the current frame marker and other

relevant state information in the previous function state application register. The return link

value is saved in the b1 branch register for use by the return instruction.

There is also an unconditional (no qualifying predicate) counted loop version. In this branch

instruction (the third one), btype is set to cloop. If the loop count (LC) application register

ar65 is not zero, it is decremented and the branch is taken.

We can use ret as the branch type to return from a procedure. It should use the indirect

form and specify the branch register in which the call has placed the return pointer. In the

indirect form, a branch register specifies the target address. The return restores the caller’s stack

frame and privilege level.

The last instruction can be used for an indirect procedure call. In this branch instruction, the

b2 branch register specifies the target address and the return address is placed in the b1 branch

register.

604 Chapter 14 RISC Processors

Let us look at some examples of branch instructions. The instruction

(p3) br skip or (p3) br.cond skip

transfers control to the instruction labeled skip, if the predicate register p3 is 1.

The code sequence

mov lc = 100

loop_back:

. . .

br.cloop loop_back

executes the loop body 100 times. A procedure call may look like

(p0) br.call br2 = sum

whereas the return from procedure sum uses the indirect form

(p0) br.ret br2

Since we are using predicate register 0, which is hardwired to 1, both the call and return become

unconditional.

The bwh (branch whether hint) completer can be used to convey whether the branch is taken

(see page 610). The ph (prefetch hint) completer gives a hint about sequential prefetch. It can

take either few or many. If the value is few or none, few lines are prefetched; many lines are

prefetched when many is specified. The two levels—few and many—are system defined. The

final completer dh (deallocation hint) specifies whether the branch cache should be cleared.

The value clr indicates deallocation of branch information.

14.5.3 Handling Branches

Pipelining works best when we have a linear sequence of instructions. Branches cause pipeline

stalls, leading to performance problems. How do we minimize the adverse effects of branches?

There are three techniques to handle this problem:

• Branch Elimination: The best solution is to avoid the problem in the first place. This

argument may seem strange as programs contain lots of branch instructions. Although

we cannot eliminate all branches, we can eliminate certain types of branches. This elim-

ination cannot be done without support at the instruction-set level. We look at how the

Itanium uses predication to eliminate some types of branches.

• Branch Speedup: If we cannot eliminate a branch, at least we can reduce the amount of

delay associated with it. This technique involves reordering instructions so that instruc-

tions that are not dependent on the branch/condition can be executed while the branch

instruction is processed. Speculative execution can be used to reduce branch delays. We

describe the Itanium’s speculative execution strategies in Section 14.5.5.

Section 14.5 Itanium Processor 605

• Branch Prediction: If we can predict whether the branch will be taken, we can load the

pipeline with the right sequence of instructions. Even if we predict correctly all the time,

it would only convert a conditional branch into an unconditional branch. We still have

the problems associated with unconditional branches. We described three types of branch

prediction strategies in Section 8.4.2 (see page 283).

Since we covered branch prediction in Section 8.4.2, we discuss the first two techniques next.

14.5.4 Predication to Eliminate Branches

In the Itanium, branch elimination is achieved by a technique known as predication. The trick

is to make execution of each instruction conditional. Thus, unlike the instructions we have seen

so far, an instruction is not automatically executed when the control is transferred to it. Instead,

it will be executed only if a condition is true. This requires us to associate a predicate with each

instruction. If the associated predicate is true, the instruction is executed; otherwise, it is treated

as a nop instruction. The Itanium architecture supports full predication to minimize branches.

Most of the Itanium’s instructions can be predicated.

To see how predication eliminates branches, let us look at the following example:

if (R1 == R2) cmp r1,r2

R3 = R3 + R1; je equal

else sub r3,r1

R3 = R3 - R1; jmp next

equal:

add r3,r1

next:

The code on the left-hand side, expressed in C, is a simple if-then-else statement. The Pentium

assembly language equivalent is shown on the right. As you can see, it introduces two branches:

unconditional (jmp) and conditional (je). Using the Itanium’s predication, we can express the

same as

cmp.eq p1,p2 = r1,r2

(p1) add r3 = r3,r1

(p2) sub r3 = r3,r1

The compare instruction sets two predicates after comparing the contents of r1 and r2 for

equality. The result of this comparison is placed in p1 and its complement in p2. Thus, if

the contents of r1 and r2 are equal, p1 is set to 1 (true) and p2 to 0 (false). Since the add
instruction is predicated on p1, it is executed only if p1 is true. It should be clear that either

the add or the sub instruction is executed, depending on the comparison result.

To illustrate the efficacy of predicated execution, we look at the following switch state-

ment in C:

606 Chapter 14 RISC Processors

switch (r6)

{

case 1:

r2 = r3 + r4;

break;

case 2:

r2 = r3 - r4;

break;

case 3:

r2 = r3 + r5;

break;

case 4:

r2 = r3 - r5;

break;

}

For simplicity, we are using the register names in the switch statement. Translating this

statement would normally involve a series of compare and branch instructions. Predication

avoids this sequence as shown below:

cmp.eq p1,p0 = r6,1

cmp.eq p2,p0 = r6,2

cmp.eq p3,p0 = r6,3

cmp.eq p4,p0 = r6,4 ;;

(p1) add r2 = r3,r4

(p2) sub r2 = r3,r4

(p3) add r2 = r3,r5

(p4) sub r2 = r3,r5

In the first group of instructions, the four compare instructions set p1/p2/p3/p4 if the cor-

responding comparison succeeds. If the processor has resources, all four instructions can be

executed concurrently. Since p0 is hardwired to 1, failure conditions are ignored in the above

code. Depending on the compare instruction that succeeds, only one of the four arithmetic

instructions in the second group is executed.

14.5.5 Speculative Execution

Speculative execution refers to the scenario where instructions are executed in the expectation

that they will be needed in actual program execution. The main motivation, of course, is to

improve performance. There are two main reasons to speculatively execute instructions: to

keep the pipeline full and to mask memory access latency. We discuss two types of speculative

execution supported by the Itanium: one type handles data dependencies, and the other deals

with control dependencies. Both techniques are compiler optimizations that allow the compiler

to reorder instructions. For example, we can speculatively move high-latency load instructions

earlier so that the data are available when they are actually needed.

Section 14.5 Itanium Processor 607

Data Speculation

Data speculation allows the compiler to schedule instructions across some types of ambiguous

data dependencies. When two instructions access common resources (either registers or mem-

ory locations) in a conflicting mode, data dependency exists. A conflicting access is one in

which one or both instructions alter the data. Depending on the type of conflicting access, we

can define the following dependencies: read-after-write (RAW), write-after-read (WAR), write-

after-write (WAW), and ambiguous data dependencies. We have discussed the first three types

of dependencies in Section 8.3 on page 278. Ambiguous data dependency exists when pointers

are used to access memory. Typically, in this case, dependencies between load and store in-

structions or store and store instructions cannot be resolved statically at compile time because

we don’t know the pointer values. Handling this type of data dependency requires run-time

support.

The first three dependencies are not ambiguous in the sense that the dependency type can

be statically determined at compile/assembly time. The compiler or programmer should insert

stops (;;) so that the dependencies are properly maintained. The example

sub r6=r7,r8 ;;

add r9=r10,r6

exhibits a RAW data dependency on r6. The stop after the sub instruction would allow the

add instruction to read the value written by the sub instruction.

If there is no data dependency, the compiler can reorder instructions to optimize the code.

Let us look at the following example:

sub r6=r7,r8 ;; // cycle 1

sub r9=r10,r6 // cycle 2

ld8 r4=[r5] ;;

add r11=r12,r4 // cycle 4

Since there is a two-cycle latency to the first-level data cache, the add instruction is scheduled

two cycles after scheduling the ld8 instruction. A straightforward optimization involves mov-

ing the ld8 instruction to cycle 1 as there are no data dependencies to prevent this reordering.

By advancing the load instruction, we can schedule the add in cycle 3 as shown below:

ld8 r4=[r5] // cycle 1

sub r6=r7,r8 ;;

sub r9=r10,r6 ;; // cycle 2

add r11=r12,r4 // cycle 3

However, when there is ambiguous data dependency, as in the following example, instruction

reordering may not be possible:

608 Chapter 14 RISC Processors

sub r6=r7,r8 ;; // cycle 1

st8 [r9]=r6 // cycle 2

ld8 r4=[r5] ;;

add r11=r12,r4 ;; // cycle 4

st8 [r10]=r11 // cycle 5

In this code, ambiguous dependency exists between the first st8 and ld8 because r9 and r5
could be pointing to overlapped memory locations. Remember that each of these instructions

accesses eight contiguous memory locations. This ambiguous dependency will not allow us to

move the load instruction to cycle 1 as in the previous example.

The Itanium provides architectural support to move such load instructions. This is facilitated

by advance load (ld.a) and check load (ld.c). The basic idea is that we initiate the load

early and when it is time to actually execute the load, we will make a check to see if there is a

dependency that invalidates our advance load data. If so, we reload; otherwise, we successfully

advance the load instruction even when there is ambiguous dependency. The previous example

with advance and check loads is shown below:

1: ld8.a r4=[r5] // cycle 0 or earlier

. . .

2: sub r6=r7,r8 ;; // cycle 1

3: st8 [r9]=r6 // cycle 2

4: ld8.c r4=[r5]

5: add r11=r12,r4 ;;

6: st8 [r10]=r11 // cycle 3

We inserted an advance load (line 1) at cycle 0 or earlier so that r4 would have the value ready

for the add instruction on line 5 in cycle 2. However, we have to check to see if we can use

this value. This check is done by the check load instruction ld8.c on line 4. If there is no

dependency between the store on line 3 and load on line 4, we can safely use the prefetched

value. This is the case if the pointers in r9 and r5 are different. On the other hand, if the load

instruction is reading the value written by the store instruction, we have to reload the value. The

check load instruction on line 4 automatically reloads the value in the case of a conflict.

In the last example, we advanced just the load instruction. However, we can improve per-

formance further if we can also advance all (or some of) the statements that depend on the value

read by the load instruction. In our example, it would be nice if we could advance the add
instruction on line 5. This causes a problem if there is a dependency between the store and load

instructions (on lines 3 and 4). In this case, we not only have to reexecute the load but also the

add instruction. The advance check (chk.a) instruction provides the necessary support for

such reexecution as shown in the following example:

Section 14.5 Itanium Processor 609

ld8.a r4=[r5] // cycle -1 or earlier

. . .

add r11=r12,r4 // cycle 1

sub r6=r7,r8 ;;

st8 [r9]=r6 // cycle 2

chk.a r4,recover

back:

st8 [r10]=r11

recover:

ld8 r4=[r5] // reload

add r11=r12,r4 // reexecute add

br back // jump back

When the advanced load fails, the check instruction transfers control to recover to reload and

reexecute all the instructions that used the value provided by the advanced load.

How does the Itanium maintain the dependency information for use by the check instruc-

tions? It keeps a hardware structure called the advanced load address table (ALAT), indexed by

the physical register number. When an advanced load (ld.a) instruction is executed, it records

the load address. When a check is executed (either ld.c or chk.a), it checks ALAT for the

address. The check instruction must specify the same register that the advanced load instruction

used. If the address is present in ALAT, execution continues. Otherwise, a reload (in case of

ld.c) or recovery code (in case of chk.a) is executed. An entry in ALAT can be removed,

for example, by a subsequent store that overlaps the load address. To determine this overlap,

the size of the load in bytes is also maintained.

Control Speculation

When we want to reduce latencies of long latency instructions such as load, we advance them

earlier into the code. When there is a branch instruction, it blocks such a move because we do

not know whether the branch will be taken until we execute the branch instruction. Let us look

at the following code fragment:

cmp.eq p1,p0 = r10,10 // cycle 0

(p1) br.cond skip ;; // cycle 0

ld8 r1 = [r2] ;; // cycle 1

add r3 = r1,r4 // cycle 3

skip:

// other instructions

In the above code, we cannot advance the load instruction due to the branch instruction. Ex-

ecution of the then branch takes four clock cycles. Note that the code implies that the integer

compare instruction that sets the predicate register p1 and the branch instruction that tests it

are executed in the same cycle. This is the only exception; in general, there should be a stop

610 Chapter 14 RISC Processors

inserted between an instruction that is setting a predicate register and the subsequent instruction

testing the same predicate.

Now the question is: How do we advance the load instruction past the branch instruction?

We speculate in a manner similar to the way we handled data dependency. There is one ad-

ditional problem: Since the execution may not take the branch, if the speculative execution

causes exceptions, they should not be raised. Instead, exceptions should be deferred until we

know that the instruction will indeed be executed. The not-a-thing bit is used for this purpose.

If a speculative execution causes an exception, the NaT bit associated with that register is set.

When a check is made at the point of actual instruction execution, if the deferred exception is

not present, speculative execution was successful. Otherwise, the speculative execution should

be redone. Let us rewrite the previous code with a speculative load.

ld8.s r1 = [r2] ;; // cycle -2 or earlier

// other instructions

cmp.eq p1,p0 = r10,10 // cycle 0

(p1) br.cond skip // cycle 0

chk.s r1, recovery // cycle 0

add r3 = r1,r4 // cycle 0

skip:

// other instructions

recovery:

ld8 r1 = [r2]

br skip

The load instruction is moved by at least two cycles so that the value is available in r1 by the

time it is needed by the add instruction. Since this is a speculative load, we use the ld8.s
instruction. And, in place of the original load instruction, we insert a speculative check (chk.s)

instruction with the same register r1. As in the data dependency example, if the speculative

load is not successful (i.e., the NaT bit of r1 is set), the instruction has to be reexecuted. In this

case, the check instruction branches to the recovery code.

14.5.6 Branch Prediction

As mentioned in Chapter 8, most processors use branch prediction to handle the branch prob-

lem. We discussed three branch prediction strategies—fixed, static, and dynamic—in Sec-

tion 8.4.2.

In the Itanium, branch hints can be explicitly provided in branch instructions. The bwh
completer can take one of the following four values:

spnt Static branch not taken

sptk Static branch taken

dpnt Dynamic branch not taken

dpnt Dynamic branch taken

Section 14.6 Summary 611

The SPARC processor also allows providing hints for the branch instructions (see Appendix H

for specifics).

We have given a detailed overview of the Itanium processor. Certainly, we have left out

several elements. If you are interested in learning more about this processor, visit the Intel Web

site for recent information and Itanium manuals [21].

14.6 Summary
We have introduced important characteristics that differentiate RISC processors from their

CISC counterparts. CISC processors such as the Pentium provide complex instructions and

a large number of addressing modes compared to RISC processors. The rationale for this com-

plexity is the desire to close the semantic gap that exists between high-level languages and

machine languages. In the early days, effective usage of processor and memory resources was

important. Complex instructions tend to minimize the memory requirements. However, imple-

menting complex instructions in hardware caused problems until the advent of microcode. With

microcoded implementations, designers were carried away and started making instruction sets

very complex to reduce the previously mentioned semantic gap. The VAX 11/780 is a classic

example of such complex processors.

Empirical data, however, suggested that compilers do not use these complex instructions;

instead, they use simple instructions to synthesize complex instructions. Such observations

led designers to take a fresh look at processor design philosophy. RISC principles, based on

empirical studies on CISC processors, have been proposed as an alternative to CISC processors.

Most of the current processor designs are based on these RISC principles.

We have presented details on two processors, the PowerPC and Itanium, that follow the

RISC design philosophy to a varying degree. The Itanium is a more advanced processor in

terms of the features provided. Compared to the PowerPC and Pentium, it supports explicit

parallelism by providing ample resources such as registers and functional units. In addition, the

Itanium supports sophisticated speculative loads and predication. It also uses traditional branch

prediction strategies. The Itanium, even though it follows RISC principles, is not a “simple”

processor. Some of its instructions truly belong to the CISC category.

Both the PowerPC and Itanium do not strictly follow all the RISC principles. In the next

chapter, we present details on the MIPS processor, which closely follows the RISC philosophy.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Activation record

• Addressing modes

• Advanced load

• Branch elimination

• Branch hints

• Branch prediction

• Branch speedup

• Condition register

612 Chapter 14 RISC Processors

• Control speculation

• Data dependency

• Data speculation

• EPIC design

• Immediate index addressing mode

• Index addressing mode

• Indirect addressing mode

• Instruction-level parallelism

• Load/store architecture

• Microprogramming

• Predicated execution

• Procedure call in the Itanium

• Register renaming

• Register windows

• Stack frame

• Speculative execution

• Speculative load

14.7 Exercises
14–1 We have seen that CISC processors typically use variable-length instructions. Discuss the

reasons for this.

14–2 A typical CISC processor supports several addressing modes. For example, the VAX

11/780 provides 22 addressing modes. What is the motivation for supporting a large

number of addressing modes?

14–3 We have stated that RISC is a design philosophy. Discuss the main RISC characteristics.

14–4 Recent processors tend to follow the RISC design philosophy. For example, Intel moved

from CISC to RISC designs for their 64-bit processors. Explain why.

14–5 The two RISC processors we have discussed in this chapter use the load/store architec-

ture. The MIPS processor, discussed in the next chapter, also uses the load/store archi-

tecture. Why do RISC processors use the load/store architecture?

14–6 RISC processors provide a large number of registers compared to CISC processors. What

is the rationale for this? How do these processors use these registers?

14–7 What is the purpose of the condition register in the PowerPC? Is there a similar register

in the Pentium?

14–8 What is the purpose of the link, XER, and count registers in the PowerPC? Are there

similar registers in the Pentium?

14–9 Discuss the addressing modes supported by the PowerPC.

14–10 The PowerPC provides only a few addressing modes. Compared to the addressing modes

supported by the Pentium, which addressing modes are missing from the PowerPC list?

14–11 The PowerPC and Itanium appear to support the same types of addressing modes. What

is the main difference between the addressing modes of these two processors? How does

this difference benefit the Itanium processor?

14–12 Assume that two 64-bit integers are stored in memory at number1 and number2. Sup-

pose that we want to add these two numbers on a 32-bit PowerPC processor and store

the result in memory at result. Write a PowerPC assembly language code fragment to

perform this addition.

Section 14.7 Exercises 613

14–13 Discuss the differences between the multiply instructions of the Pentium and PowerPC.

14–14 In the PowerPC, branch instructions have BO and BI operands. What is the purpose of

these two operands?

14–15 Explain the EPIC design philosophy of the Itanium processor.

14–16 Pentium and PowerPC processors provide 8 and 32 general-purpose registers, respec-

tively. The Itanium, on the other hand, provides 128 general-purpose registers. Why did

the designers of the Itanium decide to provide such a large number of registers?

14–17 The Itanium has 128 predicate registers, one for each general-purpose register. Each is a

single-bit register. What is the purpose of this register set?

14–18 The Itanium provides eight 64-bit branch registers. Pentium and PowerPC processors do

not have branch registers. What purpose do these registers serve in the Itanium?

14–19 The Itanium divides the 128 general-purpose registers into static and stacked registers.

What is the main reason for this? How can this division be exploited to improve perfor-

mance?

14–20 Explain how instruction-level parallelism is extracted in the Itanium. What are the ad-

vantages of this scheme over hardware-based approaches?

14–21 Instructions of the Itanium are 41-bits long. Three such instructions are packed together

into 128-bit bundles. How does this bundling improve performance of the Itanium pro-

cessor?

14–22 The Itanium instruction bundle contains a 5-bit template. What is the purpose of this

template?

14–23 Branches cause performance problems. Discuss three ways to handle the branches.

14–24 Explain how the Itanium uses predication to eliminate certain types of branches. Use an

example to illustrate your point.

14–25 What are data and control dependencies? Which is more difficult to handle?

14–26 Explain how the Itanium uses speculative execution to handle data and control dependen-

cies.

Chapter 15

MIPS Assembly Language

Objectives
• To describe MIPS processor architecture;

• To present MIPS processor instruction set details;

• To illustrate how MIPS assembly language programs are written;

• To discuss MIPS stack implementation and procedures.

In the last chapter, we have briefly discussed two RISC processors, the PowerPC and Intel

Itanium. In this chapter, we take a detailed look at the MIPS R2000 processor. There is also

an opportunity to program in the MIPS assembly language. The MIPS simulator SPIM runs

the programs written for the MIPS processor. Appendix G gives details on the SPIM simulator.

It also gives information on how you can download and use the SPIM to run the examples

discussed in this chapter.

We start this chapter with a description of the MIPS processor architecture. The following

section discusses its instruction set in detail. The SPIM provides a few system calls to facilitate

input/output from the assembly language programs. These calls are given in Section 15.3. As

do the Pentium assemblers, the SPIM also provides several directives, which are described in

Section 15.4. Some example MIPS assembly programs are given in Section 15.5.

Unlike the Pentium, simple procedures in MIPS processors do not use the stack. Sec-

tion 15.6 explains how procedures are written in the MIPS assembly language. This section

also gives examples to illustrate the principles involved in writing procedures. Although the

stack is not needed to write simple procedures, nested or recursive procedures need to use the

stack. Stack implementation is described in Section 15.7 with some examples. We conclude the

chapter with a summary.

615

616 Chapter 15 MIPS Assembly Language

15.1 MIPS Processor Architecture
Our focus in this chapter is on the MIPS R2000 RISC processor. The main reason for selecting

this specific MIPS processor is that the SPIM simulator is written for this processor. This is

a 32-bit processor. Later processors (R4000 and above) are very similar to R2000 except that

they are 64-bit processors. From a pedagogical perspective, the R2000 processor is sufficient to

explain the RISC features.

MIPS processors follow the load/store architecture, which means that most instructions op-

erate on registers. It has two instruction types to move data between registers and memory. As

we show later, the R2000 provides several load and store instructions to transfer different sizes

of data: byte, halfword, word, and doubleword.

Like most recent processors, the R2000 supports both little-endian and big-endian formats.

Recall that the Pentium uses the little-endian format to store multibyte data, and the Itanium

and PowerPC support both endian formats.

RISC processors typically have a large number of registers. For example, the Itanium has

128 registers, whereas the PowerPC provides 32 registers. We start our discussion with the

registers of the R2000.

15.1.1 Registers

The R2000 provides 32 general-purpose registers, a program counter (PC), and two special-

purpose registers. All registers are 32-bits wide as shown in Figure 15.1.

Unlike the Pentium, numbers are used to identify the general-purpose registers. In the

assembly language, these registers are identified as $0, $1, � � � , $31. Two of the general-

purpose registers—the first and the last—are reserved for a specific function:

• Register $0 is hardwired to zero value. This register is often used as a source register

when a zero value is needed. You can use this register as the destination register of an

instruction if you want the result to be discarded.

• The last register $31 is used as a link register by the jump and link (jal) instruction

(discussed in Section 15.6 on page 643). This instruction is equivalent to the Pentium’s

call instruction. Register $31 is used to store the return address of a procedure call.

We discuss this issue in detail in Section 15.6.

The PC register serves the same purpose as the instruction pointer (IP) register in the Pen-

tium. The two special-purpose registers—called HI and LO—are used to hold the results of

integer multiply and divide instructions:

• In the integer multiply operation, HI and LO registers hold the 64-bit result, with the

higher-order 32 bits in the HI and the lower-order 32 bits in the LO register.

• In integer divide operations, the 32-bit quotient is stored in the LO and the remainder in

the HI register.

Section 15.1 MIPS Processor Architecture 617

PC

Program counter

031

LO

HI

Multiply and divide registers

031

zero

at

v0

v1

a1

a0

a2

a3

t0

t1

t2

t3

t4

t5

t6

t7

s0

s1

s2

s3

s4

s5

s6

s7

t8

t9

k0

k1

gp

sp

fp

ra

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

31 0

General-purpose registers

Figure 15.1 MIPS R2000 processor registers. All registers are 32-bits wide.

15.1.2 General-Purpose Register Usage Convention

Although there is no requirement from the processor hardware, the MIPS has established a

convention on how these 30 registers should be used. Table 15.1 shows the suggested use of

each register. Since these suggestions are not enforced by the hardware, we can use the general-

purpose registers in an unconventional manner. However, such programs are not likely to work

with other programs.

618 Chapter 15 MIPS Assembly Language

Table 15.1 MIPS registers and their conventional usage

Register name Number Intended usage

zero 0 Constant 0

at 1 Reserved for assembler

v0, v1 2, 3 Results of a procedure

a0, a1, a2, a3 4–7 Arguments 1–4

t0–t7 8–15 Temporary (not preserved across call)

s0–s7 16–23 Saved temporary (preserved across call)

t8, t9 24, 25 Temporary (not preserved across call)

k0, k1 26, 27 Reserved for OS kernel

gp 28 Pointer to global area

sp 29 Stack pointer

fp 30 Frame pointer (if needed);

otherwise, a saved register $s8

ra 31 Return address (used by a procedure call)

Registers $v0 and $v1 are used to return results from a procedure. Registers $a0 to $a3
are used to pass the first four arguments to procedures. The remaining arguments are passed via

the stack.

Registers $t0 to $t9 are temporary registers that need not be preserved across a procedure

call. These registers are assumed to be saved by the caller. On the other hand, registers $s0 to

$s7 are callee-saved registers that should be preserved across procedure calls.

Register $sp is the stack pointer and serves the same purpose as the Pentium’s sp register.

It points to the last location in use on the stack. The MIPS compiler does not use a frame pointer.

As a result, the frame pointer register $fp is used as callee-saved register $s8. The $ra is used

to store the return address in a procedure call. We discuss these registers in Section 15.6.

Register $gp points to the memory area that holds constants and global variables. The

$at register is reserved for the assembler. The assembler often uses this register to translate

pseudoinstructions. We show some examples of this later (see page 626).

15.1.3 Addressing Modes

The Pentium provides several addressing modes, which is a characteristic of CISC processors.

Since the MIPS uses the load/store architecture, only the load and store instructions access

memory. Thus, the addressing mode mainly refers to how these two instructions access mem-

ory. All other instructions use registers. The bare machine provides only a single memory

addressing mode: disp(Rx), where displacement disp is a signed, 16-bit immediate value.

Section 15.2 MIPS Instruction Set 619

Table 15.2 Addressing modes

Format Address computed as

(Rx) Contents of register Rx

imm Immediate value imm

imm(Rx) imm + contents of Rx

symbol Address of symbol

symbol� imm Address of symbol �imm

symbol� imm(Rx) Address of symbol �(imm + contents of Rx)

The address is computed as disp + contents of base register Rx. Thus, the MIPS provides only

the based/indexed addressing mode. In the MIPS, we can use any register as the base register.

The virtual machine supported by the assembler provides additional addressing modes for

load and store instructions to help in assembly language programming. Table 15.2 shows the

addressing modes supported by the virtual machine.

Note that most load and store instructions operate only on aligned data. The MIPS, however,

provides some instructions for manipulating unaligned data. For more details on alignment of

data and its impact on performance, see our discussion on page 683.

15.1.4 Memory Usage

The MIPS uses a conventional memory layout. A program’s address space consists of three

parts: code, data, and stack. The memory layout of these three components is shown in Fig-

ure 15.2. The text segment, which stores the instructions, is placed at the bottom of the user

address space (at 4000000H).

The data segment is placed above the text segment and starts at 10000000H. The data seg-

ment is divided into static and dynamic areas. The dynamic area grows as memory is allocated

to dynamic data structures.

The stack segment is placed at the end of the user address space at 7FFFFFFFH. It grows

downward towards lower memory address. This placement of segments allows sharing of un-

used memory by both data and stack segments.

15.2 MIPS Instruction Set
The MIPS instruction set consists of instructions and pseudoinstructions. The MIPS processor

supports only the instructions. Pseudoinstructions are provided by the assembler for conve-

nience in programming. The assembler translates pseudoinstructions into a sequence of one or

more processor instructions. We use a � to indicate the pseudoinstructions.

620 Chapter 15 MIPS Assembly Language

Stack segment

Dynamic area

Static area

Reserved

Text segment

0

4000000H

10000000H

7FFFFFFFH

Memory addresses

Data segment

Figure 15.2 MIPS memory layout.

15.2.1 Instruction Format

The MIPS, being a RISC processor, uses a fixed-length instruction format. Each instruction is

32-bits long as shown in Figure 15.3. It uses only three different instruction formats, as opposed

to the large number of formats used by the Pentium. The three formats are as follows:

• Immediate (I-type): All load and store instructions use this instruction format. The im-

mediate value is a signed 16-bit integer. In addition, arithmetic and logical instructions

that use an immediate value also use this format. Branch instructions use a 16-bit signed

offset relative to the program counter and are encoded in the I-type format.

• Jump (J-type): Jump instructions that specify a 26-bit target address use this instruction

format. These 26 bits are combined with the higher-order bits of the program counter to

get the absolute address.

• Register (R-type): Arithmetic and logical instructions use this instruction format. In addi-

tion, the jump instruction in which the target address is specified indirectly via a register

also uses this instruction format.

Section 15.2 MIPS Instruction Set 621

2031 2526 21 16 0

0

0

31 26 25

31 26 25 21 20 1516 10 11 6 5

op 26-bit target

J-Type (Jump)

op rtrs rd sa function

R-Type (Register)

rt 16-bit immediate valuersop

I-Type (Immediate)

15

Figure 15.3 Three instruction formats of the MIPS R2000 processor.

The use of a limited number of instruction formats simplifies instruction decoding. How-

ever, three instruction formats and a single addressing mode mean that complicated operations

and addressing modes will have to be synthesized by the compiler. If these operations and ad-

dressing modes are less frequently used, we may not pay much penalty. This is the motivation

behind the RISC processors.

15.2.2 Data Transfer Instructions

The MIPS provides load and store instructions to move data between memory and registers.

Load instructions move data from memory into registers, and the store instructions move the

data in the opposite direction. Load and store instructions have a similar format. Therefore, we

discuss the load instructions in more detail.

Moving Data

Several load and store instructions are available to move data of different sizes. The load byte

(lb) instruction moves a byte of data from memory to a register. The format is

lb Rdest,address

lb loads the least significant byte of Rdest with the byte at the specified memory address.

The byte is treated as a signed number. Consequently, the sign bit is extended to the remaining

three bytes of Rdest. To load an unsigned number, use load byte unsigned (lbu) instead of

lb. In this case, the remaining three bytes are filled with zeros.

622 Chapter 15 MIPS Assembly Language

Table 15.3 Sample MIPS load instructions

Instruction Description

lb Rdest,address Load byte: Loads the byte at address in memory into the least significant byte

of Rdest. The byte is treated as a signed number; sign extends to the remaining

three bytes of Rdest.

lbu Rdest,address Load byte unsigned: This instruction is similar to lb except that the byte is

treated as an unsigned number. Upper three bytes of Rdest are filled with zeros.

lh Rdest,address Load halfword: Loads the half-word (two bytes) at address in memory into

the least significant two bytes of Rdest. The 16-bit data is treated as a signed

number; sign extends to the remaining two bytes of Rdest.

lhu Rdest,address Load halfword unsigned: Same as lh except that the 16-bit halfword is treated

as an unsigned number.

lw Rdest,address Load word: Loads the word (four bytes) at address in memory into Rdest.

Additional instructions available on 64-bit processors

lwu Rdest,address Load word unsigned: Loads the word (four bytes) at address in memory into

the least significant four bytes of Rdest. The 32-bit data are treated as an un-

signed number; sign extends to the remaining four bytes of Rdest.

ld Rdest,address Load doubleword: Loads the doubleword (eight bytes) at address in memory

into Rdest.

Assembler pseudoinstructions

la� Rdest,address Load address: Loads address into Rdest.

li� Rdest,imm Load immediate: Loads the immediate value imm into Rdest.

Other load instructions facilitate movement of larger data items. These instructions are

summarized in Table 15.3. Note that in 64-bit architectures, load word lw copies the 32-bit

memory content into the least significant four bytes of Rdest. In addition, we can use the

doubleword transfer instruction.

The assembler provides two pseudoinstructions to load an address or an immediate value

into a register. For example,

la $a0,marks

loads the address of the marks array into the $a0 register. The li instruction is implemented

as

ori Rdest,$0,imm

The ori (OR immediate) instruction is discussed in Section 15.2.4.

Section 15.2 MIPS Instruction Set 623

Table 15.4 Sample MIPS store instructions

Instruction Description

sb Rsrc,address Store byte: Stores the least significant byte of Rsrc at the specified

address in memory.

sh Rsrc,address Store halfword: Stores the least significant two bytes (halfword) of Rsrc

at the specified address in memory.

sw Rsrc,address Store word: Stores the four-byte word from Rsrc at the specified

address in memory.

Additional instructions available on 64-bit processors

sd Rsrc,address Store doubleword: Stores the eight-byte doubleword from Rsrc in mem-

ory at the specified address.

The store byte (sb) instruction

sb Rsrc,address

stores the least significant byte of Rsrc at the specified memory address. Since the data transfer

does not involve sign extension, there is no need for separate instructions to handle signed and

unsigned byte transfers. Store instructions to handle 16-, 32-, and 64-bit data are also available

as shown in Table 15.4.

To move data between registers, we can use the move pseudoinstruction. The format is

move� Rdest,Rsrc

It copies the contents of Rsrc to Rdest. Four additional data movement instructions are

available for transferring data between a general register and two special registers HI and LO.

These instructions are described on page 625.

15.2.3 Arithmetic Instructions

MIPS supports the four basic arithmetic operations: addition, subtraction, multiplication, and

division.

Addition Instructions

The basic addition instruction

add Rdest,Rsrc1,Rsrc2

adds contents of Rsrc1 and Rsrc2 and stores the result in Rdest. The numbers are treated as

signed integers. In case of an overflow, an overflow exception is generated. We can use addu if

624 Chapter 15 MIPS Assembly Language

no overflow exception is needed. Except for this, there is no difference between add and addu
instructions.

The second operand can be specified as an immediate 16-bit number. The format is

addi Rdest,Rsrc1,imm

The 16-bit value is sign-extended to 32 bits and added to the contents of Rsrc1. As in the add
instruction, an overflow exception is generated. As in add, we can use addiu if an overflow

exception is not needed.

For convenience, assembler provides a pseudoinstruction that can take a register or an im-

mediate value as the second source operand. The format is

add� Rdest,Rsrc1,Src2

where Src2 can be a 16-bit immediate value or a register. Use addu� for the no-overflow

version.

Subtract Instructions

The subtract instruction

sub Rdest,Rsrc1,Rsrc2

subtracts the contents of Rsrc2 from Rsrc1 (i.e., Rsrc1 � Rsrc2). The result is stored in

Rdest. The contents of the two source registers are treated as signed numbers and an integer

overflow exception is generated. We use subu if this exception is not required.

There is no immediate version of the subtract instruction. It is not really needed as we

can treat subtraction as an addition of a negative number. However, we can use the assembler

pseudoinstruction to operate on immediate values. The format is

sub� Rdest,Rsrc1,Src2

where Src2 can be a 16-bit immediate value or a register.

To negate a value, we can use the assembler pseudoinstruction neg for signed numbers.

The instruction

neg� Rdest,Rsrc

negates the contents of Rsrc and stores the result in Rdest. An overflow exception is gener-

ated if the value is ����. Negation without the overflow exception (negu�) is also available.

As noted, neg is not a processor instruction; the SPIM assembler translates the negate

instruction using sub as

sub Rdest,$0,Rsrc

abs is another pseudoinstruction that is useful to get the absolute value. The format is

Section 15.2 MIPS Instruction Set 625

abs� Rdest,Rsrc

This pseudoinstruction is implemented as

bgez Rsrc,skip

sub Rdest,$0,Rsrc

skip:

The bgez instruction actually uses an offset of 8 to affect the jump as shown below:

bgez Rsrc,8

We discuss the branch instruction on page 630.

Multiply Instructions

Two multiply instructions are available: for signed numbers (mult) and for unsigned numbers

(multu). The instruction

mult Rsrc1,Rsrc2

multiplies contents of Rsrc1 with the contents of Rsrc2. The numbers are treated as signed

numbers. The 64-bit result is placed in two special registers LO and HI. The LO register re-

ceives the lower-order word and the higher-order word is placed in the HI register. No integer

overflow exception is generated. The multu instruction has the same format but treats the

source operands as unsigned numbers.

There are instructions to move data between these special LO/HI registers and general-

purpose registers. The instruction mfhi (move from HI)

mfhi Rdest

moves the contents of the HI register to the general register Rdest. The mflo instruction

is used to move data from the LO register. For movement of data into these special registers,

mthi (move to HI) or mtlo (move to LO) is used.

The assembler multiply pseudoinstruction can be used to place the result directly in a desti-

nation register. A limitation of the pseudoinstruction is that it stores only the 32-bit result, not

the 64-bit value. Note that multiplication of two 32-bit numbers can produce a 64-bit result. We

can use these pseudoinstructions if we know that the result can fit in 32 bits. The instruction

mul� Rdest,Rsrc1,Src2

places the 32-bit result of the product of Rsrc1 and Src2 in Rdest. Src2 can be a register

or an immediate value. This instruction does not generate an overflow exception. If an overflow

exception is required, the mulo instruction is used. Both these instructions treat the numbers as

signed. To multiply two unsigned numbers, we can use the mulou instruction (multiply with

overflow unsigned).

626 Chapter 15 MIPS Assembly Language

The mul pseudoinstruction is translated as

mult Rsrc1,Src2

mflo Rdest

when Src2 is a register. If Src2 is an immediate value, it uses an additional ori instruction.

For example, the pseudoinstruction

mul $a0,$a1, 32

is translated into

ori $1,$0,32

mult $5,$1

mflo $4

Remember that a0maps to $4, a1 to $5, and at to $1. This example shows how the assembler

uses the at register to translate pseudoinstructions.

Divide Instructions

As with the multiply instructions, we can use div and divu instructions to divide signed and

unsigned numbers, respectively. The instruction

div Rsrc1,Rsrc2

divides the contents of Rsrc1 by the contents of Rsrc2 (i.e., Rsrc1/Rsrc2). The contents

of both source registers are treated as signed numbers. The result of the division is placed in

LO and HI registers. The LO register receives the quotient and the HI register receives the

remainder. No integer overflow exception is generated.

The result of the operation is undefined if the divisor is zero. Thus, checks for a zero divisor

should precede this instruction.

The assembler provides three-operand divide pseudoinstructions similar to the multiply in-

structions. The instruction

div� Rdest,Rsrc1,Src2

places the quotient of two signed number divisions Rsrc1/Src2 in Rdest. As in the other

instructions, Src2 can be a register or an immediate value. For unsigned numbers, the divu�

pseudoinstruction is used. The quotient is rounded toward zero. Overflow is signaled when

dividing ���� by �� as the quotient is greater than �
�� � �. The assembler generates the real

div instruction if we use

div $0,Rsrc1,Src2.

To get the remainder instead of the quotient, use

rem� Rdest,Rsrc1,Src2

for signed numbers.

Section 15.2 MIPS Instruction Set 627

Table 15.5 MIPS logical instructions

Instruction Description

and Rdest,Rsrc1,Rsrc2 Bit-wise AND of Rsrc1 and Rsrc2 is stored in Rdest.

andi Rdest,Rsrc1,imm16 Bit-wise AND of Rsrc1 and 16-bit imm16 is stored in Rdest.

The 16-bit imm16 is zero-extended.

or Rdest,Rsrc1,Rsrc2 Bit-wise OR of Rsrc1 and Rsrc2 is stored in Rdest.

ori Rdest,Rsrc1,imm16 Bit-wise OR of Rsrc1 and 16-bit imm16 is stored in Rdest.

The 16-bit imm16 is zero-extended.

not� Rdest,Rsrc Bit-wise NOT of Rsrc is stored in Rdest.

xor Rdest,Rsrc1,Rsrc2 Bit-wise XOR of Rsrc1 and Rsrc2 is stored in Rdest.

xori Rdest,Rsrc1,imm16 Bit-wise XOR of Rsrc1 and 16-bit imm16 is stored in Rdest.

The 16-bit imm16 is zero-extended.

nor Rdest,Rsrc1,Rsrc2 Bit-wise NOR of Rsrc1 and Rsrc2 is stored in Rdest.

15.2.4 Logical Instructions

The MIPS supports the logical instructions and, or, nor, and xor (exclusive-OR). The miss-

ing not operation is supported by a pseudoinstruction. All operations, except not, take two

source operands and a destination operand. The not instruction takes one source and one des-

tination operand. As with most instructions, all operands must be registers. However, and, or,

and xor instructions can take one immediate operand.

A summary of the logical instructions is given in Table 15.5. Assembler pseudoinstructions

use the same mnemonics for the logical operations AND, OR, and XOR but allow the second

source operand to be either a register or a 16-bit immediate value.

The not pseudoinstruction can be implemented by the nor instruction as

nor Rdest,Rsrc,$0

15.2.5 Shift Instructions

Both left-shift and right-shift instructions are available to facilitate bit operations. The number

of bit positions to be shifted (i.e., shift count) can be specified as an immediate 5-bit value or

via a register. If a register is used, only the least significant 5 bits are used as the shift count.

The basic left-shift instruction sll (shift left logical)

sll Rdest,Rsrc,count

628 Chapter 15 MIPS Assembly Language

shifts the contents of Rsrc left by count bit positions and stores the result in Rdest. When

shifting left, vacated bits on the right are filled with zeros. These are called logical shifts. We

show arithmetic shifts when dealing with right-shifts.

The sllv (shift left logical variable) instruction

sllv Rdest,Rsrc1,Rsrc2

is similar to the sll instruction except that the shift count is in the Rsrc2 register.

There are two types of right shift operations: logical or arithmetic. This is because, when

we shift right, we have the option of filling the vacated left bits by zeros (called logical shift) or

copying the sign bit (arithmetic shift). The difference between the logical and arithmetic shifts

is explained in detail on page 357.

The logical right-shift instructions—shift right logical (srl) and shift right logical variable

(srlv)—have a format similar to their left-shift cousins. As mentioned, the vacated bits on the

left are filled with zeros.

The arithmetic shift right instructions follow a similar format; however, shifted bit positions

on the left are filled with the sign bit (i.e., sign extended). The shift instructions are summarized

in Table 15.6.

15.2.6 Rotate Instructions

A problem with the shift instructions is that the shifted-out bits are lost. Rotate instructions

allow us to capture these bits. The processor does not support rotate instructions. However, the

assembler provides two rotate pseudoinstructions: rotate left (rol) and rotate right (ror).

In rotate left, the bits shifted out at the left (i.e., sign-bit side) are inserted on the right-hand

side. In rotate right, bits falling off the right side are inserted on the sign-bit side.

Table 15.7 summarizes the two rotate instructions, which are pseudoinstructions. For exam-

ple, the rotate instruction

ror� $t2,$t2,1

is translated as

sll $1,$10,31

srl $10,$10,1

or $10,$10,$1

15.2.7 Comparison Instructions

Several comparison pseudoinstructions are available. The instruction slt (set on less than)

slt� Rdest,Rsrc1,Rsrc2

sets Rdest to one if the contents of Rsrc1 are less than the contents of Rsrc2; otherwise,

Rdest is set to zero. This instruction treats the contents of Rsrc1 and Rsrc2 as signed

Section 15.2 MIPS Instruction Set 629

Table 15.6 MIPS shift instructions

Instruction Description

sll Rdest,Rsrc,count Left-shifts Rsrc by count bit positions and stores the result in

Rdest. Vacated bits are filled with zeros. count is an immediate

value between 0 and 31. If count is outside this range, it uses

count MOD 32 as the number of bit positions to be shifted (i.e.,

takes only the least significant five bits of count).

sllv Rdest,Rsrc1,Rsrc2 Similar to sll except that the count is taken from the least signif-

icant five bits of Rsrc2.

srl Rdest,Rsrc,count Right-shifts Rsrc by count bit positions and stores the result in

Rdest. This is a logical right-shift (i.e., vacated bits are filled with

zeros). count is an immediate value between 0 and 31.

srlv Rdest,Rsrc1,Rsrc2 Similar to srl except that the count is taken from the least signif-

icant five bits of Rsrc2.

sra Rdest,Rsrc,count Right-shifts Rsrc by count bit positions and stores the result in

Rdest. This is an arithmetic right-shift (i.e., vacated bits are filled

with the sign bit). count is an immediate value between 0 and 31.

srav Rdest,Rsrc1,Rsrc2 Similar to sra except that the count is taken from the least signif-

icant five bits of Rsrc2.

Table 15.7 MIPS rotate instructions

Instruction Description

rol� Rdest,Rsrc,Src2 Rotates contents of Rsrc left by Src2 bit positions and stores

the result in Rdest. Src2 can be a register or an immediate

value. Bits shifted out on the left are inserted on the right-hand

side. Src2 should be a value between 0 and 31. If this value is

outside this range, only the least significant five bits of Src2 are

used as in the shift instructions.

ror� Rdest,Rsrc,Src2 Rotates contents of Rsrc right by Src2 bit positions and stores

the result in Rdest. Bits shifted out on the right are inserted on

the left-hand side. Src2 operand is similar to that in the rol

instruction.

630 Chapter 15 MIPS Assembly Language

numbers. To test for the “less than” relationship, slt subtracts contents of Rsrc2 from the

contents of Rsrc1.

The second operand can be a 16-bit immediate value. In this case, use slti (set on less

than immediate) as shown below:

slti� Rdest,Rsrc1,imm

For unsigned numbers, use sltu for the register version and sltiu for the immediate-operand

version.

As a convenience, the assembler allows us to use slt and sltu for both register and

immediate-operand versions. In addition, the assembler provides more comparison instructions.

These pseudoinstructions can be used to test for equal, not equal, greater than, greater than or

equal, and less than or equal relationships. Table 15.8 summarizes the comparison instructions

provided by the assembler.

All comparison instructions in Table 15.8 are pseudoinstructions. For example, the instruc-

tion

seq $a0,$a1,$a2

is translated as

beq $6,$5,skip1

ori $4,$0,0

beq $0,$0,skip2

skip1:

ori $4,$0,1

skip2:

. . .

Note that $a0, $a1, and $a2 represent registers $4, $5, and $6, respectively. Branch instruc-

tions are discussed next.

15.2.8 Branch and Jump Instructions

Conditional execution is implemented by jump and branch instructions. We first look at the

jump instructions. The basic jump instruction

j target

transfers control to the target address. There are other jump instructions that are useful in

procedure calls. These instructions are discussed in Section 15.6.

Branch instructions provide a more flexible test and jump execution. The MIPS supports

several branch instructions. We describe some of these instructions in this section.

The unconditional branch instruction

b� target

Section 15.2 MIPS Instruction Set 631

Table 15.8 MIPS comparison instructions

Instruction Description

seq� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 and Src2 are equal;

otherwise, Rdest is set to zero.

sgt� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are greater than Src2;

otherwise, Rdest is set to zero.

sgtu� Rdest,Rsrc1,Src2 Same as sgt except that the source operands are treated as un-

signed numbers.

sge� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are greater than or equal

to Src2; otherwise, Rdest is set to zero.

sgeu� Rdest,Rsrc1,Src2 Same as sge except that the source operands are treated as un-

signed numbers.

slt� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are less than Src2; oth-

erwise, Rdest is set to zero.

sltu� Rdest,Rsrc1,Src2 Same as slt except that the source operands are treated as un-

signed numbers.

sle� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 are less than or equal to

Src2; otherwise, Rdest is set to zero.

sleu� Rdest,Rsrc1,Src2 Same as sle except that the source operands are treated as un-

signed numbers.

sne� Rdest,Rsrc1,Src2 Rdest is set to one if contents of Rsrc1 and Src2 are not equal;

otherwise, Rdest is set to zero.

transfers control to target unconditionally. Semantically, it is very similar to the jump in-

struction. The main difference is that the b instruction uses a 16-bit relative address whereas

the j instruction uses a 26-bit absolute address. Thus, the jump instruction has a larger range

than the branch instruction. But the branch is more convenient because it uses relative address.

Next we look at the conditional branch instructions. The branch instruction

beq Rsrc1,Rsrc2,target

compares the contents of Rsrc1 and Rsrc2 and transfers control to target if they are equal.

To compare with zero, we can use the beqz instruction. The format is

beqz Rsrc,target

This instruction transfers control to target if the value of Rsrc is equal to zero.

As noted, b is a pseudoinstruction that implemented as

632 Chapter 15 MIPS Assembly Language

bgez $0,target

where target is the relative offset.

Branch instructions to test “less than” and “greater than” are also supported. As an example,

the instruction

bgt Rsrc1,Rsrc2,target

branches to the target location when the contents of Rsrc1 are greater than Rsrc2. When

comparing, the contents of Rsrc1 and Rsrc2 are treated as signed numbers. For unsigned

numbers, we have to use the bgtu instruction.

Branch instructions to test combinations such as “greater than or equal to” are also available.

Table 15.9 summarizes some of the branch instructions provided by the MIPS assembler.

15.3 SPIM System Calls
The SPIM provides I/O support through the system call (syscall) instruction. Eight of these

calls facilitate input and output of the four basic data types: string, integer, float, and double. A

notable service missing in this list is the character input and output. For character I/O, we have

to use the string system calls.

To invoke a service, the system call service code should be placed in the $v0 register.

Any required arguments are placed in the $a0 and $a1 registers (use $f12 for floating-point

values). Any value returned by a system call is placed in $v0 ($f0 for floating-point values).

All 10 system calls are summarized in Table 15.10. The first 3 calls are self-explanatory.

The print_string system call takes a pointer to a NULL-terminated string and prints the

string. The read_int, read_float, and read_double system calls read input up to

and including newline. Characters following the number are ignored. The read_string call

takes the pointer to a buffer where the input string is to be placed and the buffer size � in $a1.

The buffer size should be expressed in bytes. It reads at most ��� characters into the buffer and

terminates the string by the NULL character. The read_string call has the same semantics

as the fgets function in the C library.

The sbrk call returns a pointer to a block of memory containing � additional bytes. The

final system call exit stops execution of a program.

Here is an example code fragment that prompts the user for a name and reads the name:

.DATA

prompt:

.ASCIIZ "Enter your name: "

in_name:

.SPACE 31

.TEXT

. . .

la $a0,prompt ; prompt user

li $v0,4

syscall

Section 15.3 SPIM System Calls 633

Table 15.9 MIPS branch instructions

Instruction Description

b� target Branches unconditionally to target.

beq Rsrc1,Rsrc2,target Branches to target if the contents of Rsrc1 and Rsrc2 are equal.

bne Rsrc1,Rsrc2,target Branches to target if the contents of Rsrc1 and Rsrc2 are not

equal.

blt Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is less than the value of

Rsrc2. The source operands are considered as signed numbers.

bltu Rsrc1,Rsrc2,target Same as blt except that the source operands are treated as unsigned

numbers.

bgt Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is greater than the value

of Rsrc2. The source operands are treated as signed numbers.

bgtu Rsrc1,Rsrc2,target Same as bgt except that the source operands are treated as unsigned

numbers.

ble Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is less than or equal

to the value of Rsrc2. The source operands are treated as signed

numbers.

bleu Rsrc1,Rsrc2,target Same as ble except that the source operands are treated as unsigned

numbers.

bge Rsrc1,Rsrc2,target Branches to target if the value of Rsrc1 is greater than or equal

to the value of Rsrc2. The source operands are treated as signed

numbers.

bgeu Rsrc1,Rsrc2,target Same as bge except that the source operands are considered as un-

signed numbers.

Comparison with zero

beqz Rsrc,target Branches to target if the value of Rsrc is equal to zero.

bnez Rsrc,target Branches to target if the value of Rsrc is not equal to zero.

bltz Rsrc,target Branches to target if the value of Rsrc is less than zero.

bgtz Rsrc,target Branches to target if the value of Rsrc is greater than zero.

blez Rsrc,target Branches to target if the value of Rsrc is less than or equal to

zero.

bgez Rsrc,target Branches to target if the value of Rsrc is greater than or equal to

zero.

634 Chapter 15 MIPS Assembly Language

Table 15.10 SPIM assembler system calls

Service System call code Arguments Result

print_int 1 $a0 = integer

print_float 2 $f12 = float

print_double 3 $f12 = double

print_sting 4 $a0 = string address

read_int 5 Integer in $v0

read_float 6 Float in $f0

read_double 7 Double in $f0

read_string 8 $a0 = buffer address

$a1 = buffer size

sbrk 9 Address in $v0

exit 10

la $a0,in_name ; read name

li $a1,31

li $v0,8

syscall

15.4 SPIM Assembler Directives
The SPIM supports a subset of the assembler directives provided by the MIPS assembler. This

section presents some of the most common SPIM directives. The SPIM reference manual [24]

provides a complete list of directives supported by the simulator. All assembler directives begin

with a period.

Segment Declaration

Two segments of an assembly program—code and data—can be declared by using .TEXT and

.DATA directives. The statement

.TEXT <address>

directs the assembler to map the following statements to the user text segment. The argument

address is optional; if present, the statements are stored beginning at address. The SPIM

allows only instructions or words (using .WORD) in the text segment.

The data directive has a similar format to .TEXT except that the statement following it must

refer to data items, as shown in the last example code fragment.

Section 15.4 SPIM Assembler Directives 635

String Directives

The SPIM provides two directives to allocate storage for strings: .ASCII and .ASCIIZ. The

.ASCII directive can be used to allocate space for a string that is not terminated by the NULL

character. The statement

.ASCII string

allocates a number of bytes equal to the number of characters in string. For example,

.ASCII "Toy Story"

allocates nine bytes of contiguous storage and initializes it to “Toy Story”.

Strings are normally NULL-terminated as in C. For example, to display a string using

print string service, the string must be NULL-terminated. Using .ASCIIZ instead of

ASCII stores the specified string in the NULL-terminated format. The .ASCII directive is

useful for breaking a long string into multiple string statements as shown in the following ex-

ample:

.ASCII "Toy Story is a good computer-animated movie. \n"

.ASCII "This reviewer recommends it to all kids \n"

.ASCIIZ "and their parents."

An associated assembler directive

.SPACE n

can be used to allocate n bytes of uninitialized space in the current segment.

Data Directives

The SPIM provides four directives to store both integers and floating-point numbers. The as-

sembler directive

.HALF h1,h2, . . .,hn

stores the � 16-bit numbers in successive memory halfwords. For 32-bit numbers, the .WORD
directive is used. Although we refer to these 16- and 32-bit values as numbers, they can be any

16- and 32-bit quantities.

Floating-point values can be stored as single-precision or double-precision numbers. To

store � single-precision floating-point numbers, use

.FLOAT f1,f2, . . .,fn

To store double-precision numbers, use the .DOUBLE directive instead.

636 Chapter 15 MIPS Assembly Language

Miscellaneous Directives

We discuss two directives that deal with data alignment and global symbol declaration. The

data directives .HALF, .WORD, .FLOAT, and .DOUBLE automatically align the data. We can

explicitly control data alignment using the .ALIGN directive. The statement

.ALIGN n

aligns the next datum on a �
� byte boundary. Use

.ALIGN 0

to turn off the automatic alignment feature of the data directives until the next .DATA directive.

We discuss one last directive, .GLOBL. It declares a symbol as global so that it can be

referenced from other files. We normally use this directive to declare main as a global symbol

so that it can be referenced by the SPIM’s trap file (see Appendix G for details on the trap file).

In our programs, the code segment begins with this directive as shown below:

.TEXT

.GLOBL main

main:

. . .

15.5 Illustrative Examples
We use four example programs to illustrate the MIPS assembly language features. On purpose,

we have selected the examples from Chapter 9 so that you can see the difference between the

assembly languages of Pentium and MIPS processors. If you have gone through those examples

in Section 9.9 starting on page 368, understanding the MIPS versions becomes easier, as the

underlying algorithms are the same. These examples can be run on the MIPS simulator SPIM.

Appendix G gives details about downloading and using the SPIM simulator.

Example 15.1 Displays the ASCII value of the input character in binary representation.

This is the MIPS version of the Pentium example discussed on page 369. It takes a character as

input and displays its ASCII value in binary. Since the SPIM does not support character I/O, we

use the string read system call to read the input character. We allocate two bytes of storage space

to read a single character (ch on lines 21 and 22). For the same reason, we have to construct

the output binary number as a character string. We use ascii string on lines 23 and 24 for

this purpose.

The conversion to binary can be done in several ways. The logic of the program follows

the algorithm given in Example 9.6 on page 369. We use the t2 register to hold the mask byte,

which is initialized to 80H to test the most significant bit of the input character in t0. After

testing the bit, the mask byte is shifted right by one bit position to test the next bit (line 58). We

get the binary value after iterating eight times. We do not have a special counter to terminate

the loop after eight iterations. Instead, we use the condition that mask byte will have zero when

Section 15.5 Illustrative Examples 637

shifted eight times. The statement on line 60 detects this condition and terminates the loop.

Once the loop is exited, we just need to append a NULL character to the output string and

display it.
Within the loop body, we use and and beqz to find if the tested bit is 0 or 1. We load

characters 0 and 1 in registers t4 and t5 (lines 47 and 48) so that we can use sb on lines 53
and 56 to store the correct value. We have to resort to this because sb does not allow immediate
values.

Program 15.1 Conversion of a ASCII value into binary representation

1: # Convert a character to ASCII BINCH.ASM

2: #

3: # Objective: To convert a character to its binary equivalent.

4: # The character is read as a string.

5: # Input: Requests a character from keyboard.

6: # Output: Outputs the ASCII value.

7: #

8: # t0 - holds the input character

9: # t1 - points to output ASCII string

10: # t2 - holds the mask byte

11: #

12: ###################### Data segment ##########################

13:

14: .data

15: ch_prompt:

16: .asciiz "Please enter a character: \n"

17: out_msg:

18: .asciiz "\nThe ASCII value is: "

19: newline:

20: .asciiz "\n"

21: ch:

22: .space 2

23: ascii_string:

24: .space 9

25:

26: ###################### Code segment ##########################

27:

28: .text

29: .globl main

30: main:

31: la $a0,ch_prompt # prompt user for a character

32: li $v0,4

33: syscall

34:

35: la $a0,ch # read the input character

638 Chapter 15 MIPS Assembly Language

36: li $a1,2

37: li $v0,8

38: syscall

39:

40: la $a0,out_msg # write output message

41: li $v0,4

42: syscall

43:

44: lb $t0,ch # t0 holds the character

45: la $t1,ascii_string # t1 points to output string

46: li $t2,0x80 # t2 holds the mask byte

47: li $t4,’0’

48: li $t5,’1’

49:

50: loop:

51: and $t3,$t0,$t2

52: beqz $t3,zero

53: sb $t5,($t1) # store 1

54: b rotate

55: zero:

56: sb $t4,($t1) # store 0

57: rotate:

58: srl $t2,$t2,1 # shift mask byte

59: addu $t1,$t1,1

60: bnez $t2,loop # exit loop if mask byte is 0

61:

62: sb $0,($t1) # append NULL

63: la $a0,ascii_string # output ASCII value

64: li $v0,4

65: syscall

66:

67: la $a0,newline # output newline

68: li $v0,4

69: syscall

Example 15.2 Conversion of lowercase letters to uppercase.

This example converts lowercase letters in a string to the corresponding uppercase letters.

All other characters are not affected. We have done the Pentium version of this example on

page 375, which presents the pseudocode that describes the program’s logic.

The input string is limited to 30 characters as we allocate 31 bytes of space (see line 19).

The program enforces this restriction as we use 31 as a parameter to the string input system call

on line 31.

Section 15.5 Illustrative Examples 639

The loop terminates when a NULL character is encountered. Remember that the ASCII
value for the NULL is zero. We use the beqz instruction on line 42 to detect the end of the
string. We will go to line 45 only if the character is a lowercase letter. Since the SPIM assembler
does not allow writing constants of the form ’A’-’a’, we use �32 on line 45. The rest of the
program is straightforward to follow.

Program 15.2 String conversion from lowercase to uppercase

1: # Uppercase conversion of characters TOUPPER.ASM

2: #

3: # Objective: To convert lowercase letters to

4: # corresponding uppercase letters.

5: # Input: Requests a character string from keyboard.

6: # Output: Prints the input string in uppercase.

7: #

8: # t0 - points to character string

9: # t1 - used for character conversion

10: #

11: ################### Data segment #####################

12:

13: .data

14: name_prompt:

15: .asciiz "Please type your name: \n"

16: out_msg:

17: .asciiz "Your name in capitals is: "

18: in_name:

19: .space 31

20:

21: ################### Code segment #####################

22:

23: .text

24: .globl main

25: main:

26: la $a0,name_prompt # prompt user for input

27: li $v0,4

28: syscall

29:

30: la $a0,in_name # read user input string

31: li $a1,31

32: li $v0,8

33: syscall

34:

35: la $a0,out_msg # write output message

36: li $v0,4

37: syscall

640 Chapter 15 MIPS Assembly Language

38:

39: la $t0,in_name

40: loop:

41: lb $t1,($t0)

42: beqz $t1,exit_loop # if NULL, we are done

43: blt $t1,’a’,no_change

44: bgt $t1,’z’,no_change

45: addu $t1,$t1,-32 # convert to uppercase

46: # ’A’-’a’ = -32

47: no_change:

48: sb $t1,($t0)

49: addu $t0,$t0,1 # increment pointer

50: j loop

51: exit_loop:

52: la $a0,in_name

53: li $v0,4

54: syscall

Example 15.3 Addition of individual digits of an integer—String version.

We have done the Pentium version of this example on page 377. Here, we present two versions

of this program. In the first version (this example), we read the input integer as a string. In the

next example, we read the number as an integer. Both versions take an integer input and print

the sum of the individual digits. For example, giving 12,345 as input produces 15 as the output.

We use t0 to point to the digit that is to be processed. The running total is maintained in t2.

We convert each digit in the input number into its decimal equivalent by stripping off the upper

four bits. For example, character 5 is represented in ASCII as 00110101 when expressed in

binary. To convert this to number 5, we force the upper four bits to zero. This is what the loop

body (lines 42 to 50) does in the following program.

The loop iterates until it encounters either a NULL character (line 45) or a newline character

(line 44). The reason for using two conditions, rather than just NULL-testing, is that the string

input system call actually copies the newline character when the ENTER key is pressed. Thus,

when the user enters less than 11 digits, a newline character is present in the string. On the other

hand, when an 11-digit number is entered, we do not see the newline character. In this case, we

have to use the NULL character to terminate the loop.

Program 15.3 Addition of individual digits: String version

1: # Add individual digits of a number ADDIGITS.ASM

2: #

3: # Objective: To add individual digits of an integer.

4: # The number is read as a string.

Section 15.5 Illustrative Examples 641

5: # Input: Requests a number from keyboard.

6: # Output: Outputs the sum.

7: #

8: # t0 - points to character string (i.e., input number)

9: # t1 - holds a digit for processing

10: # t2 - maintains the running total

11: #

12: ###################### Data segment ##########################

13:

14: .data

15: number_prompt:

16: .asciiz "Please enter a number (<11 digits): \n"

17: out_msg:

18: .asciiz "The sum of individual digits is: "

19: number:

20: .space 12

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,number_prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: la $a0,number # read the input number

32: li $a1,12

33: li $v0,8

34: syscall

35:

36: la $a0,out_msg # write output message

37: li $v0,4

38: syscall

39:

40: la $t0,number # pointer to number

41: li $t2,0 # init sum to zero

42: loop:

43: lb $t1,($t0)

44: beq $t1,0xA,exit_loop # if CR, we are done, or

45: beqz $t1,exit_loop # if NULL, we are done

46: and $t1,$t1,0x0F # strip off upper 4 bits

47: addu $t2,$t2,$t1 # add to running total

48:

49: addu $t0,$t0,1 # increment pointer

642 Chapter 15 MIPS Assembly Language

50: j loop

51: exit_loop:

52: move $a0,$t2 # output sum

53: li $v0,1

54: syscall

Example 15.4 Addition of individual digits of an integer—Number version.

In this program, we read the input as an integer using the read int system call (lines 30

and 31). Since the read int call accepts signed integers, we convert any negative value to a

positive integer by using the abs instruction on line 33.
To separate individual digits, we divide the number by 10. The remainder of this division

gives us the rightmost digit. We repeat this process on the quotient of the division until the
quotient is zero. For example, dividing the number 12,345 by 10 gives us 5 as the remainder
and 1,234 as the quotient. Now dividing the quotient by 10 gives us 4 as the remainder and
123 as the quotient and so on. For this division, we use the unsigned divide instruction divu
(line 42). This instruction places the remainder and quotient in HI and LO special registers.
Special move instructions mflo and mfhi are used to copy these two values into t0 and t3
registers (lines 44 and 45). The loop terminates if the quotient (in t0) is zero.

Program 15.4 Conversion to upper case

1: # Add individual digits of a number ADDIGITS2.ASM

2: #

3: # Objective: To add individual digits of an integer.

4: # To demonstrate DIV instruction.

5: # Input: Requests a number from keyboard.

6: # Output: Outputs the sum.

7: #

8: # t0 - holds the quotient

9: # t1 - holds constant 10

10: # t2 - maintains the running sum

11: # t3 - holds the remainder

12: #

13: ################### Data segment #####################

14:

15: .data

16: number_prompt:

17: .asciiz "Please enter an integer: \n"

18: out_msg:

19: .asciiz "The sum of individual digits is: "

20:

21: ################### Code segment #####################

22:

Section 15.6 Procedures 643

23: .text

24: .globl main

25: main:

26: la $a0,number_prompt # prompt user for input

27: li $v0,4

28: syscall

29:

30: li $v0,5 # read the input number

31: syscall # input number in $v0

32: move $t0,$v0

33: abs $t0,$t0 # get absolute value

34:

35: la $a0,out_msg # write output message

36: li $v0,4

37: syscall

38:

39: li $t1,10 # $t1 holds divisor 10

40: li $t2,0 # init sum to zero

41: loop:

42: divu $t0,$t1 # $t0/$t1

43: # leaves quotient in LO and remainder in HI

44: mflo $t0 # move quotient to $t0

45: mfhi $t3 # move remainder to $t3

46: addu $t2,$t2,$t3 # add to running total

47: beqz $t0,exit_loop # exit loop if quotient is 0

48: j loop

49: exit_loop:

50: move $a0,$t2 # output sum

51: li $v0,1

52: syscall

15.6 Procedures
The MIPS provides two instructions to support procedures: jal and jr. These correspond to

the call and ret instructions of the Pentium. The jal (jump and link) instruction

jal proc_name

transfers control to proc name just as a jump instruction does. Since we need the return

address, it also stores the address of the instruction following jal in the ra register.

To return from a procedure, use

jr $ra

which reads the return address from the ra register and transfers control to this address.

644 Chapter 15 MIPS Assembly Language

In the Pentium, procedures require the stack. The call instruction places the return address

on the stack, and the ret instruction retrieves it from the stack to return from a procedure. Thus,

two memory accesses are involved to execute a procedure. In contrast, procedures in the MIPS

can be implemented without using the stack. It uses the ra register for this purpose, which

makes procedure invocation and return faster than in the Pentium. However, this advantage

is lost when we use recursive or nested procedures. This point becomes clear later when we

discuss recursive procedure examples in Section 15.7.1.

Parameter passing can be done via the registers or the stack. It is a good time to review our

discussion of parameter passing mechanisms in Chapter 9. In the Pentium, register-based pa-

rameter passing is fairly restrictive due to the small number of registers available. However, the

large number of registers in the MIPS makes this method attractive. We now use two examples

to illustrate how procedures are written in the MIPS assembly language.

Example 15.5 Finds minimum and maximum of three numbers.

This is a simple program to explain the basics of procedures in the MIPS assembly language.

The main program requests three integers and passes them to two procedures: find min and

find max. Each procedure returns a value: minimum or maximum. Registers are used for

parameter passing as well as to return the result. Registers a1, a2, and a3 are used to pass the

three integers. Each procedure returns its result in v0.
To invoke a procedure, we use jal as shown on lines 42 and 45. The body of these proce-

dures is simple and straightforward to understand. When the procedure is done, a jr instruction
returns control to the main program (see lines 83 and 97).

Program 15.5 A simple procedure example

1: # Find min and max of three numbers MIN_MAX.ASM

2: #

3: # Objective: Finds min and max of three integers.

4: # To demonstrate register-based parameter passing.

5: # Input: Requests three numbers from keyboard.

6: # Output: Outputs the minimum and maximum.

7: #

8: # a1, a2, a3 - three numbers are passed via these registers

9: #

10: ###################### Data segment ##########################

11: .data

12: prompt:

13: .asciiz "Please enter three numbers: \n"

14: min_msg:

15: .asciiz "The minimum is: "

16: max_msg:

17: .asciiz "\nThe maximum is: "

18: newline:

19: .asciiz "\n"

Section 15.6 Procedures 645

20:

21: ###################### Code segment ##########################

22:

23: .text

24: .globl main

25: main:

26: la $a0,prompt # prompt user for input

27: li $v0,4

28: syscall

29:

30: li $v0,5 # read the first number into $a1

31: syscall

32: move $a1,$v0

33:

34: li $v0,5 # read the second number into $a2

35: syscall

36: move $a2,$v0

37:

38: li $v0,5 # read the third number into $a3

39: syscall

40: move $a3,$v0

41:

42: jal find_min

43: move $s0,$v0

44:

45: jal find_max

46: move $s1,$v0

47:

48: la $a0,min_msg # write minimum message

49: li $v0,4

50: syscall

51:

52: move $a0,$s0 # output minimum

53: li $v0,1

54: syscall

55:

56: la $a0,max_msg # write maximum message

57: li $v0,4

58: syscall

59:

60: move $a0,$s1 # output maximum

61: li $v0,1

62: syscall

63:

64: la $a0,newline # write newline

646 Chapter 15 MIPS Assembly Language

65: li $v0,4

66: syscall

67:

68: li $v0,10 # exit

69: syscall

70:

71: #---

72: # FIND_MIN receives three integers in $a0, $a1, and $a2 and

73: # returns the minimum of the three in $v0

74: #---

75: find_min:

76: move $v0,$a1

77: ble $v0,$a2,min_skip_a2

78: move $v0,$a2

79: min_skip_a2:

80: ble $v0,$a3,min_skip_a3

81: move $v0,$a3

82: min_skip_a3:

83: jr $ra

84:

85: #---

86: # FIND_MAX receives three integers in $a0, $a1, and $a2 and

87: # returns the maximum of the three in $v0

88: #---

89: find_max:

90: move $v0,$a1

91: bge $v0,$a2,max_skip_a2

92: move $v0,$a2

93: max_skip_a2:

94: bge $v0,$a3,max_skip_a3

95: move $v0,$a3

96: max_skip_a3:

97: jr $ra

Example 15.6 Finds string length.

The previous example used the call-by-value mechanism to pass parameters via the registers.

In this example, we use the call-by-reference method to pass a string pointer via a0 (line 36).

The procedure finds the length of the string and returns it via the v0 register.
The string length procedure scans the string until it encounters either a newline or a NULL

character (for the same reasons discussed in Example 15.3). These two termination conditions
are detected on lines 63 and 64.

Section 15.6 Procedures 647

Program 15.6 String length example

1: # Finds string length STR_LEN.ASM

2: #

3: # Objective: Finds length of a string.

4: # To demonstrate register-based pointer passing.

5: # Input: Requests a string from keyboard.

6: # Output: Outputs the string length.

7: #

8: # a0 - string pointer

9: # v0 - procedure returns string length

10: #

11: ###################### Data segment ##########################

12: .data

13: prompt:

14: .asciiz "Please enter a string: \n"

15: out_msg:

16: .asciiz "\nString length is: "

17: newline:

18: .asciiz "\n"

19: in_string:

20: .space 31

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: la $a0,in_string # read input string

32: li $a1,31 # buffer length in $a1

33: li $v0,8

34: syscall

35:

36: la $a0,in_string # call string length proc.

37: jal string_len

38: move $t0,$v0 # string length in $v0

39:

40: la $a0,out_msg # write output message

41: li $v0,4

42: syscall

43:

44: move $a0,$t0 # output string length

648 Chapter 15 MIPS Assembly Language

45: li $v0,1

46: syscall

47:

48: la $a0,newline # write newline

49: li $v0,4

50: syscall

51:

52: li $v0,10 # exit

53: syscall

54:

55: #---

56: # STRING_LEN receives a pointer to a string in $a0 and

57: # returns the string length in $v0

58: #---

59: string_len:

60: li $v0,0 # init $v0 (string length)

61: loop:

62: lb $t0,($a0)

63: beq $t0,0xA,done # if CR

64: beqz $t0,done # or NULL, we are done

65: addu $a0,$a0,1

66: addu $v0,$v0,1

67: b loop

68: done:

69: jr $ra

15.7 Stack Implementation
The MIPS does not explicitly support stack operations. In contrast, recall that the Pentium

provides instructions such as push and pop to facilitate stack operations. In addition, there

is a special stack pointer register sp that keeps the top-of-stack information. In the MIPS, a

register plays the role of the stack pointer. We have to manipulate this register to implement the

stack.

The MIPS stack implementation has some similarities to the Pentium implementation. For

example, the stack grows downward (i.e., as we push items onto the stack, the address de-

creases). Thus, when reserving space on the stack for pushing values, we have to decrease the

sp value. For example, to push registers a0 and ra, we have to reserve eight bytes of stack

space and use sw to push the values as shown below:

sub $sp,$sp,8 # reserve 8 bytes of stack

sw $a0,0($sp) # save registers

sw $ra,4($sp)

This sequence is typically used at the beginning of a procedure to save registers. To restore

these registers before returning from the procedure, we can use the following sequence:

Section 15.7 Stack Implementation 649

lw $a0,0($sp) # restore the two registers

lw $ra,4($sp)

addu $sp,$sp,8 # clear 8 bytes of stack

15.7.1 Illustrative Examples

We give three examples that use the stack for parameter passing. Of the three, the last two

examples show how recursion can be implemented in the MIPS assembly language.

Example 15.7 Passing variable parameters via the stack.

We use the variable parameter example discussed on page 417 to illustrate how the stack can

be used to pass parameters. The procedure sum receives a variable number of integers via the

stack. The parameter count is passed via a0. The main program reads a sequence of integers

from the input. Entering zero terminates the input. Each number read from the input is directly

placed on the stack (lines 36 and 37). Since sp always points to the last item pushed onto

the stack, we can pass this value to the procedure. Thus, a simple procedure call (line 41) is

sufficient to pass the parameter count and the actual values.

The procedure sum reads the numbers from the stack. As it reads, it decreases the stack size

(i.e., sp increases). The loop in the sum procedure terminates when a0 is zero (line 66). When

the loop is exited, the stack is also cleared of all the arguments.
Compared to the Pentium version, the MIPS allows a more flexible access to parameters. In

the Pentium, because the return address is pushed onto the stack, we had to use the BP register
to access the parameters. In addition, we could not remove the numbers from the stack. The
stack had to be cleared in the main program by manipulating the SP register.

Program 15.7 Passing variable number of parameters to a procedure

1: # Sum of variable number of integers VAR_PARA.ASM

2: #

3: # Objective: Finds sum of variable number of integers.

4: # Stack is used to pass variable number of integers.

5: # To demonstrate stack-based parameter passing.

6: # Input: Requests integers from the user;

7: # terminated by entering a zero.

8: # Output: Outputs the sum of input numbers.

9: #

10: # a0 - number of integers passed via the stack

11: #

12: ###################### Data segment ##########################

13: .data

14: prompt:

15: .ascii "Please enter integers. \n"

16: .asciiz "Entering zero terminates the input. \n"

17: sum_msg:

650 Chapter 15 MIPS Assembly Language

18: .asciiz "The sum is: "

19: newline:

20: .asciiz "\n"

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: li $a0,0

32: read_more:

33: li $v0,5 # read a number

34: syscall

35: beqz $v0,exit_read

36: subu $sp,$sp,4 # reserve 4 bytes on stack

37: sw $v0,($sp) # store the number on stack

38: addu $a0,$a0,1

39: b read_more

40: exit_read:

41: jal sum # sum is returned in $v0

42: move $s0,$v0

43:

44: la $a0,sum_msg # write output message

45: li $v0,4

46: syscall

47:

48: move $a0,$s0 # output sum

49: li $v0,1

50: syscall

51:

52: la $a0,newline # write newline

53: li $v0,4

54: syscall

55:

56: li $v0,10 # exit

57: syscall

58:

59: #---

60: # SUM receives the number of integers passed in $a0 and the

61: # actual numbers via the stack. It returns the sum in $v0.

62: #---

Section 15.7 Stack Implementation 651

63: sum:

64: li $v0,0

65: sum_loop:

66: beqz $a0,done

67: lw $t0,($sp)

68: addu $sp,$sp,4

69: addu $v0,$v0,$t0

70: subu $a0,$a0,1

71: b sum_loop

72: done:

73: jr $ra

Recursion

The first two examples (Examples 15.5 and 15.6) showed how simple procedures can be written

in the MIPS assembly language. We could write these procedures without using the stack. The

last example used the stack to pass a variable number of parameters. For most normal proce-

dures, we do not have to use the stack. The availability of a large number of registers allows

us to use register-based parameter passing. However, when we write recursive procedures, we

have to use the stack.

We introduced principles of recursion in Section 11.5 (see page 455). In that section, we

presented two example Pentium programs: factorial and quicksort. Now, we do those examples

in the MIPS assembly language to illustrate how recursion is implemented in the MIPS.

Example 15.8 A recursion example—Factorial.

Recall that the factorial function is defined as

0! = 1,

N! = N * (N�1)!.

Program 15.8 requests an integer� from the input and prints� �. This value is passed on to the

factorial procedure (fact) via the a0 register. First we have to determine the state information

that needs to be saved (i.e., our activation record). In all procedures, we need to store the return

address. In the Pentium, this is automatically done by the call instruction. In addition, in our

factorial example, we need to keep track of the current value in a0. However, we don’t have

to save a0 on the stack as we can restore its value by adding 1, as shown on line 76. Thus we

save just the return address (line 67) and restore it on line 80. The body of the procedure can be

divided into two parts: recursion termination and recursive call. Since 1! is also 1, we use this

to terminate recursion (lines 69 to 71).
If the value is more than 1, a recursive call is made with ����� (lines 74 and 75). After the

call is returned, a0 is incremented to make it � before multiplying it with the values returned
for �� � ��� in v0 (lines 76 and 77).

652 Chapter 15 MIPS Assembly Language

Program 15.8 Computing factorial: An example recursive function

1: # Finds factorial of a number FACTORIAL.ASM

2: #

3: # Objective: Computes factorial of an integer.

4: # To demonstrate recursive procedures.

5: # Input: Requests an integer N from keyboard.

6: # Output: Outputs N!

7: #

8: # a0 - used to pass N

9: # v0 - used to return result

10: #

11: ###################### Data segment ##########################

12: .data

13: prompt:

14: .asciiz "Please enter a positive integer: \n"

15: out_msg:

16: .asciiz "The factorial is: "

17: error_msg:

18: .asciiz "Sorry! Not a positive number.\nTry again.\n "

19: newline:

20: .asciiz "\n"

21:

22: ###################### Code segment ##########################

23:

24: .text

25: .globl main

26: main:

27: la $a0,prompt # prompt user for input

28: li $v0,4

29: syscall

30:

31: try_again:

32: li $v0,5 # read the input number into $a0

33: syscall

34: move $a0,$v0

35:

36: bgez $a0,num_OK

37: la $a0,error_msg # write error message

38: li $v0,4

39: syscall

40: b try_again

41:

42: num_OK:

43: jal fact

44: move $s0,$v0

Section 15.7 Stack Implementation 653

45:

46: la $a0,out_msg # write output message

47: li $v0,4

48: syscall

49:

50: move $a0,$s0 # output factorial

51: li $v0,1

52: syscall

53:

54: la $a0,newline # write newline

55: li $v0,4

56: syscall

57:

58: li $v0,10 # exit

59: syscall

60:

61: #---

62: # FACT receives N in $a0 and returns the result in $v0

63: # It uses recursion to find N!

64: #---

65: fact:

66: subu $sp,$sp,4 # allocate stack space

67: sw $ra,0($sp) # save return address

68:

69: bgt $a0,1,one_up # recursion termination

70: li $v0,1

71: b return

72:

73: one_up:

74: subu $a0,$a0,1 # recurse with (N-1)

75: jal fact

76: addu $a0,$a0,1

77: mulou $v0,$a0,$v0 # $v0 := $a0*$v0

78:

79: return:

80: lw $ra,0($sp) # restore return address

81: addu $sp,$sp,4 # clear stack space

82: jr $ra

Example 15.9 A recursion example—Quicksort.

As a second example, we implement the quicksort algorithm using recursion. A detailed de-

scription of the quicksort algorithm is given on page 458. Program 15.9 gives an implemen-

tation of the quicksort algorithm in the MIPS assembly language. The corresponding Pentium

654 Chapter 15 MIPS Assembly Language

assembly language implementation is given on page 460. One main difference between these

two programs is the addressing modes used to access array elements. Since the MIPS does

not support based-indexed addressing, the qsort procedure receives two pointers (as opposed

to array indexes). Furthermore, the Pentium’s xchg instruction comes in handy to exchange

values between two registers.

The main program reads integers from input until terminated by a zero. We store the zero

in the array, as we will use it as the sentinel to output the sorted array (see lines 55 and 56).

Lines 43 to 46 prepare the two arguments for the qsort procedure.
The qsort recursive procedure stores a3 in addition to the a1, a2, and ra registers.

This is because we store the end-of-subarray pointer in a3, which is required for the second
recursive call (line 121). As pointed out, due to lack of addressing mode support to access
arrays, we have to use byte pointers to access individual elements. This means updating the
index involves adding or subtracting 4 (see lines 94, 99, and 116). The rest of the procedure
follows the quicksort algorithm described on page 459. You may find it interesting to compare
this program with the Pentium version presented in Example 11.6 to see the similarities and
differences between the two assembly languages in implementing recursion.

Program 15.9 Quicksort: Another example recursive program

1: # Sorting numbers using quicksort QUICKSORT.ASM

2: #

3: # Objective: Sorts an array of integers using quicksort.

4: # Uses recursion.

5: # Input: Requests integers from the user;

6: # terminated by entering a zero.

7: # Output: Outputs the sorted integer array.

8: #

9: # a0 - start of array

10: # a1 - beginning of (sub)array

11: # a2 - end of (sub)array

12: #

13: ###################### Data segment ##########################

14: .data

15: prompt:

16: .ascii "Please enter integers. \n"

17: .asciiz "Entering zero terminates the input. \n"

18: output_msg:

19: .asciiz "The sorted array is: \n"

20: newline:

21: .asciiz "\n"

22: array:

23: .word 200

24:

25: ###################### Code segment ##########################

26:

Section 15.7 Stack Implementation 655

27: .text

28: .globl main

29: main:

30: la $a0,prompt # prompt user for input

31: li $v0,4

32: syscall

33:

34: la $t0,array

35: read_more:

36: li $v0,5 # read a number

37: syscall

38: sw $v0,($t0) # store it in the array

39: beqz $v0,exit_read

40: addu $t0,$t0,4

41: b read_more

42: exit_read:

43: # prepare arguments for procedure call

44: la $a1,array # a1 = lo pointer

45: move $a2,$t0

46: subu $a2,$a2,4 # a2 = hi pointer

47: jal qsort

48:

49: la $a0,output_msg # write output message

50: li $v0,4

51: syscall

52:

53: la $t0,array

54: write_more:

55: lw $a0,($t0) # output sorted array

56: beqz $a0,exit_write

57: li $v0,1

58: syscall

59: la $a0,newline # write newline message

60: li $v0,4

61: syscall

62: addu $t0,$t0,4

63: b write_more

64: exit_write:

65:

66: li $v0,10 # exit

67: syscall

68:

69: #--

70: # QSORT receives pointer to the start of (sub)array in a1 and

71: # end of (sub)array in a2.

656 Chapter 15 MIPS Assembly Language

72: #--

73: qsort:

74: subu $sp,$sp,16 # save registers

75: sw $a1,0($sp)

76: sw $a2,4($sp)

77: sw $a3,8($sp)

78: sw $ra,12($sp)

79:

80: ble $a2,$a1,done # end recursion if hi <= lo

81:

82: move $t0,$a1

83: move $t1,$a2

84:

85: lw $t5,($t1) # t5 = xsep

86:

87: lo_loop: #

88: lw $t2,($t0) #

89: bge $t2,$t5,lo_loop_done # LO while loop

90: addu $t0,$t0,4 #

91: b lo_loop #

92: lo_loop_done:

93:

94: subu $t1,$t1,4 # hi = hi-1

95: hi_loop:

96: ble $t1,$t0,sep_done #

97: lw $t3,($t1) #

98: blt $t3,$t5,hi_loop_done # HI while loop

99: subu $t1,$t1,4 #

100: b hi_loop #

101: hi_loop_done:

102:

103: sw $t2,($t1) #

104: sw $t3,($t0) # x[i]<=>x[j]

105: b lo_loop #

106:

107: sep_done:

108: move $t1,$a2 #

109: lw $t4,($t0) #

110: lw $t5,($t1) # x[i] <=>x[hi]

111: sw $t5,($t0) #

112: sw $t4,($t1) #

113:

114: move $a3,$a2 # save HI for the second call

115: move $a2,$t0 #

116: subu $a2,$a2,4 # set hi as i-1

Section 15.8 Summary 657

117: jal qsort

118:

119: move $a1,$a2 #

120: addu $a1,$a1,8 # set lo as i+1

121: move $a2,$a3

122: jal qsort

123: done:

124: lw $a1,0($sp) # restore registers

125: lw $a2,4($sp)

126: lw $a3,8($sp)

127: lw $ra,12($sp)

128: addu $sp,$sp,16

129:

130: jr $ra

15.8 Summary
We have discussed the MIPS assembly language in detail. The MIPS is a RISC processor that

uses the load/store architecture. Thus, only the load and store instructions can access memory.

All other instructions expect their operands in registers. As a result, RISC processors provide

many more registers than CISC processors such as the Pentium. The MIPS R2000 processor

provides 32 general-purpose registers. In addition, two special registers, HI and LO, are used to

store the output of multiply and divide instructions. In addition, a program counter serves the

purpose of instruction pointer. All these registers are 32-bits wide.

The R2000 does not provide as many addressing modes as the Pentium does. As discussed

in the last chapter, this is one of the differences between CISC and RISC processors. In fact,

the MIPS processor supports only one addressing mode. However, the assembler augments this

by a few other addressing modes.

The MIPS processor provides a reasonable number of instructions. The assembler supple-

ments these instructions by several useful pseudoinstructions. Unlike the Pentium, all instruc-

tions take 32 bits to encode. The MIPS R2000 uses only three different types of instruction

formats.

MIPS processor hardware does not impose many restrictions on how the registers are used.

Except for a couple of registers, the programmer is fairly free to use these registers as she

wishes. However, certain conventions have been developed to make programs portable.

We have used several examples to illustrate the features of the MIPS assembly language.

We have done most of these examples in the Pentium assembly language. The idea in redoing

the same example set was to bring out the differences between the two assembly languages.

In particular, the quicksort example brings out some of the limitations of the MIPS assembly

language.

658 Chapter 15 MIPS Assembly Language

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Absolute address

• Activation record

• Addressing modes in MIPS

• Based-addressing mode

• Call-by-reference

• Call-by-value

• Indexed addressing mode

• Instruction format

• Load instructions

• Merge sort

• PC-relative address

• Procedure call

• Quicksort

• Recursion in MIPS

• SPIM assembler directives

• SPIM segments

• SPIM system calls

15.9 Exercises
15–1 In the Itanium, the general-purpose register gr0 is hardwired to zero. As we have seen

in this chapter, the MIPS also has a register ($zero) that is hardwired to zero. What is

the reason for this?

15–2 What is the purpose of HI and LO registers?

15–3 What is the difference between registers t0 to t9 and S0 to S7?

15–4 What is a typical use of registers v0 and v1?

15–5 What is a typical use of registers a0 to a3?

15–6 Describe the addressing modes supported by the MIPS processor.

15–7 What is the difference between a pseudoinstruction and an instruction?

15–8 What is the difference between .ASCII and .ASCIIZ assembler directives?

15–9 The Pentium provides instructions and registers to implement the stack. In MIPS pro-

cessors, there is no such support for stack implementation. Describe how the stack is

implemented in the MIPS.

15–10 Write a simple assembly language program to see how the branch (b) and jump (j) in-

structions are translated. Use the SPIM to do the translation. You can use the “Text

Segment” display window of the SPIM to check the translation (see Appendix G for

details on the SPIM windows).

15–11 Use the SPIM simulator to find how the following pseudoinstructions are translated:

(a) rol $t1,$t1,3 (b) li $t0,5

rol $t1,$t1,$t0

(c) mul $t0,$v0,9 (d) div $t0,$t0,5

Section 15.10 Programming Exercises 659

(e) rem $t0,$t0,5 (f) sle $a0,$a1,$a2

(g) sge $a0,$a1,$a2 (h) sgeu $a0,$a1,$a2

(i) slt $a0,$a1,$a2 (j) sltu $a0,$a1,$a2

(k) move $a0,$t0

15–12 Discuss the differences between the Pentium and the MIPS in passing a variable number

of parameters to procedures.

15–13 In the Pentium, the register-based parameter passing mechanism is not pragmatic. Why

does it make sense to use this method in MIPS processors?

15–14 Why are simple procedure calls and returns faster in the MIPS than in the Pentium?

15–15 Discuss the differences between the Pentium and the MIPS in accessing multidimensional

arrays.

15.10 Programming Exercises
15–P1 Modify the addigits.asm program such that it accepts a string from the keyboard

consisting of digit and nondigit characters. The program should display the sum of the

digits present in the input string. All nondigit characters should be ignored. For example,

if the input string is

ABC1?5wy76:˜2

the output of the program should be

sum of individual digits is: 21

15–P2 Write an assembly language program to encrypt digits as shown below:

Input digit: 0 1 2 3 4 5 6 7 8 9;

Encrypted digit: 4 6 9 5 0 3 1 8 7 2.

Your program should accept a string consisting of digit and nondigit characters. The

encrypted string should be displayed in which only the digits are affected. Then the

user should be queried as to whether he wants to terminate the program. If the response

is either “y” or “Y”, you should terminate the program; otherwise, you should request

another input string from the keyboard.

The encryption scheme given here has the property that when you encrypt an already en-

crypted string, you get back the original string. Use this property to verify your program.

15–P3 Write a program that reads an input number (given in decimal) between 0 and 65,535

and displays the hexadecimal equivalent. You can read the input using the read_int
system call. As in the last exercise, you should query the user for program termination.

660 Chapter 15 MIPS Assembly Language

15–P4 Modify the above program to display the octal equivalent instead of the hexadecimal

equivalent of the input number.

15–P5 Write a procedure to perform string reversal. The procedure reverse receives a pointer

to a character string (terminated by a NULL character) and reverses the string. For exam-

ple, if the original string is

slap

the reversed string should read

pals

The main procedure should request the string from the user. It should also display the

reversed string as the output of the program.

15–P6 Write a procedure locate to locate a character in a given string. The procedure receives

a pointer to a NULL-terminated character string and the character to be located. When

the first occurrence of the character is located, its position is returned to main. If no

match is found, a negative value is returned. The main procedure requests a character

string and a character to be located and displays the position of the first occurrence of the

character returned by the locate procedure. If there is no match, a message should be

displayed to that effect.

15–P7 Write a procedure that receives a string (i.e., a string pointer is passed to the procedure)

and removes all leading blank characters in the string. For example, if the input string is

(� indicates a blank character)

� � � � �Read��my�lips.

it will be modified by removing all leading blanks as

Read��my�lips.

15–P8 Write a procedure that receives a string (i.e., a string pointer is passed to the procedure)

and removes all leading and duplicate blank characters in the string. For example, if the

input string is (� indicates a blank character)

� � � � �Read� � �my� � � � �lips.

it will be modified by removing all leading and duplicate blanks as

Read�my�lips.

15–P9 Redo the Programming Exercise 10–P10 on page 434.

15–P10 Write a complete assembly language program to read two matrices A and B and display

the result matrix C, which is the sum of A and B. Note that the elements of C can be

obtained as

���� �℄ � ���� �℄ ����� �℄�

Your program should consist of a main procedure that calls the read_matrix proce-

dure twice to read data for A and B. It should then call the matrix_add procedure,

Section 15.10 Programming Exercises 661

which receives pointers to A, B, C, and the size of the matrices. Note that both A and B

should have the same size. The main procedure calls another procedure to display C.

15–P11 Write a procedure to perform matrix multiplication of matrices A and B. The procedure

should receive pointers to the two input matrices A of size � ��, B of size � � �, the

product matrix C, and values �, �, and �. Also, the data for the two matrices should be

obtained from the user. Devise a suitable user interface to input these numbers.

15–P12 Redo the Programming Exercise 11–P11 on page 467.

15–P13 We have discussed merge sort in Programming Exercise 12–P19 (page 548). Write a

MIPS assembly language program to implement the merge sort.

15–P14 Write a procedure str_ncpy to mimic the strncpy function provided by the C li-

brary. The function str_ncpy receives two strings, string1 and string2, and

a positive integer num. Of course, the procedure receives only the string pointers but

not the actual strings. It should copy at most the first num characters of string2 to

string1.

15–P15 You have written a recursive procedure to compute Fibonacci numbers in Programming

Exercise 11-P14 (page 468). Redo the exercise in the MIPS assembly language. Debug

and test your program using the SPIM.

15–P16 In Exercise 11-P15 (page 469), we have presented details about the Ackermann’s func-

tion. Write a MIPS assembly language procedure to implement this function using recur-

sion. You should also write a simple main procedure to test your Ackermann’s procedure.

Debug and test your program using the SPIM.

15–P17 We have presented details about the Towers of Hanoi puzzle in Exercise 11-P16 on

page 469. Write a recursive procedure in the MIPS assembly language to solve this

puzzle. Also, write a simple main program to test your program.

Chapter 16

Memory System Design

Objectives
• To introduce memory design techniques using flip-flops and latches;

• To describe how memory units can be interfaced to the system bus;

• To present a method to design larger memory modules using standard memory chips;

• To discuss various ways of mapping memory modules to the memory address space;

• To explain the reasons for the adverse impact of unaligned data on performance;

• To give details on how interleaved memories are constructed.

In Chapter 4, we have seen how flip-flops and latches can be used to store a bit. This chapter

builds on this foundation and explains how we can use these basic devices and build larger

memory blocks and modules. We start off with a simple design process that can be used to

design memory blocks using flip-flops and latches. In the following section, we present various

ways of connecting the memory modules to the system bus. In particular, we describe tristate

buffers that are extensively used as interface devices for connection to the system bus. The other

techniques use either an open collector device or a multiplexer, both of which are useful only in

certain special cases.

We also discuss how larger memories can be built using narrower memory chips. The design

process is fairly intuitive. The basic technique involves using a two-dimensional array of mem-

ory chips. A characteristic of these designs is the use of chip select. Chip select input can be

used to select or deselect a chip or a memory module. Chip select allows us to connect multiple

devices to the system bus. Appropriate chip select signal generation facilitates communication

among the entities connected to the system bus.

Chip select logic is also useful in mapping memory modules to memory address space.

We present details about two ways of mapping a memory module to the address space. In

Section 16.7, we explain the reasons why data alignment leads to improved performance. Before

ending the chapter, we describe the structure of interleaved memories. We end the chapter with

a summary.

665

666 Chapter 16 Memory System Design

16.1 Introduction
Flip-flops and latches provide the basic capability to store a bit of data. In Chapter 4, we have

seen several types of flip-flops and latches. These devices can be replicated to build larger

memory units. For example, we can place 16 JK flip-flops together to store a 16-bit word. All

16 flip-flops would have their clock inputs tied together to form a single common clock to write

a 16-bit word.

There are two types of memories: read/write memory and read-only memory. As the name

suggests, a read/write memory allows reading as well as writing. This type of memory is re-

ferred to as random access memory (RAM). Read-only memory, on the other hand, allows only

reading of its contents. These are referred to as ROMs.

Several types of ROMs are available; each type requires a special kind of writing procedure.

Writing into a ROM is called programming the ROM. ROMs can be factory programmed at

the time of manufacture. These are suitable when the required quantity is large to amortize the

overhead. There are user-programmable ROMs (PROMs). For example, the user can selectively

blow electric fuses by sending a high current to the program contents of a PROM. There are

also erasable PROMs (EPROMs) that can be programmed several times. Exposing them to

an ultraviolet light for a few minutes can erase the contents of the entire EPROM. Electrically

erasable PROMs (EEPROMs), on the other hand, allow the user to selectively erase contents.

Note that, even though only read/write memories are called random access memories, both

read/write memories and read-only memories are random access memories.

ROMs are typically used to store the boot program, as ROMs are nonvolatile memories.

That is, ROMs do not require power to retain their contents. That’s why they are useful to store

the program that your processor can read before loading the operating system. The bulk of the

system memory consists of RAM.

RAM can be grouped into two basic types: static and dynamic. Static RAM (SRAM) uses

a latch or flip-flop as the basic cell to store a bit. Dynamic RAM (DRAM) uses a different

technique. DRAM uses a tiny capacitor to store a bit. Since capacitors leak charge, DRAMs

need periodic refreshing to retain their contents. Furthermore, reads are destructive as reading

destroys the contents. This characteristic of DRAMs requires write-after-read to restore the

contents after a read cycle. The main reason for the popularity of DRAMs is their price advan-

tage over SRAMs. There are also additional advantages of using DRAMs including low power

consumption, less heat, and high-density packaging. SRAMs, on the other hand, are expensive

but faster than DRAMs. DRAMs are used for main memory, and SRAMs are used for cache

memory.

Despite these technical differences, SRAMs and DRAMs as well as ROMs can be treated as

simple building blocks to construct larger memory units. To illustrate the concepts, we focus on

static RAMs. The techniques we discuss here can be easily extended to other types of memories.

16.2 A Simple Memory Block
In the digital logic chapters, we have discussed several basic building blocks such as D flip-

flops, multiplexers, and decoders. We now describe how these digital circuits can be used to

build a simple memory block.

Section 16.2 A Simple Memory Block 667

16.2.1 Memory Design with D Flip-Flops

We begin our discussion with how one can build memories using D flip-flops. Recall that we

use flip-flops for edge-triggered devices and latches for level-sensitive devices. The principle

of constructing memory out of D flip-flops is simple. We use a two-dimensional array of D

flip-flops with each row storing a word. The number of rows is equal to the number of words

the memory should store. We refer to this as “horizontal” expansion to increase the word width

and “vertical” expansion to increase the number of words.

In general, the number of columns and the number of rows is a power of two. We use the

notation M � N memory to represent a memory that can store M words, where each word is

N-bits long.

Figure 16.1 shows a 4 � 3 memory built with 12 D flip-flops organized as a 4 � 3 array.

Since all flip-flops in a row are storing a word of data, each row of flip-flops has their clock

signals tied together to form a single clock signal for each row. All flip-flops in a column

receive input from the same input data line. For example, the rightmost column D inputs are

connected to the input data DI0.

This memory requires two address lines to select one of the four words. The two address

lines are decoded to select a specific row by using a 2-to-4 decoder. The low-active write signal

(��) is gated through an AND gate as shown in Figure 16.1. Depending on the address, only

one of the four decoder output lines will be high, permitting the�� signal to clock the selected

row to write the 3-bit data present on DI0 to DI2 lines. Note that the decoder along with the four

AND gates forms a demultiplexer that routes the�� signal to the row selected by the address

lines A1 and A0.

The design we have done so far allows us to write a 3-bit datum into the selected row. To

complete the design, we have to find a way to read data from this memory. As each bit of data

is supplied by one of the four D flip-flops in a column, we have to find a way to connect these

four outputs to a single data out line. A natural choice for the job is a 4-to-1 multiplexer. The

MUX selection inputs are connected to the address lines to allow appropriate data on the output

lines DO0 through DO2. The final design is shown in Figure 16.1.

16.2.2 Problems with the Design

The memory design example tells us how we can put bit-level devices together to form a higher-

level two-dimensional memory. This design, however, has several problems. To understand the

kind of problems created by this design, let us look at how the memory unit is connected to

the system bus. In Chapter 1, we presented a simplified view of a typical computer system (see

Figure 1.5 on page 13). This figure clearly shows how the system bus connects the three main

components: processor, memory, and I/O devices.

Focusing on the interactions between the processor and memory unit, we see that the data

bus is bidirectional. That is, data input and output lines are not separate. Our memory design

shown in Figure 16.1 uses separate data in and out lines. This is the first problem with the

design. To be able to connect to the data bus, we should be able to connect the corresponding

DI and DO lines (i.e., DI0 and DO0 should be tied together, DI1 and DO1 should be tied

together, etc.). However, our design will not allow us to do this.

668 Chapter 16 Memory System Design

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

S1

S0
3I 0I

MUX

0I

1I

O 0

O 3

WR

S1

3I 0I

S1

S0
3I 0I

S0

DI2 DI1 DI0

DO2 DO1 DO0

D
ec

o
d
er

A1

A0

MUX MUX

Word 0

Word 1

Word 2

Word 3

Figure 16.1 A simple 4 � 3 memory design using D flip-flops.

Section 16.3 Techniques to Connect to a Bus 669

Another problem with this design is that we will not be able to use it as a building block to

construct larger memory blocks. For example, we cannot build an 8 � 3 memory using two of

these units. Such a hierarchical design needs a chip select input that either selects or deselects

the whole unit.

We return to this design example in Section 16.4 that solves these two problems. Before

revising our design, we look at some background information on some of the techniques we can

use to connect multiple outputs to a single line as required for our data bus connections.

16.3 Techniques to Connect to a Bus
Data bus connections impose several requirements, some of which we have discussed in the last

section. First and foremost, the data bus connections should support bidirectional data transfer.

This eliminates those designs that require separate data in and out lines as in our previous design

(see Figure 16.1). Furthermore, since several devices can be connected to the data bus, only the

selected device should place data on the data bus. All other devices attached to the data bus

should disconnect themselves (or at least act as though they were not connected to the data

bus). We describe several techniques that satisfy one or both of these requirements.

16.3.1 Using Multiplexers

Based on our discussion of digital logic circuits, we know that we can use multiplexers to

send multiple outputs onto a single line. In fact, we have used three 4-to-1 multiplexers in

our memory design example in Figure 16.1. Multiplexers, however, do not satisfy the two

requirements we have mentioned. You cannot use multiplexers to connect DI and DO inputs.

Similarly, they do not provide an efficient way to implement the chip select function.

The next two subsections present two other techniques that are useful in deriving an imple-

mentation that satisfies these requirements.

16.3.2 Using Open Collector Outputs

A technique that is commonly used to connect several outputs uses “open collector” outputs.

To give you some insight, Figure 16.2� shows how a normal gate output is designed (this is

a reproduction of the NOT gate implementation shown in Figure 2.6 on page 47). A problem

with this design is that the outputs of several gates cannot be connected. To see why, assume

that three such normal gate outputs are tied together. In a normal gate, when the transistor is

on, it can expect Vcc/R amperes of current through it. If one of the transistors is on and the

other two are off, this one transistor would have to carry current that is three times its capacity

(i.e., 3Vcc/R amperes). You can generalize this to a larger number of connections and see the

corresponding increase in the required current-carrying capacity of each transistor. Remember

that passing excessive current causes the transistor to burn out.

The idea of open collector design is to take the resistor out of the chip and provide open

collector output to the chip pins (see Figure 16.2�). Open collector output can be in state 0

or 1 just as with a normal output. In addition, an open collector output can also be in a high

670 Chapter 16 Memory System Design

Vout

Vin

Vcc

Vin

Vout

(a) (b)

R

Figure 16.2 A simplified NOT gate implementation with normal and open collector outputs.

0 0 0 1

1 1 1 0

1 1 0 0

1 0 1 0

1 0 0 0

0 1 1 0

0 1 0 0

0 0 1 0

I2 I1 I0 Out

Vcc

R

(a) Connection diagram

7405

(b) Truth table

VccI0

I1

I2

Out

14

13

12

11

10

9

87

5

3

1

GND

4

2

6

function

Wired-AND

Figure 16.3 Open collector inverter chip: (a) 7405 connection diagram and an example circuit; (b) truth

table for the example circuit in (a).

impedance (Z) state, in which the transistor is off. With the open collector outputs, we can

connect several outputs without worrying about the capacity of these transistors. This is due

to the fact that there is a single resistor that is connected to these common outputs as shown in

Figure 16.3�. Thus we limit the current flow to Vcc/R amperes, independent of the number of

connections.

Section 16.3 Techniques to Connect to a Bus 671

Figure 16.3� shows details of the 7405 inverter chip that provides open collector outputs.

The chip uses the same connection layout as the 7404 chip we have seen before (see page 50).

This figure also shows how we can connect three outputs by “pulling” the Out point to Vcc

through a resistor R. As noted in the diagram, by connecting these three open collector outputs,

we are implementing the logical AND function. This is often referred to as the wired-AND

function. The truth table in Figure 16.3� shows that this circuit implements a three-input NOR

function.

Several open collector chips are commercially available. We present details about an ex-

ample chip in Figure 16.4. This chip is a 4 � 4 register that uses D latches to store the data.

Internally, the design is similar to that shown in Figure 16.1 except that the output goes through

an open collector gate. The chip uses two read address lines (RA0 and RA1) and two write ad-

dress lines (WA0 and WA1) along with two separate read (��) and write enable signals (��)

as shown in Figure 16.4�. The use of separate address lines and enable signals for read and write

operations gives the chip the ability to read and write simultaneously. This figure also shows the

function table for read and write operations. We can use this chip to build larger memories by

connecting outputs of several chips. For example, we can design an 8� 4 memory by using two

74170 chips. The outputs of these two chips can be connected as we did in the open collector

inverter chip example.

Open collector outputs are also used when signal drivers are needed. BCD to seven-segment

decoder/driver chips are prime examples of this type of use of open collector outputs. An

example of such a chip is the 74249, which is essentially an open collector version of the 7449

seven-segment decoder chip discussed in Chapter 2 on page 68.

A Problem: Can we use open collector outputs to solve our problem? We can certainly use

open collector outputs to tie several outputs together. There is one major problem that makes

them unsuitable for our memory design example. That is, the output is in high impedance (Z)

state only if the output is supposed to be high. This forces us to apply appropriate inputs to get

into this state. For example, if we are using the 7405 chip, we have to make sure that the inputs

are low so that the outputs of deselected devices will not interfere with the output of a selected

device. Thus, open collector devices are not suitable in the design of memory modules. We

present the most commonly used solution next.

16.3.3 Using Tristate Buffers

With the exception of the open collector devices, all other logic circuits we have discussed have

two possible states: 0 or 1. The devices we discuss now are called tristate devices as they can be

in three states: 0, 1, or Z state. The states are similar to those associated with the open collector

devices. There is one big difference between the two: tristate devices use a separate control

signal so that the output can be in a high impedance state, independent of the data input. This

particular feature makes them suitable for bus connections.

Figure 16.5� shows the logic symbol for a tristate buffer. When the enable input (E) is low,

the buffer acts as an open circuit (i.e., output is in the high impedance state Z) as shown in

672 Chapter 16 Memory System Design

RE

WE

74170

16

15

14

13

12

11

107

5

3

1

2

4

6

8 9GND

O3

O4

RA1

RA0

D4

D3

D2 Vcc

WA0

WA1

O1

O2

D1

WE

RE

WA0

WA1

RA0

RA1
O2O1 O3 O4

D1 D2 D3 D4

WE

(a) Connection diagram (b) Logic symbol

(d) Read function table

WA1 WA0 D inputs to

0 0 Word 0

0 0 1 Word 1

0 1 0 Word 2

0 1 1 Word 3

1 X None

RA1 RA0

0 0 0 Word 0

0 0 1 Word 1

0 1 0 Word 2

0 1 1 Word 3

1 X X None (Z)

Output fromRE

0

X

(c) Write function table

Figure 16.4 An example open collector register chip (X = don’t care input, and Z = high impedance state).

Figure 16.5�; otherwise, it acts as a short circuit (Figure 16.5
). The enable input must be high

in order to pass the input data to output, as shown in the truth table (see Figure 16.5�).

Two example tristate buffer chips are shown in Figure 16.6. The 74367 chip provides six

tristate buffers. These six buffers are grouped into four and two buffers, each with a separate

enable input. Both enable inputs are low-active, as represented by �� and ��. The 74368 chip

is similar to the 74367 chip except that it provides tristate inverters instead of buffers. In the

next section, we use the tristate buffers to modify our memory design example of Figure 16.1.

The 74373 is an example chip that provides tristate outputs. It uses eight D latches internally

and feeds each latch � through an inverting tristate buffer. The output enable (��) is a low-

active input that controls the output of inverting tristate buffers. Thus, when�� = 1, the outputs

O0 through O7 float (i.e., the outputs are in the high impedance state). The data can be written

Section 16.4 Building a Memory Block 673

E

DI DO

(a)

DI DO

(c) E = 1

DI DO

(b) E = 0 0

1

X

0

1

Z

Inputs

DI

Output

DO

(d)

E

1

1

0

Figure 16.5 Tristate buffer: (a) logic symbol; (b) it acts as an open circuit when the enable input is inactive

(E = 0); (c) it acts as a closed circuit when the enable input is active (E = 1); (d) truth table (X = don’t care

input, and Z = high impedance state).

E2

E1

E2

E1

74367 74368

16

15

14

13

12

11

107

6

5

4

3

2

1

GND 8 9

Vcc 16

15

14

13

12

11

107

6

5

4

3

2

1

GND 8 9

Vcc

Figure 16.6 Two example tristate buffer chips.

into the register by making the latch enable (LE) input high. Because this chip uses latches, the

output follows the input as long as the LE input is high and the �� is low. In Section 16.5.1,

we discuss how we can use this chip to build larger memories.

16.4 Building a Memory Block
We are now in a position to revise our previous memory design (shown in Figure 16.1) to

remedy the two main problems we have identified before. Our revision is a minor one in the

sense that we need to pass the outputs of the multiplexers through tristate buffers as shown in

674 Chapter 16 Memory System Design

LE

D0 D1 D7D6D5D4D3D2

O0 O1 O7O6O5O2 O3 O4

OE

OE

(a) Connection diagram

20

19

18

17

16

15

147

5

3

1

2

4

6

8 13

D2

O2

D0

O0

Vcc

D7

D6

D5

D4

O7

129

10GND

D1

O1

D3

O3

O5

O6

O4

74373

11 LE

(b) Logic symbol

Figure 16.7 An example 8-bit tristate register.

Figure 16.8. The enable input signal for these output tristate buffers is generated by ANDing

the chip select and read signals. The two inverters are used to provide low-active chip select

(��) and memory read (��) inputs to the memory block.

With the use of these tristate buffers, we can now tie the corresponding data in and out signal

lines together to satisfy the data bus connection requirements. Furthermore, we can completely

disconnect the outputs of this memory block by making �� high.

We can represent our design using the logic symbol shown in Figure 16.9. Our design uses

separate read and write signals. These two signals are part of the control bus (see Figure 1.5).

It is also possible to have a single line to serve as a read and write line. For example, a 0 on this

line can be interpreted as write and a 1 as read. Such signals are represented as the ��/RD

line, indicating low-active write and high-active read (see Exercise 16–5).

16.5 Building Larger Memories
Now that we know how to build memory blocks using devices that can store a single bit, we

move on to building larger memory units using these memory blocks. We explain the design

process by using some examples. The first example deals with designing an independent mem-

ory unit that is not hard-wired to a specific address in the memory address space. In a sense it

is a larger version of the design shown in Figure 16.8. The second example shows how these

Section 16.5 Building Larger Memories 675

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

CP

D Q

0I

1I

O 0

O 3

WR

S1

S0
3I 0I

MUX
S1

S0
3I 0I

MUX
S1

S0
3I 0I

MUX

RD

CS

D
ec

o
d
er

A1

A0

D2 D1 D0

Figure 16.8 A 4 � 3 memory design using D flip-flops.

676 Chapter 16 Memory System Design

RD

WR

CS

Bidirectional

data lines
4 X 3

memory

A0

A1 D0

D1

D2

Address lines

Write

Read

Chip select

Figure 16.9 Block diagram representation of a 4 � 3 memory.

independent memory units can be mapped into the address space. A more detailed discussion

is, however, deferred to the next section that describes full mapping as well as partial mapping

of memory units into the address space.

16.5.1 Designing Independent Memory Modules

In this example, we use the 74373 register chip as the basic building block to construct a 2� 16

memory module. Since each 74373 chip can store eight bits of data, we use four such chips

organized as a 2 � 2 array (see Figure 16.10). In each row, the 74373 chip control signals LE

and �� are tied together to form a 16-bit word. For example, in the top row, chip#1 receives

the upper half of the 16-bit data (D8 to D15) and provides the upper half of the word to the data

bus. The other half of the word is taken care of by chip#2.

A word on the notation: To simplify the schematic diagram, it is common practice to use

arrows to identify a group of related signals. For example, instead of showing 16 separate lines

for the data bus, we use an arrow (a double-headed arrow as the data bus is a bidirectional bus)

and identify the group of signals it represents as D0 to D15. Similarly, the input connections of

chip#1 are the upper half of the data bus D8 to D15.

By operating two chips in tandem, we double the word length. This technique can be used

to build memories with larger word sizes using narrower units or chips. For example, to build a

64-bit word memory, we put eight 74373 chips in each row, with each chip supplying 8 bits of

data. This is referred to as “horizontal” expansion, which takes care of the word length.

Next we have to increase the number of words. In our case, we just have to add one more

word. Adding words is straightforward as well. To increase the number of words in memory,

we simply add more rows, each row being a replication of the first row. This is referred to as

“vertical” expansion. In our example, we create a second row exactly like the first one. All we

have to do now is to make sure that only one row is selected at any point in time. This is done by

the row select logic shown in Figure 16.10. Since our goal is to design an independent memory

unit, we have to provide a chip select input. We use the LE input to write data into the selected

row. The low-active 1-to-2 decoder does the row selection. In order to predicate both read and

Section 16.5 Building Larger Memories 677

OE OE

OE OE

CS

WR

RD

D0 D7

D0 D7

D0 D7

D0 D7

D
0

 D

1
5

D8 D15

D8 D15

D8 D15

D8 D15

I0 I7

O0 O7

I0 I7

I0 I7I0 I7

O0 O7

O0 O7O0 O7

Chip#1 Chip#2

Chip#4Chip#3

D
at

a
b
u
s

LE LE

LE LE

A1

O1

O0

D
ec

o
d
er

I0

Figure 16.10 A 2 � 16 memory module using 74373 chips.

write on the active chip select signal, �� is used to gate the read and write signals. The�� line

is used to output the data of the selected row.

As you can see from this design, the read operation on a specific row is enabled by the

presence of active CS (i.e., �� = 0), selection of the row by the address decoder, and the

presence of the �� signal. Similarly, the write operation is also predicated on the presence of

chip select and address decoder output.

678 Chapter 16 Memory System Design

16.5.2 Designing Larger Memories Using Memory Chips

Before discussing the design procedure, we briefly present details about commercially available

memory chips.

Memory Chips

Several commercial memory chips are available to build larger memories. Here we look at two

example chips—a SRAM and a DRAM—from Micron Technology.

The SRAM we discuss is an 8-Mb chip that comes in three configurations: 512 K � 18,

256 K � 32, or 256 K � 36. Notice that, in the first and last configurations, word length is

not a multiple of 8. These additional bits are useful for error detection/correction. These chips

have an access time of 3.5 ns. The 512 K � 18 chip requires 19 address lines, whereas the

256 K � 32/36 versions require 18 address lines.

An example DRAM (it is a synchronous DRAM) is the 256-Mb capacity chip that comes

in word lengths of 4, 8, or 16 bits. That is, this memory chip comes in three configurations:

64 M � 4, 32 M � 8, or 16 M � 16. The cycle time for this chip is about 7 ns.

In the days when the data bus widths were small (8 or 16), DRAM chips were available in

1-bit widths. Current chips use a word width of more than 1 as it becomes impractical to string

64 1-bit chips to get 64-bit word memories for processors such as the Pentium.

From the details of these 2 example memory chips, we see that the bit capacity of a memory

chip can be organized into several configurations. If we focus on the DRAM chip, for example,

what are the pros and cons of the various configurations? The advantage of wider memory chips

(i.e., chips with larger word size) is that we require fewer of them to build a larger memory. As

an example, consider building memory for your Pentium-based PC. Even though the Pentium

is a 32-bit processor, it uses a 64-bit wide data bus. Suppose that you want to build a 16 M� 64

memory. We can build this memory by using four 16 M � 16 chips, all in a single row. How

do we build such a memory using, for example, the 32 M � 8 version of the chip? Because our

word size is 64, we have to use 8 such chips in order to provide 64-bit wide data. That means

we get 32 M � 64 memory as the minimum instead of the required 16 M � 64. The problem

becomes even more serious if we were to use the 64 M � 4 version chip. We have to use 16

such chips, and we end up with a 64 M � 64 memory. This example illustrates the tradeoff

between using “wider” memories versus “deeper” memories.

Larger Memory Design

Before proceeding with the design of a memory unit, we need to know if the memory address

space (MAS) supported by the processor is byte addressable or not. In a byte-addressable

space, each address identifies a byte. All popular processors—the Pentium, PowerPC, SPARC,

and MIPS—support byte-addressable space. Therefore, in our design examples, we assume

byte-addressable space.

We now discuss how one can use memory chips, such as the ones discussed before, to build

system memory. The procedure is similar to the intuitive steps followed in the previous design

examples.

Section 16.5 Building Larger Memories 679

First we have to decide on the configuration of the memory chip, assuming that we are

using the DRAM chip described before. As described in the last section, independent of the

configuration, the total bit capacity of a chip remains the same. That means the number of chips

required remains the same. For example, if we want build a 64 M � 32 memory, we need eight

chips. We can use eight 64 M � 4 in a single row, eight 32 M � 8 in 2 � 4 array, or 16 M � 16

in 4 � 2 array. Although we have several alternatives for this example, there may be situations

where the choice is limited. For example, if we are designing a 16 M � 32 memory, we have

no choice but to use the 16 M � 16 chips.

Once we have decided on the memory chip configuration, it is straightforward to determine

the number of chips and the organization of the memory unit. Let us assume that we are using

D � W chips to build an M � N memory. Of course, we want to make sure that D � M and

W � N.

Number of chips required �

M � N

D � W
�

Number of rows �

M

D
�

Number of columns �

N

W
�

The read and write lines of all memory chips should be connected to form a single read and

write signal. These signals are connected to the control bus memory read and write lines. For

simplicity, we omit these connections in our design diagrams.

Data bus connections are straightforward. Each chip in a row supplies a subset of data bits.

In our design, the right chip supplies D0 to D15, and the left chip supplies the remaining 16

data bits (see Figure 16.11).

For each row, connect all chip select inputs as shown in Figure 16.11. Generating appropri-

ate chip select signals is the crucial part of the design process. To complete the design, partition

the address lines into three groups as shown in Figure 16.12.

The least significant Z address bits, where Z = ����(N/8), are not connected to the memory

unit. This is because each address going into the memory unit will select an N-bit value. Since

we are using byte-addressable memory address space, we can leave the Z least significant bits

that identify a byte out of N/8 bytes. In our example, N = 32, which gives us Z = 2. Therefore,

the address lines A0 and A1 are not connected to the memory unit.

The next Y address bits, where Y = ����D, are connected to the address inputs of all the

chips. Since we are using 16 M chips, Y = 24. Thus, address lines A2 to A25 are connected to

all the chips as shown in Figure 16.11.

The remaining most significant address bits X are used to generate the chip select signals.

This group of address bits plays an important role in mapping the memory to a part of the

memory address space. We discuss this mapping in detail in the next section. The design

shown in Figure 16.11 uses address lines A26 and A27 to generate four chip select signals, one

for each row of chips. We are using a low-active 2-to-4 decoder to generate the �� signals.

680 Chapter 16 Memory System Design

CS CS

CS CS

CS CS

CS CS

D16 D31

D16 D31

D16 D31

D16 D31

D0 D15

D0 D15

D0 D15

D0 D15

D0 D31

D0 D31

D0 D31

D0 D31

D
0

 D

3
1

A2 A25

A2 A25

A2 A25

A
0

 A

3
1

D0 D15 D0 D15

D0 D15D0 D15

D0 D15 D0 D15

D0 D15D0 D15

A0 A23

A0 A23A0 A23

A0 A23 A0 A23

A0 A23A0 A23

A0 A23

A2 A25

D
ec

o
d
er

O0

O1

O2

O3

I1

I0
A26

A27

D
at

a
b
u
s

A
d
d
re

ss
 b

u
s

16M X 16 16M X 16

16M X 16 16M X 16

16M X 16 16M X 16

16M X 16 16M X 16

Figure 16.11 Design of a 64 M � 32 memory using 16 M � 16 memory chips.

Section 16.6 Mapping Memory

MSB

681

Address lines LSB

X Y

Figure 16.12 Address line partition.

The top row of chips in Figure 16.11 is mapped to the first 64-MB address space (i.e., from

addresses 0 to 226 - 1). The second row is mapped to the next 64-MB address space, and so on.

After reading the next section, you will realize that this is a partial mapping.

16.6 Mapping Memory
Memory mapping refers to the placement of a memory unit in the memory address space

(MAS). For example, the Pentium supports 4 GB of address space (i.e., it uses 32 bits for

addressing a byte in memory). If your system has 128 MB of memory, it can be mapped to one

of several address subspaces. This section describes how this mapping is done.

16.6.1 Full Mapping

Full mapping refers to a one-to-one mapping function between the memory address and the ad-

dress in MAS. This means, for each address value in MAS that has a memory location mapped,

there is one and only one memory location responding to the address.

Full mapping is done by completely decoding the higher-order X bits of memory (see Fig-

ure 16.12) to generate the chip select signals. Two example mappings of 16 M x 32 memory

modules are shown in Figure 16.13. Both these mappings are full mappings as all higher-order

X bits participate in generating the CS signal.

Logically we can divide the 32 address lines into two groups. One group, consisting of

address lines Y and Z, locates a byte in the selected 16 M x 32 memory module. The remaining

higher-order bits (i.e., the X group) are used to generate the CS signal. Given this delineation,

it is simple to find the mapping.

We illustrate the technique by using the two examples shown in Figure 16.13. Since the

memory modules have a low-active chip select input, a given module is selected if its CS input

is 0. For Module A, the NAND gate output is low when A26 and A29 are low and the remaining

four address lines are high. Thus, this memory module responds to memory read/write activity

whenever the higher-order six address bits are 110110. From this, we can get the address

locations mapped to this module as D8000000H to DBFFFFFFH. For convenience, we have

expressed the addresses in the hexadecimal system (as indicated by the suffix letter H). The

address D8000000H is mapped to the first location and the address DBFFFFFFH to the last

location of Module A. For addresses that are outside this range, the CS input to Module A is

high and, therefore, it is deselected.

682 Chapter 16 Memory System Design

CS CS

A0 A23

D0 D31

D0 D31

A2 A25

A0 A31

A0 A23

D0 D31

D0 D31

A2 A25

Module A Module B

To data bus

16M X 32

To data bus

16M X 32

A
2

6

A
2

7

A
2

8

A
2

9

A
3

0

A
3

1

A
2

6

A
2

7

A
2

8

A
2

9

A
3

0

A
3

1

Address bus

Figure 16.13 Full address mapping.

For Module B, the same inputs are used except that the NAND gate is replaced by an OR

gate. Thus, the output of this OR gate is low when the higher-order six address bits are 001001.

From this, we can see that mapping for Module B is 24000000H to 27FFFFFFH. As these two

ranges are mutually exclusive, we can keep both mappings without causing conflict problems.

16.6.2 Partial Mapping

Full mapping is useful in mapping a memory module; however, often the complexity associated

with generating the �� signal is not necessary. For example, we needed a 6-input NAND or OR

gate to map the two memory modules in Figure 16.13. Partial mapping reduces this complexity

by mapping each memory location to more than one address in MAS. We can obtain simplified

�� logic if the number of addresses a location is mapped to is a power of 2.

Let us look at the mapping of Module A in Figure 16.14 to clarify some of these points. The

�� logic is the same except that we are not connecting the A26 address line to the NAND gate.

Because A26 is not participating in generating the signal, it becomes a don’t care input. In this

mapping, Module A is selected when the higher-order six address bits are 110110 or 110111.

Thus, Module A is mapped to the address space D8000000H to DBFFFFFFH and DC000000H

to DFFFFFFFH. That is, the first location in Module A responds to addresses D8000000H and

DC000000H. Since we have left out one address bit A26, two (i.e., ��) addresses are mapped to

a memory location. In general, if we leave out � address bits from the chip select logic, we map

�
� addresses to each memory location. For example, in our memory design of Figure 16.11,

four address lines (A28 to A31) are not used. Thus, �� � �� addresses are mapped to each

memory location.

We leave it as an exercise to verify that each location in Module B is mapped to eight

addresses as there are three address lines that are not used to generate the �� signal.

Section 16.7 Alignment of Data 683

CS CS

A0 A31

A2 A25 A2 A25

A0 A23

D0 D31

A0 A23

D0 D31

D0 D31D0 D31

A
2

7

A
2

8

A
2

9

A
3

0

A
3

1

A
2

6

A
2

6

A
2

7

A
2

8

A
2

9

A
3

0

A
3

1

Module A Module B

To data bus

16M X 32

To data bus

16M X 32

Address bus

Figure 16.14 Partial address mapping.

16.7 Alignment of Data
We can use our memory example to understand why data alignment improves the performance

of computer systems. Suppose we want to read 32-bit data from the memory shown in Fig-

ure 16.11. If the address of these 32-bit data is a multiple of four (i.e., address lines A0 and

A1 are 0), the 32-bit data are stored in a single row of memory. Thus the processor can get the

32-bit data in one read cycle. If this condition is not satisfied, then the 32-bit data item is spread

over two rows. Thus the processor needs to read two 32-bits of data and extract the required

32-bit data. This scenario is clearly demonstrated in Figure 16.15.

In Figure 16.15, the 32-bit data item stored at address 8 (shown by hashed lines) is aligned.

Due to this alignment, the processor can read this data item in one read cycle. On the other

hand, the data item stored at address 17 (shown shaded) is unaligned. Reading this data item

requires two read cycles: one to read the 32 bits at address 16 and the other to read the 32 bits at

address 20. The processor can internally assemble the required 32-bit data item from the 64-bit

data read from the memory.

You can easily extend this discussion to the Pentium 64-bit data bus. It should be clear to

you that aligned data improve system performance.

• 2-Byte Data: A 16-bit data item is aligned if it is stored at an even address (i.e., addresses

that are multiples of two). This means that the least significant bit of the address must be

0.

• 4-Byte Data: A 32-bit data item is aligned if it is stored at an address that is a multiple of

four. This implies that the least significant two bits of the address must be 0 as discussed

in the last example.

16

3 7 11 15 19 23

2 6 101418 22

1 5 9 13 17 21

0 4 8 12 16 20

0.

80486

80x86

68000 do

16.8

8 x 4 32

Section 16.8 Interleaved Memories 685

bitsn = m + r

bitsr bitsm

Memory unit number Address in a memory unit

(a) Normal memory address mapping

Memory address

bitsm bitsr

Memory unit numberAddress in a memory unit

(b) Interleaved memory address mapping

Figure 16.16 Interleaved memories use the lower-order bits to select a memory bank.

16.8.1 The Concept

As we mentioned in Chapter 8, high-performance computers typically use interleaved memo-

ries to improve access performance. Essentially, these memories allow overlapped access to

hide the memory latency. The key idea is to design the memory system with multiple banks

(similar to our memory modules) and access all banks simultaneously so that access time can

be overlapped. We explain this in detail next.

In the memory designs we described so far, we divided the �-bit memory address bits into

two parts: the higher-order � bits are used to identify a memory module and the lower-order

� bits are used to specify a location in the memory module. As shown in Figure 16.16�,

� � � ��. This technique is sometimes called high-order interleaving.

To provide overlapped access to sequential addresses, we have to resort to low-order inter-

leaving, as shown in Figure 16.16�. In this design, the lower-order � bits are used to identify a

memory module and the higher-order � bits are used to specify a location. We normally use

the term interleaved memory to mean low-order interleaving. In these designs, the memory

modules are referred to as memory banks.

In interleaved memories, memory addresses are mapped on a round-robin basis. Thus, in

a B-bank design, address 0 is mapped to bank 0, address 1 to bank 1, and so on. A memory

address ���� is mapped to memory bank � � ���� MOD �. Some example mappings are

shown in Table 16.1.

We can implement interleaved memories using two possible designs: synchronized access

organization or independent access organization. These two organizations are described next.

686 Chapter 16 Memory System Design

Table 16.1 Example mappings

Memory bank number Memory addresses mapped

Bank 0 0, �, ��, � � �

Bank 1 1, � � �, �� � �, � � �

Bank 2 2, � � �, �� � �, � � �

.

Bank � � � � � �, �� � �, �� � �, � � �

unit #
Memory

Memory

unit 3

Memory

unit 2

Memory

unit 1

Memory

unit 0

MDR MDR MDRMDR

Address in a memory unit (m-2 bits) 2 bitsFrom address bus

Data bus

2-to-4

decoder

Figure 16.17 Interleaved memory design with synchronized access organization.

16.8.2 Synchronized Access Organization

In this organization, the upper � bits are presented to all memory banks simultaneously. We

illustrate the working of this design by means of an example. Figure 16.17 shows this design

for a four-bank interleaved memory. As before, it is assumed that the memory access takes

four clock cycles. Once the address is presented, all four memory banks initiate their memory

access cycles. Thus, in four clock cycles, we will have four data words from the four banks.

These data words are latched into four tristate memory data registers (MDRs). We can transfer

these four words in four clocks by selecting the appropriate MDR from the lower-order 2-bits

Section 16.8 Interleaved Memories 687

W0 W4

W1

W2

W3

W5

W6

W7

Memory bank 0

Memory bank 1

Memory bank 2

Memory bank 3

W0

W1

W2

W3

W4

W5

W6

W7

W8

W9

W10

W11

W8

W9

(b) Interleaved memory access

W0 W1 W2 W3 W4 W5 W6 W7

W0 W1 W2 W3 W4 W5 W6 W7

Access
cycle 2

Access
cycle 3

Access
cycle 4

Access
cycle 5

Access
cycle 6

Access
cycle 7

Access
cycle 8

Access
cycle 1

(a) Noninterleaved memory access

Figure 16.18 Interleaved memory allows pipelined access to memory.

using a 2-to-4 decoder (see Figure 16.17). Simultaneously, we can present the next address to

the memory banks to initiate the next memory access cycle. Thus, by the time we transfer the

four words from the first access cycle, we will have the next four words from the second access

cycle. This process is shown in Figure 16.18.

As shown in Figure 16.18�, noninterleaved memory access takes four clocks for each ac-

cess. Interleaved memory, on the other hand, transfers the first word (W0) after four clocks (see

Figure 16.18�). After that, one word is transferred every clock cycle. Thus, to transfer eight

words, we need 12 clock cycles (as opposed to 32 clocks in a noninterleaved design).

16.8.3 Independent Access Organization

A drawback with the synchronized design is that it does not efficiently support access to non-

sequential access patterns. The independent access organization allows pipelined access even

for arbitrary addresses. In order to support this kind of access, we have to provide each memory

bank with a memory address register (MAR) to latch the address that the bank should use (see

Figure 16.19). In our example, we can load four different addresses for the four banks. In this

design, we do not need the MDR registers to latch the data. Instead, the data are read directly

from the memory bank.

688 Chapter 16 Memory System Design

unit #
Memory

Memory

unit 3

Memory

unit 2

Memory

unit 1

Memory

unit 0

MAR MAR MAR MAR

Address in a memory unit (m-2 bits) 2 bits

decoder

From address bus

Data bus

2-to-4

Figure 16.19 Interleaved memory design with independent access organization.

Independent design still provides the same kind of pipelined access as the synchronized

access design. To see this, let’s trace the first few data transfers from addresses 100, 81, 54, 31,

108, and 121. We can use (address MOD 4) to determine the memory bank number. The first

address 100 is sent to bank 0. Once this address is latched in the MAR of bank 0, this bank can

initiate the memory access cycle. During the next clock cycle, address 81 is latched into the

MAR of bank 1. The next two addresses are sent to banks 2 and 3. After latching the address in

the MAR of bank 3, data from bank 0 are available. So the next clock cycle is used to transfer

the data from bank 0. We can now load the new address (108) in the MAR register of bank 0.

Similarly, during the next clock, data from bank 1 are transferred, and a new address (121) is

latched into the MAR of bank 1. This process repeats to provide pipelined access for arbitrary

addresses. Of course, this organization also works for the sequential addresses.

16.8.4 Number of Banks

In our examples, we assumed four banks with a memory access time of four cycles. This

gives us a data transfer rate of one word per cycle (after the initial startup delay). In general,

how many memory banks do we need to provide one word per clock cycle transfer rate if the

memory access time is � cycles? From our discussion, it should be clear that the number of

banks � should be at least� .

We should caution the reader that interleaved memory does not always provide pipelined ac-

cess to data. It depends on the memory access pattern. Next we give two examples representing

best- and worst-case scenarios.

Section 16.9 Summary 689

Example 16.1 Suppose we have eight memory banks with an access time of six clock cycles.

Find the time needed to read 16 words of a vector with stride 1.

Note that a stride of 1 corresponds to sequential access, assuming that each address supplies

a word (see page 308 for information on vector stride). This means we will be accessing the

memory sequentially. Thus, whichever design we use, we will get pipelined access. This is the

best-case scenario. Since the number of memory banks is at least six, we can get 1 word per

cycle data transfer rate. Thus, to complete the transfer of 16 words, we have to wait 6 clocks for

the first word and 16 additional clocks to transfer the 16 words. Therefore, we need ���� � ��

clock cycles. �

Example 16.2 Consider the memory system in the previous example. Find the time needed to

read 16 words of a vector with stride 8.

Since the stride is equal to the number of memory banks, we know that all 16 word addresses

are mapped to the same bank. In this case, interleaving is not useful at all. We have to access

each word sequentially from the same bank. Thus, we need �� � � � �� clock cycles. This is

the worst-case scenario. �

16.8.5 Drawbacks

Why do we see interleaved memories only in high-performance computers? Why not in our

PCs? One reason is that interleaved memories involve complex design. We have seen some of

this complexity in our examples. We need extra registers (MAR or MDR) to latch addresses or

data. What we have not shown in these examples is the control circuit needed to transfer data

and to load addresses.

Another major reason is that interleaved memories do not have good fault-tolerance prop-

erties. That is, if one bank fails, we lose the entire memory. On the other hand, in traditional

designs, failure of a module disables only a specific area of the memory address space mapped

to the failed module. Furthermore, interleaved memories do not lend themselves well to incre-

mental memory expansion.

16.9 Summary
We have discussed the basic memory design issues. We have shown how flip-flops and latches

can be used to build memory blocks. Interfacing a memory unit to the system bus typically

requires tristate buffers. Open collector devices and multiplexers are useful only in some special

cases.

Building larger memories requires both horizontal and vertical expansion. Horizontal ex-

pansion is used to expand the word size, and vertical expansion provides an increased number of

words. We have shown how one can design memory modules using standard memory chips. In

all these designs, chip select plays an important role in allowing multiple entities to be attached

to the system bus.

690 Chapter 16 Memory System Design

Chip select logic also plays an important role in mapping memory modules into the address

space. Two basic mapping functions are used: full mapping and partial mapping. Full mapping

provides a one-to-one mapping between memory locations and addresses. Partial mapping maps

each memory location to a number of addresses equal to a power of 2. The main advantage of

partial mapping is that it simplifies the chip select logic.

We have discussed the importance of data alignment. Unaligned data can lead to perfor-

mance degradation. We have discussed the reasons for improvement in performance due to

alignment of data.

In the last section, we presented details on interleaved memories, which are typically used

in vector processors to facilitate pipelined access to memory.

We have provided only the basic information in designing memory modules. One aspect

that we have not looked at is the interface details to handle slow memories. It is important to

look at this issue as the speed gap between memories and processors keeps increasing. If a

memory unit cannot respond at the rate required by the processor, the memory unit should be

able to ask the processor to wait. This is typically done by the memory signaling the processor

that it has not completed the operation (memory read or write). For example, the Pentium has

a pin labeled READY that any device can pull down to make the processor wait. Thus, slow

memories can use the READY input to slow the processor down to the speed of memory. We

have discussed these issues in Chapter 5.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Building larger memories

• Chip select

• Data alignment

• Data alignment—hard alignment

• Data alignment—soft alignment

• Interleaved memories

• Interleaved memories—independent

access organization

• Interleaved memories—synchronized

access organization

• Memory address space

• Memory design with D flip-flops

• Memory mapping—full mapping

• Memory mapping—partial mapping

• Nonvolatile memories

• Open collector outputs

• Tristate buffers

16.10 Exercises
16–1 What is the purpose of the multiplexers in Figure 16.1?

16–2 What is the reason for not being able to connect the data in and out lines in Figure 16.1?

16–3 Suppose that we want to extend the memory block in Figure 16.1 to �� �. Do you need

to change the decoder? How many more multiplexers do you need?

Section 16.10 Exercises 691

16–4 Suppose that we want to extend the memory block in Figure 16.1 to �� � �. What kind

of decoder do you use in your design? What kind of multiplexers do we need?

16–5 Figure 16.8 uses separate read and write lines. Modify this design to use a single line for

both read and write operations.

16–6 What are the advantages of tristate buffers over open collector buffers?

16–7 Figure 16.10 shows a � � �� memory module using four 74373 chips. Suppose that we

want to build a � � �� memory using the same chips. Extend the design in Figure 16.10

to derive the new design.

16–8 We have partitioned the address lines into three groups: X, Y, and Z (see Figure 16.12).

Explain the purpose of each group of address bits.

16–9 What are the advantages and disadvantages of full mapping over partial mapping?

16–10 Figure 16.11 shows a 64 M� 32 memory design. We have stated that this memory block

is partially mapped. Give the number of addresses to which each memory location of this

block is mapped. What are the addresses of the first location?

16–11 Suppose that we have replaced the 6-input NAND gate in Figure 16.13 by a 6-input AND

gate. Give the address mapping of Module A. It is sufficient to give the mapping of the

first and last location.

16–12 Suppose that we have replaced the 6-input OR gate in Figure 16.13 by a 6-input NOR

gate. Give the address mapping of Module B. It is sufficient to give the mapping of the

first and last location.

16–13 We have stated that each address of Module B in Figure 16.14 is mapped to eight ad-

dresses. Give the eight addresses to which the first location of Module B is mapped.

What are the eight addresses to which the last location is mapped?

16–14 Assume a hypothetical processor with a memory address space of 256 bytes. Design a

�� � � memory system that is mapped to locations 160 to 175 (decimal) using � � �

memory chips.

16–15 Modify your memory design of the last exercise to partially map to locations 160 to 175

(decimal) and 224 to 239 (decimal). You just need to show the changes to your chip select

logic.

16–16 Consider a hypothetical system that supports an address space of 128 bytes. Its data bus

width is 8 bits. Design a �� � � memory block using � � � memory chips and map it

to address locations 48 to 63. You need to show all the details including the chip select

logic needed to map the memory. You can use block diagram notation for memory chips.

Note that you can use only 2-input AND gates and inverters to implement your chip select

logic.

16–17 How would you change your design in Exercise 16–16 if the mapping were to locations

80 to 95 instead? You need to show only the changes. There is no need to reproduce the

part of the circuit that is not changing. Note that you can use only 2-input AND gates and

inverters to implement your chip select logic.

692 Chapter 16 Memory System Design

16–18 This exercise also refers to the memory block you designed in Exercise 16–16. Show how

a single block of ��� � memory can be mapped to locations 80 to 95 and 112 to 127. In

other words, the first location of the �� � � memory block should respond to addresses

80 and 112, the second location to addresses 81 and 113, and so on. Note that you can

use only 2-input AND gates and inverters to implement your chip select logic.

16–19 Consider a hypothetical machine that can address 256 bytes of memory. It uses a 16-bit

wide data bus. Suppose that only ���� memory chips are available. Using these memory

chips, design a ��� �� memory system starting at address 128 (the address is expressed

in decimal). You need to show how the address, data, and chip select lines of the chips are

connected to the system address and data buses. You don’t have to show the read/write

connections to the control bus. Be sure to show the necessary chip select logic using only

2-input gates (AND, OR) and inverters. Assume that the chip select is low-active.

16–20 We have mentioned that aligned data improve performance. Discuss the reasons for this

improvement.

16–21 Suppose that the data bus width is 32 bits. From the performance viewpoint, does it make

sense to talk about 64-bit aligned data? Explain.

16–22 What are the advantages and disadvantages of interleaved memories?

16–23 What are the advantages and disadvantages of synchronized and independent access in-

terleaved memory designs?

16–24 Let � be the number of banks and� be the memory access time in cycles. Explain why

we need to have � �� to support a one-word-per-cycle data-transfer rate.

16–25 Suppose we have an interleaved memory with eight banks. As in our examples on

page 689, the access time is six clock cycles. Find the time needed to access data at

the following 10 addresses: 152, 153, 154, 155, 156, 157, 158, 159, 160, and 161.

16–26 Suppose we have an interleaved memory as in the last exercise. Find the time needed to

access data at the following 10 addresses: 152, 320, 868, 176, 184, 800, 880, 640, 560,

and 160.

16–27 In the last exercise, does it matter whether you use the synchronized access design or the

independent access design?

Chapter 17

Cache Memory

Objectives
• To introduce basic concepts of cache memory;

• To explain how and why cache memory works;

• To describe the various policies used in designing a cache memory system;

• To discuss performance implications of cache parameters and policies;

• To look at some practical cache implementations.

Cache memory successfully bridges the speed gap between the processor and memory. The

cache is a small amount of fast memory that sits between the processor and memory in the

memory hierarchy. We first describe how the cache memory works (Section 17.2). The main

reason cache memory improves overall system performance is because programs exhibit local-

ity in their referencing behavior. The principle of locality is discussed in Section 17.3.

Cache design basics are discussed next. Operation of cache memory requires four poli-

cies: block placement, location, replacement, and write policies. Section 17.5 discusses the

block placement and location policies. The three policies presented here are the direct, associa-

tive, and set-associative mappings. Block replacement policies are described in the following

section. Two replacement policies are discussed in this section. Two write policies and their

advantages and disadvantages are discussed in Section 17.7. The space overhead introduced by

the direct, associative, and set-associative mapping functions is discussed in Section 17.8. The

following section presents some mapping function examples.

The next two sections describe various types of misses and cache types. Section 17.12 gives

details on cache implementations of Pentium, PowerPC, and MIPS processors. A summary of

cache operations and design issues is given in the next two sections. The chapter ends with a

summary.

693

694 Chapter 17 Cache Memory

Main memory

CPU

Cache memory

Disk

Disk cache

(b)

CPU

Registers

(a)

Main memory

Disk

Higher
cost sizeaccess

LargerFaster

Registers

Figure 17.1 A memory hierarchy of computer systems.

17.1 Introduction
A memory hierarchy of computer systems is shown in Figure 17.1�. At the top we have regis-

ters within the CPU that provide very fast access to data. But only a few registers are available.

For example, the Pentium has eight 32-bit general-purpose registers. PowerPC and MIPS pro-

cessors provide 32 registers. As we move down the hierarchy, we encounter slower memory

components: main memory and disk. For a variety of reasons, slower memories are cheaper.

Because of this cost advantage, computer systems have larger amounts of slower memories: in

general, as shown in Figure 17.1�, the slower the memory, the larger the capacity.

There is an order of magnitude difference in the access times of registers and main memory.

Similarly, disk access times are several orders of magnitude higher than main memory access

times.

Another factor is the speed difference between processors and main memory (mainly

DRAM). This difference has been increasing with time as processor speeds are improving at

a much faster rate than the memory speeds. Currently, processors seem to improve at 25%

to 40% per year, whereas memory access times are improving at about 10% per year. For

example, 2.4 GHz Pentium processors are available now, whereas only 300 MHz processors

were available just a few years back.

Ideally, we would like to have a large fast memory without paying for it. The cache memory

is a small amount of fast memory that is tactically placed between two levels of memory in the

hierarchy to bridge the gap in the access times. Based on the hierarchy shown in Figure 17.1�,

Section 17.2 How Cache Memory Works 695

there are two places we can use the cache concept: between main memory and CPU registers

(cache), and between disk and main memory (disk cache) as shown in Figure 17.1�. In this

chapter, we focus on the cache between the main memory and the CPU.

17.2 How Cache Memory Works
The cache memory is placed between the CPU and main memory as shown in Figure 17.1�.

Cache memory is much smaller than the main memory. In PCs, for example, main memory is

typically in the 128 to 256 MB range, whereas the cache is in the range of 16 to 512 KB. Cache

memories are implemented using static RAMs whereas the main memory uses DRAMs.

The principle behind the cache memories is to prefetch the data from the main memory

before the processor needs them. If we are successful in predicting the data that the processor

needs in the near future, we can preload the cache and supply those data from the faster cache.

It turns out that predicting the processor future access requirements is not difficult owing to a

phenomenon known as locality of reference that programs exhibit. We discuss this locality in

the next section.

To understand how the cache memory works, we consider two memory operations: read

and write. For each operation, there are two possible scenarios: the data are present in the cache

(hit) or not present (miss).

Figure 17.2 shows how memory read operations are handled to include the cache memory.

When the data needed by the processor are in the cache memory (“read hit”), the requested data

are supplied by the cache (see Figure 17.2�). In this case, we can disable the address and data

buffers. Since the system bus and main memory are not involved, they can be used for some

other purpose such as DMA operations. The dashed line indicates the flow of information in the

case of a read hit. In the case of a read miss, we have to read the data from the main memory.

While supplying the data from the main memory, a copy is also placed in the cache as indicated

by the bottom dashed lines in Figure 17.2�. Reading data on a cache miss takes more time than

reading directly from the main memory as we have to first test to see if the data are in the cache

and also consider the overhead involved in copying the data into the cache. This additional time

is referred to as the miss penalty.

Performance of cache systems can be measured using the hit rate or hit ratio. The hit ratio

is the fraction of the memory accesses found in the cache. The miss rate or miss ratio is the

fraction of memory accesses not found in the cache, which is equal to (1 � hit ratio). The time

required to access data located in the cache is called hit time. Hit time includes the time required

to determine if the data are in the cache.

The write operation actions are shown in Figure 17.3. In the case of a write miss, we

need to update only the main memory copy of the data as there is no copy of them in the

cache. However, when there is a write hit, we have two options: update only the cache copy or

update both cache and main memory copies of the data. Both options are used in practice. In

Figure 17.3�, we have shown the second option (called the write-through policy). Cache write

policies are discussed in Section 17.7.

696 Chapter 17 Cache Memory

Cache

Buffers

enabled

Cache

Buffers

disabled

(a) Read hit

S
y
st

em
 b

u
s

CPU

A
d
d
re

ss
 a

n
d
 d

at
a

b
u
ff

er
s

Data bus

Address bus

S
y
st

em
 b

u
s

CPU

Data bus

Address bus

A
d
d
re

ss
 a

n
d

 d
at

a
b

u
ff

er
s

(b) Read miss

Main

memory

Main

memory

Figure 17.2 Details of cache read operation.

In our discussion, we have glossed over several complex questions that are at the heart of

cache memory design: How can one detect if the data items are in the cache? If not, when do

we move the data into the cache? How many data items should we move? What happens if

there is no space in the cache? How do we predict which data the processor is likely to request

in the near future? The rest of the chapter discusses these questions.

Section 17.3 Why Cache Memory Works 697

Cache

Buffers

enabled

Cache

Buffers

enabled

(a) Write hit

S
y
st

em
 b

u
s

CPU

A
d
d
re

ss
 a

n
d
 d

at
a

b
u
ff

er
s

Address bus

Data bus

S
y
st

em
 b

u
s

CPU

A
d
d
re

ss
 a

n
d

 d
at

a
b

u
ff

er
s

Address bus

Data bus

(b) Write miss

Main

memory

Main

memory

Figure 17.3 Details of cache write operation.

17.3 Why Cache Memory Works
In the last section, we have given a high-level view of the basic cache operations. Why should

this scheme lead to improved performance? Let us suppose that we are executing the following

matrix operation, which adds constant K to all elements of an M � N matrix X. Let us suppose

that each element is a double data type requiring eight bytes.

for(i=0; i<M; i++)
for(j=0; j<N; j++)

X[i][j] = X[i][j] + K;

698 Chapter 17 Cache Memory

The statement X[i][j]=X[i][j]+K is executed M * N times. If we place the instruc-

tions for this loop in the cache, we avoid accessing them from the main memory. We can expect

performance benefit in this case because we load the instructions once into the cache and use

them repeatedly. Repetitive use of cached data and instructions is one of the two main factors

that makes a cache memory work.

The other factor is the predictive loading of the cache with data and instructions before the

processor actually needs them. Predictive loading is often implemented by moving more con-

tiguous locations in memory than needed when there is a read miss. This type of predictive

loading helps improve performance due to (i) the ability to mask the delay of slow main mem-

ory, and (ii) the efficiency with which a block of contiguous locations can be fetched as opposed

to accessing each location individually.

Continuing with our example, there will be a read miss when the matrix element X[0][0] is

accessed. We have to access the main memory to get X[0][0], which will also be placed in the

cache. Now suppose that we not only get X[0][0] but also the next three elements in the first

row (i.e., get four elements X[0][0], X[0][1], X[0][2], and X[0][3]) for a total of 32-byte data

movement between the main memory and cache. Then, we can avoid accessing the memory for

the next three iterations. Notice that, in this example, the data brought into the cache are not

reused. Thus, we do not derive any benefit from reuse as we did for the instructions. However,

we still get the benefit of using the cache because our prediction works well for the example.

To give a quantitative idea of how much difference this prefetching makes, we present the

plot in Figure 17.4. The �-axis gives the execution time on a 300 MHz Pentium to add a constant

to a square matrix of the size given on the �-axis. The row-order line gives the execution time

when the matrix is accessed row-by-row. For example, the code we discussed before uses row-

order access. If we interchange the two for statements, the matrix is accessed on a column-

by-column basis. Execution time of column-order access is more as shown in Figure 17.4.

What is the reason for this performance difference? With column-order access, our pre-

diction and hence the utility of preloading data into the cache goes haywire because C stores

the matrix in row-major order (i.e., row-by-row). If you are using FORTRAN instead of C,

column-order access benefits from the prediction as FORTRAN stores the matrix in column-

major order. These data illustrate that, even though our program does not reuse the data, we get

substantial benefit in predicting and preloading the data.

In summary, applications that exhibit one or both of the following characteristics will benefit

from the cache: repetitive use and predictive preloading. It turns out that most programs exhibit

these two characteristics to a varying degree.

Program referencing behavior has been extensively studied. These studies have led to the

principle of locality in the referencing behavior of programs. Locality of reference states that

programs tend to reference only a subset of the data and instructions repeatedly during a certain

period of time. For example, if the code fragment shown before is part of a larger program,

the processor executes the statement X[i][j]=X[i][j]+K repeatedly and accesses matrix

X during this time.

There are two principles of locality: locality in space (spatial locality) and locality in time

(temporal locality). The spatial locality principle states that programs tend to access data and

Section 17.4 Cache Design Basics 699

0

50

100

150

200

250

300

500 600 700 800 900 1000

Matrix size

E
x

ec
u

ti
o

n
 t

im
e

(m
s)

Column-order

Row-order

Figure 17.4 Impact of locality on the execution time of matrix addition.

instructions sequentially. This is fairly easy to understand. Most of the time, programs also

tend to execute instructions sequentially. Of course, occasionally procedure calls and if-then-

else types of conditional statements alter the sequential program execution path. The spatial

locality characteristic allows us to successfully perform predictive preloading.

Temporal locality refers to the tendency of programs to repeatedly use a small part of

code/data over a certain time. The loop is a prime example that contributes to this behavior.

The previous code fragment exhibits temporal locality in referencing the code but not data.

Temporal locality helps improve performance because, as we identified earlier, repeated access

can be satisfied from the cache.

17.4 Cache Design Basics
We have looked at how the cache memory works and why it improves performance. There are

several design issues we need to discuss in making the caches a practical reality. We present the

basic design issues in the form of a series of questions that we have to answer when we trace

the actions of a processor in executing a program.

When the processor starts executing a program, the cache is cold (i.e., contains garbage).

The first instruction and the associated data are not expected to be in the cache. But no special

consideration is given to the first instruction. Thus, we encounter our first problem: How do

we determine if the instruction/data that the processor is looking for is in the cache? If it is in

the cache, how do we find its address in the cache memory? We can reword this question as:

Given the address of a memory word, how do we find the cache address? The only way we

can get this address is by searching the cache memory. Of course, we have to do this search

700 Chapter 17 Cache Memory

in hardware because of the speed considerations. The complexity of the search (and hence the

hardware cost) depends on the type of function used to map memory addresses to cache memory

locations. There are three mapping functions: direct, associative, and set-associative mapping.

A detailed discussion of these mapping functions is deferred to the next section.

If the answer to the previous question is no (i.e., not in the cache), the processor has to get

the word from the main memory; along the way, the word is also copied to the cache. This leads

to several questions. How many bytes do we transfer as a result of the read miss? Do we just

transfer only the number of bytes for which the processor is looking? Our previous discussion

on predictive loading suggests that we should load more than what the processor requests. We

can make the number of bytes transferred vary from read miss to read miss to take care of

variable instruction lengths and data types. However, such a strategy causes implementation

problems. To simplify implementation, a fixed number of bytes � are transferred in response

to every read miss. For example, in the Pentium and PowerPC, 32 bytes are transferred.

Implementation can be simplified further by restricting the starting location of these fixed-

size blocks to addresses that are a multiple of the block size �. With this restriction, we can

use the least significant � � ���
�
� bits as the byte offset into the selected block. The remaining

higher-order bits of the memory address are used as the block number. The cache is also divided

into blocks of � bytes; cache blocks are called cache lines. Figure 17.5 shows how the main

memory is partitioned into blocks. This example assumes that the block size � is 4 bytes. The

16-bit memory address is partitioned into a 2-bit byte offset and 14-bit block number. Data

are transferred in blocks between the main memory and cache, whereas individual words are

transferred between the cache and processor, as shown in Figure 17.6.

The next question is: Where in the cache do we place the incoming block? This is the

assignment problem; cache line allocation depends on the mapping function used. We discuss

three mapping functions in the next section.

After the assignment of a cache line (or, as we show in the next section, a set of cache lines)

we can place the memory block in the assigned cache line, if the cache slot is free. If the as-

signed cache slot is not free, we have to decide which cache line is a candidate for replacement.

If the mapping function specifies a particular cache line, there is no choice. However, if the

mapping function specifies a set of cache lines, we need a replacement policy to select a cache

line from this set. Replacement policies are described in Section 17.6.

The sequence of actions taken on a read cycle is summarized in Figure 17.7. The actions

on a write cycle are similar. However, we have to answer an additional question: How are the

writes handled? We have briefly mentioned that there are two basic alternatives: write-back or

write-through. We look at these two policies and their implications in Section 17.7.

17.5 Mapping Function
The mapping function determines how memory blocks are mapped to cache lines. This func-

tion sometimes is also referred to as the hashing function. There are three types of mapping

functions:

Section 17.5 Mapping Function 701

Byte

offset

.

.

.

.

.

.

.

.

...

Address partition

15 0

Block number

12

0
1
2
3

2046
2047

Byte 2 Byte 1 Byte 0Byte 3

Cache memory

0

65,532

65,528

8

4

16,383

16,382

2

1

0

Memory Block
address

line
Cache

address

Main memory

Figure 17.5 Main memory and cache memory are divided into blocks of equal size: With the blocks placed

as shown here, we can use the lower-order bits for byte offset and higher-order bits for the block number.

This example uses a 64 KB main memory and an 8 KB cache.

CPU

Registers

Main memory

Block
transfer

Word
transfer

Cache memory

Figure 17.6 Data transfer between the top three levels of the memory hierarchy.

702 Chapter 17 Cache Memory

Begin

Is block B

in cache?

Done

Is

cache line C

free?

memory block B

Initiate access to

Assign cache line C

for memory block BSupply the word at

address A to processor

Processor outputs

memory address A

Load memory block B

into the cache line

Supply the word at

address A to processor

Replace a cache line

to make room for block B

Find memory block B

that contains address A

Uses replacement policy

No

Yes

No

Yes

Uses placement policy

Uses mapping function

Figure 17.7 Cache operations for a processor read cycle.

1. Direct Mapping: Specifies a single cache line for each memory block;

2. Set-Associative Mapping: Specifies a set of cache lines for each memory block;

3. Associative Mapping: No restrictions; any cache line can be used for any memory block.

Direct mapping is relatively easy to implement but it is less flexible and can cause performance

problems. Associative mapping allows maximum flexibility but is very complex to implement.

Because of this complexity and the associated cost, associative mapping is not used in practice.

The set-associative mapping strikes a compromise between the direct and associative mapping

functions. Practical implementations more often use this function. The following subsections

discuss these three functions in detail.

 17.5

 3 2 1 0

y

k

15

14

13

12

11

10

9

8

7

6

5

4

3

2

1

0

 3 2 1 0

d o

3

2

1

0

3

2

1

0

3

2

1

0

3

2

1

0

n y

y

s y s s s y

y s

17.5.1 g
g n o h y k d b

. o n d o . o ,

y k d o . 17.8 ho g

 on h 64 o n y d 16 o .

g k o 4 . , o 4 4. ,

o o h y k . , y k

11 d o 3 n by 11 .

 17.9 on d o n y d .

d o

 b d o . k ,

 o n by

b 2

704 Chapter 17 Cache Memory

Cache

line

3

2

1

0

Cache data

??? ??? ??? ???

4-bytes of valid cache data

4-bytes of valid cache data

4-bytes of valid cache data

Valid

bit

0

1

1

1

(b) Cache memory details

Block number Byte offset

Cache tag Cache line#

b bitsc bitst bits

Cache tag

???

valid tag

valid tag

valid tag

(a) Address partition

Figure 17.9 Details of address partition and cache memory organization for direct-mapped caches.

• The next
 bits are used to identify a cache line. If the number of cache lines is �, we can

get
 as

 = ���
�
�.

• The remaining higher-order � bits are used as the cache tag. As we show next, cache

memory would have to store this tag information for each cache line in order to identify

the memory block stored in the cache line.

Example 17.1 Suppose that we are considering a Pentium-like processor with 4 GB of memory

address space and 256 KB of direct-mapped cache. Assuming that the block size and hence the

cache line size is 32 bytes, find the number of bits for the byte offset �, the number of bits for the

cache line
, and the tag size.

The main memory address space of 4 GB implies 32-bit addresses. Since the system uses 32-

byte blocks, we need ���
�
�� = 5 bits for the byte offset. To find the number of bits for the

cache line, we need to know the number of cache lines. This is obtained by dividing the cache

capacity in bytes by the block size. In our example, 256K/32 gives 8192 (8 K) lines. Thus, we

need ���
�
���� = 13 bits for the cache line. The remaining higher-order 14 bits (�� � �� � �)

represent the tag field. �

Cache implementations maintain three pieces of information as shown in Figure 17.9:

• Cache Data: These are the actual data copied from the mapped memory block.

Section 17.5 Mapping Function 705

• Cache Tag: Since more than one memory block is mapped to a cache line, we need to

store the tag field for each cache line in order to know the address of the actual block

stored. The size of the tag field � is equal to ���
�
� , where � is the number blocks

mapped to each cache line.

• Valid Bit: We also need to store information on whether a cache line contains a valid

block. This information is necessary so that we do not treat garbage as valid data. A

single bit is sufficient to maintain this information. We use 1 to represent a valid cache

line and 0 for an invalid cache line.

Direct mapping results in a simple implementation of the cache. To find if a memory block

is in the cache, use the modulo function to find the cache line for the block. Then check if

the corresponding valid bit is 1. If so, compare the tag value stored at the cache line with the

higher-order � bits of the memory block address. If there is a match, the required block is in the

cache; otherwise, there is a cache miss. Thus, answering the question, “Is the block cached?”

involves an arithmetic operation and a compare operation.

If the block is not in the cache, we read the memory block and store it at the cache slot

indicated by the modulo operation. If that slot is currently occupied by another memory block,

we replace it. Action taken to replace a cache line depends on the type of write policy used and

is discussed in Section 17.7. Thus, placement and replacement policies are straightforward: a

single cache line is specified to place the memory block in the case of a cache miss.

What is the problem with direct mapping? The simplicity of the direct mapping function,

although desirable from the implementation viewpoint, is also its disadvantage. By mapping

each memory block to a single cache line, we lose flexibility that can lead to performance

degradation. The following example illustrates this drawback:

Example 17.2 Suppose that the reference pattern of a program is such that it accesses the

following sequence of blocks: 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4. Find the hit ratio with a direct-

mapped cache of four cache lines.

The three blocks accessed by the program—0, 4, and 8—are all mapped to cache line 0. When

block 0 is accessed for the first time, it is placed in cache line 0. When the program accesses

block 4 next, it replaces block 0 in cache line 0. You can continue this process and see that

every block access leads to a cache miss as shown in Table 17.1. Thus the hit ratio is zero. �

This example describes the worst-case behavior, where each access results in a miss. This

scenario where a cache line is replaced before it is referenced again is called cache thrashing.

Example 17.3 Suppose the sequence of main memory blocks accessed is 0, 7, 9, 10, 0, 7, 9, 10,

0, 7, 9, 10. Find the hit ratio in a direct-mapped cache with a cache size of four cache lines.

This reference pattern shows the best behavior. There will only be four cache misses. After

these four blocks have been loaded into the cache, the remaining eight references can obtain

data from the cache as shown in Table 17.2. Thus the hit ratio is 8/12 or about 67%. For this

example, this is the maximum hit ratio one can obtain. �

706 Chapter 17 Cache Memory

Table 17.1 Direct-mapped cache state for Example 17.2

Block Hit or Cache Cache Cache Cache
accessed miss line 0 line 1 line 2 line 3

0 Miss Block 0 ??? ??? ???

4 Miss Block 4 ??? ??? ???

0 Miss Block 0 ??? ??? ???

8 Miss Block 8 ??? ??? ???

0 Miss Block 0 ??? ??? ???

8 Miss Block 8 ??? ??? ???

0 Miss Block 0 ??? ??? ???

4 Miss Block 4 ??? ??? ???

0 Miss Block 0 ??? ??? ???

4 Miss Block 4 ??? ??? ???

0 Miss Block 0 ??? ??? ???

4 Miss Block 4 ??? ??? ???

Table 17.2 Direct-mapped cache state for Example 17.3

Block Hit or Cache Cache Cache Cache
accessed miss line 0 line 1 line 2 line 3

0 Miss Block 0 ??? ??? ???

7 Miss Block 0 ??? ??? Block 7

9 Miss Block 0 Block 9 ??? Block 7

10 Miss Block 0 Block 9 Block 10 Block 7

0 Hit Block 0 Block 9 Block 10 Block 7

7 Hit Block 0 Block 9 Block 10 Block 7

9 Hit Block 0 Block 9 Block 10 Block 7

10 Hit Block 0 Block 9 Block 10 Block 7

0 Hit Block 0 Block 9 Block 10 Block 7

7 Hit Block 0 Block 9 Block 10 Block 7

9 Hit Block 0 Block 9 Block 10 Block 7

10 Hit Block 0 Block 9 Block 10 Block 7

Section 17.5 Mapping Function 707

Table 17.3 Fully associative cache state for Example 17.4

Block Hit or Cache Cache Cache Cache
accessed miss line 0 line 1 line 2 line 3

0 Miss Block 0 ??? ??? ???

4 Miss Block 0 Block 4 ??? ???

0 Hit Block 0 Block 4 ??? ???

8 Miss Block 0 Block 4 Block 8 ???

0 Hit Block 0 Block 4 Block 8 ???

8 Hit Block 0 Block 4 Block 8 ???

0 Hit Block 0 Block 4 Block 8 ???

4 Hit Block 0 Block 4 Block 8 ???

0 Hit Block 0 Block 4 Block 8 ???

4 Hit Block 0 Block 4 Block 8 ???

0 Hit Block 0 Block 4 Block 8 ???

4 Hit Block 0 Block 4 Block 8 ???

17.5.2 Associative Mapping

This function is also called the fully associative mapping function to distinguish it from the set-

associative function. This mapping does not impose any restriction on the placement of blocks

in cache memory. A memory block can be placed in any cache line. This offers maximum

flexibility, which we demonstrate by using the reference pattern of Example 17.2.

Example 17.4 Consider the reference pattern of Example 17.2 that accesses the sequence of

blocks 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4. Assuming that the cache uses associative mapping, find

the hit ratio with a cache size of four cache lines.

In fully associative mapping, the incoming block can take any free cache line. In Table 17.3,

we use a FIFO allocation. Block 0 is placed in cache line 0, block 4 is placed in the next

available cache line, and so on. Thus, after three misses to load the blocks 0, 4, and 8 initially,

the remaining nine references can be read from the cache. This gives us a hit ratio of 75%. This

is in contrast to the hit ratio of 0% obtained with direct mapping. Because these three misses

are compulsory misses, this is the highest hit ratio we can get for this reference pattern. �

With associative mapping, we divide the address into two components as shown in Fig-

ure 17.10:

• The least significant � bits are used for byte offset as in the direct mapping scheme;

• The remaining bits are used as the tag field.

708 Chapter 17 Cache Memory

(a) Address partition

Cache tag

Block number Byte offset

Valid tag

Valid tag

Valid tag

???

Cache tag

3

2

1

0

Cache data

??? ??? ??? ???

4-bytes of valid cache data

4-bytes of valid cache data

4-bytes of valid cache data

0

1

1

1

bit
Cache
line

Valid

(b) Cache memory details

Figure 17.10 Details of address partition and cache memory organization for fully associative mapping

Thus, compared to the direct mapping scheme, the tag field is longer. This is not the major

problem with this mapping scheme. The major drawback is the location of a block in the cache.

Since a block can be in any cache line, we have to search all tag fields in parallel to locate a

block. This means we need hardware to do �

 comparisons, where �

 is the number of cache

lines.

Figure 17.11 shows details of the address match logic. It uses �
 comparators; each com-

pares a tag value from the cache tag memory to the tag field of the address. The outputs of these

comparators are encoded to generate a binary number that identifies the cache line, if there is a

match. Because the encoder will output 0 if there is no match or if the block is in cache line 0,

we need to generate a match found output. This signal can be generated by ORing the outputs

of the comparators as shown in Figure 17.11.

The sequence of steps involved in accessing an associative-mapped cache is shown in Fig-

ure 17.12. The tag field from the address is compared by the address match logic. If there is a

match, the cache controller supplies the data from the cache data memory. These interactions

are shown by dashed lines.

17.5.3 Set-Associative Mapping

Set-associative mapping is a compromise between direct and associative mapping. It divides the

cache lines into disjoint sets. Mapping of a memory block is done as in direct mapping, except

that it maps the block to a set of cache lines rather than to a single cache line. The block can be

placed in any cache line within the assigned set as in the associative mapping. Set-associative

mapping reduces the search complexity to the number of cache lines within a set. Typically,

small set sizes—2, 4, or 8—are used. An example mapping is given in Figure 17.13.

Section 17.5 Mapping Function 709

c
2 1

c
2 1

.

.

.

.

.

.

Comparator

Comparator

Comparator
Match 0

Match 1

...

Encoder

Tag value 1

from cache

from cache

Match

Tag value 0

from cache

from address bus

T-bit

binary

output

Match

found

output

Tag value

Tag address

Figure 17.11 Details of address match logic for fully associative mapping.

Address

match

logic

Cache

controller

Cache

data

memory

Cache

addressCache

tag

memory

CPU

S
y
st

em
 b

u
s

Address bus

Data bus

Buffers

disabled

A
d
d
re

ss
 a

n
d
 d

at
a

b
u
ff

er
s

Main

memory

Figure 17.12 A fully associative cache with its address match logic.

710 Chapter 17 Cache Memory

Cache memory

Main memory

Byte 3 Byte 2 Byte 1 Byte 0

Set 0

Set 1
3

2

1

0

Line

1

0

1

1

1

1

1

1

0

0

0

0

0

0

0

1

Byte 3 Byte 2 Byte 1 Byte 0

15

12

11

10

9

8

7

6

5

4

2

14

13

3

1

0

Block Set #

Figure 17.13 Set-associative mapping function details: The main memory is 64 bytes and the cache is

16 bytes in size. Cache line size is 4 bytes. With these parameters, the set-associative function maps all

even-numbered blocks to set 0 (shown as white) and all odd-numbered blocks to set 1 (shown as gray).

Example 17.5 Let us consider the reference pattern of Example 17.2 that accesses the sequence

of blocks 0, 4, 0, 8, 0, 8, 0, 4, 0, 4, 0, 4. Assuming that the set size is 2, find the hit ratio with a

cache size of four cache lines.

Since the cache size is four lines and the set size is 2, we have two sets. Therefore, all blocks

with an even number are mapped to set 0, and odd numbered blocks to set 1. In the example,

all three blocks—0, 4, and 8—are mapped to set 0. The cache activity is shown in Table 17.4.

The first reference to block 8 presents an interesting situation. This even-numbered block is

mapped to set 0. However, set 0 is full (with blocks 0 and 4). Now we need to make a decision

as to which block should be replaced. This is determined by the replacement policy in effect.

Replacement policies are discussed in the next section. For now, we use a policy that replaces a

block that has not been accessed recently. Between blocks 0 and 4, block 0 has been accessed

more recently. Thus, we replace block 4 with block 8. A similar situation arises when block 4

is accessed later.

Using set-associative mapping gives us 8/12 � 67% as the hit ratio. As you can see, this hit

ratio is better than that of the direct-mapped cache but lower than that of the fully associative-

mapped cache. �

Section 17.6 Replacement Policies 711

Table 17.4 Set-associative cache state for Example 17.5

Block

accessed

Hit or

miss

Set 0 Set 1

Cache Cache Cache Cache

line 0 line 1 line 0 line 1

0 Miss Block 0 ??? ??? ???

4 Miss Block 0 Block 4 ??? ???

0 Hit Block 0 Block 4 ??? ???

8 Miss Block 0 Block 8 ??? ???

0 Hit Block 0 Block 8 ??? ???

8 Hit Block 0 Block 8 ??? ???

0 Hit Block 0 Block 8 ??? ???

4 Miss Block 0 Block 4 ??? ???

0 Hit Block 0 Block 4 ??? ???

4 Hit Block 0 Block 4 ??? ???

0 Hit Block 0 Block 4 ??? ???

4 Hit Block 0 Block 4 ??? ???

Set-associative mapping partitions the address into three components as shown in Fig-

ure 17.14:

• The least significant � bits specify the byte offset as in the other two mapping functions.

• The next � bits identify a set. The number of bits for the � field is given by � � log
�
�

where � is the number of sets.

• The remaining higher-order bits are used as the tag, as in the other two mappings.

17.6 Replacement Policies
Replacement policy comes into action when there is no place in the cache to load the memory

block. The actual policy used depends on the type of mapping function employed. Direct

mapping does not require a special replacement policy. In this case, the mapped cache line

should be replaced if that cache line is not free. There is no choice.

Several replacement policies have been proposed for the other two mapping functions. Since

the fully associative function is not used in practice, we focus on the set-associative mapping.

In this mapping function, there is a choice as to which cache line should be replaced in a given

set. Ideally, we want to replace a cache line that will not be used for the longest time in the

immediate future. How can we predict future referencing behavior? We, of course, fall back on

the principle of locality. That is, we use recent history as our guide to predict future references.

712 Chapter 17 Cache Memory

Cache data

??? ??? ??? ???

4-bytes of valid cache data

4-bytes of valid cache data

4-bytes of valid cache data

Set 1

Set 0

(a) Address partition

Block number Byte offset

Set #Cache tag

Cache tag

???

Valid tag

Valid tag

Valid tag

0

1

1

1

bit
Valid

(b) Cache memory details

Figure 17.14 Details of address partition and cache organization of a set-associative mapped cache.

This leads us to what is known as the least recently used (LRU) policy. This policy states that

we should replace the cache line that has not been accessed for the longest period. We have

already used this policy in Example 17.5.

In practice, implementation of LRU is expensive for set sizes larger than four. For set sizes

of two, it is easy to implement. We need only one bit to store the identity of the least recently

used cache line in the set. However, as the degree of associativity increases, we need more bits.

To give you an idea, consider a 4-way associative cache. To maintain true LRU information

requires keeping information on 4! � 24 combinations.

0123 1023 2013 3012
0132 1032 2031 3021
0213 1203 2130 3102
0231 1230 2103 3120
0312 1302 2301 3210
0321 1320 2310 3201

Thus, we need 5 bits to keep this information. If the degree of associativity is 8, we need 8! =

40,320 states, which requires ����
�
��� = 16 bits to store the LRU information.

Practical implementations typically use an approximation to the true LRU policy. The basic

idea behind these “pseudo-LRU” policies is to partition the sets into two groups and maintain

the group that has been accessed more recently. This requires only one bit of information.

Each group is further divided into subgroups as shown in Figure 17.15. This scheme requires

only � � � bits, where � is the degree of associativity. This is in contrast to ����
�
� �� bits

required to implement the true LRU policy. For the 8-way associative mapped cache used by

Section 17.7 Write Policies 713

Cache line

L0

B1 bit:

L0 or L1?

B2 bit:

L2 or L3?

B0 = 0 B0 = 1

B1 = 0 B1 = 1 B2 = 0 B2 = 1

Cache line

L1

Cache line

L2

Cache line

L3

(L0, L1) or (L2, L3)?

B0 bit:

Figure 17.15 Pseudo-LRU implementation for a four-way associative cache: A similar scheme is used in

the Intel i486 and PowerPC processors.

the PowerPC, pseudo-LRU implementation requires only 7 bits of information as opposed to 16

bits for the true LRU implementation.

Random replacement is an alternative to the LRU policy, which eliminates the need to main-

tain the state information. As the name suggests, a cache line is randomly selected for replace-

ment. As the degree of associativity increases, random replacement becomes attractive. Even

for smaller associativity, performance of random replacement approximates very closely that of

the true LRU replacement. For example, the miss ratio might increase by about 10% when the

random replacement is used with a two-way associative cache. For larger caches, the difference

in the miss ratio between LRU and random policies becomes marginal [32]. In fact, when the

LRU replacement is approximated, random replacement even performs better in some cases.

Other replacement policies of theoretical interest are the first-in-first-out (FIFO) and least

frequently used (LFU). FIFO policy replaces the block that has been in the set for the longest

time. FIFO policy can be implemented using a circular buffer. LFU replaces the block in

the set that has been referenced the least number of times. Implementation of LFU requires

a counter associated with each cache line. These policies are more appropriate for managing

virtual memory, which is discussed in the next chapter.

17.7 Write Policies
So far in our discussion we have focused on reading data from the memory and how cache can

handle this activity. If the processor is updating a variable or data structure, how do we handle

this? We have two copies of the data: a main memory copy and a cached copy.

There are two basic write policies: write-through and write-back. In the write-through

policy, every time the processor writes to the cache copy, it also updates the main memory copy.

Thus, in this policy, both cache and memory copies are consistent with each other. Figure 17.3�

shows the write-through policy in action.

714 Chapter 17 Cache Memory

Cache

Buffers

disabled

S
y
st

em
 b

u
s

CPU

Address bus

Data bus

Main

memory

A
d
d
re

ss
 a

n
d

 d
at

a
b

u
ff

er
s

Figure 17.16 Write hit operation in a write-back cache.

3

2

1

0

Cache tag Cache data

??? ??? ??? ??? ???

Valid tag

Valid tag

Valid tag

4-bytes of updated data

4-bytes of valid data

4-bytes of updated data

?

1

0

1

Dirty

bit

0

1

1

1

Valid

bit

Cache

line

Figure 17.17 A typical write-back cache uses a dirty bit to indicate whether the cache line has been

updated.

The write-back policy, also called the copy-back policy, updates only the cache copy (Fig-

ure 17.16). When do we update the main memory copy? This update is done at the time of

replacement. Therefore, in a write-back cache, we have to first write the block back to main

memory before loading the new memory block. This update is not required in the write-through

policy. Thus, with the write-back policy, line replacements take twice as long as would a line

replacement in a write-through cache.

We can reduce the number of writes in the write-back policy by noting that if a cache line

has not been updated by the processor, it does not have to be written back to the memory. This

would avoid unnecessary writes to the memory. Most write-back caches use this scheme, which

is implemented by associating a bit (called a dirty bit or update bit) with each cache line. This

bit indicates whether the cache copy has been updated. If the dirty bit is set for a cache line,

that block has to be written back to memory before replacing it. Thus, in a write-back cache,

there are two bits associated with each cache line—a valid bit and a dirty bit—as shown in

Figure 17.17.

Section 17.8 Space Overhead 715

In Figure 17.17, cache lines 0 and 2 have been updated and thus have a more up-to-date

copy of the block. If either of these two blocks is replaced, the corresponding memory block

should be updated first. The dirty bit significantly improves performance of a write-back cache,

as programs tend to read more often than write (typically, writes are about 15% of all memory

references).

Another popular technique to reduce the write traffic is to use write buffers. Buffered writing

is particularly useful for write-through caches. In buffered writing, writes to main memory are

buffered and written to the memory at a later time. Buffered write allows write combining

by caching multiple writes in the buffer; it therefore reduces the bus traffic. This technique

is especially useful in cache designs that allow noncaching of write blocks. For example, the

Pentium uses a 32-byte write buffer. This buffer is written to the memory at several trigger

points. One of the trigger points is the buffer full condition.

What are the advantages and disadvantages of the two write policies? A good thing about

the write-through policy is that both cache and memory copies are always consistent. This is

important in situations where the data are shared among several processors as in a multiproces-

sor system. However, the drawback is that it tends to waste bus and memory bandwidth. To see

why this is the case, consider a loop to sum an array of 10,000 elements. Assuming that the

variable sum is not mapped to a register, a write-through cache updates the main memory copy

of sum during each iteration. We could avoid all these writes by simply updating the memory

copy of sum with the final value after the loop has terminated. This is effectively what a write-

back cache does. The disadvantage of a write-back cache is that it takes longer to load a new

cache line. Furthermore, its implementation requires additional dirty bit information.

17.8 Space Overhead
The three mapping functions also introduce additional space requirements to store the tag field.

This overhead decreases with the decreasing degree of associativity. As the cache line size

increases, this tag field overhead becomes relatively smaller. The following examples clearly

illustrate these points:

Example 17.6 Assume that a Pentium-like processor (with 4 GB of address space) uses a 32 KB

direct-mapped cache. Find the total bit capacity required for the cache with a block size of

32 bytes.

A memory address space of 4 GB implies 32-bit addresses. These 32 bits are partitioned into

three groups as shown in Figure 17.9 on page 704. The byte offset is

� � ���
�
�� � � bits.

The number of cache lines is 32 KB/32 = 1024 cache lines. Thus, the number of bits required

to identify a cache line is

 � ���
�
���	 � �� bits.

716 Chapter 17 Cache Memory

The remaining 17 higher-order bits of the 32-bit address are used for the tag. To calculate the

cache bit capacity, we note that each cache line consists of 32 bytes of data, a 17-bit tag field,

and a valid bit. The total cache line size in bits is �� � � � �� � � � ��� bits. Therefore, the

total cache capacity is �������� � 34.25 KB. This represents an overhead of 2.25 KB, which

is about 7%. If a dirty bit is used, we need an additional 1 Kbit. �

Example 17.7 Repeat the above example for a block size of four bytes.

The new value for the byte offset is � � � bits. The number of cache lines is 32 KB/4 = 8 K

lines. Thus, to identify a cache line in these 8 K lines, we need
 = 13 bits. This leaves the tag

size as �� � �� � � � �� bits. Notice that the number of bits for these two fields (i.e.,
 � �)

is always equal to 	
�
�
�, where � is the cache capacity in bytes. However, the reduced block

size has a dramatic effect on the amount of overhead. Each cache line now consists of 32 bits

of data, 17 bits of tag, and a valid bit, for a total of 50 bits. Thus the total cache capacity is 8 K

� 50 = 50 KB. This represents an overhead of about 56%. The space requirement goes up by

8 Kbits if the dirty bit is used. �

Example 17.8 Repeat Example 17.6 assuming a four-way set-associative cache instead of a

direct-mapped cache.

The byte offset field requires 5 bits as in Example 17.6. The number of bits � to identify a set is

	
�
�
�, where � is the number of sets in the cache. Since it is a four-way set-associative cache,

the number of sets is

� � ������� � ��
 � ��� sets.

This gives us � � 	
�
�
� � � bits. The remaining ������ � �� bits are used for the tag field.

Therefore each cache line is 32 � 8 bits of data, 19 bits of tag, and a valid bit. The total cache

capacity in bits is given by ��� � � � ��� � ���� KB. This represents an overhead of about

7.8%. �

What happens when we reduce the block size to four bytes? Computing the overhead for

4-byte blocks, we find that the overhead increases to about 62.5%.

What about the fully associative cache? If we use a fully associative cache, the tag field gets

even bigger. The following example computes the space overhead of this mapping function.

Example 17.9 Repeat Example 17.6 assuming a fully associative cache instead of a direct-

mapped cache.

In fully associative mapping, the address is divided into two fields (Figure 17.10). Since the

byte offset requires 5 bits for 32-byte blocks, the tag field is ���� � �� bits. In this case, there

is an overhead of 28 bits (27 tag bits and a valid bit) for every cache line with 32*8 bits of data.

Thus, it represents an overhead of about 11%. �

Section 17.9 Mapping Examples 717

Table 17.5 Cache space overhead for the three organizations

Block size Direct mapping 4-way set-associative Fully associative
(%) (%) (%)

32 bytes 7 7.8 11

4 bytes 56 62.5 97

If the block size is reduced to 4 bytes, the tag field size increases to 30 bits. The overhead

is almost equal to the data field size. For each cache line, we need 32 bits for data and 31

bits (30-bit tag field and a valid bit) of overhead (97% overhead!). Table 17.5 summarizes the

results for these examples. These examples demonstrate that fully associative mapping is not

only complex in terms of the logic circuit required for block location, but it also requires more

space for the tag field.

17.9 Mapping Examples
For the examples in this section, assume 16-bit addresses (i.e., memory address space is ��� bytes)

and 1 KB cache size. In addition, we use a block size � of 8 bytes.

Example 17.10 Describe the cache controller actions to read a 16-bit word at memory address

2E2CH in a direct-mapped cache.

First, we have to find the number of bits used for each field of the address shown in Figure 17.9.

Following the examples in the last section, we see that � � ���
�
� � ���

�
� � � bits. The

number of cache lines � is given by cache size/�. Thus, � � ���	�� � ��� cache lines.

The number of bits to identify a cache line
 is given by
 � ���
�
� �
 bits. The remaining

���
� � � � bits are stored in the tag. The address partition along with the contents of each

field is shown below:

Byte

Tag field Cache line # offset

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0

The address 2E2CH is mapped to block 5C5H. Note that we use suffix H to indicate that the

number is expressed in the hexadecimal system. For the direct-mapped cache with 128 cache

lines, the block is mapped to cache line 45H. If the valid bit is 1, the tag field of this cache line

is checked to see if it matches the higher-order 6 bits of the address (0BH). If not, the whole

block of 8 bytes is read from the main memory. Note that the starting address of this block is

2E28H. �

Example 17.11 Describe the cache controller actions to read a 16-bit word at memory address

2E2CH in a cache that uses fully associative mapping.

In this mapping, the tag field is �� � � � �� bits long. The address partition along with the

contents of each field is shown below:

718 Chapter 17 Cache Memory

Byte

Tag field offset

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0

The higher-order 13 bits of the address (5C5H) are compared to the tag field of all cache

lines that have 1 as their valid bit. If the block is not present in any of these cache lines, the

block is fetched from the main memory and placed in a cache line that is free. If all cache lines

have valid blocks, a block is replaced according to the replacement policy in effect. �

Example 17.12 Describe the cache controller actions to read a 16-bit word at memory address

2E2CH in a cache that uses a four-way set-associative mapping.

Since this cache uses a four-way set-associative mapping, there are 128/4 = 32 sets. Thus, we

need ���
�
�� � � bits to identify a set. The tag field, therefore, is ��� �� � � 	 bits long. The

address partition along with the contents of each field is shown below:

Byte

Tag field Set # offset

0 0 1 0 1 1 1 0 0 0 1 0 1 1 0 0

The address 2E2CH is mapped to set 5. The tag fields of the cache lines in this set that have

their valid bit on are searched for a match with the address tag field (2EH). If there is no match,

the block is not in the cache. The block from the main memory is placed in a free cache line in

this set; if all four cache lines have valid blocks, the replacement policy is used to evict a cache

line to make room for this new block. �

17.10 Types of Cache Misses
One of the metrics used to measure the performance of a cache system is the number of cache

misses. To see if a cache memory design can be improved further, we need to understand the

types of misses. Basically, there are three types of cache misses:

• Compulsory Misses: These are cache misses generated due to first-time access to the

block. Since these blocks have not been previously loaded into the cache, for a given

block size, all designs would have to experience these cache misses. In our Example 17.2

reference pattern on page 705, there should be three cache misses as the program refer-

ences three distinct blocks. These misses are also called cold-start misses or compulsory

line fills.

• Capacity Misses: These cache misses are induced due to the capacity limitation of the

cache. Since caches do not have the capacity to store all the referenced blocks, we have

to replace some of the blocks that may be referenced again later. If we had enough room

we could have avoided replacing these blocks.

• Conflict Misses: These cache misses, also called collision misses, are due to a conflict

caused by the direct and set-associative mapping functions. Conflict misses are those that

Section 17.11 Types of Caches 719

are caused by direct and set-associative mapping functions that are eliminated by using

the fully associative mapping.

The cache design and the parameters used can reduce these three types of misses. The main

factor that affects the compulsory misses is the block size. Increasing the block size has the

effect of prefetching additional memory addresses, which is useful because of spatial locality

characteristic of program referencing behavior. However, as you increase the block size beyond

a certain point, the miss rate increases. The increase is in part due to larger blocks being

replaced, which might throw some data that a smaller block might have kept in the cache:

more on this subject in Section 17.13.

Increasing the cache size can reduce capacity misses. As we increase the cache size, the law

of diminishing returns takes over. Larger caches also take more die space. Furthermore, larger

caches increase the access time. All these factors may lead to lower overall performance.

Increasing the degree of associativity can reduce conflict misses. In the Example 17.2 ref-

erence pattern, all blocks are mapped to the same cache line causing each access to result in

a cache miss. We have eliminated some of these misses by using the set-associative mapping

(see Example 17.5). Further improvement was obtained by using fully associative mapping (see

Example 17.4). Clearly, the degree of association can reduce these cache misses. By definition,

a fully associative cache will eliminate these misses completely.

17.11 Types of Caches
Our discussion so far has been on the basic aspects of cache memory design. In this section, we

look at some variations on the basic cache organization that lead to performance improvements.

17.11.1 Separate Instruction and Data Caches

Caches can be classified along several dimensions. One of them consists of the cache being a

common cache for both instructions and data (i.e., unified cache) or separate caches existing

for data and instructions. Early cache designs used unified caches. The recent trend is to use

separate caches for data and instructions. Such caches are organized as shown in Figure 17.18.

There are several reasons why a separate cache organization is preferred in current designs.

Locality tends to be stronger when instruction references and data references are considered

separately. This fact implies that split caches tend to outperform a unified cache of equivalent

size. We can also have different designs for these two caches. Since the instruction cache is

read-only, we do not have to worry about the write policies. Similarly, program execution tends

be sequential most of the time; it may be even possible to use a direct-mapped cache to simplify

the design. For the data cache, we can use a set-associative cache with an appropriate write

policy.

A disadvantage of the split cache is that you cannot dynamically allocate more cache lines

to data and vice versa. On the other hand, a unified cache can change the size of the cache

allocated to data and instructions. If a particular application is data-intensive, a unified cache

automatically allocates more space to data. Thus, the static bounds on the cache size in a split

cache may cause performance problems for some applications.

720 Chapter 17 Cache Memory

Data

cache

Instruction

cache

DataData

Instructions

Instruction address

CPU

Data address Data address

Instructions

Instruction address

Main

memory

Figure 17.18 Organization of separate data and instruction caches.

Main memory

Secondary cache

Registers

Primary cache

CPU

Figure 17.19 Primary and secondary caches in the memory hierarchy.

17.11.2 Number of Cache Levels

Most of the current processors support two-level caches. These systems have a primary cache

(also called level 1 or L1 cache) and a secondary (or level 2 or L2) cache as shown in Fig-

ure 17.19. The primary cache is on the chip (either on the same die or on a separate die); for

this reason, it is also called an onchip cache. The secondary cache is outside the CPU chip but

typically on the CPU (mother)board. The secondary cache can be designed to meet the specifi-

cations of a given system to augment performance. In general, the size of the secondary cache

is larger than the primary cache. For example, on Pentium family processors, the L1 cache is

about 32 KB, whereas the L2 cache can be up to 2 MB. Similarly, on the PowerPC, the L1 cache

is 64 KB, and the L2 cache can be up to 1 MB.

Section 17.11 Types of Caches 721

A typical two-level cache system works as follows:

1. The processor first attempts to access the required data (instruction or data) from the L1

cache.

• If the data are present in the L1 cache, they are retrieved from the L1 cache (“L1

cache hit”).

• If not, an L1 cache miss occurs, and the data must be retrieved from the L2 cache

or the main memory.

2. If an L1 cache miss occurs, the cache controller attempts to access data from the L2

cache.

• If the data are present in the L2 cache, they are retrieved from the L2 cache (“L2

cache hit”). The word is supplied to the processor, and the data block is written into

the L1 cache.

• If not present in the L2 cache, an L2 cache miss occurs, and the data must be re-

trieved from the main memory and supplied to the processor. The block from the

main memory is also written into both caches.

From the description, it is clear that the same data are present in three places simultaneously:

the L1 cache, L2 cache, and main memory.

The secondary cache referencing pattern could be different from the primary cache, partic-

ularly when the write-through policy is used at the primary level. In this case, the secondary

cache may see more writes than reads. Remember that the primary cache sees far fewer writes

than reads.

The purpose of the secondary cache is to catch the misses from the primary cache. If we

assume that the primary cache is able to support a hit ratio of 90%, the secondary cache will at

most be supporting the remaining 10%. If we further assume that the secondary cache also has

a hit ratio of 90%, main memory will end up supporting the 0.1 * 10% = 1% of the references.

From this description, it is clear that the primary cache is almost always busy, whereas the

secondary cache is idle most of the time.

Secondary cache placement in the hierarchy differs from system to system. The placement

shown in Figure 17.19 follows the standard hierarchy. A principle of this hierarchy is that the

data located at a higher level are contained in the lower level. Do we have to cache data in

both caches? If we follow the inclusion principle of the memory hierarchy, we have to; but

it is not strictly necessary. Two-level cache systems can be built by excluding the contents of

the primary cache from the secondary cache. A cache controller can be designed to manage

the two caches appropriately. However, due to the complexities associated with this exclusion

technique, it is not often used in practice.

Although most processors support two-level caches, three-level caches are also used in some

processors. The Compaq Alpha (previously DEC Alpha) processor 21164, for example, pro-

vides support for three-level caches. The first two levels of the cache, L1 and L2, are onchip

722 Chapter 17 Cache Memory

and the third-level cache L3 is offchip. The L1 cache is a split cache with 8 KB each of in-

struction and data caches. Both are direct-mapped caches and use 32-byte blocks. The data

cache uses the write-through policy. The L2 cache is a unified cache of 96 KB. It is a three-way

set-associative cache that uses the write-back policy. The L3 cache is an external cache, which

is optional. It uses direct mapping and the block size can be 32 or 64 bytes. Like the L2 cache,

it also uses the write-back policy. The size of the L3 cache can be 1, 2, 4, 8, 16, 32, or 64 MB.

17.11.3 Virtual and Physical Caches

Our discussion implicitly assumed that we are dealing with physical memory addresses; how-

ever, there is no reason why caches should operate on the physical addresses. With some mod-

ifications, the same principles apply to virtual addresses as well. Essentially, the location of

the cache determines whether it is a physical or virtual cache as shown in Figure 17.20. All

addresses upstream (toward the processor) of the memory management unit (MMU) are virtual

addresses. The MMU translates virtual addresses into physical addresses. Physical caches are

located downstream of the MMU. Details on the MMU operation are given in the next chapter.

In a two-level cache system, the primary can be virtual or physical depending on its location

relative to the MMU. Since the MMU is integrated into the processor, system designers do not

have an option for the secondary cache; it has to be a physical cache.

In the Alpha, the L1 instruction cache is a virtual cache; other caches are physical caches.

Pentium and PowerPC processors use only physical caches. The MIPS uses virtual caches for

L1 data and instruction caches. For L2, it uses physical caches.

17.12 Example Implementations
In this section, we look at the cache implementations of Pentium, PowerPC, and MIPS proces-

sors.

17.12.1 Pentium

The Pentium supports two-level caches. The L1 cache is a split cache, whereas the secondary

cache is a unified cache. Pentium family processors (including Pentium-Pro, Pentium II, and

Pentium III processors, which are referred to as P6 family processors) have 8 or 16 KB L1

instruction caches (I-caches). This is a four-way set-associative cache with a cache line size

of 32 bytes. In contrast, the earlier i486 processor used a unified four-way set-associative L1

cache with a 16-byte cache line. The L1 data cache (D-cache) is similar to the I-cache; it is a

16 KB four-way set-associative cache with a cache line size of 32 bytes.

The L2 cache is unified and is external to the processor in i486 and Pentium processors. In

P6 family processors (including Pentium-Pro, Pentium II, and Pentium III processors), the L2

cache is internal to the processor package. The L2 cache can be 128, 256, 512 KB, or 1 or 2 MB

in size. As with the L1 cache, it is also a four-way set-associative cache with a cache line size

of 32 bytes. Cache lines are filled from memory with a four-transfer burst transaction, where

each transfer brings 64 bits. Chapter 5 describes burst transfer of data.

Section 17.12 Example Implementations 723

Memory

management

unit

Virtual address bus

Memory

management

unit

Virtual address bus

Virtual

cache

(a) Virtual cache

(b) Physical cache

CPU

Physical address bus

Data bus

Physical

cache

CPU

Physical address bus

Data bus

Main

memory

Main

memory

Figure 17.20 Physical and virtual cache systems.

Read misses always load the cache (L1, L2, or both). The Pentium family supports both

write-through and write-back policies. However, only write-through was supported in the i486.

On i486 and Pentium processors, write misses will not cause cache line fills. Writes are sent

directly to the memory through a write buffer.

The processor allows any memory region to be cached in both levels of caches. It is also

possible to set the type of caching for each page or region of memory. These options are set

through system flags and registers. The following five modes are supported:

• Uncacheable: In this mode, the corresponding memory locations are not cached. All

reads and writes go to the main memory. This mode of operation is useful for memory-

mapped I/O devices. Furthermore, it can also be used in situations where a large data

structure is read once but will not be accessed again until some other entity (processor,

I/O device, etc.) updates the data. Similarly, uncacheable mode is useful for write-only

data structures.

724 Chapter 17 Cache Memory

Table 17.6 Pentium family cache operating modes

CD NW Write policy Read miss Write miss

0 0 Write-through Cache line filled Cache line filled

0 1 Invalid combination—causes exception

1 0 Write-through No cache line fills No cache line fills

1 1 Qrite-back No cache line fills No cache line fills

• Write Combining: In this mode also, memory locations are not cached. However, writes

may be buffered and combined in the write buffer to reduce access to the main memory.

This mode is useful for video frame buffers, where the write order is not important as

long as all the changes can be seen on the display.

• Write-Through: This mode implements the write-through policy. However, writes to

main memory may be delayed as they go through the write buffer as in the write combin-

ing mode.

• Write-Back: This mode implements the write-back policy. As with the write-through

mode, write combining is allowed to reduce bus traffic.

• Write Protected: This mode inhibits cache writes; such writes are propagated to the mem-

ory.

Two flag bits in control register CR0 determine the mode. The cache disable (CD) flag bit

controls caching of memory locations. If this bit is set, caching is disabled. The other bit—not

write-through (NW)—controls the type of write policy in effect. When this bit is one, write-

back policy is used; otherwise, write-through policy is used. Table 17.6 gives the three valid

combinations for these two bits. During normal cache operation, both CD and NW are set to

zero.

17.12.2 PowerPC

The PowerPC also supports two-level caches. The L1 cache uses separate instruction and data

caches. Each is a 32 KB, eight-way set-associative cache. The block size is 32 bytes. The

L1 cache uses a pseudo-LRU (PLRU) replacement policy (described later). The instruction

cache is read-only, whereas the data cache supports read/write. Write policy can be set to either

write-through or write-back.

The L2 cache is a unified cache as in the Pentium with an LRU replacement. The PowerPC

750 can support up to a 1 MB external L2 cache, organized as a two-way set-associative cache.

The L2 cache can use synchronous SRAM with sizes 256 or 512 KB, or 1 MB. The block size

is 32 bytes as in the L1 cache. The write policy can be write-through or write-back. As in the

Pentium, both the L1 and L2 caches are physical caches.

Section 17.12 Example Implementations 725

i

i i

i

Is

invalid?

cache line Li

Li

Allocate

Replace Replace Replace Replace Replace Replace Replace Replace

B0 = 0 B0 = 1

B2 = 1B2 = 0B1 = 1B1 = 0

B3 = 0 B3 = 1 B4 = 0 B4 = 1 B5 = 0 B5 = 1 B6 = 0 B6 = 1

YesNo

YesNo

L1 L2 L3 L4 L5 L6 L7L0

 = + 1

Set = 0

 = 7?

Figure 17.21 PowerPC placement policy. It implements a pseudo-LRU to approximate the true LRU policy.

Write policy type and caching attributes can be set by the operating system at the block or

page level using W and I bits. The W bit determines whether write-through or write back policy

is used. Whether to cache a block/page is determined by the caching-inhibit (I) bit.

Since the L2 cache is two-way set-associative, implementing strict LRU requires only a

single bit. This bit identifies the set that is least recently accessed. However, implementing a

strict LRU for the L1 cache is more complex because it is eight-way associative. As mentioned

in Section 17.6, most implementations use an approximated version of the true LRU.

PowerPC placement policy is shown in Figure 17.21. The policy first tries to find a block

that is free (i.e., valid bit is off) by scanning cache lines from L0 to L7 in that order. If an

invalid cache line is found, it is allocated to the incoming block. If all eight cache lines have

valid blocks, the pseudo-LRU replacement policy is invoked.

726 Chapter 17 Cache Memory

Table 17.7 Pseudo-LRU bit update rules for the PowerPC

Current

access

Change PLRU bit to:

B0 B1 B2 B3 B4 B5 B6

L0 1 1 NC 1 NC NC NC

L1 1 1 NC 0 NC NC NC

L2 1 0 NC NC 1 NC NC

L3 1 0 NC NC 0 NC NC

L4 0 NC 1 NC NC 1 NC

L5 0 NC 1 NC NC 0 NC

L6 0 NC 0 NC NC NC 1

L7 0 NC 0 NC NC NC 0

NC: No change.

To implement the PLRU policy, each set maintains seven PLRU bits B0 to B6. The policy

follows the basic description given in Section 17.6. The PLRU bits determine the cache line

selected for replacement. For example, assume that B0 is 0. This limits the set of cache lines

for replacement to L0 to L3. In this case, we look at B1 to restrict the set further to either L0

and L1 or L2 and L3. If B1 is 0, the set is restricted to L0 and L1; otherwise, only L2 and L3

are considered. The final selection is made using either the B3 or B4 bit depending on the value

of the B1 bit (see Figure 17.21).

The seven PLRU bits are updated as shown in Table 17.7. Whenever a cache line is ac-

cessed, it sets the bit values of three of the seven bits that are on the path from root to leaf (see

Figure 17.21). For example, if L0 is accessed, it sets bits B0, B1, and B3 to 1 to indicate that

it should not be the candidate for replacement. Notice that all the other bits remain unchanged

(NC). As another example, if L4 is accessed, the B0 bit is cleared, and the B2 and B5 bits are

set.

17.12.3 MIPS

Here we describe the MIPS R4000MC processor cache structure. This processor supports two-

level caches. The L1 cache is a split cache. The instruction cache (I-cache) is a direct-mapped,

virtual cache. It is treated as a read-only cache. As a result, it just maintains a single bit to

indicate whether the cache line is valid. The block size can be either 16 or 32 bytes. The L1

data cache is also a direct-mapped virtual cache with 16- or 32-byte block size. It uses the

write-back policy. The sizes of the instruction and data caches can each be in the range of 8

to 32 KB. The processor uses the write-back (W) bit to indicate whether the cache line was

modified since it was loaded. The W bit serves the same purpose as the dirty bit we discussed

in Section 17.7.

Section 17.13 Cache Operation: A Summary 727

The L2 is a physical cache that can be configured at boot time either as a unified cache or

a split cache. The L2 cache is also organized as a direct-mapped cache and uses the write-back

policy. The cache block size can be 16, 32, 64, or 128 bytes. This size can be set at boot time

through boot-mode bits.

Note that when the L2 cache is configured as a unified cache, its size can range from 128 KB

to 4 MB. On the other hand, if it is configured as a split cache, each cache can be between

128 KB and 2 MB.

The L1 cache line size cannot be greater than the L2 cache size. This condition implies that

the L2 cache cannot use the cache line size of 16 bytes when the L1 cache is using 32-byte

blocks.

Since this processor uses direct mapping, the replacement policy is rather straightforward

to implement. There is no need to devise ways to implement the LRU policy, as is the case with

the other processors.

17.13 Cache Operation: A Summary
In this section, we summarize the various policies used by a cache system.

17.13.1 Placement of a Block

In direct-mapped caches, each block can be placed only in a single, specified cache line. Imple-

mentation of this scheme is simple but may lead to performance problems for some applications.

The MIPS R4000 processor uses direct mapping for both L1 and L2 caches.

In fully associative mapping, a block can be placed anywhere in the cache. This scheme

provides the ultimate flexibility in terms of block placement. However, its implementation is

complex as discussed before (see Section 17.5.2). For this reason, this scheme is not used in

practice. Also, fully associative mapping requires more tag space (see Section 17.8).

Set-associative mapping is a compromise between these two extremes. The cache lines are

divided into sets; each set typically contains a few (two to eight) cache lines. Direct mapping

is used to map the block address to a set, and the fully associative method is used to allocate a

cache line within the assigned set. This reduces the complexity substantially when compared to

the fully associated scheme (discussed further in the “Location of a Block” subsection next). In

fact, direct mapping and fully associative mapping can be considered as a special case of the set-

associative mapping scheme. Direct mapping is a set-associative scheme with a set size of one

cache line. Fully associative mapping is a set-associative scheme with a single set consisting of

all the cache lines.

Some systems allocate a cache line only on read misses. Write misses directly update the

memory. This scheme is sometimes referred to as the read-allocate policy. Similarly, we can

also define a write-allocate policy that allocates a cache line only in response to a write miss.

For example, the Alpha uses the read-allocate policy for the L1 cache and the write-allocate

policy for L2 caches.

728 Chapter 17 Cache Memory

17.13.2 Location of a Block

The cache controller will have to determine whether the requested block is in a cache line. How

a block is found depends on the placement policy. In direct-mapped caches, only one cache line

tag has to be compared to find if the block is currently cached. In caches using fully associative

mapping, all tags will have to be searched for a match. On a Pentium-like machine consisting

of a 16 KB cache with a block size of 32 bytes, we have to compare 512 tags. If we assume

that the physical address is 32 bits wide, we need 512 27-bit comparators just for the I-cache.

If, for example, the cache size is doubled, we also double the number of comparators. This is

the main reason that fully associative mapping is not used in practice.

Set-associative mapping reduces this complexity, yet allows more flexibility in placement

of blocks compared to the direct mapping scheme. For example, the Pentium uses a four-way

set-associative mapping. This requires only four comparisons after determining the potential

set that may contain the block. In this mapping, we need only four 25-bit comparators. Further-

more, increasing the cache size does not increase the number of required comparators.

17.13.3 Replacement Policy

The replacement policy is invoked when the target cache lines as determined by the placement

policy are all full. In the direct mapping scheme, no special replacement policy is needed. Since

each block is mapped to exactly one cache line, if that cache line has a valid block, it will have

to be evicted to make room for the incoming block.

For the set-associative and fully associative policies, there is a choice. Since programs

exhibit temporal locality, it is better to replace the least recently used block from the cache.

However, implementation of LRU is complex; each set requires ����
�
� �� bits, where � is the

number of cache lines in the set. For example, the PowerPC uses eight-way set-associative

mapping. Implementation of a true LRU requires ����
�
��� � ����

�
���	�� �
� bits per set.

The number of bits can be reduced to � �
 � � by using the pseudo-LRU scheme of the

PowerPC. For this reason, most implementations use some sort of approximation to the true

LRU scheme. Note that a true LRU implementation requires only a single bit if the system uses

two-way associative mapping.

17.13.4 Write Policy

Cache systems typically use one of the two write policies: write-through or write-back. Write-

through policy always updates the main memory, and if the block is cached, it updates the cache

copy as well. Write-back updates only the cache copy. The main memory copy is typically

updated when the cache line is evicted.

Write-back tends to reduce the bus traffic due to writes; write-through caches reduce the

traffic caused by reads but have no effect on the write traffic. Systems that use write-through

may employ write buffers to facilitate buffered writes. For example, the Pentium uses a 32-byte

write buffer. This buffer can combine several writes and update the main memory block to

reflect these changes. Even write-through policies with sufficient write buffers can approximate

the write bus traffic of a write-back cache. But, write buffering introduces complications. For a

detailed discussion, see [17].

Section 17.14 Design Issues 729

17.14 Design Issues
There are several design parameters that have significant impact on the performance of a cache

system. These include:

• Cache capacity,

• Cache line size or block size,

• Degree of associativity,

• Unified or split cache,

• Single- or two-level cache,

• Write-through or write-back, and

• Logical or physical caches.

We have already discussed the impact of the last four factors on performance. Here we focus

on the first three design parameters.

17.14.1 Cache Capacity

From the miss rate point of view, we would like to have a cache as big as possible. On the

other hand, a larger cache increases the cost. Therefore, we have to strike a balance between

these two requirements. It is helpful to observe that beyond a certain cache size, we see only a

marginal improvement in the miss rate (see Figure 17.22�). Furthermore, larger caches mean

more gates to address the cache. This slows down the cache as the cache size increases. Also,

space availability may impose a limit on the cache size. For example, for L1 onchip caches, the

die real estate (area) imposes a limit on the L1 cache size. Typical cache sizes for the L1 cache

are in the range of 16 KB to 64 KB. L2 caches typically range between 256 KB to 2 MB.

17.14.2 Cache Line Size

The impact of cache line size or block size is shown in Figure 17.22�. Initially, miss rate

decreases as we increase the block size. This is mainly due to the prefetching achieved with

larger block sizes. Since programs exhibit spatial locality, prefetching reduces the miss rate.

However, as we continue to increase the block size, the miss rate starts to increase. This is

due to the block replacements as we run out of space in cache memory. When we replace a

larger block to make room for an incoming block, we also throw away data/instructions that the

processor might reference in the future. This sensitivity can best be explained by considering

the two extreme block size values.

At one end of the spectrum, consider a block size of one word. In this case we are not

prefetching data/instructions from the main memory. Thus, if we go from one-word to two-word

cache lines, we reduce the miss rate. We can extend this argument to larger block sizes. Larger

block size also has the benefit of taking less time to load from main memory in a burst rather

than by reading individual words. Most processors support burst transfers. For example, the

Pentium requires three clocks to transfer 64-bit noncacheable data from the memory. However,

in the burst mode, after an initial delay of two clocks, one 64-bit word is transferred each clock

730 Chapter 17 Cache Memory

M
is

s
ra

te

Degree of associativity

Direct mapping

Fully associative mapping

Cache capacity

M
is

s
ra

te

Block size

M
is

s
ra

te

(a) (b)

(c)

Figure 17.22 Miss rate sensitivity to various cache system parameters.

cycle. In this mode, it can transfer up to four 64-bit words in six clocks. In contrast, we need 12

cycles to transfer the same data using single cycles. This is true whether it is a memory read or

a write. Notice that the Pentium uses the 32-byte cache line size, which is exactly the amount

of data transferred in one burst cycle (four transfers of 64-bit words each).

At the other extreme, consider a block size equal to the whole cache. In this case, whenever

there is a miss, we throw the entire cache contents. In the process, we lose a lot of data that the

processor might reference in the future. In addition, such large block sizes affect performance

Section 17.15 Summary 731

as the miss penalty increases with the block size. Most processors tend to use a block size in

the range of 8 to 64 bytes, with 32 bytes being the most common. Some processors such as the

PowerPC and MIPS R4000 allow the system designer to program the cache line size at boot

time.

17.14.3 Degree of Associativity

Improving the degree of associativity can significantly improve the miss rate, particularly for

smaller caches (see Figure 17.22
). We have illustrated this by means of examples in Sec-

tion 17.5. We know that an increasing degree of associativity calls for more complex implemen-

tation. In particular, it is almost impossible to implement full associativity for reasonably large

caches. As shown in Figure 17.22
, a fairly small degree of associativity can lead to 90% of

the gains we can get with full associativity. In practice, two-, four-, or eight-way set-associative

mapping is used. Some processors such as the MIPS R4000 and Alpha use direct mapping to

reduce the cache controller complexity and the amount of cache memory bits required. In Sec-

tion 17.8, we have illustrated the space requirements of the three mapping functions by means

of several examples.

17.15 Summary
Cache memory plays an important role in improving the performance of computer systems.

Cache memory is a small amount of fast memory, usually implemented using SRAMs, which

sits between the processor and main memory in the memory hierarchy. The cache effectively

isolates the processor from the slowness of the main memory, which is DRAM-based. The idea

behind the cache is to keep in the cache data and instructions that are needed in the immediate

future by the processor.

Cache memory improves performance because programs exhibit locality in their referenc-

ing behavior. We have identified two key locality types: spatial and temporal. Spatial locality

behavior suggests that programs tend to access memory in sequence. Sequential code execu-

tion supports this claim. Temporal locality suggests that a small part of the code is repeatedly

executed for some time. A simple example is the body of a loop structure. These two locality

types also apply to data access patterns.

There are four components to a cache implementation policy: block placement, block lo-

cation, block replacement, and write policies. Block placement can use direct mapping, as-

sociative mapping, or set-associative mapping. These mapping functions represent a tradeoff

between implementation complexity and flexible placement of blocks. The complexity of block

location is related to the mapping function used. Direct mapping is efficient to implement: both

in terms of implementation logic and cache memory overhead. Full associativity, on the other

hand, requires complex logic as well as more cache memory space to keep the tag information.

Set-associative mapping strikes a compromise between these two extremes. In fact, direct and

associative mapping functions can be considered as special cases of the set-associative map-

ping. Most processors implement a set-associative mapping, but direct mapping is also used in

some processors.

732 Chapter 17 Cache Memory

The block replacement policy determines which block should be evicted in case the cache is

full. There are two main policies: random replacement or LRU replacement. Random replace-

ment is easy to implement. True LRU implementation is complex and requires more bits. For

these reasons, processors that implement the LRU policy usually implement a pseudo-LRU that

approximates the behavior of the true LRU policy.

Write policy can be either write-through or write-back. In the write-through policy, both the

cache and main memory copies are updated in response to a write operation by the processor.

The write-back policy, on the other hand, updates only the cache copy. The advantage of the

write-through policy is that the main memory is (almost) always consistent with the cache copy.

But it generates too many writes to the main memory. Practical implementations often use write

buffers to combine all the updates before writing to the main memory. Write-back updates the

main memory copy only when the cache line is replaced or an explicit cache instruction has been

issued. The majority of the implementations use the write-back policy. On some processors,

write policy can be selected at boot time.

We have also discussed several variations on the basic cache design. These include split

caches and multilevel caches. Split cache designs maintain separate data and instruction caches.

Multilevel caches are usually limited two-level caches. Typically, there is a level 1 (L1) or

primary cache within the processor chip. A larger level 2 (L2) or secondary cache is used from

the chip. Some processors such as the Alpha place the first two levels of caches on the processor

chip and allow a third level cache from the chip. Most processors use split cache design for the

L1 cache. L2 cache implementations are either unified caches or an option is given to the system

designer.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Associative mapping

• Cache capacity

• Cache levels

• Cache miss types

• Cache types

• Capacity misses

• Compulsory misses

• Conflict misses

• Data cache

• Degree of associativity

• Design issues

• Direct mapping

• Dirty bit

• Fully associative mapping

• Hit

• Hit rate

• Hit ratio

• Hit time

• Instruction cache

• Least frequently used (LFU) policy

• Least recently used (LRU) policy

• Line size

• Locality

• Location policies

• Memory hierarchy

• Memory management unit (MMU)

Section 17.16 Exercises 733

• Miss

• Miss penalty

• Miss rate

• Miss ratio

• Physical cache

• Placement policies

• Pseudo-LRU replacement policy

• Replacement policies

• Set-associative mapping

• Space overhead

• Spatial locality

• Tag field

• Temporal locality

• Update bit

• Valid bit

• Virtual cache

• Write combining

• Write policies

• Write-back

• Write-back bit

• Write-through

17.16 Exercises
17–1 Explain the two components of the locality. Give a simple example code to support these

two components.

17–2 How can a cache memory system benefit from the presence of spatial locality?

17–3 How can a cache memory system benefit from the presence of temporal locality?

17–4 What is the purpose of the valid bit?

17–5 What is the purpose of the dirty bit?

17–6 Do you need to maintain the dirty bit information if you are using the write-through

policy?

17–7 In a direct mapped cache, do you have a choice to select the replacement policy? Explain

your answer.

17–8 What are the advantages and disadvantages of a direct mapped cache over a fully asso-

ciative cache?

17–9 Why is a fully associative cache not implemented in practice?

17–10 What are the advantages and disadvantages of the set-associative cache over direct mapped

and fully associative caches?

17–11 We have discussed two components of locality that benefit cache memory systems. When

we load a block of data from the main memory, which of these components shows that

this is a beneficial action?

17–12 Discuss the tradeoffs associated with the block size. That is, discuss the pros and cons of

small and large block sizes.

17–13 Example 17.5 (on page 710) shows an example reference pattern that results in a 67%

hit ratio. Can you devise a 12-block long reference pattern that gives the best hit ratio

using the same set-associative cache? You must use four distinct blocks in your reference

pattern.

734 Chapter 17 Cache Memory

17–14 Suppose that the reference pattern of a program is such that it accesses the following

sequence of blocks: 0, 4, 3, 10, 10, 3, 4, 0, 0, 4, 3, 10, 4, 10. Find the hit ratio with a

direct mapped cache of four cache lines.

17–15 Using the reference pattern given in Exercise 17–14, find the hit ratio of a set-associative

cache of four lines with a set size of 2. Use the true LRU replacement policy.

17–16 Consider the reference pattern given in Exercise 17–14. Without going through a detailed

analysis, can you tell if we get the best hit ratio with a fully associative cache of four

cache lines? If so, what is the hit ratio?

17–17 Suppose that the reference pattern of a program is such that it accesses the following

sequence of blocks: 0, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 0, 1, 10. Find the hit ratio with a fully

associative cache of four cache lines. Do the exercise with FIFO and LRU replacement

policies. Is there a difference in the hit ratio?

17–18 Repeat Exercise 17–17 with the following reference pattern: 0, 1, 2, 0, 3, 2, 5, 3, 6, 0, 2,

1.

17–19 Consider a system with 4 GB of memory address space. It uses a 64 KB direct mapped

cache. Assuming a write-back policy, find the space overhead when

(a) Block size is 16 bytes;

(b) Block size is 32 bytes;

(c) Block size is 64 bytes.

17–20 Repeat Exercise 17–19 for a fully associative cache.

17–21 Repeat Exercise 17–19 for an eight-way set-associative cache.

17–22 Consider a system with 4 GB of memory address space. It uses a 32 KB cache. Assuming

a direct mapped cache that uses 32-byte blocks, find the size (in bits) of the following:

tag field, cache line number, and byte offset.

17–23 Consider a system with 4 GB of memory address space. It uses a 32 KB cache. Assuming

a fully associative cache that uses 32-byte blocks, find the size of the tag field in bits.

17–24 Consider a system with 4 GB of memory address space. It uses a 32 KB cache. Assuming

an eight-way set-associative cache that uses 64-byte blocks, find the size (in bits) of the

following: tag field, cache line number, and byte offset.

Chapter 18

Virtual Memory

Objectives
• To explain the basic concepts of virtual memory;

• To discuss design and implementation issues;

• To present details about TLBs to perform fast address translation;

• To describe segmentation;

• To provide details about virtual memory implementations of the Pentium, PowerPC, and

MIPS processors.

Virtual memory was developed to give programs a larger memory space than the system’s main

memory. The appearance of larger address space is realized by using much slower disk storage.

The concepts and the principal implementation techniques, discussed in Section 18.1, are very

similar to the cache systems discussed in the last chapter. In implementing virtual memory, the

main memory and disk are divided into fixed size pages. A mapping table called a page table

does the mapping of pages between the disk and main memory. Section 18.2 presents virtual

memory concepts. The page table structure is described in Section 18.3.

When we use such a page table, every memory access involves two accesses: one to access

the page table and the other to access the program’s requested page. To reduce this unaccept-

able overhead, the processor maintains a cache of most recently used page table entries. This

cache is called the translation lookaside buffer (TLB). Section 18.4 gives details on the TLB

organization.

Page tables used to translate virtual addresses to physical addresses tend to be very large.

Consequently, these tables are stored in the virtual address space. Section 18.5 describes the

page table structure in detail. The size of these page tables is proportional to the virtual address

space. For 64-bit processors, the table size can be very large. To reduce the table size, an

inverted page table has been proposed (Section 18.6). In the inverted page table, the number of

entries is proportional to the physical memory, not the virtual memory.

735

736 Chapter 18 Virtual Memory

Processors such as the Pentium and PowerPC use segmentation to facilitate implementation

of protection as well as to extend the virtual memory. Section 18.7 discusses the motivation and

concepts involved in segmentation. Virtual memory implementations of Pentium, PowerPC,

and MIPS processors are discussed in Section 18.8. The chapter concludes with a summary.

18.1 Introduction
When you write programs, you are not really concerned with the amount of memory available

on your system to run the program. What if your program requires more memory to run than is

available on your machine? This is not a theoretical question, in spite of the amount of memory

available on current machines. Even on a single-user system, not all the memory is available

for your program. The operating system takes quite a big chunk of it. If you consider a time-

shared multiprogrammed system, the problem becomes even more serious. Virtual memory was

proposed to deal with this problem.

Before the virtual memory technique was proposed, one had to resort to a technique known

as overlaying in order to run programs that did not fit into the physical memory. With only a

tiny amount of memory available (by current standards) on the earlier machines, only a simple

program could fit into the memory. In this technique, the programmer divides the program into

several chunks, each of which can fit in the memory. These chunks are known as overlays.

The whole program (i.e., all overlays) resides in the disk. The programmer is responsible for

explicitly managing the overlays. Typically, when an overlay in the memory is finished, it

will bring in the next overlay that is required for program execution. Needless to say, this is

not something a programmer would like to do. Virtual memory automates the management

of overlays without requiring any help from the programmer. As we show in this chapter,

virtual memory implementations typically provide much more functionality than just managing

overlays. These functions include the following:

• Relocation: Each program can use its own virtual address space; when they run, they may

be mapped to different physical memory locations. These run-time details do not have

any impact on code generation because virtual memory addresses generated by processors

are mapped to physical addresses on the fly at run time.

• Protection: Since each program is working in its own virtual memory address space,

virtual memory facilitates isolation of programs from each other and implementation of

protection.

Many of the concepts we use here are similar to the concepts used in cache systems. If

you are not familiar with the cache concepts, it is a good time to review the cache principles

presented in the last chapter. Caches use a small amount of fast memory but to a program it

appears as a large amount of fast memory. As mentioned before, virtual memory also provides

a similar illusion. As a result of this similarity, the principles involved are the same. The details,

however, are quite different because the motivations for cache memory and virtual memory are

different. We use cache memory to improve performance whereas virtual memory is necessary

to run programs in a small amount of memory.

Section 18.2 Virtual Memory Concepts 737

As in the cache memory, the concept of locality is important to make the virtual memory

work efficiently. Both types of locality—temporal as well as spatial —are important. These

two locality types were discussed in the last chapter. You should, however, note that even if a

program exhibits no locality in its referencing behavior, we would still use virtual memory just

to run the program. This is mainly due to the difference in the objectives of the two systems:

in one it is optional, and in the other it is required for the execution of programs. The imple-

mentation of virtual memory also differs from cache implementation due to the fact that the

lower-level memory (disk) is several orders of magnitude slower than the main memory. As a

result, we do not have to implement the mapping function in hardware. We can implement it in

software.

18.2 Virtual Memory Concepts
In simple terms, virtual memory implements a mapping function between a much larger virtual

address space and the physical memory address space. For example, in the PowerPC a 48-bit

virtual address is translated into a 32-bit memory address. On the other hand, the Pentium uses

32-bit addresses for both virtual and physical memory addresses. However, it uses segmentation

to effectively increase the physical memory.

To implement virtual memory, the virtual address space is divided into fixed-size chunks

called virtual pages. The virtual address is divided into a virtual page number and a byte offset

within a page. Similarly, the physical memory is also divided into similar-size chunks called

physical pages or page frames. Each physical address also consists of a physical page number

and an offset. In translating a virtual address to a physical address, the offset part remains the

same; only the virtual page numbers are mapped to physical page numbers. This concept of a

page is similar to that of a cache line, except that the page size is much larger than the cache

line size. A typical page size in current processors such as the Pentium is 4 KB.

Figure 18.1 shows the mapping of a 32-bit virtual address space to a 24-bit physical address

space. Assuming a page size of 4 KB, the least significant 12 bits of the virtual and physical

addresses are used to identify a byte in the page (page offset). The remaining upper address

bits are used to identify a page number. In this example, the upper 20 bits in the virtual address

identify a virtual page, and the upper 12 bits in the physical address refer to a physical page.

Thus, the mapping is from �
�� virtual pages to �

�� physical page frames as shown in Figure 18.2.

From the operating system point of view, a virtual page is in one of two places: either it

is in the main memory or on disk. Note that a virtual page that is in main memory is also on

disk. If a page is not in the main memory, a page fault occurs. Page fault corresponds to a

cache miss. Then the operating system takes control and transfers the missing page into a main

memory page and updates the page table to reflect this action as shown in Figure 18.3. This

is called demand paging as pages are transferred to the main memory on demand. If the main

memory is full, a page replacement policy such as LRU is used to make room for the new page.

The memory management unit is responsible for translation of virtual addresses to physical

addresses.

738 Chapter 18 Virtual Memory

031 12 11

24-bit physical address

023 1112

Page

Physical page number

Byte offset

Byte offset

translation

Virtual page number

12-bit physical page number

20-bit virtual page number

32-bit virtual address

Figure 18.1 Translation of virtual address to physical address: A page size of 4 KB is used.

18.2.1 Page Replacement Policies

In the last chapter, we discussed several replacement policies for cache systems (see Sec-

tion 17.6 on page 711). Cache systems do not use elaborate replacement policies for two main

reasons: the miss penalty is not as high as in the virtual memory systems, and the implementa-

tion is typically done in hardware.

Virtual memory systems implement the replacement policy in software. Furthermore, since

the miss penalty is several orders of magnitude larger, a good page replacement is important.

Consequently, several policies have been proposed. Here we briefly mention some of the inter-

esting ones.

The first policy we look at is the first-in-first-out policy, which is simple to implement. As

the name suggests, the page that has been loaded the earliest into the memory is the one that

should be replaced. In other words, FIFO policy replaces the page that has been in memory the

longest. A drawback is that FIFO does not consider the usage of a page (i.e., whether the page

has been recently referenced). As a result, it might remove a page that is in fact needed. For

this reason, the FIFO policy is not used in practice.

Another policy, called the second chance policy, has been proposed to avoid the problem

of evicting pages that are useful. Before replacing a page, this new policy looks at whether the

page has been referenced. Yet another policy is the not frequently used (NFU) policy, where a

software counter is associated with each page to keep track of its usage. When a page needs to

be replaced, NFU selects the page with the smallest count value. More details on these policies

can be found in [36].

 18.2 739

00008

00007

00006

00005

00004

00003

00002

00001

00000

s s

s s x s s

y y d y n .

d y n . n h g

n , y du o d

d by . , d n n 17.6, y .

o g n g , h y

o n y .

y on 742.

18.2.2 y

d o o g n d

n 17.7 on . h y no y du

o h k . n d n y

y n . ,

740 Chapter 18 Virtual Memory

page table

Consult disk address

Memory full?
to make room

Replace a page

Update page tables

from disk to memory

Transfer the faulted page

Yes

No

Return to faulted instruction

Uses page-replacement policy

Page fault

Figure 18.3 Page fault handling routine: Systems typically implement a psuedo-LRU page replacement

policy.

program does not have write permission on the referenced page, a write protection exception is

generated.

18.2.3 Page Size Tradeoff

The operating system can select a page size that results in the best performance. However,

several factors influence the best page size.

Factors favoring small page sizes are as follows:

• Internal Fragmentation: Since data, code, and stack are not going to be an integral num-

ber of pages, the last page is going to be half full on average. This is referred to as internal

fragmentation. Clearly, using smaller pages reduces internal fragmentation.

Section 18.3 Page Table Organization 741

• Better Match: Large page size tends to load more, potentially unused, portions of the

program into main memory. A better match with the working set of the program can be

obtained by using smaller pages.

Factors favoring large page sizes are as follows:

• Smaller Page Tables: Larger pages reduce the number of page table entries, which results

in smaller page tables. For example, in Figure 18.2, if we use 32 KB pages instead of

4 KB pages, we reduce the number of virtual pages from �
�� to �

�� pages. As we show

in the next section, the number of page table entries of a page table is equal to the number

of virtual pages.

• Disk Access Time: Accessing a page on disk is slow mainly due to seek time and rotational

delays. The transfer time is smaller than these two delays. Thus, transferring larger pages

from disk to main memory takes almost the same time as a smaller page.

Notice that some of these points are similar to the tradeoffs discussed for cache line sizes (see

page 729). Both the Pentium and PowerPC use 4 KB pages. With increasing virtual address

space and physical memory, page sizes of up to 64 KB are supported in new systems. In some

processors, page size is not fixed. For example, the MIPS R4000 supports seven page sizes

between 4 KB and 16 MB. Note, however, optimum page size is often selected by the operating

system. The operating system may use the natural hardware-defined page size, or it can use a

larger page size. For example, the operating system may treat two hardware-defined pages as a

single page.

18.2.4 Page Mapping

Since the miss penalty is very high in virtual memory, we want to minimize the miss rate. This

implies that we have to use a fully associative mapping scheme. Recall that fully associative

mapping can place a virtual page in any physical page (see Section 17.5.2 on page 707).

In a cache system design, we could not afford to implement a sophisticated mapping func-

tion because the miss penalty is not high enough to justify such an implementation. Further-

more, the implementation has to be done in hardware. Since the disk represents the lower-level

store in virtual memory and is slow, we can implement mapping in software. In addition, due

to the high miss penalty, we do not have to use a quick and dirty mapping function. In virtual

memory, mapping is actually done by using a translation table called the page table. The page

table organization is described next.

18.3 Page Table Organization
In a simple page table implementation, each entry consists of a virtual page number and the

corresponding physical page number. This type of organization, however, leads to unacceptable

overhead, as it involves sorting the table entries on virtual page numbers. In addition, there is

considerable overhead to search for an entry in such a table. To speed up the page table lookup,

we can use the virtual page number as an index into the page table.

742 Chapter 18 Virtual Memory

Index into

page table

Disk

Valid

bit

0

1

0

0

1

1

0

1

Disk page addresses Physical page addresses

Physical memory

Virtual page number

Figure 18.4 Page table organization for a hypothetical system with four pages of main memory supporting

a virtual address space of eight pages.

Figure 18.4 shows the organization of a page table. A typical page table is implemented

using two data structures: one stores the physical page addresses, and the other maintains the

disk addresses of all pages. We can use the virtual page number (VPN) as an index into both

tables. The physical page address table contains valid entries only for those pages that are in the

main memory. The valid bit is used to indicate this fact. If we are looking for a VPN for which

the valid bit is 0, a page fault is generated. As discussed before, the operating system loads the

page before handing control to the program, which reexecutes the instruction that caused the

page fault (see Figure 18.3).

18.3.1 Page Table Entries

Each entry in the page table, called a page table entry (PTE), provides the mapping information

from virtual to physical page. Since we use VPN as an index, PTEs need to store only physical

page numbers. In addition, there is a valid bit to indicate whether the virtual page is in memory

or on disk. As mentioned in Section 18.1, virtual memory also supports address-space and

page-level protection. So, additional control bits are usually added to provide this capability.

Each PTE stores the following information:

• Physical Page Number: Gives the location of the page in main memory if the page is in

memory.

• Disk Page Address: Specifies the location of the page on disk. This information is kept

on all pages, whether they are in memory or not as shown in Figure 18.4.

• Valid Bit: Indicates whether the page is in memory.

Section 18.4 The Translation Lookaside Buffer 743

• Dirty Bit: Indicates whether the page has been modified. If the page has been written

into, we have to write this back to disk before discarding it.

• Referenced Bit: Used to implement the pseudo-LRU algorithm. The OS periodically

clears this bit to check the usage of pages. Accessing the page turns this bit on.

• Owner Information: To implement proper access control, the OS needs to know the owner

of the page.

• Protection Bits: Indicates the type of privilege the owner of the page has (read-only,

execute, read/write, etc.). For example, the PowerPC uses three protection bits to give

various types of access to supervisor-mode and user-mode access requests.

18.4 The Translation Lookaside Buffer
Earlier systems with smaller virtual address spaces could maintain the translation table in hard-

ware. However, with larger address spaces supported by the current systems (e.g., the Intel

Itanium supports 64-bit virtual addresses), the translation table must be stored in the virtual ad-

dress space. This means that, for every virtual address generated by the processor, two memory

accesses are required: one to get the physical page number corresponding to the virtual page

number and the other to access the program’s memory location.

To reduce this inherent overhead, processors maintain most recently used PTEs in a cache.

For historical reasons, this cache is referred to as the translation lookaside buffer. The TLB is

small in size as it is part of the processor. It typically contains 32 to 256 entries. Each TLB

entry consists of

• A virtual page number,

• Corresponding physical page number, and

• Various control bits including the valid and reference bits.

Note that all pages with a PTE in the TLB are in the main memory. Most systems maintain a

separate (split) TLB for data and instructions. For example, the Pentium and PowerPC use split

TLBs.

With a TLB in place, the translation process works as shown in Figure 18.5. The TLB is

used to see if there is an entry for the VPN. If so, the associated physical page number is used

to generate the physical page address. If there is no entry for the VPN, we have to search the

page table in main memory. If the requested page is in the main memory, the page table will

have an entry (with a valid bit). In this case, the TLB is updated with an entry for the new page.

The TLB update can be done either in hardware or software. The TLB update step requires a

replacement policy: which entry is to be replaced when the TLB is full. If the update is done

in software, we can implement various replacement policies. However, if this update is done

by hardware, simplicity is important. Typically, a random or pseudo-LRU policy is used. For

example, MIPS processors use a random replacement policy.

To reduce TLB misses, most systems use a fully associative map for TLBs. This is par-

ticularly true for small TLBs. If the TLB is large, a set-associative map is used. Pentium and

PowerPC processors use a fully associative map.

744 Chapter 18 Virtual Memory

Virtual page number (VPN)

requested by program

Perform TLB lookup

Requested

page table entry

in TLB?

Requested page

in memory?

Generate physical address

Yes

No

No

Yes

Update TLB

Perform page table lookup

page fault

Handle

Figure 18.5 Translation of virtual memory address to physical page address using a TLB.

18.5 Page Table Placement
We have mentioned that page tables tend to be very large. To get an idea of the page table size,

we look at an example next:

Section 18.5 Page Table Placement 745

Example 18.1 Page table size calculation.

Consider a system with 40-bit virtual addresses and 4 KB pages. The lower 12 bits are used to

locate a byte in a given page. Then, the number of virtual pages is ��� � �
��
� �

��. A typical

page table entry is 4 bytes long. Thus, we need �� ��� bytes (or 1 GB) of main memory for the

page table! �

As the last example shows, a large virtual space requires huge page tables. For example,

64-bit processors such as the Itanium support a 64-bit virtual address space, requiring large

page tables. With such large page tables, it is not feasible to place them in physical memory.

The only solution is to map the page tables to virtual address space. This may sound tricky at

first, but we show that this scheme really works. Since we don’t need the entire page table at

any time, we can partition the page table into pages (as we did with the user space) and bring

only the pages of the table that are needed. We build a second-level page table to point to these

first-level page table pages. We can recursively apply this procedure until we end up with a

small page table that can sit in main memory.

Example 18.2 Page size calculation for three-level hierarchical page tables.

Let us continue with Example 18.1. Note that page tables at all levels use the same page size

(i.e., 4 KB in our example). The 1 GB page table is partitioned into �
������ � �

�� pages.

Therefore, the level-2 page table requires ����� � �
�� bytes (i.e., 1 MB). This still may be too

large to keep the page table in main memory. If so, we can create one more level. This top level

would have ������� � �
� PTEs. Since each PTE is 4 bytes long, we just need 1 KB memory

to keep the top-level table. �

The organization of this three-level page table hierarchy is shown in Figure 18.6. The 40-bit

virtual address is divided into four groups of bits. As usual, the lowest 12 bits are used for byte

offset into the selected physical page. The highest 8 bits of the virtual address are used as an

index into the level-3 page table. The base address of this page table is stored in a register. The

entries in this table are used as the physical base address pointers to the level-2 page tables. The

next 10 bits of the virtual address serve as an index into this 1024-PTE level-2 table. Repeating

this process one more time for the level-1 page table gives us the final physical page number.

As shown in Figure 18.2, the physical page number can be formed by combining the 12-bit byte

offset value with the physical page number from the level-1 table.

As we show in Section 18.8, the Pentium uses a two-level hierarchy of page tables. Pro-

cessors such as the Alpha use a four-level hierarchy. The hierarchical page table is also called

the forward-mapped page table because the translation process proceeds from the virtual page

number to the physical page number. We discuss another type of page table organization, called

the inverted page table, in the next section.

18.5.1 Searching Hierarchical Page Tables

We can search the hierarchical page tables in one of two ways: top down or bottom up.

746 Chapter 18 Virtual Memory

Virtual address

Level-2 page tableLevel-3 page table Level-1 page table

Index

(256 PTEs) (1024 PTEs) (1024 PTEs)

(in a register) address address
Base Base

In
d
ex

039

8 bits 10 bits 10 bits 12 bits

page number
Physical

offset
Byte

In
d
ex

Base address

Figure 18.6 An example three-level hierarchical page table.

Top-Down Search: The top-down search follows a simple procedure. It starts at the root of

the hierarchy and follows all the levels in the hierarchy. For the previous example, we need to

access main memory four times to get the user-requested data: three accesses to the three page

tables in the hierarchy and one additional access to read the user data.

Bottom-Up Search: To reduce this unacceptable overhead, processors such as the PowerPC

and Alpha use a bottom-up search. In this search method, table lookup is first done at the

bottom level. If the required page of the level-1 page table is in memory, the physical page

number is obtained directly avoiding the hierarchical top-down search. If not, it resorts to the

top-down search process. A detailed description of these two search methods is given by Jacob

and Mudge [22].

18.6 Inverted Page Table Organization
One of the main problems with the forward page table organization is the size of the page table.

The number of entries in this table is equal to the number of virtual pages. This can be quite

large for modern 64-bit processors. Assuming a page size of 4 KB, these systems can have �
��

virtual pages. The reason for such large page tables is that we use VPN as an index into this

table. One way to reduce the size of page tables is to use the physical page number as the index.

Section 18.6 Inverted Page Table Organization 747

Byte offsetPhysical page #

Virtual page number Byte offset

Virtual address

Index

Hash anchor table

VPNCB

CB VPN

Pid

Pid

Inverted page table

Physical page address

Index

function

Hash

Figure 18.7 Structure of an inverted page table: The CB field represents the control bits such as valid and

reference bits (see page 742). The number of entries in the inverted page table is equal to the number of

physical pages. There is only one, systemwide, page table in this organization (as opposed to a forward

page table for each process). Thus, we need to keep process id (Pid) in each PTE.

Such an organization is called the inverted page table. An advantage of the inverted page table

is that it grows with the size of the main memory. There is only one systemwide inverted page

table, as the entries in the inverted table are organized by the physical page number (PPN). In

contrast, we will have a page table for each process in the forward page table organization.

The inverted page table leads to complications in page translation. Since the PPN is what

we want to find for a given VPN, we cannot use the PPN as an index into the page table. To

facilitate table lookup, the VPN is hashed to generate an index into the page table. A problem

with hashing is that several VPNs may hash to the same index value. This is called collision.

We can select a hash function that reduces the frequency of collision. However, we cannot avoid

a certain degree of collision as the hash function is mapping a large number of virtual pages to a

small number of physical page entries. Thus we need to have a mechanism to handle collisions.

Two techniques are used to handle collisions: open chaining and secondary hashing. In

open chaining, when the hashed slot is not empty, the next open slot is used to store the PTE.

This new slot is linked to the original slot as shown in Figure 18.7. This figure shows that the

hash function output is not directly used as an index into the inverted page table. There is a

748 Chapter 18 Virtual Memory

level of indirection by means of the hash anchor table (HAT). The rationale for using the HAT

is to reduce the collision frequency. We can reduce collision frequency by increasing the page

table size, but we don’t want to increase it as it should be equal to the number of physical pages

so that we can use the PPN as an index into the table. Furthermore, increasing the page table

also increases the storage space due to long PTEs containing process ids, the chain pointer, and

so on. The HAT provides an efficient way to increase the size: each entry in HAT just stores the

pointer to the head of a chain.

In the second technique, when a collision occurs, a second hash function is applied to resolve

the collision. This technique is used by the PowerPC, which uses the inverted page table. We

describe this technique in more detail in Section 18.8.2.

The translation process is straightforward if the page is in memory. The requested VPN

is hashed to get an index into the hash anchor table, which in turn gives the index value into

the inverted table. Note that the page table stores the VPN to indicate which virtual page is in

the physical page. The index gives the physical page number. If the requested page is not in

memory, we will need to consult the standard page table to bring the page into memory. But this

table can be kept on disk so size should not be a problem. Thus, in the inverted table method,

the inverted table is kept in memory, and the forward page table is stored on disk.

18.7 Segmentation
Virtual address space is linear and one-dimensional as is the physical address space. Segmenta-

tion introduces a second dimension to the virtual address space. In segmentation, each process

can have several virtual address spaces called segments. Each segment starts from address 0

to a system-specific maximum value. In the Pentium, for example, a segment can be as large

as 4 GB. In a segmented memory, the address consists of two parts: a segment number and an

offset within the segment.

The Pentium and PowerPC support segmented-memory architecture. Unlike paging, which

is transparent to the programmer, segmentation is logical and is visible to the programmer. We

have already seen how segmentation is visible in writing Pentium assembly programs. For

example, even the simple assembly language program we have written used three segments:

data, stack, and code. Even though we have not used them in our example programs, each

program can have several segments.

Segmentation offers several key advantages, including the following.

• Protection: Customized protection can be provided on a segment-by-segment basis de-

pending on the segment contents. For example, the code segment can be protected from

writing into it (it could be made execute-only). Since segmentation is visible to the pro-

grammer, programs can be divided into logical segments that make sense. For example,

we don’t put code and data together in one segment. In contrast, protection provided at

the page-level is transparent to the contents of the page. In paging systems, it is harder to

achieve the level of protection one can get with segmentation.

• Multiple Address Spaces: Segmentation also provides multiple virtual address spaces.

This is particularly useful when you have a dynamic data structure that grows and shrinks.

Section 18.7 Segmentation 749

Code segment Data segment Stack segment

(b)(a)

Data

Data

Stack

Code

Code
Stack

Figure 18.8 Dynamic data structure allocation: (a) in a single address space, boundary problems can lead

to a growing data part bumping into the stack area; (b) segmentation avoids such boundary problems by

allocating separate segments.

Stack and dynamic arrays are examples of such data structures. If you have a single ad-

dress space, it is difficult to accommodate dynamic data structures. A growing data struc-

ture might bump into the next one. In Figure 18.8�, for instance, if the data part grows

beyond the free space available, it may overwrite the stack area. With segmentation, we

can assign each data structure its own segment (see Figure 18.8�) so that it can grow and

shrink without the boundary problems. Of course there is a segment boundary problem

we have to deal with but segments are usually very large. For example, the Pentium al-

lows segments as large as the physical address space (i.e., segments can be up to 4 GB

long).

• Sharing Among Processes: Since segmentation is logical, segments can be shared among

the processes. For example, several processes can share library procedures. There is no

need for each process to have a copy.

Another advantage of segmentation is that changes to a part of the program only require compi-

lation of that part mapped to a segment. This is possible because each segment starts at address

0. For example, if a procedure is mapped to a segment, we need to just compile the procedure

after it has been modified.

Even though both paging and segmentation support virtual address space, the underlying

concepts of paging and segmentation are quite different.

750 Chapter 18 Virtual Memory

• Paging uses fixed size blocks called pages. Pages of a contiguous virtual address space

can be scattered in the physical memory. Paging is related to memory, not to the logical

objects of the program. This makes paging transparent to the program.

• Segmentation uses variable size blocks called segments. Segments are related to the

objects of the program. Segment sizes may vary during the execution of a program.

As mentioned, protection and sharing are possible at the object level. Unlike paging,

segmentation is visible to the program. Segmentation can leave gaps in main memory,

as segments are created and destroyed. This checkerboard of holes in memory, shown in

Figure 18.8�, is referred to as external fragmentation. In contrast, paging causes internal,

but not external, fragmentation.

If segments are large, it is not possible to keep an entire segment in the main memory. We

can apply the paging technique to each segment to keep only a part of the segment. Modern

systems such as the Pentium and PowerPC use segmentation with paging. More details on this

integration are given in the next section.

18.8 Example Implementations
We now look at the virtual memory implementations of Pentium, PowerPC, and MIPS proces-

sors.

18.8.1 Pentium

The Pentium supports both segmentation and paging, each of which can be selectively disabled.

Thus, it is possible to operate in a purely segmented mode with paging turned off. As mentioned,

this mode is not suitable if the segments are large. The Pentium can also work without using

its segmentation capabilities; in this mode, the system can be thought of as a single segment.

Indeed, UNIX and Linux systems use such a flat model and implement protection at the page

level. The address translation mechanism of the Pentium is shown in Figure 7.11 on page 265.

Segmentation translates a 48-bit logical address into a 32-bit linear address, which is translated

into a physical address by the paging system. If paging is disabled, the 32-bit linear address is

treated as the physical address.

Figure 18.9 shows details about segmentation with paging. We have already discussed the

translation process involved in translating the logical address into a linear address (see Fig-

ure 7.12 on page 266). The 13-bit segment selector is used as an index into a segment descriptor

table. The base of the segment descriptor table is stored in a register (LDTR or GDTR). Each

segment descriptor provides a 32-bit base address, access rights to the segment, and the size of

the segment. The 32-bit offset from the logical address is added to the 32-bit base address to

derive the 32-bit linear address. More details on this translation process are on pages 265 to

270.

For page translation, the Pentium uses a two-level page table hierarchy. The root-level page

table is referred to as the page directory. The page directory consists of 1024 page directory

entries (PDEs) as shown in Figure 18.9. The physical address of the current page directory is

Section 18.8 Example Implementations 751

Descriptor table register

(LDTR or GDTR)

T

I

03115

Offset

Logical address

Descriptor table

32-bit base address
Descriptor

(CR3 register) address address
Base BasePage table base register

In
d

ex Index

Index

Page table Physical pagePage directory

0

10 bits 10 bits 12 bits

31 22 21 12 11

PDE

PTE

32-bit linear address

0

RPL13-bit segment selector

123

Index

Figure 18.9 Logical address to physical address translation in the Pentium.

stored in the page directory base register (the CR3 register). The most significant 10 bits are

used as an index into this table to select a PDE. The selected PDE provides the physical base

address of a page table at the second level. The middle 10 bits are used to select a page table

entry from this table, which gives the physical base address of the memory page. The 12-bit

offset is used to select a location in this page. With both segmentation and paging, each segment

can have its own page table as shown in Figure 18.10.

752 Chapter 18 Virtual Memory

Descriptor

Descriptor

Local descriptor table

(LDT)

PDE

PDE

PTE

PTE
PTE

Physical page

Physical page

Physical page

Physical page

Physical page

PTE
PTE
PTE

Physical page

Page directory

Page table

Page table

Figure 18.10 The Pentium provides support for each segment to have its own page table.

Page Table Entries

Page table entries are four bytes long. Since the default page size in the Pentium is 4 KB, each

page can hold 1024 entries. The details of the entries in the page directory and table are shown

in Figure 18.11. The PDE and PTE differ only in a couple of bits. So, we first discuss the

common details.

Each entry maintains a 20-bit physical page address. This means that the page table and

pages should be aligned at 4 K boundaries. Since a page table itself is a page, aligning pages at

4 K boundaries is sufficient. Bit 0 stores the valid bit to represent that the page is present in the

Section 18.8 Example Implementations 753

012345678912 11

012345678912 11

U PWAD00Avail20-bit physical page number

P

C

D

P

W

T

31

(b) Page table entry

Shaded bits: Reserved by Intel (must be zero)

Avail: Available for system programmer use

Bit 1 Writes permitted (W)

Bit 2 User/supervisor (U)

Bit 3 Page-level write-through (PWT)

Bit 4 Page-level cache-disable (PCD)

Bit 5 Page accessed (A)

Bit 0 Page present bit (P)

 dirty bit (D) in PTE
Bit 6 0 in PDT

U PWA0020-bit physical page number

D

P

W

T

P

C

31

0Avail

0 for 4-KB page size

Bit 7 Page size in PDE (0 for 4 KB pages)

(a) Page directory entry

Figure 18.11 Page directory and page table entry format: (a) in a page directory entry, bit 7 indicates

page size information; (b) in a page table entry, bit 6 indicates whether the page has been written into.

memory. Note that when this bit is zero (i.e., P = 0), the remaining 31 bits in a PTE are available

for the system programmer’s use. Bit 1 indicates whether the page is read-only (W = 0) or read-

write (W = 1). Bit 2 identifies two levels of privileged access to the page: supervisor or user

level. Supervisor level (U = 0) is used for the operating system, system software such as device

drivers, and protected data such as page tables. The user level (U = 1) is used to access user

data and code. The U and W bits together can be used to implement page-level protection and

access control.

Note that the two RPL bits of the segment selector are used to provide four levels of pro-

tected access. Figure 18.12 shows the four levels at the segment level and their typical use. In

contrast, there are only two levels of privilege: supervisor and user. The four privilege levels of

segmentation are mapped into the two privilege levels used for paging. Segmentation privilege

levels 0, 1, and 2 are mapped to the supervisor level; level 3 is mapped to the user level.

The next two bits—PWT and PCD—are used to control page-level caching. The PCD bit

can be used to selectively disable caching on a page-by-page basis. The PWT bit controls the

754 Chapter 18 Virtual Memory

OS

kernal

Level 0

Level 1

Level 2

Applications

Shared libraries

System calls

Level 3

Figure 18.12 Pentium protection rings and their typical uses.

write policy; a write-through policy is used if PWT = 1; otherwise, a write-back policy is used.

Both these bits are available for external caches through Pentium PCD and PWT pins.

Bit 5 in both the PDE and PTE is used as the reference bit (called the accessed bit). The

Pentium sets the accessed bit A before allowing a read/write operation to the page. The OS can

periodically clear this bit to implement a page replacement policy (see page 738). The dirty (D)

bit indicates whether a write has taken place on the page. If the page is not modified, it does

not have to be written back to disk at replacement time. The processor sets the dirty bit before

a write operation. The OS must clear this bit when a page is brought into the memory.

The Pentium uses separate instruction and data TLBs. The instruction TLB uses a 32-entry,

four-way set associative organization. The data TLB is similar except that it is a 64-entry TLB.

The Pentium supports segments that are larger than the size of a page when paging is used.

In addition, it is also possible to pack several small segments into a single page. Just as with data

alignment, the Pentium allows nonaligned page and segment boundaries. However, aligning the

boundaries will lead to more efficient memory management.

18.8.2 PowerPC

As does the Pentium, the PowerPC supports both segmentation and paging. To facilitate com-

parison with the Pentium, we describe the 32-bit implementation of the PowerPC architecture.

The PowerPC address translation method is shown in Figure 18.13.

As with the Pentium, both logical and physical addresses are 32-bits long, and pages are

4 KB in size. The 32-bit logical address consists of a 12-bit byte offset into a page, a 16-bit

Section 18.8 Example Implementations 755

16 segment registers

VSID

12-bit byte offset16-bit page index

12-bit byte offset16-bit page index

12-bit byte offset20-bit physical page number

32-bit physical address

24-bit virtual segment id (VSID)

40-bit virtual page number

32-bit logical address

Segment selector

virtual
52-bit

address

seg #
4-bit

translation

TLB/Page table

Figure 18.13 Logical address to physical address translation in the PowerPC.

page index, and a 4-bit segment number. The segment number field is used to select one of

16 segment registers. Each segment register contains a segment descriptor that is 32-bits wide.

Each segment descriptor contains a 24-bit virtual segment id (VSID). Three of the remaining 8

bits are used for protection information. The 52-bit virtual address is formed by replacing the

4-bit segment number by the selected VSID. The virtual address consists of a 40-bit virtual page

number and a 12-bit byte offset. The virtual page number is used to search the TLB/page table

for a mapped 20-bit physical page number. When address translation is disabled, the virtual

756 Chapter 18 Virtual Memory

address part is skipped; the 32-bit logical address is used as the 32-bit physical address. Since

these details are qualitatively similar to the translation process of the Pentium, we focus on the

differences between the two.

Unlike the Pentium, which provides four levels of page-level protection, the PowerPC pro-

vides eight levels. The PowerPC supports two modes: supervisor and supervisor/user. In each

mode, four types of accesses are supported. In the supervisor mode, the following four access

types can be specified: no-execute, write-only, write-only-no-execute, unrestricted access. The

user/supervisor mode supports no-execute, read-only, read-only-no-execute, and unrestricted

access. In contrast, the Pentium supports only two: read-only and read/write. However, it

provides protection rings.

Page Table Organization

The PowerPC uses an inverted page table to speed up table lookup. The organization is different

from the canonical inverted page table described in Section 18.6. The PowerPC does not use

the hash anchor table, which reduces the number of memory accesses by one. Instead it uses

two hash tables with the structure shown in Figure 18.14.

The PowerPC uses eight-way associative page table entry groups (PTEGs). The main idea

behind this organization is to eliminate the need for collision chaining. Up to eight VPNs that

map to the same hash table index can be stored in the primary hash table. If more than eight

VPNs map to the same PTE group, a secondary hash function is used to map to the secondary

hash table. The secondary hash function output is the 1’s complement of the main hash function

as shown in Figure 18.14. The output of the primary hash function is equal to the exclusive-or

of the lower 19 bits of VSID and the 16-bit page index with three zeros padded.

In the PowerPC inverted table organization, the location of a PTE does not have any relation

to the physical page number. Therefore, each PTE stores both physical and virtual page num-

bers. As a result, PTEs are longer than in forward page tables. PTEs are 8-bytes wide. Each

PTE also stores a valid bit, a reference bit, and a dirty bit (called changed bit). In addition, two

bits (W and I) in each PTE are used for cache control. The write-through (W) attribute controls

the type of cache write policy. If W = 1, a write-through policy is used; otherwise, a write-back

policy is used. If caching-inhibited (I) is 1, main memory is accessed by bypassing the cache.

The PowerPC uses split TLBs. Both instruction and data TLBs are 128 entries long and use

two-way associative organizations.

18.8.3 MIPS

We discuss the MIPS R4000 processor MMU in detail. Specifics of the MIPS R2000/3000 and

R10000 processors can be found in [23]. MIPS processors do not use segmentation; instead,

they use address space identifiers (ASIDs) to provide protection as well as virtual address space

extension. The R4000 processor can operate in either 32- or 64-bit mode. In 32-bit mode,

the virtual address consists of an 8-bit ASID, a virtual page number (VPN), and a byte offset.

Figure 18.15 shows these three components when a page size of 4 KB is used. The virtual

address for each virtual address space, identified by ASID, is ��� bytes. The number of virtual

Section 18.8 Example Implementations 757

19 bits

40-bit virtual page number

One PTE group = 8 PTEs

Primary hash table

Secondary hash table

hash

primary hash table
If the PTE is not in

Primary
hash

function

20-bit physical
page number

Hash

function

Secondary

function

20-bit physical

1s complement

page number

Figure 18.14 Hash table organization in the PowerPC.

pages depends on the page size used. The R4000 supports seven page sizes ranging from 4 KB

to 16 MB in multiples of 4 (i.e., 4, 16, 64, or 256 KB, or 1, 4, or 16 MB).

Figure 18.16 shows the virtual to physical address translation mechanism when 16 MB

pages are used. The physical address is 36-bits wide. In 64-bit mode, it supports a virtual

address space of �
�� bytes. It still supports the same seven page sizes and 36-bit physical

addresses. The ASID is 8-bits wide in both 32- and 64-bit modes. In the remainder of this

section, we focus on the 32-bit mode.

By using an 8-bit ASID, the R4000 can support 256 different virtual address spaces. Logi-

cally, we can think of the total virtual address space as ��� bytes. However, this virtual address

space is more restrictive than the segmentation with paging used by the Pentium and PowerPC.

The total virtual space of the R4000 consists of eight contiguous virtual spaces. The main dif-

ference from the Pentium and PowerPC architectures is that a virtual address space is allocated

exclusively to a process. In the MIPS segmented architecture, allocation can be done at the page

level. Thus, it easily supports sharing of pages by different processes.

758 Chapter 18 Virtual Memory

12-bit byte offset20-bit virtual page number8-bit ASID

12-bit byte offset

36-bit physical address

Virtual address

TLB/Page table

translation

24-bit physical page number

Figure 18.15 Virtual to physical address translation in the MIPS R4000 processor (with 4 KB pages).

TLB Organization

The MIPS TLB is organized differently from that discussed in the last two sections. It uses the

fully associative organization with 48 entries for odd and even virtual pages (for a total of 96

pages). Each TLB entry is 128-bits wide as shown in Figure 18.17.

The 12-bit mask in each PTE specifies the page size. Since the mask information is asso-

ciated with each PTE, variable page sizes can be implemented on a page-by-page basis. The

VPN2 field gives the virtual page number of an odd/even page pair. That is, VPN2 is the virtual

page number divided by 2. Thus each PTE maps two contiguous odd/even virtual pages. This

format saves on the number of VPNs to store. If the global (G) bit is set, the processor ignores

ASID in the TLB lookup. This feature is useful for sharing virtual pages among the processes.

EntryLo0 and EntryLo1 give the physical page numbers of even and odd pages, respectively.

Each of these entries has three fields: three C bits, one D bit, and one V bit. The C bits are used

for cache control to indicate uncached, cached noncoherent, and three types of cache coherent

modes. The D bit is used to indicate that the page is writable (a different meaning than the usual

dirty page). This bit can be used to make the page read-only. The V bit indicates that the page

entry is valid.

The TLB entries are divided into wired and random entries. Wired entries, which are the

lower part of the TLB, are fixed and cannot be changed by a TLB write instruction. These

entries are reserved for exclusive use by the OS. Random entries can be updated. The bound-

ary between wired and random entries can be specified by software by writing into the wired

register.

Section 18.8 Example Implementations 759

12-bit physical

page number

8-bit ASID

36-bit physical address

Virtual address

8-bit VPN 24-bit byte offset

TLB/Page table

translation

24-bit byte offset

Figure 18.16 Virtual to physical address translation in the MIPS R4000 processor (with 16 MB pages).

Mask0

4

12

96

0

2 3 1 1 124

Physical page number

031

ASID

8119

7 13

0Mask

EntryHi

EntryLo1

EntryLo0

127

G 0

64

D V 0C

2 3 1 1 124

Physical page number

3263

C 0VD

95

0

VPN2

Figure 18.17 The MIPS R4000 TLB entry format.

760 Chapter 18 Virtual Memory

The R4000 supports two TLB entry replacement policies: random and indexed. In the

random policy, the processor randomly selects a TLB entry. In the other policy, software can

specify the entry to be replaced. Two registers—Random and Index—support these two poli-

cies. Random register value is used in the random policy. This register is decremented with

each instruction executed. The value of the random register is varied within the range of TLB

random entries. Random replacement can be done by the TLBWR instruction.

The indexed replacement policy selects the entry specified by the Index register. We can use

the TLBWI instruction to perform indexed replacement. The Index register also specifies the

TLB entry read by the TLBR (TLB Read) instruction.

18.9 Summary
Virtual memory shares several basic concepts with the cache systems discussed in the last chap-

ter. Virtual memory has been proposed to eliminate the main memory size restrictions and to

allow sharing of memory among multiple programs running concurrently. In addition, virtual

memory facilitates relocation of code by running each program in its own virtual address space.

The first objective of providing an illusion of much larger memory is similar to that of

the cache systems. Consequently, cache and virtual memory systems share many of the basic

concepts. However, there is also a significant difference between the two systems. In cache

memories, the miss penalty is tens of clocks. On the other hand, virtual memory systems

experience a several orders of magnitude (i.e., millions of clocks) larger miss penalty, as the

lower level is a disk device. This difference dictates a different implementation for the virtual

memory.

Analogous to cache lines, virtual memories use fixed-sized pages. A typical page size is

4 KB. Virtual memory can be thought of as a mapping function from a large virtual address

space to a much smaller physical address space. A page table is used to translate virtual page

addresses to physical page addresses. For large virtual address spaces, this table can be very

large. For example, 64-bit processors such as the Itanium support a virtual address space of

�
�� bytes. If we use 4 KB pages, we will have �

�� virtual pages. In a conventional page table

organization, there is an entry for each virtual page. Therefore the table size is proportional to

the number of virtual pages. Thus, the larger virtual address space of recent 64-bit processors

forces us to use bigger pages. For example, the MIPS processor allows the page size to be as

large as 16 MB. In the previous example, if we use 16 MB pages instead of 4 KB pages, we

would reduce the number of virtual pages from �
�� to �

��.

In cache memory, translation is done on the fly in hardware. However, in virtual memory,

memory accesses by programs take at least twice as long. To speed up the translation, most sys-

tems maintain the recent address translations in a special cache called the translation lookaside

buffer. We have presented details on the TLB organization.

We have also discussed a technique to reduce the page table size. The inverted page table

organization requires the number of page table entries to be proportional to the physical address

space as opposed to the virtual address space. This organization, however, complicates the

virtual-to-physical page translation.

Section 18.10 Exercises 761

Virtual address space is one-dimensional as is the physical memory. Processors such as the

Pentium and PowerPC use segmentation to add another dimension to the virtual address space.

In segmentation, each process can have several virtual address spaces. We have discussed the

concepts involved in implementing segmentation.

The last section described virtual memory implementations of Pentium, PowerPC, and

MIPS processors. As mentioned, both the Pentium and PowerPC use segmentation.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Dirty bit

• External fragmentation

• FIFO replacement policy

• Internal fragmentation

• Inverted page table

• Least recently used (LRU) policy

• Locality

• Memory management unit (MMU)

• Multiple address spaces

• Not frequently used (NFU) policy

• Overlays

• Page fault

• Page frames

• Page table entries (PTEs)

• Page table hierarchy

• Page table organization

• Page table placement

• Protection bits

• Reference bit

• Replacement policies

• Second chance replacement policy

• Segmentation

• Translation lookaside buffer (TLB)

• Valid bit

• Virtual address

• Virtual page number

• Virtual pages

• Write policies

• Write-through

18.10 Exercises
18–1 What is the motivation for proposing virtual memory?

18–2 What are the similarities between cache memory and virtual memory?

18–3 What are the differences between cache memory and virtual memory?

18–4 In the context of virtual memory, we talk about virtual address and physical address.

Describe the process of translating virtual addresses to physical addresses.

18–5 What is the purpose of the valid bit in a page table entry? Is it absolutely necessary to

keep this bit in the PTE?

18–6 What is the purpose of the dirty bit in a page table entry? Is it absolutely necessary to

keep this bit in the PTE?

762 Chapter 18 Virtual Memory

18–7 What is the purpose of the reference bit in a page table entry? Is it absolutely necessary

to keep this bit in the PTE?

18–8 Describe the information stored in a typical PTE. In your answer, do not include the valid,

dirty, and reference bits.

18–9 Consider a Pentium-like processor that uses 4 KB pages to support a 32-bit virtual address

space. Each PTE is 4 bytes. Calculate the page table size in bytes.

18–10 In the last exercise, suppose that the processor supports a 64-bit virtual address space.

Calculate the size of the page table in bytes. Use the same page size and 4-byte PTEs.

18–11 In the last exercise, we used 4 KB pages. In this exercise, assume that we use 16 MB

pages. Calculate the page table size using the same virtual address space and PTE size.

18–12 Page size is an important parameter in virtual memory design. Discuss the impact of page

size on the cost and performance.

18–13 Explain why the write-through policy can be used in caches but not in virtual memory

implementations.

18–14 In hierarchical page tables, page table size is proportional to the number of virtual pages.

Explain the reason for this size.

18–15 Explain why inverted page tables reduce the page table size.

18–16 Explain the search process used in the inverted page table.

18–17 Explain why it is necessary to map page tables to virtual address space. What problems

do we encounter in mapping page tables to physical address space?

18–18 Consider a system with a 48-bit virtual address space and a 32-bit physical address space.

If we use 16-KB pages, find the number of PTEs in a conventional page table (i.e., in a

forward-mapping page table).

18–19 In the last exercise, recalculate the number of PTEs if we use the inverted page table.

18–20 Consider a system with a 64-bit virtual address space. Assume that the page size is 4 KB

and each PTE is 4 bytes long. How many levels of hierarchy would you consider in

implementing the page table? Assume that we have less than 1 MB for the top-level page

table.

18–21 In the last exercise, suppose we use 64 KB pages instead of 4 KB pages. Will it decrease

the number of levels in the hierarchy? If so, by how many levels?

18–22 The Pentium and PowerPC support segmentation. What are the advantages of segmenta-

tion?

18–23 What is the motivation for combining segmentation with paging?

18–24 Why do most of the operating systems ignore segmentation?

18–25 Can we completely turn off the segmentation feature in the Pentium? How do we do this?

18–26 What is internal fragmentation? Which system—paging or segmentation—causes inter-

nal fragmentation?

18–27 What is external fragmentation? Which system—paging or segmentation—causes exter-

nal fragmentation?

Section 18.10 Exercises 763

18–28 We have discussed virtual memory implementations of three processors. Of these three,

only the PowerPC uses the inverted page table. Describe the inverted page table organi-

zation of the PowerPC.

Chapter 19

Input/Output

Organization

Objectives
• To discuss the basics of I/O addressing and access;

• To describe I/O data transfer techniques;

• To introduce programmed I/O;

• To present details on direct memory access (DMA);

• To present details on external interfaces including parallel and serial buses such as EIA-

232, SCSI, USB, and FireWire.

This chapter looks at the input/output (I/O) interface to the system. Computer systems typically

have several I/O devices, from slow devices such as the keyboard to high-speed disk drives

and communication networks. Irrespective of the type of device, the underlying principles of

interfacing an I/O device are the same. This interface typically consists of an I/O controller. We

describe these details in the first section.

I/O devices contain several internal registers. These registers are used, for example, to

receive commands from the processor and to supply the status of the I/O operation. We need to

understand two basic issues. How do we map these internal registers? How does the processor

access these registers? Section 19.2 presents these details. The next section describes how

the keyboard is interfaced to the system. Section 19.4.1 uses the keyboard to illustrate the

programmed I/O technique, which is one of the ways to transfer data to an I/O device. There

are other means of transferring data. In programmed I/O, the CPU directs the transfer of data.

Direct memory access (DMA) transfers data without involving the processor in the transfer

process. The DMA process is described in Section 19.4.2.

767

768 Chapter 19 Input/Output Organization

S
y

st
em

 b
u

s

Data bus

Address bus

Control bus

Status

Command

Data

I/O Device

I/O Controller

Figure 19.1 Block diagram of a generic I/O device interface.

External interfaces use longer wires than the internal buses. Furthermore, there can be exter-

nal interferences affecting the quality of data transmission. Thus the probability of transmission

error is higher in external cables than on internal buses. Because of this possibility, we need

error detection capability. It is also nice to have error correction capability. We discuss error

detection and correction codes in Section 19.5. This section presents details on parity encoding

and cyclic redundancy check (CRC) codes.

Data transmission can be done in one of two basic ways: serial or parallel. Section 19.6

describes these two modes of data transmission. This section also presents details on three

interface standards: EIA-232, parallel interface, and SCSI. The next two sections present details

on two external serial buses: the universal serial bus (USB) and IEEE 1394 (also known as

FireWire). The chapter concludes with a summary.

19.1 Introduction
Input/output devices provide the means by which a computer system can interact with the out-

side world. An I/O device can be an input device (e.g., keyboard, mouse), an output device

(e.g., printer, display screen), or both an input and output device (e.g., disk drive).

Computers use I/O devices, also called peripheral devices, for two main purposes: to com-

municate with the outside world, and to store data. I/O devices such as printers, keyboards,

and modems are used for communication purposes and devices like disk drives are used for

data storage. Regardless of the intended purpose of the I/O device, all communications with

these devices must involve the systems bus. However, I/O devices are not directly connected to

the system bus. Instead, there is usually an I/O controller that acts as an interface between the

system bus and the I/O device, as shown in Figure 19.1.

There are two main reasons for using an I/O controller. First, different I/O devices exhibit

different characteristics and, if these devices were connected directly, the CPU would have to

understand and respond appropriately to each I/O device. This would cause the CPU to spend

a lot of time interacting with I/O devices and spend less time executing user programs. If we

Section 19.1 Introduction 769

use an I/O controller, this controller could provide the necessary low-level commands and data

for proper operation of the associated I/O device. Often, for complex I/O devices such as disk

drives, there are special I/O controller chips available.

The second reason for using an I/O controller is that the amount of electrical power used

to send signals on the system bus is very low. This means that the cable connecting the I/O

device has to be very short (a few centimeters at most). I/O controllers typically contain driver

hardware to send current over long cables that connect I/O devices.

I/O controllers typically have three types of internal registers—a data register, a command

register, and a status register—as shown in Figure 19.1. When the CPU wants to interact with

an I/O device, it communicates only with the associated I/O controller.

To focus our discussion, let us consider printing a character on the printer. Before the CPU

sends a character to be printed, it has to first check the status register of the associated I/O

controller to see whether the printer is online/offline, busy or idle, out of paper, and so on. In

the status register, three bits can be used to provide this information. For example, bit 4 can be

used to indicate whether the printer is online (1) or offline (0), bit 7 can be used for busy (1)

or not busy (0) status indication, and bit 5 can be used for out of paper (1) or not (0). The I/O

controller gets this status information from the interface (see Section 19.6.2 on page 797).

The data register holds the character to be printed and the command register tells the con-

troller the operation requested by the CPU (e.g., send the character in the data register to the

printer). The following summarizes the sequence of actions involved in sending a character to

the printer:

• Wait for the controller to finish the last command. This can be done by repeatedly check-

ing bit 7 of the status register.

• Place a character to be printed in the data register.

• Set the command register to initiate the transfer.

The CPU accesses the internal registers of an I/O controller through what are called I/O ports.

An I/O port is simply the address of a register associated with an I/O controller.

What we have just described is a simple protocol to transfer data to the printer. Complex

I/O devices have more complex protocols to facilitate communication. Nevertheless, this simple

example brings out the two main problems in communicating with an I/O device:

• We need to access various registers such as the data and status registers. How can the

CPU get access to the I/O controller’s registers? It depends on the I/O mapping. The next

section presents two mapping methods to access I/O devices.

• The mapping method provides the basic means of accessing the I/O device. Still, we

have to figure out a protocol to communicate with the I/O device. In our printer example,

we presented a simple protocol to transmit data. It essentially loops on the busy bit and

transmits a byte whenever the busy bit is off. This is just one way of communicating with

the device. Later, we look at two other ways.

770 Chapter 19 Input/Output Organization

19.2 Accessing I/O Devices

19.2.1 I/O Address Mapping

As discussed in Section 1.7, there are two ways of mapping I/O ports: memory-mapped I/O

and isolated I/O. Memory-mapped I/O maps I/O port addresses to memory address space. Pro-

cessors such as the PowerPC and MIPS support only memory-mapped I/O. In these systems,

writing to an I/O port is similar to writing to a memory location. Memory-mapped I/O does not

require any special consideration from the processor. Thus, all processors inherently support

memory-mapped I/O.

Isolated I/O maintains an I/O address space that is separate from the memory address space.

The Pentium supports isolated I/O. In these systems, special I/O instructions are needed to

access the I/O address space. The Pentium provides two basic I/O instructions—in and out—

to access I/O ports. The next subsection gives details on the Pentium input/output instructions.

The Pentium provides 64 KB of I/O address space. This address space can be used for

8-, 16-, and 32-bit I/O ports. However, the combination cannot exceed the total I/O address

space. For example, we can have 64 K 8-bit ports, 32 K 16-bit ports, 16 K 32-bit ports, or a

combination of these that fits the 64 K address space. As I/O instructions do not go through

segmentation and paging units, the I/O address space refers to the physical address rather than

the linear address.

Systems designed with processors supporting the isolated I/O have the flexibility of using

either the memory-mapped I/O or isolated I/O. Typically, both strategies are used. For instance,

devices like printer or keyboard could be mapped to the I/O space using the isolated I/O strategy;

the display screen could be mapped to a set of memory addresses using the memory-mapped

I/O.

19.2.2 Accessing I/O Ports

In a memory-mapped system, we can use the standard memory access instructions to access I/O

ports. Therefore, we focus on the isolated I/O scheme, as it requires special I/O instructions.

To facilitate access to the I/O ports, the Pentium provides two types of instructions: register

and block I/O instructions. Register I/O instructions are used to transfer a single data item (byte,

word, or doubleword) between a register and an I/O port. Block I/O instructions are used for

block transfer of data between memory and I/O ports.

Register I/O Instructions

The Pentium provides two register I/O instructions: in and out. The in instruction is used to

read data from an I/O port, and the out instruction to write data to an I/O port. A port address

can be any value in the range 0 to FFFFH. The first 256 ports (i.e., ports with addresses in the

range 0 to FFH) are directly addressable (i.e., the address is given as a part of the instruction)

by the in and out instructions.

Section 19.2 Accessing I/O Devices 771

The in/out instructions can be used to read/write 8-, 16-, or 32-bit data. Each instruction

can take one of two forms, depending on whether a port is directly addressable. The general

formats of the in instruction are

in accumulator,port8— direct addressing format,

in accumulator,DX — indirect addressing format.

The first form uses the direct addressing mode and can only be used to access the first 256

ports. In this case, the I/O port address, which is in the range 0 to FFH, is given directly by the

port8 operand. In the second form, the I/O port address is given indirectly via the DX register.

The contents of the DX register are treated as the port address.

In either form, the first operand accumulator must be AL, AX, or EAX. This choice

determines whether a byte, word, or doubleword is read from the specified port.

The corresponding forms for the out instruction are

out port8,accumulator — direct addressing format,

out DX,accumulator — indirect addressing format.

Notice the placement of the port address. In the in instruction, it is the source operand and in

the out instruction, it is the destination operand signifying the direction of data movement.

Block I/O Instructions

The Pentium also supports two block I/O instructions: ins and outs. These instructions can

be used to move blocks of data between I/O ports and memory. These I/O instructions are, in

some sense, similar to the string instructions discussed in Chapter 12. For this reason, block

I/O instructions are also called string I/O instructions. In fact, ins stands for “input string”

and outs for “output string.” As with the string instructions, ins and outs do not take any

operands. Also, we can use the repeat prefix rep as in the string instructions.

For the ins instruction, the port address should be placed in DX and the memory address

should be in ES:(E)DI. The address size determines whether the DI or EDI register is used (see

Chapter 7 for details). Block I/O instructions do not allow the direct addressing format for the

I/O port specification.

For the outs instruction, the memory address should be in DS:(E)SI, and the I/O port

should be specified in DX. You can see the similarity between the block I/O instructions and

the string instructions.

We can use the rep prefix with ins and outs instructions. However, we cannot use

the other two prefixes—repe and repne—with the block I/O instructions. The behavior of

the rep prefix is similar to that in the string instructions. The direction flag (DF) determines

whether the index register in the block I/O instruction is decremented (DF = 1) or incremented

(DF = 0). The increment/decrement value depends on the size of the data unit transferred.

For byte transfers the index register is updated by 1. For word and doubleword transfers, the

corresponding values are 2 and 4, respectively. The size of the data unit involved in the transfers

can be specified as in the string instructions. We use insb and outsb for byte transfers, insw
and outsw for word transfers, and insd and outsd for doubleword transfers.

772 Chapter 19 Input/Output Organization

19.3 An Example I/O Device: Keyboard
To concretize our discussion of I/O device access and communication, let’s write a program

to read input from the keyboard. We start with a description of the keyboard and how it is

interfaced to the system.

19.3.1 Keyboard Description

We talked about I/O controllers associated with the devices to facilitate interfacing. For the

keyboard, there is a keyboard controller (a chip dedicated to servicing the keyboard) that scans

the keyboard and reports key depressions and releases. The keyboard controller supplies the

key identity by means of a scan code. The scan code of a key is simply an identification number

given to the key based on its location on the keyboard. The counting for the scan code starts at

the top right-hand side of the main keyboard (i.e., with the Esc key) and proceeds left to right

and top to bottom. Thus, the scan code for the Esc key is 1, the next key 1 is 2, and so on.

Table 19.1 shows the scan codes for the standard PC keyboard.

The scan code of a key does not have any relation to the ASCII value of the corresponding

character. The input routine will have to derive the ASCII value from the key scan code. Later

we show how this translation is done.

The system interfaces the keyboard via an 8-bit parallel I/O port, originally supported by a

peripheral interface chip. We present details on this chip next.

19.3.2 8255 Programmable Peripheral Interface Chip

The 8255 programmable peripheral interface (PPI) chip was developed for use with the 16-bit

8086 processor. Even though current systems do not use this chip, it provides a simple example

to help understand how I/O devices are interfaced. We use this interface to write a sample

keyboard program. The 8255 chip provides three 8-bit general-purpose registers that can be

used to interface I/O devices. These three registers—called PA, PB, and PC—are mapped to the

I/O space shown in Table 19.2.

Since we are interested in the keyboard, we need to know details only about the PA port, as

this port provides the keyboard interface. The hardware within the keyboard scans the keys to

check the state of the keys (i.e., depressed or released). The scan code of the key whose state

has changed (i.e., depressed or released) is provided by the keyboard controller at the PA port.

The scan code of the key can be read from the PA port. Bits PA0 to PA6 give the scan code

of the key whose state has changed. PA7 is used to indicate the current state of the key (up or

down):

PA7 = 0 — key is depressed,

PA7 = 1 — key is released.

For example, if the Esc key is pressed, PA supplies 01H as 1 is the scan code for the Esc key.

When the Esc key is released, PA supplies 81H. We look at an example later in this chapter.

To get an idea of how I/O port mapping is done, let’s look at mapping the four 8255 ports

Section 19.3 An Example I/O Device: Keyboard 773

Table 19.1 Keyboard scan codes

Scan code Scan code Scan code

Key Dec Hex Key Dec Hex Key Dec Hex

Alphanumeric keys

A 30 1E M 50 32 Y 21 15

B 48 30 N 49 31 Z 44 2C

C 46 2E O 24 18 1 02 02

D 32 20 P 25 19 2 03 03

E 18 12 Q 16 10 3 04 04

F 33 21 R 19 13 4 05 05

G 34 22 S 31 1F 5 06 06

H 35 23 T 20 14 6 07 07

I 23 17 U 22 16 7 08 08

J 36 24 V 47 2F 8 09 09

K 37 25 W 17 11 9 10 0A

L 38 26 X 45 2D 0 11 0B

Punctuation keys

‘ 41 29 [26 1A , 51 33� 12 0C] 27 1B . 52 34

= 13 0D ; 39 27 / 53 35

\ 43 2B ’ 40 28 space 57 39

Control keys

Esc 01 01 Caps Lock 58 3A Right Shift 54 36

Backspace 14 0E Enter 28 1C Ctrl 29 1D

Tab 15 0F Left Shift 42 2A Alt 56 38

Function keys

F1 59 3B F5 63 3F F9 67 43

F2 60 3C F6 64 40 F10 68 44

F3 61 3D F7 65 41 F11 133 85

F4 62 3E F8 66 42 F12 134 86

Numeric keypad and other keys

1/End 79 4F 6/� 77 4D Del/. 83 53

2/� 80 50 7/Home 71 47 Num Lock 69 45

3/Pg Dn 81 51 8/� 72 48 � 74 4A

4/� 75 4B 9/Pg Up 73 49 + 78 4E

5 76 4C 0/Ins 82 52

Print Screen 55 37 Scroll Lock 70 46

774 Chapter 19 Input/Output Organization

Table 19.2 8255 port address mapping

8255 register Port address

PA (input port) 60H

PB (output port) 61H

PC (input port) 62H

Command register 63H

To
data
bus

From
address
bus

8

CS

A7

A6

A5

A0 A0

A1

8255 PPI

RD

WRIOWRbus

From
control

A15 A8

A2 A4

D0 D7

A1

IORD

Figure 19.2 A simplified design to map the 8255 I/O ports to the I/O address space in Table 19.2.

to addresses 60H to 63H (see Table 19.2). The mapping is very similar to the memory mapping

we have discussed in Section 16.6 on page 681. The only difference is that we use I/O read and

write signals rather than memory read and write, as we are mapping the I/O ports into the I/O

address space. Figure 19.2 shows a simplified digital logic circuit to map the four I/O ports.

Memory-mapped I/O logic is very similar to the memory mapping discussed in Section 16.6

on page 681. In this mapping, memory read and write signals are used to read and write from

the I/O ports.

19.4 I/O Data Transfer
We have discussed various ways I/O devices can be accessed by a system. Now we have to build

a protocol to transfer data between the system and an I/O device. When we talk about system,

we generally mean the main memory. The data transfer process involves two distinct phases:

Section 19.4 I/O Data Transfer 775

a data transfer phase and an end-notification phase. The data transfer phase transmits data be-

tween the memory and I/O device. This can be done by programmed I/O or direct memory

access. The end-notification informs the processor that the data transfer has been completed.

The processor gets this information either by an interrupt or through the programmed I/O mech-

anism. Typically, DMA-based data transfer uses an interrupt to indicate the end of data transfer,

whereas the programmed I/O uses the other method. Thus, to understand I/O data transfer, we

have to look at three basic techniques: programmed I/O, interrupt-driven I/O, and DMA.

Programmed I/O involves the processor in the I/O data transfer. Let us consider a supervisor–

worker example. Assume that the supervisor gives a task to a worker. One way to know whether

the task has been completed is to bug the worker periodically with the, “Did you finish?” ques-

tion. Obviously, the manager would be wasting a lot of time. Programmed I/O is very similar.

The processor repeatedly checks to see if a particular condition is true. Typically, it busy-

waits until the condition is true. We used this busy-wait technique in our printer example on

page 769. From this brief description, it should be clear that the programmed I/O mechanism

wastes processor time.

In the supervisor–worker example, the supervisor can save a lot of time and energy if she

stays put and lets the worker notify her when the task is done. Interrupt-driven I/O uses this

concept. The processor assigns a task to an I/O controller and resumes its pending work. When

the task is completed, the I/O controller notifies the processor by using an interrupt signal.

Obviously, this is a better way of using the processor. However, an interrupt-driven mechanism

requires hardware support, which is provided by all processors.

The last technique, DMA, relieves the processor of the low-level data transfer chore. We

use DMA for bulk data transfer. For example, in an interrupt-driven I/O, the task assigned could

be a DMA request to transfer data from a disk drive. Typically, a DMA controller oversees the

data transfer. When the specified transfer is complete, the processor is notified by an interrupt

signal.

We look at the interrupt mechanism and interrupt-driven I/O in the next chapter. In the

remainder of this section, we describe the other two techniques.

19.4.1 Programmed I/O

The printer example given on page 769 explains how a typical programmed I/O operates. The

heart of programmed I/O is a busy-wait loop. The processor busy-waits until a specific condition

is satisfied, such as the printer “not busy” condition. This process is called polling.

We use the keyboard to illustrate how the programmed I/O works. We have already pre-

sented most of the details we need to write the keyboard program. Program 19.1 shows the

program to read keys from the keyboard. Pressing the ESC key terminates the program.

The logic of the program is simple. To read a key, all we have to do is to wait for the PA7 bit

to go low to indicate that a key is depressed (lines 34 to 36). Once we know that a key is down,

we read the key scan code from PA6 to PA0 (line 38). The and statement on line 38 masks

the most significant bit. Next we have to translate the scan code into the corresponding ASCII

value. This translation is done by the xlat instruction on line 41. The xlat instruction uses

776 Chapter 19 Input/Output Organization

the lcase_table translation table given on lines 17 to 23.

After the key’s ASCII value is displayed (line 47), we wait until the key is released. This

loop is implemented by instructions on lines 50 to 53. Once the key is up, we clear the keyboard

buffer using an interrupt service (lines 56 to 57). For now, ignore these two lines of code. We

discuss these interrupt services in the next chapter.

Program 19.1 Programmed I/O example to read input from the keyboard

1: TITLE Keyboard programmed I/O program KBRD_PIO.ASM

2: COMMENT |

3: Objective: To demonstrate programmed I/O using keyboard.

4: Input: Key strokes from the keyboard.

5: ESC key terminates the program.

6: | Output: Displays the key on the screen.

7:

8: ESC_KEY EQU 1BH ; ASCII code for ESC key

9: KB_DATA EQU 60H ; 8255 port PA

10:

11: .MODEL SMALL

12: .STACK 100H

13: .DATA

14: prompt_msg DB ’Press a key. ESC key terminates the program.’,0

15: ; lowercase scan code to ASCII conversion table.

16: ; ASCII code 0 is used for scan codes in which we are not interested.

17: lcase_table DB 01BH,’1234567890-=’,08H,09H

18: DB ’qwertyuiop[]’,0DH,0

19: DB ’asdfghjkl;’,27H,60H,0,’\’

20: DB ’zxcvbnm,./’,0,’*’,0,’ ’,0

21: DB 0,0,0,0,0,0,0,0,0,0

22: DB 0,0,0,0,0,0,0,0,0,0

23: DB 0,0,0,0,0,0,0,0,0,0

24: .CODE

25: INCLUDE io.mac

26:

27: main PROC

28: .STARTUP

29: PutStr prompt_msg

30: nwln

31: key_up_loop:

32: ; Loops until a key is pressed i.e., until PA7 = 0.

33: ; PA7 = 1 if a key is up.

34: in AL,KB_DATA ; read keyboard status & scan code

35: test AL,80H ; PA7 = 0?

36: jnz key_up_loop ; if not, loop back

Section 19.4 I/O Data Transfer 777

37:

38: and AL,7FH ; isolate the scan code

39: mov BX,OFFSET lcase_table

40: dec AL ; index is one less than scan code

41: xlat

42: cmp AL,0 ; ASCII code of 0 => uninterested key

43: je key_down_loop

44: cmp AL,ESC_KEY ; ESC key---terminate program

45: je done

46: display_ch:

47: putch AL

48: putch ’ ’

49:

50: key_down_loop:

51: in AL,KB_DATA ; read keyboard status & scan code

52: test AL,80H ; PA7 = 1?

53: jz key_down_loop ; if not, loop back

54:

55: ; clear keyboard buffer

56: mov AX,0C00H

57: int 21H

58:

59: jmp key_up_loop

60: Done:

61: ; clear keyboard buffer

62: mov AX,0C00H

63: int 21H

64:

65: .EXIT

66: main ENDP

67: END main

19.4.2 DMA

As we have seen, programmed I/O can be used to transfer data between I/O devices and memory.

Programmed I/O overhead is small to interface with slower devices like the keyboard. However,

for some I/O devices such as disks, data have to be transferred at a certain rate. For example,

new drives with the Ultra ATA/100 data transfer protocol support a peak data transfer rate of

100 MB/s. Furthermore, no data during the transfer can be missed. For such devices, the CPU

could be spending 10% to 20% of the time transferring data under the programmed I/O. Direct

memory access is devised to free the processor of the data transfer responsibility.

DMA is implemented by using a DMA controller. The DMA controller acts as a slave to

the processor and receives data transfer instructions from the processor. For example, to read a

778 Chapter 19 Input/Output Organization

System bus

(b) DMA transfer

System bus

I/OMemory I/OMemory

CPU CPU DMA controller

(a) Programmed I/O transfer

Figure 19.3 Data transfer from an I/O device to system memory: (a) in programmed I/O, data are read

by the processor and then written to the memory; (b) in DMA transfer, the DMA controller generates the

control signals to transfer data directly between the I/O device and memory.

block of data from an I/O device, the CPU sends the I/O device number, main memory buffer

address, number of bytes to transfer, and the direction of transfer (I/O to memory or memory to

I/O).

After the DMA controller has received the transfer instruction, it requests the bus. Once

the DMA controller becomes the bus master, it generates all bus control signals to facilitate the

data transfer. Figure 19.3 shows the difference between programmed I/O and DMA transfer. In

programmed I/O, the system bus is used twice as shown in Figure 19.3�. The DMA transfer

not only relieves the processor from the data transfer chore but also makes the transfer process

more efficient by transferring data directly from the I/O device to memory.

DMA controllers typically support more than just one I/O device. For example, the 8237

DMA controller from Intel can support four independent devices. Each device is attached to

a specific DMA channel. These channels are also called I/O channels. Each I/O channel has

registers to keep track of the data buffer address in memory, a byte count to indicate the number

of bytes to transfer, and the direction of the transfer.

The following steps are involved in a typical DMA operation:

1. The processor initiates the DMA controller by identifying the I/O device and supplying

the memory address, byte count, and type of operation (input or output). This is referred

to as channel initialization. Once initialized, the channel is ready for data transfer be-

tween the associated I/O device and memory.

Section 19.4 I/O Data Transfer 779

2. When the I/O device is ready to transfer data, it informs the DMA controller. The DMA

controller starts the transfer operation. This step consists of the following substeps.

(a) Obtain the bus by going through the bus arbitration process described in Section 5.5;

(b) Place the memory address and generate the appropriate read and write control sig-

nals;

(c) Complete the transfer and release the bus for use by the processor or other DMA

devices;

(d) Update the memory address and count value;

(e) If more bytes are to be transferred, repeat the loop from Step (a).

3. After completing the operation, the processor is notified. This notification is done by an

interrupt mechanism (discussed in the next chapter). The processor can then check the

status of the transfer (i.e., successful or failure).

The procedure in Step 2 is reasonable for slow devices. However, for fast devices that require

bulk data transfer, we can improve the efficiency by avoiding a bus request for each word trans-

fer. Instead, the DMA controller keeps the bus until the whole block of data is transferred. Next

we illustrate how this can be done by means of an example.

An Example DMA Transfer

To illustrate the basic DMA operation, let’s look at a sample data transfer. Figure 19.4 shows

the interconnection among the four players: the CPU, memory, DMA controller, and the I/O

device. In this figure, for simplicity, we show the address bus connecting the DMA controller

to the memory and the data bus connecting the memory and I/O controller. However, note that

these two buses, which are part of the standard system bus, also connect the processor and other

components of the system.

Each DMA channel is initialized to support a specific I/O device. The processor does this

initialization by writing appropriate commands into the DMA controller. After that the I/O

channel is dedicated to service that specific I/O device. We illustrate the DMA operation with

the aid of the timing diagram given in Figure 19.5. Let us assume that the DMA operation

is a read operation (i.e., transferring data from the I/O device to memory) and the channel is

initialized to transfer two words of data.

When the I/O device is ready to transfer data, it sends its request through the DMA request

(DREQ) line to the DMA controller. On receiving this signal, the DMA controller raises the

HOLD signal to indicate that it wants the bus for a DMA transfer. The processor releases the bus

after completing its current instruction. The CPU then floats all the control signals it normally

generates (such as memory read, memory write, I/O read, I/O write). The granting of the bus

to the DMA controller is conveyed by asserting the hold acknowledge (HLDA) signal. This

signifies that the DMA controller is in control of the bus. Then the DMA controller notifies the

I/O device that the data transfer can begin by sending a DMA acknowledgment (DACK) signal

to the I/O controller. For standard transfers, the DMA request can be removed after the DACK

signal.

780 Chapter 19 Input/Output Organization

Interrupt

controller

DMA

controller

Memory

I/O

controller

CPU

DREQ

EOP

IOWR

IORD

DACK

Address bus

Data bus

MEMRD

MEMWR

INTR

HLDA

HOLD

IREQ

Figure 19.4 A simplified diagram giving the DMA controller details.

The DMA controller is responsible for generating the control signals I/O read (����) and

memory write (�����). The I/O device responds to the I/O read control signal and places

the data on the data bus, which is written directly to the memory using the ����� signal.

After the data word has been transferred, the word count is decremented. In addition, the

memory address is incremented. If the word count is not zero, another data transfer cycle is

initiated, as shown in Figure 19.5.

Once the two data transfers have been completed, the DMA controller indicates the termina-

tion of the operation by sending an “end of process” (���) signal. It also removes the DACK

signal, which in turn removes the HOLD signal, to return the bus to the processor. In this mode,

the DMA transfer is done continuously without releasing the bus. For slow devices, this may

unnecessarily block the bus from the processor. DMA transfer can also be done on a word-by-

word basis. In this mode, the DMA controller requests the bus and releases it after transferring

one word. The DMA controller decrements the count value and increments the buffer address,

as before. When the device is ready to transfer the next word, it repeats the process by asserting

the DREQ signal. This process is repeated until all the words are transferred, at which time

the ��� signal is sent to the device to indicate that the data transfer has been completed and it

should not send any more data.

Section 19.4 I/O Data Transfer 781

Address 1Address 0

Data 0 Data 1

Address bus

Data bus

MEMWR

IORD

DREQ

HOLD

HLDA

DACK

EOP

Figure 19.5 An example DMA transfer showing two transfer cycles.

An Example DMA Controller: Intel 8237

The Intel 8237 DMA controller chip has four DMA channels that can be programmed indepen-

dently. Each channel uses a 16-bit address and a count value. Thus, it can address up to 64 K

locations and can be initialized to transfer up to 64 K bytes. Usually, an external latch is used

to specify the higher-order address bits in order to handle addresses greater than 16 bits.

The 8237 has the following internal registers:

• Current Address Register: Each channel has a 16-bit current address register. This reg-

ister holds the address for the current DMA transfer. After each transfer, this address

is automatically updated. The processor writes into this register during the initialization

process. Since the 8237 has only an 8-bit data bus, the 16-bit address is written as two

8-bit writes.

• Current Word Register: This register maintains the word count. The actual number of

transfers will be one more than the count value in this register. The word count is decre-

mented after each transfer. When the register goes from zero to FFFFH, a terminal count

(TC) signal is generated.

782 Chapter 19 Input/Output Organization

• Command Register: This 8-bit register controls the operation of the 8237. Using the com-

mand register, the processor can program the 8237 to assign fixed or rotating priorities for

the DMA requests, whether the DREQ is high-active or low-active, and DACK should be

high-active or low-active.

• Mode Register: Each channel has a 6-bit mode register that controls the DMA transfers

on that channel. Some of the characteristics that can be programmed are the following:

– Each channel can be programmed to either read or write a DMA transfer.

– Each channel can be independently programmed to autoincrement or autodecrement

the address after each data transfer.

– Each channel can be programmed to autoinitialize the channel. For example, if

the channel is initialized to transfer 1 KB data, the address and count registers are

reinitialized after the DMA transfer is complete. This will eliminate the need for

the CPU to initialize the channel after each DMA transfer.

• Request Register: This is a special feature of the 8237 to allow software-initiated DMA

requests. A request register is associated with each channel. Normally, the DREQ signal

initiates the DMA request. However, by setting the request bit in this register, we can

start a DMA transfer (in addition to the standard DREQ-initiated transfers).

• Mask Register: Each channel has a mask register that can be set to disable the corre-

sponding DMA request. All DREQ are disabled until this bit is cleared. When auto-

initialization is not used, all further DREQs are disabled by automatically setting this bit

at the end of the DMA operation when the ��� is generated.

• Status Register: This is an 8-bit register that provides the status of the four DMA channels

to the CPU. Each of the four higher-order bits (bits 4 to 7) in this register indicate whether

there is a DMA request pending on that channel. The lower-order four bits indicate

whether the channel has reached the terminal count.

• Temporary Register: The 8237 supports memory-to-memory transfer of data. This reg-

ister is used to hold the data during this kind of data transfer. To start this type of data

transfer, the least significant bit in the command register should be set. This sets chan-

nels 0 and 1 to perform the block transfer of data in memory. The memory-to-memory

transfer is initiated by setting the software DREQ for channel 0. The 8237 goes through

the normal DMA operation. The data read from memory on channel 0 are placed in the

temporary register. Then, channel 1 initiates a memory write to write the word from the

temporary register. As usual, this cycle is repeated until the count reaches FFFFH, at

which point, TC is set and the ��� is generated to terminate the transfer.

The A0 to A3 address lines are used to identify a register. Some address combinations are not

used as the 8237 does not have 16 registers to use them all.

The 8237 supports four types of data transfer:

• Single Cycle Transfer Mode: In this mode, only a single data transfer takes place. As

mentioned earlier, this mode is useful for slow devices.

Section 19.4 I/O Data Transfer 783

IORD

DREQ3
ADSTB

DACK0

DACK3

DACK2

DACK1

MEMWR

MEMRD

IOWR

DREQ0

DREQ1

DREQ2

8
2
3
7
 D

M
A

 C
o
n
tr

o
ll

er
EOP

CLK

RESET

READY

CS

HOLD

HLDA

DMA request 1

DMA request 2

DMA request 3

Hold ack

Clock

Reset

Ready

DMA request 0

DMA ack 0

DMA ack 1

DMA ack 2

DMA ack 3

I/O read

I/O write

Memory read

Memory write

End of process

Hold request

Address strobe

To address bus

To data bus

Chip select

A4 A7

A0 A3

DB0 DB7

Figure 19.6 The Intel 8237 DMA controller.

• Block Transfer Mode: In this mode, the 8237 transfers data until the terminal count (TC)

is generated or an external ��� is received.

• Demand Transfer Mode: This mode is somewhat similar to the block transfer mode. In

this mode, the data transfer takes place until the TC, or an external ��� is received, or

the DREQ signal goes inactive. This mode is useful for giving dynamic control to the I/O

device to transfer the number of bytes it has.

• Cascade Mode: This mode is useful for expanding the number of DMA channels beyond

the four provided by a single 8237 chip by adding more 8237 chips. A channel that is

connected to another 8237 can use this mode so that it does not generate the control and

address signals.

The logical signals of the 8237, which is a 40-pin chip, are shown in Figure 19.6. We have

already discussed most of the signals before. The four DMA request lines (DREQ0 to DREQ3)

and the corresponding acknowledgments (DACK0 to DACK3) serve the four DMA channels.

The hold and hold acknowledgment signals are used to request a bus from the CPU; these two

signals are also used to expand the number of DMA channels. The ��, I/O read and write,

along with the A0 to A3 address lines are used by the CPU to communicate with the 8237. The

READY signal plays the same role as that in the CPU. This line can be used by a slow memory

or I/O device to extend the memory read and write cycles. The ��� is a bidirectional signal.

In a normal termination of a DMA transfer, the 8237 generates this signal to indicate the end of

the data transfer. However, the 8237 also allows an external device to terminate the data transfer

by pulling this line low.

784 Chapter 19 Input/Output Organization

When the 8237 is in the idle state, it monitors the DREQ lines every clock cycle to see if

any channel is requesting service. It will also sample the �� line to see if the CPU is trying to

communicate. If the �� is low, the 8237 allows the processor to program it and read its internal

registers. In the program mode, the 8237 acts as an I/O device as far as the CPU is concerned.

The CPU uses the I/O read (���) and write (���) signals along with the �� to communicate

with the 8237. In addition, the lower four address lines (A0 to A3) are used to identify an 8237

I/O port (i.e., one of its internal registers). Thus, in the program mode, the ��� and ���

signals as well as A0 to A3 are input signals to the 8237. These signals are generated by the

8237 during the DMA transfer mode (i.e., these lines will be output signals).

If a DREQ line is active, the 8237 initiates a DMA transfer that essentially follows the

actions described before (see Figure 19.5). In the DMA transfer mode, DMA acts as the bus

master and generates the necessary I/O and memory control signals (���, ���, ����, and

����). This is the reason why the I/O read and write signals are shown as bidirectional

signals in Figure 19.6.

The original IBM PC used only a single 8237 chip to provide four DMA channels. Channel

0 was used for dynamic memory refresh, channel 2 for the floppy drive controller, and channel

3 for the hard disk controller. Channel 1 was available for another I/O device. Later models

increased the number of channels by adding more 8237 chips.

19.5 Error Detection and Correction
Error detection is important in computer and communications systems. In computer systems,

the wire distances are small compared to communication networks. Furthermore, the external

disturbances are not as severe as in communication networks, such as wide area networks. In

a computer system, we can divide the communication into two groups: within the box and

with entities outside the box. Typically, the environment is well controlled within a box. In

addition, the distances are small. For example, a memory read operation causes data to move

on the motherboard. Even then, it is possible to receive data in error. The probability of an error

increases when communicating to a device outside the system with a long wire.

Therefore, we should at least be able to detect errors in the received data stream. This

process is called error detection. In addition, we would also like to be able to correct the error.

We discuss some popular error detection and correction schemes in this section.

19.5.1 Parity Encoding

Parity is the simplest mechanism that adds rudimentary error detection capability. The basic

principle is simple: add a bit, called the parity bit, such that the total number of 1s in the data

and the parity bit is either even (for even parity) or odd (for odd parity). For example, if even

parity is used with 7-bit ASCII data 1001100, we append an extra parity bit of 1 to make the

number of 1s even (four in this example). Thus, we transmit the codeword 11001100, where

the leftmost bit is the parity bit.

Suppose that, during the transmission, a bit is flipped. The receiver can detect this error

because the number of 1s is odd. Of course, parity encoding will not detect all errors. For

Section 19.5 Error Detection and Correction 785

example, if two bits flip, the receiver will not be able to detect the error. However, this simple

parity scheme can detect all single-bit errors. The overhead is small; only a single extra bit is

needed. In Section 19.5.3, we discuss a more comprehensive error detection scheme.

19.5.2 Error Correction

Let us focus on single-bit errors. Parity encoding will only tell us that there is an error. However,

we don’t know which bit is in error. If we know this information, we simply flip the bit to correct

the error. How do we get this bit number? To incorporate error correction capability, we have

to add more parity bits. We need to understand some simple theory to come up with an error-

correcting scheme.

To correct single-bit errors in � data bits, we add � parity check bits to form a codeword

with � � � bits. Next we show how we can compute these � check bits in order to facilitate

single-bit error correction.

Hamming distance between two codewords is the number of bit positions in which the two

codewords differ. For example, the Hamming distance between 11001100 and 10101000 is

3. The Hamming distance for the entire code is the smallest Hamming distance between any

pair of codewords in the encoding scheme.

When we use even or odd parity encoding, we create a code with a Hamming distance of

two. What this implies is that every other codeword in the coding sequence is illegal. Let us

consider two data bits and a parity bit. Therefore, the codeword will have three bits for a total

of eight codewords. Out of these, only four are legal codewords and the remaining are illegal,

as shown below.

000

001 �� Illegal codeword

011

010 �� Illegal codeword

110

111 �� Illegal codeword

101

100 �� Illegal codeword

The above sequence is written such that the Hamming distance between successive codewords

is one (including the first and the last). This ordering is also known as the Gray code. This is

very similar to what we did in Karnaugh maps in Chapter 2. Thus, if a single-bit error occurs,

a legal codeword is transformed into an illegal codeword. For example, when a single-bit error

occurs, a 101 codeword becomes one of the following, depending on the error bit: 100, 111,

or 001. As you can see from the previous list, all these are illegal codewords.

With this parity scheme, we get detection capability, but we do not know how to correct the

error. For example, if the received codeword is 100, the legal codeword could be any of the

following: 101, 110, or 000.

786 Chapter 19 Input/Output Organization

Suppose that we have a code with a Hamming distance of 3. Then, we can see that a single-

bit error leaves the error codeword closer to the original codeword. For example, we know

that the codewords 11001100 and 10101000 have a Hamming distance of 3. Assume that a

single-bit error occurs in transmitting 11001100 and is received as 11101100. The received

codeword is closer to 11001100 (Hamming distance of 1) than to 10101000 (Hamming

distance is 2). Thus, we can say that the error is in the third bit position from left. This is

essentially the principle used to devise error-correcting codes. We now describe a method that

can correct single-bit errors.

The codeword consists of � data bits and � check bits. If we count the bit positions from

left to right starting with 1, check bits occupy the bit positions that are a power of 2 (i.e., bit

positions 1, 2, 4, 8, 16, � � �). Let us consider an example of encoding the 8-bit data 10101010.

The codeword with the check bits is shown below:

P1 P2 D7 P4 D6 D5 D4 P8 D3 D2 D1 D0

2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 1 0 1 0

1

The codeword is 12 bits long. The check bit values are derived as in the parity scheme

discussed before. However, each check bit looks at a specific set of bit positions to compute its

even parity value.

Check bit �� looks at bit positions 1, 3, 5, 7, 9, and 11.

Check bit �� looks at bit positions 2, 3, 6, 7, 10, and 11.

Check bit �� looks at bit positions 4, 5, 6, 7, and 12.

Check bit �� looks at bit positions 8, 9, 10, 11, and 12.

For our example, �� should be 1 because bit positions 3, 5, 7, 9, and 11 have an odd number

of 1s (three 1s). Similarly, �� should be 1 as well because the number of 1s in bit positions 3,

6, 7, 10, and 11 is odd (again three). You can check that �� � � and �� � �. This gives us the

following codeword:

P1 P2 D7 P4 D6 D5 D4 P8 D3 D2 D1 D0

2 3 4 5 6 7 8 9 10 11 12

1 0 1 0 1 0 1 011 1 0

1

What is the logic in selecting these specific bit positions for each parity bit? The idea is to

have a unique set of check bits test the correctness of each bit. For example, bit 11 is checked

by ��, ��, and ��. Suppose this bit is in error. Then, only ��, ��, and �� are in error but not

��. This particular pattern is not used for any other bit. This leads us to the following simple

rule to identify the bit in error. The error bit position is the sum of the error parity bits with ��

counted as 1, �� counted as 2, �� counted as 4, and so on. For our example, if bit 11 is in error,

��, ��, and �� check bits are in error. By adding the weights of these three check bits, we get

Section 19.5 Error Detection and Correction 787

1110876543

B

B

B

1

2

B

P2 P4 P8D7 D6 D5 D4 D3 D2 D1 D0

0

P1

129

3

1 2

Figure 19.7 A simple circuit to identify the error bit position.

the error bit position as 11. We correct the bit by inverting the wrong bit. If there is no error,

all check bits will be correct, which points to a bit position 0. Since we do not use the zero bit

position, this combination is used to indicate error-free condition.

Figure 19.7 shows a simple digital logic circuit to detect errors. If there is an error, the 4-bit

binary number � � B�B�B�B� will have a nonzero value. Furthermore, the binary number

� would indicate the error bit position. This information can be used to correct the error in

hardware.

Single-Error Correction and Double-Error Detection (SECDED)

High-performance systems use SECDED encoding on data transfers from memory. The pre-

vious encoding scheme gives us only single-error detection and correction capability. To get

double-error detection capability, we have to add an additional parity bit that covers the entire

codeword: data and parity. By convention, this parity bit is added as the leftmost bit �� that is

not used by the error correction scheme. This gives us the capability to detect two errors. For

our previous example, we use eight data bits and five check bits to get the SECDED capability.

19.5.3 Cyclic Redundancy Check

As we show in the next section, data transmission can be done either in parallel or serially.

In parallel transmission, � bits are transmitted on � wires in parallel. On the other hand, se-

rial transmission is done on a single wire, one bit at a time. The error correction scheme we

have discussed in the last section is generally applied to parallel data transmission such as data

transmitted from memory to processor/cache.

In parallel transmission, it is reasonable to assume that errors on each line are independent.

If we assume that the error rate is ����, then the possibility of two errors occurring simultane-

788 Chapter 19 Input/Output Organization

ously is �����. Thus, in this case, the assumption that the single-bit error is the dominant type

of error is reasonable. However, when we consider serial transmission of data, the assumption

of independent errors in bits is invalid. At high bandwidths, even a transient noise can corrupt

several bits in sequence. This type of error is called the burst error. Thus, in serial transmission,

we have to handle burst errors. Furthermore, we often send a block of data rather than indi-

vidual words. In these cases, the amount of overhead makes error correction very expensive.

Therefore, only error detection schemes are used. Parity codes are not useful for detecting burst

errors. Almost always, cyclic redundancy check codes are used to detect burst transmission

errors.

Unlike the error-correcting codes, CRC codes use a fixed number of bits, typically 16 or 32

bits. Thus, the overhead is very small. Next we look at the basic theory that explains how and

why the CRC code works.

The basic CRC calculation is based on integer division. When we divide a number (divi-

dend) � by a divisor �, we get a quotient � and a remainder �. That is,

�

�
� ����

For example, if we divide 13 by 5, we get � � � and � � �.

If we subtract the remainder � from � and then divide that number by �, we always get

a zero remainder. In the previous example, we get 10 after subtracting the remainder 3 from

13. Thus, if we send this number, the receiver can divide it by � to check for errors. If the

remainder is zero, there is no error. This is the basic principle used in CRC checking.

What Is the Divisor for the CRC Calculation? CRC uses a polynomial of degree � as the di-

visor. For example, one of the polynomials used by the universal serial bus is ������������.

This polynomial identifies the 1 bit positions in the divisor. Thus, the USB polynomial repre-

sents the binary number 11000000000000101. This polynomial is used for data packets.

The USB also uses another shorter polynomial for token packets. It is of degree 5: �������.

This polynomial represents the binary number 100101. Such polynomials are called polynomial

generators. It should be noted that the number of bits in the binary number is one more than the

degree of the polynomial. If we divide a binary number by a polynomial generator � of degree

�, we get an �-bit remainder.

Subtraction Operation: CRC computation uses modulo-2 arithmetic, which means there will

be no carry or borrow. This simplifies the subtract operation, which can be implemented using

bit-wise exclusive-OR (XOR) operation.

CRC Generation

The CRC generator takes �-bit data� and a degree � polynomial�. It computes the CRC code

and appends the �-bit remainder of the division to the message. This is analogous to subtracting

the remainder in our example.

Section 19.5 Error Detection and Correction 789

A little bit of theory would explain the CRC procedure. Let

� = (�� �)-bit codeword,

� = �-bit data,

� = �-bit remainder (i.e., CRC code),

� = degree � polynomial generator.

The goal is to generate � such that ��� would have no remainder. Remember that this is the

condition that the receiver uses for error checking. Because we append � bits to the right, the

codeword can be expressed as

� � � � �
�

�� � (19.1)

We use � to represent the XOR operation. We generate � as

� � ��

�
� ��

�

�
	 (19.2)

where � is the quotient and � is the remainder. Our interest is in �. We add this remainder �

to generate the codeword � as in Equation 19.1.

When this codeword is received, it is divided by �,

�

�
�
� � �� ��

�
�

By substituting Equation 19.2, we get

�

�
� ��

�

�
�
�

�
� ��

���

�
�

Since � is the exclusive-OR operation, we know that � �� � �. Therefore,

�

�
� �

with zero remainder. This is used to check for error-free condition.

Example 19.1 CRC computation using polynomial
� �
� � �.

Inputs: �-bit data 10100101 (� � � in this example) and a degree � polynomial generator

� =
� �
� � � (i.e., 100101).

Output: �-bit CRC check bits.

Procedure: The �-bit message is appended � zeros on the right. In our example, the numerator

is 10100101 00000 . This is equivalent to multiplying the message by ��. As mentioned,

exclusive-OR is used for the subtract operation. The procedure is shown in Figure 19.8.

The message incorporating the CRC check bits is 10100101 01110 . The receiver

performs exactly the same procedure to check for errors. An error in the received message

results in a nonzero remainder. As shown in Figure 19.9, the remainder is zero for error-free

messages. �

790 Chapter 19 Input/Output Organization

1 0 0 1 0 1

1 0 0 1 0 1

1 1 0 0 0 1

1 0 0 1 0 1

1 0 1 0 0 1 0 1 0 0 0 0 0

1 0 0 1 0 1

1 0 0 1 0 1

1 1 0 1 0 0

1 0 1 0 0 0

1 0 0 0 1 0

1 0 0 1 0 1

1 1 1 0

1 1 0 1 1 0 1
Quotient

Polynomial

Remainder

Figure 19.8 An example CRC calculation for 10100101.

1 0 0 1 0 1

1 0 0 1 0 1

1 1 0 0 0 1

1 0 0 1 0 1

1 0 1 0 0 1 0 1 0 1 1 1 0

1 0 0 1 0 1

1 0 0 1 0 1

1 1 0 1 1 1

1 0 1 0 0 0

1 0 0 1 0 1

1 0 0 1 0 1

0 0 0 0

Polynomial

Remainder

Figure 19.9 An error-free message results in a zero remainder.

A Serial CRC Generator Circuit

Generation of CRC can be done in a straightforward way by using shift registers and exclusive-

OR gates. Figure 19.10 shows the logic circuit to generate the CRC code for the polynomial

generator function ��� � �
��
� �

�
� �. We use a square to represent a 1-bit shift register. As

you can see, the circuit uses a 16-bit shift register because the divisor is a degree 16 polynomial.

The output from X15 is passed through an XOR gate for the bit positions that have a 1 bit in the

polynomial. In our example, bit positions 0, 2, and 15 receive the input through an XOR gate.

Note that the shift register is cleared (i.e., initialized to zero) before each computation.

Section 19.6 External Interface 791

X8X9X10X11X12X13

Input
data

X14

X1 X0X7 X6 X5 X4 X3 X2

X15

Figure 19.10 A serial CRC generator circuit for the polynomial generator function �
��
� �

��
� �

�
� �.

The input data to the circuit consist of the actual data plus 16 zeros appended on the right

(similar to what we did in Figure 19.8 to calculate the CRC). The data are fed to the circuit from

left to right (i.e., the appended zero bits are fed last). Once the last bit is processed, the shift

register would have the remainder.

An Example CRC Generator and Checker Chip

The 74F401 chip supports CRC generation and checking of several standard 16-, 12-, and 8-

degree polynomials. Figure 19.11 shows the connection diagram and the logic symbol. The

three selection inputs S�, S�, S� are used to select the polynomial generator that should be

used in CRC generation and checking. For example, setting these three bits to zero uses the

polynomial ��� � �
��
� �

�
� �. It also supports seven more polynomials. It is a serial CRC

generator and takes the data input on pin D with the clock on ��. The input data are clocked

on the high-to-low transition of the clock signal. The output Q provides the CRC code that

can be appended to the data stream. The chip has an internal 16-bit shift register, which is

implemented using D flip-flops. The reset (MR) and preset (�) are used to clear and set the

register, respectively. If the chip is used for error detection, the ER output indicates the error

condition (ER = high).

The check word enable (CWE) input determines whether the X0 input to the internal CRC

generator should be zero or the output of the XOR gate as shown in Figure 19.12�. The CWE

input is used to control the data flow to the output as shown in Figure 19.12�. During the data

phase, CWE = 1. This passes the input data to the CRC generator as well as to the output. At

the end of the input data, CWE is made zero. This forces the data input of 74F401 to be zero

(equivalent to the � zero bits we added on the right in our CRC calculation example). This also

enables the CRC code from the Q output of the chip to pass on to the output.

19.6 External Interface
We can interface I/O devices in one of two basic ways as shown in Figure 19.13: using a

parallel or serial interface. In parallel transmission, several bits are transmitted on parallel wires

as shown in Figure 19.14. For example, the parallel port we used to read from the keyboard

792 Chapter 19 Input/Output Organization

C
R

C
 G

en
er

at
o
r/

C
h
ec

k
er

P

CP

P

D

CWE

MR

CP 14

13

12

11

10

9

87

6

5

4

3

2

1

ER

Q

D

CWE

S2GND

74F401

NC

MR

NC

Vcc

S0S2

ER

Q

S1

S0

1S

(b) Logic symbol(a) Connection diagram

Figure 19.11 Details of the 74F401 CRC generator and checker chip.

Check word

enable Data and

check bits

Data

X15

CWE

. . .

. . . X0

Clock

Preset

Reset

(a) Gated Code Word Enable input

C
R

C
 G

en
er

at
o
r/

C
h
ec

k
er

Data

CP

P

D

CWE

MR

S0S2

ER

Q

S1

(b) Check word generation

Figure 19.12 Using the 74F401 chip to generate the CRC for ��� � �
��
� �

�
� �.

Section 19.6 External Interface 793

Parallel Serial

Asynchronous Synchronous

Data
transmission

Figure 19.13 A taxonomy of data transmission techniques.

1

1

0

0

1

0

0

1

1

1

0

0

1

0

0

1

1 0 0 1 0 0 1 1
Sender Receiver

Parallel-to-serial
conversion

Serial-to-parallel
conversion

1

1

0

0

1

0

0

1

1

1

0

0

1

0

0

1

Sender Receiver

(b) Parallel transmission(a) Serial transmission

Figure 19.14 Two basic modes of data transmission.

transmits eight bits at a time (see Section 19.3.2 on page 772). On the other hand, in the serial

transmission, only a single wire is used for data transmission.

Parallel transmission is faster: we can send � bits at a time on an �-bit wide parallel inter-

face. That also means it is expensive compared to the serial interface. A further problem with

the parallel interface, particularly at high data transfer rates, is that skew (some bits arrive early

and out of sync with the rest) on the parallel data lines may introduce errorprone delivery of

data. Because of these reasons, the parallel interface is usually limited to small distances. In

contrast, the serial interface is cheaper and does not cause the data skew problems.

In this section, we look at some simple external bus standards to interface I/O devices. We

look at the serial and parallel transmission techniques and standards. Sections 19.7 and 19.8

discuss two high-speed serial buses: the Universal Serial Bus and FireWire.

794 Chapter 19 Input/Output Organization

Data Data Data Data Data

(a) Asynchronous transmission

Receiver

DataData Data Data

Sender

Transmission gaps

(b) Synchronous transmission

ReceiverSender

Figure 19.15 Asynchronous and synchronous transmission modes.

19.6.1 Serial Transmission

Serial transmission can be asynchronous or synchronous. In asynchronous mode, each byte is

encoded for transmission in such a way that the sender and receiver clocks are not required to be

in synchronization (see Figure 19.15�). In synchronous transmission, the two clocks should be

synchronized before the data are transmitted. This synchronization is done in hardware using

phase-locked-loops (PLLs). Once the clocks are synchronized, we can send a block of data,

rather than just a byte as in the asynchronous transmission shown in Figure 19.15�.

In asynchronous transmission, each byte of data is enveloped by a start bit and one or more

stop bits, as shown in Figure 19.16. The communication line is high when the line is idle.

When transmitting a character, the start bit pulls the line low. This alerts the receiver that a byte

is coming. It also identifies the bit boundary. Since the receiver knows the bit period, it samples

the transmission line in the middle of the bit cell. It ignores the first bit, which is the start bit,

and assembles a byte. The stop bit serves two purposes:

• Imagine what happens if we don’t have a stop bit. Suppose the most significant bit of the

byte is 0. Then, unless we force some idle time on the line, the start bit of the next byte

will not cause the transition to identify the start of a new byte. The stop bit forces the line

to go high between byte transmissions.

• Stop bits also give breathing time for the receiver to assemble the byte and hand it over

to the receiver system before monitoring the line for the start bit. Typically, systems can

use 1, � �

�
, or 2 stop bits.

Section 19.6 External Interface 795

1, 1.5, or 2
stop bits

MSB

1 0 0 0 1 1 1 0

bit

Time
Start bit

8-bit data

Stop bit(s)

1 start

LSB

Source data

Figure 19.16 Asynchronous transmission uses start and stop bits.

Low-speed serial transmission is suitable for I/O devices like the keyboard. Since the characters

are typed at a slow speed with large variable gaps, synchronous transmission is not useful.

In general, synchronous transmission is more efficient but it is expensive, as we need more

hardware support for clock synchronization. However, it does not have the overhead associated

with asynchronous transmission. In asynchronous transmission, for each eight bits, there are at

least two additional bits of overhead, that is, 25% overhead, excluding the gaps between bytes.

For this reason, high-speed serial transmission buses such as the USB and FireWire use the

synchronous mode.

EIA-232 Serial Interface

As an example of a low-speed serial transmission standard, we describe the EIA-232 standard

adopted by the Electronic Industry Association (EIA). This standard is also widely known by

the name of its predecessor, RS-232. This is the serial interface port on your PC. The original

standard uses a 25-pin DB-25 connector. However, a simplified version of the standard can use

the familiar 9-pin connector DB-9. This interface is typically used to connect a modem to a

computer system.

EIA-232 uses eight signals to facilitate serial transmission of data (see Figure 19.17). The

original standard uses terminology like DCE (data circuit-termination equipment) and DTE

(data terminal equipment). DCE is the unit that interfaces with the actual transmission net-

work (e.g., modem). DTE is the unit that generates the binary data (e.g., computer). For our

discussion purposes, we use the words modem and computer rather than DCE and DTE.

We use an example to illustrate the protocol. Assume that computer A wants to send data

to computer B. Computer A generates the serial binary data and hands it over to its modem A.

Modem A modulates these data so that they can go on the telephone line. The reverse process

takes place at the receiving end. Modem B receives the modulated serial data and demodulates

them (i.e., converts the signal back into the binary form) and passes them on to computer B.

796 Chapter 19 Input/Output Organization

DTE
ready

Carrier
detect

Receive
data

Signal
ground

Transmit
data

DCE
ready

to send

Clear
to send

Ring
indicator

1

6 7 8

2 3 4

9

5

Request

Figure 19.17 DB9 connector and its signals.

The transmission occurs in three phases just as in the way we proceed to make a phone call.

When we want to make a telephone call, we dial the number, establish the connection, then talk

to the person at the other end, and disconnect. The transmission protocol also uses these three

phases: connection setup, data transmission, and connection termination.

• Connection Setup: This phase consists of the following substeps:

1. Computer A asserts the DTE Ready (pin 4) signal to indicate to its modem that it

wants to initiate a connection for data transfer. Then, it transmits the phone number

of the receiver to the modem via the Transmit Data line (pin 2).

2. When modem A contacts modem B, modem B alerts its computer of the incom-

ing call via the Ring Indicator (pin 9) line. Computer B responds by asserting its

DTE Ready line (pin 4) to indicate that it is ready to receive data. After receiving

the green signal from computer B, modem B generates a carrier signal for data ex-

change and turns the DCE Ready signal to indicate that it ready to receive data from

computer B.

3. When modem A detects the carrier signal from the receiving modem, modem A

alerts its computer via the Carrier Detect (pin 1) signal. It also turns the DCE Ready

(pin 6) line to indicate to computer A that a circuit has been established. Modem

A completes the circuit establishment by generating its own carrier signal for data

transmission from A to B.

• Data Transmission: The data transmission phase uses handshaking by using the request-

to-send (RTS) and clear-to-send (CTS) signals. When computer A is ready to send data,

it activates the RTS (pin 7) signal. Modem A conveys its readiness by asserting CTS (pin

Section 19.6 External Interface 797

8). Computer A transmits the data via the Transmit Data (pin 2) line. Similar action takes

place at the other end.

• Connection Termination: Once both sides have completed their data transmission session,

both computers deactivate the RTS signals. This in turn causes the modems to turn off

the carrier signals and their CTS signals. This terminates the connection.

19.6.2 Parallel Interface

As an example of a simple parallel interface, we look at the parallel printer interface with which

you are familiar. It uses a 25-pin connector (known as DB-25). Although we present details

about how a printer is interfaced using this parallel port, it can also be used by input devices

like scanners. The pin assignment is shown in Table 19.3, which is derived from the interface

developed by Centronics for their printers.

The interface is straightforward. It uses eight lines for the data, which are latched by us-

ing the strobe signal (pin 1). Data transfer uses simple handshaking by using the acknowledge

(ACK) signal. After each byte, the computer waits to receive an acknowledgment before send-

ing another byte of data. There are five lines to provide printer status and feedback: busy, out

of paper, online/offline, autofeed, and fault. The printer can be initialized by using the INIT

signal. This clears the printer buffer and resets the printer.

Small Computer System Interface (SCSI)

Another parallel interface, often used for high-speed transfer of data, is the Small Computer

System Interface (SCSI, pronounced “scuzzy”). SCSI comes in two bus widths: 8 and 16 bits.

The 8-bit wide SCSI is often called “narrow” SCSI and the 16-bit as “wide” SCSI.

SCSI is based on the disk interface developed in 1979 by Shugart Associates called SASI

(Shugart Associates System Interface). This interface was adopted by the American National

Standards Institute (ANSI) who released the first standard, SCSI 1, in 1986. It used an 8-bit wide

bus and supported a transfer rate of 5 MB/s (see Table 19.4). SCSI 1 described the physical and

electrical characteristics, but did not provide a standard command set. The industry developed

a set of 18 basic commands. This set was referred to as the common command set (CCS).

The next version, SCSI 2 or Fast SCSI, used the CCS as the basis and increased the speed

to 10 MB/s. The CCS has been expanded to include commands for other devices. It has also

added command queuing so that commands can be executed efficiently.

Table 19.4 shows the roadmap for scaling SCSI to provide higher bandwidths. Today’s Ultra

SCSI provides about 20 MB/s. We can get double that if we use the Wide Ultra SCSI, which

uses a 16-bit wide bus.

The data transfer rate is doubled from wide Ultra 2 to Ultra 160 by sending two bits of data

per clock instead of one without increasing the clock frequency. That means that both the rising

and falling edges of the REQ and ACK signals, which run at 40 MHz, are used to clock data.

SCSI is not a point-to-point interface as is the parallel interface. It is a true bus, which means

we can add more than one device to it. In general, the 8-bit SCSI can have up to 8 devices and

the 16-bit SCSI up to 16 devices. Each SCSI device is assigned a unique number to identify it

798 Chapter 19 Input/Output Organization

Table 19.3 Parallel printer interface signals

Pin # Signal Signal direction Signal function

1 STROBE PC �� printer Clock used to latch data

2 Data 0 PC �� printer Data bit 0 (LSB)

3 Data 1 PC �� printer Data bit 1

4 Data 2 PC �� printer Data bit 2

5 Data 3 PC �� printer Data bit 3

6 Data 4 PC �� printer Data bit 4

7 Data 5 PC �� printer Data bit 5

8 Data 6 PC �� printer Data bit 6

9 Data 7 PC �� printer Data bit 7 (MSB)

10 ACK printer �� PC Printer acknowledges receipt of data

11 BUSY printer �� PC Printer is busy

12 POUT printer �� PC Printer is out of paper

13 SEL printer �� PC Printer is online

14 AUTO FEED printer �� PC Autofeed is on

15 FAULT printer �� PC Printer fault

16 INIT PC �� printer Clears printer buffer and resets printer

17 SLCT IN PC �� printer TTL high level

18–25 Ground N/A Ground reference

on the bus and to direct the traffic. For narrow SCSI, the device id ranges from 0 to 7; for wide

SCSI, 0 to 15 are used for device id.

SCSI supports both internal and external device connection. Narrow SCSI uses 50-pin

connectors for both the internal and external interfaces. Wide SCSI uses 68-pin connectors

to allow for the additional eight data lines. To allow other devices to be connected to the bus,

each external SCSI device has an input and an output connector. This allows several devices to

be chained by connecting the output of one device to the input of the next one.

SCSI allows a maximum cable length of 25 meters; but as the number of devices increases

from 1, the length is reduced. Typically, if more than two devices are connected, the maximum

cable length is reduced to about 12 meters.

Section 19.6 External Interface 799

Table 19.4 Types of SCSI

SCSI Bus width Transfer rate
type (bits) MB/s

SCSI 1 8 5

Fast SCSI 8 10

Ultra SCSI 8 20

Ultra 2 SCSI 8 40

Wide Ultra SCSI 16 40

Wide Ultra 2 SCSI 16 80

Ultra 3 (Ultra 160) SCSI 16 160

Ultra 4 (Ultra 320) SCSI 16 320

Since more than one device can be on the bus, bus arbitration is needed to allocate the bus.

SCSI uses a simple priority-based bus arbitration mechanism. If more then one device wants to

be the bus master, the highest priority device gets the bus.

Details about the narrow SCSI signals are given in Table 19.5. To achieve better isolation,

twisted pairs are used for the signal line. This is the reason for keeping one side of the connector

(pins 1 through 25) more or less for the ground. For example, pin 26 and pin 1 are used for the

twisted pair for data bit 0. From these signals, we can see some similarity with the parallel port

interface. SCSI uses a single parity bit to provide error detection for each byte transferred. In

addition, CRC is used to protect the integrity of the data.

SCSI uses a client-server model. It uses initiator and target instead of client and server. The

initiator device issues commands to targets to perform a task. The target receives commands

from initiators and performs the task requested. Typically, initiators are SCSI host adapters in

computers and target devices are typically SCSI devices such as disk drives.

A SCSI host adapter sends a command to a selected target device on the SCSI bus by

asserting a number of control signals. The target device acknowledges the selection and begins

to receive data from the initiator. SCSI transfer proceeds in phases, which include the following

operations: command, message in, message out, data in, data out, and status. The direction of

transfer “In” and “Out” is from the initiator point of view. The target device is responsible for

taking the bus between phases by correctly asserting the SCSI bus control signals.

SCSI uses asynchronous mode for all bus negotiations. It uses handshaking using the REQ

and ACK signals for each byte of data. On a synchronous SCSI bus, the data are transferred

synchronously. In the synchronous transfer mode, the REQ–ACK handshake is not used for

each byte of data. A number of data bytes (e.g., eight) can be sent without waiting for the

ACK by using REQ pulses. This increases the throughput and minimizes the adverse impact

of the cable propagation delay. For more details on the SCSI standard, see the Web pointer in

Section 19.11 on page 823.

800 Chapter 19 Input/Output Organization

Table 19.5 Narrow SCSI signals

Description Signal Pin Pin Signal Description

Twisted pair ground GND 1 26 D0 Data 0

Twisted pair ground GND 2 27 D1 Data 1

Twisted pair ground GND 3 28 D2 Data 2

Twisted pair ground GND 4 29 D3 Data 3

Twisted pair ground GND 5 30 D4 Data 4

Twisted pair ground GND 6 31 D5 Data 5

Twisted pair ground GND 7 32 D6 Data 6

Twisted pair ground GND 8 33 D7 Data 7

Twisted pair ground GND 9 34 DP Data parity bit

Ground GND 10 35 GND Ground

Ground GND 11 36 GND Ground

Reserved 12 37 Reserved

No connection 13 38 TermPwr Termination power

(+5 V)

Reserved 14 39 Reserved

Ground GND 15 40 GND Ground

Twisted pair ground GND 16 41 ATN Attention

Ground GND 17 42 GND Ground

Twisted pair ground GND 18 43 BSY Busy

Twisted pair ground GND 19 44 ACK Acknowledge

Twisted pair ground GND 20 45 RST Reset

Twisted pair ground GND 21 46 MSG Message

Twisted pair ground GND 22 47 SEL Selection

Twisted pair ground GND 23 48 C/D Command/data

Twisted pair ground GND 24 49 REQ Request

Twisted pair ground GND 25 50 I/O Input/output

Section 19.7 Universal Serial Bus 801

19.7 Universal Serial Bus
The Universal Serial Bus was originally developed in 1995 by a consortium of companies in-

cluding Compaq, Hewlett Packard, Intel, Lucent, Microsoft, NEC, and Philips. The major goal

of the USB was to define an external expansion bus that makes attaching peripherals to a com-

puter as easy as hooking up a telephone to a walljack.

The current standard specification (USB 1.1) supports low-speed as well as full-speed de-

vices. The USB can operate at 1.5 Mbps (low speed) and 12 Mbps (full speed). The low speed is

sufficient for devices like the mouse and the keyboard. The 12 Mbps bandwidth supports LANs

and other peripherals like the disk drives. The next version (USB 2.0) increases the bandwidth

by a factor of 40 to 480 Mbps. This higher bandwidth makes the USB competitive with the SCSI

as well as FireWire, as we show in the next section. With the increased bandwidth, the USB

can support higher performance peripherals such as video-conferencing cameras, fast storage

devices, and next-generation scanners, printers, and CD writers.

The USB 2.0 uses the same USB 1.1 connectors and full-speed cables without any changes.

The transmission speed is negotiated on a device-by-device basis. If the higher speed is not sup-

ported by a peripheral, the link operates at a lower speed of 12 Mbps or 1.5 Mbps as determined

by the peripheral. The USB version 2.0 is widely available in 2002.

19.7.1 Motivation

Before the USB, computer users faced several problems when attaching peripherals. Here we

list some of these problems to show how the USB solves them.

Device-Specific Interfaces: PCs tended to have various device-specific interfaces. Some ex-

ample connectors we will find on a PC include the PS/2, serial, parallel, monitor, microphone,

speakers, modem, SCSI, and Ethernet. In most cases, each connection uses its own connector

and cable, leading to cable clutter. In contrast to this scenario, USB uses a single connector type

to connect any device.

Nonshareable Interfaces: Standard interfaces support only one device. For example, we can

connect only one printer to the parallel interface. In contrast, the USB supports up to 127

devices per USB connection. For example, we can connect a keyboard, a mouse, and speakers

to a single USB port using a single cable type.

I/O Address Space and Interrupt Request Problems: Adding a new peripheral device often

causes I/O address and interrupt request (IRQ) conflicts. One may end up spending countless

hours in debugging the conflict problem. In contrast, the USB does not require memory or

address space. There is also no need for interrupt request lines. We show later how the USB

handles traditional interrupts.

Installation and Configuration: Using the standard interfaces, adding a new peripheral device

is often a time-consuming and frustrating experience for novice users. It may often involve

802 Chapter 19 Input/Output Organization

Signal wires

Power wires

Signal shield

(b) Full-speed/High-speed cable(a) Low-speed cable

Figure 19.18 USB cables.

opening the box and installing expansion cards and configuring jumpers or DIP switches. In

contrast, the USB supports true plug-and-play connectivity. It avoids unpleasant tasks such as

setting jumpers and configuring the new device.

No Hot Attachment: We are too familiar with the dreaded sequence of restarts whenever we

attach a new device. Attaching USB devices is easy: we don’t have to turn off the computer

and restart after installing the new device. We can hot plug the device and the system will

automatically detect the device and configure it for immediate use.

19.7.2 Additional USB Advantages

In addition to these advantages, the USB also offers the following useful features:

• Power Distribution: The USB cable provides +5 V power to the device. Depending on

the port, it can supply between 100 and 500 mA of current. This helps avoid the clutter of

external power supplies. Small devices can operate by taking power right from the USB

cable. Devices such as keyboards, mouse, wireless LANs, and even some floppy disk

drives can be powered from the cable.

The USB cable has four wires: two of these are used for power supply (+5 V) and the

remaining two to carry the differential signal pair. The low-speed cables, also called

subchannel cables, cannot exceed three meters. Furthermore, they do not require signal

shielding as shown in Figure 19.18. The high- and full-speed cables shield the signal pair

and can run up to five meters.

• Control Peripherals: The USB allows data to flow in both directions. This means the

computer can control the peripheral device.

Section 19.7 Universal Serial Bus 803

• Expandable Through Hubs: The USB provides increased expandability through hubs that

are cheap and widely available. For example, we can buy a four-port hub for about $25

and seven-port hubs for about $50.

• Power Conservation: USB devices enter a suspend state if there is no activity on the bus

for 3 ms. In the suspended state, devices draw only about 2.5 mA of current.

• Error Detection and Recovery: The USB uses CRC error-checking to detect transmission

errors. In case of an error, the transaction is retried.

19.7.3 USB Encoding

The USB uses the NRZI (nonreturn to zero-inverted) encoding scheme. NRZI is often used

in communication networks for encoding data. Figure 19.19 explains this encoding. Before

describing the NRZI scheme, let’s look at the simple NRZ encoding. In this encoding, a 0 is

represented by a low level and a 1 by a high level as shown in Figure 19.19. Even though this

scheme is simple to implement, it has two serious problems:

• Signal transitions do not occur if we are transmitting long strings of zeros or ones. Signal

transitions are important for the receiver to recover data.

• In a noisy medium, it is difficult to detect zero- and one-levels. It is far easier to detect a

transition, either from 0 to 1 or 1 to 0.

NRZI solves some of these problems. It will not use absolute levels to encode data; instead, it

uses the presence or absence of signal transition to determine the bit value. In standard NRZI

encoding, a signal transition occurs if the next bit is 1; the signal level stays the same if the next

bit is 0. Note that a signal transition can be from low to high or vice versa. The USB NRZI

scheme uses the complementary rule: a signal transition occurs if the next bit is zero as shown

in Figure 19.19. In the rest of the discussion, we use the USB rule. Such encoding schemes are

called differential encoding schemes.

NRZI encoding solves the two main problems associated with NRZ encoding. In NRZI

encoding, signal level does not play any role. It only looks for signal transitions. Thus, it

improves reliability of data transmission. Furthermore, it also solves the long strings of zeros.

A long string of zeros forces the NRZI signal to alternate.

We still have a problem with long strings of ones. In this case, the signal level stays the

same. To solve this problem, USB encoding uses bit stuffing. A zero is inserted after every

six consecutive ones in the data before the data are NRZI encoded. This bit stuffing forces a

transition in the NRZI data stream, as shown in Figure 19.20. This gives the receiver logic a

signal transition at least once every seven bit times to guarantee data and clock recovery.

19.7.4 Transfer Types

The USB supports the following four transfer types: interrupt, isochronous, control, and bulk.

804 Chapter 19 Input/Output Organization

NRZI encoded data
Standard

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0Source data

NRZ encoded data

NRZI encoded data
USB

Figure 19.19 The USB encoding scheme.

Packet data

Bit stuffed NRZ data

0 0 0 0 0 0 10 1 1 1 1 1 1 1 0 1

Sync pattern Packet data

Stuffed bit

Source data

NRZI encoded data

Idle

1 1 1 1 1 1 1 1 10

Six 1 bits

NRZ encoded data

Figure 19.20 The USB uses bit stuffing to avoid the problems associated with long strings of ones.

Interrupt Transfer

The USB does not support interrupts in the traditional sense. For example, the keyboard gener-

ates an interrupt whenever you press or release a key. (We discuss keyboard interrupts in detail

in the next chapter.) Instead, the USB uses polling, which is similar to the busy-waiting used by

the programmed I/O. To get acceptable performance, we have to select an appropriate polling

frequency. If the frequency is too high, we will waste the bandwidth. On the other hand, if

we use too low a frequency, we may lose data. The frequency of USB interrupt transfers can

be adjusted to meet the device requirements. In the USB 1.1, the polling interval can range

from 1 to 255 ms, that is, from 1000 times to about 4 times a second. The USB uses an end-

Section 19.7 Universal Serial Bus 805

point descriptor to specify the polling interval, in increments of 1 ms. Since the data integrity

is important in this type of transfer, error detection and recovery are supported. If an error is

detected, a retry is attempted.

Isochronous Transfer

Real-time applications that require a constant data transfer rate use this type of transfer. These

applications need data in a timely manner. Examples include transmission of data to speakers

and reading audio from a CD-ROM. To provide a constant data transfer rate, isochronous trans-

fers are scheduled regularly. These transfers are real-time in nature, where timely delivery of

data is more important. Isochronous transfers do not use error detection and recovery.

Control Transfer

Control transfers are used to configure and set up the USB devices. A control transfer involves

two to three steps:

• Setup Stage: Control transfers always begin with a setup stage to convey the type of

request made to the target device (e.g., reading the contents of the device descriptor).

• Data Stage: This is optional and only control transfers that require data transfers use this

stage. For example, when the request is to read the device descriptor, the device will use

this stage to send the descriptor.

• Status Stage: This final stage is always used to check the status of the operation.

Control transfers are provided a guaranteed 10% bus bandwidth allocation. However, if more

bandwidth is available, it can be allocated to control transfers. Since data integrity is important,

error detection and recovery are supported.

Bulk Transfer

Devices that do not have any specific transfer rate requirements use the bulk transfers. For

example, in transferring a file to a printer, the data can be transferred at a slower rate without

any problem. Bus bandwidth is allocated to bulk transfers on a low priority basis. In a fully

allocated frame, it is possible that the other three types of transfers take 100% of the bandwidth.

In that case, bulk transfers are deferred until the load on the USB system decreases. Bulk

transfers support error detection and recovery. Recovery, as usual, is done by retransmission.

19.7.5 USB Architecture

The host hardware consists of a USB host controller and a root hub. The host controller initiates

transactions over the USB, and the root hub provides the connection points. There are two types

of host controllers: the open host controller (OHC) and the universal host controller (UHC).

Intel defined the UHC whereas Compaq, Microsoft, and National Semiconductor specified

the OHC. These two controllers perform the same basic function. The UHC/OHC along with

806 Chapter 19 Input/Output Organization

Control
data

Interrupt
data

Bulk
data

1 ms

(a) UHC scheduling

(b) OHC scheduling

SOF data
Periodic data Nonperiodic

data
Nonperiodic

SOF
Isochronous

data

(Isochronous & interrupt)

Figure 19.21 The UHC and OHC scheduling of the four transfer types (SOF = start of frame).

their drivers are responsible for scheduling and executing I/O request packets (IRPs) forwarded

by the USB driver.

The main difference between the two controllers is the policy used to schedule the four types

of transfers (interrupt, isochronous, control, and bulk transfers). Both controllers, however, use

1 ms frames to schedule the transfers.

The UHC schedules periodic transfers—isochronous and interrupt—first. These transfers

are followed by the control and bulk transfers as shown in Figure 19.21�. The periodic trans-

fers can take up to 90% of the bandwidth and the control transfers are allocated a guaranteed

10% bandwidth. As mentioned before, bulk transfers are scheduled only if there is bandwidth

available after scheduling the other three transfers.

The OHC uses a slightly different scheduling policy. It reserves space for nonperiodic

transfers (control and bulk) at the beginning of the frame such that these transfers are guaranteed

10% of the bandwidth (see Figure 19.21�). Next periodic transfers are scheduled to guarantee

90% of the bandwidth. If there is time left in the frame, nonperiodic transfers are scheduled as

shown in Figure 19.21�.

The root hub receives the transactions generated by the host controller and transmits them

on the USB. The root hub is responsible for the distribution of power, enabling and disabling

the ports, device recognition, and status reporting when polled by the host software. The USB

system can be expanded by using USB hubs, as shown in Figure 19.22.

Bus-powered devices can be divided into two groups: low- and high-power devices. Low-

power devices should consume less than 100 mA of current. A high-powered device may use

more than 100 mA but must use less than 500 mA. Similarly, a port can be a low-powered

(supplies up to 100 mA) or full-powered (supplies up to 500 mA) port.

The bus can power a low-power device. Examples of such devices include the keyboard

and mouse. There are some floppy disk drives that are bus powered! High-power devices can

be designed to have their own power supply rather than drawing current from the USB bus.

High-powered USB devices operate in three power modes: configured (500 mA), unconfigured

(100 mA), and suspended (about 2.5 mA). When a device is connected, it is not configured and

draws less than 100 mA. Thus, it can be connected to both low-powered and full-powered ports.

Section 19.7 Universal Serial Bus 807

USB device USB device

USB device
USB device

USB device

USB device

USB device USB device

USB device

HUB

HUB

HUB

HOST

Root hub

Figure 19.22 The USB can be expanded by using hubs: The hub port connected to the parent is called

the upstream port and the port connected to a child is called the downstream port.

The port can then read the device’s configuration register, which contains information about its

current requirement, and configure the device if the port supports the required current. For

example, if the device is a high-powered one requiring 500 mA, and the port is full-powered,

the device is configured. Then it draws a full 500 mA. If, on the other hand, this device is

connected to a low-powered port, the device is not configured and the user is informed of the

situation.

USB hubs can be bus-powered or self-powered. A bus-powered hub does not require an

extra power supply. The hub uses the power supplied by the USB. Bus-powered hubs can be

connected to an upstream port that can supply a full 500 mA current. The downstream ports

of the hub can only provide 100 mA of current. Furthermore, the number of ports is limited to

four. Most four-port USB hubs work in dual power mode. In bus-powered mode, they support

up to four low-powered devices. In self-powered mode, they support up to four high-powered

USB devices or up to four downstream bus-powered USB hubs.

On the other hand, a self-powered hub uses its own power supply. Thus it is not restricted

by the limitations of the bus-powered hub. Self-powered hubs can have more than four ports

and supply a full 500 mA of current on each of their downstream USB ports. For example, we

can get seven-port USB hubs, but these are not bus-powered.

19.7.6 USB Transactions

Transfers are done using one or more transactions. Each transaction consists of several packets.

As shown in Figure 19.23, each application’s data are encapsulated into several transactions.

808 Chapter 19 Input/Output Organization

Frame 1

Transaction

1-0

Transaction

2-0

Frame 2

Transaction

1-1

Transaction

2-1

Frame 3

Transaction

2-2

Transaction

1-2

I/O Request Packet 1

Transaction

1-1

Transaction

1-2

Transaction

1-0

USB Driver

Host Driver

PIPE

Application 1 sends

data to USB device 1

PIPE

I/O Request Packet 1

Transaction

2-1

Transaction

2-2

Transaction

2-0

Application 2 sends

data to USB device 2

Token Handshake
packetpacket

Data packet

Figure 19.23 USB I/O request packet (IRP) frame.

The host driver multiplexes transactions from several devices based on the bandwidth allocation

rules discussed before. At full speed, a frame is transmitted every 1 ms. Transactions may have

between one and three phases:

• Token Packet Phase: All transactions begin with a token phase. It specifies the type of

transaction and the target device address.

• Data Packet Phase: If the transaction type requires sending data, a data phase is included.

A maximum of 1023 bytes of data are transferred during a single transaction.

• Handshake Packet Phase: Except for the isochronous data transfers, the other three types

use error detection to provide guaranteed delivery. This phase provides feedback to the

sender as to whether the data have been received without any errors. In case of errors, a

retransmission of the transaction is done. Isochronous transfers do not use the handshake

phase, as error detection is not done for these transfers.

The packet format is shown in Figure 19.24. A synchronization sequence precedes each

packet. The receiver uses this sequence to synchronize to the incoming packet data rate. The

Section 19.7 Universal Serial Bus 809

Check fieldType field

Packet ID

8 bits

Packet-specific information EOPCRC

5 or 16 bits 3 bits

4 bits4 bits

Packet

Sync sequence

(00000001)

8 bits

Figure 19.24 USB packet format.

synchronization sequence is an 8-bit value: 00000001 (see Figure 19.20). Each packet consists

of a packet id, packet-specific data, and a CRC field.

The packet id consists of a 4-bit type field and a 4-bit check field. The type field identifies

whether the packet is a token, data, or handshake packet. Since the type field is only 4 bits long,

a 4-bit check field that is derived by complementing the type field is used to protect it. There is

no need to go through the complicated CRC process to protect the type field.

A conventional CRC field protects the data part of a USB packet. The USB uses the CRC-5

and CRC-16. The generator polynomial for CRC-5 is �� � �
�
� �. The generator polynomial

for CRC-16 is the one we have seen before (��� � �
�� � �

� � �).

In token packets, a 5-bit CRC provides adequate protection, as this field is only 11 bits. In

addition, using a 5-bit CRC aligns the packet to a byte boundary.

The end-of-packet (EOP) field indicates the end of each packet. This field is hardware

encoded such that this encoding does not occur within the packet. The EOP is indicated by

holding both signal lines low for two bit periods and leaving them idle for the third bit.

Let us now see how all these pieces fit together. Figure 19.25 shows how an IN transaction is

composed. The IN transaction transfers data from a USB device to the system. Nonisochronous

transactions consist of three packets, as shown in Figure 19.25�. Since isochronous transactions

do not have the handshaking packet, it uses only two packets (Figure 19.25�).

The USB 2.0 specifies a microframe, which is 1/8th of the original USB’s 1 ms frame (i.e.,

the USB 2.0 frame is 125 �s). This allows USB 2.0 devices to have small buffers even at the

high data rates they support. For more details on the USB standard, see the Web pointer in

Section 19.11 on page 823.

810 Chapter 19 Input/Output Organization

(a) IN transaction without errors

IN packet from host

One transaction

Sync EOPData (up to 1023 bytes)

Data packet from the USB device

(b) IN transaction during an isochronous transfer

EOPSync IN Token

IN packet from host Data packet from the USB device

Sync EOPData (up to 64 bytes) Sync EOPACKEOPSync IN Token

Acknowledgment packet

from host

One transaction

Figure 19.25 USB 1.1 transactions.

19.8 IEEE 1394
Apple originally developed this standard for high-speed peripherals. Apple called it FireWire

because of its high-speed transmission (particularly when it was first developed in the 1980s).

In fact, FireWire is a trademark of Apple. IEEE has standardized FireWire as IEEE 1394. Sony

calls it i.LINK. The first version IEEE 1394-1995 was released in 1995. A slightly revised

version was later released as 1394a. As of this writing, the next version 1394b is ready in draft

form.

19.8.1 Advantages of IEEE 1394

IEEE 1394 shares many of the features we have seen with the USB. We sum up some of the

more important ones here:

• Speed: IEEE 1394 offers substantially more bandwidth than the USB. When compared

to the speed of 12 Mbps provided by USB 1.1, 1394 supports three speeds: 100, 200,

and 400 Mbps. As we have noted before, USB 2.0 competes well in this range with its

480 Mbps rating. However, 1394 is also boosting the speeds to 3.2 Gbps! Since most

implementations currently support USB 1.1 and 1394a, it is fair to say that 1394 provides

substantial improvement in speed (more than 33 times). As a result, the USB interface is

used for low- to medium-speed I/O devices, and the 1394 is used for high-speed devices.

The 1394 is particularly entrenched in digital video transmission and editing applications.

Section 19.8 IEEE 1394 811

53

642

TPA*TPB*

VG TPB

VP

1

TPA

(a) 6-pin connector

1234

(b) 4-pin connector

TPA TPB
TPA* TPB*

Figure 19.26 IEEE 1394 6-pin and 4-pin connectors.

• Hot Attachment: As with the USB, devices can be attached and removed dynamically

without shutting down the system.

• Peer-to-Peer Support: The USB is processor-centric (i.e., the processor initiates the trans-

fers). The USB typically supports host-to-peripheral applications. The IEEE 1394, on

the other hand, supports peer-to-peer communication without involving the processor.

For example, when a new device is attached, all devices on the bus reconfigure among

themselves even if the bus is not connected to the system. The configuration process is

described later.

• Expandable Bus: Devices can be connected in daisy-chain fashion to extend the bus. The

bus can also be extended by using hubs as in the USB system.

• Power Distribution: As with the USB, the cable distributes power. However, 1394 sup-

plies much higher power than the USB. The voltage can range between 8 and 33 V, and

the current can be up to 1.5 amps. In contrast, USB power distribution is limited to 5 V

and 0.5 amps. Therefore, 1394 cable can power more devices like the disk drives.

• Error Detection and Recovery: As with the USB, data transmission errors are detected

using CRC. In case of errors, transaction retry is attempted.

• Long Cables: The 1394 supports cable lengths up to about four meters, which is in be-

tween the USB’s cable lengths of three meters (low-speed) and five meters (full-speed).

19.8.2 Power Distribution

1394 uses two types of connectors and cables: 6- or 4-wire. The two connectors are not inter-

changeable as shown in Figure 19.26. The 4-wire cable does not provide power distribution.

The 4-pin connector is compact and is used in most digital video devices such as camcorders,

which have their own power.

Signal encoding in 1394 is different from that in the USB. The clock information is not

embedded into the data signal. There are two twisted pairs to carry signals: one pair carries the

data and the other the strobe signal. The strobe signal uses twisted pair A (TPA), and the data

are transmitted over twisted pair B (TPB).

The data are encoded by using the simple NRZ scheme, as shown in Figure 19.27. The

strobe signal is encoded such that it changes state if the successive bits are the same. That is,

812 Chapter 19 Input/Output Organization

1 0 0 0 0 1 1 1 1 0 0 0 0 1 1 0 0Source data

NRZ encoded data

Clock signal

Strobe

Figure 19.27 IEEE 1394 signal encoding: Data encoding uses the standard NRZ scheme. The strobe

signal changes whenever the input data are the same in two successive cells.

the strobe signal captures the transitions that are missing from the data on TPB. There is no

need to transmit the clock signal. These two signals together carry the clock information. The

receiver can retrieve the clock by XORing the two signals (see Figure 19.27). The advantage of

using this type of strobe signal as opposed to carrying the actual clock signal is that it requires

far fewer transitions, which decreases the bandwidth requirement.

19.8.3 Transfer Types

Unlike the USB, 1394 supports only two types of transfers: asynchronous and isochronous.

The asynchronous transfers are used for those applications that require correct delivery of data.

Errors are not tolerated in these applications. For example, writing a file to a disk drive requires

asynchronous transfer. As in the USB, the isochronous transfers are used for real-time appli-

cations such as audio and video. Here timely delivery is more important than correct delivery.

Occasional errors do not affect the quality of the data. As a result of these differences, the two

transfer types use different transfer protocols.

The asynchronous transfers use an acknowledgment to confirm delivery of the data, as

shown in Figure 19.28�. The 1394 refers to the sender as the requester and the receiver as

the responder. Asynchronous transfers can be of three types: read, write, and lock. The read

and write actions allow data to be read or written. The lock transaction is used to perform

the test-and-set type of action. It is up to the responder to implement the test-and-set type of

atomic execution. Bus bandwidth is allocated on a per-cycle basis. Each cycle is 125 �s. All

asynchronous transfers are collectively allocated a guaranteed bandwidth of 20%. A given node

is not guaranteed any bandwidth for asynchronous transfers, but the bus arbitration uses a fair

allocation scheme so that no node is starved of the bandwidth.

The isochronous transfers do not require an acknowledgment as shown in Figure 19.28�.

Isochronous requesters are called isochronous talkers and responders are isochronous listen-

ers. Isochronous transfers use a 6-bit channel number to identify the listener. In order to make

Section 19.8 IEEE 1394 813

(a) Asynchronous transfer

ResponderRequester
Isochronous request

Responder

Request

Response

(Address and transaction type)

(Status)

Requester

(Channel #, data, & transaction type)

(b) Isochronous transfer

Figure 19.28 Asynchronous and isochronous communication models.

Table 19.6 Maximum data size for asynchronous and isochronous transfers

Bandwidth

(Mbps)

Maximum data size (bytes)

Asynchronous transfers Isochronous transfers

100 512 1024

200 1024 2048

400 2048 4096

sure that sufficient bandwidth is available for constant delivery of data for isochronous applica-

tions, each application should first request the needed bandwidth from the isochronous resource

manager node.

During each cycle, up to 80% of the cycle time can be allocated to isochronous transfers.

In each cycle, asynchronous and isochronous transfers cannot use more than the maximum

payload size given in Table 19.6. If the isochronous traffic does not use the bandwidth, it is

given to the asynchronous traffic. Thus, in the absence of isochronous traffic, asynchronous

traffic throughput increases substantially.

19.8.4 Transactions

Asynchronous transactions typically follow a request and reply format. A sample transaction is

shown in Figure 19.29. Each subaction begins with an arbitration phase to get the bus owner-

ship. The winner of the arbitration uses the bus to send one request packet and after an acknowl-

edge gap, the responder sends the acknowledgment packet. That completes one subaction. All

814 19

n p n p

n

 g k

p

n

 g k

p

n

 g
 §

k

p

n x d

s

d d

p

n

p

x d

s

n p g . n n 19.29,

h d n x d . x

d g o d d d d by .

n n 19.29 . ,

d o n by n o n

. o o d d k

o . n , no d n .

o ,

 no . , h

d d d . 19.30 n

 o d .

Section 19.8 IEEE 1394 815

19.8.5 Bus Arbitration

Since 1394 supports peer-to-peer communication, we need a bus arbitration mechanism. The

arbitration must respect the guaranteed bus bandwidth allocations to isochronous channels and

a fairness-based allocation for asynchronous channels.

Asynchronous arbitration uses a fairness interval. During each fairness interval, all nodes

that have a pending asynchronous transaction are allowed to obtain the bus ownership once.

This is achieved by using an arbitration enable bit. Once an asynchronous channel acquires the

bus ownership, its enable bit is cleared for the rest of the fairness interval.

Nodes that have pending isochronous transactions will go through an arbitration process

during each cycle. Each node waits for 0.04 �s of bus idle time. This is referred to as the

isochronous gap. The isochronous arbitration begins after this gap. The node that wins this

arbitration uses its allocated slice for that cycle. The bus then returns to the idle state. Af-

ter an isochronous gap, the remaining nodes again go through the arbitration process. This

process repeats until all nodes with isochronous transactions have used their allocated band-

width. Remember that these nodes will have to get their bandwidth allocations granted from the

isochronous resource manager (IRM). Typically the root node serves as the IRM. This determi-

nation is done as part of the configuration process. IRM will not allocate the bandwidth unless

the total allocated bandwidth is less than 80% of the total. The remaining bandwidth is used for

asynchronous transactions. If there are no asynchronous transactions, the bus remains idle for

the rest of the cycle (i.e., not given to the isochronous transactions).

19.8.6 Configuration

Bus configuration involves two main phases: tree identification and self-identification. As men-

tioned before, the configuration process does not require the host system. All devices connected

to the bus configure themselves. The configuration process kicks in whenever the system is re-

set or a device is attached or removed. The first phase, the tree identification phase, is used to

figure out the topology of the network. Once the topology has been identified, each node has to

be assigned a unique id within the bus. This assignment is done by the self-identification phase.

Next we describe these two phases by means of an example.

Tree Identification

Two special signals are used for tree identification: Parent_Notify and Child_Notify.

These two signals are hardware encoded as shown below:

Parent_Notify TPA = 0 TPB = Z (high impedance state)

Child_Notify TPA = 1 TPB = Z (high impedance state)

The tree identification process starts at the bottom (i.e., at leaf nodes) and propagates up to

the root node. Since the topology is a hierarchy (i.e., tree), every node has a single parent

except for the root node. A node � that knows that it is a child of another node � sends a

Parent_Notify signal to node � . After receiving this signal, � marks � as its child. This

process is repeated until all nodes identify their parents. The question is: How does a node

identify that it is a child of another node?

816 Chapter 19 Input/Output Organization

13 2 3 12212 31 1 11 1 1

B C D E F G H IA

Parent_Notify Parent_Notify Parent_Notify Parent_NotifyParent_Notify

(b) Leaf nodes send Parent_Notify signal to their parent nodes

13 2 3 12212 31 1 11 1 1

B C D E F G H IA

HB D

A C

F

E G I

3,C

1,P 1,P

2,C

1 1 2

1

2,C

1 3 1

2,C

1,P

Parent_NotifyChild_Notify
Child_Notify Child_Notify Child_Notify

(c) Topology starts to take shape with nodes A, C, E, G, and I identified as leaf nodes

Parent_NotifyParent_Notify

1,P

3,C

(a) Original unconfigured network

Figure 19.31 The first few steps in the tree identification process.

• This is the simplest case. Leaf nodes, nodes that have only one connected port, know that

they are the child nodes.

• If a node has � ports, it must receive the Parent_Notify signal on all but one port

(say, port �) to know that it is a child of the node connected to port �.

Let’s look at the example shown in Figure 19.31�. The tree identification process is started

by the leaf nodes A, C, E, G, and I. These nodes send the Parent_Notify signal to the nodes

connected to the only port they have (Figure 19.31�). Note that these nodes continue to send

the Parent_Notify signals until the Child_Notify signal is received by them. This will

automatically take care of any lost or corrupt signals.

Once the Parent_Notify signals from nodes A and C are received by branch B, it will

send its own Parent_Notify signal to node D. Simultaneously, it sends Child_Notify
signals to nodes A and C and marks ports 2 and 3 as child ports. Similarly, branch H also

sends a Parent_Notify signal to branch F and Child_Notify messages to G and I (see

Figure 19.31
). Branch H marks ports 2 and 3 as child ports.

Section 19.8 IEEE 1394 817

B D

A C

F

E

3,C

1,P 1,P

2,C

1 1 2

1,P

2,C

Child_Notify

Parent_Notify Parent_Notify

Child_Notify Child_Notify

H

G I

1,P

2,C

1,P 1,P

3,C

Child_Notify

Child_NotifyChild_Notify

3,C

1

Figure 19.32 All leaf nodes have been identified.

B

A C

F

E

3,C

1,P 1,P

2,C

1,P

1,P

2,C

H

G I

1,P

2,C

1,P 1,P

3,C

3,C

1,P

1,C 2,C

D

Root

Branch

Leaf

Leaf Leaf Leaf

Leaf Leaf

Branch

Branch

Figure 19.33 Final topology after the completion of the tree identification process.

At this stage, branch F is not qualified to send the Parent_Notify signal because it has

not received the Parent_Notify signal on more than one port. In the next phase, branch

F sends a Parent_Notify signal to branch D (Figure 19.32). Having already received a

Parent_Notify signal from branch B, branch D considers itself the root as it has identified

all its ports as child ports. The final topology is shown in Figure 19.33.

818 Chapter 19 Input/Output Organization

count = 0 count = 0 count = 0

count = 0 count = 0

count = 0

count = 0

count = 0

B

A C

F

E

3,C

1,P 1,P

2,C

1,P

1,P

2,C

H

G I

1,P

2,C

1,P 1,P

3,C

3,C

1,P

1,C 2,C

D

Self_ID_Grant

Data_Prefix

Self_ID_Grant Data_Prefix

count = 0

Root

Figure 19.34 Initial network with count values initialized to zero.

Self-Identification

The self-identification phase configures the nodes. This configuration process assigns physical

ids to the nodes. In addition, neighboring nodes exchange their transmission speed capabili-

ties. Furthermore, the bus topology information gathered during the tree-identification phase is

broadcast to all nodes. Note that, in the tree-identification phase, each node knows only about

its own child and parent entities. By broadcasting this information, each node will have the

topology of the bus.

During the self-identification phase, since the speeds of the nodes are not known, all nodes

operate at the lowest speed of 100 Mbps. Self-identification is done using three special signals:

Self_ID_grant, Data_prefix, and Identification_done. In contrast to the tree-

identification process, the root node initiates the self-identification phase. Initially, all nodes

reset their count value to zero (Figure 19.34). The root node issues a Self_ID_grant on

its lowest numbered port and Data_prefix on all the other ports. Each branch node that

receives the Self_ID_grant forwards it on its lowest numbered port and Data_prefix
on all the other ports. At the end of this process, only node A receives the Self_ID_grant
signal, as shown in Figure 19.34.

Node A assigns its count value zero as its physical id. Then node A broadcasts a self-

id packet giving its id and its bus characteristics (e.g., 200 Mbps speed). This broadcast is

initiated by node A by sending a self-id packet to node B (Figure 19.35). Node B forwards

this on ports 1 and 3 to nodes C and A. Each branch node repeats this process to complete the

broadcast. Thus, all nodes know that node A assigned itself zero as its physical id. Node A

Section 19.8 IEEE 1394 819

ID = 0 count = 0 count = 0

count = 0 count = 0

count = 0

count = 0

count = 0

B

A C

F

E

3,C

1,P 1,P

2,C

1,P

1,P

2,C

H

G I

1,P

2,C

1,P 1,P

3,C

3,C

1,P

1,C 2,C

D

Root

Self-ID packet + Data_End

count = 0

Figure 19.35 Node A receives the grant message and assigns itself physical node id zero.

Node A signals identification done

count = 1 count = 1

count = 1 count = 1

count = 1

count = 1

count = 1

B

A C

F

E

3,C

1,P 1,P

2,C

1,P

1,P

2,C

H

G I

1,P

2,C

1,P 1,P

3,C

3,C

1,P

1,C 2,C

D

Root

Node B acknowledges by sending Data_Prefix

count = 1

ID = 0

It also marks port 2 as identified

IdleIdle

IdleIdle

Idle

Idle Idle

ID

Figure 19.36 Node A completes the assignment process by sending the identification done signal and

node B acknowledges by sending the Data prefix signal. All other nodes, having received the self ID

message, update their count values to 1.

820 Chapter 19 Input/Output Organization

ID = 1 ID = 3

ID = 4 ID = 5

ID = 6

ID = 7

ID = 8

B

A C

F

E

3,C

1,P 1,P

2,C

1,P

1,P

2,C

H

G I

1,P

2,C

1,P 1,P

3,C

3,C

1,P

1,C 2,C

D

Root

ID = 2

ID = 0

ID ID

ID ID

ID ID

ID ID

Figure 19.37 Final assignment of node ids.

then sends the Identification_done signal to node B, which acknowledges by sending

a Data_prefix signal. Node B also marks this port as identified, as shown in Figure 19.36.

After the first self-id packet, the root node detects an idle period on the network and initiates

the second round. During this round, node B forwards the Self_ID_grant signal to the

lowest unidentified port (i.e., port 3 in the example). Node C assigns itself a physical id of 1

and broadcasts to all nodes like node A. This process is repeated until all nodes get a physical

id. Figure 19.37 shows the final physical id assignment.

Self-id packets also carry information about the capability of a node to become the isochro-

nous resource manager (IRM). If there is more than one contender for the IRM, the node with

the highest physical id gets to be the IRM. Since the root node has the highest id, it often acts

as the IRM for the network.

19.9 The Bus Wars
We have discussed several bus standards. Of these, the EIA-232 and parallel interfaces are

certain to disappear in the near future. Their functionality is easily supported by the USB.

Thus, we don’t need special connectors for these two interfaces.

Of the other three standards, SCSI is the parallel interface, and the USB and IEEE 1394 use

the serial interface. Each bus has future expansion plans to compete and survive. The SCSI

Trade Association (STA) has plans for Ultra5 SCSI by 2003, with the bandwidth scaling up to

640 MB/s. SCSI is dominant for connecting disk drives and other storage devices, particularly

for midrange to high-end users requiring external connectivity. For example, currently about

95% of high-end disk drives use a SCSI interface.

Section 19.10 Summary 821

As we have seen in the USB section, USB 2.0 can compete well with SCSI 3 to connect a

single disk drive. USB 2.0 provides about 60 MB/s data transfer rate. However, even the Ultra

2 SCSI provides a higher bandwidth and supports up to 16 devices. Even though in 1999 disk

drives’ transfer rate is 20 MB/s, it is expected to go up to 88 MB/s in 2003. At that time, USB 2.0

will not support even four drives as they transfer about 353 MB/s. A significant challenge for

SCSI is to overcome its 12-meter cable length restriction cost effectively.

The USB 2.0 plays a key role in multimedia and Internet access applications, and wireless

LANs. Even CD burners can exploit the USB 2.0’s high speed. Windows 2000 and Millennium

Edition support the USB 2.0. This can make the 2.0 successful just as Windows 98 played a

key role in making the original USB interface a success.

IEEE 1394 is dominant in digital video applications. As mentioned, it will be useful in

peer-to-peer applications, whereas the USB will be dominant in low-cost, host-to-peripheral

applications. There is room for both interfaces. Current systems support both interfaces, partic-

ularly systems with digital video application support. There is also support for both standards

from the industry. For example, Lucent produces a single controller that handles both USB and

1394.

Surely, we have not discussed all the bus types here. Our objective is to discuss the dominant

and popular ones in order to give you an idea of their characteristics. Once you understand these

basics, you can explore the other, less popular, bus standards.

19.10 Summary
We have looked at the I/O device interface in this chapter. I/O devices are usually interfaced

to the system by means of an I/O controller. The I/O controller serves two important purposes:

taking care of device-specific low-level details, and isolating the system bus from the electrical

interface details. When we talk about an I/O device, we are not referring to the actual device,

but to the associated controller.

I/O devices typically consist of several internal registers, including the command, data,

and status registers. The processor communicates with an I/O device via these registers. For

example, it can write to the command register to direct the associated I/O device to perform

a specific task. The data register can be used for data transfer. The status register provides

information on the status of the I/O device and the requested I/O operation.

The internal registers are accessed through I/O ports. I/O ports can be mapped into the

memory address space or into a separate I/O address space. The former mapping is known

as memory-mapped I/O. In isolated I/O, port addresses are mapped to a separate I/O address

space. Processors like the Pentium support isolated I/O. Other processors like the PowerPC and

MIPS support memory-mapped I/O. Isolated I/O requires separate I/O instructions in order to

access the ports. Memory-mapped I/O, on the other hand, uses the standard memory read/write

instructions to access I/O ports.

I/O data transfer involves two main phases: a data transfer phase to move data, and a transfer

termination phase to indicate the end of the transfer operation. We can use either programmed

822 Chapter 19 Input/Output Organization

I/O or DMA to transfer data. The end of data transmission can be done with an interrupt or by

using the programmed I/O method.

Programmed I/O involves the processor in the transfer process. Typically, the processor

executes a busy-wait loop to transfer data. In DMA transfer, the processor initiates the transfer

process by providing the necessary information to the DMA controller as to the type of opera-

tion, size of data to be transferred, and so on. The DMA controller is in charge of the actual data

transfer process. Once the transfer is completed, the processor is notified. The DMA operation

is more efficient than the programmed I/O-based data transfer. We have not discussed the inter-

rupt mechanism in this chapter. The next chapter presents a detailed discussion of interrupts.

Data transmission can be done in either serial or parallel mode. Both modes are used in I/O

interfaces. The parallel printer port is an example of the parallel port. The typical modem serial

interface uses the EIA-232 standard. We have discussed the SCSI parallel interface, which

is used to interface disk drives and other storage devices. We have also presented details on

two external serial interfaces: the USB and IEEE 1394. The USB is very popular with low-

to medium-speed I/O devices. It is processor-centric and typically supports host-to-peripheral

applications. The IEEE 1394, which is also known as the FireWire, supports medium- to high-

speed devices on a peer-to-peer basis. Most current systems provide these two interfaces.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Asynchronous transmission

• Bus arbitartion

• Cyclic redundancy check (CRC)

• Direct memory access

• Direction flag

• DMA acknowledge

• DMA controller

• DMA request

• EIA-232 serial interface

• Error correction

• Error detection

• FireWire

• Gray code

• Hold acknowledge

• IEEE 1394

• I/O address space

• I/O controller

• I/O port

• Isolated I/O

• Memory-mapped I/O

• Parallel interface

• Parity encoding

• Peripheral device

• Programmable peripheral interface

• Programmed I/O

• RS-232 serial interface

• SCSI bus

• SECDED

• Serial transmission

• Synchronous transmission

• Universal Serial Bus (USB)

Section 19.11 Web Resources 823

19.11 Web Resources
Information on the CRC generator/checker chip 74F401 is available from Fairchild Semicon-

ductor at www.fairchildsemi.com/pf/74/74F401.html.

Details on SCSI are available from the SCSI Trade Association at www.scsita.org.

For information on the USB standard, see www.usb.org.

Information on IEEE 1394 is available from the 1394 Trade Association atwww.1394TA.org.

Also, see the Apple site www.apple.com/usb for information on FireWire.

19.12 Exercises
19–1 Explain why I/O controllers are used to interface I/O devices to the system.

19–2 Describe the two I/O mapping methods: memory-mapped I/O and isolated I/O.

19–3 Discuss the differences between memory-mapped and isolated I/O.

19–4 We have said that the Pentium supports isolated I/O. Does this mean it does not support

memory-mapped I/O?

19–5 Why do processors that support only memory-mapped I/O not provide separate I/O in-

structions?

19–6 What is the relationship between the key scan code and its ASCII value?

19–7 Pentium allows two formats—direct and indirect—for in and out instructions. What is

the rationale for this?

19–8 Figure 19.2 on page 774 shows how the four ports of the 8255 PPI are mapped to ad-

dresses 60H through 63H. Modify this figure to map these four ports to E0H through

E3H.

19–9 Is it possible to map the four 8255 I/O ports to addresses 62H to 65H? Explain.

19–10 What are the pros and cons of programmed I/O over DMA?

19–11 What is the purpose of the temporary register in the Intel 8237?

19–12 To correct a single-bit error, we add several parity bits to the data to derive a codeword.

Each parity bit is responsible for checking certain bits of the codeword. Devise a way to

remember these bit positions. To test your method, write down the bit positions checked

by parity bits �� and �� in a 14-bit codeword.

19–13 How many parity bits � do you need to detect single-bit errors in an �-bit datum? That

is, derive a general formula that tells you the value of �.

19–14 Compute the overhead of the error-correcting code discussed in this chapter. Express

this overhead as a percentage of the data size. Use your judgment to figure out a way to

present your data.

19–15 Compute the CRC code (i.e., remainder) for the data 1000101110100011. Use the

polynomial used in Example 19.1 on page 789. Write the codeword that would be trans-

mitted.

824 Chapter 19 Input/Output Organization

19–16 Suppose a receiver received the codeword 101000110101110. Verify that the code-

word has been received incorrectly. Use the polynomial �� � �
�
� �

�
� �.

19–17 Suppose a receiver received the codeword 101000010101110. Verify that the code

has been received correctly. Use the polynomial �� � �
� � �

� � �.

19–18 We have given a CRC generator circuit in Figure 19.10 (page 791). Give a similar circuit

for the polynomial �� � �
� � �. Trace your circuit to find the remainder generated for

10100101 (we have used the same data in Figure 19.8 on page 790). Verify that the

remainder is 01110.

19–19 Implement a CRC generator circuit for the polynomial �� � �
� � �

� � �. Trace your

circuit for the input data 1010001101. Make to sure to append five zeros to the input

data. The remainder will be in the shift register after shifting the last bit. Verify that this

remainder is correct by using the division process used in Figure 19.8 on page 790.

19–20 The 74F401 chip can be programmed to use one of several polynomials using the se-

lection inputs ��� ��� ��. To understand how this chip implements the CRC generator

circuit, design a circuit that implements the following general polynomial:

� �

��

���

���
��

Hint: Use the XOR gate as a programmable inverter.

19–21 Design a digital logic circuit that uses the error detection circuit shown in Figure 19.7

to correct the error bit. Hint: Use a multiplexer and XOR gates to invert the error bit.

Remember that the XOR gate can be used as a programmable inverter.

19–22 What is the purpose of the start bit in asynchronous transmission?

19–23 What is the purpose of the stop bit(s) in asynchronous transmission?

19–24 What are the motivating factors for proposing the USB and IEEE 1394 external inter-

faces?

19–25 USB uses the NRZI encoding as opposed to the simple NRZ encoding. Discuss the

advantages of NRZI over NRZ encoding.

19–26 Since USB does not use interrupts in the traditional sense, how can external devices obtain

interrupt services?

19–27 What are the differences between UHC and OHC?

19–28 On page 807, we have stated that seven-port USB hubs are not bus-powered but four-port

hubs are. Explain why.

19–29 Explain why bus arbitration is required in IEEE 1394 but not in USB.

19–30 Explain how the IRM selection is done in IEEE 1394.

Chapter 20

Interrupts

Objectives
• To describe the interrupt mechanism of the Pentium;

• To explain software and hardware interrupts;

• To discuss DOS and BIOS interrupt services to interact with I/O devices such as the

keyboard;

• To illustrate how user-defined interrupt handlers are written;

• To discuss how single-stepping is implemented in the Pentium;

• To describe the interrupt mechanism of PowerPC and MIPS processors.

Interrupts, like procedures, can be used to alter a program’s flow of control to a procedure called

the interrupt service routine or handler. For most of this chapter, we focus on Pentium interrupts.

Unlike procedures, which can be invoked by the call instruction, interrupt service routines

can be invoked either in software (called software interrupts), or by hardware (called hardware

interrupts). Interrupts are introduced in the first section. Section 20.2 discusses a taxonomy

of Pentium interrupts. The interrupt invocation mechanism of the Pentium is described in Sec-

tion 20.3.

Both DOS and BIOS provide several software interrupt service routines. Software interrupts

are introduced in Section 20.4. This section also discusses the keyboard services of DOS and

BIOS. Section 20.5 discusses exceptions. Exceptions are like interrupts, except that they are

caused by an event within the processor such as an attempt to divide by zero.

Hardware interrupts are introduced in Section 20.6. Hardware interrupts deal with interrupt

requests from the I/O devices. We use the keyboard to illustrate how interrupt handlers are

written in Pentium-based systems. We briefly discuss the interrupt mechanisms of PowerPC

and MIPS processors in Sections 20.7 and 20.8. The last section summarizes the chapter.

825

826 Chapter 20 Interrupts

20.1 Introduction
The interrupt is a mechanism by which a program’s flow of control can be altered. We have

seen two other mechanisms that do the same: procedures and jumps. Jumps provide a one-way

transfer of control, and procedures provide a mechanism to return control to the point of calling

when the called procedure is completed.

Interrupts provide a mechanism similar to that of a procedure call. Causing an interrupt

transfers control to a procedure, which is referred to as an interrupt service routine. An interrupt

service routine is commonly called an interrupt handler. When the interrupt handler execution

is done, the original program resumes execution as if it were not interrupted. This behavior is

analogous to a procedure call. There are, however, some basic differences between procedures

and interrupts that make interrupts almost indispensable.

One of the main differences is that interrupts can be initiated by both software and hardware.

In contrast, procedures are purely software-initiated. The fact that interrupts can be initiated by

hardware is the principal factor behind the power of the interrupt mechanism. This capability

gives us an efficient way by which external devices (outside the CPU) can get the attention of

the CPU.

Software-initiated interrupts—called simply software interrupts—are caused by executing

a processor instruction. In the Pentium, software interrupts are caused by executing the int
instruction. PowerPC and MIPS processors also have an instruction to generate interrupts. The

PowerPC uses the system call (sc) instruction to cause interrupts. The MIPS processor also

uses the system call (syscall) instruction for software interrupts. In fact, in Chapter 15, we

used this instruction to invoke the SPIM simulator I/O services.

Thus, software interrupts, like procedure calls, are anticipated or planned events. For exam-

ple, when you are expecting a response from the user (e.g., Y or N), you can initiate an interrupt

to read a character from the keyboard. What if an unexpected situation arises that requires the

immediate attention of the CPU? For example, you have written a program to display the first

90 Fibonacci numbers on the screen. While running the program, however, you have realized

that your program never terminates because of a simple programming mistake (e.g., you forgot

to increment the index variable controlling the loop). Obviously, you want to abort the program

and return control to the operating system. As you know, in most cases this can be done by

ctrl-break. For this example, ctrl-break certainly works. The important point is that

this is not an anticipated event, so it cannot be programmed into the code. Strictly speaking,

we can include code to handle all possible events, or at least most likely events, but such an

alternative makes the program very inefficient.

The interrupt mechanism provides an efficient way to handle unanticipated events. Refer-

ring to the previous example, the ctrl-break could cause an interrupt to draw the atten-

tion of the CPU away from the user program. The interrupt service routine associated with

ctrl-break can terminate the program and return control to the operating system.

We see two terms in this chapter: interrupts and exceptions. Interrupts were originally

proposed as a way to handle unanticipated events such as requests for service from I/O devices.

Later, the same mechanism was extended to handle internal events such as arithmetic overflow

Section 20.2 A Taxonomy of Pentium Interrupts 827

and illegal instruction execution. As a result, different processors use different terminology.

Processors like the Pentium distinguish between interrupts and exceptions. Other processors

like the MIPS and PowerPC use these two interchangeably. Since the underlying mechanism is

essentially the same, we use the term interrupt in our explanation.

As do procedures, interrupts involve transferring control to the interrupt handler and return-

ing control to the interrupted location after executing the handler. To transfer control to the

handler, the processor needs to know the type of interrupt. This type of information can be ob-

tained in one of two ways. In a vectored interrupt mechanism, each interrupt type is assigned a

specific address. When an interrupt occurs, the corresponding handler is invoked by transferring

control to the type-specific handler. The Pentium and PowerPC use vectored interrupts.

An alternative way is to indicate the cause of the interrupt. In this case, all interrupts transfer

control to a common interrupt handler. This handler looks at the cause register to identify the

interrupt type and transfers control to the appropriate point in the operating system. As we show

later, the MIPS processor uses this kind of mechanism to process interrupts.

For most of this chapter, we focus on the Pentium interrupt mechanism. We use several

examples to illustrate interrupt-driven I/O. Once you know the Pentium interrupt processing

mechanism, it is easy to see how the interrupt processing is done in the PowerPC and MIPS

processors.

20.2 A Taxonomy of Pentium Interrupts
We have already identified two basic categories of interrupts: software-initiated and hardware-

initiated (see Figure 20.1). The third category is called exceptions. Exceptions handle instruc-

tion faults. An example of an exception is the divide error fault, which is generated whenever

divide by 0 is attempted. This error condition occurs during the div or idiv instruction if the

divisor is 0. Later, we see an example of this fault in Section 20.5, which discusses exceptions

in detail.

Software interrupts are written into a program by using the int instruction. The main use of

software interrupts is in accessing I/O devices such as a keyboard, printer, display screen, disk

drive, and the like. Software interrupts can be further classified into system-defined and user-

defined. There are two types of system-defined software interrupts: interrupt services supported

by DOS, and those supported by BIOS (basic input/output system). The BIOS is the lowest-

level software that is stored in ROM. Note that DOS and other application software are loaded

from disk.

The interrupt service routines provided by DOS and BIOS are not mutually exclusive. There

are some services, such as reading a character from the keyboard, provided by both DOS and

BIOS. In fact, DOS uses BIOS-supported routines to provide some services that control the

system hardware (see Figure 20.2).

Hardware interrupts are generated by hardware devices to get the attention of the CPU. For

example, when you strike a key, the keyboard hardware generates an external interrupt causing

the CPU to suspend its present activity and execute the keyboard interrupt handler to process

the key. After completing the keyboard handler, the CPU resumes what it was doing before the

interruption.

828 Chapter 20 Interrupts

Hardware interruptsExceptions

Nonmaskable

Pentium interrupts

TrapsAborts Maskable

Software interrupts

Faults

Figure 20.1 A taxonomy of Pentium interrupts.

Application program

DOS support

BIOS support

Input/Output devices

Figure 20.2 Various ways of interacting with I/O devices in a PC.

Hardware interrupts can be either maskable or nonmaskable. The nonmaskable interrupt

(NMI) is always attended to by the CPU immediately. One example of an NMI is the RAM

parity error indicating memory malfunction. Maskable interrupts can be delayed until execution

reaches a convenient point. As an example, let us assume that the CPU is executing a main
program. An interrupt occurs. As a result, the CPU suspends the main as soon as it finishes the

current instruction of main and the control is transferred to ISR1. If ISR1 has to be executed

without any interruption, the CPU can mask further interrupts until ISR1 is completed. Suppose

that, while executing ISR1, another maskable interrupt occurs. Service to this interrupt would

have to wait until ISR1 is completed.

Section 20.3 Pentium Interrupt Processing 829

20.3 Pentium Interrupt Processing
This section describes the interrupt processing mechanism of the Pentium in protected and real

modes.

20.3.1 Interrupt Processing in Protected Mode

Unlike procedures, where a name is given to identify a procedure, a type number identifies

interrupts. The Pentium supports 256 different interrupt types. Interrupt types range between 0

and 255. The interrupt type number is used as an index into a table that stores the addresses of

interrupt handlers. This table is called the interrupt descriptor table (IDT). Like the global and

local descriptor tables (GDT and LDT, as discussed in Chapter 7), each descriptor (or vector as

they are often called) is essentially a pointer to an interrupt handler and requires 8 bytes. The

interrupt type number is scaled by 8 to form an index into the IDT.

The IDT may reside anywhere in physical memory. The location of the IDT is maintained

in an IDT register IDTR. The IDTR is a 48-bit register that stores 32 bits of IDT base address

and a 16-bit IDT limit value. However, the IDT does not require more than 2048 bytes, as there

can be at most 256 descriptors. In a system, the number of descriptors could be much smaller

than the maximum allowed. In this case, the IDT limit can be set to the required size. If a

descriptor is referenced that is outside the limit, the processor enters shutdown mode.

There are two special instructions to load (lidt) and store (sidt) the contents of the IDTR

register. Both instructions take the address of a 6-byte memory as the operand. In the next

subsection, we describe interrupt processing in real mode, which is the focus of this chapter.

20.3.2 Interrupt Processing in Real Mode

In real mode, the IDT is located at base address 0. Each vector takes only 4 bytes as opposed

to 8 bytes in protected mode. Each vector consists of a CS:IP pointer to the associated handler:

two bytes for specifying the code segment (CS), and two bytes for the offset (IP) within the

code segment. Figure 20.3 shows the interrupt vector table layout in the memory.

Since each entry in the interrupt vector table is 4 bytes long, the interrupt type is multiplied

by 4 to get the corresponding interrupt handler pointer in the table. For example, int 2 can

find the interrupt handler pointer at memory address 2 � 4 = 00008H. The first 2 bytes at the

specified address are taken as the offset value and the next 2 bytes as the CS value. Thus,

executing int 2 causes the CPU to suspend its current program, calculate the address in the

interrupt vector table (which is 2 � 4 = 8 for this example), read CS:IP values, and transfer

control to that memory location.

Just as procedures do, interrupt handlers should end with a return statement to send control

back to the interrupted program. The interrupt return (iret) is used for this purpose. A typical

interrupt handler structure is shown below:

830 Chapter 20 Interrupts

Memory address (in Hex)

CS

IP

CS

IP

CS

IP

int type 255

int type 2

int type 1

00000

00001

00002

00003

00004

00005

00006

00007

00008

00009

0000A

0000B

003FF

003FE

003FD

003FC

IP low byte

IP high byte

CS low byte

CS high byte
CS

IP

int type 0

IP low byte

IP high byte

CS low byte

CS high byte

IP low byte

IP high byte

CS low byte

CS high byte

IP low byte

IP high byte

CS low byte

CS high byte

Figure 20.3 Interrupt vector table in memory (real mode).

;save the registers used in the ISR

sti ; enable further interrupts

. . .

. . .

ISR body

. . .

. . .

; restore the saved registers

iret ; return to the interrupted program

Section 20.4 Pentium Software Interrupts 831

When an interrupt occurs, the following actions are taken:

1. Push the flags register onto the stack;

2. Clear the interrupt enable and trap flags;

3. Push the CS and IP registers onto the stack;

4. Load the CS with the 16-bit data at memory address (interrupt-type � 4 + 2);

5. Load the IP with the 16-bit data at memory address (interrupt-type � 4).

Note that EIP is used instead of IP for 32-bit segments. On receiving an interrupt, the flags

register is automatically saved on the stack. The interrupt enable flag is cleared. This disables

attending further interrupts until this flag is set. Usually, this flag is set in interrupt handlers

unless there is a special reason to disable other interrupts. The interrupt flag can be set by sti
and cleared by cli assembly language instructions. Neither instruction requires any operands.

The current CS and IP values are pushed onto the stack. In most cases, these values (i.e.,

CS:IP) point to the instruction following the current instruction. (See Section 20.5 for a dis-

cussion of a different behavior in the case of a fault.) If it is a software interrupt, CS:IP points

to the instructions following the int instruction. The CS and IP registers are loaded with the

address of the interrupt handler from the interrupt vector table.

The last instruction of an ISR is the iret instruction and serves the same purpose as ret
for procedures. The actions taken on iret are as follows:

1. Pop the 16-bit value from the stack into the IP register;

2. Pop the 16-bit value from the stack into the CS register;

3. Pop the 16-bit value from the stack into the flags register.

In other words, the top three words from the stack are loaded into IP, CS, and flags registers.

20.4 Pentium Software Interrupts
Software interrupts are initiated by executing

int interrupt-type

where interrupt-type is an integer in the range 0 through 255 (both inclusive). Thus, a

total of 256 different types is possible. This is a sufficiently large number, as each interrupt type

can be parameterized to provide several services. For example, all DOS services are provided

by int 21H. There are more than 80 different services (called functions) provided by DOS.

Registers are used to pass parameters and to return values. We discuss some of the int 21H
services throughout this chapter.

DOS and BIOS provide several interrupt service routines to access I/O devices. The follow-

ing sections describe the keyboard services and explain by means of examples how they can be

used.

832 Chapter 20 Interrupts

20.4.1 DOS Keyboard Services

DOS provides several interrupt services to interact with the keyboard. All DOS interrupt ser-

vices are invoked by int 21H after setting up registers appropriately. The AH register should

always be loaded with the desired function number. The following seven functions are provided

by DOS to interact with the keyboard:

Function 01H: Keyboard input with echo.

Input: AH = 01H;

Returns: AL = ASCII code of the key entered.

This function can be used to read a character from the keyboard buffer. If the keyboard buffer

is empty, this function waits until a character is typed. The received character is echoed to the

display screen. If the character is a ctrl-break, an interrupt 23H is invoked to abort the

program.

Function 06H: Direct console I/O. There are two subfunctions associated with this function:

keyboard input or character display. The DL register is used to specify the desired subfunction.

Subfunction: Keyboard input.

Inputs: AH = 06H,

DL = FFH;

Returns: ZF = 0 if a character is available,

In this case, the ASCII code of the key

is placed in the AL register.

ZF = 1 if no character is available.

If a character is available, the zero flag (ZF) is cleared (i.e., ZF = 0), and the character is returned

in the AL register. If no character is available, this function does not wait for a character to be

typed. Instead, control is returned immediately to the program and the zero flag is set (i.e.,

ZF = 1). The input character is not echoed. No ctrl-break check is done by this function.

Subfunction: Character display.

Inputs: AH = 06H;

DL = Character to be displayed

(it should not be FFH);

Returns: Nothing.

The character in the DL register is displayed on the screen.

Function 07H: Keyboard input without echo or ctrl-break check.

Input: AH = 07H;

Returns: AL = ASCII code of the key entered.

Section 20.4 Pentium Software Interrupts 833

This function waits for a character from the keyboard and returns it in AL as described in

function 01H. The difference between this function and function 01H is that this function does

not echo the character, and no ctrl-break service is provided. This function is usually used

to read the second byte of an extended-keyboard character (see page 834).

Function 08H: Keyboard input without echo.

Input: AH = 08H;

Returns: AL = ASCII code of the key entered.

This function provides similar service to that of function 07H except that it performs a

ctrl-break check. As a result, this function is normally used to read a character from the

keyboard when echoing is not needed.

Function 0AH: Buffered keyboard input.

Inputs: AH = 0AH;

DS:DX = Pointer to the input buffer

(first byte of the input buffer

should have the buffer size);

Returns: Character string in the input buffer.

This function can be used to input a character string (terminated by the carriage return) into

a buffer within the calling program. Before calling this function, DS:DX should be loaded

with a pointer to the input buffer and the first byte of this buffer must contain a nonzero value

representing the string length to be read including the carriage return.

The input character string is placed in the buffer starting at the third byte of the buffer.

Characters are read until either the Enter key is pressed or the buffer is filled to one less than its

length. When the Enter key is pressed to terminate the input, 0DH is stored in the buffer and

the number of characters in the buffer (excluding the carriage return character) is placed in the

second byte of the input buffer.

When the input buffer is filled to one less than its length before encountering the Enter key,

all keys except Enter and Backspace keys are rejected, and this rejection is indicated by a beep.

m

0 1 2 3 4 5 6 +1_l 1

Input buffer for character string

l

l l

l = maximum number of characters (given as input),

m = indicates the actual number of characters in the input buffer

excluding the carriage return (returned by the function).

834 Chapter 20 Interrupts

Function 0BH: Check keyboard buffer.

Input: AH = 0BH;

Returns: AL = 00H if the keyboard buffer is empty,

AL = FFH if the keyboard buffer is not empty.

This function can be used to check the status of the keyboard buffer. It returns 00H in AL if

the keyboard buffer is empty, and returns FFH in AL if the buffer has at least one character. A

ctrl-break check is done by this function. The keyboard buffer is not modified in any way.

Function 0CH: Clear keyboard buffer.

Inputs: AH = 0CH,

AL = 01H, 06H, 07H, 08H, or 0AH;

Returns: Depends on the AL contents (see below).

This function can be used to clear the keyboard buffer to discard any typeahead input entered by

the user. If AL is 01H, 06H, 07H, 08H, or 0AH, then an appropriate DOS function is performed

following the buffer flush. If AL contains any other value, nothing is done after clearing the

buffer.

Extended Keyboard Keys

The IBM PC keyboard has several keys that are not part of the ASCII character set. These keys

include the function keys, cursor arrows, Home, End, and so on. These keys are called extended

keys. When an extended key is pressed, the first byte placed in the keyboard buffer is 00H and

the second byte is the keyboard scan code for the key. Table 19.1 on page 773 lists the keyboard

scan codes for the extended keys. In contrast, when an ASCII key is pressed, the first byte in

the keyboard buffer (which is 30 bytes long to store 15 typeahead keys with two bytes for each

key) is the ASCII code for the key, and the second byte is the scan code of the key.

To read a character from the keyboard using DOS functions, extended keys require two

function calls, as shown in the following procedure:

Read the next character code into AL using function 08H

if (AL �� 0)

then

AL = ASCII code (ASCII character)

else �extended key�

read the scan code of the extended key into AL using

function 07H

AL = scan code (extended key character)

end if

Section 20.4 Pentium Software Interrupts 835

Example 20.1 Get string procedure.

In this example, we look at the GetStr procedure that we have used to read a string from the

keyboard. The GetStr is a macro (see the io.mac file listing) that can receive up to two

parameters: a pointer to a buffer to store the input string, and an optional buffer length value.

The macro, after checking the parameters, places the buffer pointer in AX and the buffer length

in CX and calls the procedure proc_GetStr. This procedure actually reads a string from the

keyboard using the buffered keyboard input function 0AH. The pseudocode for the procedure

is as follows:

proc_GetStr ()
save registers used in the procedure

if (CX � 2)

then

CX := 2

else

if (CX � 81)

then

CX := 81

end if

end if

use function 0AH to read input string into

temporary buffer str_buffer
copy input string from str_buffer to

user buffer and append NULL

restore registers

return

end proc_GetStr

Program 20.1 gives the assembly language code for the this procedure. It follows the pseu-

docode in a straightforward manner. It uses the DOScall macro, which is defined below:

DOScall MACRO function_number

mov AH,function_number

int 21H

ENDM

836 Chapter 20 Interrupts

Program 20.1 Procedure to read a string from the keyboard

1: ;--

2: ; Get string (of maximum length 80) from keyboard.

3: ; AX <-- pointer to a buffer to store the input string

4: ; CX <-- buffer size = string length + 1 for NULL

5: ; If CX < 2, CX := 2 is used to read at least one character.

6: ; If CX > 81, CX := 81 is used to read at most 80 characters.

7: ;--

8: proc_GetStr PROC

9: push DX ; save registers

10: push SI

11: push DI

12: push ES

13: mov DX,DS ; set up ES to point to DS

14: mov ES,DX ; for string instruction use

15: mov DI,AX ; DI = buffer pointer

16: ; check CX bounds

17: cmp CX,2

18: jl set_CX_2

19: cmp CX,81

20: jle read_str

21: mov CX,81

22: jmp SHORT read_str

23: set_CX_2:

24: mov CX,2

25: read_str:

26: ; use temporary buffer str_buffer to read the string

27: ; in using function 0AH of int 21H

28: mov DX,OFFSET str_buffer

29: mov SI,DX

30: mov [SI],CL ; first byte = # of chars. to read

31: DOScall 0AH

32: inc SI ; second byte = # of chars. read

33: mov CL,[SI] ; CX = # of bytes to copy

34: inc SI ; SI = input string first char.

35: cld ; forward direction for copy

36: rep movsb

37: mov BYTE PTR [DI],0 ; append NULL character

38: pop ES ; restore registers

39: pop DI

40: pop SI

41: pop DX

42: ret

43: proc_GetStr ENDP

Section 20.4 Pentium Software Interrupts 837

20.4.2 BIOS Keyboard Services

BIOS provides keyboard service routines under int 16H. Here we describe three common

routines that are useful in accessing the keyboard. As with the DOS functions, the AH register

should contain the function code before executing an interrupt of type 16H. One difference

between DOS and BIOS functions is that if you use DOS services, the keyboard input can be

redirected.

Function 00H: Read a character from the keyboard.

Input: AH = 00H;

Returns: if AL �� 0 then

AL = ASCII code of the key entered,

AH = Scan code of the key entered,

if AL = 0 then

AH = Scan code of the extended key entered.

This BIOS function can be used to read a character from the keyboard. If the keyboard

buffer is empty, it waits for a character to be entered. As with the DOS keyboard function, the

value returned in AL determines if the key represents an ASCII character or an extended key

character. In both cases, the scan code is placed in the AH register and the ASCII and scan

codes are removed from the keyboard buffer.

A Problem

The problem is that 00H represents NULL in ASCII. To solve this problem, returning the NULL

key ASCII code (00H) is interpreted as reading an extended key. Then how will you recognize

the NULL key? This is a special case and the only ASCII key that is returned as an extended

key character. Thus, if AL = 0 and AH = 3 (the scan code for the @ key), then the contents of

AL should be treated as the ASCII code for the NULL key.

Here is a simple routine to read a character from the keyboard, which is a modified version

of the routine given on page 834:

Read the next character code using function 00H of int 16H
if (AL �� 0)

then

AL = ASCII code of the key entered

else �AL = 0 which implies extended key with one exception�

if (AH = 3)

then

AL = ASCII code of NULL

else

AH = scan code of an extended key

end if

end if

838 Chapter 20 Interrupts

Table 20.1 Bit assignment for shift and toggle keys

Bit number Key assignment

0 Right shift key depressed

1 Left shift key depressed

2 Control key depressed

3 Alt key depressed

4 Scroll lock switch is on

5 Number lock switch is on

6 Caps lock switch is on

7 Ins lock switch is on

Function 01H: Check keyboard buffer.

Input: AH = 01H;

Returns: ZF = 1 if the keyboard buffer is empty;

ZF = 0 if there is at least one character available.

In this case, the ASCII and scan codes are

placed in the AL and AH registers as in

function 00H. The codes, however, are not

removed from the keyboard buffer.

This function can be used to take a peek at the next character without actually removing it from

the buffer. It provides similar functionality to the DOS function 0BH (see page 834). Unlike

the DOS function, the zero flag (ZF) is used to indicate whether the keyboard buffer is empty.

Since it does not actually remove the key codes from the keyboard buffer, it allows us to look

ahead at the next character.

Function 02H: Check keyboard status.

Input: AH = 02H;

Returns: AL = status of the shift and toggle keys.

The bit assignment is shown in Table 20.1. In this table, a bit with a value of 1 indicates the

presence of the condition.

This function can be used to test the status of the four shift keys (right shift, left shift, ctrl,

and alt) and four toggle switches (scroll lock, number lock, caps lock, and ins).

Example 20.2 A BIOS keyboard example.

In this example, we write a program that reads a character string from the keyboard and displays

the input string along with its length. The string input is terminated either by pressing both shift

Section 20.4 Pentium Software Interrupts 839

keys simultaneously, or by entering 80 characters, whichever occurs first. This is a strange

termination condition (requiring the depression of both shift keys), but it is useful to illustrate

the flexibility of the BIOS keyboard functions.

As the main procedure is straightforward to understand, we focus on the mechanics of the

read_string procedure. On first attempt, we might write this procedure as follows:

read_string()
get maximum string length str_len and

string pointer from the stack

repeat

read keyboard status (use int 16H function 2)

if (both shift keys depressed)

then

goto end_read
else

read keyboard key (use int 16H function 0)

copy the character into the string buffer

increment buffer pointer

display the character on the screen

end if

until (string length = str_len)

end_read:
append NULL character to string input

find and return the string length

return

end read_string

Unfortunately, this procedure will not work properly. In most cases, the only way to ter-

minate the string input is by actually entering 80 characters. Pressing both shift keys will not

terminate the string input unless a key is entered while holding both shift keys down. Why?

The problem with the above code is that the repeat loop briefly checks the keyboard status

(takes only a few microseconds). It then waits for you to type a key. When you enter a key, it

reads the ASCII code of the key and initiates another repeat loop iteration. Thus, every time

you enter a key, the program checks the status of the two shift keys within a few microseconds

after a key has been typed. Therefore, read_string will almost never detect the condition

that both shift keys are depressed (with the exception noted).

To correct this problem, we have to modify the procedure as follows:

read_string()
get maximum string length str_len and

string pointer from the stack

read_loop:

840 Chapter 20 Interrupts

repeat

read keyboard status (use int 16H function 2)

if (both shift keys depressed)

then

goto end_read
else

check keyboard buffer status (use int 16H function 1)

if (a key is available)

then

read keyboard key (use int 16H function 0)

copy the character into the string buffer

increment buffer pointer

display the character on screen

end if

end if

until (string length = str_len)

end_read:
append NULL character to string input

find and return the string length

return

end read_string

With the modification, the procedure’s repeat loop spends most of the time performing

the following two actions:

1. Read keyboard status (using int 16H function 2).

2. Check if a key has been pressed (using int 16H function 1).

Since function 1 does not wait for a key to be entered, the procedure properly detects the string

termination condition (i.e., depression of both shift keys simultaneously).

Program 20.2 funnystr.asm demonstrates the use of BIOS functions to read a string from the keyboard

1: COMMENT | A string read program FUNNYSTR.ASM

2: Objective: To demonstrate the use of BIOS keyboard

3: functions 0, 1, and 2.

4: Input: Prompts for a string.

5: | Output: Displays the input string and its length.

6:

7: STR_LENGTH EQU 81

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

Section 20.4 Pentium Software Interrupts 841

11: string DB STR_LENGTH DUP (?)

12: prompt_msg DB ’Please enter a string (< 81 chars): ’,0

13: string_msg DB ’The string entered is ’,0

14: length_msg DB ’ with a length of ’,0

15: end_msg DB ’ characters.’,0

16:

17: .CODE

18: INCLUDE io.mac

19: main PROC

20: .STARTUP

21: PutStr prompt_msg

22: mov AX,STR_LENGTH-1

23: push AX ; push max. string length

24: mov AX,OFFSET string

25: push AX ; and string pointer parameters

26: call read_string ; to call read_string procedure

27: nwln

28: PutStr string_msg

29: PutStr string

30: PutStr length_msg

31: PutInt AX

32: PutStr end_msg

33: nwln

34: .EXIT

35: main ENDP

36: ;---

37: ; String read procedure using BIOS int 16H. Receives string

38: ; pointer and the length via the stack. Length of the string

39: ; is returned in AX.

40: ;---

41: read_string PROC

42: push BP

43: mov BP,SP

44: push BX

45: push CX

46: mov CX,[BP+6] ; CX = length

47: mov BX,[BP+4] ; BX = string pointer

48: read_loop:

49: mov AH,2 ; read keyboard status

50: int 16H ; status returned in AL

51: and AL,3 ; mask off most significant 6 bits

52: cmp AL,3 ; if equal both shift keys depressed

53: jz end_read

54: mov AH,1 ; otherwise, see if a key has been

55: int 16H ; struck

842 Chapter 20 Interrupts

56: jnz read_key ; if so, read the key

57: jmp read_loop

58: read_key:

59: mov AH,0 ; read the next key from keyboard

60: int 16H ; key returned in AL

61: mov [BX],AL ; copy to buffer and increment

62: inc BX ; buffer pointer

63: PutCh AL ; display the character

64: loop read_loop

65: end_read:

66: mov BYTE PTR[BX],0 ; append NULL

67: sub BX,[BP+4] ; find the input string length

68: mov AX,BX ; return string length in AX

69: pop CX

70: pop BX

71: pop BP

72: ret 4

73: read_string ENDP

74: END main

20.5 Pentium Exceptions
Pentium exceptions are classified into faults, traps, and aborts depending on the way they are

reported and whether the instruction that is interrupted is restarted. Faults and traps are reported

at instruction boundaries. Faults use the boundary before the instruction during which the ex-

ception was detected. When a fault occurs, the system state is restored to the state before the

current instruction so that the instruction can be restarted. The divide error, for instance, is a

fault detected during the div or idiv instruction. The processor, therefore, restores the state

to correspond to the one before the divide instruction that caused the fault. Furthermore, the

instruction pointer is adjusted to point to the divide instruction so that, after returning from the

exception handler, the divide instruction is reexecuted.

Another example of a fault is the segment-not-present fault. This exception is caused by a

reference to data in a segment that is not in memory. Then, the exception handler must load

the missing segment from the disk and resume program execution starting with the instruction

that caused the exception. In this example, it clearly makes sense to restart the instruction that

caused the exception.

Traps, on the other hand, are reported at the instruction boundary immediately following

the instruction during which the exception was detected. For instance, the overflow exception

(interrupt 4) is a trap. Therefore, no instruction restart is done. User-defined interrupts are also

examples of traps.

Aborts are exceptions that report severe errors. Examples include hardware errors and in-

consistent values in system tables.

There are several interrupts predefined by the Pentium. These are called dedicated inter-

Section 20.5 Pentium Exceptions 843

Table 20.2 The first five Pentium dedicated interrupts

Interrupt type Purpose

0 Divide error

1 Single-step

2 Nonmaskable interrupt (NMI)

3 Breakpoint

4 Overflow

rupts. These include the first five interrupts as shown in Table 20.2. The NMI is a hardware

interrupt that is discussed in Section 20.6. A brief description of the remaining four interrupts

is given here.

Divide Error Interrupt: The Pentium generates a type 0 interrupt whenever executing a divide

instruction—either div (divide) or idiv (integer divide)—results in a quotient that is larger

than the destination specified. The default interrupt handler displays a divide overflow message

and terminates the program.

Single-Step Interrupt: Single-stepping is a useful debugging tool to observe the behavior of

a program instruction by instruction. To start single-stepping, the trap flag (TF) bit in the flags

register should be set (i.e., TF = 1). When TF is set, the CPU automatically generates a type 1

interrupt after executing each instruction. Some exceptions do exist, but we do not bother about

them here.

The interrupt handler for a type 1 interrupt can be used to display relevant information about

the state of the program. For example, the contents of all registers could be displayed. Shortly

we present an example program that initiates and stops single-stepping (see Example 20.3).

To end single-stepping, the TF should be cleared. The Pentium, however, does not have any

instructions to directly manipulate the TF bit. Instead, we have to resort to an indirect means.

This is illustrated in the next example.

Breakpoint Interrupt: If you have used a debugger, which you should have by now, you

already know the usefulness of inserting breakpoints while debugging a program. The type

3 interrupt is dedicated to the breakpoint processing. This type of interrupt can be generated

by using the special single-byte form of int 3 (opcode CCH). Using the int 3 instruction

automatically causes the assembler to encode the instruction into the single-byte version. Note

that the standard encoding for the int instruction is two bytes long.

844 Chapter 20 Interrupts

Inserting a breakpoint in a program involves replacing the program code byte by CCH while

saving the program byte for later restoration to remove the breakpoint. The standard 2-byte

version of int 3 can cause problems in certain situations, as there are instructions that require

only a single byte to encode.

Overflow Interrupt: The type 4 interrupt is dedicated to handling overflow conditions. There

are two ways by which a type 4 interrupt can be generated: either by int 4 or by into.

Like the breakpoint interrupt, into requires only one byte to encode, as it does not require

the specification of the interrupt type number as part of the instruction. Unlike int 4, which

unconditionally generates a type 4 interrupt, into generates a type 4 interrupt only if the

overflow flag is set. We do not normally use into, as the overflow condition is usually detected

and processed by using the conditional jump instructions jo and jno.

Example 20.3 A single-step example.

As an example of an exception, we write an interrupt handler to single-step a piece of code

(let us call it single-step code). During single-stepping, we display the contents of the AX and

BX registers after the execution of each instruction in the single-step code. The objectives in

writing this program are to demonstrate how interrupt handlers can be defined and installed and

to show how the TF can be manipulated.

To put the CPU in the single-step mode, we have to set the TF. Since there are no instructions

to manipulate TF directly, we have to use an indirect means: first we use pushf to push flags

onto the stack, then manipulate the TF bit, and finally, use popf to restore the modified flags

word from the stack to the flags register. The code on lines 42 to 46 of Program 20.3 essentially

performs this manipulation to set TF. The TF bit can be set by

or AX,100H

Of course, we can also manipulate this bit directly on the stack itself. To clear the TF bit, we

follow the same procedure and instead of oring, we use

and AX,0FEFFH

on line 57. We use two services of int 21H to get and set interrupt vectors.

Function 35H: Get interrupt vector.

Inputs: AH = 35H,

AL = Interrupt type number;

Returns: ES:BX = Address of the specified interrupt handler.

Section 20.5 Pentium Exceptions 845

Function 25H: Set interrupt vector.

Inputs: AH = 25H,

AL = Interrupt type number,

DS:DX = Address of the interrupt handler;

Returns: Nothing.

The remainder of the code is straightforward:

Lines 27 to 30: We use function 35H to get the current vector value for int 1. This vector

value is restored before exiting the program.

Lines 33 to 39: The vector of our interrupt handler is installed by using function 25H.

Lines 62 to 68: The original int 1 vector is restored using function 25H.

A Note: It is not necessary to restore the old vector before we exit the program. DOS does

this for us as part of the function 4CH call. Thus, it is not necessary to read and store the old

interrupt vector value in our program. However, DOS does not restore interrupt vectors for all

interrupts. As an example, it does not restore the original vector for int 09H. Thus, it is good

practice to save and restore interrupt vectors within your program. We follow this practice in

our examples.

Program 20.3 An example to illustrate the installation of a user-defined ISR

1: TITLE Single-step program STEPINTR.ASM

2: COMMENT |

3: Objective: To demonstrate how ISRs can be defined

4: and installed.

5: Input: None.

6: Output: Displays AX and BX values for

7: | the single-step code.

8:

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: old_offset DW ? ; for old ISR offset

13: old_seg DW ? ; and segment values

14: start_msg DB ’Starts single-stepping process.’,0

15: AXequ DB ’AX = ’,0

16: BXequ DB ’ BX = ’,0

17:

18: .CODE

19: INCLUDE io.mac

20:

21: main PROC

22: .STARTUP

846 Chapter 20 Interrupts

23: PutStr start_msg

24: nwln

25:

26: ; get current interrupt vector for int 1H

27: mov AX,3501H ; AH = 35H and AL = 01H

28: int 21H ; returns the offset in BX

29: mov old_offset,BX ; and the segment in ES

30: mov old_seg,ES

31:

32: ;set up interrupt vector to our ISR

33: push DS ; DS is used by function 25H

34: mov AX,CS ; copy current segment to DS

35: mov DS,AX

36: mov DX,OFFSET sstep_ISR ; ISR offset in DX

37: mov AX,2501H ; AH = 25H and AL = 1H

38: int 21H

39: pop DS ; restore DS

40:

41: ; set trap flag to start single-stepping

42: pushf

43: pop AX ; copy flags into AX

44: or AX,100H ; set trap flag bit (TF = 1)

45: push AX ; copy modified flag bits

46: popf ; back to flags register

47:

48: ; from now on int 1 is generated after executing

49: ; each instruction. Some test instructions follow.

50: mov AX,100

51: mov BX,20

52: add AX,BX

53:

54: ; clear trap flag to end single-stepping

55: pushf

56: pop AX ; copy flags into AX

57: and AX,0FEFFH ; clear trap flag bit (TF = 0)

58: push AX ; copy modified flag bits

59: popf ; back to flags register

60:

61: ; restore the original ISR

62: mov DX,old_offset

63: push DS

64: mov AX,old_seg

65: mov DS,AX

66: mov AX,2501H

67: int 21H

Section 20.6 Pentium Hardware Interrupts 847

68: pop DS

69:

70: .EXIT

71: main ENDP

72: ;---

73: ;Single-step interrupt service routine replaces int 01H.

74: ;---

75: sstep_ISR PROC

76: sti ; enable interrupt

77: PutStr AXequ ; display AX contents

78: PutInt AX

79: PutStr BXequ ; display BX contents

80: PutInt BX

81: nwln

82: iret

83: sstep_ISR ENDP

84: END main

20.6 Pentium Hardware Interrupts
We have seen how interrupts can be caused by the software instruction int. Since these instruc-

tions are placed in a program, such software interrupts are called synchronous events. Hardware

interrupts, on the other hand, are of hardware origin and asynchronous in nature. These inter-

rupts are typically used by I/O devices to alert the CPU that they require its attention.

Hardware interrupts can be further divided into either maskable or nonmaskable interrupts

(see Figure 20.1 on page 828). A nonmaskable interrupt can be triggered by applying an elec-

trical signal on the NMI pin of the Pentium. This interrupt is called nonmaskable because the

CPU always responds to this signal. In other words, this interrupt cannot be disabled under

program control. The NMI causes a type 2 interrupt.

Most hardware interrupts are of maskable type. To generate a hardware interrupt, an electri-

cal signal should be applied to the INTR (interrupt request) input of the Pentium. The Pentium

recognizes the INTR interrupt only if the interrupt enable flag (IF) bit is set to 1 (see Figure 7.4

on page 259). Thus, these interrupts can be masked (i.e., disabled) by clearing the IF bit. Note

that we can use sti and cli, respectively, to set and clear this bit in the flags register.

20.6.1 How Does the CPU Know the Interrupt Type?

Recall that every interrupt should be identified by its type (a number between 0 and 255), which

is used as an index into the interrupt vector table to obtain the corresponding interrupt handler

address. This interrupt invocation procedure is common to all interrupts, whether caused by

software or hardware.

In response to a hardware interrupt request on the INTR pin, the Pentium initiates an in-

terrupt acknowledge sequence. As part of this sequence, it sends out an interrupt acknowledge

848 Chapter 20 Interrupts

(INTA) signal, and the interrupting device is expected to place the interrupt type number on the

data bus. This number is used to identify the interrupt type. In the Pentium, the interrupt type

number is byte, which is placed on the lower eight data lines, to identify an interrupt out of the

256 interrupts.

20.6.2 How Can More Than One Device Interrupt?

From the above description, it is clear that all interrupt requests from external devices should be

input via the INTR pin of the Pentium. Although it is straightforward to connect a single device,

computers typically have more than one I/O device requesting interrupt service. For example,

the keyboard, hard disk, and floppy disk all generate interrupts when they require the attention

of the CPU.

When more than one device interrupts, we have to have a mechanism to prioritize these

interrupts (in case they arrive simultaneously) and forward only one interrupt request at a time

to the CPU while keeping the other interrupt requests pending their turn. This mechanism can be

implemented by using a special chip, the Intel 8259 programmable interrupt controller, which

is described next.

20.6.3 8259 Programmable Interrupt Controller

The Intel 8259 programmable interrupt controller (PIC) chip can be used to accommodate more

than one interrupting device. The 8259 PIC can service interrupts from up to eight hardware

devices. These interrupts are received on lines IRQ0 through IRQ7, as shown in Figure 20.4.

Internally, the 8259 has an 8-bit interrupt command register (ICR) and another 8-bit interrupt

mask register (IMR). The ICR is used to program the 8259, and the IMR is used to enable or

disable specific interrupt requests. The 8259 can be programmed to assign priorities to IRQ0 to

IRQ7 requests in several ways. BIOS initializes the 8259 to assign fixed priorities: the default

mode called the fully nested mode. In this mode, the incoming interrupt requests IRQ0 through

IRQ7 are prioritized with the IRQ0 receiving the highest priority and the IRQ7 receiving the

lowest priority.

Also part of this initialization is the assignment of interrupt type numbers. To do this, only

the lowest type number need be specified. BIOS uses 08H as the lowest interrupt type (for the

request coming on the IRQ0 line). The 8259 automatically assigns the next seven numbers to

the remaining seven IRQ lines in increasing order, with IRQ7 generating an interrupt of type

0FH.

All communication between the CPU and the 8259 occurs via the data bus. The 8259 PIC is

an 8-bit device requiring two ports for the ICR and IMR. These are mapped to the I/O address

space, as shown in Table 20.3. Table 20.4 shows the mapping of the IRQ input to various

devices in the system.

Note that the CPU recognizes external interrupt requests generated by the 8259 only if the

IF flag is set. Thus, by clearing the IF flag, we can disable all eight external interrupts as a

group. However, to selectively disable external interrupts, we have to use the IMR. Each bit

Section 20.6 Pentium Hardware Interrupts 849

IRQ0

IRQ1

IRQ2

IRQ3

IRQ4

IRQ5

IRQ6

IRQ7

INTR

INTA

8-bit data bus

CPU
8259

PIC

Figure 20.4 Intel 8259 programmable interrupt controller.

Table 20.3 8259 port address mapping

8259 register Port address

ICR 20H

IMR 21H

in the IMR enables (if the bit is 0) or disables (if the bit is 1) its associated interrupt. Bit 0 is

associated with IRQ0, bit 1 with IRQ1, and so on. For example, we can use the code

mov AL,0FEH

out 21H,AL

to disable all external interrupts except the system timer interrupt on the IRQ0 line.

When several interrupt requests are received by the 8259, it serializes these requests accord-

ing to their priority levels. For example, if a timer interrupt (IRQ0) and a keyboard interrupt

(IRQ1) arrive simultaneously, the 8259 forwards the timer interrupt to the CPU, as it has a

higher priority than the keyboard interrupt. Once the timer interrupt handler is completed, the

8259 forwards the keyboard interrupt to the CPU for processing. To facilitate this, the 8259

should know when an interrupt handler is completed. The end of an interrupt handler execution

is signaled to the 8259 by writing 20H into the ICR. Thus, the code fragment

mov AL,20H

out 20H,AL

can be used to indicate end-of-interrupt (EOI) to 8259. This code fragment appears before the

iret instruction of an interrupt handler.

850 Chapter 20 Interrupts

Table 20.4 Mapping of I/O devices to external interrupt levels

IRQ # Interrupt type Device

0 08H System timer

1 09H Keyboard

2 0AH Used for expansion

3 0BH Serial port (COM1)

4 0CH Serial port (COM2)

5 0DH Hard disk

6 0EH Floppy disk

7 0FH Printer

20.6.4 A Pentium Hardware Interrupt Example

We now illustrate how a hardware interrupt routine can be written. As an example, we write

a type 9 interrupt routine to replace the BIOS supplied int 09 routine to read input from

the keyboard. In the last chapter, we looked at a similar example using the programmed I/O

technique (see Section 19.4.1 on page 775).

Example 20.4 A keyboard example to illustrate interrupt-driven I/O.

Our objective is to write a replacement ISR for int 09H. A type 9 interrupt is generated via

the IRQ1 line of the 8259 PIC by the keyboard every time a key is depressed or released.

The logic of the main procedure can be described as follows:

main()
save the current int 9 vector

install our keyboard ISR

display “Interrupt handler installed” message

repeat

read_kb_key()
�this procedure waits until a key is pressed

and returns the ASCII code of the key in AL�

if (key �� Esc key)

then

if (key = carriage return key)

then

display newline

else

display the key

Section 20.6 Pentium Hardware Interrupts 851

end if

else

goto done �If Esc key, we are done�

end if

until (FALSE)

done:
restore the original int 09H vector

return to DOS

end main

The read_kb_key procedure waits until a value is deposited in the keyboard buffer

keyboard_data. The pseudocode is as follows:

read_kb_key()
while (keyboard_data = –1)

end while

AL := keyboard_data
keyboard_data := –1

return

end read_kb_key

The keyboard interrupt handler kbrd_ISR is invoked whenever a key is pressed or re-

leased. As described in Section 19.3, the scan code of the key can be read from PA0 to PA6,

and the key state can be read from PA7. PA7 is 0 if the key is depressed; PA7 is 1 if the key

is released. After reading the key scan code in Program 20.4 (lines 107 and 108), the keyboard

should be acknowledged. This is done by momentarily setting and clearing the PB7 bit (lines

111 to 116). If the key is the left shift or right shift key, bit 0 of keyboard_flag is updated.

If it is a normal key, its ASCII code is obtained. The code on lines 154 and 155 will send an

end-of-interrupt to the 8259 to indicate that the interrupt service is completed. The pseudocode

of the ISR is given below:

kbrd_ISR()
read key scan code from KB_DATA (port 60H)

set PB7 bit to acknowledge using KB_CTRL (port 61H)

clear PB7 to reset acknowledge

process the key

send end-of-interrupt (EOI) to 8259

iret
end kbrd_ISR

852 Chapter 20 Interrupts

Program 20.4 A keyboard ISR to replace BIOS int 09H keyboard ISR

1: TITLE Keyboard interrupt service program KEYBOARD.ASM

2: COMMENT |

3: Objective: To demonstrate how the keyboard works.

4: Input: Key strokes from the keyboard. Only left

5: and right shift keys are recognized.

6: ESC key restores the original keyboard ISR

7: and terminates the program.

8: | Output: Displays the key on the screen.

9:

10: ESC_KEY EQU 1BH ; ASCII code for ESC key

11: CR EQU 0DH ; ASCII code for carriage return

12: KB_DATA EQU 60H ; 8255 port PA

13: KB_CTRL EQU 61H ; 8255 port PB

14: LEFT_SHIFT EQU 2AH ; left shift scan code

15: RIGHT_SHIFT EQU 36H ; right shift scan code

16: EOI EQU 20H ; end-of-interrupt byte for 8259 PIC

17: PIC_CMD_PORT EQU 20H ; 8259 PIC command port

18:

19: .MODEL SMALL

20: .STACK 100H

21: .DATA

22: install_msg DB ’New keyboard ISR installed.’,0

23: keyboard_data DB -1 ; keyboard buffer

24: keyboard_flag DB 0 ; keyboard shift status

25: old_offset DW ? ; storage for old int 09H vector

26: old_segment DW ?

27: ; lowercase scan code to ASCII conversion table.

28: ; ASCII code 0 is used for unnecessary scan codes.

29: lcase_table DB 01BH,’1234567890-=’,08H,09H

30: DB ’qwertyuiop[]’,CR,0

31: DB ’asdfghjkl;’,27H,60H,0,’\’

32: DB ’zxcvbnm,./’,0,’*’,0,’ ’,0

33: DB 0,0,0,0,0,0,0,0,0,0

34: DB 0,0,0,0,0,0,0,0,0,0

35: DB 0,0,0,0,0,0,0,0,0,0

36: ; uppercase scan code to ASCII conversion table.

37: ucase_table DB 01BH,’!@#$%ˆ&*()_+’,08H,09H

38: DB ’QWERTYUIOP{}’,0DH,0

39: DB ’ASDFGHJKL:’,’"’,’˜’,0,’|’

40: DB ’ZXCVBNM<>?’,0,’*’,0,’ ’

41: DB 0,0,0,0,0,0,0,0,0,0

42: DB 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0

43: .CODE

44: INCLUDE io.mac

Section 20.6 Pentium Hardware Interrupts 853

45:

46: main PROC

47: .STARTUP

48: PutStr install_msg

49: nwln

50:

51: ; save int 09H vector for later restoration

52: mov AX,3509H ; AH = 35H and AL = 09H

53: int 21H ; DOS function 35H returns

54: mov old_offset,BX ; offset in BX and

55: mov old_segment,ES ; segment in ES

56:

57: ;set up interrupt vector to our keyboard ISR

58: push DS ; DS is used by function 25H

59: mov AX,CS ; copy current segment to DS

60: mov DS,AX

61: mov DX,OFFSET kbrd_ISR ; ISR offset in DX

62: mov AX,2509H ; AH = 25H and AL = 09H

63: int 21H

64: pop DS ; restore DS

65:

66: repeat:

67: call read_kb_key ; read a key

68: cmp AL,ESC_KEY ; if ESC key

69: je done ; then done

70: cmp AL,CR ; if carriage return

71: je newline ; then display new line

72: PutCh AL ; else display character

73: jmp repeat

74: newline:

75: nwln

76: jmp repeat

77: done:

78: ; restore original keyboard interrupt int 09H vector

79: mov DX,old_offset

80: push DS

81: mov AX,old_segment

82: mov DS,AX

83: mov AX,2509H

84: int 21H

85: pop DS

86:

87: .EXIT

88: main ENDP

89: ;---

854 Chapter 20 Interrupts

90: ;This procedure waits until a valid key is entered at the

91: ; keyboard. The ASCII value of the key is returned in AL.

92: ;---

93: read_kb_key PROC

94: cmp keyboard_data,-1 ; -1 is an invalid entry

95: je read_kb_key

96: mov AL,keyboard_data

97: mov keyboard_data,-1

98: ret

99: read_kb_key ENDP

100: ;---

101: ;This keyboard ISR replaces the original int 09H ISR.

102: ;---

103: kbrd_ISR PROC

104: sti ; enable interrupt

105: push AX ; save registers used by ISR

106: push BX

107: in AL,KB_DATA ; read keyboard scan code and the

108: mov BL,AL ; key status (down or released)

109: ; send keyboard acknowledge signal by momentarily

110: ; setting and clearing PB7 bit

111: in AL,KB_CTRL

112: mov AH,AL

113: or AL,80H

114: out KB_CTRL,AL ; set PB7 bit

115: xchg AL,AH

116: out KB_CTRL,AL ; clear PB7 bit

117:

118: mov AL,BL ; AL = scan code + key status

119: and BL,7FH ; isolate scan code

120: cmp BL,LEFT_SHIFT ; left or right shift key

121: je left_shift_key ; changed status?

122: cmp BL,RIGHT_SHIFT

123: je right_shift_key

124: test AL,80H ; if not, check status bit

125: jnz EOI_to_8259 ; if key released, do nothing

126: mov AH,keyboard_flag ; AH = shift key status

127: and AH,1 ; AH = 1 if left/right shift is ON

128: jnz shift_key_on

129: ; no shift key is pressed

130: mov BX,OFFSET lcase_table ; shift OFF, use lowercase

131: jmp SHORT get_ASCII ; conversion table

132: shift_key_on:

133: mov BX,OFFSET ucase_table ; shift key ON, use uppercase

134: get_ASCII: ; conversion table

Section 20.7 Interrupt Processing in the PowerPC 855

135: dec AL ; index is one less than scan code

136: xlat

137: cmp AL,0 ; ASCII code of 0 => uninterested key

138: je EOI_to_8259

139: mov keyboard_data,AL ; save ASCII code in keyboard buffer

140: jmp SHORT EOI_to_8259

141:

142: left_shift_key:

143: right_shift_key:

144: test AL,80H ; test key status bit (0=down, 1=up)

145: jnz shift_off

146: shift_on:

147: or keyboard_flag,1 ; shift bit (i.e., LSB) := 1

148: jmp SHORT EOI_to_8259

149: shift_off:

150: and keyboard_flag,0FEH ; shift bit (i.e., LSB) := 0

151: jmp SHORT EOI_to_8259

152:

153: EOI_to_8259:

154: mov AL,EOI ; send EOI to 8259 PIC

155: out PIC_CMD_PORT,AL ; indicating end of ISR

156: pop BX ; restore registers

157: pop AX

158: iret

159: kbrd_ISR ENDP

160: END main

20.7 Interrupt Processing in the PowerPC
The Pentium’s interrupt processing involves the stack. For example, the flags register contents

and the return address value are pushed onto the stack as part of transferring control to the

interrupt handler. As the PowerPC and MIPS are RISC processors, they use registers to store

the return address as well as the system state. We describe the PowerPC interrupt processing in

this section. MIPS processor details are presented in the next section.

The PowerPC maintains the system state information in the machine state register (MSR).

Each MSR bit indicates a specific state of the system’s context. Here is a sample of the kind of

state information contained in the MSR.

• POW: The power management enable bit indicates whether the system is operating in

normal mode (POW = 0) or reduced power mode (POW = 1).

• EE: The external interrupt enable bit is similar to the IF flag in the Pentium. If this bit is

zero, the processor delays recognition of external interrupts. The processor responds to

the external interrupts when this bit is one.

856 Chapter 20 Interrupts

PowerPC
exceptions

SynchronousAsynchronous

NonmaskableMaskable Precise Imprecise

Figure 20.5 PowerPC exception classification.

• PR: If the privilege level bit is zero, the processor can execute both user- and supervisor-

level instructions. If it is 1, only the user-level instructions are executed.

• SE: If the single-step enable bit is zero, the processor executes instructions normally. If

this bit is 1, it single-steps as in the Pentium.

• IP: This exception prefix bit indicates whether an exception vector is prepended with Fs

or 0s. In a sense, this bit indicates the base address of the vector table. If this bit is 0,

exceptions are vectored to physical addresses ��������H, where ����� is the offset

of the exception vector. On the other hand, if IP = 1, the physical address FFF����� is

used. We explain shortly the offset associated with various exceptions.

• IR: This bit indicates whether the instruction address translation is disabled (0) or enabled

(1).

• DR: This bit indicates whether the data address translation is disabled (0) or enabled (1).

• LE: This bit indicates whether the processor runs in little-endian (1) or big-endian mode

(0). Recall that the PowerPC supports both endian modes. This bit can be used to dy-

namically change the mode.

The PowerPC exception classification is shown in Figure 20.5. Asynchronous exceptions

are caused by events external to the processor, and synchronous interrupts are caused by in-

structions. To relate to our discussion of the Pentium interrupt classification, asynchronous

exceptions are similar to hardware interrupts and synchronous exceptions are similar to soft-

ware interrupts. As in the Pentium, asynchronous exceptions can be divided into maskable and

nonmaskable types.

Synchronous exceptions are either precise or imprecise. Normally, we expect an exception

to be associated with the instruction that caused it. In pipelined computers, establishing this

association is not straightforward. Thus, we talk about precise and imprecise exceptions. A

precise exception is an exception that is associated with the instruction that caused it. Imprecise

exceptions, however, do not make this association. The PowerPC uses imprecise exceptions for

floating-point instructions. All other instruction-caused exceptions are precise exceptions.

Section 20.8 Interrupt Processing in the MIPS 857

PowerPC exception processing is similar to that of the Pentium. Recall that Pentium inter-

rupt processing involves the following four main actions:

• Push the machine state information (i.e., flags register) onto the stack;

• Disable further interrupts;

• Push the return address onto the stack;

• Load the interrupt handler address.

Instead of using the stack, the PowerPC uses two 32-bit save/restore registers—SRR0 and

SRR1—to save the return address and the machine state. The SRR0 register is used to save

the return address and SRR1 is used to save the machine state. Machine state information is

copied from the MSR register. Note that, except for the POW bit, all the other bits of MSR

listed before are stored in SRR1.

Each exception type has a fixed offset value, just as the table index value in the Pentium

does. However, the Pentium uses indirect addressing to transfer control to the interrupt handler.

In the PowerPC, exception offsets are used directly. You can place a jump instruction at that lo-

cation to transfer control to the actual interrupt handler. The offset of each interrupt is separated

by 256 bytes, as shown in Table 20.5. Thus, a jump is needed only if the interrupt handler is

longer. The area 01000 to 02FFFH is reserved for implementation-specific exception vectors.

The IP bit in MSR specifies whether the leading hex digits are Fs or 0s. For example,

external interrupt uses the vector offset 00000500H (if IP = 0) or FFF00500 (if IP = 1). In

most systems, IP is set to 1 during system initialization and cleared to 0 after completing the

initialization process.

Returning from an exception handler, again, is very similar to the Pentium’s return mecha-

nism. The PowerPC uses the rfi (return from interrupt) instruction to return control. The rfi
instruction copies the contents of SRR1 into MSR and transfers control to the instruction at the

address in SRR0.

20.8 Interrupt Processing in the MIPS
As mentioned in Section 20.1, the MIPS does not use the vectored interrupt mechanism. When

an interrupt occurs, the processor suspends processing instructions in the normal flow and enters

the kernel mode. It then disables interrupts and transfers control to a handler located at a fixed

address. The handler saves the context of the processor including the program counter, the

current operating mode (user or supervisor), and status of the interrupts (enabled or disabled).

As in the PowerPC, the return address is stored in a register called the EPC (exception program

counter). This information is used to restore the context after returning from the handler. As

you can see, this process looks similar to that of the PowerPC.

The registers needed to process interrupts are not part of the main processor. Instead, these

registers are located in coprocessor 0 (CP0). Register 14 of coprocessor 0 is used as the EPC.

The contents of the EPC register can be copied into processor registers using the mfc0 (move

from coprocessor 0) instruction.

858 Chapter 20 Interrupts

Table 20.5 PowerPC exceptions (“Offset” values in hex)

Exception type Offset Description

System reset 00100 System reset exception (similar to Reset in the

Pentium)

Machine check 00200 An external interrupt caused by bus parity error, access

to invalid physical address, etc.

DSI 00300 Invalid data memory access exception (e.g., memory

protection violation, address cannot be translated)

ISI 00400 Invalid instruction memory access exception (e.g., in-

struction fetch from a no-execute segment, instruction

fetch violates memory protection)

External interrupt 00500 External interrupt as in Pentium

Alignment 00600 Alignment exception (e.g., operand is not aligned)

Program 00700 Program exception (e.g., illegal instruction, privileged

instruction execution is attempted in user-level)

System call 00C00 System call exception occurs when a system call (SC)

instruction is executed (similar to the int instruction

of the Pentium)

Trace 00D00 Trace exception (for debugging purposes)

Since the MIPS processor does not use vectored interrupts, it uses one of the coprocessor

registers to provide the interrupt type information. Register 13 of the coprocessor is used as the

Cause register. The Cause register has a five-bit field to identify the interrupt type. Table 20.6

shows some of the MIPS interrupt types.

The Cause register also contains information on pending interrupts. There are eight bits to

indicate the pending interrupts. Out of these, two bits are used for software interrupts.

The Status register (register 12 of the coprocessor) has an eight-bit interrupt mask field.

These eight bits control the interrupt enable and disable status of the eight interrupt conditions

in the Cause register. The Status register also has a reverse-endian bit that can be used to invert

the endien. Note that the processor is configured as little- or big-endian at system reset.

On external interrupts and exceptions, the MIPS processor jumps to a location at address

80000180H. However, not all exceptions use this handler. For example, reset, soft reset, and

nonmaskable interrupt cause the MIPS processor to jump to location BFC00000H. The pro-

cessor registers $k0 and $k1 are reserved for OS kernel use. Typically, the Cause and EPC

registers of coprocessor 0 are loaded into these registers, as shown below:

Section 20.9 Summary 859

Table 20.6 Some example MIPS exceptions

Type number Description

0 External interrupt

8 Syscall exception

9 Breakpoint exception

12 Arithmetic overflow exception

13 Trace exception

mfc0 $k0,$13 # copy Cause register into $k0

mfc0 $k1,$14 # copy EPC register into $k1

The interrupt handler can then examine the Cause register contents (in $k0) to jump to an

appropriate point in the operating system.

One difference from the other two processors is that the MIPS processor saves the inter-

rupted instruction address as opposed to the one following it. As a result, we need to add an

offset value of 4 before returning control from the handler, as shown below:

addiu $k1,$k1,4

rfe

jr $k1

This code also shows how an interrupt handler returns control. Unlike the Pentium’s iret
instruction, the MIPS return instruction only restores the context of the processor before the

handler was invoked. To actually transfer control back, we have to use the jr instruction as in

procedures.

20.9 Summary
Interrupts provide a mechanism to transfer control to an interrupt service routine. The mecha-

nism is similar to that of a procedure call. However, although procedures can be invoked only

by a procedure call in software, interrupts can be invoked by both hardware and software. In

this chapter, we focused mainly on the Pentium processor interrupt mechanism.

Software interrupts are often used to support access to the system I/O devices. In PCs, both

BIOS and DOS provide a high-level interface to the hardware via software interrupts. Hardware

interrupts are used by I/O devices to interrupt the CPU to service their requests.

All Pentium interrupts, whether hardware- or software-initiated, are identified by an inter-

rupt type number that is between 0 and 255. This interrupt number is used to access the interrupt

vector table to get the associated interrupt vector. Hardware interrupts can be disabled by ma-

nipulating the interrupt flag using sti and cli instructions. Masking of individual external

860 Chapter 20 Interrupts

interrupts can be done by manipulating the IMR register of the 8259 programmable interrupt

controller.

In PCs, there are three ways an application program can access I/O devices. DOS and

BIOS provide software interrupt support routines to access I/O devices. In the third method,

an application program accesses the I/O devices directly via I/O ports. This involves low-

level programming using in and out instructions. Such direct control of I/O devices requires

detailed knowledge about the devices. We used several examples to illustrate how these methods

are used to interact with I/O devices.

We briefly introduced the interrupt mechanisms of the PowerPC and MIPS processors. As

does the Pentium, the PowerPC uses vectored interrupts. The MIPS processor, on the other

hand, uses a Cause register to identify the cause of the interrupt.

Key Terms and Concepts

Here is a list of the key terms and concepts presented in this chapter. This list can be used to

test your understanding of the material presented in the chapter. The Index at the back of the

book gives the reference page numbers for these terms and concepts:

• Aborts

• Asynchronous exceptions

• Breakpoint interrupt

• Dedicated interrupts

• Exceptions

• Extended keys

• Faults

• Hardware interrupts

• Hardware interrupts—maskable

• Hardware interrupts—nonmaskable

• Imprecise exceptions

• Interrupt acknowledge

• Interrupt descriptor table

• Interrupt flag

• Interrupt handler

• Interrupt service routine

• Overflow interrupt

• Precise exceptions

• Programmable interrupt controller

• Single-step interrupt

• Software interrupts

• Synchronous exceptions

• System-defined interrupts

• Taxonomy of interrupts

• Trap flag

• Traps

• User-defined interrupts

• Vectored interrupts

20.10 Exercises
20–1 What is the difference between a procedure and an interrupt service routine?

20–2 What is the difference between the interrupt handling mechanisms of the Pentium and

PowerPC?

Section 20.10 Exercises 861

20–3 In invoking an interrupt handler in the Pentium, the flags register is automatically saved

on the stack. However, a procedure call does not automatically save the flags register.

Explain the rationale for this difference.

20–4 How would you categorize the interrupts generated by the keyboard?

20–5 Describe how the extended keyboard keys are handled.

20–6 Explain how one can disable all maskable hardware interrupts efficiently.

20–7 Describe another way to disable all maskable hardware interrupts. (It doesn’t have to be

as efficient as that in the last exercise.)

20–8 Write a piece of code to disable all maskable hardware interrupts except the timer and

keyboard interrupts. Refer to the interrupt table on page 850.

20–9 We have stated that the

into

instruction generates a type 4 interrupt. As you know, we can also generate this type of

interrupt using the

int 4

instruction. What is the difference between these two instructions?

20–10 Suppose that the Pentium is currently executing the keyboard interrupt service routine

shown below:

keyboard_ISR PROC

sti

.

.

ISR body

.

.

iret

keyboard_ISR ENDP

Assume that, while in the middle of executing the keyboard ISR, a timer interrupt occurs.

Describe the activities of the CPU until it completes processing the keyboard interrupt

service routine.

20–11 What happens in the scenario described in the last question if the sti instruction is

deleted from the keyboard interrupt handler?

20–12 Discuss the advantages and disadvantages of the three ways an application program can

interact with I/O devices (see Figure 20.2).

20–13 Describe the actions taken (until the beginning of the execution of the interrupt handler)

by the Pentium in response to int 10H. You can assume real mode of operation.

20–14 Is there any difference between how an interrupt handler is invoked if the interrupt is

caused by the int instruction or hardware interrupt or exception?

862 Chapter 20 Interrupts

20–15 What is the difference between the DOS keyboard function 0BH and the BIOS keyboard

function 01H?

20–16 Discuss the tradeoffs associated with interrupts and polling (described in Section 19.4.1

on page 775).

20.11 Programming Exercises
20–P1 Write a divide error exception handler to replace the system-supplied one. This handler

should display the message, “A divide error has occurred” and then replace the result with

the maximum possible value. You can use registers for the dividend and divisor of the

div instruction. Test your divide error interrupt handler by making the divisor zero. Also,

experiment with the interrupt handler code so that you can verify that the div instruction

is restarted because divide error is considered a fault. For example, if your interrupt

handler does not change the value of the divisor (i.e., leave it as 0), your program will

not terminate, as it repeatedly calls the divide error exception handler by restarting the

divide instruction. After observing this behavior, modify the interrupt handler to change

the divisor to a value other than 0 in order to proceed with your test program.

20–P2 The into instruction generates an overflow interrupt (interrupt 4) if the overflow flag is

set. Overflow interrupt is a trap, and therefore the interrupt instruction is not restarted.

Write an interrupt handler to replace the system-supplied one. Your interrupt handler

should display the message, “An overflow has occurred” and then replace the result with

zero. As a part of the exercise, test that into does not generate an interrupt unless the

overflow flag is set.

20–P3 Convert toupper.asm given in Chapter 9 into an interrupt handler for interrupt 100.

You can assume that DS:BX points to a null-terminated string. Write a simple program

to test your interrupt handler.

APPENDICES

Appendix A

Computer Arithmetic

Objectives
• To present various number systems and conversions among them;

• To introduce signed and unsigned number representations;

• To discuss floating-point number representation;

• To describe IEEE 754 floating-point representation.

This appendix examines how data are represented internally in a computer system. Representing

numbers is a two-step process: we have to select a number system to use, and then we have to

decide how numbers in the selected number system can be represented for internal storage.

To facilitate our discussion, we first introduce several number systems, including the deci-

mal system that we use in everyday life. Section A.2 discusses conversion of numbers among

the number systems. We then proceed to discuss how integers—both unsigned (Section A.3)

and signed (Section A.4)—and floating-point numbers (Section A.5) are represented. Character

representation is discussed in the next appendix. We conclude with a summary.

A.1 Positional Number Systems
The number systems that we discuss here are based on positional number systems. The decimal

number system that we are already familiar with is an example of a positional number system.

In contrast, the Roman numeral system is not a positional number system.

Every positional number system has a radix or base, and an alphabet. The base is a positive

number. For example, the decimal system is a base-10 system. The number of symbols in the

alphabet is equal to the base of the number system. The alphabet of the decimal system is 0

through 9, a total of 10 symbols or digits.

In this appendix, we discuss four number systems that are relevant in the context of computer

systems and programming. These are the decimal (base-10), binary (base-2), octal (base-8), and

865

866 Appendix A Computer Arithmetic

hexadecimal (base-16) number systems. Our intention in including the familiar decimal system

is to use it to explain some fundamental concepts of positional number systems.

Computers internally use the binary system. The remaining two number systems—octal

and hexadecimal—are used mainly for convenience to write a binary number even though they

are number systems on their own. We would have ended up using these number systems if we

had 8 or 16 fingers instead of 10.

In a positional number system, a sequence of digits is used to represent a number. Each

digit in this sequence should be a symbol in the alphabet. There is a weight associated with

each position. If we count position numbers from right to left starting with zero, the weight of

position � in a base � number system is ��. For example, the number 579 in the decimal system

is actually interpreted as

�� ����� � �� ����� � �� ����� �

(Of course, ��� � �.) In other words, 9 is in unit’s place, 7 in 10’s place, and 5 in 100’s place.

More generally, a number in the base � number system is written as

������ � � � ���� �
where �� represents the least significant digit (LSD) and �� represents the most significant digit

(MSD). This sequence represents the value

���
� � �������� � � � �� ���

� � ���
� � (A.1)

Each digit �� in the string can be in the range � � �� � ��� ��. When we are using a number

system with � � ��, we use the first � decimal digits. For example, the binary system uses 0 and

1 as its alphabet. For number systems with � � ��, the initial letters of the English alphabet are

used to represent digits greater than 9. For example, the alphabet of the hexadecimal system,

whose base is 16, is 0 through 9 and A through F, a total of 16 symbols representing the digits

of the hexadecimal system. We treat lowercase and uppercase letters used in a number system

such as the hexadecimal system as equivalent.

The number of different values that can be represented using � digits in a base � system is

��. Consequently, since we start counting from 0, the largest number that can be represented

using � digits is ��� � ��. This number is written as

��� ����� �� � � � ��� ����� ��
� �� �

	
	��

 n ����	�

�

The minimum number of digits (i.e., the length of a number) required to represent � dif-

ferent values is given by ��
�
�
��, where � � represents the ceiling function. Note that ���

represents the smallest integer that is greater than or equal to �.

Section A.1 Positional Number Systems 867

A.1.1 Notation

The commonality in the alphabet of several number systems gives rise to confusion. For exam-

ple, if we write 100 without specifying the number system in which it is expressed, different

interpretations can lead to assigning different values, as shown below:

Number Decimal value

100
binary�� 4

100
decimal
�� 100

100
octal
�� 64

100
hexadecimal

�� 256

Thus, it is important to specify the number system (i.e., specify the base). We use the following

notation in this text: A single letter—uppercase or lowercase—is appended to the number to

specify the number system. We use D for decimal, B for binary, Q for octal, and H for hex-

adecimal number systems. When we write a number without one of these letters, the decimal

system is the default number system. Using this notation, 10110111B is a binary number and

2BA9H is a hexadecimal number.

Decimal Number System

We use the decimal number system in everyday life. This is a base-10 system presumably

because we have 10 fingers and toes to count. The alphabet consists of 10 symbols, digits 0

through 9.

Binary Number System

The binary system is a base-2 number system that is used by computers for internal representa-

tion. The alphabet consists of two digits, 0 and 1. Each binary digit is called a bit (standing for

�inary dig��). Thus, 1021 is not a valid binary number.

In the binary system, using � bits, we can represent numbers from 0 through ��� � �� for a

total of �� different values. We need � bits to represent � different values, where

� � ����
�
�� �

For example, 150 different values can be represented by using

����
�
��	� � �
����� � �
��� �

In fact, using 8 bits, we can represent �� � ��� different values (i.e., from 0 through 255D).

Octal Number System

This is a base-8 number system with the alphabet consisting of digits 0 through 7. Thus, 181

is not a valid octal number. The octal numbers are often used to express binary numbers in a

868 Appendix A Computer Arithmetic

compact way. For example, we need 8 bits to represent 256 different values. The same range of

numbers can be represented in the octal system by using only

����
�
���� � ������� � � 	
�
�� �

For example, the number 230Q is written in the binary system as 10011000B, which is difficult

to read and errorprone. In general, we can reduce the length by a factor of 3. As we show in the

next section, it is straightforward to go back to the binary equivalent, which is not the case with

the decimal system.

Hexadecimal Number System

This is a base-16 number system. The alphabet consists of digits 0 through 9 and letters A

through F. In this text, we use capital letters consistently, even though lowercase and uppercase

letters can be used interchangeably. For example, FEED is a valid hexadecimal number, whereas

GEFF is not.

The main use of this number system is to conveniently represent long binary numbers. The

length of a binary number expressed in the hexadecimal system can be reduced by a factor of

4. Consider the previous example again. The binary number 10011000B can be represented as

98H. Debuggers, for example, display information—addresses, data, and so on—in hexadeci-

mal representation.

A.2 Number Systems Conversion
When we are dealing with several number systems, there is often a need to convert numbers

from one system to another. In the following, we look at how we can perform these conversions.

A.2.1 Conversion to Decimal

To convert a number expressed in the base-� system to the decimal system, we merely perform

the arithmetic calculations of Equation A.1 given on page 866; that is, multiply each digit by

its weight, and add the results. Note that these arithmetic calculations are done in the decimal

system. Let’s look at a few examples next.

Example A.1 Conversion from binary to decimal.

Convert the binary number 10100111B into its equivalent in the decimal system.

�
��

� �
 � �� � � � �� �
 � �� � � � ��

� � � �� �
 � �� �
 � �� �
 � ��

�
����

Example A.2 Conversion from octal to decimal.

Convert the octal number 247Q into its equivalent in the decimal system.

Section A.2 Number Systems Conversion 869

���� � � � �� � � � �� � � � ��

� �����

Example A.3 Conversion from hexadecimal to decimal.

Convert the hexadecimal number A7H into its equivalent in the decimal system.

��� � � � ��� � � � ���

� �	 � ��� � � � ���

� �����

We can obtain an iterative algorithm to convert a number to its decimal equivalent by ob-

serving that a number in base � can be written as

���� � �� � �� � �� � ��

�
�� � �� � ���

������ � �� � �� � �� � �� � �� � ��

�

�� � �� � ����� ���

�������� � �� � �� � �� � �� � �� � �� � �� � ��

�

�� � �� � ����� ����� ���

The following algorithm summarizes this process.

Algorithm: Conversion from base � to the decimal system

Input: A number �������� � � � ���� in base �

Output: Equivalent decimal number

Procedure: The digits of the input number are processed from left to right one digit at a time.

Result = 0;

for (� � 	� � downto 0)

Result = (Result � �) � ��

end for

We now show the workings of this algorithm by converting 247Q into decimal.

Initial value: Result = 0

After iteration 1: Result = (0 � 8) + 2 = 2D;

After iteration 2: Result = (2 � 8) + 4 = 20D;

After iteration 3: Result = (20 � 8) + 7 = 167D.

This is the correct answer, as shown in Example A.2.

870 Appendix A Computer Arithmetic

A.2.2 Conversion from Decimal

Theoretically, we could use the same procedure to convert a number from the decimal sys-

tem into a target number system. However, the arithmetic calculations (multiplications and

additions) should be done in the target system base. For example, to convert from decimal to

hexadecimal, the multiplications and additions involved should be done in base 16, not in base

10. Since we are not used to performing arithmetic operations in nondecimal systems, this is

not a pragmatic approach.

Luckily, there is a simple method that allows such base conversions while performing the

arithmetic in the decimal system. The procedure is as follows:

Divide the decimal number by the base of the target number system and

keep track of the quotient and remainder. Repeatedly divide the successive

quotients while keeping track of the remainders generated until the quotient

is zero. The remainders generated during the process, written in reverse

order of generation from left to right, form the equivalent number in the

target system.

This conversion process is shown in the following algorithm:

Algorithm: Decimal to base � conversion

Input: A number �������� � � � ���� in decimal

Output: Equivalent number in the target base � number system

Procedure: Result digits are obtained from left to right. In the following, MOD represents the

modulo operator and DIV the integer divide operator.

Quotient = decimal number to be converted

while (Quotient �� 0)

next most significant digit of result = Quotient MOD �

Quotient = Quotient DIV �

end while

Example A.4 Conversion from decimal to binary.

Convert the decimal number 167 into its equivalent binary number.

Quotient Remainder

167/2 = 83 1

83/2 = 41 1

41/2 = 20 1

20/2 = 10 0

10/2 = 5 0

5/2 = 2 1

2/2 = 1 0

1/2 = 0 1

Section A.2 Number Systems Conversion 871

The desired binary number can be obtained by writing the remainders generated in the reverse

order from left to right. For this example, the binary number is 10100111B. This agrees with

the result of Example A.1 on page 868. �

To understand why this algorithm works, let� be the decimal number that we want to con-

vert into its equivalent representation in the base-� target number system. Let ������ � � � ����
be the equivalent number in the target system. Then

� � ������ � � � ����
� �� � �� � ���� � ���� � � � � � �� � �� � �� � ���

Now, to get ��, divide � by �.

�

�
� ��� � ���� � ���� � ���� � � � � � ��� �

��
�

� �� �
��
�
�

Since �� is less than �, it represents the remainder of ��� division. To obtain the �� digit,

divide �� by �. Our algorithm merely formalizes this procedure.

Example A.5 Conversion from decimal to octal.

Convert the decimal number 167 into its equivalent in octal.

Quotient Remainder

167/8 = 20 7

20/8 = 2 4

2/8 = 0 2

Therefore, 167D is equivalent to 247Q. From Example A.2 on page 868, we know that this is

the correct answer. �

Example A.6 Conversion from decimal to hexadecimal.

Convert the decimal number 167 into its equivalent in hexadecimal.

Quotient Remainder

167/16 = 10 7

10/16 = 0 A

Therefore, 167D = A7H, which is the correct answer (see Example A.3 on page 869). �

A.2.3 Conversion Among Binary, Octal, and Hexadecimal

Conversion among binary, octal, and hexadecimal number systems is relatively easier and more

straightforward. Conversion from binary to octal involves converting three bits at a time,

whereas binary to hexadecimal conversion requires converting four bits at a time.

872 Appendix A Computer Arithmetic

Table A.1 3-bit binary to octal conversion

3-bit binary Octal digit

000 0

001 1

010 2

011 3

100 4

101 5

110 6

111 7

Binary/Octal Conversion

To convert a binary number into its equivalent octal number, form 3-bit groups starting from

the right. Add extra 0s at the left-hand side of the binary number if the number of bits is not a

multiple of 3. Then replace each group of 3 bits by its equivalent octal digit using Table A.1.

With practice, you don’t need to refer to the table, as you can easily remember the replacement

octal digit. Why three bit groups? Simply because �� � �.

Example A.7 Conversion from binary to octal.

Convert the binary number 10100111 to its equivalent in octal.

��������� �

�

����

���

�

����

���

�

����

��� �

� ���� �

Notice that we have added a leftmost 0 (shown in bold) so that the number of bits is 9. Adding

0s on the left-hand side does not change the value of a number. For example, in the decimal

system, 35 and 0035 represent the same value. �

We can use the reverse process to convert numbers from octal to binary. For each octal digit,

write the equivalent 3-bit group from Table A.1. You should write exactly 3 bits for each octal

digit even if there are leading 0s. For example, for octal digit 0, write the three bits 000.

Example A.8 Conversion from octal to binary.

The following two examples illustrate conversion from octal to binary:

Section A.2 Number Systems Conversion 873

Table A.2 4-bit binary to hexadecimal conversion

4-bit binary Hex digit 4-bit binary Hex digit

0000 0 1000 8

0001 1 1001 9

0010 2 1010 A

0011 3 1011 B

0100 4 1100 C

0101 5 1101 D

0110 6 1110 E

0111 7 1111 F

105Q =

�

����

���

�

����

���

�

����

���B,

247Q =

�

����

���

�

����

���

�

����

���B.

If you want an 8-bit binary number, throw away the leading 0 in the binary number. �

Binary/Hexadecimal Conversion

The process for conversion from binary to hexadecimal is similar except that we use 4-bit groups

instead of 3-bit groups because �� � ��. For each group of 4 bits, replace it by the equivalent

hexadecimal digit from Table A.2. If the number of bits is not a multiple of 4, pad 0s at the left.

Example A.9 Binary to hexadecimal conversion.

Convert the binary number 1101011111 into its equivalent hexadecimal number.

����������� �

�

� �� �

����

�

����

����

�

����

�����

� ���	 �

As in the octal to binary example, we have added two 0s on the left to make the total number of

bits a multiple of 4 (i.e., 12). �

The process can be reversed to convert from hexadecimal to binary. Each hex digit should

be replaced by exactly four binary bits that represent its value (see Table A.2). An example

follows:

874 Appendix A Computer Arithmetic

Example A.10 Hex to binary conversion.

Convert the hexadecimal number B01D into its equivalent binary number.

B01DH =

�

����

����

�

����

����

�

����

����

�

����

����B .

�

As you can see from these examples, the conversion process is simple if we are working

among binary, octal, and hexadecimal number systems. With practice, you will be able to do

conversions among these number systems almost instantly.

If you don’t use a calculator, division by 2 is easier to perform. Since conversion from

binary to hex or octal is straightforward, an alternative approach to converting a decimal number

to either hex or octal is to first convert the decimal number to binary and then from binary to

hex or octal.

Decimal �� Binary �� Hex or Octal.

The disadvantage, of course, is that for large numbers, division by 2 tends to be long and thus

may lead to simple errors. In such a case, for binary conversion you may want to convert the

decimal number to hex or the octal number first and then to binary.

Decimal �� Hex or Octal �� Binary.

A final note: You don’t normally require conversion between hex and octal numbers. If you

have to do this as an academic exercise, use binary as the intermediate form, as shown below:

Hex �� Binary �� Octal,

Octal �� Binary �� Hex.

A.3 Unsigned Integer Representation
Now that you are familiar with different number systems, let us turn our attention to how inte-

gers (numbers with no fractional part) are represented internally in computers. Of course, we

know that the binary number system is used internally. Still, there are a number of other details

that need to be sorted out before we have a workable internal number representation scheme.

We begin our discussion by considering how unsigned numbers are represented using a fixed

number of bits. We then proceed to discuss the representation for signed numbers in the next

section.

The most natural way to represent unsigned (i.e., nonnegative) numbers is to use the equiv-

alent binary representation. As discussed in Section A.1.1, a binary number with � bits can

represent �� different values, and the range of the numbers is from 0 to ���� ��. Padding of 0s

on the left can be used to make the binary conversion of a decimal number equal exactly� bits.

For example, to represent 16D we need ����
�
�	� = 5 bits. Therefore, 16D = 10000B. However,

this can be extended to a byte (i.e., � �
) as

Section A.3 Unsigned Integer Representation 875

00010000B

or to the word size (i.e.,� � ��) as

00000000 00010000B

A problem arises if the number of bits required to represent an integer in binary is more

than the � bits we have. Clearly, such numbers are outside the range of numbers that can be

represented using � bits. Recall that using � bits, we can represent any integer � such that

� � � � �� � � �

A.3.1 Arithmetic on Unsigned Integers

In this section, the four basic arithmetic operations—addition, subtraction, multiplication, and

division—are discussed.

Addition

Since the internal representation of unsigned integers is the binary equivalent, binary addition

should be performed on these numbers. Binary addition is similar to decimal addition except

that we are using the base-2 number system.

When you are adding two bits �� and ��, you generate a result bit �� and a possible carry bit

����. For example, in the decimal system when you add 6 and 7, the result digit is 3, and there

is a carry. The following table, called a truth table, covers all possible bit combinations that ��
and �� can assume. We use these truth tables to derive digital logic circuit designs to perform

addition. For more details, see our discussion in Section 3.5 on page 95.

Input bits Output bits

�� �� �� ����

0 0 0 0

0 1 1 0

1 0 1 0

1 1 0 1

This truth table describes the functionality of what is called a half-adder to add just two input

bits. Such an adder is sufficient only to add the least significant two bits of a binary number.

For other bits, there may be a third bit: carry-out generated by adding the bits just right of the

current bit position.

This addition involves three bits: two input bits �� and ��, as in the half-adder, and a carry-

in bit ��� from bit position �� � ��. The required functionality is shown in Table A.3, which

corresponds to that of the full-adder.

876 Appendix A Computer Arithmetic

Table A.3 Truth table for binary addition

Input bits Output bits

�� �� ��� �� ����

0 0 0 0 0

0 0 1 1 0

0 1 0 1 0

0 1 1 0 1

1 0 0 1 0

1 0 1 0 1

1 1 0 0 1

1 1 1 1 1

Given this truth table, it is straightforward to perform binary addition. For each three bits

involved, use the truth table to see what the output bit value is and if a carry bit is generated.

The carry bit ���� generated at bit position � will go as the carry-in ��� to bit position ��� ��.

Here is an example:

Example A.11 Binary addition of two eight-bit numbers.

001110� ���

174D = 10101110B
75D = 01001011B

249D = 11111001B
�

An overflow is said to have occurred if there is a carry-out of the leftmost bit position, as

shown in the following example:

Example A.12 Binary addition with overflow.

Addition of 174D and 91D results in an overflow, as the result is outside the range of the

numbers that can be represented by using eight bits.

����
����

�	�
���

�

11111110� ���

174D � 10101110B
91D � 01011011B

265D �� 00001001B

Section A.3 Unsigned Integer Representation 877

Table A.4 Truth table of binary subtraction

Input bits Output bits

�� �� ��� �� ����

0 0 0 0 0

0 0 1 1 1

0 1 0 1 1

0 1 1 0 1

1 0 0 1 0

1 0 1 0 0

1 1 0 0 0

1 1 1 1 1

The overflow condition implies that the sum is not in the range of numbers that can be repre-

sented using eight bits, which is 0 through 255D. To represent 265D, we need nine bits. You

can verify that 100001001B is the binary equivalent of 265D. �

Subtraction

The subtraction operation is similar to the addition operation. The truth table for binary sub-

traction is shown in Table A.4. The inputs are two input bits �� and ��, and a borrow-in ���.

The subtraction operation generates a result bit �� and a borrow-out ����. Table A.4 shows the

two output bits when �� � �� is performed.

Example A.13 Binary subtraction of two eight-bit numbers.

Perform binary subtraction of 110D from 201D.

1111110� ���

201D = 11001001B
110D = 01101110B

91D = 01011011B
�

If borrow is produced out of the leftmost bit position, an underflow is said to have occurred

indicating that the result is too small to be represented. Since we are considering only non-

negative integers, any negative result causes an underflow, as shown in the following example:

Example A.14 Binary subtraction with underflow.

Subtracting 202D from 201D results in an underflow, as the result is negative.

878 Appendix A Computer Arithmetic

����
����

����	
��

�

11111110� ���

201D = 11001001B
202D = 11001010B

-1D �� 11111111B (= 255D)

Since the result �� is too small, it cannot be represented. In fact, the result 111111111B
represents ��D in the 2’s complement representation of signed numbers, as we show in Sec-

tion A.4.4. �

In practice, the subtract operation is treated as the addition of the negated second operand.

That is, 50D � 40D is treated as 50D + (�40D). Then, of course, we need to discuss how the

signed numbers are represented. This is the topic of the next section. Now, however, let us

look at how multiplication and division operations are done on unsigned binary numbers. This

information is useful if you want to write multiplication/division routines in assembly language.

For example, the Pentium does not support multiplying two 64-bit numbers. Although it is

unlikely that you will write such a routine, discussion of multiplication and division gives the

basic concepts involved.

Multiplication

Let us now consider unsigned integer multiplication. Multiplication is more complicated than

either addition or subtraction operations. Multiplying two �-bit numbers could result in a num-

ber that requires �� bits to represent. For example, multiplying two 16-bit numbers could

produce a 32-bit result.

To understand how binary multiplication is done, it is useful to recall decimal multiplication

from when you first learned multiplication. Here is an example:

Example A.15 Decimal multiplication.

123 � multiplicand

� 456 � multiplier

123 � 6� 738
123 � 5� 615
123 � 4� 492

Product� 56088

We started with the least significant digit of the multiplier, and the partial product 123� 6 = 738

is computed. The next higher digit (5) of the multiplier is used to generate the next partial prod-

uct 123 � 5 = 615. But since digit 5 has a positional weight of 10, we should actually do

123 � 50 = 6150. This is implicitly done by left-shifting the partial product 615 by one digit

position. The process is repeated until all digits of the multiplier are processed. Binary multi-

plication follows exactly the same procedure except that the base-2 arithmetic is performed, as

shown in the next example. �

Section A.3 Unsigned Integer Representation 879

Example A.16 Binary multiplication of unsigned integers.

14D� 1110B � multiplicand

11D � � 1011B � multiplier

1110 � 1 � 1110
1110 � 1 � 1110
1110 � 0 � 0000
1110 � 1 � 1110

Product � 10011010B = 154D

As you can see, the final product generated is the correct result. �

The following algorithm formalizes this procedure with a slight modification:

Algorithm: Multiplication of unsigned binary numbers

Input: Two �-bit numbers—a multiplicand and a multiplier

Output: A ��-bit result that represents the product

Procedure:

product = 0

for (� � � to �)

if (least significant bit of the multiplier = 1)

then

product = product + multiplicand

end if

shift left multiplicand by one bit position

�Equivalent to multiplying by 2�

shift right the multiplier by one bit position

�This will move the next higher bit into

the least significant bit position for testing�

end for

Here is how the algorithm works on the data of Example A.16.

Iteration Product Multiplicand Multiplier

Initial values 00000000 1110 1011

After iteration 1 00001110 11100 101

After iteration 2 00101010 111000 10

After iteration 3 00101010 1110000 1

After iteration 4 10011010 11100000 0

880 Appendix A Computer Arithmetic

Division

The division operation is complicated as well. It generates two results: a quotient and a remain-

der. If we are dividing two �-bit numbers, division could produce an �-bit quotient and another

�-bit remainder. As in the case of multiplication, let us first look at a decimal longhand division

example:

Example A.17 Decimal division.

Use longhand division to divide 247861D by 123D.

2015 � quotient

divisor� 123
�
247861

123 � 2� -246

18
123 � 0� -00

186
123 � 1� -123

631
123 � 5� -615

16 � remainder

This division produces a quotient of 2015 and a remainder of 16. �

Binary division is simpler than decimal division because binary numbers are restricted to 0s

and 1s: either subtract the divisor or do nothing. Here is an example of binary division.

Example A.18 Binary division of unsigned numbers.

Divide two 4-bit binary numbers: the dividend is 1011B (11D), and the divisor is 0010B (2D).

The dividend is extended to 8 bits by padding 0s at the left-hand side.

00101 � quotient

divisor� 0010
�
00001011

0010 � 0� -0000

0001
0010 � 0� -0000

0010
0010 � 1� -0010

0001
0010 � 0� -0000

0011
0010 � 1� -0010

001 � remainder

The quotient is 00101B (5D) and the remainder is 001B (1D). �

Section A.4 Signed Integer Representation 881

The following binary division algorithm is based on this longhand division method:

Algorithm: Division of two �-bit unsigned integers

Inputs: A ��-bit dividend and �-bit divisor

Outputs: An �-bit quotient and an �-bit remainder replace the ��-bit dividend. Higher-order �

bits of the dividend (dividend_Hi) will have the �-bit remainder, and the lower-order

� bits (dividend_Lo) will have the �-bit quotient.

Procedure:

for (� = 1 to �)

shift the ��-bit dividend left by one bit position

�vacated right bit is replaced by a 0.�

if (dividend_Hi � divisor)

then

dividend_Hi = dividend_Hi � divisor

dividend = dividend � 1 �set the rightmost bit to 1�

end if

end for

The following table shows how the algorithm works on the data of Example A.18:

Iteration Dividend Divisor

Initial values 00001011 0010

After iteration 1 00010110 0010

After iteration 2 00001101 0010

After iteration 3 00011010 0010

After iteration 4 00010101 0010

The dividend after iteration 4 is interpreted as

����
����

���������

����
����

��	
���

�

The lower four bits of the dividend (0101B = 5D) represent the quotient, and the upper four bits

(0001B = 1D) represent the remainder.

A.4 Signed Integer Representation
There are several ways in which signed numbers can be represented. These include

• Signed magnitude,

• Excess-M,

• 1’s complement, and

• 2’s complement.

882 Appendix A Computer Arithmetic

Table A.5 Number representation using 4-bit binary (All numbers except Binary column in decimal)

Unsigned Binary Signed

representation pattern magnitude Excess-7 1’s Complement 2’s Complement

0 0000 0 �7 0 0

1 0001 1 �6 1 1

2 0010 2 �5 2 2

3 0011 3 �4 3 3

4 0100 4 �3 4 4

5 0101 5 �2 5 5

6 0110 6 �1 6 6

7 0111 7 0 7 7

8 1000 �0 1 �7 �8

9 1001 �1 2 �6 �7

10 1010 �2 3 �5 �6

11 1011 �3 4 �4 �5

12 1100 �4 5 �3 �4

13 1101 �5 6 �2 �3

14 1110 �6 7 �1 �2

15 1111 �7 8 �0 �1

The following subsections discuss each of these methods. However, most modern computer

systems, including Pentium-based systems, use the 2’s complement representation, which is

closely related to the 1’s complement representation. Therefore, our discussion of the other two

representations is rather brief.

A.4.1 Signed Magnitude Representation

In signed magnitude representation, one bit is reserved to represent the sign of a number. The

most significant bit is used as the sign bit. Conventionally, a sign bit value of 0 is used to

represent a positive number and 1 for a negative number. Thus, if we have � bits to represent

a number, �� � �� bits are available to represent the magnitude of the number. For example,

when � is 4, Table A.5 shows the range of numbers that can be represented. For comparison,

the unsigned representation is also included in this table. The range of �-bit signed magnitude

representation is ������� to ������ �. Note that in this method, 0 has two representations:

�� and ��.

A.4.2 Excess-M Representation

In this method, a number is mapped to a nonnegative integer so that its binary representation

can be used. This transformation is done by adding a value called bias to the number to be

Section A.4 Signed Integer Representation 883

represented. For an � bit representation, the bias should be such that the mapped number is less

than �
�.

To find out the binary representation of a number in this method, simply add the bias �

to the number and find the corresponding binary representation. That is, the representation

for number X is the binary representation for the number � �� , where � is the bias. For

example, in the excess-7 system, �3D is represented as�� � � � � � � ����� �

Numbers represented in excess-M are called biased integers for obvious reasons. Table A.5

gives examples of biased integers using 4-bit binary numbers. This representation, for ex-

ample, is used to store the exponent values in the floating-point representation (discussed in

Section A.5).

A.4.3 1’s Complement Representation

As in the excess-M representation, negative values are biased in 1’s complement and 2’s com-

plement representations. For positive numbers, the standard binary representation is used. As in

the signed magnitude representation, the most significant bit indicates the sign (0 = positive and

1 = negative). In 1’s complement representation, negative values are biased by �� � �, where �

is the base or radix of the number system. For the binary case that we are interested in here, the

bias is �� � �. For the negative value �� , the representation used is the binary representation

for 	�� � �
�� . For example, if � is 4, we can represent �� as

�� � � = 1111B�5 = ������
1010B

As you can see from this example, the 1’s complement of a number can be obtained by

simply complementing individual bits (converting 0s to 1s and vice versa) of the number. Ta-

ble A.5 shows 1’s complement representation using 4 bits. In this method also, 0 has two

representations. The most significant bit is used to indicate the sign. To find the magnitude of

a negative number in this representation, apply the process used to obtain the 1’s complement

(i.e., complement individual bits) again.

Example A.19 Finding magnitude of a negative number in 1’s complement representation.

Find the magnitude of 1010B that is in 1’s complement representation. Since the most signifi-

cant bit is 1, we know that it is a negative number.

1010B ��complement bits�� 0101 = 5D.

Therefore, 1010B = �5D. �

884 Appendix A Computer Arithmetic

Addition

Standard binary addition (discussed in Section A.3.1) can be used to add two numbers in 1’s

complement form with one exception: any carry-out from the leftmost bit (i.e., sign bit) should

be added to the result. Since the carry-out can be 0 or 1, this additional step is needed only

when a carry is generated out of the sign bit position.

Example A.20 Addition in 1’s complement representation.

The first example shows addition of two positive numbers. The second example illustrates how

subtracting � � � can be done by adding �� to 5. Notice that the carry-out from the sign bit

position is added to the result to get the final answer.

+5D = 0101B
+2D = 0010B

+7D = 0111B

+5D = 0101B
-2D = 1101B

10010B

� 1

+3D = 0011B

The next two examples cover the remaining two combinations of the input operands.

-5D = 1010B
+2D = 0010B

-3D = 1100B

-5D = 1010B
-2D = 1101B

10111B

� 1

-7D = 1000B

Recall that, from Example A.12, a carry-out from the most significant bit position indicates an

overflow condition for unsigned numbers. This, however, is not true here. �

Overflow: With unsigned numbers, we have stated that the overflow condition can be detected

when there is a carry-out from the leftmost bit position. Since this no longer holds here, how

do we know if an overflow has occurred? Let us see what happens when we create an overflow

condition.

Example A.21 Overflow examples.

Here are two overflow examples that use 1’s complement representation for signed numbers:

+5D � 0101B
+3D � 0011B

+8D �� 1000B (� � �D)

-5D � 1010B
-4D � 1011B

10101B

� 1

-9D �� 0110B (� +6D)

Section A.4 Signed Integer Representation 885

Clearly, +8 and �9 are outside the range. Remembering that the leftmost bit is the sign bit,

1000B represents �� and 0110B represents +6. Both answers are incorrect. �

If you observe these two examples closely, you will notice that in both cases the sign bit of

the result is reversed. In fact, this is the condition to detect overflow when signed numbers are

added. Also note that overflow can only occur with addition if both operands have the same

sign.

Subtraction

Subtraction can be treated as the addition of a negative number. We have already seen this in

Example A.20.

Example A.22 Subtraction in 1’s complement representation.

To subtract 7 from 4 (i.e., to perform �� �), get 1’s complement representation of ��, and add

this to 4.

+4D = 0100B��������0100B

-7D = 0111B
�
��
���������

��������1000B

-3D = 1100B

The result is 1100B = ��, which is the correct answer. �

Overflow: The overflow condition cannot arise with subtraction if the operands involved are of

the same sign. The overflow condition can be detected here if the sign of the result is the same

as that of the subtrahend (i.e., second operand).

Example A.23 A subtraction example with overflow.

Subtract �� from 5 (i.e., perform �� ����).

+5D � 0101B��������0101B

-(-3D) � 1100B
	��
���������
��������0011B

+8D �� 1000B

Overflow has occurred here because the subtrahend is negative and the result is negative. �

Example A.24 Another subtraction example with underflow.

Subtract 3 from �� (i.e., perform ��� ���).

-5D � 1010B�������� 1010B

-(+3D) � 0011B
	��
���������
�������� 1100B

10110B

� 1

-8D �� 0111B

886 Appendix A Computer Arithmetic

An underflow has occurred in this example, as the sign of the subtrahend is the same as that of

the result (both are positive). �

Representation of signed numbers in 1’s complement representation allows the use of sim-

pler circuits for performing addition and subtraction than the other two representations we have

seen so far (signed magnitude and excess-M). Some older computer systems used this repre-

sentation for integers. An irritant with this representation is that 0 has two representations.

Furthermore, the carry bit generated out of the sign bit will have to be added to the result. The

2’s complement representation avoids these pitfalls. As a result, 2’s complement representation

is the choice of current computer systems.

A.4.4 2’s Complement Representation

In 2’s complement representation, positive numbers are represented the same way as in the

signed magnitude and 1’s complement representations. The negative numbers are biased by �
�,

where � is the number of bits used for number representation. Thus, the negative value ��
is represented by ��� � �� using � bits. Since the bias value is one more than that in the 1’s

complement representation, we have to add 1 after complementing to obtain the 2’s complement

representation of a negative number. We can, however, discard any carry generated out of the

sign bit.

Example A.25 2’s complement representation.

Find the 2’s complement representation of ��, assuming that 4 bits are used to store numbers.

6D � 0110B�� complement ��1001B
add 1 1B

1010B

Therefore, 1010B represents ��D in 2’s complement representation. �

Table A.5 shows the 2’s complement representation of numbers using 4 bits. Notice that there

is only one representation for 0. The range of an �-bit 2’s complement integer is ����� to

����� � �. For example, using 8 bits, the range is ���� to ����.

To find the magnitude of a negative number in the 2’s complement representation, as in

the 1’s complement representation, simply reverse the sign of the number. That is, use the

same conversion process (i.e., complement and add 1 and discard any carry generated out of the

leftmost bit).

Example A.26 Finding the magnitude of a negative number in 2’s complement representation.

Find the magnitude of the 2’s complement integer 1010B. Since the most significant bit is 1, we

know that it is a negative number.

1010B�� complement ��0101B
add 1 1B

0110B (= 6D)

The magnitude is 6. That is, 1010B = �6D. �

Section A.5 Floating-Point Representation 887

Addition and Subtraction

Both of these operations work in the same manner as in the case of 1’s complement representa-

tion except that any carry-out from the leftmost bit (i.e., sign bit) is discarded. Here are some

examples:

Example A.27 Examples of addition operation.

+5D = 0101B
+2D = 0010B

+7D = 0111B

+5D = 0101B
-2D = 1110B

+3D 10011B
Discarding the carry leaves

the result 0011B = +3D.

-5D = 1011B
+2D = 0010B

-3D = 1101B

-5D = 1011B
-2D = 1110B

-7D 11001B
Discarding the carry leaves

the result 1001B = �7D.

As in the 1’s complement case, subtraction can be done by adding the negative value of the

second operand.

A.5 Floating-Point Representation
So far, we have discussed various ways of representing integers, both unsigned and signed. Now

let us turn our attention to representation of numbers with fractions (called real numbers). We

start our discussion by looking at how fractions can be represented in the binary system. Next

we discuss how fractions can be converted from decimal to binary and vice versa. Finally, we

discuss how real numbers are stored in computers.

A.5.1 Fractions

In the decimal system, which is a positional number system, fractions are represented like the

integers except for different positional weights. For example, when we write in decimal

������

the value it represents is

��� ����� � ��� ����� � ��� ����� � ��� ����� �

The decimal point is used to identify the fractional part of a number. The position immedi-

ately to the right of the decimal point has the weight ����, the next position ����, and so on.

If we count the digit position from the decimal point (left to right) starting with 1, the weight of

position � is ����.

888 Appendix A Computer Arithmetic

This can be generalized to any number system with base �. The weight should be �
��,

where � is defined as above. Let us apply this to the binary system that is of interest to us. If

we write a fractional binary number

��������

the decimal value it represents is

� � ��� � � � ��� � � � ��� � � � ��� � � � ��� � �������	 �

The period in the binary system is referred to as the binary point. Thus, the algorithm to convert

a binary fraction to its equivalent in decimal is straightforward.

Algorithm: Binary fraction to decimal

Input: A fractional binary number ������ � � � ������ with � bits

(trailing 0s can be ignored)

Output: Equivalent decimal value

Procedure: Bits in the input fraction are processed from right to left starting with bit ��.

decimal_value = 0.0

for (� = � downto 1)

decimal_value = (decimal_value � ��)/�

end for

Here is an example showing how the algorithm works on the binary fraction 0.11001B:

Iteration Decimal_value

Initial value 0.0

Iteration 1 (0.0 + 1)/2 = 0.5

Iteration 2 (0.5 + 0)/2 = 0.25

Iteration 3 (0.25 + 0)/2 = 0.125

Iteration 4 (0.125 + 1)/2 = 0.5625

Iteration 5 (0.5625 + 1)/2 = 0.78125

Now that we know how to convert a binary fraction into its decimal equivalent, let us look

at how we can do the reverse conversion: from decimal fraction to equivalent binary.

This conversion can be done by repeatedly multiplying the fraction by the base of the target

system, as shown in the following example:

Example A.28 Conversion of a fractional decimal number to binary.

Convert the decimal fraction 0.78125D into its equivalent in binary.

Section A.5 Floating-Point Representation 889

0.78125 � 2 = 1.5625 �� 1

0.5625 � 2 = 1.125 �� 1

0.125 � 2 = 0.25 �� 0

0.25 � 2 = 0.5 �� 0

0.5 � 2 = 1.0 �� 1

Terminate.

The binary fraction is 0.11001B, which is obtained by taking numbers from the top and writing

them left to right with a binary point. �

What we have done is to multiply the number by the target base (to convert to binary use

2) and the integer part of the multiplication result is placed as the first digit immediately to the

right of the radix or base point. Take the fractional part of the multiplication result and repeat

the process to produce more digits. The process stops when the fractional part is 0, as in the

above example, or when we have the desired number of digits in the fraction. This is similar to

what we do in the decimal system when dividing 1 by 3. We write the result as 0.33333 if we

want only 5 digits after the decimal point.

Example A.29 Conversion of a fractional decimal number to octal.

Convert 0.78125D into the octal equivalent.

0.78125 � 8 = 6.25 �� 6

0.25 � 8 = 2.0 �� 2

Terminate.

Therefore, the octal equivalent of 0.78125D is 0.62Q. �

Without a calculator, multiplying a fraction by 8 or 16 is not easy. We can avoid this problem

by using the binary as the intermediate form, as in the case of integers. First convert the decimal

number to its binary equivalent and group 3 bits (for octal conversion) or 4 bits (for hexadecimal

conversion) from left to right (pad 0s at the right if the number of bits in the fraction is not a

multiple of 3 or 4).

Example A.30 Conversion of a fractional decimal number to octal.

Convert 0.78125D to octal using the binary intermediate form. From Example A.28, we know

that 0.78125D = 0.11001B. Now convert 0.11001B to octal.

�� ���
����

�

���
����

�

� ����� �

Notice that we have added a 0 (shown in bold) on the right. �

890 Appendix A Computer Arithmetic

Example A.31 Conversion of a fractional decimal number to hexadecimal.

Convert 0.78125D to hexadecimal using the binary intermediate form. From Example A.28, we

know that 0.78125D = 0.11001B. Now convert 0.11001B to hexadecimal.

�� ����
����

����

����
� �� �

�

� ����� �

We have to add three 0s on the right to make the number of bits equal to 8 (a multiple of 4). �

The following algorithm gives this conversion process:

Algorithm: Conversion of fractions from decimal to base � system

Input: Decimal fractional number

Output: Its equivalent in base � with a maximum of � digits

Procedure: The function integer returns the integer part of the argument and the function

fraction returns the fractional part.

value = fraction to be converted

digit_count = 0

repeat

next digit of the result = integer (value � �)

value = fraction (value � �)

digit_count = digit_count + 1

until ((value = 0) OR (digit_count = �))

We leave tracing the steps of this algorithm as an exercise.

If a number consists of both integer and fractional parts, convert each part separately and put

them together with a binary point to get the desired result. This is illustrated in Example A.33

on page 894.

A.5.2 Representing Floating-Point Numbers

A naive way to represent real numbers is to use direct representation: allocate � bits to store the

integer part and � bits to store the fractional part, giving us the format with � (� � � �) bits

as shown below:

�� � � ���
� �� �

� ����

� �� � � ���
� �� �

� ����

�

This is called fixed-point representation.

Representation of integers in computers should be done with a view of the range of numbers

that can be represented. The desired range dictates the number of bits required to store a number.

As discussed earlier,

the number of bits required = ��	
��� �

Section A.5 Floating-Point Representation 891

where � is the number of different values to be represented. For example, to represent 256

different values, we need 8 bits. The range can be 0 to 255D (for unsigned numbers) or �128D

to +127D (for signed numbers). To represent numbers outside this range requires more bits.

Representation of real numbers introduces one additional factor: once we have decided to

use � bits to represent a real number, the next question is where do we place the binary point.

That is, what is the value of � ? This choice leads to a tradeoff between the range and precision.

Precision refers to how accurately we can represent a given number. For example, if we use 3

bits to represent the fractional part (� � �), we have to round the fractional part of a number

to the nearest 0.125 (� ���). Thus, we lose precision by introducing rounding errors. For

example, 7.80D may be stored as 7.75D. In general, if we use � bits to store the fractional part,

the rounding error is bound by �

�
�

�

��
or ������.

In summary, range is largely determined by the integer part, and precision is determined

by the fractional part. Thus, given � bits to represent a real number where � � � � � , the

tradeoff between range and precision is obvious. Increasing the number of bits � to represent

the fractional part increases the precision but reduces the range, and vice versa.

Example A.32 Range versus precision tradeoff.

Suppose we have� � � bits to represent positive real numbers using fixed-point representation.

Show the range versus precision tradeoff when � is changed from 3 to 4 bits.

When � � �, the value of � is � � � � � � � bits. Using this allocation of bits for �

and � , a real number � can be represented that satisfies � � � � �� (i.e., � � � � ��). The

precision (i.e., maximum rounding error) is ������ � ������.

If we increase � by 1 bit to 4 bits, the range decreases approximately by half to � �

� � �� (i.e., � � � � ��). The precision, on the other hand, improves to ������ � �������.

�

Fixed-point representation is simple but suffers from the serious disadvantage of limited

range. This may not be acceptable for most applications, in particular, fixed-point’s inability to

represent very small and very large numbers without requiring a large number of bits.

Using scientific notation, we can make better use of the given number of bits to represent

a real number. The next section discusses floating-point representation, which is based on the

scientific notation.

A.5.3 Floating-Point Representation

Using the decimal system for a moment, we can write very small and very large numbers in

scientific notation as follows:

����	�� ��
���

�����	�� ��
����

Expressing such numbers using the positional number notation is difficult to write and under-

stand, errorprone, and requires more space. In a similar fashion, binary numbers can be written

in scientific notation. For example,

892 Appendix A Computer Arithmetic

���������� �
������

� ������� �
��

� ������	� ��
�
�

As indicated, numbers expressed in this notation have two parts: a mantissa (or significand),

and an exponent. There can be a sign (
 or �) associated with each part.

Numbers expressed in this notation can be written in several equivalent ways, as shown

below:

������ � ��
���

������ � ��
���

���������� � ��
���

This causes implementation problems to perform arithmetic operations, comparisons, and the

like. This problem can be avoided by introducing a standard form called normal form. Reverting

to the binary case, a normalized binary form has the format

������� � � ������� � �
���������������� �

where �� and �� represent a bit, � � � �� , and � � � � � . The normalized form of

��������� �
������

is

��������� �
�������

We normally write such numbers as

���������������

To represent such normalized numbers, we might use the format shown below:

Exponent Mantissa

N bits M bits

S
me

S

1
bit bit

1

where 	� and 	� represent the sign of mantissa and exponent, respectively.

Implementation of floating-point numbers on computer systems varies from this generic

format, usually for efficiency reasons or to conform to a standard. From here on, we discuss the

specific format used by the Pentium, which conforms to the IEEE 754 floating-point standard.

Such standards are useful, for example, to exchange data among several different computer

systems and to write efficient numerical software libraries.

The Pentium supports three formats for floating-point numbers: two of these are for external

use and one for internal use. The internal format is used to store temporary results, and we do

not discuss this format. The remaining two formats are shown below:

Section A.5 Floating-Point Representation 893

Short reals

Bit position

Exponent Mantissam
S

23 bits8 bits

022233031

bit
1

bit
1

Exponent

52 bits

Mantissa

11 bits

m
S

051526263Bit position

Long reals

Certain points are worth noting about these formats:

1. The mantissa stores only the fractional part of a normalized number. The 1 to the left of

the binary point is not explicitly stored but implied to save a bit. Since this bit is always

1, there is really no need to store it. However, representing 0.0 requires special attention,

as we show later.

2. There is no sign bit associated with the exponent. Instead, the exponent is converted to

an excess-M form and stored. For short reals, the bias used is 127D (= 7FH), and for long

reals, 1023 (= 3FFH).

We now show how a real number can be converted to its floating-point equivalent:

Algorithm: Conversion to floating-point representation

Input: A real number in decimal

Output: Floating-point equivalent of the decimal number

Procedure: The procedure consists of four steps.

Step 1: Convert the real number to binary.

1a: Convert the integer part to binary using the procedure

described in Section A.2.2 (page 870).

1b: Convert the fractional part to binary using the procedure

described in Section A.5.1 (page 890).

1c: Put them together with a binary point.

Step 2: Normalize the binary number.

Move the binary point left or right until there is only a

single 1 to the left of the binary point while adjusting the

exponent appropriately. You should increase the exponent

value by 1 if the binary point is moved to the left by one

bit position; decrement by 1 if moving to the right.

Note that 0.0 is treated as a special case; see text for details.

894 Appendix A Computer Arithmetic

Step 3: Convert the exponent to excess or biased form.

For short reals, use 127 as the bias;

For long reals, use 1023 as the bias.

Step 4: Separate the three components.

Separate mantissa, exponent, and sign

to store in the desired format.

Here is an example to illustrate the above procedure:

Example A.33 Conversion to floating-point format.

Convert 78.8125D to short floating-point format.

Step 1: Convert 78.8125D to the binary form.

1a: Convert 78 to the binary.

78D = 1001110B.

1b: Convert 0.8125D to the binary form.

0.8125D = 0.1101B.

1c: Put together the two parts.

78.8125D = 1001110.1101B.

Step 2: Normalize the binary number.

1001110.1101 = 1001110.1101E0

= 1.0011101101E110.

Step 3: Convert the exponent to the biased form.

110B + 1111111B = 10000101B (i.e., 6D + 127D = 133D).

Thus, 78.8125D = 1.0011101101E10000101

in the normalized short real form.

Step 4: Separate the three components.

Sign: 0 (positive number)

mantissa: 0011101101

(1 to the left of the binary point is implied)

exponent: 10000101.

Storing the short real in memory requires 4 bytes (32 bits), and the long real requires 8 bytes

(or 64 bits). For example, the short real form of 78.8125D is stored as shown below:

01000010 X+3

10011101 X+2

10100000 X+1

00000000 X

Sign bit

Section A.5 Floating-Point Representation 895

Table A.6 Representation of special values in the floating-point format

Special number Sign Exponent (biased) Mantissa

�� 0 0 0�� 1 0 0

�� 0 FFH 0

�� 1 FFH 0

NaN ��� FFH ���
Denormals ��� 0 ���

If we lay these four bytes linearly, they look like this:

0

Sign

bit

X+3

0 0 0 0 0 0 0 0

Mantissa

XX+2 X+1

1 0 0 0 0 1 0 1 0 0 1 1 1 0 1 1 0 1 0 0 0 0 0

Exponent

To find the decimal values of a number that is in one of the floating-point formats, use the

procedure in reverse.

Special Values

The representations of 0 and infinity (�) require special attention. Table A.6 shows the values

of the three components to represent these values. Zero is represented by a zero exponent and

fraction. We can have a �� or �� depending on the sign bit. An exponent of all ones indicates

a special floating-point value. An exponent of all ones with a zero mantissa indicates infinity.

Again, the sign bit indicates the sign of the infinity. An exponent of all ones with a nonzero

mantissa represents a not-a-number (NaN). The NaN values are used to represent operations

like 0/0 and
���.

The last entry in Table A.6 shows how denormalized values are represented. The denormals

are used to represent values smaller than the smallest value that can be represented with normal-

ized floating-point numbers. For denormals, the implicit 1 to the left of the binary point becomes

a 0. The smallest normalized number has a 1 for the exponent (note zero is not allowed) and 0

for the fraction. Thus, the smallest number is �� �����. The largest denormalized number has

a zero exponent and all 1s for the fraction. This represents approximately ��������� � �����.

The smallest denormalized number would have zero as the exponent and a 1 in the last bit po-

sition (i.e., position 23). Thus, it represents ���� � �����, which is approximately �����. A

thorough discussion of floating-point numbers is in [13].

896 Appendix A Computer Arithmetic

A.5.4 Floating-Point Addition

Adding two floating-point numbers involves the following four steps:

• Match Exponents: This can be done by shifting right the smaller exponent number. As

an example, consider the following two floating-point numbers: ������� � �
�(13.25D)

and ������ � �
� (4.75D). Since the second number is smaller, it is shifted right by

two positions to match the exponents. Thus, after shifting, the second number becomes

�������� �
�.

• Add the Two Mantissas: In our example, we add 1.10101 and 0.10011 to get 10.01.

• Normalize the Result: We move the binary point to the right of the leftmost 1 and adjust

the exponent accordingly. In our example, our result �������
� is not in the normal form.

After normalization, the final result is ������ �
� (18D), which is correct.

• Test for Overflow/Underflow: This final step is needed to make sure that the result is

within the bounds. In our example, we don’t have this problem.

Floating-point subtraction can be done in a similar fashion. The following example illus-

trates this:

Example A.34 A floating-point subtraction example.

Perform 13.25 � 4.75. In the floating-point notation, we can write this as ������� � �
�
�

�������� �
�.

• Step 1: As in the last example, we shift the second operand to match the exponents.

• Step 2: Subtract the mantissas. For our example, we get �������� ������� � �������.

• Step 3: The result �������� �
� is already in the normalized form.

• Step 4: No underflow as the result is within the range. Thus, the final result is ��������

�
�. In decimal, it is equivalent to 8.50, which is correct. �

This procedure can be applied to the IEEE 754 standard format in a straightforward manner.

A.5.5 Floating-Point Multiplication

Floating-point multiplication is straightforward as shown below:

• Add the two exponents using an integer adder;

• Multiply the two mantissas using an integer multiplier;

• Compute the result sign bit as the XOR of the two input sign bits;

• Normalize the final product;

• Check for underflow/overflow.

Section A.6 Summary 897

Example A.35 A floating-point multiplication example.

Multiply ������ �
� and ����� �

�.

• Step 1: We add the two exponents to get 5 as the exponent of the result.

• Step 2: Multiplying two mantissas, we get ������ ���� � ��������.

• Step 3: The sign of the result is positive.

• Step 4: Our result ��������� �
� needs to be normalized.

The final normalized result is ��������� �
�. �

When we apply this algorithm to the IEEE 754 format, we encounter one problem. Since the

exponents are biased, when we add the two exponents, the bias from both numbers appears in

the result. Thus, we have to subtract the bias value from the result. For short reals, we have to

subtract 127 and for long reals, subtract 1023.

A.6 Summary
We discussed how numbers are represented using the positional number system. Positional

number systems are characterized by a base and an alphabet. The familiar decimal system is a

base-10 system with the alphabet 0 through 9. Computer systems use the binary system for in-

ternal storage. This is a base-2 number system with 0 and 1 as the alphabet. The remaining two

number systems—octal (base-8) and hexadecimal (base-16)—are mainly used for convenience

to write a binary number. For example, debuggers use the hexadecimal numbers to display

address and data information.

When we are using several number systems, there is often a need to convert numbers from

one system to another. Conversion among binary, octal, and hexadecimal systems is simple and

straightforward. We also discussed how numbers are converted from decimal to binary and vice

versa.

The remainder of the chapter was devoted to internal representation of numbers. The focus

was on the representation of numbers: both integers and real numbers were considered. Rep-

resentation of unsigned integers is straightforward and uses binary representation. There are,

however, several ways of representing signed integers. We discussed four methods to represent

signed integers. Of these four methods, current computer systems use the 2’s complement rep-

resentation. In this representation, subtraction can be treated as addition by reversing the sign

of the subtrahend.

Floating-point representation on most computers follows the IEEE 754 standard. There are

three components of a floating-point number: mantissa, exponent, and the sign of the mantissa.

There is no sign associated with the exponent. Instead, the exponent is stored as a biased num-

ber. We illustrated how real numbers can be converted from decimal to floating-point format.

The next version of the IEEE 754 standard, known as the IEEE 784, includes decimal-base

floating-point numbers. Details on this standard are available from the IEEE standards body.

898 Appendix A Computer Arithmetic

A.7 Exercises
A–1 How many different values can be represented using four digits in the hexadecimal sys-

tem? What is the range of numbers that can be represented?

A–2 Repeat the above exercise for the binary system and the octal system.

A–3 Find the decimal equivalent of the following:

(a) 737Q, (c) AB15H, (e) 1234Q,

(b) 11010011B, (d) 1234H, (f) 100100B.

A–4 To represent numbers 0 through 300 (both inclusive), how many digits are required in the

following number systems?

1. Binary.

2. Octal.

3. Hexadecimal.

A–5 What are the advantages of the octal and hexadecimal number systems over the binary

system?

A–6 Perform the following number conversions:

1. 1011010011B = Q.

2. 1011010011B = H.

3. 1204Q = B.

4. ABCDH = B.

A–7 Perform the following number conversions:

1. 56D = B.

2. 217D = Q.

3. 150D = H.

Verify your answer by converting your answer back to decimal.

A–8 Assume that 16 bits are available to store a number. Specify the range of numbers that

can be represented by the following number systems:

1. Unsigned integer.

2. Signed magnitude.

3. Excess-1023.

4. 1’s complement.

5. 2’s complement.

A–9 What is the difference between a half-adder and a full-adder?

Section A.7 Exercises 899

A–10 Perform the following operations assuming that the numbers are unsigned integers. Make

sure to identify the presence or absence of the overflow or underflow condition.

1. 01011010B + 10011111B.

2. 10110011B + 01101100B.

3. 11110001B + 00011001B.

4. 10011101B + 11000011B.

5. 01011010B � 10011111B.

6. 10110011B � 01101100B.

7. 11110001B � 00011001B.

8. 10011101B � 11000011B.

A–11 Repeat the above exercise assuming that the numbers are signed integers that use the 2’s

complement representation.

A–12 Find the decimal equivalent of the following binary numbers assuming that the numbers

are expressed in

1. Unsigned integer.

2. Signed magnitude.

3. Excess-1023.

4. 1’s complement.

5. 2’s complement.

(a) 01101110, (b) 11011011, (c) 00111101,

(d) 11010011, (e) 10001111, (f) 01001101.

A–13 Convert the following decimal numbers into signed magnitude, excess-127, 1’s comple-

ment, and 2’s complement number systems. Assume that 8 bits are used to store the

numbers:

(a) 60, (b) 0, (c) �120,

(d) �1, (e) 100, (f) �99.

A–14 Find the decimal equivalent of the following binary numbers:

(a) 10101.0101011, (b) 10011.1101, (c) 10011.1010,

(d) 1011.1011, (e) 1101.001101, (f) 110.111001.

A–15 Convert the following decimal numbers into the short floating-point format:

1. 19.3125.

900 Appendix A Computer Arithmetic

2. �250.53125.

A–16 Convert the following decimal numbers into the long floating-point format:

1. 19.3125.

2. �250.53125.

A–17 Find the decimal equivalent of the following numbers, which are in the short floating-

point format:

1. 7B59H.

2. A971H.

3. BBC1H.

A–18 Give a summary of the special values used in the IEEE 754 standard.

A–19 Explain why denormals are introduced in the IEEE 754 standard.

A–20 We gave the smallest and largest values represented by the denormals for single-precision

floating-point numbers. Give the corresponding values for the double precision numbers.

A–21 Perform the following floating-point arithmetic operations (as in Example A.34):

1. 22.625 + 7.5.

2. 22.625 � 7.5.

3. 35.75 + 22.625.

4. 35.75 � 22.625.

A.8 Programming Exercises
A–P1 Implement the algorithm on page 869 to perform binary-to-decimal conversion in your

favorite high-level language. Use your program to verify the answers of the exercises that

require this conversion.

A–P2 Implement the algorithm on page 870 to perform decimal-to-binary conversion in your

favorite high-level language. Use your program to verify the answers of the exercises that

require this conversion.

A–P3 Implement the algorithm on page 893 to convert real numbers from decimal to short

floating-point format in your favorite high-level language. Use your program to verify

the answers of the exercise that requires this conversion.

A–P4 Implement the algorithm to convert real numbers from the short floating-point format to

decimal in your favorite high-level language. Assume that the input to the program is

given as four hexadecimal digits. Use your program to verify the answers of the exercise

that requires this conversion.

Appendix B

Character Representation

Objectives
• To discuss character representation;

• To give ASCII character encoding;

• To describe UCS and Unicode universal character sets.

We give a brief description of character representation in this appendix. We identify the de-

sirable characteristics in a character-encoding scheme. We illustrate these features using the

ASCII encoding scheme. We also present ASCII encoding of characters. The ASCII char-

acter set is good for representing English letters. It is not useful in encoding characters of the

world’s languages. We describe two character sets—UCS and Unicode—that provide a uniform

standard to encode all (or most) of these characters. We conclude the chapter with a summary.

B.1 Character Sets
As computers have the capability to store and understand the alphabet 0 and 1, characters should

be assigned a sequence over this alphabet (i.e., characters should be encoded using this al-

phabet). If you build and use your computer system in isolation and never communicate or

exchange data or programs with others, you can assign arbitrary bit patterns to represent char-

acters. Even then, you may be forced to follow certain guidelines for efficiency reasons. Some

of these guidelines are as follows:

1. Assigning a contiguous sequence of numbers (if treated as unsigned binary numbers) to

letters in alphabetical order is desired. Upper and lowercase letters (A through Z and a
through z) can be treated separately, but a contiguous sequence should be assigned to

each case.

901

902 Appendix B Character Representation

2. In a similar fashion, digits should be assigned a contiguous sequence in numerical order.

3. A space character should precede all letters and digits.

These guidelines allow for efficient character processing including sorting by names or char-

acter strings. For example, to test if a given character code corresponds to a lowercase letter, all

we have to do is to see if the code of the character is between that of a and z. These guidelines

also aid in applications requiring sorting, for instance, sorting a class list by last name.

Since computers are rarely used in isolation, exchange of information is an important con-

cern. This leads to the necessity of having some standard way of representing characters. Two

such standard character codes have been developed: EBCDIC (Extended Binary Coded Dec-

imal Interchange Code) and ASCII (American Standard Code for Information Interchange).

EBCDIC is used on IBM mainframe computers. Most modern computer systems, including the

IBM PC, use ASCII for character representation.

The standard ASCII uses 7 bits to encode a character. Thus, �� � ��� different characters

can be represented. This number is sufficiently large to represent uppercase and lowercase

characters, digits, special characters such as !,ˆ, and control characters such as CR (carriage

return), LF (line feed), and so on.

Since we store the bits in units of a power of 2, we end up storing 8 bits for each character,

even though ASCII requires only 7 bits. The eighth bit is put to use for two purposes:

1. To Parity Encode for Error Detection: The eighth bit can be used to represent the par-

ity bit. This bit is made 0 or 1 such that the total number of 1s in a byte is even (for

even parity) or odd (for odd parity). This can be used to detect simple errors in data

transmission.

2. To Represent an Additional 128 Characters: By using all 8 bits we can represent a total

of �� � ��� different characters. This is referred to as extended ASCII. On an IBM PC,

special graphics symbols, Greek letters, and so on make up the additional 128 characters.

Notice from the table on page 906 that ASCII encoding satisfies the three guidelines men-

tioned earlier. For instance, successive bit patterns are assigned to uppercase letters, lowercase

letters, and digits. This assignment leads to some good properties. For example, the difference

between the uppercase and lowercase characters is constant. That is, the difference between

the character codes of a and A is the same as that between n and N, which is 32D (20H). This

characteristic can be exploited for efficient case conversion.

Another interesting feature of ASCII is that the character codes are assigned to the 10 digits

such that the lower-order 4 bits represent the binary equivalent of the corresponding digit. For

example, digit 5 is encoded as 0110101. If you take the rightmost 4 bits (0101), they represent

5 in binary. This feature, again, helps in writing an efficient code for character-to-numeric

conversion. Such conversion, for example, is required when you type a number as a sequence

of digit characters.

Section B.2 Universal Character Set 903

B.2 Universal Character Set
The 7-bit ASCII character encoding is fine for English, but is not good for other languages.

Some languages such as French and German require accents (ó) and diacritical (ö) marks. It

cannot represent characters from other languages (Indian, Chinese, Japanese). As software

vendors sell their products to various non-English speaking countries around the world, ASCII

encoding is no longer sufficient. As a first attempt, the ASCII encoding was extended by using

the eighth bit. Thus, an additional 128 encodings have been added, mostly to take care of the

Latin letters, accents, and diacritical marks.

In this section, we look at the universal character set (UCS) to represent characters in various

world languages. The next section describes a restricted version called the Unicode.

UCS is a new character-encoding standard from the International Organization for Stan-

dardization (ISO/IEC 0646). The objective is to develop a standard to encode all characters

used in all the written languages of the world including mathematical and other symbols. To

allow this encoding, the code uses two encoding forms:

• UCS-2 uses 16 bits;

• UCS-4 uses 31 bits.

The UCS-2 uses two octets, and the UCS-4 consists of four octets. In fact, the official name for

the UCS is “Universal Multiple-Octet Coded Character Set.” UCS is not only meant for internal

character representation but also for data transmission. As an aside, communication people use

octet instead of byte to refer to 8 bits.

UCS-2 allows up to 65536 encodings, which are divided into 256 rows with each row con-

sisting of 256 cells. The first 128 characters are the same as the ASCII encodings. UCS-4

can represent more than 2 billion (i.e., ���) different characters. This space is divided into 128

groups with each group containing 256 planes. The first octet gives the group number and the

second octet gives the plane number. The third and fourth octets give the row and cell numbers

as in UCS-2. The characters that can be represented by UCS-2 are called the basic multilingual

plane (BMP). An encoding in UCS-2 can be transformed into the UCS-4 by appending two zero

octets.

UCS encoding can also be used for data communications. However, most communication

protocols treat the values in the range 0 to 1FH as control characters (see the table on page 905).

To facilitate adaptation for the communication area, several UCS transformation formats (UTF)

are defined. For example, UTF-8 replaces the first half of the first row of the BMP by the

ASCII encodings. The other transformations include the UTF-7, which is useful for the SMTP

protocol.

B.3 Unicode
The Unicode Consortium consisting of major American computer manufacturers and organiza-

tions developed the Unicode standard. It uses 16 bits to encode the characters. Each encoding

in Unicode is called a code point. The number of code points available (65,536) is much smaller

904 Appendix B Character Representation

than the number of characters in the world languages. Thus, care should be exercised in allocat-

ing code points. As does the UCS, the Unicode Standard further includes punctuation marks,

diacritics, mathematical symbols, technical symbols, arrows, dingbats, and so on. The Unicode

Standard, Version 3.0 allocated code points for 49,194 (out of 65,536) for characters from the

world’s alphabets, ideograph sets, and symbol collections. These all fit into the first 64 K char-

acters of the BMP. The Unicode Standard also reserves code points for private use. Vendors

or end-users can use these code points for their own characters and symbols, or use them with

specialized fonts.

The Unicode is compatible with the UCS-2. Unicode 3.0 contains all the same characters

and encoding points as ISO/IEC 10646-1:2000. The Unicode Standard provides additional in-

formation about the characters and their use. Any implementation that is conformant to Unicode

is also conformant to ISO/IEC 10646 [38].

Some text elements may be encoded as composed character sequences, which should be

rendered together for presentation. For example, â is a composite character created by rendering

“a” and “ˆ” together. A composed character sequence is typically made up of a base letter,

which occupies a single space, and one or more nonspacing marks.

Like the UCS, several UTFs are defined for the Unicode. UTF-8 is popular for HTML

and similar protocols. The main advantage of UTF-8 is that it maintains compatibility with

ASCII. Unicode characters transformed into UTF-8 can be used with the existing software

without extensive software modifications. UTF-16 strikes a balance between efficient access

to characters and economical use of storage. It is reasonably compact, all the heavily used

characters fit into a single 16-bit code unit, and all other characters are accessible via pairs of

16-bit code units. When storage efficiency is not a concern, we can use UTF-32 to provide

fixed-width for all characters as does the UCS. Character composition is no longer needed in

this encoding form.

B.4 Summary
This appendix discussed character representation. We identified some desirable properties that

a character-encoding scheme should satisfy in order to facilitate efficient character processing.

Although there are two simple character codes—EBCDIC and ASCII—most computers use the

ASCII character set. We noted that ASCII satisfies the requirements of an efficient character

code. We also presented details on two universal character sets, UCS and Unicode.

The next pages give the standard ASCII character set. We divide the character set into

control and printable characters. The control character codes are given on the next page and the

printable ASCII characters are on page 906.

Section B.4 Summary 905

ASCII Control Codes

Hex Decimal Character Meaning

00 0 NUL NULL

01 1 SOH Start of heading

02 2 STX Start of text

03 3 ETX End of text

04 4 EOT End of transmission

05 5 ENQ Enquiry

06 6 ACK Acknowledgment

07 7 BEL Bell

08 8 BS Backspace

09 9 HT Horizontal tab

0A 10 LF Line feed

0B 11 VT Vertical tab

0C 12 FF Form feed

0D 13 CR Carriage return

0E 14 SO Shift out

0F 15 SI Shift in

10 16 DLE Data link escape

11 17 DC1 Device control 1

12 18 DC2 Device control 2

13 19 DC3 Device control 3

14 20 DC4 Device control 4

15 21 NAK Negative acknowledgment

16 22 SYN Synchronous idle

17 23 ETB End of transmission block

18 24 CAN Cancel

19 25 EM End of medium

1A 26 SUB Substitute

1B 27 ESC Escape

1C 28 FS File separator

1D 29 GS Group separator

1E 30 RS Record separator

1F 31 US Unit separator

7F 127 DEL Delete

906 Appendix B Character Representation

ASCII Printable Character Codes�

Hex Decimal Character Hex Decimal Character Hex Decimal Character

20 32 Space 40 64 @ 60 96 ‘

21 33 ! 41 65 A 61 97 a

22 34 ” 42 66 B 62 98 b

23 35 # 43 67 C 63 99 c

24 36 $ 44 68 D 64 100 d

25 37 % 45 69 E 65 101 e

26 38 & 46 70 F 66 102 f

27 39 ’ 47 71 G 67 103 g

28 40 (48 72 H 68 104 h

29 41) 49 73 I 69 105 i

2A 42 * 4A 74 J 6A 106 j

2B 43 + 4B 75 K 6B 107 k

2C 44 , 4C 76 L 6C 108 l

2D 45 – 4D 77 M 6D 109 m

2E 46 . 4E 78 N 6E 110 n

2F 47 / 4F 79 O 6F 111 o

30 48 0 50 80 P 70 112 p

31 49 1 51 81 Q 71 113 q

32 50 2 52 82 R 72 114 r

33 51 3 53 83 S 73 115 s

34 52 4 54 84 T 74 116 t

35 53 5 55 85 U 75 117 u

36 54 6 56 86 V 76 118 v

37 55 7 57 87 W 77 119 w

38 56 8 58 88 X 78 120 x

39 57 9 59 89 Y 79 121 y

3A 58 : 5A 90 Z 7A 122 z

3B 59 ; 5B 91 [7B 123 �

3C 60 � 5C 92 \ 7C 124 |
3D 61 = 5D 93] 7D 125 �

3E 62 � 5E 94 ˆ 7E 126 ˜
3F 63 ? 5F 95

�Note that 7FH (127 in decimal) is a control character listed on the previous page.

Appendix C

Assembling and Linking

Pentium Assembly

Language Programs

Objectives
• To present the structure of the standalone assembly language programs used in this book;

• To describe the input and output routines provided with this book;

• To explain the assembly process.

In this appendix, we discuss the necessary mechanisms to write and execute Pentium assembly

language programs. We begin by taking a look at the structure of assembly language programs

that we use in this book. To make the task of writing assembly language programs easier, we

make use of the simplified segment directives provided by the assembler. Section C.1 describes

the structure of the standalone assembly language programs used in this book.

Unlike high-level languages, assembly language does not provide a convenient mechanism

to do input/output. To overcome this deficiency, we have provided a set of I/O routines to facil-

itate character, string, and numeric input/output. These routines are described in Section C.2.

Once we have written an assembly language program, we have to transform it into its ex-

ecutable form. Typically, this takes two steps: we use an assembler to translate the source

program into what is called an object program and then use a linker to transform the object pro-

gram into an executable code. Section C.3 gives details of these steps. The appendix concludes

with a summary.

907

908 Appendix C Assembling and Linking Pentium Assembly Language Programs

TITLE brief title of program file-name

COMMENT |

Objectives:

Inputs:

Outputs:

|

.MODEL SMALL

.STACK 100H ; defines a 256-byte stack

.DATA

(data go here)

.CODE

.486 ; not necessary if only 8086

; instructions are used

INCLUDE io.mac ; include I/O routines

main PROC

.STARTUP ; setup segments

.

.

(code goes here)

.

.

.EXIT ; returns control

main ENDP

END main

Figure C.1 Structure of the standalone assembly language programs used in this book.

C.1 Structure of Assembly Language Programs
Writing an assembly language program is a complicated task, particularly for a beginner. We

make this daunting task simple by hiding unnecessary details. A typical assembly language pro-

gram consists of three parts. The code part of the program defines the program’s functionality

by a sequence of assembly language instructions. The code part of the program, after trans-

lating it to the machine language code, is placed in the code segment. The data part reserves

memory space for the program’s data. The data part of the program is mapped to the data seg-

ment. Finally, we also need the stack data structure, which is mapped to the stack segment. The

stack serves two main purposes: it provides temporary storage and acts as the medium to pass

parameters in procedure calls. We use the template shown in Figure C.1 for writing standalone

assembly language programs. These are the programs that are written completely in assembly

language.

Section C.1 Structure of Assembly Language Programs 909

Now let us dissect the statements in this template. This template consists of two types of

statements: executable instructions and assembler directives. Executable instructions generate

machine code for Pentium to execute when the program is run. Assembler directives, on the

other hand, are meant only for the assembler. They provide information to the assembler on

the various aspects of the assembly process. In this book, all assembler directives are shown in

uppercase letters, and instructions are shown in lowercase.

The TITLE line is optional and when included, usually contains a brief heading of the

program and the disk file name. The TITLE information can be up to 128 characters. To

understand the purpose of the TITLE directive, you should know that the assembler produces,

if you want, a nicely formatted listing file (with extension .lst) after the source file has been

assembled. In the listing file, each page heading contains the information provided in the TITLE

directive.

The COMMENT assembler directive is useful for including several lines of text in assembly

language programs. The format of this directive is

COMMENT delimiter [text]

[text]

[text] delimiter [text]

where the brackets [] indicate optional text. The delimiter is used to delineate the comment

block. The delimiter is any nonblank character after the COMMENT directive. The assembler

ignores the text following the delimiter until the second occurrence of the delimiter. It also

ignores any text following the second delimiter on the same line. We use the COMMENT

directive to include objectives of the program and its inputs and outputs. For an example, see

sample.asm given on page 914.

The .MODEL directive specifies a standard memory configuration for the assembly lan-

guage program. For our purposes, a small model is sufficient. A restriction of this model is that

our program’s code should be �64K, and the total storage for the data should also be �64K.

This directive should precede the .STACK, .DATA, and .CODE directives.

The .STACK directive defines the stack segment to be used with the program. The size of

the stack can be specified. By default, we always use a 100H byte (256 bytes or 128 words)

stack.

The .DATA directive defines the data segment for the assembly language program. The pro-

gram’s variables are defined here. Chapter 9 discusses various directives to define and initialize

variables used in assembly language programs.

The .CODE directive terminates the data segment and starts the code segment. You need

to use .486 only if the code contains instructions of 32-bit processors such as the 80486 and

the Pentium. This line is not necessary if the assembly language code uses only the 8086

instructions. The INCLUDE directive causes the assembler to include source code from another

file (io.mac here). The code

910 Appendix C Assembling and Linking Pentium Assembly Language Programs

main PROC

. . .

. . .

main ENDP

defines a procedure called main using the directives PROC (procedure) and ENDP (end proce-

dure).

The last statement uses the END directive for two distinct purposes:

1. By using the label main, it identifies the entry point into the program (first instruction of

main procedure here),

2. It signals the assembler that the end of the source file has been reached.

The choice of main in the template is arbitrary. You can use any other name with the restriction

that the same name should appear in all three places.

The .STARTUP assembler directive sets up the data and stack segments appropriately. In

its place you can write code to set up the data segment yourself. To do this, use the following

code:

mov AX,@DATA

mov DS,AX

These two lines initialize the DS register so that it points to the program’s data segment. Note

that @DATA points to the data segment.

To return control from the assembly program, use the .EXIT assembler directive. This

directive places the code to call the int 21H function 4CH to return control. In this directive’s

place, you can write your own code to call int 21H, as shown below:

mov AX,4C00H

int 21H

Control is returned to the operating system by interrupt 21H service 4CH. The service required

under interrupt 21H is indicated by moving 4CH into the AH register. This service also returns

an error code in the AL register. It is good practice to set AL to 0 to indicate normal termination

of the program.

C.2 Input/Output Routines
We rarely write programs that do not input and/or output data. High-level languages provide

facilities to input and output data. For example, C provides scanf and printf functions

to input and output data, respectively. Typically, high-level languages can read numeric data

(integers, floating-point numbers), characters, and strings.

Assembly language, however, does not provide a convenient mechanism to input/output

data. The operating system provides some basic services to read and write data, but these are

fairly limited. For example, there is no function to read an integer from the keyboard.

Section C.2 Input/Output Routines 911

Table C.1 Summary of I/O routines defined in io.mac

Operand
Name Operand(s) location Size What it does

PutCh Source Value

Register

8 bits Displays the character

located at source

Memory

GetCh Destination Register

Memory

8 bits Reads a character into

destination

nwln None — — Displays a carriage return

and line feed

PutStr Source Memory Variable Displays the NULL-

terminated string at source

GetStr Destination

[,buffer_size]

Memory Variable Reads a carriage-return-

terminated string into

destination and stores it as

a NULL-terminated string.

Maximum string length is

buffer_size�1

PutInt Source Register

Memory

16 bits Displays the signed 16-bit

number located at source

GetInt Destination Register

Memory

16 bits Reads a signed 16-bit num-

ber into destination

PutLint Source Register

Memory

32 bits Displays the signed 32-bit

number located at source

GetLint Destination Register

Memory

32 bits Reads a signed 32-bit num-

ber into destination

In order to facilitate I/O in assembly language programs, it is necessary to write the required

procedures. We have written a set of I/O routines to read and display signed integers, characters,

and strings. The remainder of this section describes these routines. Each I/O routine call looks

like an assembly language instruction. This is achieved by using macros. Each macro call

typically expands to several assembly language statements and includes a call to an appropriate

procedure. These macros are all defined in the io.mac file and actual assembled procedures

that perform I/O are in the io.obj file. Table C.1 provides a summary of the I/O routines

defined in io.mac.

912 Appendix C Assembling and Linking Pentium Assembly Language Programs

C.2.1 Character I/O

Two macros are defined to input and output characters: PutCh and GetCh. The format of

PutCh is

PutCh source

where source can be any general-purpose 8-bit register, a byte in memory, or a character value.

Some examples follow:

PutCh ’A’ ; displays character A

PutCh AL ; displays the character in AL

PutCh response ; displays the byte located in

; memory (labeled response)

The format of GetCh is

GetCh destination

where destination can be either an 8-bit general-purpose register or a byte in memory. Some

examples are as follows:

GetCh DH

GetCh response

In addition, a nwln macro is defined to display a newline, which sends a carriage return (CR)

and a line feed (LF). It takes no operands.

C.2.2 String I/O

PutStr and GetStr are defined to display and read strings, respectively. The strings are

assumed to be in NULL-terminated format. That is, the last character of the string is the NULL

ASCII character, which signals the end of the string. Strings are discussed in Chapter 12.

The format of PutStr is

PutStr source

where source is the name of the buffer containing the string to be displayed. For example,

PutStr message

displays the string stored in the buffer message. Strings are limited to 80 characters. If the

buffer does not contain a NULL-terminated string, a maximum of 80 characters is displayed.

The format of GetStr is

GetStr destination [, buffer_size]

Section C.2 Input/Output Routines 913

where destination is the buffer name into which the string from the keyboard is read. The input

string can be terminated by a CR. You can also specify the optional buffer_size value.

If not specified, a buffer size of 81 is assumed. Thus, in the default case, a maximum of 80

characters is read into the string. If a value is specified, buffer_size�1 characters are read.

The string is stored as a NULL-terminated string. You can backspace to correct input. Here are

some examples:

GetStr in_string ; reads at most 80 characters

GetStr TR_title,41 ; reads at most 40 characters

C.2.3 Numeric I/O

There are four macro definitions for performing integer I/O: two are defined for 16-bit inte-

gers and two for 32-bit integers. First we look at the 16-bit integer I/O routines PutInt and

GetInt. The formats of these routines are

PutInt source

GetInt destination

where source and destination can be a 16-bit general-purpose register or the label of a memory

word.

PutInt displays the signed number at the source. It suppresses all leading 0s. GetInt
reads a 16-bit signed number into destination. You can backspace while entering a number.

The valid range of input numbers is �32,768 to +32,767. If an invalid input (such as typing a

nondigit character) or out-of-range number is given, an error message is displayed and the user

is asked to type a valid number. Some examples are as follows:

PutInt AX

PutInt sum

GetInt CX

GetInt count

Long integer I/O is similar except that the source and destination must be a 32-bit register

or a label of a memory doubleword (i.e., 32 bits). For example, if total is a 32-bit number in

memory, we can display it by

PutLint total

and read a long integer from the keyboard into total by

GetLint total

Some examples that use registers are the following:

PutLint EAX

GetLint EDX

914 Appendix C Assembling and Linking Pentium Assembly Language Programs

An Example

Program C.1 gives a simple example to demonstrate how some of these I/O routines can be used
to facilitate I/O. The program uses the DB (define byte) assembly language directive to declare
several strings (lines 11 to 15). All these strings are terminated by 0, which is the ASCII value
for the NULL character. Similarly, 16 bytes are allocated for a buffer to store the user name
and another byte is reserved for the response. In both cases, ? indicates that the data are not
initialized.

Program C.1 An example assembly program

1: TITLE An example assembly language program SAMPLE.ASM

2: COMMENT |

3: Objective: To demonstrate the use of some I/O

4: routines and to show the structure

5: of assembly language programs.

6: Inputs: As prompted.

7: | Outputs: As per input.

8: .MODEL SMALL

9: .STACK 100H

10: .DATA

11: name_msg DB ’Please enter your name: ’,0

12: query_msg DB ’How many times to repeat welcome message? ’,0

13: confirm_msg1 DB ’Repeat welcome message ’,0

14: confirm_msg2 DB ’ times? (y/n) ’,0

15: welcome_msg DB ’Welcome to Assembly Language Programming ’,0

16:

17: user_name DB 16 DUP (?) ; buffer for user name

18: response DB ?

19:

20: .CODE

21: INCLUDE io.mac

22:

23: main PROC

24: .STARTUP

25: PutStr name_msg ; prompt user for his/her name

26: nwln

27: GetStr user_name,16 ; read name (max. 15 characters)

28: nwln

29: ask_count:

30: PutStr query_msg ; prompt for repeat count

31: GetInt CX ; read repeat count

32: nwln

33: PutStr confirm_msg1 ; confirm repeat count

34: PutInt CX ; by displaying its value

35: PutStr confirm_msg2

Section C.3 Assembling and Linking 915

36: GetCh response ; read user response

37: nwln

38: cmp response,’y’ ; if ’y’, display welcome message

39: jne ask_count ; otherwise, request repeat count

40: display_msg:

41: PutStr welcome_msg ; display welcome message

42: PutStr user_name ; display the user name

43: nwln

44: loop display_msg ; repeat count times

45: .EXIT

46: main ENDP

47: END main

The program requests the name of the user and a repeat count. After confirming the repeat

count, it displays a welcome message repeat count times. We use PutStr on line 25 to prompt

for the user name. The name is read as a string using GetStr into the user_name buffer.

Since we have allocated only 16 bytes for the buffer, the name cannot be more than 15 char-

acters. We enforce this by specifying the optional buffer size parameter in GetStr (line 27).

The PutStr on line 30 requests a repeat count, which is read by GetInt on line 31. The

confirmation message is displayed by lines 33 to 35. The response of the user y/n is read by

GetCh on line 36. If the response is y, the loop (lines 40 to 44) displays the welcome message

repeat count times. A sample interaction with the program is shown below:

Please enter your name:

Veda

How many times to repeat welcome message? 4

Repeat welcome message 4 times? (y/n) y

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

Welcome to Assembly Language Programming Veda

C.3 Assembling and Linking
Figure C.2 shows the steps involved in converting an assembly language program into an exe-

cutable program. The source assembly language file (e.g., sample.asm) is given as input to

the assembler. The assembler translates the assembly language program into an object program

(e.g., sample.obj). The linker takes one or more object programs (e.g., sample.obj and

io.obj) and combines them into an executable program (e.g., sample.exe). The following

subsections describe each of these steps in detail.

C.3.1 The Assembly Process

To assemble a program, you need to have an assembler (e.g., TASM.EXE or MASM.EXE). In

the remainder of this section, we describe the Turbo assembler TASM. MASM also works in a

916 Appendix C Assembling and Linking Pentium Assembly Language Programs

ASSEMBLE

LINK

RUN

Linker

(TLINK, LINK)

Loads and executes

executable program

Other object files

EDITEditor language program

Creates an assembly

(TASM, MASM)

Assembler

sample.asm

sample.obj

sample.asm

sample.lst

sample.exe sample.map

sample.obj

Assembles the source program

sample.asm

Links all object programs including

to generate the executable program

sample.obj

sample.exe

sample.exe

to generate the object program

Figure C.2 Assembling, linking, and executing assembly language programs (optional inputs and outputs

are shown by dashed lines).

similar way (see your assembler documentation). The general format to assemble an assembly

language program is

TASM [options] source-file [,obj-file] [,list-file] [,xref-file]

where the specification of fields in [] is optional. If we simply specify only the source

file, TASM just produces only the object file. Thus, to assemble our example source file

sample.asm, type

TASM sample

Section C.3 Assembling and Linking 917

You don’t have to type the extension. By default, TASM assumes the .asm extension.

During the assembly process, TASM displays error messages (if any). After successfully as-

sembling the source program, TASM generates an object file with the same file name as the

source file but with the .obj extension. Thus, in our example, it generates the sample.obj
file.

If you want the assembler to generate the listing file, you can use

TASM sample,,

This produces two files: sample.obj and sample.lst. The list file contains detailed

information about the assembly process, as we show shortly. If you want to use a different file

name for the listing file, you have to specify the file name (the extension .lst is assumed), as

in the following example:

TASM sample,,myprog

which generates two files: sample.obj and myprog.lst.

If the fourth field xref-file is specified, TASM generates a listing file containing cross-

reference information (discussed shortly).

Options

You can also use command line option L to produce the listing file. For example,

TASM /L sample

produces sample.obj and sample.lst files. During the assembly process, TASM dis-

plays error messages but does not display the corresponding source lines. You can use option

Z to force TASM to display the error source lines. Other interesting options are N to suppress

symbol table information in the listing file, and ZI to include complete debugging information

for debuggers (such as Turbo Debugger TD). A complete list of options is displayed by typing

TASM.

The List File

Program C.2 gives a simple program that reads two signed integers from the user and displays

their sum if there is no overflow; otherwise, it displays an error message. The input numbers

should be in the range�2,147,483,648 to +2,147,483,647, which is the range of a 32-bit signed

number. The program uses PurStr and GetLInt to prompt and read input numbers (see

lines 24, 25 and 29, 30). The sum of the input numbers is computed on lines 34 to 36. If the

resulting sum is outside the range of a signed 32-bit integer, the overflow flag is set by the add
instruction. In this case, the program displays the overflow message (line 40). If there is no

overflow, the sum is displayed (lines 46 and 47).

918 Appendix C Assembling and Linking Pentium Assembly Language Programs

Program C.2 An assembly language program to add two integers sumprog.asm

1: TITLE Assembly language program to find sum SUMPROG.ASM

2: COMMENT |

3: Objective: To add two integers.

4: Inputs: Two integers.

5: | Output: Sum of input numbers.

6: .MODEL SMALL

7: .STACK 100H

8: .DATA

9: prompt1_msg DB ’Enter first number: ’,0

10: prompt2_msg DB ’Enter second number: ’,0

11: sum_msg DB ’Sum is: ’,0

12: error_msg DB ’Overflow has occurred!’,0

13:

14: number1 DD ? ; stores first number

15: number2 DD ? ; stores second number

16: sum DD ? ; stores sum

17:

18: .CODE

19: INCLUDE io.mac

20: .486

21: main PROC

22: .STARTUP

23: ; prompt user for first number

24: PutStr prompt1_msg

25: GetLint number1

26: nwln

27:

28: ; prompt user for second number

29: PutStr prompt2_msg

30: GetLint number2

31: nwln

32:

33: ; find sum of two 32-bit numbers

34: mov EAX,number1

35: add EAX,number2

36: mov sum,EAX

37:

38: ; check for overflow

39: jno no_overflow

40: PutStr error_msg

41: nwln

42: jmp done

43:

Section C.3 Assembling and Linking 919

44: ; display sum

45: no_overflow:

46: PutStr sum_msg

47: PutLint sum

48: nwln

49: done:

50: .EXIT

51: main ENDP

52: END main

The list file for the source program sumprog.asm is shown in Program C.3. It contains,

in addition to the original source code lines, a lot of useful information about the results of

the assembly. This additional information includes the actual machine code generated for the

executable statements, offsets of each statement, and tables of information about symbols and

segments.

The top line of each page consists of a header that identifies the assembler, its version, date,

time, and page number. If TITLE is used, the title line is printed on each page of the listing.

There are two parts to the listing file: the first part consists of annotated source code, and the

second part gives tables of information about the symbols and segments used by the program.

Source Code Lines

The format of the source code lines is as follows:

nesting-level line# offset machine-code source-line

nesting-level: the level of nesting of “include files” and macros. We discussed macros in

Section 9.8 on page 366.

line#: the number of the listing file line numbers. These numbers are different from the line

numbers in the source file. This can be due to include files, macros, and so on, as shown in

Program C.3.

offset: a 4-digit hexadecimal offset value of the machine code for the source statement. For

example, the offset of the first instruction (line 31) is 0000, and that of the add instruction on

line 45 is 0044H. Source lines such as comments do not generate any offset.

machine-code: the hexadecimal representation of the machine code for the assembly lan-

guage instruction. For example, the machine language encoding of

mov EAX,number1

is 66|A1004B (line 44) and requires 4 bytes (66 is the operand size override prefix). Similarly,

the machine language encoding of

920 Appendix C Assembling and Linking Pentium Assembly Language Programs

jmp done

is EB1990 (line 52), requiring 3 bytes of memory. Again, source code lines such as comments

do not generate any machine code for obvious reasons.

source-line: a copy of the original source code line. As you can see from Program C.3,

the number of bytes required for the machine code depends on the source instruction. When

operands are in memory like number1, their relative address value is appended with r (see

line 44) to indicate that the actual value is fixed up by the linker when the segment is combined

with other segments (e.g., io.obj in our example). You will see an e instead of r if the

symbol is defined externally to the source file (thus available only at link time). For segment

values, an s is appended to the relative addresses.

Program C.3 The list file for the example assembly program sumprog.asm

Turbo Assembler Version 4.0 08/09/97 16:58:59 Page 1
sumprog.ASM
Assembly language program to find sum SUMPROG.ASM

1 COMMENT |
2 Objective: To add two integers.
3 Inputs: Two integers.
4 | Output: Sum of input numbers.
5 0000 .MODEL SMALL
6 0000 .STACK 100H
7 0000 .DATA
8 0000 45 6E 74 65 72 20 66+ prompt1_msg DB ’Enter first number: ’,0
9 69 72 73 74 20 6E 75+
10 6D 62 65 72 3A 20 00
11 0015 45 6E 74 65 72 20 73+ prompt2_msg DB ’Enter second number: ’,0
12 65 63 6F 6E 64 20 6E+
13 75 6D 62 65 72 3A 20+
14 00
15 002B 53 75 6D 20 69 73 3A+ sum_msg DB ’Sum is: ’,0
16 20 00
17 0034 4F 76 65 72 66 6C 6F+ error_msg DB ’Overflow has occurred!’,0
18 77 20 68 61 73 20 6F+
19 63 63 75 72 72 65 64+
20 21 00
21
22 004B ???????? number1 DD ? ; stores first number
23 004F ???????? number2 DD ? ; stores second number
24 0053 ???????? sum DD ? ; stores sum
25
26 0057 .CODE
27 INCLUDE io.mac

1 28
1 29

Section C.3 Assembling and Linking 921

30 .486
31 0000 main PROC
32 .STARTUP
33 ; prompt user for first number
34 PutStr prompt1_msg
35 GetLint number1
36 nwln
37
38 ; prompt user for second number
39 PutStr prompt2_msg
40 GetLint number2
41 nwln
42
43 ; find sum of two 32-bit numbers
44 0040 66| A1 004Br mov EAX,number1
45 0044 66| 03 06 004Fr add EAX,number2
46 0049 66| A3 0053r mov sum,EAX
47
48 ; check for overflow
49 004D 71 12 90 90 jno no_overflow
50 PutStr error_msg
51 nwln
52 005E EB 19 90 jmp done
53
54 ; display sum
55 0061 no_overflow:
56 PutStr sum_msg
57 PutLint sum

Turbo Assembler Version 4.0 08/09/97 16:58:59 Page 2
sumprog.ASM
Assembly language program to find sum SUMPROG.ASM

58 nwln
59 0079 done:
60 .EXIT
61 007D main ENDP
62 END main

Turbo Assembler Version 4.0 08/09/97 16:58:59 Page 3
Symbol Table
Assembly language program to find sum SUMPROG.ASM

Symbol Name Type Value

??DATE Text "08/09/97"
??FILENAME Text "sumprog "
??TIME Text "16:58:59"
??VERSION Number 0400
@32BIT Text 0
@CODE Text _TEXT

922 Appendix C Assembling and Linking Pentium Assembly Language Programs

@CODESIZE Text 0
@CPU Text 1F1FH
@CURSEG Text _TEXT
@DATA Text DGROUP
@DATASIZE Text 0
@FILENAME Text SUMPROG
@INTERFACE Text 00H
@MODEL Text 2
@STACK Text DGROUP
@STARTUP Near _TEXT:0000
@WORDSIZE Text 4
DONE Near _TEXT:0079
ERROR_MSG Byte DGROUP:0034
MAIN Near _TEXT:0000
NO_OVERFLOW Near _TEXT:0061
NUMBER1 Dword DGROUP:004B
NUMBER2 Dword DGROUP:004F
PROC_GETCH Near _TEXT:---- Extern
PROC_GETINT Near _TEXT:---- Extern
PROC_GETLINT Near _TEXT:---- Extern
PROC_GETSTR Near _TEXT:---- Extern
PROC_NWLN Near _TEXT:---- Extern
PROC_PUTCH Near _TEXT:---- Extern
PROC_PUTINT Near _TEXT:---- Extern
PROC_PUTLINT Near _TEXT:---- Extern
PROC_PUTSTR Near _TEXT:---- Extern
PROMPT1_MSG Byte DGROUP:0000
PROMPT2_MSG Byte DGROUP:0015
SUM Dword DGROUP:0053
SUM_MSG Byte DGROUP:002B
TEMP Byte _TEXT:---- Extern

Macro Name

GETCH
GETINT
GETLINT
GETSTR
NWLN
PUTCH
PUTINT
PUTLINT
PUTSTR
Turbo Assembler Version 4.0 08/09/97 16:58:59 Page 4
Symbol Table
Assembly language program to find sum SUMPROG.ASM

Groups & Segments Bit Size Align Combine Class

DGROUP Group

Section C.3 Assembling and Linking 923

STACK 16 0100 Para Stack STACK
_DATA 16 0057 Word Public DATA

_TEXT 16 007D Word Public CODE

Symbol Table

The second part of the listing file consists of two tables of information. The first one lists all

the symbols used in the program in alphabetical order. These include the variables and labels

used in the program. For each symbol, the symbol table gives its type and value. For example,

number1 and number2 are words with offsets 4BH and 4FH, respectively, in the DGROUP

segment group. This segment group has _DATA and STACK segments.

The I/O procedures (PROC_GETCH, etc.) are near procedures that are defined as external

in io.mac. Procedures are discussed in Chapter 10. The object code for these procedures is

available at the time of linking (io.obj file). The macros listed are defined in io.mac.

If the fourth field xref-file on the TASM command line is specified, the listing file

would contain cross-reference information for each symbol. The cross-reference information

gives where (i.e., line number) the symbol was defined and the line numbers of all the lines in

the program on which that symbol was referenced.

Group and Segment Table

The other table gives information on groups and segments. Segment groups do not have any

attributes and are listed with the segments making up the group. For example, the DGROUP

consists of _DATA and STACK segments. Segments, however, have attributes. For each seg-

ment, five attributes are listed.

Bit: Gives the data size, which is 16 in our case.

Size: Indicates the segment size in hex. For example, the STACK segment is 100H (i.e., 256)

bytes long.

Align: Indicates the type of alignment. This refers to the memory boundaries that a segment

can begin. Some alignment types are as follows:

BYTE Segment can begin at any address;

WORD Segment can begin only at even addresses;

PARA Segment can begin only at an address

that is a multiple of 16 (para = 16 bytes).

For example, STACK is para-aligned, whereas _DATA and _TEXT are word-aligned.

Combine: Specifies how segments of the same name are combined. With the PUBLIC combine

type, identically named segments are concatenated into a larger segment. The combine type

STACK is special and can only be used for the stack.

924 Appendix C Assembling and Linking Pentium Assembly Language Programs

Class: Refers to the segment class, for example, CODE, DATA, or STACK. The linker uses this

information to order segments.

C.3.2 Linking Object Files

Linker is a program that takes one or more object programs as its input and produces an exe-

cutable program. In our example, since I/O routines are defined separately, we need two object

files—sample.obj and io.obj—to generate the executable file sample.exe. To do this,

we use the command

TLINK sample io

The syntax of TLINK is given by

TLINK [options] obj-files,exe-file,map-file,lib-file

where obj-files is a list of object files to be linked, and exe-file is the name of the

executable file. If no executable file name is given, the name of the first object file specified is

used with the .exe extension. TLINK, by default, also generates a map file. If no map file

name is given on the command line, the first object file name is used with the .map extension.

lib-file specifies library files, and we do not discuss them here.

The map file provides information on segments. The map file generated for the sample
program is shown below:

Start Stop Length Name Class

00000H 0037FH 00380H _TEXT CODE

00380H 0053FH 001C0H _DATA DATA

00540H 0063FH 00100H STACK STACK

Program entry point at 0000:0000

For each segment, it gives the starting and ending addresses along with the length of the

segment in bytes, its name, and its class. For example, the CODE segment is named _TEXT and

starts at address 0 and ends at 37FH. The length, therefore, is 380H.

If you intend to debug your program using Turbo Debugger, you should use V in order

to link the necessary symbolic information. For example, the sample.obj object program,

along with io.obj, can be linked by

TLINK /V sample io

You have to make sure that the ZI option has been used during the assembly.

C.4 Summary
Assembly language programs consist of three parts: stack, data, and code segments. These

three segments can be defined using simplified segment directives provided by both TASM and

Section C.5 Exercises 925

MASM assemblers. By means of simple examples, we have seen the structure of a typical

standalone assembly language program.

Since assembly language does not provide a convenient mechanism to do input/output, we

defined a set of I/O routines to help us in performing simple character, string, and numeric input

and output. The numeric I/O routines provided can input/output both 16-bit and 32-bit signed

integers.

To execute an assembly language program, we have to first translate it into an object pro-

gram by using an assembler. Then we have to pass this object program, along with any other

object programs needed by the program, to a linker to produce an executable program. Both

the assembler and linker generate additional files that provide information on the assembly and

link processes.

C.5 Exercises
C–1 What is the purpose of the TITLE directive?

C–2 How is the stack defined in the assembly language programs used in this book?

C–3 In the assembly language program structure used in this book, how are the data and code

parts specified?

C–4 What is meant by a “standalone” assembly language program?

C–5 What is an assembler? What is the purpose of it?

C–6 What files are generated by your assembler? What is the purpose of each of these files?

C–7 What is the function of the linker? What is the input to the linker?

C–8 Why is it necessary to define our own I/O routines in assembly language?

C–9 What is a NULL-terminated string?

C–10 Why is buffer size specification necessary in GetStr but not in PutStr?

C–11 What happens if the buffer size parameter is not specified in GetStr?

C–12 What happens if the buffer specified in PutStr does not contain a NULL-terminated

string?

C–13 What is the range of numbers that GetInt can read from the keyboard? Give an expla-

nation for the range.

C–14 Repeat the last exercise for GetLint.

C.6 Programming Exercises
C–P1 Write an assembly language program to explore the behavior of the various character and

string I/O routines. In particular, comment on the behavior of the GetStr and PutStr
routines.

C–P2 Write an assembly language program to explore the behavior of the various numeric I/O

routines. In particular, comment on the behavior of the GetInt and GetLint routines.

926 Appendix C Assembling and Linking Pentium Assembly Language Programs

C–P3 Modify the sample.asm by deliberately introducing errors into the program. Assemble

the program and see the type of errors reported by your assembler. Also, generate the

listing file and briefly explain its contents.

C–P4 Assemble the sample.asm program to generate cross-reference information. Comment

on how this information is presented by your assembler.

Appendix D

Debugging Assembly

Language Programs

Objectives
• To present some basic strategies to debug assembly language programs;

• To describe the DOS debugger DEBUG;

• To explain the basic features of the Turbo Debugger (TD);

• To provide a brief discussion of the Microsoft debugger (CodeView).

Debugging assembly language programs is more difficult and time-consuming than debugging

high-level language programs. However, the fundamental strategies that work for high-level

languages also work for assembly language programs. Section D.1 gives a discussion of these

strategies. Since you are familiar with debugging in a high-level language, this discussion is

rather brief.

The following three sections discuss three popular debuggers. Although the DOS DEBUG is

a line-oriented debugger, the other two—Turbo Debugger and CodeView—are window-oriented

and are much better. All three share some basic commands required to support debugging

assembly language programs.

Our goal in this appendix is to introduce the three debuggers briefly, as the best way to get

familiar with these debuggers is to try them. We use a simple example to explain some of the

commands of DEBUG (in Section D.2) and Turbo Debugger (in Section D.3). Since CodeView

is similar in spirit to the Turbo Debugger, we give only a brief overview of it in Section D.4.

The appendix concludes with a summary.

927

928 Appendix D Debugging Assembly Language Programs

D.1 Strategies to Debug Assembly Language Programs
Programming is a complicated task. Very few real-life programs are ever written that work

perfectly the very first time. Loosely speaking, a program can be thought of as mapping a set of

input values to a set of output values. The functionality of the mapping performed by a program

is given as the specification for the programming task. It goes without saying that when the

program is written, it should be verified to meet the specifications. In programming parlance,

this activity is referred to as testing and validating the program.

Testing a program itself is a complicated task. Typically, test cases, selected to validate the

program, should test each possible path in the program, boundary cases, and so on. During this

process, errors (“bugs”) are discovered. Once a bug is found, it is necessary to find the source

code causing the error and fix it. This process is known by its colorful name, debugging.

Debugging is not an exact science. We have to rely on our intuition and experience. How-

ever, there are tools that can help us in this process. We look at three such tools in this chapter:

DEBUG, Turbo Debugger TD, and Microsoft CodeView.

Finding bugs in a program is very much dependent on the individual program. Once an

error is detected, there are some general ways of locating the source code lines causing the

error. The basic principle that helps us in writing the source program in the first place—the di-

vide and conquer technique—is also useful in the debugging process. Structured programming

methodology facilitates debugging greatly.

A program typically consists of several modules, where each module may have several pro-

cedures. When developing a program, it is best to do incremental development. In this method-

ology, a single or a few procedures are added to the program to add some specific functionality

and test it before adding other functions to the program. In general, it is a bad idea to write the

whole program and start the testing process, unless the program is “small.” The best strategy is

to write code that has as few bugs as possible. This can be achieved by using pseudocode and

verifying the logic of the pseudocode even before we attempt to translate it into the assembly

language program. This is a good way of catching many of the logical errors and saves a lot

of debugging time. Never write an assembly language code with the pseudocode in your head!

Furthermore, don’t be in a hurry to write some assembly code that appears to work. This is

short-sighted, as you will end up spending more time in the debugging phase.

To isolate a bug, program execution should be observed in slow motion. Most debuggers

provide a command to execute programs in single-step mode. In this mode, the program ex-

ecutes one statement at a time and pauses. Then we can examine contents of registers, data

in memory, stack contents, and the like. In this mode, a procedure call is treated as a single

statement, and the entire procedure is executed before pausing the program. This is useful if

you know that the called procedure works correctly. Debuggers also provide another command

to trace even the statements of procedure calls, which is useful for testing procedures.

Often we know that some parts of the program work correctly. In this case, it is a sheer

waste of time to single-step or trace the code. What we would like is to execute this part of

the program and then stop for more careful debugging (perhaps by single-stepping). Debuggers

provide commands to set up breakpoints and to execute up to a breakpoint. Another helpful

Section D.1 Strategies to Debug Assembly Language Programs 929

feature that most debuggers provide is the watch facility. By using watches, it is possible to

monitor the state (i.e., values) of the variables in the program as the execution progresses.

In the following three sections, we discuss three debuggers and how they are useful in

debugging the program addigits.asm discussed in Chapter 9. We limit our discussion

to 16-bit segments and operands. The program used in our debugging sessions is shown in

Program D.1. This program does not use the .STARTUP and .EXIT assembler directives. As

explained in Appendix C, we use

mov AX,@DATA

mov DS,AX

in place of the .STARTUP directive and

mov AX,4C00H

int 21H

in place of the .EXIT directive.

Program D.1 An example program used to explain debugging

1: TITLE Add individual digits of a number ADDIGITS.ASM

2: COMMENT |

3: Objective: To find the sum of individual digits of

4: a given number. Shows character to binary

5: conversion of digits.

6: Input: Requests a number from keyboard.

7: | Output: Prints the sum of the individual digits.

8: DOSSEG

9: .MODEL SMALL

10: .STACK 100H

11: .DATA

12: number_prompt DB ’Please type a number (<10 digits): ’,0

13: out_msg DB ’The sum of individual digits is: ’,0

14: number DB 11 DUP (?)

15: .CODE

16: INCLUDE io.mac

17: main PROC

18: mov AX,@DATA ; initialize DS

19: mov DS,AX

20: PutStr number_prompt ; request an input number

21: GetStr number,11 ; read input number as a string

22: nwln

23: mov BX,OFFSET number ; BX := address of number

24: sub DX,DX ; DX := 0 -- DL keeps the sum

25: repeat_add:

930 Appendix D Debugging Assembly Language Programs

26: mov AL,[BX] ; move the digit to AL

27: cmp AL,0 ; if it is the NULL character

28: je done ; sum is done

29: and AL,0FH ; mask off the upper 4 bits

30: add DL,AL ; add the digit to sum

31: inc BX ; increment BX to point to next digit

32: jmp repeat_add ; and jump back

33: done:

34: PutStr out_msg

35: PutInt DX ; write sum

36: nwln

37: mov AX,4C00H ; return to DOS

38: int 21H

39: main ENDP

40: END main

D.2 DEBUG
DEBUG is invoked by

DEBUG file_name

For example, to debug the addigits program, we can use

DEBUG addigits.exe

DOS loads DEBUG into memory, which in turn loads addigits.exe. It is necessary to enter

the extension .exe, as DEBUG does not assume any extension. DEBUG displays a hyphen (-)

as a prompt. At this prompt, it can accept one of several commands. Table D.1 shows some of

the commands useful in debugging programs.

D.2.1 Display Group

U (Unassemble)

This command unassembles the next 32 bytes. The general format is

U [address] or U [range]

If no address is specified in the command, the next 32 bytes since the last U command are

unassembled. If there is no U command, the default address CS:IP is used. The address should

be specified in hex. The range can be specified either by giving a start and end address, or by

giving a start address and length in bytes. When specifying length, the prefix L should be used,

as shown in the following example:

Section D.2 DEBUG 931

Table D.1 Summary of DEBUG commands

Command Function

Display Commands:

U Unassembles next 32 bytes

U address Unassembles next 32 bytes at address

U range Unassembles the bytes in the specified range

D Displays the next 128 bytes of memory in hex and ASCII

D address Displays the next 128 bytes of memory at address

D range Displays the contents of memory in the specified range

R Displays the contents of all registers and shows the next instruction

R register Displays the contents of register and accepts hex data to update

register

E address Displays the contents of the memory location specified by address

E address value-list Copies the hex data from value-list into memory from

CS:address

Execution Commands:

T Traces (i.e., single-step mode) execution; executes one instruction

and displays the register contents and the next instruction

T count Executes next count instructions

T =address Executes the instruction at CS:address

T =address count Executes count instructions at CS:address

P Like trace but proceeds through call, loop, int

P count Proceeds through the next count statements

P =address Executes the statement at CS:address

P =address count Executes count statements at CS:address

G Executes program to completion or until a breakpoint is encoun-

tered

G bkpt-address Executes program until the breakpoint specified by bkpt-address

G =address bkpt-address Executes program until the breakpoint specified by bkpt-address

starting from address

Miscellaneous Commands:

L Reloads program after termination

Q Quits DEBUG

932 Appendix D Debugging Assembly Language Programs

U ; unassembles the next 32 bytes

U 3B ; unassembles 32 bytes from CS:3BH

U 3B 4B ; unassembles from CS:3BH to CS:4BH

U 3B L10 ; unassembles 16 (= 10H) bytes from CS:3BH

Note that in the last example, length is specified as L10, where 10H = 16D is the length.

D (Display or Dump)

This command displays the contents of the specified memory locations both in hex and ASCII.

The general format is similar to that of the U command and is given by

D [address] or D [range]

The default segment is the segment pointed by DS and the default range is 128 (i.e., 80H) bytes.

D ; displays the next 128 bytes from last display

D CS:0 ; displays 128 bytes from CS:0

D 10 17 ; displays from DS:10H to DS:17H

D 3B LB ; displays 11 (= BH) bytes from DS:3BH

E (Enter)

This command can be used to enter data. The general format is

E address or E address values

If the first format is used (i.e., with no values), it displays the contents of the addressed location.

The default segment is the data segment pointed by DS. For example,

E 12

displays the contents of DS:12H. In the second format, the list of specified values replaces the

contents of the addressed memory locations. For example,

E 46 31 32 33

changes the contents of memory locations 46H through 48H to 31H, 32H, and 33H, respectively.

We can also do the same with the following command:

E 46 ’123’

The same command can be used to replace machine code. For example,

E CS:5 8B D8

replaces the machine code by 8BD8, which represents

mov BX,AX

Section D.2 DEBUG 933

R (Register)

This command displays the contents of registers and the next instruction. The general format is

R or R register

If no register is specified, it displays the contents of all registers, including the flags, instruction

pointer, and segment registers. The flags register contents are displayed as follows:

Flag Set Clear

Overflow OV NV

Direction DN UP

Interrupt EI DI

Sign NG PL

Zero ZR NZ

Auxiliary carry AC NA

Parity PE PO

Carry CY NC

When a register name is specified in the command, it displays the contents of the register and

prompts (displays ’:’) for a replacement value. For example,

-R AX

AX 0000 ; displays the contents of AX (here 0000)

:7FFF ; prompts for a replacement value

; here we want to write 7FFFH into AX

modifies AX to 7FFFH. Simply type return to keep the register contents. We can also use this

command to modify the IP register.

D.2.2 Execution Group

T (Trace)

This command executes the program in single-step mode; after the execution, it displays the

contents of the registers and the next instruction. The general format is

T or T count or

T =address or T =address count

If a count value is specified, it traces count instructions. It displays contents of registers and the

next instruction after the execution of each instruction. If an address is specified, tracing starts

at the specified address. Here are some examples:

T =5D ; trace the instruction at CS:5DH

T 3 ; trace the next 3 instructions

T =5D 3 ; trace 3 instructions from CS:5DH

934 Appendix D Debugging Assembly Language Programs

P (Proceed)

This is similar to trace except it considers an interrupt call (int), procedure call (call), loop,

and so on, as single instructions. Normally this command is used unless we want to debug a

procedure, interrupt routine, and the like.

G (Go)

This command executes a program to a specified breakpoint. The format is

G or G bkpt-address or

G =address bkpt-address

This command is useful in setting breakpoints. We can specify up to 10 breakpoint addresses.

If the optional start address (=address) is given, execution begins from this address. This, for

example, is useful in debugging a procedure or a part of the program, without executing it from

the beginning. Some examples are given below:

G ; execute program to completion

G 31 ; execute up to CS:31H

G =31 45 ; execute from CS:31H to CS:45H

D.2.3 Miscellaneous Group

The other two commands in Table D.1 are useful for reloading the program (L) and exiting the

DEBUG (Q).

D.2.4 An Example

A sample DEBUG run on addigits.exe is shown in Program D.2. The U command on

line 2 displays the code by unassembling the first 32 bytes. A drawback with this is that there

is no symbolic information. For example,

mov AX,@DATA

is displayed as

mov AX,3F09

where 3F09 (in hex) is the data segment value. Similarly, procedure calls include the offset

values but not the procedure names. This deficiency is remedied by the other two debuggers.

Notice that the code shown here does not exactly correspond to the code of Program D.1.

The reason is that each macro call (such as PutStr, GetStr, and nwln) is expanded by

using the macro definitions in io.mac. For example, the PutStr macro call is expanded by

the four lines of code (lines 5 to 8). Using symbolic information, we can write these four lines

of code as

Section D.2 DEBUG 935

push AX

mov AX,OFFSET number_prompt

call proc_PutStr

pop AX

As discussed in Appendix C, these macros are defined in io.mac. The GetStr macro is

expanded to lines 9 to 15 and nwln to lines 16 to 18.

Now let us examine the data segment contents. In order to use the default DS register, we

have to set up this register to point to our data segment. This is done by the first two lines

of the code. One way to execute these two lines of code is to use the T command (line 20).

It makes no difference whether we use the P or T command, as there are no procedure calls

or loop instructions. Note that the trace command executes in single-step mode. Thus, after

executing each instruction, it displays the contents of the registers, status of the flags, and the

next instruction to be executed. From line 27, we can see that DS is initialized to the data

segment.

Now we can use the D command (line 29) to display the first 128 bytes starting at offset 0.

The data segment contains the two message strings

Please type a number (<10 digits):

The sum of individual digits is:

and the storage space for number starts after these two message strings at 3F09:0046. Since

we have not initialized it, the contents do not matter at this point.

Now let us execute the program until after reading an input number. That is, we set up a

breakpoint at the instruction

mov BX,0046

at offset 001FH. We can do this by using the G command on line 38. The prompt and the

input number are shown on line 39. At the breakpoint, it displays the contents of the registers,

flags, and the next instructions, as in the trace command we have seen before. Although the

G command allows us to set up breakpoints in the program, the other two symbolic debuggers

provide a much better screen-oriented user interface, as we show later in this appendix.

Now let us verify that the input has been read properly. We use the D command

D 46 LB

on line 44 to examine the contents of number. In this D command, we are not only specifying

the address (46H), but also indicating that 11 (=BH) bytes are to be displayed. Thus, we just

see the contents (11 bytes) of number (lines 45 and 46).

Let us suppose that we want to check the logic of the loop (lines 25 to 32 in Program D.1).

We can do this by executing the loop in single-step mode using the T command on line 47.

This gives us an opportunity to check the logic one instruction at a time. An interesting point is

that, on line 55, when we are using the indirect addressing mode, it displays the address and its

contents:

936 Appendix D Debugging Assembly Language Programs

DS:0046=31

At the end of the loop, DX = 1, which is what it should be for the given input.

Having checked the logic of the loop, let us run the whole loop without any interruption.

This is done by setting a breakpoint using the G command on line 80. (In this example, it is

useful to have the list file handy to know the offset values of the code at various points.) This

breakpoint is set at line 34 of Program D.1. We note that the sum in the DX register is the

correct value (2DH = 45D) for the input given in this sample run.

The rest of the DEBUG output is straightforward to follow. Notice that after the program

has terminated, we have used the L command to reload the application for another execution,

this time without any breakpoints. Finally, on line 100, we have used the Q command to exit

DEBUG.

Program D.2 A sample DEBUG session

1: A:\>debug addigits.exe
2: -U
3: 3ED1:0000 B8093F MOV AX,3F09
4: 3ED1:0003 8ED8 MOV DS,AX
5: 3ED1:0005 50 PUSH AX
6: 3ED1:0006 B80000 MOV AX,0000
7: 3ED1:0009 E85600 CALL 0062
8: 3ED1:000C 58 POP AX
9: 3ED1:000D 51 PUSH CX
10: 3ED1:000E B90B00 MOV CX,000B
11: 3ED1:0011 50 PUSH AX
12: 3ED1:0012 B84600 MOV AX,0046
13: 3ED1:0015 E88101 CALL 0199
14: 3ED1:0018 58 POP AX
15: 3ED1:0019 59 POP CX
16: 3ED1:001A 50 PUSH AX
17: 3ED1:001B E83500 CALL 0053
18: 3ED1:001E 58 POP AX
19: 3ED1:001F BB4600 MOV BX,0046
20: -T 2
21:
22: AX=3F09 BX=0000 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
23: DS=3EC1 ES=3EC1 SS=3F20 CS=3ED1 IP=0003 NV UP EI PL NZ NA PO NC
24: 3ED1:0003 8ED8 MOV DS,AX
25:
26: AX=3F09 BX=0000 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
27: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0005 NV UP EI PL NZ NA PO NC
28: 3ED1:0005 50 PUSH AX
29: -D 0
30: 3F09:0000 50 6C 65 61 73 65 20 74-79 70 65 20 61 20 6E 75 Please type a nu
31: 3F09:0010 6D 62 65 72 20 28 3C 31-30 20 64 69 67 69 74 73 mber (<10 digits
32: 3F09:0020 29 3A 20 00 54 68 65 20-73 75 6D 20 6F 66 20 69): .The sum of i
33: 3F09:0030 6E 64 69 76 69 64 75 61-6C 20 64 69 67 69 74 73 ndividual digits
34: 3F09:0040 20 69 73 3A 20 00 00 00-00 00 00 00 00 00 00 00 is:
35: 3F09:0050 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
36: 3F09:0060 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
37: 3F09:0070 00 00 00 00 00 00 00 00-00 00 00 00 00 00 00 00
38: -G 1F
39: Please type a number (<10 digits): 1234567890
40:
41: AX=3F09 BX=0000 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000

Section D.2 DEBUG 937

42: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=001F NV UP EI PL NZ NA PO NC
43: 3ED1:001F BB4600 MOV BX,0046
44: -D 46 LB
45: 3F09:0040 31 32-33 34 35 36 37 38 39 30 1234567890
46: 3F09:0050 00 .
47: -T 8
48:
49: AX=3F09 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
50: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0022 NV UP EI PL NZ NA PO NC
51: 3ED1:0022 2BD2 SUB DX,DX
52:
53: AX=3F09 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
54: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0024 NV UP EI PL ZR NA PE NC
55: 3ED1:0024 8A07 MOV AL,[BX] DS:0046=31
56:
57: AX=3F31 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
58: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0026 NV UP EI PL ZR NA PE NC
59: 3ED1:0026 3C00 CMP AL,00
60:
61: AX=3F31 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
62: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0028 NV UP EI PL NZ NA PO NC
63: 3ED1:0028 7407 JZ 0031
64:
65: AX=3F31 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
66: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=002A NV UP EI PL NZ NA PO NC
67: 3ED1:002A 240F AND AL,0F
68:
69: AX=3F01 BX=0046 CX=04EC DX=0000 SP=0100 BP=0000 SI=0000 DI=0000
70: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=002C NV UP EI PL NZ NA PO NC
71: 3ED1:002C 02D0 ADD DL,AL
72:
73: AX=3F01 BX=0046 CX=04EC DX=0001 SP=0100 BP=0000 SI=0000 DI=0000
74: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=002E NV UP EI PL NZ NA PO NC
75: 3ED1:002E 43 INC BX
76:
77: AX=3F01 BX=0047 CX=04EC DX=0001 SP=0100 BP=0000 SI=0000 DI=0000
78: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=002F NV UP EI PL NZ NA PE NC
79: 3ED1:002F EBF3 JMP 0024
80: -G 31
81:
82: AX=3F00 BX=0050 CX=04EC DX=002D SP=0100 BP=0000 SI=0000 DI=0000
83: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0031 NV UP EI PL ZR NA PE NC
84: 3ED1:0031 50 PUSH AX
85: -G45
86: The sum of individual digits is: 45
87:
88: AX=3F00 BX=0050 CX=04EC DX=002D SP=0100 BP=0000 SI=0000 DI=0000
89: DS=3F09 ES=3EC1 SS=3F20 CS=3ED1 IP=0045 NV UP EI PL NZ NA PO NC
90: 3ED1:0045 B8004C MOV AX,4C00
91: -G
92:
93: Program terminated normally
94: -L
95: -G
96: Please type a number (<10 digits): 456
97: The sum of individual digits is: 15
98:
99: Program terminated normally

100: -Q
101:
102: A:\>

938 Appendix D Debugging Assembly Language Programs

Figure D.1 TD window at the start of addigits.asm program.

D.3 Turbo Debugger TD
Turbo Debugger is a window-oriented debugger that facilitates symbolic debugging at the

source-code level. TD can be used to debug programs written in high-level languages such

as C as well as in assembly language. In this section, we briefly discuss some of the features of

TD relevant to debugging assembly language programs.

In order for TD to use symbolic information during debugging, we have to assemble our pro-

gram with the ZI option and link it with the V option. For example, to debug addigits.asm,

we use the following commands to prepare the program:

TASM /zi addigits

TLINK /v addigits io

The Turbo Debugger can then be invoked by

TD addigits

Figure D.1 shows the screen that we would see after invoking TD as indicated. The screen

consists of a menu bar (called main menu) at the top, and a quick reference help line at the

bottom. In addition, it displays two windows: a module window and a watches window. Each

window has a number associated with it. The window number appears in the upper right-hand

corner of the window. For example, the module window is window 1 and the watches window

is window 2. The active window, the module window in Figure D.1, has a double-line border

around it and inactive windows have a single-line border (e.g., see the watches window).

Section D.3 Turbo Debugger TD 939

Figure D.2 TD window after adding number to watch list.

The module window shows the source program. The arrow at the left points to the next

instruction to be executed. Since we haven’t yet run the program, the arrow points to the first

line of the main procedure in Figure D.1.

We can make an inactive window active by pressing Alt-x, where x is the window number.

For example, Alt-2 makes the watches window active.

The main menu can be activated by F10. Press carriage return to open the selected pull-

down menu. We can then use the arrow keys to navigate the menu items. Here we take a brief

look at the View and Run menu options.

The View pull-down menu provides several options to view the status of the program. Some

of the options available are listed in Table D.2.

As we indicated in Section D.1, watches are useful to monitor the state of a set of variables

as the program execution progresses. In Turbo Debugger, a variable or an expression can be

added to the watch list by using add watch in the Data menu (Ctrl-F7). Figure D.2 shows

the watches window when the variable number is added to the watch list. Notice that the TD

shows the name of the variable, its type, and contents. Now, for example, we can test the initial

part of our program by placing a breakpoint after reading the input number by GetStr. This

can be done by using an option under the Run menu, which we discuss next.

Program execution is controlled by the Run menu. Some of the options in this menu are

shown in Table D.3. Now let us execute the program until

mov BX,OFFSET number

One way is to move the cursor to this line and press F4. This execution prompts us for a number

(we have given 1,234,567,890 as input in this example execution) that is stored in variable

940 Appendix D Debugging Assembly Language Programs

Table D.2 Selected View menu options

Breakpoints Displays a list of breakpoints set in the program

Stack Displays the active procedures

Watches Displays the values of the variables and expressions in the watch list

Variables Shows the names and values of all variables accessible from current

location of the program

CPU Shows the status of the program (discussed in text)

Dump Shows the contents of a part of memory (similar to DEBUG’s Dump

command)

Register Shows the contents of all registers including the flags

Figure D.3 TD window after reading the value 1234567890 into number.

number. As shown in Figure D.3, the watches window shows that number has properly

received the input value. Breakpoints in a program can also be set by the Breakpoints
menu.

The module window is useful in debugging programs at the source-code level. This is

particularly helpful in debugging programs written in high-level languages such as C. Although

Section D.3 Turbo Debugger TD 941

Table D.3 Selected Run menu options

Run (F9) Execute program until completion or until a breakpoint is encountered

Goto cursor (F4) Execute program up to the line that the cursor is on

Trace into (F7) Execute one instruction at a time in single-step mode (similar to DEBUG

Trace command)

Step over (F8) Execute one statement at a time (a procedure call, interrupt, loop are

treated as a single statement as in the Proceed command of DEBUG)

Figure D.4 CPU window before the repeat add loop.

the source-code level of debugging is also useful in debugging assembly language programs

(e.g., we can set convenient watches to monitor the progress), the CPU window is much more

useful for low-level debugging. The remainder of the section focuses on the CPU window.

The CPU window provides a snapshot view of the program state. The CPU window after

executing the program until

mov BX,OFFSET number

is shown in Figure D.4. The window is divided into five panes. The code pane (top left pane)

shows the CS:IP, along with the machine code and source-code lines. The current instruction is

indicated by the arrow and also by highlighting the line if the code pane is active.

942 Appendix D Debugging Assembly Language Programs

Figure D.5 CPU window with Data Pane local menu.

The next pane is the register pane and shows the contents of all 16-bit registers except flags.

(We can display 32-bit registers by using an option in the local menu.) The status of flags is

shown in the top right pane (flags pane). Unlike the DEBUG, the flag values are shown as 1 or

0 to indicate whether the flag is set or cleared, respectively. Also, changes in register values and

flags are highlighted. For example, see registers AX, CX, and the carry flag.

The bottom left pane (data pane) shows the contents of the data segment. As shown in

Figure D.4, the data pane shows the contents both in hex and ASCII. The fifth pane (stack

pane) shows SS:SP and the contents of the stack. The top of the stack is indicated by an

arrow. Remember that the stack grows toward low memory addresses. Therefore, SP values

are displayed in decreasing order from top to bottom. We can use the tab key to move the cursor

from one pane to the next.

An interesting feature of TD is its context-sensitive local menus. Depending on where the

cursor is, a local pop-up menu can be activated by Alt-F10 or Ctrl-F10. Figure D.5 shows the

pop-up local menu of the data pane. For example, we can use the option

Goto...

to specify an address to change the area of a data segment memory to be displayed. If we want

to see the contents of number (whose offset is 46H), we can use this option of the local menu.

The resulting data pane is shown in Figure D.6. It shows the input number that we have given

to the program. We also see another similar sequence starting at DS:0064. This is actually the

buffer into which GetStr reads the input number first before copying it into number.

Now if we want to check the logic of the repeat_add loop, we can use Trace Into (F7)

or Step Over (F8) to single-step while monitoring the contents of the registers and flags. Since

Section D.4 CodeView 943

Figure D.6 CPU window after executing Goto... command.

there are no procedure calls or loop instructions, both F7 and F8 behave the same way for our

example program. To see the complete execution of the repeat_add loop, move the cursor

to the

push AX

instruction at CS:0031 and press F4. The resulting state is shown in Figure D.7. Now notice

that the sum in the DX register is 2DH, which is the hexadecimal equivalent of 45D.

In this brief discussion, we have glossed over numerous features available in TD. Now it is

up to you to fully utilize the help offered by TD in debugging your assembly language programs.

D.4 CodeView
Microsoft’s CodeView is similar in spirit to the Turbo Debugger. As in TD, the program should

be assembled using the ZI option and linked with the CO option. This causes the symbolic

information to be placed in the execution file.

Depending on the version of CodeView, some of the details might vary. Here we briefly

discuss some generic features.

As in TD, we can add a variable or an expression to the watch list. The values of variables

in the watch list are displayed in the watch window. The watch menu can be used to either add

or delete an expression or a variable to or from the watch list. Also, breakpoints can be set or

edited (i.e., added, deleted, etc.). Go (F5) can be used to execute from the next instruction to

the completion of the program or until a breakpoint is encountered.

944 Appendix D Debugging Assembly Language Programs

Figure D.7 CPU window after completing the repeat add loop.

Trace (F8) and step (F10) commands are also available to control program execution. These

are similar to trace into and step over commands available in Turbo Debugger.

The register window displays the contents of all registers including the flags register. The

flag values are reported using the two-letter encoding used in DEBUG (see page 933).

The viewmenu provides several options to open other windows. For example, the memory
option under this menu can be used to open the memory window and the output option

switches to the program output window.

D.5 Summary
We started this appendix with a brief discussion of the basic debugging techniques. Since

assembly language is a low-level programming language, debugging tends to be even more

tedious than debugging a program written in a high-level language. It is, therefore, imperative

to follow good programming practices in order to help debug and maintain assembly language

programs.

There are several tools available for debugging programs. We discussed three debuggers—

DEBUG, Turbo Debugger, and CodeView—in this appendix. DEBUG is a line-oriented debug-

ger, and the other two are window-oriented and offer a much better user interface. The best way

to learn to use these debuggers is by hands-on experience.

D.6 Exercises
D–1 Discuss some general techniques useful in debugging programs.

Section D.7 Programming Exercises 945

D–2 How are window-oriented debuggers such as Turbo Debugger better than line-oriented

debuggers such as DEBUG?

D–3 What is the difference between the T and P commands of DEBUG?

D–4 Discuss how breakpoints are useful in debugging programs.

D–5 We have stated that the CPU window of the Turbo Debugger is more useful in debugging

assembly language programs. Explain the reasons for this.

D.7 Programming Exercises
D–P1 Take a program from Chapter 9, and ask a friend to deliberately introduce some logical

errors into the program. Then use your debugger to locate and fix errors. Discuss the

features of your debugger that you found most useful.

D–P2 Using your debugger’s capability to modify flags, verify the conditions mentioned for

conditional jumps in Section 12.3.2 on page 500.

Appendix E

Running Pentium

Assembly Language

Programs on a

Linux System

Objectives
• To present the structure of the assembly language programs that can run on a Linux

system;

• To describe the NASM assembler;

• To give example NASM assembly language programs.

The main text presented Pentium assembly language programs that run under DOS. In this

appendix, we give details on running these programs under Linux on an Intel PC. We use the

NASM assembler to assemble the programs. We start this appendix with details on the NASM

assembler. We have developed a set of input and output macros that are very similar to the

macros used in the main text. For the most part, the programs for the DOS work with only

minor modifications dictated by the NASM syntax. As a result, we only discuss the differences

in this appendix.

947

948 Appendix E Running Pentium Assembly Language Programs on a Linux System

E.1 Introduction
NASM, which stands for netwide assembler, is a portable, free public domain, IA-32 assembler

that can generate a variety of object file formats. In this appendix, we restrict our discussion to

a Linux system running on an Intel PC.

NASM can be downloaded from several sources (see the book’s Web page for details). The

NASM manual [27] has clear instructions on how to install NASM under Linux. Here is a

summary extracted from the NASM manual:

1. Download the Linux source archive nasm-X.XX.tar.gz, where X.XX is the NASM

version number in the archive.

2. Unpack the archive into a directory, which creates a subdirectory nasm-X.XX.

3. cd to nasm-X.XX and type ./configure. This shell script will find the best C

compiler to use and set up Makefiles accordingly.

4. Type make to build the nasm and ndisasm binaries.

5. Type make install to install nasm and ndisasm in /usr/local/bin and to

install man pages.

This should install NASM on your system.

NASM can support several object file formats including the ELF (execute and link format)

format used by Linux. The assembling and linking process is similar to that we discussed in

Appendix C. For example, to assemble addigits.asm, we use

nasm -f elf addigits.asm

This generates the object file addigits.o. To generate the executable file addigits, we

have to link this file with our I/O routines. This is done by

ld -s -o addigits addigits.o io.o

Note that nasm requires the io.mac file and ld needs the io.o file. Make sure that you have

the two I/O files in your current directory. We give details about the I/O macros and routines in

the next section.

E.2 NASM Assembly Language Program Template
We have written a set of macros and I/O routines to simplify input and output. These routines

behave as do the ones we described on page 910 for the TASM and MASM assemblers. There

are two I/O files:

• io.mac file contains the macro definitions for the I/O functions. This file is included in

the assembly program (see Figure E.1);

• io.o contains the I/O routines that actually perform the operation. As described before,

the linker needs this file.

Section E.2 NASM Assembly Language Program Template 949

;TITLE brief title of program file-name

;COMMENT

; Objectives:

; Inputs:

; Outputs:

;

%include "io.mac"

section .data

(initialized data go here)

section .bss

(uninitialized data go here)

section .text

.STARTUP ; setup

. . .

. . .

(code goes here)

. . .

. . .

.EXIT ; returns control

Figure E.1 Template for the NASM assembly language programs.

We use the template shown in Figure E.1 for writing NASM assembly language programs. This

is very similar to the template used for the DOS programs (see page 908). We include the

io.mac file by using the %include directive. It is important to note that NASM is case-

sensitive.

The data part is split into two: the section .data directive is used for initialized data

and the section .bss directive for uninitialized data. The code part is identified by the

section .text directive. The .STARTUP macro handles the code for setup, and the

.EXIT macro returns control.

Notice that the data part is different from the TASM/MASM version. We can only use

the define directives (DB, DW, � � �) for initialized data. For uninitialized data, we use RESB

(reserve a byte) to reserve a byte. We can use the following directives:

RESB Reserves a byte

RESW Reserves a word

RESD Reserves a doubleword

RESQ Reserves a quadword

REST Reserves 10 bytes

in the .bss section.

950 Appendix E Running Pentium Assembly Language Programs on a Linux System

NASM uses different syntax to specify addresses. It does not support the OFFSET directive.

The variable name is treated as representing the address. Thus, the TASM/MASM statement

mov EBX,OFFSET number

is written in NASM as

mov EBX,number

The TASM/MASM statement

mov EBX,number

is written in NASM as

mov EBX,[number]

Unlike the TASM/MASM versions we discussed in the main text, NASM supports 32-bit ad-

dressing. Other differences between TASM/MASM and NASM assemblers are given in [27].

Next we give some example programs that follow the NASM syntax.

E.3 Illustrative Examples
To show that migrating TASM/MASM programs require only minor changes, we present three

examples from Part V: addigits.asm, varapara.asm, and procfib2.asm.

Example E.1 Sum of the individual digits of a number.

Program E.1 shows the NASM version of the addigits.asm program given on page 378.
The structure of the program follows the template given in Figure E.1. The data part is split into
initialized and uninitialized sections. The uninitialized section (.bss) uses the RESB directive
to reserve 11 bytes for number. The PutStr and GetStr macros retain their semantics so
there is no change on lines 20 and 21. Since NASM supports 32-bit addresses, we have to
change BX to EBX on line 23. Also, we don’t need the OFFSET directive to copy the address
of number. To be consistent, we have also changed BX to EBX on line 31.

Program E.1 Sum of the individual digits of a number

1: ; Add individual digits of a number ADDIGITS.ASM

2: ;

3: ; Objective: To find the sum of individual digits of

4: ; a given number. Shows character to binary

5: ; conversion of digits.

6: ; Input: Requests a number from keyboard.

7: ; Output: Prints the sum of the individual digits.

8:

9: %include "io.mac"

Section E.3 Illustrative Examples 951

10:

11: section .data

12: number_prompt DB ’Please type a number (<11 digits): ’,0

13: out_msg DB ’The sum of individual digits is: ’,0

14:

15: section .bss

16: number RESB 11

17:

18: section .text

19: .STARTUP

20: PutStr number_prompt ; request an input number

21: GetStr number,11 ; read input number as a string

22: nwln

23: mov EBX,number ; EBX := address of number

24: sub DX,DX ; DX := 0 -- DL keeps the sum

25: repeat_add:

26: mov AL,[EBX] ; move the digit to AL

27: cmp AL,0 ; if it is the NULL character

28: je done ; sum is done

29: and AL,0FH ; mask off the upper 4 bits

30: add DL,AL ; add the digit to sum

31: inc EBX ; increment BX to point to next digit

32: jmp repeat_add ; and jump back

33: done:

34: PutStr out_msg

35: PutInt DX ; write sum

36: nwln

37: .EXIT

Example E.2 Passing a variable number of parameters via the stack.

Program E.2 shows the NASM version of varpara.asm on page 419. Since the NASM EQU
semantics are different, we have to use %define for CRLF on line 9. We have modified the

program slightly to use EBX as an index into the stack to read the arguments. A significant

change in this program is the offset value used to read the first number. In Program 10.6, we

added 6 to BX to point to the first number (see line 61). Since NASM uses 32-bit addresses,

the call on line 33 pushes EIP and the enter on line 50 pushes EBP. Thus, the NASM version

pushes four more bytes onto the stack. Therefore, we have to add 10 (see line 56). The other

minor changes follow our decision to use EBX as the index into the stack.

952 Appendix E Running Pentium Assembly Language Programs on a Linux System

Program E.2 Passing a variable number of parameters via the stack

1: ; Variable number of parameters passed via stack VARPARA.ASM

2: ;

3: ; Objective: To show how variable number of parameters

4: ; can be passed via the stack.

5: ; Input: Requests variable number of nonzero integers.

6: ; A zero terminates the input.

7: ; Output: Outputs the sum of input numbers.

8:

9: %define CRLF 13,10 ; carriage return and line feed

10:

11: %include "io.mac"

12:

13: section .data

14: prompt_msg DB ’Please input a set of nonzero integers.’,CRLF

15: DB ’You must enter at least one integer.’,CRLF

16: DB ’Enter zero to terminate the input.’,0

17: sum_msg DB ’The sum of the input numbers is: ’,0

18:

19: section .text

20: .STARTUP

21: PutStr prompt_msg ; request input numbers

22: nwln

23: sub ECX,ECX ; CX keeps number count

24: read_number:

25: GetInt AX ; read input number

26: cmp AX,0 ; if the number is zero

27: je stop_reading ; no more numbers to read

28: push AX ; place the number on stack

29: inc CX ; increment number count

30: jmp read_number

31: stop_reading:

32: push CX ; place number count on stack

33: call variable_sum ; returns sum in AX

34: ; clear parameter space on the stack

35: inc CX ; increment CX to include count

36: add CX,CX ; CX := CX * 2 (space in bytes)

37: add SP,CX ; update SP to clear parameter

38: ; space on the stack

39: PutStr sum_msg ; display the sum

40: PutInt AX

41: nwln

42: done:

43: .EXIT

Section E.3 Illustrative Examples 953

44: ;---

45: ;This procedure receives a variable number of integers via the

46: ; stack. The last parameter pushed on the stack should be

47: ; the number of integers to be added. Sum is returned in AX.

48: ;---

49: variable_sum:

50: enter 0,0

51: push EBX ; save EBX and ECX

52: push ECX

53:

54: xor ECX,ECX

55: mov CX,[EBP+8] ; CX := # of integers to be added

56: mov EBX,10 ; EBX := pointer to first number

57: xor AX,AX ; sum := 0

58: add_loop:

59: add AX,[EBP+EBX] ; sum := sum + next number

60: add EBX,2 ; EBX points to the next integer

61: loop add_loop ; repeat count in CX

62:

63: pop ECX ; restore registers

64: pop EBX

65: leave

66: ret ; parameter space cleared by main

Example E.3 Fibonacci number computation using the stack for local variables.

In our last example, we gave the NASM version of procfib2.asm on page 425 (see Pro-
gram E.3). There are very few differences between these two programs. The main one is the
use of %define instead of EQU on lines 35 and 36.

Program E.3 Fibonacci number computation using the stack for local variables

1: ; Fibonacci numbers (stack version) PROCFIB2.ASM

2: ;

3: ; Objective: To compute Fibonacci number using the stack

4: ; for local variables.

5: ; Input: Requests a positive integer from the user.

6: ; Output: Outputs the largest Fibonacci number that

7: ; is less than or equal to the input number.

8:

9: %include "io.mac"

10:

11: section .data

12: prompt_msg DB ’Please input a positive number (>1): ’,0

13: output_msg1 DB ’The largest Fibonacci number less than ’

954 Appendix E Running Pentium Assembly Language Programs on a Linux System

14: DB ’or equal to ’,0

15: output_msg2 DB ’ is ’,0

16:

17: section .text

18: .STARTUP

19: PutStr prompt_msg ; request input number

20: GetInt DX ; DX := input number

21: call fibonacci

22: PutStr output_msg1 ; print Fibonacci number

23: PutInt DX

24: PutStr output_msg2

25: PutInt AX

26: nwln

27: done:

28: .EXIT

29:

30: ;---

31: ;Procedure fibonacci receives an integer in DX and computes

32: ; the largest Fibonacci number that is less than the input

33: ; number. The Fibonacci number is returned in AX.

34: ;---

35: %define FIB_LO word [EBP-2]

36: %define FIB_HI word [EBP-4]

37: fibonacci:

38: enter 4,0

39: push BX

40: ; FIB_LO maintains the smaller of the last two Fibonacci

41: ; numbers computed; FIB_HI maintains the larger one.

42: mov FIB_LO,1 ; initialize FIB_LO and FIB_HI to

43: mov FIB_HI,1 ; first two Fibonacci numbers

44: fib_loop:

45: mov AX,FIB_HI ; compute next Fibonacci number

46: mov BX,FIB_LO

47: add BX,AX

48: mov FIB_LO,AX

49: mov FIB_HI,BX

50: cmp BX,DX ; compare with input number in DX

51: jle fib_loop ; if not greater, find next number

52: ; AX contains the required Fibonacci number

53: pop BX

54: leave ; clear local variable space

55: ret

Section E.4 Summary 955

E.4 Summary
We presented details about the NASM assembler, which is used to assemble programs to

run under Linux on an Intel PC. There are several minor syntactical differences between the

TASM/MASM and NASM assemblers. We have made the migration simple by redefining the

I/O macros for the Linux system. As you can see from the examples presented in the last

section, we need to make only minor changes to run the programs given in Part V.

E.5 Exercises
E–1 What features of NASM do you prefer over TASM/MASM?

E–2 We have not discussed how macros are defined in NASM. Using the information in the

NASM manual [27], discuss the differences between how macros are defined in TASM/

MASM and NASM assemblers. To get an idea, you can look at io.mac files for the two

systems.

E–3 How is storage space reserved in NASM for uninitialized data?

E.6 Programming Exercises
E–P1 We have stated that NASM does not support the OFFSET directive. By defining

%idefine OFFSET

we can instruct the preprocessor to treat OFFSET as a no-op. This is useful in migrating

TASM/MASM assembly code. Verify this on a program from Part V.

E–P2 In the NASM version presented in Example E.2, we changed the logic by using EBX as

an index into the stack. In this exercise, modify the TASM/MASM version presented on

page 419 without changing the logic.

Appendix F

Digital Logic Simulators

Objectives
• To present some basic strategies to troubleshoot digital logic circuits;

• To provide an overview of four digital logic simulators.

Troubleshooting complex digital logic circuits is not a simple task. In Section F.1, we briefly

present some of the techniques and tools available to implement and troubleshoot digital cir-

cuits. The next section gives details on some digital logic simulators. Our goal is to provide an

overview of the simulators so that the reader can experiment with them. We end the appendix

with some pointers on how you can obtain the simulators.

F.1 Testing Digital Logic Circuits
Testing a digital logic circuit implies that we have to “somehow” build the circuit. A digital

circuit can be implemented in several ways. If the circuit is finalized, we can get a custom-

made IC for the circuit provided the volume justifies the overhead. Alternatively, we can design

a PCB (printed circuit board) and use off-the-shelf components by soldering these components

onto the PCB. For example, the motherboard in your PC is a PCB that has several chips soldered

onto it. However, when we are in the testing phase, we want something that is “not permanent”

so that we can make modifications to the circuit, if necessary. If you are working in a university

laboratory, it is also important to reuse some of the expensive components. For these reasons,

prototyping of digital circuits is done using solderless breadboarding.

A breadboard consists of rows of small sockets into which components and wires can be

inserted. Before the advent of logic simulators, breadboarding used to be the only way to test

your design in a lab. Even now, you may want to get your hands dirty to get a real feeling for the

components and to test the electrical characteristics. Since our goal here is to test functionality

of a digital circuit, we prefer to use logical simulators to verify our design.

957

958 Appendix F Digital Logic Simulators

Just as with debugging a program, simple mistakes can cause serious problems with digital

logic design implementations. For example, a short circuit or an open circuit can cause serious

functionality problems. In general, testing combinational circuits is much easier than testing

sequential circuits. In combinational circuits, there is no feedback to complicate things (e.g.,

as in the flip-flops we have seen in Chapter 4). In addition, there is no clock to involve timing.

Combinational circuit testing can be done by using a simple device called a logic probe. This

is a penlike tool (like your electric tester) that indicates whether the value is 0 or 1 when you

touch its metal tip to the circuit (e.g., output of a gate). Some of the logic simulators we discuss

in the next section facilitate such testing.

Sequential circuit testing is done by using logic analyzers. Logic analyzers relate the state

of various circuit points by displaying their logical level synchronized by time. Most simulators

provide logic analyzers. We show some example logic analyzer windows in the next section.

However, the best way to understand them is to use one of the simulators and explore its utility.

F.2 Digital Logic Simulators
We discuss four logic simulators: DIGSim, Digital Simulator, Multimedia Logic Simulator, and

Logikad. The first three simulators are either freely available, at least to students and educational

institutions, or cost between $10 and $20. At the end of this appendix, we give information on

where you can get them.

F.2.1 DIGSim Simulator

This is a Java-based simulator and is available in public domain. You don’t need to download

and install it; the Applet runs in your Web browser. If you have problems running it under

Explorer, switch to Netscape. The only caveat is that you cannot store your design if you use

a Web browser due to a security problem. To save your designs, you need to run this in the

Applet viewer from Sun. This may not be a simple task if you are not familiar with the Java

environment.

A sample screen shot is shown in Figure F.1. This simulator is very easy to use and takes

less time to specify your design (compared to the others we discuss next). The full-adder design

given in Figure 3.18� (page 96) can be implemented and tested within a few minutes. Its use of

point-and-click eliminates the need for reading a manual before using it.

DIGSim supports several useful devices including the following:

• Basic 2- and 3-input NAND, NOR, AND, OR gates and 2-input XOR and XNOR (equiv-

alence) gates;

• Several types of latches including the three latches we have seen in Chapter 4: SR latch,

clocked SR latch, and D latch;

• Simple flip-flops such as the D flip-flop, JK flip-flop, and T flip-flop;

• Special circuits such as shift registers, decoder, BCD-to-seven-segment decoder, and 4-bit

binary counter;

• Display devices including different types of LEDs and a seven-segment display.

Section F.2 Digital Logic Simulators 959

Figure F.1 DIGSim window showing the full-adder implementation.

Two features of DIGSim facilitate troubleshooting of digital circuits. A feature that is very

useful is its color-coded wires to indicate the status of the signal:

• Red color is used to indicate the logic 0 value;

• Green color is used to indicate the logic 1 value.

Thus, we don’t need a special logic probe to test the logical value of the signals. This is enough

to troubleshoot combinational circuits.

DIGSim also provides a logic analyzer to troubleshoot sequential circuits. As an example,

consider the 3-bit binary counter shown in Figure 4.14 on page 123. The timing diagram given

in this figure is what we expect our logic analyzer to show when we add probe points to the

clock input and three counter outputs. As you can see from Figure F.2, the counter behaves the

way it should, and the logic analyzer captures the timing information.

F.2.2 Digital Simulator

Digital Simulator is a shareware program written by Ara Knaian. It provides the basic building

blocks to implement and test digital designs. It is less flexible than the DIGSim simulator

discussed in the last section. The basic devices supported by Digital Simulator are the ones you

960 Appendix F Digital Logic Simulators

Figure F.2 DIGSim logic analyzer output for a 3-bit binary counter. Top waveform represents the clock

and the bottom three are from the three outputs of the counter.

see in Figure F.3. It provides the basic AND, OR, XOR, and NOT gates. Unlike DIGSim, it

does not support 3-input gates.

In addition, as shown in Figure F.3, Digital Simulator supports the following devices:

• An RS latch;

• D and JK flip-flops;

• A BCD-to-seven segment decoder;

• Display devices such as LEDs and seven-segment display.

Digital Simulator also provides a logic analyzer that is very similar to the DIGSim’s logic

analyzer. A snapshot of the 3-bit binary counter outputs is shown in Figure F.4.

Digital Simulator includes two memory devices:

• A �� � ROM;

• A �� � RAM.

The ROM has an output enable input. When you select this device, it will open a window for

you to enter the contents of the ROM. Unfortunately, the address and data lines are labeled as

A1 � � � A4 and D1 � � � D4, respectively. It would have been nice to see these labels start with

A0 and D0.

The RAM has two control signals: a chip select (��) input and a read/write (R/�) input.

This memory block is very similar to the one discussed in Chapter 16 on page 676. The only

difference is that we used two separate lines for the read and write control in Figure 16.9. It is

Section F.2 Digital Logic Simulators 961

Figure F.3 Digital simulator window with the full-adder circuit.

straightforward to use these devices to verify our memory designs presented in Chapter 16. The

tristate buffer comes in handy to test designs like the ones shown in Figure 16.8 on page 675.

One feature that makes it difficult to use is its inflexibility in device movement. Once a

device is placed, you cannot move it. You will find it very annoying, particularly after using

other simulators like DIGSim.

F.2.3 Multimedia Logic Simulator

The Multimedia Logic Simulator from Softronics is more sophisticated than the last two simu-

lators. In terms of the basic gates, as with the Digital Simulator, only 2-input logic gates (AND,

OR, XOR) are supported. Figure F.5 shows the simulator window along with the device palette.

The simulator window in this figure shows the full-adder circuit we have used in the other

two simulators before. It supports the following devices:

• A basic RS latch;

• An 8-to-1 multiplexer;

• An 8-bit binary counter;

• A tristate inverter.

Some interesting features of this simulator are summarized below:

962 Appendix F Digital Logic Simulators

Figure F.4 Digital Simulator logic analyzer window for the 3-bit counter. This logic analyzer is very similar

to the one provided by DIGSim.

• Provides an 8-Function 8-Bit ALU: The functions supported include addition, subtrac-

tion, multiplication, division, shifting, and comparison. The ALU has two output flags to

indicate the status of an operation: a Z (zero) flag and an overflow (V) flag. The zero flag

is similar to the Pentium zero flag. It is set to 1 if the result is zero; the Z flag is cleared

otherwise. The overflow flag is similar to the Pentium’s carry flag. It provides carry-in

and carry-out to cascade several 8-bit ALUs to build larger ALUs.

• Supports Input and Output Devices: A simple 16-key Hex keyboard is useful to give

number input to your circuits. The ASCII output can be displayed using the display

device. It is a � � �� display (8 lines with 16 characters in each line). The display

supports carriage return and backspace functions.

• Supports a ��� � � Memory Device: Unfortunately, it does not provide a �� input.

Instead, it has 8 data in lines, and 8 data out lines as in our memory design shown in

Figure 16.1 on page 668. We will have to use tristate buffers to implement a memory

block with �� input (as we did in Figure 16.8 on page 675).

This simulator provides a logic probe and a logic analyzer to facilitate troubleshooting.

F.2.4 Logikad Simulator

Logikad is available from Prentice-Hall. This simulator is different from the last three we have

discussed. It uses chips rather than logic symbols to implement the design. In this sense, it

Section F.2 Digital Logic Simulators 963

Figure F.5 Multimedia digital simulator window with the full-adder circuit.

emulates the breadboard experience. Figure F.6 shows a sample Logikad window.

The circuit in this figure implements the same full-adder we have used in the previous simu-

lators. As you can see from this figure, it mimics a typical digital laboratory’s breadboard. This

circuit uses three chips:

• 7486: contains four 2-input XOR gates;

• 7408: contains four 2-input AND gates;

• 7432: contains four 2-input OR gates.

The small circle on each chip identifies pin 1. Figure 2.8 on page 50 shows details of these

chips. To implement this circuit, we are using three chips: two of these are 50% used, and the

third one is only 25% used. We leave it as an exercise to implement the same circuit using only

two chips (see Exercise F–1).

Logikad provides several TTL chips. An example device selection window for NAND

gates is shown in Figure F.7. In general, the 7400 series TTL chips are used for commercial

systems; 5400 series chips are used for military applications as these chips can tolerate higher

temperature ranges.

964 Appendix F Digital Logic Simulators

Figure F.6 Logikad digital simulator screen shot.

Logikad has a feature that we have not seen in the other three simulators. It can be used

to simplify logical expressions with up to four variables. The Karnaugh map window for four

variables is shown in Figure F.8. We enter the truth table by clicking the function output (F

column in the figure). It accepts three inputs: 0, 1, X (don’t care). Once the truth table is

defined, clicking the “Calculate” button will produce the result. The result type can be selected

to be either sum-of-products or product-of-sums. The truth table in this figure represents the

seven-segment truth table shown on page 66. The final sum-of-products expression matches the

one derived on page 65.

Logikad also derives NAND-only implementations. The NAND button in the Karnaugh

map window generates a NAND-only implementation, as shown in Figure F.9. This NAND

implementation corresponds to the seven-segment display example.

Section F.2 Digital Logic Simulators 965

Figure F.7 Logikad device selection window for NAND gate devices.

Figure F.8 Logikad supports Karnaugh map simplification for up to four logical variables.

966 Appendix F Digital Logic Simulators

Figure F.9 Logikad’s NAND-only implementation for the seven-segment display example.

F.3 Summary
We have reviewed four digital logic simulators to test the digital circuits discussed in this book.

All four are adequate for testing combinational and sequential circuits. DIGSim is the simplest

and easiest to use. There is no download and installation involved. You can test your designs

online. It also uses a clever color-coding to give a visual indication of the logical level of each

signal in the circuit. If you are new to this area, try this simulator first.

Digital Simulator’s capabilities are somewhat similar to that of DIGSim. However, Digital

Simulator provides ROM and RAM memory support. The Multimedia Logic simulator provides

many more features than the other two simulators. Notable among these are a 16-key Hex

keyboard, an 8 � 16 ASCII display, and a 256 � 8 memory.

The last simulator is marketed by Prentice-Hall. This simulator is included because it sim-

ulates breadboarding. It uses chips rather than gates. This simulator also provides substantial

device support. The best way to learn to use these debuggers is by hands-on experience.

F.4 Web Resources
This section lists the URLs for the digital simulation software. It is possible that some of

these might have changed. If you have difficulty, use a good search engine to find their current

location.

Section F.5 Exercises 967

Iwan van Rienen’s DIGSim is available from several sources. Here is one URL that is likely to

be stable: sunsite.utk.edu/winners_circle/education/ED8N1T2I/applet.
html. If you want to save your circuit design, run DIGSim in the Applet viewer provided by

Sun. You can get this viewer from http://java.sun.com.

You can obtain the Digital Simulator from web.mit.edu/ara/www/ds.html.

The Multimedia Logic Simulator is available from www.softronics.com. In April 2001,

the beta version was available for free. Check their Web page for more details.

Logikad is available from Prentice-Hall. A student version, Logikad Lite, is also available.

Check the Prentice-Hall Web page at

www.prenticehall.ca/allbooks/ect_0132721880.html (Full version);

www.prenticehall.ca/allbooks/ect_0132628090.html (Logikad Lite).

EasySim also provides the basic gates, counters, and so on. It is available for $14.95 from

www.starnet.com.au/research/easysim/easysim.htm.

LogicWorks is available from Capilano Computing Systems Ltd. See their Web site for details:

www.capilano.com/logicworks/.The software is available from Prentice-Hall (but it

is expensive).

SuperSIM is available from www.designnotes.com/SuperSIM.htm. It comes in two

versions. The cheaper version costs about $139.

For UNIX systems, the Chipmunk system provides software tools for electronic circuit simu-

lation and schematic capture. Note that this package provides many other tools. For details,

check the Chipmunk homepage at www.pcmp.caltech.edu/chipmunk/.

F.5 Exercises
F–1 Our implementation of the full-adder shown in Figure F.6 used three chips. Show an

implementation of this circuit using only two chips: a 7400 NAND gate chip and a 7486

XOR chip.

F–2 Using your favorite digital simulator, verify that the circuit shown in Figure 3.27 on

page 104 implements the four-function ALU.

F–3 Implement the master-slave JK flip-flop shown in Figure 4.10 on page 118. Using the

logic analyzer, verify the timing diagram shown in Figure 4.10�.

F–4 Implement the 3-bit synchronous counter shown in Figure 4.19 on page 130. Using the

logic analyzer, verify the functionality of this circuit.

F–5 Implement the 3-bit counter shown in Figure 4.22 on page 133. Using the logic analyzer,

verify the functionality of this circuit.

Appendix G

SPIM Simulator

and Debugger

Objectives
• To give details about downloading and using the SPIM simulator;

• To explain the basic SPIM interface;

• To describe the SPIM debugger commands.

SPIM is a simulator to run MIPS programs. SPIM supports various platforms and can be down-

loaded from the Web. SPIM also contains a simple debugger. In this appendix, we present

details on how to download and use the SPIM simulator. We start with an introduction to the

SPIM simulator. The following section gives details about SPIM settings. These settings de-

termine how the simulator loads and runs your programs. We specify the setting you should

use in order to run the example MIPS programs given in Chapter 15. Details about loading and

running a MIPS program are discussed in the next section. This section also presents debugging

facilities provided by SPIM. We conclude the appendix with a summary.

G.1 Introduction
This appendix describes the SPIM simulator, which was developed by Professor James Larus

when he was at the Computer Science Department of the University of Wisconsin, Madison.

This simulator executes the programs written for the MIPS R2000/R3000 processors. This is a

two-in-one product: it contains a simulator to run the MIPS programs as well as a debugger.

SPIM runs on a variety of platforms including UNIX/Linux, Windows (95, 98, NT, 2000),

and DOS. In this appendix, we provide details on the Windows 98 version of SPIM called PC-

969

970 Appendix G SPIM Simulator and Debugger

Figure G.1 SPIM windows.

Spim. The SPIM simulator can be downloaded from http://www.cs.wisc.edu/˜larus/

spim.html. This page also gives information on SPIM documentation. Although SPIM is

available from this site at the time of this writing, use a good search engine to locate the URL,

if it is not available from this URL. Also, you can check this book’s homepage, which has a link

to the SPIM simulator that is updated periodically.

Figure G.1 shows the PCSpim interface. As shown in this figure, PCSpim provides a menu

bar and a toolbar at the top and a status bar at the bottom of the screen. The middle area displays

four windows, as discussed next.

• Menu Bar: The menu bar provides the following commands for the simulator operation:

– File: The File menu allows you select file operations. You can open an assembly

language source file using open... or save a log file of the current simulator state.

Section G.1 Introduction 971

In addition, you can quit PCSpim by selecting the Exit command. Of course, you

can also quit PCSpim by closing the window.

– Simulator: This menu provides several commands to run and debug a program.

We discuss these commands in Section G.3.2. This menu also allows you to select

the simulator settings. When the Settings... command is selected, it opens a

setting window to set the simulator settings, which are discussed in the next section.

– Windows: This menu allows you to control the presentation and navigation of win-

dows. For example, in Figure G.1, we have tiled windows to show the four win-

dows: Text Segment, Data Segment, Register, and Messages. In addition, you can

also elect to hide or display the toolbar and status bar. The console window pops up

when your program needs to read/write data to the terminal. It disappears after the

program has terminated. When you want to see your program’s input and output,

you can activate this window by selecting the Console window command.

– Help: This menu allows you to obtain online help on PCSpim.

• Toolbar: The toolbar provides mouse buttons to open and close a MIPS assembly lan-

guage source file, to run and insert breakpoints, and to get help.

• Window Display Section: This section displays four windows: Data Segment, Text

Segment, Messages, and Register.

– Data Segment Window: This window shows the data and stack contents of your

program. Each line consists of an address (in square brackets) and the corresponding

contents in hexadecimal notation. If a block of memory contains the same constant,

an address range is specified as shown on the first line of the Data Segment in

Figure G.1.

– Text Segment Window: This window shows the instructions from your program as

well as the system code loaded by PCSpim. The leftmost hex number in square

brackets is the address of the instruction. The second hex number is the machine in-

struction encoding of the instruction. Next to it is the instruction mnemonic, which

is a processor instruction. What you see after the semicolon is the source code line

including any comments you have placed. This display is useful for seeing how

the pseudoinstructions of the assembler are translated into the processor instruc-

tions. For example, the last line in the Text Segment of Figure G.1 shows that the

pseudoinstruction

li $vi,10

is translated as

ori $2,$0,10

– Registers: This window shows the contents of the general and floating-point regis-

ters. The contents are displayed in either decimal or hex notation, depending on the

settings used (discussed in the next section).

– Messages: This window is used by PCSpim to display error messages.

972 Appendix G SPIM Simulator and Debugger

Figure G.2 SPIM settings window.

• Status Bar: The status bar at the bottom of the PCSpim window presents three pieces of

information:

– The left area is used to give information about the menu items and toolbar buttons.

For example, when the mouse arrow is on the open file icon (first button) on the

toolbar, this area displays the “Open an assembly file” message.

– The middle area shows the current simulator settings. Simulator settings are de-

scribed in the next section.

– The right area is used to display if the Caps Lock key (CAP), Num Lock key (NUM),

and Scroll Lock key (SCRL) are latched down.

G.2 Simulator Settings
PCSpim settings can be viewed by selecting the Settings command under the Simulator
menu. This opens a setting window as shown in Figure G.2. PCSpim uses these settings to

determine how to load and run your MIPS program. An incorrect setting may cause errors. The

settings are divided into two groups: Display and Execution. The Display settings determine

whether the window positions are saved and how the contents of the registers are displayed.

When Save window positions is selected, PCSpim will remember the position of its windows

when you exit and restore them when you run PCSpim later. If you select the register dis-

Section G.3 Running and Debugging a Program 973

play option, contents of the general and floating-point registers are displayed in hexadecimal

notation. Otherwise, register contents are displayed as decimal numbers.

The Execution part of the settings shown in Figure G.2 determines how your program is

executed.

• Bare Machine: If selected, SPIM simulates a bare MIPS machine. This means that both

pseudoinstructions and additional addressing modes, which are provided by the assem-

bler, are not allowed. See Chapter 15 for details on the assembler-supported pseudoin-

structions and addressing modes. Since the example MIPS programs presented in Chap-

ter 15 use these additional features of the assembler, this option should not be selected to

run our example programs.

• Allow Pseudoinstructions: This setting determines whether the pseudoinstructions are

allowed in the source code. You should select this option as our example programs use

pseudoinstructions.

• Mapped I/O: If this setting is selected, SPIM enables the memory-mapped I/O facility.

Memory-mapped I/O is discussed in detail in Chapter 19. When this setting is selected,

you cannot use SPIM system calls, described in Section 15.3 on page 632, to read from

the terminal. Thus, this setting should not be selected to run our example programs from

Chapter 15.

• Quiet: If this setting is selected, PCSpim will print a message when an exception occurs.

• Load Trap File: Selecting this setting causes PCSpim to load the standard exception

handler and startup code. The trap handler can be selected by using the Browse button.

When loaded, the startup code in the trap file invokes the main routine. In this case,

we can label the first executable statement in our program as main. If the trap file is

not selected, PCSpim starts execution from the statement labeled start. Our example

programs are written with the assumption that the trap file is loaded (we use the main la-

bel). If you decide not to use the trap file, you have to change the label to start to run

the programs. If the trap file is loaded, PCSpim transfers control to location 0x80000080

when an exception occurs. This location must contain an exception handler.

G.3 Running and Debugging a Program

G.3.1 Loading and Running

Before executing a program, you need to load the program you want to run. This can be done

either by selecting the Open File button from the Toolbar or from the File menu. This com-

mand lets you browse for your assembly file by opening a dialog box. After opening the file,

you can issue the Run command either from the Toolbar or from the Simulator menu to

execute the program.

The Run command pops the Run window shown in Figure G.3. It automatically fills the

start address. For our example programs, you don’t have to change this value. If desired,

the command line options can be entered in this window. Command line options that you can

specify include the settings we have discussed in the last section. For example, you enter -bare

974 Appendix G SPIM Simulator and Debugger

Figure G.3 Run window.

to simulate a bare MIPS machine, -asm to simulate the virtual MIPS machine provided by the

assembler, and so on. The SPIM documentation contains a full list of acceptable command line

options. If you have set up the settings as discussed in the last section, you don’t have to enter

any command line option to run the example programs from Chapter 15.

G.3.2 Debugging

SPIM provides the standard facilities to debug programs. As discussed in Appendix D, single-

stepping and breakpoints are the two most popular techniques used to debug assembly language

programs. Once you find a problem or as part of debugging, you often need to change the values

in a register set or memory locations. As do the other debuggers discussed in Appendix D, SPIM

also provides commands to alter the value of a register or memory location. All debug com-

mands are available under the Simulator menu as shown in Figure G.4. These commands

are briefly explained next.

• Clear Registers: This command clears all registers (i.e., the values of all registers are set

to zero).

• Reinitialize: It clears all the registers and memory and restarts the simulator.

• Reload: This command reinitializes the simulator and reloads the current assembler file

for execution.

• Go: You can issue this command to run the current program. Program execution contin-

ues until a breakpoint is encountered. We have discussed the Run command before. You

can also use the F5 key to execute your program.

• Break/Continue: This can be used to toggle between break and continue. If the program

is running, execution is paused. On the other hand, if the execution is paused, it continues

execution.

• Single Step: This is the single-step command. The simulator executes one instruction

and pauses execution. You can also use the F10 key for single-stepping.

Section G.3 Running and Debugging a Program 975

Figure G.4 Debug commands available under the Simulator menu.

• Multiple Step: This is a debug command we have not discussed in Appendix D. This

is a generalization of single-stepping. In this command, you can specify the number of

instructions each step should execute. When you select this command, SPIM opens a

dialog window to get the number of instructions information.

• Breakpoints...: This command is useful to set up breakpoints. It opens the Breakpoint

dialog box shown in Figure G.5. You can add/delete breakpoints through this dialog box.

As shown in this figure, it also lists the active breakpoints. When the execution reaches a

breakpoint, execution pauses and pops a query dialog box (Figure G.6) to continue execu-

tion. Normally, you enter the address of the instruction to specify a breakpoint. However,

if the instruction has a global label, you can enter this label instead of its address.

• Set Value...: This command can be used to set the value of a register or a memory

location. It pops a window to enter the register/memory address and the value as shown in

Figure G.7. In this example, we are setting the value of the $a2 register to 7FFFF000H.

• Display Symbol Table: This command displays the simulator symbol table in the mes-

sage window.

• Settings...: This opens the Settings dialog box shown on page 972. We have dis-

cussed the simulator settings in detail in Section G.2.

When single-stepping your program, the instructions you see do not exactly correspond to your

source code for two reasons: the system might have introduced some code (e.g., the startup code

mentioned before), or because the pseudoinstructions are translated into processor instructions.

For some pseudoinstructions, there is a single processor instruction. However, other pseudoin-

structions may get translated into more than one processor instruction.

976 Appendix G SPIM Simulator and Debugger

Figure G.5 Breakpoints dialog box.

Figure G.6 Breakpoint query window.

Figure G.7 Set value dialog box.

Section G.4 Summary 977

G.4 Summary
We have introduced the MIPS simulator SPIM. SPIM is a convenient tool to experience RISC

assembly language programming. SPIM is available for a variety of platforms. It includes a

simple debugger to facilitate single-stepping and setting breakpoints. In the last section, we

have presented an overview of its debugging facilities.

G.5 Exercises
G–1 Discuss the situations where the Multiple Step command is useful in debugging

programs.

G–2 In our setup, the run command displays the execution start address as 0x00400000. Ex-

plain why.

G–3 SPIM programs can specify the starting address either by start or by main. Our

programs used the main label. Discuss the differences between these two methods of

specifying the execution start address.

G.6 Programming Exercises
G–P1 Take a program from Chapter 15, and ask a friend to deliberately introduce some logical

errors into the program. Then use the SPIM debugger to locate and fix the errors.

G–P2 Discuss your experience debugging the MIPS and Pentium assembly language programs.

Make sure to include similarities and differences between the two.

Appendix H

The SPARC Architecture

Objectives
• To discuss the 64-bit SPARC architecture;

• To describe the instruction set of SPARC processors;

• To give details about procedure invocation and parameter passing mechanisms used by

SPARC processors.

This appendix gives details about the SPARC processors. Like the Itanium and MIPS processors

discussed in Chapters 14 and 15, it is a RISC processor. After a brief introduction, we describe

the SPARC architecture in detail. We start our discussion with a description of the register

architecture in Section H.2. The following section describes its addressing modes. The SPARC

instruction set details are presented in Section H.4. Section H.5 describes how procedures

are invoked in the SPARC architecture. This section also provides information on SPARC’s

parameter passing mechanism and window management.

H.1 Introduction
The SPARC architecture was initially developed by Sun and is based on the RISC II design

from the University of California, Berkeley. SPARC stands for scalable processor architecture.

Unlike other companies, Sun was wise to make this an open standard and decided not to manu-

facture the processor itself. Sun licensed different chip manufacturers to fabricate the processor.

Since SPARC is a specification at the ISA level, manufacturers can choose to design their ver-

sion to suit the target price range and to improve efficiency. For example, implementation of

cache is completely transparent at the ISA level.

The initial SPARC specification, introduced in 1987, was a 32-bit processor. The 64-bit

SPARC version (Version 9) was introduced in 1995. In this section, we present details about

the 64-bit version. Since it is a RISC processor, it uses the load/store architecture we discussed

in Chapter 14.

979

980 Appendix H The SPARC Architecture

0

r31 i7

63

i0

i1

i2

i3

i4

i5

i6

l0

l1

l2

l3

l4

l5

l6

l7

o0

o1

o2

o3

o4

o5

o6

o7
r16

r17

r18

r19

r20

r8

r9

r10

r11

r12

r13

r14

r15

r0

r1

r2

r3

r4

r5

r6

r7

r29

r30

r21

r22

r23

r24

r25

r26

r27

r28

Hardwired to 0 g0

g1

g2

g3

g4

g5

g6

g7

0

CWP

4

xcc icc

0347

CCR

063

PC

063

nPC

global

registers

out

registers

local

registers

in

registers

Figure H.1 Register set in the SPARC V9 processor.

H.2 Registers
At any time, a user’s program sees 32 general-purpose 64-bit registers r0 through r31. These

32 registers are divided into four groups of 8 registers each, as shown in Figure H.1. Con-

ceptually, there are many similarities between the register architectures of the SPARC and the

Itanium. General-purpose registers r0 to r7 are used as the global registers. The SPARC also

maintains another set of 8 alternate global registers. The AG (alternate global) field of the pro-

cessor state (PSTATE) register determines which global register set is used. As we have seen in

Chapter 14, the Itanium also uses global registers (128 of them).

As does the Itanium processor, the SPARC uses the register windows described in Chap-

ter 14 (see page 577). A register window consists of 24 registers consisting of in, local, and

out registers. As shown in Figure H.2, the out registers of one set overlap with the in regis-

Section H.2 Registers 981

.

.

.
.
.
.

0 g0

g7

g1

r0

r7

r1

global

registers

063

.

.

.
.
.
. global

registers

alternate

063

0 g0

g7

g1

r0

r7

r1

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

r8

r15

registers
in

i0

i7

l0

l7

r16

r23

r24

r31
out

registers

o0

o7

local

registers

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

r8

r15

registers
in

i0

i7

l0

l7

r16

r23

r24

r31
out

registers

o0

o7

local

registers

.

.

.

.

.

.
.
.
.

.

.

.
.
.
.

.

.

.

local

registers

63 0

63 0

063

Window (CWP + 1)

Window (CWP)

r8

r15

registers
in

i0

i7

l0

l7

r16

r23

r24

r31
out

registers

o0

o7

Window (CWP 1)

Figure H.2 Register windows in the SPARC architecture.

ters of the adjacent set. The current window pointer (CWP) register gives the current window

information. The value of CWP can be incremented or decremented by two instructions: the

restore instruction decrements the CWP register, and the save instruction increments it.

We show details of these two instructions in Section H.5.4.

An implementation may have from 64 to 528 registers. Thus, in an implementation with the

982 Appendix H The SPARC Architecture

minimum number of 64 registers, we can have three register sets (8 global, 8 alternate global,

three sets of 16 registers each). The maximum number of registers allows for 32 register sets.

An implementation can define NWINDOWS to specify the number of windows.

Condition Code Register: This register is analogous to the flags register in the Pentium pro-

cessor, and provides two 4-bit integer condition code fields: xcc and icc. Each field consists

of four bits, as shown below:

7 6 5 4 3 2 1 0

� � �
 � � �

xcc icc

The � bit is similar to the sign flag in the Pentium. It records whether the result of the last

instruction that affects the condition codes is negative (� � �) or positive (� � �). The xcc
condition codes record status information about the result of an operation when the operands are

64 bits (the “x” stands for extended). The icc records similar information for 32-bit operands.

For example, if the result is 0000 0000 F000FFFFH, the � bit of icc is set because the 32-bit

result is a negative number. However, the 64-bit result is positive; therefore, the � bit is cleared.

The zero bit indicates whether the result is zero. As in the Pentium, � � � if the result is

zero; otherwise, � � �. The overflow bit � is similar to the Pentium’s overflow flag. It indicates

whether the result, when treated as a signed number, is within the range of 64 bits (xcc) or

32 bits (icc). The carry bit
 keeps information on whether there was a carry-out from bit

63 (xcc) or bit 31 (icc). This is similar to the carry flag in the Pentium. Because of these

similarities, we do not further elaborate on these bits. You can find more details about these

condition code bits in Section 12.1 on page 472.

H.3 Addressing Modes
The SPARC supports only the two of the three addressing modes supported by the PowerPC

and Itanium. It supports the register indirect with index and register indirect with immediate

index addressing modes.

• Register Indirect with Immediate: This addressing mode computes the effective address

as

Effective address = contents of Rx + imm13.

The base register Rx can be any general-purpose register. A 13-bit signed constant

imm13 can be specified as the displacement. This constant is sign-extended to 64 bits

and added to the Rx register.

• Register Indirect with Index: This addressing mode computes the effective address as

Effective address = contents of Rx + contents of Ry.

The base register Rx and the index register Ry can be any general-purpose registers.

Section H.3 Addressing Modes 983

There is no register indirect addressing mode. But we can emulate this addressing mode by

making the constant zero in the first addressing mode, or using r0 as the index register in the

second addressing mode. Note that r0 is hardwired to read zero.

The main reason for not providing the register indirect addressing is the inability of the

SPARC to handle 32- and 64-bit constants. As we show in the next section, SPARC instructions

use the 32-bit format. Thus, we cannot even specify 32-bit constants, as we need a few bits for

other fields such as the opcode. As we have seen in Chapter 14, the Itanium gets around this

problem by using the extended instruction format, which uses two instructions.

To specify constants in registers, the SPARC provides a special instruction, sethi (set

high), which stores a 22-bit value in the upper 22 bits of the destination register. To facilitate

constant manipulation, SPARC assemblers provide several unary operators to extract parts of a

word or extended word. These operators are as follows:

%uhi Extracts bits 63 to 42 of a 64-bit extended word (i.e., extracts the high-

order 22 bits of the upper word);

%ulo Extracts bits 41 to 32 of a 64-bit extended word (i.e., extracts the low-

order 10 bits of the upper word);

%hi Extracts bits 31 to 10 of its operand (i.e., extracts the upper 22 bits);

%lo Extracts bits 9 to 0 of its operand (i.e., extracts the lower 10 bits).

We are now ready to see how we can use the sethi instruction to load integer constants

into registers. First, let us look at 32-bit words. The instruction sequence

sethi %hi(value),Rd

or Rd,%lo(value),Rd

stores the 32-bit constant value in the Rd register. In fact, SPARC assemblers provide the

pseudoinstruction

set value,Rd

to represent this two-instruction code sequence. If the upper 22 bits are zero, set uses

or %g0,value,Rd

On the other hand, if the lower 10 bits are zero, set uses

sethi %hi(value),Rd

The setx is similar to the set instruction except that it allows a 64-bit constant. The syntax is

setx value,Rt,Rd

This instruction stores the 64-bit constant value in Rd using Rt as a temporary register. This

pseudoinstruction can be translated into a sequence of SPARC processor instructions by using

%uhi, %ulo, %hi, and %lo unary operators along with or, sethi, and sllx instructions.

The or and sllx instructions are discussed in the next section.

984 Appendix H The SPARC Architecture

H.4 Instruction Set
This section gives details about the SPARC instruction format and its instruction set. Procedure

invocation and parameter passing details are discussed in the next section.

H.4.1 Instruction Format

All SPARC instructions are 32-bits long. As in the Itanium, the SPARC instruction format uses

two opcode fields: The most significant two bits op (bits 30 and 31) identify a major operation

group and the second field, op2 or op3, specifies the actual instruction. A sample of the

instruction formats is shown in Figure H.3. The first two formats show how most instructions

that use three addresses are encoded. If an immediate value is used, the second format is used.

The i bit specifies whether one of the source operands is in a register (i = 0) or a constant

(i = 1).

The next three formats are used for sethi and conditional branch instructions. As we

have seen before, the sethi instruction moves a 22-bit constant into a register. The SPARC

supports two types of conditional branch instructions. These branch instructions are discussed

on page 989.

The final format is used for procedure calls. We can specify a 30-bit signed displacement

value as part of this instruction.

H.4.2 Data Transfer Instructions

Since the SPARC follows the load/store architecture, only load and store instructions can move

data between a register and memory. The load instruction

ldsb [address],Rd

loads the signed byte in memory at address into the Rd register. Since it is a signed byte, it

is sign-extended to 64 bits and loaded into Rd. To load signed halfword and word, use ldsh
and ldsw, respectively. The corresponding unsigned load instructions are ldub, lduh, and

lduw. These instructions zero-extend the data to 64 bits before loading into the Rd register. To

load a 64-bit extended word, use ldx.

Unlike the load instructions, store instructions do not need to be sign- or zero-extended.

Thus, we do not need separate signed and unsigned versions. The store instruction

stb Rs,[address]

stores the lower byte of rs in memory at address. To store a halfword, word, and extended

word, use sth, stw, and stx, respectively.

In addition to these load and store instructions, the SPARC provides two groups of con-

ditional data movement instructions. One group moves data if the register contents satisfy a

certain condition; the other group checks the condition codes. We briefly describe these two

groups of instructions next.

There are five instructions in the first group. We describe one instruction as the others follow

the same behavior except for the condition tested. The instruction

Section H.4 Instruction Set 985

31 1

disp19op

30

op2

25 24 22 21

conda

30 3029

Branch with prediction instructions

31 1

disp22op

30

op2

25 24 22 21

conda

30 3029

Branch instructions

20 19 18

cc
1

cc
0 p

General Format

31 0

op

30 25 2430 29

Register-immediate instructions (i = 1)

rd op3

19 18 13 1214

i

31 0

op

30 25 2430 29

Register-register instructions (i = 0)

rd op3

19 18 13 12 5 414

rs1 rs2i

imm13rs1

SETHI and Branch Format

31 1

imm22op

30

op2

25 24 22 2130 29

SETHI instruction

rd

31 1

disp30op

30 29

CALL Format

Call instructions

Figure H.3 Some sample SPARC instruction formats.

movrz Rs1,Rs2,Rd or movrz Rs1,imm10,Rd

copies the second operand (either Rs2 or imm10) if the contents of Rs1 are zero. The other

instructions in this group test conditions such as “less than zero,” and “greater than or equal to

zero” as shown in Table H.1.

The second group of move instructions tests the condition codes. The format is

986 Appendix H The SPARC Architecture

Table H.1 The SPARC’s condition-testing instructions

Mnemonic Operation Test condition

movrz Move if register zero Rs1 = 0

movrnz Move if register not zero Rs1 �� 0

movrlz Move if register less than zero Rs1 � 0

movrlez Move if register less than or equal to zero Rs1 � 0

movrgz Move if register greater than zero Rs1 � 0

movrgez Move if register greater than or equal to zero Rs1 � 0

movXX i_or_x_cc,Rs1,Rd or movXX i_or_x_cc,imm11,Rd

which moves contents of the second operand (Rs1 or imm11) to Rd if the condition XX is

satisfied. The instruction can specify whether to look at xcc or icc condition codes. The

conditions tested are the same ones used in the conditional branch instruction that we discuss

later. For this reason, we just give one example instruction to explain the format and semantics.

The move (move if equal) instruction

move i_or_x_cc,Rs1,Rd

moves contents of Rs1 to Rd if � � �. For a full list of conditions tested by these instructions,

see the conditional branch instructions in Table H.3.

H.4.3 Arithmetic Instructions

The SPARC supports the standard four types of arithmetic operations. Most arithmetic oper-

ations have two versions: one version updates the condition codes and the other does not. In

most instructions, the second operand can be a register or a signed 13-bit immediate imm13.

Add Instructions: As do the other processors we have seen in this book, SPARC provides add

instructions with and without the carry. The instruction

add Rs1,Rs2,Rd

adds contents of Rs1 and Rs2 and stores the result in the Rd register. The immediate version

of add is

add Rs1,imm13,Rd

The immediate value is sign-extended to 64 bits and added to the contents of Rs1. The add in-

struction does not update the condition codes. If you want the operation to update the condition

codes, use addcc instead of add. It updates the four integer condition codes mentioned before.

In this sense, it is similar to the add instruction in the Pentium and PowerPC processors.

If you want to add the carry bit, use addc as shown below:

Section H.4 Instruction Set 987

addc Rs1,Rs2,Rd

addccc Rs1,Rs2,Rd

These instructions add the �

 carry bit. As usual, the second operand can be a signed 13-bit

immediate value. This instruction is similar to the adc Pentium instruction.

Subtract Instructions: The SPARC provides four subtract instructions corresponding to the

four add instructions: sub, subcc, subc, and subccc. The last two subtract instructions

subtract the �

 carry bit. The format of these instructions is similar to that of the add instruc-

tions. The instruction

sub Rs1,Rs2,Rd

stores the result of Rs1�Rs2 in the destination register Rd.

Multiplication Instructions: Unlike the other processors we have seen, the SPARC provides a

single multiplication instruction for both signed and unsigned multiplication. The multiplication

instruction

mulx Rs1,Rs2,Rd

multiplies two 64-bit values in Rs1 and Rs2 and places the 64-bit result in Rd. Strictly speak-

ing, multiplying two 64-bit values can result in a 128-bit result. This instruction, however,

provides only a 64-bit result. The input operands, obviously, should be restricted to get a valid

result. The SPARC-V8, which is a 32-bit processor, has two multiply instructions—one for the

signed numbers and the other for unsigned numbers—as in the other processors. The multipli-

cation instructions do not modify any condition codes.

Division Instructions: Two division instructions are available: udivx for unsigned numbers

and sdivx for signed numbers. These instructions divide two 64-bit numbers and produce a

64-bit quotient. The format is

udivx Rs1,Rs2,Rd

sdivx Rs1,Rs2,Rd

These instructions place the result of Rs1�Rs2 in the destination register Rd. As with the mul-

tiplication instructions, these instructions do not modify any of the condition codes. However,

these instructions generate divide-by-zero exceptions. There is no remainder computed. As we

have seen before, the PowerPC also does not provide the remainder. However, we can easily

compute the remainder as shown on page 586.

H.4.4 Logical Instructions

The three basic logical operations—and, or, and xor—are supported. These perform the

bitwise logical operations. The instruction

988 Appendix H The SPARC Architecture

and Rs1,Rs2,Rd

performs the bitwise AND operation (Rs1 AND Rs2) and stores the result in Rd.

The SPARC provides three additional logical operations: andn, orn, and xnor. The

andn and orn operations negate the second operand before applying the specified logical

operation. The xnor is similar to the equivalence (equ) instruction of the PowerPC. It is

equivalent to a NOT operation followed by an XOR operation.

If you want to update the condition codes, use the cc versions of these instructions. As

before, the second operand can be a 13-bit signed constant.

H.4.5 Shift Instructions

Two types of shift instructions are provided: 32- and 64-bit versions. The 64-bit versions use

the suffix “x.” For example, sll is the 32-bit left-shift instruction, whereas sllx is the 64-bit

version. As in the Pentium and other processors, both left- and right-shifts are supported. The

instruction

sll Rs1,Rs2,Rd

left-shifts the lower 32 bits of Rs1 by the shift count specified by Rs2 and places the result in

Rd. Note that only the least significant 5 bits of Rs2 are taken as the shift count.

The 64-bit version

sllx Rs1,Rs2,Rd

left-shifts the 64 bits of Rs1. The least significant 6 bits of Rs2 are taken as the shift count.

For all shift instructions, the second operand can also be a constant specifying the shift

count. The format is

sll Rs1,count,Rd

The count is 5 bits long for 32-bit instructions and 6 bits long for the 64-bit versions.

Use srl and srlx for logical right-shift and sra and srax for arithmetic right-shift. For

a discussion of the difference between the logical and arithmetic right-shifts, see our discussion

in Section 9.6.5 on page 357. Unlike the Pentium, no rotate instructions are available.

H.4.6 Compare Instructions

The SPARC does not provide any compare instructions. However, SPARC assemblers provide

a compare pseudoinstruction. The compare instruction

cmp Rs1,Rs2 or cmp Rs1,imm13

is implemented using the subcc instruction as

subcc Rs1,Rs2 or subcc Rs1,imm13

Section H.4 Instruction Set 989

Table H.2 The SPARC’s test-and-jump branch instructions

Mnemonic Operation Test condition

brz Branch on register zero Rs1 = 0

brlz Branch on register less than zero Rs1 � 0

brlez Branch on register less than or equal to zero Rs1 � 0

brnz Branch on register not zero Rs1 �� 0

brgz Branch on register greater than zero Rs1 � 0

brgez Branch on register greater than or equal to zero Rs1 � 0

H.4.7 Branch Instructions

The SPARC provides test-and-jump as well as set-then-jump types of branch instructions. The

first group has six branch instructions. The simplest of these is shown below:

brz Rs1,target

This instruction jumps to the specified target if the contents of Rs1 are equal to zero. This

transfer is achieved by updating the nPC register with the target address. When comparing,

the values are treated as signed integers. The branch instructions are summarized in Table H.2.

The set-then-jump branch instructions check the icc or xcc condition codes. The syntax

is

bxxx i_or_x_cc,target

The xxx identifies the branch condition. The first operand specifies whether the icc or xcc
condition codes should be used. The target address is specified as in the other branch instruc-

tions. Table H.3 shows the branch instructions in this group.

It is a good time to talk about branch delay slots used by most RISC processors. Consider

the following C program fragment:

i = 10;

x = 0;

while (i >= 0)

x = x + 35; /* loop body */

x = 2*x;

This code is translated into the following assembly language version:

100: add %g0,#11,%i0 ; � � �� (� is in i0)

104: xor %i1,%i1,%i1 ; � � � (� is in i1)

108: brz %g0,test ; jump to test

top:

990 Appendix H The SPARC Architecture

Table H.3 SPARC’s set-then-jump branch instructions

Mnemonic Operation Test condition

ba Branch always 1 (always true)

bn Branch never 0 (always false)

bne Branch on not equal NOT (Z)

be Branch on equal Z

bg Branch on greater NOT(Z OR (N XOR V))

ble Branch on less or equal Z OR (N XOR V)

bge Branch on greater or equal NOT (N XOR V)

bl Branch on less Z OR (N XOR V)

bgu Branch on greater unsigned NOT (C OR Z)

bleu Branch on less or equal unsigned C OR Z

bcc Branch on carry clear (greater than or equal, unsigned) NOT C

bcs Branch on carry set (less than, unsigned) C

bpos Branch on positive NOT N

bneg Branch on negative N

bvc Branch on overflow clear NOT V

bvs Branch on overflow set V

112: add %i1,#35,%i1 ; � � �� ��

test:

116: sub %i0,#1,%i0 ; � � �� �

120: brgez %i0,top ; jump if � � �

124: add %i1,%i1,%i1 ; � � � � �

We use registers i0 and i1 for variables � and �. We should have used the local registers for this

purpose but l0 and l1 make for confusing reading as l and 1 look very similar in our font. The

first column gives the memory address of each instruction, assuming that the first instruction

is located at address 100. The third instruction at address 108 is essentially an unconditional

branch as the g0 register is hardwired to zero. The while loop condition is tested by the other

conditional branch instruction at address 120. The last instruction uses addition to multiply x
by 2.

Table H.4 shows how this assembly code is executed. We give the contents of PC and nPC

along with the instruction that is currently being executed and the one that is being fetched. You

can see from this execution table that the code is not executed as intended. The two deviations

are as follows:

Section H.4 Instruction Set 991

Table H.4 A branch execution example

PC nPC Executing Fetching

100 104 add %g0,#11,%i0 xor %i1,%i1,%i1

104 108 xor %i1,%i1,%i1 brz %g0,test

108 112 brz %g0,test add %i1,#35,%i1

112 116 add %i1,#35,%i1 sub %i0,#1,%i0

116 120 sub %i0,#1,%i0 brgez %i0,top

120 124 brgez %i0,top add %i1,%i1,%i1

124 128 add %i1,%i1,%i1 � � �

1. The loop body instruction (at address 112, which adds constant 35 to x) is executed even

before testing the loop condition.

2. The final instruction (at address 124), which should have been executed once, is executed

during each iteration.

These two problems are caused by the execution of the instruction following the branch in-

struction. The reason is that, by the time the processor decodes the branch instruction, the next

instruction has already been fetched. As we have seen in Chapter 8, we can improve efficiency

by executing this instruction. The instruction slot after a branch is called the delay slot. Delay

slots, however, require program modifications.

One simple solution to our problem is to do nothing (i.e., no operation) in the delay slot. We

can correct our code to include a nop (no operation) instruction after each branch instruction,

as shown below:

100: add %g0,#11,%i0 ; � � �� (� is in i0)

104: xor %i1,%i1,%i1 ; � � � (� is in i1)

108: brz %g0,test ; jump to test

112: nop ; fill delay slot with a nop

top:

116: add %i1,#35,%i1 ; � � �� ��

test:

120: sub %i0,#1,%i0 ; � � �� �

124: brgez %i0,top ; jump if � � �

128: nop ; another delay slot with a nop

132: add %i1,%i1,%i1 ; � � � � �

Even though we solved the problem, we defeated the purpose of the delay slot. The nop
unnecessarily consumes processor cycles. This overhead can be substantial if the loop count is

992 Appendix H The SPARC Architecture

large. Since branch instructions typically occur about 20% of the time, we would be wasting a

lot of processor cycles executing nop instructions.

We can avoid using the nops if we could move the instruction before the branch to after

the branch instruction. In our code we could apply this strategy to the unconditional branch

instruction brz. However, we cannot move the sub instruction after the conditional branch

instruction brgez due to the dependence on i0 register. The resulting code is shown below:

100: add %g0,#11,%i0 ; � � �� (� is in i0)

104: brz %g0,test ; jump to test

108: xor %i1,%i1,%i1 ; � � � (� is in i1)

top:

112: add %i1,#35,%i1 ; � � �� ��

test:

116: sub %i0,#1,%i0 ; � � �� �

120: brgez %i0,top ; jump if � � �

124: nop ; another delay slot with a nop

128: add %i1,%i1,%i1 ; � � � � �

This is not a great improvement because we still have the main nop instruction in the loop body.

We could improve this code further by noticing that the add and sub instructions at addresses

112 and 116 can be interchanged. Then we could move the add instruction after the brgz
branch instruction, as shown below:

100: add %g0,#11,%i0 ; � � �� (� is in i0)

104: brz %g0,test ; jump to test

108: xor %i1,%i1,%i1 ; � � � (� is in i1)

test:

112: sub %i0,#1,%i0 ; � � �� �

116: brgez %i0,test ; jump if � � �

120: add %i1,#35,%i1 ; � � �� ��

124: add %i1,%i1,%i1 ; � � � � �

Although we eliminated the nop, we have a slight semantic problem. That is, the add in-

struction at address 120 is executed one more time than needed. We don’t want to execute this

instruction if the branch at 116 is not taken. We have no problem in executing this instruction

when the branch is taken. Since this requirement is very common, the branch instruction can

optionally specify whether the delay slot should be executed when the branch is not taken. Note

that the delay slot instruction is always executed when a branch is taken. In the SPARC, we can

append “,a” to the branch mnemonic to specify that the delay slot instruction should not be

executed when the branch is not taken. The correct code is shown below:

100: add %g0,#11,%i0 ; � � �� (� is in i0)

104: brz %g0,test ; jump to test

Section H.5 Procedures and Parameter Passing 993

108: xor %i1,%i1,%i1 ; � � � (� is in i1)

test:

112: sub %i0,#1,%i0 ; � � �� �

116: brgez,a %i0,test ; jump if � � �

120: add %i1,#35,%i1 ; � � �� ��

124: add %i1,%i1,%i1 ; � � � � �

Note that the specification of “,a” does not change the behavior when the branch is taken; in

this case, the delay slot instruction is always executed. But specifying “,a” annuls the delay

slot instruction only when the branch is not taken.

As in the Itanium, the SPARC allows providing a hint to the hardware as to whether the

branch is likely to be taken. To convey this information, append “pt” for branch taken hint or

“pn” for branch not taken hint. The default is branch taken. Thus brgez,a,pt is equivalent

to brgez,a. If you want to give the branch not taken hint, use brgez,a,pn instead. If you

skipped the Itanium details presented in Chapter 14, at least read Section 8.4.2 for details on

branch prediction strategies and their impact on performance.

H.5 Procedures and Parameter Passing
This section presents details about procedure invocation, parameter passing, and register win-

dow management.

H.5.1 Procedure Instructions

Procedures in the SPARC can be invoked either by the call or jmpl instruction. The call

instruction is similar to that supported by other processors we have discussed. It takes a label

identifying the called procedure. The format is

call procName

As shown in Figure H.3, the called procedure’s displacement is expressed as a 30-bit signed

number. This displacement is PC-relative. The SPARC requires procedures to be word-aligned

(i.e., the procedure address is a multiple of 4). It multiplies the 30-bit displacement value by 4

and adds to the contents of PC to get the procedure address. As in the branch instructions, the

call is also delayed. Thus, before the procedure is invoked, the instruction in the delay slot is

executed. This delayed execution is achieved by placing the target address in nPC.

To facilitate return from a procedure, the call instruction stores the PC value (i.e., address

of the call instruction itself) in o7 (really r15). The following summarizes the actions taken

by the call instruction:

nPC = PC + 4*30-bit displacement

r15 = PC

The call instruction allows only direct addressing. The jmpl instruction allows more

flexibility. It allows indirect procedure calls (as in the Pentium) as well as the specification of a

32-bit target address. The format is

994 Appendix H The SPARC Architecture

jmpl address,register

The target address can be specified in either of the two addressing modes allowed by the

SPARC. It jumps to the 32-bit address given by address and leaves the current PC value,

which is the address of the jmpl instruction itself, in register. To call a procedure indi-

rectly, use

jmpl register,%r15

This causes transfer of control to the address in register and leaves the return address in

r15 as in the call instruction.

We can also use the jmpl instruction to return from a procedure. For example, the instruc-

tion

jmpl %r15+8,%g0

adds 8 to the contents of r15 and delay jumps to that address. The current PC address is written

to g0, which means it is ignored. We add 8 to the return address in r15 because r15 points to

the call/jmpl instruction that called the procedure. Also, we have to skip the following delay-

slot instruction. Assemblers typically provide a ret pseudoinstruction, which is translated into

this particular jmpl instruction.

The SPARC also provides a return instruction that takes a return address as an operand. The

format is

return address

For example, instead of the assembler-provided ret instruction, we can also use

return %r15+8

SPARC assemblers provide two pseudoinstructions (also called synthetic instructions) to facil-

itate return from procedures. The first return instruction

ret is implemented as jmpl %i7+8,%g0

There is a special return instruction retl to return from a leaf procedure. A leaf procedure is

a procedure that does not call any other procedure. The

retl is implemented as jmpl %o7+8,%g0

We show an example use of these instructions later.

H.5.2 Parameter Passing

By convention, the first six arguments are passed in the out registers. The remaining argu-

ments, if any, are passed via the stack. Recall that the caller’s eight out registers become the

callee’s in registers. The following summarizes the usage of these registers:

Section H.5 Procedures and Parameter Passing 995

Caller Callee Usage

%o0 %i0 First argument

%o1 %i1 Second argument

%o2 %i2 Third argument

%o3 %i3 Fourth argument

%o4 %i4 Fifth argument

%o5 %i5 Sixth argument

%o6 %i6 Stack pointer/frame pointer

%o7 %i7 Return address � 8

The o6 is referred to as the stack pointer and can be accessed by its sp alias. The i6 is

referred to as the frame pointer by the callee and we can use the alias fp to access it.

We can return up to six values via the registers as shown below:

Caller Callee Usage

%o0 %i0 First return value

%o1 %i1 Second return value

%o2 %i2 Third return value

%o3 %i3 Fourth return value

%o4 %i4 Fifth return value

%o5 %i5 Sixth return value

As with the parameter passing, we have to use the stack to return the remaining return values.

H.5.3 Stack Implementation

We briefly describe the SPARC stack implementation. For more details on the stack, see our

discussion in Chapter 10. As in the Pentium, the stack grows downward (i.e., from a higher

memory address to a lower address). However, there are no explicit stack push and pop instruc-

tions. Instead, these instructions can be synthesized by manipulating the stack pointer sp. For

example, to push or pop the contents of i0, we can use the following code:

push operation pop operation

sub %sp,4,%sp add %sp,4,%sp

st %i0,[%sp] ld [%sp],%i0

As in the Pentium, to allocate an � -byte stack frame, we can use

sub %sp,�,%sp

996 Appendix H The SPARC Architecture

W7

W5

W3

W1

INs

INs

INs

INs

LOCALs

LOCALs

LOCALs

LOCALs

LOCALs OUTs

OUTs

OUTs

OUTs

OUTs
INs

INs

INs

INs

LOCALs

OUTs

OUTs

LOCALs

LOCALs

OUTs

CWP = 0

restore

W0

W2

W4

W6

save

Figure H.4 The register windows are organized as a circular buffer.

H.5.4 Window Management

SPARC processors can have up to 32 register windows. The number of windows available on

a specific implementation is given by NWINDOWS. Note that NWINDOWS can range from

3 to 32. As noted, the current window pointer (CWP) points to the current register set. These

window sets are organized as a circular buffer (see Figure H.4). Thus, the CWP arithmetic can

be done modulo NWINDOWS.

With each procedure call, a new register window is assigned. This is done by the save
instruction. This instruction can also allocate space on the stack for the stack frame. The save
instruction

save %sp,��,%sp
slides the register window by incrementing CWP (mod NWINDOWS) and allocates � bytes

of stack space. If no errors occur, save acts as the add instruction does. Thus, by specifying

sp and a negative � value, it allocates � bytes of stack space. As in the add instruction, the

second operand can also be a register.

The restore instruction restores the register window saved by the last save instruction.

Its format is similar to that of the save. It also performs addition on its operands as does the

save instruction. A trivial restore pseudoinstruction is defined as

restore %g0,%g0,%g0

Section H.5 Procedures and Parameter Passing 997

A typical procedure looks like

proc-name:

save %sp,��,%sp
. . .

procedure body

. . .

ret

restore

Note that the restore instruction is executed in the delay slot. Since the restore does

not add � to sp, you might be wondering about how the stack allocation is released. To

understand this, we should look at the way the save instruction performs the add operation on

its operands. For this add operation, save uses the old window for the two source operands

and stores the result in the new window. In our example, it adds �� to the sp value from

the previous window and stores the result in the new window’s sp register. Thus, when we

restore the previous window, we automatically see the previous sp value.

A leaf procedure does not use a new register window. It uses the registers from the caller’s

window. A typical leaf procedure looks like

proc-name:

. . .

procedure body

. . .

retl /* use retl, not ret */

What happens if the save instruction cannot get a new window of registers? For this

reason, the stack frame maintains space for the in, local, and six arguments. In addition, there is

a “hidden parameter” to return a structure pointer. Thus, a minimum of (16 + 1 + 6) * 8 = 184

bytes of stack frame is needed. Additional space may be needed for storing temporaries, more

arguments, and so on, as shown in Figure H.5.

We give an example procedure to illustrate how these instructions are used. We use the

following C code consisting of three procedures:

. . .

i = condSum (1, 2, 3, 4)

. . .

int condSum(int a, int b, int c, int d)

{

int t1;

t1 = a;

998 Appendix H The SPARC Architecture

temporaries, etc.

Space for local variables,

Space for remaining

arguments (7, 8, . . .)

LOCAL registers

(16 extended words)

Space for saved IN and

%sp

%fp

%sp + 128

%sp + 136

%sp + 184

Minimum

stack

frame

Argument 6

Argument 5

Argument 4

Argument 3

Argument 2

Argument 1

‘‘Hidden’’ parameter

%fp offset

Previous stack frame

Figure H.5 SPARC’s stack frame.

if (a < b)

t1 = b;

return(sum(t1,c,d));

}

int sum(int x, int y, int z)

{

return(x+y+z);

}

The corresponding SPARC assembly code is shown in three procedures. In the main pro-

cedure, the four arguments of condSum are moved to the first four out registers: o0 through

o3.

. . .

mov 1,%o0 ; first argument

mov 2,%o1 ; second argument

mov 3,%o2 ; third argument

call condSum

mov 4,%o3 ; fourth argument in delay slot

Section H.5 Procedures and Parameter Passing 999

; condSum returns result in %o0. When condSum returns,

; the following instruction is executed

mov %o0,%l0 ; return result moved to %l0

. . .

Since the call is a delayed instruction, we use the delay slot to move the fourth argument to

o3. Note that the condSum call should return to the instruction

mov %o0,%l0

This is the reason for adding 8 to the return address. This procedure returns the sum in the o0
register. The above mov instruction copies this value to the l0 local register.

The first instruction in the condSum procedure is the save instruction. As we have dis-

cussed, it allocates a new register window by incrementing CWP. We also allocate 184 bytes of

stack frame, which is the minimum size. The next four instructions select the minimum of the

first two arguments. Note that the out registers of the previous window are referred to as in
registers in the current window. We move the three arguments to out registers to pass them on

to the sum procedure. When sum returns the total, this value is moved from o0 to i0 so that

the result is available in o0 in the main procedure.

;*********** condSum procedure **********

condSum:

save %sp,-184,%sp; allocate min. stack frame

mov %i0, %o0

cmp %i1, %i0 ; if %i1 is less/equal,

ble skip ; skip the following mov

mov %i1, %o0

skip:

mov %i2, %o1 ; second argument

call sum

mov %i3, %o2 ; third argument in delay slot

mov %o0, %i0 ; move the result returned by sum to %o0

ret

restore ; trivial restore in delay slot of ret

;******* end of condSum procedure *******

The sum procedure is a leaf procedure as it does not call any other procedure. We can

optimize a leaf procedure by not requesting a new window; instead it uses the registers from

the caller’s window. Thus, there is no need for the save and restore instructions. The

only instruction that needs special care is the return: we have to use retl rather than the ret
instruction.

1000 Appendix H The SPARC Architecture

;*********** sum procedure ***********

sum:

add %o0, %o1, %o0 ; first addition

retl ; leaf procedure, use retl

add %o0, %o2, %o0 ; final add in delay slot

; result returned in %o0

;******* end of sum procedure ********

H.6 Summary
We have briefly presented the architecture and programming of SPARC processors. The

SPARC’s register window mechanism is similar to that of the Itanium processor discussed in

Chapter 14. Note that the SPARC specification preceded the design of the Itanium. A notable

difference is that it is a specification at the ISA level that is available to chip manufacturers,

which means several implementations are possible. For example, an implementation can choose

to have a number of register windows between 3 and 32. There are also several instructions that

have implementation-defined semantics. If you are interested in more details, several reference

documents are available at the SPARC Web site.

H.7 Web Resources
Full specifications and other reference material on the SPARC architecture are available form

www.sparc.org. Sun also maintains information on their SPARC processors at www.sun.
com/microelectronics/sparc.

H.8 Exercises
H–1 Discuss the similarities and differences between the register architectures of the SPARC

and Itanium.

H–2 Unlike the Itanium and MIPS processors, the SPARC does not provide the register indi-

rect addressing mode. Explain how we can emulate this addressing mode in the SPARC.

H–3 Discuss the need for the operators like %uhi and %ulo.

H–4 The SPARC does not provide rotate instructions as does the Pentium. Write a SPARC

code fragment to rotate the contents of register i1 right by one bit position.

H–5 Write a code fragment that implements the pseudoinstruction setx given on page 983.

Appendix I

Pentium Instruction Set

Objectives
• To describe the Pentium instruction format;

• To present selected Pentium instructions.

Instruction format and encoding encompass a variety of factors: addressing modes, number of

operands, number of registers, sources of operands, and so on. Instructions can be of fixed

length or variable length. The Pentium uses variable-length instructions. The instruction length

is varied to accommodate the complexity of the instruction. Section I.1 discusses the instruc-

tion format of the Pentium processor. A subset of the Pentium instruction set is presented in

Section I.2.

I.1 Pentium Instruction Format
The Pentium uses variable-length instructions. Instruction length can range between 1 and 16

bytes. The instruction format of the Pentium is shown in Figure I.1. The next two subsections

discuss the instruction format in detail.

I.1.1 Instruction Prefixes

There are four instruction prefixes, as shown in Figure I.1a. These prefixes can appear in any

order. All four prefixes are optional. When a prefix is present, it takes a byte.

• Instruction Prefixes: Instruction prefixes such as rep were discussed in Chapter 12. This

group of prefixes consists of rep, repe/repz, repne/repnz, and lock. The three

repeat prefixes were discussed in detail in Chapter 12. The lock prefix is useful in

multiprocessor systems to ensure exclusive use of shared memory.

• Segment Override Prefixes: These prefixes are used to override the default segment asso-

ciation. For example, DS is the default segment for accessing data. We can override this

1001

1002 Appendix I Pentium Instruction Set

2 1 0345672 1 034567

Segment

override

Operand-size

prefixprefix

Address-sizeInstruction

prefix

Mod Reg/Opcode R/M

1 or 2 0 or 1 0 or 1 0, 1, 2, or 4 0, 1, 2, or 4

Bits

SS Index Base

Number of bytes

(b) General instruction format

0 or 1 0 or 1 0 or 1 0 or 1Number of bytes

(a) Optional instruction prefixes

Opcode Mod-R/M SIB Displacement Immediate

Figure I.1 Pentium instruction format.

by using a segment prefix. We saw an example of this in Chapter 10 (see Program 10.6

on page 419). The following segment override prefixes are available: CS, SS, DS, ES,

FS, and GS. Chapter 9 gives details on segment override prefixes (see page 337).

• Address-Size Override Prefix: This prefix is useful in overriding the default address size.

As discussed on page 267, the D bit indicates the default address and operand size. This

prefix is used to switch between 16- and 32-bit addresses.

• Operand-Size Override Prefix: The use of this prefix allows us to switch from the default

operand size to the other. For example, in the 16-bit operand mode, we can use a 32-bit

register by prefixing the instruction with the operand-size override prefix. Chapter 11

gives details on the operand- and address-size override prefixes (see page 437).

I.1.2 General Instruction Format

The general instruction format shown in Figure I.1� consists of five fields.

• Opcode: This field can be one or two bytes long. This is the only field that must be present

in every instruction. For example, the opcode for the popa instruction is 61H, and takes

only one byte. On the other hand, the opcode for the shld instruction takes two bytes

(the opcode is 0FA4H). The opcode field also contains other smaller encoding fields.

These fields include register encoding, direction of operation (to or from memory), size

Section I.1 Pentium Instruction Format 1003

of displacement, and whether the immediate data must be sign-extended. For example,

the instructions

push AX

push CX

push DX

push BX

are encoded as 50H, 51H, 52H, and 53H, respectively. Each instruction takes only one

byte that includes the operation code (push) as well as the register encoding (AX, CX,

DX, or BX).

• Mod R/M: This field along with the SIB byte provides addressing information. The Mod

R/M byte consists of three fields.

– Mod: This field (two bits) along with the R/M field (three bits) specifies one of 32

possible choices: eight registers and 24 indexing modes.

– Reg/Opcode: This field (three bits) specifies either a register number or three more

bits of opcode information. The first byte of the instruction determines the meaning

of this field.

– R/M: This field (three bits) either specifies a register as the location of the operand

or forms part of the addressing-mode encoding along with the Mod field.

• SIB: The based-indexed and scaled-indexed modes of 32-bit addressing require this byte.

Certain encodings of the Mod R/M byte indicate the presence of the SIB byte. The SIB

byte consists of three fields, as shown in Figure I.1. The SS field (two bits) specifies the

scale factor (1, 2, 4, or 8). The index and base fields (three bits each) specify the index

and base registers, respectively.

• Displacement: For instructions that need a displacement, this field provides the required

value. When present, it is an 8-, 16-, or 32-bit signed integer. For example,

jg SHORT done

pop BX

done:

generates the code 7F 01 for the jg conditional jump instruction. The opcode for jg is

7FH and the displacement is 01 because the pop instruction encoding takes only a single

byte.

• Immediate: The immediate field is present in those instructions that specify an immediate

operand. When present, it is an 8-, 16-, or 32-bit operand. For example,

mov AX,256

is encoded as B8 0100. Note that the first byte B8 not only identifies the instruction as

mov but also specifies the destination register AX (by the least significant three bits of

the opcode byte). The Pentium uses the following encoding for the 16-bit registers:

1004 Appendix I Pentium Instruction Set

AX = 0 SP = 4

CX = 1 BP = 5

DX = 2 SI = 6

BX = 3 DI = 7.

The last two bytes represent the immediate value 256, which is equal to 100H. If we

change the register from AX to BX, the opcode byte changes from B8 to BB.

I.2 Selected Pentium Instructions
This section gives selected Pentium instructions in alphabetical order. For each instruction, the

instruction mnemonic, flags affected, format, and a description are given. For a more detailed

discussion, please refer to the Pentium Processor Family Developer’s Manual—Volume 3: Ar-

chitecture and Programming Manual. Although most of the components are self-explanatory,

the flags section requires some explanation regarding the notation used. An instruction can af-

fect a flag bit in one of several ways. We use the following notation to represent the effect of an

instruction on a flag bit.

0 — Cleared;

1 — Set;

– — Unchanged;

M — Updated according to the result;

* — Undefined.

adc — Add with carry
C O Z S P A

M M M M M M

Format:

adc dest,src
Description:

Performs integer addition of src and dest with the carry flag. The result

(dest + src + CF) is assigned to dest. Clock cycles: 1 to 3.

add — Add without carry
C O Z S P A

M M M M M M

Format:

add dest,src
Description:

Performs integer addition of src and dest. The result (dest + src) is assigned to

dest. Clock cycles: 1 to 3.

Section I.2 Selected Pentium Instructions 1005

and — Logical bitwise and
C O Z S P A

0 0 M M M *
Format:

and dest,src
Description:

Performs logical bitwise and operation. The result src and dest is stored in dest.

Clock cycles: 1 to 3

bsf — Bit scan forward
C O Z S P A

* * M * * *
Format:

bsf dest,src
Description:

Scans the bits in src starting with the least significant bit. The ZF flag is set if all bits

are 0; otherwise, ZF is cleared and the dest register is loaded with the bit index of

the first set bit. Note that dest and src both must be either 16- or 32-bit operands.

Although the src operand can be either in a register or memory, dest must be a

register. Clock cycles: 6 to 35 for 16-bit operands and 6 to 43 for 32-bit operands.

bsr — Bit scan reverse
C O Z S P A

* * M * * *
Format:

bsr dest,src
Description:

Scans the bits in src starting with the most significant bit. The ZF flag is set if all bits

are 0; otherwise, ZF is cleared, and the dest register is loaded with the bit index of

the first set bit when scanning src in the reverse direction. Note that dest and src
both must be either 16- or 32-bit operands. Although the src operand can be either

in a register or memory, dest must be a register. Clock cycles: 7 to 40 for 16-bit

operands and 7 to 72 for 32-bit operands.

1006 Appendix I Pentium Instruction Set

bswap — Byte swap
C O Z S P A

– – – – – –

Format:

bswap src

Description:
Reverses the byte order of a 32-bit register src. This effectively converts a value from

little-endian to big-endian and vice versa. Note that src must be a 32-bit register.

Result is undefined if a 16-bit register is used. Clock cycles: 1.

bt — Bit test
C O Z S P A

M – – – – –

Format:

bt src1,src2
Description:

The value of the bit in src1, whose position is indicated by src2, is saved in the

carry flag. The first operand src1 can be a 16- or 32-bit value that is either in a

register or memory. The second operand src2 can be a 16- or 32-bit value located in

a register or an 8-bit immediate value. Clock cycles: 4 to 9.

btc — Bit test and complement
C O Z S P A

M – – – – –

Format:

btc src1,src2
Description:

The value of the bit in src1, whose position is indicated by src2, is saved in the

carry flag and then the bit in src1 is complemented. The first operand src1 can be

a 16- or 32-bit value that is either in a register or memory. The second operand src2
can be a 16- or 32-bit value located in a register or an 8-bit immediate value. Clock

cycles: 7 to 13.

Section I.2 Selected Pentium Instructions 1007

btr — Bit test and reset
C O Z S P A

M – – – – –

Format:

btr src1,src2
Description:

The value of the bit in src1, whose position is indicated by src2, is saved in the

carry flag and then the bit in src1 is reset (i.e., cleared). The first operand src1 can

be a 16- or 32-bit value that is either in a register or memory. The second operand

src2 can be a 16- or 32-bit value located in a register or an 8-bit immediate value.

Clock cycles: 7 to 13.

bts — Bit test and set
C O Z S P A

M – – – – –

Format:

bts src1,src2
Description:

The value of the bit in src1, whose position is indicated by src2, is saved in the

carry flag and then the bit in src1 is set (i.e., stores 1). The first operand src1 can be

a 16- or 32-bit value that is either in a register or memory. The second operand src2
can be a 16- or 32-bit value located in a register or an 8-bit immediate value. Clock

cycles: 7 to 13.

call — Call procedure
C O Z S P A

– – – – – –

Format:

call dest
Description:

The call instruction causes the procedure in the operand to be executed. There is

a variety of call types. We indicated that the flags are not affected by call. This

is true only if there is no task switch. For more details on the call instruction, see

Chapter 10. For details on other forms of call, see the Pentium data book. Clock

cycles: vary depending on the type of call.

1008 Appendix I Pentium Instruction Set

cbw — Convert byte to word
C O Z S P A

– – – – – –

Format:

cbw
Description:

Converts the signed byte in AL to a signed word in AX by copying the sign bit of AL

(the most significant bit) to all bits of AH. Clock cycles: 3.

cdq — Convert doubleword to quadword
C O Z S P A

– – – – – –

Format:

cdq

Description:
Converts the signed doubleword in EAX to a signed quadword in EDX:EAX by copy-

ing the sign bit of EAX (the most significant bit) to all bits of EDX. Clock cycles: 2.

clc — Clear carry flag
C O Z S P A

0 – – – – –

Format:

clc
Description:

Clears the carry flag. Clock cycles: 2.

cld — Clear direction flag
C O Z S P A

– – – – – –

Format:

cld
Description:

Clears the direction flag. Clock cycles: 2.

Section I.2 Selected Pentium Instructions 1009

cli — Clear interrupt flag
C O Z S P A

– – – – – –

Format:

cli
Description:

Clears the interrupt flag. Note that maskable interrupts are disabled when the interrupt

flag is cleared. Clock cycles: 7.

cmc — Complement carry flag
C O Z S P A

M – – – – –

Format:

cmc

Description:

Complements the carry flag. Clock cycles: 2.

cmp — Compare two operands
C O Z S P A

M M M M M M

Format:

cmp dest,src

Description:
Compares the two operands specified by performing dest � src. However, the

result of this subtraction is not stored (unlike the sub instruction) but only the flags are

updated to reflect the result of the subtract operation. This instruction is typically used

in conjunction with conditional jumps. If an operand greater than 1 byte is compared to

an immediate byte, the byte value is first sign-extended. Clock cycles: 1 if no memory

operand is involved; 2 if one of the operands is in memory.

1010 Appendix I Pentium Instruction Set

cmps — Compare string operands
C O Z S P A

M M M M M M

Format:
cmps dest,src
cmpsb
cmpsw
cmpsd

Description:
Compares the byte, word, or doubleword pointed by the source index register (SI or

ESI) with an operand of equal size pointed by the destination index register (DI or

EDI). If the address size is 16 bits, SI and DI registers are used; ESI and EDI regis-

ters are used for 32-bit addresses. The comparison is done by subtracting the operand

pointed by the DI or EDI register from that by the SI or ESI register. That is, the cmps
instructions performs either [SI] � [DI] or [ESI] � [EDI]. The result is not stored but

used to update the flags, as in the cmp instruction. After the comparison, both source

and destination index registers are automatically updated. Whether these two registers

are incremented or decremented depends on the direction flag (DF). The registers are

incremented if DF is 0 (see the cld instruction to clear the direction flag); if the DF

is 1, both index registers are decremented (see the std instruction to set the direction

flag). The two registers are incremented or decremented by 1 for byte comparisons, 2

for word comparisons, and 4 for doubleword comparisons.

Note that the specification of the operands in cmps is not really required as the two

operands are assumed to be pointed by the index registers. The cmpsb, cmpsw, and

cmpsd are synonyms for the byte, word, and doubleword cmps instructions, respec-

tively.

The repeat prefix instructions (i.e., rep, repe, or repne) can precede the cmps in-

structions for array or string comparisons. See the rep instruction for details. Clock

cycles: 5.

cwd — Convert word to doubleword
C O Z S P A

– – – – – –

Format:

cwd
Description:

Converts the signed word in AX to a signed doubleword in DX:AX by copying the sign

bit of AX (the most significant bit) to all bits of DX. In fact, cdq and this instruction

use the same opcode (99H). Which one is executed depends on the default operand

size. If the operand size is 16 bits, cwd is performed; cdq is performed for 32-bit

operands. Clock cycles: 2.

Section I.2 Selected Pentium Instructions 1011

cwde — Convert word to doubleword
C O Z S P A

– – – – – –

Format:

cwde
Description:

Converts the signed word in AX to a signed doubleword in EAX by copying the sign

bit of AX (the most significant bit) to all bits of the upper word of EAX. In fact,

cbw and cwde are the same instructions (i.e., share the same opcode of 98H). The

action performed depends on the operand size. If the operand size is 16 bits, cbw is

performed; cwde is performed for 32-bit operands. Clock cycles: 3.

dec — Decrement by 1
C O Z S P A

– M M M M M

Format:

dec dest
Description:

The dec instruction decrements the dest operand by 1. The carry flag is not affected.

Clock cycles: 1 if dest is a register; 3 if dest is in memory.

div — Unsigned divide
C O Z S P A

* * * * * *
Format:

div divisor
Description:

The div instruction performs unsigned division. The divisor can be an 8-, 16-, or

32-bit operand, located either in a register or in memory. The dividend is assumed to

be in AX (for byte divisor), DX:AX (for word divisor), or EDX:EAX (for doubleword

divisor). The quotient is stored in AL, AX, or EAX for 8-, 16-, and 32-bit divisors,

respectively. The remainder is stored in AH, DX, or EDX for 8-, 16-, and 32-bit

divisors, respectively. It generates interrupt 0 if the result cannot fit the quotient register

(AL, AX, or EAX), or if the divisor is zero. See Chapter 12 for details. Clock cycles:

17 for an 8-bit divisor, 25 for a 16-bit divisor, and 41 for a 32-bit divisor.

1012 Appendix I Pentium Instruction Set

enter — Create procedure stack frame
C O Z S P A

* * * * * *
Format:

enter bytes,level

Description:
The enter instruction creates stack frames for procedures. The first operand bytes,

which is a 16-bit immediate value, specifies the number of bytes of local storage space

allocated for the procedure. The second operand level gives the nesting level of the

procedure. The nesting level, which can range from 0 to 31, determines the number of

stack frame pointers copied into the new stack frame. More details on this instruction

are in Chapter 10 (see pages 407 and 424). Clock cycles: 11 for level = 0, 15 for

level = 1, and 15 + 2*level for higher levels.

hlt — Halt
C O Z S P A

– – – – – –

Format:

hlt
Description:

This instruction halts instruction execution indefinitely. An interrupt or a reset will

enable instruction execution. Clock cycles:�.

idiv — Signed divide
C O Z S P A

* * * * * *
Format:

idiv divisor
Description:

Similar to div instruction except that idiv performs signed division. The divisor

can be an 8-, 16-, or 32-bit operand, located either in a register or in memory. The

dividend is assumed to be in AX (for byte divisor), DX:AX (for word divisor), or

EDX:EAX (for doubleword divisor). The quotient is stored in AL, AX, or EAX for 8-,

16-, and 32-bit divisors, respectively. The remainder is stored in AH, DX, or EDX for

8-, 16-, and 32-bit divisors, respectively. It generates interrupt 0 if the result cannot fit

the quotient register (AL, AX, or EAX), or if the divisor is zero. See Chapter 12 for

details. Clock cycles: 22 for an 8-bit divisor, 30 for a 16-bit divisor, and 46 for a 32-bit

divisor.

Section I.2 Selected Pentium Instructions 1013

imul — Signed multiplication
C O Z S P A

M M * * * *
Format:

imul src
imul dest,src
imul dest,src,constant

Description:
This instruction performs signed multiplication. The number of operands for imul
can be between one and three, depending on the format used. In the one-operand

format, the other operand is assumed to be in the AL, AX, or EAX register depending

on whether the src operand is 8-, 16-, or 32-bits long, respectively. The src operand

can be either in a register or in memory. The result, which is twice as long as the src
operand, is placed in AX, DX:AX, or EDX:EAX for 8-, 16-, or 32-bit src operands,

respectively. In the other two forms, the result is of the same length as the input

operands.

The two-operand format specifies both operands required for multiplication. In this

case, src and dest both must be either 16- or 32-bit operands. Although src can

be either in a register or memory, dest must be a register.

In the three-operand format, a constant can be specified as an immediate operand. The

result (src � constant) is stored in dest. As in the two-operand format, the

dest operand must be a register. The src can be either in a register or memory. The

immediate constant can be an 8-, 16-, or 32-bit value. For additional restrictions, refer

to the Pentium data book. Clock cycles: 10 (11 if the one-operand format is used with

either 8- or 16-bit operands).

in — Input from a port
C O Z S P A

– – – – – –

Format:
in dest,port
in dest,DX

Description:
This instruction has two formats. In both formats, dest must be in the AL, AX, or

EAX register. In the first format, it reads a byte, word, or doubleword from port into

the AL, AX, or EAX register, respectively. Note that port is an 8-bit immediate value.

This format is restrictive in the sense that only the first 256 ports can be accessed. The

other format is more flexible and allows access to the complete I/O space (i.e., any port

between 0 and 65,535). In this format, the port number is assumed to be in the DX

register. Clock cycles: varies; see Pentium data book.

1014 Appendix I Pentium Instruction Set

inc — Increment by 1
C O Z S P A

– M M M M M

Format:

inc dest
Description:

The inc instruction increments the dest operand by 1. The carry flag is not affected.

Clock cycles: 1 if dest is a register; 3 if dest is in memory.

ins — Input from a port to string
C O Z S P A

– – – – – –

Format:
insb
insw
insd

Description:
This instruction transfers 8-, 16-, or 32-bit data from the input port specified in the DX

register to a location in memory pointed by ES:(E)DI. The DI index register is used

if the address size is 16 bits and the EDI index register for 32-bit addresses. Unlike

the in instruction, the ins instruction does not allow the specification of the port

number as an immediate value. After the data transfer, the index register is updated

automatically. The index register is incremented if DF is 0; it is decremented if DF is

1. The index register is incremented or decremented by 1, 2, or 4 for byte, word, or

doubleword operands, respectively. The repeat prefix can be used along with the ins
instruction to transfer a block of data (the number of data transfers is indicated by the

CX register; see the rep instruction for details). Clock cycles: varies; see Pentium

data book.

int — Interrupt
C O Z S P A

– – – – – –

Format:

int interrupt-type
Description:

The int instruction calls an interrupt service routine or handler associated with

interrupt-type. The interrupt-type is an immediate 8-bit operand. This

value is used as an index into the interrupt descriptor table (IDT). See Chapter 20 for

details on the interrupt invocation mechanism. Clock cycles: varies; see Pentium data

book.

Section I.2 Selected Pentium Instructions 1015

into — Interrupt on overflow
C O Z S P A

– – – – – –

Format:

into
Description:

The into instruction is a conditional software interrupt identical to int 4 except

that the int is implicit and the interrupt handler is invoked conditionally only when

the overflow flag is set. Clock cycles: varies; see Pentium data book.

iret — Interrupt return
C O Z S P A

M M M M M M

Format:
iret
iretd

Description:
The iret instruction returns control from an interrupt handler. In real address mode,

it loads the instruction pointer and the flags register with values from the stack and

resumes the interrupted routine. Both iret and iretd are synonymous (and use the

opcode CFH). The operand size in effect determines whether the 16- or 32-bit instruc-

tion pointer (IP or EIP) and flags (FLAGS or EFLAGS) are be used. See Chapter 20

for more details. This instruction affects all flags as the flags register is popped from

stack. Clock cycles: varies; see Pentium data book.

1016 Appendix I Pentium Instruction Set

jcc — Jump if condition cc is satisfied
C O Z S P A

– – – – – –

Format:

jcc target
Description:

The jcc instruction alters program execution by transferring control conditionally to

the target location in the same segment. The target operand is a relative offset

(relative to the instruction following the conditional jump instruction). The relative off-

set can be a signed 8-, 16-, or 32-bit value. Most efficient instruction encoding results

if 8-bit offsets are used. With 8-bit offsets, the target should be within �128 to +127

of the first byte of the next instruction. For 16- and 32-bit offsets, the corresponding

values are ��� to �
���� and �

�� to �
����, respectively. When the target is in another

segment, test for the opposite condition, and use the unconditional jmp instruction,

as explained in Chapter 9. See Chapter 12 for details on the various conditions tested

such as ja, jbe, and so on. The jcxz instruction tests the contents of the CX or

ECX register and jumps to the target location only if (E)CX = 0. The default operand

size determines whether CX or ECX is used for comparison. Clock cycles: 1 for all

conditional jumps (except jcxz, which takes 5 or 6 cycles).

jmp — Unconditional jump
C O Z S P A

– – – – – –

Format:

jmp target
Description:

The jmp instruction alters program execution by transferring control unconditionally

to the target location. This instruction allows jumps to another segment. In direct

jumps, the target operand is a relative offset (relative to the instruction following

the jmp instruction). The relative offset can be an 8-, 16-, or 32-bit value as in the

conditional jump instruction. In addition, the relative offset can be specified indirectly

via a register or memory location. See Chapter 12 for an example. For other forms of

the jmp instruction, see the Pentium data book. Note: Flags are not affected unless

there is a task switch, in which case all flags are affected. Clock cycles: 1 for direct

jumps; 2 for indirect jumps (more clock cycles for other types of jumps).

Section I.2 Selected Pentium Instructions 1017

lahf — Load flags into AH register
C O Z S P A

– – – – – –

Format:

lahf
Description:

The lahf instruction loads the AH register with the low byte of the flags register. AH

:= SF, ZF, *, AF, *, PF, *, CF where * represents indeterminate value. Clock cycles: 2.

lds/les/lfs/lgs/lss — Load full pointer
C O Z S P A

– – – – – –

Format:
lds dest,src
les dest,src
lfs dest,src
lgs dest,src
lss dest,src

Description:
These instructions read a full pointer from memory (given by the src operand) and

loads corresponding segment register (e.g., DS register for the lds instruction, ES

register for the les instruction, etc.) and the dest register. The dest operand must

be a 16- or 32-bit register. The first two or four bytes (depending on whether the dest
is a 16- or 32-bit register) at the effective address given by the src operand are loaded

into the dest register and the next two bytes into the corresponding segment register.

Clock cycles: 4 (except lss).

lea — Load effective address
C O Z S P A

– – – – – –

Format:

lea dest,src
Description:

The lea instruction computes the effective address of a memory operand given by

src and stores it in the dest register. The dest must be either a 16- or 32-bit

register. If the dest register is a 16-bit register and the address size is 32, only the

lower 16 bits are stored. On the other hand, if a 32-bit register is specified when the

address size is 16 bits, the effective address is zero-extended to 32 bits. Clock cycles:

1.

1018 Appendix I Pentium Instruction Set

leave — Exit a procedure
C O Z S P A

– – – – – –

Format:

leave
Description:

The leave instruction reverses the actions of the enter instruction. It copies (E)BP

to (E)SP to release any stack space used for local variables. The old frame pointer is

popped from the stack into the (E)BP register. More details on this instruction are in

Chapter 10 (see page 408). Clock cycles: 3.

lods — Load string operand
C O Z S P A

– – – – – –

Format:
lodsb
lodsw
lodsd

Description:
The lods instruction loads the AL, AX, or EAX register with the memory byte, word,

or doubleword at the location pointed by DS:SI or DS:ESI. The address size attribute

determines whether the SI or ESI register is used. The lodsw and loadsd instruc-

tions share the same opcode (ADH). The operand size is used to load either a word

or doubleword. After loading, the source index register is updated automatically. The

index register is incremented if DF is 0; it is decremented if DF is 1. The index register

is incremented or decremented by 1, 2, or 4 for byte, word, or doubleword operands,

respectively. The rep prefix can be used with this instruction but is not useful as

explained in Chapter 12. This instruction is typically used in a loop (see the loop
instruction). Clock cycles: 2.

Section I.2 Selected Pentium Instructions 1019

loop/loope/loopne — Loop control
C O Z S P A

– – – – – –

Format:
loop target
loope/loopz target
loopne/loopnz target

Description:
The loop instruction decrements the count register (CX if the address size attribute

is 16 and ECX if it is 32) and jumps to target if the count register is not zero. This

instruction decrements the (E)CX register without changing any flags. The operand

target is a relative 8-bit offset (i.e., the target must be in the range �128 to +127

bytes).

The loope instruction is similar to loop except that it also checks the ZF value to

jump to the target. That is, control is transferred to target if, after decrementing

the (E)CX register, the count register is not zero and ZF = 1. loopz is a synonym for

the loope instruction.

The loopne instruction is similar to loope except that it transfers control to

target if ZF is 0 (instead of 1 as in the loope instruction). See Chapter 9 for

more details on these instructions. Clock cycles: 5 or 6 for loop and 7 or 8 for the

other two.

Note that the unconditional loop instruction takes longer to execute than a function-

ally equivalent two-instruction sequence that decrements the (E)CX register and jumps

conditionally.

mov — Copy data
C O Z S P A

– – – – – –

Format:

mov dest,src
Description:

Copies data from src to dest. Clock cycles: 1 for most mov instructions except

when copying into a segment register, which takes more clock cycles.

1020 Appendix I Pentium Instruction Set

movs — Copy string data
C O Z S P A

– – – – – –

Format:
movs dest,src
movsb
movsw
movsd

Description:
Copies the byte, word, or doubleword pointed by the source index register (SI or ESI)

to the byte, word, or doubleword pointed by the destination index register (DI or EDI).

If the address size is 16 bits, SI and DI registers are used; ESI and EDI registers are

used for 32-bit addresses. The default segment for the source is DS and ES for the

destination. The segment override prefix can be used only for the source operand.

After the move, both source and destination index registers are automatically updated

as in the cmps instruction.

The rep prefix instruction can precede the movs instruction for block movement of

data. See the rep instruction for details. Clock cycles: 4.

movsx — Copy with sign extension
C O Z S P A

– – – – – –

Format:
movsx reg16,src8
movsx reg32,src8
movsx reg32,src16

Description:
Copies the sign-extended source operand src8/src16 into the destination

reg16/reg32. The destination can be either a 16- or 32-bit register only. The

source can be a register, memory byte, or word operand. Note that reg16 and reg32
represent a 16- and 32-bit register, respectively. Similarly, src8 and src16 represent

a byte and word operand, respectively. Clock cycles: 3.

movzx — Copy with zero extension
C O Z S P A

– – – – – –

Format:
movzx reg16,src8
movzx reg32,src8
movzx reg32,src16

Description:
Similar to movsx instruction except movzx copies the zero-extended source operand

into destination. Clock cycles: 3.

Section I.2 Selected Pentium Instructions 1021

mul — Unsigned multiplication
C O Z S P A

M M * * * *
Format:

mul AL,src8
mul AX,src16
mul EAX,src32

Description:
Performs unsigned multiplication of two 8-, 16-, or 32-bit operands. Only one of the

operands need be specified; the other operand, matching in size, is assumed to be in

the AL, AX, or EAX register.

• For 8-bit multiplication, the result is in the AX register. CF and OF are

cleared if AH is zero; otherwise, they are set.

• For 16-bit multiplication, the result is in the DX:AX register pair. The

higher-order 16 bits are in DX. CF and OF are cleared if DX is zero;

otherwise, they are set.

• For 32-bit multiplication, the result is in the EDX:EAX register pair.

The higher-order 32 bits are in EDX. CF and OF are cleared if EDX is

zero; otherwise, they are set.

Clock cycles: 11 for 8- or 16-bit operands and 10 for 32-bit operands.

neg — Negate sign (2’s complement)
C O Z S P A

M M M M M M

Format:

neg operand

Description:
Performs 2’s complement negation (sign reversal) of the operand specified. The

operand specified can be 8, 16, or 32 bits in size and can be located in a register or

memory. The operand is subtracted from zero and the result is stored back in the

operand. The CF flag is set for nonzero result; cleared otherwise. Other flags are

set according to the result. Clock cycles: 1 for register operands and 3 for memory

operands.

1022 Appendix I Pentium Instruction Set

nop — No operation
C O Z S P A

– – – – – –

Format:

nop

Description:
Performs no operation. Interestingly, the nop instruction is an alias for the xchg
(E)AX,(E)AX instruction. Clock cycles: 1.

not — Logical bitwise not
C O Z S P A

– – – – – –

Format:

not operand

Description:
Performs 1’s complement bitwise not operation (a 1 becomes 0 and vice versa). Clock

cycles: 1 for register operands and 3 for memory operands.

or — Logical bitwise or
C O Z S P A

0 0 M M M *
Format:

or dest,src
Description:

Performs bitwise or operation. The result (dest or src) is stored in dest. Clock

cycles: 1 for register and immediate operands and 3 if a memory operand is involved.

out — Output to a port
C O Z S P A

– – – – – –

Format:
out port,src
out DX,src

Description:
As does the in instruction, this instruction has two formats. In both formats, the src
operand must be in the AL, AX, or EAX register. In the first format, it outputs a byte,

word, or doubleword from src to the I/O port specified by the first operand port.

Note that port is an 8-bit immediate value. This format limits access to the first 256

I/O ports in the I/O space. The other format is more general and allows access to the

full I/O space (i.e., any port between 0 and 65,535). In this format, the port number is

assumed to be in the DX register. Clock cycles: varies; see Pentium data book.

Section I.2 Selected Pentium Instructions 1023

outs — Output from a string to a port
C O Z S P A

– – – – – –

Format:
outsb
outsw
outsd

Description:
This instruction transfers 8-, 16-, or 32-bit data from a string (pointed by the source

index register) to the output port specified in the DX register. Similar to the ins
instruction, it uses the SI index register for 16-bit addresses and the ESI register if the

address size is 32. The (E)SI register is automatically updated after the transfer of a

data item. The index register is incremented if DF is 0; it is decremented if DF is

1. The index register is incremented or decremented by 1, 2, or 4 for byte, word, or

doubleword operands, respectively. The repeat prefix can be used with outs for block

transfer of data. Clock cycles: varies; see Pentium data book.

pop — Pop a word from the stack
C O Z S P A

– – – – – –

Format:

pop dest

Description:
Pops a word or doubleword from the top of the stack. If the address size attribute is 16

bits, SS:SP is used as the top of the stack pointer; otherwise, SS:ESP is used. dest
can be a register or memory operand. In addition, it can also be a segment register

DS, ES, SS, FS, or GS (e.g., pop DS). The stack pointer is incremented by 2 (if the

operand size is 16 bits) or 4 (if the operand size is 32 bits). Note that pop CS is not

allowed. This can be done only indirectly by the ret instruction. Clock cycles: 1 if

dest is a general register; 3 if dest is a segment register or memory operand.

1024 Appendix I Pentium Instruction Set

popa — Pop all general registers
C O Z S P A

– – – – – –

Format:
popa
popad

Description:
Pops all eight 16-bit (popa) or 32-bit (popad) general registers from the top of the

stack. The popa loads the registers in the order DI, SI, and BP, discards the next two

bytes (to skip loading into SP), then BX, DX, CX, and AX. That is, DI is popped first

and AX last. The popad instruction follows the same order on the 32-bit registers.

Clock cycles: 5.

popf — Pop flags register
C O Z S P A

M M M M M M

Format:
popf
popfd

Description:
Pops the 16-bit (popf) or 32-bit (popfd) flags register (FLAGS or EFLAGS) from

the top of the stack. Bits 16 (VM flag) and 17 (RF flag) of the EFLAGS register are

not affected by this instruction. Clock cycles: 6 in the real mode and 4 in the protected

mode.

push — Push a word onto the stack
C O Z S P A

– – – – – –

Format:

push src

Description:
Pushes a word or doubleword onto the top of the stack. If the address size attribute is

16 bits, SS:SP is used as the top of the stack pointer; otherwise, SS:ESP is used. src
can be (i) a register, (ii) a memory operand, (iii) a segment register (CS, SS, DS, ES,

FS, or GS), or (iv) an immediate byte, word, or doubleword operand. The stack pointer

is decremented by 2 (if the operand size is 16 bits) or 4 (if the operand size is 32 bits).

The push ESP instruction pushes the ESP register value before it is decremented by

the push instruction. On the other hand, push SP pushes the decremented SP value

onto the stack. Clock cycles: 1 (except when the operand is in memory, in which case

it takes 2 clock cycles).

Section I.2 Selected Pentium Instructions 1025

pusha — Push all general registers
C O Z S P A

– – – – – –

Format:
pusha
pushad

Description:
Pushes all eight 16-bit (pusha) or 32-bit (pushad) general registers onto the stack.

The pusha pushes the registers onto the stack in the order AX, CX, DX, BX, SP, BP,

SI, and DI. That is, AX is pushed first and DI last. The pushad instruction follows

the same order on the 32-bit registers. It decrements the stack pointer SP by 16 for

word operands and decrements ESP by 32 for doubleword operands. Clock cycles: 5.

pushf — Push flags register
C O Z S P A

– – – – – –

Format:
pushf
pushfd

Description:
Pushes the 16-bit (pushf) or 32-bit (pushfd) flags register (FLAGS or EFLAGS)

onto the stack. Decrements SP by 2 (pushf) for word operands and decrements ESP

by 4 (pushfd) for doubleword operands. Clock cycles: 4 in the real mode and 3 in

the protected mode.

rep/repe/repz/repne/repnz — Repeat instruction
C O Z S P A

– – M – – –

Format:
rep string-inst
repe/repz string-inst
repne/repnz string-inst

Description:
These three prefixes repeat the specified string instruction until the conditions are met.

The rep instruction decrements the count register (CX or ECX) each time the string

instruction is executed. The string instruction is repeatedly executed until the count

register is zero. The repe (repeat while equal) has an additional termination condi-

tion: ZF = 0. The repz is an alias for the repe instruction. The repne (repeat

while not equal) is similar to repe except that the additional termination condition

is ZF =1. The repnz is an alias for the repne instruction. The ZF flag is affected

by rep cmps and rep scas instructions. For more details, see Chapter 12. Clock

cycles: varies; see Pentium data book for details.

1026 Appendix I Pentium Instruction Set

ret — Return from a procedure
C O Z S P A

– – – – – –

Format:
ret
ret value

Description:
Transfers control to the instruction following the corresponding call instruction. The

optional immediate value specifies the number of bytes (for 16-bit operands) or num-

ber of words (for 32-bit operands) that are to be cleared from the stack after the return.

This parameter is usually used to clear the stack of the input parameters. See Chap-

ter 10 for more details. Clock cycles: 2 for near return and 3 for far return; if the

optional value is specified, add one more clock cycle. Changing privilege levels

takes more clocks; see Pentium data book.

rol/ror/rcl/rcr — Rotate instructions
C O Z S P A

M M – – – –

Format:
rol/ror/rcl/rcr src,1
rol/ror/rcl/rcr src,count
rol/ror/rcl/rcr src,CL

Description:
This group of instructions supports rotation of 8-, 16-, or 32-bit data. The rol (rotate

left) and ror (rotate right) instructions rotate the src data as explained in Chapter 9.

The second operand gives the number of times src is to be rotated. This operand can

be given as an immediate value (a constant 1 or a byte value count) or preloaded into

the CL register. The other two rotate instructions rcl (rotate left including CF) and

rcr (rotate right including CF) rotate the src data with the carry flag (CF) included

in the rotation process, as explained in Chapter 9. The OF flag is affected only for

single bit rotates; it is undefined for multibit rotates. Clock cycles: rol and ror take

1 (if src is a register) or 3 (if src is a memory operand) for the immediate mode

(constant 1 or count) and 4 for the CL version; for the other two instructions, it can

take as many as 27 clock cycles; see Pentium data book for details.

Section I.2 Selected Pentium Instructions 1027

sahf — Store AH in flags register
C O Z S P A

M – M M M M

Format:

sahf
Description:

The AH register bits 7, 6, 4, 2, and 0 are loaded into flags SF, ZF, AF, PF, and CF,

respectively. Clock cycles: 2.

sal/sar/shl/shr — Shift instructions
C O Z S P A

M M M M M –

Format:
sal/sar/shl/shr src,1
sal/sar/shl/shr src,count
sal/sar/shl/shr src,CL

Description:
This group of instructions supports shifting of 8-, 16-, or 32-bit data. The format is

similar to the rotate instructions. The sal (shift arithmetic left) and its synonym shl
(shift left) instructions shift the src data left. The shifted out bit goes into CF and

the vacated bit is cleared, as explained in Chapter 9. The second operand gives the

number of times src is to be shifted. This operand can be given as an immediate

value (a constant 1 or a byte value count) or preloaded into the CL register. The

shr (shift right) is similar to shl except for the direction of shift. The sar (shift

arithmetic right) is similar to sal except for two differences: the shift direction is

right and the sign bit is copied into the vacated bits. If the shift count is zero, no flags

are affected. The CF flag contains the last bit shifted out. The OF flag is defined only

for single shifts; it is undefined for multibit shifts. Clock cycles: 1 (if src is a register)

or 3 (if src is a memory operand) for the immediate mode (constant 1 or count) and

4 for the CL version.

sbb — Subtract with borrow
C O Z S P A

M M M M M M

Format:

sbb dest,src
Description:

Performs integer subtraction with borrow. The dest is assigned the result of dest
-(src+CF). Clock cycles: 1–3.

1028 Appendix I Pentium Instruction Set

scas — Compare string operands
C O Z S P A

M M M M M M

Format:
scas operand
scasb
scasw
scasd

Description:
Subtracts the memory byte, word, or doubleword pointed by the destination index reg-

ister (DI or EDI) from the AL, AX, or EAX register, respectively. The result is not

stored but used to update the flags. The memory operand must be addressable from the

ES register. Segment override is not allowed in this instruction. If the address size is

16 bits, the DI register is used; the EDI register is used for 32-bit addresses. After the

subtraction, the destination index register is updated automatically. Whether the regis-

ter is incremented or decremented depends on the direction flag (DF). The register is

incremented if DF is 0 (see the cld instruction to clear the direction flag); if the DF is

1, the index register is decremented (see the std instruction to set the direction flag).

The amount of increment or decrement is 1 (for byte operands), 2 (for word operands),

or 4 (for doubleword operands).

Note that the specification of the operand in scas is not really required as the mem-

ory operand is assumed to be pointed by the index register. The scasb, scasw, and

scasd are synonyms for the byte, word, and doubleword scas instructions, respec-

tively.

The repeat prefix instructions (i.e., repe or repne) can precede the scas instruc-

tions for array or string comparisons. See the rep instruction for details. Clock cycles:

4.

setCC — Byte set on condition operands
C O Z S P A

– – – – – –

Format:

setCC dest
Description:

Sets dest byte to 1 if the condition CC is met; otherwise, sets to zero. The operand

dest must be either an 8-bit register or memory operand. The conditions tested are

similar to the conditional jump instruction (see jcc instruction). The conditions are:

A, AE, B, BE, E, NE, G, GE, L, LE, NA, NAE, NB, NBE, NG, NGE, NL, NLE, C,

NC, O, NO, P, PE, PO, NP, O, NO, S, NS, Z, NZ. The conditions can specify signed

and unsigned comparisons as well as flag values. Clock cycles: 1 for register operand

and 2 for memory operand.

Section I.2 Selected Pentium Instructions 1029

shld/shrd — Double precision shift
C O Z S P A

M M M M M *
Format:

shld/shrd dest,src,count
Description:

The shld instruction performs left-shift of dest by count times. The second

operand src provides the bits to shift in from the right. In other words, the shld
instruction performs a left-shift of dest concatenated with src and the result in the

upper half is copied into dest. dest and src operands can both be either 16- or

32-bit operands. Although dest can be a register or memory operand, src must be

a register of the same size as dest. The third operand count can be an immediate

byte value or the CL register can be used as in the shift instructions. The contents of

the src register are not altered.

The shrd instruction (double precision shift right) is similar to shld except for the

direction of shift.

If shift count is zero, no flags are affected. The CF flag contains the last bit shifted out.

The OF flag is defined only for single shifts; it is undefined for multibit shifts. The SF,

ZF, and PF flags are set according to the result.

Clock cycles: 4 (5 if dest is a memory operand and the CL register is used for

count).

stc — Set carry flag
C O Z S P A

1 – – – – –

Format:

stc
Description:

Sets the carry flag to 1. Clock cycles: 2.

std — Set direction flag
C O Z S P A

– – – – – –

Format:

std
Description:

Sets the direction flag to 1. Clock cycles: 2.

1030 Appendix I Pentium Instruction Set

sti — Set interrupt flag
C O Z S P A

– – – – – –

Format:

sti
Description:

Sets the interrupt flag to 1. Clock cycles: 7.

stos — Store string operand
C O Z S P A

– – – – – –

Format:
stosb
stosw
stosd

Description:
Stores the contents of the AL, AX, or EAX register at the memory byte, word, or

doubleword pointed by the destination index register (DI or EDI), respectively. If

the address size is 16 bits, the DI register is used; the EDI register is used for 32-

bit addresses. After the load, the destination index register is automatically updated.

Whether this register is incremented or decremented depends on the direction flag

(DF). The register is incremented if DF is 0 (see the cld instruction to clear the direc-

tion flag); if the DF is 1, the index register is decremented (see the std instruction to

set the direction flag). The amount of increment or decrement depends on the operand

size (1 for byte operands, 2 for word operands, and 4 for doubleword operands).

The repeat prefix instruction rep can precede the stos instruction to fill a block of

CX/ECX bytes, words, or doublewords. Clock cycles: 3.

sub — Subtract
C O Z S P A

M M M M M M

Format:

sub dest,src
Description:

Performs integer subtraction. The dest is assigned the result of dest � src. Clock

cycles: 1 to 3.

Section I.2 Selected Pentium Instructions 1031

test — Logical compare
C O Z S P A

0 0 M M M *
Format:

test dest,src
Description:

Performs logical and operation (dest and src). However, the result of the and

operation is discarded. The dest operand can be either in a register or memory. The

src operand can be either an immediate value or a register. Both dest and src
operands are not affected. Sets SF, ZF, and PF flags according to the result. Clock

cycles: 1 if dest is a register operand and 2 if it is a memory operand.

xchg — Exchange data
C O Z S P A

– – – – – –

Format:

xchg dest,src

Description:
Exchanges the values of the two operands src and dest. Clock cycles: 2 if both

operands are registers or 3 if one of them is a memory operand.

xlat — Translate byte
C O Z S P A

– – – – – –

Format:
xlat table-offset
xlatb

Description:
Translates the data in the AL register using a table lookup. It changes the AL register

from the table index to the corresponding table contents. The contents of the BX (for

16-bit addresses) or EBX (for 32-bit addresses) register are used as the offset to the

translation table base. The contents of the AL register are treated as an index into this

table. The byte value at this index replaces the index value in AL. The default segment

for the translation table is DS. This is used in both formats. However, in the operand

version, a segment override is possible. Clock cycles: 4.

1032 Appendix I Pentium Instruction Set

xor — Logical bitwise exclusive-or
C O Z S P A

0 0 M M M *
Format:

xor dest,src
Description:

Performs logical bitwise exclusive-or (xor) operation (dest xor src) and the result

is stored in dest. Sets the SF, ZF, and PF flags according to the result. Clock cycles:

1 to 3.

Bibliography

[1] D. Alpert and D. Avnon, “Architecture of the Pentium Microprocessor,” IEEE Micro, June

1993, pp. 11–21.

[2] D. Anderson, PCMCIA System Architecture: 16-Bit Cards, Second edition, Addison-Wesley,

Reading, MA, 1995.

[3] D. Anderson, Universal Serial Bus System Architecture, Addison-Wesley, Reading, MA,

1997.

[4] D. Anderson, PCI System Architecture, Fourth edition, Addison-Wesley, Reading, MA,

1999.

[5] D. Anderson, FireWire System Architecture, Second edition, Addison-Wesley, Reading, MA,

1999.

[6] D. Anderson and T. Shanley, ISA System Architecture, Third edition, Addison-Wesley, Read-

ing, MA, 1995.

[7] D. Anderson and T. Shanley, CardBus System Architecture, Addison-Wesley, Reading, MA,

1996.

[8] C.G. Bell, “The Mini and Micro Industries,” IEEE Computer, Vol. 17, No. 10, October 1984,

pp. 14–30.

[9] M. Campbell-Kelly and W. Aspray, Computer: A History of the Information Machine, Basic

Books, New York, 1996.

[10] Compaq, “PCI-X Architectural Overview,” 2000. Available from www.compaq.com/
products/servers/technology/pci-x-enablement.html.

[11] S.P. Dandamudi, Introduction to Assembly Language Programming, Springer-Verlag, New

York, 1998.

[12] D. Dzatko and T. Shanley, AGP System Architecture, Second edition, Addison-Wesley, Read-

ing, MA, 2000.

[13] D. Goldberg, “What Every Computer Scientist Should Know About Floating-Point Arith-

metic,” ACM Computing Surveys, Vol. 23, No. 1, March 1991, pp. 5–48.

[14] H. Goldstein, The Computer: From Pascal to von Neumann, Princeton University Press,

Princeton, NJ, 1972.

1033

1034 Bibliography

[15] T. Graham, Unicode: A Primer, M&T Books, New York, 2000.

[16] V.C. Hamacher, Z.G. Vranesic, and S.G. Zaky, Computer Organization (Fourth edition),

McGraw-Hill, New York, 1996.

[17] J. Handy, The Cache Memory Book, Academic Press, San Diego, CA, 1998.

[18] J.L. Henning, “SPEC CPU2000: Measuring CPU Performance in the New Millennium,”

IEEE Computer, July 2000, pp. 28–35.

[19] R.N. Ibbett and N.P. Topham, Architecture of High Performance Computers (Volume 1),

Springer-Verlag, New York, 1989.

[20] Intel, Accelerated Graphics Port Interface Specification, Revision 2.0, May 1998. (Available

from developer.intel.com/technology/agp/agp index.htm.)

[21] Intel, Itanium Architecture Software Developer’s Manual, 2001. This four-volume set is

available from developer.intel.com/design/ia-64.

[22] B. Jacob and T. Mudge, “Virtual Memory: Issues of Implementation,” Computer, June 1998,

pp. 33–43.

[23] B. Jacob and T. Mudge, “Virtual Memory in Contemporary Microprocessors,” IEEE Micro,

July–August 1998, pp. 60–75.

[24] J.R. Larus, SPIM S20: A MIPS R2000 Simulator, 1997. Available from http://www.cs.
wisc.edu/˜larus/SPIM_manual/spim-manual.html.

[25] J.K. Lee and A.J. Smith, “Branch Prediction Strategies and Branch Target Buffer Design,”

Computer, Vol. 17, No. 1, 1984, pp. 6–22.

[26] Motorola, PowerPC Microprocessor Family: The Programming Environments for 32-Bit

Processors, 1997. Available from http://www.motorola.com/SPS/PowerPC.

[27] NASM Manual, http://www.octium.net/nasm.

[28] D.A. Patterson and J.L. Hennessy, Computer Organization and Design: The Hard-

ware/Software Interface, Second edition, Morgan Kaufmann, San Francisco, CA, 1998.

[29] D.A. Patterson and C.H. Sequin, “A VLSI RISC,” Computer, Vol. 15, No. 9, 1982, pp. 8–21.

[30] K.A. Robbins and S. Robbins, The Cray X-MP/Model 24: A Case Study in Pipelined Ar-

chitecture and Vector Processing, Lecture Notes in Computer Science 375, Springer-Verlag,

New York, 1987.

[31] D. Sima, T. Fountain, and P. Kacsuk, Advanced Computer Architectures: A Design Space

Approach, Addison-Wesley, New York, 1997.

[32] A.J. Smith, “Cache Memories,” ACM Computing Surveys, Vol. 14, 1982, pp. 473–530.

[33] W. Stallings, Computer Organization and Architecture, Fifth edition, Prentice-Hall, Engle-

wood Cliffs, NJ, 2000.

[34] Standard Performance Evaluation Corporation, http://www.spec.org.

[35] A.S. Tanenbaum, “Implications of Structured Programming for Machine Architecture,”

Communications of the ACM, Vol. 21, No. 3, 1978, pp. 237–246.

[36] A.S. Tanenbaum, Modern Operating Systems, Prentice-Hall, Englewood Cliffs, NJ, 1992.

Bibliography 1035

[37] A.S. Tanenbaum, Structured Computer Organization, Fourth edition, Prentice-Hall, Engle-

wood Cliffs, NJ, 1999.

[38] Unicode Consortium, The Unicode Standard: A Technical Introduction. Available from

http://www.unicode.org/unicode/standard/principles.html.

[39] M.V. Wilkes, “The Best Way to Design an Automatic Calculating Machine,” Proceedings of

the Manchester University Computer Inaugural Conference, 1951.

[40] M.V. Wilkes and J.B. Stinger, “Microprogramming and the Design of the Control Circuits

in an Electronic Digital Computer,” Proceedings of the Cambridge Philosophical Society,

1953, pp. 230–238.

Index

Symbols

.486, 909

.ALIGN, 636

.CODE directive, 909

.DATA directive, 909

.EXIT directive, 910, 929

.FLOAT, 635

.GLOBL, 636

.HALF, 635

.INCLUDE directive, 909

.MODEL directive, 427, 909

.SPACE, 635

.STACK, 389

.STACK directive, 909

.STARTUP directive, 910, 929

= directive, 366

@DATA, 910

#pragma directive, 565

$, location counter, 453, 526

1’s complement, 883

addition, 884

overflow, 884, 885

subtraction, 885

1-address machines, 201

2’s complement, 886

addition, 887

subtraction, 887

2-address machines, 200

3-address machines, 199

80286 processor, 252

80386 processor, 252

80486 processor, 252

8080 processor, 252

8086 family processors, 251–253

8255 programmable peripheral interface, 772–

774

8259 programmable interrupt controller, 848–

849

A

aborts, 842

absolute address, 209, 631

accelerated graphics port (AGP), 180

accumulator machines, 201

Ackermann’s function, 469

activation record, 421, 455, 575, 651

adders, 95

carry lookahead adders, 97

example chip, 98

full-adder, 96, 875

half-adder, 95, 875

ripple-carry adders, 96

addition

binary, 875

floating-point, 896

overflow, 877

address

absolute, 631

PC-relative, 631

address bus, 13

address size override prefix, 437

address translation, 261

protected mode, 265, 266

real mode, 262

1037

1038 Index

addresses

0-address machines, 202

1-address machines, 201

2-address machines, 200

3-address machines, 199

accumulator machines, 201

comparison, 204

number of, 199–208

relative, 346

stack machines, 202

virtual, 737

addressing modes, 215, 332–338, 435–441, 580,

593, 618, 982

16-bit, 436

32-bit, 437

based addressing mode, 439, 619

based-indexed addressing mode, 441

direct addressing mode, 334

immediate addressing mode, 215, 333, 593

immediate index addressing mode, 580

index addressing mode, 580, 593

indexed addressing mode, 439, 619

indirect addressing mode, 335, 580, 593

in MIPS, 618

in PowerPC, 580

register addressing mode, 215, 332

register indirect addressing mode, 580

in SPARC, 982

advanced load, 599

ALUs, see arithmetic logic units

AND gate, 42

architecture

CISC, 20

Itanium, 591

load/store, 206

memory–memory architecture, 301

PowerPC, 578

RISC, 20, 575

vector–register architecture, 301

arithmetic instructions, 216

arithmetic logic units, 103

example chip, 105

arithmetic mean, 239

drawback, 241

arrays, 448–454

column-major order, 450

multidimensional, 450

one-dimensional, 449

row-major order, 450

ASCII, 902

table, 905

ASCII string, 635

ASCIIZ string, 527, 635

asm, 565

assembler, 8

MASM, 8

TASM, 8, 916

assembler directives, 322, 634

assembly language, 7

advantages, 11–12

assembly process, 915

associative mapping, 707

asynchronous bus, 157–158

asynchronous exceptions, 856

asynchronous transmission, 794

auxiliary flag, 480

B

backward jump, 346

based addressing mode, 439, 619

based-indexed addressing mode, 441

benchmarks, 241–246

Dhrystone, 241

SPEC, see SPEC benchmarks

Whetstones, 241

binary counter design, 127

binary numbers, 867

addition, 875

conversion, 872, 873

division, 880

multiplication, 878

subtraction, 877

underflow, 877

Index 1039

binary search, 445

bit manipulation, 511

block transfer, 155

Boolean algebra, 54–55

de Morgan’s law, 54

identities, 54

logical equivalence, 54

branch

absolute address, 209

conditional, 210

set-then-jump, 210

test-and-jump, 210

overview, 208

PC-relative, 209

unconditional, 208

branch elimination, 604, 605

branch handling, 604–606

branch hints, 604, 610

branch prediction, 283–286, 605

dynamic strategy, 285

fixed strategy, 284

in Itanium, 610

static strategy, 284

branch speedup, 604

breadboard, 957

breakpoint interrupt, 843

bubble notation, 76

Bubble sort, 412

building larger memories, 674, 678

bus arbitration, 159–165

in IEEE 1394, 815

in PCI bus, 176

in SCSI, 799

bus operations, 30, 152

bus transaction, 30

bus types, 152

bus width, 150

bypassing, 279

byte addressable memory, 22

byte ordering, 24

big-endian, 24

little-endian, 24

C

cache capacity, 729

cache levels, 720

cache memory, 694–731

2-way set-associative, 725

cache capacity, 729

cache disable, 724

cache levels, 720

cache miss types, 718

capacity misses, 718

compulsory misses, 718

conflict misses, 718

cache types, 719

concepts, 695

data cache, 719

degree of associativity, 719

design basics, 699

design issues, 729

cache capacity, 729

degree of associativity, 731

line size, 729

dirty bit, 714

hit, 695

hit rate, 695

hit ratio, 695

hit time, 695

implementations, 722–727

in MIPS, 726

in Pentium, 722

in PowerPC, 724

instruction cache, 719

L1 cache, 720

L2 cache, 720

level 1 cache, 720

level 2 cache, 720

line size, 729

locality, 698

spatial locality, 698

temporal locality, 699

location policies, 728

mapping examples, 717

mapping functions, 700

1040 Index

associative mapping, 707

direct mapping, 703

fully associative mapping, 707

set-associative mapping, 708

memory hierarchy, 694

miss, 695, 705

miss penalty, 695

miss rate, 695

miss ratio, 695

on-chip cache, 720

physical cache, 722

placement policies, 727

primary cache, 720

replacement policies, 711–713, 728

LRU, 724

pseudo-LRU, 725

secondary cache, 720

space overhead, 715, 717

split cache disadvantages, 719

tag field, 705

uncacheable mode, 723

update bit, 714

valid bit, 705

virtual cache, 722

why it works, 697

write combining, 724

write policies, 713–715, 728

write-back, 714, 724

write-through, 695, 713, 724

write protected, 724

write-back, 714

write-back bit, 726

write-through, 713

cache miss types, 718

capacity misses, 718

compulsory misses, 718

conflict misses, 718

cache tag field, 705

cache types, 719

call-by-reference, 395, 646

call-by-value, 395, 646

capacity misses, 718

carry flag, 474

character representation, 901

ASCII, 902

EBCDIC, 902

extended ASCII, 902

UCS, 903

Unicode, 903

chip select, 669, 674, 676, 679, 681, 682

CISC processors

evolution, 572

microprogramming, 572

VAX-11/780, 573, 576

clock cycle, 111

clock frequency, 111

clock period, 111

clock signal, 111–113

cycle, 111

falling edge, 111

frequency, 111

period, 111

rising edge, 111

clocks per instruction (CPI), 238

clocks period, 238

CMOS, 48

CodeView, 943–944

coincidence gate, 44

column-major order, 308, 450

COMMENT directive, 909

comparators, 94

example chip, 94

complete set, 45

completion buffer, 297

compulsory misses, 718

condition register, 579

conditional branch, 210

conditional jump, 349, 500–501

conflict misses, 718

control bus, 14

control hazards, 282

control speculation, 609

counters, 121

example chips, 124

Index 1041

CPI, 238

CPUID instruction, 258

Cray X-MP, 304–312

vector chaining, 311

vector operations, 309

CRC, see cyclic redundancy check

CRC generator chip, 791

CRC serial generator circuit, 790

CTR register, 580

current frame marker register, 594

cyclic redundancy check, 787

computation, 789

generation, 788

generator chip, 791

generator circuit, 790

D

data alignment, 683–684

2-byte data, 683

4-byte data, 683

8-byte data, 684

hard alignment, 684

soft alignment, 684

data allocation, 324–332

define directives, 325–327

multiple definitions, 327–328

multiple initializations, 329

data bus, 13

data cache, 719

data dependency

ambiguous, 607

read-after-write, 607

write-after-read, 607

write-after-write, 607

data hazards, 278–281

data movement instructions, 216

data speculation, 607

datapath, 15

2-bus, 233

3-bus, 15

single bus, 219

DB directive, 325

DD directive, 325

DEBUG, 930–938

commands, 931

decoders, 89

chips, 90

dedicated interrupts, 843

default segments, 336

16-bit addresses, 336

32-bit addresses, 336

overriding, 337

degree of associativity, 731

delay slot, 283

delayed branch execution, 283

delayed procedure call, 212

demultiplexers, 89

chip, 89

denormalized values, 895

Dhrystone benchmark, 241

digital logic circuit testing, 957

digital logic simulators, 958–964

Digital simulator, 959

DIGSim, 958

Logikad, 962

Multimedia Logic, 961

Digital simulator, 959

DIGSim digital logic simulator, 958

direct addressing mode, 334

direct jumps, 345

direct mapping, 703

direct memory access, see DMA

direction flag, 529, 771

dirty bit, 714, 743

DMA, 777

DMA acknowledge, 779

DMA controller, 777

DMA request, 779

DQ directive, 325

DRAM, 666

DT directive, 325

dual pipeline, 291

DUP directive, 329

1042 Index

DW directive, 325

dynamic branch prediction strategy, 285

E

EBCDIC, 902

ECL, 48

EEPROM, 666

effective address, 260, 334, 335

EIA-232 serial interface, 795

EIP register, 831

emitter-coupled logic (ECL), 48

encoders, 92

end of procedure, 211

ENDP directive, 396, 910

EPIC design, 591

EPROM, 666

EQU directive, 364

equivalence function, 587

equivalence gate, 44

error correction, 784–791

SECDED, 787

error detection, 784–791

CRC, 787

parity encoding, 784

exceptions, 827, 842

aborts, 842

asynchronous exceptions, 856

faults, 842

imprecise exceptions, 856

precise exceptions, 856

segment-not-present, 268, 842

synchronous exceptions, 856

traps, 842

excess-M number representation, 882

exclusive-OR gate, 43

executable instructions, 322

execution cycle, 17

execution time, 238

explicit parallel instruction computing, see EPIC

design

extended keys, 834

external buses, 148, 791–821

external fragmentation, 750

EXTRN directive, 427

F

factorial, 455–458, 651–653

recursive procedure, 456, 651

far jump, 347

FAR procedures, 396

faults, 842

Fibonacci number, 463

FIFO replacement policy, 738

FireWire, see IEEE 1394

fixed branch prediction strategy, 284

flags register, 258, 472–484

auxiliary flag, 480

carry flag, 474

CF, 474

direction flag, 529, 771

IF flag, 847

OF, 477

overflow flag, 477

parity flag, 481

PF, 481

SF, 479

sign flag, 479

status flags, 472–484

trap flag, 843

zero flag, 472

ZF, 472

flat segmentation model, 269

flip-flops, 116–120

D flip-flops, 116

example chip, 119

JK flip-flops, 117

floating-point, 887–897

addition, 896

conversion, 893

denormals, 895

IEEE 754, 892

IEEE 784, 897

Index 1043

memory layout, 895

multiplication, 896

precision, 891

range, 891

representation, 890, 891

special values, 895

�, 895

NaN, 895

zero, 895

subtraction, 896

floating-point addition pipeline, 274

flow control instructions, 217

Flynn’s bottleneck, 303

forward jump, 346

frame pointer, 404, 421

full-adder, 96, 875

fully associative mapping, 707

G

gallium arsenide (GaAs), 48

gates

transistor implementations, 46

universal, 45

general counter design, 130

general-purpose registers, 578, 616

in Itanium processor, 592

in PowerPC, 578

usage in MIPS, 617

generalized gates, 71

geometric mean, 240

GetInt8, 494

GetStr, 835

Gray code, 785

H

half-adder, 95, 875

hardware interrupts, 827, 847

example, 850

INTA signal, 848

interrupt acknowledge, 848

INTR input, 847

maskable, 828, 847

NMI, 847

nonmaskable, 828, 847

Harvard architecture, 18, 27

hazards, 276–282

bypassing, 279

control hazards, 282

data hazards, 278–281

read-after-write (RAW), 278

register forwarding, 279

register interlocking, 280

resource hazards, 277

structural hazards, 276

write-after-read (WAR), 278

write-after-write (WAW), 279

hexadecimal numbers, 868

high-level language structures

conditional, 504

iterative, 508

for, 509

repeat-until, 508

while, 508

switch, 500

hit rate, 695

hit ratio, 695

hit time, 695

HMOS, 48

hold acknowledge, 779

horizontal microcode, 230

horizontal organization, 230

I

I/O, 217, 768–771

address mapping, 770

address space, 770

controller, 768

device, 768

isolated, 217, 770

memory-mapped, 217, 770

ports, 769

I/O controller, 28

1044 Index

I/O ports, 28, 769

accessing, 770

in, 771

ins, 771

out, 771

outs, 771

I/O routines, 911

GetCh, 912

GetInt, 913

GetLInt, 913

GetStr, 912

PutCh, 912

PutInt, 913

PutLInt, 913

PutStr, 912

ICs, see integrated circuits

IEEE 1394, 810–820

bus arbitration, 815

IEEE 754 floating-point standard, 892

immediate addressing mode, 215, 333, 593

immediate index addressing mode, 580

imprecise exceptions, 856

index addressing mode, 580, 593

indexed addressing mode, 439, 619

indirect addressing mode, 580, 593

indirect jump, 497–500

indirect procedure call, 540

inline assembly, 565

input/output, 217, 768–771

address mapping, 770

DMA, 777

DMA acknowledge, 779

DMA controller, 777

8237, 781

DMA request, 779

DMA transfer example, 779

hold acknowledge, 779

I/O address space, 770

isolated I/O, 217, 770

memory-mapped I/O, 217, 770

programmed I/O, 775

input/output instructions, 217

insertion sort, 442

instruction cache, 719

instruction count, 238

instruction execution, 274

instruction fetch, 270

instruction format, 218–219, 620, 984

instruction pointer, 257

instruction set design, 213–219

issues, 213

addressing modes, 215

instruction types, 216

operand types, 214

instruction types, 216

arithmetic, 216

data movement, 216

flow control, 217

input/output, 217

load/store, 224

logical, 216

instruction-level parallelism, 591, 597–599

int 09H, 845, 850

int 16H BIOS services, 837

00H keyboard input, 837

01H check keyboard buffer, 838

02H check keyboard status, 838

int 21H, 910

int 21H DOS services

01H keyboard input, 832

06H Console I/O, 832

07H keyboard input, 832

08H keyboard input, 833

0AH keyboard input, 833

0BH check keyboard buffer, 834

0CH clear keyboard buffer, 834

25H set interrupt vector, 845

35H get interrupt vector, 844

4CH return control, 910

int 3, 843

int 4, 844

integrated circuits, 48

LSI, 49

MSI, 49

Index 1045

propagation delay, 49

SSI, 49

SSI chips, 49

VLSI, 49

interleaved memories, 684–689

concepts, 685

disadvantages, 689

independent access organization, 687

number of banks, 688

synchronized access organization, 686

internal fragmentation, 740

interrupt 1, 843

interrupt 2, 847

interrupt 23H, 832

interrupt 4, 842

interrupt acknowledge, 848

interrupt descriptor table, 829

interrupt flag, 847

interrupt handler, 826

interrupt processing

protected mode, 829

real mode, 829

interrupt service routine, 826

interrupts

breakpoint, 843

dedicated, 843

divide error, 843

exceptions, 827, 842

handler, 826

hardware, 847

hardware interrupts, 827

maskable, 828

in MIPS, 857

nonmaskable, 828

overflow, 844

in PowerPC, 855

single-step, 843

software interrupts, 826

taxonomy, 827, 828

vectored interrupts, 827

intersegment jump, 346

into, 844

intrasegment jump, 346

inverted page table, 746

IP register, 831

ISA bus, 166

isolated I/O, 217, 770

Itanium instructions, 594–604

add, 600

advanced load, 599

and, 602

br, 603

branch hints, 604

call, 604

cmp, 602, 606

instruction format, 594

ld8, 599

ldSZ, 599

loop, 604

mov, 600

movl, 600

return, 604

shl, 602

shladd, 601

shr, 602

shr.u, 602

speculative load, 599

stSZ, 600

Itanium processor, 253, 590–611

addressing modes, 593

architectural features, 591

architecture, 591

arithmetic instructions, 600

branch elimination, 604, 605

branch handling, 604–606

branch hints, 610

branch instructions, 603

branch prediction, 610

branch speedup, 604

comparison instructions, 602

data dependency, 607

data transfer instructions, 599

EPIC design, 591

immediate addressing mode, 593

1046 Index

index addressing mode, 593

indirect addressing mode, 593

instruction bundles, 598

instruction format, 594

instruction-level parallelism, 591, 597–599

logical instructions, 601

Not-a-Thing bit, 592

predication, 605

procedure call, 594

register renaming, 594

registers, 592

shift instructions, 602

speculative execution, 606–610

control speculation, 609

data speculation, 607

stack frame, 594

J

jump instructions

backward jump, 346

conditional jump, 349–352, 500–501

far jump, 347

forward jump, 346

indirect jump, 497–500

intersegment jump, 346

intrasegment jump, 346

near jump, 347

SHORT directive, 347

short jump, 347

unconditional jump, direct, 345

K

Karnaugh maps, 60–67

don’t cares, 65

keyboard scan codes, 773

L

LABEL directive, 331

latches, 113–116

clocked SR latch, 115

D latch, 115

example chip, 119

SR latch, 114

least frequently used (LFU) policy, 713

least recently used (LRU) policy, 724, 739

left-pusher language, 554

line size, 729

linear address, 265

linear search, 516

LINK, 430

linking, 924

Linux, 948

load instructions, 622

load/store architecture, 206, 593

load/store instructions, 224

load/store unit, 297, 303

local variables, 420

locality, 698, 737

spatial locality, 698, 737

temporal locality, 699, 737

location policies, 728

logic circuits

adders, 95

ALUs, 103

bubble notation, 76

comparators, 94

counters, 121

decoders, 89

demultiplexers, 89

design

using MUXs, 86

using NAND gates, 75

process, 55

using XOR gates, 77

design of sequential circuits, 127

encoders, 92

equivalence, 52

flip-flops, 116

generalized gates, 71

latches, 113

multiple outputs, 73

multiplexers, 84

Index 1047

PALs, 100

PLAs, 98

seven-segment display, 64

shift registers, 120

logic gates

fanin, 49

fanout, 49

propagation delay, 49

logical address, 260

logical equivalence, 54

logical expressions, 49, 511

derivation, 52, 56

equivalence, 53

even parity, 49

full evaluation, 512

majority, 49

partial evaluation, 513

product-of-sums, 57

simplification, 58–71

Boolean algebra method, 58

Karnaugh map method, 60

Quine–McCluskey method, 67

sum-of-products, 56

logical instructions, 216

Logikad digital logic simulator, 962

LR register, 579

M

machine language, 7

MACRO directive, 366

macro expansion, 322

macro instructions, 368

macro parameters, 367

macros, 322, 366

instructions, 368

MACRO directive, 366

parameters, 367

mapping functions, 700

MASM, 8, 322, 330, 430

memory, 666–689

access time, 23

address, 22

address space, 22

address translation, 261

building a block, 673

building larger memories, 674, 678

byte addressable, 22

cache memory, 694–731

cache types, 719

placement policies, 727

chip select, 669, 674, 676, 679, 681, 682

cycle time, 23

design with D flip-flops, 667

designing independent memory modules,

676

DRAM, 666, 678

EEPROM, 666

effective address, 260

EPROM, 666

horizontal expansion, 676

interleaved memories, 684–689

larger memory design, 678

linear address, 265

logical address, 260, 261

memory address space, 678

memory block, 666

memory chips, 678

memory hierarchy, 694

memory mapping, 681

full mapping, 681

partial mapping, 682

offset, 260

operations, 23–24

overlays, 736

physical address, 260, 261

PROM, 666

RAM, 666

read cycle, 23

read-only, 666

read/write, 666

ROM, 666

SDRAM, 678

segmentation models, 269

1048 Index

segmented organization, 260

SRAM, 666

vertical expansion, 676

virtual memory, 736–760

wait cycles, 23

write cycle, 24

memory access time, 23

memory address space, 22, 678

memory architecture

Pentium, 260–270

protected mode, 265

real mode, 260–265

memory cycle time, 23

memory management unit (MMU), 722, 737

memory mapping, 681

full mapping, 681

partial mapping, 682

memory operations, 23–24

memory read cycle, 23

memory write cycle, 24

memory–memory architecture, 301

memory-mapped I/O, 217, 770

merge sort, 548

metrics, 237

MFLOPS, 237

microcontroller, 228

microinstructions, 229

derivation of, 232

format, 229

horizontal organization, 230

horizontal versus vertical organization, 233

vertical organization, 231

microprogram, 20

microprogrammed control, 219–236

2-bus datapath, 233

hardware implementation, 225

microcontroller, 228

microinstruction format, 229

single bus datapath, 219

software implementation, 226

wait cycles, 223

microprogramming, 572

MIPS, 237

MIPS instructions, 619–632

abs, 625

add, 623

addi, 624

addu, 624

and, 627

andi, 627

arithmetic instructions, 623

b, 630, 633

beq, 631, 633

beqz, 631, 633

bge, 633

bgeu, 633

bgez, 625, 632, 633

bgt, 632, 633

bgtu, 632, 633

bgtz, 633

ble, 633

bleu, 633

blez, 633

blt, 633

bltu, 633

bltz, 633

bne, 633

bnez, 633

branch instructions, 630

comparison instructions, 628

comparison to zero, 633

data transfer instructions, 621

div, 626

j, 630

jal, 643

jr, 643

jump instructions, 630

la, 622

lb, 621

lbu, 622

ld, 622

lh, 622

lhu, 622

li, 622

Index 1049

load instructions, 622

logical instructions, 627

lw, 622

lwu, 622

mfhi, 625

mflo, 625

move, 623

mthi, 625

mtlo, 625

mul, 625

mulo, 625

mulou, 625

mult, 625

neg, 624

nor, 627

not, 627

or, 627

ori, 622, 627

rem, 626

rol, 629

ror, 628

rotate instructions, 628

sb, 623

sd, 623

seq, 631

sge, 631

sgeu, 631

sgt, 631

sgtu, 631

sh, 623

shift instructions, 627

sle, 631

sleu, 631

sll, 627, 629

sllv, 628, 629

slt, 628, 631

slti, 630

sltu, 630, 631

sne, 631

sra, 629

srav, 629

srl, 629

srlv, 629

sub, 624

subu, 624

sw, 623

xor, 627

xori, 627

MIPS processor, 616–657

addressing modes, 618

architecture, 616–619

cache memory, 726

instruction format, 620

instruction set, 619–632

interrupts, 857

memory layout, 619

recursion, 651–657

stack implementation, 648

virtual memory, 756

miss penalty, 695

miss rate, 695

miss ratio, 695

mixed mode operation, 270

mixed-mode programs, 552

compiling, 553, 566

parameter passing, 554

Moore’s law, 33

multidimensional arrays, 450

Multimedia Logic simulator, 961

multiple address spaces, 748

multiplexers, 84

chip, 86

logic circuit designs, 86

multisegment segmentation model, 269

N

NAND gate, 44

NASM, 322, 948–955

near jump, 347

NEAR procedures, 396

NMOS, 48

nonvolatile memories, 666

NOR gate, 44

1050 Index

not frequently used (NFU) policy, 738

NOT gate, 42

nullification, 283

number of addresses, 199–208

number representation

conversion, 893

floating-point, 887–897

signed integer, 881

1’s complement, 883

2’s complement, 886

excess-M, 882

signed magnitude, 882

unsigned integer, 874

addition, 875

division, 880

multiplication, 878

subtraction, 877

number systems, 865

base, 865

binary, 865, 867

conversion, 868, 870–873

decimal, 865, 867

floating-point, 887–897

hexadecimal, 866, 868

notation, 867

octal, 865, 867

radix, 865

O

octal numbers, 867

OFFSET directive, 336

one’s complement, 883

one-dimensional arrays, 449

opcode, 218, 219, 223, 225, 228

open collector inverter, 671

open collector outputs, 669

operand size override prefix, 437

operand types, 214

OR gate, 42

overflow, 896

overflow flag, 477

overflow interrupt, 844

overlays, 736

override prefix, 270

address size, 437

address-size override, 1002

operand size, 437, 919

operand-size override, 1002

segment override, 337, 417, 1001

overriding default segments, 337

P

page fault, 737

page frames, 737

page mapping, 741

page table entries (PTEs), 742, 752

page table hierarchy, 745

bottom up search, 746

top down search, 745, 746

page table organization, 741

page table entries (PTEs), 742

page table placement, 744

paging, 260

PALs, see programmable array logic devices

parallel interface, 797

parameter passing, 213, 395, 399–417, 554, 994

call-by-reference, 395

call-by-value, 395

register method, 399

stack method, 402

variable number of parameters, 417–420

parity encoding, 784

parity flag, 481

PC card bus, 185

PC-relative, 209

PC-relative address, 631

PCI bus, 168

PCI-X bus, 182

PCMCIA bus, 185

Pentium alignment check flag, 258

Pentium flags register, 258

Pentium II processor, 252

Index 1051

Pentium instructions

adc, 342, 1004

add, 342, 1004

address-size override prefix, 1002

and, 354, 1005

arithmetic instructions, 484–491

bit instructions, 515–516

bsf, 516, 1005

bsr, 516, 1005

bswap, 340, 1006

bt, 515, 1006

btc, 515, 1006

btr, 515, 1007

bts, 515, 1007

call, 397, 540, 1007

cbw, 490, 1008

cdq, 490, 1008

clc, 343, 1008

cld, 529, 1008

cli, 831, 847, 1009

cmc, 343, 1009

cmp, 344, 1009

cmps, 533, 1010

conditional jump, 1016

cwd, 490, 1010

cwde, 490, 1011

dec, 341, 476, 1011

div, 488, 843, 1011

division instructions, 488

double-shift instructions, 360

enter, 407, 424, 1012

hlt, 1012

idiv, 488, 843, 1012

imul, 487, 1013

in, 771, 1013

inc, 341, 476, 1014

ins, 771, 1014

insb, 1014

insd, 1014

instruction prefixes, 1001

insw, 1014

int, 831, 1014

into, 1015

iret, 830, 1015

iretd, 1015

ja, 503

jae, 503

jb, 503

jbe, 503

jc, 350, 475, 502

jcc, 1016

jcxz, 352, 353, 502, 1016

je, 350, 502, 503, 505

jg, 350, 505

jge, 350, 505

jl, 350, 505

jle, 350, 505

jmp, 345, 498, 1016

jna, 503

jnae, 503

jnb, 503

jnbe, 503

jnc, 350, 475, 502

jne, 350, 502, 503, 505

jng, 505

jnge, 505

jnl, 505

jnle, 505

jno, 478, 502, 844

jnp, 482, 502

jns, 480, 502

jnz, 350, 473, 502, 503, 505

jo, 478, 502, 844

jp, 482, 502

jpe, 502

jpo, 502

js, 480, 502

jz, 350, 473, 502, 503, 505

lahf, 1017

lds, 265, 536, 1017

lea, 337, 1017

leave, 408, 424, 1018

les, 265, 536, 1017

lfs, 265, 536, 1017

1052 Index

lgdt, 268

lgs, 265, 536, 1017

lidt, 829

lldt, 268

lods, 531, 1018

lodsb, 531, 1018

lodsd, 531, 1018

lodsw, 531, 1018

loop, 352–354, 1019

loope, 354

loope/loopz, 1019

loopne, 354

loopne/loopnz, 1019

loopnz, 354

loopz, 354

lss, 265, 536, 1017

mov, 265, 338, 1019

movs, 530, 1020

movsb, 530, 1020

movsd, 530, 1020

movsw, 530, 1020

movsx, 490, 1020

movzx, 490, 1020

mul, 486, 1021

multiplication instructions, 485

neg, 344, 1021

nop, 1022

not, 354, 1022

operand-size override prefix, 1002

or, 354, 1022

out, 771, 1022

outs, 771, 1023

pop, 265, 270, 390, 1023

popa, 392, 407, 1024

popad, 392

popf, 392, 844, 1024

popfd, 1024

procedure template, 409

push, 270, 390, 1024

pusha, 392, 407, 1025

pushad, 392

pushf, 392, 844, 1025

rcl, 362, 1026

rcr, 362, 1026

rep, 528, 771, 1025

repe, 528, 771

repe/repz, 1025

repne, 529, 771

repne/repnz, 1025

repnz, 529

repz, 528

ret, 398, 405, 1026

rol, 361, 1026

ror, 361, 1026

rotate instructions, 361–364

sahf, 1027

sal, 358, 1027

sar, 358, 1027

sbb, 344, 1027

scas, 534, 1028

scasb, 534, 1028

scasd, 534, 1028

scasw, 534, 1028

segment override prefixes, 1001

setCC, 1028

sgdt, 268

shl, 357, 1027

shld, 360, 1029

shr, 357, 1027

shrd, 360, 1029

sidt, 829

sldt, 268

stc, 343, 1029

std, 529, 1029

sti, 830, 831, 847, 1030

stos, 532, 1030

stosb, 532, 1030

stosd, 532, 1030

stosw, 532, 1030

sub, 343, 1030

test, 356, 1031

xchg, 339, 1031

xlat, 340, 1031

xor, 1032

Index 1053

Pentium interrupt flag, 258

Pentium Pro processor, 252

Pentium procedure template, 409

Pentium processor

cache memory, 722

CPUID instruction, 258

EIP register, 257

flags register, 258

alignment check flag, 258

control flags, 258

EFLAGS, 258

FLAGS, 258

interrupt flag, 258

status flags, 258

system flags, 258

trap flag, 258

VM flag, 258

zero flag, 258

instruction fetch, 270

instruction format, 1001

instruction prefixes, 1001

IP register, 257

memory architecture, see memory archi-

tecture

pipeline details, 291

protected mode, 265

real mode, 260

signals, 253–256

stack implementation, 388

stack operations, 390

virtual memory, 750

Pentium registers, 256–260

control registers, 257

data registers, 256

index registers, 257

pointer registers, 257

segment registers, see segment registers

Pentium trap flag, 258

performance, 236–246, 312

execution time, 238

instruction count, 238

metrics, 237

MFLOPS, 237

MIPS, 237

response time, 237

SPEC CFP2000, 242

SPEC CINT2000, 242

SPEC CPU2000, 241

SPECjvm98, 245

SPECmail98, 243

SPECweb98, 245

throughput, 237

performance metrics, 237

peripheral device, 768

peripheral support chips, 772–774

8255 PPI, 772

8259 PIC, 848

physical address, 260

physical cache, 722

physical pages, 737

pipeline stages, 274

pipeline stalls, 276

pipelining, 18–19

branch prediction, 283–286

control hazards, 282

data dependencies, 279

data hazards, 278–281

bypassing, 279

read-after-write (RAW), 278

register forwarding, 279

register interlocking, 280

write-after-read (WAR), 278

write-after-write (WAW), 279

delay slot, 283

nullification, 283

delayed execution, 283

floating-point addition, 274

hazards, 276–282

instruction execution, 274

in MIPS R4000, 299

in Pentium, 291

performance, 312

in PowerPC, 294

resource hazards, 277

1054 Index

in SPARC, 297

stages, 274

stalls, 276

structural hazards, 276

superscalar, 252

placement policies, 727

PLAs, see programmable logic arrays

PMOS, 48

polling, 775

PowerPC, 578–590

addressing modes, 580

immediate index addressing mode, 580

index addressing mode, 580

register indirect addressing mode, 580

architecture, 578

instruction set, 581–590

instruction format, 581

registers, 578

PowerPC instructions, 581–590

add, 584

add., 584

adde, 584

addi, 584

addition instructions, 584

addo, 584

addo., 584

and, 586

andc, 586

andi., 586

arithmetic instructions, 584

b, 589

ba, 589

bc, 589

bca, 589

bcctr, 590

bcctrl, 590

bcl, 589

bcla, 589

bclr, 590

bclrl, 590

bl, 589

bla, 589

branch conditions, 590

branch instructions, 589

cmp, 588

cmpd, 588

cmpi, 588

comparison instructions, 588

data transfer instructions, 581

divide instructions, 586

divw, 586

instruction format, 581

la, 585

lbz, 582

lbzu, 582

lbzux, 582

lbzx, 582

lha, 583

lhau, 583

lhaux, 583

lhax, 583

li, 585

logical instructions, 586

mr, 587

mulhw, 586

mulli, 586

mullw, 585

multiply instructions, 585

nand, 587

nand., 587

neg, 585

nor, 587

nor., 587

ori, 587

rlwnm, 588

rotate instructions, 587

rotlw, 588

shift instructions, 587

slw, 587

sraw, 588

sraw., 588

srawi, 588

srawi., 588

stb, 583

Index 1055

stbu, 583

stbux, 583

stbx, 583

stmu, 584

subf, 585

subi, 585

subtract instructions, 585

xor, 587

xori, 587

PowerPC processor

cache memory, 724

interrupts, 855

virtual memory, 754

precise exceptions, 856

predicated execution, 605

printer interface, 797

PROC directive, 396, 910

procedure call, 211, 643

call-by-reference, 646

call-by-value, 646

delayed call, 212

end, 211

in Itanium, 594

overview, 211

parameter passing, 213

return address, 211

procedures

FAR, 396

indirect call, 540

local variables, 420

NEAR, 396

processor registers, 207, 616

product-of-sums, 57

programmable array logic devices, 100

example chip, 102

programmable interrupt controller, 848–849

programmable logic arrays, 98

programmable peripheral interface, 772

programmed I/O, 775

programmer productivity, 11

PROM, 666

protected mode architecture, 265

protection, 748

protection bits, 743

pseudo-LRU, 739, 743

replacement policy, 725

PTR directive, 339

PUBLIC directive, 427

PutInt8, 492

Q

quicksort, 458

algorithm, 459

MIPS procedure, 653

Pentium procedure, 460

Quine–McCluskey method, 67–71

don’t cares, 71

R

RAM, 666

DRAM, 666

SRAM, 666

read-after-write (RAW) dependency, 278

real mode architecture, 260–265

recursion, 455–463, 651–657

activation record, 455

factorial, 455, 651

Fibonacci number, 463

versus iteration, 463

in MIPS, 651–657

factorial procedure, 651

quicksort procedure, 653

in Pentium, 455–463

factorial procedure, 456

quicksort procedure, 460

quicksort algorithm, 459, 653

reference bit, 739, 743

refresh, 666

register addressing mode, 215, 332

register forwarding, 279

register interlocking, 280

register renaming, 594

register windows, 576

1056 Index

registers, 207

relative address, 346

rename buffers, 297

rename registers, 297

replacement policies, 711–713, 738

FIFO, 738

LRU, 724, 739

NFU, 738

pseudo-LRU, 725

second chance, 738

reservations stations, 296

resource hazards, 277

response time, 237

retiring instructions, 297

return address, 211

right-pusher language, 554

RISC processors, 574–578

characteristics, 574–575

design principles, 575–578

PowerPC, 578–590

register windows, 576

ROM, 666

EEPROM, 666

EPROM, 666

PROM, 666

rotate instructions, 361–364

row-major order, 308, 450

RS-232 serial interface, see EIA-232

S

scalar registers, 302

SCSI bus, 797–799

bus arbitration, 799

SECDED, 787

second chance replacement policy, 738

segment descriptor, 266–268

segment descriptor tables, 268

GDT, 268

IDT, 268

LDT, 268

segment override, 417

segment registers, 259, 265–266

CS register, 259

DS register, 259

ES register, 260

FS register, 260

GS register, 260

SS register, 259

segmentation, 260, 748

advantages, 748

versus paging, 749

segmentation models, 269

flat, 269

multisegment, 269

segmented memory organization, 260

segment base, 260

segment offset, 260

selection sort, 519

sequential circuit design, 127–140

binary counter design, 127

design steps, 135

even parity example, 132

general counter design, 130

general design process, 132

pattern recognition example, 134

serial transmission, 794

set-associative mapping, 708

shift registers, 120

SHORT directive, 347

short jump, 347

sign bit, 882

sign extension, 487

sign flag, 479

signed integer, 881

1’s complement, 883

2’s complement, 886

excess-M, 882

signed magnitude representation, 882

signed magnitude representation, 882

single-step interrupt, 843

Index 1057

software interrupts, 826, 831

exceptions, 827

system-defined, 827

user-defined, 827

space overhead, 715, 717

space-efficiency, 11

SPARC instructions, 984–1000

add instructions, 986

arithmetic instructions, 986

branch instructions, 989

compare instructions, 988

data transfer instructions, 984

division instructions, 987

logical instructions, 987

multiplication instructions, 987

procedure calls, 993

procedure instructions, 993

shift instructions, 988

subtract instructions, 987

SPARC processor, 979–1000

addressing modes, 982

instruction format, 984

instruction set, 984–1000

parameter passing, 994

stack implementation, 995

window management, 996

spatial locality, 698, 737

SPEC benchmarks, 241–246

SPEC CFP2000, 242

SPEC CINT2000, 242

SPEC CPU2000, 241

SPECjvm98, 245

SPECmail98, 243

SPECweb98, 245

speculative execution, 606–610

control speculation, 609

data speculation, 607

speculative load, 599

SPIM, 969–975

assembler directives, 634

data directives, 635

debugging, 974

loading, 973

miscellaneous directives, 636

running, 973

segments, 634

simulator settings, 972

string directives, 635

system calls, 632

SRAM, 666

stack, 388

activation record, 421

frame pointer, 404, 421

MIPS implementation, 648

operations, 390, 392

operations on flags, 392

overflow, 389, 394

Pentium implementation, 388

SPARC implementation, 995

stack frame, 404, 421, 594

top-of-stack, 388, 389

underflow, 389, 394

use, 393

what is it, 388

stack depth, 204

stack frame, 404, 421, 594

stack machines, 202

stack depth, 204

stack operations, 390, 392

stack overflow, 389, 394

stack underflow, 389, 394

static branch prediction strategy, 284

status flags, 472–484

string directives, 635

string processing

string length, 536

string move, 537

string representation, 526

fixed-length, 526

variable-length, 526

strip mining, 308

structural hazards, 276

sum-of-products, 56

superpipelined processor, 288, 299

1058 Index

superscalar, 252, 287

symbol table, 330, 923

synchronous bus, 153–155

synchronous exceptions, 856

synchronous transmission, 794

system buses, 13, 147, 791–821

AGP, 180

asynchronous bus, 157–158

asynchronous transmission, 794

bus arbitration, 159

control signals, 149

design issues, 150

bus operations, 152

bus type, 152

bus width, 150

external buses, 148, 791–821

FireWire, 810–820

IEEE 1394, 810–820

internal buses, 148

ISA, 166

parallel interface, 797

PC card, 185

PCI, 168

PCI-X, 182

PCMCIA, 185

SCSI, 797–799

serial transmission, 794

EIA-232, 795

small computer system interface, 797–799

synchronous bus, 153–155

block transfer, 155

wait states, 154

synchronous transmission, 794

Universal Serial Bus, 801–809

USB, 801–809

system calls, 632

system-defined interrupts, 827

T

tag field, 705

TASM, 8, 322, 330, 430, 916, 917, 938

taxonomy of interrupts, 827

temporal locality, 699, 737

throughput, 237

time-efficiency, 11

TITLE directive, 909, 919

TLB, see translation lookaside buffer

TLINK, 430, 924, 938

top-of-stack, 388, 389

Towers of Hanoi, 469

transistor implementation of gates, 46

transistor–transistor logic (TTL), 48

translation lookaside buffer (TLB), 743

trap flag, 843

traps, 842

tristate buffers, 671

example chips, 672

truth table, 42

AND, 42

even parity, 49

majority, 49

NAND, 44

NOR, 44

NOT, 42

number of functions, 44

OR, 42

XOR, 44

TTL, 48

Turbo Debugger (TD), 917, 938–943

two’s complement, 886

type specifier, 339

BYTE, 339

DWORD, 339

QWORD, 339

TBYTE, 339

WORD, 339

U

unconditional branch, 208

unconditional jump, 345

underflow, 877, 896

example, 885

Index 1059

Unicode, 903

UTF, 904

Universal Character Set, 903

UCS-2, 903

UCS-4, 903

UTF, 903

universal gates, 45

Universal Serial Bus, 801–809

unsigned integer addition, 875

unsigned integer representation, 874

update bit, 714

USB, 801–809

user-defined interrupts, 827

V

valid bit, 705, 742

variable number of parameters, 417–420

VAX-11/780, 573, 576

vector chaining, 311

vector length, 306

vector length register, 306

vector processors, 299–312

advantages of, 303

architecture, 301

concepts, 300

Cray 1, 301

Cray X-MP, 304–312

load/store unit, 303

memory–memory architecture, 301

performance, 314

scalar registers, 302

strip mining, 308

vector chaining, 311

vector length, 306

vector length register, 306

vector registers, 301

vector stride, 308

vector–register architecture, 301

vector registers, 301

vector stride, 308

vector–register architecture, 301

vectored interrupts, 827

vertical microcode, 231

vertical organization, 231

very long instruction word architectures (VLIW),

290

virtual address, 737

virtual cache, 722

virtual memory, 736–760

concepts, 737–741

dirty bit, 743

example implementations, 750–760

in MIPS, 756

in Pentium, 750

in PowerPC, 754

external fragmentation, 750

internal fragmentation, 740

inverted page table, 746

memory management unit, 737

multiple address spaces, 748

overlays, 736

page fault, 737

page frames, 737

page mapping, 741

page replacement policies, 738

FIFO, 738

LRU, 739

NFU, 738

second chance, 738

page size tradeoffs, 740

page table entries (PTEs), 742, 752

page table hierarchy, 745

bottom up search, 746

search, 745

top down search, 746

page table organization, 741

page table placement, 744

physical pages, 737

protection, 748

protection bits, 743

pseudo-LRU, 739, 743

reference bit, 739, 743

segmentation, 748

1060 Index

segmentation versus paging, 749

translation lookaside buffer, 743

valid bit, 742

virtual page number, 737

virtual pages, 737

write policies, 739

write-through, 739

virtual pages, 737

von Neumann architecture, 18, 31

W

wait cycles, 23, 223

wait states, 154

weighted arithmetic mean, 239

weighted geometric mean, 240

Whetstones benchmark, 241

window management, 996

workload, 236

write combining, 724

write policies, 713–715, 739

write-back, 714

write-through, 739

write-after-read (WAR) dependency, 278

write-after-write (WAW) dependency, 279

write-back, 714

write-back bit, 726

write-through, 713, 739

X

XER register, 579

XOR gate, 43, 44

Z

zero flag, 258, 472

