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PREFACE

In simple terms, manufacturing can be defined as the process by which raw
materials are converted into finished products. The purpose of this book is to
examine in detail the methodology by which electronic materials and supplies
are converted into finished integrated circuits and electronic products in a high-
volume manufacturing environment. This subject of this book will be issues
relevant to the industrial-level manufacture of microelectronic device and circuits,
including (but not limited to) fabrication sequences, process control, experimental
design, process modeling, yield modeling, and CIM/CAM systems. The book will
include theoretical and practical descriptions of basic manufacturing concepts, as
well as some case studies, sample problems, and suggested exercises.

The book is intended for graduate students and can be used conveniently in a
semester-length course on semiconductor manufacturing. Such a course may or
may not be accompanied by a corequisite laboratory. The text can also serve as
a reference for practicing engineers and scientists in the semiconductor industry.

Chapter 1 of the book places the manufacture of integrated circuits into its
historical context, as well as provides an overview of modern semiconductor man-
ufacturing. In the Chapter 2, we provide a broad overview of the manufacturing
technology and processes flows used to produce a variety of semiconductor prod-
ucts. Various process monitoring methods, including those that focus on product
wafers and those that focus on the equipment used to produce those wafers, are
discussed in Chapter 3. As a backdrop for subsequent discussion of statistical
process control (SPC), Chapter 4 provides a review of statistical fundamentals.
Ultimately, the key metric to be used to evaluate any manufacturing process is
cost, and cost is directly impacted by yield. Yield modeling is therefore pre-
sented in Chapter 5. Chapter 6 then focuses on the use of SPC to analyze quality
issues and improve yield. Statistical experimental design, which is presented in
Chapter 7, is a powerful approach for systematically varying controllable process
conditions and determining their impact on output parameters which measure
quality. Data derived from statistical experiments can then be used to construct
process models that enable the analysis and prediction of manufacturing process
behavior. Process modeling concepts are introduced in Chapter 8. Finally, several
advanced process control topics, including run-by-run, supervisory control, and
process and equipment diagnosis, are the subject of Chapters 9 and 10.

xvii



xviii PREFACE

Each chapter begins with an introduction and a list of learning goals, and
each concludes with a summary of important concepts. Solved examples are
provided throughout, and suggested homework problems appear at the end of the
chapter. A complete set of detailed solutions to all end-of-chapter problems has
been prepared. This Instructor’s Manual is available to all adopting faculty. The
figures in the text are also available, in electronic format, from the publisher at
the web site: http://www.wiley.com/college/mayspanos.
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1
INTRODUCTION

TO SEMICONDUCTOR
MANUFACTURING

OBJECTIVES

• Place the manufacturing of integrated circuits in a historical context.
• Provide an overview of modern semiconductor manufacturing.
• Discuss manufacturing goals and objectives.
• Describe manufacturing systems at a high level as a prelude to the remainder

of the text.

INTRODUCTION

This book is concerned with the manufacturing of devices, circuits, and elec-
tronic products based on semiconductors. In simple terms, manufacturing can
be defined as the process by which raw materials are converted into finished
products. As illustrated in Figure 1.1, a manufacturing operation can be viewed
graphically as a system with raw materials and supplies serving as its inputs
and finished commercial products serving as outputs. In semiconductor man-
ufacturing, input materials include semiconductor materials, dopants, metals,
and insulators. The corresponding outputs include integrated circuits (ICs), IC
packages, printed circuit boards, and ultimately, various commercial electronic
systems and products (such as computers, cellular phones, and digital cameras).
The types of processes that arise in semiconductor manufacturing include crystal

Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

1



2 INTRODUCTION TO SEMICONDUCTOR MANUFACTURING

Manufacturing
System

Raw materials
Supplies

Finished
Products

Figure 1.1. Block diagram representation of a manufacturing system.

growth, oxidation, photolithography, etching, diffusion, ion implantation, pla-
narization, and deposition processes.

Viewed from a systems-level perspective, semiconductor manufacturing inter-
sects with nearly all other IC process technologies, including design, fabrication,
integration, assembly, and reliability. The end result is an electronic system
that meets all specified performance, quality, cost, reliability, and environmental
requirements. In this chapter, we provide an overview of semiconductor manu-
facturing, which touches on each of these intersections.

1.1. HISTORICAL EVOLUTION

Semiconductor devices constitute the foundation of the electronics industry, which
is currently (as of 2005) the largest industry in the world, with global sales over
one trillion dollars since 1998. Figure 1.2 shows the sales volume of the semi-
conductor device-based electronics industry since 1980 and projects sales to the
year 2010. Also shown are the gross world product (GWP) and the sales volumes

Figure 1.2. Gross world product (GWP) and sales volumes of various industries from 1980 to
2000 and projected to 2010 [1].
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of the automobile, steel, and semiconductor industries [1]. If current trends con-
tinue, the sales volume of the electronic industry will reach three trillion dollars
and will constitute about 10% of GWP by 2010. The semiconductor industry,
a subset of the electronics industry, will grow at an even higher rate to surpass
the steel industry in the early twenty-first century and to constitute 25% of the
electronic industry in 2010.

The multi-trillion-dollar electronics industry is fundamentally dependent on
the manufacture of semiconductor integrated circuits (ICs). The solid-state com-
puting, telecommunications, aerospace, automotive, and consumer electronics
industries all rely heavily on these devices. A brief historical review of man-
ufacturing and quality control, semiconductor processing, and their convergence
in IC manufacturing, is therefore warranted.

1.1.1. Manufacturing and Quality Control

The historical evolution of manufacturing, summarized in Table 1.1, closely par-
allels the industrialization of Western society, beginning in the nineteenth century.
It could be argued that the key early development in manufacturing was the
concept of interchangeable parts. Eli Whitney is credited with pioneering this
concept, which he used for mass assembly of the cotton gin in the early 1800s [2].
In the late 1830s, a Connecticut manufacturer began producing cheap windup
clocks by stamping out many of the parts out of sheets of brass. Similarly, in
the early 1850s, American rifle manufacturers thoroughly impressed a British
delegation by a display in which 10 muskets made in 10 different preceding
years were disassembled, had their parts mixed up in a box, and subsequently
reassembled quickly and easily. In England at that time, it would have taken a
skilled craftsman the better part of a day to assemble a single unit.

The use of interchangeable parts eliminated the labor involved in matching
individual parts in the assembly process, resulting in a tremendous time sav-
ings and increase in productivity. The adoption of this method required new
forms of technology capable of much finer tolerances in production and mea-
surement methods than those required by hand labor. Examples included the

Table 1.1. Major milestones in manufacturing history.

Year(s) Event

1800–1850 Concept of interchangeable parts introduced
1850–1860 Advances in measurement and machining operations
1875 Taylor introduces scientific management principles
1900–1930 Assembly line techniques actualized by Ford
1924 Control chart introduced by Shewhart
Late 1920s Dodge and Romig develop acceptance sampling
1950s Computer numeric control and designed experiments introduced
1970s Growth in the adoption of statistical experimental design
1980 Pervasive use of statistical methods in many industries
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vernier caliper, which allowed workers to measure machine tolerances on small
scales, and wire gauges, which were necessary in the production of clock springs.
One basic machine operation perfected around this time was mechanical drilling
using devices such as the turret lathe, which became available after 1850. Such
devices allowed a number of tedious operations (hand finishing of metal, grind-
ing, polishing, stamping, etc.) to be performed by a single piece of equipment
using a bank of tool attachments. By 1860, a good number of the basic steps
involved in shaping materials into finished products had been adapted to machine
functions.

Frederick Taylor added rigor to the manufacturing research and practice by
introducing the principles of scientific management into mass production indus-
tries around 1875 [3]. Taylor suggested dividing work into tasks so that products
could be manufactured and assembled more readily, leading to substantial produc-
tivity improvements. He also developed the concept of standardized production
and assembly methods, which resulted in improved quality of manufactured
goods. Along with the standardization of methods came similar standardization in
work operations, such as standard times to accomplish certain tasks, or a specified
number of units that must be produced in a given work period.

Interchangeable parts also paved the way for the next major contribution to
manufacturing: the assembly line. Industrial engineers had long noted how much
labor is spent in transferring materials between various production steps, com-
pared with the time spent in actually performing the steps. Henry Ford is credited
for devising the assembly line in his quest to optimize the means for producing
automobiles in the early twentieth century. However, the concept of the assembly
line had actually been devised at least a century earlier in the flour mill indus-
try by Oliver Evans in 1784 [2]. Nevertheless, it was not until the concept of
interchangeable parts was combined with technology innovations in machining
and measurement that assembly line methods were truly actualized in their ulti-
mate form. After Ford, the assembly line gradually replaced more labor-intensive
forms of production, such as custom projects or batch processing.

No matter what industry, no one working in manufacturing today can overem-
phasize the influence of the computer, which catalyzed the next major paradigm
shift manufacturing technology. The use of the computer was the impetus for
the concept of computer numeric control (CNC), introduced in the 1950s [4].
Numeric control was actually developed much earlier. The player piano is a
good example of this technique. This instrument utilizes a roll of paper with
holes punched in it to determine whether a particular note is played. The numeric
control concept was enhanced considerably by the invention of the computer in
1943. The first CNC device was a spindle milling machine developed by John
Parsons of MIT in 1952. CNC was further enhanced by the use of micropro-
cessors for control operations, beginning around 1976. This made CNC devices
sufficiently versatile that an existing tooling could be quickly reconfigured for
different processes. This idea moved into semiconductor manufacturing more
than a decade later when the machine communication standards made it possible
to have factorywide production control.
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The inherent accuracy and repeatability engendered by the use of the computer
eventually enabled the concept of statistical process control to gain a foothold
in manufacturing. However, the application of statistical methods actually had a
long prior history. In 1924, Walter Shewhart of Bell Laboratories introduced the
control chart. This is considered by many as the formal beginning of statistical
quality control. In the late 1920s, Harold Dodge and Harry Romig, both also
of Bell Labs, developed statistically based acceptance sampling as an alterna-
tive to 100% inspection. By the 1950s, rudimentary computers were available,
and designed experiments for product and process improvement were first intro-
duced in the United States. The initial applications for these techniques were
in the chemical industry. The spread of these methods to other industries was
relatively slow until the late 1970s, when their further adoption was spurred by
economic competition between Western companies and the Japanese, who had
been systematically applying designed experiments since the 1960s. Since 1980,
there has been profound and widespread growth in the use of statistical methods
worldwide, and particularly in the United States.

1.1.2. Semiconductor Processes

Many important semiconductor technologies were derived from processes inven-
ted centuries ago. Some of the key technologies are listed in Table 1.2 in chrono-
logical order. For the most part, these techniques were developed independently
from the evolution of manufacturing science and technology. For example, the
growth of metallic crystals in a furnace was pioneered by Africans living on the

Table 1.2. Major milestones in semiconductor processing history.

Year Event

1798 Lithography process invented
1855 Fick proposes basic diffusion theory
1918 Czochralski crystal growth technique invented
1925 Bridgman crystal growth technique invented
1952 Diffusion used by Pfann to alter conductivity of silicon
1957 Photoresist introduced by Andrus; oxide masking developed by Frosch

and Derrick; epitaxial growth developed by Sheftal et al.
1958 Ion implantation proposed by Shockley
1959 Kilby and Noyce invent the IC
1963 CMOS concept proposed by Wanlass and Sah
1967 DRAM invented by Dennard
1969 Self-aligned polysilicon gate process proposed by Kerwin et al.;

MOCVD developed by Manasevit and Simpson
1971 Dry etching developed by Irving et al.; MBE developed by Cho; first

microprocessor fabricated by Intel
1982 Trench isolation technology introduced by Rung et al.
1989 CMP developed by Davari et al.
1993 Copper interconnect introduced to replace aluminum by Paraszczak et al.
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western shores of Lake Victoria more than 2000 years ago [5]. This process was
used to produce carbon steel in preheated forced-draft furnaces. Another example
is the lithography process, which was invented in 1798. In this first process, the
pattern, or image, was transferred from a stone plate (lithos) [6]. The diffusion of
impurity atoms in semiconductors is also important for device processing. Basic
diffusion theory was described by Fick in 1855 [7].

In 1918, Czochralski developed a liquid–solid monocomponent growth tech-
nique used to grow most of the crystals from which silicon wafers are pro-
duced [8]. Another growth technique was developed by Bridgman in 1925 [9].
The Bridgman technique has been used extensively for the growth of gallium
arsenide and related compound semiconductors. The idea of using diffusion tech-
niques to alter the conductivity in silicon was disclosed in a patent by Pfann in
1952 [10]. In 1957, the ancient lithography process was applied to semiconductor
device fabrication by Andrus [11], who first used photoresist for pattern transfer.
Oxide masking of impurities was developed by Frosch and Derrick in 1957 [12].
In the same year, the epitaxial growth process based on chemical vapor deposition
was developed by Sheftal et al. [13]. In 1958, Shockley proposed the method of
using ion implantation to precisely control the doping of semiconductors [14].

In 1959, the first rudimentary integrated circuit was fabricated from ger-
manium by Kilby [15]. Also in 1959, Noyce proposed the monolithic IC by
fabricating all devices in a single semiconductor substrate and connecting the
devices by aluminum metallization [16]. As the complexity of the IC increased,
the semiconductor industry moved from NMOS (n-channel MOSFET) to CMOS
(complementary MOSFET) technology, which uses both NMOS and PMOS (p-
channel MOSFET) processes to form the circuit elements. The CMOS concept
was proposed by Wanlass and Sah in 1963 [17]. In 1967, the dynamic random
access memory (DRAM) was invented by Dennard [18].

To improve device reliability and reduce parasitic capacitance, the self-aligned
polysilicon gate process was proposed by Kerwin et al. in 1969 [19]. Also in
1969, the metallorganic chemical vapor deposition (MOCVD) method, an impor-
tant epitaxial growth technique for compound semiconductors, was developed by
Manasevit and Simpson [20]. As device dimensions continued to shrink, dry
etching was developed by Irving et al. in 1971 to replace wet chemical etching
for high-fidelity pattern transfer [21]. Another important technique developed in
the same year by Cho was molecular-beam epitaxy (MBE) [22]. MBE has the
advantage of near-perfect vertical control of composition and doping down to
atomic dimensions. Also in 1971, the first monolithic microprocessor was fabri-
cated by Hoff et al. at Intel [23]. Currently, microprocessors constitute the largest
segment of the industry.

Since 1980, many new technologies have been developed to meet the require-
ments of continuously shrinking minimum feature lengths. Trench technology was
introduced by Rung et al. in 1982 to isolate CMOS devices [24]. In 1989, the
chemical–mechanical polishing (CMP) method was developed by Davari et al.
for global planarization of the interlayer dielectrics [25]. Although aluminum has
been used since the early 1960s as the primary IC interconnect material, copper
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interconnect was introduced in 1993 by Paraszczak et al. to replace aluminum
for minimum feature lengths approaching 100 nm [26].

1.1.3. Integrated Circuit Manufacturing

By the beginning of the 1980s, there was deep and widening concern about the
economic well-being of the United States. Oil embargoes during the previous
decade had initiated two energy crises and caused rampant inflation. The U.S.
electronics industry was no exception to the economic downturn, as Japanese
companies such as Sony and Panasonic nearly cornered the consumer electron-
ics market. The U.S. computer industry experienced similar difficulties, with
Japanese semiconductor companies beginning to dominate the memory market
and establish microprocessors as the next target.

Then, as now, the fabrication of ICs was extremely expensive. A typical
state-of-the-art, high-volume manufacturing facility at that time cost over a mil-
lion dollars (and now costs several billion dollars) [27]. Furthermore, unlike the
manufacture of discrete parts such as appliances, where relatively little rework
is required and a yield greater than 95% on salable product is often realized, the
manufacture of integrated circuits faced unique obstacles. Semiconductor fabri-
cation processes consisted of hundreds of sequential steps, with potential yield
loss occurring at every step. Therefore, IC manufacturing processes could have
yields as low as 20–80%.

Because of rising costs, the challenge before semiconductor manufacturers
was to offset large capital investment with a greater amount of automation and
technological innovation in the fabrication process. The objective was to use the
latest developments in computer hardware and software technology to enhance
manufacturing methods. In effect, this effort in computer-integrated manufactur-
ing of integrated circuits (IC-CIM) was aimed at optimizing the cost-effectiveness
of IC manufacturing as computer-aided design (CAD) had dramatically affected
the economics of circuit design.

IC-CIM is designed to achieve several important objectives, including increas-
ing chip fabrication yield, reducing product cycle time, maintaining consistent
levels of product quality and performance, and improving the reliability of pro-
cessing equipment. Table 1.3 summarizes the results of a 1986 study by Toshiba
that analyzed the use of IC-CIM techniques in producing 256-kbyte DRAM
memory circuits [28]. This study showed that CIM techniques improved the
manufacturing process on each of the four productivity metrics investigated.

Table 1.3. Results of 1986 Toshiba study.

Productivity Metric Without CIM With CIM

Turnaround time 1.0 0.58
Integrated unit output 1.0 1.50
Average equipment uptime 1.0 1.32
Direct labor hours 1.0 0.75
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Figure 1.3. Timeline indicating convergence of manufacturing science and semiconductor
processing into IC-CIM.

In addition to the demonstration of the effectiveness of IC-CIM techniques,
economic concerns were so great in the early to mid-1980s that the Reagan
Administration took the unprecedented step of partially funding a consortium
of U.S. IC manufacturers—including IBM, Intel, Motorola, and Texas Instru-
ments—to perform cooperative research and development on semiconductor
manufacturing technologies. This consortium, SEMATECH, officially began oper-
ations in 1988 [29]. This sequence of events signaled the convergence of advances
in manufacturing science and semiconductor process technology, and also her-
alded the origin of a more systematic and scientific approach to semiconductor
manufacturing. This convergence is illustrated in Figure 1.3.

1.2. MODERN SEMICONDUCTOR MANUFACTURING

The modern semiconductor manufacturing process sequence is the most sophisti-
cated and unforgiving volume production technology that has ever been practiced
successfully. It consists of a complex series of hundreds of unit process steps
that must be performed very nearly flawlessly.

This semiconductor manufacturing process can be defined at various levels
of abstraction. For example, each process step has inputs, outputs, and spec-
ifications. Each step can also be modeled, either physically, empirically, or
both. Much can be said about the technology of each step, and more depth
in this area is provided in Chapter 2. At a higher level of abstraction, mul-
tiple process steps are linked together to form a process sequence. Between
some of these links are inspection points, which merely produce information
without changing the product. The flow and utilization of information occurs at
another level of abstraction, which consists of various control loops. Finally, the
organization of the process belongs to yet another level of abstraction, where
the objective is to maximize the efficiency of product flow while reducing
variability.
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1.2.1. Unit Processes

It is difficult to discuss unit process steps outside the context of a process flow.
Figures 1.4 and 1.5 show the major unit processes used in a simple process flow.
These steps include oxidation, photolithography, etching, ion implantation, and
metallization. We describe these steps briefly in this section via a simple sequence
used to fabricate a p–n junction [1].

The development of a high-quality silicon dioxide (SiO2) has helped to estab-
lish the dominance of silicon in the production of commercial ICs. Generally,
SiO2 functions as an insulator in a number of device structures or as a barrier to
diffusion or implantation during device fabrication. In the fabrication of a p–n

junction (Figure 1.4), the SiO2 film is used to define the junction area. There
are two SiO2 growth methods, dry and wet oxidation, depending on whether

n

Figure 1.4. (a) A bare n-type silicon wafer; (b) an oxidized silicon wafer; (c) application of
photoresist; (d) resist exposure through a mask [1].
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Figure 1.5. (a) Wafer after development; (b) wafer after SiO2 removal; (c) result after pho-
tolithography; (d) formation of a p–n junction using diffusion or implantation; (e) wafer after
metallization; (f) final product [1].

dry oxygen or water vapor is used. Dry oxidation is usually used to form thin
oxides in a device structure because of its good Si–SiO2 interface characteristics,
whereas wet oxidation is used for thicker layers because of its higher growth rate.
Figure 1.4a shows a section of a bare wafer ready for oxidation. After the oxi-
dation process, a SiO2 layer is formed all over the wafer surface. For simplicity,
Figure 1.4b shows only the upper surface of an oxidized wafer.

Photolithography is used to define the geometry of the p–n junction. After the
formation of SiO2, the wafer is coated with an ultraviolet (UV) light-sensitive
material called photoresist, which is spun onto the wafer surface. Afterward
(Figure 1.4c), the wafer is baked to drive the solvent out of the resist and to
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harden the resist for improved adhesion. Figure 1.4d shows the next step, which
is to expose the wafer through a patterned mask using an UV light source. The
exposed region of the photoresist-coated wafer undergoes a chemical reaction.
The exposed area becomes polymerized and difficult to remove in an etchant. The
polymerized region remains when the wafer is placed in a developer, whereas the
unexposed region dissolves away. Figure 1.5a shows the wafer after the devel-
opment. The wafer is again baked to enhance the adhesion and improve the
resistance to the subsequent etching process. Then, an etch using hydrofluoric
acid (HF) removes the unprotected SiO2 surface (Figure 1.5b). Last, the resist is
stripped away by a chemical solution or an oxygen plasma. Figure 1.5c shows
the final result of a region without oxide (a window) after the lithography pro-
cess. The wafer is now ready for forming the p–n junction by a diffusion or ion
implantation process.

In diffusion, the wafer surface not protected by the oxide is exposed to a
source with a high concentration of an opposite-type impurity. The impurity
moves into the semiconductor crystal by solid-state diffusion. In ion implantation,
the intended impurity is introduced into the wafer by accelerating the impurity
ions to a high energy level and then implanting the ions in the semiconductor.
The SiO2 layer serves as barrier to impurity diffusion or ion implantation. After
diffusion or implantation, the p–n junction is formed (Figure 1.5d).

After diffusion or ion implantation, a metallization process is used to form
ohmic contacts and interconnections (Figure 1.5e). Metal films can be formed by
physical vapor deposition or chemical vapor deposition. The photolithography
process is again used to define the front contact, which is shown in Figure 1.5f.
A similar metallization step is performed on the back contact without using a
photolithography process.

1.2.2. Process Sequences

Semiconductor manufacturing consists of a series of sequential process steps
like the one described in the previous section in which layers of materials are
deposited on substrates, doped with impurities, and patterned using photolithogra-
phy to produce ICs. Figure 1.6 illustrates the interrelationship between the major
process steps used for IC fabrication. Polished wafers with a specific resistivity
and orientation are used as the starting material. The film formation steps include
thermally grown oxide films, as well as deposited polysilicon, dielectric, and
metal films. Film formation is often followed by photolithography or impurity
doping. Photolithography is generally followed by etching, which in turn is often
followed by another impurity doping or film formation. The final IC is made by
sequentially transferring the patterns from each mask, level by level, onto the
surface of the semiconductor wafer.

After processing, each wafer contains hundreds of identical rectangular chips
(or dies), typically between 1 and 20 mm on each side, as shown in Figure 1.7a.
The chips are separated by sawing or laser cutting; Figure 1.7b shows a separated
chip. Schematic top views of a single MOSFET and a single bipolar transistor
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Figure 1.6. Flow diagram for generic IC process sequence [1].

Figure 1.7. (a) Semiconductor wafer; (b) IC chip; (c) MOSFET and bipolar transistor [1].

are shown in Figure 1.7c. Inserted into this process sequence are various points
at which key measurements are performed to ensure product quality.

1.2.3. Information Flow

The vast majority of quantitative evaluation of semiconductor manufacturing
processes is accomplished via IC-CIM systems. The interdependent issues of
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ensuring high yield, high quality, and low cycle time are addressed by several
critical capabilities in a state-of-the-art IC-CIM system: work-in-process (WIP)
monitoring, equipment communication, data acquisition and storage, process/
equipment modeling, and process control, to name only a few. The emphasis
of each of these activities is to increase throughput and prevent potential mis-
processing, but each presents significant engineering challenges in their effective
implementation and deployment.

A block diagram of a typical modern IC-CIM system is shown in Figure 1.8.
This diagram outlines many of the key features required for efficient information
flow in manufacturing operations [28]. The lower level of this two-level architec-
ture includes embedded controllers that provide real-time control and analysis of
fabrication equipment. These controllers consist of personal computers and the
associated control software dedicated to each individual piece of equipment. The
second level of this IC-CIM architecture consists of a distributed local-area net-
work of computer workstations and file servers linked by a common distributed
database.

Equipment communication with host computers is facilitated by an electron-
ics manufacturing standard called the generic equipment model (GEM). The
GEM standard is used in both semiconductor manufacturing and printed cir-
cuit board assembly. This standard is based on the semiconductor equipment
communications standard (SECS) protocol. SECS is a standard for communi-
cation between intelligent equipment and a host. The SECS standard has two
components that define the communications protocol (SECS-I) and the messages
exchanged (SECS-II), respectively. SECS-I specifies point-to-point communica-
tions over a high-speed messaging service interface. GEM is a standard set of
SECS capabilities that can be selected by users as needed to coordinate equip-
ment control in an automated factory. The GEM standard defines semiconductor
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Figure 1.8. Two-level IC-CIM architecture [28].
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equipment behavior as viewed through a communication link in terms of SECS-II
messages communicated over that link. The GEM standard impacts equipment
control and equipment–host communication and enables equipment to be inte-
grated quickly and efficiently with a host computer [30].

The flow of information in this type of IC-CIM architecture enables equipment
and process control at several levels. The highest level can be thought of as
supervisory control, where the progression of a substrate is tracked from process
to process. At this level, adjustments can be made to subsequent process steps
to account for variation in previous procedures. The next lower level of control
occurs on a run-by-run basis. For a single process, adjustments are made after
each run to account for shifts and drifts that occur from wafer to wafer. Occasional
shifts may occur when a new operator takes over or preventive maintenance is
performed. A process may also experience drift due to equipment aging. Real-
time control is at the lowest level of the hierarchy. In this case, adjustments are
made to a process during a run to account for in situ disturbances. This hierarchy
is diagramed in Figure 1.9.

1.2.4. Process Organization

As mentioned previously, the overall objective of process organization is to max-
imize the efficiency of product flow while minimizing variability and yield loss.
Modern semiconductor factories [known as “fabs” (Fabrication Facilities)] are
typically organized into workcells. In this approach, all the necessary equipment
for completing a given process step is placed in the same room (see Figure 1.10).
The workcell layout optimizes product flow, resulting in a minimal average
distance traveled by semiconductor wafers as they migrate through the fabrication
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Figure 1.9. Process control hierarchy.

Figure 1.10. Workcell layout in a modern IC fabrication facility.
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facility. This reduced distance translates into fewer chances for wafer mishandling
and potential loss of product. Furthermore, the trend in equipment development
since the mid-1990s has been toward single-wafer processing systems that enable
enhanced reproducibility.

This modern IC factory also draws on powerful computing concepts, resulting
in a highly flexible manufacturing system. In addition to the actual processing
equipment, the factory consists of advanced in situ, postprocess, and end-of-
the-line metrology and instrumentation necessary to quality control, equipment
maintenance and diagnosis, rapid failure recovery, and inventory management.
The physical factory is also augmented by simulation tools that allow various
scenarios to be evaluated in a virtual manufacturing environment.

1.3. GOALS OF MANUFACTURING

From a systems-level perspective, semiconductor manufacturing intersects with
design, fabrication, integration, assembly, and reliability. The fundamental goals
of manufacturing are to tie all of these technologies together to achieve finished
products with

• Low cost
• High quality
• High reliability

Cost is most directly impacted by yield and throughput. Yield is the proportion
of products that meet the required performance specifications. Yield is inversely
proportional to cost; that is, the higher the yield, the lower the cost. Throughput
refers to the number of products processed per unit time. High throughput also
leads to lower cost. The quality goal is virtually self-explanatory. It is obviously
desirable to produce high-quality ICs that can be efficiently and repeatably mass-
produced with a high degree of uniformity. Quality is derived from a stable and
well-controlled manufacturing process. The reliability of electronic products is
also impacted by the manufacturing process. High reliability results from the
minimization of manufacturing faults. If each of the abovementioned goals is
fulfilled, the end result is an IC that meets all specified performance, quality,
cost, and reliability requirements.

1.3.1. Cost

Understanding the economics of IC manufacturing is important not only to the
manufacturer but also to buyers and designers. A general rule of thumb is that
IC fabrication, testing, and packaging each contribute about one-third of the total
product cost. A variety of factors contribute to overall product costs, including
the following [31]:

• Wafer processing cost
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• Wafer processing yield

• Die size

• Wafer probe cost

• Probe yield

• Number of good dies

• Package cost

• Assembly yield

• Final test cost

• Final test yield

Wafer processing cost depends on wafer size, raw-wafer cost, direct labor cost,
facility cost, and direct factory overhead (i.e., indirect labor costs, utilities, and
maintenance). Direct costs (i.e., raw-wafer cost and direct labor) typically account
for 10–15% of the wafer processing cost, with the remaining indirect costs
accounted for by the equipment and facility depreciation, engineering support,
facility operating costs, production control, and direct factory overhead. Increas-
ingly, equipment costs contribute the lion’s share, accounting for over 70% of
the total indirect cost.

Currently, IC fabrication cost (excluding design costs) is about $4/cm2 at
mature production levels [32]. The cost per IC to produce N chips (or equiv-
alently, N circuit functions) is proportional to ekN , where k is a constant pro-
portional to the cost of assembly and testing [33]. The interplay between these
factors and their impact on cost is illustrated in Figure 1.11. Cost per IC is min-
imized by maximizing both the number of chips per wafer and the proportion of
good chips (also known as the yield ).

Figure 1.11. Cost per function versus number of functions [33].
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1.3.2. Quality

Quality is among the most important factors in any manufacturing process. Under-
standing and improving quality are key ingredients to business success, growth,
and enhanced competitiveness. Significant return on investment may be realized
from adequate attention to continuous quality improvement as an integral part of
an overall business strategy.

The term “quality” may be defined in many ways. The traditional definition
is based on the notion that products must meet the requirements of those who
use them. Thus, in this text, we adopt the simple definition of “fitness for use.”
This definition encompasses two general aspects: quality of design and quality
of conformance. Quality of design is affected by choices in fabrication materials,
component specifications, product size, and other features. Quality of confor-
mance addresses how well a product conforms to the specifications required
by the design. Quality of conformance is impacted by the manufacturing pro-
cess, equipment performance, competence and training of the workforce, and the
implementation of quality control procedures.

1.3.3. Variability

An alternative definition of quality of conformance is “the inverse of variability.”
This definition implies that quality may be improved by reducing variation in the
various figures of merit that define product performance. This reduced variabil-
ity translates directly into lower manufacturing costs due to less misprocessing,
rework, and waste. Thus, processes in which the degree of quality is repeatable
with a high degree of uniformity are preferred.

Unfortunately, a certain amount of variability is inherent in every product.
No two products are ever completely identical. For example, the dimensions
of two thin metal films used for IC interconnect will vary according to the
precise conditions and equipment used to deposit and pattern the films. Small
variations might have negligible impact on the final product, but large variations
can lead to final products that are unacceptable. Quality improvement is defined
as the reduction of such variability in processes and products. Since variability is
usually described in statistical terms, statistical methods are necessary for quality
improvement efforts.

1.3.4. Yield

As previously mentioned, IC cost is minimized by maximizing both the num-
ber of chips produced (i.e., the throughput) and the proportion of functionally
operational chips per wafer. The latter parameter is known as the yield. As a con-
sequence of its direct impact on manufacturing cost, yield is perhaps the most
important figure of merit in semiconductor manufacturing.

Yield improvement achieved over time is referred to as “yield learning.” Strate-
gies for accelerated yield learning are critical for the economic viability of semi-
conductor manufacturing operations, as illustrated in Figure 1.12. Business goals
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Figure 1.12. Yield learning cycle [33].

drive yield targets. The actual yield achieved is regularly monitored and tracked
against those targets. The root causes of yield detractors are systematically iden-
tified and analyzed. Appropriate action plans to eliminate these causes are sub-
sequently developed and implemented. Once target yields are achieved, they are
modified (usually increased), and the learning cycle is repeated. It is of paramount
importance to both reduce the duration of this cycle and optimize its efficiency.

1.3.5. Reliability

Another dimension of the quality of electronic products is their reliability. Relia-
bility is a characteristic of a product that is associated with the probability that it
will perform its intended function under specified conditions for a stated period
of time. The enhancement of reliability is accomplished by failure-mode anal-
ysis, which is aimed at identifying the mechanisms for failure and translating
this information into remedies that impact design and manufacturing processes.
Reliability is usually quantified by statistical inference techniques applied to a
suitable population of devices that have undergone extensive testing and failure-
mode analysis. However, although the reliability of integrated circuits is often
directly impacted by the manufacturing process, a detailed study of reliability
and associated topics is beyond the scope of this text. Readers interested in a
more thorough treatment are referred to Nash [34].

1.4. MANUFACTURING SYSTEMS

In general, manufacturing systems may be subdivided into two categories:
(1) continuous-flow manufacturing and (2) discrete-parts manufacturing.
Continuous-flow manufacturing involves chemical or physical processes that
change the state of the part before the part is connected to other components to
form a finished product. Most of the unit processes used in IC fabrication prior
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Figure 1.13. Printed circuit board for a single-board engine controller [35].

to wafer dicing and packaging are continuous flow manufacturing operations.
Discrete-parts manufacturing, on the other hand, refers to the assembly of distinct
pieces to yield a final product. In microelectronics manufacturing, an example of
a product assembled using discrete parts manufacturing is a printed circuit board
(PCB) populated by individual ICs (as shown in Figure 1.13).

1.4.1. Continuous Flow

Continuous-flow manufacturing refers to processing operations that do not involve
assembly of discrete parts. For continuous-flow manufacturing operations, the
process inputs (see Figure 1.1) are the semiconductor substrate and raw materials
such as dopants, insulators, and metals. Continuous-flow processes consist of the
steps such as those described in Section 1.2. These processes may be further
subdivided into batch and single-workpiece (or single-wafer) operations.
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1.4.1.1. Batch Processes
Batch processes are those that operate on multiple products simultaneously. In
IC manufacturing, the items being processed are semiconductor wafers, and the
batches are called “lots.” State-of-the-art semiconductor manufacturing factories
employ a plethora of batch fabrication equipment, such as furnaces for high-
volume wafer processing. This facilitates factory throughputs on the order of
tens of thousands of wafers processed per month.

An example of a batch process in semiconductor manufacturing is chemical
vapor deposition (CVD; see Chapter 2). Figure 1.14 shows a schematic of a
typical CVD furnace. In this type of hot-wall, reduced-pressure reactor, the quartz
furnace tube is heated in three individual zones, and reactive gas is introduced
at one end and pumped out the opposite end. The wafers are placed vertically
side-by-side in a container known as a “boat.” Gas reacting on the surface of the
wafers causes the desired thin films to be deposited.

However, the high manufacturing throughput that is characteristic of batch
processing is often achieved at the expense of uniformity and process control. In
the case of CVD, for example, wafers farthest from the gas inlet may exhibit lower
deposition rates as a result of the reduced availability of reactant gases, which
are consumed by reactions closer to the inlet. This effect can be compensated for
somewhat by increasing the deposition temperature in each subsequent reaction
zone from the inlet.

1.4.1.2. Single Workpiece
Single-workpiece manufacturing operations involve individual items processed
one at a time. In IC manufacturing, the workpiece is the semiconductor wafer.
As wafer sizes have grown over the years, single-wafer processing approaches
have proliferated. This has occurred for several reasons. First, scaling up batch
tools and maintaining uniformity across the wafer surface becomes more difficult
for wafers 200 mm in diameter and larger. At the same time, for submicrometer
features, it is nearly impossible to maintain features size control across these
large wafers. In addition, when only a single wafer is processed at a time, if any
flaw in a process step is detected, it can be corrected before the next wafer is
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Figure 1.14. Example of a batch process: a CVD reactor [1].
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Figure 1.15. Surface mount printed circuit board assembly process.

processed. Finally, process development for large wafers has become increasingly
expensive, and these costs are mitigated by the single wafer approach.

Therefore, semiconductor manufacturing has evolved from primarily a batch
operation to an increasingly single-wafer operation. The advantages of single-
wafer processing include (1) lower overall factory cost, (2) enhanced observabil-
ity by in situ sensors for more robust process control, (3) rapid manufacturing
cycle time, and (4) increased flexibility for manufacturing numerous products
based on different technologies [36].

1.4.2. Discrete Parts

In discrete-parts microelectronics manufacturing, the inputs to the manufacturing
system are the bare printed circuit board and the various circuit components. For
example, in surface mount assembly, the manufacturing process consists of the
following (Figure 1.15):

1. Screen-printing solder paste onto the bonding pads of the circuit board with
a stencil printer

2. Placing the circuit components (ICs and passives) onto the pad locations
using a placement machine

3. Melting the solder paste in a reflow oven to form the connection between
components and the pads

4. Testing and inspecting the populated board for quality control

Following attachment of the ICs, the output of the process is the fully intercon-
nected and populated circuit board.

The output of the process is a populated circuit board that is ready for inte-
gration into an electronic system.

1.5. OUTLINE FOR REMAINDER OF THE BOOK

In Chapter 2 we will provide a broad overview of the manufacturing technol-
ogy and process flows used to produce a variety of semiconductor products.
The individual unit processes used in fabricating ICs, as well as techniques
for process integration and IC packaging, will be discussed. The unit processes
include oxidation, photolithography, doping, etching, thin-film deposition, and
planarization. The integrated process flows, which focus on silicon technology,
include the complementary metal–oxide–semiconductor (CMOS), bipolar, and
BiCMOS processes.
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For all aspects of semiconductor manufacturing, testing and inspection are
necessary to yield high-quality products. In Chapter 3, therefore, various process
monitoring methods, including those that focus on product wafers and those
that focus on the equipment used to produce those wafers, are discussed in
detail. Maintaining quality involves the use of statistical process control (SPC).
Since product variability is often described in statistical terms, statistical methods
will necessarily play a central role in quality control and improvement efforts.
Therefore, Chapter 4 will provide a review of statistical fundamentals.

Ultimately, the key metric to be used to evaluate any manufacturing process
is cost, and cost is directly impacted by yield. Yield refers to the proportion of
manufactured products that perform as required by a set of specifications. Yield
is inversely proportional to the total manufacturing cost—the higher the yield,
the lower the cost. Yield modeling is presented in Chapter 5. Chapter 6 will then
focus on the use of SPC to analyze quality issues and improve yield.

A designed experiment is an extremely useful tool for discovering key vari-
ables that influence quality characteristics. Statistical experimental design is a
powerful approach for systematically varying controllable process conditions and
determining their impact on output parameters that measure quality. Data derived
from such experiments can then be used to construct process models of various
types that enable the analysis and prediction of manufacturing process behavior.
Statistical experimental design is presented in Chapter 7, and process modeling
concepts are introduced in Chapter 8.

Finally, several advanced process control topics are the subject of Chapters 9
and 10. These topics include run-by-run control of unit processes and supervisory
control of process sequences, as well as the diagnosis of process and equipment
malfunctions.

SUMMARY

In this chapter, we have provided background and motivation for the study of
semiconductor manufacturing and process control. We have done so by surveying
the history of integrated circuit processing, describing the attributes of manufac-
turing systems, and discussing the goals and objectives of modern electronics
manufacturing operations. In so doing, this chapter has provided a foundation for
the various issues relevant to semiconductor manufacturing that will be presented
in the remainder of the book.

PROBLEMS

1.1. List the input and output parameters of a typical semiconductor manufac-
turing process.

1.2. What were the key milestones in the historical evolution of semiconductor
manufacturing? How did the evolution of semiconductor process technology
interact with and impact the development of manufacturing technology?
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1.3. Describe the basic unit processes involved in IC fabrication and the
sequences in which they are performed to yield products.

1.4. What is the significance of information flow within an IC factory?

1.5. Explain the differences between real-time, run-by-run, and supervisory
control.

1.6. Why are IC factories organized into workcells?

1.7. List and prioritize the overall goals of IC manufacturing.

1.8. What is the difference between continuous-flow and discrete manufacturing
processes? What role do each of these play in semiconductor manufacturing?

1.9. Why has semiconductor manufacturing evolved from batch operations
toward single-wafer operations? What are the advantages and disadvantages
of each approach?
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TECHNOLOGY OVERVIEW

OBJECTIVES

• Provide an overview of the critical unit processes in semiconductor manu-
facturing.

• Describe the integration of such processes into sequences for fabricating
specific technology families.

INTRODUCTION

Planar fabrication technology is used extensively for integrated circuit manufac-
turing. In Section 1.2.1 we briefly described the major steps of a planar process.
We provide a more thorough description of these steps, as well as their integra-
tion for particular technology families, in this chapter. However, this treatment
is in no way intended to be comprehensive. More complete and detailed discus-
sions can be found in several other texts, such as Fundamentals of Semiconductor
Fabrication [1], for example.

2.1. UNIT PROCESSES

Chapter 1 provided an introduction to the key unit process steps in IC fabrication,
including oxidation, photolithography, etching, ion implantation, and metalliza-
tion. This was accomplished using the description of the process sequence used
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Figure 2.1. Cross section of a MOSFET [1].

to fabricate a p–n junction. Here, we describe each of these steps, as well as
planarization, in more detail.

2.1.1. Oxidation

Many different kinds of thin films are used to fabricate discrete devices and inte-
grated circuits, including thermal oxides, dielectric layers, polycrystalline silicon,
and metal films. For example, a silicon n-channel MOSFET (Figure 2.1) uses all
four groups of films. An important oxide layer is the gate oxide, under which a
conducting channel can be formed between the source and the drain. A related
layer is the field oxide, which provides isolation from other devices. Both gate
and field oxides generally are grown by a thermal oxidation process because
only thermal oxidation can provide the highest-quality oxides having the lowest
interface trap densities.

Semiconductors can be oxidized by various methods, including thermal oxi-
dation, electrochemical anodization, and plasma-enhanced chemical vapor depo-
sition (PECVD; see Section 2.1.5). Among these, thermal oxidation is the most
important for silicon devices. It is a key process in modern silicon IC technol-
ogy. The basic thermal oxidation apparatus (shown in Figure 2.2) consists of a
resistance-heated furnace, a cylindrical fused-quartz tube containing the silicon
wafers held vertically in a slotted quartz boat, and a source of either pure dry
oxygen or pure water vapor. Oxidation temperature is generally in the range
of 900–1200◦C, and the typical gas flowrate is about 1 L/min. The oxidation
system uses microprocessors to regulate the gas flow sequence, to control the
automatic insertion and removal of silicon wafers, to ramp the temperature up
(i.e., to increase the furnace temperature linearly) from a low temperature to the
oxidation temperature, to maintain the oxidation temperature to within ±1◦C,
and to ramp the temperature down when oxidation is completed.
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Figure 2.2. Schematic of an oxidation furnace [1].

2.1.1.1. Growth Kinetics
The following chemical reactions describe the thermal oxidation of silicon in
oxygen (“dry” oxidation) and water vapor (“wet” oxidation), respectively:

Si(solid) + O2(gas) → SiO2(solid) (2.1)

Si(solid) + 2H2O(gas) → SiO2(solid) + 2H2(gas) (2.2)

The silicon–silicon dioxide interface moves into the silicon during the oxidation
process. This creates a new interface region, with surface contamination on the
original silicon ending up on the oxide surface. As a result of the densities and
molecular weights of silicon and silicon dioxide, growing an oxide of thickness
x consumes a layer of silicon 0.44x thick (Figure 2.3).

The kinetics of silicon oxidation can be described on the basis of the simple
model illustrated in Figure 2.4. A silicon slice contacts the oxidizing species (oxy-
gen or water vapor), resulting in a surface concentration of C0 molecules/cm3 for
these species. The magnitude of C0 equals the equilibrium bulk concentration of
the species at the oxidation temperature. The equilibrium concentration generally
is proportional to the partial pressure of the oxidant adjacent to the oxide surface.

SiO2 surface

SiO2

Original Si surface

Silicon substrate

Figure 2.3. Movement of silicon–silicon dioxide interface during oxide growth [1].
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Figure 2.4. Basic model for the thermal oxidation of silicon [1].

At 1000◦C and a pressure of 1 atm, the concentration C0 is 5.2 × 1016 cm−3 for
dry oxygen and 3 × 1019 cm−3 for water vapor.

The oxidizing species diffuses through the silicon dioxide layer, resulting in
a concentration Cs at the surface of silicon. The flux F1 can be written as

F1 = D
dC

dx
∼= D(C0 − Cs)

x
(2.3)

where D is the diffusion coefficient of the oxidizing species, and x is the thickness
of the oxide layer already present.

At the silicon surface, the oxidizing species reacts chemically with silicon.
Assuming the rate of reaction to be proportional to the concentration of the
species at the silicon surface, the flux F2 is given by

F2 = κCs (2.4)

where κ is the surface reaction rate constant for oxidation. At the steady state,
F1 = F2 = F . Combining Eqs. (2.3) and (2.4) gives

F = DC0

x + (D/κ)
(2.5)

The reaction of the oxidizing species with silicon forms silicon dioxide. Let C1

be the number of molecules of the oxidizing species in a unit volume of the
oxide. There are 2.2 × 1022 silicon dioxide molecules/cm3 in the oxide, and one
oxygen molecule (O2) is added to each silicon dioxide molecule, whereas we add
two water molecules (H2O) to each SiO2 molecule. Therefore, C1 for oxidation
in dry oxygen is 2.2 × 1022 cm−3, and for oxidation in water vapor it is twice
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this number (4.4 × 1022 cm−3). Thus, the growth rate of the oxide layer thickness
is given by

dx

dt
= F

C1
= DC0/C1

x + (D/κ)
(2.6)

This differential equation can be solved subject to the initial condition, x(0) = d0,
where d0 is the initial oxide thickness; d0 can also be regarded as the thickness
of oxide layer grown in an earlier oxidation step. Solving Eq. (2.6) yields the
general relationship for the oxidation of silicon:

x2 + 2D

κ
x = 2DC0

C1
(t + τ) (2.7)

where τ ≡ (d2
0 + 2Dd0/κ)C1/2DC0, which represents a time coordinate shift to

account for the initial oxide layer d0.
The oxide thickness after an oxidizing time t is given by

x = D

κ




√
1 + 2C0κ

2(t + τ)

DC1
− 1


 (2.8)

For small values of t , Eq. (2.8) reduces to

x ∼= C0κ

C1
(t + τ) (2.9)

and for larger values of t , it reduces to

x ∼=
√

2DC0

C1
(t + τ) (2.10)

During the early stages of oxide growth, when surface reaction is the rate lim-
iting factor, the oxide thickness varies linearly with time. As the oxide layer
becomes thicker, the oxidant must diffuse through the oxide layer to react at the
silicon–silicon dioxide interface and the reaction becomes diffusion-limited. The
oxide growth then becomes proportional to the square root of the oxidizing time,
which results in a parabolic growth rate.

Equation (2.7) is often written in a more compact form

x2 + Ax = B(t + τ) (2.11)

where A = 2D/κ, B = 2DC0/C1 and B/A = κC0/C1. Using this form, Eqs.
(2.9) and (2.10) can be written as

x = B

A
(t + τ) (2.12)

for the linear region and as
x2 = B(t + τ) (2.13)
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for the parabolic region. For this reason, the term B/A is referred to as the linear
rate constant and B is the parabolic rate constant. Experimentally measured
results agree with the predictions of this model over a wide range of oxidation
conditions. For wet oxidation, the initial oxide thickness d0 is very small, or
τ ∼= 0. However, for dry oxidation, the extrapolated value of d0 at t = 0 is about
25 nm. Thus, the use of Eq. (2.11) for dry oxidation on bare silicon requires a
value for τ that can be generated using this initial thickness. Table 2.1 lists the
values of the rate constants for wet oxidation of silicon, and Table 2.2 lists the
values for dry oxidation.

The temperature dependence of the linear rate constant B/A is shown in
Figure 2.5 for both dry and wet oxidation and for (111)- and (100)-oriented
silicon wafers [1]. The linear rate constant varies as exp (−Ea/kT ), where the
activation energy Ea is about 2 eV for both dry and wet oxidation. This closely
agrees with the energy required to break silicon–silicon bonds, 1.83 eV/molecule.
Under a given oxidation condition, the linear rate constant depends on crystal
orientation. This is because the rate constant is related to the rate of incorpo-
ration of oxygen atoms into the silicon. The rate depends on the surface bond
structure of silicon atoms, making it orientation-dependent. Because the density
of available bonds on the (111) plane is higher than that on the (100) plane, the
linear rate constant for (111) silicon is larger.

Figure 2.6 shows the temperature dependence of the parabolic rate constant
B, which can also be described by exp(−Ea/kT ). The activation energy Ea is
1.24 eV for dry oxidation. The comparable activation energy for oxygen dif-
fusion in fused silica is 1.18 eV. The corresponding value for wet oxidation,
0.71 eV, compares favorably with the value of 0.79 eV for the activation energy
of diffusion of water in fused silica. The parabolic rate constant is independent
of crystal orientation. This independence is expected because it is a measure of

Table 2.1. Rate constants for wet oxidation of silicon.

Temperature (◦C) A (µm) B (µm2/h) τ (h)

1200 0.05 0.72 0
1100 0.11 0.51 0
1000 0.226 0.287 0
920 0.5 0.203 0

Table 2.2. Rate constants for dry oxidation of silicon.

Temperature (◦C) A (µm) B (µm2/h) τ (h)

1200 0.04 0.045 0.027
1100 0.09 0.027 0.076
1000 0.165 0.0117 0.37
920 0.235 0.0049 1.4
800 0.37 0.0011 9.0
700 — — 81.0
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Figure 2.5. Linear rate constant versus temperature [1].

the diffusion process of the oxidizing species through a random network layer of
amorphous silica.

Although oxides grown in dry oxygen have the best electrical properties,
considerably more time is required to grow the same oxide thickness at a given
temperature in dry oxygen than in water vapor. For relatively thin oxides such as
the gate oxide in a MOSFET (typically ≤20 nm), dry oxidation is used. However,
for thicker oxides such as field oxides (≥20 nm) in MOS integrated circuits, and
for bipolar devices, oxidation in water vapor (or steam) is used to provide both
adequate isolation and passivation.

2.1.1.2. Thin Oxide Growth
Relatively slow growth rates must be used to reproducibly grow thin oxide films
of precise thickness. Approaches to achieve such slower growth rates include
growth in dry O2 at atmospheric pressure and lower temperatures (800–900◦C);
growth at pressures lower than atmospheric pressure; growth in a reduced partial
pressures of O2 by using a diluent inert gas, such as N2, Ar, or He, together with
the gas containing the oxidizing species; and the use of composite oxide films
with the gate oxide films consisting of a layer of thermally grown SiO2 and an
overlayer of chemical vapor deposition (CVD) SiO2. However, the mainstream
approach for gate oxides 10–15 nm thick is to grow the oxide film at atmospheric
pressure and lower temperatures (800–900◦C). With this approach, processing
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Figure 2.6. Parabolic rate constant versus temperature [1].

using modern vertical oxidation furnaces can grow reproducible, high-quality
10-nm oxides to within 0.1 nm across the wafer.

It was noted earlier that for dry oxidation, there is a rapid early growth that
gives rise to an initial oxide thickness d0 of about 20 nm. Therefore, the simple
model given by Eq. (2.11) is not valid for dry oxidation with an oxide thickness
≤20 nm. For ultra-large-scale integration, the ability to grow thin (5–20 nm), uni-
form, high-quality reproducible gate oxides has become increasingly important.

In the early stage of growth in dry oxidation, there is a large compressive stress
in the oxide layer that reduces the oxygen diffusion coefficient in the oxide. As
the oxide becomes thicker, the stress will be reduced due to the viscous flow of
silica and the diffusion coefficient will approach its stress-free value. Therefore,
for thin oxides, the value of D/κ may be sufficiently small that we can neglect
the term Ax in Eq. (2.11) and obtain

x2 − d0
2 = Bt (2.14)

where d0 is equal to
√

2DC0τ/C1, which is the initial oxide thickness when time
is extrapolated to zero, and B is the parabolic rate constant defined previously.
We therefore expect the initial growth in dry oxidation to follow a parabolic form.
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2.1.1.3. Oxide Quality
Oxides used for masking are usually grown by wet oxidation. A typical growth
cycle consists of a dry–wet–dry sequence. Most of the growth in such a sequence
occurs in the wet phase, since the SiO2 growth rate is much higher when water
is used as the oxidant. Dry oxidation, however, results in a higher quality oxide
that is denser and has a higher breakdown voltage (5–10 MV/cm). It is for these
reasons that the thin gate oxides in MOS devices (see Section 2.2) are usually
formed using dry oxidation.

MOS devices are also affected by charges in the oxide and traps at the
SiO2 –Si interface. The basic classification of these traps and charges, shown
in Figure 2.7, are interface-trapped charge, fixed-oxide charge, oxide-trapped
charge, and mobile ionic charge. Interface-trapped charges (Qit ) are due to the
SiO2 –Si interface properties and dependent on the chemical composition of this
interface. The traps are located at the SiO2 –Si interface with energy states in
the silicon-forbidden bandgap. The fixed charge (Qf ) is located within approx-
imately 3 nm of the SiO2 –Si interface. Generally, Qf is positive and depends
on oxidation and annealing conditions, as well as on the orientation of the sil-
icon substrate. Oxide-trapped charges (Qot ) are associated with defects in the
silicon dioxide. These charges can be created, for example, by X-ray radiation
or high-energy electron bombardment. Mobile ionic charges (Qm), which result
from contamination from sodium or other alkali ions, are mobile within the oxide
under raised-temperatures (e.g., >100◦C) and high-electric-field operations. Trace
contamination by alkali metal ions may cause stability problems in semiconductor
devices operated under high-bias and high-temperature conditions. Under these

Figure 2.7. Description of charges associated with thermal oxides [1].
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conditions mobile ionic charges can move back and forth through the oxide layer
and cause threshold voltage shifts. Therefore, special attention must be paid to
the elimination of mobile ions in device fabrication.

2.1.2. Photolithography

Photolithography is the process of transferring patterns of geometric shapes on a
mask to a thin layer of photosensitive material (called photoresist) covering the
surface of a semiconductor wafer. These patterns define the various regions in an
integrated circuit, such as the implantation regions, the contact windows, and the
bonding pad areas. The resist patterns defined by the lithographic process are not
permanent elements of the final device, but only replicas of circuit features. To
produce circuit features, these resist patterns must be transferred once more into
the underlying layers of the device. Pattern transfer is accomplished by an etching
process that selectively removes unmasked portions of a layer (see Section 2.1.4).

Photolithography requires a clean processing room. The need for a cleanroom
arises because dust particles in the air can settle on semiconductor wafers or
lithographic masks and cause defects that result in circuit failure. For example,
a dust particle on a semiconductor surface can disrupt the growth of an epitaxial
film, causing the formation of dislocations. A dust particle incorporated into a
gate oxide can result in enhanced conductivity and cause device failure due to
low breakdown voltage. The situation is even more critical in photolithography.
When dust particles adhere to the surface of a photomask, they behave as opaque
patterns on the mask, and these patterns will be transferred to the underlying
layer along with the circuit patterns on the mask. Figure 2.8 shows three dust
particles on a photomask. Particle 1 may result in the formation of a pinhole
in the underlying layer. Particle 2 is located near a pattern edge and may cause

Dust
particles

Features
on

mask

1
2

3

Figure 2.8. Various ways in which particles can interfere with photomask patterns [1].
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a constriction of current flow in a metal runner. Particle 3 can lead to a short
circuit between the two conducting regions and render the circuit useless.

In a cleanroom, the total number of dust particles per unit volume must be
tightly controlled along with the temperature and humidity. There are two sys-
tems to define the classes of cleanroom. For the English system, the numerical
designation of the class is taken from the maximum allowable number of parti-
cles 0.5 µm and larger per cubic foot of air. For the metric system, the class is
taken from the logarithm (base 10) of the maximum allowable number of particles
0.5 µm and larger, per cubic meter. For example, a class 100 cleanroom (English
system) has a dust count of 100 particles/ft3 with particle diameters of 0.5 µm
and larger, whereas a class M 3.5 cleanroom (metric system) has a dust count of
103.5 or about 3500 particles/m3 with particle diameters of 0.5 µm or larger.

Since the number of dust particles increases as particle size decreases, more
stringent control of the cleanroom environment is required as the minimum fea-
ture lengths of ICs are reduced. For most IC fabrication areas, a class 100
cleanroom is required; that is, the dust count must be about four orders of mag-
nitude lower than that of ordinary room air. However, for photolithography, a
class 10 cleanroom or one with a lower dust count is required.

2.1.2.1. Exposure Tools
The pattern transfer process is accomplished by using a lithographic exposure
tool. The performance of an exposure tool is determined by resolution, registra-
tion, and throughput. Resolution is the minimum feature dimension that can be
transferred with high fidelity to a resist film on a semiconductor wafer. Registra-
tion is a measure of how accurately patterns on successive masks can be aligned
(or overlaid) with respect to previously defined patterns on the wafer. Throughput
is the number of wafers that can be exposed per unit time for a given mask level.

There are two primary optical exposure methods: shadow printing and projec-
tion printing. Shadow printing may have the mask and wafer in direct contact with
one another (as in contact printing), or in close proximity (as in proximity print-
ing). Figure 2.9a shows a basic setup for contact printing where a resist-coated
wafer is brought into physical contact with a mask, and the resist is exposed by
a nearly collimated beam of ultraviolet light through the back of the mask for a
fixed time. The intimate contact between the resist and mask provides a resolu-
tion of ∼1 µm. However, contact printing suffers from one major drawback—a
dust particle on the wafer can be embedded into the mask when the mask makes
contact with the wafer. The embedded particle causes permanent damage to the
mask and results in defects in the wafer with each succeeding exposure.

To minimize mask damage, the proximity exposure method is used. Figure 2.9b
shows the basic setup, which is similar to contact printing except that there is a small
gap (10–50 µm) between the wafer and the mask during exposure. The small gap,
however, results in optical diffraction at feature edges on the photomask; that is,
when light passes by the edges of an opaque mask feature, fringes are formed and
some light penetrates into the shadow region. As a result, resolution is degraded to
the 2–5-µm range.
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Figure 2.9. Optical shadow printing techniques: (a) contact printing; (b) proximity printing [1].

In shadow printing, the minimum linewidth, or critical dimension (CD), that
can be printed is approximately

CD ∼=
√

λg (2.15)

where λ is the wavelength of the exposure radiation and g is the gap between
the mask and the wafer and includes the thickness of the resist. For λ = 0.4 µm
and g = 50 µm, the CD is 4.5 µm. If we reduce λ to 0.25 µm (a wavelength
range of 0.2–0.3 µm is in the deep-UV spectral region) and g to 15 µm, the CD
becomes 2 µm. Thus, there is an advantage in reducing both λ and g. However,
for a given distance g, any dust particle with a diameter larger than g potentially
can cause mask damage.

To avoid the mask damage problem associated with shadow printing, projec-
tion printing tools have been developed to project an image of the mask patterns
onto a resist-coated wafer many centimeters away from the mask. To increase res-
olution, only a small portion of the mask is exposed at a time. The small image
area is scanned or stepped over the wafer to cover the entire wafer surface.
Figure 2.10a shows a 1 : 1 wafer scan projection system. A narrow, arc-shaped
image field ∼1 mm in width serially transfers the slit image of the mask onto
the wafer. The image size on the wafer is the same as that on the mask.

The small image field can also be stepped over the surface of the wafer by two-
dimensional translations of the wafer only, whereas the mark remains stationary.
After the exposure of one chip site, the wafer is moved to the next chip site and
the process is repeated. Figures 2.10b and 2.10c show the partitioning of the wafer
image by step-and-repeat projection with a ratio of 1 : 1 or at a demagnification
ratio M : 1 (e.g., 10 : 1 for a 10 times reduction on the wafer), respectively. The
1 : 1 optical systems are easier to design and fabricate than a 10 : 1 or a 5 : 1
reduction system, but it is much more difficult to produce defect-free masks at
1 : 1 than it is at a 10 : 1 or a 5 : 1 demagnification ratio.
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Figure 2.10. Image partitioning techniques for projection printing: (a) annual field wafer scan;
(b) 1 : 1 step-and-repeat; (c) M : 1 step-and-repeat; and (d) M : 1 step-and-scan [1].

Reduction projection lithography can also print larger wafers without redesign-
ing the stepper lens, as long as the field size (i.e., the exposure area onto
the wafer) of the lens is large enough to contain one or more ICs. When the
chip size exceeds the field size of the lens, further partitioning of the image
on the reticle is necessary. In Figure 2.10d, the image field on the reticle can
be a narrow, arc shape for M : 1 step-and-scan projection lithography. For the
step-and-scan system, we have two-dimensional translations of the wafer with
speed v, and one-dimensional translation of the mask with M times that of the
wafer speed.

The resolution of a projection system is given by

lm = k1
λ

NA
(2.16)

where k1 is a process-dependent factor and NA is the numerical aperture, which
is given by

NA = n sin θ (2.17)

where n is the index of refraction in the image medium (usually air, where n = 1)
and θ is the half-angle of the cone of light converging to a point image at the
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Figure 2.11. Illustration of DoF [1].

wafer, as shown in Figure 2.11. Also shown in the figure is the depth of focus
(DoF), which can be expressed as

DoF = ±lm/2

tan θ
≈ ±lm/2

sin θ
= k2

λ

(NA)2
(2.18)

where k2 is another process-dependent factor.
Equation (2.16) indicates that resolution can be improved (i.e., smaller lm)

by either reducing the wavelength, increasing NA, or both. However, Eq. (2.18)
indicates that the DoF degrades much more rapidly by increasing NA than by
decreasing λ. This explains the trend toward shorter-wavelength sources in optical
lithography.

2.1.2.2. Masks
Masks used for semiconductor manufacturing are usually reduction reticles. The
first step in maskmaking is to use a computer-aided design (CAD) system in
which designers can completely describe the circuit patterns electrically. The
digital data produced by the CAD system then drive a pattern generator, which
is an electron-beam lithographic system (see Section 2.1.2.5) that transfers the
patterns directly to electron-sensitized mask. The mask consists of a fused-
silica substrate covered with a chrominum layer. The circuit pattern is first
transferred to the electron-sensitized layer (electron resist), which is transferred
once more into the underlying chrominum layer for the finished mask. The
patterns on a mask represent one level of an IC design. The composite lay-
out is broken into mask levels that correspond to the manufacturing process
sequence, such as the isolation region on one level, the gate region on another,
and so on. Typically, 15–20 different mask levels are required for a complete IC
process cycle.

The standard-size mask substrate is a fused-silica plate 15 × 15 cm square,
0.6 cm thick. This size is needed to accommodate the lens field sizes for 4 : 1 or
5 : 1 optical exposure tools, whereas the thickness is required to minimize pattern
placement errors due to substrate distortion. The fused-silica plate is needed
for its low coefficient of thermal expansion, its high transmission at shorter
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Figure 2.12. A typical IC photomask [1].

wavelengths, and its mechanical strength. Figure 2.12 shows a mask on which
patterns of geometric shapes have been formed. A few secondary-chip sites, used
for process evaluation, are also included in the mask.

One of the major concerns about masks is the defect density. Mask defects
can be introduced during the manufacture of the mask or during subsequent
lithographic processes. Even a small mask defect density has a profound effect
on the final IC yield. Yield is defined as the ratio of good chips per wafer to the
total number of chips per wafer (see Chapter 5). Inspection and cleaning of masks
are important to achieve high yields on large chips. An ultraclean processing area
is mandatory for photolithographic processing.

2.1.2.3. Photoresist
Photoresist is a radiation-sensitive compound that can be classified as positive
or negative, depending on how they respond to radiation. For positive resists, the
exposed regions become more soluble and thus more easily removed in the devel-
opment process. The result is that the patterns formed in the positive resist are the
same as those on the mask. Positive photoresists consist of three components: a
photosensitive compound, a base resin, and an organic solvent. Prior to exposure,
the photosensitive compound is insoluble in the developer solution. After expo-
sure, the photosensitive compound absorbs radiation in the exposed pattern areas,
changes its chemical structure, and becomes soluble in the developer solution.
After development, the exposed areas are removed.
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With negative resists, exposed regions become less soluble, and the patterns
formed in the negative resist are the reverse of the mask patterns. Negative
photoresists are polymers combined with a photosensitive compound. After expo-
sure, the photosensitive compound absorbs the optical energy and converts it into
chemical energy to initiate a polymer crosslinking reaction. This reaction causes
crosslinking of the polymer molecules. The crosslinked polymer has a higher
molecular weight and becomes insoluble in the developer solution. After devel-
opment, the unexposed areas are removed. One major drawback of a negative
photoresist is that in the development process, the whole resist mass swells by
absorbing developer solvent. This swelling action limits the resolution of negative
photoresists.

Figure 2.13a shows a typical exposure response curve and image cross section
for a positive resist. The response curve describes the percentage of resist remain-
ing after exposure and development versus the exposure energy. As the exposure
energy increases, the solubility gradually increases until at a threshold energy
ET , the resist becomes completely soluble. The sensitivity of a positive resist
is defined as the energy required to produce complete solubility in the exposed
region. Thus, ET corresponds to the sensitivity. In addition to ET , a parameter γ,
the contrast ratio, is defined to characterize the resist

γ ≡
[

ln

(
ET

E1

)]−1

(2.19)

Figure 2.13. Exposure response curve and cross section of resist image after development for
(a) positive photoresist and (b) negative photoresist [1].
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where E1 is the energy obtained by drawing the tangent at ET to reach 100%
resist thickness, as shown in Figure 2.13a. A larger γ implies a higher solubility
of the resist with an incremental increase of exposure energy and results in sharper
images.

The image cross section in Figure 2.13a illustrates the relationship between
the edges of a photomask image and the corresponding edges of the resist images
after development. The edges of the resist image are generally not at the vertically
projected positions of the mask edges because of diffraction. The edge of the resist
image corresponds to the position where the total absorbed optical energy equals
the threshold energy ET .

Figure 2.13b shows the exposure response curve and image cross section for
a negative resist. The negative resist remains completely soluble in the developer
solution for exposure energies lower than ET . Above ET , more of the resist film
remains after development. At exposure energies twice the threshold energy, the
resist film becomes essentially insoluble in the developer. The sensitivity of a
negative resist is defined as the energy required to retain 50% of the original resist
film thickness in the exposed region. The parameter γ is defined similarly to γ

in Eq. (2.19), except that E1 and ET are interchanged. The image cross section
for the negative resist (Figure 2.13b) is also influenced by the diffraction effect.

2.1.2.4. Pattern Transfer
Figure 2.14 illustrates the steps to transfer IC patterns from a mask to a silicon
wafer that has an insulating SiO2 layer formed on its surface. The wafer is placed
in a cleanroom, which typically is illuminated with yellow light (since photore-
sists are not sensitive to wavelengths greater than 0.5 µm). To ensure satisfactory
adhesion of the resist, adhesion promoter is then applied. The most common
adhesion promoter for silicon ICs is hexamethylene–disiloxane (HMDS). After
the application of this adhesion layer, the wafer is held on a vacuum spindle,
and liquidous resist is applied to the center of wafer. The wafer is then rapidly
accelerated up to a constant rotational speed, which is maintained for about 30 s.
Spin speed is generally in the range of 1000–10,000 rpm [revolutions per minute
(r/min)] to coat a uniform film about 0.5–1 µm thick, as shown in Figure 2.14a.
The thickness of photoresist is correlated with its viscosity.

After spinning, the wafer is “soft-baked” (typically at 90–120◦C for 60–120 s)
to remove solvent from the photoresist and to increase resist adhesion to the
wafer. The wafer is aligned with respect to the mask in an optical lithographic
system, and the resist is exposed to ultraviolet light, as shown in Figure 2.14b.
If a positive photoresist is used, the exposed resist is dissolved in the developer,
as shown on the left side of Figure 2.14c. Photoresist development is usually
done by flooding the wafer with the developer solution. The wafer is then rinsed
and dried. After development, “postbaking” at approximately 100–180◦C may
be required to increase the adhesion of the resist to the substrate. The wafer is
then put in an ambient that etches the exposed insulation layer but does not attack
the resist, as shown in Figure 2.14d. Finally, the resist is stripped (using solvents
or plasma oxidation), leaving behind an insulator image that is the same as the
opaque image on the mask (left side of Figure 2.14e). For negative photoresist,
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Figure 2.14. Photolithographic pattern transfer process: (a) photoresist application; (b) expo-
sure; (c) development; (d) etching; (e) resist stripping [1].

the procedures described are also applicable, except that the unexposed areas are
removed. The final insulator image (right side of Figure 2.14e) is the reverse of
the opaque image on the mask.

The insulator image can be used as a mask for subsequent processing. For
example, ion implantation (Section 2.1.3) can be done to dope the exposed
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semiconductor region, but not the area covered by the insulator. The dopant
pattern is a duplicate of the design pattern on the photomask for a negative
photoresist or is its complementary pattern for a positive photoresist. The com-
plete circuit is fabricated by aligning the next mask in the sequence to the previous
pattern and repeating the lithographic transfer process.

2.1.2.5. E-Beam Lithography
Optical lithography is so widely used because it has high throughput, good reso-
lution, low cost, and ease of operation. However, due to deep-submicrometer IC
process requirements, optical lithography has some limitations that have not yet
been solved. Although we can use PSM or OPC to extend its useful lifespan, the
complexity of mask production and mask inspection cannot be easily resolved. In
addition, the cost of the masks is very high. Therefore, we need to find alternatives
to optical lithography to process deep-submicrometer or nanometer ICs.

Electron-beam (or e-beam) lithography is used primarily to produce pho-
tomasks. Relatively few tools are dedicated to direct exposure of the resist by
a focused electron beam without a mask. Figure 2.15 shows a schematic of an
e-beam lithography system. The electron gun is a device that can generate a beam
of electrons with a suitable current density. A tungsten thermionic emission cath-
ode or single-crystal lanthanum hexaboride (LaB6) is used for the electron gun.
Condenser lenses are used to focus the electron beam to a spot size 10–25 nm
in diameter. Beam blanking plates that turn the electron beam on and off, and
beam deflection coils are computer-controlled and operated at MHz or higher

Pattern
generator

Electron gun

Computer
control

Alignment coil

First condenser
lens

Second condenser
lens

Blanking plates

Limiting aperture

Final lens, coils

Electron resist
Substrate

Mechanical stage

Figure 2.15. E-beam lithography system [1].
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rates to direct the focused electron beam to any location in the scan field on
the substrate. Because the scan field (typically 1 cm) is much smaller than the
substrate diameter, a precision mechanical stage is used to position the substrate
to be patterned.

The advantages of electron-beam lithography include the generation of submi-
crometer resist geometries, highly automated and precisely controlled operation,
depth of focus greater than that available from optical lithography, and direct
patterning on a semiconductor wafer without using a mask. The disadvantage is
that electron-beam lithographic machines have low throughput—approximately
10 wafers per hour at less than 0.25 µm resolution. This throughput is adequate
for the production of photomasks, for situations that require small numbers of
custom circuits, and for design verification. However, for maskless direct writing,
the machine must have the highest possible throughput, and therefore, the largest
beam diameter possible consistent with the minimum device dimensions.

There are two ways to scan the focused electron beam: raster scan and vector
scan. In a raster scan system, resist patterns are written by a beam that moves
through a regular mode, vertically oriented, as shown in Figure 2.16a. The beam
scans sequentially over every possible location on the mask and is blanked (turned
off) where no exposure is required. All patterns on the area to be written must be

Beam size

(a)

(b)

Beam size

Raster scan

Vector scan

Figure 2.16. (a) Raster scan and (b) vector scan systems [1].
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subdivided into individual addresses, and a given pattern must have a minimum
incremental interval that is evenly divisible by the beam address size. In the vector
scan system (Figure 2.16b), the beam is directed only to the requested pattern
features and jumps from feature to feature, rather than scanning the whole chip,
as in raster scan. For many chips, the average exposed region is only 20% of the
chip area, which saves time.

Electron resists are polymers. The behavior of an e-beam resist is similar to
that of a photoresist; that is, a chemical or physical change is induced in the
resist by irradiation. This change allows the resist to be patterned. For a posi-
tive electron resist, the polymer–electron interaction causes chemical bonds to
be broken (chain scission) to form shorter molecular fragments. As a result, the
molecular weight is reduced in the irradiated area, which can be dissolved sub-
sequently in a developer solution that attacks the low-molecular-weight material.
Common positive electron resists include poly(methyl methacrylate) (PMMA)
and poly(butene-1 sulfone) (PBS). Positive electron resists can achieve resolu-
tion of 0.1 µm or better. For a negative electron resist, the irradiation causes
radiation-induced polymer linking. The crosslinking creates a complex three-
dimensional structure with a molecular weight higher than that of the nonirradi-
ated polymer. The nonirradiated resist can be dissolved in a developer solution
that does not attack the high-molecular-weight material. Polyglycidylmethacry-
late–coethylacrylate (COP) is a common negative electron resist. COP, like most
negative photoresists, also swells during development, so the resolution is limited
to about 1 µm.

While resolution is limited by diffraction of light in optical lithography,
in e-beam lithography, the resolution is not impacted by diffraction (because
the wavelengths associated with electrons of a few keV and higher energies
are less than 0.1 nm), but by electron scattering. When electrons penetrate the
resist and underlying substrate, they undergo collisions. These collisions lead
to energy losses and path changes. The incident electrons spread out as they
travel until either all of their energy is lost or they leave the material because of
backscattering. Because of backscattering, electrons can irradiate regions several
micrometers away from the center of the exposure beam. Since the dose of a
resist is the sum of the irradiations from all surrounding areas, the electron-beam
irradiation at one location will affect the irradiation in neighboring locations. This
phenomenon is called the proximity effect. The proximity effect places a limit
on the minimum spacings between pattern features. To correct for the proxim-
ity effect, patterns are divided into smaller segments. The incident electron dose
in each segment is adjusted so that the integrated dose from all its neighbor-
ing segments is the correct exposure dose. This approach further decreases the
throughput of the electron-beam system, because of the additional computer time
required to expose the subdivided resist patterns.

2.1.2.6. X-Ray Lithography
X-ray lithography (XRL) is a potential candidate to succeed optical lithography
for the fabrication of integrated circuits with feature sizes less than 100 nm. XRL
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Figure 2.17. Schematic of x-ray lithography system.

uses a shadow printing method similar to optical proximity printing. Figure 2.17
shows a schematic of an XRL system. The X-ray wavelength is about 1 nm, and
the printing is through a 1× mask in close proximity (10–40 µm) to the wafer.
Since X-ray absorption depends on the atomic number of the material and most
materials have low transparency at λ ∼= 1 nm, the mask substrate must be a thin
membrane (1–2 µm thick) made of low-atomic-number material, such as silicon
carbide or silicon. The pattern itself is defined in a thin (∼0.5 µm), relatively
high-atomic-number material, such as tantalum, tungsten, gold, or one of their
alloys, which is supported by the thin membrane.

Masks are the most difficult and critical element of an XRL system, and the
construction of an X-ray mask is much more complicated than that of an optical
photomask. To avoid absorption of the X rays between the source and mask,
the exposure generally takes place in a helium environment. The X rays are
produced in a vacuum, which is separated from the helium by a thin vacuum
window (usually of beryllium). The mask substrate will absorb 25–35% of the
incident flux and must therefore be cooled. An X-ray resist 1 µm thick will
absorb about 10% of the incident flux, and there are no reflections from the
substrate to create standing waves, so antireflection coatings are unnecessary.

Electron-beam resists can be used as X-ray resists because when an X ray is
absorbed by an atom, the atom goes to an excited state with the emission of an
electron. The excited atom returns to its ground state by emitting an X ray having
a wavelength different from that of the incident X ray. This X ray is absorbed
by another atom, and the process repeats. Since all the processes result in the
emission of electrons, a resist film under X-ray irradiation is equivalent to one
being irradiated by a large number of secondary electrons from any of the other
processes.
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2.1.3. Etching

As discussed in Section 2.1.2, photolithography is the process of transferring
patterns to photoresist covering the surface of a semiconductor wafer. To pro-
duce circuit features, these resist patterns must be transferred into the underlying
layers of the device. Pattern transfer is accomplished by an etching process that
selectively removes unmasked portions of a layer.

2.1.3.1. Wet Chemical Etching
Wet chemical etching is used extensively in semiconductor processing. Prior to
thermal oxidation (Section 2.1.1) or epitaxial growth (Section 2.1.5), semicon-
ductor wafers are chemically cleaned to remove contamination that results from
handling and storing. Wet chemical etching is especially suitable for blanket
etches (i.e., over the whole wafer surface) of polysilicon, oxide, nitride, metals,
and III–V compounds.

The mechanisms for wet chemical etching involve three essential steps, as
illustrated in Figure 2.18; the reactants are transported by diffusion to the reacting
surface, chemical reactions occur at the surface, and the products from the surface
are removed by diffusion. Both agitation and the temperature of the etchant
solution will influence the etch rate, which is the amount of film removed by
etching per unit time. In IC processing, most wet chemical etches proceed by
immersing the wafers in a chemical solution or by spraying the wafers with
the etchant solution. For immersion etching, the wafer is immersed in the etch
solution, and mechanical agitation is usually required to ensure etch uniformity
and a consistent etch rate. Spray etching has gradually replaced immersion etching

Semiconductor

(1) Reactants (1) Products

(2) Reaction

Solution

Film

Figure 2.18. Basic mechanisms in wet chemical etching [1].
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because it greatly increases the etch rate and uniformity by constantly supplying
fresh etchant to the wafer surface.

In semiconductor production lines, highly uniform etch rates are important.
Etch rates must be uniform across a wafer, from wafer to wafer, from run to run,
and for any variations in feature sizes and pattern densities. Etch rate uniformity
is given by

Etch rate uniformity (%) = (max. etch rate − min. etch rate)

max. etch rate + min. etch rate
× 100% (2.20)

2.1.3.2. Dry Etching
In pattern transfer operations, a resist pattern is defined by a photolithographic
process to serve as a mask for etching of its underlying layer (Figure 2.19a). Most
of the layer materials (e.g., SiO2, Si3N4, and deposited metals) are amorphous
or polycrystalline thin films. If they are etched in a wet etchant, the etch rate
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Af  = 0

Af  = 1

l

Figure 2.19. Comparison between wet and dry etching: (a) resist pattern; (b) isotropic etching;
(c) anisotropic etching [1].
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is generally isotropic (i.e., the lateral and vertical etch rates are the same), as
illustrated in Figure 2.19b. If hf is the thickness of the layer material and l the
lateral distance etched underneath the resist mask, we can define the degree of
anisotropy (Af ) by

Af ≡ 1 − l

hf

= 1 − Rlt

Rvt
= 1 − Rl

Rv

(2.21)

where t is time and Rl and Rv are the lateral and vertical etch rates, respectively.
For isotropic etching, Rl = Rv and Af = 0.

The major disadvantage of wet etching in pattern transfer is the undercutting
of the layer underneath the mask, resulting in a loss of resolution in the etched
pattern. In practice, for isotropic etching, the film thickness should be about one-
third or less of the resolution required. If patterns are required with resolutions
much smaller than the film thickness, anisotropic etching (i.e., 1 ≥ Af > 0) must
be used. In practice, the value of Af is chosen to be close to unity. Figure 2.19c
shows the limiting case where Af = 1, corresponding to l = 0 (or Rl = 0).

To achieve a high-fidelity transfer of the resist patterns required for ultra-large-
scale integration (ULSI) processing, dry etching methods have been developed.
Dry etching is synonymous with plasma-assisted etching, which denotes several
techniques that use plasma in the form of low-pressure discharges. Dry-etch meth-
ods include plasma etching, reactive-ion etching (RIE), sputter etching, magneti-
cally enhanced RIE (MERIE), reactive-ion-beam etching, and high-density plasma
(HDP) etching.

A plasma is a fully or partially ionized gas composed of equal numbers of
positive and negative charges and a different number of un-ionized molecules.
Plasma is produced when an electric field of sufficient magnitude is applied to a
gas, causing the gas to break down and become ionized. The plasma is initiated
by free electrons that are released by some means, such as field emission from
a negatively biased electrode. The free electrons gain kinetic energy from the
electric field. In the course of their travel through the gas, the electrons collide
with gas molecules and lose their energy. The energy transferred in the collision
causes the gas molecules to be ionized (i.e., to free electrons). The free electrons
gain kinetic energy from the field, and the process continues. Therefore, when
the applied voltage is larger than the breakdown potential, a sustained plasma is
formed throughout the reaction chamber.

Plasma etching is a process in which a solid film is removed by a chem-
ical reaction with ground-state or excited-state neutral species. The process is
often enhanced or induced by energetic ions generated in a gaseous discharge.
Plasma etching proceeds in five steps, as illustrated in Figure 2.20: (1) the etchant
species is generated in the plasma, (2) the reactant is then transported by diffu-
sion through a stagnant gas layer to the surface, (3) the reactant is adsorbed
on the surface, (4) a chemical reaction (along with physical effects such as ion
bombardment) follows to form volatile compounds, and (5) the compounds are
desorbed from the surface, diffused into the bulk gas, and pumped out by the
vacuum system.
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Figure 2.20. Basic steps in dry etching [1].

Plasma etching is based on the generation of plasma in a gas at low pressure.
Two basic methods are used: physical methods and chemical methods. The for-
mer includes sputter etching, and the latter includes pure chemical etching. In
physical etching, positive ions bombard the surface at high speed; small amounts
of negative ions formed in the plasma cannot reach the wafer surface and there-
fore play no direct role in plasma etching. In chemical etching, neutral reactive
species generated by the plasma interact with the material surface to form volatile
products. Chemical and physical etch mechanisms have different characteristics.
Chemical etching exhibits a high etch rate, and good selectivity (i.e., the ratio of
etch rates for different materials) produces low ion bombardment–induced dam-
age but yields isotropic profiles. Physical etching can yield anisotropic profiles,
but it is associated with low etch selectivity and severe bombardment-induced
damage. Combinations of chemical and physical etching give anisotropic etch
profiles, reasonably good selectivity, and moderate bombardment-induced dam-
age. An example is reactive-ion etching (RIE), which uses a physical method to
assist chemical etching or creates reactive ions to participate in chemical etching.

Plasma reactor technology in the IC industry has changed dramatically since
the first application of plasma processing to photoresist stripping. A reactor
for plasma etching contains a vacuum chamber, pump system, power supply
generators, pressure sensors, gas flow control units, and endpoint detector (see
Chapter 3). Each etch tool is designed empirically and uses a particular com-
bination of pressure, electrode configuration and type, and source frequency to
control the two primary etch mechanisms—chemical and physical. Higher etch
rates and tool automation are required for most etchers used in manufacturing.
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Figure 2.21. Typical reactive-ion etching system.

RIE has been extensively used in the microelectronic industry. In a parallel-
plate diode system (Figure 2.21), a radio frequency (RF), capacitively coupled
bottom electrode holds the wafer. This allows the grounded electrode to have
a significantly larger area because it is, in fact, the chamber itself. The larger
grounded area combined with the lower operating pressure (<500 mTorr) causes
the wafers to be subjected to a heavy bombardment of energetic ions from the
plasma as a result of the large, negative self-bias at the wafer surface. The
etch selectivity of this system is relatively low compared with traditional barrel
etch systems because of strong physical sputtering. However, selectivity can be
improved by choosing the proper etch chemistry.

2.1.4. Doping

Impurity doping is the introduction of controlled amounts of impurities into semi-
conductors to change their electrical properties. Diffusion and ion implantation
are the two key methods of impurity doping. Both diffusion and ion implantation
are used for fabricating discrete devices and integrated circuits because these
processes generally complement each other. For example, diffusion is used to
form a deep junction (e.g., a twin well in CMOS), whereas ion implantation is
used to form a shallow junction (e.g., a source–drain junction of a MOSFET).

Until the early 1970s, impurity doping was performed by diffusion at elevated
temperatures, as shown in Figure 2.22a. In this method the dopant atoms are
placed on or near the surface of the wafer by deposition from the gas phase of
the dopant or by using doped-oxide sources. The doping concentration decreases
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Figure 2.22. (a) Diffusion and (b) ion implantation techniques for impurity doping [1].

monotonically from the surface, and the profile of the dopant distribution is
determined mainly by the temperature and the diffusion time. Since the 1970s,
doping operations have been performed chiefly by ion implantation, as shown in
Figure 2.22b. In this process the dopant ions are implanted into the semiconductor
by means of an ion beam. The doping concentration has a peak distribution inside
the semiconductor, and the profile of the dopant distribution is determined mainly
by the ion mass and the implanted ion energy.

2.1.4.1. Diffusion
Diffusion of impurities is accomplished by placing semiconductor wafers in a
carefully controlled, high-temperature quartz-tube furnace and passing a gas mix-
ture that contains the desired dopant through it. The number of dopant atoms
that diffuse into the semiconductor is related to the partial pressure of the dopant
impurity in the gas mixture. For diffusion in silicon, boron is the most popular
dopant for introducing a p-type impurity, whereas arsenic and phosphorus are
used extensively as n-type dopants. These dopants can be introduced in several
ways, including solid sources (e.g., BN for boron, As2O3 for arsenic, and P2O5

for phosphorus), liquid sources (BBr3, AsCl3, and POCl3), and gaseous sources
(B2H6, AsH3, and PH3). However, liquid sources are most commonly used. A
schematic diagram of the furnace and gas flow arrangement for a liquid source
is shown in Figure 2.23. This arrangement is similar to that used for thermal
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Figure 2.23. Schematic of a diffusion system [1].

oxidation. An example of the chemical reaction for phosphorus diffusion using
a liquid source is

4POCl3 + 3O2 → 2P2O5 + 6Cl2 ↑ (2.22)

The P2O5 is then reduced to phosphorus by silicon according to

2P2O5 + 5Si → 4P + 5SiO2 (2.23)

and the phosphorus is released and diffuses into the silicon, and Cl2 is vented.
Diffusion in a semiconductor is the atomic movement of the diffusant (dopant

atoms) in the crystal lattice by vacancies or interstitials. The diffusion process is
similar to that of charge carriers (electrons and holes). Let a flux F be defined
as the number of dopant atoms passing through a unit area in a unit time and C

as the dopant concentration per unit volume. Then

F = −D
∂C

∂x
(2.24)

where the proportionality constant D is the diffusion coefficient or diffusivity.
Note that the basic driving force of the diffusion process is the concentration
gradient dC/dx. The flux is proportional to the concentration gradient, and the
dopant atoms will move (diffuse) away from a high-concentration region toward
a lower-concentration region.

If Eq. (2.24) is substituted into the one-dimensional continuity equation under
the condition that no materials are formed or consumed in the host semiconductor,
the result is

∂C

∂t
= −∂F

∂x
= ∂

∂x

(
D

∂C

∂x

)
(2.25)

When the concentration of the dopant atoms is low, the diffusion coefficient can
be considered to be independent of doping concentration, and Eq. (2.25) becomes

∂C

∂t
= D

∂2C

∂x2
(2.26)

Equation (2.26) is often referred to as Fick’s diffusion equation or Fick’s law.
Note that the diffusion coefficient varies with temperature. Over the temperature
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ranges commonly used in semiconductor manufacturing, the diffusion coefficient
can be expressed as

D = D0 exp

(−Ea

kT

)
(2.27)

where D0 is the diffusion coefficient in cm2/s extrapolated to infinite temperature
and Ea is the activation energy in eV. The values of Ea are typically found to
be between 0.5 and 2 eV for interstitial diffusion. For vacancy diffusion, Ea is
much larger, usually between 3 and 5 eV.

The diffusion profile of the dopant atoms is dependent on the initial and
boundary conditions. There are two important cases to consider: (1) constant-
surface-concentration diffusion and (2) constant-total-dopant diffusion. In the first
case, impurity atoms are transported from a vapor source onto the semiconductor
surface and diffused into the semiconductor wafers. The vapor source maintains
a constant level of surface concentration during the entire diffusion period. In
the second case, a fixed amount of dopant is deposited onto the semiconductor
surface and is subsequently diffused into the wafers.

For case 1, the initial condition at t = 0 is

C(x, 0) (2.28)

which indicates that the dopant concentration in the host semiconductor is initially
zero. The boundary conditions are

C(0, t) = Cs (2.29a)

C(∞, t) = 0 (2.29b)

where Cs is the surface concentration (at x = 0), which is independent of time.
The second boundary condition states that at long distances from the surface
there are no impurity atoms.

The solution of Fick’s equation that satisfies the initial and boundary conditions is

C(x, t) = Cs erfc

(
x

2
√

Dt

)
(2.30)

where erfc is the complementary error function and
√

Dt is the diffusion length.
The diffusion profile for the constant surface concentration condition is shown in
Figure 2.24a, where, on both linear (upper) and logarithmic (lower) scales, the
normalized concentration as a function of depth for three values of the diffusion
length corresponding to three consecutive diffusion times and a fixed D for a
given diffusion temperature are plotted. Note that as the time progresses, the
dopant penetrates deeper into the semiconductor.

The total number of dopant atoms per unit area of the semiconductor is
given by

Q(t) =
∫ ∞

0
C(x, t)dx (2.31)
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Figure 2.24. Diffusion profiles: (a) normalized erfc versus distance for successive diffusion
times; (b) normalized Gaussian function versus distance [1].

Substituting Eq. (2.30) into Eq. (2.31) yields

Q(t) = 2√
π

Cs

√
Dt ∼= 1.13Cs

√
Dt (2.32)

The quantity Q(t) represents the area under one of the diffusion profiles of the
linear plot in Figure 2.24a. These profiles can be approximated by triangles with
height Cs and base 2

√
Dt . This leads to Q(t) ∼= Cs

√
Dt , which is close to the

exact result obtained from Eq. (2.32).
Now consider constant total dopant diffusion. For this case, a fixed (or con-

stant) amount of dopant is deposited onto the semiconductor surface in a thin
layer, and the dopant subsequently diffuses into the semiconductor. The initial
condition is the same as in Eq. (2.28). The boundary conditions are

∫ ∞

0
C(x, t) = S (2.33a)

C(∞, t) = 0 (2.33b)
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where S is the total amount of dopant per unit area. The solution of the diffusion
equation that satisfies these conditions is

C(x, t) = S√
πDt

exp

(
− x2

4Dt

)
(2.34)

This expression is the Gaussian distribution. Since the dopant will move into
the semiconductor as time increases, in order to keep the total dopant S con-
stant, the surface concentration must decrease. This is the case, since the surface
concentration is given by Eq. (2.34) with x = 0:

C(x, t) = S√
πDt

(2.35)

Figure 2.24b shows the dopant profile for a Gaussian distribution where the
normalized concentration (C/S) as a function of the distance for three increasing
diffusion lengths is plotted. Note the reduction of the surface concentration as
the diffusion time increases.

In IC processing, a two-step diffusion process is commonly used, in
which a predeposition diffused layer is first formed under the constant-
surface-concentration condition (case 1, above). This step is followed by a
drive-in diffusion (also called redistribution diffusion) under constant total
dopant conditions. For most practical cases, the diffusion length

√
Dt for the

predeposition diffusion is much smaller than the diffusion length for the drive-in
diffusion. Therefore, the predeposition profile can be considered a delta function
at the surface, and the extent of the penetration of the predeposition profile can
be regarded as negligibly small compared with that of the final profile that results
from the drive-in step.

2.1.4.2. Ion Implantation
As discussed above, diffusion and ion implantation are the two key methods
of impurity doping. Since the early 1970s, many doping operations have been
performed by ion implantation, which is shown in Figure 2.22b. In this process
the energetic dopant ions are implanted into the semiconductor by means of an ion
beam. The doping concentration has a peak distribution inside the semiconductor
and the profile of the dopant distribution is determined mainly by the ion mass
and energy.

Implantation energies are typically between 1 keV and 1 MeV, resulting in
ion distributions with average depths ranging from 10 nm to 10 µm. Ion doses
vary from 1012 ions/cm2 for threshold voltage adjustment in MOSFETs to 1018

ions/cm2 for the formation of buried insulating layer. Note that the dose is
expressed as the number of ions implanted into 1 cm2 of the semiconductor
surface area. The main advantages of ion implantation are its more precise con-
trol and reproducibility of impurity dopings and its lower processing temperature
compared with those of the diffusion process.

Figure 2.25 shows schematically a medium-energy ion implantor. The ion
source has a heated filament to break up source gas, such as BF3 or AsH3, into
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Figure 2.25. Schematic of ion implantor [1].

charged ions (B+ or As+). An extraction voltage (around 40 kV) causes the
charged ions to move out of the ion source chamber into a mass analyzer. The
magnetic field of the analyzer is chosen such that only ions with the desired
mass : charge ratio can travel through it without being filtered. The selected ions
then enter the acceleration tube, where they are accelerated to the implantation
energy as they move from high voltage to ground. Apertures ensure that the ion
beam is well collimated. The pressure in the implantor is kept below 10−4 Pa
to minimize ion scattering by gas molecules. The ion beam is then scanned over
the wafer surface using electrostatic deflection plates and is implanted into the
semiconductor substrate.

The energetic ions lose their energies through collision with electrons and
nuclei in the substrate and finally come to rest at some depth within the lattice.
The average depth can be controlled by adjusting the acceleration energy. The
dopant dose can be controlled by monitoring the ion current during implantation.
The principal side effect is the disruption or damage of the semiconductor lattice
due to ion collisions. Therefore, a subsequent annealing treatment is needed to
remove these damages.

The total distance that an ion travels in coming to rest is called its range (R)
and is illustrated in Figure 2.26a. The projection of this distance along the axis
of incidence is called the projected range (Rp). Because the number of collisions
per unit distance and the energy lost per collision are random variables, there
will be a spatial distribution of ions having the same mass and the same initial
energy. The statistical fluctuations in the projected range are called the projected
straggle (σp). There is also a statistical fluctuation along an axis perpendicular
to the axis of incidence, which is called the lateral straggle (σ⊥).

Figure 2.26b shows the ion distribution. Along the axis of incidence, the
implanted impurity profile can be approximated by a Gaussian distribution
function

n(x) = S√
2πσp

exp

[
− (x − Rp)2

2σ2
p

]
(2.36)

where S is the ion dose per unit area. This equation is similar to Eq. (2.34) for
constant total dopant diffusion, except that the quantity 4Dt is replaced by 2σ2

p
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Figure 2.26. (a) Ion range and projected range; (b) two-dimensional distribution of implanted
ions [1].

and the distribution is shifted along the x axis by Rp. Thus, for diffusion, the
maximum concentration is at x = 0, whereas for ion implantation the maximum
concentration is at the projected range. The ion concentration is reduced by 40%
from its peak value at (x − Rp) = ±σp, by one decade at ±2σp, by two decades
at ±3σp, and by five decades at ±4.8σp.

2.1.5. Deposition

Many different types of thin films are used to manufacture integrated circuits,
including thermal oxides, dielectric layers, epitaxial layers, polycrystalline sili-
con, and metal films. This section addresses two of the various techniques for
depositing such films: physical vapor deposition and chemical vapor deposition.
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2.1.5.1. Physical Vapor Deposition
The most common methods of physical vapor deposition (PVD) of metals are
evaporation, electron-beam evaporation, plasma spray deposition, and sputtering.
Metals and metal compounds can be deposited by PVD. Evaporation occurs when
a source material is heated above its melting point in an evacuated chamber. The
evaporated atoms then travel at high velocity in straight-line trajectories. The
source can be melted by resistance heating, by radio frequency (RF) heating, or
with a focused electron beam (or e-beam). Evaporation and e-beam evaporation
were used extensively in earlier generations of integrated circuits, but they have
been replaced by sputtering for modern ICs.

In ion-beam sputtering, a source of ions is accelerated toward the target and
impinges on its surface. Figure 2.27a shows a standard sputtering system. The
sputtered material deposits on a wafer that is placed facing the target. The ion
current and energy can be independently adjusted. Since the target and wafer
are placed in a chamber that has lower pressure, more target material and less
contamination are transferred to the wafer.

One method to increase the deposition rate in sputtering is to use a third
electrode that provides more electrons for ionization. Another method is to use
a magnetic field, such as in electron cyclotron resonance (ECR) systems, to
capture and spiral electrons, increasing their ionizing efficiency in the vicinity
of the sputtering target. This technique, referred to as magnetron sputtering, has
found widespread applications for the deposition of aluminum and its alloys at a
rate that can approach 1 µm/min.

Long-throw sputtering is another technique used to control the angular distri-
bution. Figure 2.27b shows a long-throw sputtering system. In standard sputtering
configurations, there are two primary reasons for a wide angular distribution of
incident flux at the surface: (1) the use of a small target to substrate separation
dts and (2) scattering of the flux by the working gas as the flux travels from
the target to the substrate. These two factors are linked because a small dts is
needed to achieve good throughput, uniformity, and film properties when there
is substantial gas scattering. A solution to this problem is to sputter at very low

Substrate Substrate Substrate

Target

Target

Target

(a) (b) (c)

Collimator

Figure 2.27. (a) Standard sputtering; (b) long-throw sputtering; (c) sputtering through a colli-
mator [1].
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pressures, a capability that has been developed using a variety of systems, which
can sustain the magnetron plasma under more rarefied conditions. These systems
allow for sputtering at working pressures of less than 0.1 Pa. At these pressures,
gas scattering is less important, and the target–substrate distance can be greatly
increased. From a simple geometric argument, this allows the angular distribu-
tion to be greatly narrowed, which permits more deposition at the bottom of
high-aspect features such as contact holes.

Contact holes with large aspect ratio are difficult to fill with material, mainly
because scattering events cause the top opening of the hole to seal before appre-
ciable material has deposited on its floor. This problem can be overcome by
collimating the sputtered atoms by placing an array of collimating tubes just
above the wafer to restrict the depositing flux to normal ±5◦. Sputtering with
a collimator is shown in Figure 2.27c. Atoms whose trajectory is more than 5◦

from normal are deposited on the inner surface of the collimators.

2.1.5.2. Chemical Vapor Deposition
Chemical vapor deposition (CVD), also known as vapor-phase epitaxy (VPE), is
a process whereby an epitaxial layer is formed by a chemical reaction between
gaseous compounds. CVD can be performed at atmospheric pressure (APCVD)
or at low pressure (LPCVD). Figure 2.28 shows three common susceptors for
epitaxial growth. Note that the geometric shape of the susceptor provides the
name for the reactor: horizontal, pancake, and barrel susceptors—all made from
graphite blocks. Susceptors in epitaxial reactors are analogous to crucibles in the

Wafers
To vent

Susceptor
Dopant + H2

SiCl4 + H2

HClH2N2

(a)

(b) (c)

Gas flow

RF heating

Radiant heating

Figure 2.28. Common susceptors for CVD: (a) horizontal; (b) pancake; (c) barrel [1].
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crystal growing furnaces. Not only do they mechanically support the wafer, but in
induction-heated reactors, they also serve as the source of thermal energy for the
reaction. The mechanism of CVD involves a number of steps: (1) the reactants
(gases and dopants) are transported to the substrate region; (2) they are transferred
to the substrate surface, where they are adsorbed; (3) a chemical reaction occurs,
catalyzed at the surface, followed by growth of the epitaxial layer; (4) the gaseous
products are desorbed into the main gas stream; and (5) the reaction products are
transported out of the reaction chamber.

CVD is attractive for metallization because it offers coatings that are con-
formal, has good step coverage, and can coat a large number of wafers at a
time. The basic CVD setup is the same as that used for deposition of dielectrics
and polysilicon (see Figure 1.14). Low-pressure CVD (LPCVD) is capable of
producing conformal step coverage over a wide range of topographical profiles,
often with lower electrical resistivity than that from PVD. One of the major new
applications of CVD metal deposition for integrated circuit production is in the
area of refractory metal deposition. For example, tungsten’s low electrical resis-
tivity (5.3 µ� · cm) and refractory nature make it a desirable metal for use in IC
fabrication.

2.1.6. Planarization

The development of chemical–mechanical polishing (CMP) has become impor-
tant for multilevel interconnection technology because it is the only method that
allows global planarization (i.e., a flat surface across the whole wafer). It also
offers other advantages, including reduced defect density and the avoidance of
plasma damage (which would occur in an RIE-based planarization system).

The CMP process consists of moving the sample surface against a pad that
carries slurry between the sample surface and the pad. Abrasive particles in the
slurry cause mechanical damage on the sample surface, loosening the material
for enhanced chemical attack or fracturing off the pieces of surface into a slurry
where they dissolve or are swept away. The process is tailored to provide an
enhanced material removal rate from high points on surfaces. Mechanical grind-
ing alone may theoretically achieve the desired planarization, but is undesirable
because of extensive associated damage to the material surface. There are three
main parts of the process: (1) the surface to be polished; (2) the pad, which is the
key medium enabling the transfer of mechanical action to the surface being pol-
ished; and (3) the slurry, which provides both chemical and mechanical effects.
Figure 2.29 shows a typical CMP setup.

2.2. PROCESS INTEGRATION

An integrated circuit is an ensemble of active (e.g., transistors) and passive
devices (e.g., resistors, capacitors, and inductors) formed on and within a single-
crystal semiconductor substrate and interconnected by a metallization pattern.
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Figure 2.29. CMP schematic [1].

ICs have enormous advantages over discrete devices, including (1) reduction
of the interconnection parasitics, (2) full utilization of a semiconductor wafer’s
area, and (3) drastic reduction in processing cost. In this section, we discuss
the manner in which the basic processes described in previous portions of this
chapter are combined to fabricate ICs. We consider three major IC technolo-
gies associated with two transistor families (viz., bipolar junction transistors
and metal–oxide–semiconductor field-effect transistors, or MOSFETs): bipolar,
CMOS, and BiCMOS. In addition, we will discuss the packaging of ICs by
various techniques.

Figure 2.30 illustrates the interrelationship between the major process steps
used for IC fabrication. Polished wafers with a specific resistivity and orientation
are used as the starting material. The film formation steps include thermally grown

Wafer

Wafer
out

Mask set
Film
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Lithography

Etching

Impurity
doping

Figure 2.30. Schematic diagram of IC fabrication [1].
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Figure 2.31. (a) Semiconductor wafer; (b) IC chip; (c) MOSFET and bipolar transistor [1].

oxide films (Section 2.1.1), deposited polysilicon, dielectric, and metal films
(Section 2.1.5). Film formation is often followed by lithography (Section 2.1.2)
or impurity doping (Section 2.1.4). Lithography is generally followed by etching
(Section 2.1.3), which in turn is often followed by another impurity doping or
film formation. The final IC is made by sequentially transferring the patterns
from each mask, level by level, onto the surface of the semiconductor wafer.

After processing, each wafer contains hundreds of identical rectangular chips
(or dies), typically between 1 and 20 mm on each side, as shown in Figure 2.31a.
The chips are separated by sawing or laser cutting. Figure 2.31b shows a separated
chip. Schematic top views of a single MOSFET and a single bipolar transistor are
shown in Figure 2.31c to give some perspective of the relative size of a compo-
nent in an IC chip. Prior to chip separation, each chip is electrically tested. Good
chips are selected and packaged to provide an appropriate thermal, electrical, and
interconnection environment for electronic applications.

2.2.1. Bipolar Technology

The majority of bipolar transistors used in ICs are of the n–p–n type because the
higher mobility of minority carriers (electrons) in the base region results in higher-
speed performance than can be obtained with p–n–p types. Figure 2.32 shows
a perspective view of an n–p–n bipolar transistor in which lateral isolation is
provided by oxide walls and vertical isolation is provided by the n+ –p junction.
The lateral oxide isolation approach reduces not only the device size but also the
parasitic capacitance because of the smaller dielectric constant of silicon dioxide
(3.9, compared with 11.9 for silicon).

For an n–p–n bipolar transistor, the starting material is a p-type, lightly
doped (∼1015 cm−3), 〈111〉- or 〈100〉-oriented, polished silicon wafer. Because
the junctions are formed inside the semiconductor, the choice of crystal orien-
tation is not as critical as for MOS devices (see Section 2.2.2). The first step
is to form a buried layer. The main purpose of this layer is to minimize the
series resistance of the collector. A thick oxide (0.5–1 µm) is thermally grown
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Figure 2.32. Oxide-isolated bipolar transistor [1].

on the wafer, and a window is then opened in the oxide. A precisely controlled
amount of low-energy arsenic ions (∼30 keV, ∼1015 cm−2) is implanted into the
window region to serve as a predeposit (Figure 2.33a). Next, a high-temperature
(∼1100◦C) drive-in step forms the n+-buried layer, which has a typical sheet
resistance of 20 �/�.

The second step is to deposit an n-type epitaxial layer. The oxide is removed
and the wafer is placed in an epitaxial reactor for epitaxial growth. The thickness
and the doping concentration of the epitaxial layer are determined by the ultimate
use of the device. Analog circuits (with their higher voltages for amplification)
require thicker layers (∼10 µm) and lower dopings (∼5 × 1015 cm−3), whereas
digital circuits (with their lower voltages for switching) require thinner layers
(∼3 µm) and higher dopings (∼2 × 1016 cm−3). Figure 2.33b shows a cross-
sectional view of the device after the epitaxial process.

The third step is to form the lateral oxide isolation region. A thin oxide pad
(∼50 nm) is thermally grown on the epitaxial layer, followed by a silicon nitride
deposition (∼100 nm). If nitride is deposited directly onto the silicon without the
thin oxide pad, the nitride may cause damage to the silicon surface during subse-
quent high-temperature steps. Next, the nitride–oxide layers and about half of the
epitaxial layer are etched using a photoresist as mask (Figures 2.33c and 2.33d).
Boron ions are then implanted into the exposed silicon areas (Figure 2.33d).

The photoresist is removed, and the wafer is placed in an oxidation furnace.
Since the nitride layer has a very low oxidation rate, thick oxides will be grown
only in the areas not protected by the nitride layer. The isolation oxide is usually
grown to a thickness such that the top of the oxide becomes coplanar with the
original silicon surface to minimize the surface topography. This oxide isolation
process is called local oxidation of silicon (LOCOS). Figure 2.34a shows the
cross section of the isolation oxide after removal of the nitride layer. Because
of segregation effects, most of the implanted boron ions are pushed underneath
the isolation oxide to form a p+ layer. This is called the p+-channel stop (or
chanstop), because the high concentration of p-type semiconductor will prevent
surface inversion and eliminate possible high-conductivity paths (or channels)
among neighboring buried layers.
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Figure 2.33. Cross-sectional views of bipolar transistor fabrication: (a) buried-layer implanta-
tion; (b) epitaxial layer; (c) photoresist mask; (d) channel-stop layer [1].

The fourth step is to form the base region. A photoresist is used as a mask to
protect the right half of the device. Then, boron ions (∼1012 cm−2) are implanted
to form the base regions, as shown in Figure 2.34b. Another lithographic process
removes all the thin pad oxide except for a small area near the center of the base
region (Figure 2.34c). The fifth step is to form the emitter region. As shown in
Figure 2.34d, the base contact area is protected by a photoresist mask. Then, a
low-energy, high-arsenic-dose (∼1016 cm−2) implantation forms the n+-emitter
and n+-collector contact regions. The photoresist is removed, and a final metal-
lization step forms the contacts to the base, emitter, and collector, as shown in
Figure 2.32.

In this basic bipolar process, there are six film formation operations, six litho-
graphic operations, four ion implantations, and four etching operations. Each
operation must be precisely controlled and monitored. Failure of any one of the
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Figure 2.34. Cross-sectional views of bipolar transistor fabrication: (a) oxide isolation; (b) base
implantation; (c) removal of thin oxide; (d) emitter–collector implant [1].

operations generally will render the wafer useless. The doping profiles of the
completed transistor along a coordinate perpendicular to the surface and passing
through the emitter, base, and collector are shown in Figure 2.35. The emitter
profile is abrupt because of the concentration-dependent diffusivity of arsenic.
The base doping profile beneath the emitter can be approximated by a Gaussian
distribution for limited-source diffusion. The collector doping is given by the
epitaxial doping level (∼2 × 1016 cm−3) for a representative switching transistor.

2.2.2. CMOS Technology

The MOSFET is the dominant device used in modern integrated circuits because
it can be scaled to smaller dimensions than other types of devices. The dominant
technology for MOSFET is complementary MOSFET (CMOS) technology, in
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Figure 2.36. n-channel MOSFET [1].

which both n-channel and p-channel devices (NMOS and PMOS, respectively)
are provided on the same chip. CMOS technology is particular attractive because
it has the lowest power consumption of all IC technology. Figure 2.36 shows a
perspective view of an n-channel MOSFET prior to final metallization. The top
layer is a phosphorus-doped silicon dioxide (P-glass) that is used as an insulator
between the polysilicon gate and the gate metallization and also as a gettering
layer for mobile ions.

2.2.2.1. Basic NMOS Fabrication Sequence
In an NMOS process, the starting material is a p-type, lightly doped
(∼1015 cm−3), 〈100〉-oriented, polished silicon wafer. The first step is to form
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the oxide isolation region using LOCOS technology. The process sequence
for this step is similar to that for the bipolar transistor. A thin-pad oxide
(∼35 nm) is thermally grown, followed by a silicon nitride (∼150 nm) deposition
(Figure 2.37a). The active-device area is defined by a photoresist mask and a
boron chanstop layer and is then implanted through the composite nitride–oxide
layer (Figure 2.37b). The nitride layer not covered by the photoresist mask is
subsequently removed by etching. After stripping the photoresist, the wafer is
placed in an oxidation furnace to grow an oxide (called the field oxide), where
the nitride layer is removed, and to drive in the boron implant. The thickness of
the field oxide is typically 0.5–1 µm.

The second step is to grow the gate oxide and to adjust the threshold voltage.
The composite nitride–oxide layer over the active-device area is removed, and
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Figure 2.37. NMOS fabrication sequence: (a) formation of SiO2, Si3N4, and photoresist layers;
(b) boron implant; (c) field oxide; (d) gate [1].
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a thin-gate oxide layer (less than 10 nm) is grown. For an enhancement-mode
n-channel device, boron ions are implanted in the channel region, as shown in
Figure 2.37c, to increase the threshold voltage to a predetermined value (e.g.,
+0.5 V). For a depletion-mode n-channel device, arsenic ions are implanted in
the channel region to decrease the threshold voltage (e.g., −0.5 V).

The third step is to form the gate. A polysilicon is deposited and is heavily
doped by diffusion or implantation of phosphorus to a typical sheet resistance of
20–30 �/�. This resistance is adequate for MOSFETs with gate lengths larger
than 3 µm. For smaller devices, polycide, a composite layer of metal silicide and
polysilicon such as W-polycide, can be used as the gate materials to reduce the
sheet resistance to about 1 �/�.

The fourth step is to form the source and drain. After the gate is patterned
(Figure 2.37d), it serves as a mask for the arsenic implantation (∼30 keV, ∼5 ×
1015 cm−2) to form the source and drain (Figure 2.38a), which are self-aligned
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Source Drain

Arsenic implant

Figure 2.38. NMOS fabrication sequence: (a) source and drain; (b) P-glass deposition;
(c) MOSFET cross section; (d) MOSFET top view [1].
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with respect to the gate. At this stage, the only overlapping of the gate is due
to lateral straggling of the implanted ions (for 30 keV As, σ⊥ is only 5 nm).
If low-temperature processes are used for subsequent steps to minimize lateral
diffusion, the parasitic gate–drain and gate–source coupling capacitances can be
much smaller than the gate–channel capacitance.

The last step is metallization. P-glass is deposited over the entire wafer and is
flowed by heating the wafer to give a smooth surface topography (Figure 2.38b).
Contact windows are defined and etched in the P-glass. A metal layer, such
as aluminum, is then deposited and patterned. A cross-sectional view of the
completed MOSFET is shown in Figure 2.38c, and the corresponding top view is
shown in Figure 2.38d. The gate contact is usually made outside the active-device
area to avoid possible damage to the thin-gate oxide.

2.2.2.2. CMOS Fabrication Sequence
The MOS process forms the foundation for CMOS technology. Figure 2.39a
shows a CMOS inverter. The gate of the upper PMOS device is connected to
the gate of the lower NMOS device. For the CMOS inverter, in either logic
state, one device in the series path from VDD to ground is nonconductive. The
current that flows in either steady state is a small leakage current, and only when
both devices are on during switching does a significant current flow through the
inverter. Thus, the average power dissipation is on the order of nanowatts. Low
power consumption is the most attractive feature of the CMOS circuit.
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Figure 2.39. CMOS inverter: (a) circuit diagram; (b) layout; and (c) cross section [1].
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Figure 2.39b shows a layout of the CMOS inverter, and Figure 2.39c shows
the device cross section along the A–A′ line. In the processing, a p tub (also
called a p well ) is first implanted and subsequently driven into the n substrate.
The p-type dopant concentration must be high enough to overcompensate the
background doping of the n substrate. The subsequent processes for the n-
channel MOSFET in the p tub are identical to those described previously. For the
p-channel MOSFET, 11B+ or 49(BF2)+ ions are implanted into the n substrate to
form the source and drain regions. A channel implant of 75As+ ions may be used
to adjust the threshold voltage and a n+ chanstop is formed underneath the field
oxide around the p-channel device. Because of the p tub and the additional steps
needed to make the p-channel MOSFET, the number of steps to make a CMOS
circuit is essentially double that to make an NMOS circuit. Thus, there is a trade-
off between the complexity of processing and a reduction in power consumption.

Instead of the p tub described above, an alternate approach is to use an n tub
formed in p-type substrate, as shown in Figure 2.40a. In this case, the n-type
dopant concentration must be high enough to overcompensate for the background
doping of the p substrate (i.e., ND > NA). In both the p-tub and the n-tub
approaches, the channel mobility will be degraded because mobility is determined
by the total dopant concentration (NA + ND). A more recent approach using two
separated tubs implanted into a lightly doped substrate is shown in Figure 2.40b.
This structure is called a “twin tub.” Because no overcompensation is needed in
either of the twin tubs, higher channel mobility can be obtained.
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Figure 2.40. Various CMOS structures: (a) n-tub; (b) twin-tub; (c) refilled trench [1].
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All CMOS circuits have the potential for a problem called latchup that is
associated with parasitic bipolar transistors. These parasitic devices consist of
the npn transistor formed by the NMOS source–drain regions, p tub, and n-type
substrate, as well as the pnp transistor formed by the PMOS source-drain regions,
n-type substrate, and p tub. Under appropriate conditions, the collector of the
pnp device supplies base current to the npn and vice versa in a positive feedback
arrangement. This latchup current can have serious negative repercussions in a
CMOS circuit.

An effective processing technique to eliminate latchup is to use deep-trench
isolation, as shown in Figure 2.40c. In this technique, a trench with a depth deeper
than the well is formed in the silicon by anisotropic reactive sputter etching. An
oxide layer is thermally grown on the bottom and walls of the trench, which
is then refilled by deposited polysilicon or silicon dioxide. This technique can
eliminate latchup because the n-channel and p-channel devices are physically
isolated by the refilled trench. The detailed steps for trench isolation and some
related CMOS processes are now considered.

Well Formation. The well of a CMOS circuit can be a single well, a twin
well, or a retrograde well. The twin-well process exhibits some disadvantages.
For example, it needs high-temperature processing (above 1050◦C) and a long
diffusion time (longer than 8 h) to achieve the required well depth of 2–3 µm.
In this process, the doping concentration is highest at the surface and decreases
monotonically with depth. To reduce the process temperature and time, high-
energy implantation is used (i.e., implanting the ion to the desired depth instead
of diffusion from the surface). The profile of the well in this case can have a
peak at a certain depth in the silicon substrate. This is called a retrograde well.

The advantage of high-energy implantation is that it can form the well under
low-temperature and short-time conditions. Hence, it can reduce the lateral diffu-
sion and increase the device density. The retrograde well offers some additional
advantages over the conventional well: (1) because of high doping near the
bottom, the well resistivity is lower than that of the conventional well, and latchup
can be minimized; (2) the chanstop can be formed at the same time as the retro-
grade well implantation, reducing processing steps and time; and (3) higher well
doping in the bottom can reduce the chance of punchthrough from the drain to
the source.

Isolation. The conventional MOS isolation process has some disadvantages that
make it unsuitable for deep-submicrometer (≤0.25-µm) fabrication. The high-
temperature oxidation of silicon and long oxidation time result in the encroach-
ment of the chanstop implantation (usually boron for n-MOSFET) to the active
region and cause a threshold voltage shift. The area of the active region is
reduced because of the lateral oxidation. In addition, the field oxide thickness
in submicrometer-isolation spacings is significantly less than the thickness of
field oxide grown in wider spacings. Trench isolation technology can avoid these
problems.
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Figure 2.41. Shallow-trench isolation: (a) patterning on nitride–oxide films; (b) dry etching and
chanstop implantation; (c) CVD oxide to refill; (d) surface after CMP [1].

An example is shallow trench (depth less than 1 µm) isolation, shown
in Figure 2.41. After patterning (Figure 2.41a), the trench area is etched
(Figure 2.41b) and then refilled with oxide (Figure 2.41c). Before refilling, a
channel stop implantation can be performed. Since the oxide has overfilled
the trench, the oxide on the nitride should be removed. Chemical–mechanical
polishing is used to remove the oxide on the nitride and to get a flat surface
(Figure 2.41d). Because of its high resistance to polishing, the nitride acts as a
stop layer for the CMP process. After the polishing, the nitride layer and the oxide
layer can be removed by H3PO4 and HF, respectively. This initial planarization
step at the beginning is helpful for the subsequent polysilicon patterning and
planarizations of the multilevel interconnection processes.

Gate Engineering. If n+-polysilicon is used for both PMOS and NMOS gates,
the threshold voltage for PMOS has to be adjusted by boron implantation. This
makes the channel of the PMOS a buried type, as shown in Figure 2.42a. The
buried-type PMOS suffers serious short-channel effects as the device size shrinks
below 0.25 µm. The most noticeable phenomena for short-channel effects are
threshold voltage rolloff, drain-induced barrier lowering, and the large leakage
current at the OFF state. To alleviate these problems, the n+-polysilicon can be
changed to p+-polysilicon for the PMOS devices. Due to the workfunction dif-
ference (1.0 eV from n+- to p+-polysilicon), a surface p-type channel device can
be achieved without the boron VT adjustment implantation. Hence, as the technol-
ogy shrinks to 0.25 µm and less, dual-gate structures are required: p+-polysilicon
gate for PMOS and n+-polysilicon for NMOS (Figure 2.42b).

To form the p+-polysilicon gate, ion implantation of BF2 is commonly used.
However, boron penetrates easily from the polysilicon through the oxide into the
silicon substrate at high temperatures, resulting in a VT shift. This penetration
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Figure 2.42. (a) Conventional CMOS structure with a single polysilicon gate; (b) advanced
CMOS structure with dual polysilicon gates [1].

is enhanced in the presence of a F atom. There are methods to reduce this
effect: use of rapid thermal annealing to reduce the time at high temperatures
and, consequently, the diffusion of boron; use of nitrided oxide to suppress the
boron penetration, since boron can easily combine with nitrogen and becomes
less mobile; and the creation of a multilayer of polysilicon to trap the boron
atoms at the interface of the two layers.

2.2.3. BiCMOS Technology

BiCMOS is a technology that combines both CMOS and bipolar device structures
in a single IC. The reason to combine these two different technologies is to
create an IC chip that has the advantages of both CMOS and bipolar devices.
We know that CMOS exhibits advantages in power dissipation, noise margin,
and packing density, whereas bipolar technology shows advantages in switching
speed, current drive capability, and analog capability. As a result, for a given
design rule, BiCMOS can have a higher speed than CMOS, better performance
in analog circuits than CMOS, a lower power dissipation than bipolar, and a
higher component density than bipolar.

BiCMOS has been widely used in many applications. Early on, it was used
in static random access memory (SRAM) circuits. Currently, BiCMOS technol-
ogy has been successfully developed for transceiver, amplifier, and oscillator
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applications in wireless communication equipment. Most BiCMOS processes are
based on standard CMOS process with some modifications, such as adding masks
for bipolar transistor fabrication. The example shown in Figure 2.43 is for a
high-performance BiCMOS process based on the twin-well CMOS approach.

The initial material is a p-type silicon substrate. An n+-buried layer is formed
to reduce collector resistance. The buried p layer is formed by ion implantation to
increase the doping level and prevent punchthrough. A lightly doped n-epi layer
is grown on the wafer, and a twin-well process for the CMOS is performed. To
achieve high performance for the bipolar transistor, four additional masks are
needed: the buried n+ mask, the collector deep n+ mask, the base p mask, and
the polyemitter mask. The p+ region for base contact can be formed with the
p+ implant in the source–drain implantation of the PMOS, and the n+ emitter
can be formed with the source/drain implantation of the NMOS. The additional
masks and longer processing time compared with a standard CMOS process are
the main drawbacks of BiCMOS.

2.2.4. Packaging

Before finished ICs can be put to their intended use in various commercial elec-
tronic systems and products (such as computers, cellular phones, and digital
cameras), several other key processes must take place. These include both elec-
trical testing and packaging. Testing, which is discussed in detail in Chapter 3, is
clearly necessary to ensure high-quality products. The term packaging refers to
the set of technologies and processes that connect ICs with electronic systems. A
useful analogy is to consider an electronic product as the human body. Like the
body, these products have “brains,” which are analogous to ICs. Electronic pack-
aging provides the “nervous system,” as well as the “skeletal system.” The pack-
age is responsible for interconnecting, powering, cooling, and protecting the IC.

Overall, electronic systems consist of several levels of packaging, each with
distinctive types of interconnection devices. Figure 2.44 depicts this packag-
ing hierarchy. Level 0 consists of on-chip interconnections. Chip-to-printed cir-
cuit board or chip-to-module connections constitute level 2, and board-to-board
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interconnections make up level 3. Levels 4 and 5 consist of connections between
subassemblies and between systems (such as computer to printer), respectively.

2.2.4.1. Die Separation
After functional testing, individual ICs (or dies) must be separated from the
substrate. This is the first step in the packaging process. In a common method
that has been used for many years, the substrate wafer is mounted on a holder and
scribed in both the x and y directions using a diamond scribe. This is done along
scribe borders of 75–250 µm in width that are formed around the periphery of
the dies during fabrication. These borders are aligned with the crystal planes of
this substrate if possible. After scribing, the wafer is removed form the holder and
placed upside-down on a soft support. A roller is then used to apply pressure,
fracturing the wafer along the scribe lines. This must be accomplished with
minimal damage to the individual die.

More modern die separation processes use a diamond saw, rather than a dia-
mond scribe. In this procedure, the wafer is attached to an adhesive sheet of
mylar film. The saw is then used to either scribe the wafer or to cut completely
through it. After separation, the dies are removed from the mylar. The separated
dice are then ready to be placed into packages.
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Figure 2.45. Dual-inline package [2].

2.2.4.2. Package Types
There are a number of approaches to the packaging of single ICs. The dual-
inline package (DIP) (Figure 2.45), is the package most people envision when
they think of integrated circuits. The DIP was developed in the 1960s, quickly
became the primary package for ICs, and has long dominated the electronics
packaging market. The DIP can be made of plastic or ceramic; the latter is
called the CerDIP. The CerDIP consists of a DIP constructed of two pieces of
sandwiched ceramic with leads protruding from between the ceramic plates.

In the 1970s and 1980s, surface-mount packages were developed in response
to a need for higher-density interconnect than the DIP approach could provide.
In contrast to DIPs, the leads of a surface-mounted package do not penetrate the
printed circuit board (PCB) on which it is mounted. This means that the package
can be mounted on both sides of the board, thereby allowing higher density.
One example of such a package is the quad flatpack (QFP) (Figure 2.46), which
has leads on all four sides to further increase the number of input/output (I/O)
connections.

More recently, the need for rapidly increasing numbers of I/O connections
has led to the development of pin-grid array (PGA) and ball-grid array (BGA)
packages (Figures 2.47 and 2.48, respectively). PGAs have an I/O density of
about 600, and BGAs can have densities greater than 1000, as compared to

Figure 2.46. Quad flatpack [2].
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Figure 2.47. Pin-grid array [2].

Figure 2.48. Ball-grid array [2].

∼200 for QFPs. BGAs can be identified by the solder bumps on the bottom
of the package. With QFPs, as the spacing between leads becomes tighter, the
manufacturing yield decreases rapidly. The BGA allows higher density and takes
up less space than the QFP, but its manufacturing process is inherently more
expensive.

The most recent development in packaging is the chip-scale package (CSP),
which is shown in Figure 2.49. CSPs, defined as packages no larger than 20%
greater than the size of the IC die itself, often take the form of miniaturized ball-
grid arrays. They are designed to be flipchip-mounted (see Section 2.2.4.3) using
conventional equipment and solder reflow. CSPs are typically manufactured in
a process that creates external power and signal I/O contacts and encapsulates
the finished silicon die prior to dicing the wafer. Essentially, CSPs provide an
interconnection framework for ICs so that before dicing, each die has all the
functions (i.e., external electrical contacts, encapsulation of the finished silicon) of
a conventional, fully packaged IC. Two essential features of this approach are that
the leads and interposer layer (an added layer on the IC used to provide electrical
functionality and mechanical stability) are flexible enough so that the packaged
device is compliant with the test fixture for full testing and burning, and the
package can accommodate the vertical nonplanarity and thermal expansion and
contraction of the underlying printed circuit board during assembly and operation.
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2.2.4.3. Attachment Methods
An IC must be mounted and bonded to a package, and that package must be
attached to a printed circuit board before the IC can be used in an electronic
system. Methods of attaching ICs to PCBs are referred to as level 1 packaging.
The technique used to bond a bare die to a package has a significant effect on
the ultimate electrical, mechanical and thermal properties of electronic system
being manufactured. Chip-to-package interconnection is generally accomplished
by either wire bonding, tape-automated bonding (TAB), or flipchip bonding (see
Figure 2.50).

Wire bonding is the oldest attachment method and is still the dominant tech-
nique for chips with fewer that 200 I/O connections. Wire bonding requires
connecting gold or aluminum wires between chip bonding pads and contact points
on the package. ICs are first attached to the substrate using a thermally conduc-
tive adhesive with their bonding pads facing upward. The Au or Al wires are
then attached between the pads and substrate using ultrasonic, thermosonic, or
thermocompression bonding [1]. Although automated, this process is still time-
consuming since each wire must be attached individually.

Tape-automated bonding (TAB) was developed in the early 1970s and is often
used to bond packages to PCBs. In TAB, chips are first mounted on a flexi-
ble polymer tape (usually polyimide) containing repeated copper interconnection
patterns. The copper leads are defined by lithography and etching, and the lead
pattern can contain hundreds of connections. After the IC pads have been aligned
to metal interconnection stripes on the tape, attachment takes place by thermo-
compression. Gold bumps are formed on either side of the die or tape and are
used to bond the die to the leads on the tape.
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Figure 2.50. (a) Wire; (b) flipchip; (c) tape-automated bonding [2].

Flipchip bonding is a direct interconnection approach in which the IC is
mounted upside-down onto a module or printed circuit board. Electrical con-
nections are made via solder bumps (or solderless materials such as epoxies or
conductive adhesives) located over the surface of the chip. Since bumps can
be located anywhere on the chip, flipchip bonding ensures that the interconnect
distance between the chip and package is minimized. The I/O density is limited
only by the minimum distance between adjacent bond pads.

SUMMARY

In this chapter, we have provided an overview of the critical unit processes in IC
fabrication and described the integration of these unit processes into sequences
for fabricating and packaging ICs. In the next chapter, we will discuss how these
processes are monitored to facilitate quality control.

PROBLEMS

2.1. Assuming that a silicon oxide layer of thickness x is grown by thermal
oxidation, show that the thickness of silicon being consumed is 0.44x. The
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molecular weight of Si is 28.9 g/mol, and the density of Si is 2.33 g/cm3.
The corresponding values for SiO2 are 60.08 g/mol and 2.21 g/cm3.

2.2. A silicon sample is oxidized in dry O2 at 1200◦C for one hour.
(a) What is the thickness of the oxide grown?

(b) How much additional time is required to grow 0.1 µm more oxide in
wet O2 at 1200◦C?

2.3. Find the parameter γ for the photoresists shown in Figure 2.13.

2.4. Calculate the Al average etch rate and etch rate uniformity on a 200-mm-
diameter silicon wafer, assuming that the etch rates at the center, left, right,
top, and bottom of the wafer are 750, 812, 765, 743, and 798 nm/min,
respectively.

2.5. The electron densities in RIE and HDP systems range within 109 –1010 and
1011 –1012 cm−3, respectively. Assuming that the RIE chamber pressure is
200 mTorr and HDP chamber pressure is 5 mTorr, calculate the ioniza-
tion efficiency in RIE reactors and HDP reactors at room temperature. The
ionization efficiency is the ratio of the electron density to the density of
molecules.

2.6. For a boron diffusion in silicon at 1000◦C, the surface concentration is main-
tained at 1019 cm−3 and the diffusion time is 1 h. If the diffusion coefficient
of boron at 1000◦C is 2 × 1014 cm2/s, find Q(t) and the gradient at x = 0
and at a location where the dopant concentration reaches 1015 cm−3.

2.7. Arsenic was predeposited by arsine gas, and the resulting total amount of
dopant per unit area was 1 × 1014 atoms/cm2. How long would it take to
drive the arsenic in to a junction depth of 1 µm? Assume a background
doping of CB = 1 × 1015 atoms/cm3, and a drive-in temperature of 1200◦C.
For As diffusion, D0 = 24 cm2/s, and Ea = 4.08 eV.

2.8. Assume 100-keV boron implants on a 200-mm silicon wafer at a dose of
5 × 1014 ions/cm2. The projected range and project straggle are 0.31 and
0.07 µm, respectively. Calculate the peak concentration and the required
ion-beam current for 1 min of implantation.

2.9. In a CMP process, the oxide removal rate and the removal rate of a layer
underneath the oxide (called a stop layer) are 1r and 0.1r , respectively. To
remove 1 µm of oxide and a 0.01-µm stop layer, the total removal time is
5.5 min. Find the oxide removal rate.
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PROCESS MONITORING

OBJECTIVES

• Survey various sensor metrology and methods of monitoring IC fabrication
processes.

• Place this metrology in the context of process needs.
• Identify key measurement points in the process flow.
• Differentiate between wafer state and equipment state measurements.

INTRODUCTION

In Chapter 2, the basic unit processes used in fabricating an integrated circuit,
as well as the process flows for several major IC technologies, were discussed
in detail. In order for these processes to repeatably produce reliable, high-quality
devices and circuits, each unit process must be strictly controlled. Many diag-
nostic tools are used to maintain systematic control. Such control requires that
the key output variables for each process step (i.e., those that are correlated with
product functionality and performance) be carefully monitored.

Process monitoring enables operators and engineers to detect problems early on
to minimize their impact. The economic benefit of effective monitoring systems
increases with the complexity of the manufacturing process. Manufacturing line
monitors consist of extremely sophisticated metrology equipment that can be
divided into tools characterizing the state of features on the semiconductor

Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

82



PROCESS FLOW AND KEY MEASUREMENT POINTS 83

wafers themselves and those that describe the status of the fabrication
equipment operating on those wafers. The issues involved in understanding
and implementing both wafer state and equipment state measurements will be
discussed in detail in this chapter.

3.1. PROCESS FLOW AND KEY MEASUREMENT POINTS

When we monitor a physical system, we observe that system’s behavior. On
the basis of these observations, we take appropriate actions to influence that
behavior in order to guide the system to some desirable state. Semiconductor
manufacturing systems consist of a series of sequential process steps in which lay-
ers of materials are deposited on substrates, doped with impurities, and patterned
using photolithography to produce sophisticated integrated circuits and devices.

As an example of such a system, Figure 3.1 depicts a typical CMOS pro-
cess flow (refer to Section 2.2.1 for more details). Inserted into this flow dia-
gram in various places are symbols denoting key measurement points. Clearly,
CMOS technology involves many unit processes with high complexity and tight
tolerances. This necessitates frequent and thorough inline process monitoring to
assure high-quality final products.

The measurements required may characterize physical parameters, such as
film thickness, uniformity, and feature dimensions; or electrical parameters, such
as resistance and capacitance. These measurements may be performed directly
on product wafers, either directly or using test structures, or alternatively, on
nonfunctional monitor wafers (or “dummy” wafers). In addition to these, some
measurements are actually performed “in situ,” or during a fabrication step.
When a process sequence is complete, the product wafer is diced, packaged,
and subjected to final electrical and reliability testing.
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Figure 3.1. CMOS process flow showing key measurement points (denoted by ‘‘M’’).
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3.2. WAFER STATE MEASUREMENTS

There is no substitute for regular inspection of products during manufacturing
to ensure high quality. Inspections can reveal contamination, structural flaws, or
other problems. Such investigations must not be limited to visual inspections,
however, since not all processes have a visible effect on electronic products.
Thin-film deposition and ion implantation are two important examples of this. In
addition, with ever-increasing levels of integration, features on wafers become
smaller and more difficult to inspect. As a result, visual inspection must be
supplemented by sophisticated physical and electrical measurements of various
characteristics that describe the state of a wafer.

Wafer state characterization includes the measurement of the physical param-
eters related to each manufacturing process step. Examples include

Lithography

• Linewidth
• Overlay
• Print bias
• Resist profiles

Etch

• Etch rate
• Selectivity
• Uniformity
• Anisotropy
• Etch bias

Deposition or Epitaxial Growth

• Sheet resistance
• Film thickness
• Surface concentration
• Dielectric constant
• Refractive index

Diffusion or Implantation

• Sheet resistance
• Junction depth
• Surface concentration
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The total collection of such measurements relate to the physical characteristics of
product wafers, and these physical characteristics can be correlated with the elec-
trical performance of devices and circuits. The following sections describe wafer
state measurements and the corresponding measurement apparatus in greater
detail.

3.2.1. Blanket Thin Film

We begin the discussion of wafer state measurements with those measurements
that are performed on blanket thin films. The term “blanket” is used to
differentiate wafers that have been uniformly coated by a thin film from those in
which the film has been patterned using photolithography and etching.

3.2.1.1. Interferometry
Optical metrology provides fast and precise measurements of film thickness
and optical constants. In semiconductor manufacturing, interferometry (some-
times called reflectometry) is a widely used optical method for measuring such
parameters. Single- or multiple wavelength interferometers are commonly used
for both in situ and postprocess measurements of film thickness. In this method,
a light source, usually a laser, is focused on a semiconductor wafer while a
detector measures the reflected light intensity. The wafer consists of a parallel
stack of partially transparent thin films. The reflected light intensity varies as a
function of time depending on the thickness of the top layer due to constructive
and destructive interference caused by multiple reflections.

To illustrate the basic concept, consider Figure 3.2, which shows a film of
uniform thickness d and index of refraction n, with the eye of the observer
focused on point a. The film is illuminated by broad source of monochromatic
light S. There is a point P on the source such that two rays (represented by
the single and double arrows) can leave P and enter the eye after traveling
through point a. These two rays follow different paths, one reflected from the
upper surface of the film and the other from the lower surface. Whether point a

appears bright or dark depends on the nature of the interference (i.e., constructive
or destructive) between the two waves that diverge from a.

The two factors that impact the nature of the interference are differences in
optical path length and phase changes on reflection. For the two rays to combine
to give maximum intensity, we must have

2dn cos θ = (m + 0.5)λ (3.1)

where m = 0, 1, 2, . . . and θ is the angle of the refracted beam relative to the
surface normal. The term 0.5λ accounts for the phase change that occurs on
reflection since a phase change of 180◦ is equivalent to half a wavelength. The
condition for minimum intensity is

2dn cos θ = mλ (3.2)

Equations (3.1) and (3.2) hold when the index of refraction of the film is either
greater or less than the indices of the media on each side of the film. Therefore,
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Figure 3.2. Interference by reflection from a thin film [1].
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Figure 3.3. Sample interferogram used for plasma etch monitoring [2].

if the index of refraction is known, the thickness of the film may be computed
by simply counting peaks or valleys in the reflected waveform. An example of
such a waveform (or interferogram) appears in Figure 3.3.

Interferometry becomes more complex when applied to stacks of several thin
films. The overall goal, however, is still to obtain film thickness information from
the time-varying reflected intensity signal. The reflected light intensity is given
by [7]

Ir(d, λ) = I0(λ)r(d, λ, φ1,φ2, . . . , φN) (3.3)
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where I0 is the incident light intensity, r is the reflection coefficient, d is the
thickness of the top layer, and φi are physical constants (i.e., thicknesses and
refractive indices) associated with the lower films in the film stack.

The reflected intensity is monitored using a detector consisting of a light-
sensitive transducer, such as a photodiode, in conjunction with an optical filter
or diffraction grating to select the wavelength(s) of interest. The output of the
detector corresponding to a particular wavelength is of the form

yλ(kT ) = α(λ, kT )A(λ, kT )I0(λ, kT )r(d(kT ), λ) + eλ(kT ) (3.4)

where T denotes the sampling period, k is an integer, α represents losses in the
optical system, A is the gain of the detector, and eλ is measurement noise. The
physical parameters φi are considered to be fixed and known in this formulation
and are not shown. For multiple-wavelength (or spectroscopic) measurements,
this expression is repeated for each wavelength used. For p wavelengths, in
matrix form, this is written as

y(kT ) = diag(h(kT )r(d(kT )) + e(kT ) (3.5)

where diag(x) represents a matrix with the elements of the vector x along the
diagonal and

y(kT ) = [yλ1(kT ) · · · yλp
(kT )] (3.6)

h(kT ) = [α(λ1, kT )A(λ1, kT )I0(λ1, kT ) · · · α(λp, kT )

A(λp, kT )I0(λp, kT )] (3.7)

r(d(kT )) = [r(d(kT ), λ1) · · · r(d(kT ), λp)]T (3.8)

e(kT ) = [eλ1(kT ) · · · eλp
(kT )]T (3.9)

where the superscript T represents the transpose operation.
To obtain film thickness or the rate of change of thickness (i.e., etch or

deposition rate), the detector output is processed in one of two ways: (1) extrema
counting or (2) least-squares fitting. Extrema counting takes advantage of the fact
that the reflected light intensity varies approximately periodically with both the
wavelength of the incident light and the thickness of the top film. The distance
between peaks and valleys is a known function of the top film thickness. Thus,
if many wavelengths are available, thickness can be determined by counting the
peaks in a plot of reflectance versus wavelength. If only a single wavelength is
available, the movement of peaks and valleys over time during in situ measure-
ments indicates that a specific amount of material has been etched or deposited.
This provides the average etch or deposition rate between successive minima and
maxima.

To use the least-squares approach, at each timepoint, the following nonlinear
optimization problem is posed:

min
d

[(y(kT ) − diag(h)r(d))T (y(kT ) − diag(h)r(d))] (3.10)
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The film thickness is then that for which the minimum is achieved. Etch rate or
deposition rate is then calculated from the resulting thickness versus time curve.

The final variation of interferometry we will discuss briefly is one that is
particularly applicable to thickness monitoring during plasma etching. During
etching, the emission from the plasma itself may be used as the light source. As
this light is reflected from the etched film and underlying film surfaces while the
thickness of the etched film decreases, the optical path difference between light
rays varies and the changing constructive and destructive interference results
in periodic signals in the same manner as previously described. If a charge-
coupled device (CCD) camera is placed in such a way that it can view these
signals (see Figure 3.4), each pixel of the CCD camera then acts as an individual
interferometer monitoring a different part of the wafer. This arrangement is called
full-wafer interferometry [5].

3.2.1.2. Ellipsometry
Ellipsometry is a widely used measurement technique based on the polarization
changes that occur when light is reflected from or transmitted through a medium.
Changes in polarization are a function of the optical properties of the material
(i.e., its complex refractive indices), its thickness, and the wavelength and angle
of incidence of the light beam relative to the surface normal. When multiple light
beams of varying wavelength are used, the technique is referred to as spectro-
scopic ellipsometry (SE). SE, which can be used to make in situ or postprocess
measurements, is a fundamentally more accurate technique than interferometry
for obtaining film thickness and optical dielectric function information. In gen-
eral, SE measurements are performed at an off-normal angle with respect to the
sample. In this configuration, the measurement is sensitive to the polarization
state of both the incident and reflected waves.

Figure 3.5 shows an unpolarized beam of light falling on a dielectric surface.
In this case, the dielectric is glass. The electric field vector for each wavetrain

q0

q1

air

layer 1

layer 2

CCD camera

d

incident light

optical path difference = 2n1d cos(q1)

Figure 3.4. Schematic of full-wafer interferometry [5].



WAFER STATE MEASUREMENTS 89

Figure 3.5. Illustration of components of polarization [1].

in the beam can be resolved into two components—one perpendicular to the
plane of incidence (i.e., the plane of the figure) and another parallel to this plane.
The perpendicular component, represented by the dots, is the σ component (or
“s component”). The parallel component, represented by the arrows, is the π

component (or “p component”). On average, for completely unpolarized incident
light, these two components are of equal amplitude. However, if the incident beam
is polarized (as is the case in ellipsometry), this is no longer true.

In the most common configuration, linearly polarized light is incident on the
surface, and the elliptical polarization status of the reflected light is analyzed.
Measured ellipsometry data are usually written in the form of the ratio (ρ) of the
total reflection coefficients for s and p polarization (Rs and Rp, respectively). In
other words

ρ = Rp/Rs = tan(ψ)ei� (3.11)

where tan(ψ) is the ratio of the magnitude of the p-polarized light to the
s-polarized reflected light and � is the difference in phase shifts on reflection
for the p and s polarizations, respectively.

Another set of expressions called the Fresnel equations relate [Eq. (3.11)] to
the bulk complex dielectric function (ε). The dielectric function represents the
degree to which the material may be polarized by an applied external electric
field, and as a complex number, it is expressed as

ε = ε1 + jε2 (3.12)
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where ε1 and ε2 are the real and imaginary parts, respectively. For heterogeneous
samples consisting of multiple layers, the dielectric function determined by ellip-
sometry is an average over the region penetrated by the incident light called the
effective dielectric function, 〈ε〉. If the sample structure is not too complicated, 〈ε〉
can be simulated by appropriate models (such as the “ambient–film–substrate”
model). In this case, film and substrate properties can be separated, and film
properties (i.e., thickness or dielectric function) can be determined as follows.

Because there are a maximum of two independent optical parameters (� and
�) measured at each wavelength, the maximum number of unknowns that can
be determined from a single spectral measurement is 2w, where w is the number
of wavelengths scanned. Thus far, we have discussed the index of refraction as if
it were a single parameter. However, in general, the complex index of refraction
(N ) consists of a real part (n) and an imaginary part (k), or

N = n − jk (3.13)

where k is the extinction coefficient, which is a measure of how rapidly the
intensity decreases as light passes through a material. The dielectric function is
related to the complex index of refraction by the relationship

ε = N2 (3.14)

Therefore, we can obtain values for n and k in terms of ε1 and ε2 using

n =
√

1
2

[
(ε2

1 + ε2
2)

1/2 + ε1
]

(3.15)

k =
√

1
2

[
(ε2

1 + ε2
2)

1/2 − ε1
]

(3.16)

As mentioned above, the complex index of refraction is related to the total reflec-
tion coefficients by the Fresnel equations, which are given by [6]

Rp = r
p

12 + r
p

23 exp(−j2β)

1 + r
p

12r
p

23 exp(−j2β)
(3.17)

Rs = rs
12 + rs

23 exp(−j2β)

1 + rs
12r

s
23 exp(−j2β)

(3.18)

where the Fresnel reflection coefficients at the individual interfaces are of the form

r
p

12 = N2 cos φ1 − N1 cos φ2

N2 cos φ1 + N1 cos φ2
(3.19)

rs
12 = N1 cos φ1 − N2 cos φ2

N1 cos φ1 + N2 cos φ2
(3.20)

and

β = 2π

(
d

λ

)
N2 cos φ2 (3.21)
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Figure 3.6. Reflections and transmissions in ambient (1), film (2), and substrate (3) [6].

All subscripts and angles mentioned in Eqs. (3.17)–(3.21) are described in
Figure 3.6.

Thus, materials with finite light absorption have two unknowns (ε1 and ε2, or
equivalently, n and k), at each wavelength and one additional unknown in the film
thickness. Thus, the total number of unknowns is 2w + 1. Because this number
of unknowns is one too many to be determined from spectroscopic ellipsometry
data, it is necessary to employ a dispersion model. Such a model describes the
functional dependence of n and k on λ based on P fitting parameters. There-
fore, the total number of unknowns becomes P + 1. As long as 2w > P + 1,
film thickness and the optical constants may be determined simultaneously by
numerically iterating the P + 1 fitting parameters to fit spectra [7].

For example, for a thin film on a substrate, the usual objective is to determine
thickness d for a known substrate and film dielectric function. To do so, the value
of d is found that minimizes the function

∑
λ

|〈ε〉 − 〈ε〉calc|2 (3.22)

(or similar functions using ρ, or ψ and �) [8]. Here, the first term represents
measured values, and the second term represents theoretically calculated values.
This expression can be minimized using well-known procedures such as Newton’s
method or the Levenberg–Marquardt algorithm [9].

3.2.1.3. Quartz Crystal Monitor
As described in Chapter 2, the deposition of metals such as aluminum is often
accomplished using the evaporation technique. The deposition rate during evap-
oration operations is commonly measured using a device known as a quartz
crystal monitor. This device is a vibrating crystal sensor that is allowed to
oscillate at its resonant frequency as the frequency is monitored. This resonant
frequency then shifts as a result of mass loading as additional mass from the
evaporated metal is deposited on top of the crystal. When enough material has
been added, the resonant frequency shifts by several percent. By feeding the
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frequency measurements to the mechanical shutters of the evaporation system,
the thickness of the deposited layer, as well as its time rate of change, can be
readily monitored. The sensing elements needed to detect such shifts are quite
inexpensive and easy to replace. This method is effective for a wide range of
deposition rates.

3.2.1.4. Four-Point Probe
The four-point probe is an instrument used to measure the resistivity and sheet
resistance of diffused layers. As depicted schematically in Figure 3.7, this tech-
nique requires a fixed current to be injected into the wafer surface through two
outer probes. The resulting voltage is measured between two inner probes. If the
probes have a uniform spacing (s, in cm), and the sample is infinite, then the
resistivity in �·cm is given by [11]

ρ = 2πsV/I (3.23)

for t � s and
ρ = (πt/ ln 2)V/I (3.24)

for s � t . For shallow layers such as this, Eq. (3.24) means that the sheet resis-
tance (Rs) is then given by

Rs = ρ/t = (π/ ln 2)V/I = 4.53V/I (3.25)

Although the approximations used in Eqs. (3.24) and (3.25) are valid for shallow
diffused layers in silicon, different correction factors must be used for sheet
resistance measurements on bulk wafers.

It should be noted that monitor wafers used for sheet resistance measurements
can also be used to determine junction depth (xj ). After the wafers are diffused
or implanted with dopants, the thickness of the diffused region is defined as
the junction depth. This parameter may be determined from sheet resistance
measurements by replacing t with xj in Eq. (3.25).

P

+ V –

s s s
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t

n

Figure 3.7. Schematic of four-point probe measurement [11]. In this example, the sheet resis-
tance of a p-type epitaxial layer of thickness t on an n-type substrate is measured.
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3.2.2. Patterned Thin Film

We continue our discussion of wafer state measurements with those measurements
that are performed primarily on wafers that have previously been patterned using
photolithography and etching to form specific structures or devices.

3.2.2.1. Profilometry
Profilometry is a very common method of postprocess film thickness
measurement. In this technique, a step feature in the grown or deposited film
is first created, either by masking during deposition or by etching afterward. The
profilometer then drags a fine stylus across the film surface (see Figure 3.8).
When the stylus encounters a step, a signal variation (based on a differential
capacitance or inductance technique) indicates the step height. This information
is then displayed on a chart recorder or cathode-ray tube (CRT) screen. Films
of thicknesses greater than 100 nm can be measured with this instrument. The
measurement of thinner films is difficult because of vibration, surface roughness,
and the precision required in leveling the instrument. Some more recently
developed surface profilometers use atomic force microscopy (see Section 3.2.2.2
below).

3.2.2.2. Atomic Force Microscopy
Atomic force microscopy (AFM) is a method for measuring surface properties
and/or profiles with atomic-scale topographical definition. In this technique, a
sharp tip built at the end of a soft cantilever arm is vibrated perpendicular to

Traveling
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Line

2 µm/mm
Slope

Stylus

Figure 3.8. Schematic of surface profilometer [12].



94 PROCESS MONITORING

the surface at close to the resonant frequency of the cantilever–tip mass as the
probe tip traverses laterally across the feature to be characterized. The tip is
in atomically close proximity to the surface, so a van der Waals electrostatic
force is created between them. This force, which has a strong dependence on
the gap between the tip and surface topography, modifies the resonant frequency
of the system. The changes in resonance are monitored by an interferometric
detection technique that provides a corresponding displacement signal, resulting
in a direct measure of the atomic-scale surface topography. A schematic of an
AFM system is shown in Figure 3.9. Figure 3.10 shows a typical AFM scan of a
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Figure 3.9. Schematic of atomic force microscopy system [13].

Figure 3.10. Typical AFM image of a surface feature (in this case, a trench) [13].
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surface structure. One disadvantage of this technique compared to conventional
methods is its low throughput.

3.2.2.3. Scanning Electron Microscopy
Scanning electron microscopy (SEM) is a key technique for assessing minimum
feature size in semiconductor manufacturing. The minimum feature size is often
expressed in terms of the critical dimension (CD) or minimum linewidth that
can be resolved by the photolithography system. The decrease in linewidths
toward the scale of fractions of a micrometer has rendered conventional optical
microscopes nearly obsolete. However, linewidth measurements based on SEM
can overcome the limitations of optical techniques for submicrometer geometry
features.

The fine imaging capability of the SEM is due to the fact that the wave-
length of electrons is four orders of magnitude less than that of optical systems.
At such small wavelengths, diffraction effects are usually negligible and spatial
resolution is excellent. Features as small as 100 nm can be readily resolved [13].
The electron beam may be based on thermionic or field emission sources. A
schematic of a typical field emission SEM is shown in Figure 3.11.

As shown in this figure, the electron gun consists of a tip, first anode, and
second anode. A voltage is established between the tip and first anode to facilitate
field emission from the tip. An accelerating voltage is then applied between
the tip and the second anode to accelerate the electrons. The electron beam
emitted from the tip passes through the aperture provided at the center of the
first anode, is accelerated, and passes through the center aperture of the second
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Figure 3.11. Schematic of field emission SEM optics [13].
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Figure 3.12. Sample SEM output (the parallel lines are calibration marks).

anode to the condenser lens. Electron beams are collected by the condenser lens
and aggregated into a small spot on the objective lens. Figure 3.12 shows a typical
digital photo output of an SEM. The CD of the feature is usually determined by
an arbitrary edge criterion. While lateral resolution offers a tremendous benefit, it
must be pointed out that SEM still suffers from several disadvantages, including
high cost, low throughput (only ∼30 wafers per hour), and the destructive nature
of the measurement (i.e., wafers must be cleaved to expose the feature to be
imaged).

3.2.2.4. Scatterometry
Scatterometry is another optical measurement technique. It is used for patterned
features based on an analysis of the light diffracted (or scattered ) from a periodic
structure such as a grating of photoresist lines. Figure 3.13 shows a schematic
of an angle-resolved scatterometer, which measures the intensity of the light
diffracted as a function of incident angle and polarization. Scatterometry is used
to characterize surface roughness, defects, particle density on the surface, film
thickness, or the CD of the periodic structure.

The most common type of angle-resolved scatterometer is called a “2θ” scat-
terometer due to the two angles (incident and measurement) associated with the
method. An incident laser is focused on a sample and scanned through some
range of incident angles (θi ). The light is scattered by the periodic patterns into
distinct diffraction orders at angular locations specified by the grating equation

sin θi + sin θn = nλ/d (3.26)

where θi is taken to be negative, θn is the angular location of the nth diffraction
order, λ is the wavelength of the incident light, and d is the spatial period (or
pitch) of the periodic structure. Because of the complex interaction between the



WAFER STATE MEASUREMENTS 97

Scanning
optics

Sidewall angle

Incident laser beam

Θ Θ

Resist

Oth
diffracted

order

CD BARC

Substrate

Detector
P

S

Figure 3.13. Schematic of a 2θ angle-resolved scatterometer [14].

incident light and the periodic features, the fraction of power diffracted into each
order is a function of the dimensions of the structure and thus may be used to
characterize them.

Capturing diffracted light “signatures” (such as those depicted in Figure 3.14)
is just the first phase of scatterometry. In the subsequent analytical phase, a
diffraction model is used to interpret the experimental signatures in terms of
key parameters such as CD or film thickness. Doing so requires a library of
theoretical signatures for comparison to the measured data. The generation of
such a library is accomplished by first specifying nominal film stack dimensions
and the expected variation of each parameter to be measured. A computerized
diffraction model is then used to produce the library of scatter signatures that
encompasses all combinations of these parameters for subsequent analysis.
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Figure 3.14. Sample scatterometry signatures for 5-nm photoresist CD variations [14].
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3.2.2.5. Electrical Linewidth Measurement
Another CD characterization technique depends on direct-current electrical
measurement. The most common test structure for this measurement is shown
in Figure 3.15. In this configuration, two structures are combined to perform
resistance measurements. The upper portion, a four-terminal Van der Pauw
structure, is used to measure sheet resistance. This structure is designed to account
for doping or film thickness variations. The lower structure is a four-terminal
crossbridge linear resistor pattern used to determine the average linewidth (W ).

The length of the line segment (L) between pads 4 and 6 is known. When a
known current is applied through pads 3 and 5, the resulting voltage is measured
at pads 4 and 6. The average linewidth may then be calculated as the product
of the measured sheet resistance and length, divided by the measured resistance
(V46/I35). The key advantages of electrical linewidth measurement are resolutions
on the order of 1 nm and short cycle time. The main disadvantages are the
requirement that the film be conductive and the need for physical contact with
the wafer.

3.2.3. Particle/Defect Inspection

Contamination is a major concern in semiconductor manufacturing, and billions
of dollars are spent annually by manufacturers in order to reduce it. Contamination
often takes the form of particles that can appear on the surface of wafers and
cause defects in devices or circuits. The fraction of the product that is sensitive
to particles depends in part on the particle size. A general rule of thumb is that
particles as small as one-tenth the size of a structure can cause the structure to
fail. With the industry currently immersed in manufacturing devices with submi-
crometer features, even nanometer-scale particles are of great concern. Inspection
and characterization of particles are therefore critical.
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5 6

L
W

Figure 3.15. Electrical linewidth measurement test structure [13].
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3.2.3.1. Cleanroom Air Monitoring
One method of controlling particulate contamination is performing manufacturing
operations in a cleanroom environment, such as the one schematically depicted
in Figure 3.16. Air enters the cleanroom through high-efficiency particulate air
(HEPA) or ultra-high-efficiency particulate air (ULPA) filters. The air is forced
to flow laminarly (as opposed to turbulently) so that lateral dispersion of contam-
inants generated in the room is minimized. Cleanrooms are categorized by their
“class,” which quantifies the number of particles of a given size per cubic foot of
air. Various aspects of cleanroom performance affect product quality, and as fea-
ture sizes continue to decrease, cleanroom specifications are likewise becoming
progressively tighter.

Despite the use of cleanrooms, semiconductor fabrication processes, as well
as manufacturing personnel themselves, still generate materials that can contami-
nate products. Such contamination may originate from process gases and vapors,
process liquids, processes that break up bulk material (such as sputtering), depo-
sition processes, metallic impurities, wafer handling, or tool wear, to name just
a few. The usual methods for quantitatively determining cleanroom air quality
involve sampling via optical particle counters and sampling onto “witness plates”
that are later read by surface particle counters.

In the latter approach, a preinspected clean silicon wafer is placed in a location
to be monitored. After a fixed time period, the plate is removed and reinspected.
The particles per unit area added to the plate are counted. Surface particle counters
can inspect an entire plate within minutes with nearly complete detection of
particles of sizes a low as fractions of micrometers.

For gases, liquids, and many types of surfaces, optical particle counters are
used. Using these devices, particles are illuminated as they pass through a focused
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Figure 3.16. Cleanroom schematic [13].
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Figure 3.17. Optical particle counter [13].

laser beam (see Figure 3.17). The light scattered from the particles is then
measured and correlated with the number of particles present. The amount of light
scattered into the sensing element will depend on the light (intensity, wavelength,
polarization), the characteristics of the particles (size, shape, orientation, refrac-
tive index), and the measurement geometry (position and solid angle subtended
by the optics with respect to the beam and the particle). In addition to cleanroom
monitoring, this technique is also used for in situ particle monitoring (ISPM)
inside of processing equipment that produces particles, such as ion implantation
or sputtering equipment.

3.2.3.2. Product Monitoring
In addition to monitoring contamination in the ambient environment, it is perhaps
more crucial to monitor particles that actually wind up on the wafer surface, since
these are the particles that can cause circuit defects. Experience has shown that
most processing-related defects tend to occur in a few layers of the complete
process [15]. For CMOS processes, for example, defects in the gate oxide and
interconnect layers represent the vast majority of all defects.

To control the formation of such defects, special inline monitoring techniques
are required. These techniques involve inspection of product wafers at various
stages in the process. Two common approaches for local defects are “surfscan”
and image evaluation. The surfscan technique uses scattered laser light and
analyzes reflections to count the particles on the wafer surface (see Figure 3.18).
Surfscan is usually applied to unpatterned wafers. Image evaluation techniques,
on the other hand, make use of automated inspection equipment to check the
occurrence of local defects on patterned wafers at several critical points in the
manufacturing process.

Generic particle counts are useful, but limited. In order to assess the impact
of the presence of defects caused by particles, specially designed test structures
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Figure 3.18. Sample surfscan [15].

are used. These structures, also known as process control monitors (PCMs),
include single transistors, single lines of conducting material, MOS capacitors,
via chains, and interconnect monitors. Product wafers typically contain several
PCMs distributed across the surface, either in die sites or in the scribe lines
between die (see Figure 3.19).

Process quality can be checked at various stages of manufacturing through
inline measurements on PCM structures. Three typical interconnect test structures
are shown in Figure 3.20. Using such test structures, measurements are performed
to assess the presence of defects, which can be inferred by the presence of short

Product PCM

Figure 3.19. Configuration of products and PCMs on a typical wafer [15].



102 PROCESS MONITORING

(a) (b) (c)

Figure 3.20. Basic test structures for interconnect layers: (a) meander structure; (b) double-
comb structure; (c) comb–meander–comb structure [15].

circuits or open circuits using simple resistance measurements. For example,
the meander structure facilitates the detection of open circuits through increased
end-to-end resistance of the meander. The double-comb structure can likewise be
used to detect shorts (short circuits), since any extra conducting material bridg-
ing the two combs will reduce the resistance between combs significantly. The
comb–meander–comb structure combines the capabilities of the other two struc-
tures and permits the detection of both shorts and opens. Various combinations of
widths of lines and spaces in these test structures allow the collection of statistics
on defects of various sizes.

3.2.4. Electrical Testing

In the preceding section, the concept of test structures for process monitoring was
introduced. Although this introduction was presented in the context of particle
and defect monitoring, it should not be construed that this is the only use of
test structures. In fact, electrical measurements performed on test structures are
a major mechanism for assessing yield (see Chapter 5) and other indicators of
product performance as well. Such measurements are performed on an inline basis
and also at the conclusion of the fabrication process. In addition, electrical testing
of the final product is crucial to ensure quality. These concepts are discussed in
more detail below.

3.2.4.1. Test Structures
Figures 3.20–3.26 are examples of electrical test structures used for process
monitoring. However, these by no means represent a comprehensive set, as
dozens of possible structures exist for monitoring hundreds of process variables.

Figure 3.21 shows a high-density bipolar transistor chain used to monitor
the leakage current between transistor terminals (emitter–base leakage, emit-
ter–collector leakage, etc.). The emitters and bases are wired into parallel chains.
Collectors are contacted via the substrate, which eliminates metal short interfer-
ence in the emitter–collector leakage test. The collectors are also wired to the
second level of metal to test collector isolation leakage. Transistor chains can also
be used to monitor base–base shorts, as shown in Figure 3.22. In this example,
shorts due to polysilicon bridging can be detected by forming the polysilicon
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Figure 3.22. Polysilicon base to polysilicon base short chain [13].

bases on field oxide to eliminate the possibility of shorts through the substrate.
It is also important to monitor transistor contacts for open circuits. Series-type
chains similar to the meander structure in Figure 3.20 can be used for this pur-
pose by connecting the contacts for the various transistor terminals. Figure 3.23
shows an example of a collector contact chain. Note that although the structures
depicted in Figures 3.21–3.23 were designed for bipolar circuits, analogous struc-
tures can be fabricated to evaluate MOS circuits by wiring up chains connecting
their source, drain, and gate terminals in similar chains.

Figure 3.24 is a typical example of a via chain structure used to test con-
nectivity between metal layers. This chain also includes a first-level metal stripe
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Figure 3.25. Ring oscillator.
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running parallel to the chain as a mask misalignment monitor. An adjacent metal
stripe runs on every level, but never along the full length of the chain. They
instead appear at certain sections, alternating with each other.

In addition to defect monitoring, test structures are also used to assess func-
tional characteristics of the semiconductor devices and their dependence on
processing conditions. These can be individual devices or simple subcircuits.
A common example of such a structure is a ring oscillator, which is used to
measure speed and capacitive loading effects. A ring oscillator is essentially a
chain of inverters (see Figure 3.25). It is formed by connecting an odd number
of inverters in a loop. In general, a ring with N inverters will oscillate with a
period of 2Nτp and a frequency of 1/2Nτp, where τp is the propagation delay
through a single inverter. Inverter chains can also be used to monitor transistor
current gain or voltage drops across transistors [13].

An example of a more elaborate functional test structure is the array diagnostic
monitor (ADM) shown in block diagram form in Figure 3.26. The ADM, which
is used to assess CMOS DRAM circuits, has DC and AC diagnostic capabilities.
It is essentially a simplified, yet fully functional duplicate version of a memory
array. ADM testing allows for rapid process feedback and ultimately translates
into accelerated process improvement.



106 PROCESS MONITORING

3.2.4.2. Final Test
Functional testing at the completion of manufacturing is the final arbiter of pro-
cess quality and yield. The purpose of final testing is to ensure that all products
perform to the specifications for which they were designed. For integrated cir-
cuits, the test process depends a great deal on whether the chip tested is a logic or
memory device. In either case, automated test equipment (ATE) is used to apply
a measurement stimulus to the chip and record the results. The major functions
of the ATE are input pattern generation, pattern application, and output response
detection. A block diagram for a basic ATE is shown in Figure 3.27.

For logic devices, during each functional test cycle, input vectors are sent
through the chip by the ATE in a timed sequence. Output responses are read and
compared to expected results. This sequence is repeated for each input pattern. It
is often necessary to perform such tests at various supply voltages and operating
temperatures to ensure device operation at all potential regimes. The number
and sequence of failures in the output signature are indicative of manufacturing
process faults.

The test process for memory products is very similar to that used for logic.
However, one important variation is the availability of the redundancy technique.
For dynamic RAM circuits, a widely used approach is to add a few extra word
and/or bit lines that can replace faulty lines in the main array. Replacement of
these faulty lines is accomplished by fusing them to redirect a bad word or bit
address to a redundant line. Testing the redundant lines requires two passes.
During the first pass, the addresses of errors are recorded and stored. As long as
the number of faults is less than the number of extra lines, the chip is repairable.
Although redundancy adds considerable cost and complexity to testing, the yield
benefit achieved more than compensates for this.

Device
interface

Tester
controller

Pattern
generator

Pulse
generators

Buffer-Temp
pattern and

storage

Pattern
application

(drivers/receivers)

DUT

Receivers - Output data detection

Figure 3.27. Block diagram of basic test system (DUT = ‘‘device under test’’) [13].
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Test results may be expressed in a variety of ways. A couple of examples are
shown in Figures 3.28 and 3.29. Figure 3.28 shows a plot of a two-dimensional
plot called a “shmoo” plot for a hypothetical bipolar product. In a shmoo plot,
the outlined shaded region is where the device is intended to operate, while the
blank area outside represents the failure region. Another typical test output is
the cell map shown in Figure 3.29. Cell maps are very useful in identifying and
isolating device failures, particularly in memory arrays. In addition, the patterns
generated in the cell map may be compiled, catalogued, and later compared to a
library of existing defect types, thereby aiding in the diagnosis of faults.

3.3. EQUIPMENT STATE MEASUREMENTS

Rather than characterizing the state of the product wafers themselves, equipment
monitors measure the status of tools while they are processing these wafers. Such
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monitors are the most immediate measure of process quality and therefore provide
the shortest feedback loop for maintaining control. In other words, the impact
of out-of-control conditions can be minimized if such conditions are promptly
identified by tool monitors and immediate corrective action is taken.

Certain physical parameters are routinely measured as a part of equipment
monitoring. The following are a few commonly monitored process variables at
various stages of the manufacturing process:

Lithography

• Exposure energy
• Exposure dose and intensity
• Time
• Magnification
• Aperture

Wet Stations

• Fluid level
• Temperature gradients
• Flowrates
• Development/etch rates
• Time to endpoint

Deposition

• Gas flowrate
• Pressure
• Temperature

Implantation

• Accelerating voltage
• Beam current

Diffusion

• Source composition
• Pressure
• Flowrate
• Temperature

The combined effects of these tool variables eventually lead to measurable impact
on the characteristics of product wafers. The process engineer must therefore have
available reliable methods for monitoring these variables in order to facilitate
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process control. The following sections describe several equipment state mea-
surements used for monitoring such characteristics.

3.3.1. Thermal Operations

Thermal operations refer to any process step that occurs at an elevated
temperature. Examples include epitaxial growth, chemical vapor deposition,
evaporation, and annealing. This subsection describes the measurement of key
process variables during these operations.

3.3.1.1. Temperature
In situ measurements of conditions such as temperature can be used to infer
the quality of the wafers being produced in thermal processes. In many types
of thermal processing equipment, temperature is measured using a thermocouple
embedded in the wafer holder (or susceptor). A thermocouple is a circuit con-
sisting of a pair of wires made of different metals joined at one end (the “sensing
junction”) and terminated at the other end (the “reference junction”) in such a
way that the terminals are both at a known reference temperature. Leads from
the reference junction to a load resistance (i.e., an indicating meter) complete
the thermocouple circuit. Due to the thermoelectric effect (or Seebeck effect), a
current is induced in the circuit whenever the sensing and reference junctions are
different temperatures. This current varies linearly with the temperature difference
between the junctions.

In some cases (such as in rapid thermal processes), the use of a thermocouple
is not possible because there is no susceptor. Alternative temperature sensors
used in such situations include thermopiles and optical pyrometers. A thermopile,
which also operates via the Seebeck effect, consists of several sensing junctions
made of the same material pairs located in close proximity and connected in
series in order to multiply their output.

The second alternative method to the thermocouple is pyrometry. Pyrometers
operate by measuring the radiant energy received in a certain band of energies,
assuming that the source is a graybody of known emissivity. The input energy can
then be converted to a source temperature using the Stefan–Boltzmann relation-
ship [16]. Most commercial systems monitor the mid-infrared band (3–6 µm).
One major issue in using pyrometry is that the effective emissivity of the source
must be accurately known. The effective emissivity includes both intrinsic and
extrinsic contributions. Intrinsic emissivity is a function of the material, surface
finish, temperature, and wavelength. Extrinsic emissivity is affected by the amount
of radiant energy from other sources reflected back to the spot being measured
(which can increase the apparent temperature). In addition, the presence of mul-
tiple layers of different thin-film materials can also alter the apparent emissivity
due to interference effects.

3.3.1.2. Pressure
Pressure in vacuum systems used in thermal operations can be measured using a
variety of transducers, including capacitance manometers, thermal conductivity
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gauges, and ionization gauges. Capacitance manometers are mechanical gauges
that sense the deflection caused by the pressure difference between the chamber
to be measured and a reference volume. These devices detect the movement of a
thin metal diaphragm to do so. Although they can be used to detect pressures as
low as 1 mTorr, they are also often used to measure pressures as high as 1 Torr.

Thermal conductivity gauges derive the thermal conductivity of the ambient
gas by passing a current through a wire and measuring its temperature. Pressure
may then be inferred from the conductivity measurement.

However, neither mechanical deflection nor thermal conductivity gauges are
able to measure pressures below 1 mTorr. This type of application requires an
ionization gauge, which operates using an electron stream to ionize the gas in
the gauge and an electric field to collect the ions. The ion current is a function
of the pressure in the chamber. The pressure that can be measured in this way is
limited only by the ability to sense small ion currents, so ionization gauges can
detect pressures as low as 10−12 Torr.

3.3.1.3. Gas Flow
Thermal systems of various types, as well as plasma etchers, require controlled
rates of introduction of process gases into the reaction chambers. This is most
commonly achieved using an instrument called a mass flow controller, which
consists of a flowmeter, a controller, and a valve, and it is located between the gas
source and the chamber itself. Gas flow is measured in units of volume/time. The
most common unit is the standard cubic centimeter per minute (sccm), defined
as the flux of one cm3 of gas per minute at 273 K.

There are two primary types of mass flowmeters: (1) the differential pressure
type and (2) the thermal type. The differential pressure flowmeter relates a pres-
sure drop at a physical flow restriction to rate of mass flow. The thermal type,
which is more widely used in semiconductor manufacturing, relies on the ability
of a flowing gas to transfer heat. As shown in Figure 3.30, the thermal flowmeter
consists of a larger gas flow tube in parallel with a small sensor. A heating coil is
wrapped around the sensor midway along its length, and temperature sensors are
placed both upstream and downstream of the heated point. Flowing gas causes
the temperature distribution in the sensor tube to change as a result of thermal
transfer between the heated wall and the gas stream. The temperature down-
stream from the heated region becomes higher than the upstream temperature as
the flowing gas conducts heat away. It can be shown that the rate of mass flow
(mf ) is then given by

mf = (κWh �T )1.25 (3.27)

where Wh is the heater power, �T is the temperature difference between the two
sensors, and κ is a constant that depends on the heat transfer coefficients and
the specific heat, density, and thermal conductivity of the gas. Assuming that the
remaining parameters remain constant over the flow range of interest, the mass
flowrate can be obtained by measuring the temperature difference. The two tem-
perature sensors, which are usually resistance thermometers (see Section 3.3.2.1),
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Figure 3.30. Mass flow controller: (a) operational principles; (b) cross-sectional drawing;
(c) schematic diagram [12].

are connected to one port of an unbalanced Wheatstone bridge, and the tempera-
ture difference is converted into a voltage signal. As the flowrate is determined,
its value is compared to a setpoint value and adjusted as necessary to maintain
that value by the controller.

3.3.2. Plasma Operations

As discussed in Chapter 2, plasma etching has emerged as a critical process
in the production of integrated circuits. This emergence has stemmed from a
continuous need to fabricate devices with extremely small dimensions. However,
without sufficient online monitoring and control, etch equipment can produce
unacceptably large volumes of defective products, leading to millions of dollars
lost as a result of misprocessing. As a result, in addition to the measurements
described above for thermal operations, plasma etching systems often employ
some unique supplemental equipment monitoring devices.

3.3.2.1. Temperature
In many plasma etching systems, the process temperature is controlled by means
of a system that removes heat from the lower electrode by circulating deion-
ized water. This closed-loop recirculation system is sometimes referred to as a
“chiller.” The chiller maintains a preset temperature, often room temperature. This
temperature is monitored using a standard resistance thermometer device (RTD).
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RTDs have either conductive or semiconductive elements for which the resistivity
(ρ) versus temperature characteristic is given by the well-known relationship

ρ(T ) = ρ0(1 + α �T ) (3.28)

where T is the temperature in degrees Kelvin, ρ0 is the resistivity at some
reference temperature T0, α is the temperature coefficient of resistivity, and
�T = T − T0 is the change in temperature relative to the reference. This relation-
ship provides an accurate temperature measurement with a precision of 0.01 K.

3.3.2.2. Pressure
Pressure in plasma etching chambers is measured using capacitance manometers,
as described in Section 3.3.1.2.

3.3.2.3. Gas Flow
Gas flowrates in plasma etching systems are monitored using mass flow con-
trollers, as described in Section 3.3.1.3.

3.3.2.4. Residual Gas Analysis
Mass spectroscopy is a well-established scheme for monitoring plasma etching
systems by analyzing the residual gas composition in the etch process chamber.
The fundamental principle by which a mass spectrometer operates is based on
the separation of gas molecules by atomic mass. An etch system continuously
depletes its chamber gases during processing. At the beginning of an etch, the gas
in the chamber consists of a mixture of process gas and that resulting from the
etch. Toward the end, the gas in the chamber will resemble its mixture prior to
etching. This information may be used to detect the etch endpoint using residual
gas analysis (RGA).

There are two main methods for mass spectroscopic monitoring of plasmas:
flux analysis and partial-pressure analysis. Flux analysis involves sampling the
plasma directly by coupling the emission of plasma particles through a small
aperture into the ion optics of a mass spectrometer. This method is primarily a
research tool and is best suited for plasma species and energy analysis. On the
other hand, partial-pressure analysis is accomplished by simple vacuum connec-
tions between the spectrometer and the plasma chamber. Because of its simplicity,
partial-pressure analysis is the method of choice in most production systems used
in semiconductor manufacturing.

Figure 3.31 is a schematic diagram of a quadrupole mass spectrometer (QMS),
the main apparatus used for partial-pressure analysis. Depending on the operating
pressure of the plasma system, there is either a high or low conductance connec-
tion between the etch and QMS chamber, which is usually differentially pumped.
This results in the dynamic response of a pressure change in the QMS chamber
(�PQ(t)) differing from the pressure change in the etch chamber (�PD(t)). For
dynamic measurements, it can be shown that [17]

PD(t) =
(

1 + SQ

CT

)
PQ(t) + VQ

CT

d[PQ(t)]

dt
−

(
1 + SQ

CT

)
PB (3.29)
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Figure 3.31. Schematic diagram of QMS system used for partial-pressure analysis [17].

where a QMS chamber with volume VQ is pumped with a pump speed of SQ

and is connected to the etch chamber through a tube with conductance CT . The
last term represents the background pressure (PB) correction in the QMS. The
quantities SQ and CT are a function of the gas temperature, pressure, mass, and
viscosity of the chamber gas mixture. Equation (3.29) usually must be solved
numerically.

Figure 3.32 is an example of the results of RGA using a QMS system for the
etching of a GaAs/AlGaAs metal–semiconductor–metal structure in a BCl3/Cl2
plasma [18]. The time evolution of the RGA signals from the various reaction
product species are clearly evident, indicating the usefulness of this technique
for etch process monitoring.
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3.3.2.5. Optical Emission Spectroscopy
Optical emission spectroscopy (OES) is one of the oldest and most popular
methods of plasma etch monitoring. Fundamentally, OES is a bulk measure of the
optical radiation of the plasma species. Since emissions can emanate from etch
reactants as well as products, OES measurements are most often used to obtain the
average optical intensity at a particular wavelength above the wafer. By setting
an optical spectrometer to monitor the intensity at a wavelength associated with
a particular reactant or byproduct species, OES serves as a noninvasive, real-time
etch endpoint detector. Quantitative measurement of the species concentrations
is not required for this purpose. Instead, the intensity of the emission from the
key species, perhaps along with its time derivative, can be used empirically to
determine the proper point to discontinue the etch process.

A series of such measurements for a particular etch process is referred to as an
“endpoint trace,” a curve representing the intensity of the optical emission of the
key species over time. An example of such a trace is illustrated in Figure 3.33,
which depicts fluorine and CN emission intensities during silicon nitride etching.
At the beginning of the etch, the gas in the chamber consists of a mixture of
process gas and that resulting from the etch. At the end of the etch, the gas mixture
again resembles its mixture prior to the start of the process. Therefore, the etch
endpoint is characterized by a sharp change in the intensity of the endpoint trace.
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Figure 3.33. OES endpoint trace showing the intensity of the emission of key species in a
silicon nitride etch process [17].
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OES measurements not only reflect the chemistry of the plasma but also inher-
ently have embedded in them information concerning the operational status of
the plasma equipment, pattern density on the substrate, and nonideal fluctuations
in the processing conditions (gas flow, pressure, etc.). It is therefore also possible
to use OES signals to monitor and diagnose etch equipment problems.

3.3.2.6. Fourier Transform Infrared Spectroscopy
Infrared (IR) spectroscopy is a widely used method for identifying organic
compounds, such as those that may result from the etching of polymer films.
This method is based on the absorption of infrared radiation by molecules
at characteristic wavelengths. Radiation causes various components of such
molecules to vibrate and rotate. Since the frequency of vibration/oscillation is
dependent on the nature of the chemical bonds present, the presence or absence
of absorption in certain well-defined regions of the IR spectrum can be used
to determine the presence or absence of chemical groups. The intensity of the
absorption peaks is proportional to the amount of material present. Computer
databases and search routines are usually used to identify compounds.

In Fourier transform infrared (FTIR) spectroscopy, an infrared source is sent
through a beamsplitter to the surface of the wafer being etched and to a movable
mirror. The reflected radiation from both surfaces is added and sent to a detector.
The distance of the mirror path is swept, and the intensity of the reflected beam
as a function of the position of the mirror is monitored. The intensity of the IR
peaks can then be used to determine the composition of the film on the wafer
surface. An example of typical FTIR output is provided in Figure 3.34.
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3.3.2.7. RF Monitors
Historically, the only aspect of radiofrequency (RF) power monitored in plasma
systems is the power delivered from the RF supply to the matching network. This
is typically expressed in terms of forward and reflected RF power. The addition
of an RF plasma impedance sensor between the matching network and plasma
electrode, however, allows new electrical variables to be monitored and con-
trolled. This allows problems such as poor RF connections, electrode condition,
and changes in process gas mixture to be detected more easily [20].

Monitoring these parameters facilitates inferences regarding the state of the
etch system, such as the degree of ionization of the presence of chamber wall
coatings. Etch endpoint can also be detected using changes in RF impedance
during the etch cycle. Figure 3.35 shows an example of RF data that can be
gathered by a plasma impedance sensor.

3.3.3. Lithography Operations

The success of pattern transfer in photolithographic operations is determined by
interactions between four constituents. Those constituents (and examples of the
relevant process variables in each) are (1) the wafer (reflectivity, pattern density,
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topography), (2) the photoresist (thickness, uniformity, age), (3) the exposure
tool (mask variance, wavelength, exposure dose, lens characteristics, barometric
pressure), and (4) the developer (concentration, temperature).

The key output measurement in photolithography is linewidth or critical
dimension, which is a wafer state variable (see Section 3.2.2). Nevertheless, the
CD is significantly impacted by several equipment state variables that must also
be monitored to ensure quality. For example, resist thickness and uniformity
are controlled in part by the spin speed and ramp of spin coaters (as well
as the coating solvent and viscosity of the resist). The primary equipment
state measurements, however, are related to the exposure tool. In most modern
exposure tools, the monitoring of equipment state variables occurs internally. For
example, barometric pressure and lens characteristic changes are now monitored
as part of the tool package.

3.3.4. Implantation

In modern ion implantation systems, it is important to monitor and carefully
control the dose of the implant. This is accomplished in the end station by
placing the wafer undergoing implantation in a Faraday cup, which is simply a
cage that captures all the charge that enters it. The ion current into the wafer is
measured by connecting an ammeter between the Faraday cup and ground. The
dose is the time integral of this current divided by the wafer area.

Accurate measurement of the dose requires that precautions be taken against
errors due to secondary-electron ejection. This process involves the creation of
large numbers of electrons, many of which have sufficient energy to escape the
wafer when a high-energy ion strikes the wafer surface. To prevent secondary-
electron dose measurement errors, the wafer is biased with a small positive
voltage. This bias (usually tens of volts) is sufficient to attract all the secondary
electrons back to the surface of wafer, where they are absorbed.

Another problem often seen in implanting through a photoresist mask is
outgassing. Ions striking the surface break apart organic molecules in the resist,
leading to the formation of gaseous hydrogen that evolves from the surface and
leaves behind carbon. Not only can this hardened carbonize layer be difficult to
remove, but outgassing can raise the pressure in the end station enough to cause
neutralization of the ion beam through impact with the H2 molecules, which can
result in significant dose rate measurement errors. Modern cryopumps are very
effective in pumping away H2 and other photoresist outgassing products, but
these cryopumps must be regenerated at regular intervals to maintain adequate
vacuum levels, and this impacts throughput. The beam neutralization effect of
outgassing is controlled in some implant systems by the use of a feedback loop
that corrects the observed signal at the Faraday cup in response to changes in
the beamline pressure. Other systems avoid these problems by monitoring the
ion-beam current during those portions of the implant operation when the ion
beam is not impinging on the wafer surface and the photoresist outgassing rate
is low.
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3.3.5. Planarization

As discussed in Chapter 2, planarization operations employ chemical–mechanical
polishing (CMP) systems. In CMP systems, some of the key equipment state
measurements that must be performed include characterization of polishing pads,
determining the condition of the slurry, and endpoint detection.

The condition of CMP polishing pads is a key indicator of removal rate since
the porosity of the pad determines the slurry arrival rate at the surface of the
wafer. Glazing of the pad tends to occur after several runs, which slows the
removal rate. The solution of this problem is frequent conditioning of the pad to
obtain consistent roughness. Care must be taken in pad conditioning, however,
since processed wafers show greatly increased particle counts immediately after
pad conditioning [16].

Slurries for CMP applications consist of particles suspended in various liquids
(depending on the specific material being polished). By measuring and controlling
the pH of the slurry, particle agglomeration is minimized. In addition, for oxide
CMP, the polishing rate increases with increasing pH, particle concentration,
and particle size. Therefore monitoring each of these qualities of the slurry is
important.

Since CMP is a process for reducing thickness at selected locations on the
wafer, it is necessary to identify when a suitable degree of overall planarization
has been achieved and the process has reached its endpoint. One method of
endpoint detection involves monitoring the current supplied to the motor of the
wafer carrier. This motor current monitoring technique is a production-proven
method that works well when polishing down to a stop layer (such as polishing
a CVD–SiO2 film on a silicon nitride stop layer in shallow-trench isolation
processes) [12]. Circuitry such as a current shunt or Hall effect probe is used to
monitor the current supplied to the motor that rotates the wafer carrier. Since the
carrier is driven at a constant rotational speed to maintain a constant polishing
rate, the drive current is varied to compensate for any load changes on the motor.
This makes the current sensitive to frictional changes at the wafer surface. The
largest changes occur when one material has been polished away, leaving a layer
that has different polishing characteristics. Therefore, substantial changes in drive
current are indicative of process endpoint.

SUMMARY

This chapter has provided a survey of sensor metrology and methods of
monitoring semiconductor manufacturing processes. After identifying key
measurement points in the process flow and differentiating between wafer state
and equipment state measurements, a description of such measurement techniques
ensued. Measuring key process and equipment state variables enables operators
and engineers to ascertain product quality. However, conclusions regarding
quality can be drawn only after this measurement data have been collected and
analyzed. Methods for data analysis involve the application of various statistical
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tools. The fundamental concepts that support these tools are the subject of the
next chapter.

PROBLEMS

3.1. A thin film of silicon dioxide covers a silicon wafer. Plane lightwaves of
variable wavelengths are incident normal to the film. When one views the
reflected wave, it is noted that complete destructive interference occurs at
600 nm and constructive interference occurs at 700 nm. Calculate the thick-
ness of the SiO2 film.

3.2. The correction factor for sheet resistance when thick materials are being
measured with a Four-point probe is shown in Figure P3.2. Equation (3.24)
must be multiplied by this factor to obtain accurate RS values from I –V

measurements. Given that a uniformly doped silicon layer with a thickness
equal to the probe spacings is measured and V/I = 45, compute RS .
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Figure P3.2

3.3. Describe four techniques for measuring the linewidth of patterned features
on a substrate. Why is accurate linewidth measurement more difficult on
wafer surfaces than on masks?

3.4. A 200-mm-diameter silicon wafer contains chips that are 0.25 cm2. The
wafer is initially clean and is then exposed to room air containing 1000
particles/ft3 of diameter 0.5 µm and larger. On average, how long will it take
to deposit one particle per chip, assuming a laminar air flow of 30 m/min?

3.5. Explain why a thermal conductivity gauge will not work in an ultrahigh
vacuum.

3.6. The major source of uncertainty in pyrometry is uncertainty in emissivity.
Planck’s radiation law gives the spectral radiant exitance as a function of
wavelength and temperature (Mλ(λ, T )) as

Mλ(T ) = ε(λ)
c1

λ5(ec2/λT − 1)

where ε(λ) is the wavelength-dependent emissivity of the emitting body and
c1 and c2 are the first and second radiation constants (given by 3.7142 ×
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10−16 W-m2 and 1.4388 × 10−2 m·K, respectively). If the wafer temperature
is 1000◦C, what wavelength is most desirable to minimize the effect of this
uncertainty?

3.7. An ion implanter has a beam current of 30 mA. The wafer holder can
accommodate thirty 100-mm-diameter wafers. For a 5-min implant at a
130 keV implant energy, compute the dose received by the wafers.
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4

STATISTICAL
FUNDAMENTALS

OBJECTIVES

• Explain, in general terms, the issues surrounding process variability.
• Introduce the statistical fundamentals necessary for analyzing semiconductor

manufacturing processes.
• Describe and differentiate between discrete and continuous probability dis-

tributions.
• Discuss the concepts of sampling, estimation, statistical significance, confi-

dence intervals, and hypothesis testing.

INTRODUCTION

In Chapter 3, various monitoring tools used to generate data necessary for process
control were presented. For high-volume semiconductor manufacturing, such
testing and inspection methods are essential for producing high-quality ICs.
The term “quality” here refers to the fitness of a product for its designated
use. In this sense, quality requires conformance of all products to a set of
specifications and the reduction of any variability in the manufacturing process.
A key metric for process quality is product yield, which is discussed in Chapter 5.
Maintaining quality involves the use of statistical process control (SPC), which is
the subject of Chapter 6. Since product variability is often described in statistical
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terms, statistical methods necessarily play a central role in quality control and
yield improvement efforts. Therefore, this chapter provides a concise review of
some basic statistical fundamentals, along with appropriate examples from the
semiconductor manufacturing domain.

In terms of semiconductor manufacturing processes, the most relevant aspect
of quality is quality of conformance, or how well manufactured products con-
form to the specifications and tolerances required by their design and intended
use. Every semiconductor device or circuit possesses a number of elements that
collectively describe its fitness for use. These elements are referred to as quality
characteristics.

Perhaps the major barrier to perfecting quality in a manufacturing environment
is variability. Variability is inherent in every product—no two products are ever
identical. For example, the dimensions of two thin films used for interconnect will
vary according to the precise conditions and equipment used to deposit and pattern
the films. Small variations might have negligible impact on the final product,
but large variations can lead to final products that are unacceptable. Quality
improvement may be defined as the reduction of such variability in processes
and products.

Statistics allow engineers to make decisions about a process or population
based on the analysis of a sample from that population. For example, two
well-known statistics are the sample average and sample variance. Suppose that
x1, x2, . . . , xn are observations in a sample of size n. The statistic used to esti-
mate the mean value (µ) of this population based on the sample is the sample
average (x), which is given by

x = x1 + x2 + · · · + xn

n
= 1

n

n∑
i=1

xi (4.1)

The variance (σ2), or spread, in a dataset is a statistic that can be estimated by
the sample variance (s2):

s2 = 1

n − 1

n∑
i=1

(xi − x)2 (4.2)

The square root of the sample variance is known as the sample standard deviation.
Generally, the larger the variance, the greater the spread in the sample data.

Statistical methods provide the principal means by which products are sam-
pled, tested, and evaluated in a manufacturing environment. In the remainder of
the chapter, various statistical methodologies are introduced as tools for use in
quality control and improvement.

4.1. PROBABILITY DISTRIBUTIONS

A probability distribution is a mathematical model that relates the value of
a random variable to its probability of occurrence. There are two types of
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probability distributions: discrete and continuous. Discrete distributions are used
to describe random variables that can take on only certain specific values,
such as the number of defects on a semiconductor wafer. On the other hand,
when the random variable can have any value on a continuous scale (such as
linewidth in a sample population of interconnect), the probability distribution
is continuous. Examples of discrete and continuous probability distributions are
shown in Figure 4.1.

4.1.1. Discrete Distributions

The discrete distribution is characterized by a series of vertical lines whose height
represents the probability (Figure 4.1a). The probability that a random variable
x is equal to a specific value xi is given by

P {x = xi} = p(xi) (4.3)

Two examples of discrete probability distributions that arise frequently in manu-
facturing applications are the binomial distribution and the Poisson distribution.

4.1.1.1. Hypergeometric
Let N represent the size of a finite population of items. Suppose that D of these
items (where D ≤ N ) fall into a specific class of interest, such as the number of
defective items in the population. If a random sample of n items is selected from
the population without replacement, then the number of items in the sample
that belong in the class of interest (x) is a random variable that follows the
hypergeometric distribution. The probability of selecting x items belonging to
the class is given by

P(x) =

(
D

x

)(
N − D

n − x

)

(
N

n

) (4.4)

p(x1)

x1 x2 x3 a b

(a)

x4 x5
x

p(xi)

(b)

x

f(x)

p(x2)

p(x3)

p(x4)

p(x5)

Figure 4.1. (a) Discrete and (b) continuous probability distributions [1].



PROBABILITY DISTRIBUTIONS 125

where (
a

b

)
= a!

b!(a − b)!
.

The mean (µ) and variance (σ2) of the binomial distribution are

µ = nD

N
(4.5)

σ2 = nD

N

(
1 − D

N

)(
N − n

N − 1

)
(4.6)

The hypergeometric distribution is an appropriate model for encountering
defective samples when selecting a random sample of n items without replace-
ment from a population N of these items, of which D are nonconforming or
defective. In semiconductor manufacturing, this is analogous to selecting a sam-
ple of n dies from a lot of wafers containing N total dies, D of which are known
to be defective.

Example 4.1. Suppose that a lot of wafers contains 100 dies, 5 of which are
known to be defective. If 10 of these dies are selected at random for inspection,
what is the probability of finding less than two defective dies in the sample?

Solution: Here, N = 100, n = 10, and D = 5. To find the probability of less
than two defective dies, we apply Eq. (4.4) as follows:

P(x < 2) = P(x ≤ 1) = P(0) + P(1)

=

(
5
0

)(
95
10

)

(
100
10

) +

(
5
1

)(
95
9

)

(
100
10

) = 0.923

Therefore, the probability of finding less than two defective dies is 92.3%.

4.1.1.2. Binomial
Suppose that a process consists of n independent trials. Each trial has two possi-
ble outcomes: “success” or “failure.” Trials with these characteristics are called
Bernoulli trials. Let p be the probability of success for any given trial (thus,
0 < p < 1). If p is constant, then the probability of achieving x successes in n

trials is

P(x) =
(

n

x

)
px(1 − p)n−x x = 0, 1, . . . , n (4.7)

The mean (µ) and variance (σ2) of the binomial distribution are

µ = np (4.8)

σ2 = np(1 − p) (4.9)
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Figure 4.2. Binomial distribution with p = 0.10 and n = 15 [1].

The binomial model is used for sampling from an infinite population, and p

represents the fraction of defective or nonconforming parts in that population.
In this situation, x is the number of nonconforming parts identified in a random
sample of n items. A typically shaped binomial distribution corresponding to
p = 0.10 and n = 15 is shown in Figure 4.2.

Example 4.2. Suppose that a wire bonding process has an average of 1% defec-
tive bonds. If an inspector selects a random sample of 100 bonds, what is the
probability of more than two of the bonds being defective?

Solution: In this case, n = 100 and p = 0.01. To find the probability of greater
than two defective bonds, we apply Eq. (4.7) as follows:

P(x) =
(

100
x

)
(0.01)x(0.99)100−x x = 0, 1, . . . , 100

Note that

P(x > 2) = 1 − P(x ≤ 2) = P(0) + P(1) + P(2)

=
2∑

x=0

(
100
x

)
(0.01)x(0.99)100−x

= (0.99)100 + 100(0.01)1(0.99)99 + 4950(0.01)2(0.99)98 ∼= 0.92

Therefore, the probability of finding more than two defective bonds is 1 − 0.92 =
0.08 (8%).

An important random variable used in statistical process control is the sample
fraction nonconforming (p̂), which is

p̂ = x

n
(4.10)
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This variable is the ratio of defective items to sample size. The probability dis-
tribution for p̂ is derived from the binomial, since

P(p̂ ≤ a) = P
(x

n
≤ a

)
= P(x ≤ na) =

na∑
x=0

(
n

x

)
px(1 − p)n−x (4.11)

where [na] = greatest integer less than or equal to na. It can be shown that the
mean and variance of p̂ are µ(p̂) = p and σ2(p̂) = [p(1 − p)]/n, respectively.

4.1.1.3. Poisson
Another important discrete distribution is the Poisson distribution, which is char-
acterized by the expression

P(x) = e−λλx

x!
(4.12)

where x is an integer and λ is a constant > 0. The mean and variance of the
Poisson distribution are

µ = λ (4.13)

σ2 = λ (4.14)

respectively. The Poisson distribution is used to model the number of defects
that occur in a single product. To illustrate, consider the following example.

Example 4.3. Suppose that the number of wire bonding defects that occur has a
Poisson distribution with λ = 4. What is the probability that a randomly selected
package will have two or fewer defects?

Solution: Applying (4.12) gives P {x ≤ 2} = ∑2
x=0(e

−44x)/x! = 0.238.
The Poisson distribution corresponding to λ = 4 is shown in Figure 4.3. The

Poisson distribution is known for its skewed shape (i.e., the long “tail” to

p(x)

x

0.3

0.2

0.1

0 1 2 3 4 5 6 7 8 9 10

Figure 4.3. Poisson distribution with λ = 4 [1].
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the right). As λ becomes larger, the shape of the distribution becomes more
symmetric.

The Poisson distribution can be derived as a limiting form of the binomial
distribution. In a binomial distribution with parameters n and p, as n approaches
infinity and p approaches zero in such a way that λ = np is a constant, then the
Poisson distribution results.

4.1.1.4. Pascal
Like the binomial distribution, the Pascal distribution is based on a series of
Bernoulli trials. For a sequence of independent trials, each with a probability of
success (or failure) given by p, let x denote the trial in which the rth success (or
failure) occurs. Under these circumstances, x is a Pascal random variable with
the following probability distribution

P(x) =
(

x − 1
r − 1

)
pr(1 − p)x−r (4.15)

where r ≥ 1 is an integer and x ≥ r . The mean and variance of the Pascal
distribution are

µ = r

p
(4.16)

σ2 = r(1 − p)

p2
(4.17)

respectively.
There are two special cases of the Pascal distribution that are of interest

in semiconductor manufacturing applications. The first is when r > 0 and not
necessarily an integer. The resulting distribution in this case is called the negative
binomial distribution, which is particularly useful in modeling IC yield (see
Chapter 5). The second special case occurs when r = 1, which results in the
geometric distribution. This is the distribution of the number of Bernoulli trials
until the first success.

4.1.2. Continuous Distributions

A continuous distribution provides the probability that x lies in a specific interval
(Figure 4.1b). This can be computed by integrating the continuous distribution
between the endpoints of the interval. The probability that x is between a and b

is given by

P {a ≤ x ≤ b} =
∫ b

a

f (x) dx (4.18)

Two examples of continuous distributions that are important in statistical pro-
cess control are the normal distribution and the exponential distribution. Each is
described in more detail below.
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4.1.2.1. Normal
The normal distribution is undoubtedly the most important and best known prob-
ability distribution in applied statistics. The probability density function for a
normally distributed random variable x is given by

f (x) = 1

σ
√

2π
exp

[
−1

2

(
x − µ

σ

)2
]

(4.19)

The notation x ∼ N(µ, σ2) is often used to imply that x is normally distributed
with mean µ and variance σ2. The normal distribution has a symmetric bell
shape, as shown in Figure 4.4.

A useful graphic to interpret the value of the standard deviation of the normal
distribution is shown in Figure 4.5. This figure shows that 68.26% of the area
under a normal curve lies in the interval µ ± 1σ, 95.46% of the area lies in the
interval µ ± 2σ, and 99.73% of the area lies in the interval µ ± 3σ.

f (x)

x
m

s2

Figure 4.4. The normal distribution [1].

m − 3s

68.26%

95.46%

99.73%

m − 2s m − 1s m + 1s m + 2s m + 3sm

Figure 4.5. Areas under the normal distribution [1].
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The cumulative normal distribution is defined as the probability that x is less
than or equal to some value a, or

P(x ≤ a) = F(a) =
∫ a

−∞
f (x) dx (4.20)

Unfortunately, this integral cannot be evaluated in closed form. Instead, the fol-
lowing change of variables is used:

z = x − µ

σ
(4.21)

This allows the integral in Eq. (4.20) to be evaluated independently of µ and σ2.
In other words

P(x ≤ a) = P

{
z ≤ a − µ

σ

}
= �

(
a − µ

σ

)
(4.22)

where � is the cumulative distribution function of the standard normal distribu-
tion (i.e., the normal distribution with µ = 0 and σ = 1). A table of values for the
cumulative standard normal distribution function can be found in Appendix B.

Example 4.4. The linewidth of the interconnect for a given process has a mean
value of µ = 40 µm and a standard deviation of σ = 2 µm. What is the proba-
bility that a particular line will have a width of at least 35 µm?

Solution: We want to compute P {x ≥ 35}. Note that P {x ≥ 35} = 1 − P {x ≤
35}. To evaluate this probability, we standardize x and use the table in
Appendix B.

P {x ≤ 35} = P

{
z ≤ 35 − 40

z

}
= P {z ≤ −2.5} = �(−2.5) = 0.0062

The required probability is therefore

P {x ≥ 35} = 1 − P {x ≤ 35} = 1 − 0.0062 = 0.9938

One useful property of the normal distribution pertains to linear combinations
of normally distributed random variables. If x1, x2, . . . , xn are normally and inde-
pendently distributed with means µ1, µ2, . . . , µn and variances σ2

1, σ
2
2 . . . , σ2

n,
respectively, then the distribution of

y = a1x1 + a2x2 + · · · + anxn

is normal with mean

µy = a1µ1 + a2µ2 + · · · + anµn (4.23)

and variance
σ2

y = a2
1σ

2
1 + a2

2σ
2
2 + · · · + a2

nσ
2
n (4.24)

where a1, a2, . . . , an are constants.
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4.1.2.2. Exponential
The exponential distribution is widely used in reliability engineering as a model
for the time to failure of a component or system. The probability density function
for a random variable x that has this distribution is

f (x) = λe−λx (4.25)

where λ > 0 is a constant. A graph of the density function appears in Figure 4.6.
The mean and variance of the exponential distribution are

µ = 1

λ
(4.26)

σ2 = 1

λ2
(4.27)

respectively. The cumulative exponential distribution function is

F(a) = P(x ≤ a) =
∫ a

0
λe−λt dt = 1 − e−λa a ≥ 0 (4.28)

The parameter λ is used to model the failure rate of a system, and the mean of
the distribution (1/λ) is called the mean time to failure.

Example 4.5. An electronic component has a useful lifetime that is described by
an exponential distribution with a failure rate of 10−4 per hour (i.e., λ = 10−4).
What is the probability that this component will fail before its expected life?

Solution: We want to compute P {x ≤ 1/λ}. We evaluate this probability as
follows:

P

{
x ≤ 1

λ

}
=

∫ 1/λ

0
λe−λt dt = 1 − e−1 = 0.6321

f (x)

x

Figure 4.6. The exponential distribution.
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There is an important relationship between the exponential and Poisson distri-
butions. If the Poisson distribution is assumed to model the number of occurrences
of a failure in the interval (0, t], then applying Eq. (4.12) gives

P(x) = e−λt (λt)x

x!
(4.29)

If x = 0, there are no failures in the interval (0, t], and, P(0) = e−λt . This may
also be regarded as the probability that the first failure occurs after time t , or

P {y > t} = P(0) = e−λt (4.30)

where y is a random variable representing the time interval until the first failure.
Since

F(t) = P {y ≤ t} = 1 − e−λt (4.31)

and

f (y) = dF (y)/dy (4.32)

we can conclude that

f (y) = λe−λy (4.33)

is the distribution of the interval to the first failure. Note that Eq. (4.33) is just the
exponential distribution with parameter λ. Therefore, if the number of failures
has a Poisson distribution with parameter λ, then the interval between failures is
exponential with parameter λ.

4.1.3. Useful Approximations

For certain process control applications, approximating one probability distri-
bution with another can significantly simplify the analysis. This approach is
particularly useful in situations when the original distribution is complex or not
well tabulated. Two such approximations are presented in the following.

4.1.3.1. Poisson Approximation to the Binomial
The Poisson distribution can be derived as a limiting form of the binomial distri-
bution when p approaches zero and n approaches infinity with λ = np constant.
This implies that for small values of p and large values of n, the Poisson distri-
bution with λ = np can be used to approximate the binomial distribution. This
approximation is usually reasonable for p < 0.1, but the larger the n and the
smaller the p, the better the approximation.

4.1.3.2. Normal Approximation to the Binomial
The binomial distribution was previously defined as a sum of n Bernoulli trials,
each with an associated probability of success p. If n is large, then the central
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limit theorem may be used to justify a normal approximation to the binomial
distribution with mean np and variance np(1 − p). In other words

P(x = a) =
(

n

a

)
pa(1 − p)n−a = 1√

2πnp(1 − p)
e−(1/2)[(a−np)2/np(1−p)]

(4.34)

Since the binomial distribution is discrete and the normal distribution is
continuous, the following continuity correction is commonly applied to this
approximation

P(x = a) ∼= �

(
a + 1

2 − np√
np(1 − p)

)
− �

(
a − 1

2 − np√
np(1 − p)

)
(4.35)

where � is the standard normal cumulative distribution function. Probability
intervals are evaluated similarly. In other words

P(a ≤ x ≤ b) ∼= �

(
b + 1

2 − np√
np(1 − p)

)
− �

(
a − 1

2 − np√
np(1 − p)

)
(4.36)

This approximation is satisfactory for p ≈ 1
2 and n > 10. For larger values of p,

larger values of n are required. In general, the approximation is inadequate for
p < 1/(n + 1) or p > n/(n + 1), or for values of the random variable outside
the interval np ± 3

√
np(1 − p).

Since the binomial distribution can be approximated by the normal, and since
the binomial and Poisson distributions are closely related, the Poisson distribution
can also be approximated by the normal. The normal approximation to the Poisson
distribution with µ = λ and σ2 = λ is satisfactory for λ ≥ 15.

4.2. SAMPLING FROM A NORMAL DISTRIBUTION

Statistics allow inferences to be made or conclusions to be drawn about a popula-
tion based on a sample chosen from that population. Random sampling refers to
any method of sample selection that lacks systematic direction or bias. A random
sample of size n consists of observations x1, x2, . . . , xn selected so that the obser-
vations xi are independently and identically distributed (IID). In other words,
random sampling allows every sample an equal likelihood of being selected. If
it can be further assumed that the samples come from a normal distribution, then
it is said that the samples are IIDN.

Statistical inference procedures use quantities such as the sample mean (x)

and sample variance (s2) to draw conclusions about the central tendency and
dispersion, respectively, of a population based on a sample. If the probability
distribution from which a sample was taken is known, then the distribution of
statistics such as x and s2 can be determined from the sample data. For example,
suppose that a random variable x is normally distributed with mean µ and vari-
ance σ2. If x1, x2, . . . , xn is a random sample of size n from this population, then
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the distribution of (x) is N [µ, (σ2/n)], which follows directly from Eqs. (4.23)
and (4.24). In general, the probability distribution of a statistic is called the
sampling distribution.

4.2.1. Chi-Square Distribution

An important sampling distribution that originates from the normal distribution is
the chi-square

(
χ2

)
distribution. If x1, x2, . . . , xn are normally distributed random

variables with mean zero and variance one, then the random variable

χ2
n = χ2

1 + χ2
2 + · · · + χ2

n

is distributed as chi-square with n degrees of freedom. The probability density
function of χ2 is

f
(
χ2) = 1

2n/2�(n/2)

(
χ2)(n/2)−1

e−χ2/2 (4.37)

where � is the gamma function. If a random sample of size n is collected from
a N(µ, σ2) distribution, and this sample yields a sample variance of s2, it can be
shown that

(n − 1)s2

σ2
≈ χ2

n−1 (4.38)

that is, the sampling distribution of (n − 1)s2/σ2 is χ2
n−1. The chi-square distri-

bution is used to make inferences about the variance of a normal distribution. A
few chi-square distributions are shown in Figure 4.7. A table of values for the
cumulative chi-square distribution function is given in Appendix C.

4.2.2. t Distribution

The t distribution is another useful sampling distribution based on the normal
distribution. If x and χ2

k are standard normal and chi-square random variables,

f (c2)

c2

n = 5

n = 10

0

n = 1

Figure 4.7. Several χ2 distributions.
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then the random variable

tk ≡ x√
χ2

k/k

is distributed as t with k degrees of freedom. The probability density function
of t is

f (t) = �[(k + 1)/2]√
kπ(k/2)

(
t2

k
+ 1

)−(k+1)/2

(4.39)

For a random sample of size n collected from a N(µ, σ2) distribution with a
sample mean x and a sample variance of s2, it can be shown that

x − µ

s/
√

n
∼ tn−1 (4.40)

The t distribution is used to make inferences about the mean of a normal
distribution. A few t distributions are shown in Figure 4.8. Note that as k → ∞,
the t distribution becomes the standard normal distribution. A table of values for
the cumulative t distribution function is given in Appendix D.

4.2.3. F Distribution

The last sampling distribution to be considered that is based on the chi-square
distribution is the F distribution. If χ2

u and χ2
v are chi-square random variables

with u and v degrees of freedom, then the ratio

Fu,v ≡ χ2
u/u

χ2
v/v

f(t)

k = 5

k = ∞ (normal)

t

k = 10

Figure 4.8. Several t distributions.
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g( f )

f

u = 10, v = 5

u = 10, v = 20

Figure 4.9. Several F distributions.

is distributed as F with u and v degrees of freedom. The probability density
function of F is

g(F ) =
�

(
u + v

2

)(u

v

)u/2

�
(u

2

)
�

(v

2

) F u/2−1

[(u

2

)
F + 1

](u+v)/2
(4.41)

Consider two independent normal processes, x1 ∼ N(µ1, σ
2
1) and x2 ∼

N(µ2, σ
2
2). If random samples of sizes n1 and n2 yield sample variances s2

1
and s2

2 , respectively, then it can be shown that

s2
1/σ

2
1

s2
2/σ

2
2

∼ Fn1−1,n2−1 (4.42)

The F distribution can thus be used to make inferences in comparing the
variances of two normal distributions. A few F distributions are shown in
Figure 4.9. A table of values for the cumulative F distribution function is given
in Appendix E.

4.3. ESTIMATION

Since the true values of the parameters of a distribution such as the mean (µ) or
variance (σ2) are generally unknown, procedures are required to estimate them
from sample data. An estimator for such an unknown parameter may be defined
as a statistic that approximates that parameter based on the sample data. A point
estimator provides a single numerical value to estimate the unknown parameter.
Examples of point estimators for the normal distribution are the sample mean (x)
and sample variance (s2).

An interval estimator, on the other hand, provides a random interval in which
the true value of the parameter being estimated falls with some probability. These
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intervals are called confidence intervals. A summary of some of the more useful
confidence intervals for the normal distribution follows.

4.3.1. Confidence Interval for the Mean with Known Variance

Suppose that a sample of n independent observations x1, x2, . . . , xn on a random
variable x is taken. If (x) is computed from the sample, then a 100(1 − α)%
confidence interval on the mean µ of this population is defined as

x − z(α/2)

σ√
n

≤ µ ≤ x + z(α/2)

σ√
n

(4.43)

where zα/2 is the value of the N(0, 1) distribution such that P {z ≥ zα/2} = α/2.

4.3.2. Confidence Interval for the Mean with Unknown Variance

Suppose that a sample of n independent observations x1, x2, . . . , xn on a normally
distributed random variable x is taken. If x and s2 are computed from the sample,
then a 100(1 − α)% confidence interval on the mean µ of this population is
defined as

x − t(α/2),n−1
s√
n

≤ µ ≤ x + t(α/2),n−1
s√
n

(4.44)

where t(α/2),n−1 is the value of the t distribution with n − 1 degrees of freedom
such that P {tn−1 ≥ t(α/2),n−1} = α/2.

Example 4.6. Suppose that the linewidth of n = 16 with supposedly identical
interconnect traces is measured. The sample mean and sample standard deviation
for these measurements are x = 49.86 µm and s = 1.66 µm, respectively. What
is the 95% confidence interval on this estimate of the mean?

Solution: Since t0.025,15 = 2.132, the 95% confidence interval on m can be found
from Eq. (4.44) as follows:

49.86 − (2.132)1.66/
√

16 ≤ µ ≤ 49.86 + (2.132)1.66/
√

16

49.98 ≤ µ ≤ 50.74

Thus, the estimate of the mean linewidth is 49.86 ± 0.88 µm with 95%
confidence.

4.3.3. Confidence Interval for Variance

Suppose that a sample of n IIDN observations x1, x2, . . . , xn on a random variable
x is taken. If s2 is computed from the sample, then a 100(1 − α)% confidence
interval on the variance σ2 of this population is defined as

(n − 1)s2

χ2
(α/2),n−1

≤ σ2 ≤ (n − 1)s2

χ2
1−(α/2),n−1

(4.45)



138 STATISTICAL FUNDAMENTALS

where χ2
(α/2),n−1 is the value of the χ2 distribution with n − 1 degrees of freedom

such that P {χ2
n−1 ≥ χ2

α/2,n−1} = α/2.

Example 4.7. For the dataset in Example 4.6, what is the 95% confidence inter-
val on the estimate of the variance?

Solution: Since χ2
0.025,15 = 27.49, χ2

0.975,15 = 6.27, and s2 = 2.76, the 95% con-
fidence interval on σ2 can be found from Eq. (4.45) as follows:

(15)(2.76)

27.49
≤ σ2 ≤ (15)(2.76)

6.27

1.51 ≤ σ2 ≤ 6.60

4.3.4. Confidence Interval for the Difference between Two Means,
Known Variance

Consider two normal random variables from two different populations: x1 with
mean µ1 and variance σ2

1, and x2 with mean µ2 and variance σ2
2. Suppose

that samples of n1 observations x11, x12, . . . , x1n1 on random variable x1 and
n2 observations x21, x22, . . . , x2n2 on random variable x2 are taken. If x1 and
x2 are computed from the two samples and the variances are known, then a
100(1 − α)% confidence interval on the difference between the means of these
two populations is defined as follows:

x1 − x2 − z(α/2)

√
σ2

1

n1
+ σ2

2

n2


 ≤ (µ1 − µ2) ≤


x1 − x2 + z(α/2)

√
σ2

1

n1
+ σ2

2

n2




(4.46)

4.3.5. Confidence Interval for the Difference between Two Means,
Unknown Variances

Consider two normal random variables from two different populations: x1 with
mean µ1 and variance σ2

1, and x2 with mean µ2 and variance σ2
2. Suppose that

samples of n1 observations x11, x12, . . . , x1n1 on random variable x1 and n2

observations x21, x22, . . . , x2n2 on random variable x2 are taken. Assume that
the means and variances are unknown, but the variances are equal; that is,
σ2

1 = σ2
2 = σ2.

If x1, x2, s2
1 , and s2

2 are computed from the two samples, then a pooled estimate
of the common variance of the two populations is

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
(4.47)
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Under these conditions, a 100(1 − α)% confidence interval on µ1 − µ2 is
defined as

{
x1 − x2 − t(α/2),νsp

√
1

n1
+ 1

n2

}
≤ (µ1 − µ2)

≤
{

x1 − x2 + t(α/2),νsp

√
1

n1
+ 1

n2

}
(4.48)

where ν = n1 + n2 − 2.

Example 4.8. The average contact pad size for two different ICs is to be com-
pared. n1 = n2 = 10 pads are selected at random, and their IIDN side dimensions
are measured. For the first IC, x1 = 90.70 µm and s2

1 = 1.34 µm2; for the second
IC, x2 = 90.80 µm and s2

2 = 1.07 µm2. What is the 99% confidence interval for
the difference in pad size for the two ICs?

Solution: Assuming that the variances for pad size on each IC are the same, the
pooled estimate of the common variance is found from Eq. (4.47) as follows:

s2
p = (n1 − 1)s2

1 + (n2 − 1)s2
2

n1 + n2 − 2
= (9)1.34 + (9)1.07

10 + 10 − 2
= 1.21

The 99% confidence interval on µ1 − µ2 can be found from Eq. (4.48) as follows:

{
x1 − x2 − t0.005,18sp

√
1

n1
+ 1

n2

}

≤ (µ1 − µ2) ≤
{

x1 − x2 + t0.005,18sp

√
1

n1
+ 1

n2

}

{
90.70 − 90.80 − (2.878)(1.1)

√
1

10
+ 1

10

}
≤ (µ1 − µ2)

≤
{

90.70 − 90.80 + (2.878)(1.1)

√
1

10
+ 1

10

}

− 1.51 ≤ µ1 − µ2 ≤ 1.31

4.3.6. Confidence Interval for the Ratio of Two Variances

Consider two normal random variables from two different populations: x1 with
mean µ1 and variance σ2

1, and x2 with mean µ2 and variance σ2
2. Suppose that
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samples of n1 observations x11, x22, . . . , x1n1 on random variable x1 and n2 obser-
vations x21, x22, . . . , x2n2 on random variable x2 are taken. If x1, x2, s2

1 , s2
2 are

computed from the two samples, then a 100(1 − α)% confidence interval on
σ2

1/σ
2
2 is defined as

s2
1

s2
2

F1−(α/2),ν2,ν1 ≤ σ2
1

σ2
2

≤ s2
1

s2
2

F(α/2),ν2,ν1 (4.49)

where ν1 = n1 − 1, ν2 = n2 − 1, and Fα/2,u,v is the value of the F distribution
with u and v degrees of freedom such that P {Fu,v ≥ Fα/2,u,v} = α/2.

Example 4.9. Consider the dataset in Example 4.8. What is the 95% confidence
interval for the ratio of the variances of contact pad size for the two ICs?

Solution: From Appendix E, F0.025,9,9 = 4.03 and F0.975,9,9 = 0.248. Using
Eq. (4.49), the required confidence interval is

1.34

1.07
(0.248) ≤ σ2

1

σ2
2

≤ 1.34

107
(4.03)

0.31 ≤ σ2
1

σ2
2

≤ 5.05

4.4. HYPOTHESIS TESTING

A statistical hypothesis is a statement about the values about the parameters
of a probability distribution. A hypothesis test is an evaluation of the validity
of the hypothesis according to some criterion. Hypotheses are expressed in the
following manner:

H0: µ = µ0

H1: µ 	= µ0 (4.50)

where µ is the unknown mean of the distribution and µ0 is a hypothesized value
of µ. The statement H0: µ = µ0 is called the null hypothesis, and H1: µ 	= µ0

is called the alternative hypothesis. Hypothesis testing procedures form the basis
for many of the statistical process control techniques described in Chapter 6. To
perform a hypothesis test, select a random sample from a population, compute an
appropriate test statistic, and then either accept or reject the null hypothesis H0.

Two types of error may result when performing such a test. If the null hypoth-
esis is rejected when it is actually true, then a type I error has occurred. On the
other hand, if the null hypothesis is accepted when it is actually false, this is
called a type II error. The probabilities for each of these errors are denoted as
follows:

α = P(type I error) = P(reject H0|H0 is true)

β = P(type II error) = P(accept H0|H0 is false)
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For statistical process control applications, α is considered the probability of a
false alarm and β is the probability of a missed alarm. The statistical power of
a test is defined as follows:

Power = 1 − β = P(reject H0|H0 is false)

The power, therefore, represents the probability of correctly rejecting H0. The
basic procedure required for hypothesis testing involves specifying a desired
value of α, and then designing a test that produces a small value of β. A few
common test scenarios are illustrated in the following sections.

4.4.1. Tests on Means with Known Variance

Let x be a normally distributed random variable with unknown mean µ and
known variance σ2. Suppose that the hypothesis that the mean is equal to some
constant value µ0 must be tested. This hypothesis is described by Eq. (4.50). The
procedure to perform the test requires taking a random sample of n independent
observations and computing the following test statistic:

z0 = x − µ0

σ/
√

n
(4.51)

The null hypothesis H0 is rejected if |z0| > zα/2, where zα/2 is the value of
the standard normal distribution such that P {z ≥ zα/2} = α/2. In some cases, it
may be necessary to test the hypothesis that the mean is larger than µ0. Under
these circumstances, the one-sided alternative hypothesis is H1: µ > µ0, and
H0 is rejected only if z0 > zα. To test the hypothesis that the mean is smaller
than µ0, the one-sided alternative hypothesis is H1: µ < µ0, and H0 is rejected
if z0 < −zα.

Suppose now that there are two populations with unknown means (µ1 and µ2)
that must be compared. Assume that the two populations have known variances
σ2

1 and σ2
2. To compare the two means, test the following hypothesis:

H0: µ1 = µ2

H1: µ1 	= µ2 (4.52)

To perform this test, n1 and n2 sample observations from each population are
collected and then the test statistic

z0 = x1 − x2√
σ2

1

n1
+ σ2

2

n2

(4.53)

is computed. H0 is rejected if |z0| > zα/2. The one-sided tests are similar to those
described above.

Example 4.10. Suppose that it must be determined whether the mean thickness
of a film exceeds 175 Å. The standard deviation of this thickness is known to be
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10 Å. A random sample of 25 locations on a wafer yields an average thickness
of x = 182 Å.

Solution: The following hypothesis test is of interest:

H0: µ = 175

H1: µ > 175

The value of the test statistic is

z0 = x − µ0

σ/
√

n
= 182 − 175

10/
√

25
= 3.50

If a type I error of α = 0.05 is specified, then, from Appendix B, zα = z0.05 =
1.645. Therefore, H0 is rejected, and the mean thickness does exceed 175 Å.

4.4.2. Tests on Means with Unknown Variance

Let x be a normal random variable with unknown mean µ and unknown variance
σ2. Suppose that the hypothesis that the mean is equal to some constant value
µ0 must be tested. Since the variance is unknown, it must be estimated by the
sample variance s2. The procedure to perform the test then requires taking a
random sample of n observations and computing the following test statistic:

t0 = x − µ0

s/
√

n
(4.54)

H0 is rejected if |t0| > tα/2,n−1, where tα/2,n−1 is the value of the t distribu-
tion with n − 1 degrees of freedom such that P {t ≥ tα/2,n−1} = α/2. In some
cases, the hypothesis that the mean is larger than µ0 must be tested. Under
these circumstances, the one-sided alternative hypothesis is H1: µ > µ0, and H0

is rejected only if t0 > tα,n−1. To test the hypothesis that the mean is smaller
than µ0, the one-sided alternative hypothesis is H1: µ < µ0, and H0 is rejected
if t0 < −tα,n−1.

Suppose now that there are two normal populations with unknown means
(µ1 and µ2) that must be compared. Assume that the two populations have
unknown variances σ2

1 and σ2
2. To compare the two means, the hypothesis given

by Eq. (4.52) is tested. The test procedure depends on whether the two variances
can reasonably be assumed to be equal. If they are equal, and n1 and n2 sample
observations are collected from each population, then a “pooled” estimate of the
common variance of the two populations is given by Eq. (4.47). The appropriate
test statistic is then

t0 = x1 − x2

sp

√
1

n1
+ 1

n2

(4.55)
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H0 is rejected if |t0| > tα/2,n1+n2−2. The one-sided tests are similar to those
described above. If the variances are not equal, then the appropriate test statistic is

t0 = x1 − x2√
s2

1

n1
+ s2

2

n2

(4.56)

and the number of degrees of freedom for t0 are

v =

(
s2

1

n1
+ s2

2

n2

)2

(s2
1/n1)

2

n1 + 1
+ (s2

2/n2)

n2 + 1

− 2 (4.57)

Once again, H0 is rejected if |t0| > tα/2,ν, and the one-sided tests are similar to
those described above.

Example 4.11. Consider the data in Example 4.8. Suppose that the hypothesis
that the mean pad size for the first IC is equal to the mean pad size for the second
IC must be tested, or

H0: µ1 = µ2

H1: µ1 	= µ2

Solution: Assuming, σ2
1 = σ2

2, which is reasonable if the ICs have undergone the
same manufacturing process, then sp = 1.10. The test statistic is then

t0 = x1 − x2

sp

√
1

n1
+ 1

n2

= −0.20

If a type I error of α = 0.01 is specified, then, from Appendix D, t0.005,18 = 2.878.
Since |t0| < t(α/2),n−1, H0 must be accepted, and there is no strong evidence that
the two means are different.

4.4.3. Tests on Variance

Suppose that we want to test the hypothesis that the variance of a normal dis-
tribution is equal to some constant value σ2

0. The hypotheses are expressed as
follows:

H0: σ2 = σ2
0

H1: σ2 	= σ2
0 (4.58)
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The appropriate test statistic is

χ2
0 = (n − 1)s2

σ2
0

(4.59)

where s2 is the sample variance computed from a random sample of n observa-
tions. Hypothesis H0 is rejected if χ2

0 > χ2
(α/2),n−1 or if χ2

0 < χ2
1−(α/2),n−1, where

χ2
(α/2),n−1 and χ2

1−(α/2),n−1 are the upper α/2 and lower 1 − (α/2) percentage
points of the χ2 distribution with n − 1 degrees of freedom. For the one-sided
alternative hypothesis H1: σ2 > σ2

0, we reject H0 if χ2
0 > χ2

α,n−1. To test the
hypothesis that the variance is smaller than σ2

0, the one-sided alternative hypoth-
esis is H1: σ2 < σ2

0, and we reject H0 if χ2
0 < χ2

1−α,n−1.
Now consider two normal populations with variances σ2

1 and σ2
2. To compare

these populations, n1 and n2 sample observations from each are collected, and
the hypothesis

H0: σ2
1 = σ2

2

H1: σ2
1 	= σ2

2 (4.60)

is tested. The test statistic is

F0 = s2
1

s2
2

(4.61)

Hypothesis H0 is rejected if F0 > F(α/2),n1−1,n2−1 or if F0 < F1−(α/2),n1−1,n2−1,
where F(α/2),n1−1,n2−1 and F1−(α/2),n1−1,n2−1 are the upper α/2 and lower 1 −
(α/2) percentage points of the F distribution with n1 − 1 and n2 − 1 degrees of
freedom. For the one-sided alternative hypothesis H1: σ2

1 > σ2
2, H0 is rejected if

F0 > Fα,n1−1,n2−1. For the one-sided alternative hypothesis H1: σ2
1 < σ2

2, H0 is
rejected if F0 > Fα,n2−1,n1−1.

Example 4.12. Consider once again the data in Example 4.8. Suppose that the
hypothesis that the variances of the pad sizes are equal is to be tested, or

H0: σ2
1 = σ2

2

H1: σ2
1 	= σ2

2

Solution: Given that s2
1 = 1.34 and s2

2 = 1.07, the test statistic is

F0 = s2
1

s2
2

= 1.25

If a type I error of α = 0.05 is specified, then, from Appendix E, F0.025,9,9 = 4.03.
Since F0 < Fα/2,n1−1,n2−1, H0 is accepted, and there is no strong evidence that
the variances are different.
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SUMMARY

This chapter provided an introduction to the concept of process variability and a
brief survey of the statistical tools used to analyze semiconductor manufacturing
processes. An understanding of these statistical fundamentals is essential for
describing, analyzing, modeling, and controlling these processes, all of which
are the subject of subsequent chapters.

PROBLEMS

4.1. A random sample of 50 dies is collected from each lot in a given processes.
Calculate the probability that we will find less than three defective dies in
this sample if the yield of the process is 98%.

4.2. An IC manufacturing process is subject to defects that obey a Poisson dis-
tribution with a mean of four defects per wafer.

(a) Assuming that a single defect will destroy a wafer, calculate the func-
tional yield of the process.

(b) Suppose that we can add extra redundant dies to account for the defects.
If one redundant die is needed to replace exactly one defective die, how
many dies are required to ensure a yield of at least 50%?

4.3. Suppose the concentration of particles produced in an etching operation on
any given day is normally distributed with a mean of 15.08 particles/ft3 and a
standard deviation of 0.05 particles/ft3. The specifications on the process call
for a concentration of 15.00 +/− 0.1 particles/ft3. What fraction of etching
systems conform to specifications?

4.4. The time to failure of printed circuit boards is modeled by the following
exponential distribution probability density function:

f (t) = 0.125e−0.125t for t > 0

where t is the time in years. What percentage of the circuit boards will fail
within one year?

4.5. A new process has been developed for spin coating photoresist. Ten wafers
have been tested with the new process, and the results of thickness mea-
surements (in µm) are shown below and are assumed to be IIDN. Find a
99% confidence interval on the mean photoresist thickness.

13.3946 13.4002
13.3987 13.3957
13.3902 13.4015
13.4001 13.3918
13.3965 13.3925
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4.6. Suppose that we are interested in calibrating a chemical vapor deposition
furnace. The furnace will be shut down for repairs if significant difference
is found between the thermocouples that are measuring the deposition tem-
perature at the two ends of the furnace tube. The following temperatures
have been measured during several test runs:

Thermocouple 1 (◦C) Thermocouple 2 (◦C)

606.5 604.0
605.0 604.5
605.5 605.5
605.5 605.7
606.2 605.5
606.5 605.2
603.7 606.0
607.7 606.5
607.7 607.7
604.2 604.2

(a) Using the appropriate hypothesis test, determine whether we can be 95%
confident that these temperatures are the same at both ends of the tube.

(b) Find the 90% confidence interval for the ratio of the two variances
(σ2

T 1/σ
2
T 2).
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YIELD MODELING

OBJECTIVES

• Provide a general definition of yield.
• Differentiate between functional and parametric yield.
• Introduce various yield models and simulators.
• Address financial aspects of yield.

INTRODUCTION

The primary objective of any semiconductor manufacturing operation is to
produce outputs that meet required performance specifications. However, the
variability inherent in manufacturing processes can lead to deformations or
nonconformities in semiconductor products. Such process disturbances often
result in faults, or unintentional changes in the performance or conformance
of the finished integrated circuits. The presence of such faults is quantified by
the yield.

Yield is in many ways the most important financial factor in producing
ICs. This is because yield is inversely proportional to the total manufacturing
cost—the higher the yield, the lower the cost.

Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

147



148 YIELD MODELING

5.1. DEFINITIONS OF YIELD COMPONENTS

Yield can be defined in many different ways. The first, and perhaps most basic
definition, is that of manufacturing yield. This figure simply measures the pro-
portion of successfully fabricated products compared to the number that have
started the process. This definition applies to integrated circuits, which are batch-
fabricated on semiconductor wafers, as well as to printed circuit boards, which
are processed as individual parts.

Wafers that for one reason or another get scrapped along the way contribute
to wafer yield losses. These losses can occur as a result of equipment malfunc-
tions, wafer transport problems, or other difficulties. Clearly, identifying and
removing problematic wafers as early as possible is an important objective, as
it preserves processing resources. While factories implement early tests for that
purpose, frequently wafers have to be rejected near the end, when they fail the
various electrical or “probe” tests that are performed to confirm the overall elec-
trical properties along the way, or the final electrical test done on the various
devices and simple circuit structures. Further refining these definitions, production
engineers distinguish the following three manufacturing yield components:

Wafer yield—the percentage of wafers that make it to final probing
Probe testing yield—the percentage of wafers that make it through the probe

testing steps
Final testing yield—the percentage of wafers that make it through the final

electrical testing step

Once a wafer has been successfully completed to the point that the product
die can be electrically tested, then the figure of interest is the design yield, or die
yield. There are two basic die yield components:

Functional yield (also known as “hard” or “catastrophic” yield)—the pro-
portion of fully functional ICs

Parametric yield (also known as “soft” yield)—the overall performance
achieved by the functional ICs

The one that can be determined first is the functional yield, which is usually lim-
ited by processing defects (such as particles), or artifacts that in general destroy
the functionality of a circuit. These artifacts might cause short circuits, open cir-
cuits, or other types of “binary” failures. Functional yield is typically measured
with high but finite precision, by running a series of functionality tests before
individual ICs are diced from the wafer. These functionality tests are designed
to balance the test coverage and the testing cost, and the overall objective is to
avoid packaging, or worse, shipping nonfunctional ICs. Functional yield depends
not only on process and material cleanliness but also on IC design practices.
The issue of understanding, modeling, and improving functional yield will be
discussed in some depth in this chapter.
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Figure 5.1. Manufacturing process flow from the perspective of yield monitoring and control.

It is usually after the individual ICs have been diced from the wafer that the
latter yield component, the parametric yield, is determined. Performance might be
quantified by various metrics, such as speed of execution or power consumption.
The natural variability of the process, as well as the non-catastrophic impact
of some types of defects, will lead to a statistical spread of the various device
parameters, and this spread will in turn result in a spread of IC performances.
During this last stage of testing, IC products are typically separated into various
performance “bins” and parametric variation determines the percentage of ICs that
end up into each bin. The issues that determine parametric spread relate to process
control practices, as well as process and material variations. The impact of these
variations on the parametric yield can be further controlled by the appropriate
design practices.

All yield components are subject to intense scrutiny, by means of material
and process studies and IC failure analysis. Once the assignable causes of yield
loss have been eliminated, the emphasis shifts to understanding and quantifying
the systematic causes, leading to a body of work focusing on yield modeling and
simulation. The concept of design for manufacturability then comes into play, in
an attempt to mitigate the impact of these causes by means of appropriate circuit
and process design consideration. Figure 5.1 outlines the overall process flow,
from the perspective of yield monitoring and control.

5.2. FUNCTIONAL YIELD MODELS

The development of models to estimate the functional yield of microelectronic
circuits and packages is fundamental to manufacturing. A model that provides
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accurate estimates of manufacturing yield can help predict product cost, determine
optimum equipment utilization, or be used as a metric against which actual
measured manufacturing yields can be evaluated. Yield models are also used
to support decisions involving new technologies and the identification of prob-
lematic products or processes.

As mentioned previously, functional yield is significantly impacted by the
presence of defects. Defects can result from many random sources, including
contamination from equipment, processes, or handling; mask imperfections; and
airborne particles. Physically, these defects include shorts and opens (short and
open circuits), misalignment, photoresist splatters and flakes, pinholes, scratches,
and crystallographic flaws. This is illustrated by Figure 5.2.

Yield models are usually presented as a function of the average number of
defects per unit area (D0) and the critical area (Ac) of the electronic system. In
other words,

Y = f (Ac, D0) (5.1)

where Y is the functional yield. The critical area is the area in which a defect
occurring has a high probability of resulting in a fault. For example, if the particles
in Figure 5.2 (which repeats Figure 2.8) are conductive, only particle 3 has fallen
into an area in which it causes a short between the two metal lines that it bridges.
The relationship between the yield, defect density, and critical area is complex.
It depends on the circuit geometry, the density of photolithographic patterns,
the number of photolithography steps used in the manufacturing process, and
other factors. A few of the more prevalent models that attempt to quantify this
relationship are described in the following sections.

Dust
particles

Features
on

mask

1
2

3

Figure 5.2. Various ways in which foreign particles can interfere with interconnect patterns.
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5.2.1. Poisson Model

The Poisson yield model requires that defects be considered as perfect points that
are spatially uncorrelated and uniformly distributed (with a defect density D0)
across a substrate. The Poisson model further requires that each defect result in a
fault. J. Piñeda de Gyvez provides an excellent derivation of this model [2]. Let
C be the number of circuits on a substrate (the number of ICs, modules, etc.),
and let M be the number of possible defect types. Under these conditions, there
are CM unique ways in which the M defects can be distributed on the C circuits.
For example, if there are three circuits (C1, C2, and C3) and three defect types
(e.g., M1 = metal open, M2 = metal short, and M3 = metal 1–metal 2 short),
then there are

CM = 33 = 27 (5.2)

possible ways in which these three defects can be distributed over three chips.
These combinations are illustrated in Table 5.1.

If one circuit is removed (i.e., is found to contain no defects), the number of
ways to distribute the M defects among the remaining circuits is

(C − 1)M (5.3)

Thus, the probability that a circuit will contain zero defects of any type is

(C − 1)M

CM
=

(
1 − 1

C

)M

(5.4)

Substituting M = CAcD0, the yield is the number of circuits with zero defects, or

Y = lim
C→∞

(
1 − 1

C

)CAcD

= exp(−AcD0) (5.5)

Table 5.1. Table of unique fault combinations.

C1 C2 C3 C1 C2 C3

1 M1 M2 M3 15 M3 M2 M1
2 M1 M2 M3 16 M1 M2 M3
3 M1 M2 M3 17 M1 M3 M2
4 M1 M2 M3 18 M2 M3 M1
5 M1 M3 M2 19 M1 M2 M3
6 M2 M3 M1 20 M2 M1 M3
7 M1 M2 M3 21 M3 M2 M1
8 M1 M3 M2 22 M1 M2 M3
9 M2 M3 M1 23 M1 M3 M2

10 M1 M2 M3 24 M2 M1 M3
11 M2 M1 M3 25 M2 M3 M1
12 M3 M2 M1 26 M3 M1 M2
13 M1 M2 M3 27 M3 M2 M1
14 M2 M1 M3
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For N circuits to have zero defects, this becomes

Y = exp(−AcD0)
N = exp(−NAcD0) (5.6)

The same result can be obtained using Poisson statistics directly. Poisson statistics
represent an approximation of the Maxwell–Boltzmann (or binomial ) distribution
when large sample sizes are used. Recall the Poisson probability distribution
given by Eq. (4.12). If x is the number of faults per circuit and λ = NAcD0 is
the fault density, the yield is defined at x = 0, or

Y = P(x = 0) = exp(−NAcD0) (5.7)

We thus achieve an equivalent expression to that given by [Eq. (5.6).]
The Poisson model is simple and relatively easy to derive. It provides a rea-

sonably good estimate of yield when the critical area is small. However, if D0

is calculated based on small-area circuits, using the same D0 for large-area yield
computations results in a yield estimate that is overly pessimistic compared to
actual measured data.

5.2.2. Murphy’s Yield Integral

B. T. Murphy first proposed that the value of the defect density (D) should not
be constant [1]. Instead, he reasoned that D must be summed over all circuits
and substrates using a normalized probability density function f (D). The yield
can then be calculated using the integral

Y =
∫ ∞

0
e−AcDf (D)dD (5.8)

Various forms of f (D) form the basis for the differences between many analytical
yield models. The Poisson model described in the previous section assumes that
f (D) is a delta function, that is

f (D) = δ(D − D0) (5.9)

where D0 is the average defect density as before (see Figure 5.3a). Using this
density function, the yield is determined from Eq. (5.8) as

YPoisson =
∫ ∞

0
e−AcDf (D)dD = exp(−AcD0) (5.10)

as shown before.
Murphy initially investigated a uniform density function as shown in

Figure 5.3b. The evaluation of the yield integral for the uniform density function
gives

Yuniform = 1 − e−2D0Ac

2D0Ac

(5.11)
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Figure 5.3. (a) Probability density function (pdf) for the Poisson model; (b) pdf for the uniform
Murphy model; (c) pdf for the triangular Murphy model; (d) pdf for the exponential Seeds
model [2].

Murphy later believed that a Gaussian distribution would be a better reflection of
the true defect density distribution than the delta function. However, since evalu-
ating the yield integral with a Gaussian function substituted for f (D) would not
have resulted in a closed-form solution, he approximated it using the triangular
function in Figure 5.3c. This function results in the yield expression

Ytriangular =
(

1 − e−D0Ac

D0Ac

)2

(5.12)

The triangular Murphy yield model is widely used today in industry to determine
the effect of manufacturing process defect density.

R. B. Seeds was the first to verify Murphy’s predictions [3]. However, Seeds
theorized that high yields were caused by a large population of low defect den-
sities (which are not high enough to cause faults) and a small proportion of high
defect densities (i.e., high enough to cause faults). He therefore proposed the
exponential density function given by

f (D) = 1

D0
exp

(−D

D0

)
(5.13)

and shown in Figure 5.3d. This function implies that the probability of observ-
ing a low defect density is significantly higher than that of observing a high
defect density. Substituting this exponential function in the Murphy integral and
integrating yields

Yexponential = 1

1 + D0Ac

(5.14)

It should be noted that the Seeds model may also be derived in an alternate
manner using Bose–Einstein statistics. This was accomplished independently
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by Price [4]. The Bose–Einstein distribution is relevant for indistinguishable
particles in which there is no constraint on the number of particles that can occupy
a given state. Recall Table 5.1, and assume that the three defects (M1–M3) are
now indistinguishable. Under these new conditions, there are only 10 combina-
tions of defects that are uniquely identifiable, and there are

Z1 = (C + M − 1)!

M!(C − 1)!
(5.15)

unique ways of identifying the M defects on C chips. If one chip has no defects,
then the number of unique ways to distribute the M defects in the rest of the
(C − 1) chips is

Z2 = (C + M − 2)!

M!(C − 2)!
(5.16)

The yield in this case is Z2/Z1, or

Y =
[
(C − 1)!

(C − 2)!

] [
(C + M − 2)!

(C + M − 1)!

]
= C − 1

C + M − 1
=

(
1 − 1

C

)

(
1 + M

C
+ 1

C

) (5.17)

If we now substitute M = CAcD0, taking the limit as C tends to infinity gives

Y = lim
C→∞

(
1 + 1

C

)

(
1 + M

C
+ 1

C

) = 1

1 + AcD0
(5.18)

which is the same as the model given in Eq. (5.14).
Although the Seeds model is simple, its yield predictions for large-area chips

are too optimistic. This is because the assumption of indistinguishable defects
is seldom valid for IC fabrication processes, where defects are often visually
distinguishable from one another. Therefore, this model has not been widely
used in industry.

5.2.3. Negative Binomial Model

Okabe et al. recognized the physical nature of defect distributions and proposed
the gamma probability density function [5]. C. H. Stapper has likewise written
several papers on the development and applications of yield models using the
gamma density function [6]. The gamma probability density function is given by

f (D) = [�(α)βα]−1Dα−1e−D/β (5.19)

where α and β are two parameters of the distribution and �(α) is the gamma
function. The shape of �(α) is shown for several values of α in Figure 5.4. In
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Figure 5.4. Probability density function for the gamma distribution.

this distribution, the average defect density is D0 = αβ, and the variance of D0 is
αβ2. The yield model derived by substituting Eq. (5.19) into Murphy’s integral is

Ygamma =
(

1 + AcD0

α

)−α

(5.20)

This model is commonly referred to as the negative binomial model. The parame-
ter α is generally called the “cluster” parameter since it increases with decreasing
variance in the distribution of defects.

If α is high, that means that the variability of defect density is low (little
clustering). Under these conditions, the gamma density function approaches a
delta function, and then the negative binomial model reduces to the Poisson
model. Mathematically, this means

Y = lim
α→∞

(
1 + AcD0

α

)−α

= exp(−AcD0) (5.21)

If α is low, on the other hand, the variability of defect density across the substrate
is significant (much clustering), and the gamma model reduces to the Seeds
exponential model, or

Y = lim
α→0

(
1 + AcD0

α

)−α

= 1

1 + AcD0
(5.22)

The parameter α must be determined empirically. Methods for doing so that
involve particle counting using laser reflectometry exist [7], but several authors
have found that values of α = 2 provide a good approximation for a variety of
logic and memory circuits [8]. Therefore, if the critical area and defect density
are known (or can be accurately measured), the negative binomial model is
an excellent general-purpose yield predictor that can be used for a variety of
electronics manufacturing processes.
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5.3. FUNCTIONAL YIELD MODEL COMPONENTS

The functional yield models that we have discussed thus far have been defined
in terms of independent parameters such as D0 and Ac. These parameters are
statistically independent and can be measured directly. The following sections
describe these and other critical parameters in greater detail.

5.3.1. Defect Density

Defect density is clearly a critical parameter in yield modeling and production
yield planning. A “defect” is an unintended pattern on the wafer surface. It can
consist of either extra material or missing material. In order to properly describe
defect density, a few other terms must be defined:

Contamination—any foreign material on a wafer surface or embedded in a thin
film. Sources of contamination include human skin, dirt, dust, or particles
resulting from an oxidized gas, residual chemicals, or sputtering.

Defect—any alteration in the desired physical pattern intended to be printed.
Typical defects include metal stringers, open and short circuits, notches,
splotches, bridges, or hillocks.

Fault—an electrical circuit failure caused by a defect.

On the basis of these definitions, we observe that contamination is a random
physical event that may or may not lead to a defect. Similarly, a defect may or
may not result in a fault. The correlation between contamination, defects, and
faults is weak. Mapping contamination to defects or defects to faults is difficult
and time-consuming.

A physical interpretation of defect density should incorporate the size distri-
bution of defects, as well as the probability that a defect will cause a failure.
Typically, defects smaller than the minimum feature size will not cause failures.
However, if a defect of a particular size causes a fault, then a larger defect at
the same location will also cause a fault. An example of the effect of defects
of different sizes at the same location is shown in Figure 5.5. The two adjacent
metal lines in this figure will be shorted (short-circuited) by a defect of greater
size than the spacing between them.

In general, the defect density is defined mathematically as the area under the
defect size distribution curve for specific size limits. For a mature manufactur-
ing process, defect density has been shown experimentally to follow an inverse
power-law relationship with respect to size [9]. In other words

D(x) = N

xp
(5.23)

where x is the defect diameter (assuming spherical defects), N is a technology-
dependent parameter, and p must be determined empirically. This power law also
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Figure 5.5. Illustration of the effect of defect size distribution on critical area [2].

assumes that defects are located randomly across the wafer surface. The average
defect density may thus be determined by integrating this expression, or

D0 = N

∫ ∞

x0

D(x)dx = N

∫ ∞

x0

1

xp
dx = N

1 − p
(1 − x

1−p

0 ) (5.24)

where x0 is the minimum defect diameter, which is usually the minimum feature
size for a given technology. Neither the defect density nor the critical area can
be determined without the defect size distribution.

A simpler method of extracting the defect density involves using a particular
yield model to solve for D0 mathematically. For example, using the negative
binomial model for a single chip gives

D0 = α( α
√

1/Y − 1)

Ac

(5.25)

This approach works best for similar products fabricated using the same mature
technology with chip areas within a factor of 2–3, but should be applied cau-
tiously otherwise. The most useful aspect of this approach is in using the calcu-
lated value of D0 as a metric of manufacturing process performance.

5.3.2. Critical Area

The concept of critical area is used to account for the fact that not all parts
of a chip layout are equally likely to fail because of the presence of defects.
This allows greater accuracy when calculating the defect sensitivity of a chip
layout. Consider Figure 5.6, in which the dark areas represent the first metal
layer for a given circuit. The crosshatched area represents the sensitive regions
at the minimum spacing for this technology. The critical area is a measure of
such sensitive regions for the entire chip.
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Figure 5.6. Subcircuit metal layer in which shaded region indicates critical area [2].
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Figure 5.7. Graphical representation of the critical area integral [2].

Critical area is defined mathematically by the following relationship:

Ac = A

∫ ∞

x0

PoF(x)D(x)dx (5.26)

where A is the chip area, x0 is the minimum defect size, D(x) is the defect size
distribution, and PoF(x) is the probability of failure, which is a strong function
of the defect size. A graphical interpretation of this relationship is shown in
Figure 5.7. Several methods have been reported to determine critical area, and
in each case, the calculation of PoF is crucial. More detail on these techniques
is provided in Section 5.4.

5.3.3. Global Yield Loss

The yield models discussed thus far have focused solely on yield loss due to
the presence of local defects. However, global defects can also be present.
Global yield loss is usually spatially correlated and often manifests itself as
a consequence of variability in electrical parameters (such as transistor threshold
voltage) caused by process fluctuations (such as temperature or film thickness
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Figure 5.8. Example of a wafer map [2].

variations). Global yield loss, which is quantified by parametric yield models (see
Section 5.4), is often identifiable as an anomalous spatial pattern on a wafer, such
as an annual ring or cluster of failing chips. Yield models can take global defects
into account by incorporating a factor Y0. For example, the negative binomial
model that includes global yield loss effects is

Y = Y0

(
1 + AcD0

α

)−α

(5.27)

The Y0 factor is not related to the defect density or the critical area.
Although it is difficult to determine global yield loss analytically, spatial

analysis techniques can be used to evaluate whether the measured yield loss is
consistent with this model. Spatial analysis typically requires wafer maps gener-
ated from automated test equipment. In these maps, failing chips are categorized
by the similarity of failures (e.g., function fail, speed fail). An example of a
typical wafer map appears in Figure 5.8.

One way to estimate the value of Y0 is to use a “windowing” technique in
which individual chips are grouped together into windows of increasing size. The
effective yield of each window size is then plotted against the effective chip size.
The y intercept of this plot is the yield with an area of zero. Thus, Y0 is equal
to one minus this intercept. If the intercept is at 100% yield, there is no global
yield loss.

5.4. PARAMETRIC YIELD

Even in a defect-free manufacturing environment, random processing variations
can lead to varying levels of system performance. These variations result from
global defects that cause the fluctuation of numerous physical and environ-
mental parameters (linewidths, film thicknesses, ambient humidity, etc.), which
in turn manifest themselves as variations in final system performance (such
as speed or noise level). These performance variations lead to “soft” faults
and are characterized by the parametric yield of the manufacturing process.
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Figure 5.9. A microstrip transmission line of width W on top of an insulating dielectric with
thickness d.

Parametric yield is a measure of the quality of functioning systems, whereas
functional yield measures the proportion of functioning units produced by the
manufacturing process.

A common method used to evaluate parametric yield is Monte Carlo simu-
lation. In the Monte Carlo approach, a large number of pseudorandom sets of
values for circuit or system parameters are generated according to an assumed
probability distribution (usually the normal distribution) based on sample means
and standard deviations extracted from measured data. For each set of parame-
ters, a simulation is performed to obtain information about the predicted behavior
of a circuit or system, and the overall performance distribution is then extracted
from the set of simulation results.

To illustrate the Monte Carlo technique, consider as a performance metric the
characteristic impedance (Z0) of a microstrip transmission line of width W on
top of an insulating dielectric with thickness d (refer to Figure 5.9). Under the
condition that W/d � 1, it can be shown that

Z0 = 60√
εe

ln

(
8d

W
+ W

4d

)
(5.28)

where εe is the effective dielectric constant of the insulator, which is given by

εe = εr + 1

2
+ εr − 1

2

√
1 + 12d

W

(5.29)

where εr is the relative permittivity of the insulator [10]. From these equations, it
is clear that Z0 is a function of the physical dimensions, d and W , or
Z0 = f (d, W). Both of these dimensions are subject to manufacturing process
variations. They can thus be characterized as varying according to normal distri-
butions with means µd and µW and standard deviations σd and σW , respectively
(see Figure 5.10a).

Using the Monte Carlo approach, we can estimate the parametric yield of
microstrips produced by a given manufacturing process within a certain range
of characteristic impedances by computing the value of Z0 for every possible
combination of d and W . The result of these computations is a final performance
distribution such as the one shown in Figure 5.10b. This probability density
function can then be used to compute the proportion of microstrips having a given
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Figure 5.10. (a) Normal probability density functions for W and d; (b) overall pdf for character-
istic impedance.

range of impedances. For example, if we wanted to compute the percentage of
microstrips manufactured that would have the a value of Z0 between two limits
a and b, we would evaluate the integral

Yield(microstrips with a < Z0 < b) =
∫ b

a

f (x)dx (5.30)

Thus, once the overall distribution of a given output metric is known, it is possible
to estimate the fraction of manufactured parts with any range of performance.
Estimation of parametric yield is useful for system designers since it helps identify
the limits of the manufacturing process to facilitate and encourage design for
manufacturability.

5.5. YIELD SIMULATION

It is highly desirable for IC manufacturers to be able to predict yield loss prior to
circuit fabrication. This enables corrective action to be taken before production
starts and can prevent misprocessing. Yield simulation software tools are the
primary means for facilitating yield prediction.

Local and global defects are the two basic sources of yield loss. The effects
of global defects, which result in parametric yield loss, have been modeled
in statistical process simulators such as the FABRication of Integrated Circuits



162 YIELD MODELING

Simulator (FABRICS) [11].1 Local defects, on the other hand, which can cause
catastrophic failures that impact functional yield, have been modeled using Monte
Carlo–based yield simulators such as the VLSI LAyout Simulator for Integrated
Circuits (VLASIC) [12]. In this section, we briefly explore the capabilities of
these two yield simulation tools.

5.5.1. Functional Yield Simulation

The effect of local defects on yield can be determined by generating a population
of chip samples that has a distribution that closely approximates the distribution
of circuit faults observed in fabrication. This circuit fault distribution may be
obtained using a Monte Carlo simulation in which defects are repeatedly gener-
ated, placed on the chip layout, and then analyzed to identify what circuit faults
have occurred. This procedure is implemented by the VLASIC simulator.

The VLASIC simulation algorithm is illustrated by the block diagram in
Figure 5.11. A control loop generates as many chip samples as desired for a
given simulation. Defect random-number generators are used to determine the
number and location of defects on the chip layout with the appropriate statistical
distributions. These statistics are derived from fabrication line measurements.

Once the defects have been placed on the layout, fault analysis is used to
determine what, if any, circuit faults have occurred. The resulting faults are then
filtered so that those faults that do not affect functional yield are ignored. The
output is a chip sample containing the list of faults that have occurred during
simulated fabrication. When simulation is complete, the list of unique chip faults

GENERATE SAMPLE

DEFECT
RANDOM
NUMBER 

GENERATORS

PLACED DEFECTS

FAULT ANALYSIS

UNFILTERED FAULTS

FAULT
COMBINATION
 & FILTERING

SAMPLE OUT

Figure 5.11. VLASIC main loop [12].

1The FABRICS parametric yield simulator was developed by Maly and Strojwas of Carnegie Mellon
University in 1982.
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Figure 5.12. VLASIC system structure [12].

and their frequency of occurrence is passed to postprocessors designed to predict
yield, optimize design rules, generate test vectors, or evaluate process sensitivity.

A detailed view of the VLASIC system structure is shown in Figure 5.12.
Defects in VLASIC have both size and spatial distributions. A wafer map is used
to place defects on a wafer. The output of the defect random-number generators
is a list of defect types, locations within the chips, and defect diameters. The
defect statistics are similar to those described in Section 5.3.

For each defect, the fault analysis phase calls a series of procedures to examine
the layout geometry in the immediate vicinity of the defects to determine whether
any circuit faults have occurred. A separate procedure is used for each fault type
(shorts, opens, etc.). Since the defects and layout features are represented as
polygons, the analysis procedures manipulate layout geometry using general-
purpose polygon operations. The resulting output of fault analysis is a list of
unfiltered circuit faults caused by the defects. The unfiltered faults then pass
through a filtering–and combination phase in which faults that do not cause
a change in DC circuit operation are ignored, and some faults are combined
together to form a composite fault, respectively.

Fault analysis and filtering operations both depend on input from defect mod-
els. These models describe a fabrication process as a number of patterned layers
in which defects are represented as modifications to the layout of each layer (i.e.,
extra or missing material). The models also specify the circuit faults that can
be caused by each defect type, which layers are affected by the defect, and the
manner in which layers are electrically connected. After filtering, the resulting
output is a list of circuit faults that have occurred during simulated fabrication.
Each fault is specified by its type, size, location, type of defect that caused it,
location of the fault in the circuit graph, and number of times the fault occurred.
The fault list is then ready for postprocessing.

To illustrate the use of VLASIC, consider the simulation of a simplified chip
containing only a single three-transistor dynamic RAM cell (see Figure 5.13).
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Figure 5.13. Three-transistor DRAM cell [12].

Suppose that the chip is placed at 100 locations on the wafer as shown in
Figure 5.14. The process conditions used in the simulation are given in Table 5.2.
Note that relatively high defect densities are used in order to obtain an average
of 2.5 defects per sample. The α parameter for the negative binomial model is
also high, indicating very little spatial clustering of defects.

The result of simulating 1000 chip samples is shown in Figure 5.15. This out-
put represents a list of unique chip fabrication outcomes. Each unique outcome
has a frequency count and a list of fault groups (i.e., sets of faults caused by a
single defect). For each fault, the fault type, defect type that caused it, defect loca-
tion, defect diameter, and fault description are provided. For the single instance
where several defects of the same type have caused the same fault to occur (i.e.,
several oxide pinholes shorting the same nets together), defect size and defect
location are meaningless, since only the values for the first defect causing the
fault are recorded.

The simulated fabrication of the 1000 samples results in 25 unique chip faults,
the distribution of which appears in Table 5.3. Despite an average of 2.5 defects
per sample, only 5.9% of the simulated chips had a circuit fault. This result is
typical of yield simulations. To explore reasons for this, note that only 3.3% of
the DRAM cell area contains a gate oxide. Thus, a gate oxide pinhole defect has
only a 1 in 30 chance of causing a gate-to-channel short (circuit). Consider also
the case of extra metal defects, recalling that extra material defects must have a
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Figure 5.14. Wafer map.

Table 5.2. DRAM cell process conditions.

Defect density
Extra/missing metal 20,000 cm−2

Extra/missing polysilicon 20,000 cm−2

Extra/missing active 20,000 cm−2

First-level pinholes 20,000 cm−2

Gate oxide pinholes 20,000 cm−2

Design rules
Metal width/space 6 µm
Metal contact width 4 µm
Polysilicon width/space 4 µm
Active width/space 4 µm
Polysilicon/active space 2 µm

Diameter of peak density
Extra/missing metal 2 µm
Extra/missing polysilicon 2 µm
Extra/missing active 2 µm

Maximum defect diameter 18 µm
Between-lot alpha 100
Between-wafer alpha 100
Wafers per lot 1
Radial distribution None
Minimum line spacing 0
Minimum linewidth 0

minimum diameter to cause a circuit fault. In this simulation, the combination
of the peak defect size of 2 µm (using a defect size distribution similar to that
shown in Figure 5.6) and minimum metal width/space of 6 µm leads to only a
1 in 18 chance for a defect of this type causing a short.
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SAM> vlasic −t omcellproc.dat omcell.pack
Reading wirelist omcell.pack
Writing faults to stdout
Parsing wafer file omcellwaf.cif
Initializing random number generators
left: −27.00 right: 3.00 bottom: −51.00 top: −3.00
NumXBins: 1 NumYBins 2
Allocating bins
Putting wirelist polygons into bins
Generating intermediate layers
Place and analyze defects
Results of fault testing:
Sample Count: 1000
Trial Count:
type POSM1: 234
type NEGM1: 237
type POSP: 283
type NEGP: 271
type POSD: 298
type NEGD: 335
type PIN1: 274
type PIN2: 276
type PING: 318
Total Trials: 2526
Total number of distinct chiplists: 25
Distinct Circuit Faults and Counts:

941 NIL

9 SHORT PIN1 X −10 Y −37 Diam 0 N3 N17

6 SHORT PIN1 X −25 Y −15 Diam 0 N2 N7

5 NEWVIA PING X −15 Y −16 Diam 0 NCHAN N7

5 SHORT PIN1 X −9 Y −17 Diam 0 N3 N7

4 SHORT PIN1 X −5 Y −21 Diam 0 N3 N10

4 NEWVIA PING X −13 Y −25 Diam 0 NCHAN N10

3 SHORT PIN1 X −20 Y −25 Diam 0 N2 N10

3 NEWVIA PING X −3 Y −37 Diam 0 NCHAN N17

3 SHORT PIN1 X −20 Y −37 Diam 0 N2 N17

2 SHORT POSP X 1 Y −27 Diam 16.09 N10 N17

2 SHORT POSP X −4 Y −12 Diam 7.43 N3 N7

1 SHORT POSM1 X −16 Y −14 Diam 17.19 N2 N3

1 SHORT POSP X −10 Y −43 Diam 9.04 N3 N17

1 SHORT PIN1 X −20 Y −37 Diam 0 N2 N17
SHORT PIN1 X −25 Y −15 Diam 0 N2 N7

1 SHORT PIN1 X −10 Y −37 Diam 0 N3 N17
SHORT PIN1 X −5 Y −21 Diam 0 N3 N10

1 NEWVIA PING X −15 Y −16 Diam 0 NCHAN N7
SHORT PIN1 X −5 Y −21 Diam 0 N3 N10
SHORT PIN1 X −20 Y −25 Diam 0 N2 N10

1 OPEN NEGP X −21 Y −41 Diam 12.25 N17/1 LEFT NP N17/2 Tran DO G

1 NEWVIA PING X −3 Y −37 Diam 0 NCHAN N17
OPEN NEGM1 X −7 Y −43 Diam 7.58 N3/1 Tran DO SD N3/2 BOTTOM NM1 TOP NM1

1 OPEN NEGP X −7 Y −23 Diam 4.89 N10/1 Tran DO SD N10/2 Tran D1 G

1 OPEND NEGD X −14 Y −21 Diam 16.04 Tran D2
OPEND NEGD X −14 Y −21 Diam 16.04 Tran D1

1 NEWGD POSP X −10 Y −19 Diam 8.43 CVTMULTI Tran D1 D2 SD: N2/0 N3/0 N9/0 G: N7/0 N10/0
SHORT POSP X −10 Y −19 Diam 8.43 N7 N10

1 OPEND NEGD X −5 Y −35 Diam 4.91 Tran DO

1 SHORTD NEGP X −17 Y −15 Diam 8.10 Tran D2
OPEN NEGP X −17 Y −15 Diam 8.10 N7/1 Tran D2 G N7/2 LEFT NP

1 OPEN POSP X −24 Y −28 Diam 18.00 N2/1 Tran D1 SD LEFT ND N2/2 LEFT NM1 BOTTOM NM1
SHORT POSP X −24 Y −28 Diam 18.00 N2 N10 N17

Figure 5.15. VLASIC DRAM example [12].

Another noteworthy aspect of this simulation that is typical of all yield simu-
lations is that chips with a single simple fault are much more common than those
with multiple fault groups. This is directly attributable to the fact that single
defects are more common than multiple defects. Complex multiple fault groups
are rare because large extra or missing material defects must be present to cause
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Table 5.3. DRAM chip sample distribution.

94.1% No faults
4.2% One oxide pinhole short
0.6% One extra material short
0.2% Two oxide pinhole shorts
0.2% One missing material open
0.1% Three oxide pinhole shorts
0.1% Two-open device
0.1% One-open device
0.1% One oxide pinhole short and one missing material open
0.1% One new gate device and one extra material short
0.1% One shorted device and one missing material open
0.1% One extra material open and one extra material short

them. Of the four fault groups that occurred in this example, the smallest defect
causing one was 8.1 µm in diameter. Only about 1 in 33 defects is this large.

5.5.2. Parametric Yield Simulation

The FABRICS parametric yield simulator embodies an approach to modeling the
IC fabrication process that accounts for the statistical fluctuations that occur during
manufacturing. This simulator is capable of generating values for the parameters of
IC circuit elements (resistances, capacitances, transconductances, etc.), as well as
estimatesof inlinemeasurements typicallymadeduringfabrication( junctiondepths,
sheet resistances, oxide thicknesses, etc.). These quantities are described statistically
as random variables characterized by a joint probability density function.

FABRICS accounts for the dependence of IC elements on both layout and
process parameters. Each process step is modeled individually, with its outcome
dependent on a set of control parameters, a set of process disturbances, and the
outcome of the previous process step (see Figure 5.16). To formally describe

r.v. (output)
Model of
process

RNGs

r.v.(disturbances) r.v.(previous process)

control parameters

Figure 5.16. Model of a single process step (rv = ‘‘random varaible’’) [11].
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Figure 5.17. Basic FABRICS structure [11].

the FABRICS simulation procedure, let X be a vector of random variables that
denotes the parameters of the IC elements or values of inline measurements. In
addition, let the vector z1 represent the process control parameters (temperatures,
times, gas flows, etc.), and let the vector z2 represent the layout dimensions.
Finally, let D be a vector of random variables representing uncontrollable process
disturbances. These disturbances are simulated in FABRICS as appropriately
defined random-number generators (RNGs).

A basic flowchart describing the structure of the FABRICS simulator is shown
in Figure 5.17. FABRICS uses analytical models for each manufacturing process
step and circuit element of the form:

�j = gj (�̂
j , zj

1, Dj ) j = 1, . . . , m (5.31)

where �j is a component of the m-dimensional vector � of physical parame-
ters which describes the outcome of a given step (i.e., oxide thicknesses, doping
profile parameters, misalignment, etc.), �̂j is a vector of physical parameters
obtained from previous steps, and z j

1 and D j are vectors containing those com-
ponents of z1 and D affecting the j th physical parameter. Models of the IC circuit
elements are of the form

Xi = hi(�̂
i , zi

2) i = 1, . . . , n (5.32)

where Xi is an electrical parameter associated with a given circuit element (such
as the β of a bipolar transistor) and �̂i and zj

2 are subsets of the vectors �

and z2 that affect this element. Simulation of the random variable X consists
of generating samples of D, evaluating the components of � for subsequent
steps, and calculating X using the appropriate model. The analytical functions
gj and hi can be regarded as approximations to the solutions of the differen-
tial equations used in numerical process and circuit models, respectively. For
example, a commonly known analytical model of the diffusion process is the
erfc model (see Chapter 2).

The statistical parameters of the probability density function (pdf) of X result-
ing from the simulated samples should be in good agreement with measured
parameters from the real process. Since z1 and z2 are known, achieving such
good agreement requires determination of the pdf of the process disturbances,
fD . This is accomplished by collecting data from inline and test pattern measure-
ments and using statistical optimization techniques to estimate the parameters of
fD that provide a good fit. Although this rather computationally intensive iden-
tification task is valid for only a particular manufacturing process, the results
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can be used to simulate the manufacture for a variety of ICs, irrespective of
the IC layout. Therefore, once fD is known, the simulator may be used instead
of the actual fabrication process to optimize layout or fine-tune process control
parameters.

The random variable of process disturbances affecting one chip, Di , is simu-
lated with a RNG that generates data with a mean equal to µDi and a standard
deviation of σDi . Assuming that µDi and σDi change randomly from one chip
to another, each disturbance must be simulated by a two-level RNG that accounts
for local (within-chip) and global (chip-to-chip) variations. This approach is illus-
trated in Figure 5.18, which shows a two-level structure consisting of three RNGs.
RNG1 simulates a disturbance within a chip by generating a normally distributed
random variable Di . RNG2 and RNG3 provide RNG1 with µDi and σDi for
the chip, respectively. The inputs to RNG2 are the mean of means (µµ) and
standard deviation of means (σµ) of the chips in the wafer. Similarly, inputs
to RNG3 are the mean of standard deviations (µσ) and standard deviation of
standard deviations (σσ) of the chips in the wafer.

A more detailed data flow diagram for FABRICS is shown in Figure 5.19. Data
entered into the simulator include process parameters, IC layout dimensions, and
control parameters used to activate the RNGs and models in the correct sequence.

To illustrate the operation of FABRICS, consider the production of the
MC1530 operational amplifier (shown schematically in Figure 5.20) as a typical
bipolar manufacturing process. Suppose that we want to ascertain the effect
modifying the surface concentration of phosphorus during the predeposition of
the emitter layer of the transistors in this circuit. Since the modification of the
surface concentration will result in a change in the sheet resistance of the emitter
layer (RSE), we will use FABRICS to examine the relationship between the
parametric yield and RSE .

Using FABRICS Monte Carlo simulation in conjunction with a circuit simu-
lator [such as SPICE (a simulation program with integrated circuit emphasis)],
the yield of the amplifier for six different phosphorus surface concentrations is

RNG 2
(means)

RNG 3
(standard 
deviations)

Wafer level Chip level
mm

σm

σσ

mσ

m

σ

(local fluctuation)

Di
RNG 1

i

Figure 5.18. Illustration of two-level RNG architecture that simulates within-chip and
chip-to-chip process variations [11].
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Figure 5.19. Detailed FABRICS data flow [11].
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Figure 5.20. Schematic of MC1530 operational amplifier [11].

computed. For each concentration, data simulating 100 chips are generated, and
the mean RSE is determined. Amplifier performance is then evaluated in terms of
differential gain (Ad), input offset voltage (Vin,off), and input bias current (Ibias).
The results are shown in Figure 5.21. Performance is considered acceptable if
Ad > 8000, −1.5 mV < Vin,off < 1.5 mV, and −1.2 µA < Ibias < 1.2 µA. The
best yield is obtained when RSE is near 4 �/square, and cannot be increased very
much without a significant drop in yield.
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Figure 5.21. Yield of MC1530 operational amplifier versus emitter sheet resistance [11].

FABRICS is a powerful tool for computing parametric yield that can easily
be tuned to the random variations of a real manufacturing process. It can be used
for bipolar, MOS, or any other process technology, so long as appropriate data
and analytical physical models are available.

5.6. DESIGN CENTERING

Yield simulation tools provide a mechanism for yield optimization and quality
enhancement through accounting for manufacturing variations in IC compo-
nents during the design phase. The objective of such efforts is to minimize
circuit performance sensitivity with respect to potential component and parameter
fluctuations. The objective of design centering is to maximize yield by identifying
an optimal set of design parameters (xopt) such that yield is optimized.

This concept is illustrated graphically for a simple two-parameter design space
in Figure 5.22. In this figure, the region labeled A represents the region of accept-
able circuit performance. The oval centered at the coordinates of the design

X1

X2 X2,opt

X1,opt

(a) (b)

A A

Figure 5.22. Illustration of design centering: (a) initial low yield; (b) optimized yield [2].
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parameters x1 and x2 represents the area over which these two parameters may
vary during manufacturing. The yield is therefore the shaded area represented
by the overlap of these two regions. Figure 5.22a corresponds to a situation in
which a poor choice of x1 and x2 results in low initial yield. In contrast, by
centering the design with an optimal choice in the two parameters (x1,opt and
x2,opt), yield is maximized. Another term for the process of design centering is
design for manufacturability.

5.6.1. Acceptability Regions

The acceptability region is defined as the part of the space of performance param-
eters in which all constraints imposed on circuit performance are fulfilled. For
the two-dimensional example represented by Figure 5.22, the area A represents
the acceptability region. In general, A is an m-dimensional hypersurface defined
by the inequality

SL
j ≤ yj ≤ SU

j j = 1, . . . , m (5.33)

where yj is one of m performance parameters and SL
j and SU

j are the (usually
designer-defined) lower and upper bounds imposed on these parameters.

Since complicated relationships between performance parameters and bounds
can be defined, acceptability regions can also be very complicated, including
nonconvex regions or internal unacceptababilty regions (“holes”). In order to
determine whether a given point in the circuit parameter space belongs to A or
its complement, an indicator function I (x) is used, where

I (x) =
{

1 x ∈ A

0 x /∈ A
(5.34)

The points for which I (x) = 1 are called successful, or “pass” points, and those
for which I (x) = 0 are called “fail” points.

Except for some simple cases, the shape of the acceptability region in the
performance space is unknown and nearly impossible to define completely. How-
ever, for yield optimization purposes, either implicit or explicit knowledge of A

and its boundaries is required. Therefore, it is necessary to approximate the shape
of A. Several methods are available to do so [2]. A few of these are illustrated
in Figure 5.23.

(a) (b) (c)

A

A
Aei

Figure 5.23. Various methods of acceptability region approximation: (a) point-based;
(b) ODOS; (c) simplicial [2].
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For example, in the point-based approximation shown in Figure 5.23a, sub-
sequent approximations to A are generated using Monte Carlo simulation [13].
After each new point is generated, it is determined whether it belongs to Ai−l

(i.e., the latest approximation to A). If it does, the sampled point is considered
successful. If it does not belong to Ai−l and the next circuit simulation reveals
that it belongs to A, the polyhedron is expanded to include the new point. In
the method of approximation called one-dimensional orthogonal search (ODOS)
shown in Figure 5.23b, line segments passing through the points ei are randomly
sampled in the performance space parallel to the coordinate axes and used for the
approximation of A [14]. ODOS is very efficient for large linear circuits, since
the intersections with A can be directly found from analytical formulas. The
simplicial approximation is based on approximating the boundary of A in the per-
formance space by a polyhedron [15]. The boundary of A is assumed to be convex
(see Figure 5.23c). The simplicial approximation is obtained by locating points
on the boundary of A by a systematic expansion of the polyhedron. The search for
the next vertex is always performed in the direction passing through the center of
the largest face of the polyhedron already existing and perpendicular to that face.

5.6.2. Parametric Yield Optimization

After estimation of the acceptability region, yield optimization is the objective
of design centering techniques. In so doing, design centering attempts to inscribe
the largest hypersphere of input parameter variation (also called the norm body;
see Figure 5.22) into the approximation of the acceptability region A. The center
of the largest norm body is taken as the optimal vector of input parameters x.
Consider, for example, a simplicial approximation to the acceptability region.
Under these conditions, several yield optimization schemes have been proposed.
The most typical is as follows.

After a nominal point x belonging to the acceptability region is identified, line
searches via circuit simulation are performed from that point to obtain some points
located on the boundary of A. Several simulations may be required to find one
boundary point. To form a polyhedron in an n-dimensional space, at least (n + 1)
boundary points need to be found. Once the first polyhedron approximation to A

is obtained, the largest possible norm body is inscribed into it (using linear pro-
gramming techniques), and its center is assumed as the first approximation to the
center of A. The next steps involve improvements to the current approximation,
Ã, by expanding the simplex. The center of the largest polyhedron face is found,
and a line search is performed from the center along the line passing through it
in a direction orthogonal to the face considered, to obtain another vertex point
on the boundary of A. The polyhedron is then inflated to include the new point
generated. This process is repeated until no further improvement is obtained.

Intuitively, this method should improve yield but, because of the approx-
imation used, will not necessarily maximize it. For example, the simplicial
approximation will not be accurate if A is nonconvex, and it will fail if A is
not simply connected, since some parts of the approximation A will be out-
side the actual acceptability region. Notably, the computational cost of obtaining
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the simplicial approximation quickly increases for high-dimensional performance
spaces. Thus, this method is most suitable for problems with a small number of
designable parameters.

5.7. PROCESS INTRODUCTION AND TIME-TO-YIELD

While the final or “steady state” yield is important, one does not achieve the
final yield instantaneously. Indeed, extensive field studies show that new pro-
cesses arrive in the manufacturing line with limited initial yield [16]. As shown
graphically in Figure 5.24, the initial process introduction period is followed by
a period of intense learning where the various key yield detractors are identi-
fied and removed. The length of this “rapid learning” period is of paramount
importance, as it often limits the amount of time it takes to bring a new product
to market. Time-to-market is critical, if one is to capture significant market share
and avoid the rapid price erosion that follows the introduction of high-end IC
products. The final period, in which yield levels off and approaches a maximum,
is one characterized by small gains due to the removal of the last few yield
detractors. During this period, the investment of further effort and expense for
marginal returns is questionable.

The discussion above underscores the importance of a “dynamic” study of
yield. The objective of studying the metric known as time-to-yield is to identify
key methods, tools, and actions that can accelerate the initial learning period
following the introduction of a new process. As one might suspect, many factors
affect time-to-yield, and some do so in ways that are not easily quantifiable.
For example, it has been shown that time-to-yield can be accelerated by simply
accelerating the processing cycle, as this allows for more ‘work-in-progress’
(WIP) turns and more rapid acquisition of the required process understanding.
Another factor that accelerates time-to-yield appears to be the systematic (and

0 12 24 36

Time (months)

Y
ie
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Figure 5.24. Yield learning curve.
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often automated) collection of data, especially if this is done in the context of a
well-structured quality control program.

While these aspects are difficult to quantify, one can draw interesting con-
clusions from carefully organized field studies. One such study was done in the
context of the Competitive Semiconductor Manufacturing program, run at the
University of California at Berkeley in 1994. This program involved studying
a large number of IC production facilities, and it included detailed question-
naires, as well as site visits by multidisciplinary groups of experts. In this study,
researchers recorded yield–time data for a variety of facilities, covering prod-
ucts ranging from memories to high-end logic ICs. While the main objective of
the study was to capture the main reasons behind achieving high yield numbers,
the data also offered a rare opportunity to examine the time-to-yield figure on a
qualitative basis. Some of the yield data are shown in Figure 5.25.

Graphs like Figure 5.24 plot a “normalized” total yield figure that is appro-
priately adjusted for die size, minimum feature size, and other properties. Using
several such datasets for various IC technologies, the authors of the study created
and calibrated an empirical model of the following form

Wj = αoj + α1j (die Size) + α2j log(process age) (5.35)

where j is the index defining the various semiconductor manufacturing facilities
participating in the study, (die size) is in cm2, and (process age) is the time
in months from the oldest to the most recent die yield data point. This model
implies that the yield increases logarithmically as processes mature, and the
coefficient α2j is a quantitative figure of merit that captures the unique ability of
each facility to rapidly improve the yield of a new process. Table 5.4 attempts to
capture the impact of various factors on the α2j “yield learning coefficient.” In
this table, because of the limited sample size, the facilities are divided into three

Figure 5.25. Line yield per IC layer versus year for several major IC manufacturers.
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Table 5.4. Impact of various factors on yield learning.

SPC AUTOMATION EXTENT OF SPC USE
Yes No High Med Low

High 3 0 High 1 2 0
Med 6 0 Med 2 3 1
Low 2 4 Low 1 3 2

PAPERLESS WAFER TRACKING EXTENT OF CAM AUTOMATION
Yes No Full Semi Manual

High 1 2 High 1 2 0
Med 3 3 Med 3 2 1
Low 1 5 Low 1 1 4

YIELD MODEL IN USE YIELD GROUP PRESENT IN FACTORY
Homegrown Away Yes No

High 2 1 High 3 0
Med 1 5 Med 3 3
Low 2 4 Low 4 2

GEOGRAPHIC FAB REGION
USA Asia Europe

High 3 0 0
Med 1 4 1
Low 4 2 0

categories relating the yield learning speed (low, medium, high). Facilities with
α2 > 1.00 received a high yield improvement rating, and facilities with α2 < 0.30
were given a low improvement rating. The number of facilities falling in each
category is also noted below.

Here, the term “yield model” refers the specific formula used by that organiza-
tion to predict the yield of the process as a function of a measure of defect density.
“Paperless” is an indicator of the extent of computer-aided manufacturing in the
facility. Only three of the facilities under study were fully paperless (i.e., had no
lot travelers or run cards accompanying production lots). “SPC automation” is
an indicator of whether the SPC control charting function is automated. “Extent
of SPC” practice is a subjective rating of each facility’s commitment to and exe-
cution of SPC. “Yield group” refers to the existence of a yield engineering group
at the facility. In nearly every case where there is a yield group, their efforts
are supplemented by product engineering and other entities within the fab. This
wide spread in “yield learning” rates indicates that there are still many unknown
factors that control this very important figure.

SUMMARY

In this chapter, we have provided a general overview of the concept of manu-
facturing yield for semiconductor products. We have done so by differentiating
between functional and parametric yield, and by describing various quantitative
models and simulation tools for each. Finally, we have discussed yield learning in
the context of its financial implications with regard to product time-to-market. In
subsequent chapters, we will discuss how high yield is maintained via statistical
process control techniques.
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PROBLEMS

5.1. Assuming a Poisson model, calculate the maximum defect density allow-
able on 100,000 NMOS transistors in order to achieve a functional yield of
95%. Assume that the gate of each device is 10 µm wide and 1 µm long.

5.2. Use Murphy’s yield integral to derive Eqs. (5.11), (5.12), and (5.14).

5.3. Suppose that the probability density function of the defect density for a
given IC manufacturing process is given by

f (D) = −100D + 10

0 ≤ D ≤ 0.1

If D is measured in cm−2 and the critical area for this IC is 100 cm2, what
functional yield can we expect for the process over the range of defect
densities from 0.05 to 0.1 cm−27.

5.4. Consider the effect of defects on IC interconnect. Figure P5.4 illustrates
the impact of defect size on critical area for circular defects of diameter x.
The area in which the center of such defects must fall to cause a failure
increases linearly as a function of defect size. It can be expressed as

Ac(x) = L(x + w − 2R)

R ≤ x ≤ ∞
where L is the interconnect length and R is the allowable gap in the
interconnect line. Suppose that the normalized probability density function
of defect sizes is given by

g(x) = X2
UX2

L

x3(X2
U − X2

L)

where XL and XU are the lower and upper limits of the range of defect
sizes, respectively.

R
x

w w
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+2
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Figure P5.4
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(a) Given R ≥ XL, find an expression for the average critical area (Aav)
by evaluating the integral

Aav =
∫ XU

XL

Ac(x)g(x)dx

(b) Show that as the upper limit on defect size approaches infinity, then

Aav = LX2
Lw

2R2

5.5. Assume that 10,000 units of a product with area 0.5 cm2 and 200 chips per
wafer are to be produced in three manufacturing areas, with a D0 of 0.9,
1.1, and 1.3 cm−2, respectively. How many wafers need to be ordered?
Assume a negative binomial model with α = 2, and also assume that these
steps will be followed by assembly and test. The combined assembly and
test steps have a yield of 95%.

5.6. A new product with a critical area of 0.45 cm2 is to be produced using
a technology with a defect density of 0.5 cm−2. Three similar products
are already being produced using this technology, and their critical areas
and yield data appear in Table P5.6. Analyze the data and calculate the
short-term and long-term yield expectations using the Poisson model.

Table P5.6

Ac(cm2) Measured Yield (%)

0.1 81
0.2 78
0.4 70

5.7. Suppose we are given the joint distribution of several parameters which
vary in an IC manufacturing process, and we would like to evaluate the
impact of these variations on the overall performance of the IC by eval-
uating its parametric yield. For example, the drive current in mA of a
MOSFET in saturation (IDsat ) is given by

IDsat = k

2
(VGS − VT )2

where k is the device transconductance parameter, VGS is the gate-source
voltage, and VT is the threshold voltage. Suppose that VT is subject to
variation, and that variation ultimately impacts IDsat . There is a way to
find (analytically) the pdf of y, fy(y), if y = g(x) and if the pdf of x

is known.
To do so, we first solve the equation:

y = g(x)
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for x in terms of y. If x1, x2, . . . , xn are the real roots of this expression,
then

fy(y) = fx(x1)

|g′(x1)| + · · · + fx(xn)

|g′(xn)|
where g′(x) = dg(x)

dx
(a) Find the analytical expression for the pdf for the drive current, if

VT is uniformly distributed between 0.3 and 0.8 V, and if all other
parameters are deterministic.

(b) If k = 1 mA/V2, determine the parametric yield for a large population
of transistors that achieve drive currents between 1.5 and 2.0 mA, if
VGS is 2.5 V.

5.8. An oncoming 150-mm wafer has 10 randomly spaced point defects on it.
The chip size is 1.0 cm2, and the final target yield is 75%. If there are
eight additional processing levels, what is the maximum number of defects
that we can afford to accumulate on each level? (Use the Poisson yield
model.)

5.9. A manufacturing facility has a yield that is controlled purely by random
defects. The density of these random defects depends on the design rule
used. More specifically, for a 1-µm design rule, the density is 0.5/cm2,
while for a 0.5-µm design rule, the density is 2.0/cm2. (Use the Poisson
yield model.)
(a) A given product takes 1.0 cm2. Further, 90% of this area is using

1 µm design rules, while the rest 10% is using the 0.5 µm design
rules. Estimate the yield of this product.

(b) This product can be redesigned (shrunk) to take only 0.5 cm2, but now
50% of the chip is using the 0.5 µm design rules. Estimate the yield
of the redesigned product.

(c) What would be the ratio of good die per wafer of the redesigned product
to that of the original product?

5.10. Suppose that you use 200-mm wafers, and also assume that you can get
functional dies only within the inner 190-mm diameter (outer 5-mm margin
is full of defects). On the one product that you have run so far, a chip with
area 5 × 5 mm, the yield is 80%.
(a) Using the simple Poisson model, find the defect density (in the good

area of the wafer) and plot the yield as a function of S, where S is the
square root of the area of the die in production. Plot the total and the
good die per wafer as a function of S on the same graph.

(b) Repeat the calculations and plots in (a) using the negative binomial
model (α = 1.5).

(c) Suppose that an alternative explanation for the data were that some
fraction f of the wafer were perfect and the rest were totally dead.
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This is the “black–white” model that assumes a perfect deterministic
clustering of defects. What is f ? Plot the “good die” per wafer for this
model on the same graph as in (a)–(b).

(d) What defect density reduction would you have to achieve to yield
50% of the available die at S = 15 mm according to models (a), (b),
and (c)?
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6

STATISTICAL PROCESS
CONTROL

OBJECTIVES

• Provide an overview of statistical process control (SPC) techniques.
• Define and describe various types of control charts.
• Differentiate between control charts for attributes and control charts for

variables.
• Introduce a few advanced SPC concepts.

INTRODUCTION

Manufacturing processes must be stable, repeatable, and of high quality to yield
products with acceptable performance. This implies that all individuals involved
in manufacturing a product (including operators, engineers, and management)
must continuously seek to improve manufacturing process output and reduce
variability. Variability reduction is accomplished in a large part by strict process
control. The application of process control in manufacturing continues to expand
in the semiconductor industry. In this chapter we will focus on statistical process
control techniques a as means to achieve high-quality products.

Statistical process control (SPC) refers to a powerful collection of problem-
solving tools used to achieve process stability and reduce variability. Perhaps the
primary and most technically sophisticated of these tools is the control chart. The
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control chart was developed by Dr. Walter Shewhart of Bell Telephone Labora-
tories in the 1920s. For this reason, control charts are also often referred to as
Shewhart control charts.

6.1. CONTROL CHART BASICS

A control chart is used to detect the occurrence of shifts in process performance
so that investigation and corrective action may be undertaken to bring an incor-
rectly behaving manufacturing process back under control. A typical control chart
is shown in Figure 6.1. This chart is a graphical display of a quality character-
istic that has been measured from a sample versus the sample number or time.
The chart consists of: (1) a centerline, which represents the average value of
the characteristic corresponding to an in-control state; (2) an upper control limit
(UCL); and (3) a lower control limit (LCL). The control limits are selected such
that if the process is under statistical control, nearly all the sample points will
plot between them. Points that plot outside the control limits are interpreted as
evidence that the process is out of control.

There is a close connection between control charts and the concept of hypoth-
esis testing, which was discussed in Chapter 4. Essentially, the control chart
represents a continuous series of tests of the hypothesis that the process is under
control. A point that plots within the control limits is equivalent to accepting
the hypothesis of statistical control, and a point outside the limits is equivalent
to rejecting this hypothesis. We can think of the probability of a type I error (a
“false alarm”) as the probability of concluding that the process is out of statistical
control when it really is under control, and of the probability of a type II error (a
“missed alarm”) as the probability of concluding that the process is under control
when it really is not.

Sample number of time

Lower control limit

Center line

Upper control limit

Sa
m

pl
e 

qu
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ity
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ha
ra

ct
er
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tic

Figure 6.1. Typical control chart [1].
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Figure 6.2. x chart for via diameter [1].

To illustrate, consider an example pertaining to the formation of vias in a
dielectric layer. Suppose that this process can be controlled at mean via diameter
of 74 µm, and the standard deviation of the diameter is 0.01 µm. A control chart
for via diameter is shown in Figure 6.2. For every product wafer, a sample of
five via diameters are measured, and that sample average, x, is plotted on the
chart. Note that all the points fall within the control limits, indicating that the
via formation process is under statistical control.

Let’s examine how the control limits in this example were determined. For a
sample size of n = 5 vias, the standard deviation of the sample average is

σ√
n

= 0.01√
5

= 0.0045 µm (6.1)

If we assume that x is normally distributed, we would expect 100(1 − α)% of the
sample mean diameters to fall within 74 + zα/2(0.0045) and 74 − zα/2(0.0045). If
the constant zα/2 is selected to be 3, the upper and lower control limits become

UCL = 74 + 3(0.0045) = 74.0135 µm

LCL = 74 − 3(0.0045) = 73.9865 µm

These are typically called “3-sigma” (3σ) control charts, where “sigma” refers
to the standard deviation of the sample average computed in Eq. (6.1). Note that
the selection of the control limits is equivalent to testing the hypothesis

H0: µ = 74

H1: µ �= 74

where σ = 0.01 is known. Essentially, the control chart just tests this hypothesis
repeatedly for each sample. This is illustrated graphically in Figure 6.3.
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Sample:
n = 5

Distributional
individual

measurements
Normal

with mean
µ = 74 and
σ = 0.01

Distribution of x:
Normal

with mean
µ = 74 and
σ = 0.0045

UC - 74.035

Center line = 74.035

LCL = 73.3855

Figure 6.3. Illustration of how a control chart works [1].

An important parameter for any control chart is the average runlength (ARL),
which is defined as the average number of samples taken before the control
limits are exceeded. Mathematically, the ARL is 1/P (a sample point plots out
of control ). Thus, if the process is in control, the ARL is

ARL = 1/α (6.2)

where α is the probability of a type I error. If the process is out of control, then
the ARL is

ARL = 1

1 − β
(6.3)

where β is the probability of a type II error.

6.2. PATTERNS IN CONTROL CHARTS

A control chart may indicate an out-of control condition when a point plots
beyond the control limits or when a sequence of points exhibit nonrandom
behavior. For example, consider the charts shown in Figure 6.4. The pattern
in Figure 6.4a is called a “trend” (or “run”). Although most of the points in this
chart are within the control limits, they are not indicative of statistical control
because their pattern is very nonrandom. A pattern of several consecutive points
on the same side of the centerline is also called a “run.” A run of several points
has a very low probability of occurrence in a truly random sample.

Other types of patterns may also indicate an out-of-control state. For example,
the chart in Figure 6.4b exhibits cyclic (or periodic) behavior, even though all
the points are within the control limits. This type of pattern might result from
operator fatigue, raw-materials depletion, or other periodic problems. Several
other special patterns in control charts might be suspicious, including

• Mixtures—points from two or more source distributions
• Shifts—abrupt changes
• Stratification—charts that exhibit unusually small variability
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Figure 6.4. Examples of patterns in control charts: (a) trend; (b) cyclic.
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Figure 6.5. Illustration of Western Electric rules.

In order to detect patterns such as these, special rules must be applied. The
Western Electric Statistical Quality Control Handbook [3] provides a set of rules
for detecting nonrandom patterns in control charts. Referring to Figure 6.5, these
rules state that a process is out of control if either:

1. Any single point plots beyond the 3σ control limits.
2. Two out of three consecutive points plot beyond the 2σ warning limits

(zone A).
3. Four out of five consecutive points plot beyond 1σ (zone B).
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4. Nine consecutive points plot on the same side of the centerline.

5. Six consecutive points increase or decrease.

6. Fourteen consecutive points alternate up and down.

7. Fifteen consecutive points plot on either side in zone C.

Each of these rules describes events with a low natural probability of occurrence,
thereby making them indicative of potential out-of-control behavior. To illustrate,
consider rule 1. The probability of one point being outside the 3σ control limits
is given by

P(z > 3 or z < −3) = P(z > 3) + P(z < −3) = 2(0.00135) = 0.0027

where z is the standard normal random variable presented in Chapter 4, and the
probabilities are calculated using Appendix B. These so-called Western Electric
rules have been shown to be very effective in enhancing the sensitivity of control
charts and identifying troublesome patterns.

Example 6.1. Consider Western Electric rule 2. What is the probability of two
out of three consecutive points plotting beyond the 2σ warning limits?

Solution: Using Appendix B, we can find the probability of one point plotting
beyond the 2σ limits as

P(z > 2 or z < −2) = P(z > 2) + P(z < −2) = 2(0.02275) = 0.0455

Therefore, assuming that each point represents an independent event, the proba-
bility of two out of three points plotting beyond the 2σ limits is

P(2 out of 3) = (0.0455)(0.0455)(1 − 0.0455) = 0.00198

where the (1 − 0.0455) factor is the probability of the third point plotting inside
the 2σ limits.

6.3. CONTROL CHARTS FOR ATTRIBUTES

Some quality characteristics cannot be easily represented numerically. For
example, we may be concerned with whether a contact is defective. In this case,
the contact is classified as either “defective” or “nondefective” (or equivalently,
“conforming” or “nonconforming”), and there is no numerical value associated
with its quality. Quality characteristics of this type are referred to as attributes.
In this section, three commonly used control charts for attributes are presented:
(1) the fraction nonconforming chart (p chart), (2) the defect chart (c chart),
and (3) the defect density chart (u chart).
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6.3.1. Control Chart for Fraction Nonconforming

The fraction nonconforming is defined as the number of nonconforming items
in a population divided by the total number of items in the population. The
control chart for fraction nonconforming is called the p chart, which is based on
the binomial distribution (see Section 4.1.1.1). Suppose that the probability that
any product in a manufacturing process will not conform is p. If each unit is
produced independently, and a random sample of n products yields D units that
are nonconforming, then D has a binomial distribution. In other words

P(D = x) =
(

n

x

)
px(1 − p)n−x x = 0, 1, . . . n (6.4)

The sample fraction nonconforming (p̂) is defined as

p̂ = D

n
(6.5)

As noted in Section 4.1.1.1, the mean and variance of p̂ are µp̂ = p and σ2
p̂

=
p(1 − p)/n, respectively. On the basis of these relationships, we can set up the
centerline and ±3σ control limits for the p chart as follows:

UCL = p + 3

√
p(1 − p)

n

Centerline = p (6.6)

LCL = p −
√

p(1 − p)

n

This above implementation of the p chart assumes that p is known (or given). If
p is not known, it must be computed from the observed data. The usual procedure
is to select m preliminary samples, each of size n. If there are Di nonconforming
units in the ith sample, then the fraction nonconforming is

p̂i = Di

n
i = 1, 2, . . . , m (6.7)

and the average of the individual fractions nonconforming is

p = 1

mn

mn∑
i=1

Di = 1

m

mn∑
i=1

p̂i (6.8)

The centerline and control limits for the p chart under these conditions are

UCL = p + 3

√
p(1 − p)

n

Centerline = p (6.9)

LCL = p − 3

√
p(1 − p)

n
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Example 6.2. Consider a wire bonding operation. Suppose that 30 samples of
size n = 50 have been collected from 30 chips. Given a total of 347 defective
bonds found, set up the ±3σ p chart for this process.

Solution: Using Eq. (6.8), we have

p = 1

mn

m∑
i=1

Di = 347

(30)(50)
= 0.2313

This is the centerline for the p chart. The upper and lower control limits can be
found from Eq. (6.9) as

UCL = p + 3

√
p(1 − p)

n
= 0.4102

LCL = p − 3

√
p(1 − p)

n
= 0.0524

It should be pointed out that the limits defined by Eq. (6.9) are actually just
trial control limits. They permit the determination of whether the process was in
control when the m samples were collected. To test the hypothesis that the process
was in fact under control during this period, the sample fraction nonconforming
from each sample on the chart must be plotted and analyzed. If all points are
inside the control limits and no systematic trends are evident, then it may be
concluded that the process was indeed under control, and the trial limits are
reasonable.

If, on the other hand, one or more of the p̂i statistics plots out of control when
compared to the trial control limits, then the hypothesis of past control must be
rejected, and the trial limits are no longer valid. It then becomes necessary to
revise the trial control limits by first examining each out-of-control point in an
effort to identify an assignable cause. If a cause can be found, the point in question
is discarded and the control limits are recalculated using the remaining points.
The remaining points are then reexamined, and this process is repeated until all
points plot in control, at which point the trial limits may be adopted as valid.

6.3.1.1. Chart Design
Constructing a p chart requires that the sample size, frequency of sampling,
and width of the control limits all be specified. Obviously, the sample size and
sampling frequency are interrelated. Assuming 100% inspection for a given pro-
duction rate, selecting a sampling frequency fixes the sample size.

Various rules have been suggested for the choice of sample size (n). If p

is very small, n must be sufficiently large that we have a high probability of
finding at least one nonconforming unit in a sample in order for the p chart to
be effective. Otherwise, the control limits might end up being so narrow that
the presence of only a single nonconforming unit in a sample might indicate an
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out-of-control condition. For example, if p = 0.01 and n = 8, then the 3σ upper
control limit is

UCL = p +
√

p(1 − p)

n
= 0.1155

With only one nonconforming unit, p̂ = 0.125, and the process appears to be out
of control.

To avoid this problem, Duncan has suggested that the sample size be large
enough to ensure an approximately 50% chance of detecting a process shift of
some specified amount [2]. For example, let p = 0.01, and suppose that we want
the probability of detecting a shift from p = 0.01 to p = 0.05 to be 0.5. Assuming
that the normal approximation to the binomial distribution applies, this implies
that n must be selected such that the UCL exactly coincides with the fraction
nonconforming in the out-of-control state. In general, if δ is the magnitude of
this process shift, then n is given by

δ = k

√
p(1 − p)

n
(6.10)

In our example, δ = 0.05 − 0.01 = 0.04, and if 3σ limits are used (i.e., k = 3),
then

n =
(

k

δ

)2

p(1 − p) =
(

3

0.04

)2

(0.01)(0.99) = 56

If the in-control value of the fraction nonconforming is small, it is also desir-
able to choose n large enough so that the p chart will have a positive lower
control limit. This will allow us to detect samples that have an unusually small
number of nonconforming items. In other words, we want

LCL = p − k

√
p(1 − p)

n
> 0 (6.11)

or

n >
(1 − p)

p
k2 (6.12)

Note that this is not always practical. If we want the chart in our example to
have a positive LCL, this will require that n ≥ 891.

6.3.1.2. Variable Sample Size
In some applications, the sample size for the fraction nonconforming control
chart is not fixed. In these cases, there are several approaches to constructing the
p chart. The first, and probably the simplest, approach is to determine control
limits according to the specific size of each sample. In other words, if the ith
sample is of size ni , the upper and lower 3σ control limits are placed at p ±
3
√

p(1 − p)/ni . However, this results in control limits that vary for each sample,
as shown in Figure 6.6.

The approach described above is somewhat unappealing. A second approach is
to use the average sample size to compute the control limits. This assumes that the
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Figure 6.6. Example of control chart for fraction nonconforming with variable sample size [1].
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Figure 6.7. Control chart for fraction nonconforming based on average sample size [1].

sample sizes will not differ appreciably over the duration of the chart. The result
is a set of control limits that are approximate, but constant, and therefore more
satisfying and easier to interpret. Applying this approach to the same dataset used
in Figure 6.6 results in the chart shown in Figure 6.7. Care must be exercised in
the interpretation of points near the approximate control limits, however. Notice
that p̂ for sample 11 in Figure 6.7 is close to the upper control limit, but appears
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to be in control. When compared the exact limits used in Figure 6.6, though,
this point appears to be out of control. Similarly, points outside the approximate
limits may indeed be inside their exact limits.

Using the second approach, care must also be taken in analyzing patterns such
as those indicated in the Western Electric rules. Since the sample size actually
changes from run to run, such analyses are practically meaningless. A solution to
this problem is to use a “standardized” control chart where all points are plotted
using standard deviation units. This type of chart has a centerline at zero and
upper and lower control limits at ±3, respectively, for 3σ control. The variable
plotted on the chart is

Zi = p̂i − p√
p(1 − p)

ni

(6.13)

where p (or p) is the process nonconforming in the in-control state. The standard-
ized chart for the same dataset as in Figures 6.6 and 6.7 is shown in Figure 6.8.
Tests for patterns can be safely applied to this chart since the relative changes
from one point to another are all expressed in the same units.

6.3.1.3. Operating Characteristic and Average Runlength
The operating characteristic (OC) curve of a control chart is a graph of the
probability of incorrectly accepting the hypothesis of statistical control (i.e., a
type II error) versus the fraction nonconforming. The OC provides a measure of
the sensitivity of the chart to a given process shift. In the case of the p chart, the
OC provides the graphical display of its ability to detect a shift from the nominal
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Figure 6.8. Standardized control chart for fraction nonconforming [1].
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value of p to some new value. The probability of a type II error for this chart is
given by

β = P {p̂ < UCL|p} − P {p̂ ≤ LCL|p} (6.14)

= P {D < nUCL|p} − P {D ≤ nLCL|p}
where D is a binomial random variable with parameters n and p. The probability
defined by Eq. (6.14) can be obtained from the cumulative binomial distribution.
A typical OC curve for the fraction nonconforming chart is shown in Figure 6.9.

The OC curve may also be used to compute the average runlength (ARL) for
the fraction nonconforming chart. Recall that the ARL is given by Eqs. (6.2) and
(6.3). From the OC in Figure 6.9, for p = 0.2, the process is in control, and the
probability that a point plots within the control limits is 0.9973. The in-control
ARL is therefore

ARL = 1

α
= 1

0.0027
= 370

This implies that if the process is in control, there will be a “false alarm” about
every 370 samples. Suppose that the process shifts out of control to p = 0.3.
From Figure 6.9, a value of p = 0.3 corresponds to β = 0.8594. The out-of-
control ARL is then

ARL = 1

1 − β
= 1

1 − 0.8594
= 7

This means that it will take seven samples, on average, for the p chart to detect
this shift.
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Figure 6.9. Operating characteristic curve for fraction nonconforming chart with n = 50,
p = 0.2, LCL = 0.0303, and UCL = 0.3697 [1].
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6.3.2. Control Chart for Defects

When a specification is not satisfied in a product, a defect or nonconformity may
result. In many cases, it is preferable to directly control the actual number of
defects rather than the fraction nonconforming. In such cases, it is possible to
develop control charts for either the total number of defects or the defect density.
These charts assume that the presence of defects in samples of constant size is
appropriately modeled by the Poisson distribution; that is

P(x) = e−ccx

x!
(6.15)

where x is the number of defects and c > 0 is the parameter of the Poisson
distribution. Since c is both the mean and variance of the Poisson distribution,
the control chart for defects (c chart) with 3σ limits is given by

UCL = c + 3
√

c

Centerline = c (6.16)

LCL = c − 3
√

c

assuming that c is known. (Note: If these calculations yield a negative value for
the LCL, the standard practice is to set the LCL = 0.) If c is not known, it may
be estimated from an observed average number of defects in a sample (c ). In
this case, the control chart becomes

UCL = c + 3
√

c

Centerline = c (6.17)

LCL = c − 3
√

c

Example 6.3. Suppose that the inspection of 26 silicon wafers yields 516 defects.
Set up a c chart for this situation.

Solution: We estimate c using

c = 516

26
= 19.85

This is the centerline for the c chart. The upper and lower control limits can be
found from Eq. (6.17) as

UCL = c + 3
√

c = 33.22

LCL = c − 3
√

c = 6.484

6.3.3. Control Chart for Defect Density

Suppose that we would like to set up a control chart for the average number of
defects over a sample size of n products. If there were c total defects among the
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n samples, then the average number of defects per sample is

u = c

n
(6.18)

The parameters of a 3σ defect density chart (u chart) are then given by

UCL = u + 3

√
u

n

Centerline = u (6.19)

LCL = u − 3

√
u

n

where u is the average number of defects over m groups of sample size n.

Example 6.4. Suppose that a manufacturer wants to establish a defect density
chart. Twenty different samples of size n = 5 wafers are inspected, and a total
of 193 defects are found. Set up the u chart for this situation.

Solution: We estimate u using

u = u

m
= c

mn
= 193

(20)(5)
= 1.93

This is the centerline for the u chart. The upper and lower control limits can be
found from Eq. (6.19) as

UCL = u + 3

√
u

n
= 3.79

LCL = u − 3

√
u

n
= 0.07

The operating characteristic (OC) curves for both the c and u charts are derived
from the Poisson distribution. For the c chart, the OC represents the probability of
type II error (β) as a function of the true mean number of defects. The expression
for β is

β = P {x < UCL|c} − P {x ≤ LCL|c} (6.20)

where x is a Poisson random variable with parameter c. A typical OC for a
c chart is shown in Figure 6.10.

For the u chart, the OC is generated from

β = P {x < UCL|u} − P {x ≤ LCL|u}
= P {c < nUCL|u} − P {c ≤ nLCL|u}
= P {nLCL < c ≤ nUCL|u}

=
[nUCL]∑

c=〈nLCL〉

e−nu(nu)c

c! (6.21)
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Figure 6.10. OC curve for fraction c chart with LCL = 6.48 and UCL = 33.22 [1].

where 〈nLCL〉 represents the smallest integer greater than or equal to nLCL and
[nUCL] is the largest integer less than or equal to nUCL. These summation limits
occur because the total number of defects observed must be an integer.

6.4. CONTROL CHARTS FOR VARIABLES

In many cases, quality characteristics are expressed as specific numerical
measurements, rather than assessing the probability or presence of defects. For
example, the thickness of an oxide layer is an important characteristic to be
measured and controlled. Control charts for continuous variables such as this
can provide more information regarding manufacturing process performance than
attribute control charts like the p, c, and u charts.

When attempting to control continuous variables, it is important to control
both the mean and the variance of the quality characteristic. This is true because
shifts or drifts in either of these parameters can result in significant misprocessing.
Consider a process represented by Figure 6.11. In Figure 6.11a, both the mean
and the standard deviation are in control at their nominal values (µ0 and σ0).
Under these conditions, most of the process output falls within the specification
limits. However, in Figure 6.11b, the mean has shifted to a value µ1 > µ0, lead-
ing to a higher fraction of nonconforming product. Similarly, in Figure 6.11c, the
standard deviation has shifted to a value σ1 > σ0, also resulting in more noncon-
forming products (even though the mean remains at its nominal value). Control
of the mean is achieved using the x chart, and variance can be monitored using
either the standard deviation (as in the s chart) or the range (as in the R chart).
The x and R (or s) are among the most important and useful SPC tools.

6.4.1. Control Charts for x and R

We showed in Section 4.2.2 that if a quality characteristic is normally distributed
with a known mean µ and standard deviation σ, then the sample mean (x) for a
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Figure 6.11. Illustration of the need to control both process mean and standard deviation:
(a) nominal mean and standard deviation; (b) mean shifted to µ1 > µ0; (c) standard deviation
shifted to σ1 > σ0 [1].

sample of size n is also normally distributed with mean µ and standard deviation
σ/

√
n. Under these conditions, the probability that a sample mean will be between

µ + zα/2
σ√
n

(6.22)

and
µ − zα/2

σ√
n

(6.23)

is 1 − α. As a result, Eqs. (6.22) and (6.23) can be used as upper and lower
control limits for a control chart for the sample mean. For 3σ control, we replace
zα/2 by 3. This chart is called the x chart.
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In practice, µ and σ rarely will be known. They must therefore be esti-
mated from sample data. Suppose that m samples of size n are collected. If
x1, x2, . . . , xm are the sample means, the best estimator for µ is the grand average
(x), which is given by

x = x1 + x2 + · · · + xm

m
(6.24)

Since x estimates µ, x is used as the centerline of the x chart.
To estimate σ, we can use the ranges of the m samples. The range (R) is

defined as the difference between the maximum and minimum observation:

R = xmax − xmin (6.25)

Another random variable W = R/σ is called the relative range. The mean of W

is a parameter called d2, which is a function of the sample size n. (Values of d2

for various sample sizes are given in Appendix F). Consequently, an estimator
for σ is R/d2. Let R1, R2, . . . , Rm be the ranges of the samples. The average
range is then given by

R = R1 + R2 + · · · + Rm

m
(6.26)

and an estimate of σ is then

σ̂ = R

d2
(6.27)

If the sample size is small (i.e., n < 10), then the range is nearly as good an
estimate of σ as the sample standard deviation (s).

If x is used as an estimate of µ and R/d2 is used to estimate σ, then the
parameters if the x chart are

UCL = x + 3R

d2
√

n

Centerline = x (6.28)

LCL = x − 3R

d2
√

n

Note that the quantity 3/d2
√

n is a constant that depends only on sample size. It
is therefore possible to rewrite Eq. (6.28) as

UCL = x + A2R

Centerline = x (6.29)

LCL = x − A2R

where the constant A2 = 3/d2
√

n can be found tabulated for various sample sizes
in Appendix F.
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To control the range, the R chart is used. The centerline of the R chart is
clearly R, but to set up ±3σ control limits for the R chart, we must first derive
an estimate of the standard deviation of R (σ̂R). To do so, we again use the
relative range. The standard deviation of W is d3, which is a known function of
n (see Appendix F). Since R = Wσ, the true standard deviation of R is

σR = d3σ (6.30)

Since σ is unknown, σR can be estimated from

σ̂R = d3
R

d2
(6.31)

Therefore, the parameters of the R chart assuming 3σ control limits are

UCL = R + 3d3
R

d2

Centerline = R (6.32)

LCL = R − 3d3
R

d2

If we let

D3 = 1 − 3
d3

d2

and

D4 = 1 + 3
d3

d2

then the parameters of the R chart may be defined as

UCL = RD4

Centerline = R (6.33)

LCL = RD3

The constants D3 and D4 may also be found in Appendix F.

Example 6.5. Suppose that we want to establish an x chart to control linewidth
for a lithography process. Twenty-five different samples of size n = 5 linewidths
are measured. Suppose that the grand average for the 125 total lines measured is
74.001 µm and the average range for the 25 samples is 0.023 µm. What are the
control limits for the x chart?

Solution: The value for d2 for n = 5 (found in Appendix F) is 2.326. The
upper and lower control limits for the x chart can therefore be found from
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Eq. (6.28) as

UCL = x + 3R

d2
√

n
== 74.014 µm

LCL = x − 3R

d2
√

n
== 73.988 µm

6.4.1.1. Rational Subgroups
A fundamental idea in the use of control charts is the collection of sample data
according to the rational subgroup concept. In general, this means that subgroups
(i.e., samples of size n) should be selected so that if assignable causes for mispro-
cessing are present, the chance for differences between subgroups will be maxi-
mized, whereas the chance for differences within a subgroup will be minimized.
In other words, only random variation should be allowed within a subgroup.

The rational subgroup concept plays a particularly important role in the use
of x and R control charts. The x chart monitors the average level of quality in a
process, and the R chart measures the variability within a sample. In other words,
the x chart monitors between-sample variabilty (variability in the process over
time), and the R chart measures within-sample variability (instantaneous process
variability for a given sample at a given time).

In semiconductor manufacturing, intuitive categories for rational subgroups
include devices within a die, die within a wafer, or wafers in a lot. The following
inequality represents the expected level of variation in these groupings:

(Within-die variation) < (within-wafer variation)

< (within-lot variation) < (lot-to-lot variation)

Care must be exercised when establishing such groupings. For example, group-
ing wafers within a quartz boat in a CVD furnace operation is inappropriate
since reactant gas depletion effects down the length of the tube cause systematic
variations in the deposition reaction [4].

Note from Eqs. (6.28) and (6.29) that the range is used to compute the con-
trol limits for the x chart. The range of a subgroup is used to estimate the
standard deviation (σ) of that subgroup. This implies that the range across a
lot, for example, should not be used to estimate the standard deviation between
lots (i.e., the lot-to-lot variation); thus, within-lot statistics are different from
between-lot statistics. The same is true for other rational subgroups. Since the
within-lot variation is less than the between-lot variation, the wrong choice of the
rational subgroup used to compute the range can bias the estimation and result in
misleading interpretations of SPC data. Consider Figure 6.12, which shows two
different x charts for monitoring linewidth in the same manufacturing process. In
Figure 6.12a, the within-lot range has been used to compute the control limits,
and the linewidth appears to be out of statistical control. However, when the
between-lot range is used to compute the control limits (Figure 6.12b), there is
apparently no problem.
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Figure 6.12. (a) x chart for linewidth control using within-lot range to compute control limits;
(b) x chart for linewidth control using between-lot range to compute control limits.

6.4.1.2. Operating Characteristic and Average Runlength
Consider the operating characteristic (OC) curve for an x chart with a known
standard deviation. If the process mean shifts from an in-control value (µ0) to
a new mean µ1 = µ0 + kσ, the probability of missing this shift on the next
subsequent sample (i.e., the probability of type II error) is

β = P {LCL ≤ x̂ ≤ UCL|µ = µ0 + kσ} (6.34)

Since x ∼ N(µ, σ2/n), and the control limits are UCL = µ0 + 3σ/
√

n and
LCL = µ0 − 3σ/

√
n, Eq. (6.34) can be rewritten as

β = �

[
UCL − (µ0 + kσ)

σ/
√

n

]
− �

[
LCL − (µ0 + kσ)

σ/
√

n

]

= �

[
µ0 + 3σ/

√
n − (µ0 + kσ)

σ/
√

n

]
− �

[
µ0 − 3σ/

√
n − (µ0 + kσ)

σ/
√

n

]

= �(3 − k
√

n) − �(−3 − k
√

n) (6.35)
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Figure 6.13. OC curve for x-chart with 3-σ limits [1].

To construct the OC for the x chart, β is plotted versus k (the magnitude of the
shift to be detected) for various sample sizes (see Figure 6.13). This figure shows
that for small sample sizes (n = 4–6), the x chart is not particularly effective for
detecting small shifts (i.e., shifts on the order of 1.5σ or less).

If the probability that a shift will be missed on the first sample after it occurs
is β, then the probability that the shift will be detected in the first sample is
1 − β. It then follows that the probability that the shift is detected on the second
sample is β(1 − β). Thus, the probability that a shift will be detected on the ith
subsequent sample is

βi−1(1 − β)

In general, the expected number of samples collected before the shift is detected
is just the average runlength, so for the x chart, the ARL is

ARL =
∞∑
i=1

iβi−1(1 − β) = 1

1 − β
(6.36)

This relationship suggests the advantage of using small sample sizes for the
x chart. Even though small sample sizes result in a relatively high β, there is
a good chance that a shift will be detected reasonably quickly in subsequent
samples.
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Figure 6.14. OC curve for R-chart with 3σ limits [1].

To construct the OC for the R chart, the distribution of the relative range
(W = R/σ) is used. Let the in-control value of the standard deviation be σ0. The
OC curve for the R chart then plots the probability of not detecting a shift to
a new value (σ1). Figure 6.14 shows the OC curve for b versus λ = σ1/σ0 for
various values of n.

6.4.2. Control Charts for x and s

Although the range chart is quite popular, when the sample size is large (i.e.,
n > 10), it is desirable to estimate and control the standard deviation directly.
This leads to control charts for x and s, where s is the sample standard deviation,
which is computed using Eq. (4.2). Setting up these charts is similar to setting
up x and R charts, except that for each sample, s is calculated rather than R.

The only caution that must be applied in this situation is that s cannot be used
directly as the centerline of the s chart. This is due to the fact that s is not an
unbiased estimator of s. (The term “unbiased” refers to the situation where the
expected value of estimator is equal to the parameter being estimated.) Instead
s actually estimates c4σ, where c4 is a statistical parameter that is dependent
on the sample size (see Appendix F). In addition, the standard deviation of s is

σ

√
1 − c2

4. Using this information the control limits for the s chart can be set up
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as follows:

UCL = c4σ + 3σ

√
1 − c2

4

Centerline = c4σ (6.37)

LCL = c4σ − 3σ

√
1 − c2

4

It is customary to define two constants

B5 = c4 − 3
√

1 − c2
4

B6 = c4 + 3
√

1 − c2
4 (6.38)

As a result, the parameters of the s chart become

UCL = B6σ

Centerline = c4σ (6.39)

LCL = B5σ

If σ is unknown, then it must be estimated by analyzing past data. For m

preliminary samples of size n, the average sample standard deviation is

s = 1

m

m∑
i=1

si (6.40)

The statistic s/c4 is an unbiased estimator of σ. The parameters for the s chart
then become

UCL = s + 3
s

c4

√
1 − c2

4

Centerline = s (6.41)

LCL = s − 3
s

c4

√
1 − c2

4

Once again, it is customary to define two constants:

B3 = 1 − 3

c4

√
1 − c2

4

B4 = 1 + 3

c4

√
1 − c2

4 (6.42)

Consequently, the parameters of the s chart become

UCL = B4s

Centerline = s (6.43)

LCL = B3s

Note that B4 = B6/c4 and B3 = B5/c4.
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When s/c4 is used to estimate σ, the limits on the corresponding x chart may
be defined as

UCL = x + 3s

c4
√

n

Centerline = x (6.44)

LCL = x − 3s

c4
√

n

Let the constant A3 = 3/c4
√

n. It is therefore possible to rewrite Eq. (6.44) as

UCL = x + A3s

Centerline = x (6.45)

LCL = x − A3s

Example 6.6. Consider the lithography process in Example 6.5. If s =
0.009 mm, what are the control limits for the s chart?

Solution: The value for c4 for n = 5 (found in Appendix F) is 0.94. The upper
and lower control limits can therefore be found from Eq. (6.41) as

UCL = s + 3
s

c4

√
1 − c2

4 = 0.019 µm

LCL = s − 3
s

c4

√
1 − c2

4 = 0 µm1

6.4.3. Process Capability

Process capability quantifies what a process can accomplish when in control.
Shewhart control charts are useful for estimating process capability. For example,
suppose that the interconnect being defined by the lithography process described
in Examples 6.5 and 6.6 must have a linewidth of 74.000 ± 0.05 µm. If these
tolerances are not met, then some loss in product quality results. Tolerances such
as this are called specification limits. Specification limits (SLs) differ from control
limits in that they are externally imposed on the manufacturing process, whereas
control limits are derived from the natural variability inherent in the process.

Control chart data can be used to investigate the capability of the process to
produce linewidths according to the specification limits. Recall that our estimates
for the process mean and standard deviation were

x = 74.001 µm

σ̂ = R

d2
= 0.0099 µm

1Since the LCL is actually (slightly) negative in this case, we automatically set it to zero.
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Assuming that the linewidth is normally distributed, we can estimate the fraction
of nonconforming lines as

p̂ = P {x < 73.95} + P {x > 74.05}
= �

(
73.95 − 74.001

0.0099

)
+ 1 − �

(
74.05 − 74.001

0.0099

)
∼= 0.00002

In other words, about 0.002% of the lines produced will be outside the specifica-
tion limits. This means that the process is capable of achieving the specification
limits 99.998% of the time. The remaining 0.002% of the lines will not meet the
specifications no matter what steps are taken to improve the process.

Another way to express the process capability is in terms of the process
capability ratio (PCR, or Cp). The PCR is defined as

Cp = PCR = USL − LSL

6σ
(6.46)

where USL and LSL are the upper and lower specification limits, respectively.
Since σ is usually unknown, it frequently replaced by σ̂ = R/d2. For the inter-
connect linewidth process, we can compute the PCR as

Cp = PCR = USL − LSL

6σ
= 74.05 − 73.95

6(0.0099)
= 1.68

A PCR > 1 implies that the “natural” tolerance limits (NTLs) inherent in the
process (as quantified by the ±3σ control limits) are well inside the specification
limits. This results in a relatively low number of nonconforming lines being
produced. A common variation of the Cp parameter is Cpk , where

Cpk = min

{(
USL − µ

3σ

)
,

(
µ − LSL

3σ

)}
(6.47)

The Cpk parameter is a measure of the capability of the process to achieve control
chart values that lie in the center of the specification range. This metric is useful
when the specification limits are not symmetric about the centerline.

The PCR can also be interpreted using the quantity

P =
(

1

PCR

)
× 100% (6.48)

This is just the percentage of the specification band that the process under
consideration “uses up.” For the interconnect linewidth example, we compute
P = 59.5%, which means that this process uses 59.5% of the specification band.
Figure 6.15 illustrates the relationship between the PCR and the specification lim-
its. In Figure 6.15a, the PCR is greater than one, which means that the process
uses up much less that 100% of the tolerance band. In this case, few noncon-
forming products are produced. In Figure 6.15b, PCR = 1, which means that the
process uses up all of the tolerance band. Finally, in Figure 6.15c, PCR < 1, and
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Figure 6.15. Illustration of relationship between specification limits, natural tolerance limits,
and process capability ratio [1].

the process uses more than 100% of the tolerance band. In the latter case, a large
number of nonconforming products will be produced.

6.4.4. Modified and Acceptance Charts

When x charts are used to control the fraction of nonconforming products, two
important variations to standard SPC charts can be employed: the modified chart
and the acceptance chart. Modified control limits are generally used when the
natural tolerance limits of the process are smaller than the specification limits
(i.e., PCR > 1). This occurs frequently in practice, particularly when a quality
improvement program exists. In these situations, the modified control chart is
designed to detect whether the true process mean (µ) is located such that the
process yields a fraction nonconforming in excess of some specified value δ.
Essentially, µ is allowed to vary over an interval µL ≤ µ ≤ µU , where µL and
µU represent lower and upper bounds on µ, respectively, that are consistent with
producing a fraction nonconforming of at most δ. This scenario is represented
graphically in Figure 6.16.
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Figure 6.16. Control limits for modified control char: (a) distribution of process output; (b) dis-
tribution of the sample mean x [1].

To specify control limits for the modified chart (assuming a normally dis-
tributed process), for the fraction nonconforming to be less than δ, we must have

µL = LSL + Zδσ

µU = USL − Zδσ (6.49)

where Zδ is the upper 100(1-δ) percentage point of the standard normal distribu-
tion. If the specified probability of type I error is α, the upper and lower control
limits are then

UCL = µU + Zασ√
n

= USL −
(

Zδ − Zα√
n

)
σ

LCL = µL − Zασ√
n

= LSL +
(

Zδ − Zα√
n

)
σ (6.50)

Note that using the modified chart is equivalent to testing the hypothesis that the
process mean lies in the interval µL ≤ µ ≤ µU .

Another approach to using the x chart to control the fraction nonconforming
accounts for both the risk of rejecting a process operating at a satisfactory level
(probability of type I error, or α) and the risk of accepting a process that is
unsatisfactory (probability of type II error, or β). This second approach is called
the acceptance chart. The design of this chart is based on a specified sample
size (n) and a process fraction nonconforming (γ) that should be rejected with
probability 1 − β. In this case, the control limits for the acceptance chart are

UCL = µU − Zβσ√
n

= USL −
(

Zγ + Zβ√
n

)
σ

LCL = µL + Zβσ√
n

= LSL +
(

Zγ + Zβ√
n

)
σ (6.51)
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Note that when n, γ, and β are specified, the control limits are inside the µL and
µU values that yield the fraction nonconforming γ. On the other hand, when n,
δ, and α are specified in the modified chart, the lower control limit falls between
µL and the LSL, and the upper control limit is between µU and the USL.

It is also possible to select a sample size for an acceptance chart such that
desired values of α, β, γ, and δ are obtained. Equating the expressions for the
control limits in Eqs. (6.50) and (6.51) yields

n =
(

Zα + Zβ

Zδ − Zγ

)2

(6.52)

Clearly, values of δ = γ are prohibited to achieve a finite sample size.

6.4.5. Cusum Chart

Consider the Shewhart control chart shown in Figure 6.17. This chart corresponds
to a normally distributed process with a mean µ = 10 and a standard deviation
σ = 1. Note that all of the first 20 observations appear to be under statistical
control. The last 10 observations in this chart were drawn from the same process
after the mean has shifted to a new value µ = 11. We can think of these latter
observations as having been taken from the process after the mean has shifted
out of statistical control by an amount 1σ. However, none of the last 10 points
plots outside the control limits, so there is no strong evidence that the process
is truly out of control. Even applying the Western Electric rules, the Shewhart
chart has failed to detect the mean shift.

The reason for this failure is the relatively small magnitude of the shift. She-
whart charts are generally effective for detecting shifts on the order of 1.5–2σ or
larger. For smaller shifts the “cumulative sum” (or cusum) control chart is pre-
ferred. The cusum chart incorporates historical information from a sequence of
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Figure 6.17. Shewhart chart for before and after a mean shift from µ = 10 to µ = 11 [1].
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samples by plotting the cumulative sums of the sample deviations from a target
value. If samples of size n ≥ 1 are collected and µ0 is the target for the process
mean, the cusum chart is formed by plotting the quantity

Ci =
i∑

j=1

(xj − µ0) (6.53)

versus sample i, where xj is the average of the j th sample. Because they combine
information from several samples, cusum charts are sensitive to smaller process
shifts than are Shewhart charts.

If the process remains in control at the target value µ0, the sum defined by Eq.
(6.53) is a random variable with mean zero. If the mean shifts upward to some
value µ1 > µ0, then a positive drift will develop in the cusum chart. Conversely,
if the mean shifts downward to some value µ1 < µ0, then a negative drift will be
manifested in Ci . This effect is demonstrated in Figure 6.18, which depicts the
cusum chart for the same dataset used in Figure 6.17. The upward trend after the
first 20 samples is indicative of the mean shift to µ = 11 described previously.
This figure, however, does not represent a control chart because it lacks control
limits. The methodology for establishing such limits is described in the following
subsections.

Figure 6.18. Cusum chart for before and after a mean shift from µ = 10 to µ = 11 [1].



210 STATISTICAL PROCESS CONTROL

6.4.5.1. Tabular Cusum Chart
The tabular form of the cusum chart may be constructed for both individual
observations and for averages of rational subgroups. Let xi be the ith observation
of a normally distributed process with mean µ0 and standard deviation σ. We can
think of µ0 as a “target” value for quality characteristic x. If the process shifts
or drifts from this target value, the cusum chart should generate an alarm signal.

The tabular cusum accumulates deviations from µ0 that are above the tar-
get with a statistic C+ and deviations that are below the target with another
statistic C−. The quantities C+ and C− are called the upper and lower cusums,
respectively. The are computed using the relations

C+
i = max

[
0, xi − (µ0 + K) + C+

i−1

]
(6.54)

C−
i = max

[
0, (µ0 + K) − xi + C−

i−1

]
(6.55)

where the starting values are C+
0 = C−

0 = 0. In these equations, K is called the
reference value, and it is usually chosen to be about halfway between the target
mean (µ0) and the shifted mean that we are interested in detecting (µ1). If the
shift is expressed in terms of the standard deviation as µ1 = µ0 + δσ, the K is
given by

K = δ

2
σ = |µ1 − µ0|

2
(6.56)

Both C+ and C− accumulate deviations from µ0 that are greater than K , and
both quantities reset to zero on becoming negative. If either quantity exceeds the
decision interval (H ), the process is considered to be out of control. A reasonable
value for H is H = 5σ.

The tabular cusum is particularly useful for determining when a shift has
occurred. This can be accomplished by simply counting backward from the out-
of-control signal to the time period when the cusum was greater than zero to
identify the first period following the shift. To assist in this process, we can
define the counters N+ and N−, where N+ represents the number of consecutive
periods since C+

i rose above zero, and N− is the number of consecutive periods
since C−

i rose above zero. These quantities may also be used to estimate the new
process mean following a shift. This can be computed from

µ̂ = µ0 + K + C+
i

N+ if C+
i > H

= µ0 − K − C−
i

N− , if C−
i > H (6.57)

6.4.5.2. Average Runlength
The format of the tabular cusum depends on the values selected for the reference
value (K) and decision interval (H ). These parameters are usually selected to
provide a certain average runlength. Let H = hσ and K = kσ. Choosing h = 4–5
and k = 0.5 generally results in a cusum that has a reasonable ARL. Table 6.1



CONTROL CHARTS FOR VARIABLES 211

Table 6.1. ARL performance of tabular cusum with
k = 0.5 and h = 4 or h = 5.

Shift in Mean (Multiple of σ) h = 4 h = 5

0 168 465
0.25 74.2 139
0.50 26.6 38
0.75 13.3 17
1.00 8.38 10.4
1.50 4.75 5.75
2.00 3.34 4.01
2.50 2.62 3.11
3.00 2.19 2.57
4.00 1.71 2.01

provides the ARL performance of the tabular cusum for various shifts in the
process mean under these conditions.

Generally, k should be chosen relative to the size of the shift to be detected. In
other words, k = 0.5δ, where δ is the size of the shift to be detected (in standard
deviation units). This approach comes very close to minimizing the out-of-control
ARL value for detecting a shift of size δ for a fixed in-control ARL. Once k is
chosen, h is then selected to give the desired in-control ARL.

For a one-sided cusum (i.e., for either C+
i or C−

i ), the ARL may generally be
approximated as [1]

ARL = exp(−2�b) + 2�b − 1

2�2
(6.58)

for � �= 0, where � = δ∗ − k, b = h + 1.166, and

δ∗ = µ1 − µ0

σ
(6.59)

where µ0 and µ1 are the target and shifted mean, respectively. If � = 0, then the
ARL = b2. The quantity δ∗ represents the shift in the mean (in standard deviation
units) for which the ARL is calculated. The ARL of the two-sided cusum can be
derived from the ARLs of the two one-sided statistics (ARL+ and ARL−) as

1

ARL
= 1

ARL+ + 1

ARL− (6.60)

6.4.5.3. Cusum for Variance
It is also possible to use the cusum technique to monitor process variability.
Again, let xi be a normally distributed process measurement with mean µ0 and
standard deviation σ. Further, let yi be the standardized value of xi , or

yi = xi − µ0

σ
(6.61)
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Hawkins [5] suggests creating a new standard quantity, vi , which is sensitive to
both mean and variance changes. This parameter is given by

vi =
√|yi| − 0.822

0.349
(6.62)

Since the in-control distribution of vi is approximately N (0,1), the two-sided
cusums can be written as

S+
i = max[0, vi − k + S+

i−1] (6.63)

S−
i = max[0, −k − vi + S−

i−1] (6.64)

where S+
0 = S−

0 = 0, and the values of k and h are selected in the same way as the
values for controlling the process mean. The interpretation of this cusum is also
the same as that of the cusum for controlling the mean. If the process standard
deviation increases, the values of S+

i will increase and eventually exceed h, and
if the standard deviation decreases, the values of S−

i will increase and eventually
exceed h.

6.4.6. Moving-Average Charts

6.4.6.1. Basic Moving-Average Chart
Suppose that x1, x2, . . . , xn individual observations of a process have been col-
lected. The moving average of span w at time i is defined as

Mi = xi + xi−1 + · · · + xi−w+1

w
(6.65)

At time period i, the oldest observation is dropped and the newest one is added
to the set. The variance of the moving average is

V (Mi) = 1

w2

i∑
j=i−w+1

V (xj ) = 1

w2

i∑
j=i−w+1

σ2 = σ2

w
(6.66)

Thus, if µ0 is the target mean used as the centerline of the moving-average
control chart, the 3σ control limits for Mi are

UCL = µ0 + 3σ√
w

(6.67)

LCL = µ0 − 3σ√
w

(6.68)

The control procedure then consists of calculating a new value for Mi as each
new observation becomes available and plotting Mi on a control chart with limits
given by Eqs. (6.67) and (6.68). Note that for samples in which i < w, i replaces
w in these equations. This causes the control limits for the first few samples to
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Figure 6.19. Control limits for moving-average chart for a sample dataset [1].

become variable, as is depicted in Figure 6.19. In general, the moving-average
control chart is more sensitive than Shewhart charts for detecting small process
shifts. However, it is not as effective in that regard as either the cusum or the
EWMA (see discussion below).

6.4.6.2. Exponentially Weighted Moving-Average Chart
The exponentially weighted moving-average (EWMA) control chart, sometimes
referred to as the geometric moving average (GMA) chart, is another alterna-
tive to Shewhart charts when it is desirable to detect small process shifts. The
performance of the EWMA chart is comparable to that of the cusum chart. The
exponentially weighted moving average is defined as

zi = λxi + (1 − λ)zi−1 (6.69)

where 0 < λ ≤ 1 is a constant and the starting value is the process target (i.e.,
z0 = µ0).

To show that the parameter zi is a weighted average of all previous sample
means, we can substitute zi−1 on the right side of Eq. (6.69) to obtain

zi = λxi + (1 − λ)[λxi−1 + (1 − λ)zi−2]

= λxi + λ(1 − λ)xi−1 + (1 − λ)2zi−2

If we continue to substitute recursively for zi−j for j = 2, 3, . . . , t , we obtain

zi = λ

i−1∑
j=0

(1 − λ)j xi−j + (1 − λ)iz0 (6.70)
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The weights λ(1 − λ)j thus decrease geometrically with the age of the sample
mean. Since the EWMA is a weighted average of all previous observations,
it is insensitive to the assumption of normality and can therefore be used for
individual process measurements.

If the observations (xi) are random variables with variance σ2, then the vari-
ance of zi is

σ2
zi = σ2

(
λ

2 − λ

)
[1 − (1 − λ)2i] (6.71)

The EWMA control chart can then be constructed by plotting zi versus i (or
time). The centerline and 3σ control limits for this chart are

UCL = µ0 + 3σ

√
λ

(2 − λ)
[1 − (1 − λ)2i]

CL = µ0 (6.72)

LCL = µ0 − 3σ

√
λ

(2 − λ)
[1 − (1 − λ)2i]

Notice that the term [1 − (1 − λ)2i] in these equations approaches unity as i gets
larger. The control limits therefore reach steady-state values of

UCL = µ0 + 3σ

√
λ

(2 − λ)

CL = µ0 (6.73)

LCL = µ0 − 3σ

√
λ

(2 − λ)

This variation in control limits with i is depicted in Figure 6.20.
The EWMA method is related to the proportional–integral–differential (PID)

approach often used in classical control problems. Note that the EWMA param-
eter zi in Eq. (6.69) can be manipulated algebraically and rewritten as

zi = zi−1 + λ(xi − zi−1) (6.74)

If zi−1 is viewed as a forecast of the process mean in sample period i, then we
can think of xi − zi−1 as the forecast error (ei) for period i, or

zi = zi−1 + λei (6.75)

In other words, the forecast for period i is the forecast from the previous period
plus a fraction of the forecast error. The second term in Eq. (6.75) is therefore
known as the proportional term.
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Figure 6.20. Control limits for EWMA chart with λ = 0.2 for a sample dataset [1].

We can add a second integral term to Eq. (6.75) to get

zi = zi−1 + λ1ei + λ2

i∑
j=1

ej (6.76)

where λ1 and λ2 are coefficients that weight the error at period i and the sum
of the errors accumulated up to period i, respectively. If we let ∇e = ei − ei−1

represent the difference between the errors in periods i and i − 1, then can add
a third differential term to Eq. (6.76) to yield

zi = zi−1 + λ1ei + λ2

i∑
j=1

ej + λ3∇ei (6.77)

In summary, the empirical control equation represented by Eq. (6.77) states that
the EWMA in period i (which is a forecast of the process mean in period i + 1)
is the sum of the current estimate of the mean (zi−1), a term proportional to the
forecast error, a term related to the sum of the forecast errors, and a term related
to the difference between the two most recent forecast errors. The latter three
terms can be thought of as proportional, integral, and differential adjustments,
and the parameters λ1, λ2, and λ3 are selected to provide the best forecasting
performance.

6.5. MULTIVARIATE CONTROL

In many situations, it is desirable to control two or more quality characteristics
simultaneously. For example, we may be interested in controlling the linewidth of
a test structure on two different product wafers. Suppose that these two character-
istics are represented by the random variables x1 and x2, which have a bivariate
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Figure 6.21. x control charts for bivariate normal process variables [1].

Figure 6.22. Control region using independent control limits for x1 and x2 [1].

normal distribution. Suppose also that each variable is controlled by an x chart
(see Figure 6.21). Since the process is under control only if both sample means
(x1 and x2) fall within their respective control limits, the joint control region for
both variables is as shown in Figure 6.22.

Controlling these two process variables in this manner can be misleading.
Since the probability that either x1 or x2 exceeds its control limits when in control
is 0.0027, the joint probability that both variables simultaneously exceed their
control limits when both are in fact in control is (0.0027)2 = 0.00000729, which
is significantly less than 0.0027. Moreover, the probability that both variables will
plot inside the control limits when under control is (0.9973)2 = 0.99460729. The
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use of independent x charts to control both variables simultaneously thus distorts
the probability of type I error as compared to individual control charts.

Such distortion increases with the number of quality characteristics. If there
are p independent quality characteristics, each with P {type I error} = α, then the
overall probability for type I error is

α′ = 1 − (1 − α)p (6.78)

and the probability that all p process means will simultaneously plot inside their
control limits when the process is in control is

P {all means plot in control} = (1 − α)p (6.79)

In addition, if the p quality characteristics are not all mutually independent (which
would be the case if they were related to the same product), then Eqs. (6.78)
and (6.79) would not be valid, and there would be no easy way to measure the
distortion in this control procedure.

6.5.1. Control of Means

Let µ1 and µ2 represent the mean values of x1 and x2, and let σ1 and σ2 be their
respective standard deviations. The covariance between x1 and x2, a measure
of their dependence, is denoted by σ12. If x1 and x2 are the sample averages
computed from a sample of size n, then the statistic

χ2
0 = n

σ2
1σ

2
2 − σ2

12

[
σ2

2(x1 − µ1)
2 + σ2

1(x2 − µ2)
2 − 2σ12(x1 − µ1)(x2 − µ2)

]

(6.80)

has a chi-square distribution with 2 degrees of freedom. This equation can be
used to develop a control chart for the process means. If the means remain under
control (i.e., have not shifted), then χ2

0 < χ2
α,2, where χ2

α,2 is the upper percentage
point of the chi-square distribution with 2 degrees of freedom. If, on the other
hand, one of the means shifts to an out-of-control value, then χ2

0 > χ2
α,2.

This control procedure can be represented graphically, as shown in
Figures 6.23 and 6.24. Figure 6.23 depicts the case where x1 and x2 are
independent (σ12 = 0), and the principal axes of the “control ellipse” are parallel
to the x1 and x2 axes. Figure 6.24 shows the control ellipse when σ12 �= 0.
In both cases, sample averages yielding χ2

0 points plotting inside the ellipse
are indicative of statistical control, and points plotting outside represent out-of-
control conditions.

There are two primary disadvantages of the control ellipse approach. The first
is that the time sequence of the sample measurements is completely lost. The
second shortcoming is the difficulty in graphically depicting the control region
for more than two variables. To avoid these difficulties, it is customary to plot
the values of χ2

0 computed from Eq. (6.80) on a control chart with only an upper
control limit at χ2

α,2 (see Figure 6.25).
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Figure 6.23. Control ellipse for two independent variables [1].
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−

− −

x1
−

Figure 6.24. Control ellipse for two dependent variables [1].

Figure 6.25. χ2 control chart for p = 2 quality characteristics [1].
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It is possible to extend this approach to situations where p > 2. Assuming
again that the p random variables are multivariate normal, this procedure requires
computing the sample mean of each quality characteristic from a sample of size
n. This set of sample means is represented by the vector

x =




x1

x2
...

xp




The test statistic to be plotted on a control chart like that of Figure 6.25 is then

χ2
0 = n(x − µ)′�−1(x − µ) (6.81)

where µ′ = [µ1,µ2, . . . ,µp] and � is the covariance matrix. The upper control
limit for this chart is then χ2

α,p.
In practice, µ and � must be estimated from samples taken when the process

is under control. Suppose that m such samples are taken. The sample means and
variances are

xjk = 1

n

n∑
i=1

xijk

{
j = 1, 2, . . . , p

k = 1, 2, . . . , m
(6.82)

S2
jk = 1

n − 1

n∑
i=1

(xijk − xjk)
2

{
j = 1, 2, . . . , p

k = 1, 2, . . . , m
(6.83)

where xijk is the ith observation on the j th quality characteristic in the kth
sample. The covariance between characteristic j and h in the kth sample is

Sjhk = 1

n − 1

n∑
i=1

(xijk − xjk)(xihk − xhk)

{
k = 1, 2, . . . , m

j �= h
(6.84)

The statistics xjk, S2
jk , and Sjhk are averaged over all m samples to obtain

xj = 1

m
m

∑
k=1

xjk j = 1, 2, . . . , p (6.85)

S2
j = 1

m

m∑
k=1

S2
jk j = 1, 2, . . . , p (6.86)

Sjh = 1

m

m∑
k=1

Sjhk j �= h (6.87)
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The {xj } are elements of a vector x, and the p × p sample covariance matrix
S is

S =




S2
1 S12 S13 · · · S1p

S2
2 S23 · · · S2p

. . .
...

S2
p


 (6.88)

The parameters µ and � in Eq. (6.81) are then replaced by x and S, respectively.
The test statistic is now

T 2 = n(x − x)′S−1(x − x) (6.89)

The T 2 statistic is know as Hotelling’s T 2. The distribution of this T 2 statistic
is related to the F distribution by the expression

n − p

p(n − 1)
T 2 ∼ F(p, n − p) (6.90)

The T 2 statistic can be plotted on a control chart with a UCL = χ2
α,p. However,

one difficulty that arises in the use of either the χ2
0 or T 2 statistics in control

charts is the interpretation of an out-of-control signal. Specifically, it is difficult
to determine which subset of the p variables is responsible for the signal.

6.5.2. Control of Variability

Multivariate process variability is summarized by the p × p covariance matrix
�. One approach to controlling variability is based on the determinant of the
sample covariance (|S|), which is known as the generalized sample variance. Let
E(|S|) and V (|S|) be the mean and variance of |S|, respectively. It can be shown
that [1]

E(|S|) = b1|�| (6.91)

V (|S|) = b2|�|2 (6.92)

where

b1 = 1

(n − 1)p

p∏
i=1

(n − i) (6.93)

b2 = 1

(n − 1)2p

p∏
i=1

(n − i)

[
p∏

i=1

(n − j + 2) −
p∏

i=1

(n − j)

]
(6.94)

The parameters of the control chart for |S| are then

UCL = |�|
(
b1 + 3

√
b2

)

CL = b1|�| (6.95)

LCL = |�|
(
b1 − 3

√
b2

)
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The LCL in Eq. (6.95) is set to zero if the calculated value is less than zero.
Also, in practice, � is usually estimated by S. In that case, |�| in Eq. (6.95) is
replaced by |S|/b1, which is an unbiased estimator of |�|.

6.6. SPC WITH CORRELATED PROCESS DATA

The standard assumptions for using Shewhart control charts are that the data
generated by the monitored process while it is under control are normally and
independently distributed. Both the process mean (µ) and standard deviation (σ)
are considered fixed and unknown. Therefore, when the process is under control,
it can be represented by the model

xt = µ + εt t = 1, 2, . . . (6.96)

where εt ∼ N(0, σ2). When these assumptions hold, one may apply conventional
SPC techniques to such charts.

The most critical of these assumptions is the independence of the observations.
Shewhart charts do not work well if the process measurements exhibit any level of
correlation over time. They will give misleading results under these conditions,
usually in the form of too many false alarms. Unfortunately, the assumption
of uncorrelated (or independent) observations is not satisfied for many semi-
conductor manufacturing processes. For example, in a CVD process, consecutive
temperature measurements are often highly correlated. Automated test and inspec-
tion procedures are also examples of processes that yield measurements that are
correlated in time. Alternative SPC methods must therefore be applied to these
situations.

6.6.1. Time-Series Modeling

When a process measurement taken at time t depends on the value measured at
time t − 1, the measurements are said to be autocorrelated. A sequence of time-
oriented observations such as this is referred to as a time series. It is possible
to measure the level of autocorrelation in a time series analytically using the
autocorrelation function

ρk = cov(xt , xt−k)

V (xt )
(6.97)

where cov(xt , xt−k) is the covariance of observations that are k time periods apart
and V (xt ) is the variance of the observations (which is assumed to be constant).
Autocorrelation is usually estimated using the sample autocorrelation function

rk =

n−k∑
t=1

(xt − x)(xt−k − x)

n∑
t=1

(xt − x)2

(6.98)
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Autocorrelated data can be modeled using time-series models. For example,
the quality characteristic xt could be modeled using the expression

xt = ξ + φxt−1 + εt (6.99)

where ξ and φ(−1 < φ < 1) are unknown constants, and εt ∼ N(0, σ2).
Equation (6.99) is called a first-order autoregressive model. The observations
(xt ) from this model have mean ξ(1 − φ) and standard deviation σ/

√
1 − φ2.

Observations that are k time periods apart (xt and xt−k) have a correlation
coefficient φk.

The first-order autoregressive model is clearly not the only possible model for
correlated time-series data. A natural extension to Eq. (6.99) is

xt = ξ + φ1xt−1 + φ2xt−2 + εt (6.100)

which is a second-order autoregressive model. In autoregressive models, the vari-
able xt is directly dependent on previous observations. Another possibility is to
model this dependence through εt . The simplest way to do so is

xt = µ + εt − θεt−1 (6.101)

which is called a first-order moving-average model. In this model, the correlation
between xt and xt−1 is

ρ1 = −θ/(1 + θ2) (6.102)

Combinations of autoregressive and moving-average models are often useful
as well. A first-order autoregressive, moving-average (ARMA) model is

xt = ξ + φxt−1 + εt − θεt−1 (6.103)

More generally, this ARMA model may be extended to arbitrary order using

x̂t =
p∑

i=1

φixt−i −
q∑

j=1

θj et−j (6.104)

where x̂t is the model prediction of the time-series data, et is the residual for
each timepoint (i.e., et = xt − x̂t ), φi are the autoregressive coefficients of order
p, and θj are the moving-average coefficients of order q. The parameters in the
ARMA or other time-series models may be estimated by the method of least
squares (see Chapter 8). Using that technique, values of ξ, φi , or θj are selected
that minimize the sum of squared errors (e2

t ).
A further extension of the basic ARMA model is the autoregressive integrated

moving-average (ARIMA) model. The ARIMA model originates from the first-
order integrated moving-average model

xt = xt−1 + εt − θεt−1 (6.105)
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While the previous models are used to describe stationary behavior (i.e., xt

wanders around a fixed mean), the model in Eq. (6.106) describes nonstationary
behavior in which the process mean drifts. This situation often arises in pro-
cesses in which no control actions are taken to keep the mean close to a target
value. Occasionally, the original data may also show seasonal, periodic patterns.
These seasonal patterns can be modeled by creating ARIMA models for seasonal
means. This composite model is known as the seasonal ARIMA (SARIMA).

6.6.2. Model-Based SPC

One approach for dealing with autocorrelated data is to directly model the cor-
relation with an appropriate time-series model, use that model to remove the
autocorrelation from the data, and apply control charts to the residuals. This
approach is known as model-based SPC.

Consider the first-order autoregressive model described by Eq. (6.99). Suppose
that φ̂ is an estimator of φ obtained from the analysis of sample data obtained
from the process. Then x̂t is an estimate of xt and the corresponding residuals
(et = xt − x̂t ) are approximately normally and independently distributed with
zero mean and constant variance. Conventional Shewhart or other control charts
may now be legitimately applied to the sequence of residuals. Points out of
control or exhibiting unusual patterns would then be indicative of a shift in φ,
implying that the original variable xt was out of control.

This approach is equally valid for more complex time-series models such as
the ARMA family. As an example, Figure 6.26 shows time-series data collected
from a Lam Rainbow 4400 reactive-ion etching system [6]. This particular dataset
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Figure 6.26. RIE RF coil position time series: (a) raw data and (b) control chart for residuals [6].
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represents the signal for the coil position in the RF matching network of the RIE.
Figure 6.26a shows the raw data for this signal, and Figure 6.26b shows the x

control chart for the residuals after an ARMA model for the raw data has been
constructed. In this case, the time-series data are under statistical control, as the
residuals do not exceed the upper and lower control limits for the interval under
observation.

SUMMARY

In this chapter, we have provided an overview of statistical process control, from
basic control charts to advanced techniques. This overview has focused on the use
of SPC to analyze quality issues and improve the performance of semiconductor
manufacturing processes. As ever, the overall goal is to reduce variability and
improve yield. In the next chapter, we turn our attention to statistical experimental
design, an essential method for identifying the key variables influencing the
quality characteristics that are monitored by SPC.

PROBLEMS

6.1. Consider Western Electric rule 3. What is the probability of four out of
five consecutive points plotting beyond the 2σ warning limits?

6.2. A normally distributed quality characteristic is monitored by a control chart
with 3σ limits. Derive a general expression for the probability that a point
will plot outside the control limits when the process is in fact in control.

6.3. A control chart is designed to monitor the threshold voltage of NMOS
transistors. Assume that the process is under control for some time before
an abrupt process shift occurs. Suppose that the chart is set so that it signals
an alarm with probability 1 − β the first time a sample arrives from the
shifted process. Find
(a) The probability of signaling an alarm on the second sample after the

shift.

(b) The probability that the alarm will be missed for K samples following
the shift.

(c) The expected number of samples needed after the shift in order to
generate an alarm.

6.4. Suppose that out of a group of 10 coins, 9 of them are “fair” (i.e., they
turn up heads 50% of the time). One of them is “unfair”—it gives tails
only 35% of the time. Assume that each of the coins is thrown n times
and the outcome is plotted on a p chart. Calculate the control limits and
n so that the unfair coin will be caught 90% of the time, while the chance
of rejecting a fair coin will be at most 1%.
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6.5. A particle counting device monitors wafers emerging from a plasma etcher.
From previous experience, it is known that the machine generates an
average of two defects per wafer. Establish a control procedure that will
generate false alarms only 1% of the time (there is no lower control limit).
What is the best type of control chart, and what is the necessary UCL?

6.6. Control charts for x, R, and s are to be maintained for the threshold voltage
of short-channel MOSFETs using sample sizes of n = 10. It is known that
the process is normally distributed with µ = 0.75 V and σ = 0.10 V. Find
the centerline and control limits for each of these control charts.

6.7. Repeat the previous problem assuming that µ and σ are unknown and that
we have collected 50 observations of sample size 10. These samples yielded
a grand average of 0.734 V, an average si of 0.125 V, and an average Ri

of 0.365 V.

6.8. A fabrication line used for the manufacture of analog ICs requires tight
control on the relative sizes of small geometric features. In a particular case,
it is required that transistors on either side of a differential pair differ less
than 0.1 µm in their effective gate lengths. If that difference is normally
distributed with µ = 0 and σ = 0.05 µm:

(a) Calculate the process capability (Cp) and the fraction of nonconforming
product when the process is in control.

(b) Suppose the mean of the process shifts and this shift doubles the frac-
tion of nonconforming product. Calculate the sample size needed to
implement a p chart that will detect this shift on the first subsequent
sample with 50% certainty.

(c) Design a 3σ x and R charts that will detect the previous shift with the
same 50% certainty.

6.9. The following values of saturation drain current (ID,sat) were collected from
several test wafers with a sample size of n = 5.

x (mA) R (mA)

1.03 0.04
1.02 0.05
1.04 0.02
1.05 0.11
1.04 0.04
1.06 0.03
1.02 0.07
1.05 0.02
1.06 0.04
1.04 0.03
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(a) Calculate the centerlines and control limits.

(b) Assuming ID,sat to be normally distributed, compute the standard devi-
ation of the process.

(c) Give an estimate of the fraction nonconforming if the specification
limits are 1.03 ± 0.04 mA.

(d) Suggest ways to reduce the fraction of nonconforming product.

6.10. The x and R values for 20 samples of size n = 5 are shown below. The
specification limits of this product are 530–570.

x 549 548 548 551 553 552 550 551 553 556

R 2.5 2.1 2.3 2.9 1.8 1.7 2.0 2.4 2.2 2.8
x 547 545 549 552 550 548 556 546 550 551
R 2.0 3.0 3.1 2.2 2.3 2.1 1.9 1.8 2.1 2.2

(a) Construct a modified control chart with 3σ limits. Assume that if the
true fraction nonconforming is as large as 1%, the process is acceptable.
Is this process satisfactory?

(b) Suppose that if the true fraction nonconforming is as large as 1%, the
modified control chart should detect this out-of-control condition with
probability 0.9. Construct the modified chart and compare it to the
chart obtained in part (a).

(c) Is this process in statistical control?

6.11. The following data represent temperature measurements from a CVD pro-
cess. The target temperature is 1050◦C and the standard deviation is σ =
25◦C. Set up the cusum chart for the mean of this process. Design the
cusum to quickly detect a shift of 1σ in the process mean.

Observation T (◦C) Observation T (◦C)

1 1045 11 1139
2 1055 12 1169
3 1037 13 1151
4 1064 14 1128
5 1095 15 1238
6 1008 16 1125
7 1050 17 1163
8 1087 18 1188
9 1125 19 1146

10 1146 20 1167

6.12. Consider a process with µ0 = 10 and σ = 1. Set up 3σ EWMA control
charts for λ = 0.1, 0.2, and 0.4. Discuss the effect of λ on the behavior of
the control limits.
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6.13. The data below come from a process with two observable quality charac-
teristics. The data are the means of each characteristic, based on a sample
size of n = 25. The nominal values and covariance matrix are

x =
[

55
30

]
S =

[
200 130
130 120

]

Construct the T 2 control chart using these data.

Sample x1 x1

1 58 32
2 60 33
3 50 27
4 54 31
5 63 38
6 53 30
7 42 20
8 55 31
9 46 25

10 50 29
11 49 27
12 57 30
13 58 33
14 75 45
15 55 27
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7

STATISTICAL
EXPERIMENTAL DESIGN

OBJECTIVES

• Provide an overview of statistical experimental design techniques.
• Introduce the concept of analysis of variance (ANOVA).
• Define and describe various types factorial designs.
• Discuss the Taguchi method of experimental design.

INTRODUCTION

Experiments allow investigators to determine the effects of several variables on
a given process or product. A designed experiment is a test or series of tests that
involve purposeful changes to these variables in order to observe the effect of
the changes on that process or product. Statistical experimental design is an effi-
cient approach for systematically varying these controllable process variables and
ultimately determining their impact on process or product quality. This approach
is useful for comparing methods, deducing dependences, and creating models to
predict effects.

Statistical process control and experimental design are closely interrelated.
Both techniques can be used to reduce variability. However, SPC is a passive
approach in which a process is monitored and data are collected, whereas experi-
mental design requires active intervention in performing tests on the process under
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different conditions. Experimental design can also be beneficial in implementing
SPC, since designed experiments may help identify the most influential process
variables, as well as their optimum settings.

Overall, experimental design is a powerful engineering tool for improving a
manufacturing process. Application of experimental design techniques can lead to

• Improved yield
• Reduced variability
• Reduced development time
• Reduced cost

Ultimately, the result is enhanced manufacturability, performance, and product
reliability. This chapter illustrates the use of experimental design methods in
semiconductor manufacturing.

7.1. COMPARING DISTRIBUTIONS

In the method of statistical inference known as hypothesis testing (see Chapter 4),
an investigator must evaluate a result produced by making some experimental
modification of a system. The investigator must determine whether the result
is explainable by mere chance or whether it is due to the effectiveness of the
modification. In order to make this determination, the experimenter must identify
a relevant reference set that represents a characteristic set of outcomes that could
occur if the modification were completely without effect. The actual experimental
outcome can then be compared with this reference set. If the experimental results
are found to be exceptional, the results are considered statistically significant.

Consider the yield data in Table 7.1 obtained from a semiconductor manufac-
turing process in which two batches of 10 wafers each were fabricated using a
standard method (method A) and a modified method (method B). The question to
be answered from the experiment is what evidence (if any) do the data collected
provide that method B is really better than method A?

To answer this question, we examine the average yields for each process.
The modified method (method B) gave an average yield that was 1.30% higher
than the standard method. However, because of the considerable variability in
the individual test results, it might not be correct to immediately conclude that
method B is superior to method A. In fact, it is conceivable that the difference
observed could be due to experimental error, operator error, or even pure chance.

One approach to determining the significance of the differences between
method A and method B is to use an external reference distribution. Suppose in
this instance that additional data were available in the form of 210 past process
records. These 210 past observations, plotted in Figure 7.1, were made using the
standard process, method A. The key question now becomes: How often have
the yield differences between the averages of successive groups of 10 wafers
been at as large as 1.30%? If the answer is “frequently,” we conclude that the
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Table 7.1. Yield data from a hypothetical semiconductor
manufacturing process [1].

Wafer
Method A
Yield (%)

Method B
Yield (%)

1 89.7 84.7
2 81.4 86.1
3 84.5 83.2
4 84.8 91.9
5 87.3 86.3
6 79.7 79.3
7 85.1 86.2
8 81.7 89.1
9 83.7 83.7

10 84.5 88.5
Average 84.24 85.54
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88.0
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82.0

80.0

78.0
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time order

Figure 7.1. Plot of 210 prior observations of method A yield [1].

observed difference can be readily explained by the purely chance variations in
the process. However, if the answer is “rarely,” a better explanation is that the
modification in method B has truly produced an increase in the mean yield.

Figure 7.2 shows the 191 differences between yield averages of adjacent
groups of 10 observations in the database of 210 past process records. These
191 differences were obtained by comparing the averages of wafers 1–10, 2–11,
and so on. They provide a relevant reference set with which the observed dif-
ference of 1.30% may be legitimately compared. Doing so, it is seen that rarely,
in fact, do the differences in the reference set exceed 1.30% (specifically, in
only nine cases). Using statistical terminology, we can say that in relation to this
reference set, the observed difference of 1.30% is statistically significant at the
9/191 = 0.047 level. In other words, less than 5 times in 100 would a difference
as large as 1.30% be found in the reference set. Thus, it is likely that an actual
difference does exist, and method B is truly better than method A.
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Figure 7.2. Reference distribution for historical method A yield data [1].

The external reference distribution technique can be problematic. Suppose
that there is no historical database of yield obtained using method A. In this
case, the proper approach to determine whether the difference between the two
manufacturing processes is significant is a statistical hypothesis test (Section 4.5).
In this case the hypothesis can be represented as

H0: µA = µB

H1: µA �= µB (7.1)

where µA and µB represent the mean yields for the two methods. Since the
variance for this process is not known, the test statistic for this hypothesis is

t0 = (yA − yB)

sp

√
1

nA

+ 1

nB

(7.2)

where yA and yB are the sample means, nA and nB are the number of trials in
each sample (10 each in this case), and

s2
p = (nA − 1)s2

A + (nB − 1)s2
B

nA + nB − 2
(7.3)

We use the pooled estimate of the common variance since although the variance
for the process is unknown, there is no reason to suspect that the application
of method A or method B will produce a different variance. The values of the
sample variances [calculated using Eq. (4.2)] are sA = 2.90 and sB = 3.65. Using
Eqs. (7.3) and (7.2) then gives values of sp = 3.30 and t0 = 0.88, respectively.
Interpolating from Appendix D, we find that the likelihood of computing a t

statistic with n = nA + nB − 2 = 18 degrees of freedom equal to 0.88 is 0.195.
The value 0.195 is the statistical significance of the hypothesis test. This means
that there is only an 19.5% chance that the observed difference between the mean
yields is due to pure chance. In other words, we can be 80.5% confident that
method B is really superior to method A.
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7.2. ANALYSIS OF VARIANCE

The scenario described above is a useful example of how we might use hypothesis
testing to compare two distributions. However, in many cases, we would like to
go even further; it is often important in manufacturing applications to be able
to compare several distributions simultaneously. Moreover, we might also be
interested in determining which process conditions in particular have a signifi-
cant impact on process quality. Analysis of variance (ANOVA) is an excellent
technique for accomplishing these objectives. ANOVA builds on the idea of
hypothesis testing and allows us to compare different sets of process conditions
(i.e., “treatments”), as well as to determine whether a given treatment results in
a statistically significant variation in quality.

The ANOVA procedure is best illustrated by example. Consider the data in
Table 7.2, which represents hypothetical yield data measured for four different
sets of process recipes (labeled A–D). Through the use of ANOVA, we will
determine whether the discrepancies between recipes (i.e., treatments) is truly
greater than the variation of the yield within the individual groups processed
with the same recipe. We assume that the data can be treated as independent
random samples from four normal populations having the same variance and
differing only in their means (if at all).

Let k be the number of treatments (k = 4 in this case). Note that the sam-
ple size (n) for each treatment varies (n1 = 4, n2 = n3 = 6, and n4 = 8). The
treatment means (in %) are y1 = 61, y2 = 66, y3 = 68, and y4 = 61. The total
number of samples (N ) is 24, and the grand average of all 24 samples, which is
sum of all observations divided by the total number of observations, is y = 64%.

7.2.1. Sums of Squares

To perform ANOVA, several key parameters must be computed. These param-
eters, called sums of squares, serve to quantify deviations within and between
different treatments. Let yti represent the ith observation for the t th treatment.

Table 7.2. Hypothetical yield (in %) for four different
process recipes [1].

Recipe A Recipe B Recipe C Recipe D

62 63 68 56
60 67 66 62
63 71 71 60
59 64 67 61

65 68 63
66 68 64

63
59
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The sum of squares within the t th treatment is given by

St =
nt∑

i=1

(yti − yt )
2 (7.4)

where nt is the sample size for the treatment in question and yt is the treatment
mean. The within-treatment sum of squares for all treatments is

SR = S1 + S2 + · · · + Sk =
k∑

t=1

nt∑
i=1

(yti − yt )
2 (7.5)

In order to quantify the deviations of the treatment averages about the grand
average, we use the between-treatment sum of squares, which is given by

ST =
k∑

t=1

nt(yt − y)2 (7.6)

Finally, the total sum of squares for all the data about the grand average is

SD =
k∑

t=1

nt∑
i=1

(yti − y)2 (7.7)

Each sum of squares has an associated number of degrees of freedom required
for its computation. The degrees of freedom for the within-treatment, between-
treatment, and total sums of squares, respectively, are

νR = N − k

νT = k − 1 (7.8)

νD = N − 1

The final quantity needed to carry out analysis of variance is the pooled
estimate of the variance quantified by each sum of squares. This quantity, known
as the mean square, is equal to the ratio of the sum of squares to its associated
number of degrees of freedom. The within-treatment, between-treatment, and
total mean squares are therefore

s2
R = SR

νR

=

k∑
t=1

nt∑
i=1

(yti − yt )
2

N − k

s2
T = ST

νT

=

k∑
t=1

nt(yt − y)2

k − 1
(7.9)

s2
D = SD

νD

=

k∑
t=1

nt∑
i=1

(yti − y)2

N − 1
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For a null hypothesis that there are no differences between the treatment
means, the within-treatment mean square (s2

R) and the between-treatment mean
square (s2

T ) provide two estimates of the true process variance (σ2). For the dataset
in Table 7.2, using Eqs. (7.9), we obtain s2

R = 5.6 and s2
T = 76.0. The fact that the

between-treatment estimate of σ2 is much larger than the within-treatment esti-
mate tends to discredit the null hypothesis. We are thus led to suspect that some
of the between-treatment variation must be caused by real differences in the treat-
ment means. In the following section, we show how the necessary calculations
to draw this conclusion may be conveniently arranged in tabular form.

7.2.2. ANOVA Table

Once the sums of squares and mean squares have been computed, it is customary
to arrange them in a tabular format called and ANOVA table. The general form of
the ANOVA table is depicted in Table 7.3. The ANOVA table that corresponds
to the via diameter data in Table 7.2 is shown in Table 7.4.

The astute reader will note that in both the “sum of squares” and “degrees of
freedom” columns, the values for between and within treatments add up to give
the corresponding total value. This additive property of the sum of squares arises
from the algebraic identity

k∑
t=1

nt∑
i=1

(yti − y)2 =
k∑

t=1

nt(yt − y)2 +
k∑

t=1

nt∑
i=1

(yti − yt )
2 (7.10)

or equivalently, SD = ST + SR .
The complete ANOVA table provides a mechanism for testing the hypothesis

that all of the treatment means are equal. The null hypothesis in this case is thus

H0: µ1 = µ2 = µ3 = µ4

Table 7.3. General format of the ANOVA table.

Source of
Variation

Sum of
Squares

Degrees of
Freedom

Mean
Square F Ratio

Between treatments ST νT = k − 1 s2
T s2

T/s2
R

Within treatments SR νR = N − k s2
R

Total about the grand average SD νD = N − 1 s2
D

Table 7.4. ANOVA table for yield data.

Source of Variation
Sum of
Squares

Degrees of
Freedom

Mean
Square F Ratio

Between treatments ST = 228 νT = 3 s2
T = 76.0 s2

T /s2
R = 13.6

Within treatments SR = 112 νR = 20 s2
R = 5.6

Total about the grand SD = 340 νD = 23 s2
D = 14.8

average
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If the null hypothesis were true, the ratio s2
T /s2

R would follow the F distribution
with nT and nR degrees of freedom. According to Appendix E, the significance
level for the observed F ratio of 13.6 with 3 and 30 degrees of freedom is
0.000046. This means that there is only a 0.0046% chance that the means are
in fact equal, and the null hypothesis is discredited. In other words, we can be
99.9954% sure that real differences exist among the four different processes used
in our example.

An alternative format for the ANOVA table exists. The quantity SD, the total
sum of squares about the grand average, can also be written as

SD =
k∑

t=1

nt∑
i=1

y2
t i − Ny2 (7.11)

In this expression, the latter term (Ny2) is the sum of squares due to the grand
average, which is often called the correction factor for the average. It is denoted

by SA (i.e., SA = Ny2). The first term in the expression
(∑k

t=1

∑nt

i=1 y2
t i

)
is called

the total sum of squares, and it is denoted by S. Combining Eqs. (7.10) and (7.11),
we can thus decompose the sum of squares of the original N observations into
three additive terms:

k∑
t=1

nt∑
i=1

y2
t i = Ny2 +

k∑
t=1

nt(yt − y)2 +
k∑

t=1

nt∑
i=1

(yti − yt )
2 (7.12)

or equivalently, S = SA + ST + SR . The associated degrees of freedom are

N = 1 + (k − 1) + (N − k) (7.13)

This representation leads to the “full” ANOVA table (Table 7.5), which specifi-
cally includes the contributions from the grand average. However, this contribu-
tion is of limited practical interest, so the ANOVA table of the form shown in
Table 7.3 is usually preferred.

7.2.2.1. Geometric Interpretation
Equation (7.12) can be further explained by breaking up the yield data from
Table 7.2 in the manner shown in Table 7.6. This table shows that each individual
observation is composed of the following components: the grand average (y );
the between-treatment deviation (yt − y ); and the within-treatment deviation,
or residual (yti − yt ). Each of the four entries in Table 7.6 can be considered a

Table 7.5. Full ANOVA table.

Source of Variation Sum of Squares Degrees of Freedom Mean Square

Average SA νA = 1 s2
A = SA/νA

Between treatments ST νT = k − 1 s2
T = ST /νT

Within treatments SR νR = N − k s2
R = SR/νR

Total S N
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Table 7.6. Arithmetic decomposition of yield data in Table 7.2 [1].

Observations Grand Average
Treatment
Deviations Residuals

yti y yt − y yti − yt


62 63 68 56
60 67 66 62
63 71 71 60
59 64 67 61

65 68 63
66 68 64

63
59




=




64 64 64 64
64 64 64 64
64 64 64 64
64 64 64 64

64 64 64
64 64 64

64
64




+




−3 2 4 −3
−3 2 4 −3
−3 2 4 −3
−3 2 4 −3

2 4 −3
2 4 −3

−3
−3




+




1 −3 0 −5
−1 1 −2 1

2 5 3 −1
−2 −2 −1 0

−1 0 2
0 0 3

2
−2




Vector Y = A + T + R
Sum of

squares
98,644 = 93,304 + 228 + 112

Degrees of
freedom

24 = 1 + 3 + 20

vector. Let Y represent the vector of observations, A represent the grand average,
T represent the between-treatment deviations, and R represent the residuals.
Using the rules of vector addition, we can write

Y = A + T + R (7.14)

The sums of squares in the ANOVA table, therefore, are merely the squares of
the individual vector elements summed. In other words, the sums of squares are
the squared lengths of the vectors Y, A, T, and R.

The geometry of this example is illustrated graphically in Figures 7.3–7.5.
In Figure 7.3, the vector Y is resolved into two components: A, which corre-
sponds to the grand average; and D, whose elements are the deviations from the
grand average. The vector D is orthogonal to A since

∑N
j=1 y(yj − y) = 0. In

Figure 7.4, the vector D is likewise resolved into two components: T, associ-
ated with the treatment deviations; and R, which corresponds to the residuals.
Finally, in Figure 7.5, the observation vector Y is resolved into its three orthog-
onal components, as indicated in Eq. (7.14). The fact that these three vectors are
mutually orthogonal is easily confirmed by noting that their inner products are
equal to zero.

A

D

Y

Figure 7.3. Geometric representation of the decomposition of Y in terms of A and D [1].
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D

T

R

D

T

R

Figure 7.4. Geometric representation of the decomposition of D in terms of T and R [1].

A T

R

D

Y

Ŷ

Figure 7.5. Geometric representation of ANOVA in terms of an orthogonal decomposition of Y
in terms of A, T, and R [1].

The additive relationship S = SA + ST + SR arises from the Pythagorean
theorem, which relates the square of the length of the “hypotenuse” Y to the sum
of squares of the lengths of the three other sides: A, T, and R. The estimated
values in the ANOVA technique are the elements of the vector �Y, where

�Y = A + T (7.15)

As mentioned previously, the ANOVA technique is frequently applied after
“elimination” of the grand average. Table 7.7 shows this approach to the analysis.
The vector D represents the deviations from the grand average (yti − y) after A
has been subtracted from Y.

7.2.2.2. ANOVA Diagnostics
The ANOVA technique is appropriate for a specific implied model that links the
experimental observations and the various decompositions with the underlying
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Table 7.7. Arithmetic decomposition of deviations from the grand average [1].

Deviations from
Grand Average

Treatment
Deviations Residuals

yti − y yt − y yti − yt


−2 −1 4 −8
−4 3 2 −2
−1 7 7 −4
−5 0 3 −3

1 4 −1
2 4 0

−1
−5




=




−3 2 4 −3
−3 2 4 −3
−3 2 4 −3
−3 2 4 −3

2 4 −3
2 4 −3

−3
−3




+




1 −3 0 −5
−1 1 −2 1

2 5 3 −1
−2 −2 −1 0

−1 0 2
0 0 3

2
−2




Vector D = Y − A = T + R
Sum of squares 340 = 228 + 112
Degrees of

freedom
23 = 3 + 20

parameters of the sampled population. Specifically, if the data are uncorrelated
random samples from normal populations having the same variance, but possibly
different means, then the implied model is

yti = ηt + εt i (7.16)

where ηt is the mean for the t th treatment, and the errors εt i ∼ N (0,σ2). If this
normality assumption for the errors is appropriate, then all the relevant infor-
mation about η1, η2, . . . , ηk and σ2 is supplied by the k treatment averages
(y1, y2, . . . , yk) and s2

R , respectively. If the assumption is exact, then after all of
these statistics have been calculated, no further relevant information remains in
the original data. Under these conditions, the residuals and original observations
can be ignored, and interpretation of the experimental results rests solely with
the interpretation of the statistics.

However, in practice, it is unwise to proceed in this manner without further
checks. The data may in fact contain information not accounted for by the model
in Eq. (7.16) and therefore not revealed by the ANOVA methodology. Discrepan-
cies of this type may be detected by studying the residuals (yti − ŷti ), which are
the elements of the vector R. These residuals are the quantities that remain after
the systematic contributions from the treatment averages have been removed.
When the assumptions regarding the adequacy of the model in Eq. (7.16) are
true, these residuals should vary randomly. If, however, the residuals display
unexplained systematic tendencies, then the model becomes suspicious.

One type of residual inspection that must be carried out is plotting an overall
dot diagram. The dot diagram for the yield data in Table 7.2 is shown in
Figure 7.6. If the normality assumption for the model errors is true, then this
diagram should essentially have the appearance of a sample from a normal
distribution with mean zero. (Note that considerable fluctuation in appearance
will occur if the number of observations is too small.) A common discrepancy
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revealed by an abnormal dot diagram occurs when one or more of the residuals is
much larger or smaller than the others. The plot in Figure 7.6 gives no indication
of such an abnormality.

Abnormal residual behavior may also be associated with a particular treatment.
To detect problems of this sort, individual dot diagrams for each treatment are
prepared, as shown in Figure 7.7. Again, these plots should appear as samples
from a normal distribution. The plots in Figure 7.7 do not suggest any anomalous
behavior.

If the model in Eq. (7.16) is appropriate, then the residuals should also be
unrelated to the levels of any known variable. In particular, they should be unre-
lated to the level of the response itself. This can be investigated by plotting
the residuals versus the estimated response ŷti , as shown in Figure 7.8. This
plot should also appear random. If the variance increased with the value of the
response, then this plot would have a “funnel-like” appearance. No such behavior
is apparent in Figure 7.8.

Finally, sometimes a process may drift or the skill of the experimenter may
change with time. Tendencies such as this are revealed by plotting the residuals

Figure 7.6. Overall dot diagram for all residuals [1].

Figure 7.7. Plots of residuals for each treatment [1].
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Figure 7.8. Plot of residuals versus estimated values [1].

Figure 7.9. Plot of residuals versus time [1].

against their time order, as shown in Figure 7.9. Since the plot appears random in
this case, there seems to be no reason to suspect any such effect for this dataset.

7.2.3. Randomized Block Experiments

We now extend the comparison of k treatments using ANOVA to examining
experimental designs with blocking. Blocks might represent, for example, differ-
ent batches of manufactured products (such as semiconductor wafers) or different
contiguous periods of time. In blocked designs, the goal is to quantify both the
effects of the treatments and the effect of the blocking arrangement.
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As an example of a blocked experiment, consider the yield data in Table 7.8
obtained from a manufacturing process in which five batches of silicon wafers
were fabricated using various methods (labeled A–D). In this case, there are
k = 4 treatments and n = 5 blocks. A randomized block design of this kind serves
to eliminate variations between blocks (i.e., the batches) from the comparison of
treatments. It also provides a broader inductive basis than an experiment with
only a single batch.

Analysis of data of this type is undertaken using the ANOVA table with the
format shown in Table 7.9. In this table, y is the grand average, yi are the block
averages, and yt are the treatment averages. The ANOVA table computed for the
yield data in Table 7.8 is Table 7.10.

We are now ready to test the hypothesis that all the treatment means are equal
(i.e., H0: µA = µB = µC = µD). If the null hypothesis were true, the ratio s2

T /s2
R

would follow the F distribution with νT and νR degrees of freedom. According to
Appendix E, the significance level for the observed F ratio of 1.24 with 3 and 12
degrees of freedom is 0.33. This means that there is a 33% chance that the means

Table 7.8. Yield data from a hypothetical semiconductor manufacturing process [1].

Block
method A
Yield (%)

Method B
Yield (%)

Method C
Yield (%)

Method D
Yield (%) Block Average

Batch 1 89 88 97 94 92
Batch 2 84 77 92 79 83
Batch 3 81 87 87 85 85
Batch 4 87 92 89 84 88
Batch 5 79 81 80 88 82
Treatment Average 84 85 89 86 y = 86

Table 7.9. Format for two-way ANOVA table with blocking.

Source of
Variation Sum of Squares

Degrees
of Freedom

Mean
Square F Ratio

Average SA = nky2 νA = 1 s2
A = SA/νA

Between
blocks

SB = k

n∑
i=1

(yi − y)2 νB = n − 1 s2
B = SB/νB s2

B/s2
R

Between
treatments

ST = n

k∑
t=1

(yt − y)2 νT = k − 1 s2
T = ST /νT s2

T /s2
R

Residuals SR =
k∑

t=1

n∑
i=1

νR = (n − 1)(k − 1) s2
R = SR/νR

× (yti − yi − yt + y)2

Total S =
k∑

t=1

n∑
i=1

y2
t i ν = nk
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Table 7.10. Two-way ANOVA table for yield data.

Source of
Variation Sum of Squares

Degrees of
Freedom Mean Square F Ratio

Average SA = 147, 920 νA = 1 s2
A = 147,920

Between blocks SB = 264 νB = 4 s2
B = 66.0 3.51

Between treatments ST = 70 νT = 3 s2
T = 23.3 1.24

Residuals SR = 226 νR = 12 s2
R = 18.8

Total S = 148, 480 ν = 20

are in fact equal. In other words, we can be only 67% sure that real differences
exist among the four different methods used to manufacture the wafers in this
example. Thus, the four methods have not been conclusively demonstrated to
give different yields.

The blocking arrangement of this experiment also allows us to test the hypoth-
esis that the block means are equal. If this null hypothesis were true, the ratio
s2
B/s2

R would follow the F distribution with νB and νR degrees of freedom.
According to Appendix E, the significance level for the observed F ratio of 3.51
with 4 and 12 degrees of freedom is 0.04. This means that there is only a 4%
chance that the means are in fact equal. Thus, there exists a 96% chance that
there are in fact differences between the batches.

7.2.3.1. Mathematical Model
The mathematical model implicit in randomized block experiments is

yti = η + βi + τt + εt i (7.17)

where η is the general mean, βi is the block effect, τt is the treatment effect, and
εt i is the experimental error. It is assumed that εt i ∼ N(0, σ2). Associated with
this additive model is the following decomposition of the observations:

yti = y + (yi − y) + (yt − y) + (yti − yi − yt + y) (7.18)

The last term, (yti − yi − yt + y), is known as the residual because it represents
what remains after the grand average, block effects, and treatment effects have all
been accounted for. The model is called additive since, for example, if treatment
τ3 caused an increase of five units in the response and the influence of block β4

increased the response by seven units, then the cumulative increase caused by
both acting together would be 5 + 7 = 12 units.

In vector notation, the decomposition in Eq. (7.18) can be written as follows:

Y = A + B + T + R (7.19)

In this equation, each of the symbols represents a vector containing N = nk

elements of the corresponding two-way ANOVA table. The sums of squares in
the ANOVA table are once again the squares of the individual vector elements
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Figure 7.10. Vector decomposition for randomized block ANOVA [1].

summed. In other words, the sums of squares are the squared lengths of the
vectors Y, A, B, T, and R, or

S = SA + SB + ST + SR (7.20)

The vectors A, B, T, and R, are all mutually perpendicular, as illustrated in
Figure 7.10. This figure also illustrates the relationship

D = B + T + R (7.21)

where D = Y − A is a vector of deviations of the data from the grand average.
Since B, T, and R are mutually orthogonal, we also have

SD = SB + ST + SR (7.22)

In other words, the sum of squares of the deviations from the grand average equals
the sum of squares for the blocks plus the sum of squares for the treatments plus
the sum of squares of the residuals.

7.2.3.2. Diagnostic Checking
Any potential inadequacies in the model proposed in Eq. (7.17) and analyzed
using the randomized block ANOVA technique must be investigated by diagnostic
methods similar to those discussed in Section 7.2.2.2. The residual plots for the
model of the yield data in Table 7.8 are shown in Figure 7.11. The plots in (a) and
(b) of this figure reveal nothing of special concern, but the plot of residuals versus
predicted values in (c) shows a possible problem in its “funnel” shape, suggesting
a possible relationship between the mean and variance. Such discrepancies can
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Figure 7.11. Plots of residuals, yield example: (a) overall plot; (b) plots by block and treatment;
(c) yti − ŷti versus ŷti [1].

also be indicative of nonadditivity between the block and treatment effects. Such
discrepancies can sometimes be eliminated using a suitable transformation of
the response variable. Data transformations are discussed in greater detail in
Section 7.2.4.
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7.2.4. Two-Way Designs

Experimental designs with two sets of treatments (or factors) are referred to as
two-way designs, and their corresponding analysis is accomplished by two-way
ANOVA. As an example, consider the data in Table 7.11, which corresponds to
the film uniformity (in %) achieved in a CVD experiment. Assume that treatments
A, B, C, and D represent different gas compositions, and treatments 1, 2, and
3 represent different temperatures. This arrangement, which has been replicated
four times, is also known as a 3 × 4 factorial design (see Section 7.3). There
is no blocking. Both factors are of equal interest, and there is a possibility that
these factors interact.

7.2.4.1. Analysis
Let ytij be the nonuniformity of the j th wafer deposited at the ith temperature
using the t th gas composition. The corresponding model and estimate for the
nonuniformity response are given respectively by

ytij = ηt i + εt i (7.23)

= yti + (ytij − yti) (7.24)

If the temperature and gas composition effects do not behave additively, then

ηt i = η + τt + βi + ωt i (7.25)

where τt is the incremental nonuniformity associated with the t th gas com-
position, and βi is the increment associated with the ith temperature. Their
non-additive behavior requires an additional term, ωt i , which represents the inter-
action effect between the two factors. The τt and βi terms are known as the main
effects. The estimate corresponding to Eq. (7.25) is given by

yti = y + (yt − y) + (yi − y) + (yti − yt − yi + y) (7.26)

Table 7.11. Nonuniformity (in %) of films grown by
CVD [1].

Treatments A B C D

1 0.31 0.82 0.43 0.45
0.45 1.10 0.45 0.71
0.46 0.88 0.63 0.66
0.43 0.72 0.76 0.62

2 0.36 0.92 0.44 0.56
0.29 0.61 0.35 1.02
0.40 0.49 0.31 0.71
0.23 1.24 0.40 0.38

3 0.22 0.30 0.23 0.30
0.21 0.37 0.25 0.36
0.18 0.38 0.24 0.31
0.23 0.29 0.22 0.33
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The arithmetic for carrying out the data analysis closely parallels that used for
the randomized block design. Group averages (yti) replace the basic data, and an
interaction sum of squares replaces the residual sum of squares in the randomized
block analysis. In general, for n levels of some factor P (n = 3 temperatures in
this example), k levels of another factor T (k = 4 gas compositions), and m

replications (m = 4 wafers per group), the following sums of squares may be
defined:

SP = mk
∑

i

(yi − y)2 (7.27)

ST = mn
∑

t

(yt − y)2 (7.28)

SI = m
∑

t

∑
i

(yti − yt − yi + y)2 (7.29)

Se =
∑

t

∑
i

∑
j

(ytij − yti)
2 (7.30)

S =
∑

t

∑
i

∑
j

(ytij − y)2 (7.31)

Given these parameters, the ANOVA table for the nonuniformity data in
Table 7.11 is shown in Table 7.12.

7.2.4.2. Data Transformation
If the model described by Eq. (7.23) is accurate and the model errors are inde-
pendently and normally distributed with a constant variance [i.e., εt i ∼ N(0, σ2)],
then the significance of the factors can be evaluated using the F distribution. In
the CVD example, examination of Table 7.12 reveals that the effects of both the
temperature and the gas composition are highly significant. For example, in the
case of temperature, an F ratio of 23.27 for an F distribution with νp = 2 and
νe = 36 degrees of freedom has less than a 0.001 significance level. This analy-
sis of variance also indicates some suggestion of interaction between temperature
and gas composition. The F ratio of 1.88 for an F distribution with νI = 6 and
νe = 36 degrees of freedom has an approximate 0.01 significance level.

Table 7.12. ANOVA table for two-way factorial experiment.

Source of
Variation

Sum of
Squares
(× 1000)

Degrees of
Freedom Mean Square F Ratio

Temperatures SP = 1033.0 νP = n − 1 = 2 s2
P = SP /νP = 516.5 s2

P /s2
e = 23.27

Gas compositions ST = 922.4 νT = k − 1 = 3 s2
T = ST /νT = 307.5 s2

T /s2
e = 13.85

Interaction SI = 250.1 νI = (n − 1)(k − 1) s2
I = SI /νI = 41.7 s2

I /s
2
e = 1.88

= 6
Error Se = 800.7 νe = nk(m − 1) = 36 s2

e = Se/νe = 22.2
Total S = 3006.2 ν = nkm − 1 = 47
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Figure 7.12. Residual diagnostics, CVD experiment: (a) plot of ytij − yti versus yti; (b) plot of
yti − ŷti versus ŷti [1].

Diagnostic checking of the residuals for these data, however, leads to suspicion
that this model is inadequate. Figure 7.12 shows a plot of the residuals versus
yti . The funnel shape in Figure 7.12a suggests that the standard deviation of
the data is not constant as previously assumed, but instead increases with the
mean. Furthermore, ignoring the interaction term by letting ŷti = yt + yi − y, and
plotting yti − ŷti against ŷti reveals a curvilinear relationship, which contradicts
the linearity assumption (Figure 7.12b).

In cases such as this, when σy is actually a function of the mean (η), it may
be possible to find a convenient data transformation Y = f (y) that does have a
constant variance. If so, the data are said to possess a transformable nonadditivity.
For example, suppose that σy is proportional to some power of η, or

σy ∝ ηy (7.32)

and the following power transformation of the data is made:

Y = yλ (7.33)

Then
σy = θσy ∝ θηα (7.34)

where θ is the gradient of the graph of Y versus y (see Figure 7.13). It can be
shown that if Eq. (7.33) is true, then θ ∝ ηλ−1. Thus

σY ∝ ηλ−1ηα = ηλ+α−1 (7.35)

Therefore, Y is chosen so that σy does not depend on η if λ = 1 − α. Some
values of α with appropriate variance stabilizing transformations are presented
in Table 7.13.
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Figure 7.13. Data transformation from y to Y = yλ[1].

Table 7.13. Variance stabilizing data transformations when σy∝ηα [1].

Dependence of
σy on η α λ = 1 − α

Variance Stabilizing
Transformation

σ ∝ η2 2 −1 Reciprocal

σ ∝ η
3
2 3

2 − 1
2 Reciprocal square root

σ ∝ η 1 0 Log

σ ∝ η
1
2 1

2
1
2 Square root

σ ∝ constant 0 1 None

In order to identify an appropriate transformation for the data in the CVD
experiment, α must first be determined empirically. Since σy ∝ ηα, it is also true
that log σy = constant + α log η. Thus, if we plot σy versus log η, we obtain a
straight line with a slope of α. Although σy and η are not known in practice, they
may be estimated using s and y, respectively (where s is the sample standard
deviation of the data). Carrying out this procedure for the CVD data yields a
slope of α ∼= 2. From Table 7.13, this implies that a reciprocal transformation
is appropriate in this case. We therefore convert the entire dataset in Table 7.11
into reciprocals and repeat the analysis of variance.



FACTORIAL DESIGNS 249

Table 7.14. ANOVA for transformed and untransformed data, CVD experiment [1].

Source of
Variation

Untransformed
Degrees of
Freedom

Untransformed
Mean Square

(× 1000)

Transformed
(Y = y−1) Degrees

of Freedom

Transformed
(Y = y−1) Mean
Square (× 1000)

Temperatures 2 516.5 2 1743.9
Gas compositions 3 307.5 3 680.5
Interaction 6 41.7 6 26.2
Error 36 22.2 35 24.7

A comparison of the ANOVA for the untransformed and transformed datasets
is provided in Table 7.14. The fact that the data themselves have been used to
choose the transformation is accounted for by reducing the number of degrees
of freedom in the mean square of the error (from 36 to 35) [2]. The effects of
the transformation are noteworthy. The mean squares for the transformed data
are now much larger relative to the error, indicating an increase in sensitivity
of the experiment. In addition, the interaction mean square, which previously
gave a slight indication of statistical significance, is now closer in size to the
error, contradicting that assertion. Verification of the improvement in the residual
diagnostics for the transformed data is left as an exercise.

7.3. FACTORIAL DESIGNS

Experimental design is essentially an organized method of conducting experi-
ments in order to extract the maximum amount of information from a limited
number of experiments. Experimental design techniques are employed in semi-
conductor manufacturing applications to systematically and efficiently explore
the effects of a set of input variables, or factors (such as processing tempera-
ture), on responses (such as yield). The unifying feature in statistically designed
experiments is that all factors are varied simultaneously, as opposed to the more
traditional “one variable at a time” technique. A properly designed experiment
can minimize the number of experimental runs that would otherwise be required
if this approach or random sampling was used.

Factorial experimental designs are of great practical importance for manu-
facturing applications. To perform a factorial experiment, an investigator selects
a fixed number of levels for each of a number of variables (factors) and runs
experiments at all possible combinations of the levels. If there are i levels for the
first variable, j levels for the second, . . . , and k levels for the kth, the complete
set of i × j × · · · × k experimental trials is called an i × j × · · · × k factorial
design. As mentioned previously, the data presented in Table 7.11 represent a
3 × 4 factorial design. In general, an l × m × n design requires lmn runs. For
example, a 2 × 3 × 4 design requires 24 runs.

Two of the most important issues in factorial experimental designs are choos-
ing the set of factors to be varied in the experiment and specifying the ranges
over which variation will take place. The choice of the number of factors directly
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impacts the number of experimental runs (and therefore the overall cost of the
experiment). The most common approach in factorial designs is the two-level
factorial, which is described in Section 7.3.1.

7.3.1. Two-Level Factorials

The ranges of the process variables investigated in factorial experiments can be
discretized into minimum, maximum, and “center” levels. In a two-level factorial
design, the minimum and maximum levels of each factor (normalized to take on
values −1 and +1, respectively) are used together in every possible combination.
Thus, a full two-level factorial experiment with n factors requires 2n experimental
runs. The various factor level combinations of a three-factor experiment can be
represented pictorially as the vertices of a cube, as shown in Figure 7.14.

Two-level factorial designs are important for several reasons. First, although
they require relatively few trials per factor, they allow an experimenter to identify
major trends and promising directions for future experimentation. These designs
are also easily augmented to form more advanced designs (see Section 7.3.4).
Furthermore, two-level factorials form the basis for two-level fractional factorial
designs (see Section 7.3.2), which are useful for screening large numbers of
factors at an early stage of experimentation. Finally, analysis of these designs
facilitates the systematic analysis of the impact of interactions between factors.
Such interactions can be obscured if the traditional “change one variable at a time”
approach to experimentation, in which factors are varied individually while the
remaining factors are held constant, is used. The traditional approach assumes
that all of the factors act on the response additively, which is often not the case
in complex processes. In addition, the factorial approach is more economical,
since a n-factor traditional experiment requires a n-fold increase in the number
of trials as compared to a 2n factorial experiment.

(−1,−1,1)

(−1,1,−1)

(1,1,−1)

(1,−1,−1)(−1,−1,−1)

(−1,1,1) (1,1,1)

Figure 7.14. Factor combinations for a three-factor experiment represented as vertices of
a cube.
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7.3.1.1. Main Effects
To illustrate the use of two-level factorials, Table 7.15 shows a 23 factorial
experiment for another CVD process. The three factors are temperature (T ),
pressure (P ), and gas flowrate (F ). The response being measured is the deposi-
tion rate (D) in angstroms per minute (Å/min). The highest and lowest levels of
each factor are represented by the “+” and “−” signs, respectively. The display
of levels depicted in the first three columns of this table is called a design matrix.

The relevant issue is what we can determine from this factorial design. For
example, what do the data collected tell us about the effect of pressure on depo-
sition rate? The effect of any single variable on the response is called a main
effect. The method used to compute such a main effect is to find the difference
between the average deposition rate when the pressure is high (i.e., runs 2, 4,
6, 8) and the average deposition rate when the pressure is low (runs 1, 3, 5, 7).
Mathematically, this is expressed as

P = dp+ − dp− = 1
4 [(d2 + d4 + d6 + d8) − (d1 + d3 + d5 + d7)] = 40.86

(7.36)

where P is the main effect for pressure, dp+ is the average deposition rate when
the pressure is high, and dp− is the average deposition rate when the pressure is
low. The manner in which we interpret this result is that the average effect of
increasing pressure from its lowest to its highest level is to increase the deposition
rate by 40.86 Å/min. The other main effects for temperature and flowrate are
computed in a similar manner. In general, the main effect for each variable in a
two-level factorial experiment is the difference between the two averages of the
response (y), or

(Main effect) = y+ − y− (7.37)

7.3.1.2. Interaction Effects
We might also be interested in quantifying how two or more factors interact.
For example, suppose that the pressure effect is much greater at high temper-
atures than it is at low temperatures. A measure of this interaction is provided
by the difference between the average pressure effect with temperature high
and the average pressure effect with temperature low. By convention, half of

Table 7.15. 2-Level Factorial CVD Experiment.

Run P T F D (Å/min)

1 − − − d1 = 94.8
2 + − − d2 = 110.96
3 − + − d3 = 214.12
4 + + − d4 = 255.82
5 − − + d5 = 94.14
6 + − + d6 = 145.92
7 − + + d7 = 286.71
8 + + + d8 = 340.52
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this difference is called the pressure by temperature interaction, or symbolically,
the P × T interaction. This interaction may also be thought of as one-half the
difference in the average temperature effects at the two levels of pressure. Math-
ematically, this is

P × T = dPT + − dPT − = 1
4 [(d1 + d4 + d5 + d8) − (d2 + d3 + d6 + d7)] = 6.89

(7.38)

The P × F and T × F interactions are computed in a similar fashion. Just as
main effects can be viewed as a contrast between observations on faces of a
cube like the one in Figure 7.14 (see Figure 7.15a), an interaction is a contrast
between results on two diagonal planes (Figure 7.15b).

Finally, we might also be interested in the interaction of all three factors,
denoted as the pressure by temperature by flowrate or the P × T × F interaction.
This interaction defines the average difference between any two-factor interaction
at the high and low levels of the third factor. It is given by

P × T × F = dPTF+ − dPTF− = −5.88 (7.39)

This interaction is depicted graphically in Figure 7.15c. It is important to note
that the main effect of any factor can be individually interpreted only if there is
no evidence that the factor interacts with other factors.

7.3.1.3. Standard Error
When valid run replicates are made under a given set of experimental conditions,
the variation between associated observations can be used to estimate the standard
deviation of a single observation, and hence the standard deviation (or standard
error) of the effects. A comparison of the size of an effect to its standard error
allows one to determine the significance of the effect relative to experimental error
or noise. In other words, an effect that is much larger than its standard error (in
an absolute sense) is more likely to be significant, as opposed to an effect that
is less than or equal to its standard error. The notion of “validity” in the context
is usually accomplished by randomization of the run order. Randomization helps
ensure that the variation between runs made at the same experimental conditions
reflects the total variability that can be ascribed to runs made under different
experimental conditions.

If there are r sets of experimental conditions replicated, and the ni replicate
runs made at the ith set provide an estimate s2

i of the true variance (σ2) having
νi = nn − 1 degrees of freedom, then the pooled estimate of the run variance is

s2 = ν1s
2
1 + ν2s

2
2 + · · · + νr s

2
r

ν1 + ν2 + · · · + νr

(7.40)

with ν = ν1 + ν2 + · · · + νr degrees of freedom. If there are only ni = 2 repli-
cates at each of the r sets of conditions, then the formula for the ith variance
reduces to s2

i = d2
i /2 with νi = 1, where di is the difference between the duplicate

observations at the ith set of conditions. From (7.40), this implies s2 = ∑
d2

i /2r .
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Figure 7.15. Geometric representation of contrasts corresponding to main effects (a) and two-
(b) and three-factor (c) interactions [1].

Since each main effect and interaction in a two-level factorial experiment are
statistics of the form = y+ − y−a, the overall variance of each effect (assuming
independent errors) is given by

V (effect) = V (y+ − y−) = 4

N
σ2 (7.41)

where N is the total number of runs made in conducting the factorial design
or replicated factorial design and σ2 is estimated using s2. The standard error
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may be computed by taking the square root of V (effect). Equation (7.41) implies
that conducting larger numbers of experiments can reduce the variance in our
estimates of the effects.

7.3.1.4. Blocking
The term “blocking” refers to a systematic methodology used to eliminate the
effects of parameters that the experimenter cannot control. As an example, con-
sider once again the 23 factorial design used in the CVD experiment discussed
in Section 7.3.1.1. Suppose that the CVD reactor needed to be cleaned every
four runs. This means that each group of four runs occurs under a different set
of experimental conditions. Table 7.16 shows how the 23 factorial design can be
arranged in two blocks of four runs to neutralize the effect of reactor cleaning.

The design is blocked in this way by placing all runs in which the “product”
of columns P , T , and F is minus in block 1, and all other runs are placed in
block 2. This arrangement eliminates the spurious effect of cleaning since if the
deposition rate of all the runs in block 2 were higher by some amount �d than
they would have been if they had been performed in block 1, then no matter
what the value of �d is, it will cancel out in the calculation of effects P , T , F ,
PT, PF, and TF.

Note that a tradeoff in the information that can be derived from this experiment
has occurred under this blocking arrangement. The three-factor interaction effect
PTF has now been confounded (i.e., “confused”) with the block effect. Therefore,
using this blocking scheme, we are now unable to independently estimate this
interaction. However, it is usually assumed that higher-order interactions such
as this can be neglected. In exchange, this design ensures that main effects and
two-factor interactions can be more precisely measured than would be the case
in the absence of blocking.

It is common practice for such a design to assign a numerical symbol to each
column. In other words, P = 1, T = 2, and F = 3. Using this terminology, we
can assign the block variable the numerical identifier 4. Then we can think of the
experiment as having four variables, the latter of which does not interact with
the other three. If the new variable is produced by having its plus and minus
signs correspond to the signs of the 123 interaction, then the blocking is said to
be generated by the relationship 4 = 123.

Table 7.16. A 23 factorial design in blocks of size 2.

Run P T F PT PF TF PTF Block

1 − − − + + + − 1
2 + − − − − + + 2
3 − + − − + − + 2
4 + + − + − − − 1
5 − − + + − − + 2
6 + − + − + − − 1
7 − + + − − + − 1
8 + + + + + + + 2
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Table 7.17. Trial blocking scheme for 23 CVD experiment
for blocks of size 2.

4 = 123 5 = 23 Block 45

− + 2 −
+ + 4 +
+ − 3 −
− − 1 +
+ − 3 −
− − 1 +
− + 2 −
+ + 4 +

Suppose instead in the 23 factorial CVD experiment that the reactor had to be
cleaned every two runs. This would require four blocks of two runs, rather than
two blocks of four, which means that two block generators are also required.
Suppose that we initially selected the block generators 4 = 123 and 5 = 23. The
resulting design is shown in Table 7.17. As a consequence of this arrangement,
the PTF and TF effects are clearly confounded. However, there is an additional
unintended consequence as well. Note in Table 7.17 that the column that repre-
sents the product of the two block generators is identical to the column for the P

main effect! This means that this blocking scheme prevents us from identifying
this main effect, which is clearly unacceptable.

Fortunately, there is a simple method to identify confounding patterns and
evaluate the consequences of any proposed blocking scheme so that situations
like this can be avoided. Let I be a column consisting entirely of plus signs.
Thus, we can write

I = 11 = 22 = 33 = · · · etc. (7.42)

where 11, 22, and 33 represent the product of the elements in columns 1, 2,
and 3, respectively, with themselves. The effect of multiplying the elements of
any column with I is to leave those elements unchanged. Now in the blocking
arrangement just considered, the product of the block generators is

45 = 123 × 23 = 12233 = 1II = 1 (7.43)

which indicates that 45 is identical to column 1, thereby clarifying the confound-
ing inherent in this scheme.

This suggests a better blocking scheme to achieve four blocks of size two
in this experiment. If we let 4 = 12 and 5 = 13, the PT and PF interactions
are clearly confounded. Also, since 45 = 12 × 13 = 1123 = I23 = 23, the TF
interaction is also confounded. However, this new blocking arrangement has the
advantage of not confounding any main effect, which is much more desirable
than the previous scheme.
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7.3.2. Fractional Factorials

A major disadvantage of the two-level factorial design is that the number of
experimental runs increases exponentially with the number of factors. To alleviate
this concern, fractional factorial designs are often constructed by systematically
eliminating some of the runs in a full factorial design. For example, a half frac-
tional design with n factors requires only 2n−1 runs. Full or fractional two-level
factorial designs can be used to estimate the main effects of individual factors
as well as the interaction effects between factors. However, they cannot be used
to estimate quadratic or higher-order effects. This is not a serious shortcoming,
since higher order effects and interactions tend to be smaller than low-order
effects (main effects tend to be larger than two-factor interactions, which tend
to be larger than three-factor interactions, etc.). Ignoring high-order effects is
conceptually similar to ignoring higher-order terms in a Taylor series expansion.

7.3.2.1. Construction of Fractional Factorials
To illustrate the use of fractional factorial designs, let n = 5 and consider a 25

factorial design. The full factorial implementation of this design would require
32 experimental runs. However, a 25−1 fractional factorial design requires only
16 runs. This 25−1 design is generated by first writing the design matrix for a
24 full factorial design in standard order. Then plus and minus signs in the four
columns of the 24 design matrix are each “multiplied” together to form a fifth
column (i.e., 5 = 1234).

However, just as in the case of blocking, some information is lost in this frac-
tional factorial arrangement. A 25−1 design allows the estimation of 16 quantities:
the mean, the 5 main effects, and the 10 two-factor interactions. The higher-order
effects (the 10 three-factor interactions, 5 four-factor interactions, and single
five-factor interaction) are now confounded with one of the first 16 effects. To
illustrate, consider the 45 and 123 interactions. These yield the identical design
sequences:

45 = − + + − + − − + − + + − + − −+
123 = − + + − + − − + − + + − + − −+

thereby indicating that these two interactions are confounded. If the 16 outputs
of this 25−1 fractional factorial experiment are labeled y1, . . . , y16, then the sym-
bol l45 denotes the linear function of these observations used estimate the 45
interaction, or

l45 = 1
8 (−y1 + y2 + y3 − y4 + y5 − y6 − y7 + y8 − y9 + y10

+ y11 − y12 + y13 − y14 − y15 + y16) (7.44)

The symbol l45 is called a contrast, since it is the difference between two aver-
ages of eight results. Since interactions 45 and 123 are confounded, the contrast
l45 actually estimates the sum of the mean values of their effects, which is
indicated by the notation l45 → 45 + 123. However, if we accept the conven-
tion that higher-order interactions are generally less significant than lower order
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interactions, we would attribute the numerical value of contrast l45 primarily to
the 45 interaction.

Recall that the 25−1 design was constructed by setting 5 = 1234. This relation
is called the generator of the design. Multiplying both sides of the relation by 5,
we obtain

5 × 5 = 1234 × 5 (7.45)

or equivalently, I = 12345. The latter relation is called the defining relation of
the fractional factorial design. The defining relation is the key to determining
the confounding pattern of the design. For example, multiplying the defining
relation on both sides by 1 yields 1 = 2345, which indicates that main effect 1
is confounded with the 4-factor interaction 2345.

Let’s take another look at our CVD experiment. Suppose we only have the
time and/or resources available to perform four deposition experiments, rather
than the eight required for a 23 full factorial design. This calls for a 23−1 fractional
factorial alternative. This new design could be generated by writing the full 22

design for the pressure and temperature variables, and then multiplying those
columns to obtain a third column for flowrate. This procedure is illustrated in
Table 7.18. The only drawback in using this procedure is that since we have
used the PT relation to define column F , we can no longer distinguish between
the effects of the P × T interaction and the F main effect. These effects are
therefore confounded.

7.3.2.2. Resolution
A fractional factorial design of resolution R is one in which no p-factor interac-
tion is confounded with any other effect containing less than R − p factors. The
resolution of a design is denoted by a Roman numeral and appended as a sub-
script. For example, the 25−1 fractional factorial discussed in the previous section
is called a resolution V design, and is denoted as 25−1

V . In this case, main effects
are confounded with four-factor interactions, and two-factor interactions are con-
founded with three-factor interactions. In general, the resolution of a two-level
fractional factorial design is just the length of the defining relation.

7.3.3. Analyzing Factorials

Although various methods for analysis of factorial experiments that are based
on simple hand calculations exist, it should be pointed out that modern analysis

Table 7.18. Illustration of 23−1 fractional factorial design
for CVD example.

Run P T F

1 − − +
2 + − −
3 − + −
4 + + +
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of statistical experiments is accomplished almost exclusively by commercially
available statistical software packages. A few of the more common packages
include RS/1, SAS, and Minitab. These packages completely alleviate the necessity
of performing any tedious hand calculations. Nevertheless, a few of the more
well-known hand methods are presented below.

7.3.3.1. The Yates Algorithm
It is quite tedious to calculate the effects and interactions for two-level factorial
experiments using the methods described Section 7.3.1, particularly if there are
more than three factors involved. Fortunately, the Yates algorithm provides a
quicker method of computation that is also relatively easily programmed via
computer. To implement this algorithm, the experimental design matrix is first
arranged in what is called standard order. A 2n factorial design is in standard
order when the first column of the design matrix consists of alternating minus
and plus signs, the second column of successive pairs of minus and plus signs,
the third column of four minus signs followed by four plus signs, and so on. In
general, the kth column consists of 2k−l minus signs followed by 2k−1 plus signs.

The Yates calculations for the deposition rate data are shown in Table 7.19.
Column y contains the deposition rates for each run. These are considered in
successive pairs. The first four entries in column 1 are obtained by adding the
pairs together, and the next four are obtained by subtracting the top number from
the bottom number of each pair. Column 2 is obtained from column 1 in the same
way, and column 3 is obtained from column 2. To obtain the experimental effects,
one only needs to divide the column 3 entries by the divisor. In general, the first
divisor will be 2n, and the remaining divisors will be 2n−1. The first element in
the identification (ID) column is the grand average of all of the observations, and
the remaining identifications are derived by locating the plus signs in the design
matrix. The Yates algorithm provides a relatively straightforward methodology
for computing experimental effects in two-level factorial designs.

7.3.3.2. Normal Probability Plots
One problem that can arise when analyzing the effects of unreplicated factorial
experiments is that real and meaningful higher-order interactions do occasionally

Table 7.19. Illustration of the Yates algorithm.

P T F y (1) (2) (3) Divisor Effect ID

− − − 94.8 205.76 675.70 1543.0 8 192.87 Average
+ − − 110.96 469.94 867.29 163.45 4 40.86 P

− + − 214.12 240.06 57.86 651.35 4 162.84 T

+ + − 255.82 627.23 105.59 27.57 4 6.89 PT
− − + 94.14 16.16 264.18 191.59 4 47.90 F

+ − + 145.92 41.70 387.17 47.73 4 11.93 PF
− + + 286.71 51.78 25.54 122.99 4 30.75 TF
+ + + 340.52 53.81 2.03 −23.51 4 −5.88 PTF
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occur. In such cases, methods are needed to evaluate these effects. One way to
do so is to plot the effects on normal probability paper.

A normal distribution is shown in Figure 7.16a. The probability of the occur-
rence of some value less than X is given by the shaded area P . Plotting P

versus X results in the sigmoidal cumulative normal distribution curve shown in
Figure 7.16b. Normal probability paper simply adjusts the vertical scale of this
plot in the manner shown in Figure 7.16c, so that P versus X becomes a straight
line.

Suppose that the dots in Figure 7.16 represent a random sample of 10 obser-
vations from a normal distribution. Since n = 10, the leftmost observation can
be interpreted as representing the first 10% of the cumulative distribution. In
Figure 7.16b, this observation is therefore plotted midway between zero and
10% (i.e., at 5%). Similarly, the second observation represents the next 10% of
the cumulative distribution and is plotted at 15%, and so on. In general, we have

Pi = 100(i − 1/2)/m (7.46)

for i = 1, 2, . . . , m.
When all the sample points are plotted on normal paper, they should ideally

form a straight line. However, this is only true if the effects represented by
the points are not significant. To illustrate, consider the effects computed from
a hypothetical 24 factorial experiment shown in Table 7.20. The m = 15 main
effects plus interactions in this experiment represent 15 contrasts between pairs
of averages containing eight observations each. If these effects are not significant,

Figure 7.16. Normal probability plot concepts: (a) normal distribution; (b) ordinary graph paper;
(c) normal probability paper [1].
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Table 7.20. Effects and probability points for normal
probability plot example [1].

i

Value
of Effect

Identity
of Effect P = 100(i − 1

2 )/15

1 −8.0 1 3.3
2 −5.5 4 10.0
3 −2.25 3 16.7
4 −1.25 23 23.3
5 −0.75 123 30.0
6 −0.75 234 36.7
7 −0.25 34 43.3
8 −0.25 134 50.0
9 −0.25 1234 56.7

10 0 14 63.3
11 0.5 124 70.0
12 0.75 13 76.7
13 1.0 12 83.3
14 4.5 24 90.0
15 24.0 2 96.7

they should be roughly normally distributed about zero, and they would plot on
normal probability paper as a straight line. To see whether they do, we put the
effects in order and plot them on normal paper, as shown in Figure 7.17. As it
turns out 11 of the 15 effects fit reasonably well on a straight line, but those
representing effects 1, 4, 23, and 2 do not. We therefore conclude that these
effects cannot be explained by chance and are in fact significant.

7.3.4. Advanced Designs

Factorial and fractional factorial designs are used for fitting either linear response
models or models based on factor interactions to the experimental data (see
Chapter 8). When higher-order models are necessary, more advanced experimen-
tal designs are required. One example of such a design is the central composite
design (CCD), which is used for fitting second-order models. These designs are
widely used because of their relative efficiency with respect to the number of
trials required.

In a CCD, the standard two-level factorial “box” is enhanced by replicated
experiments at the center of the design space (called centerpoints), as well as by
symmetrically located axial points. Thus, a complete CCD with k factors requires
2k factorial runs, 2k axial runs, and 3–5 centerpoints. The centerpoints provide a
direct measure of the experimental replication error, and the axial points facilitate
fitting of the second-order responses. Designs for k = 2 and k = 3 are shown in
Figure 7.18.

The CCD can be made rotatable by the proper choice of the axial spacing (α
in Figure 7.18). Rotatability implies that the standard deviation of the predicted
response is constant at all points equidistant from the center of the design. To
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Figure 7.17. Normal probability plot example [1].

(−1, +1)

(−1, −1)

(−a, 0) (a, 0)

(+1, +1)

(+1, −1)

(0, a)

(0, −a)

(0, 0)

x2 x3

x2

x1x1

Figure 7.18. Central composite designs for k = 2 and k = 3 [3].

ensure rotatability, we select
α = (2k)1/4 (7.47)

For the case of k = 2, α = 1.414. This is the case represented on the left in
Figure 7.18.
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7.4. TAGUCHI METHOD

Until relatively recently, the use of statistical experimental design has not been
as prominent in the West as in Japan. The widespread use of statistical methods
in Japanese manufacturing can be traced directly to the contributions of Pro-
fessor Genichi Taguchi. In the early 1980s, Taguchi introduced an approach to
using experimental design to develop products that are robust to environmental
conditions and process variation [4].

Taguchi outlines three critical stages in process development: system design,
parameter design, and tolerance design. System design essentially refers to estab-
lishing the basic configuration of the manufacturing sequence and equipment. In
parameter design, specific values of process recipe parameters are determined,
with the overall objective of minimizing the variability generated by uncon-
trollable (or noise) variables. Finally, tolerance design is used to identify the
tolerances of the manufacturing parameters. Variables without much effect on
product performance can be specified with a wide tolerance.

Taguchi advocates the use of experimental design to facilitate quality
improvement primarily during the parameter design and tolerance design stages.
Experimental design methods are used to identify a process that is robust (i.e.,
insensitive) to uncontrollable environmental factors. Thus, a key component of
the Taguchi approach is reduction of variability. The objective is to reduce
the variability of a quality characteristic around a target, or nominal, value.
Differences between actual and nominal values are described by a loss function.
The loss function quantifies the cost incurred by society when a consumer uses a
product whose quality characteristics differ from nominal values. Taguchi defines
a quadratic loss function of the form

L(y) = k(y − T )2 (7.48)

which is shown in Figure 7.19. In this function, y represents the measured value
of the quality characteristic, T is the target value, and k is a constant. This
function penalizes even small excursions from the target value, as opposed to the
traditional control chart-oriented approach, which attaches penalties only when
y is outside of specification limits.

USLTLSL

L(y)

y

Figure 7.19. Quadratic loss function.



TAGUCHI METHOD 263

Taguchi’s overall philosophy can be summarized by three central ideas:

1. Products and processes should be robust to variability.

2. Experimental design can be used to accomplish this.

3. Operation on target is more important to conformance to specifications.

However, a word of caution is appropriate. Although his philosophy is sound,
some of the methods of statistical analysis and some of the approaches to exper-
imental design he advocates have been shown to be unnecessarily complicated,
inefficient, and even ineffective. Thus, care should be exercised in applying
Taguchi’s methods.

The Taguchi methodology is best illustrated by example. In the following
sections, we use an example first published in the Bell System Technical Jour-
nal [5]. In this example, Taguchi’s approach is used to optimize the photolitho-
graphic process used to form square contact windows in a CMOS microprocessor
fabrication process. The purpose of the contact windows is to facilitate the inter-
connection between transistors. The goal is to produce windows of a size near
the target dimension.

7.4.1. Categorizing Process Variables

The first step in applying the Taguchi methodology is to identify the important
process variables that can be manipulated, as well as their potential working
levels. These variables are categorized as either controllable or uncontrollable.
The controllable factors are also referred to as either control factors or signal
factors, whereas the uncontrollable factors are called noise factors.

For the contact window formation example, the key process steps are
(1) applying the photoresist by spin coating, (2) prebaking the photoresist,
(3) exposing the photoresist, (4) developing the resist, and (5) etching the
windows using plasma etching. The controllable factors associated with each
step are as follows:

• Applying photoresist—resist viscosity (B) and spin speed (C)
• Baking—bake temperature (D) and bake time (E)
• Exposure—mask dimension (A), aperture (F), and exposure time (G)
• Development—developing time (H)
• Plasma etch—etch time (I)

The operating levels of these nine factors are shown in Table 7.21. Six factors
have three levels each, and three factors have only two levels. The levels of spin
speed in this table are dependent on the levels of viscosity. For the 204 photoresist
viscosity, the low, normal, and high levels of the spin speed are 2000, 3000, and
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Table 7.21. Factors and Levels for Taguchi Example.

Label Factor Name Low Level Medium Level High Level

A Mask dimension (µm) — 2 2.5
B Viscosity — 204 206
C Spin speed (rpm) Low Normal High
D Bake temperature (◦C) 90 105
E Bake time (min) 20 30 40
F Aperture 1 2 3
G Exposure time 20% over normal 20% under
H Developing time (s) 30 45 60
I Etch time (min) 14.5 13.2 15.8

4000 rpm, respectively. For the 206 viscosity, those levels are 3000, 4000, and
5000 rpm.

Examples of potential noise factors in this study include the relative humidity
or the number of particles in the cleanroom. The objective of this procedure is
to determine the levels of the controllable factors that lead to windows closest
to the target dimension of 3.5 µm.

7.4.2. Signal-to-Noise Ratio

Taguchi recommends analyzing the results from designed experiments using the
mean response and the appropriately selected signal-to-noise ratio (SN ). Signal-
to-noise ratios are derived from the quadratic loss function given in Eq. (7.48).
The three standard SNs are

Nominal the best: SNN = 10 log(y/s) (7.49)

Larger the better: SNL = −10 log

(
1

n

n∑
i=1

1

y2
i

)
(7.50)

Smaller the better: SNS = −10 log

(
1

n

n∑
i=1

y2
i

)
(7.51)

where s is the sample standard deviation. Each of these ratios is expressed in
a decibel scale. SNN is used if the objective is to reduce variability around a
specific target, SNL is appropriate if the system is optimized when the response
is as large as possible, and SNS is selected to optimize a system by making the
response as small as possible. Factor levels that maximize the appropriate SN
ratio are considered optimal. Clearly, SNN is the right choice for the contact
window formation experiment.

7.4.3. Orthogonal Arrays

A full factorial experiment to explore all possible interactions of the factors in
Table 7.21 would require 36 × 23 = 5832 trials. Clearly, when cost of material,
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time, and availability of facilities are considered, the full factorial approach is
prohibitively large. Taguchi recommends an alternative fractional factorial design
known as the orthogonal array. The columns of such an array are pairwise
orthogonal, meaning that for every pair of columns, all combinations of levels
occur and they occur an equal number of times.

Table 7.22 shows the L18 orthogonal array design for the contact window
formation study [5]. In this table, factors B and D are treated as a joint factor
BD with levels 1, 2, and 3 representing the combinations B1D1, B2D1, and B2D2,
respectively. This was done to accommodate the L18 array, which can be used
to evaluate a maximum of eight factors.

The L18 array is a “main effects only” design that assumes that the response(s)
can be approximated by a separable function. In other words, it is assumed that
the response(s) can be written in terms of a sum of terms where each term is a
function of a single independent variable. This type of model can yield misleading
conclusions in the presence of factor interactions. However, Taguchi claims that
the use of the SN ratio generally eliminates the need to examine interactions.

For estimating the main effects, there are 2 degrees of freedom associated
with each three-level factor, one degree of freedom associated with each two-
level factor, and one degree of freedom associated with the mean. Since we need
at least one experiment for each degree of freedom, the minimum number of
experiments required for optimizing the contact window formation process is 16.
The L18 array has 18 trials, which provides additional precision in estimating
the effects.

Table 7.22. Factor levels for the L18 orthogonal array.

Experiment A BD C E F G H I

1 1 1 1 1 1 1 1 1
2 1 1 2 2 2 2 2 2
3 1 1 3 3 3 3 3 3
4 1 2 1 1 2 2 3 3
5 1 2 2 2 3 3 1 1
6 1 2 3 3 1 1 2 2
7 1 3 1 2 1 3 2 3
8 1 3 2 3 2 1 3 1
9 1 3 3 1 3 2 1 2

10 2 1 1 3 3 2 2 1
11 2 1 2 1 1 3 3 2
12 2 1 3 2 2 1 1 3
13 2 2 1 2 3 1 3 2
14 2 2 2 3 2 2 1 3
15 2 2 3 1 2 3 2 1
16 2 3 1 3 2 3 1 2
17 2 3 2 1 3 1 2 3
18 2 3 3 2 1 2 3 1
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7.4.4. Data Analysis

The postetch window size is the most appropriate quality measure for this
experiment. Unfortunately, because of the size and proximity of the windows,
the existing equipment in the paper by Phadke et al. [5] was unable to provide
reproducible window size measurements. As a result, a linewidth test pattern on
each chip was used to characterize the window size. The postetch line width was
used as a window size metric.

Five chips were selected from each of the wafers used in the L18 design in
Table 7.22. These five chips correspond to the top, bottom, left, right, and center
of the wafers. Once again, the optimization problem posed by this experiment is
to determine the optimum factor levels such that SNN is maximum while keeping
the mean on target. This problem is solved in two stages:

1. Use ANOVA techniques to determine which factors have a significant effect
on SNN . These factors are called the control factors. For each control factor,
we choose the level with the highest SNN as the optimum level, thereby
maximizing the overall SNN (under the separability assumption).

2. Select a factor that has the smallest effect on SNN among the control
factors. Such a factor is called a signal factor. Set the levels of the remaining
factors (i.e., those that are neither control nor signal factors) to their nominal
levels prior to the optimization experiment. Then, set the level of the signal
factor so that the mean response is on target.

In cases where multiple responses exist, engineering judgment is used to resolve
conflicts when different response variables suggest different levels for any single
factor.

For each trial in Table 7.21, the mean, standard deviation, and SNN for the
postetch line width were computed. The following linear model was used to
analyze these data

yi = µ + xi + ei (7.52)

where yi is the SNN for experiment i, µ is the overall mean, xi is the sum of
the main effects of all eight factors in experiment i, and ei is the random error in
experiment i. The ANOVA table for SNN and the mean postetch line width are
shown in Tables 7.23 and 7.24, respectively. In Table 7.24, a pooled ANOVA was
derived by pooling the sum of squares for those factors whose sums of squares
were smaller than the error sum of squares (D, E, F, and I) with the error sum of
squares. The “percent contribution” in the last column of Table 7.24 is a Taguchi
metric that is equal to the total sum of squares explained by a factor after an
appropriate estimate of the error sum of squares has been removed from it. A
larger percent contribution implies that more can be expected to be achieved by
changing the level of that factor.

Table 7.23 indicates that none of the nine process factors has a significant
effect on SNN for postetch linewidth. Thus, none of these may be considered
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Table 7.23. Postetch linewidth ANOVA for SNN.

Factor
Degrees of
Freedom

Sum of
Squares Mean Square F Ratio

A 1 0.005 0.005 0.02
B 1 0.134 0.134 0.60
C 1 0.003 0.003 0.01
D 2 0.053 0.027 0.12
E 2 0.057 0.028 0.13
F 2 0.085 0.043 0.19
G 2 0.312 0.156 0.70
H 2 0.156 0.078 0.35
I 2 0.008 0.004 0.02

Error 2 0.444 0.222
Total 17 1.257

Table 7.24. Pooled ANOVA for mean postetch linewidth.

Factor
Degrees of
Freedom

Sum of
Squares Mean Square F Ratio

%
Contribution

A 1 0.677 0.677 16.92 8.5
B 1 2.512 2.512 63.51 32.9
C 2 1.424 0.712 17.80 17.9
G 2 1.558 0.779 19.48 19.6
H 2 0.997 0.499 12.48 12.2

Error 9 0.356 0.040 8.9
Total 17 7.524 100.0

control factors in this experiment. However, all the factors in Table 7.24 (viscos-
ity, exposure, spin speed, mask dimension, and developing time) were significant
at a 95% confidence level for the mean value of this response. The mean linewidth
for each factor is shown in Figure 7.20.

To keep the process on target, a signal factor must be selected that has a
significant effect on the mean, but little effect on SNN . Changing the signal
factor then affects only the mean. In this experiment, exposure time (G) was
selected as the signal factor. This factor was adjusted to obtain the optimum
linewidth and therefore, window size. This adjustment resulted in a factor of 2
decrease in window size variation and a factor of three decrease in the number of
windows not printed. Thus the Taguchi methodology was proven to be effective
in this example.
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SUMMARY

In this chapter, we have provided an overview of statistical experimental design
by introducing the concept of analysis of variance and describing various types
designs, including two-level factorial designs and the Taguchi methodology.
Important topics also included the analysis of such experiments and the use
of various analytical and graphical methods to interpret experimental results. In
the next chapter, we will examine how data generated from design experiments
may be used to construct models that predict process behavior.

PROBLEMS

7.1. To compare two photolithography processes (A and B), 4 of 8 wafers were
randomly assigned to each. The electrically measured linewidth of several
NMOS transistors gave the following averages (in µm):

A: 1.176 1.230 1.146 1.672
B: 1.279 1.000 1.146 1.176

Assuming that the processes have the same standard deviation, calculate the
significance for the comparison of means.

7.2. Suppose that there are now four photolithography processes to compare (A,
B, C, and D). Using 15 wafers, the measurements are as follows (in µm):

I II III IV

A 1.176 1.230 1.146 1.672
B 1.279 1.000 1.146 1.176
C 0.954 1.079 1.204 —
D 0.699 1.114 1.114 —

Calculate the full ANOVA table and find the level of significance for reject-
ing the hypothesis of equality. Explain any assumptions and perform the
necessary diagnostics on the residuals.

7.3. The following data are for the throughput, as measured by the number
of wafer lots produced per day by different operators (A, B, C, and D) on
different machines (each operator used each machine on two different days):

Machine A B C D

1 18(9), 17(76) 16(11), 18(77) 17(22), 20(72) 27(3), 27(73)
2 17(1), 13(71) 18(3), 18(73) 20(57), 16(70) 28(2), 23(78)
3 16(3), 17(77) 17(7), 19(70) 20(25), 16(73) 31(33), 30(72)
4 15(2), 17(72) 21(4), 22(74) 16(5), 16(71) 31(6), 24(75)
5 17(17), 18(84) 16(10), 18(72) 14(39), 13(74) 28(7), 22(82)
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Eighty-four working days were needed to collect the data. The numbers
in parentheses refer to the days on which the results were obtained. For
example, on the first day, operator A produced 17 lots using machine 2, and
on the 84th day, operator A produced 18 lots using machine 5. On some
days (such as the third day), more than one item of data was collected, and
on other days (such as day 40), no data was collected. Analyze the data,
stating all assumptions and conclusions.

7.4. Consider the data in Table 7.11. Carry out analysis of variance using the
data transformation Y = y−1. Consider whether in the new response metric
there is evidence of model inadequacy. Compare the treatment averages for
the two different representations of the response.

7.5. The following single-replicate 23 factorial design was used to develop a
nitride etch process. State any assumptions you make, and analyze this
experiment.

Temperature
(◦F)

Concentration
(%) Catalyst

Yield
(%)

160 20 1 60
180 20 1 77
160 40 1 59
180 40 1 68
160 20 2 57
180 20 2 83
160 40 2 45
180 40 2 85

7.6. (a) Why do we “block” experimental designs?
(b) Write a 23 factorial design.

(c) Write a 23 factorial design in four blocks of two runs each such that the
main effects are not confounded with the blocks.

7.7. Consider a 28 – 4 fractional factorial design.
(a) How many variables does the design have?

(b) How many runs are involved in the design?

(c) How many levels are used for each variable?

(d) How many independent block generators are there?

(e) How many words are there in the defining relations (counting I )?

7.8. Construct a 27−1 fractional factorial design. Show how the design may be
divided into eight blocks of eight runs each so that no main effect or two-
factor interaction is confounded with any block effect.
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7.9. A 23 factorial design on a CVD system was replicated 20 times with the
following results:

P T F y

− − − 7.76 ± 0.53
+ − − 10.13 ± 0.74
− + − 5.86 ± 0.47
+ + − 8.76 ± 1.24
− − + 9.03 ± 1.12
+ − + 14.59 ± 3.22
− + + 9.18 ± 1.80
+ + + 13.04 ± 2.58

In this tabulation, y is the deposition rate in µm/min and the number fol-
lowing the ± sign is the standard deviation of y. The variables P , T , and F

represent pressure, temperature, and flowrate. Analyze the results. Should a
data transformation be made?

REFERENCES

1. G. Box, W. Hunter, and J. Hunter, Statistics for Experimenters, Wiley, New York,
1978.

2. G. Box and D. Cox, “An Analysis of Transformations,” J. Roy. Stat. Soc. B. 26,
211 (1964).

3. D. Montgomery, Introduction to Statistical Quality Control, Wiley, New York, 1993.

4. G. Taguchi and Y. Wu, Control Japan Quality Control Organization, Nagoya,
Japan, 1980.

5. M. Phadke, R. Kackar, D. Speeney, and M. Grieco, “Off-Line Quality Control in
Integrated Circuit Fabrication Using Experimental Design,” Bell Syst. Tech. J.,
(May–June 1983).



8

PROCESS MODELING

OBJECTIVES

• Provide an overview of statistical modeling techniques such as regression
and response surface methods.

• Introduce the concept of principal-component analysis (PCA).
• Discuss new modeling methods based on artificial intelligence techniques.
• Describe methods of model-based process optimization.

INTRODUCTION

As discussed in Chapter 7, a designed experiment is an extremely useful tool
for discovering key variables that influence quality characteristics. Statistical
experimental design is a powerful approach for systematically varying process
conditions and determining their impact on output parameters that measure qual-
ity. Data derived from such experiments can then be used to construct process
models of various types that enable the analysis and prediction of manufacturing
process behavior.

The models so derived may be used to visualize process behavior in the
form of a response surface. The proper fit is obtained using statistical regression
techniques such as the method of least squares (also known as linear regression
analysis). The goal of regression analysis is to develop a quantitative model
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(usually in the form of a polynomial) that predicts a relationship between input
factors and a given response. An accurate model should minimize the difference
between the observed values of the response and its own predictions.

Over time, several novel methods have been developed to augment regression
modeling. For example, principal component analysis (PCA) is a useful statistical
technique for streamlining a multidimensional dataset to facilitate subsequent
modeling. Dimensionality reduction through PCA is achieved by transforming
a data to a new set of variables (i.e., the principal components), which are
uncorrelated and ordered such that the first few retain most of the variation
present in the original dataset.

Approaches that utilize artificial intelligence (AI) methods such as neural
networks or fuzzy logic are capable of performing highly complex mappings
on noisy and/or nonlinear experimental data, thereby inferring very subtle rela-
tionships between diverse sets of input and output parameters. Moreover, these
techniques can also generalize well enough to learn overall trends in functional
relationships from limited training data.

Process modeling permits an engineer to manipulate and optimize the process
efficiency with a minimum amount of experimentation. A well-developed pro-
cess model can in turn be used to generate a recipe of the process deposition
conditions to obtain particular desired responses. In effect, this required that
the neural process model be used “in reverse” to predict the necessary operat-
ing conditions to achieve the desired film characteristic. This chapter explores
various process modeling methodologies, from traditional regression analysis to
more contemporary AI-based approaches for deriving predictive models in semi-
conductor manufacturing applications. We then explore various optimization (or
recipe synthesis) procedures.

8.1. REGRESSION MODELING

Raw experimental data have limited meaning in and of themselves; they are most
useful in relation to some conceptual model of the process being studied. Once
such data have been obtained from a designed experiment (see Chapter 7), the
results may be summarized in the form of a response surface. The proper fit for
a response surface is obtained using statistical regression techniques. When the
formulation of the response surface is such that the outcome is a linear function
of the unknown parameters, these parameters can be estimated by the method
of least squares (also known as linear regression analysis). Linear regression
analysis is a statistical technique for modeling and investigating the relationship
between two or more variables. The goal of regression analysis is to develop
a quantitative model that predicts this relationship between controllable input
factors and a given response.

In general, suppose that there is a single dependent variable or response y that
is related to k independent variables, say, x1, x2, . . . , xk . Assume that the depen-
dent variable y is a random variable, and the independent variables x1, x2, . . . , xk
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are exactly known or can be measured with negligible error. The independent
variables are controllable by the experimenter. The relationship between these
variables is characterized by a mathematical model called a regression equation.
More precisely, we speak of the regression of y on x1, x2, . . . , xk. This regression
model is fitted to a set of data. In some instances, the experimenter will know the
exact form of the true functional relationship between y and x1, x2, . . . , xk , say,
y = f (x1, x2, . . . , xk). However, in most cases, the true functional relationship is
unknown, and the experimenter must derive an appropriate function to approxi-
mate the function f . A polynomial model is often employed as the approximating
function. An accurate model should minimize the difference between the observed
values of the response and its own predictions. In addition to predicting the
response, such a model can also be used for process optimization or process
control purposes.

8.1.1. Single-Parameter Model

The simplest polynomial response surface is merely a straight line. Models fit to
a straight line are derived using linear regression.1 Consider fitting experimental
data to a straight line that passes through the origin. Although rather elementary,
this example illustrates the basic principles of least squares.

Suppose that we are studying the etch rate of a wet etchant, and we collect
n = 9 observations of the data shown in Table 8.1, where x is the time in minutes
and y is the thickness of film etched away. Physical considerations indicate that
a simple proportional relationship between x and y is reasonable; that is, the
relationship between x and y should be described by a straight line through the
origin, or

yu = βxu + εu u = 1, 2, . . . , n (8.1)

Table 8.1. Hypothetical etching data.

Observation
(u)

Time
[xu (min)]

Thickness
[yu (µm)]

1 8 6.16
2 22 9.88
3 35 14.35
4 40 24.06
5 57 30.34
6 73 32.17
7 78 42.18
8 87 43.23
9 98 48.76

1The term “linear” refers to the fact that the regression equation is linear to the unknown parameters.
In this sense, as we will see, linear regression is also capable of deriving models that are non-linear
to the regressors.
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where β is a constant of proportionality (i.e., the slope of the “best fit” line) and
the εu are random, independent experimental errors with zero mean and constant
variance [i.e., εu ∼ N(0, σ2)]. The response or output variable y is the dependent
variable, and the input variable x is the independent variable or the regressor.
The objective of regression analysis is to find an estimate of b that minimizes the
difference between the measured values of y and the predictions of Eq. (8.1).

According to the method of least squares, the best-fit model is the one that
minimizes the quantity

S(β) =
n∑

u=1

(yu − βxu)
2 =

∑
(y − ŷ)2 (8.2)

where ŷ = βx is an estimate of y and the subscripts have been dropped to simplify
the notation. The curve represented by this equation is a parabola, so the goal is
to find the value of β at the minimum of the parabola. Let b be the value of β at
the minimum point. Using the rules of calculus, we can find b by simply taking
the derivative of S with respect to β and setting the derivative equal to zero, or

dS

dβ
= 2

∑
(y − ŷ)x = 2

∑
(y − bx)x = 0 (8.3)

since ŷ = bx at the minimum point. Solving (8.3) for b yields

b =
∑

xy
∑

x2
(8.4)

Using the etching data in Table 8.1, we compute b = 0.501 µm/min. This value
has been substituted into ŷ = bx and plotted in Figure 8.1.

8.1.1.1. Residuals
Once the least-squares estimate (b) of the unknown coefficient (β) has been
obtained, the estimated response ŷu = bxu can be computed for each xu. These
estimated responses can be compared with the observed values (yu). The
differences between the estimated and observed values (yu − ŷu) are known as

0 20
0

40 60 80 100
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residual yu−yu Slope b = 0.501 
^

Figure 8.1. Plot of data fitted to least-squares line, etching example [1].
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residuals. The sum of squares of the residuals is given by

SR = S(b) =
n∑

u=1

(yu − ŷu)
2 (8.5)

In this example, SR = 64.67 µm2. As discussed in Chapter 7, it is important to
examine the residuals individually and collectively for inadequacies in the model.

8.1.1.2. Standard Error
If the one-parameter linear model is adequate, then an estimate (s2) of the experi-
mental error variance (σ2) can be obtained by dividing the residual sum of squares
by its number of degrees of freedom. The number of degrees of freedom will gen-
erally equal the number observations less the number of parameters estimated.
Since only a single parameter is estimated in this model, there are n − 1 = 8
degrees of freedom in this example. An estimate of σ2 is therefore

s2 = SR

n − 1
= 8.08 (8.6)

The corresponding estimated variance for b is then [1]

V (b) = s2

n∑
u=1

x2
u

= 0.00023 (8.7)

Thus, the standard error of b is SE(b) = √
V (b) = 0.015 µm/min. This metric

can be used to perform a hypothesis test (see Chapter 4) to determine whether
the true value of β is equal to some specific value β∗ using the test statistic

t0 = b − β∗

SE(b)
(8.8)

which is distributed according to the t distribution with n − 1 = 8 degrees of
freedom. The 1 − α confidence interval for β is bounded by

b ± [tα/2 × SE(b)] (8.9)

8.1.1.3. Analysis of Variance
For linear least-squares problems such as the one considered in the preceding
sections, the following relationships exist among the sums of squares and their
corresponding degrees of freedom∑

y2
u =

∑
ŷ2

u +
∑

(yu − ŷu)
2 (8.10)

n = p + (n − p) (8.11)

where p is the number of parameters estimated by least squares. For the etching
problem, p = 1, and Eqs. (8.10) and (8.11) yield the analysis of variance shown
in Table 8.2 (see Chapter 7).

This ANOVA table is appropriate for testing the null hypothesis that β∗ = 0.
To do so, the ratio of the mean squares (s2

M/s2
R = 1094) is compared with the
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Table 8.2. ANOVA table for etch data.

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F Ratio

Model SM = 8836.64 1 s2
M = 8836.64 s2

M/s2
R = 1094

Residual SR = 64.67 8 s2
R = 8.08

Total ST = 8901.31 9

value of the F distribution with 1 and 8 degrees of freedom. The ratio for this
example is overwhelmingly significant, indicating that there is little probability
that β∗ is in fact zero. This test is exactly equivalent to applying the t test implied
by Eq. (8.8).

8.1.2. Two-Parameter Model

Many modeling situations require more than a single parameter. Consider the data
in Table 8.3 representing the level of impurities in a polymer dielectric layer as
a function of the concentration of a certain monomer and a certain dimer. Here,
the appropriate model is

y = β1x1 + β2x2 + ε (8.12)

where y is the percent impurity concentration, x1 is the percent concentration of
the monomer, x2 is the percent concentration of the dimer, and ε ∼ N(0, σ2).

The best-fit model in this case is the one that minimizes the quantity

S(β) =
∑

(y − β1x1 − β2x2)
2 (8.13)

Since there are two parameters, this equation now represents a plane rather than
a line. We could find the values of β1 and β2 that minimize S(β) (i.e., b1 and b2,
respectively) using the same calculus-based approach as we used for the single-
parameter model. Alternatively, we can also use what are called the normal
equations to compute these values. If we let ŷ = b1x1 + b2x2, this approach
utilizes the fact that the vector of residuals (i.e., the vector composed of the

Table 8.3. Hypothetical polymer impurity data.

Observ-
ation

Monomer
Concentration

[x1 (%)]

Dimer
Concentration

[x2 (%)]

Impurity
Concentration

[y (%)]

1 0.34 0.73 5.75
2 0.34 0.73 4.79
3 0.58 0.69 5.44
4 1.26 0.97 9.09
5 1.26 0.97 8.59
6 1.82 0.46 5.09
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values of y − ŷ for each of the n observations) has the property of being normal
(at right angles) to each vector of x values when the least squares estimate is used.

In this model, there are two regressors, x1 and x2. The normal equations in
this case are

∑
(y − ŷ)x1 = 0

∑
(y − ŷ)x2 = 0 (8.14)

or ∑
(y − b1x1 − b2x2)x1 = 0

∑
(y − b1x1 − b2x2)x2 = 0 (8.15)

Simplifying further gives
∑

yx1 − b1

∑
x2

1 − b2

∑
x1x2 = 0

∑
yx1 − b1

∑
x1x2 − b2

∑
x2

2 = 0 (8.16)

Solving these two equations simultaneously using the data in Table 8.3 yields
b1 = 1.21 and b2 = 7.12. The fitted surface appears in Figure 8.2. In general,
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Figure 8.2. Fitted plane ŷ = 1.21x1 + 7.12x2 for polymer impurity example [1].
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this method can be applied to a linear equation of the form given by Eq. (8.12)
with an arbitrary number of regressor variables.

8.1.2.1. Analysis of Variance
The first step in evaluating the adequacy of the model presented above is inspec-
tion of the residuals (i.e., y − ŷ). However, with such a small dataset, only
gross discrepancies would be revealed by such an analysis. In this case, no such
discrepancies are evident.

Another type of analysis is also appropriate when some of the experimental
runs have been replicated. In this case, runs 1 and 2 are replicates, as are runs 4
and 5. The sum of squares associated with these replicate runs is

SE = (y1 − y2)
2

2
+ (y4 − y5)

2

2
(8.17)

This sum of squares, which has 2 degrees of freedom, is part of the overall
residual sum of squares (SR) and is a measure of the “pure” experimental error.
The remaining part of the residual sum of squares is given by

SL = SR − SE (8.18)

This quantity measures the experimental error plus any contribution from possible
lack of fit of the model. A comparison of the mean squares derived from SE and
SL can therefore be used to check the lack of fit. These concepts are summarized
in the ANOVA given in Table 8.4.

In this example, the close agreement between the two mean squares (as
indicated by the F ratio near unity) gives no reason to suspect a significant lack
of fit. An examination of Appendix E reveals that a mean-square ratio greater
than 1.2 can be expected about 45% of the time with this small number of
degrees of freedom. It can therefore be concluded that the fit for this model is
adequate.

8.1.2.2. Precision of Estimates
According to the assumption that the model is adequate, an estimate of the error
variance of the model is

s2 = SR

n − p
= 0.33 (8.19)

Table 8.4. ANOVA table for polymer impurity data.

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F Ratio

Model SM = 266.59 2
Residual SR = 1.33

Lack of fit SL = 0.74 2 s2
L = 0.37 s2

L/s2
E = 1.2

Pure error SE = 0.59 2 s2
E = 0.30

Total ST = 267.92 6
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To estimate the variances of b1 and b2, the correlation (ρ) between these
parameters must first be computed using

ρ =
−

∑
x1x2√∑
x2

1x
2
2

= −0.825 (8.20)

The variances are then given by

V (b1) = 1

(1 − ρ)2

s2

∑
x2

1

= 0.147 (8.21)

V (b2) = 1

(1 − ρ)2

s2

∑
x2

2

= 0.285

Since the standard error for each parameter is just the square root of its variance,
SE(b1) = 0.383, and SE(b2) = 0.534. Given these values for standard error, it is
possible to define (1 − α) confidence limits for each parameter using Eq. (8.9).

8.1.2.3. Linear Model with Nonzero Intercept
Consider the problem of fitting data to a linear model that does not pass through
the origin. The equation of such a line is given by

y = β0 + βx + ε (8.22)

where the intercept β0 �= 0. This model is just a special case of the model given
in Eq. (8.12), with the following substitutions:

β1 = β0, x1 = 1, β2 = β, and x2 = x

The “variable” x1 = 1 is referred to as an indicator variable. For this model, the
normal equations [Eqs. (8.14)–(8.16)] simplify to

b0n + b
∑

x =
∑

y (8.23)

b0

∑
x + b

∑
x2 =

∑
xy

and the solutions are

b =
∑

(x − x)(y − y)
∑

(x − x)2
(8.24)

b0 = y − bx

where n is the number of points to be fitted, x = 1
n

∑n
i=1 xi , and y = 1

n

∑n
i=1 yi .

To illustrate this situation, consider the hypothetical data in Table 8.5, which
represents particle counts in a class 100 cleanroom as a function of equipment
utilization. Applying Eq. (8.24) to these data yields b = 11.66 and b0 = 65.34.
Therefore, the appropriate linear model in this case is ŷ = 65.34 + 11.66x. This
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Table 8.5. Hypothetical particle data.

Observation
Equipment Utilization
[x (Arbitrary Units)]

Particle Count
[y (ft−3)]

1 2.00 89
2 2.50 97
3 2.50 91
4 2.75 98
5 3.00 100
6 3.00 104
7 3.00 97

line is plotted in Figure 8.3. Given the expression for b0 in Eq. (8.24), this line
can also be written as

ŷ = b0 + bx = y − bx + bx = y + b(x − x) = a + b(x − x) (8.25)

where a = y. For the current example, ŷ = 96.57 + 11.66(x − 2.28).

2 2.5 3.0

85

100

95

90

105

95% confidence
interval for h
when x = 2.25

Figure 8.3. Fitted line ŷ = 65.34 + 11.66x for cleanroom particle example [1].
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The precision of the estimates for this model can be evaluated using an
approach similar to that outlined in Section 8.1.2.2. Assuming that the model
is adequate, an estimate of the error variance of the model is

s2 = SR

n − p
= 8.72 (8.26)

where SR = ∑
(y − ŷ)2 = 43.62, n = 7, and p = 2. The standard errors for the

coefficients are

SE(b0) = s


1

n
+ x2

∑
(x − x)2




1/2

= 8.64

SE(b) = s√∑
(x − x)2

= 3.22 (8.27)

SE(a) = s√
n

= 1.12

Using the form of the model given in Eq. (8.25), the variance at a given point
(x0, y0) is

V (ŷ0) = V (y) + (x0 − x)2V (b) =

1

n
+ (x0 − x)2

∑
(x − x)2


 s2 (8.28)

A (1 − α) confidence interval for ŷ0 is then

ŷ0 ± tα/2

√
V (ŷ0) (8.29)

A 95% confidence interval computed for this example is indicated by the dotted
lines in Figure 8.3.

Example 8.1. Perform analysis of variance and test the goodness of fit for the
linear model resulting from Table 8.5.

Solution:

Source of
Variation

Sum of
Squares

Degrees of
Freedom Mean Square F Ratio

Model SM = 65,396.38 2
Residual SR = 43.62

Lack of fit SL = 0.953 2 s2
L = 0.477 s2

L/s2
E = 0.034

Pure error SE = 42.67 3 s2
E = 14.213

Total ST = 65,440 7
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The ANOVA table is shown above. Note that since observations 2 and 3, as well
as 5, 6, and 7 are replicates:

SE = (y2 − y3)
2

2
+ (y5 − y6)

2

3
+ (y6 − y7)

2

3
+ (y5 − y7)

2

3
= 42.67

The ratio of lack of fit to pure error mean squares is only 0.034. A true lack of
fit would be indicated by a much larger value of this ratio (see Appendix E). We
can be more than 99% confident that this model fits the data.

8.1.3. Multivariate Models

The method of least squares described above can be used in general for modeling
any process in which the estimated parameters of the model (β1, β2, etc.) are
linear. A model is linear in its parameters if it can be written in the form

ŷ = β0 + β1x1 + · · · + βpxp (8.30)

where the x terms are the quantities known for each experimental run and are
not functions of the β terms. The models discussed in Sections 8.1.1 and 8.1.2
are clearly of the linear type. Another example of a model that is linear in its
parameters is the polynomial model:

ŷ = β0 + β1x + β2x
2 + · · · + βpxp (8.31)

A polynomial model with p ≥ 2 would be used when the process has been
observed to exhibit higher order effects that are inadequately captured by a
straight-line model. Another example is the sinusoidal model

ŷ = β0 + β1 sin θ + β2 cos θ (8.32)

where θ is varied in the different experimental runs. This type of model might
be appropriate for a process known to exhibit periodic or cyclical behavior. In
general, one could develop any functional relationship between the independent
and dependent variables in a set of experimental data by simply substituting an
arbitrary function for the x values in Eq. (8.30). For example, if we let x1 = log ξ1

and x2 = eξ2ξ3, then we obtain the model

ŷ = β0 + β1 log ξ1 + β2
eξ2

ξ3
(8.33)

where ξ1, ξ2, and ξ3 are known for each experimental trial.
When limited to models that are linear in their estimated coefficients, standard

matrix algebra provides a convenient approach to solving least-squares regression
problems. For example, in matrix notation, Eq. (8.30) or (8.31) can be rewrit-
ten as

ŷ = Xb (8.34)
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where ŷ is the n × 1 vector of predicted values for the response, X is the n × p

matrix of independent variables, and b is the p × 1 vector of parameters to be
estimated. Under these circumstances, the normal equations can be written as

XT (y − ŷ) = 0 (8.35)

where T represents the transpose operation. Substituting Eq. (8.34) yields

XT (y − Xb) = 0 (8.36)

If we assume that XT X has an inverse, solving Eq. (8.36) for b yields

b = [XT X]−1XT y (8.37)

In general, the variance–covariance matrix for the estimates is

V (b) = [XT X]−1σ2 (8.38)

if the experimental variance σ2 is known. Otherwise, assuming the form of the
model is appropriate, σ2 can be estimated using s2 = SR/(n − p), where SR is
the residual sum of squares.

Although the β values in these models can be found by calculus-based methods
or using the normal equations, computer programs are now widely available
for this purpose. Such programs have become virtually indispensable for model
building, as well as for use in model validation and verification. This is especially
true when the model form is not known, and several functional forms must be
analyzed and compared in terms of prediction and lack-of-fit characteristics.

Example 8.2. Assume that the yield (y) of a given process varies according to
process condition x according to the relationship in Table 8.6.
Use Eq. (8.37) to fit these yield data to the quadratic model

ŷ = β0 + β1x + β2x
2

Table 8.6. Hypothetical yield data.

Observation
Process Condition

[x (Arbitrary Units)]
Yield

[y (%)]

1 10 73
2 10 78
3 15 85
4 20 90
5 20 91
6 25 87
7 25 86
8 25 91
9 30 75

10 35 65
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Solution: The matrices needed are

X =




x0 x x2

1 10 100

1 10 100

1 15 225

1 20 400

1 20 400

1 25 625

1 25 625

1 25 625

1 30 900

1 35 1225




y =




73
78
85
90
91
87
86
91
75
65




b =



b0

b1

b2




XT X =



10 215 5225
215 5225 138,125

5225 138,125 3,873,125


 XT y =




821
17,530

418,750




Solving for b yields

b =



35.66
5.26

−0.128




so the appropriate quadratic equation is ŷ = 35.66 + 5.26x − 0.128x2. This curve
is plotted in Figure 8.4.

8.1.4. Nonlinear Regression

While a vast array of regression problems can be approximated by linear regres-
sion models (i.e., models that are linear in the parameters to be estimated), there
are also models that must be nonlinear to their estimated parameters. Consider,
for example, the exponential model

ŷ = β1(1 − e−β2x) (8.39)

where x is known for each experimental trial. This model clearly cannot be
written in the form of Eq. (8.30). It is, therefore, an example of a model that is
nonlinear in its parameters. Fortunately, however, the general concept of least
squares can still be applied to fit such models. However, while in linear regression
we have an exact, closed-form solution, for most nonlinear regression prob-
lems we have an approximate, iterative solution. Further, some of the statistical
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Figure 8.4. Fitted curve ŷ = 35.66 + 5.26x − 0.128x2 for yield example [1].

assumptions that allowed us to use ANOVA in selecting model forms and in
validating the results may be weak and subject to some speculation.

As an example, suppose that the number of particles generated by a particular
process over time is given according to Table 8.7. Furthermore, assume that
physical considerations suggest that the exponential model given by Eq. (8.39)
should describe the phenomenon. The sum of squares in this case is given by

S =
n∑

u=1

[yu − β1(1 − e−β2xu)]2 (8.40)

The estimated values of β1 and β2 that minimize S are b1 = 213.8 and b2 =
0.5473. Substituting these values into Eq. (8.39) gives the fitted least-squares
curve shown in Figure 8.5.

Today, such curve fitting is not typically done by hand. On the contrary, mod-
ern computer software packages (such as RS/Explore [2]) exist that are capable

Table 8.7. Hypothetical particle data.

Observation
Particle Count

[y (ft−3)]
Day
(x)

1 109 1
2 149 2
3 149 3
4 191 5
5 213 7
6 224 10
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Figure 8.5. Fitted curve for particle count example [1].

of carrying out the iterative computations necessary to locate the values of the
coefficients that minimize the sum of squares for nonlinear models. In such pro-
grams, the user need only supply the experimental data and the functional form
of the model to be fitted. The program is able to find the coefficients, as well
as their standard errors and confidence regions. The theoretical underpinning of
that analysis is usually based on assuming that, at least locally, the impact of the
estimated parameters on the model outcome is approximately linear.

8.1.5. Regression Chart

The concept of linear regression can be a useful tool for statistical process con-
trol (see Chapter 6). Some processes monitored using SPC exhibit specific time
varying behavior. Such a trend is illustrated in Figure 8.6. Behavior like this
may be a result of gradual tool wear, settling or separation of components in a
chemical process, human operator fatigue, or seasonal influences (such as tem-
perature changes). When trends are present in data, traditional control charts are
inadequate. However, a device that is useful for monitoring such processes is the
regression chart.

Consider a polysilicon CVD process in which the process chamber is regularly
cleaned. After each cleaning, the polysilicon deposition rate in the chamber is
effectively reset, resulting in periodic behavior in the data. On a traditional control
chart, the behavior of the deposition rate would look approximately like that
shown in Figure 8.7.
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Figure 8.6. A time varying process trend [3].
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Figure 8.7. Polysilicon deposition rate plotted on standard Shewhart control chart.

This is an ideal situation for the application of a regression chart. In this case,
the deposition rate data can be transformed in such a way that they are plotted as
a function of the number of samples since the chamber was last cleaned, rather
than as an absolute function of time or sample number. In other words, the data
can be fit to a regression line of the form

ŷ = a + b(x − x) (8.41)

where x is the number of samples processed (or “runs”) since the last chamber
cleaning. Note that this model is in exactly the same form as that of Eq. (8.25);
thus, the same analysis applies. The coefficients are

b =
∑

(x − x)(y − y)
∑

(x − x)2
(8.42)

a = y

An estimate of the error variance of the model is

s2 = SR

n − p
(8.43)
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Figure 8.8. Regression chart for polysilicon deposition rate data.

where SR = ∑
(y − ŷ)2, n is the number of samples used to build the model,

and p = 2. The standard errors for the coefficients are

SE(b) = s√∑
(x − x)2

(8.44)

SE(a) = s√
n

The data are now in a form in which they can be monitored using a regression
chart whose control limits can be set at ±3σ from the model prediction line.
Such a chart is illustrated in Figure 8.8.

8.2. RESPONSE SURFACE METHODS

Response surface methodology (RSM) is a general technique used in the empir-
ical study of relationships between measured responses and independent input
variables. A response surface is usually a polynomial whose coefficients are
extracted by means of a least-squares fit to experimental data. The concept of the
response surface and an example analytical representation is shown in Figure 8.9
for a function of two variables, x1 and x2. The response surface method is quite
powerful since, in addition to modeling, RSM also focuses on using the mod-
els developed to find the optimum operating conditions for the process under
investigation.

8.2.1. Hypothetical Yield Example

To illustrate a typical application of the RSM procedure, consider an experiment
whose goal is to select the settings of time (t) and temperature (T ) that produces
the maximum yield for a given hypothetical process. The conditions used for this
process prior to the experiment were t = 75 min and T = 130◦C. Assume that
time can be varied from 70 to 80 min and temperature from 127.5 to 132.5◦C.
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Figure 8.9. Example of response surface and analytical representation.

Table 8.8. Results from factorial design.

Run Time (min)
Temperature

(◦C) x1 x2

Yield
(%)

1 70 127.5 −1 −1 54.3
2 80 127.5 +1 −1 60.3
3 70 132.5 −1 +1 64.6
4 80 132.5 +1 +1 68.0
5 75 130.0 0 0 60.3
6 75 130.0 0 0 64.3
7 75 130.0 0 0 62.3

The first step is to perform a 22 factorial experiment with three replications
at the center of the design space. This design is shown in Table 8.8 and also
indicated by the crosses at the lower left corner of Figure 8.10. This first-order
design allows efficient fitting of the polynomial model

ŷ = β0 + β1x1 + β2x2 (8.45)

where x1 represents time, x2 is temperature, and y is the yield. The levels of the
variables in normalized units (shown in columns 3 and 4 of the table) are

x1 = t − 75

5
x1 = T − 130

2.5
(8.46)

This design is selected because at this first stage of the investigation, we might
be some distance away from the maximum yield. In this case, it is likely that the
local characteristics of the yield surface can be roughly represented by this planar
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Figure 8.10. RSM example for hypothetical yield experiment [1].

model. If this is correct, estimating β1 and β2 allows us to follow a direction of
increasing yield “up the hillside” formed by the planar response surface.

The least-squares estimate of β1 is

b1 = 1
4 (−54.3 + 60.3 − 64.6 + 68.0) = 2.35 (8.47)

Similarly, we compute b2 = 4.50. The least-squares estimate of β0 is the average
of all seven observations, or 62.01. We thus obtained the fitted equation

ŷ = 62.01 + 2.35x1 + 4.50x2 (8.48)
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The contours for the fitted plane in Eq. (8.48) are obtained by substituting into
this equation. Successively setting ŷ = 56, 60, 64, and 68 gives the set of parallel
equally spaced contour lines shown in Figure 8.10. These lines can be tentatively
accepted as a rough geometric representation of the underlying response surface
over the experimental region explored thus far. The path of steepest ascent, which
is perpendicular to the contour lines, is also indicated in Figure 8.10. Moving
along this path is equivalent to moving up the aforementioned “hillside” and
thereby finding sets of process conditions that increase the yield. The objective
would now be to move along this path and continue experimentation until we
reach a point at which the yield is no longer increasing. This is the maximum
yield point according to the model we have derived.

It should be pointed out that for this simple example, we have not considered
any diagnostic means of checking how good the model given by Eq. (8.48)
actually is. It is very important to verify that the planar model is valid and that
the response surface exhibits no curvature or interaction effects before proceeding.

8.2.1.1. Diagnostic Checking
An estimate of the experimental error variance for the model described by
Eq. (8.48) is obtained using Eq. (8.26) with n = 7 and p = 3, which gives
s2 = 2.14. Similarly, the standard errors for each of the three coefficients can
be computed using Eq. (8.27) as

SE(b0) = s


1

n
+ x2

∑
(x − x)2




1/2

= s√
n

= 0.21 (8.49)

SE(b1) = SE(b2) = s√∑
(x − x)2

= s

2
= 0.73

The significance of each coefficient in the model can be evaluated by comparing
the value of each estimate to its standard error. In each case, since the values
of the coefficients are much larger than the standard errors, the model can be
assumed to be adequate.

The planar model in Eq. (8.48) assumes that the effects of the variables are
additive. In order for this assumption to be valid, interaction effects must be
checked. Interaction effects can be accounted for by evaluating an additional
model coefficient, β12, for the cross-product term x1x2 in the model. Based on
the data in Table 8.8, an estimate of this term is given by

b12 = 1
4 (54.3 − 60.3 − 64.6 + 68.0) = −0.65 (8.50)

The standard error of this estimate is the same as that for b1 and b2, or 0.73.
Since the magnitude of the interaction coefficient is less than its standard error,
the interaction is deemed insignificant.

Yet another check on the local planarity of the model is accomplished by
comparing the average response for the four points of the 22 factorial (yf ) with
the average at the center of the design (yc). If we envision the design as resting
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on a saucerlike surface, then the difference between these two parameters is a
measure of the overall curvature of that surface. It can be shown that if β11 and
β22 are the coefficients of the terms x2

1 and x2
2 , this curvature measure will be an

estimate of β11 + β22. The estimate of the overall curvature is

b11 + b22 = 1
4 (54.3 + 60.3 + 64.6 + 68.0) − 1

3 (60.3 + 62.3 + 64.3) = −0.50
(8.51)

The standard error for this estimate is s/
√

2 = 1.03. Therefore, there is no reason
to question the adequacy of the planar model based on the curvature metric.

8.2.1.2. Augmented Model
The path of steepest ascent, which is perpendicular to the contour lines, is indi-
cated by the dotted arrow in Figure 8.10. This path is determined by starting
at the center of the experimental space and moving b2 = +4.50 units along x2

for every b1 = +2.35 units along x1. Experiments 8, 9, and 10, represented by
the triangles in Figure 8.10, are trials conducted along this path, and the associ-
ated yields derived for each trial are presented next to the triangles. The yield
increases at trial 8 (y = 73.3%), but then decreases for the large jump made to
trial 9 (y = 58.2%) The best results are achieved at experiment 10 (y = 86.8%),
suggesting that subsequent experiments should be performed in the vicinity of
this point.

As the experimental region of interest ascends the response surface, the pos-
sibility increases that first-order effects will become smaller and a second-order
model will be needed to more accurately represent the response. Expanding the
original experimental design makes sense in this case, since a second-degree
approximation should provide a better approximation over a larger region than
a first-degree approximation. Therefore, a new 22 factorial design with two cen-
terpoints at trial 10 is performed with the following new coded variables:

x1 = t − 90

10
x1 = T − 145

5
(8.52)

This new design is indicated by the open circles in Figure 8.10. The data obtained
from this new set of experiments are shown in rows 11–16 of Table 8.9.

The first order model obtained from the second 22 factorial experiment is

ŷ = 84.73 − 2.025x1 + 1.325x2 (8.53)

An estimate of the experimental error variance for this model is once again
obtained using Eq. (8.26), with n = 6 and p = 3, which gives s2 = 45.45. The
interaction and curvature terms, respectively, are

b′
12 = −4.88 ± 3.37, b′

11 + b′
22 = −5.28 ± 4.78 (8.54)

where the values following the ± symbol represent the standard errors for each
estimate. In this case, the magnitudes of the interaction and curvature coefficients
are comparable to their respective standard errors. Thus, the first-order model
given by Eq. (8.53) is not adequate to represent the local response function.
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Table 8.9. Results from augmented factorial design.

Run
Time
(min)

Temperature
(◦C) x1 x2

Yield
(%)

11 80 140 −1 −1 78.8
12 100 140 +1 −1 84.5
13 80 150 −1 +1 91.2
14 100 150 +1 +1 77.4
15 90 145 0 0 89.7
16 90 145 0 0 86.8
17 76 145 −√

2 0 83.3
18 104 145 +√

2 0 81.2
19 90 138 0 −√

2 81.2
20 90 152 0 +√

2 79.5
21 90 145 0 0 87.0
22 90 145 0 0 86.0

Since the first-degree polynomial is inadequate, in the new experimental region,
the second degree polynomial approximation

ŷ = β0 + β1x1 + β2x2 + β11x
2
x + β22x

2
2 + β12x1x2 (8.55)

should now be considered. To estimate the six coefficients in this model, the
second 22 factorial experiment (trials 11–16) is augmented with a central com-
posite circumscribed (CCC) design consisting of four axial (or “star”) points
and two additional center points (trials 17–22 in Table 8.9). These additional
trials are shown as dark circles in Figure 8.10. The second-order equation fit by
least-squares methods to the model in Eq. (8.55) is

ŷ = 87.36 − 1.39x1 + 0.37x2 − 2.15x2
x − 3.12x2

2 − 4.88x1x2 (8.56)

The contours for this fitted equation are shown in Figure 8.11. In many semi-
conductor manufacturing applications, second-order models are the highest-order
models required to describe the responses of interest.

8.2.2. Plasma Etching Example

We now consider an actual case study in the use of response surface methodology
in a semiconductor manufacturing application [4]. Plasma etch modeling from a
fundamental physical standpoint has had limited success. Physically based models
attempt to derive self-consistent solutions to first-principle equations involving
continuity, momentum balance, and energy balance inside a high-frequency,
high-intensity electric field. This is accomplished by means of computation-
ally expensive numerical simulation methods that typically produce outputs such
as profiles of the distribution of electrons and ions within the plasma sheath.
However, although detailed simulation is useful for equipment design and opti-
mization, it is subject to many simplifying assumptions. Because of the extremely
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Figure 8.11. Contours of fitted second-order equation and data from second-order design for
hypothetical yield experiment [1].

complex nature of particle dynamics within a plasma, the connection between
these microscopic models and macroscopic parameters such as etch rate is diffi-
cult to distinguish.

In this example, the response characteristics of a CCl4-based plasma process
used to etch doped polysilicon were examined via a 26−1 fractional factorial
experiment, which was followed by a supplemental central composite design.
The effects of variation in RF power, pressure, electrode spacing, CCl4 flow, He
flow, and O2 flow on several output variables, including etch rate, selectivity,
and process uniformity, were investigated. The factorial experiment was used for
variable screening to isolate the most significant input factors. The supplemental
phase of the experiment enabled the development of polynomial models of etch
behavior using response surface methods.

8.2.2.1. Experimental Design
An example of a fabrication step in which reactive-ion etching is essential is in the
definition of polysilicon features for MOS circuits. This step often requires that
a relatively thick polysilicon gate be etched down to a thin silicon dioxide layer.
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Therefore, high selectivity between polysilicon and SiO2 is necessary in order to
use a thin gate oxide as an etch stop. In addition, it is desirable that the vertical
etch rate of the polysilicon be much greater than its horizontal rate to achieve
high etch anisotropy. Finally, good within-wafer uniformity and selectivity to
photoresist are also desirable. Carbon tetrachloride is an anisotropic etchant with
a high selectivity for polysilicon, thereby making it an attractive candidate for
this experiment.

The most critical control parameters in RIE are RF power, chamber pressure,
electrode spacing, and gas flow. Helium is often added to standard CCl4 etch
recipes in order to enhance etch uniformity. In addition, oxygen is sometimes
also introduced into the gas mixture to decrease polymer deposition in the process
chamber. The effects of all six process variables must be considered in plasma
recipe control. Because of the large number of input factors, it was decided to
divide the overall experiment into an initial variable screening phase to determine
the most significant parameters, followed by a second phase designed to obtain
the statistical response models.

The six factors chosen for the initial screening phase of this experiment, along
with their respective ranges of operation, are shown in Table 8.10. A full factorial
experiment to determine all effects and interactions for six factors would require
26, or 64 experimental runs. To reduce the experimental budget, the effects of
higher-order interactions were neglected and a 26−1 fractional factorial design
requiring only 32 runs was performed. This design used a resolution V format,
which prevented main effects from being confounded with other main effects as
well as two- and three-factor interactions. It also prevented the confounding of
two-factor interactions with each other [1].

The experimental runs were performed in two blocks of 16 trials each in
such a way that no main effects or first-order interactions were confounded with
any hidden time effects (such as unscheduled equipment maintenance during the
experiment). Three centerpoints were added to the design to provide a check for
model nonlinearity. The experimental sequence was randomized in order to avoid
biases due to equipment aging during the experiment.

Analysis of the first stage of the experiment revealed significant nonlinearity
in nearly all responses, which indicated the necessity of quadratic models. Also,
none of the input factors were found to have a statistically insignificant effect

Table 8.10. Range of input factors.

Parameter Range Units

RF power (Rf ) 300–400 watts
Pressure (P ) 200–300 mTorr
Electrode spacing (G) 1.2–1.8 cm
CCl4 flow (CCl4) 100–150 sccma

He flow (He) 50–200 sccm
O2 flow (O2) 10–20 sccm

a Standard cubic centimeters.
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on all of the responses of interest. Thus, none were omitted from the response
surface models derived in the subsequent phase. To obtain these models, the data
gathered were augmented with a second experiment that employed a CCC design.
In this design, the two-level factorial “box” was enhanced by further replicated
experiments at the center (to provide a direct measure of the equipment and
measurement replication error) as well as symmetrically located axial points.
A complete CCC design for six factors requires a total of 91 runs. In order
to reduce the size of the experiment and combine it with the results from the
screening phase, a half-replicate design was again employed. The entire second
phase required a total of 18 additional runs.

8.2.2.2. Experimental Technique
Etching was performed on a test structure designed to facilitate the simultaneous
measurement of the vertical etch rates of polysilicon, SiO2, and photoresist, as
well as the lateral etch rate of polysilicon on the same wafer. The patterns were
fabricated on 4-in-diameter silicon wafers. Approximately 1.2 µm of phosphorus-
doped polysilicon was deposited over 0.5 µm of SiO2 by low-pressure chemical
vapor deposition (LPCVD). The oxide was grown in a steam ambient at 1000◦C.
One micrometer of photoresist was spun on and baked for 60 s at 120◦C. Polysil-
icon lines for scanning electron microscopy (SEM) photos were patterned with a
low-temperature oxide (LTO) mask deposited at 450◦C by LPCVD. The etching
equipment consisted of a Lam Research Corporation Autoetch 490 single-wafer
parallel-plate system operating at 13.56 MHz.

Film thickness measurements were performed on five points per wafer (as
in Figure 8.12) before and after etching. Vertical etch rates were calculated by
dividing the difference between the pre- and postetch thicknesses by the etch
time. The lateral etch rate for polysilicon was determined using SEM photos
by measuring the difference between the pre- and postetch linewidths under the
assumption that the preetch width was that at the base of the polysilicon line (see
Figure 8.13).

Expressions for the selectivity of the polysilicon with respect to oxide (Sox)
and with respect to resist (Sph), along with percent anisotropy (A) and percent

2

1

4

3 5

Figure 8.12. Wafer measurement sites [4].
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Figure 8.13. SEM photos of typical polysilicon lines used to determine the sidewall slope and
lateral etch rate for the anisotropy calculation [4].

nonuniformity (U ), respectively, are

Sox = Rp/Rox (8.57)

Sph = Rp/Rph (8.58)

A = (1 − Lp/Rp) × 100 (8.59)

U = |Rpc − Rpe |
Rpc

× 100 (8.60)

where Rp is the mean vertical polysilicon etch rate over the five points, Rox is the
mean oxide etch rate, Rph is the mean resist etch rate, Lp is the lateral polysilicon
etch rate, Rpc is the poly etch rate at the center of the wafer, and Rpe is the mean
polysilicon etch rate of the four points located about one inch from the edge.

8.2.2.3. Analysis
The experimental data were analyzed using the R/S Discover commercial soft-
ware package [5]. Table 8.11 shows the significance level for each of the main
effects. Only factors with a significance <0.05 are considered significant. From
these results, it was clear that no single factor was statistically insignificant for

Table 8.11. Statistical significance results from screening experiment [4].

Factor Rp Sox Sph U A

Pressure 0.0090 0.0001 0.0001 0.0677 0.3008
RF power 0.0001 0.0046 0.0001 0.0493 0.5119
CCl4 flow 0.0032 0.0410 0.0001 0.0672 0.5244
He flow 0.0001 0.0001 0.0001 0.0002 0.0157
O2 flow 0.0043 0.0669 0.0014 0.9581 0.6418
Electrode spacing 0.0185 0.4134 0.0001 0.0107 0.4634
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Table 8.12. ANOVA table for etch rate model [4].

Source DF
Sum of
Squares

Mean
Square F Ratio Significance

Total 52 24,717,141 475,329.63
Regression 13 20,983,554 1,614,120.00 16.86 0.000
Residual 39 3,733,587 95,732.99
Lack of Fit 31 3,402,778 109,767.03 2.66 0.075
Error 8 330,809 41,351.11

Figure 8.14. Scatterplot of etch rates predicted by the RSM model versus actual experimental
values [4].

all five responses of interest. For example, although the electrode spacing had
little effect on the etch selectivity with respect to the silicon dioxide mask, it had
a dramatic impact on etch rate and uniformity.

The additional 18 runs that constituted the second phase of the experiment
yielded quadratic models that describe the precise interaction between input
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Figure 8.15. Contour plot of polysilicon etch rate versus RF power and pressure [4].

factors and the responses. For example, fitting a regression model for the polysil-
icon etch rate resulted in the following expression:

Rp = −245 − 4.24P + 11.0Rf + 0.742CCl4 + 11.2He + 523G

+ 35.9O2 − 0.034P ∗ He

+ 7.82P ∗ G + 0.085Rf ∗ CCl4 − 8.36Rf ∗ G − 0.132(CCl4)
2

+ 0.059CCl4 ∗ He − 0.059He2 (8.61)
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where Rp is in Å/min and the units of every other parameter are given in
Table 8.10. The ANOVA table for the etch rate model is shown in Table 8.12.

The F test indicates that this model is highly significant, since the regression
mean square, which is the amount of variation explained by the proposed model,
is significant. This fact is confirmed by the F -ratio statistic. If the regression mean
square was not significant, then this ratio would be distributed according to the
F distribution with 15 and 37 degrees of freedom. The value 16.86, however, is
highly unlikely to occur in the F15,37 distribution. The lack-of-fit F test reveals
little evidence that the inclusion of additional terms would improve this model,
since a lack of fit as large as 2.66 occurs 7.5% of the time in the F29,8 distribution.
Therefore, most of the residual of the model originates from experimental error.

A scatterplot of the predicted etch rate values versus the corresponding exper-
imental values is shown in Figure 8.14. The straight line in this plot represents
the region of perfect agreement between model and experiment. Although this
etch rate model is fairly complex, a few interesting relationships emerge. In
Figure 8.15, for example, Rp surfaces are plotted against RF power and chamber
pressure with all other parameters set at their nominal values. For high process
throughput, etch rate should preferably be as high as possible. This occurs at
high power and high pressure.

Similar polynomial models and observations were derived for the other etch
responses. These models were shown to describe the operation of the charac-
terized equipment very precisely. Unlike computationally expensive physically
based simulators, which are often impractical because of their slowness and lack
of precision, the empirical models derived in this case study can be used for a
variety of manufacturing purposes, including process optimization, control, and
diagnosis (refer to Chapters 9 and 10).

8.3. EVOLUTIONARY OPERATION

As alluded to in the previous section, response surface methodology can also
provide a useful construct for process monitoring and optimization in addition
to modeling. In many situations, a strong relationship between one or more
controllable process variables and an observed response variable can be exploited
for this purpose. Suppose that a process engineer wishes to maximize the yield
of a given process, and that the yield is a function of two controllable process
variables, x1 and x2, or

y = f (x1, x2) + ε (8.62)

where ε is random error. Even after a set of optimal levels for x1 and x2 that max-
imizes yield and provides acceptable values for all other quality characteristics
has been identified, if the process operates continuously at these levels, it may
gradually drift away from the optimum because of variations in the incoming
raw materials, environmental changes, personnel, and so on.

Evolutionary operation (EVOP) was proposed by Box in 1957 as a method
for continuous operation and monitoring of a process with the goal of moving
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Figure 8.16. Factorial design for EVOP [4].

the operating conditions toward the optimum or following drift [6]. EVOP is,
in effect, an online application of statistical experimental design. The EVOP
procedure consists of systematically introducing small changes in the levels of
the operating variables. EVOP requires that each independent process variable
be assigned a “high” (H) and “low” (L) level. For x1 and x2, the four possible
combinations of high and low levels are shown in Figure 8.16. This arrangement
is just a 22 factorial design with a centerpoint. Typically, the design would be
centered at the best current estimate of the optimum operating conditions.

Let yi (where i = 1, . . . , 5) be the observed values of the response variable
corresponding to the various combinations of x1 and x2. After one observation at
each point in the design, a cycle is defined as completed. Recall from Chapter 7
that the main effect of a factor is defined as the average change in response
produced by a change from the low level to the high level of the factor. Thus,
the main effects for x1 and x2 are given by

x1(effect) = 1
2 [(y3 + y4) − (y2 + y5)] (8.63)

x2(effect) = 1
2 [(y3 + y5) − (y2 + y4)] (8.64)

If the change from the low to the high level of x1 produces an effect that is
different at the two levels of x2, then there is interaction between x1 and x2. The
interaction effect is given by

x1 × x2(effect) = 1
2 [(y2 + y3) − (y4 + y5)] (8.65)

After n EVOP cycles, there will be n observations at each of the five design
points. The effects and interaction are then computed by replacing the individual
observations in Eqs. (8.63)–(8.65) by the averages (yi) of the n observations at
each point. After several cycles have been completed, one or more process vari-
ables (or their interactions) may seem to have a significant effect on the response.
When this occurs, a decision to change the operating conditions to improve the
response may be appropriate. When improved conditions are detected, a phase
is completed.

In testing the significance of process variables and interactions, an estimate
of experimental error is also required. This estimate of the experimental error
usually comes from experimental replications as the process is monitored. By
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comparing the response at the centerpoint with the corner points in the factorial
design, the presence of curvature in the response can be evaluated. If the process
has really been optimized, then the response at the center should be significantly
better than the responses at the corner points. In theory, EVOP can be applied
to an arbitrary number of process variables, but in practice, only two or three
variables are usually considered.

The EVOP process is best illustrated by means of an example. Montgomery [3]
provides an excellent example for a process whose yield (in %) is a function of
temperature (x1) and pressure (x2). Suppose that the current operating condi-
tions are x1 = 250◦C and x2 = 145 mTorr. The EVOP procedure uses the design
shown in Figure 8.16. A cycle is completed by running each design point in
numerical order. The yields for the first cycle (n = 1) are shown in line (3) of
Table 8.13, which is the EVOP calculation sheet. At the end of the first cycle,
no estimate of the standard deviation can be made. The calculation of the main
effects and interaction are shown in Table 8.14. In this table, the “change in
mean” (CIM) effect is given by

CIM = 1
5 [(y2 + y3 + y4 + y5 − 4y1)] (8.66)

Table 8.13. EVOP calculation sheet for first cycle (n = 1) [3].

Line 1 2 3 4 5

1 Previous cycle
sum

Previous sum S =

2 Previous cycle
average

Previous average S =

3 New observations 84.5 84.2 84.9 84.5 84.3 New S = Range × f5,n =
4 Differences

(2 − 3)

Range of line 4 =

5 New sums (1 + 3) 84.5 84.2 84.9 84.5 84.3 New sum S =
6 New averages

[ yi = (v)/n]
84.5 84.2 84.9 84.5 84.3 New average

S = New sum S

n − 1

Table 8.14. EVOP calculation of effects and error limits for first cycle (n = 1) [3].

Calculation of Effects Calculation of Error Limits

Temperature effect = 1
2 [(y3 + y4) − (y2 + y5)] = 0.45 For new average:

2√
n

S =

Pressure effect = 1
2 [(y3 + y5) − (y2 + y4)] = 0.25 For new effects:

2√
n

S =
Interaction effect = 1

2 [(y2 + y3) − (y4 + y5)] = 0.15

CIM = 1
5 [(y2 + y3 + y4 + y5 − 4y1)] = 0.02 For new effects:

1.78√
n

S =
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The quantities in the EVOP calculation sheet follow directly from analysis of
the 22 factorial design. For example, the variance of the first main effect is simply

V [ 1
2 (y3 + y4 − y2 − y5)] = 1

4 (σ2
y3

+ σ2
y4

+ σ2
y2

+ σ2
y5

) = 1
4 (4σ2

y
) = σ2/n (8.67)

where σ2 is the variance of the observations (y). The variance for the other main
effect, as well as the interaction effect, is calculated in the same way. Thus,
2σ error limits on any effect (corresponding to 95% of the variation) would be
±2σ/

√
n. Similarly, the variance of the change in mean is

V (CIM) = V [ 1
5 (y2 + y3 + y4 + y5 − 4y1)] = 1

25 (4σ2
y
+ 16σ2

y
) = 20

25σ2/n

(8.68)

Therefore, 2σ error limits on the CIM are ±2σ/
√

0.8n = ±1.78σ/
√

n.
The standard deviation is estimated using the range method. If yi(n) is the

ith observation in cycle n, then yi(n) is the corresponding average of yi(n)

after n cycles. The quantities in row 4 of the EVOP sheet in Table 8.13 are the
differences yi(n) − yi(n − 1). The variance of these differences is σ2[n/(n − 1)].
The range of the differences (RD) is related to the estimate of the distribution of
the differences by σ̂D = RD/d2. Since RD/d2 = σ̂

√
n/(n − 1), we have

σ̂ =
√

(n − 1)

n

RD

d2
= (fk,n)RD ≡ S (8.69)

where k = 5 is the number of points used in the experimental design (i.e., a 22

factorial plus one centerpoint) and the values of fk,n are given in Table 8.15. The
quantity S can be used to estimate the standard deviation of the EVOP operations.

Using this computation framework to proceed, the data corresponding to
the second cycle of EVOP for this example are shown in Tables 8.16 and
8.17. Since none of the effects in Table 8.17 exceeds their error limits, the
true effect is likely close to zero, and no changes in operating conditions are
recommended.

The results of a third EVOP cycle are shown in Tables 8.18 and 8.19. In this
cycle, the effect of pressure now exceeds its error limit, and the temperature effect
is equal to the error limit. Thus, a change in operating conditions is probably
justified. In light of the results, it seems reasonable to begin a new EVOP phase
centered at point (column) 3. Thus, x1 = 225◦C and x2 = 150 mTorr become the
center of the 22 design in the next phase.

Table 8.15. Values of fk,n [3].

n = 2 3 4 5 6 7 8 9 10

k = 5 0.30 0.35 0.37 0.38 0.39 0.40 0.40 0.40 0.41
9 0.24 0.27 0.29 0.30 0.31 0.31 0.31 0.32 0.32

10 0.23 0.26 0.28 0.29 0.30 0.30 0.30 0.31 0.31
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Table 8.16. EVOP calculation sheet for second cycle (n = 2) [3].

1 2 3 4 5

1 Previous cycle
sum

84.5 84.2 84.9 84.5 84.3 Previous sum S =

2 Previous cycle
average

84.5 84.2 84.9 84.5 84.3 Previous average S =

3 New observ-
ations

84.9 84.6 85.9 83.5 84.0 New S = range × f5,n =
0.60

4 Differences
(2 − 3)

−0.4 −0.4 −1.0 1.0 0.3 Range of line 4 = 2.0

5 New sums (1 + 3) 169.4 168.8 170.8 168.0 168.3 New sum S = 0.60
6 New averages

[ yi = (v)/n]
84.70 84.40 85.40 84.00 84.15 New average

S = newsum S

n − 1
= 0.60

Table 8.17. EVOP calculation of effects and error limits for second cycle (n = 2) [3].

Calculation of Effects Calculation of Error Limits

Temperature effect = 1
2 [(y3 + y4) − (y2 + y5)] = 0.43 For new average:

2√
n

S = 0.85

Pressure effect = 1
2 [(y3 + y5) − (y2 + y4)] = 0.58 For new effects:

2√
n

S = 0.85

Interaction effect = 1
2 [(y2 + y3) − (y4 + y5)] = 0.83

CIM = 1
5 [(y2 + y3 + y4 + y5 − 4y1)] = −0.17 For new effects:

1.78√
n

S = 0.76

Table 8.18. EVOP calculation sheet for third cycle (n = 3) [3].

1 2 3 4 5

1 Previous cycle
sum

169.4 168.8 170.8 168.0 168.3 Previous sum S = 0.60

2 Previous cycle
average

84.70 84.40 84.50 84.00 84.15 Previous average
S = 0.60

3 New
observations

85.0 84.0 86.6 84.9 85.2 New S =
range × f5,n = 0.56

4 Differences
(2 − 3)

−0.3 0.4 −1.2 −0.9 −1.05 Range of line 4 = 1.60

5 New sums
(1 + 3)

254.4 252.8 257.4 252.9 253.5 New sum S = 1.16

6 New averages
[yi = (v)/n]

84.80 84.27 85.80 84.30 84.50 New average S =
new sum S

n − 1
= 0.58
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Table 8.19. EVOP calculation of effects and error limits for third cycle (n = 3) [3].

Calculation of Effects Calculation of Error Limits

Temperature effect = 1
2 [(y3 + y4) − (y2 + y5)] = 0.67 For new average:

2√
n

S = 0.67

Pressure effect = 1
2 [(y3 + y5) − (y2 + y4)] = 0.87 For new effects:

2√
n

S = 0.67

Interaction effect = 1
2 [(y2 + y3) − (y4 + y5)] = 0.64

CIM = 1
5 [(y2 + y3 + y4 + y5 − 4y1)] = −0.07 For new effects:

1.78√
n

S = 0.60

8.4. PRINCIPAL-COMPONENT ANALYSIS

Principal-component analysis (PCA) is a modeling technique designed to esti-
mate variability and reduce the dimensionality of a dataset that contains a large
number of interrelated variables [7]. The objective of PCA is to perform this
dimensionality reduction while retaining as much of the variation present in the
original dataset as possible. Reduction is accomplished by transforming the orig-
inal dataset into a new set of variables (i.e., the principal components), which
are uncorrelated.

Consider a vector x that consists of p random variables. Let � be the
covariance matrix of x, which can be estimated using Eq. (6.88). Then, for
k = 1, 2, . . . , p, the kth principal component (PC) is given by

zk = αT
k x (8.70)

where αk is an eigenvector of � corresponding to its kth largest eigenvalue, and
T represents the transpose operation. Furthermore, if αk is chosen to have unit
length (i.e., αT

k αk = 1), the variance of zk = λk.
Dimensionality reduction through PCA is achieved by transforming the raw

data to a new set of coordinates (i.e., selected eigenvectors), which are uncor-
related and ordered such that the first few retain most of the variation present
in the original dataset. Generally, if the eigenvalues are ordered from largest to
smallest, then the first few PCs will account for most of the variation in the
original vector x. A simplified example of PCA with two measurement variables,
x1 and x2, is presented in Figure 8.17.

Principal components are identified by first finding a linear function αT
1 x of

the elements of x that has maximum variance, where

αT
1 x = α11x1 + α12x2 + · · · + α1pxp =

p∑
j=1

α1j xj (8.71)

The next step is to find another linear function αT
2 x that is uncorrelated with (or

orthogonal to) αT
1 x and also has maximum variance. This process is repeated k

times, and αT
k x is referred to as the kth principal component.
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Figure 8.17. Illustration of principal-component analysis for two variables: x1 and x2. In this
illustration, v1 and v2 are eigenvectors, and σ1 and σ2 are the corresponding standard deviations.

The variance of αT
1 x is αT

1 �α1. The eigenvector α1 that maximizes this vari-
ance, subject to the normalization constraint αT

1 α1 = 1, is found using the method
of Lagrange multipliers. Using this technique requires maximizing the quantity
αT

1 �α1 − λ(αT
1 α1 − 1), where λ is known as the Lagrange multiplier. Differen-

tiating this quantity with respect to α1 and setting the result equal to zero gives

�α1 − λα1 = 0 (8.72)

or

(� − λIp)α1 = 0 (8.73)

where Ip is the (p × p) identity matrix. Thus, λ is an eigenvalue of �, and
α1 is the corresponding eigenvector. To determine which of the p eigenvectors
is maximum, we simply select the one corresponding to the largest λ. This
procedure is repeated for each PC.

As previously mentioned, although as many as p principal components can
be identified in this manner, most of the variation in x is usually accounted for
by the first one to three PCs. The cumulative percentage of total variation (β) is
typically employed as a criterion for choosing the number of PCs. The definition
of the cumulative percentage of variation is

βk =
(

k∑
l=1

λl

/ c∑
l=1

λl

)
· 100(%) (8.74)

where c is the total number of eigenvalues and λl is the lth diagonal element of
the eigenvalue matrix (k denotes the number of subset of principal components).

To illustrate the use of PCA to solve a practical semiconductor manufactur-
ing problem, consider the work of Hong et al. [8], who used PCA to estimate
the variation in optical emission spectroscopy data generated during reactive-
ion etching. Although OES is an excellent tool for monitoring plasma emission
intensity during etching, a primary issue with its use is the large dimensionality
of the spectroscopic data. To alleviate this concern, Hong implemented PCA as
a mechanism for feature extraction to reduce the dimensionality of OES data.
OES data were generated from a central composite experiment designed to char-
acterize RIE process variation during the etching of benzocyclobutene (BCB) in
a SF6/O2 plasma, with controllable input factors consisting of the two gas flows,
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Figure 8.18. Typical OE spectrum [8].

RF power, and chamber pressure. The OES data, consisting of 226 wavelengths
sampled every 20 s, were compressed into five principal components using PCA.
A sample OE spectrum from this experiment is shown in Figure 8.18.

In the Hong et al. study [8], the raw OES data were three-dimensional, where
the three dimensions were trial, wavelength, and time. By unfolding the 3D
dataset into 2D matrix, a multiway principal component analysis (MPCA) of
the 3D OES data was accomplished. A total of 27 experimental trials (i.e., 27
processed wafers) were conducted. Emission intensity was recorded and stored in
a local computer. The OES system collected 2048 data points over the wavelength
range from 186.58 to 746.85 nm. The following equation represents the selected
dataset that was expanded into an r × c matrix X:

X =



(x1, . . . , xw)r=1
o=1, . . . , (x1, . . . , xw)r=1

o=10
...

. . .
...

(x1, . . . , xw)r=27
o=1 , . . . , (x1, · · · , xw)r=27

o=10


 (8.75)

where the index r = 1, 2, . . . , 27 represents the process run, w = 226 is the
wavelength, o = 1, 2, . . . , 10 is one of 10 consecutive observations collected
every 20 s, and c = 2260 is the total number of columns. The data matrix X was
then mean-centered with respect to each column using the equation:

mij = xij − xj for 1 ≤ i ≤ r and 1 ≤ j ≤ c (8.76)

where mij and xij are the components of the mean-centered matrix M and the
raw sample matrix X, respectively, xj is the mean of column j over the 27 rows.
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The covariance of matrix � was then computed using

� =
(

1

c − 1

)
MT M (8.77)

Using singular value decomposition, the covariance matrix � was decomposed
into a linear combination of the eigenvectors and eigenvalues using

� = U�UT (8.78)

where U = [u1, u2, . . . , uc] is a c × c orthogonal (unitary) matrix containing
c eigenvectors and � is the diagonal matrix of eigenvalues such that λ1 ≥
λ2 ≥ · · · ≥ λc ≥ 0. Using singular value decomposition, the eigenvectors were
arranged in descending order according to the magnitude of the eigenvalues. In
this case, as expected, the first few eigenvectors capture most of the variation
in the original data. Using this approach, the mean-centered OES dataset was
compressed into k = 5 principal-component vectors by transposing M onto the
selected new set of coordinates, or

Â = MÛ (8.79)

where Û is a c × k orthogonal matrix. A plot of the magnitude of the eigenvector
corresponding to the first PC (which accounted for 99.27% of the variation in
the original OES dataset) versus wavelength is shown in Figure 8.19. The 27
five-element principal-component vectors derived in this manner can be used to
identify the most significant wavelengths in the spectrum, or as a compressed
representation of the raw OES data for modeling this RIE process.

Figure 8.19. Plot of eigenvector corresponding to the first PC versus wavelength [8].
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8.5. INTELLIGENT MODELING TECHNIQUES

More recently, the use of computational intelligence in various manufacturing
applications has enhanced manufacturing process control, throughput, and yield.
The semiconductor manufacturing arena is no exception to this trend. Artificial
neural networks, fuzzy logic, and other techniques have emerged as powerful
tools for assisting IC-CIM systems in performing various process monitoring,
modeling, control, and diagnostic functions [9]. This section provides a brief
introduction to two key computational intelligence tools—neural networks and
fuzzy logic—and discusses the manner in which these tools have been used in
modeling semiconductor manufacturing processes.

8.5.1. Neural Networks

Because of their inherent learning capability, adaptability, and robustness, artificial
neural networks are used to solve problems that have heretofore resisted solutions
by other more traditional methods. Although the name “neural network” stems
from the fact that these systems crudely mimic the behavior of biological neurons,
the neural networks used in microelectronics manufacturing applications actually
have little to do with biology. However, they share some of the advantages that
biological organisms have over standard computational systems. Neural networks
are capable of performing highly complex mappings on noisy and/or nonlinear
data, thereby inferring very subtle relationships between diverse sets of input and
output parameters. Moreover, these networks can also generalize well enough to
learn overall trends in functional relationships from limited training data.

Several neural network architectures and training algorithms are eligible for
manufacturing applications. Hopfield networks, for example, have been used for
solving combinatorial optimization problems, such as optimal scheduling [10].
However, the backpropagation (BP) algorithm is the most generally applicable and
most popular approach for semiconductor manufacturing [11]. Feedforward neural
networks trained by BP consist of several layers of simple processing elements
called “neurons” (Figure 8.20). These rudimentary processors are interconnected
so that information relevant to input–output mappings is stored in the weight of the
connections between them. Each neuron contains the weighted sum of its inputs
filtered by a sigmoid transfer function. The layers of neurons in BP networks
receive, process, and transmit critical information about the relationships between
the input parameters and corresponding responses. In addition to the input and
output layers, these networks incorporate one or more “hidden” layers of neurons
that do not interact with the outside world, but assist in performing nonlinear
feature extraction tasks on information provided by the input and output layers.

In the BP learning algorithm, the network begins with a random set of weights.
Then an input vector is presented and fed forward through the network, and the
output is calculated by using this initial weight matrix. Next, the calculated output
is compared to the measured output data, and the squared difference between
these two vectors determines the system error. The accumulated error for all
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Output =  F (∑ inputs)

Outgoing weighted
connections

Incoming weighted
connections

Figure 8.20. Schematic of a single neuron. The output of the neuron is a function of the
weighted sum of its inputs, where F is a sigmoid function. Feedforward neural networks consist
of several layers of interconnected neurons [9].

the input–output pairs is defined as the Euclidean distance in the weight space
that the network attempts to minimize. Minimization is accomplished via the
gradient descent approach, in which the network weights are adjusted in the
direction of decreasing error. It has been demonstrated that if a sufficient number
of hidden neurons are present, a three-layer BP network can encode any arbitrary
input–output relationship [12].

The structure of a typical BP network appears in Figure 8.21. Referring to
this figure, let

wijk = weight between the j th neuron in layer (k − 1)

and the ith neuron in layer k

j

kth Layer

Output Layer

Input
Layer

Hidden
Layers

(k − 1)th Layer

i

wi,j,k

ini,k

outi,k

Figure 8.21. BP neural network showing input, output, and hidden layers, as well as intercon-
nection strengths (weights), inputs, and outputs of neurons in different layers [9].
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inik = input to the ith neuron in the kth layer

outik = output of the ith neuron in the kth layer.

The input to a given neuron is given by

inik =
∑

j

(wijk · outj,k−1) (8.80)

where the summation is taken over the all neurons in the previous layer. The
output of a given neuron is a sigmoidal transfer function of the input expressed as

outik = 1

1 + e−inik
(8.81)

Error is calculated for each input–output pair as follows. Input neurons are
assigned a value, and computation occurs by a forward pass through each layer
of the network. Then the computed value at the output is compared to its desired
value, and the square of the difference between these two vectors provides a
measure of the error (E) using

E = 0.5
q∑

j=1

(dj − outjn)
2 (8.82)

where n is the number of layers in the network, q is the number of output neurons,
dj is the desired output of the j th neuron in the output layer, and outjn is the
calculated output of that same neuron.

After a forward pass through the network, error is propagated backward from
the output layer. Learning occurs by minimizing error through modification of
the weights one layer at a time. The weights are modified by calculating the
derivative of E and following the gradient that results in a minimum value.
From Eqs. (8.80) and (8.81), the following partial derivatives are computed as

∂(in)ik

∂wijk
= outj,k−1 (8.83)

∂(out)ik

∂wijk
= outj,k−l (1 − outik )

Now let
∂E

∂(in)ik
= −δik (8.84)

∂E

∂(out)ik
= −φik

Using the chain rule for computing derivatives, the gradient of error with respect
to the weights is given by

∂E

∂wijk
=

(
∂E

∂(in)ik

) (
∂(in)ik

∂wijk

)
= −δik · outj,k−1 (8.85)
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In the previous expression, outj,k−1 is available from the forward pass. The
quantity δik is calculated by propagating the error backward through the network.
Consider that for the output layer

−δin = ∂E

∂(in)in
=

(
∂E

∂(out)in

)(
∂(out)in

∂(in)in

)
(8.86)

= (dj − outjn)(outin)(1 − outin)

where the expressions in Eqs. (8.82) and (8.83) have been substituted. Likewise,
the quantity φin is given by

−φin = (dj − outjn) (8.87)

Consequently, for the inner layers of the network

−φik = ∂E

∂(out)ik
=

∑
j

(
∂E

∂(in)j,k+1

)(
∂(in)j,k+1

∂(out)ik

)
(8.88)

where the summation is taken over all neurons in the (k + 1)th layer. This expres-
sion can be simplified using Eqs. (8.80) and (8.84) to yield

φik =
∑

j

(δj,k+1 · wij ,k+1) (8.89)

Then δik is determined from Eq. (8.86) as

δik = φik (outik )(1 − outik ) (8.90)

= outik (1 − outik )
∑

j

(δj,k+1 · wij,k+1)

Note that φik depends only on the δ in the (k + 1)th layer. Thus, φ for all neurons
in a given layer can be computed in parallel. The gradient of the error with respect
to the weights is calculated for one pair of input–output patterns at a time. After
each computation, a step is taken in the opposite direction of the error gradient.
This procedure is repeated until convergence is achieved.

The ability of neural networks to learn input–output relationships from lim-
ited data is quite beneficial in semiconductor manufacturing, where many highly
nonlinear fabrication processes exist, and experimental data for process modeling
are expensive to obtain. Several researchers have reported noteworthy successes
in using neural networks to model the behavior of a few key fabrication pro-
cesses [9]. In so doing, the usual strategy is to perform a series of statistically
designed characterization experiments, and then to train BP neural nets to model
the experimental data. The experiments conducted to characterize the process
typically consist of a factorial or fractional factorial exploration of the input
parameter space, which may be subsequently augmented by a more advanced
experimental design. Each set of input conditions in the design corresponds to
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a particular set of measured process responses. This input–output mapping is
precisely what the neural network learns.

As an example of the neural network process modeling procedure, Himmel
and may used BP neural networks to model the same plasma etching process
and dataset described in Section 8.2.2 [13]. In modeling applications, the input
layer of neurons receives the external information for the network to process.
This corresponds to the six input parameters (power, pressure, electrode spacing,
and the three gas flows). The output layer transmits processed information to the
outside world, and thus corresponds to the etch responses (etch rate, uniformity,
etc.). The hidden layer of neurons can be regarded as representing the fundamental
physical and chemical properties of the plasma system. Such properties include
electron density, electron temperature, and reactive species concentrations. The
system inputs have a direct influence on these fundamental quantities, which in
turn affect the output responses. Since they represent the physical properties of
the plasma itself, the proper number of hidden-layer neurons is not known in
advance. Thus, the number of hidden neurons is varied to achieve maximum
performance.

Himmel compared the previously derived response surface models to BP neu-
ral network models and found that the neural network models exhibited 40–70%
better accuracy (as measured by RMS error) than RSM models and required
fewer training experiments. Furthermore, the results of this study also indicated
that the generalizing capabilities of neural network models were superior to their
conventional statistical counterparts. This fact was verified by using both the
RSM and “neural” process models to predict previously unobserved experimen-
tal data (or test data). Neural networks showed the ability to generalize with
an RMS error 40% lower than the statistical models even when built with less
training data.

8.5.2. Fuzzy Logic

Fuzzy logic techniques represent yet another alternative for developing empirical
models of semiconductor manufacturing processes. Fuzzy logic depends concep-
tually on fuzzy sets, which were first introduced by Lotfi Zadeh to manipulate
information that possesses uncertainty [14]. Fuzzy sets are a generalization of
conventional set theory that provide a systematic way to represent vagueness,
as well as data structures that are an intuitively plausible way to formulate and
solve various problems in pattern recognition.

The basic ideas behind fuzzy sets are relatively simple. Suppose that a car is
approaching a red light and a driving instructor must advise a student when to
apply the brakes. Rather than saying “Begin braking 74 ft from the crosswalk,”
the instructor would more likely say, “Apply the brakes pretty soon.” The former
instruction is too precise to be implemented. This example illustrates the utility
of vagueness in natural language used in everyday life. This type of imprecision
or uncertainty is known as “fuzziness.”

Conventional (or “crisp”) sets contain objects that satisfy precise properties
required for membership in the set. For example, the set of numbers H from 6
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to 8 is crisp and well defined by its membership function mH (x) as

mH(x) =
{

1 6 ≤ x ≤ 8
0 otherwise

(8.91)

Whereas for crisp sets the membership status is captured by a binary variable,
for fuzzy sets we refer to the degree of membership (or “grade”) of an input
variable in a given set. The membership grade has a value between zero and one,
where “0” indicates no membership of the variable in the set, and “1” reflects
full membership. The crisp set H and the graph of mH are shown on the left
side of Figure 8.22.

Now consider the fuzzy set F of real numbers that are close to seven. Because
the property “close to seven” is imprecise, there is not unique membership func-
tion mF for F . However, a number of intuitive properties are plausible candidates
for defining such a function. These include, for example

1. Normality: mF (7) = 1.
2. Monotonicity: the closer x is to 7, the closer mF is to 1.
3. Symmetry: numbers equally distant from 7 should have equal memberships.

Either of the functions on the right side of Figure 8.22 have these properties
and would thus be usefully representative of F . Because of its continuity, the
triangular membership function mF2 in the lower right is the type most often used.

So, the membership function maps the degree to which an object belongs to a
given set onto the range [0, 1] (see Figure 8.23), and its values measure how well
the object satisfies imprecisely defined properties. It is therefore the fundamental
idea in fuzzy set theory. Zadeh defined several classical operations that allow
fuzzy sets to be manipulated. For two fuzzy sets A and B, and corresponding
membership functions mA and mB , these operations are

Equality: A = B ⇔ mA(x) = mB(x) (8.92)

Containment: A ⊂ B ⇔ mA(x) ≤ mB(x) (8.93)

H

H = Numbers between 6 and 8 F = Numbers close to 7

6 7 6 7 88

1

0

1 1
.8

0
6 86.8

0
6 7

mH
mF2

mF1

8

Figure 8.22. Membership functions for crisp and fuzzy sets [15].
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x
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Domain = X Range = mF(X)

1mF(x)

mF

Figure 8.23. Mapping operation of membership functions [15].

Complement: m
A
(x) = 1 − mA(x) (8.94)

Intersection: mA∩B(x) = min[mA(x), mB(x)] (8.95)

Union: mA∪B(x) = max[mA(x), mB(x)] (8.96)

Other authors have subsequently proposed other useful functions for these basic
operations [15], but these five are the most important and nearly ubiquitous in
real fuzzy logic applications.

The use of fuzzy logic for process modeling was introduced by Takagi and
Sugeno [16]. In general, a fuzzy logic model consists of four major elements:
membership functions, internal functions, rules, and outputs. The input variable
is first normalized (usually onto the interval [0, 1]). A group of membership
functions, one from each input variable, constitutes a fuzzy cell. For the ith cell,
the fuzzy membership function Ai

l (xl) computes the membership grade (u) for
each of k input variables xl (where l = 1, . . . , k). The total number of cells is
n = r1 × r2 × · · · × rk , where rl is the number of membership functions for xl .

With respect to each fuzzy cell, fuzzy rules are used to map input variables to
output conditions. If F i

j is a fuzzy set, then the rule of the ith cell is of the form

If x1 is F i
1 and x2 is F i

2 and · · · and xk is F i
k , then

f i(x1, x2, . . . , xk) = pi
0 + pi

1x1 + pi
2x2 + · · · + pi

kxk

The function f i(x1, x2, . . . , xk) is known as the internal function with parameters
pi

0, p
i
1, . . . , p

i
k. For each rule, the membership and internal functions are used to

determine the rule’s output. The use of several internal functions accounts for
the fuzziness of the model. In a crisp approach, such as regression analysis, a
single function (usually a polynomial) is used to represent system behavior. In
contrast, a fuzzy logic model uses several functions to perform this mapping, and
the integration of those functions is used to model system behavior.

The output of a fuzzy logic model is the weighted average of the rule outputs.
The weight of each rule’s output is the minimum of each of the membership
grades of its antecedents, or

wi = min[Ai
1(x1), A

i
2(x2), . . . , A

i
k(xk)] (8.97)
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where i is the index of the n fuzzy rules. The output corresponding to the j th
pair of input variables is

ŷj (x1j , x2j , . . . , xkj ) =

n∑
i=1

min[Ai
1(x1j ), A

i
2(x2j ), . . . , A

i
k(xkj )]

× (pi
0 + pi

1x1j + pi
2x2j + · · · + pi

kxkj )
n∑

i=1

min[Ai
1(x1j ), A

i
2(x2j ), . . . , A

i
k(xkj )]

(8.98)

The model output can be compared with experimental data to calculate the coeffi-
cients of the internal function. When the model is established (i.e., when the coef-
ficients are known), it can be used to predict process behavior. The total number of
coefficients of the internal functions to be derived is r1 × r2 × · · · × rk × (k + 1).
These coefficients are determined by minimizing the sum of squares of the errors
between the experimental data and the outputs of the fuzzy logic model.

Xie et al. successfully used this approach to model the epitaxial growth of
silicon by CVD [17]. For a horizontal reactor employing a gas mixture of silane
and hydrogen, three input variables were considered: mean gas velocity (V0),
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Figure 8.24. Membership function used to model the CVD process in the paper by Mie
et al. [17].
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partial silane pressure (P0), and axial position on the graphite susceptor (x). A
total of 63 data points were used to train the fuzzy model, and the membership
functions used for the input variables are shown in Figure 8.24. The internal
functions were linear functions of these variables. The CVD deposition rates
predicted by the fuzzy model developed were within 5% of those predicted by a
previously established empirical model (Figure 8.25).

8.6. PROCESS OPTIMIZATION

A formal, systematic methodology that facilitates the design of specific sets
of process conditions (or “recipes”) to achieve desired process objectives is
necessary to optimize a given unit process. These process objectives are generally
specific locations on the multidimensional response surfaces that geometrically
depict the variation of process output characteristics with respect to input
variables. Recipe generation can be achieved by employing previously described
process models in conjunction with response surface exploration schemes. These
schemes include traditional approaches such as Powell’s algorithm [18] or Nelder
and Mead’s simplex algorithm [19], as well as more advanced techniques like
genetic algorithms [20]. These methods are discussed in more detail in the
following sections.

8.6.1. Powell’s Algorithm

Classical methods of process optimization are gradient-based techniques using the
“hill-climbing” approach. In this case, the “hills” are multidimensional response
surfaces such as that depicted in Figure 8.9. For function minimization (or
maximization) in n-dimensional space using these methods, it is important to
find the best direction to minimize (or maximize) the function. One method used
in determining the best direction to proceed in order to optimize a given function
is Powell’s algorithm [18], which generates successive quadratic programming
problems.

Consider the function minimization process and a particular point x0 at the
origin of the coordinate system with coordinates x. In addition, note that any
function f can be approximated by its Taylor series evaluated at x. In other words

f (x) = f (x0) +
∑

i

∂f

∂xi

xi + 1

2

∑
i,j

∂2f

∂xi∂xj

xixj + · · · ≈ a + xT b + 1

2
xT Gx

(8.99)

where a is a constant and b is a constant vector. The matrix G, whose components
are the second partial derivative matrix of the function, is called the Hessian
matrix of the function at x0. This quadratic function has a minimum at the point
where (8–100) is equal to zero. This point is called x̂, and it is given by

x̂ = −G−1b (8.100)
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Subject to certain continuity conditions, a function can be approximated in the
region of the point x0 by

φ(x) = f (x0) + (x − x0)
T ∇f (x0) + 1

2 (x − x0)
T G(x0)(x − x0) (8.101)

where G(x0) is the Hessian matrix at x0.
A reasonable approximation to the minimum of f (x) is the minimum of φ(x).

If the latter is at xm, we have

∇f (x0) + G(x0)(xm − x0) = 0 (8.102)

∴ xm = x0 − G−1(x0)∇f (x0) = x0 − G−1(x0)g(x0)

Thus, the iterative equation from point xi to the next approximation is

xi+1 = xi − G−1(xi )g(xi ) (8.103)

Both |g(xi+1)| and |xi+1 − xi | should be checked as termination criteria. Note
that the search direction is not −g(xi ), but −G−1(xi )g(xi ) if second derivatives
are taken into account.

The direction of search at each stage is thus a crucial factor in the efficiency
of iterative search methods because the evaluation and inversion of the Hessian
matrix require significant computation, especially for “implicit” optimization
functions whose derivatives must be estimated by means of perturbations. For
a quadratic function of n variables such as Eq. (8.99), the best direction for
optimization is a direction that is conjugate to the previous search direction.
Two directions p and q are said to be conjugate with respect to the symmetric
positive-definite matrix G if

pT Gq = 0 (8.104)

If line minimizations of a function are performed in one direction and successively
redone along a conjugate set of directions, then any previously explored direction
need not be repeated.

The goal of this method is to come up with a set of n linearly independent,
mutually conjugate directions. Then, one pass of n line minimizations will put
the algorithm exactly at the minimum of a quadratic form such as Eq. (8.99).
For functions that are not exactly quadratic, this approach will not result in
identifying the exact minimum, but repeated cycles of n line minimizations will,
in due course, converge to the minimum.

The evaluation and inversion of the Hessian matrix in Eq. (8.103) at each step
involves significant computation. Powell first discovered a direction set method
that does produce n mutually conjugate directions without calculation of Hessian
matrix. The procedure is as follows:

1. First, initialize the set of directions xi to the basis vectors.
2. Repeat the following sequence of steps until convergence (typically defined

as achieving suitable small error metrics):
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• Save the starting position as x0.
• For i = 1, . . . , n, move xi−1 to the minimum along direction ui , and call

this point xi .
• For i = 1, . . . , n − 1, set ui ← ui+1.
• Set un ← xn − x0.
• Move xn to the minimum along direction un and call this point x0.

Powell showed that, for a quadratic form such as Eq. (8.99), k iterations of
the basic procedure listed above produces a set of directions ui whose last k

members are mutually conjugate. Therefore, n iterations of the basic procedure,
which amounts to n(n + 1) line minimizations in all, will exactly minimize a
quadratic form.

8.6.2. Simplex Method

A regular simplex is a set of n + 1 mutually equidistant points in n-dimensional
space. In two dimensions, the simplex is an equilateral triangle, and in three
dimensions, it is a regular tetrahedron. The idea of the simplex method of opti-
mization is to compare the values of the function at the vertices of the simplex
and move the simplex toward the optimal point during the iterative process. The
original simplex method maintained a regular simplex at each stage. Nelder and
Mead proposed several modifications to the method that allow the simplices to
become nonregular [19]. The result is a very robust direct search method that is
extremely powerful for up to five variables.

The movement of the simplex in this method is achieved by the application of
three basic operations: reflection, expansion and contraction. Nelder and Mead’s
minimization procedure is as follows:

1. Start with points x1, x2, . . . , xn+1 and find

f1 = f (x1), f2 = f (x2), · · · fn+1 = f (xn+1) (8.105)

2. Next, find the highest function value fh, the next highest function value fg

and the lowest function value fl and corresponding points xh, xg , and xl .
3. Find the centroid of all the points except xh. Call the centroid xo, where

x0 = 1

n

∑
i �=h

xi (8.106)

Evaluatef (x0) = f0.
4. It would seem reasonable to move away from xh. Therefore, we reflect xh

in xo to find xr and find f (xr ) = fr . If α is the reflection factor, find xr

such that

xr − x0 = α(x0 − xh) (8.107)

∴ xr = (1 + α)x0 − αxh
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5. Now compare fr and fl .
a. If fr < fl , the lowest function value has not yet been obtained. The

direction from xo to xr appears to be a good one to move along. We
therefore expand in this direction to find xe and evaluate f (xe) = fe.
With an expansion factor γ(0 < γ < 1), we have

xe − x0 = γ(xr − x0) (8.108)

∴ xe = γxr + (1 − γ)x0

i. If fe < fl , replace xh by xe and test the (n + 1) points of the simplex
for convergence to the minimum. If convergence has been achieved,
stop; if not, return to step 2.

ii. If fe ≥ fl , abandon xe. We have evidently moved too far in the
direction xo to xr , which we know gave improvement (step 5a). Test
for convergence, and if it is not achieved, return to step 2.

b. If fr > fl but fr ≤ fg , xr is an improvement on the two worst points
of the simplex, and we replace xh by xr . Test for convergence, and if it
is not achieved, return to step 2.

c. If fr > fl and fr > fg , proceed to step 6.

6. Compare fr and fh.
a. If fr > fh, proceed directly to the contraction step 6b. If fr < fh,

replace xh by xr and fh by fr . Remember fr > fg from step 5c. Proceed
to step 6b.

b. In this case fr > fh, so it would appear that we have moved too far in the
direction xh to xo. We rectify this by finding xc (and fc) by a contraction
step. (Figure 8.26 illustrates reflection, expansion, and contraction). If
fr > fh, proceed directly to contraction and find xc from

xc − x0 = β(xh − x0) (8.109)

∴ xc = βxh + (1 − β)x0

where β(0 < β < 1) is the contraction coefficient. If, however, fr < fh,
replace xh by xr and contract. Thus we find xc from (see Figure 8.27)

xc − x0 = β(xr − x0) (8.110)

∴ xc = βxr + (1 − β)x0

Figure 8.26. Illustration of reflection, expansion, and contraction.
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Figure 8.27. Illustration of contraction if fr < fh.

7. Compare fc and fh.
a. If fc < fh, replace xh by xc, check for convergence, and if convergence

is not achieved, return to step 2.
b. If fc > fh, all efforts to find a value < fh have failed, proceed to step 8.

8. Reduce the size of the simplex by halving the distance of each point of the
simplex from xl to the point generating the lowest function value. Thus, xi

is replaced by
xl + 1

2 (xi − xl ) = 1
2 (xi + xl ) (8.111)

Then calculate fi for i = 1, 2, . . . , (n + 1), test for convergence, and if
convergence has not been met, return to step 2.

9. The test of convergence is based on the standard deviation (σ) of the (n + 1)
function values being less than some predetermined small value (ε). Thus,
we calculate

σ2 = 1

n + 1

n+1∑
i=1

(fi − f̂ )2 (8.112)

where f̂ = ∑
fi/(n + 1). If σ < ε, all function values and points are very

close together near the minimum xl .

There remain some important details to clarify. The first concerns the values
of α, β, and γ. Nelder and Mead recommend α = 1, β = 0.5, γ = 2 [19]. This
recommendation appears to allow the method to work efficiently in many different
situations.

If one of the xi must be nonnegative in a minimization problem, then the
simplex method may be adapted in one of two ways. The scale of x can be trans-
formed (such as by using the logarithm) so that negative values are excluded,
or the function can be modified to take a large positive value for all negative x.
Alternatively, any points trespassing the simplex border will be followed auto-
matically by contraction moves that will eventually keep it inside. In either case,
an actual minimum with x = 0 would be inaccessible in general, though one can
achieve an arbitrarily close approximation.

Constraints involving more than one x can accounted for by using the second
technique, provided that an initial simplex can be found inside the permitted
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region from which to start the process. Linear constraints that reduce the dimen-
sionality of the field of search can be included by choosing the initial simplex to
satisfy the constraints and to reduce the dimensions accordingly. Thus, to min-
imize y = (x1, x2, x3) subject to x1 + x2 + x3 = K, we could choose an initial
simplex with vertices (K, 0, 0), (0, K, 0), and (0, 0, K), and treating the search as
two-dimensional. In particular, any xi may be held constant by setting its value
to that constant for all vertices of the initial simplex.

8.6.3. Genetic Algorithms

Genetic algorithms (GAs) were first proposed for solving optimization problems
by John Holland at the University of Michigan in 1975 [20]. GAs are guided
stochastic search techniques inspired by the mechanics of genetics. They use
three genetic operations found in natural genetics to guide their trek through the
search space: reproduction, crossover, and mutation. Using these operations, GAs
are able to search through large, irregularly shaped spaces quickly, requiring only
objective function value information (detailing the quality of possible solutions)
to guide the search. This is a desirable characteristic, considering that the majority
of traditional search techniques require derivative information, continuity of the
search space, or complete knowledge of the objective function to guide the search.
Furthermore, GAs take a more global view of the search space than many methods
currently encountered in engineering optimization.

In computing terms, a genetic algorithm maps a problem on to a set of binary
strings, each string representing a potential solution. The GA then manipulates
the most promising strings in searching for improved solutions. A GA operates
typically through a simple cycle of four stages:

1. Creation of a “population” of strings
2. Evaluation of each string
3. Selection of “best” strings
4. Genetic manipulation, to create the new population of strings

In each computational cycle, a new generation of possible solutions for a given
problem is produced. At the first stage, an initial population of potential solutions
is created as a starting point for the search process. Each element of the population
is encoded into a string (the “chromosome”), to be manipulated by the genetic
operators. In the next stage, the performance (or fitness) of each individual of the
population is evaluated with respect to the constraints imposed by the problem.
According to the fitness of each individual string, a selection mechanism chooses
“mates” for the genetic manipulation process. The selection policy is responsible
for assuring survival of the most “fit” individuals.

Binary strings are typically used in coding genetic search, although alphanu-
meric strings can be used as well. One successfully used method of coding
multivariate optimization problems is concatenated, multiparameter fixed-point
coding. If x ∈ [0, 2l] is the parameter of interest (where l is the length of the
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string), the decoded unsigned integer x can be mapped linearly from [0, 2l] to a
specified interval [Umin, Umax]. In this way, both the range and precision of the
decision variables can be controlled. The precision (p) of this mapped coding is

p = Umax − Umin

2l − 1
(8.113)

To generate a multiparameter coding, the necessary number of single
parameters as can be concatenated. Each coding may have its own sublength
(i.e., its own Umin and Umax). Figure 8.28 shows an example of two-parameter
coding with four bits in each parameter. The ranges of the first and second
parameter are 2–5 and 0–15, respectively.

The string manipulation process employs genetic operators to produce a new
population of individuals (“offspring”) by manipulating the genetic “code” pos-
sessed by members (“parents”) of the current population. It consists of three
operations: reproduction, crossover, and mutation. Reproduction is the process
by which strings with high fitness values (i.e., good solutions to the optimization
problem under consideration) receive appropriately large numbers of copies in
the new population. A popular method of reproduction is elitist roulette wheel
selection. In this method, those strings with large fitness values Fi are assigned
a proportionately higher probability of survival into the next generation. This
probability is defined by

Pi = Fi∑
F

(8.114)

Thus, an individual string whose fitness is n times better than another will produce
n times the number of offspring in the subsequent generation. Once the strings
have reproduced, they are stored in a “mating pool” awaiting the actions of the
crossover and mutation operators.

The crossover operator takes two chromosomes and interchanges part of their
genetic information to produce two new chromosomes (see Figure 8.29). After
the crossover point has been randomly chosen, portions of the parent strings (P1
and P2) are swapped to produce the new offspring (O1 and O2) on the basis of
a specified crossover probability. Mutation is motivated by the possibility that
the initially defined population might not contain all the information necessary to
solve the problem. This operation is implemented by randomly changing a fixed
number of bits every generation according to a specified mutation probability
(see Figure 8.30).

2nd parameter = 7
range [0, 15]
p = 1

1st parameter = 4.2
range [2, 5]
p = 0.2

1 0 01 1 1 1 1

Figure 8.28. Illustration of multiparameter coding.
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Figure 8.29. Crossover operation.

0 0 0 0 0 0

0 0 0 1 0 0

Figure 8.30. Mutation operation.

Typical values for the probabilities of crossover and bit mutation range from
0.6 to 0.95 and 0.001 to 0.01, respectively. Higher mutation and crossover rates
disrupt good “building blocks” (schemata) more often, and for smaller popu-
lations, sampling errors tend to wash out the predictions. For this reason, the
greater the mutation and crossover rates and the smaller the population size, the
less frequently predicted solutions are confirmed.

8.6.4. Hybrid Methods

Recipe generation is essentially a procedure for searching a multidimensional
response space in order to locate an optimum. Each algorithm described above
represents an approach to performing such a search. In both Powell’s algo-
rithm and the simplex method, however, the initial starting searching point has a
profound effect on overall performance. With an improper initial starting point,
both algorithms are more likely to be trapped in local optima, and this is why
they are both considered “local” optimization methods. However, if the proper
initial point is given, the search is very fast. On the other hand, genetic algorithms
can explore the overall domain area very fast, and this is why they are known as
“global” optimizers. Unfortunately, although they are quick to reach the vicinity
of the global optimum, converging to the global optimum point is very slow.

It has been suggested and demonstrated that hybrid combinations of genetic
(global) algorithms with one of the local algorithms can sometimes offer improved
results in terms of both speed and accuracy [21]. Hybrid algorithms start with
genetic algorithms to initially sample the response surface and find the general
vicinity of the global optimum. After some number of generations, the best point
found using the GA is handed over to a local optimization algorithm as a starting
point. With this initial point, both Powell’s algorithm and simplex method can
quickly locate the optimum.
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8.6.5. PECVD Optimization: A Case Study

To illustrate the importance of process optimization, consider the plasma-
enhanced chemical vapor deposition (PECVD) of silicon dioxide films used
as interlayer dielectrics. In this process, one would like to grow a film with
the lowest dielectric constant, best uniformity, minimal stress, and lowest
impurity concentration possible. However, achieving these goals usually requires
a series of tradeoffs in growth conditions. Optimized process models can help a
process engineer navigate complex response surfaces and provide the necessary
combination of process conditions (temperature, pressure, gas composition, etc.)
or find the best compromise among potentially conflicting objectives to produce
the desired results.

Han has used neural network process models for the PECVD process to
synthesize other novel process recipes [21]. To characterize the PECVD of
SiO2 films, he first performed a 25−1 fractional factorial experiment with three
centerpoint replications. Data from these experiments were used to develop
neural process models for SiO2 deposition rate, refractive index, permittivity,
film stress, wet etch rate, uniformity, silanol (SiOH) concentration, and water
concentration. A recipe synthesis procedure was then performed to generate the
necessary deposition conditions to obtain specific film qualities, including zero
stress, 100% uniformity, low permittivity, and minimal impurity concentration.

Han compared five optimization methods to generate PECVD recipes:
(1) genetic algorithms, (2) Powell’s method, (3) Nelder and Mead’s simplex
algorithm, (4) a hybrid combination of genetic algorithms and Powell’s method,
and (5) a hybrid combination of genetic algorithms and the simplex algorithm.
The desired output characteristics of the PECVD SiO2 film to be produced are
reflected by the following fitness function

F = 1

1 +
∑

r

|Kr(yd − y)|
(8.115)

where r is the number of process responses, yd are the desired process responses,
y are the process outputs dictated by the current choice of input parameters, and
Kr is a constant which represents the relative importance of the rth process
response. The optimization procedures were stopped after a fixed number or
iterations or when F was within a predefined tolerance.

For genetic algorithms, the probabilities of crossover and mutation were
set to 0.6 and 0.01, respectively. A population size of 100 was used in each
generation. Each of the five process input parameters was coded as a 40-bit
string, resulting in a total chromosome length of 200 bits. Maximization of F

continued until a final solution was selected after 500 generations. Search in
the simplex method is achieved by applying three basic operations: reflection,
expansion, and contraction. Nelder and Mead recommend values of 1, 2, and 0.5
for α, γ, and β, respectively [19]. These were the values used in the simplex and
hybrid simplex–genetic method.
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Table 8.20. PECVD recipe synthesis results [21].

Method % Nonuniformity Permittivity Stress (MPa) H2O (Wt%) SiOH (Wt%)

GA 3.13 4.28 −209.3 1.99 5.08
Simplex 0.66 4.37 −173.4 1.28 3.17
Powell 0.26 4.26 −233.6 1.78 2.66
GA/simplex 1.64 4.38 −216.3 1.25 4.51
GA/Powell 5.05 4.11 −264.3 1.19 4.01

Weight 1 100 1 50 50
Goal 0% Minimum 0 0 0

It was expected that hybrid methods would readily improve accuracy compared
with genetic search alone if initiated immediately after the 500 GA generations.
Such a large number of generations, however, impacts the computational load of
these techniques severely. Therefore, to reduce this computational burden in both
hybrid methods, the GA portion of the search was limited to 100 generations.
Then the resulting GA solution was handed over as the initial starting point for
the simplex or Powell algorithms.

The objective of this recipe synthesis procedure was to find the optimal
deposition recipes for the following individual novel film characteristics: 100%
thickness uniformity, low permittivity, zero residual stress, and low impurity
concentration in the silicon dioxide film. Clearly, it is desirable to grow films
with the best combination of all the desired qualities (i.e., 100% uniformity,
low permittivity, low stress, and low impurity content). This involves processing
tradeoffs, and the challenge, therefore, is to devise a means for designating the
importance of a given response variable in determining the optimal recipe.

These multiple objectives were accomplished simultaneously by applying the
fitness function in Eq. (8–14) with a specific set of Kr coefficients chosen for
growing films optimized for electronics packaging applications. Because one of
the most important qualities in SiO2 films for this application is permittivity,
Han set the weight of permittivity equal to 100. Weights for both water and
silanol concentration were set to 50, and the weights for both uniformity and
stress were set to 1. Table 8.20 shows the measured results of the five different
synthesis procedures for optimizing multiple outputs. Overall, given the response
weighting selected, the genetic algorithm and the hybrid GA/Powell algorithm
provide the best compromise among the multiple objectives.

SUMMARY

In this chapter, we have provided an overview of how data derived from designed
experiments can be used to construct process models of various types, including
conventional regression models, as well as more contemporary artificial intelli-
gence–based techniques. The models so derived are used to analyze, visualize,
and predict semiconductor process behavior. We have also discussed how these
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models can be used “in reverse” to synthesize optimal process recipes. In the
next chapter, we will discuss how data these models are applied for advanced
process control.

PROBLEMS

8.1. Derive Eqs. (8.24).

8.2. Fit the yield data in Example 8.2 to a linear model using regression tech-
niques, and perform analysis of variance to evaluate the quality of your
model. Is the linear model sufficient?

8.3. A dry-etch step is used to etch 1.0 µm of polysilicon. A sample of five
wafers is measured each hour. It is expected that over time the lower
electrode of the etcher will become contaminated and ohmic contact with
the wafer will therefore deteriorate, decreasing the etch rate. The electrode
is cleaned before the first and seventh samples. The measured etch rate is
given below. Draw a 2σ regression chart for this process.

x 1.03 1.01 1.02 1.01 0.98 0.99 1.05 1.03 1.04 1.00 0.95 0.94
R 0.006 0.005 0.007 0.006 0.009 0.008 0.007 0.005 0.008 0.005 0.006 0.005

8.4. Consider a 33 factorial experiment conducted in a semiconductor manu-
facturing process with three normalized factors (x1, x2, and x3) and two
responses (y1 and y2) [3]. The following data were collected:

x1 x2 x3 y1 y2

−1 −1 −1 24.00 12.49
0 −1 −1 120.33 8.39
1 −1 −1 213.67 42.83

−1 0 −1 86.00 3.46
0 0 −1 136.63 80.41
1 0 −1 340.67 16.17

−1 1 −1 112.33 27.57
0 1 −1 256.33 4.62
1 1 −1 271.67 23.63

−1 −1 0 81.00 0.00
0 −1 0 101.67 17.67
1 −1 0 357.00 32.91

−1 0 0 171.33 15.01
0 0 0 372.00 0.00
1 0 0 501.67 92.50

−1 1 0 264.00 63.50
0 1 0 427.00 88.61
1 1 0 730.67 21.08

−1 −1 1 220.67 133.82
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x1 x2 x3 y1 y2

0 −1 1 239.67 23.46
1 −1 1 422.00 18.52

−1 0 1 199.00 29.44
0 0 1 485.33 44.67
1 0 1 673.67 158.21

−1 1 1 176.67 55.51
0 1 1 501.00 138.94
1 1 1 1010.00 142.45

(a) The response y1 is the average of 3 resistivity readings (in �-cm) for
a single wafer. Fit a quadratic model to this response.

(b) The response y2 is the standard deviation of the three resistivity mea-
surements. Fit a first-order model to this response.

(c) Where should x1, x2, and x3 be set if the objective is to hold the mean
resistivity at 500 �-cm and minimize the standard deviation?

8.5. The yield from the first four cycles of a chemical process is shown below,
with the following variables: (1)% concentration (X1) at levels 30 (L),
31 (M), and 32 (H) and (2) temperature (X2) at 140 (L), 142 (M), and
144 (H) degrees. Analyze the data using EVOP.

Cycle (1 M–M) (2 L–L) (3 H–H) (4 H–L) (5 L–H)

1 60.7 69.8 60.2 64.2 57.5
2 69.1 62.8 62.5 64.6 58.3
3 66.6 69.1 69.0 62.3 61.1
4 60.5 69.8 64.5 61.0 60.1

8.6. Suppose that data are collected on deposition rate (x1) and uniformity (x2)
for a CVD process. The covariance matrix is

∑
=

(
80 44
44 80

)

(a) What is the first principal component, and what percentage of the total
variation does it account for?

(b) Repeat (a) given

� =
(

8000 440
440 80

)

8.7. Derive Eq. (8.83).

8.8. The data tabulated below are deposition rates collected from a designed
experiment to characterize a plasma-enhanced CVD process as a function
of five input factors: SiH4 flowrate, N2O flowrate, temperature, pressure,
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and power. Using the backpropagation algorithm, design a neural network
to approximate the deposition rate.

SiH4

(sccm)
N2O

(sccm)
Temperature

(◦C)
Pressure

(Torr)
Power
(W)

Deposition
Rate (Å/min)

200 400 400 0.25 20 123
400 400 400 1.80 20 460
400 400 400 0.25 150 454
300 650 300 1.025 85 433
300 650 300 1.025 85 432
400 900 200 0.25 150 362
200 400 400 1.80 150 173
200 400 200 1.80 20 304
400 900 200 1.80 20 242
300 650 300 1.025 85 428
400 900 400 1.80 150 426
400 400 200 1.80 150 352
200 900 200 0.25 20 101
200 900 400 0.25 150 222
200 900 400 1.80 20 268
400 900 400 0.25 20 56
200 400 200 0.25 150 287
400 400 200 0.25 20 139
200 900 200 1.80 150 196

8.9. Suppose that we are evaluating the particle content of two adjacent areas
(A and B) in a class 10 cleanroom. The number of particles/ft3 in each
area are described by the fuzzy membership functions mA and mB , where

mA ∈ �(x) = {(particle count) close to 7 ft−3}
mB ∈ �(x) = {(particle count) close to 3 ft−3}

These membership functions are shown in Figure P8.9.
Determine the following:
(a) The extent to which area B has counts nearly 7 ft−3.

(b) The extent to which area B has counts NOT nearly 7 ft−3.

(c) The extent to which a measurement of 6 ft−3 is nearly 7 ft−3.

(d) The extent to which a measurement of 6 ft−3 is nearly 3 ft−3.

(e) The extent to which a measurement of 6 ft−3 is nearly (3 AND 7) ft−3.

(f) The extent to which a measurement of 6 ft−3 is nearly (3 OR 7) ft−3.

8.10. Consider the plasma etching example in Section 8.2.2. Use Powell’s
method to optimize Eq. (8.61) to identify a recipe that achieves the highest
etch rate possible.
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ADVANCED PROCESS
CONTROL

OBJECTIVES

• Provide an overview of various techniques for univariate and multivariate
run-by-run control.

• Introduce and explore the concept of supervisory control.

INTRODUCTION

In Chapter 6, the basic concepts of statistical process control (SPC) were pre-
sented. Although SPC is indeed a powerful technique for monitoring reducing
variation in semiconductor manufacturing processes, it is limited. The underlying
assumption on which SPC is based is that the observations collected and plotted
on control charts represent a random sample from a stable probability distribution.
However, this assumption does not hold for many commonly encountered sce-
narios. Primary examples are processes that have undergone an abrupt shift or
gradual drifts. Another limitation of SPC is that it is usually applied offline. As a
result, corrective actions suggested by SPC alarms typically occur too long after
process shifts, potentially leading to significant misprocessing.

One solution to this dilemma is run-by-run (RbR) control. The RbR approach
is a discrete form of feedback control in which process recipes are modified
between runs to minimize shifts, drifts, and other forms of process variability. A
“run” can be a single wafer, a lot, a batch, or any other grouping of semiconductor
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Figure 9.1. Block diagram of run-by-run control system [1].

products undergoing the same set of process conditions. RbR control is event-
driven, since control actions are initiated by characterizing pre- and postprocess,
as well as in situ, metrology data. These metrology data are compared to pre-
dictions generated from process models. When model predictions differ signif-
icantly from measurements, corrective action is initiated for the next run. The
input/output structure of a typical RbR control system is shown in Figure 9.1.
RbR control has, in recent years, become a proven and viable technology for
process and equipment control.

A run-by-run control system that involves both feedforward and feedback con-
trol actions is known as a supervisory control system. Control of semiconductor
processes can be examined at several levels (see Figure 9.2). Real-time control
is at the lowest level of the hierarchy. In this case, adjustments are made to
process variables during a run to maintain setpoints. A common example of the
real-time level is the control loop used by mass flow controllers to regulate gas
flow in a process chamber. The next level of the hierarchy is RbR control that
adjusts process conditions between runs. Supervisory control highest level of the
hierarchy. At this level, the progression of a wafer is tracked from unit process
to unit process, and adjustments can be made to subsequent steps to account for
variation in preceding steps.

This chapter explores both RbR and supervisory process control strategies.
Such advanced process control techniques are required more and more for increas-
ingly sophisticated modern semiconductor manufacturing applications. The chapter

Supervisory Control

Run-by-Run
Control

Real-Time
Control

Process A
wafer
movement

Run-by-Run
Control

Real-Time
Control

Process B
wafer
movement

Run-by-Run
Control

Real-Time
Control

Process C
wafer
movement

Figure 9.2. Process control hierarchy.
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addresses control in two main categories. In this first, we deal with controllers that
utilize polynomial process models, but limit their adaptation to the constant term of
the model. Afterward, we discuss controllers that can adapt the entire model.

9.1. RUN-BY-RUN CONTROL WITH CONSTANT TERM ADAPTATION

Although a wide range of RbR control scenarios exist, there are three basic char-
acteristics that are common to all RbR systems. First, some form of in situ (or
online) or postprocess (inline) measurement is made, and the data from such mea-
surements are used to trigger RbR control actions. Second, a dynamic model of
the process undergoing RbR control must be established and maintained to relate
tunable “recipe” inputs to the measurable process responses. Finally, process
improvement is facilitated by control actions (i.e., adjustments to the tunable
inputs) that occur between process runs.

Beyond these three common characteristics, RbR controllers may be categorized
by the type of measurement data used to drive control actions, the type of con-
trol algorithm employed, or any number of other features. Here, we discuss RbR
controllers as either single-variable or multivariate systems, with the common char-
acteristic that they adapt only the constant term of a linear process model.

9.1.1. Single-Variable Methods

Some of the first research performed to establish RbR control as a viable tech-
nique in semiconductor manufacturing was conducted by Sachs et al. [2]. This
RbR control architecture is depicted in Figure 9.3. This controller has two modes
of operation: rapid and gradual. The rapid mode adapts to abrupt process shifts,
such as those caused by maintenance operations. In this case, the control action
must be decisive. The gradual mode, on the other hand, responds to drifts that
occur over time, such as those caused by aging equipment. In these situations,
the control action should also be gradual, and care must be taken to avoid over-
control. The choice between modes is regulated by a generalized SPC approach,
which allows SPC to be applied while the process is being tuned.

Consider a batch process in which runs are identified by a discrete time index
t , the controllable input variables are denoted by xt , and the output response yt

is a function of these inputs. In other words

yt = αt + βt xt + εt (9.1)

where the coefficients αt and βt are random variables that may change with
time, and εt ∼ N(0, σ2) is process noise. On the basis of this relationship, the
appropriate prediction equation is

ŷt = at−1 + bt−1xt (9.2)

where at−1 and bt−1 are estimates of the parameters αt and βt . The prediction
equation [Eq. (9.2)] is used to select a “recipe” xt for the next run at which the
process output is likely to be close to some target value.
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Figure 9.3. Flowchart depicting the Sachs RbR control architecture [2].

The output yt is measured for every run to decide whether the process is
behaving in a manner consistent with that of the predictive model. In its simplest
implementation, an RbR controller assumes that the process sensitivities repre-
sented by bt−1 remain constant over time, and only the estimated intercept term
at−1 is updated after each output measurement. As long as no radical departure
from predicted behavior occurs, the process model is updated gradually. However,
if the last few output measurements disagree significantly with the predicted
values, the model is updated rapidly to return the output to its target value.

The method used to evaluate the agreement of the output predicted values is
“generalized” SPC. In this approach, the model residuals (which are given by
εt = yt − ŷt ) are plotted on a standard Shewhart (i.e., x ), cusum (cumulative
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sum), EWMA (exponentially weighted moving-average), or other type of control
chart (see Chapter 6). The control chart is used to distinguish between rapid shifts
and slow drifts. A Shewhart chart, for example, would be more appropriate for
identifying the former, whereas a cusum or EWMA chart would be more effective
in detecting the latter. In the RbR controller, the gradual mode, which is designed
to remove the effect of small process changes, is triggered by the detection of
drifts. On the other hand, the rapid mode is engaged to compensate for larger
variations when an abrupt shift is detected. These operations are described in
more detail next.

9.1.1.1. Gradual Drift
To illustrate gradual mode operation, consider the hypothetical single-variable
process shown in Figure 9.4. Assume that the estimated intercept at−1 and slope b

have been computed from runs 1 to t − 1. For simplicity, the slope is assumed
to be constant. Process changes are accounted for by revising the intercept term
whenever a new output measurement becomes available. The process drift can be
visualized by letting the shaded line in Figure 9.4 (which represents the process)
change its vertical position between successive runs.

To control the process, the current process model is used to predict the output
of the next run as a function of the input variable. The RbR controller then selects
an input value for which the predicted output matches the target specifications.
This is illustrated in Figure 9.5. To update the constant term, the current intercept
is calculated as

a1 = y1 − bx1 (9.3)

Since the process is subject to noise, it is reasonable to compute at as a weighted
average of the past differences (y1 − bx1, y2 − bx2, . . . , yt − bxt ). The EWMA
approach has the advantage of allowing the weight (λ) of a given estimate to

Most recent estimate
of the process
intercept (at-1)

Process

Process model

1 estimated process
slope (β)

O
ut

pu
t (

y t
)

input (xt)

Figure 9.4. True process (shaded line) and process model (solid line) [2].
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that intercepts the output axis at the target value [2].

decay gradually over time. The relationship is expressed in recursive form as

at = λ(yt − bxt ) + (1 − λ)at−1 (9.4)

Gradual mode operation is thus defined by this relationship along with

xt = (T − at−1)

b
(9.5)

where T is the target response value. Equation (9.5) determines how the recipe
for the t th run is selected, and Eq. (9.4) describes how the intercept is estimated
after the process output is measured. Combining these two equations gives the
following expression for updating the intercept term:

at = at−1 + λ(yt − T ) (9.6)

To illustrate its effectiveness, Sachs applied this RbR controller to the control
of silicon deposition in an Applied Materials 7800 barrel reactor. This reactor,
which is shown in Figure 9.6, consists of a susceptor with six faces that each
hold three wafers. The susceptor is suspended and rotated inside a quartz bell jar
surrounded by infrared heating lamps. Reactant gases enter the chamber through
the two injectors shown in Figure 9.6. The two parameters used to control the
uniformity of the deposition in this reactor are the horizontal angle of the injectors
(Jx) and the balance of flow between them (Bmv).

The objective of RbR control for this example was to achieve simultaneous
control of the mean deposition rate and batch uniformity by adjusting these two
input variables. To capture uniformity, thickness measurements were performed
at five sites on each of the three wafers on one face of the susceptor. Batch
uniformity was characterized by (1) the “left minus right” difference (L − R),
which is the difference between the average of the left measurement sites of the
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Figure 9.6. Schematic of Applied Materials 7800 reactor [2].

three wafers on a face and those on the right; and (2) the “top minus bottom”
difference (T − B), which is the difference between the top measurement site
on the uppermost wafer and the bottom measurements site on the lower wafer.
Least-squares regression models for the two uniformity metrics were derived
from a 22 factorial experiment with two replicates. These models (with pro-
cess parameters normalized over the range [−1, 1] and standard errors of the
coefficients in parentheses) are

L − R = −0.0173(±0.0046) − 0.00313(±0.0049)Jx + 0.118(±0.0049)Bmv

(9.7)

T − B = −0.138(±0.0061) − 0.174(±0.0065)Jx + 0.0223(±0.0065)Bmv

(9.8)
Gradual-mode RbR control was implemented using these models for general-

ized SPC using an EWMA control chart with a weight of 0.1. Fifty runs were
performed over the course of three weeks. Changes in input settings using RbR
control resulted in an improvement in the normalized process standard deviation
in the L − R response from 0.259 to 0.103 and in a similar improvement in
the normalized T − B standard deviation from 0.239 to 0.123. Figure 9.7 shows
the L − R response with and without RbR control, as well as the corresponding
adjustments in the Bmv parameter in each situation. Note that when operated with-
out RbR control, the process operator made a single adjustment that was too late
and too large. The RbR controller made smaller and more frequent adjustments.
Figure 9.8 is a similar plot for T − B and Jx , respectively. Again, it is clear that
the response stayed closer to the target under RbR control.

9.1.1.2. Abrupt Shifts
Rapid-mode control presents a different set of challenges than does gradual mode.
When generalized SPC detects a shift of sufficient magnitude to trigger an alarm,
in rapid mode, the RbR controller must estimate the magnitude of the disturbance,
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Figure 9.7. (a) L − R response with and without RbR control; (b) corresponding adjustments in
Bmv parameter [2].

assess the probability that a shift of that magnitude has taken place, and prescribe
control actions. The strategy employed to accomplish these objectives begins with
an assumption that the disturbance detected takes the form of a step function,
and least-squares estimates of the magnitude and location of the step are then
computed before control actions are prescribed.

The estimation procedure for the magnitude and location of a shift is illustrated
in Figure 9.9. In this figure, the data points represent the intercept values (i.e.,
yt − bxt ) computed for the last few runs. The levels of the two horizontal lines,
as well as the position of the breakpoint in time, are fit to these data to minimize
the sum of squared deviations from the lines. Let zt = yt − bxt . Assuming the
drift over the last k runs to be negligible, the intercept term changes very little
during this period, and

zt ≈ a + et (9.9)

where a ≈ ai for i = t − k + 1, . . . , t , and et = yt − T . If the gradual mode
of the RbR controller is performing correctly, then et ∼ N(0, σ2). If a step of
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Figure 9.9. Illustration of least-squares procedure to estimate shift magnitude and location [2].
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magnitude d occurs between runs t − m and t − m + 1, then

zi ≈ a + ei for i = t − k + 1, . . . , t − m (9.10)

≈ a + d + ei for i = t − m + 1, . . . , t

Thus, the procedure to estimate the magnitude and location of the shift is to
minimize the sum

t∑
i=t−k+1

(zi − ẑt )
2 (9.11)

where ẑt = a− before the shift and ẑt = a+ after the shift. Minimization is carried
out using an exhaustive search over the possible shift locations to guarantee that
a global minimum is identified.

The probability of the shift is assessed as follows. Let ft represent the proba-
bility that the shift of magnitude d that occurred m runs ago corresponds to a true
shift in the process. If there is a true shift, the accumulation of supporting data
should cause ft to increase toward one. On the other hand, if the shift alarm is
due to a random fluctuation, ft will tend to decrease toward zero. Using Bayes’
rule, ft can be expressed as

ft = P {Zm+|shift}ft−m

P {Zm+|shift}ft−m + P {Zm+|no shift}(1 − ft−m)
(9.12)

where Zm+ = {zt−m+1, . . . , zt} represents the data acquired after the possible shift
and ft−m is the shift probability before the dataset Zm+ is available. In general,
we obtain

p(ft |Zt) = hP (Zm+|ft−m = f )p(ft−m|Zm−) (9.13)

where Zt = {z1,...,zt−m, . . . , zt} is the complete set of data (before and after the
shift), p(ft−m|Zm−) is the probability distribution for ft−m, p(ft |Zt) is the prob-
ability distribution for ft , ft−m is an estimator for ft−m, P (Zm+|ft−m = f ) is the
likelihood function incorporating the information on the shift probability from
the data, and

h = 1∫ 1

0
P(Zm+|ft−m = f )p(f |Zm−)df

(9.14)

is a normalization constant. In statistical terms, p(ft−m|Zm−) is the “prior dis-
tribution” representing the knowledge of the shift before the dataset Zm+ is
acquired, whereas the shift probability distribution p(ft |Zt) is the “posterior
distribution” representing that knowledge after we have the dataset Zm+.

As soon as the estimates of the shift magnitude, location, and probability
are available, the next task for the RbR controller operating in rapid mode is to
compensate for the change in process output. The compensation criterion involves
minimizing the sum of squared deviations of the output from its target. In other
words, the quantity to be minimized is

E[(yt+1 − T )2Zt ] (9.15)

where E represents the expectation. Assuming again that only the intercept term
changes, the amount by which the intercept must be adjusted is E[ft ]d = ftd .
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Figure 9.10. Illustration of RbR compensation in rapid mode [2].

This is illustrated in Figure 9.10. The adjustments required in the process input
is then determined by solving for the new model input subject to the adjusted
intercept.

To test rapid-mode operation of the RbR controller, control of silicon deposi-
tion in an Applied Materials 7800 barrel reactor was once again evaluated (see
previous section). In one test, a disturbance in film thickness uniformity was
induced by changing the operating point for its bellows metering valves. These
valves control the overall flow characteristics in the reactor. The rapid-mode
adjustments were able to recover control of the uniformity within three runs.
This is illustrated in Figures 9.11 and 9.12.

9.1.2. Multivariate Techniques
9.1.2.1. Exponentially Weighted Moving-Average (EWMA)
Gradual Model
The EWMA approach proposed by Sachs for RbR control can also be extended to
the simultaneous control of multiple variables. If there are multiple inputs (i.e., if
b and xt in Eq. (9.5) are column vectors), then the form of the update relation for
the intercept term changes only in the sense that the term bxt is now interpreted
as a the inner product bT xt . However, when b and xt are scalars, Eq. (9.6) has
a unique solution. This is no longer the case when these parameters are column
vectors. In the latter case, assuming b �= 0, there are solutions for all points that
satisfy T = at−1 + bT xt . In this case, the recipe xt is chosen as the point that
minimizes the distance from the previous recipe xt−1. This point turns out to be

xt = T − at−1

bT b
b +

(
I − bbT

bT b

)
xt−1 (9.16)

9.1.2.2. Predictor–Corrector Control
Butler and Stefani proposed the use of in situ ellipsometry to drive a RbR con-
troller, called a predictor–corrector controller (PCC), to alleviate the effect
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of machine and process drift in reactive ion etching [3]. The process under
investigation was the etching of polysilicon gates in a CMOS manufacturing line.
This etching process determines the critical dimension, and thus the performance
limits of the ICs produced. However, the process was known to drift because of
aging of the reactor.

The response surface modeling technique was used to predict mean etch rate
(MER) and uniformity from the ellipsometry data. The process conditions which
served as inputs to these models were RF power, chamber pressure and total gas
flow (HCl + HBr) rate. Model coefficients were obtained from a central compos-
ite experimental design that required 21 trials. The etch uniformity was estimated
by deriving relationships between the etch rate at the center of each wafer (as
measured by ellipsometry) and at each of 10 other specific sites on the wafer.

The predictive RSM models were employed by the PCC controller to generate
optimal recipe settings to achieve etch rate and uniformity targets. The control
system objectives were (1) target tracking without lag, (2) disturbance compen-
sation, and (3) noise rejection. The key component of the PCC is the double-
exponential forecasting filter (DEFF). A forecast filter such as this smooths
current data (i.e., reduces noise) and provides a forecast. The DEFF consists of a
filter to estimate the output and another filter to estimate its trend. In other words

Current smoothed output = (1 − α)(current actual output)

+ α(previous estimate) (9.17)

Current smoothed trend = (1 − β)(trend estimate)

+ β(previous trend) (9.18)

Forecast = (current smoothed output)

+ (current smoothed trend) (9.19)

where α and β are tuning constants. The output data to be filtered were the RSM
model residuals (i.e., measurements minus predictions). The equations for the
DEFF that correspond to Eqs. (9.17)–(9.19) are

Fdeltat = (1 − α)(delta)t + α∗Fdeltat−1 (9.20)

PEt = (delta)t − Fdeltat−1 (9.21)

FPEt = (1 − β)PEt + β∗FPEt−1 (9.22)

Predictiont = ŷt + Fdeltat + FPEt−1 (9.23)

where Fdeltat is the filtered model error at time t , (delta)t is the unfiltered model
error at time t , PEt is the unfiltered prediction error at time t (which serves as
the trend estimate), FPEt is the filtered prediction at time t , and ŷt is the RSM
model prediction at time t . Figure 9.13 is a block diagram of the PCC system.

The “controller” block in Figure 9.13 represents the commercial nonlinear
optimization package NPSOL [4]. This package was used to solve the RSM
equations “in reverse” to determine the optimal process recipe corresponding
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Figure 9.13. Block diagram of PCC system [3].

to the desired targets. Since multiple solutions are often possible, the controller
chooses the solution closest to the current operating point. Set points for the last
wafer are used if they produce predicted responses within one standard deviation
of the target. If no solution is possible, the most recent recipe is repeated or the
system quits so that the problem may be diagnosed.

Implementation of the PCC initially occurred in a 200-wafer demonstration
experiment in which half of the wafers used a standard recipe and the other half
used PCC-generated optimal recipes. During this demonstration, two equipment
faults were simulated: (1) a miscalibrated power supply and (2) neglecting the
prior wafer cleaning step. The controlled and uncontrolled measurement residuals
for the process etch rate are shown in Figure 9.14. Overall, PCC resulted in a
36% decrease in the standard deviation from target for the mean etch rate, and
similar results were achieved for uniformity. In addition, the natural variance
of the process did not increase when PCC was used, indicating that continuous
run-by-run control did not cause unnecessary control actions.

9.1.3. Practical Considerations

The methods discussed in the previous sections provide mathematically correct
RbR control solutions. However, in practical industrial applications, there are
several issues that arise that are not directly addressed by ideal theoretical RbR
control algorithms. The additional constraints imposed by these issues must be
considered before useful solutions can be found. Although the incorporation
of strategies to address such constraints can complicate otherwise simple RbR
control approaches, they provide a valuable complement to theoretical control
solutions.

9.1.3.1. Input Bounds
The adjustments in process conditions suggested by RbR controller must account
for limitations in the possible ranges of settings that a given input parameter
might have. In other words, computed input conditions are constrained by actual
equipment capabilities, and the control system must avoid recommending recipe
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Figure 9.14. Actual etch rate (dotted line is the target): (a) controlled; (b) uncontrolled [3].

conditions that are nonphysical (such as a negative pressure) or beyond the ability
of the equipment to reach. One way to address such input constraints is to simply
determine optimal recipes without input bounds and then set all RbR control rec-
ommendations that exceed these bounds to the closest realizable setting. However,
this simple approach can generally lead to less than optimal equipment settings.

Another approach to meet input constraints is to modify the RbR algorithm
to use the iterative approach shown in Figure 9.15. In this scheme, after process
variables have been modified with respect to their maximum ranges, they are
removed from the system and the process is repeated. This method does not
guarantee an optimal solution, but is computationally inexpensive and reduces
the possibility of suboptimal results.
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Figure 9.15. Input bounds algorithm [1].

9.1.3.2. Input Resolution
Another practical issue in applying RbR control is input resolution. Control
recommendations based on theoretically infinite resolution must be rounded to
increments acceptable by the equipment. Occasionally, this can lead to deleteri-
ous side effects, such as when the system believing that the suggested recipe was
used when, in fact, a rounded version was implemented. To address this issue,
the simple iterative method represented in Figure 9.16 has been proposed. In
this approach, inputs are ordered from least to most adjustable and sequentially
rounded and removed. The remaining inputs are then adjusted to obtain the best
solution. This is repeated until all inputs have been rounded.

9.1.3.3. Input Weights
The inputs to an RbR control system are usually normalized to ensure consistent
operation on a common scale. However, on some occasions, some inputs may
be of greater importance to the user than others. In such cases, weights may be
applied to the more critical inputs to provide another level of adjustability. In
this way, more heavily weighted input variables can be modified with greater
magnitude relative to lightly weighted inputs.

One weighting scheme that achieves the desired objectives adjust the normal-
ized input variables so that the least-squared distance between the new control
advice (xt ) and the previous input value (xt−1) is modified by the input weight.
In underdetermined systems in which the model provides a set of solutions where
all output requirements are met, the new input recipe is identified using the added
constraint that it is as close to the previous recipe as possible. This constraint
can be biased by the relative weighting of the inputs. Heavily weighted inputs
are forced to be the least adjustable as a result of their larger effect on the error
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Figure 9.16. Input resolution algorithm [1].

calculation for the recipe (i.e., the difference between the target response and the
value predicted by the model using the recommended recipe).

The matrix

V =



v1 0 0
0 · · · 0
0 0 vn


 (9.24)

is used to apply the input weighting, where v1, . . . , vn are the weights for the n

inputs. Note that input weighting has no effect on overdetermined problems or
those with exact solutions. In those situations, the inputs do not affect the calcu-
lation of the error of the final solution, so their relative magnitude is irrelevant.

In order to achieve a correct solution, the weight must be applied to both the
recipe adjustment and the first-order (slope) term in the process model. This is
because the application of V to x changes the least-squared error generated by
x when determining the closest solution. The side effect of input weighting is
that the new output generated by these inputs is inconsistent with the original
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problem formulation. To account for this, the slope coefficient [b in Eq. (9.5)] is
weighted with the inverse of the recipe weight matrix. The resulting system of
equations to solve is then

T = bxt + at−1

= (b · V −1)(V xt ) + at−1 (9.25)

= b∗x∗ + at−1

This new formulation is used in place of the original variables to incorporate
the desired weighting. The RbR control problem is then solved as before. The
solution, however, is now based on the scaled values and must be converted back
to the original problem domain using

x = V −1x∗ (9.26)

9.1.3.4. Output Weights
It is also often the case that a given target response cannot be reached because
of system constraints. In such cases, the relative importance of each output must
be ascertained. One way to accomplish this is to weight the outputs in a manner
inversely proportional to their variance. This approach puts greater emphasis on
output variables with low variance, which are usually the ones that can be most
accurately controlled.

An RbR controller can accommodate output weighting by applying the fol-
lowing matrix to the system

W =



w1 0 0
0 · · · 0
0 0 wm


 (9.27)

where w1, . . . , wm are the weights for the m inputs. The resulting system of
equations is then

WT = Wbxt + Wat−1

W(T − at−1) = Wbxt

(Wb)T W(T − at−1) = (Wb)T Wbxt (9.28)

(bT WT Wb)−1bT WT W(T − at−1) = xt

This scheme works by biasing the magnitude of selected outputs such that when a
least-squares solution is calculated, those outputs with higher weights contribute
a greater penalty to the solution if they are off target. In this way, outputs with
higher weights are set closer to their targets than are those with lower weights.
The application of output weights to an exact or underdetermined system has
no effect.

Other bias terms related to output weighting are the model update weights.
These coefficients (such as λ for EWMA control, or α and β for PCC control)
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also play a key role in determining the aggressiveness of the RbR controller.
These parameters can also be used to minimize the impact of noisy outputs on
the model update. The result is a system that can rapidly adapt to changing
process conditions while resisting responding to process noise.

9.2. MULTIVARIATE CONTROL WITH COMPLETE
MODEL ADAPTATION

Among the many challenges that impede the effectiveness of various process
controllers, two stand out. The first has to do with the true nature of a process
drift over time. The controllers discussed thus far make the general assumption
that a process can be described by a linear model that has a gain factor (linking
the process input to the process output), and a constant term. Further, they assume
that as the process changes over time, it is only the constant term that needs to
be adjusted. This works well in many cases, but in reality, the gain relationship
between the input parameter and the process output (which is captured by the
slope coefficient in the linear model) also changes. This presents a problem when
such a model is used for feedback control, since the erroneous gain value will
diminish the effectiveness of the controller. The problem might not be so obvious
to the user, since the controller can compensate for the error in the gain value
by adjusting the constant term accordingly. Using the wrong value of the gain
term, however, has much more serious implications when the model is used
for feedforward control. In this case, an erroneous prediction results, and the
controller fails. In summary, while many feedback operations are robust to errors
in the gain parameter of the model, feedforward applications are not robust to
such errors, and depend on accurate process models for their operation.

The second challenge has to do with the necessary economy of control actions.
This means that a run-to-run controller should take action only when needed.
Further, the nature of the needed action may depend on the situation. For example,
at one instant, the most appropriate action might be the gradual reestimation of
the constant term of the model, while at another instant, it might be necessary to
reevaluate the gain term of the model. In other cases the most appropriate action
might be the termination of any automatic adaptation and the involvement of a
human operator that might be better suited to resolve an emerging problem.

In this section, we present a run-to-run control approach that addresses these
issues. This approach does so by including a more complete set of possible
responses—such as various modes of model adaptation, feedback and feedfor-
ward calculation, and malfunction declarations. Each of these responses is gated
by the outcome of a series of statistical tests. This approach is particularly suit-
able for controlling a sequence of process steps, where feedback and feedforward
control actions must be coordinated. That type of multistep (supervisory) control
operation is described in Section 9.3.

The demonstration vehicle for this approach is the photolithography process
sequence. Here, the role of the controller is to provide an intelligent system
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for generating initial process recipes, correcting process drifts, and detecting
equipment or process malfunctions on a run-by-run basis. Subsequently, on the
detection of a process drift or malfunction, a diagnostic system (see Chapter 10)
linked to the controller offers an educated guess of the cause of the problem.

We present two process control approaches for multiprocess sequences. The
first keeps tight control over each machine in the sequence. When the outputs of a
machine drift, the controller generates a new recipe to bring them back on target.
The second approach, on the other hand, keeps the final target of the process
sequence fixed, while intermediate targets are subject to dynamic adjustments.
Before describing the details of the control actions, we first outline the conditions
and statistical tests that trigger them.

9.2.1. Detection of Process Disturbances via Model-Based SPC

The default state of the complete-model adaptation controller is dormant, until a
“disturbance” is detected. There are two types of disturbance. The first manifests
itself through sudden, statistically significant changes in the process output. This
indicates the presence of a malfunction that needs to be addressed by a human
operator. This type of disturbance triggers a malfunction alarm. The second type
of disturbance manifests itself as a systematic process drift that can be corrected
by the control system. This type of disturbance triggers a control alarm, which
in turn triggers the control system.

9.2.1.1. Malfunction Alarms
Malfunction alarms identify conditions that require operator attention. These are
cases where the variation of a monitored parameter increases, or when sudden
changes that are not consistent enough to be compensated by recipe adjustments
are encountered. A malfunction alarm is also generated if the change cannot be
compensated unless one (or more) of the controlling parameters moves beyond
its acceptable range.

These conditions can be identified with the application of a special SPC
scheme that can accommodate multiple parameters. This scheme must be able to
ignore intentional changes in equipment settings such as those that might occur
due to control actions. Such a scheme has been developed using an extension
of the regression chart (see Section 8.1.5) [5] and Hotelling’s T 2 statistic (see
Section 6.5) [6].

Using this scheme, malfunction alarms are generated in two stages. First, the
controller uses response surface models to predict new measurements. Then, it
plots the difference between the readings and the model predictions. When the
process is under statistical control, this difference is a random number with a
known mean and variance. The method is described for univariate regression
models by Mandel [5], and it has been generalized for multivariable response
surface models by Lee [7]. A brief description of this method follows.

Let y be the p × 1 vector corresponding to p equipment outputs, where
each element is the average reading of n samples. Let ŷ be the p × 1 vec-
tor predicted by the equipment models. If the process is under control, the
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residual vector (y − ŷ) has a multivariate normal distribution with mean zero
and variance–covariance matrix S. Once estimates of these parameters have been
computed, the multiple responses are merged together using the T 2 statistic

T 2 = n(y − ŷ)T S−1(y − ŷ) (9.29)

where n is the sample size and S is the estimated covariance matrix of a process
assumed to be in statistical control. Even when a process is in statistical control,
it can yield noisy estimates of S when the sample size is small. Therefore, it is
not advisable to use these run-by-run estimates, but rather depend on the original
estimate of S that was obtained when the models of the process where created, and
presumably, when the process was in control. This estimate is calculated using
the methodology described in Section 6.5. Once the T 2 statistic is calculated, it
is plotted on a single-sided control chart whose upper control limit (UCL) can be
formally set at the desired probability of erroneously stopping a good process,
by using the F distribution, or

UCL = p · (N − 1) · Fp,N−p

N − p
(9.30)

where N is the sample size used in estimating S. Note that the sample size n

used to calculate S is different from the sample size N used to determine the
UCL. When the UCL is exceeded, the automated control system stops, and a
human operator investigates the malfunction in the same way that a traditional
SPC out-of-control condition is investigated.

9.2.1.2. Alarms for Feedback Control
Control alarms identify process drifts and then trigger the feedback control sys-
tem. These drifts and disturbances are detected using a cusum scheme (see
Section 6.4.5) that is very efficient at identifying small, consistent changes, while
ignoring outliers that are not useful for feedback corrections. The controller will
compensate this type of disturbance by appropriate model adaptation, followed
by a recipe change.

The alarms are generated by the multivariate cusum scheme described by
Crosier [8]. Crosier’s scheme forms a cusum vector directly from the residuals
between the experimental data (yj ) and their respective model predictions, after
shrinking them by a factor [1 − (k/Cj )]. In other words

sj = 0 if Cj < k (9.31)

sj = (sj−1 + yj − ŷ)

(
1 − k

Cj

)
if Cj ≥ k (9.32)

where Cj is the variance-normalized length of the residual cusum vector (sj−1 +
yj − ŷ), that is

Cj =
√

[(sj−1 + yj − ŷ)T · S−1 · (sj−1 + yj − ŷ)] (9.33)
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where S is the same estimate of the covariance matrix used for generating
malfunction alarms, and is obtained from the designed experiments used to create
the process models (when the process is in control). Typically, we want a process
to return to its original target. Sometimes, this is not possible because the mul-
tiple outputs are not completely independent of each other. A corollary is that
measurements should not be compared against fixed targets, which are sometimes
unattainable, since this would generate control alarms too often. Comparison of
the experimental data to the model predictions, on the other hand, properly gen-
erates an alarm only if the updated models do not represent the experimental data
well. So, the control alarm is generated only when the model represents the data
inadequately. This scheme yields an alarm when the variance-normalized length
of the residual cusum vector sn is greater than a constant η:

Yj =
√

[sT
j · S−1 · sj ] > η (9.34)

The sensitivity of the alarm depends on the number of output parameters p

and the constants k and η, which can be adjusted for the desired probability of
stopping erroneously a good process. Equivalently, we can adjust the average
runlength (ARL) between false alarms when the process is in control, also called
on-target ARL.

9.2.2. Full Model Adaptation

The goal of feedback control is to ensure that the distribution of the process
outputs stays centered on target. Triggered by control alarms that detect output
drifts, the feedback controller first updates the equipment models of the machine
and then finds a new recipe to bring the machine’s outputs back on target. If
the machine has multiple outputs that cannot be simultaneously brought back
on target by a new recipe, because of correlation among outputs, a compro-
mise recipe, which brings all the outputs as close as possible back on target, is
generated.

The model update algorithm uses stepwise regression, which depends on
matrix computations. The k × q input setting matrix X contains the q input set-
tings of the k process runs, which are fed into a k × t model term matrix T, which
stores the input settings as model terms. The number of terms inside the model
is t , which can also be interpreted as the number of coefficients in the model.

As an example, assume that two wafers are processed by a photolithogra-
phy wafer track. The first wafer undergoes a spin speed (SPS) of 4600 rpm,
a baking time (BTI) of 60 s, and a baking temperature (BTE) of 90◦C, or
(SPS, BTI, BTE) = (4600, 60, 90). The second wafer is processed by the recipe
(SPS, BTI, BTE) = (4800, 65, 90). It is known that the resist thickness is approx-
imately proportional to time and temperature, and inversely proportional to the
square root of the spin speed [9]. Therefore, the resist thickness model has the
following terms: 1/

√
SPS, BTI, and BTE. That information is stored as

X =
[

4600 60 90
4800 65 90

]
and T =

[
1/

√
4600 60 90

1/
√

4800 65 90

]
(9.35)
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Note that X and T do not necessarily have the same number of columns. If the
resist thickness model also contained the SPS term, T would have four columns:
SPS, 1/

√
SPS, BTI, and BTE, or

T =
[

4600 1/
√

4600 60 90
4800 1/

√
4800 65 90

]
(9.36)

Next, the algorithm applies two transformations to T to prevent it from being
ill-conditioned. First, it centers the resulting matrix, by subtracting the average of
each column, and then divides it by a range matrix D, so that the variances of each
term are of comparable magnitudes. D is a t × t diagonal matrix that contains
the experimental range of each model term. This results in a standardized matrix
Y, which is composed of unitless numbers with comparable magnitudes, or

Y = (T − Tav) · D−1 (9.37)

The second transformation that the algorithm applies on matrix Y is a principal-
component transformation (see Section 8.4) to ensure that each column of Y
is mutually orthogonal. This is necessary in order to apply stepwise regression.
Since Y has been standardized, principal-component transformation on the covari-
ance matrix is numerically stable.

The first step of the model update algorithm consists of entering all the machine
settings into X. Since the performance of the machine changes with time, the
performance obtained from older settings should not be weighted as much as that
obtained from newer settings. Therefore, a forgetting factor wkk is applied to the
input settings, emphasizing the more recent ones. (The parameter k corresponds
to the number of sets of input settings). Thus

X ′ = W · X (9.38)

where W is a diagonal matrix containing the forgetting factor wkk of each set of
input settings. In a typical implementation, the number of sets of input settings
is also limited to a specific number, called the window size, based on how often
the machine performance drifts with time. A good way to choose the weighting
factors depends on the autocorrelation structure of the measurements. Lacking
such information, one can use an empirically chosen exponential weighting factor.
Depending on the application, the effective memory of such a weighting function
should be on the order of 10–20 runs.

Next, the input setting matrix is transformed into T, which is then transformed
into a unitless matrix Y using Eq. (9.37). A principal-component transformation
on Y ensures that each column is orthogonal. This sets the stage for the stepwise
regression that follows. Next, the difference between the measurements and the
current model predictions, defined as a k × p output discrepancy matrix �z, is
calculated. As before, p is the number of output variables, and k is the num-
ber of sets of input settings, i.e., the number of wafers in the window. The
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output discrepancy matrix is computed as follows for each output variable i,
i = 1, . . . , p

�zi = zi,meas − zi,model = zi,meas − (Y T
pc · γ + c0) (9.39)

where γ = BT · D · c represents the vector of term coefficients of the model,
transformed into the principal-component space, c is a t × 1 vector containing
all the model coefficients, c0 is its constant term, and D is the range matrix.

Stepwise regression is performed considering each PC separately, in order to
obtain a vector of correction term coefficients �γ. The statistical significance
based on the t distribution of each correction coefficient �γj (j = 1, . . . , t) is
calculated. If the significance is greater than a certain threshold, the correction
coefficient is updated to �γj ; otherwise, it is set to zero. Then, Ypc is multiplied
by the updated set of new coefficients �γ and subtracted from the output dis-
crepancy vector �z. If the resulting constant term �c0 is significant, it is also
updated. Finally, the modified correction coefficients �γ are transformed back to
their original space (resulting in a set of correction coefficients �c) and added to
the current model coefficients c, to result in a newly updated set of coefficients
cupdated, or

cupdated = c + �c = c + D−1 · B · �γ (9.40)

c0,updated = c0 + �c0 (9.41)

This concludes the model update procedure. The next step for the feedback con-
troller is to find a new recipe that will bring the machine’s outputs back on target.

9.2.3. Automated Recipe Generation

Since empirical equipment models are relatively simple, routine nonlinear trans-
formation can been used for recipe generation, eliminating the need for more com-
plex geometric centering techniques. Given a set of input settings x, a machine
output vector f(x), and the desired output from the machine, the recipe generation
problem is mathematically formulated as follows. First, we solve for x, such that

min
p∑

i=1

Wi · (fi(x) − ẑi )
2 (9.42)

subject to the constraint
em ≤ x ≤ eM (9.43)

where em is a vector of minimum input settings, eM is the vector of maximum
input settings, Wi is the weight of the ith output variable and p is the num-
ber of output variables. This is a typical optimization problem, which can be
solved in many different ways. For this application, the iterative Gauss–Seidel
algorithm [10, 11] was chosen.
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The weights in Eq. (9.42) are needed because some output variables must
be better controlled than some others. These weights could be derived from the
specification limits of the output variables. Specifically

�ẑ′ = W−1
z �ẑ = W−1

Z [f (xi) − ẑ] (9.44)

where Wz = 2 × min(USL − ẑ, ẑ − LSL). However, a better weighting scheme
is based on the sensitivity of the final process output relative to the intermedi-
ate output variables. For example, if the critical dimension, which is the final
lithography process output, is as sensitive to a 3% change in the amount of
photoactive compound (PAC) remaining in the photoresist as it is to a 100-Å
change in resist thickness (which are both intermediate process outputs), then

Wz =
[

0.03
100

]
. More formally, the output weights are chosen using

Wz =




1

/
∂zfinal

∂z1

. . .

1

/
∂zfinal

∂zp




(9.45)

When solving for a new recipe, one must also apply weights for input variables
(as discussed in Section 9.1.3.3), since some input settings have a wider range
of operation than others do. Weights are also used to favor changing the input
settings that would cause fewer side effects. For example, changing the spin
speed is often preferable to changing the bake temperature. The entire feedback
algorithm with full model adaptation is depicted in Figure 9.17.

CURRENT SETTINGS

PROCESS WAFER

MEASURE PROCESS
PARAMETERS.

SPC

NO

NO YES

YES
MALFUNCTION ALARM STOP

EQUIPMENT
MODEL

MODEL AND 
RECIPE UPDATE

CONTROL ALARM

Figure 9.17. Schematic representation of feedback procedure.
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9.2.4. Feedforward Control

The primary task of the feedforward control mechanism is to adjust any down-
stream process steps in order to compensate for the variability of the present
step. A feedforward controller complements a feedback controller, which centers
the process on the target by reducing the process variability. Before sending the
wafer on to the next process step, the outputs of the current step are analyzed
to see if they are likely to produce a wafer within specifications after the next
step, assuming normal settings. If the analysis is positive, no feedforward con-
trol is performed. However, if the analysis shows that the wafer is unlikely to
meet specifications, a feedforward alarm is triggered and activates a feedforward
controller, which then finds a corrective recipe for the next machine, using the
same recipe generation scheme described earlier and depicted in Figure 9.18.

In highly controllable process steps, a feedforward control system can even
compensate for inherent variability, thereby increasing the overall process capa-
bility. Currently, however, feedforward control mechanisms are not well accepted
in the semiconductor industry because of the high stakes involved. A corrective
action that worsens a process cannot be tolerated. Therefore, feedforward control
should be activated only when the problem is clearly confirmed. Like feedback
control, this mechanism is also activated by a formal statistical test.

The feedforward control alarm is a variant of the acceptance chart (see
Section 6.4.4). Given specification limits for a fraction of nonconforming wafers
of at most δ and a specified type I error of α, the upper and lower control
limits are

LCL = µL − zασpred = LSL + zδσ − zασpred (9.46)

UCL = µU − zασpred = USL + zδσ − zασpred (9.47)

where σpred is the prediction error of the equipment model of the machine,
which is defined as the average error of the fitted values. The prediction error

SPIN COAT
& BAKE

T & PAC MEAS
STEPPER
MODEL

CALCULATES
CORRECT DOSE

STEPPER
UPDATE
RECIPE

Figure 9.18. Example of the feedforward control procedure applied to a stepper.
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is calculated from the standard error between the modeled data yi and its fitted
values, which is

σmodel =
√√√√ 1

m − 1

m∑
i=1

(yi − ŷi)2 (9.48)

σpred =
√

t

m
σmodel (9.49)

where i = 1, . . . , m, m is the number of wafers used in building the equipment
model, and t is the number of parameters in the model.

When the predicted output falls between the lower and upper control limits,
no feedforward action is taken. On the other hand, when a prediction falls outside
the control limits, an alarm signals the feedforward control system to generate
new recipe(s) for the next machine(s) in the sequence in order to prevent the final
process output from drifting outside the specification limits. Although the recipe
generator should always try to correct the error using only the next stage, its
success is not guaranteed and may require considering several subsequent steps.
If the situation cannot be corrected by any means, the feedforward controller
sends the wafer to be reworked.

The combination of the full-model adaptation feedback and feedforward
approach leads to a robust local control system that is capable of reducing process
variability of a process step, and centering the process mean on target by applying
SPC to accurate equipment models.

9.3. SUPERVISORY CONTROL

As discussed in the introduction to this chapter, control of semiconductor pro-
cesses can be examined at several levels (refer to Figure 9.2). Supervisory control
is the highest level of the control hierarchy. At this level, the progression of a
wafer is tracked from unit process to unit process, and adjustments can be made
to subsequent steps to account for variation in preceding steps. Both feedback
and feedforward adjustments are made in a supervisory control system.

9.3.1. Supervisory Control Using Complete Model Adaptation

Although the local controllers have been shown to significantly improve the
overall capability of a process sequence, they have one major caveat. When
intermediate machines with multiple outputs drift, it is not always possible to
bring the process back to its original point because the outputs are correlated. This
will cause an inherent deviation in the output of the next machine downstream,
and ultimately, in the final outputs of the process. The source of this problem is the
inflexible specifications of each machine. In actuality, only the final specification
needs to be kept on target. Those of the intermediate machines are flexible and
should be changed, if they prevent downstream processes from keeping the final
parameter on target.
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The solution is to link the local controllers and integrate them into one global
controller, which fixes the specification of only the last machine of the process
sequence, and sets optimal specifications for the other machines upstream in
the sequence, so that control of the final parameter of interest is optimized.
This specification propagation concept leads to a significant improvement of
the overall capability of the process sequence. Furthermore, it also results in a
more controllable process, which reacts effectively to specification changes or
synthesizes a solution to a new process faster.

The global supervisory control algorithm shares the same control algorithms
as a local controller, but is improved by specification propagation. Consider
two machines linked together in a sequence. The first part of the specification
propagation algorithm determines the region of acceptable input settings of the
downstream machine (and therefore, the region of acceptable outputs of the
upstream machine) through Monte Carlo simulation of the downstream process.
The acceptable input setting region is defined as a region of settings that would
keep the process output within specifications. Mathematically, each input setting
is tagged with a cost, which quantifies how close the resulting outputs are to their
targets. If the process outputs are independent of each other, the total cost is

Cost =
p∑

i=1

ki(yi − yi,target)
2 (9.50)

where yi is process output i and p is the number of outputs. If the process outputs
are dependent of each other, the total cost associated with each input setting is

Cost =
p∑

j=1

p∑
i=1

kij (yi − yi,target)(yj − yj,target) (9.51)

The scaling coefficients ki are chosen so that the cost equals one when the pro-
cess output equals its specification limit, with the other process outputs being on
target (see Figure 9.19). Typically, though, process outputs are not independent,
and a principal-component transformation is applied to the raw process outputs
to obtain independent output variables. The coefficients kij are then determined
in a similar fashion as ki , except that a coordinate transformation is involved.
Once done, the new specifications of the upstream process are determined from
the geometric center of the acceptable input settings region of the downstream
process. This procedure is repeated for upstream processes, updating along the
specifications of each machine, so that the final process outputs are on target.
After the specifications have been set, then the cost function is used during recipe
generation to center the process into the desirable region of operation.

The stability of this scheme is ensured by a multitude of mechanisms. In
addition to the statistically driven alarms (whose sensitivity can be set to eliminate
control oscillations due to noise), stability is also guaranteed by implementing
hard limits for the specifications of each measurable process parameter used by
the supervisory controller.
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Figure 9.19. Equal cost function lines: (a) independent and (b) dependent outputs.

9.3.1.1. Acceptable Input Ranges of Photolithographic Machines
This supervisory controller has been tested on three photolithography steps: the
wafer track, the stepper, and the developing station. These three steps process
the wafer sequentially. The wafer track spin-coats the wafer with photoresist and
bakes it. The stepper exposes the wafer through a patterned mask. The developer
develops the photoresist pattern.

The final output of the process sequence is the linewidth of the photoresist
pattern or critical dimension (CD). The inputs of the wafer track model are
the input settings of the machine, which include spin speed, spin time, baking
time, and baking temperature. The outputs are resist thickness and photoactive
compound (PAC) concentration. The inputs to the stepper model are dose, PAC,
and resist thickness, while its output is PAC concentration. The postexposure
PAC concentration is differentiated from its preexposure value and denoted as
PACxp. Finally, the inputs of the developer model are resist thickness, PAC, and
develop time, and its output is the CD.

Given a CD target of 1.72 ± 0.06 µm (the average CD ± 1σ process noise
when the process is in control), the acceptable range of input settings for the
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Figure 9.20. Acceptable input setting region for the developer.

developer, stepper, and wafer track were determined from Monte Carlo simula-
tions. The scatterplot of the acceptable input range of the developer is shown
in Figure 9.20. Only resist thickness and PACxp are presented in the scatter-
plot, since develop time is a machine setting that is independent from upstream
processes and therefore not part of the stepper’s specifications. Both parame-
ters have been normalized to their maximum range. The normalized thickness
range from −1 to 1 corresponds to an actual range of 11,700–13,700 Å, while
the normalized PACxp range from −1 to 1 corresponds to an actual range of
0.36–0.52. Principal-component analysis revealed that PACxp and resist thickness
were slightly correlated. In order to use this region of acceptable developer inputs
to find the region of acceptable stepper inputs, the thickness and PACxp must be
transformed into their principal components, Y1 and Y2, so that they are indepen-
dent. The region is not necessarily convex. However, when the developer’s input
settings are allowed to change, an acceptable convex input settings region can be
approximated by deriving the PC ellipse for the data that meets the specifications.

Next, the region of acceptable input settings for the stepper is determined. The
specification for the stepper is taken from the coordinates of the centroid X1 of
the previously determined region (Figure 9.20), and the cost tagged to each input
setting is calculated using the principal components Y1 and Y2. For example,
cost curve C1, which represents the maximum acceptable stepper outputs (i.e.,
where the cost equals 1.0), is shown in Figure 9.20. Using that cost, the region of
acceptable input setting of the stepper is determined and shown in Figure 9.21.
Again, only PAC and thickness are shown, since the third input of the stepper
model is dose, which is a setting not included among the wafer track outputs.
This acceptable input setting region of the stepper assumes that the dose can be
set to any value within the range of the machine. As before, both PAC and resist
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Figure 9.21. Acceptable input setting region for the stepper.

thickness are normalized to their maximum range. In order to use this region
to quantify the cost of each input setting combination of the wafer track, PAC
and resist thickness are transformed into independent principal components Z1

and Z2. The specifications for the wafer track are given by the coordinates of
the centroid of the acceptable input settings region of the stepper, X2, and the
cost tagged to each input setting of the wafer track is derived using the principal
components Z1 and Z2. For example, the cost C2 that represents the maximum
acceptable wafer track outputs is also shown in Figure 9.21.

Finally, the region of acceptable input settings of the wafer track is given
by the range of input settings of the machine itself. Since the wafer track is
the first machine of the process sequence, there is no process upstream whose
specification needs to be determined from the region of acceptable inputs of the
wafer track. The supervisory controller is in many ways superior to a simple
sequence of fixed run-by-run controllers, since it has the ability to manipulate
collectively several process steps in a synergistic fashion.

9.3.1.2. Experimental Examples
Both local and supervisory controllers have been implemented on photolithog-
raphy equipment at the University of California at Berkeley [12], where an
experiment was run to test the capabilities of both controllers and compare
them to an uncontrolled process. The experiment consisted of processing 4-in.
p-type silicon wafers coated with 1000 Å of oxide through the photolithography
sequence. Control was applied on a lot-by-lot basis instead of on a run-by-run
basis, with each lot consisting of three wafers. Each wafer is sampled 4 times,
and the average reading is recorded. Three groups of 10 lots were processed in
an alternating fashion during the experiment. Every 2 days, three lots of wafers
were processed: an uncontrolled baseline lot, a lot subject to local controllers,
and a lot subject to global supervisory control.
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Feedforward control was not activated in this experiment. Its activation would
not have favored either controller over the other, since both controllers use feed-
forward control in the same fashion. Both controllers were also given the latitude
to correct the process under both malfunction and control alarms. There were no
instances during this experiment in which a “malfunction” resulted in actual
equipment maintenance. Details of the experiments, which consist of machine
outputs, alarms, and recipe changes, are summarized in Figures 9.22–9.25.

Figures 9.22–9.25 explicitly show the differences between local and super-
visory control. While the local controller attempts to always bring the outputs
back to a fixed target, the supervisory controller finds the ideal specifications for
each machine, so that the final output has the optimal probability of being on
target. The result is that the machines under supervisory control have an easier
time bringing back outputs to their specified targets, and ultimately result in a
CD distribution more centered around the target.

The difference between the two controllers is best highlighted by the 10th
lot (wafers 28, 29, and 30). The develop process has drifted very sharply in
the 9th lot (wafers 25, 26, and 27). The local controller has difficulty bringing
the CD back on target at the 10th lot, because it only tried to correct for the
drift through a new develop time, whereas the supervisory controller involved a
change in exposure dose in addition to a change in develop time, and therefore
was able to bring the CD much closer to target. This difference in corrective
action was due to the fact that although a malfunction alarm was triggered on
the stepper during the 10th lot under local control, the operator chose not to take
any corrective action because the measurements were still within specifications.
When the bad lot was processed by the developer, the local controller could use
only the feedback control mechanism of the developer to compensate for the
process shift, whereas the supervisory controller used the control mechanisms of
all the machines to compensate for the process shift by changing the targets of
the previous machines. The final comparison between both control mechanisms
is presented in Figure 9.26. Here the CD distributions of wafers processed under
both controllers are compared. Although the supervisory controller has a clear
advantage over the local controller, the latter is still a significant improvement
over an uncontrolled process.

An additional benefit of the supervisory controller is that it can be used to
synthesize new process recipes. Because of the broadly applicable equipment
models, the supervisory controller can start with the final specifications and syn-
thesize not just optimal recipes for all the modeled process steps but also optimum
intermediate specifications as well.

9.3.2. Intelligent Supervisory Control

Chapter 8 (in Section 8.5) introduced the concept of intelligent modeling
techniques such as neural networks. These techniques can also be applied
to supervisory control systems. As an example of such a system, Kim has
developed a model-based supervisory control algorithm based on computational
intelligence techniques and applied this approach to reduce undesirable behavior
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Figure 9.23. Wafer track recipe changes under (a) local control and (b) supervisory (global)
control.

resulting from various process disturbances in via formation in a photolithography
sequence [13]. Via formation is a critical photolithographic process sequence in
SOP manufacturing, as it greatly affects yield, density, and reliability. Kim and
May [14] presented a modeling approach for via formation in dielectric layers
composed of photosensitive benzocyclobutene (BCB) based on the mapping
capabilities of neural networks. Photosensitive BCB is a negative imaging
material (i.e., unexposed areas are removed during development), and it is
sensitive to 365 nm radiation (I-line and/or broadband exposure). The basic unit
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Figure 9.26. CD distribution for (a) uncontrolled baseline process sequence, (b) process
sequence under local control, and (c) process sequence under global control.

process steps in via formation are polymer deposition, prebaking, pattern transfer
(exposure and development), curing, and plasma descumming. This process
sequence is illustrated in Figure 9.27, which compares process sequences for
via formation using photosensitive and nonphotosensitive dielectric materials.
As shown in the figure, the use of photosensitive material allows reduction of
the number of process steps. This allows a reduction in the process cycle time,
saves material and labor, and lowers cost.

A series of designed experiments were performed to characterize the complete
via formation workcell (which consists of the spin coat, soft bake, expose,
develop, cure, and plasma descum unit process steps). The output characteristics
considered were film thickness, refractive index, uniformity, film retention, and
via yield. To reduce the number of experimental trials required, the entire via
formation process was divided into four subprocesses (spin-prebake, exposure–
development, cure, and descum). Each subprocess was then modeled individu-
ally, and each subprocess model was linked to previous subprocess outputs and
subsequent subprocess inputs.

Using a unique sequential scheme, each workcell subprocess is modeled indi-
vidually, and each subprocess model is linked to previous subprocess outputs and
subsequent subprocess inputs (see Figure 9.28). The sequential neural network
process models were used for system identification, and genetic algorithms were
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Figure 9.27. Via formation process for nonphotosensitive and photosensitive dielectrics:
(1) polymer deposition and prebake; (2) photoresist application; (3) exposure and development;
(4) pattern transfer; (5) photoresist strip; (6) cure and descum [6].
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Figure 9.28. Block diagram of sequential modeling scheme [14].
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applied to synthesize process optimal recipes (see Chapter 8). Afterward, the
neural process models were used for optimal recipe generation using genetic algo-
rithms. Recipe generation using this approach may be viewed as an example of
offline process control where the objective is to estimate optimal operating points.

The goal in this study was to develop a supervisory process control sys-
tem for via formation to maintain system reliability in the face of process
disturbances. Supervisory control can reduce variability in two ways. The first
involves reducing the variability of each contributing step by feedback control.
The second requires accounting for the variation of consecutive steps so that
their deviations cancel each other by feedforward control. In this RbR system,
dielectric film thickness and refractive index were used as process monitors
for each subprocess, and via yield, film retention, and film nonuniformity were
added as the final response characteristics to be controlled. Based on appropri-
ate decision criteria, model and recipe updates for consecutive subprocess were
determined.

Figure 9.29 shows the general structure of the proposed supervisory control
scheme. Nine neural networks were required: one global process model for opti-
mal process recipe synthesis, four models for each subprocess model, and four
for recipe updates to realize the supervisory algorithm. To construct the process
supervisor, recipe update modules were developed individually for each subpro-
cess. The neural networks for the recipe update modules are trained offline and
are updated online as necessary. As illustrated in Figure 9.28, the outputs of
these modules are the next subprocess’ inputs. The inputs consist of the previous

Initial Setting Sub-process I Sub-process I Model

Model UpdateMeasurement

Out of Control

In Control

D1

D2

D3

Don’t Need Recipe Change

Need Recipe Change

O.K.

Recipe Update For Next Sub-process

Out of Spec. Limit

Stop & Rework Sub-process II

Figure 9.29. Block diagram of supervisory control algorithm [13].
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subprocess’ measured outputs, the desired final responses (final film thickness, via
yield, film retention, and film nonuniformity), and the next subprocess’s desired
outputs. Based on the neural networks used for recipe updates, genetic algorithms
generate optimal process recipes for the next subprocess.

The basic algorithm for supervisory control is as follows. The process was ini-
tiated using predetermined optimal recipes based on the operator’s requirements.
During the process, based on the results of two different decisions (D1 and D2

in Figure 9.29), the control system updated recipes to achieve the desired system
outputs. These decisions were required for each subprocess. After the completion
of a subprocess, film thickness and refractive index were measured. Generally,
unpredicted outputs are the result of either system changes or process noise. In
the case of system changes, appropriate control methods are required, and the
models need to be updated. For such system changes, accompanying changes in
the mean and/or variance of the outputs are also expected. Therefore, to differen-
tiate system changes from noise, Shewhart control charts employing the Western
Electric rules were applied (see Chapter 7).

When the supervisory control algorithm was applied to a real via formation
process, experimental results showed significant improvement in film thickness
and via yield control, as compared to open-loop operation. Figure 9.30 illustrates
the performance of the system for controlling a shift in film thickness. Table 9.1
compares the final responses of the process with and without control. The “%
improvement” column in this table is calculated using

% Improvement = (Rwoc − Rwc)

(Rwoc − T )
× 100 (9.52)

where Rwoc, Rwc, and T represent process response without control, process
response with control, and control target value, respectively. These results showed
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Figure 9.30. x chart showing control actions for a shift in film thickness [5].
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Table 9.1. Supervisory control results.

Response Without Control With Control % Improvement

Thickness (µm) 7.53 7.19 64.4
Yield (%) 84.7 97.3 82.6
Nonuniformity (%) 1.93 1.60 17.3
Film retention (%) 73.30 72.89 −1.5

that the supervisory control system significantly increased via yield, and the final
film thickness was very close to the control target compared to the result of the
experiment without control.

SUMMARY

In this chapter, we have introduced two key concepts in advanced process control:
run-by-run and supervisory control. These advanced process control techniques
can be used to supplement traditional statistical process control methods to
provide enhanced variation reduction and responses to disturbances in sophis-
ticated modern semiconductor manufacturing processes and equipment. In the
next chapter, we introduce other advanced techniques for automated diagnosis of
semiconductor manufacturing equipment.

PROBLEMS

9.1. A manufacturer desires to improve the performance of a three-zone induction
heating furnace used to produce ceramic material for superconducting wire
using RbR control [1]. The furnace is shown in Figure P9.1.

ZONE 1 ZONE 2 ZONE 3 

FURNACE
BODY

CERAMIC
MATERIAL

INDUCTION
COILS

Figure P9.1

Each zone in the furnace is heated directly with its own set of induction coils.
Each coil can be ramped to full power by an independently controlled ramp
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gradient Ri. The controllable input factors in this process are the ramp rates
in each zone (R1, R2, R3) and a trace element additive (E). The response
variable to be controlled is the ductility of the wire produced (Y ). A 24 – 1

fractional factorial experiment with four centerpoints for this process yielded
the following results:

Run R1 R2 R3 E Y

1 160 160 160 18.1 37.3
2 159 161 161 16.3 34.8
3 161 159 161 16.3 34.7
4 160 160 160 18.1 37.4
5 159 159 159 16.3 34.7
6 161 161 159 16.3 34.8
7 159 161 159 20.0 40.1
8 160 160 160 18.1 37.4
9 161 161 161 20.0 40.0

10 159 159 161 20.0 39.9
11 161 159 159 20.0 40.0
12 160 160 160 18.1 37.3

(a) Derive a regression model using the data from this experiment. Evaluate
the quality of the model using standard techniques.

(b) Sixty furnace runs are subsequently performed. The initial process recipe
and data for these 60 runs are tabulated below. Given a target ductility
of 37.3, develop and apply an EWMA-based RbR control system for
this process to meet this target.

Run R1 R2 R3 E

Uncontrolled
Y

1 160.00 160.00 160.00 17.5 37.08
2 37.82
3 37.01
4 36.43
5 37.72
6 36.40
7 37.41
8 36.29
9 37.31

10 36.40
11 37.51
12 37.20
13 37.17
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Run R1 R2 R3 E

Uncontrolled
Y

14 36.63
15 36.04
16 36.56
17 37.06
18 36.99
19 35.90
20 35.91
21 36.02
22 35.84
23 35.95
24 35.93
25 35.73
26 36.21
27 35.81
28 35.77
29 35.74
30 36.57
31 35.67
32 35.49
33 35.45
34 35.42
35 36.67
36 36.40
37 35.82
38 35.79
39 36.26
40 35.37
41 35.17
42 35.28
43 36.12
44 36.12
45 35.54
46 35.51
47 36.01
48 34.93
49 34.90
50 35.91
51 35.84
52 34.75
53 34.71
54 35.73
55 35.73
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Run R1 R2 R3 E

Uncontrolled
Y

56 34.79
57 35.90
58 35.59
59 35.83
60 35.79

9.2. Suppose that for the same three-zone induction heating furnace described
in Problem 9.1, we are also interested in controlling the superconductivity
in zone 1 (Z1). The 24 – 1 fractional factorial experiment for this response
yielded the following results:

Run R1 R2 R3 E Z1

1 160 160 160 18.1 10.39
2 159 161 161 16.3 10.30
3 161 159 161 16.3 10.49
4 160 160 160 18.1 10.42
5 159 159 159 16.3 10.35
6 161 161 159 16.3 10.49
7 159 161 159 20.0 10.34
8 160 160 160 18.1 10.41
9 161 161 161 20.0 10.48

10 159 159 161 20.0 10.34
11 161 159 159 20.0 10.45
12 160 160 160 18.1 10.43

Data for the 60 subsequent furnace runs appears below. If the target super-
conductivity is 10.5, repeat Problem 1 to meet this target and the target
ductility simultaneously.

Run R1 R2 R3 E

Uncontrolled
Z1

1 160.00 160.00 160.00 17.5 10.39
2 10.50
3 10.39
4 10.12
5 10.50
6 11.72
7 10.56
8 10.01
9 10.45
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Run R1 R2 R3 E

Uncontrolled
Z1

10 10.34
11 10.51
12 10.45
13 10.45
14 11.06
15 10.40
16 11.06
17 10.57
18 10.46
19 10.19
20 10.30
21 10.35
22 10.30
23 10.35
24 10.69
25 10.30
26 10.41
27 10.36
28 10.36
29 10.36
30 10.47
31 10.36
32 10.31
33 10.31
34 10.31
35 10.53
36 10.59
37 10.42
38 10.42
39 10.48
40 10.70
41 10.32
42 10.37
43 10.48
44 10.60
45 10.43
46 10.43
47 10.60
48 10.32
49 10.77
50 10.60
51 10.49
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Run R1 R2 R3 E

Uncontrolled
Z1

52 10.11
53 10.16
54 10.50
55 10.61
56 10.39
57 10.55
58 10.50
59 10.56
60 10.56
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10

PROCESS AND EQUIPMENT
DIAGNOSIS

OBJECTIVES

• Survey various techniques for automated diagnosis of semiconductor man-
ufacturing processes and equipment.

• Compare and contrast these techniques.

INTRODUCTION

As we have established throughout this book, maintaining product quality
throughout a semiconductor manufacturing facility requires the strict control
of literally thousands of process variables. These variables serve as input and
output parameters for hundreds of distinct process steps. Individual process steps
are conducted by sophisticated and expensive fabrication equipment. A certain
amount of inherent variability exists in this equipment regardless of how well the
machine is designed or maintained. This variation is the result of numerous small
and essentially uncontrollable causes. However, when this variability becomes
large compared to background noise, significant performance shifts may occur.

As an example of such a shift, consider the standard Shewhart control chart
shown in Figure 10.1. This figure depicts a shift in the thickness of a particular
thin film as integrated circuit wafers are processed in a fabrication line. Such
shifts are often indicative of equipment malfunctions. When unreliable equip-
ment performance causes operating conditions to vary beyond an acceptable level,
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Figure 10.1. Shewhart control chart illustrating a process shift [1].

overall product quality is jeopardized. Consequently, fast and accurate equipment
malfunction diagnosis is essential to the success of the semiconductor produc-
tion process. This diagnosis involves determining the assignable causes for the
equipment malfunctions and correcting them quickly to prevent the continued
occurrence of expensive misprocessing. Fortunately, with the advent of profi-
cient sensors to monitor process conditions in situ (see Chapter 3), it has become
feasible to perform malfunction diagnosis on a real-time basis.

Several diagnostic systems have had the objective of performing automated
diagnosis of faults in both manufacturing processes and equipment. Algorithmic
systems have been developed to identify process faults from statistical infer-
ence procedures and electrical measurements performed on finished IC wafers.
Although this technique makes good use of quantitative models of process behav-
ior, it can arrive at useful diagnostic conclusions only in the limited regions of
operation over which these models are valid. When catastrophic faults destroy
circuit functionality, these models can no longer adequately describe the failure
mechanism. Moreover, in some process steps (such as plasma etching), the theo-
retical basis for determining causal relationships is not well understood, thereby
limiting the usefulness of physical models.

When attempting to diagnose unstructured problems that lack a solid con-
ceptual foundation for reasoning, some success has been attained by approaches
based on quantifying expert knowledge. Expert systems are designed to draw on
experiential knowledge to develop qualitative models of process behavior. In this
way, they are able to circumvent the difficulties encountered by algorithmic sys-
tems when quantitative relationships break down. Yet a purely knowledge-based
approach often lacks the precision inherent in the deep-level physical models,
and is thus incapable of deriving solutions for unanticipated situations from the
underlying principles surrounding the process. Another shortcoming of purely
expert diagnosis is its inability to identify concurrent multiple faults.



ALGORITHMIC METHODS 381

Neural networks have also emerged as an effective tool for equipment diag-
nosis. Diagnostic problem solving using neural networks requires the association
of input patterns representing quantitative and qualitative process behavior to
fault identification. Robustness to noisy sensor data and high-speed parallel com-
putation make neural networks an attractive alternative for real-time diagnosis.
However, the pattern recognition-based neural network approach is not without
limitations. First, a complete set of fault signatures is hard to obtain, and the
representational inadequacy of a limited number of datasets can induce network
overtraining, thus increasing the misclassification (or “false alarm”) rate. Also,
pattern matching approaches in which diagnostic actions take place following a
sequence of several processing steps are suboptimal since evidence pertaining to
potential equipment malfunctions accumulates at irregular intervals throughout
the process sequence. At the end of a sequence, significant misprocessing and
yield loss may have already taken place, making postprocess diagnosis alone
economically undesirable.

This chapter presents several approaches for the automated malfunction diag-
nosis of IC fabrication equipment. The methodologies discussed include quantita-
tive algorithmic diagnosis, qualitative experiential, and pattern recognition-based
neural network approaches. The use of process and equipment diagnosis can con-
tribute to maintaining consistent manufacturing processes, increasing the prob-
ability of identifying faults caused by equipment malfunctions, and ultimately
leading to improved process yields.

10.1. ALGORITHMIC METHODS

10.1.1. Hippocrates

Hippocrates is a system developed by Spanos in 1986 designed for the statistical
diagnosis of noncatastrophic IC process faults [2]. Diagnosis in Hippocrates is
based on the automatic selection of the minimum required set of electrical mea-
surements and the subsequent solution of a sequence of nonlinear minimization
problems that yield information regarding a process fault. This methodology is
best suited to postprocess fault identification for finished IC wafers.

The statistical variations of an IC process are due primarily to the existence
of a set of low-level, nonmeasurable, noncontrollable, independently varying
physical quantities called process disturbances. A few examples of process dis-
turbances include dopant diffusivity fluctuations and mask misalignments. These
disturbances result in process faults. As discussed in Chapter 5, there are two
categories of faults. “Hard” faults are manufacturing defects that destroy the
functionality of a circuit. These faults are not addressed by Hippocrates. “Soft”
faults are departures in circuit performance that do not lead to a loss in function-
ality. Such faults are observed through symptoms, which are defined as abnormal
changes in the value of the statistics of one or more measurable parameters that
relate to circuit performance. Process diagnosis is thus the inference of causes
of changes in performance statistics resulting from process disturbances.
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10.1.1.1. Measurement Plan
Diagnosis begins with the selection of a measurement plan, which is the data
acquisition approach used to derive a symptom vector. The selection of an appro-
priate set of measurements whose deviations from expectations are used for diag-
nosis is critical. The cost, speed, and accuracy of data acquisition are obviously
important. Furthermore, even a set of accurate but poorly selected measurements
can be of limited use if the observability (i.e., the maximum number of indepen-
dent process faults that can be identified) of the measurement plan is insufficient.

Assuming an initial measurement plan with m elements, the first step is to
create a fault matrix F , where

Fij = (ss
i )j − ss

i

ss
i

i = 1, . . . , m j = 1, . . . , n (10.1)

where ss
i is the regular (ss

i )j is the faulty value of the ith element of the symptom
vector due to the occurrence of the j th fault. These quantities are evaluated by
means of measurement (or simulation) of the circuit response due to process
disturbances d0

1 , d0
2 , . . . , d0

n . Thus, Fij is the normalized change in the symptom
vector due to the j th fault (i.e., the addition of a perturbation δdj to the normal
value of the j th disturbance).

The next step is to cross-correlate the columns of the fault matrix to create an
m × m symptom correlation matrix (SCM). In this step, all entries whose value
is less than a specified threshold Cmax s (where Cmax s = 0.95 is a typical initial
selection) are discarded. In other words

SCMij =



|ρs | ≡ cor ({Fi1, Fi2, . . . , Fin}, {Fj1, Fj2, . . . , Fjn})
for |ρs | ≥ Cmax s

|ρs | ≡ 0 for |ρs | < Cmax s

(10.2)

The symptoms are then grouped into m′ high correlation groups by pivoting the
truncated SCM so that it assumes a block diagonal form. The most sensitive
symptom (i.e., the one that reflects the maximum sum of normalized, absolute
changes due to all simulated faults) is then selected from each group. In so doing,
a reduced measurement plan with m′ < m elements is obtained.

Next, fault observability is tested by cross-correlating the reduced symptom
vectors for all simulated faults, thereby creating an n × n fault correlation matrix
(FCM). Once again, entries whose value is less than a specified threshold Cmax f

(where Cmax f = 0.8 is typical) are discarded. Then

FCMij =



|ρf | ≡ cor ({F1i , F2i , . . . , Fm′i}, {F1j , F2j , . . . , Fm′j })
for |ρf | ≥ Cmax f

|ρf | ≡ 0 for |ρf | < Cmax f

(10.3)

The FCM is likewise pivoted to a block diagonal form. One drawback of using
this approach is that faults that end up in the same group are indistinguishable.
If desired, the process can be repeated with different values of Cmax s and Cmax f .
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10.1.1.2. Fault Diagnosis
After a suitable reduced measurement plan has been identified, a symptom vec-
tor is generated. This is accomplished using a statistical process simulator that
is capable of mapping faults to symptoms. The FABRICS simulator discussed in
Chapter 5 (see Section 5.5.2) is an example of such a program. Next, nonlinear
regression models are constructed to relate process disturbances to developed
symptoms. The result is a cost function that serves as an analytical approxima-
tion of the “distance” between the measured and nominal (as provided by the
simulation) statistics of the process. In other words

Cost(d1, . . . , dn, s1, . . . , s
′
m) ∼=

m′∑
i=1

[si − simi (d1, . . . , dn)]
2 (10.4)

where simi is the ith simulation.
Once the cost function is established, a sequence of minimization problems are

solved to diagnose the fault. Hippocrates initially assumes that single faults occur
independently. However, if Hippocrates fails to infer a single fault that explains
the symptom vector, the system looks for increasingly complex combinations of
multiple faults. Faults are identified by solving the minimization problem

min
d1,...,dn

cost(d1, . . . , dn, s1, . . . , s
′
m) + πk(d1, . . . , dn) (10.5)

such that aj < dj < bj j = 1, . . . , n

where aj and bj are constraints that represent regions of validity for the cost
function and πk is a penalty supplement for a multiple fault that explains k

disturbances. For example, the penalty supplements for k = 2, 3 are

π2 =
∑

i �=j �=k

(di − d0
i )2(dj − d0

j )2(dk − d0
k )2 (10.6)

π3 =
∑

i �=j �=k �=l

(di − d0
i )2(dj − d0

j )2(dk − d0
k )2(dl − d0

l )2 (10.7)

Before an inferred fault is accepted, it is tested by producing a simulated symptom
vector and comparing that simulated symptom vector to the measured symptom
vector.

10.1.1.3. Example
Spanos demonstrated the effectiveness of Hippocrates using measurements col-
lected from an NMOS fabrication line [2]. A lot consisting of 15 wafers con-
taining 72 test die each was used for reference purposes to establish baseline
(nominal) behavior. Eleven on each of approximately 500 test dies provided cur-
rent–voltage data for characterizing process disturbance statistics. The test die
contained enhancement and depletion mode MOSFETs of various sizes.

The initial measurement plan called for measurements on 11 devices rang-
ing in width/length from 3 µm/4 µm to 25 µm/25 µm. The plan also called for
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Table 10.1. Identifiable independent faults.

No. Disturbance Effect

1 Linewidth variation of nitride Channel width
4 Linewidth variation of polysilicon Channel length

14 Diffusivity of boron Enhancement region
20 Diffusivity of arsenic Depletion region
30 Linear rate of gate oxidation Gate oxide thickness
29 Parabolic rate of gate oxidation Gate oxide thickness
35 Etch rate of gate oxide Gate oxide thickness

gate voltages to be swept in 1-V increments from −2 to 2 V for the depletion-
mode devices and 2 to 6 V for the enhancement-mode devices. In each case,
the gate voltage was swept for drain voltages of 2, 4, and 6 V, and for substrate
voltages of 0, −3, and −7 V. This resulted in a total of 495 measurements. How-
ever, the application of a reduced measurement plan derived using the algorithm
described in Section 10.1.1.1 required only 54 bias points to be measured. Test-
ing the observability of this reduced plan resulted in the potential independent
identification of the faults listed in Table 10.1.

After an approximation to the cost function was derived using a statistical
modeling package, diagnosis using Hippocrates ensued. The successfully diag-
nosed faults correlated well with the history of the faulty wafer. A shift in channel
length reduction (disturbance 4) was already known and properly diagnosed by
the system. In addition, a shift in the arsenic profiles was traced to a 10% increase
in the arsenic implantation dose between the reference and faulty lots.

10.1.2. MERLIN

The measurement relational interpreter (MERLIN) is another approach to
computer-aided diagnosis of IC parametric test data that was developed by
Freeman [3]. In contrast with a purely rule-based expert systems approach
(see Section 10.2), the foundation of the knowledge base used by MERLIN is
library of analytical device equations. This flexible approach can readily adapt
to changing measurement data availability, as well as provide guidance in the
selection of additional measurements to clarify diagnostic ambiguities.

Diagnosis is typically performed in three stages: device diagnosis, process
diagnosis, and root-cause diagnosis. In the device stage, which is the focus
of MERLIN, electrical measurements are analyzed to ascertain any potential
physical anomalies in device structure. In this stage, fundamental first-principles
knowledge embedded in equations describing device behavior plays a key role
in the interpretation of measurement data. The challenge here is in mapping such
knowledge into an adequate machine representation. However, since the knowl-
edge is centered around a relatively small number of well-defined equations, the
acquisition, maintenance, and modification of the overall knowledge base is sim-
plified significantly. The result is that this knowledge base can be generated with
less effort and is less susceptible to errors introduced during regular maintenance.
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At the heart of MERLIN is a symbolic representation that encodes device
model equations. This representation is complemented by a diagnostic inference
mechanism that is capable of explaining abnormal test data by reasoning from
the models.

10.1.2.1. Knowledge Representation
MERLIN’s analytical reasoning capability is enabled by its internal model rep-
resentation, which allows users to manipulate device models through a graphical
user interface. MERLIN can also dynamically adapt to any combination of avail-
able measurements and is capable of incorporating experiential knowledge to
complement its analytical models.

As an object-oriented package, MERLIN defines four classes of objects—
variables, constants, equations, and device–components—as basic data types in
its knowledge base. Specialized versions of these objects represent portions of
equations. For example, an object called VT is a type of variable representing the
threshold voltage in a MOS transistor. Various attributes, including a description,
a list of equations that refer to it, and its approximate values, are associated with
such an object. An object editor (see Figure 10.2) is used to view or modify
these attributes. Constant objects are similarly defined, except since their values
are independent of any set of measurements, their value is specified along with
the model.

Equation objects describe a particular relationship among variables and con-
stants. Within an equation, this relationship is encoded as a symbolic expression
with references to objects representing other relevant quantities (such as variables
and constants). For example, an object called VT-EQN is shown in Figure 10.3.
To simplify the representation, all equations are stored in a an “equal-to-zero” for-
mat (i.e., 〈expression〉 = 0). If there is a dependent variable in the expression, it
is listed as such in the attribute section of the equation object. Since many devices
are described by different equations in different regions of operation, MERLIN
provides a special “PIECEWISE-CONDITION” attribute that allows the repre-
sentation to be described by a list of equations, with each equation tagged by a
condition under which it applies.

Device–component objects are defined to relate variables to the physical struc-
tures they represent. Examples of such structures are gate oxides, source–drain

Figure 10.2. MERLIN’s object editor [3].
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Figure 10.3. Object editor for equation class [3].

Figure 10.4. Object editor for device–component class [3].

diffusion regions, or even entire transistors. MERLIN provides a repre-
sentation for describing these structures through two attributes of this
class: CONTAINS-DEVICE-STRUCTURE-ELEMENTS and PARAMETERS-
DESCRIBING-DEVICE-COMPONENT. An example of a device–component
object is shown in Figure 10.4.

To capture experiential knowledge, MERLIN allows expert users to com-
plement an equation model with heuristic information, such as the abnormal
likelihood of a variable or the accuracy of an equation. Such information is rep-
resented as an attribute. For variables, this can be a number between 0 and 1
(with 1 representing the most likely case), or as a function that when evaluated,
returns a likelihood value between 0 and 1. When performing diagnosis, use of
these heuristics is optional.

Measurements are entered into MERLIN as special instances of variable
objects. For example, a threshold voltage measurement VT-1 created under
the class VT with attributes like ACTUAL-VALUE and UNITS is shown in
Figure 10.5. To denote the origin of the measurement, lot, wafer, and site labels
are listed in the GROUP attribute. Other attributes are inherited from the parent
VT class. The QUALIFIERS attribute describes the device layout parameters and
test conditions of the measurement. Measurements and their qualifiers are used to
create a consistent set of related equations. MERLIN determines which equations
are shared by those measurements, resulting in a unique set of equations that are
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Figure 10.5. Object editor for VT-1 instance of VT class [3].
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VT-EQN-1
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Figure 10.6. Network of equations, variables, and constants [3].

associated with quantities that they reference. This is illustrated schematically in
Figure 10.6.

10.1.2.2. Inference Mechanism
MERLIN views device equations as constraints, where, if values are known for all
except one of the variables, the value of the remaining variable can be computed.
These values may be associated with individual measurements, means, medians,
defect densities, or yields. Collectively, a set of measurements can characterize
a single site, a wafer, or a lot. In analyzing a set of measurements, both subject
and reference values are specified. The reference values represent the nominal
conditions to which subject measurements are compared. The reference values
are defined in the same manner as the subjects, except that the GROUP and
ACTUAL-VALUE attributes differ.

Once validated, measurements are analyzed for the purpose of diagnosis. Two
diagnostic methods are available. The first is visual inspection of a graphical
representations of the data. This visualization is accomplished by means of a
deviation graph (see Figure 10.7). These graphs contain a summary of all param-
eter information and display the percent deviation of subject values compared to
reference values. To differentiate measurements from unmeasured (computed)
values, boxes appear around variables that have been measured. Each deviation
graph also contains dependence links, which provide structure to the graph and
identify which variables are most likely causes of deviations.
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VT (−19.3%)
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QOT
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Figure 10.7. Deviation graph [3].

A user can ask MERLIN to compute deviations for as many unmeasured
variables as appear in the network. MERLIN solves constraints by applying the
same analysis to both subject and reference values and then inserting values into
the unmeasured variable objects. Afterward, the deviations can be computed.
Since networks are frequently overconstrained, the order of solution is governed
by a set of heuristics.

Although deviation graphs are helpful, their use is somewhat limited. Some
relevant information, such as the sensitivity of variables to one another, cannot be
easily conveyed in this manner. Therefore, MERLIN’s second diagnostic method
consists of an automatic internal analysis. The algorithm employed inspects and
analyzes a network to explain the deviations of variables of interest, and MERLIN
returns the variable that it believes to be the most likely cause of the problem and
why. Such an inquiry may be triggered interactively by the user or automatically
when any measurement is found to be outside of its specification limits.

After identifying such variables, hypotheses must be generated to determine
the causes of the deviations. An example of such a hypothesis might be “TOX
is 20 angstroms too low.” In the graph in Figure 10.7, deviations exist along
the path between VT and TOX. This seems to be the path through which VT
may have been affected, leading to the conclusion that TOX is a possible cause
of the deviation in VT. In finding such paths, MERLIN computes a measure of
association for each path. The measure of association is a value between −1 and
1 that indicates how well the deviations along a path predict the deviation in the
variable of interest.

In addition, on a given path, each variable with a known deviation is assigned
a level of predictability, which is another value between −1 and 1 that indicates
how well that specific deviation predicts the deviation in the variable of interest.
To do so, through a propagation algorithm, MERLIN then computes a predicted
deviation (�V0,pred) in the variable of interest (V0) based on the known variation
(�Vi) in the variable along the path. The predictability of variable i is determined
by applying a heuristic that compares to �V0,pred the actual deviation (�V0). This
is illustrated in Figure 10.8. A value of −1 indicates poor predictability, and a
value of 1 represents an exact match. The measure of association is an average
of the predictabilities over a given path.

To verify a hypothesis, MERLIN performs a reverse traversal to look for evi-
dence in the network that supports it. Through inspection of the deviations of



ALGORITHMIC METHODS 389

−∆ Vo

+1

Predict-
ability

−1

∆ Vo ∆ Vo pred(∆ Vi)

Figure 10.8. Representation of heuristic measure of how well a predicted deviation reflects a
known deviation [3].

the affected variables encountered during this traversal, MERLIN calculates two
measures of verification: a value measure and a correlation measure. The value
measure reflects the known deviation (subject minus reference) in dependent vari-
ables to deviation values that would be expected if the hypothesis were true. For
example, if the hypothesis were a 50-Å decrease in TOX, then one would expect a
350-pF increase in COX. MERLIN automatically computes these expected devi-
ations, and for each affected variable, a comparison between the predicted and
known deviations is summarized using the same predictability measure employed
for computing the measure of association. The value measure of verification is
simply the average of these predictabilities.

The correlation measure of verification, on the other hand, reflects an attempt
to compare trends between different measurements of the same variable. These
measurements may represent the same test conditions applied to several different
devices (such as devices with different dimensions) or several different test con-
ditions applied to the same device. For each hypothesis, MERLIN finds those sets
of dependent variables for which multiple instances are available and computes
the fractional deviation for each variable in that set that would be expected if the
hypothesis were true. The set of fractional deviations is

X = subject − reference

reference
(10.8)

Let Y be the known values of the variable set. The correlation measure of veri-
fication (ρ) is simply the correlation coefficient between X and Y, or

ρ = cov(X, Y )√
[var(X)var(Y )]

(10.9)

where cov is the covariance and var is the variance of these variables. A correla-
tion measure of +1 indicates that the trend predicted by the hypothesis matches
the measured trend perfectly, and −1 reflects the opposite observed trend.

To determine an overall diagnosis, MERLIN takes into account the measures
of association, value verification, correlation verification, and any experiential
knowledge provided by expert users. The system is capable of producing a
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rank-ordered list of possible hypotheses or only those hypotheses above a certain
threshold.

10.1.2.3. Case Study
To demonstrate the utility of MERLIN, consider the diagnosis of a junction
leakage yield problem in several test structures. These structures are designed so
that electrical testing can reveal random defect problems more readily than in
product circuits. Examples of such structures are described in Chapter 5.

It is possible that a single measurement may detect potential problems with
more than one structural component. For example, a junction leakage measure-
ment on the same structure may reflect structural issues indicative of random
defects at the interface between the junction and field isolation or the area under
the contacts. MERLIN is capable of determining which structural components are
affected the most by the random defects by encoding the critical areas as control
variables within its models. Test data, along with associated critical areas, are
passed to MERLIN at the beginning of an analysis, and MERLIN examines the
corresponding sensitivities to perform a diagnosis.

In this example, test data were obtained through the measurement of five defect
monitors—four of which emphasize individual structural features of n+-NMOS
source–drain junctions (i.e., junction area, junction edge adjacent to field oxide,
junction edge under the gate, and junction under a metal contact), and one that
combines these components as part of a contact string. The physical relationships
between these components are captured by the expressions

SDJ-D = SDJ-A-DD × JA + SDJ-FE-DD × JFE + SDJ-C-DD

× NC + SDJ-GE-DD × GE (10.10)

SDJ-Y = e−SDJ−D (10.11)

where SDJ-A-DD, SDJ-FE-DD, SDJ-C-DD, and SDJ-GE-DD are the defect den-
sities for the area, field edge, contact, and gate edge components of the junction,
respectively. SDJ-D is the average number of defects, and SDJ-Y is the yield
of a given structure with junction area JA, field edge JFE, number of contacts
NC, and gate edge GE. The latter four parameters are controllable and specified
along with measurements as qualifiers. The contact string is described by similar
equations.

The yield of each of the test structures was extracted, and the qualifiers speci-
fied along with the yield measurements were determined. When this information
is provided to MERLIN, it constructs a network relating the measurements,
computes the average defects per structure, and solves simultaneous equations
to approximate the defect densities. The resulting deviation graph is shown
in Figure 10.9, and the associated diagnosis of the CONTACT-STR-Y region
appears in Figure 10.10. In this report, the evidence is strongly in favor of
contact-related defects as the primary detractor from the contact string yield.
The rationale for this conclusion is that since the contact string contained no
gate structural features, which was ruled out as a possibility. Comparison of the
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Figure 10.9. Deviation graph for source-drain junction leakage test structure case study [3].
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Figure 10.10. Analysis of CONTACT-STR-Y component in Figure 10.9 [3].

remaining three structural features revealed that the association evidence and
value verification evidence were too close, and therefore inconclusive. However,
the correlation measure of verification was strongly in favor of the contacts as
the likely source of the problem.

10.2. EXPERT SYSTEMS

Algorithmic diagnostic systems identify process faults from electrical measure-
ments, statistical inference procedures, and quantitative process models. These
systems are somewhat limited in the sense that they can only arrive at diagnostic
conclusions in the regions of operation in which these models are valid. In some
process steps, however, the theoretical basis for establishing quantitative mod-
els that determine causal relationships is not well understood. Expert systems
have been designed to draw on experiential knowledge to develop qualitative
models of process behavior. This rule-based approach has attained some suc-
cess in attempting to diagnose unstructured problems that lack a solid conceptual
foundation for reasoning.

10.2.1. PIES

The parametric interpretation expert system (PIES) is a knowledge-based method-
ology for making inferences about parametric test data collected during semicon-
ductor manufacturing [4]. PIES transforms voluminous measurement data into
a concise statement of the “health” of a manufacturing process and the nature
and probable cause of any anomalies. The structure of the PIES knowledge base
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mimics the rationale used by process engineers in diagnosing problems and allows
users to construct and maintain their own system of expert rules.

Typically, hundreds of electrical measurements are performed on each semi-
conductor wafer. The challenge in diagnosing faults is to reduce these data to a
concise summary of process status, including the cause of any potential abnormal-
ities. The structure of the PIES knowledge base reflects the way failure analysis
engineers reason causally about faults. First measurement deviations are used to
infer physical defects. These structural anomalies are then linked to problems
with particular fabrication steps. For example, a film might be too thick because
a wafer was left in an oven too long. Ultimately, such problems are traced to
root causes (i.e., the wafer was in the oven too long because a timer broke). The
multilevel nature of the PIES knowledge base allows process engineers to codify
their experiential knowledge using causal links that associate evidence at each
level with hypotheses at the next. A knowledge editor supports this conceptual
structure.

The usual duties of a failure analysis engineer involve diagnosing process
faults and recommending corrective action. PIES enhances the efficiency of
this process by reducing the volume of raw test data that must be analyzed
and ensuring objective assessment and analysis of this data. This is accom-
plished by representing the diagnostic domain in terms of multiple causal levels.
Figure 10.11 shows the causal chain PIES uses to represent the origination and

PARAMETRIC MEASUREMENTS
deviations

PHYSICAL SILICON STRUCTURE
abnormalities

FABRICATION PROCESS
variations

Fab EQUIPMENTS
malfunction

SOURCE MATERIALS
defects/impurities

(wafers, chemicals)

ENVIRONMENT
fluctuation

(humidity, temperature)

HUMAN OPERATION
error

(do-a-step-twice, skip-a-step,
mix-lot, mis-dial, etc.)

Figure 10.11. PIES representation of multilevel failure propagation [4].
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propagation of fabrication failures. The root cause of these failures is either an
equipment malfunction, contamination in source materials or the environment, or
human error.

The diagnostic approach involves isolating the possible causes of observed
symptoms by “reversing” the causal chain using the following sequence: measure-
ment deviations → physical structure → abnormalities → process variations →
root causes. At the physical structure level, failure modes consist of incorrect
film thicknesses, doping densities, etc. At the process level, they include incor-
rect temperatures, pressures, or gas flows during particular steps. Rules provided
by process engineers link failure modes at adjacent levels. For example, EPI-
THICKNESS-HIGH might be associated with an abnormally high temperature
during epitaxy.

Thus, associated with each structural anomaly are a set of observable
symptoms and a corresponding set of possible causes. Diagnosis proceeds as
a multilevel hypothesis verification exercise. Parametric measurements are first
transformed from numeric values into quantitative ranges (normal, high, low,
etc.). Each abnormal measurement implicates one or more structural problems.
The symptoms associated with each hypothesized structural issue are compared
with the complete set of abnormal measurements. A score is assigned based on
how well the expected symptoms match those that have been observed, and a
hypothesis verification process is used to select the most probable failure(s).
Finally, the root causes are selected that best explain the highest likelihood
failures.

10.2.1.1. Knowledge Base
The PIES knowledge base is organized according to the four levels described in
Figure 10.11. The causal sequence among this hierarchy is described by a set
of symbolic links, which are used by both a knowledge editor and a diagnostic
reasoner. At each causal level, the knowledge base is decomposed into structures
called failure cases that encode information about the type of failure at that level.
Examples of such information are the popular name used by experts to refer to the
case, comments from process engineers about the case, and associational links
that describe how the case is related to other types of failures. A link can either
be the causes or caused-by type, and it can be either intralevel or interlevel.
Each link also has an associational strength, which is a heuristic estimate of the
strength of the causal relationship. Strengths have five possible states: must, very
likely, likely, probably, or maybe. An example of an associational link is shown in
Figure 10.12, which is the PIES representation of a BASE-DISTRIBUTION-deep
fault in a bipolar process.

A knowledge editor allows a process engineer serving as a domain expert
to build and maintain the knowledge base. The primary function of the PIES
knowledge editor is to guide the domain expert in codifying knowledge in a
form syntactically and semantically consistent with the PIES knowledge base.
The knowledge editor allows the addition, deletion, revision, or replacement of
associational links, as necessary.
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Possible effects at measurement level --

Possible causes at process level --

Possible causes at SAME physical-structure level --

1: ((parametric-measurement WE10BETA low) very-likely)

4: ((parametric-measurement WE10-CBO low) probably)
5: ((parametric-measurement SOT2-CBO low) probably)
6: ((parametric-measurement SOT-B-SU very-low) probably)
7: ((parametric-measurement SOTBETAF low) probably)

1: ((BASE-IMPLANT ENERGY high) likely)

1: ((BASE-OXIDE THICKNESS low) likely)

2: ((BASE-DRIVE FURNACE-TEMPERATURE high) likely)
3: ((BASE-DRIVE DIFFUSION-TIME long) likely)

2: ((parametric-measurement RB1 low) probably)
3: ((parametric-measurement RB2 low) very-likely)

Figure 10.12. PIES representation of bipolar BASE-DISTRIBUTION-deep structural defect [4].

10.2.1.2. Diagnostic Reasoning
The diagnostic reasoning mechanism in PIES uses the multiple causal level
structure shown in Figure 10.11 to identify the root causes of failures from a set
of parametric test data. Before doing so, symbolic symptoms must be abstracted
from raw test data. This occurs in two steps: (1) any noisy data are removed sta-
tistically and (2) the average and standard deviation for each measurement over
all wafers in a given lot are computed for the remaining data. The averages and
standard deviations are then compared with limits provided by experts to produce
a qualitative estimate that describes the measurement (such as EPI-R-very-low
in the experiment described in Section 10.2.1.3). These estimates form the initial
symptom set.

The diagnostic process then proceeds by progressing through each causal level
by a sequence of hypotheses and confirmations. At each level, a set of possible
failures is filtered from hypotheses suggested by likely faults isolated at the
previous level. At each stage, isolation is achieved in four steps: hypothesization,
implication, confirmation, and thresholding. This process continues until a final
diagnostic conclusion is reached.

The objective of the hypothesization step is to heuristically retrieve a “suspect
set” that includes those failures that are reasonably implicated by the symptoms,
given some adjustable threshold for inclusion. Implication, the next reasoning
step, expands the suspect set by including additional hypotheses that are impli-
cated by any failure case already included. This implication step is based on
the intralevel causalities coded in the knowledge base. In the confirmation step,
the expected symptoms for each failure case in the expanded suspect set are
matched against the hypotheses concluded by the diagnostic process thus far,
and a “score” is computed for each case. The score indicates how close the
symptoms and derived conclusions match. Following confirmation, the failures
in the suspect set are sorted according to these scores. Thresholding excludes
those cases with relatively low scores.
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10.2.1.3. Examples
As a typical example of a PIES application, consider the measurement of the
resistance of an epitaxial layer in a bipolar process. EPI-R is the nomenclature
used for this measurement from a test structure. One possible explanation for a
low observed EPI-R value is an epitaxial layer that is too thick. A thick layer can
result from an abnormally high temperature during the epitaxial growth process.
The objective of PIES is to determine the root cause of such a failure, which
might be a faulty thermostat or another equipment failure.

Another example from the same process involves a physical structure fail-
ure (BASE-OXIDE-THICKNESS-low, shown in Figure 10.12) that might cause
another similar failure (BASE-DISTRIBUTION-deep). This types of failure, as
illustrated in Figure 10.13, requires the PIES knowledge base to make use of
intralevel causalities during the implication phase of diagnosis.

PIES was initially implemented in 1986 for the ISO-Z bipolar process at
Fairchild Semiconductor, which is the process used in the examples above. In
the knowledge base for this process, a total of 342 types of failure cases were
identified: 101 at the measurement level, 82 at the physical structure level, and
159 at the process level. The knowledge base encoded approximately 600 asso-
ciational links among these cases. After initial system tuning and enhancement
of the PIES knowledge base, PIES achieved the correct diagnosis nearly 100%
of the time in cases for which complete knowledge was available.

10.2.2. PEDX

The plasma etch diagnosis expert (system) (PEDX) is a tool that automati-
cally interprets endpoint traces generated in real time by optical emission spec-
troscopy [5]. This system combines signal-to-symbol transformations for data
abstraction and rule-based reasoning to detect and classify process faults.
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Figure 10.13. Concepts causally related to BASE-DISTRIBUTION-deep structural defect [4].
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An experienced plasma process engineer can detect problems by interpreting
OES endpoint traces, which contain information regarding the amount of partic-
ular chemicals produced as material is removed from a wafer. When examining
a trace, engineers usually make the following assumptions:

• Approximately horizontal regions correspond to periods of etching through
a single layer of material.

• Sharply ascending regions reflect periods when power has just been turned
on or when a new layer of material has been reached.

• Sharply descending regions correspond to periods when the power has just
been turned off or when a new layer of material has been reached.

As an example, consider the trace for the polysilicon and silicon nitride etch
depicted in Figure 10.14. Initially, this trace rises sharply when the power is
turned on. Polysilicon is removed in the flat region 2, and a nitride layer is
removed in the two regions from point D to point F . Process parameters are
adjusted for the nitride etch between points C and D, and the last sharp decline
reflects power shutting down.

A faulty etch can be identified by comparing nominal traces such as this to
abnormal traces. For example, too long a flat region may be caused by a previous
process depositing too much polysilicon. PEDX was developed to automatically
interpret traces to infer such problems.

10.2.2.1. Architecture
The architecture of PEDX is illustrated in Figure 10.15. A signal-to-symbol trans-
former takes an OES trace and creates and symbolic representation. A set of rules
operating on this symbolic description is then executed to detect and diagnose
problems.

The signal-to-symbol transformer consists of two components. The first inten-
sifies critical points in the input trace that indicate slope changes. These lines that
join two critical points forms a region. For example, the trace in Figure 10.14
has six regions. A data structure called a region object is used to describe each
region. The attributes of a region object include its average slope, maximum and
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Figure 10.14. Sample OES endpoint trace [5].



EXPERT SYSTEMS 397

plasma etcher

Signal-to-Symbol Transformer

Rules

'input' trace

'normal' trace

Identify regions/
Critical points

Match Regions

Process Specific RulesGeneric Rules
Trigger

Result

Ok Detect Problem

Figure 10.15. PEDX architecture [5].

minimum intensity values, material etched, starting and ending times, and times
and intensities of the critical points. The second component of the transformer is
the matching algorithm. This algorithm compares regions of an input trace with
corresponding regions from a normal trace. Discrepancies between the two are
accounted for by the PEDX rule-based reasoning system.

10.2.2.2. Rule-Based Reasoning
PEDX uses two categories of rules to operate on the output of the signal-to-
symbol transformer: generic and process-specific. Generic rules compare regions
of an input trace to the corresponding regions of a normal trace to identify any
abnormalities. They compare intensities, slopes, and times of critical points to
provide symbolic conclusions such as “too early,” “too late,” or “no problem.”
An example of a generic rule is

If (time for a normal ending critical point - time for input ending critical point) <

threshold
then conclude “too late”

Process-specific rules identify the causes of problems. These rules are divided
into different groups that represent knowledge about different regions. Process-
specific rules are developed by domain experts. An example of such a rule is

If the generic rule for testing ending time determines “too late” for region 1 then
conclude “thin material on poly” (polysilicon)

After a wafer is etched, process-specific rules for each region are executed.
In this way, PEDX detects abnormalities if the size of differences between input
and normal traces is outside an acceptable range. In cases where a problem is
detected, PEDX can shut down an etcher and report its diagnosis to a technician
for corrective action.
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10.2.2.3. Implementation
PEDX has been demonstrated on OES traces collected from a plasma etcher at
Texas Instruments [5]. The system was tested on over 200 endpoint traces for
two different processes. Process engineers serving as domain experts enumerated
13 different types of faults and the corresponding traces that might account for
them. Three of these problems were present in 100 test cases, and all of these
were identified successfully by PEDX.

There was only one problem that went undetected for one of the processes
studied (a slope anomaly for a short duration). In this case, however, no rule was
available for this problem since it was unanticipated. Nevertheless, new rules can
always be added to PEDX to adapt to such unforeseen problems.

10.3. NEURAL NETWORK APPROACHES

Although very useful and powerful, both the algorithmic and expert diagnostic
approaches discussed in Sections 10.1 and 10.2, respectively, have limitations.
Algorithmic systems make good use of quantitative models of process behavior,
but can arrive at diagnostic conclusions only in the limited regions of operation
over which the analytical models on which they depend are valid. Expert systems,
on the other hand, draw on experiential knowledge to develop qualitative process
models, but purely knowledge-based techniques lack the precision inherent in
analytical models, and are therefore incapable of deriving solutions for previously
unanticipated situations.

Neural networks (see Chapter 8) have emerged as another effective tool for
malfunction diagnosis in semiconductor processes [6–9]. Diagnostic problem
solving using neural networks requires the association of input patterns rep-
resenting quantitative and qualitative process behavior to fault identification.
Robustness to noisy sensor data and high-speed parallel computation make neural
networks an attractive alternative for fault diagnosis.

10.3.1. Process Control Neural Network

For diagnosis at the integrated circuit level, Plummer developed a process con-
trol neural network (PCNN) to identify faults in bipolar operational amplifiers
(“op-amps”) based on electrical test data [6]. The PCNN exploits the capability
of neural nets to interpret multidimensional data and identify clusters of perfor-
mance within such a dataset. This provides enhanced sensitivity to sources of
variation that are not distinguishable from observing traditional single-variable
control charts. Given a vector of electrical test results as input, the PCNN can
evaluate the probability of membership in each set of clusters, which represent
different categories of circuit faults. The network can then report the various fault
probabilities or select the most likely fault category.

Representing one of the few cases in semiconductor manufacturing in which
backpropagation networks are not employed, the PCNN is formed by replac-
ing the output layer of a probabilistic neural network with a Grossberg layer
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Figure 10.16. Process control neural network formed by replacing the output layer of a
probabilistic neural network with a Grossberg layer whose outputs reflect probabilities that
constitute a Pareto distribution of possible causes for a given input vector [6].

(Figure 10.16). In the probabilistic network, input data are fed to a set of pattern
nodes. The pattern layer is trained using weights developed with a Kohonen self-
organizing network. Each pattern node contains an exemplar vector of values
corresponding to an input variable typical of the category it represents. If more
than one exemplar represents a single category, the number of exemplars reflects
the probability that a randomly selected pattern is included in that category. The
proximity of each input vector to each pattern is computed, and the results are
analyzed in the summation layer.

The Grossberg layer functions as a lookup table. Each node in this layer
contains a weight corresponding to each category defined by the probabilistic
network. These weights reflect the conditional probability of a cause belonging
to the corresponding category. Then outputs from the Grossberg layer reflect the
products of the conditional probabilities. Together, these probabilities constitute a
Pareto distribution of possible causes for a given test result (which is represented
in the PCNN input vector). The Grossberg layer is trained in a supervised manner,
which requires that the cause for each instance of membership in a fault category
be recorded beforehand.

Despite its somewhat misleading name, Plummer applied the PCNN in a diag-
nostic (as opposed to a control) application. The SPICE circuit simulator was
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used to generate two sets of highly correlated input/output operational amplifier
test data, one representing an in-control process and the other a process grossly
out of control. Even though the second dataset represented faulty circuit behav-
ior, its descriptive statistics alone gave no indication of suspicious electrical test
data. Training the Kohonen network with electrical test results from these data
sets produced four distinct clusters (representing one acceptable and three faulty
states).

With the Kohonen exemplars serving as weights in the pattern layer, the PCNN
then was used to identify one of the three possible out-of-control conditions:
(1) low npn β; (2) high npn β and low resistor tolerance; or (3) high npn β

and high resistor tolerance. The summation layer of the PCNN reported the
conditional probability of each of these conditions and the probability that the
op-amp measurements were acceptable for each input pattern of electrical test
data. The PCNN was 93% accurate in overall diagnosis, and correctly sounded
alarms for 86% of the out-of-control cases (no false alarms were generated).

10.3.2. Pattern Recognition in CVD Diagnosis

Bhatikar and Mahajan used a neural-network-based pattern recognition approach
to identify and diagnosis malfunctions in a CVD barrel reactor used in silicon
epitaxy [7]. Their strategy was based on modeling the spatial variation of
deposition rate on a particular facet of the reactor. The hypothesis that motivated
this work was that spatial variation, as quantified by a vector of variously
measured standard deviations, encoded a pattern reflecting the state of the reactor.
Thus, faults could be diagnosed by decoding this pattern using neural networks.

Figure 10.17 shows a schematic diagram of the CVD reactor. In this reactor,
silicon wafers are positioned in shallow pockets of a heated graphite susceptor.

bell jar

silicon wafer

nozzle (gas inlet)

heated
rotating
susceptor

bank of
infra-red lamps

gas outlet

Figure 10.17. Vertical CVD barrel reactor [7].
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Reactive gases are introduced into the reactor through nozzles at the top of the
chamber and exit from the outlet at the bottom. The six controllable reactor
settings include flow velocity at the left and right nozzles, the settings of the
nozzles in the horizontal and vertical planes, the main flow valve reading, and
the rotational flow valve reading.

Bhatikar and Mahajan chose the uniformity of the deposition rate as the
response variable to optimize. Each side of the susceptor held three wafers, and
deposition rate measurements were performed on five sites on each wafer. After-
ward, a polynomial regression model that described the film thickness at each
of the five measurement locations for each wafer as a function of the six reac-
tor settings was developed. Next, backpropagation neural networks were trained
as event classifiers to detect significant deviations from the target uniformity.
Eight specific distributions of thickness measurements were computed. These are
depicted in Figure 10.18. As a group, these eight standard deviations constituted a
process signature. Patterns associated with normal and specific types of abnormal
behavior were captured in these signatures.

Three disparate events were then simulated to represent deviations from normal
equipment settings: (1) a mismatch between the left and right nozzles, (2) a
horizontal nozzle offset, and (3) a vertical nozzle offset. The first event was
simulated with a 5% mismatch, and offsets from 0% to 20% were simulated for
both the vertical and horizontal directions. A neural network was then trained to
match these events with their process signatures as quantified by the vector of
eight standard deviations. The network had eight input neurons and three outputs
(one for each event). The number of hidden layer neurons was varied from five
to seven, with six providing the best performance. Each output was a binary
response, with one or zero representing the presence or absence of a given event.
The threshold for a binary “high” was set at 0.5. Training consisted of exposing

Figure 10.18. Vectors that characterize spatial variation of thickness distribution [7].



402 PROCESS AND EQUIPMENT DIAGNOSIS

the network to an equal number of representative signatures for each event. When
tested on twelve signatures not seen during training (four for each event), the
network was able to discriminate between the three faults with 100% accuracy.

This scheme was then applied to a fault detection task (as opposed to fault
classification). This required the addition of a “nonevent” representing normal
equipment operation. Since there was only one signature corresponding to the
nonevent, this signature was replicated in the training data with the addition of
white noise to the optimal equipment settings to simulate typical random process
variation. The network used for detection had the same structure as that used
for classification, with the exception of having seven hidden layer neurons rather
than six. After an adjustment of the “high” threshold to a value of 0.78, 100%
classification accuracy was again achieved.

10.4. HYBRID METHODS

Even the pattern-recognition-based neural network approach has limitations. First,
a complete set of fault signatures is hard to obtain, and the representational
inadequacy of a limited number of datasets can induce network overtraining,
thus increasing the misclassification or false-alarm rate. Also, pattern match-
ing approaches in which diagnostic actions take place following a sequence of
several processing steps are suboptimal since evidence pertaining to potential
equipment malfunctions accumulates at irregular intervals throughout the pro-
cess sequence. At the end of a sequence, significant misprocessing and yield loss
may have already taken place, making postprocess diagnosis alone economically
undesirable.

To address these concerns, hybrid methods have emerged as an effective tool
for process modeling and fault diagnosis [9]. These methods attempt to combine
the best characteristics of quantitative algorithmic, qualitative experiential, and
pattern-recognition-based neural network approaches.

10.4.1. Time-Series Diagnosis

Rietman and Beachy combined time-series modeling and neural networks to
detect precursors to failure in a plasma etch reactor [8]. These authors showed
that neural nets can detect subtle changes in process signals, and in some cases,
these subtle changes were early warnings that a failure was imminent. The reactor
used in this study was a Drytek quad reactor with four process chambers (although
only a single chamber was considered). The process under investigation was a
three-step etch used to define the location of transistors on silicon wafers.

During processing, several tool signatures were monitored (at 5-s intervals),
including four gas flow rates, DC bias voltage, and forward and reflected RF
power. Data were collected over approximately a 3.5-year period, which trans-
lated to over 140,000 processing steps on about 46,000 wafers. Models were
built from the complete time streams, as well as from data consisting of time-
series summary statistics (mean and standard deviation values) for each process
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signature for each wafer. Samples that deviated by more than four standard
deviations from the mean for a given response variable were classified as failure
events. According to this classification scheme, a failure occurred approximately
every 9000 wafers.

Rietman focused on pressure for response modeling. The models constructed
for summary statistical data had the advantage that the mean and the standard
deviation of the time series could be expected to exhibit less noise than the raw
data. For example, a model was derived from process signatures for 3000 wafers
processed in sequence. The means and standard deviations for each step of the
three-step process served as additional sources of data. A neural network with 21
inputs (etch end time, total etch time, step number, mean and standard deviations
for four gases, RF applied and reflected, pressure, and DC bias), five hidden units,
and a single output was used to predict pressure. The results of this prediction
for one, 12, and 24 wafers in advance is shown in Figure 10.19.

To demonstrate malfunction prediction, Rietman again examined summary
data, this time in the form of the standard deviation time streams. The assumption
was that fluctuations in these signatures would be more indicative of precursors
to equipment failure. For this part of the investigation, a neural time-series model
with inputs consisting of five delay units, one current time unit, one recurrent time
unit from the network output, and one bias unit was constructed. This network had
five hidden units and a single output. Figure 10.20a shows the mean value of pres-
sure at each of the three processing steps. This was the time stream to be modeled.
A failure was observed at wafer 5770. Figure 10.20b shows the corresponding
standard deviation time stream, with the failure at 5770 clearly observable, as
well as precursors to failure beginning at 5710–5725. Figure 10.20c shows the
RMS error of the network trained to predict the standard deviation signal as a
function of the number of training iterations. Finally, Figure 10.20d compares
the network response to the target values, clearly indicating that the network is
able to detect the fluctuations in standard deviation indicative of the malfunction.

10.4.2. Hybrid Expert System

Kim employed a hybrid scheme that uses neural networks and traditional expert
systems for real-time, automated malfunction diagnosis of reactive-ion etching
equipment [9]. This system was implemented on a Plasma Therm 700 series
RIE to outline a general diagnostic strategy applicable to other rapid single-
wafer processes. Diagnostic systems that rely on postprocess measurements and
electrical test data alone cannot rapidly detect process shifts and also identify
process faults. Because unreliable equipment jeopardizes product quality, it is
essential to diagnose the root causes for the malfunctions quickly and accurately.

Kim’s approach integrates evidence from various sources using the Demp-
ster–Shafer theory of evidential reasoning [10]. Diagnosis is conducted by this
system in three chronological phases: the maintenance phase, the online phase,
and the inline phase. Neural networks were used in the maintenance phase to
approximate the functional form of the failure history distribution of each com-
ponent in the RIE system. Predicted failure rates were subsequently converted to
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Figure 10.19. (a) Pressure prediction one wafer in the future; (b) pressure prediction 12 wafers
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belief levels. For online diagnosis of previously encountered faults, hypothesis
testing on the statistical mean and variance of the sensor data was performed to
search for similar data patterns and assign belief levels. Finally, neural process
models of RIE figures of merit (such as etch or uniformity) were used to analyze
the inline measurements and identify the most suitable candidate among poten-
tially faulty input parameters (pressure, gas flow, etc.) to explain process shifts.

10.4.2.1. Dempster–Shafer Theory
Dempster–Shafer theory allows the combination of various pieces of uncertain
evidence obtained at irregular intervals, and its implementation results in time
varying, nonmonotonic belief functions that reflect the current status of diag-
nostic conclusions at any given point in time. One of the basic concepts in
Dempster–Shafer theory is the frame of discernment (symbolized by �), defined
as an exhaustive set of mutually exclusive propositions. For the purposes of diag-
nosis, the frame of discernment is the union of all possible fault hypotheses. Each
piece of collected evidence can be mapped to a fault or group of faults within �.
The likelihood of a fault proposition A is expressed as a bounded interval [s(A),
p(A)] that lies in [0, 1]. The parameter s(A) represents the support for which
measures the weight of evidence in support of A. The other parameter, p(A),
called the plausibility of A, is the degree to which contradictory evidence is lack-
ing. Plausibility measures the maximum amount of belief that can possibly be
assigned to A. The quantity u(A) is the uncertainty of A, which is the difference
between the evidential plausibility and support. For example, an evidence inter-
val of [0.3, 0.7] for proposition A indicates that the probability of A is between
0.3 and 0.7, with an uncertainty of 0.4.

In terms of diagnosis, proposition A represents a given fault hypothesis. An
evidential interval for fault A is determined from a basic probability mass dis-
tribution (BPMD). The BPM m〈A〉 indicates the portion of the total belief in
evidence assigned exactly to a particular fault hypothesis set. Any residual belief
in the frame of discernment that cannot be attributed to any subset of � is
assigned directly to � itself, which introduces uncertainty into the diagnosis.
Using the framework, the support and plausibility of proposition A are given by

s(A) =
∑

m〈Ai〉 (10.12)

p(A) = 1 −
∑

m〈Bi〉 (10.13)

where Ai ⊆ A, Bi ⊆ A and the summation is taken over all propositions in a
given BPM. Thus the total belief in A is the sum of support ascribed to A and
all subsets thereof.

Dempster’s rules for evidence combination provide a deterministic and unam-
biguous method of combining BPMDs from separate and distinct sources of
evidence contributing varying degrees of belief to several propositions under a
common frame of discernment. The rule for combing the observed BPMs of two
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arbitrary and independent knowledge sources m1 and m2 into a third (m3) is

m3 =
∑

m1〈Xi〉 • m2〈Yj 〉
1 − k

(10.14)

where Z = Xi ∩ Yj and

k =
∑

m1〈Xi〉 • m2〈Yj 〉 (10.15)

where Xi ∩ Yj = Ø. Here Xi and Yj represent various propositions which consist
of fault hypotheses and disjunctions thereof. Thus, the BPM of the intersection
of Xi and Yj is the product of the individual BPMs of Xi and Yj . The factor
(1 − k) is a normalization constant that prevents the total belief from exceeding
unity due to attributing portions of belief to the empty set.

To illustrate, consider the combination of m1 and m2 when each contains dif-
ferent evidence concerning the diagnosis of a malfunction in a reactive-ion etcher.
Such evidence could result from two different sensor readings. In particular, sup-
pose that the sensors have observed that the flow of one of the etch gases into
the process chamber is too low. Let the frame of discernment � = {A, B,C, D},
where A, . . . , D symbolically represent the following mutually exclusive equip-
ment faults:

A = mass flow controller miscalibration

B = gas line leak

C = throttle valve malfunction

D = incorrect sensor signal

These components are illustrated graphically in the gas flow system shown in
Figure 10.21.

MFC

Sensor

Throttle Valve

Gas line

Figure 10.21. Partial schematic of RIE gas delivery system [9].
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Suppose that belief in this frame of discernment is distributed according to
the BPMDs:

m1〈A ∪ C, B ∪ D,�〉 = 〈0.4, 0.3, 0.3〉
m2〈A ∪ B,C, D,�〉 = 〈0.5, 0.1, 0.2, 0.2〉

The calculation of the combined BPMD (m3) is shown in Table 10.2. Each cell of
the table contains the intersection of the corresponding propositions from m1 and
m2, along with the product of their individual beliefs. Note that the intersection
of any proposition with � is the original proposition. The BPM attributed to the
empty set, k, which originates from the presence of various propositions in m1

and m2 whose intersection is empty, is 0.11. By applying Eq. (10.14), BPMs for
the remaining propositions result in

m3〈A, A ∪ C, A ∪ B,B,B ∪ D,C, D, �〉
= 〈0.225, 0.089, 0.169, 0.067, 0.079, 0.135, 0.067〉

The plausibilities for propositions in the combined BPM are calculated by apply-
ing Eq. (10.13). The individual evidential intervals implied by m3 are A[0.225,
0.550], B[0.169, 0.472], C[0.079, 0.235], and D[0.135, 0.269]. Combining the
evidence available from knowledge sources m1 and m2 thus leads to the con-
clusion that the most likely cause for the insufficient gas flow malfunction is a
miscalibration of the mass flow controller (proposition A).

10.4.2.2. Maintenance Diagnosis
During maintenance diagnosis, the objective is to derive evidence of potential
component failures based on historical performance. The available data consist
of the number of failures a given component has experienced and the component
age. To derive evidential support for potential malfunctions from this information,
a neural network-based reliability modeling technique was developed.

The failure probability and the instantaneous failure rate (or hazard rate) for
each component may be estimated from a neural network trained on failure his-
tory. This neural reliability model may be used to generate evidential support and
plausibility for each potentially faulty component in the frame of discernment.
To illustrate, consider reliability modeling based on the Weibull distribution. The
Weibull distribution has been used extensively as a model of time-to-failure in

Table 10.2. Illustration of BPMD combination.

m1︷ ︸︸ ︷
A ∪ C 0.4 A 0.20 C 0.04 Ø 0.08 A ∪ C 0.08
B ∪ D 0.3 B 0.15 Ø 0.03 D 0.06 B ∪ D 0.06

� 0.3 A ∪ B 0.15 C 0.03 D 0.06 � 0.06
A ∪ B 0.50 C 0.10 D 0.20 � 0.20︸ ︷︷ ︸

m2
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electrical and mechanical components and systems. When a system is composed
of a number of components and failure is due to the most serious of a large num-
ber of possible faults, the Weibull distribution is a particularly accurate model.

The cumulative distribution function (which represents the failure probability
of a component at time t) for the two-parameter Weibull distribution is given by

F(t) = 1 − exp

[
−

(
t

α

)β
]

(10.16)

where α and β are called “scale” and “shape” parameters, respectively. The hazard
rate is given by

λ(t) = βtβ−1

αβ
(10.17)

The failure rate may be computed by plotting the number of failures of each
component versus time and finding the slope of this curve at each timepoint.
Following shape and scale parameter estimation, the evidential support for each
component is obtained from the Weibull distribution function in Eq. (10.16).
The corresponding plausibility is the confidence level (C) associated with this
probability estimate, which is

C(t) = 1 − [1 − F(t)]n (10.18)

where n is the total number of component failures that have been observed at
time t . Applying this methodology to the Plasma Therm 700 series RIE yielded
a ranked list of components faults similar to that shown in Table 10.3.

10.4.2.3. Online Diagnosis
In diagnosing previously encountered faults, neural network-based time-series
(NTS) models are used to describe data indicating specific fault patterns [11].
The similarity between stored NTS fault models and the current sampled pattern
is measured to ascertain their likelihood of resemblance. An underlying assump-
tion is that malfunctions are triggered by inadvertent shifts in process settings.

Table 10.3. Fault ranking after maintenance diagnosis.

Component Support Plausibility

Capacitance manometer 0.353 0.508
Pressure switch 0.353 0.507
Electrode assembly 0.113 0.267
Exhaust valve controller 0.005 0.160
Throttle valve 0.003 0.159
Communication link 0.003 0.157
DC circuitry 0.003 0.157
Pressure transducer 0.003 0.157
Turbopump 0.003 0.157
Gas cylinder 0.002 0.157
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This shift is assumed to be larger than the variability inherent in the processing
equipment. To ascribe evidential support and plausibility to such a shift, statisti-
cal hypothesis tests are applied to sample means and variances of the time-series
data. This requires the assumption that the notion of statistical confidence is
analogous to the Dempster–Shafer concept of plausibility [1].

To compare two data patterns, it is assumed that if the two patterns are sim-
ilar, then their means and variances are similar. Further, it is assumed that an
equipment malfunction may cause either a shift in the mean or variance of a sig-
nal. The comparison begins by testing the hypothesis that the mean value of the
current fault pattern (x0) equals the mean of previously stored fault patterns (xi).
Letting s2

0 and s2
i be the sample variances of current pattern and stored pattern,

the appropriate test statistic is

t0 = x0 − xi√
s2

0

n0
+ s2

i

ni

(10.19)

where n0 and ni are the sample sizes for the current and stored pattern, respec-
tively. The statistical significance level for this hypothesis test (α1) satisfies the
relationship t0 = tα,ν1 , where ν is the number of degrees of freedom. A neural
network that takes the role of a t-distribution “learner” can be used to predict α1

based on the values of t0 and ν. After the significance level has been computed,
the probability that the mean values of the two data patterns are equal (β1) is
equal to 1 − α1.

Next, the hypothesis that the variance of the current fault pattern (σ2
0) equals

the variance of each stored pattern (σ2
i ) is tested. The appropriate test statistic is

F0 = s2
0

s2
i

(10.20)

The statistical significance for this hypothesis test (α2) satisfies the relationship
F0 = Fα2,ν0,νi

, where ν0 and νi are the degrees of freedom for s2
0 and s2

i . A
neural network trained on the F distribution is used to predict α2 using ν0, νi ,
and F0 as inputs. The resultant probability of equal variances is β2 = 1 − α2.
After completing the hypothesis tests for equal mean and variance, the support
and plausibility that the current pattern is similar to a previously stored pattern
are defined as

Support = min(β1, β2) (10.21)

Plausibility = max(β1, β2)

Using the rules of evidence combination, the support and plausibility generated
at each timepoint are continuously integrated with their prior values.

To demonstrate, data corresponding to the faulty CHF3 flow in Figure 10.22
were used to derive an NTS model. The training set for the NTS model consisted
of one out of every 10 data samples. The NTS fault model is stored in a database,
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Figure 10.22. Data signatures for a malfunctioning chloroform mass flow controller [9].

from which it is compared to other patterns collected by sensors in real time so
that the similarity of the sensor data to this stored pattern could be evaluated.
In this example, the pattern of CHF3 flow under consideration as a potential
match to the stored fault pattern was sampled once for every 15 sensor data
points. Following evaluation of the data, the evidential support and plausibility
for pattern similarity are shown in Figure 10.23.

To identify malfunctions that have not been encountered previously, May
established a technique based on the cusum control chart (see Chapter 6). The
approach allows the detection of very small process shifts, which is critical for
fabrication steps such as RIE, where slight equipment miscalibrations may have
sufficient time to manifest themselves only as small shifts when the total process-
ing time is on the order of minutes. In this application, the cusum chart monitors
such shifts by comparing the cumulative sums of the deviations of the sample
values from their targets.

Using this method to generate support requires the cumulative sums

SH (i) = max[0, xi − (µ0 + K) + SH (i − 1)] (10.22)

SL(i) = max[0, (µ0 − K) − xi + SL(i − 1)] (10.23)

where SH is the sum used to detect positive process shifts, SL is used to detect
negative shifts, xi is the mean value of the current sample, and µ0 is the target
value. In these equations, K is the reference value, which is chosen to be halfway
between the target mean and the shifted mean to be detected (µ1). If the shift is
expressed in terms of the standard deviation as µ1 = µ0 + δσ, then K is

K = δ

2
σ = |µ1 − µ0|

2
(10.24)
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Figure 10.23. Plot of real-time support and plausibility for a recognized gas flow fault [9].

When either SH or SL exceeds the decision interval (H ), this signals that the
process has shifted out of statistical control. The decision interval may be used
as the process tolerance limit, and the sums SH and SL are treated as measurement
residuals. Support is derived from the cusum chart using

s(SH/L) = 1 − u

1 + exp

[
−

(
SH/L

H
− 1

)] (10.25)

where the uncertainty u is dictated by the measurement error of the sensor. As
SH or SL become large compared to H , this function generates correspondingly
larger support values.

To illustrate this technique, the faulty CHF3 data pattern in Figure 10.22 is
used again, this time under the assumption that no similar pattern exists in the
database. The two parameters b and h vary continuously as the standard deviation
of the monitored sensor data is changing. Equation (10.22) was used to calculate
the accumulated deviations of CHF3 flow. Each accumulated shift was then fed
into the sigmoidal belief function in Eq. (10.25) to generate evidential support
value. Figure 10.24 shows the incremental changes in the support values, clearly
indicating the initial fault occurrence and the trend of process shifts.
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Figure 10.24. Support variations using cusum technique [9].

10.4.2.4. Inline Diagnosis
For inline diagnosis, measurements performed on processed wafers are used in
conjunction with inverse neural process models. Inverse models are used to pre-
dict the etch recipe values (RF power, pressure, etc.) that reduce deviations in
the measured etch responses. Since the setpoint recipes are different from those
predicted by the inverse model, the vector of differences between them (�x0)
can be used in a hypothesis test to determine the statistical significance of the
deviations. That statistical significance can be calculated by testing the hypothesis
that �x0 = 0.

Hotelling’s T 2 statistic (see Chapter 6) is employed to obtain confidence inter-
vals on the incremental changes in the input parameters. The value of the T 2

statistic is
T 2 = n �xT

0 S−1�x0 (10.26)

where n and S are the sample size and covariance matrix of the p process input
parameters. Recall that the T 2 distribution is related to the F distribution by the
relation

T 2
α,p,n−p = p(n − 1)

n − p
Fα,p,n−p (10.27)

Plausibility values calculated for each input parameter are equal to 1 − α.
To illustrate, consider a fault scenario in which increased RF power was sup-

plied to an RIE system during silicon dioxide etching due to an RF generator
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Table 10.4. T2 and Plausibility Values.

Parameter T 2 1 − α

CHF3 0.053 0.272
O2 2.84 0.278
Pressure 2.89 0.280
RF power 22.52 0.694

problem. The setpoints for this process were RF power = 300 W, pressure =
45 mTorr, pO2 = 11 sccm, pCHF3 = 45 sccm. The malfunction was simulated by
increasing the power to 310 and 315 W. In other words, as a result of the mal-
function, the actual RF power being transmitted to the wafer is 310 or 315 W
when it is thought to be 300 W. Forward neural models were used to predict etch
responses for the process input recipes corresponding to the two different faulty
values of RF power. A total of eight predictions (presumed to be the actual mea-
surements) were obtained, and were then fed into the inverse neural etch models
to produce estimates of their corresponding process input recipes. The T 2 value
is calculated under the assumption that only one input parameter is the cause for
any abnormality in the measurements. This leads to the different T 2 values for
each process input. The resultant values of T 2 and 1 − α are shown in Table 10.4.
As expected, RF power was the most significant input parameter since it has the
highest plausibility value.

Hybrid neural expert systems offer the advantage of easier knowledge acquisi-
tion and maintenance and extracting implicit knowledge (through neural network
learning) with the assistance of explicit expert rules. A disadvantage of such
systems, however, is that, unlike other rule-based systems, the somewhat non-
intuitive nature of neural networks makes it difficult to provide the user with
explanations about how diagnostic conclusions are reached.

SUMMARY

This chapter has described a variety of methods for diagnosing problems in
semiconductor manufacturing processes and equipment, including quantitative
algorithmic techniques, qualitative experiential approaches, neural network-based
pattern recognition methods, and hybrid combinations thereof. Such techniques
are invaluable for reducing equipment downtime, limiting misprocessing, and
enhancing manufacturing productivity and throughput.

PROBLEMS

10.1. Suggest an appropriate diagnostic situation for each of the process problems
below. Justify your answers.
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(a) A systematic photolithographic defect pattern is identified in a CMOS
gate definition step.

(b) A PECVD system consistently produces films that are too thin.

(c) The threshold voltage in a batch of NMOS test transistors for a micro-
processor line is out of specification.

10.2. Consider the combination of m1 and m2 when each contains different evi-
dence concerning the diagnosis of a malfunction in the plasma etching
application. Such evidence could result from two different sensor readings.
In particular, suppose that the sensors have observed that the flow of one
of the etchant gases into the process chamber is too low. Let the frame of
discernment θ = {A, B,C, D,E}, where A, . . . , E symbolically represent
the following mutually exclusive equipment faults:

A = mass flow controller miscalibration

B = gas line leak

C = throttle valve malfunction

D = incorrect sensor signal

E = the no-fault condition

Suppose that belief in this frame of discernment is distributed according
to the BPMDs:

m1〈A ∪ B,C, D,E,�〉 = 〈0.48, 0.12, 0, 0.2, 0.2〉
m2〈B, A ∪ C, D ∪ E,�〉 = 〈0, 0.7, 0.1, 0.2〉

Use Dempster–Shafer theory to calculate a combined BPMD (m3), as well
as the individual evidential intervals implied by m3.
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APPENDIX A

SOME PROPERTIES OF THE
ERROR FUNCTION

w erf(w) w erf(w) w erf(w) w erf(w)

0.00 0.000 000 0.19 0.211 840 0.38 0.409 009 0.57 0.579 816
0.01 0.011 283 0.20 0.222 703 0.39 0.418 739 0.58 0.587 923
0.02 0.022 565 0.21 0.233 522 0.40 0.428 392 0.59 0.595 936
0.03 0.033 841 0.22 0.244 296 0.41 0.437 969 0.60 0.603 856
0.04 0.045 111 0.23 0.255 023 0.42 0.447 468 0.61 0.611 681
0.05 0.056 372 0.24 0.265 700 0.43 0.456 887 0.62 0.619 411
0.06 0.067 622 0.25 0.276 326 0.44 0.466 225 0.63 0.627 046
0.07 0.078 858 0.26 0.286 900 0.45 0.475 482 0.64 0.634 586
0.08 0.090 078 0.27 0.297 418 0.46 0.484 655 0.65 0.642 029
0.09 0.101 281 0.28 0.307 880 0.47 0.493 745 0.66 0.649 377
0.10 0.112 463 0.29 0.318 283 0.48 0.502 750 0.67 0.656 628
0.11 0.123 623 0.30 0.328 627 0.49 0.511 668 0.68 0.663 782
0.12 0.134 758 0.31 0.338 908 0.50 0.520 500 0.69 0.670 840
0.13 0.145 867 0.32 0.349 126 0.51 0.529 244 0.70 0.677 801
0.14 0.156 947 0.33 0.359 279 0.52 0.537 899 0.71 0.684 666
0.15 0.167 996 0.34 0.369 365 0.53 0.546 464 0.72 0.691 433
0.16 0.179 012 0.35 0.379 382 0.54 0.554 939 0.73 0.698 104
0.17 0.189 992 0.36 0.389 330 0.55 0.563 323 0.74 0.704 678
0.18 0.200 936 0.37 0.399 206 0.56 0.571 616 0.75 0.711 156
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418 SOME PROPERTIES OF THE ERROR FUNCTION

w erf(w) w erf(w) w erf(w) w erf(w)

0.76 0.717 537 1.16 0.899 096 1.56 0.972 628 1.97 0.994 664
0.77 0.723 822 1.17 0.902 000 1.57 0.973 603 1.98 0.994 892
0.78 0.730 010 1.18 0.904 837 1.58 0.974 547 1.99 0.995 111
0.79 0.736 103 1.19 0.907 608 1.59 0.975 462 2.00 0.995 322
0.80 0.742 101 1.20 0.910 314 1.60 0.976 348 2.01 0.995 525
0.81 0.748 003 1.21 0.912 956 1.61 0.977 207 2.02 0.995 719
0.82 0.753 811 1.22 0.915 534 1.62 0.978 038 2.03 0.995 906
0.83 0.759 524 1.23 0.918 050 1.63 0.978 843 2.04 0.996 086
0.84 0.765 143 1.24 0.920 505 1.64 0.979 622 2.05 0.996 258
0.85 0.770 668 1.25 0.922 900 1.65 0.980 376 2.06 0.996 423
0.86 0.776 110 1.26 0.925 236 1.66 0.981 105 2.07 0.996 582
0.87 0.781 440 1.27 0.927 514 1.67 0.981 810 2.08 0.996 734
0.88 0.786 687 1.28 0.929 734 1.68 0.982 493 2.09 0.996 880
0.89 0.719 843 1.29 0.931 899 1.69 0.983 153 2.10 0.997 021
0.90 0.796 908 1.30 0.934 008 1.70 0.983 790 2.11 0.997 155
0.91 0.801 883 1.31 0.936 063 1.71 0.984 407 2.12 0.997 284
0.92 0.806 768 1.32 0.938 065 1.72 0.985 003 2.13 0.997 407
0.93 0.811 564 1.33 0.940 015 1.73 0.985 578 2.14 0.997 525
0.94 0.816 271 1.34 0.941 914 1.74 0.986 135 2.15 0.997 639
0.95 0.820 891 1.35 0.943 762 1.75 0.986 672 2.16 0.997 747
0.96 0.825 424 1.36 0.945 561 1.76 0.987 190 2.17 0.997 851
0.97 0.829 870 1.37 0.947 312 1.77 0.987 691 2.18 0.997 951
0.98 0.834 232 1.38 0.949 016 1.79 0.988 641 2.19 0.998 046
0.99 0.838 508 1.39 0.950 673 1.80 0.989 091 2.20 0.998 137
1.00 0.842 701 1.40 0.952 285 1.81 0.989 525 2.21 0.998 224
1.01 0.846 810 1.41 0.953 852 1.82 0.989 943 2.22 0.998 308
1.02 0.850 838 1.42 0.955 376 1.83 0.990 347 2.23 0.998 388
1.03 0.854 784 1.43 0.956 857 1.84 0.990 736 2.24 0.998 464
1.04 0.858 650 1.44 0.958 297 1.85 0.991 111 2.25 0.998 537
1.05 0.862 436 1.45 0.959 695 1.86 0.991 472 2.26 0.998 607
1.06 0.866 144 1.46 0.961 054 1.87 0.991 821 2.27 0.998 674
1.07 0.869 773 1.47 0.962 373 1.88 0.992 156 2.28 0.998 738
1.08 0.873 326 1.48 0.963 654 1.89 0.992 479 2.29 0.998 799
1.09 0.876 803 1.49 0.964 898 1.90 0.992 790 2.30 0.998 857
1.10 0.880 205 1.50 0.966 105 1.91 0.993 090 2.31 0.998 912
1.11 0.883 533 1.51 0.967 277 1.92 0.993 378 2.32 0.998 966
1.12 0.886 788 1.52 0.968 413 1.93 0.993 656 2.33 0.999 016
1.13 0.889 971 1.53 0.969 516 1.94 0.993 923 2.34 0.999 065
1.14 0.893 082 1.54 0.970 586 1.95 0.994 179 2.35 0.999 111
1.15 0.896 124 1.55 0.971 623 1.96 0.994 426 2.36 0.999 155
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w erf(w) w erf(w) w erf(w) w erf(w)

2.37 0.999 197 2.78 0.999 916 3.20 0.999 993 97 3.61 0.999 999 670
2.38 0.999 237 2.79 0.999 920 3.21 0.999 994 36 3.62 0.999 999 694
2.39 0.999 275 2.80 0.999 925 3.22 0.999 994 73 3.63 0.999 999 716
2.40 0.999 311 2.81 0.999 929 3.23 0.999 995 07 3.64 0.999 999 736
2.41 0.999 346 2.82 0.999 933 3.24 0.999 995 40 3.65 0.999 999 756
2.42 0.999 379 2.83 0.999 937 3.25 0.999 995 70 3.66 0.999 999 773
2.43 0.999 411 2.85 0.999 944 3.26 0.999 995 98 3.67 0.999 999 790
2.44 0.999 441 2.86 0.999 948 3.27 0.999 996 24 3.68 0.999 999 805
2.45 0.999 469 2.87 0.999 951 3.28 0.999 996 49 3.69 0.999 999 820
2.46 0.999 497 2.88 0.999 954 3.29 0.999 996 72 3.70 0.999 999 833
2.47 0.999 523 2.89 0.999 956 3.30 0.999 996 94 3.71 0.999 999 845
2.48 0.999 547 2.90 0.999 959 3.31 0.999 997 15 3.72 0.999 999 857
2.49 0.999 571 2.91 0.999 961 3.32 0.999 997 34 3.73 0.999 999 867
2.50 0.999 593 2.92 0.999 964 3.33 0.999 997 51 3.74 0.999 999 877
2.51 0.999 614 2.93 0.999 966 3.34 0.999 997 68 3.75 0.999 999 886
2.52 0.999 634 2.94 0.999 968 3.35 0.999 997 838 3.76 0.999 999 895
2.53 0.999 654 2.95 0.999 970 3.36 0.999 997 983 3.77 0.999 999 903
2.54 0.999 672 2.96 0.999 972 3.37 0.999 998 120 3.78 0.999 999 910
2.55 0.999 689 2.97 0.999 973 3.38 0.999 998 247 3.79 0.999 999 917
2.56 0.999 706 2.98 0.999 975 3.39 0.999 998 367 3.80 0.999 999 923
2.57 0.999 722 2.99 0.999 976 3.40 0.999 998 478 3.81 0.999 999 929
2.58 0.999 736 3.00 0.999 977 91 3.41 0.999 998 582 3.82 0.999 999 934
2.59 0.999 751 3.01 0.999 979 26 3.42 0.999 998 679 3.83 0.999 999 939
2.60 0.999 764 3.02 0.999 980 53 3.43 0.999 998 770 3.84 0.999 999 944
2.61 0.999 777 3.03 0.999 981 73 3.44 0.999 998 855 3.85 0.999 999 948
2.62 0.999 789 3.04 0.999 982 86 3.45 0.999 998 934 3.86 0.999 999 952
2.63 0.999 800 3.05 0.999 983 92 3.46 0.999 999 008 3.87 0.999 999 956
2.64 0.999 811 3.06 0.999 984 92 3.47 0.999 999 077 3.88 0.999 999 959
2.65 0.999 822 3.07 0.999 985 86 3.48 0.999 999 141 3.89 0.999 999 962
2.66 0.999 831 3.08 0.999 986 74 3.49 0.999 999 201 3.90 0.999 999 965
2.67 0.999 841 3.09 0.999 987 57 3.50 0.999 999 257 3.91 0.999 999 968
2.68 0.999 849 3.10 0.999 988 35 3.51 0.999 999 309 3.92 0.999 999 970
2.69 0.999 858 3.11 0.999 989 08 3.52 0.999 999 358 3.93 0.999 999 973
2.70 0.999 866 3.12 0.999 989 77 3.53 0.999 999 403 3.94 0.999 999 975
2.71 0.999 873 3.13 0.999 990 42 3.54 0.999 999 445 3.95 0.999 999 977
2.72 0.999 880 3.14 0.999 991 03 3.55 0.999 999 485 3.96 0.999 999 979
2.73 0.999 887 3.15 0.999 991 60 3.56 0.999 999 521 3.97 0.999 999 980
2.74 0.999 893 3.16 0.999 992 14 3.57 0.999 999 555 3.98 0.999 999 982
2.75 0.999 899 3.17 0.999 992 64 3.58 0.999 999 587 3.99 0.999 999 983
2.76 0.999 905 3.18 0.999 993 11 3.59 0.999 999 617
2.77 0.999 910 3.19 0.999 993 56 3.60 0.999 999 644

(from May & Sze, Fundamentals of Semiconductor Manufacturing, Wiley, 2004)



APPENDIX B

CUMULATIVE STANDARD
NORMAL DISTRIBUTION

0 z

Φ(z) =
z

−∞

1

√2p
e−u2/2 du

z 0.00 0.01 0.02 0.03 0.04 z

0.0 0.50000 0.50399 0.50798 0.51197 0.51595 0.0
0.1 0.53983 0.54379 0.54776 0.55172 0.55567 0.1
0.2 0.57926 0.58317 0.58706 0.59095 0.59483 0.2
0.3 0.61791 0.62172 0.62551 0.62930 0.63307 0.3
0.4 0.65542 0.65910 0.62276 0.66640 0.67003 0.4

0.5 0.69146 0.69497 0.69847 0.70194 0.70540 0.5
0.6 0.72575 0.72907 0.73237 0.73565 0.73891 0.6
0.7 0.75803 0.76115 0.76424 0.76730 0.77035 0.7
0.8 0.78814 0.79103 0.79389 0.79673 0.79954 0.8
0.9 0.81594 0.81859 0.82121 0.82381 0.82639 0.9

1.0 0.84134 0.84375 0.84613 0.84849 0.85083 1.0
1.1 0.86433 0.86650 0.86864 0.87076 0.87285 1.1
1.2 0.88493 0.88686 0.88877 0.89065 0.89251 1.2
1.3 0.90320 0.90490 0.90658 0.90824 0.90988 1.3
1.4 0.91924 0.92073 0.92219 0.92364 0.92506 1.4
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CUMULATIVE STANDARD NORMAL DISTRIBUTION 421

z 0.00 0.01 0.02 0.03 0.04 z

1.5 0.93319 0.93448 0.93574 0.93699 0.93822 1.5
1.6 0.94520 0.94630 0.94738 0.94845 0.94950 1.6
1.7 0.95543 0.95637 0.95728 0.95818 0.95907 1.7
1.8 0.96407 0.96485 0.96562 0.96637 0.96711 1.8
1.9 0.97128 0.97193 0.97257 0.97320 0.97381 1.9

2.0 0.97725 0.97778 0.97831 0.97882 0.97932 2.0
2.1 0.98214 0.98257 0.98300 0.98341 0.98382 2.1
2.2 0.98610 0.98645 0.98679 0.98713 0.98745 2.2
2.3 0.98928 0.98956 0.98983 0.99010 0.99036 2.3
2.4 0.99180 0.99202 0.99224 0.99245 0.99266 2.4

2.5 0.99379 0.99396 0.99413 0.99430 0.99446 2.5
2.6 0.99534 0.99547 0.99560 0.99573 0.99585 2.6
2.7 0.99653 0.99664 0.99674 0.99683 0.99693 2.7
2.8 0.99744 0.99752 0.99760 0.99767 0.99774 2.8
2.9 0.99813 0.99819 0.99825 0.99831 0.99836 2.9

3.0 0.99865 0.99869 0.99874 0.99878 0.99882 3.0
3.1 0.99903 0.99906 0.99910 0.99913 0.99916 3.1
3.2 0.99931 0.99934 0.99936 0.99938 0.99940 3.2
3.3 0.99952 0.99953 0.99955 0.99957 0.99958 3.3
3.4 0.99966 0.99968 0.99969 0.99970 0.99971 3.4

3.5 0.99977 0.99978 0.99978 0.99979 0.99980 3.5
3.6 0.99984 0.99985 0.99985 0.99986 0.99986 3.6
3.7 0.99989 0.99990 0.99990 0.99990 0.99991 3.7
3.8 0.99993 0.99993 0.99993 0.99994 0.99994 3.8
3.9 0.99995 0.99995 0.99996 0.99996 0.99996 3.9

(from Montgomery, Intro to Statistical Quality Control, 3rd ed., Wiley, 1997)
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�(z) =
∫ z

−∞
1√
2π

e−u2/2 du

z 0.05 0.06 0.07 0.08 0.09 z

0.0 0.51994 0.52392 0.52790 0.53188 0.53586 0.0
0.1 0.55962 0.56356 0.56749 0.57142 0.57534 0.1
0.2 0.59871 0.60257 0.60642 0.61026 0.61409 0.2
0.3 0.63683 0.64058 0.64431 0.64803 0.65173 0.3
0.4 0.67364 0.67724 0.68082 0.68438 0.68793 0.4

0.5 0.70884 0.71226 0.71566 0.71904 0.72240 0.5
0.6 0.74215 0.74537 0.74857 0.75175 0.75490 0.6
0.7 0.77337 0.77637 0.77935 0.78230 0.78523 0.7
0.8 0.80234 0.80510 0.80785 0.81057 0.81327 0.8
0.9 0.82894 0.83147 0.83397 0.83646 0.83891 0.9

1.0 0.85314 0.85543 0.85769 0.85993 0.86214 1.0
1.1 0.87493 0.87697 0.87900 0.88100 0.88297 1.1
1.2 0.89435 0.89616 0.89796 0.89973 0.90147 1.2
1.3 0.91149 0.91308 0.91465 0.91621 0.91773 1.3
1.4 0.92647 0.92785 0.92922 0.93056 0.93189 1.4

1.5 0.93943 0.94062 0.94179 0.94295 0.94408 1.5
1.6 0.95053 0.95154 0.95254 0.95352 0.95448 1.6
1.7 0.95994 0.96080 0.96164 0.96246 0.96327 1.7
1.8 0.96784 0.96856 0.96926 0.96995 0.97062 1.8
1.9 0.97441 0.97500 0.97558 0.97615 0.97670 1.9

2.0 0.97982 0.98030 0.98077 0.98124 0.98169 2.0
2.1 0.98422 0.98461 0.98500 0.98537 0.98574 2.1
2.2 0.98778 0.98809 0.98840 0.98870 0.98899 2.2
2.3 0.99061 0.99086 0.99111 0.99134 0.99158 2.3
2.4 0.99286 0.99305 0.99324 0.99343 0.99361 2.4

2.5 0.99461 0.99477 0.99492 0.99506 0.99520 2.5
2.6 0.99598 0.99609 0.99621 0.99632 0.99643 2.6
2.7 0.99702 0.99711 0.99720 0.99728 0.99736 2.7
2.8 0.99781 0.99788 0.99795 0.99801 0.99807 2.8
2.9 0.99841 0.99846 0.99851 0.99856 0.99861 2.9

3.0 0.99886 0.99889 0.99893 0.99897 0.99900 3.0
3.1 0.99918 0.99921 0.99924 0.99926 0.99929 3.1
3.2 0.99942 0.99944 0.99946 0.99948 0.99950 3.2
3.3 0.99960 0.99961 0.99962 0.99964 0.99965 3.3
3.4 0.99972 0.99973 0.99974 0.99975 0.99976 3.4

3.5 0.99981 0.99981 0.99982 0.99983 0.99983 3.5
3.6 0.99987 0.99987 0.99988 0.99988 0.99989 3.6
3.7 0.99991 0.99992 0.99992 0.99992 0.99992 3.7
3.8 0.99994 0.99994 0.99995 0.99995 0.99995 3.8
3.9 0.99996 0.99996 0.99996 0.99997 0.99997 3.9



APPENDIX C

PERCENTAGE POINTS OF
THE χ2 DISTRIBUTIONa

a

c2
a, v

α

v 0.995 0.990 0.975 0.950 0.500 0.050 0.025 0.010 0.005

1 0.00+ 0.00+ 0.00+ 0.00+ 0.45 3.84 5.02 6.63 7.88
2 0.01 0.02 0.05 0.10 1.39 5.99 7.38 9.21 10.60
3 0.07 0.11 0.22 0.35 2.37 7.81 9.35 11.34 12.84
4 0.21 0.30 0.48 0.71 3.36 9.49 11.14 13.28 14.86

5 0.41 0.55 0.83 1.15 4.35 11.07 12.38 15.09 16.75
6 0.68 0.87 1.24 1.64 5.35 12.59 14.45 16.81 18.55
7 0.99 1.24 1.69 2.17 6.35 14.07 16.01 18.48 20.28
8 1.34 1.65 2.18 2.73 7.34 15.51 17.53 20.09 21.96
9 1.73 2.09 2.70 3.33 8.34 16.92 19.02 21.67 23.59

10 2.16 2.56 3.25 3.94 9.34 18.31 20.48 23.21 25.19

11 2.60 3.05 3.82 4.57 10.34 19.68 21.92 24.72 26.76
12 3.07 3.57 4.40 5.23 11.34 21.03 23.34 26.22 28.30
13 3.57 4.11 5.01 5.89 12.34 22.36 24.74 27.69 29.82

aAdapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., by E. S. Pearson
and H. O. Hartley, Cambridge University Press, Cambridge, 1966.
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424 PERCENTAGE POINTS OF THE χ2 DISTRIBUTION

α

v 0.995 0.990 0.975 0.950 0.500 0.050 0.025 0.010 0.005

14 4.07 4.66 5.63 6.57 13.34 23.68 26.12 29.14 31.32
15 4.60 5.23 6.27 7.26 14.34 25.00 27.49 30.58 32.80

16 5.14 5.81 6.91 7.96 15.34 26.30 28.85 32.00 34.27
17 5.70 6.41 7.56 8.67 16.34 27.59 30.19 33.41 35.72
18 6.26 7.01 8.23 9.39 17.34 28.87 31.53 34.81 37.16
19 6.84 7.63 8.91 10.12 18.34 30.14 32.85 36.19 38.58
20 7.43 8.26 9.59 10.85 19.34 31.41 34.17 37.57 40.00

25 10.52 11.52 13.12 14.61 24.34 37.65 40.65 44.31 46.93
30 13.79 14.95 16.79 18.49 29.34 43.77 46.98 50.89 53.67
40 20.71 22.16 24.43 26.51 39.34 55.76 59.34 63.69 66.77
50 27.99 29.71 32.36 34.76 49.33 67.50 71.42 76.15 79.49
60 35.53 37.48 40.48 43.19 59.33 79.08 83.30 88.38 91.95
70 43.28 45.44 48.76 51.74 69.33 90.53 95.02 100.42 104.22
80 51.17 53.54 57.15 60.39 79.33 101.88 106.63 112.33 116.32
90 59.20 61.75 65.65 69.13 89.33 113.14 118.14 124.12 128.30

100 67.33 70.06 74.22 77.93 99.33 124.34 129.56 135.81 140.17

v = degrees of freedom.
(from Montgomery, 1997)



APPENDIX D

PERCENTAGE POINTS OF
THE t DISTRIBUTIONa

a

0 ta, v

α

v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

1 0.325 1.000 3.078 6.314 12.706 31.821 63.657 127.32 318.31 636.62
2 0.289 0.816 1.886 2.920 4.303 6.965 9.925 14.089 23.326 31.598
3 0.277 0.765 1.638 2.353 3.182 4.541 5.841 7.453 10.213 12.924
4 0.271 0.741 1.533 2.132 2.776 3.747 4.604 5.598 7.173 8.610
5 0.267 0.727 1.476 2.015 2.571 3.365 4.032 4.773 5.893 6.869

6 0.265 0.727 1.440 1.943 2.447 3.143 3.707 4.317 5.208 5.959
7 0.263 0.711 1.415 1.895 2.365 2.998 3.49 4.019 4.785 5.408
8 0.262 0.706 1.397 1.860 2.306 2.896 3.355 3.833 4.501 5.041
9 0.261 0.703 1.383 1.833 2.262 2.821 3.250 3.690 4.297 4.781

10 0.260 0.700 1.372 1.812 2.228 2.764 3.169 3.581 4.144 4.587

11 0.260 0.697 1.363 1.796 2.201 2.718 3.106 3.497 4.025 4.437
12 0.259 0.695 1.356 1.782 2.179 2.681 3.055 3.428 3.930 4.318
13 0.259 0.694 1.350 1.771 2.160 2.650 3.012 3.372 3.852 4.221

aAdapted with permission from Biometrika Tables for Statisticians, Vol. 1, 3rd ed., by E. S. Pearson
and H. O. Hartley, Cambridge University Press, Cambridge, 1966.
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426 PERCENTAGE POINTS OF THE t DISTRIBUTION

α

v 0.40 0.25 0.10 0.05 0.025 0.01 0.005 0.0025 0.001 0.0005

14 0.258 0.692 1.345 1.761 2.145 2.624 2.977 3.326 3.787 4.140
15 0.258 0.691 1.341 1.753 2.131 2.602 2.947 3.286 3.733 4.073

16 0.258 0.690 1.337 1.746 2.120 2.583 2.921 3.252 3.686 4.015
17 0.257 0.689 1.333 1.740 2.110 2.567 2.898 3.222 3.646 3.965
18 0.257 0.688 1.330 1.734 2.101 2.552 2.878 3.197 3.610 3.992
19 0.257 0.688 1.328 1.729 2.093 2.539 2.861 3.174 3.579 3.883
20 0.257 0.687 1.325 1.725 2.086 2.528 2.845 3.153 3.552 3.850

21 0.257 0.686 1.323 1.721 2.080 2.518 2.831 3.135 3.527 3.819
22 0.256 0.686 1.321 1.717 2.074 2.508 2.819 3.119 3.505 3.792
23 0.256 0.685 1.319 1.714 2.069 2.500 2.807 3.104 3.485 3.767
24 0.256 0.685 1.318 1.711 2.064 2.492 2.797 3.091 3.467 3.745
25 0.256 0.684 1.316 1.708 2.060 2.485 2.787 3.078 3.450 3.725

26 0.256 0.684 1.315 1.706 2.056 2.479 2.779 3.067 3.435 3.707
27 0.256 0.684 1.314 1.703 2.052 2.473 2.771 3.057 3.421 3.690
28 0.256 0.683 1.313 1.701 2.048 2.467 2.763 3.047 3.408 3.674
29 0.256 0.683 1.311 1.699 2.045 2.462 2.756 3.038 3.396 3.659
30 0.256 0.683 1.310 1.697 2.042 2.457 2.750 3.030 3.385 3.646
40 0.255 0.681 1.303 1.684 2.021 2.423 2.704 2.971 3.307 3.551
60 0.254 0.679 1.296 1.671 2.000 2.390 2.660 2.915 3.232 3.460

120 0.254 0.677 1.289 1.658 1.980 2.358 2.617 2.860 3.160 3.373
∞ 0.253 0.674 1.282 1.645 1.960 2.326 2.576 2.807 3.090 3.291

v = degrees of freedom.
(from Montgomery, 1997)
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Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

427



F
0.

25
,v

1
,v

2

v
1

D
eg

re
es

of
fr

ee
do

m
fo

r
th

e
nu

m
er

at
or

(v
1
)

v
2

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
∞

1
5.

83
7.

50
8.

20
8.

58
8.

82
8.

98
9.

10
9.

19
9.

26
9.

32
9.

41
9.

49
9.

58
9.

63
9.

67
9.

71
9.

76
9.

80
9.

85
2

2.
57

3.
00

3.
15

3.
23

3.
28

3.
31

3.
34

3.
35

3.
37

3.
38

3.
39

3.
41

3.
43

3.
43

3.
44

3.
45

3.
46

3.
47

3.
48

3
2.

02
2.

28
2.

36
2.

39
2.

41
2.

42
2.

43
2.

44
2.

44
2.

44
2.

45
2.

46
2.

46
2.

46
2.

47
2.

47
2.

47
2.

47
2.

47
4

1.
81

2.
00

2.
05

2.
06

2.
07

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

2.
08

5
1.

69
1.

85
1.

88
1.

89
1.

89
1.

89
1.

89
1.

89
1.

89
1.

89
1.

89
1.

89
1.

88
1.

88
1.

88
1.

88
1.

87
1.

87
1.

87
6

1.
62

1.
76

1.
78

1.
79

1.
79

1.
78

1.
78

1.
78

1.
77

1.
77

1.
77

1.
76

1.
76

1.
75

1.
75

1.
75

1.
74

1.
74

1.
74

7
1.

57
1.

70
1.

72
1.

72
1.

71
1.

71
1.

70
1.

70
1.

70
1.

69
1.

68
1.

68
1.

67
1.

67
1.

66
1.

66
1.

65
1.

65
1.

65
8

1.
54

1.
66

1.
67

1.
66

1.
66

1.
65

1.
64

1.
64

1.
63

1.
63

1.
62

1.
62

1.
61

1.
60

1.
60

1.
59

1.
59

1.
58

1.
58

9
1.

51
1.

62
1.

63
1.

63
1.

62
1.

61
1.

60
1.

60
1.

59
1.

59
1.

58
1.

57
1.

56
1.

56
1.

55
1.

54
1.

54
1.

53
1.

53

10
1.

49
1.

60
1.

60
1.

59
1.

59
1.

58
1.

57
1.

56
1.

56
1.

55
1.

54
1.

53
1.

52
1.

52
1.

51
1.

51
1.

50
1.

49
1.

48
11

1.
47

1.
58

1.
58

1.
57

1.
56

1.
55

1.
54

1.
53

1.
53

1.
52

1.
51

1.
50

1.
49

1.
49

1.
48

1.
47

1.
47

1.
46

1.
45

12
1.

46
1.

56
1.

56
1.

55
1.

54
1.

53
1.

52
1.

51
1.

51
1.

50
1.

49
1.

48
1.

47
1.

46
1.

45
1.

45
1.

44
1.

43
1.

42
13

1.
45

1.
55

1.
55

1.
53

1.
52

1.
51

1.
50

1.
49

1.
49

1.
48

1.
47

1.
46

1.
45

1.
44

1.
43

1.
42

1.
42

1.
41

1.
40

14
1.

44
1.

53
1.

53
1.

52
1.

51
1.

50
1.

49
1.

48
1.

47
1.

46
1.

45
1.

44
1.

43
1.

42
1.

41
1.

41
1.

40
1.

39
1.

38

15
1.

43
1.

52
1.

52
1.

51
1.

49
1.

48
1.

47
1.

46
1.

46
1.

45
1.

44
1.

43
1.

41
1.

41
1.

40
1.

39
1.

38
1.

37
1.

36
16

1.
42

1.
51

1.
51

1.
50

1.
48

1.
47

1.
46

1.
45

1.
44

1.
44

1.
43

1.
41

1.
40

1.
39

1.
38

1.
37

1.
36

1.
35

1.
34

17
1.

42
1.

51
1.

50
1.

49
1.

47
1.

46
1.

45
1.

44
1.

43
1.

43
1.

41
1.

40
1.

39
1.

38
1.

37
1.

36
1.

35
1.

34
1.

33
18

1.
41

1.
50

1.
49

1.
48

1.
46

1.
45

1.
44

1.
43

1.
42

1.
42

1.
40

1.
39

1.
38

1.
37

1.
36

1.
35

1.
34

1.
33

1.
32

19
1.

41
1.

49
1.

49
1.

47
1.

46
1.

44
1.

43
1.

42
1.

41
1.

41
1.

40
1.

38
1.

37
1.

36
1.

35
1.

34
1.

33
1.

32
1.

30

Degreesoffreedomforthedenominator(v2)

428



20
1.

40
1.

49
1.

48
1.

47
1.

45
1.

44
1.

43
1.

42
1.

41
1.

40
1.

39
1.

37
1.

36
1.

35
1.

34
1.

33
1.

32
1.

31
1.

29
21

1.
40

1.
48

1.
48

1.
46

1.
44

1.
43

1.
42

1.
41

1.
40

1.
39

1.
38

1.
37

1.
35

1.
34

1.
33

1.
32

1.
31

1.
30

1.
28

22
1.

40
1.

48
1.

47
1.

45
1.

44
1.

42
1.

41
1.

40
1.

39
1.

39
1.

37
1.

36
1.

34
1.

33
1.

32
1.

31
1.

30
1.

29
1.

28
23

1.
39

1.
47

1.
47

1.
45

1.
43

1.
42

1.
41

1.
40

1.
39

1.
38

1.
37

1.
35

1.
34

1.
33

1.
32

1.
31

1.
30

1.
28

1.
27

24
1.

39
1.

47
1.

46
1.

44
1.

43
1.

41
1.

40
1.

39
1.

38
1.

38
1.

36
1.

35
1.

33
1.

32
1.

31
1.

30
1.

29
1.

28
1.

26

25
1.

39
1.

47
1.

46
1.

44
1.

42
1.

41
1.

40
1.

39
1.

38
1.

37
1.

36
1.

34
1.

33
1.

32
1.

31
1.

29
1.

28
1.

27
1.

25
26

1.
38

1.
46

1.
45

1.
44

1.
42

1.
41

1.
39

1.
38

1.
37

1.
37

1.
35

1.
34

1.
32

1.
31

1.
30

1.
29

1.
28

1.
26

1.
25

27
1.

38
1.

46
1.

45
1.

43
1.

42
1.

40
1.

39
1.

38
1.

37
1.

36
1.

35
1.

33
1.

32
1.

31
1.

30
1.

28
1.

27
1.

26
1.

24
28

1.
38

1.
46

1.
45

1.
43

1.
41

1.
40

1.
39

1.
38

1.
37

1.
36

1.
34

1.
33

1.
31

1.
30

1.
29

1.
28

1.
27

1.
25

1.
24

29
1.

38
1.

45
1.

45
1.

43
1.

41
1.

40
1.

38
1.

37
1.

36
1.

35
1.

34
1.

32
1.

31
1.

30
1.

29
1.

27
1.

26
1.

25
1.

23

30
1.

38
1.

45
1.

44
1.

42
1.

41
1.

39
1.

38
1.

37
1.

36
1.

35
1.

34
1.

32
1.

30
1.

29
1.

28
1.

27
1.

26
1.

24
1.

23
40

1.
36

1.
44

1.
42

1.
40

1.
39

1.
37

1.
36

1.
35

1.
34

1.
33

1.
31

1.
30

1.
28

1.
26

1.
25

1.
24

1.
22

1.
21

1.
19

60
1.

35
1.

42
1.

41
1.

38
1.

37
1.

35
1.

33
1.

32
1.

31
1.

30
1.

29
1.

27
1.

25
1.

24
1.

22
1.

21
1.

19
1.

17
1.

15
12

0
1.

34
1.

40
1.

39
1.

37
1.

35
1.

33
1.

31
1.

30
1.

29
1.

28
1.

26
1.

24
1.

22
1.

21
1.

19
1.

18
1.

16
1.

13
1.

10
∞

1.
32

1.
39

1.
37

1.
35

1.
33

1.
31

1.
29

1.
28

1.
27

1.
25

1.
24

1.
22

1.
19

1.
18

1.
16

1.
14

1.
12

1.
08

1.
00

N
ot

e:
F

0.
75

,v
1
,v

2
=

1/
F

0.
25

,v
2
,v

1
.

So
ur

ce
:

A
da

pt
ed

w
ith

pe
rm

is
si

on
fr

om
B

io
m

et
ri

ka
Ta

bl
es

fo
r

St
at

is
ti

ci
an

s,
V

ol
.

1,
3r

d
ed

.,
by

E
.

S.
Pe

ar
so

n
an

d
H

.
O

.
H

ar
tle

y,
C

am
br

id
ge

U
ni

ve
rs

ity
Pr

es
s,

C
am

br
id

ge
,

19
66

.
(f

ro
m

M
on

tg
om

er
y,

19
97

)

429



F
0.

10
,v

1
,v

2

v
1

D
eg

re
es

of
fr

ee
do

m
fo

r
th

e
nu

m
er

at
or

(v
1
)

v
2

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
∞

1
39

.8
6

49
.5

0
53

.5
9

55
.8

3
57

.2
4

58
.2

0
58

.9
1

59
.4

4
59

.8
6

60
.1

9
60

.7
1

61
.2

2
61

.7
4

62
.0

0
62

.2
6

62
.5

3
62

.7
9

63
.0

6
63

.3
3

2
8.

53
9.

00
9.

16
9.

24
9.

29
9.

33
9.

35
9.

37
9.

38
9.

39
9.

41
9.

42
9.

44
9.

45
9.

46
9.

47
9.

47
9.

48
9.

49
3

5.
54

5.
46

5.
39

5.
34

5.
31

5.
28

5.
27

5.
25

5.
24

5.
23

5.
22

5.
20

5.
18

5.
18

5.
17

5.
16

5.
15

5.
14

5.
13

4
4.

54
4.

32
4.

19
4.

11
4.

05
4.

01
3.

98
3.

95
3.

94
3.

92
3.

90
3.

87
3.

84
3.

83
3.

82
3.

80
3.

79
3.

78
3.

76
5

4.
06

3.
78

3.
62

3.
52

3.
45

3.
40

3.
37

3.
34

3.
32

3.
30

3.
27

3.
24

3.
21

3.
19

3.
17

3.
16

3.
14

3.
12

3.
10

6
3.

78
3.

46
3.

29
3.

18
3.

11
3.

05
3.

01
2.

98
2.

96
2.

94
2.

90
2.

87
2.

84
2.

82
2.

80
2.

78
2.

76
2.

74
2.

72
7

3.
59

3.
26

3.
07

2.
96

2.
88

2.
83

2.
78

2.
75

2.
72

2.
70

2.
67

2.
63

2.
59

2.
58

2.
56

2.
54

2.
51

2.
49

2.
47

8
3.

46
3.

11
2.

92
2.

81
2.

73
2.

67
2.

62
2.

59
2.

56
2.

54
2.

50
2.

46
2.

42
2.

40
2.

38
2.

36
2.

34
2.

32
2.

29
9

3.
36

3.
01

2.
81

2.
69

2.
61

2.
55

2.
51

2.
47

2.
44

2.
42

2.
38

2.
34

2.
30

2.
28

2.
25

2.
23

2.
21

2.
18

2.
16

10
3.

29
2.

92
2.

73
2.

61
2.

52
2.

46
2.

41
2.

38
2.

35
2.

32
2.

28
2.

24
2.

20
2.

18
2.

16
2.

13
2.

11
2.

08
2.

06
11

3.
23

2.
86

2.
66

2.
54

2.
45

2.
39

2.
34

2.
30

2.
27

2.
25

2.
21

2.
17

2.
12

2.
10

2.
08

2.
05

2.
03

2.
00

1.
97

12
3.

18
2.

81
2.

61
2.

48
2.

39
2.

33
2.

28
2.

24
2.

21
2.

19
2.

15
2.

10
2.

06
2.

04
2.

01
1.

99
1.

96
1.

93
1.

90
13

3.
14

2.
76

2.
56

2.
43

2.
35

2.
28

2.
23

2.
20

2.
16

2.
14

2.
10

2.
05

2.
01

1.
98

1.
96

1.
93

1.
90

1.
88

1.
85

14
3.

10
2.

73
2.

52
2.

39
2.

31
2.

24
2.

19
2.

15
2.

12
2.

10
2.

05
2.

01
1.

96
1.

94
1.

91
1.

89
1.

86
1.

83
1.

80

15
3.

07
2.

70
2.

49
2.

36
2.

27
2.

21
2.

16
2.

12
2.

09
2.

06
2.

02
1.

97
1.

92
1.

90
1.

87
1.

85
1.

82
1.

79
1.

76
16

3.
05

2.
67

2.
46

2.
33

2.
24

2.
18

2.
13

2.
09

2.
06

2.
03

1.
99

1.
94

1.
89

1.
86

1.
84

1.
81

1.
78

1.
75

1.
72

17
3.

03
2.

64
2.

44
2.

31
2.

22
2.

15
2.

10
2.

06
2.

03
2.

00
1.

96
1.

91
1.

86
1.

84
1.

81
1.

78
1.

75
1.

72
1.

69
18

3.
01

2.
62

2.
42

2.
29

2.
20

2.
13

2.
08

2.
04

2.
00

1.
98

1.
93

1.
89

1.
84

1.
81

1.
78

1.
75

1.
72

1.
69

1.
66

19
2.

99
2.

61
2.

40
2.

27
2.

18
2.

11
2.

06
2.

02
1.

98
1.

96
1.

91
1.

86
1.

81
1.

79
1.

76
1.

73
1.

70
1.

67
1.

63

Degreesoffreedomforthedenominator(v2)

430



20
2.

97
2.

59
2.

38
2.

25
2.

16
2.

09
2.

04
2.

00
1.

96
1.

94
1.

89
1.

84
1.

79
1.

77
1.

74
1.

71
1.

68
1.

64
1.

61
21

2.
96

2.
57

2.
36

2.
23

2.
14

2.
08

2.
02

1.
98

1.
95

1.
92

1.
87

1.
83

1.
78

1.
75

1.
72

1.
69

1.
66

1.
62

1.
59

22
2.

95
2.

56
2.

35
2.

22
2.

13
2.

06
2.

01
1.

97
1.

93
1.

90
1.

86
1.

81
1.

76
1.

73
1.

70
1.

67
1.

64
1.

60
1.

57
23

2.
94

2.
55

2.
34

2.
21

2.
11

2.
05

1.
99

1.
95

1.
92

1.
89

1.
84

1.
80

1.
74

1.
72

1.
69

1.
66

1.
62

1.
59

1.
55

24
2.

93
2.

54
2.

33
2.

19
2.

10
2.

04
1.

98
1.

94
1.

91
1.

88
1.

83
1.

78
1.

73
1.

70
1.

67
1.

64
1.

61
1.

57
1.

53

25
2.

92
2.

53
2.

32
2.

18
2.

09
2.

02
1.

97
1.

93
1.

89
1.

87
1.

82
1.

77
1.

72
1.

69
1.

66
1.

63
1.

59
1.

56
1.

52
26

2.
91

2.
52

2.
31

2.
17

2.
08

2.
01

1.
96

1.
92

1.
88

1.
86

1.
81

1.
76

1.
71

1.
68

1.
65

1.
61

1.
58

1.
54

1.
50

27
2.

90
2.

51
2.

30
2.

17
2.

07
2.

00
1.

95
1.

91
1.

87
1.

85
1.

80
1.

75
1.

70
1.

67
1.

64
1.

60
1.

57
1.

53
1.

49
28

2.
89

2.
50

2.
29

2.
16

2.
06

2.
00

1.
94

1.
90

1.
87

1.
84

1.
79

1.
74

1.
69

1.
66

1.
63

1.
59

1.
56

1.
52

1.
48

29
2.

89
2.

50
2.

28
2.

15
2.

06
1.

99
1.

93
1.

89
1.

86
1.

83
1.

78
1.

73
1.

68
1.

65
1.

62
1.

58
1.

55
1.

51
1.

47

30
2.

88
2.

49
2.

28
2.

14
2.

03
1.

98
1.

93
1.

88
1.

85
1.

82
1.

77
1.

72
1.

67
1.

64
1.

61
1.

57
1.

54
1.

50
1.

46
40

2.
84

2.
44

2.
23

2.
09

2.
00

1.
93

1.
87

1.
83

1.
79

1.
76

1.
71

1.
66

1.
61

1.
57

1.
54

1.
51

1.
47

1.
42

1.
38

60
2.

79
2.

39
2.

18
2.

04
1.

95
1.

87
1.

82
1.

77
1.

74
1.

71
1.

66
1.

60
1.

54
1.

51
1.

48
1.

44
1.

40
1.

35
1.

29
12

0
2.

75
2.

35
2.

13
1.

99
1.

90
1.

82
1.

77
1.

72
1.

68
1.

65
1.

60
1.

55
1.

48
1.

45
1.

41
1.

37
1.

32
1.

26
1.

19
∞

2.
71

2.
30

2.
08

1.
94

1.
85

1.
77

1.
72

1.
67

1.
63

1.
60

1.
55

1.
49

1.
42

1.
38

1.
34

1.
30

1.
24

1.
17

1.
00

N
ot

e:
F

0.
90

,v
1
,v

2
=

1/
F

0.
10

,v
2
,v

1
.

431



F
0.

25
,v

1
,v

2

v
1

D
eg

re
es

of
fr

ee
do

m
fo

r
th

e
nu

m
er

at
or

(v
1
)

v
2

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
∞

1
16

1.
4

19
9.

5
21

5.
7

22
4.

6
23

0.
2

23
4.

0
23

6.
8

23
8.

9
24

0.
5

24
1.

9
24

3.
9

24
5.

9
24

8.
0

24
9.

1
25

0.
1

25
1.

1
25

2.
2

25
3.

3
25

4.
3

2
18

.5
1

19
.0

0
19

.1
6

19
.2

5
19

.3
0

19
.3

3
19

.3
5

19
.3

7
19

.3
8

19
.4

0
19

.4
1

19
.4

3
19

.4
5

19
.4

5
19

.4
6

19
.4

7
19

.4
8

19
.4

9
19

.5
0

3
10

.1
3

9.
55

9.
28

9.
12

9.
01

8.
94

8.
89

8.
85

8.
81

8.
79

8.
74

8.
70

8.
66

8.
64

8.
62

8.
59

8.
57

8.
55

8.
53

4
7.

71
6.

94
6.

59
6.

39
6.

26
6.

16
6.

09
6.

04
6.

00
5.

96
5.

91
5.

86
5.

80
5.

77
5.

75
5.

72
5.

69
5.

66
5.

63

5
6.

61
5.

79
5.

41
5.

19
5.

05
4.

95
4.

88
4.

82
4.

77
4.

74
4.

68
4.

62
4.

56
4.

53
4.

50
4.

46
4.

43
4.

40
4.

36
6

5.
99

5.
14

4.
76

4.
53

4.
39

4.
28

4.
21

4.
15

4.
10

4.
06

4.
00

3.
94

3.
87

3.
84

3.
81

3.
77

3.
74

3.
70

3.
67

7
5.

59
4.

74
4.

35
4.

12
3.

97
3.

87
3.

79
3.

73
3.

68
3.

64
3.

57
3.

51
3.

44
3.

41
3.

38
3.

34
3.

30
3.

27
3.

23
8

5.
32

4.
46

4.
07

3.
84

3.
69

3.
58

3.
50

3.
44

3.
39

3.
35

3.
28

3.
22

3.
15

3.
12

3.
08

3.
04

3.
01

2.
97

2.
93

9
5.

12
4.

26
3.

86
3.

63
3.

48
3.

37
3.

29
3.

23
3.

18
3.

14
3.

07
3.

01
2.

94
2.

90
2.

86
2.

83
2.

79
2.

75
2.

71

10
4.

96
4.

10
3.

71
3.

48
3.

33
3.

22
3.

14
3.

07
3.

02
2.

98
2.

91
2.

85
2.

77
2.

74
2.

70
2.

66
2.

62
2.

58
2.

54
11

4.
84

3.
98

3.
59

3.
36

3.
20

3.
09

3.
01

2.
95

2.
90

2.
85

2.
79

2.
72

2.
65

2.
61

2.
57

2.
53

2.
49

2.
45

2.
40

12
4.

75
3.

89
3.

49
3.

26
3.

11
3.

00
2.

91
2.

85
2.

80
2.

75
2.

69
2.

62
2.

54
2.

51
2.

47
2.

43
2.

38
2.

34
2.

30
13

4.
67

3.
81

3.
41

3.
18

3.
03

2.
92

2.
83

2.
77

2.
71

2.
67

2.
60

2.
53

2.
46

2.
42

2.
38

2.
34

2.
30

2.
25

2.
21

14
4.

60
3.

74
3.

34
3.

11
2.

96
2.

85
2.

76
2.

70
2.

65
2.

60
2.

53
2.

46
2.

39
2.

35
2.

31
2.

27
2.

22
2.

18
2.

13

15
4.

54
3.

68
3.

29
3.

06
2.

90
2.

79
2.

71
2.

64
2.

59
2.

54
2.

48
2.

40
2.

33
2.

29
2.

25
2.

20
2.

16
2.

11
2.

07
16

4.
49

3.
63

3.
24

3.
01

2.
85

2.
74

2.
66

2.
59

2.
54

2.
49

2.
42

2.
35

2.
28

2.
24

2.
19

2.
15

2.
11

2.
06

2.
01

17
4.

45
3.

59
3.

20
2.

96
2.

81
2.

79
2.

61
2.

55
2.

49
2.

45
2.

38
2.

31
2.

23
2.

19
2.

15
2.

10
2.

06
2.

01
1.

96
18

4.
41

3.
55

3.
16

2.
93

2.
77

2.
66

2.
58

2.
51

2.
46

2.
41

2.
34

2.
27

2.
19

2.
15

2.
11

2.
06

2.
02

1.
97

1.
92

19
4.

38
3.

52
3.

13
2.

90
2.

74
2.

63
2.

54
2.

48
2.

42
2.

38
2.

31
2.

23
2.

16
2.

11
2.

07
2.

03
1.

98
1.

93
1.

88

Degreesoffreedomforthedenominator(v2)

432



20
4.

35
3.

49
3.

10
2.

87
2.

71
2.

60
2.

51
2.

45
2.

39
2.

35
2.

28
2.

20
2.

12
2.

08
2.

04
1.

99
1.

95
1.

90
1.

84
21

4.
32

3.
47

3.
07

2.
84

2.
68

2.
57

2.
49

2.
42

2.
37

2.
32

2.
25

2.
18

2.
10

2.
05

2.
01

1.
96

1.
92

1.
87

1.
81

22
4.

30
3.

44
3.

05
2.

82
2.

66
2.

55
2.

46
2.

40
2.

34
2.

30
2.

23
2.

15
2.

07
2.

03
1.

98
1.

94
1.

89
1.

84
1.

78
23

4.
28

3.
42

3.
03

2.
80

2.
64

2.
53

2.
44

2.
37

2.
32

2.
27

2.
20

2.
13

2.
05

2.
01

1.
96

1.
91

1.
86

1.
81

1.
76

24
4.

26
3.

40
3.

01
2.

78
2.

62
2.

51
2.

42
2.

36
2.

30
2.

25
2.

18
2.

11
2.

03
1.

98
1.

94
1.

89
1.

84
1.

79
1.

73

25
4.

24
3.

39
2.

99
2.

76
2.

60
2.

49
2.

40
2.

34
2.

28
2.

24
2.

16
2.

09
2.

01
1.

96
1.

92
1.

87
1.

82
1.

77
1.

71
26

4.
23

3.
37

2.
98

2.
74

2.
59

2.
47

2.
39

2.
32

2.
27

2.
22

2.
15

2.
07

1.
99

1.
95

1.
90

1.
85

1.
80

1.
75

1.
69

27
4.

21
3.

35
2.

96
2.

73
2.

57
2.

46
2.

37
2.

31
2.

25
2.

20
2.

13
2.

06
1.

97
1.

93
1.

88
1.

84
1.

79
1.

73
1.

67
28

4.
20

3.
34

2.
95

2.
71

2.
56

2.
45

2.
36

2.
29

2.
24

2.
19

2.
12

2.
04

1.
96

1.
91

1.
87

1.
82

1.
77

1.
71

1.
65

29
4.

18
3.

33
2.

93
2.

70
2.

55
2.

43
2.

35
2.

28
2.

22
2.

18
2.

10
2.

03
1.

94
1.

90
1.

85
1.

81
1.

75
1.

70
1.

64

30
4.

17
3.

32
2.

92
2.

69
2.

53
2.

42
2.

33
2.

27
2.

21
2.

16
2.

09
2.

01
1.

93
1.

89
1.

84
1.

79
1.

74
1.

68
1.

62
40

4.
08

3.
23

2.
84

2.
61

2.
45

2.
34

2.
25

2.
18

2.
12

2.
08

2.
00

1.
92

1.
84

1.
79

1.
74

1.
69

1.
64

1.
58

1.
51

60
4.

00
3.

15
2.

76
2.

53
2.

37
2.

25
2.

17
2.

10
2.

04
1.

99
1.

92
1.

84
1.

75
1.

70
1.

65
1.

59
1.

53
1.

47
1.

39
12

0
3.

92
3.

07
2.

68
2.

45
2.

29
2.

17
2.

09
2.

02
1.

96
1.

91
1.

83
1.

75
1.

66
1.

61
1.

55
1.

55
1.

43
1.

35
1.

25
∞

3.
84

3.
00

2.
60

2.
37

2.
21

2.
10

2.
01

1.
94

1.
88

1.
83

1.
75

1.
67

1.
57

1.
52

1.
46

1.
39

1.
32

1.
22

1.
00

N
ot

e:
F

0.
95

,v
1
,v

2
=

1/
F

0.
05

,v
2
,v

1
.

433



F
0.

25
,v

1
,v

2

v
1

D
eg

re
es

of
fr

ee
do

m
fo

r
th

e
nu

m
er

at
or

(v
1
)

v
2

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
∞

1
64

7.
8

79
9.

5
86

4.
2

89
9.

6
92

1.
8

93
7.

1
94

8.
2

95
6.

7
96

3.
3

96
8.

6
97

6.
7

98
4.

9
99

3.
1

99
7.

2
10

01
.0

10
06

.0
10

10
.0

10
14

.0
10

18
.0

2
38

.5
1

39
.0

0
39

.1
7

39
.2

5
39

.3
0

39
.3

3
39

.3
6

39
.3

7
39

.3
9

39
.4

0
39

.4
1

39
.4

3
39

.4
5

39
.4

6
39

.4
6

39
.4

7
39

.4
8

39
.4

9
39

.5
0

3
17

.4
4

16
.0

4
15

.4
4

15
.1

0
14

.8
8

14
.7

3
14

.6
2

14
.5

4
14

.4
7

14
.4

2
14

.3
4

14
.2

5
14

.1
7

14
.1

2
14

.0
8

14
.0

4
13

.9
9

13
.9

5
13

.9
0

4
12

.2
2

10
.6

5
9.

98
9.

60
9.

36
9.

20
9.

07
8.

98
8.

90
8.

84
8.

75
8.

66
8.

56
8.

51
8.

46
8.

41
8.

36
8.

31
8.

26

5
10

.0
1

8.
43

7.
76

7.
39

7.
15

6.
98

6.
85

6.
76

6.
68

6.
62

6.
52

6.
43

6.
33

6.
28

6.
23

6.
18

6.
12

6.
07

6.
02

6
8.

81
7.

26
6.

60
6.

23
5.

99
5.

82
5.

70
5.

60
5.

52
5.

46
5.

37
5.

27
5.

17
5.

12
5.

07
5.

01
4.

96
4.

90
4.

85
7

8.
07

6.
54

5.
89

5.
52

5.
29

5.
12

4.
99

4.
90

4.
82

4.
76

4.
67

4.
57

4.
47

4.
42

4.
36

4.
31

4.
25

4.
20

4.
14

8
7.

57
6.

06
5.

42
5.

05
4.

82
4.

65
4.

53
4.

43
4.

36
4.

30
4.

20
4.

10
4.

00
3.

95
3.

89
3.

84
3.

78
3.

73
3.

67
9

7.
21

5.
71

5.
08

4.
72

4.
48

4.
32

4.
20

4.
10

4.
03

3.
96

3.
87

3.
77

3.
67

3.
61

3.
56

3.
51

3.
45

3.
39

3.
33

10
6.

94
5.

46
4.

83
4.

47
4.

24
4.

07
3.

95
3.

85
3.

78
3.

72
3.

62
3.

52
3.

42
3.

37
3.

31
3.

26
3.

20
3.

14
3.

08
11

6.
72

5.
26

4.
63

4.
28

4.
04

3.
88

3.
76

3.
66

3.
59

3.
53

3.
43

3.
33

3.
23

3.
17

3.
12

3.
06

3.
00

2.
94

2.
88

12
6.

55
5.

10
4.

47
4.

12
3.

89
3.

73
3.

61
3.

51
3.

44
3.

37
3.

28
3.

18
3.

07
3.

02
2.

96
2.

91
2.

85
2.

79
2.

72
13

6.
41

4.
97

4.
35

4.
00

3.
77

3.
60

3.
48

3.
39

3.
31

3.
25

3.
15

3.
05

2.
95

2.
89

2.
84

2.
78

2.
72

2.
66

2.
60

14
6.

30
4.

86
4.

24
3.

89
3.

66
3.

50
3.

38
3.

29
3.

21
3.

15
3.

05
2.

95
2.

84
2.

79
2.

73
2.

67
2.

61
2.

55
2.

49

15
6.

20
4.

77
4.

15
3.

80
3.

58
3.

41
3.

29
3.

20
3.

12
3.

06
2.

96
2.

86
2.

76
2.

70
2.

64
2.

59
2.

52
2.

46
2.

40
16

6.
12

4.
69

4.
08

3.
73

3.
50

3.
34

3.
22

3.
12

3.
05

2.
99

2.
89

2.
79

2.
68

2.
63

2.
57

2.
51

2.
45

2.
38

2.
32

17
6.

04
4.

62
4.

01
3.

66
3.

44
3.

28
3.

16
3.

06
2.

98
2.

92
2.

82
2.

72
2.

62
2.

56
2.

50
2.

44
2.

38
2.

32
2.

25
18

5.
98

4.
56

3.
95

3.
61

3.
38

3.
22

3.
10

3.
01

2.
93

2.
87

2.
77

2.
67

2.
56

2.
50

2.
44

2.
38

2.
32

2.
26

2.
19

19
5.

92
4.

51
3.

90
3.

56
3.

33
3.

17
3.

05
2.

96
2.

88
2.

82
2.

72
2.

62
2.

51
2.

45
2.

39
2.

33
2.

27
2.

20
2.

13

Degreesoffreedomforthedenominator(v2)

434



20
5.

87
4.

46
3.

86
3.

51
3.

29
3.

13
3.

01
2.

91
2.

84
2.

77
2.

68
2.

57
2.

46
2.

41
2.

35
2.

29
2.

22
2.

16
2.

09
21

5.
83

4.
42

3.
82

3.
48

3.
25

3.
09

2.
97

2.
87

2.
80

2.
73

2.
64

2.
53

2.
42

2.
37

2.
31

2.
25

2.
18

2.
11

2.
04

22
5.

79
4.

38
3.

78
3.

44
3.

22
3.

05
2.

93
2.

84
2.

76
2.

70
2.

60
2.

50
2.

39
2.

33
2.

27
2.

21
2.

14
2.

08
2.

00
23

5.
75

4.
35

3.
75

3.
41

3.
18

3.
02

2.
90

2.
81

2.
73

2.
67

2.
57

2.
47

2.
36

2.
30

2.
24

2.
18

2.
11

2.
04

1.
97

24
5.

72
4.

32
3.

72
3.

38
3.

15
2.

99
2.

87
2.

78
2.

70
2.

64
2.

54
2.

44
2.

33
2.

27
2.

21
2.

15
2.

08
2.

01
1.

94

25
5.

69
4.

29
3.

69
3.

35
3.

13
2.

97
2.

85
2.

75
2.

68
2.

61
2.

51
2.

41
2.

30
2.

24
2.

18
2.

12
2.

05
1.

98
1.

91
26

5.
66

4.
27

3.
67

3.
33

3.
10

2.
94

2.
82

2.
73

2.
65

2.
59

2.
49

2.
39

2.
28

2.
22

2.
16

2.
09

2.
03

1.
95

1.
88

27
5.

63
4.

24
3.

65
3.

31
3.

08
2.

92
2.

80
2.

71
2.

63
2.

57
2.

47
2.

36
2.

25
2.

19
2.

13
2.

07
2.

00
1.

93
1.

85
28

5.
61

4.
22

3.
63

3.
29

3.
06

2.
90

2.
78

2.
69

2.
61

2.
55

2.
45

2.
34

2.
23

2.
17

2.
11

2.
05

1.
98

1.
91

1.
83

29
5.

59
4.

20
3.

61
3.

27
3.

04
2.

88
2.

76
2.

67
2.

59
2.

53
2.

43
2.

32
2.

21
2.

15
2.

09
2.

03
1.

96
1.

89
1.

81

30
5.

57
4.

18
3.

59
3.

25
3.

03
2.

87
2.

75
2.

65
2.

57
2.

51
2.

41
2.

31
2.

20
2.

14
2.

07
2.

01
1.

94
1.

87
1.

79
40

5.
42

4.
05

3.
46

3.
13

2.
90

2.
74

2.
62

2.
53

2.
45

2.
39

2.
29

2.
18

2.
07

2.
01

1.
94

1.
88

1.
80

1.
72

1.
64

60
5.

29
3.

93
3.

34
3.

01
2.

79
2.

63
2.

51
2.

41
2.

33
2.

27
2.

17
2.

06
1.

94
1.

88
1.

82
1.

74
1.

67
1.

58
1.

48
12

0
5.

15
3.

80
3.

23
2.

89
2.

67
2.

52
2.

39
2.

30
2.

22
2.

16
2.

05
1.

94
1.

82
1.

76
1.

69
1.

61
1.

53
1.

43
1.

31
∞

5.
02

3.
69

3.
12

2.
79

2.
57

2.
41

2.
29

2.
19

2.
11

2.
05

1.
94

1.
83

1.
71

1.
64

1.
57

1.
48

1.
39

1.
27

1.
00

N
ot

e:
F

0.
95

,v
1
,v

2
=

1/
F

0.
05

,v
2
,v

1
.

435



F
0.

01
,v

1
,v

2

v
1

D
eg

re
es

of
fr

ee
do

m
fo

r
th

e
nu

m
er

at
or

(v
1
)

v
2

1
2

3
4

5
6

7
8

9
10

12
15

20
24

30
40

60
12

0
∞

1
40

52
.0

49
99

.5
54

03
.0

56
25

.0
57

64
.0

58
59

.0
59

28
.0

59
82

.0
60

22
.0

60
56

.0
61

06
.0

61
57

.0
62

09
.0

62
35

.0
62

61
.0

62
87

.0
63

13
.0

63
39

.0
63

66
.0

2
98

.5
0

99
.0

0
99

.1
7

99
.2

5
99

.3
0

99
.3

3
99

.3
6

99
.3

7
99

.3
9

99
.4

0
99

.4
2

99
.4

3
99

.4
5

99
.4

6
99

.4
7

99
.4

7
99

.4
8

99
.4

9
99

.5
0

3
34

.1
2

30
.8

2
29

.4
6

28
.7

1
28

.2
4

27
.9

1
27

.6
7

27
.4

9
27

.3
5

27
.2

3
27

.0
5

26
.8

7
26

.6
9

26
.0

0
26

.5
0

26
.4

1
26

.3
2

26
.2

2
26

.1
3

4
21

.2
0

18
.0

0
16

.6
9

15
.9

8
15

.5
2

15
.2

1
14

.9
8

14
.8

0
14

.6
6

14
.5

5
14

.3
7

14
.2

0
14

.0
2

13
.9

3
13

.8
4

13
.7

5
13

.6
5

13
.5

6
13

.4
6

5
16

.2
6

13
.2

7
12

.0
6

11
.3

9
10

.9
7

10
.6

7
10

.4
6

10
.2

9
10

.1
6

10
.0

5
9.

89
9.

72
9.

55
9.

47
9.

38
9.

29
9.

20
9.

11
9.

02
6

13
.7

5
10

.9
2

9.
78

9.
15

8.
75

8.
47

8.
26

8.
10

7.
98

7.
87

7.
72

7.
56

7.
40

7.
31

7.
23

7.
14

7.
06

6.
97

6.
88

7
12

.2
5

9.
55

8.
45

7.
85

7.
46

7.
19

6.
99

6.
84

6.
72

6.
62

6.
47

6.
31

6.
16

6.
07

5.
99

5.
91

5.
82

5.
74

5.
65

8
11

.2
6

8.
65

7.
59

7.
01

6.
63

6.
37

6.
18

6.
03

5.
91

5.
81

5.
67

5.
52

5.
36

5.
28

5.
20

5.
12

5.
03

4.
95

4.
86

9
10

.5
6

8.
02

6.
99

6.
42

6.
06

5.
80

5.
61

5.
47

5.
35

5.
26

5.
11

4.
96

4.
81

4.
73

4.
65

4.
57

4.
48

4.
40

4.
31

10
10

.0
4

7.
56

6.
55

5.
99

5.
64

5.
39

5.
20

5.
06

4.
94

4.
85

4.
71

4.
56

4.
41

4.
33

4.
25

4.
17

4.
08

4.
00

3.
91

11
9.

65
7.

21
6.

22
5.

67
5.

32
5.

07
4.

89
4.

74
4.

63
4.

54
4.

40
4.

25
4.

10
4.

02
3.

94
3.

86
3.

78
3.

69
3.

60
12

9.
33

6.
93

5.
95

5.
41

5.
06

4.
82

4.
64

4.
50

4.
39

4.
30

4.
16

4.
01

3.
86

3.
78

3.
70

3.
62

3.
54

3.
45

3.
36

13
9.

07
6.

70
5.

74
5.

21
4.

86
4.

62
4.

44
4.

30
4.

19
4.

10
3.

96
3.

82
3.

66
3.

59
3.

51
3.

43
3.

34
3.

25
3.

17
14

8.
86

6.
51

5.
56

5.
04

4.
69

4.
46

4.
28

4.
14

4.
03

3.
94

3.
80

3.
66

3.
51

3.
43

3.
35

3.
27

3.
18

3.
09

3.
00

15
8.

68
6.

36
5.

42
4.

89
4.

36
4.

32
4.

14
4.

00
3.

89
3.

80
3.

67
3.

52
3.

37
3.

29
3.

21
3.

13
3.

05
2.

96
2.

87
16

8.
53

6.
23

5.
29

4.
77

4.
44

4.
20

4.
03

3.
89

3.
78

3.
69

3.
55

3.
41

3.
26

3.
18

3.
10

3.
02

2.
93

2.
84

2.
75

17
8.

40
6.

11
5.

18
4.

67
4.

34
4.

10
3.

93
3.

79
3.

68
3.

59
3.

46
3.

31
3.

16
3.

08
3.

00
2.

92
2.

83
2.

75
2.

65
18

8.
29

6.
01

5.
09

4.
58

4.
25

4.
01

3.
84

3.
71

3.
60

3.
51

3.
37

3.
23

3.
08

3.
00

2.
92

2.
84

2.
75

2.
66

2.
57

19
8.

18
5.

93
5.

01
4.

50
4.

17
3.

94
3.

77
3.

63
3.

52
3.

43
3.

30
3.

15
3.

00
2.

92
2.

84
2.

76
2.

67
2.

58
2.

59

Degreesoffreedomforthedenominator(v2)

436



20
8.

10
5.

85
4.

94
4.

43
4.

10
3.

87
3.

70
3.

56
3.

46
3.

37
3.

23
3.

09
2.

94
2.

86
2.

78
2.

69
2.

61
2.

52
2.

42
21

8.
02

5.
78

4.
87

4.
37

4.
04

3.
81

3.
64

3.
51

3.
40

3.
31

3.
17

3.
03

2.
88

2.
80

2.
72

2.
64

2.
55

2.
46

2.
36

22
7.

95
5.

72
4.

82
4.

31
3.

99
3.

76
3.

59
3.

45
3.

35
3.

26
3.

12
2.

98
2.

83
2.

75
2.

67
2.

58
2.

50
2.

40
2.

31
23

7.
88

5.
66

4.
76

4.
26

3.
94

3.
71

3.
54

3.
41

3.
30

3.
21

3.
07

2.
93

2.
78

2.
70

2.
62

2.
54

2.
45

2.
35

2.
26

24
7.

82
5.

61
4.

72
4.

22
3.

90
3.

67
3.

50
3.

36
3.

26
3.

17
3.

03
2.

89
2.

74
2.

66
2.

58
2.

49
2.

40
2.

31
2.

21

25
7.

77
5.

57
4.

68
4.

18
3.

85
3.

63
3.

46
3.

32
3.

22
3.

13
2.

99
2.

85
2.

70
2.

62
2.

54
2.

45
2.

36
2.

27
2.

17
26

7.
72

5.
53

4.
64

4.
14

3.
82

3.
59

3.
42

3.
29

3.
18

3.
09

2.
96

2.
81

2.
66

2.
58

2.
50

2.
42

2.
33

2.
23

2.
13

27
7.

68
5.

49
4.

60
4.

11
3.

78
3.

56
3.

39
3.

26
3.

15
3.

06
2.

93
2.

78
2.

63
2.

55
2.

47
2.

38
2.

29
2.

20
2.

10
28

7.
64

5.
45

4.
57

4.
07

3.
75

3.
53

3.
36

3.
23

3.
12

3.
03

2.
90

2.
75

2.
60

2.
52

2.
44

2.
35

2.
26

2.
17

2.
06

29
7.

60
5.

42
4.

54
4.

04
3.

73
3.

50
3.

33
3.

20
3.

09
3.

00
2.

87
2.

73
2.

57
2.

49
2.

41
2.

33
2.

23
2.

14
2.

03

30
7.

56
5.

39
4.

51
4.

02
3.

70
3.

47
3.

30
3.

17
3.

07
2.

98
2.

84
2.

70
2.

55
2.

47
2.

39
2.

30
2.

21
2.

11
2.

01
40

7.
31

5.
18

4.
31

3.
83

3.
51

3.
29

3.
12

2.
99

2.
89

2.
80

2.
66

2.
52

2.
37

2.
29

2.
20

2.
11

2.
02

1.
92

1.
80

60
7.

08
4.

98
4.

13
3.

65
3.

34
3.

12
2.

95
2.

82
2.

72
2.

63
2.

50
2.

35
2.

20
2.

12
2.

03
1.

94
1.

84
1.

73
1.

60
12

0
6.

85
4.

79
3.

95
3.

48
3.

17
2.

96
2.

79
2.

66
2.

56
2.

47
2.

34
2.

19
2.

03
1.

95
1.

86
1.

76
1.

66
1.

53
1.

38
∞

6.
63

4.
61

3.
78

3.
32

3.
02

2.
80

2.
64

2.
51

2.
41

2.
32

2.
18

2.
04

1.
88

1.
79

1.
70

1.
59

1.
47

1.
32

1.
00

N
ot

e:
F

0.
99

,v
1
,v

2
=

1/
F

0.
01

,v
2
,v

1
.

437



APPENDIX F
FACTORS FOR

CONSTRUCTING VARIABLES
CONTROL CHARTS

Fundamentals of Semiconductor Manufacturing and Process Control,
By Gary S. May and Costas J. Spanos
Copyright  2006 John Wiley & Sons, Inc.

438



C
ha

rt
fo

r
A

ve
ra

ge
s

C
ha

rt
fo

r
St

an
da

rd
D

ev
ia

tio
ns

C
ha

rt
fo

r
R

an
ge

s

Fa
ct

or
s

fo
r

C
on

tr
ol

L
im

it
s

Fa
ct

or
s

fo
r

C
en

te
r

L
in

e
Fa

ct
or

s
fo

r
C

on
tr

ol
L

im
its

Fa
ct

or
s

fo
r

C
en

te
r

L
in

e
Fa

ct
or

s
fo

r
C

on
tr

ol
L

im
its

O
bs

er
va

tio
ns

in
Sa

m
pl

e,
n

A
A

2
A

3
c 4

1/
c 4

B
3

B
4

B
5

B
6

d
2

1/
d

2
d

3
D

1
D

2
D

3
D

4

2
2.

12
1

1.
88

0
2.

65
9

0.
79

79
1.

25
33

0
3.

26
7

0
2.

60
6

1.
12

8
0.

88
65

0.
85

3
0

3.
68

6
0

3.
26

7
3

1.
73

2
1.

02
3

1.
95

4
0.

88
62

1.
12

84
0

2.
56

8
0

2.
27

6
1.

69
3

0.
59

07
0.

88
8

0
4.

35
8

0
2.

57
5

4
1.

50
0

0.
72

9
1.

62
8

0.
92

13
1.

08
54

0
2.

26
6

0
2.

08
8

2.
05

9
0.

48
57

0.
88

0
0

4.
69

8
0

2.
28

2
5

1.
34

2
0.

57
7

1.
42

7
0.

94
00

1.
06

38
0

2.
08

9
0

1.
96

4
2.

32
6

0.
42

99
0.

86
4

0
4.

91
8

0
2.

11
5

6
1.

22
5

0.
48

3
1.

28
7

0.
95

15
1.

05
10

0.
03

0
1.

97
0

0.
02

9
1.

87
4

2.
53

4
0.

39
46

0.
84

8
0

5.
07

8
0

2.
00

4
7

1.
13

4
0.

41
9

1.
18

2
0.

95
94

1.
04

23
0

0.
11

8
1.

88
2

0.
11

3
1.

80
6

2.
70

4
0.

36
98

0.
83

3
0.

20
4

5.
20

4
0.

07
6

1.
92

4
8

1.
06

1
0.

37
3

1.
09

9
0.

96
50

1.
03

63
0.

18
5

1.
81

5
0.

17
9

1.
75

1
2.

84
7

0.
35

12
0.

82
0

0.
38

8
5.

30
6

0.
13

6
1.

86
4

9
1.

00
0

0.
33

7
1.

03
2

0.
96

93
1.

03
17

0.
23

9
1.

76
1

0.
23

2
1.

70
7

2.
97

0
0.

33
67

0.
80

8
0.

54
7

5.
39

3
0.

18
4

1.
81

6
10

0.
94

9
0.

30
8

0.
97

5
0.

97
27

1.
02

81
0.

28
4

1.
71

6
0.

27
6

1.
66

9
3.

07
8

0.
32

49
0.

79
7

0.
68

7
5.

46
9

0.
22

3
1.

77
7

11
0.

90
5

0.
28

5
0.

92
7

0.
97

54
1.

02
52

0.
32

1
1.

67
9

0.
31

3
1.

63
7

3.
17

3
0.

31
52

0.
78

7
0.

81
1

5.
53

5
0.

25
6

1.
74

4
12

0.
86

6
0.

26
6

0.
88

6
0.

97
76

1.
02

29
0.

35
4

1.
64

6
0.

34
6

1.
61

0
3.

25
8

0.
30

69
0.

77
8

0.
92

2
5.

59
4

0.
28

3
1.

71
7

13
0.

83
2

0.
24

9
0.

85
0

0.
97

94
1.

02
10

0.
38

2
1.

61
8

0.
37

4
1.

58
5

3.
33

6
0.

29
98

0.
77

0
1.

02
5

5.
64

7
0.

30
7

1.
69

3
14

0.
80

2
0.

23
5

0.
81

7
0.

98
10

1.
01

94
0.

40
6

1.
59

4
0.

39
9

1.
56

3
3.

40
7

0.
29

35
0.

76
3

1.
11

8
5.

69
6

0.
32

8
1.

67
2

15
0.

77
5

0.
22

3
0.

78
9

0.
98

23
1.

01
80

0.
42

8
1.

57
2

0.
42

1
1.

54
4

3.
47

2
0.

28
80

0.
75

6
1.

20
3

5.
74

1
0.

34
7

1.
65

3

16
0.

75
0

0.
21

2
0.

76
3

0.
98

35
1.

01
68

0.
44

8
1.

55
2

0.
44

0
1.

52
6

3.
53

2
0.

28
31

0.
75

0
1.

28
2

5.
78

2
0.

36
3

1.
63

7
17

0.
72

8
0.

20
3

0.
73

9
0.

98
45

1.
01

57
0.

46
6

1.
53

4
0.

45
8

1.
51

1
3.

58
8

0.
27

87
0.

74
4

1.
35

6
5.

82
0

0.
37

8
1.

62
2

18
0.

70
7

0.
19

4
0.

71
8

0.
98

54
1.

01
48

0.
48

2
1.

51
8

0.
47

5
1.

49
6

3.
64

0
0.

27
47

0.
73

9
1.

42
4

5.
85

6
0.

39
1

1.
60

8

(c
on

ti
nu

ed
ov

er
le

af
)

439



C
ha

rt
fo

r
A

ve
ra

ge
s

C
ha

rt
fo

r
St

an
da

rd
D

ev
ia

tio
ns

C
ha

rt
fo

r
R

an
ge

s

Fa
ct

or
s

fo
r

C
on

tr
ol

L
im

it
s

Fa
ct

or
s

fo
r

C
en

te
r

L
in

e
Fa

ct
or

s
fo

r
C

on
tr

ol
L

im
its

Fa
ct

or
s

fo
r

C
en

te
r

L
in

e
Fa

ct
or

s
fo

r
C

on
tr

ol
L

im
its

O
bs

er
va

tio
ns

in
Sa

m
pl

e,
n

A
A

2
A

3
c 4

1/
c 4

B
3

B
4

B
5

B
6

d
2

1/
d

2
d

3
D

1
D

2
D

3
D

4

19
0.

68
8

0.
18

7
0.

69
8

0.
98

62
1.

01
40

0.
49

7
1.

50
3

0.
49

0
1.

48
3

3.
68

9
0.

27
11

0.
73

4
1.

48
7

5.
89

1
0.

40
3

1.
59

7
20

0.
67

1
0.

18
0

0.
68

0
0.

98
69

1.
01

33
0.

51
0

1.
49

0
0.

50
4

1.
47

0
3.

73
5

0.
26

77
0.

72
9

1.
54

9
5.

92
1

0.
41

5
1.

58
5

21
0.

65
5

0.
17

3
0.

66
3

0.
98

76
1.

01
26

0.
52

3
1.

47
7

0.
51

6
1.

45
9

3.
77

8
0.

26
47

0.
72

4
1.

60
5

5.
95

1
0.

42
5

1.
57

5
22

0.
64

0
0.

16
7

0.
64

7
0.

98
82

1.
01

19
0.

53
4

1.
46

6
0.

52
8

1.
44

8
3.

81
9

0.
26

18
0.

72
0

1.
65

9
5.

97
9

0.
43

4
1.

56
6

23
0.

62
6

0.
16

2
0.

63
3

0.
98

87
1.

01
14

0.
54

5
1.

45
5

0.
53

9
1.

43
8

3.
85

8
0.

25
92

0.
71

6
1.

71
0

6.
00

6
0.

44
3

1.
55

7
24

0.
61

2
0.

15
7

0.
61

9
0.

98
92

1.
01

09
0.

55
5

1.
44

5
0.

54
9

1.
42

9
3.

89
5

0.
25

67
0.

71
2

1.
75

9
6.

03
1

0.
45

1
1.

54
8

25
0.

60
0

0.
15

3
0.

60
6

0.
98

96
1.

01
05

0.
56

5
1.

43
5

0.
55

9
1.

42
0

3.
93

1
0.

25
44

0.
70

8
1.

80
6

6.
05

6
0.

45
9

1.
54

1

Fo
r

n
>

25

A
=

3 √ n
,

A
3

=
3

c 4
√ n

,
c 4

�
4(

n
−

1)

4n
−

3
,

B
3

=
1

−
3

c 4
√ 2(

n
−

1)
,

B
4

=
1

+
3

c 4
√ 2(

n
−

1)
,

B
5

=
c 4

−
3

√ 2(
n

−
1)

,
B

6
=

c 4
+

3
√ 2(

n
−

1)
.

(f
ro

m
M

on
tg

om
er

y)

440



INDEX

NOTE: Page references followed by t indicate material in tables.

Abstraction, of modern semiconductor
manufacturing processes, 8

Acceptability regions, in design centering,
172–173

Acceptance charts, 206, 207–208
Additive model, 242–243
Adhesion promoter, 41
Advanced process control, 333–373

multivariate control with complete model
adaptation, 351–359

run-by-run control, 333–335, 335–351
statistical process control and, 333
supervisory control, 359–373

Air filters, 99
Air monitoring, in cleanrooms, 99–100
Alarms

false and missed, 141, 182
feedforward control and, 358
in multivariate control, 352–354

Algorithmic methods, for diagnostic checking,
380, 381–391

Alternative hypothesis, 140
one-sided, 141, 142

Aluminum, in NMOS fabrication, 70
Aluminum interconnect, 6
Amplifier applications, for BiCMOS

technology, 74–75
Analysis of variance (ANOVA), 232–249, 301.

See also ANOVA entries
described, 232
with exponential models, 286

randomized block experiments with,
240–244

in single-parameter models, 276–277
sums of squares in, 232–234
in Taguchi method, 266–268
in two-parameter regression models, 279
in two-way designs, 245–249

Angle-resolved scatterometers, 96–97
ANOVA diagnostics, 237–240. See also

Analysis of variance (ANOVA)
ANOVA table, 234–240, 282, 283

formats of, 234, 235
full, 235
geometric interpretation of, 235–237, 238
hypothesis testing and, 234–235
randomized block experiments and,

241–242
in single-parameter models, 276–277

Applied Materials 7800 barrel reactor, 338,
343, 344

Approximations, of probability distributions,
132–133

Architecture, PEDX, 396–397
ARIMA models. See Integrated autoregressive

moving-average (ARIMA) models
Array diagnostic monitor (ADM), 105
Arrays, orthogonal, 264–265. See also Matrices
Arsenic, as dopant, 52
Artificial intelligence (AI), 273. See also

Computational intelligence; Intelligent
entries

Assembly line, 4
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By Gary S. May and Costas J. Spanos
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Assignable causes
diagnosing, 380
of yield loss, 149

Associational links, with PIES, 393–394
Associational strengths, with PIES, 393–394
Atmospheric pressure chemical vapor

deposition (APCVD), 60
Atomic force microscopy (AFM), of patterned

thin films, 93–95
Attachment methods, for integrated circuits,

79–80
Attributes, 186

control charts for, 186–195
Augmented response surface model, 293–294,

295
Autocorrelated measurements, 221–222
Autocorrelation function, 221
Automated recipe generation, 356–357
Automated test equipment (ATE), 106
Automatic internal analysis, with MERLIN,

388
Autoregressive models, first- and second-order,

222
Autoregressive moving-average (ARMA)

models, 222–223, 223–224
Average

correction factor for, 235
grand, 197, 199, 232, 236, 237, 238
sample, 123, 183
weighted, 213–214

Average run length (ARL), 184
control alarms and, 354
cusum charts and, 210–211
for fraction nonconforming chart, 191–192
for x chart, 200, 201

Average sample size, for fraction
nonconforming chart, 189–191

Axial points, 294
in central composite design, 260, 261

Backpropagation (BP) algorithm, 310–314
Backscattering, in e-beam lithography, 45
Baking, in Taguchi method, 263, 264
Ball-grid arrays (BGAs), 77–78
Barrel susceptors, 60
Base–base shorts, monitoring, 102–103
Base implantation, 65, 66
Base region, forming, 65, 66
Basic probability mass distribution (BPMD), in

Dempster–Shafer theory, 406–408
Batch operations/processes

in semiconductor manufacturing, 19, 20
single-variable control methods for,

335–343, 344

Batch uniformity
gradual controller operation mode for,

338–339
rapid controller operation mode for, 343,

344
Beachy, M., 402
Beam blanking plates, in e-beam lithography,

43–44
Bell System Technical Journal, Taguchi method

in, 263
Benzocyclobutene (BCB), 366
Bernoulli trials, 125, 128, 132–133
Beryllium, in X-ray lithography, 46
Between-lot statistics, 199–200
Between-sample variability, 199
Between-treatment sum of squares, 233, 234
Bhatikar, S., 400, 401
Bias, in implantation monitoring, 117
Bias terms, with run-by-run control, 350–351
BiCMOS (bipolar CMOS) technology, 62,

74–75
Binary strings, in genetic algorithms, 323
Binomial distribution, 125–127. See also

Negative binomial yield model
negative, 128
normal approximation to, 132–133
Poisson approximation to, 132
Poisson distribution as limiting form of, 128
Poisson yield model and, 152

Bipolar chips, shmoo plots for, 107
Bipolar device structures, with BiCMOS

technology, 74–75
Bipolar junction transistors, fabrication of, 62
Bipolar technology, 62, 63–66

PIES and, 395
Bipolar transistors, fabrication of, 11–12
Bivariate process control, 215–217
Blanket etches, 47
Blanket thin films, metrology of, 85–92
Block effect (βi ), 242
Block experiments, randomized, 240–244
Blocking, 240–242

fractional factorial experimental designs
and, 256

of two-level factorial design, 254–255
Boat, 20
Boron

as dopant, 52
in gate engineering, 73–74

Boron ions, implanting, 65
Bose–Einstein statistics, 153–154
Bottom numbers

in gradual controller operation mode, 339
in Yates algorithm, 258
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BP neural networks, 310–314
Bridgman technique, 5t, 6

Capacitance manometers, 111
Catastrophic yield, 148
Causal chains, in PIES knowledge base,

392–393, 394
Caused-by links, with PIES, 393–394
Causes links, with PIES, 393–394
c chart, 186. See also Defect chart (c chart)
Cell maps, 107
Centerline

for control charts, 182, 183, 184
for defect chart, 193
for defect density chart, 193–195
for exponentially weighted moving-average

charts, 214
for fraction nonconforming chart, 187, 188
for moving-average charts, 212
in multivariate process variability, 220
for s and x charts, 203–204
for variable control chart, 197–199

Centerpoints, in central composite design, 260,
261

Central composite circumscribed (CCC) design,
294, 295, 297

Central composite design (CCD), 260–261
Ceramic DIP (CerDIP), 77
Chain scission, 45
“Change in mean” (CIM) effect, evolutionary

operation and, 303
Chanstop, 64
Charged coupled devices (CCDs), in

interferometry, 88
Charges, at silicon–silicon dioxide interface, 33
Chemical etching, 50
Chemical industry, designed experiments in, 5
Chemical–mechanical polishing (CMP), 5t, 6,

61, 62
planarization monitoring in, 118
shallow trench and, 73

Chemical vapor deposition (CVD), 20, 31, 58,
60–61. See also CVD entries

fuzzy logic in modeling, 317–318
physical vapor deposition versus, 61
in two-level factorial design example,

251–255
in two-way experimental design example,

245–249
Chillers, 111
Chips

FABRICS software for, 167–171
VLASIC software for, 162–167
on wafers, 62, 63

Chip-scale packages (CSPs), 78–79
Chi-square (χ2) distribution, 134,138

F distribution and, 135–136
in multivariate process control, 217, 218
t distribution and, 134–135

Chromosomes, in genetic algorithms, 323, 324,
326

Circuits, computer-integrated manufacturing of,
7–8

Cleanrooms
air monitoring in, 99–100
classes of, 35
as examples of linear model with nonzero

intercept, 280–283
in photolithography, 34–35

Closed-loop recirculation system, 111
CMOS (complementary MOSFET) technology,

5t, 6, 51, 62, 66–74
CMOS fabrication sequence, 70–74
CMOS inverter, 70–71
CMOS process flow, 83
CMOS structures, with BiCMOS technology,

74–75
Collector contact chain, 103, 104
Collimator, sputtering through, 59, 60
Comb–meander–comb structure, 102
Competitive Semiconductor Manufacturing

program, 175
Complementary error function (erfc), 54
Complete model adaptation

multivariate process control with, 351–
359

supervisory control using, 359–364, 365,
366, 367, 368, 369

Complex index of refraction (N ), 90
Compromise recipes, with model update

algorithm, 354
Computational intelligence, 310. See also

Artificial intelligence (AI); Intelligent
entries

Computer-aided design (CAD), 7
in photolithographic masking, 38

Computer-integrated manufacturing of circuits
(IC-CIM), 7–8, 12–14

Computer numeric control (CNC), 4
Computers

in manufacturing, 4
in semiconductor manufacturing, 12–14

Concatenated multiparameter fixed-point
coding, in genetic algorithms, 323–
324

Concentration gradient, in diffusion, 53
Condenser lenses, in e-beam lithography, 43
Confidence intervals, 137–140
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Confidence intervals, (continued )
defined, 137
for difference between two means, known

variance, 138
for difference between two means, unknown

variances, 138–139
for mean with known variance, 137
for mean with unknown variance, 137
for ratio of two variances, 139–140
for variance, 137–138

Confidence level (C), in maintenance diagnosis,
409

Confirmation step, with PIES, 394
Conformance quality, of semiconductor

manufacturing, 17
Confounding patterns

with block effect, 254, 255
in fractional factorial experimental designs,

256–257
Conjugate direction, in Powell’s algorithm, 319
Constants, with MERLIN, 385, 387
Constant-surface-concentration diffusion, 54
Constant-total-dopant diffusion, 54
Constraints, in simplex method, 322, 323
Contact printing, 35, 36
Containment, in fuzzy logic, 315
Contamination

defined, 156
in IC fabrication, 98–102

Continuity equation, one-dimensional, 53
Continuous-flow manufacturing, of integrated

circuits, 18–19, 19–21
Continuous probability distributions, 124,

128–132
Contour plots, 295, 300
Contraction, in simplex method, 320, 321
Contrast, 252

in fractional factorial experimental designs,
256–257

geometric representation of, 253
Control alarms, 352–354
Control charts, 5, 181–182

for attributes, 186–195
basics of, 182–184
cusum, 208–212
for defect density, 186, 193–195
for defects, 186, 193
exponentially weighted moving-average,

213–215
for fraction nonconforming, 186, 187–192
moving-average, 212–215
patterns in, 184–186
rational subgroups and, 199–200

for single-variable control methods,
336–337

standardized, 191
for variables, 195–215

Control ellipse, in multivariate process control,
217–220

Control factors, in Taguchi method, 263,
266

Control region, in multivariate process control,
216, 218

Convergence, in simplex method, 322
Copper interconnect, 5t, 6–7
Correction factor for the average, 235
Correlation measure of verification (ρ), with

MERLIN, 389
Cost, of semiconductor manufacturing, 15–16
Cost function, in fault diagnosis, 383, 384
Covariance

with autocorrelation function, 221
in multivariate process control, 217–220

Covariance matrix
in multivariate process control, 219–220
in principal-component analysis, 309

Crisp sets, 314–315
Critical area (Ac), 150, 157–158
Critical area integral, 158
Critical dimension (CD), 95, 96, 97, 98

lithography operation monitoring and, 117
for photolithographic machines, 361–362,

364
in shadow printing, 36

Crosier’s multivariate cusum scheme, control
alarms in, 353–354

Crossover, in genetic algorithms, 323,
324–325, 326

Crystal, in quartz crystal monitor, 91
Crystal growth techniques, 5–6
Cumulative distribution function

in maintenance diagnosis, 409
standard normal, 133

Cumulative normal distribution, 130
Cusum (cumulative sum) charts, 208–212,

336–337
average run length and, 210–211
Shewhart control charts and, 208, 209
tabular, 210
for variance, 211–212

Cusum scheme, control alarms in, 353–354
CVD barrel reactor, 400–401
CVD diagnosis, pattern recognition in,

400–402. See also Chemical vapor
deposition (CVD)

Cyclic behavior, in control charts, 184, 185
Czochralski technique, 5t, 6
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Data analysis, in Taguchi method, 266–268
Data transformations, 244, 246–249

variance-stabilizing, 248
Decision interval (H ), 210

in online diagnosis, 412
Deep junctions, diffusion and, 51
Defect chart (c chart), 186, 193
Defect density, 156–157

in masks, 39
Defect density chart (u chart), 186, 193–195
Defect diameter, 156, 157
Defect inspection, 98–102
Defects

defined, 156
Murphy’s yield integral and, 152–154
negative binomial yield model and,

154–155, 157
Poisson yield model and, 151–152
size distribution of, 156, 157
software for estimating, 162–167
yield and, 150

Defining relation, of fractional factorial
experimental designs, 257

Degrees of freedom, 134, 135, 235
in single-parameter models, 276
with sums of squares, 233
in two-parameter regression models, 279

Delta function (δ), 152, 153, 155
Demagnification ratio (M), in photolithography,

36
Dempster–Shafer theory, 403, 406–408, 410
Dependence links, with MERLIN, 387
Dependent variables, 273–274
Deposition. See also Chemical vapor deposition

(CVD)
gradual controller operation mode for,

338–339
in integrated circuit fabrication, 58–61
rapid controller operation mode for, 343,

344
Depth of focus (DoF), in photolithography, 38
Design centering, yield and, 171–174. See also

Design for manufacturability
Designed experiments, 5, 228. See also

Statistical experimental design
Design for manufacturability, 149, 161, 172.

See also Design centering
Design matrix, 251, 256
Design quality, of semiconductor

manufacturing, 17
Design yield, 148
Developer, lithography operation monitoring

and, 117
Development, in Taguchi method, 263, 264

Deviation graph, with MERLIN, 387, 388,
390–391

Device–component objects, with MERLIN,
385

Device diagnosis, with MERLIN, 384
Diagnosis. See also Diagnostic checking;

Diagnostic systems
inline, 413–414
maintenance, 408–409
online, 409–413

Diagnostic checking, 379–414. See also
Diagnostic systems

algorithmic methods for, 380, 381–391
ANOVA, 237–240
expert systems for, 380, 391–398
hybrid methods of, 402–414
need for, 379–380
neural network approaches to, 381,

398–402
of randomized block experiment models,

243–244
in response surface methodology, 292–293

Diagnostic reasoner, with PIES, 393–394,
394–395

Diagnostic systems, 380–381
Hippocrates, 381–384
MERLIN, 384–391

Diamond saw, in die separation, 76
Diamond scribe, in die separation, 76
Die separation, in IC packaging, 76
Die yield, 148,ielectric function, 89–90, 91
Differential pressure mass flowmeter, 110
Differential term, 215
Diffraction

in e-beam lithography, 45
photoresists and, 41
in proximity printing, 35

Diffusion
defined, 53
impurity doping via, 51–52, 52–56
in p–n junction fabrication, 10, 11

Diffusion coefficient (D), 28–29, 53, 54
Diffusion length, 56
Diffusion techniques, 5t, 6
Diffusivity, 53
Dimensionality reduction, via

principal-component analysis, 306–309
Direct costs, in semiconductor manufacturing,

16
Discrete-parts manufacturing, of integrated

circuits, 19, 21
Discrete probability distributions, 124–128
Discrete time index (t), 335
Dispersion model, 91
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Distributions
comparing, 229–231
external reference, 229–231

Disturbances, 381, 383–384
detecting, 352–354

Divisors, in Yates algorithm, 258
Dodge, Harold, 5
Doping, 51–58
Dot diagrams, 238–240, 244

with normal probability plots, 259
Double-comb structure, 102
Double-exponential forecasting filter (DEFF),

with predictor–corrector controller, 345
Drain-induced barrier lowering, in gate

engineering, 73
DRAM (dynamic random access memory), 5t, 6

production of, 7
simulating with VLASIC software, 163–167

Drift
in cusum charts, 209
gradual controller operation mode and,

337–339
in process control, 351

Drive-in diffusion, 56
Dry etching, 5t, 6, 48–51

wet chemical etching versus, 48–49
Dry oxidation, 9–10

growth kinetics of, 27–31
thin oxide growth during, 31, 32

Drytek quad reactor, 402
Dual-inline package (DIP), 77
Dummy wafers, 83
Dust particles

mask damage from, 35
in photolithography, 34–35

Economics, of semiconductor manufacturing,
15–16

Economy of control actions, in process control,
351

Effective dielectric function (ε), 90, 91
Effects, 245. See also Interaction effects; Main

effects
with normal probability plots, 259–260
in Yates algorithm, 258

Eigenvalues, in principal-component analysis,
306–307, 309

Eigenvectors, in principal-component analysis,
306–307, 309

Electrical linewidth measurement, of patterned
thin films, 98

Electrical testing, 102–107
of integrated circuits, 75

Electrochemical anodization, 26

Electrodes
in parallel-plate diode system, 51
in sputtering, 59

Electron-beam evaporation, 59
Electron-beam (e-beam) lithographic systems,

38, 43–45. See also Lithography
advantages and disadvantages of, 44

Electron beams, in scanning electron
microscopy, 95–96

Electron cyclotron resonance (ECR) systems,
59

Electron gun, in e-beam lithography, 43
Electronic packaging hierarchy, 75–76
Electronics industry

computer-integrated manufacturing in, 7–8
semiconductor devices in, 2–3

Electron resist, 38
Electron scattering, in e-beam lithography, 45
Ellipse. See Control ellipse
Ellipsometry

measuring film thickness via, 88–91
with predictor–corrector controller,

343–345
Emissivity, extrinsic and intrinsic, 109
Emitter region, forming, 65, 66
Endpoint detector, 50
Endpoint trace, 114
Enhancement-mode n-channel device, 69
Epitaxial growth, 5t, 6

with chemical vapor deposition, 60–61
fuzzy logic in modeling, 317–318
PIES diagnosis of, 395

Equality, in fuzzy logic, 315
Equation objects, with MERLIN, 385, 387
Equipment costs, in semiconductor

manufacturing, 16
Equipment diagnosis. See Diagnostic checking
Equipment state measurements, in process

monitoring, 83, 107–118
Error function, complementary, 54
Errors. See also Experimental error entries;

Standard error (SE)
in evolutionary operation, 302–303, 304
forecast, 214–215
in neural networks, 312–313, 314
types I and II, 140, 182, 184

Error variance, response surface methodology
and, 293–294

Estimates, pooled, 142
Estimation, 136–140

of global yield loss, 159
for malfunction alarms, 353
of parametric yield, 160–161
shift, 340–342
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in two-parameter regression models,
279–280

Estimators, 136–137
Etching, 396, 397

dry, 5t, 6, 48–51
as linear regression example, 274–275,

276–277
in photolithography, 34, 47–51
plasma, 49–50, 86, 88
in p–n junction fabrication, 9, 11
predictor–corrector controller for, 345–346,

347
wet chemical, 47–48, 48–49

Etch rates, 48
with dry etching, 48–49, 50

Etch tools, with dry etching, 50
Evans, Oliver, 4
Evaporation, 59
Evidential reasoning, 403, 406–408
Evolutionary operation (EVOP), 301–306
Expansion, in simplex method, 320, 321
Experiential knowledge, with MERLIN, 386
Experimental error (εt i), 242
Experimental error variance, response surface

methodology and, 293–294
Experiments. See also Statistical experimental

design
designed, 5, 228
randomized block, 240–244

Expert systems
for diagnostic checking, 380, 391–398
hybrid, 403–414

Exponential distribution, 131–132
Exponentially weighted moving-average

(EWMA) control charts, 213–215,
337–338

Exponentially weighted moving-average
gradual model, for run-by-run control,
343

Exponential models, 285–286
Exposure, in Taguchi method, 263, 264
Exposure response curves, for photoresists,

40–41
Exposure tools

lithography operation monitoring and, 117
in photolithography, 35–38

Expressions, with MERLIN, 385
External reference distribution, 229–231
Extinction coefficient, 90
Extrema counting, 87
Extrinsic emissivity, 109

Fabrication facilities (“fabs”), in semiconductor
manufacturing, 14

FABRICS (FABRication of Integrated Circuits
Simulator), 161–162, 167–171, 383

Factorial experimental designs, 245, 246,
249–261

advanced, 260–261
analyzing factorials in, 257–260, 261
fractional, 256–257
response surface methodology and, 290,

293, 297
in Taguchi method, 264–265
two-level, 250–255

Factors, 245
in factorial experimental designs, 249–240

Fail points, in design centering, 172
Failure(s)

interval between, 132
mean time to, 131
PIES diagnosis of, 395

Failure cases, with PIES, 393
Failure rate, 131

in maintenance diagnosis, 408, 409
False alarm, 141, 182
Faraday cup, 117
Fault analysis, 163
Fault combinations, 151t
Fault correlation matrix (FCM), 382
Fault diagnosis, 383
Fault patterns, in online diagnosis, 410
Fault ranking, in maintenance diagnosis, 409
Faults. See also Process faults

defined, 156
parametric yield and, 159–161
in semiconductor manufacturing, 147
software for estimating, 162–167
in wafers, 148

F distribution, 135–136
Feedback control

alarms for, 353–354
for automated recipe generation, 356–357
full model adaptation of, 354–356
in process control, 351
in run-by-run control, 333–334

Feedforward control, 358–359, 364, 365, 366,
367, 368, 369

in process control, 351
in supervisory control, 334

Feedforward neural networks, 310
Fick’s diffusion equation (law), 53–54
Field oxides, 26, 68
Film dielectric function, 91
Film formation

in integrated circuit fabrication, 11–12,
62–63
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Films, nonuniformity of, 245–246. See also
Thin films

Film thickness
measuring via ellipsometry, 88–91
measuring via interferometry, 85–88

Filtering operations, 163
Filters

air, 99
forecast, 345

Final testing, 106–107
Final testing yield, 148
First-order autoregressive model, 222
First-order autoregressive moving-average

(ARMA) models, 222–223
First-order integrated autoregressive moving-

average (ARIMA) model, 222–223
Fitness, in genetic algorithms, 323, 324
Fixed-oxide charge, 33
Fixed-point coding, in genetic algorithms,

323–324
Flipchip bonding, of integrated circuits, 79, 80
Flipchip-mounted packages, 78
Flowmeters, 110
Fluorine, in gate engineering, 73–74
Flux analysis, in plasma operation monitoring,

112
Ford, Henry, 4
Forecast filter, with predictor–corrector

controller, 345
Forecasts, of process mean, 214
Foreign particles, defects due to, 150. See also

Particles
Forgetting factor (wkk), with model update

algorithm, 355–356
Fourier transform infrared (FTIR) spectroscopy,

in plasma operation monitoring, 115
Four-point probe, measuring resistivity via, 92
Fractional factorial experimental designs,

256–257
constructing, 256–257
resolution in, 257

Fraction nonconforming chart (p chart), 186,
187–192

average run length for, 191–192
design of, 188–189
operating characteristic curve for, 191–192
sample size for, 188–189
variable sample size for, 189–191

Frame of discernment, in Dempster–Shafer
theory, 406, 407

F ratio, 246
Freedom, degrees of, 134, 135, 235, 276, 279
Fresnel equations, 89–90
Fresnel reflection coefficients, 90–91

Full ANOVA table, 235
Full-wafer interferometry, 88
Functional test structures, 105
Functional yield, 148

components of, 156–159
models for, 149–155
parametric yield versus, 160
software for simulating, 162–167

Function minimization/maximization, 318–320
Furnaces

oxidation, 26, 27
vertical oxidation, 32

Fused-silica plate, as standard mask substrate,
38–39

Fuzzy cell, 316
Fuzzy logic, 273, 310, 314–318
Fuzzy rules, 316–317
Fuzzy sets, 314–315

Gain factor, in process control, 351
Gamma function (�), 134, 154–155
Gamma probability density function, 154–155
Gaseous dopant sources, 52, 54
Gas flow, monitoring, 110–111, 112
Gate engineering, in CMOS circuits, 73–74
Gate formation, in NMOS fabrication, 69
Gate oxides, 26

in NMOS fabrication, 68–69
Gaussian distribution, 153

in diffusion, 56
in ion implantation, 57–58

Gauss–Seidel algorithm, for automated recipe
generation, 356–357

GEM standard, 13–14
Generalized sample variance, 220–221
Generalized SPC approach, 335, 336–337. See

also Statistical process control (SPC)
Generation, of blocking, 254, 255
Generic equipment model (GEM), 13–14
Generic particle counts, 100–101
Generic rules, with PEDX, 397
Genetic “code,” in genetic algorithms, 324
Genetic optimization algorithms (GAs), 318,

323–325, 326, 327
in intelligent supervisory control, 369–373

Geometric distribution, 128
Geometric interpretation of ANOVA table,

235–237, 238
Geometric moving-average (GMA) control

charts, 213. See also Exponentially
weighted moving-average (EWMA)
control charts

Geometric representation of contrasts, 253
Global controllers, supervisory control and,

360–361, 364, 365, 366, 367, 368, 369
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Global defects, 158
Global optimization, 325
Global yield loss, 158–159

negative binomial yield model and, 159
Gold, in IC attachment, 79
Grade of membership, 315
Gradient descent approach, in neural networks,

311
Gradual controller operation mode, 335, 336,

337–339
Grand average, 197, 199, 232

ANOVA table and, 236, 237, 238
Grossberg layer, with process control neural

network, 398–399
Gross world product (GWP), electronics

industry and, 2–3
Growth kinetics, of silicon oxidation, 27–31
Gyvez, J. Piñeda de, 151

Hard faults, 381
Hard yield, 148
Hazard rate, in maintenance diagnosis, 408
Helium, in X-ray lithography, 46
Hessian matrix, 318–319
Hexamethylene–disiloxane (HMDS), 41
High-atomic-number materials, in X-ray

lithography masks, 46
High-density bipolar transisto chain, 102, 103
High-density plasma (HDP) etching, 49
High-efficiency particulate air (HEPA) filters,

99
“Hill climbing” approach, to process

optimization, 318
Himmel, C., 314
Hippocrates diagnostic system, 381–384
Holland, John, 323
Hopfield networks, 310
Horizontal susceptors, 60
Hotelling’s T 2 statistic, 220

in inline diagnosis, 413
Hybrid diagnostic checking methods, 402–414
Hybrid expert systems, 403–414
Hybrid optimization methods, 325, 326, 327
Hydrofluoric acid (HF), in p–n junction

fabrication, 11
Hypergeometric distribution, 124–125
Hypersphere, in parametric yield optimization,

173
Hypothesis testing, 140–144

ANOVA table and, 234–235
control charts and, 182, 183
defined, 140
with MERLIN, 388–389
in online diagnosis, 410

statistical, 231
statistical experimental design for, 229–231

Hypothesization step, with PIES, 394

IC-CIM systems, 12–14
Identification (ID), in Yates algorithm, 258
Image cross sections, for photoresists, 40, 41
Immersion etching, 47
Implantation, monitoring, 117. See also Ion

implantation
Implication step, with PIES, 394
Implicit optimization functions, 319
Impurities, in p–n junction fabrication, 10, 11
Impurity doping, 51–58

in IC fabrication, 63
In-control processes, 184
Independent distributions, 133
Independent variables, 273–274
Index of refraction (n), 85–86

complex, 90
Indicator variable, 280
Indirect costs, in semiconductor manufacturing,

16
Inert gases, thin oxide growth in, 31. See also

Helium
Inference mechanism, with MERLIN, 387–390
Information flow, in semiconductor

manufacturing, 12–14
Infrared (IR) spectroscopy, in plasma operation

monitoring, 115
Inline diagnosis, 413–414
Inline monitoring techniques, 100
Input bounds algorithm, with run-by-run

control, 346–348
Input–output pairs, in neural networks,

312–313, 313–314
Input ranges, for photolithographic machines,

361–363
Input resolution, with run-by-run control, 348,

349
Inputs, to manufacturing, 1–2
Input setting matrix (X), with model update

algorithm, 354–355
Input weights, with run-by-run control,

348–350
In situ particle monitoring (ISPM), 100
Inspections, 84
Insulator image, 41–43
Integral term, 215
Integrated autoregressive moving-average

(ARIMA) models, 222–223
Integrated circuits (ICs), 5t, 6

attachment methods for, 79–80
computer-integrated manufacturing of, 7–8
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Integrated circuits (ICs), (continued )
described, 61–62
fabrication of, 11–12
faults in, 147
manufacture of, 1–2, 7–8
modeling yield of, 147, 148–149, 149–176
monitoring fabrication of, 82–118
packaging of, 75–80
pattern transfer in fabricating, 41–43
photolithography in fabricating, 34–46
planar fabrication technology in

manufacturing, 25
planarization of, 61, 62
plasma reactor technology and, 50
process integration in fabricating, 61–80
thin films in fabricating, 26
unit processes in fabricating, 25–61

Intelligent modeling techniques, 310–318
fuzzy logic, 310, 314–318
neural networks, 310–314

Intelligent supervisory control, 364–373
Interaction effects, 245

in two-level factorial design, 251–252
Interactions

in fractional factorial experimental designs,
256–257

in two-level factorial experimental design,
250, 251–252

Interchangeable parts, 3–4
Interconnect test structures, 101–102
Interface-trapped charge, 33
Interference, optical, 85–86
Interferograms, 86
Interferometry

full-wafer, 88
measuring film thickness via, 85–88

Interlevel causes, with PIES, 393–394
Internal analysis, with MERLIN, 388
Internal functions, with fuzzy logic, 316–317
Interval between failures, 132
Interval estimator, 136–137
Intralevel causalities, with PIES, 395
Intralevel causes, with PIES, 393–394
Intrinsic emissivity, 109
Ion distribution, in ion implantation, 57–58
Ion implantation, 5t, 6, 42–43, 63–64, 65. See

also Implantation
in gate engineering, 73–74
impurity doping via, 51, 52, 56–58
inspecting, 84
in p–n junction fabrication, 10, 11

Ion implantor, 56–57
Ionization gauge, 110

Isolation, in CMOS circuits, 72–73
ISO-Z bipolar process, 395

Japan, electronics industry in, 7, 8
Junction depth, 92
Junctions, in thermocouple, 109

Key measurement points, in process
monitoring, 83

Kim, B., 403
Kim, T., 364, 366
Kinetics, of silicon oxidation, 27–31
Knowledge base, with PIES, 391–392,

393–394
Knowledge editor, with PIES, 393–394
Knowledge representation, with MERLIN, 384,

385–387
Kohonen self-organizing network, 399, 400

Labor, in manufacturing, 3–4
Labor costs, in semiconductor manufacturing,

16
Lagrange multipliers, in principal-component

analysis, 307
Lam Rainbow reactive-ion etching system,

223–224
Lanthanum hexaboride (LaB6), 43
Latchup, in CMOS circuits, 72
Lateral oxide isolation region, forming, 64
Lateral straggle (σ⊥), of an ion, 57
Layers, in neural networks, 310–312, 313,

314
Leakage current, in gate engineering, 73
Learning, by neural networks, 310–314
Learning curve, yield, 174–176
Least-squares approach, to thin-film metrology,

87–88
Least squares method, 272, 273, 275

with exponential models, 285–286
with multivariate models, 283
response methodology and, 340–342
response surface methodology and,

291–292
with run-by-run control, 348

Level 1 packaging, of integrated circuits, 79
Levels. See also Two-level factorial design

in factorial experimental designs, 249
of packaging, 75–76, 79
in PIES knowledge base, 392–393, 394
in Taguchi method, 265

Likely state, with PIES, 393–394
Linear models, 283

with nonzero intercept, 280–283
Linear rate constant (B/A), 30–31
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Linear regression, 274–275
analysis, 272–273

Linewidth, 95
lithography operation monitoring and, 117

Liquid dopant sources, 52–53
Lithographic exposure tools, 35–38
Lithography, 5t, 6. See also Electron-beam

(e-beam) lithographic systems;
Photolithography; X-ray lithography
(XRL)

in IC fabrication, 63
Lithography operations, monitoring, 116–117.

See also Photolithography
Local controllers, supervisory control and,

359–361, 364, 365, 366, 367, 368, 369
Local defects, 158, 162
Local optimization, 325
Local oxidation of silicon (LOCOS), 64, 68
Logic devices, functional testing of, 106
Long-throw sputtering, 59–60
Loss function, in Taguchi method, 262
Low-atomic number materials, in X-ray

lithography masks, 46
Lower control limit (LCL), 182, 183, 184

for acceptance charts, 207–208
for defect chart, 193
for defect density chart, 193–195
for exponentially weighted moving-average

charts, 214
in feedforward control, 358, 359
for fraction nonconforming chart, 187, 188,

189
for moving-average charts, 212
in multivariate process variability, 220–221
for s and x charts, 203–204
for variable control chart, 197–199, 200

Lower cusum (C−), 210
Lower natural tolerance limit (LNTL), 206
Lower specification limit (LSL), 205, 206

for acceptance charts, 207–208
in feedforward control, 358, 359
for modified charts, 207
in variable control charts, 196

Low pressure chemical vapor deposition
(LPCVD), 60, 61, 297

Magnetically enhanced RIE (MERIE), 49
Magnetron sputtering, 59, 60
Mahajan, R., 400, 401
Main effects, 245, 253

defined, 251
in Taguchi method, 265
in two-level factorial design, 251

Maintenance diagnosis, 408–409

Malfunction alarms, 352–353
Malfunctions, diagnosing, 379–381
Management, scientific, 4
Manometers, capacitance, 111
Manufacturing. See also Semiconductor

manufacturing
assembly line in, 4
computers in, 4
defined, 1, 2
of integrated circuits, 7–8
interchangeable parts in, 3–4
major historical milestones in, 3t
quality control in, 3–5
standardization in, 4
statistical process control in, 5

Manufacturing line monitors, 82–83
Manufacturing science, 7–8
Manufacturing yield, 148
Mask damage

from dust particles, 35
in shadow printing, 36

Masks, 38–39
defect density in, 39
for dry etching, 48–49
in e-beam lithography, 43–44
exposure tools and, 35, 36, 37
in X-ray lithography, 46

Mask substrate, standard, 38–39
Mass flow controller, 110, 111
Mass flowmeters, 110
Mass production, 4
Mass spectroscopy. See Residual gas analysis

(RGA)
Matching algorithm, with PEDX, 397
Matrices. See also Hessian matrix; Orthogonal

arrays; Weight matrices
for diagnosis, 382
with model update algorithm, 354–356
in principal-component analysis, 308–309

Matrix algebra, for multivariate models,
283–284

Maximum variance, in principal-component
analysis, 306–307

Maxwell–Boltzmann distribution, Poisson yield
model and, 152

May, Gary S., 366
Maybe state, with PIES, 393
MC1530 amplifier, with FABRICS software,

169–171
Mean-centered matrix, in principal-component

analysis, 308–309
Meander structure, 102
Mean etch rate (MER), predicting, 345
Mean square, 233, 234
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Mean time to failure, 131
Mean value (µ), 123, 125, 127, 129, 130, 242.

See also Sample mean
control charts for, 195–199
estimating, 136
forecasting, 214
multivariate control of, 217–220
tests on, with known variance, 141–142
tests on, with unknown variance, 142–143

Measurement plan, in diagnosis, 382
Measurements, with MERLIN, 386–387
Measure of association, with MERLIN, 388
Membership functions

with fuzzy logic, 317
in set theory, 315–316

Memory products, functional testing of, 106
MERLIN (MEasurement ReLational

INterpreter) diagnostic system, 384–391
Metal films, in p–n junction fabrication, 10, 11
Metallization

with chemical vapor deposition, 61
in NMOS fabrication, 70
in p–n junction fabrication, 10, 11

Metallorganic chemical vapor deposition
(MOCVD), 5t, 6

Metal–oxide–semiconductors. See MOS entries
Metals, in X-ray lithography masks, 46
Metrology

of blanket thin films, 85–92
of patterned thin films, 93–98

Metrology equipment, 82–83
Microelectronic industry, reactive-ion etching

in, 51
Microstrips, parametric yield of, 160–161
Minimization problem, in fault diagnosis, 383
Missed alarm, 141, 182
Mixtures, in control charts, 184
Mobile ionic charge, 33–34
Model-based SPC, 223–224. See also

Statistical process control (SPC)
process disturbance detection via, 352–354

Model term matrix (T ), with model update
algorithm, 354–355

Model update algorithm, for feedback control,
354–356

Modified charts, 206–207
Molecular-beam epitaxy (MBE), 5t, 6
Monitoring. See Air monitoring; Evolutionary

operation (EVOP); Process monitoring;
Product monitoring; Work-in-progress
(WIP) monitoring

Monitor wafers, 83, 92
Monolithic microprocessors, 5t, 6
Monotonicity, in fuzzy logic, 315

Monte Carlo simulation. See also VLASIC
(VLSI LAyout Simulator for Integrated
Circuits)

with FABRICS software, 169–170
parametric yield estimation via, 160–161
software for, 162
supervisory control using, 360–361

MOS devices, oxide quality in, 33
MOSFETs (metal–oxide–semiconductor

field-effect transistors), fabrication of,
11–12, 26, 31, 51, 56, 62, 63; BiCMOS
(bipolar CMOS) technology; CMOS
(complementary MOSFET) technology;
NMOS (n-channel MOSFET)
technology; PMOS (p-channel
MOSFET) technology

MOSFET technology, 6
MOS process, in CMOS fabrication, 70
Moving-average charts, 212–215

basic, 212–213
exponentially weighted, 213–215

Moving-average models, autoregressive,
222–223

Multiparameter fixed-point coding, in genetic
algorithms, 323–324

Multivariate process control, 215–221
with complete model adaptation, 351–359
described, 215–217
of means, 217–220
run-by-run, 343–346, 347

Multivariate process variability, 220–221
Multivariate regression models, 283–285
Multiway principal-component analysis

(MPCA), 308–309
Murphy, B. T., 152–153
Murphy’s yield integral, 152–154
Must state, with PIES, 393
Mutation, in genetic algorithms, 323, 324–325,

326

Natural tolerance limits (NTLs), 205, 206
Negative binomial distribution, 128
Negative binomial yield model, 154–155, 157

global yield loss and, 159
Negative electron resists, 45
Negative resists, 40, 41. See also Photoresist
Network-based time-series (NTS) models, 409,

410–411
Neural networks, 273, 310–314

for diagnostic checking, 381, 398–402
in intelligent supervisory control, 369–373
in PECVP optimization, 326

Neurons, in neural networks, 310, 311, 312,
313
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Nitride layer, 64
NMOS fabrication sequence, 67–70
NMOS (n-channel MOSFET) technology, 6, 67

in CMOS fabrication, 70, 71
Noise

gradual controller operation mode and, 337
malfunction alarms and, 353
in Taguchi method, 262, 263, 264

Noise factors, in Taguchi method, 263
Nominal vales, in Taguchi method, 262
Nonadditivity, 244

transformable, 247
Nonlinear regression models, 285–287
Nonuniformity of films, 245–246
Nonzero intercept, linear model with, 280–283
Normal approximation to binomial distribution,

132–133
Normal distribution, 129–130, 259

cumulative, 130
sampling from, 133–136
standard, 130
t distribution and, 135

Normal equations, in two-parameter regression
models, 277–279

Normality, in fuzzy logic, 315
Normal probability paper, 259
Normal probability plots, 258–260, 261
Norm body, in parametric yield optimization,

173
n+-buried layer, for BiCMOS technology, 75
n+-collector region, forming, 65, 66
n+-emitter region, forming, 65, 66
n+-polysilicon gates, 73
n–p–n bipolar transistors, in integrated

circuits, 63–66, 67
npn transistors, 72
NPSOL nonlinear optimization software

package, 345–346
n tub, 71
n-type dopants, 52
n-type epitaxial layer, forming, 64
Null hypothesis, 140

ANOVA table and, 234–235
randomized block experiments and,

241–242
sums of squares and, 234

Numerical aperture (NA), in photolithography,
37–38

Observability, in diagnosis, 382, 384
ODOS (one-dimensional orthogonal search)

acceptability region approximation, 172,
173

Okabe, T., 154

One-dimensional continuity equation, 53
One-sided alternative hypothesis, 141, 142
One-sided cusum, 211
Online diagnosis, 409–413
On-target ARL, 354
Operating characteristic (OC) curve

for defect density chart, 194, 195
for fraction nonconforming chart, 191–192
for R chart, 202
for x chart, 200–202

Operating costs, in semiconductor
manufacturing, 16

Operational amplifiers (op-amps), diagnosing
faults in, 398–399

Optical emission spectroscopy (OES)
PEDX and, 396, 398
in plasma operation monitoring, 114–115

Optical interference, 85–86
Optical lithography. See Photolithography
Optical metrology, 85
Optical particle counters, in cleanroom air

monitoring, 99–100
Optical path length, 85
Optimization

of plasma-enhanced chemical vapor
deposition, 326–327

Powell’s algorithm for, 318–320, 325, 326,
327

with process models, 318–327
Optimization functions, implicit, 319
Orthogonal arrays, in Taguchi method, 264–265
Oscillator applications, for BiCMOS

technology, 74–75
Oscillators, ring, 104, 105
Out-of-control processes, 184

rules defining, 185–186
Output discrepancy matrix (�z), with model

update algorithm, 355–356
Outputs, from manufacturing, 1–2
Output weights, with run-by-run control,

350–351
Oxidation

dry, 9–10, 31, 32
in IC fabrication, 26–34
wet, 9–10

Oxidation furnaces, 26, 27
vertical, 32

Oxide isolation, 64, 66
Oxide layers, in NMOS fabrication, 68–70
Oxide masking, 5t, 6
Oxide quality

in thermal oxidation, 33–34
in wet oxidation, 33

Oxide-trapped charge, 33
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Packaging
of integrated circuits, 75–80
levels of, 75–76
types of, 77–79

Pancake susceptors, 60
Paperless yield models, 176
Parabolic rate constant (B), 30, 32
Parallel-plate diode system, 51
Parameter design, in Taguchi method, 262
Parametric yield, 148, 149, 159–161

global yield loss and, 159
optimizing, 173–174
software for simulating, 167–171

Pareto distribution, 399
Parsons, John, 4
Partial-pressure analysis, in plasma operation

monitoring, 112
Particle counts, 100–101

as example of linear model with nonzero
intercept, 280–283

as example of nonlinear regression model,
286–287

Particle/defect inspection, 98–102
Particles, defects due to, 150
Pascal distribution, 128
Pass points, in design centering, 172
Path of steepest ascent, 293
Patterned masks, in p–n junction fabrication,

9, 10, 11
Patterned thin films, metrology of, 93–98
Pattern recognition, in CVD diagnosis,

400–402
Patterns, in control charts, 184–186
Pattern transfer, in integrated circuit fabrication,

41–43
p chart, 186. See also Fraction nonconforming

chart (p chart)
PEDX (plasma etch diagnosis expert) system,

395–398
Performance bins, 149
P-glass, 67, 69, 70
Phase, in evolutionary operation, 302
Phase changes, 85
Phase shifts, 89
Phosphorus, as dopant, 52, 53
Phosphorus-doped silicon dioxide (P-glass), 67,

69, 70
Photoactive compound (PAC) concentration, for

photolithographic machines, 361–363
Photolithographic machines, acceptable input

ranges of, 361–363
Photolithography. See also Lithography;

Lithography operations
e-beam lithography versus, 43

in integrated circuit fabrication, 11–12,
34–46

multivariate control of, 351–352, 354–356
in p–n junction fabrication, 9, 10–11
supervisory control of, 361–364, 365, 366,

367, 368, 369
X-ray lithography versus, 45–46

Photomask patterns, dust particles and, 34–35
Photoresist, 5t, 6, 9, 10–11, 34, 39–41, 64, 65

electron resists versus, 45
lithography operation monitoring and, 117
in NMOS fabrication, 68
in pattern transfer process, 41–43
in Taguchi method, 263, 264

Physical etching, 50
Physical vapor deposition (PVD), 58, 59–60

chemical vapor deposition versus, 61
PIES (parametric interpretation expert system),

391–395
Piñeda de Gyvez, J., 151
Pin-grid array (PGA), 77, 78
π (parallel) polarization component, 89
Planar fabrication technology, 25
Planarization

in integrated circuit fabrication, 61, 62
monitoring, 118

Planar models, response surface methodology
and, 290–292, 292–293

Plasma-assisted etching, 49
Plasma-enhanced chemical vapor deposition

(PECVD), 26
optimization of, 326–327

Plasma etching, 49–50. See also PEDX
(plasma etch diagnosis expert) system

monitoring, 86, 88, 111–116
neural network modeling and, 314
as response surface methodology example,

294–301
in Taguchi method, 263, 264

Plasma etch monitoring, 86
Plasma operations, monitoring, 111–116
Plasma reactor technology, 50
Plasmas, 49
Plasma spray deposition, 59
Plasma Therm 700 series RIE, 403
Plastic DIP, 77
Plausibility, in Dempster–Shafer theory, 406,

408
Player piano, 4
Plots, for displaying test results, 107. See also

Control charts; Cusum (cumulative sum)
charts; Dot diagrams; Normal
probability plots; Regression charts;
Shewhart control charts
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Plummer, J., 398, 399–400
PMOS (p-channel MOSFET) technology, 6, 67

in CMOS fabrication, 70, 71
p–n junctions, fabrication of, 9–11
pnp transistors, 72
Point-based acceptability region approximation,

172, 173
Point estimator, 136
Poisson approximation to binomial distribution,

132
Poisson distribution, 127–128

with defect chart, 193
with defect density chart, 194
exponential distribution and, 132

Poisson yield model, 151–152
probability density function for, 153

Polarization, in ellipsometry, 88–91
Poly(butene-1 sulfone) (PBS), as electron resist,

45
Polyglycidylmethacrylate–coethylacrylate

(COP), as electron resist, 45
Polyhedra

in parametric yield optimization, 173–174
in simplicial acceptability region

approximation, 172, 173
Polymers

electron resists as, 45
in negative resists, 40

Poly(methyl methacrylate) (PMMA), as
electron resist, 45

Polynomial models, 273, 274
response surface methodology and, 290,

293–294, 295
Polynomial regression models, 283
Polysilicon, etching of, 297–301, 396, 397
Polysilicon bridging, 102–103
Polysilicon deposition rate, regression charts

for, 287–289
Polysilicon gate process, 5t, 6
Polysilicon gates, predictor–corrector controller

for etching, 345–346, 347
Pooled ANOVA, in Taguchi method, 266–268
Pooled estimates, 142
Positive electron resists, 45
Positive resists, 39, 40. See also Photoresist
“Postbaking,” of wafers, 41
Powell’s algorithm, 318–320, 325, 326, 327
p+-channel stop, 64
p+-polysilicon gates, 73
p+ regions, in BiCMOS technology, 75
p polarization, 89, 97
Precision of estimates, in two-parameter

regression models, 279–280
Predeposition diffused layer, 56

Predictability, with MERLIN, 388
Prediction equation, 335
Predictor–corrector controller (PCC), for

run-by-run control, 343–346, 347
Pressure, monitoring, 109–110, 112
Pressure by temperature by flowrate interaction,

252
Pressure by temperature interaction, 252
Principal-component analysis (PCA), 273,

306–309
multiway, 308–309

Principal components, 273
Printed circuit boards (PCBs), 19

attaching ICs to, 79
IC packaging and, 77

Probability. See also Normal probability plots
in multivariate process control, 215–217
of shifts, 342

Probability density function (pdf), 129, 153,
161

in FABRICS simulations, 168
gamma, 154–155

Probability distributions, 123–133
continuous, 124, 128–132
defined, 123–124
discrete, 124–128
useful approximations of, 132–133

Probably state, with PIES, 393–394
Probe testing yield, 148
Process capability, 204–206
Process capability ratio (PCR), 205, 206
Process control, multivariate, 215–221,

351–359. See also Advanced process
control; Statistical process control
(SPC)

Process control monitors (PCMs), 101–102
Process control neural network (PCNN),

398–400
Process diagnosis. See also Diagnostic checking

defined, 381
with MERLIN, 384

Process disturbances, 381, 383–384
detecting, 352–354

Processes. See also Batch operations/processes;
Process monitoring; Semiconductor
processing

abstraction of, 8
in-control and out-of-control, 184, 185–186
in manufacturing, 1–2
optimizing, 318–327
unit, 9–11, 25–61

Process faults, 381
Process flow, 83
Process integration, in IC fabrication, 61–80
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Process mean, 204
forecasting, 214

Process models, 22, 272–327
applications of, 272–273
evolutionary operation monitoring of,

301–306
fuzzy logic and, 316–318
intelligent, 310–318
in optimizing processes, 318–327
principal-component analysis with,

306–309
response surface methods for, 289–301
via regression modeling, 273–289

Process monitoring, 82–118
described, 82–83
equipment state measurements in, 83,

107–118
key measurement points in, 83
wafer state measurements in, 82–83,

84–107
Process optimization

genetic algorithms for, 318, 323–325, 326,
327

hybrid methods for, 325, 326, 327
simplex method for, 318, 320–323, 325,

326, 327
Process organization, in semiconductor

manufacturing, 14–15
Process sequences, in semiconductor

manufacturing, 11–12
Process-specific rules, with PEDX, 397
Process variables, in Taguchi method, 262,

263–264
Product flow, in semiconductor manufacturing,

14–15
Product monitoring, for particle defects,

100–102
Product variability, 122–123
Profilometers, 93
Profilometry, of patterned thin films, 93
Projected range (Rp), of an ion, 57, 58
Projected straggle (σp), of an ion, 57
Projection printing, 35, 36–38
Propagation algorithm, with MERLIN, 388
Proportional–integral–differential (PID)

approach, 214–215
Proportional term, 214
Proximity effect, in e-beam lithography, 45
Proximity printing, 35, 36
p tub, 71, 72
p-type dopants, 52
p-type silicon substrate, for BiCMOS

technology, 75
Pure chemical etching, 50

Pyrometers, 109
Pyrometry, 109

QMS chamber. See Quadrupole mass
spectrometer (QMS)

Quad flatpack (QFP), 77, 78
Quadratic forms, minimizing, 319–320
Quadratic loss function, in Taguchi method, 262
Quad reactor, 402
Quadrupole mass spectrometer (QMS), in

plasma operation monitoring, 112–113
Qualifiers, with MERLIN, 390
Quality. See also Oxide quality

defined, 122
of semiconductor manufacturing, 15, 17
statistics and, 122–123

Quality characteristics, 123
Quality control, in manufacturing, 3–5
Quality improvement, 123

in semiconductor manufacturing, 17
Quality of conformance, 123
Quartz crystal monitor, measuring deposition

rate via, 91–92

Radiofrequency (RF) heating, 59
Radiofrequency monitoring, 116
Randomization, standard error and, 252
Randomized block experiments, 240–244

described, 240–242
diagnostic checking of, 243–244
mathematical model in, 242–243

Random number generators (RNGs), with
FABRICS software, 168, 169–170

Random sampling, 133, 134, 135, 136
Random variables, 124, 128, 132, 133,

134–135, 135–136
confidence intervals and, 137–140
in FABRICS simulations, 167–171

Range (R), 197
control charts for, 195–199, 199–200,

202
of an ion, 57, 58

Range matrix (D), with model update
algorithm, 355–356

Rapid controller operation mode, 335, 336,
337, 339–343, 344

Raster scan systems
for e-beam lithography, 44–45
for X-ray lithography, 46

Rational subgroups, control charts and,
199–200

Raw materials, in manufacturing, 1–2
Raw sample matrix, in principal-component

analysis, 308–309
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R chart, 195–199, 199–200
operating characteristic curve for, 202

Reactive-ion-beam etching, 49
Reactive-ion etching (RIE), 49, 50, 51,

223–224
Real-time control, in semiconductor

manufacturing, 14
Reasoning, evidential, 406–408
Recipes

automated generation of, 356–357
intelligent generation of, 369–373
with model update algorithm, 354
optimization, 318, 325, 326, 327
in run-by-run control, 333–334, 335

Redistribution diffusion, 56
Reduction projection lithography, 37
Redundancy technique, in testing memory

products, 106
Reference junction, in thermocouple, 109
Reference value(s) (K)

cusum charts and, 210–211
with MERLIN, 387
in online diagnosis, 411–412

Reflection, in simplex method, 320, 321
Reflectometry, 85
Region objects, with PEDX, 396–397
Regions, with PEDX, 396
Registration, of exposure tools, 35
Regression, with model update algorithm, 354
Regression analysis, linear, 272–273
Regression charts, 287–289
Regression equation, 274
Regression modeling

multivariate, 283–285
nonlinear, 285–287
process models via, 273–289
regression charts, 287–289
single-parameter, 274–277
two-parameter, 277–283

Regular simplex, 320
Reitman, E., 402, 403
Relative range, 196
Relevant reference set, 230
Reliability, in semiconductor manufacturing,

15, 18
Reproduction, in genetic algorithms, 323, 324
Residual gas analysis (RGA), in plasma

operation monitoring, 112–113
Residuals

ANOVA diagnostics and, 238–240
in randomized block experiments, 242, 243,

244
in single-parameter models, 275–276
in single-variable control methods, 336–337

in two-parameter regression models,
277–279

in two-way designs, 247
Resistance, sheet, 98
Resistance heating, 59
Resistance thermometer devices (RTDs),

111–112
Resistance thermometers, 110–111
Resistivity, four-point probe measurement of,

92
Resists. See also Photoresist

electron-beam, 43, 44, 45, 46
X-ray, 46

Resolution
of exposure tools, 35, 37–38
in fractional factorial experimental designs,

257, 296
Response

evolutionary operation and, 303
in factorial experimental designs, 249
by rapid controller operation mode,

339–343, 344
Response surface, 272, 273
Response surface methodology (RSM),

289–301
with predictor–corrector controller,

345–346, 347
Retrograde well, in CMOS circuits, 72
Ring oscillator, 104, 105
Romig, Harry, 5
Root-cause diagnosis, with MERLIN, 384
Root mean square (RMS) error, in neural

networks, 314
Rotatability, in central composite design,

260–261
R/S Discover software package, 298
RS/Explore software package, 286–287
Rule-based reasoning, with PEDX, 395,

396–397
Rules, for control charts, 185–186, 208
Run-by-run basis, in controlling semiconductor

manufacturing, 14
Run-by-run (RbR) control, 333–335

with constant term adaptation, 335–351
practical considerations in, 346–351

Runs
in control charts, 184
regression charts and, 287–289

Sachs run-by-run control architecture, 335, 336,
338, 343

Sample autocorrelation function, 221
Sample average, 123, 183. See also Sample

mean



458 INDEX

Sample fraction nonconforming, 126–127, 187
Sample mean, 133, 135, 136. See also Mean

value (µ); Sample average
confidence intervals and, 137–140
control charts for, 195–199, 202–204

Samples, 133. See also Sampling entries
Sample size

for fraction nonconforming chart, 188–189
malfunction alarms and, 353
x chart and, 200–201

Sample standard deviation (s), 123
control charts for, 202–204

Sample variance (s2), 123, 133, 135, 136. See
also Variance (σ2)

confidence intervals and, 137–140
generalized, 220–221

Sampling
in multivariate process control, 217–220
from normal distribution, 133–136

Sampling distribution, 134
Scanning electron microscopy (SEM), 297

of patterned thin films, 95–96
Scatterometers, 96–97
Scatterometry, of patterned thin films, 96–97
Scatterplots, 299, 362, 363
Scatter signatures, 97
s chart, 195–199, 202–204
Schemata, in genetic algorithms, 325
Scientific management, 4
Screening, 295, 296
Scribing, 76
Seasonal ARIMA (SARIMA) model, 223
Second-order autoregressive model, 222
SECS-I protocol, 13
SECS-II messages, 13–14
Seebeck effect, 109
Seeds, R. B., 153–154
Seeds exponential yield model, 153–154, 155
Self-aligned polysilicon gate process, 5t, 6
SEMATECH consortium, 8
Semiconductor devices, in electronics industry,

2–3
Semiconductor equipment communications

standard (SECS) protocol, 13–14
Semiconductor manufacturing, 1–22

advanced process control for, 334–335
computers in, 4
described, 1–2
goals of, 15–18
history of, 2–8
information flow in, 12–14
integrated circuits, 7–8
modeling yield of, 147–176
modern, 8–15

process and equipment diagnosis in,
379–414

process organization in, 14–15
process sequences in, 11–12
quality control in, 3–5
statistical process control in, 5
systems for, 18–21

Semiconductor processing, 5–7
major historical milestones in, 5t
wet chemical etching in, 47–48

Semiconductors, impurity doping of, 51–58
Sensing junction, in thermocouple, 109
Series-type chains, 103
Sets, in Dempster–Shafer theory, 406–408
Set theory, fuzzy logic and, 314–315
Shadow printing, in photolithography, 35, 36
Shallow junctions, ion implantation and, 51
Shallow trench, in CMOS circuits, 73
Sheet resistance, measuring, 98
Shewhart, Walter, 5, 182
Shewhart control charts, 182, 208, 209, 223,

336–337. See also Control charts
in statistical process control, 221

Shifts
in control charts, 184
in cusum charts, 209, 210
diagnosing, 379–380, 384
rapid controller operation mode and,

339–343, 344
Shmoo plot, 107
σ(perpendicular) polarization component, 89
Signal factors, in Taguchi method, 263, 266
Signal-to-noise ratio (SN ), in Taguchi method,

264, 266
Signal-to-symbol transformation, with PEDX,

395, 396, 397
Signatures, in scatterometry, 97
Significance, statistical, 229, 231
Silicon, thermal oxidation of, 27–34
Silicon carbide, in X-ray lithography masks,

46
Silicon deposition

gradual controller operation mode for,
338–339

rapid controller operation mode for, 343,
344

Silicon dioxide (SiO2)
high-quality, 9–11
thermal oxidation of silicon to, 27–34

Silicon nitride deposition, in NMOS
fabrication, 68

Silicon–silicon dioxide interface
during oxide growth, 27–31
oxide quality at, 33
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Silicon wafers, 9–11. See also Wafers
pattern transfer to, 41–43

Simplex, regular, 320
Simplex method, 318, 320–323, 325, 326, 327
Simplicial acceptability region approximation,

172, 173
Simulation tools, in semiconductor

manufacturing, 15
Single-parameter regression models, 274–277
Single-variable methods, for run-by-run control,

335–343, 344
Single-wafer operations, in semiconductor

manufacturing, 19, 20–21
Single-workpiece operations, in semiconductor

manufacturing, 19, 20–21
Singular value decomposition, in principal-

component analysis, 309
Sinusoidal regression models, 283
“Soft-baking,” 41
Soft faults, 159, 381
Software

for multivariate regression models, 284
nonlinear optimization, 345–346
for nonlinear regression models, 286–287
yield simulation, 162–171

Soft yield, 148
Solvents, for photoresists, 39, 40
Source and drain formation, in NMOS

fabrication, 69–70
Spanos, Costas J., 383
SPC automation, 176. See also Statistical

process control (SPC)
Specification limits (SLs), 204, 205, 206

in variable control charts, 196
Spectroscopic ellipsometry (SE), 88
Spectroscopic measurements, 87
SPICE (simulation program with integrated

circuit emphasis), 169, 399–400
s polarization, 89, 97
Spray etching, 47–48
Spread, 123
Sputter etching, 50
Sputtering, 59

through collimator, 59, 60
Standard cubic centimeter per minute (sccm),

110
Standard deviation (�), 129, 200, 203–204,

252. See also Standard error (SE)
control charts for, 195–199
evolutionary operation and, 304
in multivariate process control, 217–220
sample, 123

Standard error (SE). See also Standard
deviation (σ)

in feedforward control, 358–359
response surface methodology and,

292–293, 293–294
in single-parameter models, 276
in two-level factorial design, 252–254

Standardization, in manufacturing, 4
Standardized control chart, 191
Standardized matrix (Y ), with model update

algorithm, 355–356
Standard normal cumulative distribution

function (�), 133
Standard normal distribution, 130
Standard order, in analyzing factorials, 258
Standard sputtering, 59
Stapper, C. H., 154
Star points, 294
Static random access memory (SRAM), with

BiCMOS technology, 74
Statistical Control Quality Handbook (Western

Electric), control chart rules in,
185–186

Statistical experimental design, 22, 228–268
analysis of variance in, 232–249
applications of, 228–229
comparing distributions in, 229–231
factorial designs, 245, 246, 249–261
statistical process control and, 228–229
Taguchi method of, 262–268

Statistical hypotheses, 140
testing, 140–144

Statistical hypothesis test, 231
Statistical process control (SPC), 5, 22, 122,

181–224. See also Generalized SPC
approach; Model-based SPC; SPC
automation

advanced process control and, 333
control charts for, 181–182, 182–184,

184–186, 186–195, 195–215
with correlated process data, 221–224
defined, 181–182
experimental design and, 228–229
model-based, 223–224
multivariate, 215–221

Statistical significance, 229, 231
Statistical tests, in feedforward control,

358–359
Statistics

between-lot and within-lot, 199–200
fundamentals of, 122–144

Steepest ascent path, 293
Stefan–Boltzmann relationship, 109
Step-and-repeat projection lithography,

36, 37
Step-and-scan projection lithography, 37



460 INDEX

Steppers
feedforward control for, 358, 367
input settings for, 362

Stepwise regression, with model update
algorithm, 354, 355

Straggle, of an ion, 57
Stratification, in control charts, 184
Strengths, with PIES, 393–394
String manipulation, in genetic algorithms,

323–324
Structural failure, PIES diagnosis of, 395
Subgroups, rational, 199–200
Subject values, with MERLIN, 387
Submicrometer resist geometries, 44
Sums of squares

in analysis of variance, 232–234, 235,
236

with fuzzy logic, 317
for nonlinear regression models, 286
in single-parameter models, 276
total, 235
in two-parameter regression models, 279

Supervisory control, 359–373
intelligent, 364–373
run-by-run control as, 334
in semiconductor manufacturing, 14
using complete model adaptation, 359–364,

365, 366, 367, 368, 369
Support

in Dempster–Shafer theory, 406
in online diagnosis, 411, 413

Surface-mount packages, 77
Surface profilometers, 93
Surfscans, 100, 101
Susceptors, 109

with chemical vapor deposition, 60–61
Symmetry, in fuzzy logic, 315
Symptom correlation matrix (SCM), 382
Symptoms, 381
Symptom vector, 382
System design, in Taguchi method, 262

Tabular cusum chart, 210
Taguchi, Genichi, 262
Taguchi method, 262–268

data analysis in, 266–268
orthogonal arrays in, 264–265
process variables in, 262, 263–264
signal-to-noise ratio in, 264, 266

Tape-automated bonding (TAB), of integrated
circuits, 79

Taylor, Frederick, 4
Taylor series, 318–319

t distribution, 134–135
Technology

in manufacturing, 3–5, 25–80
semiconductor processing, 5–7

Temperature. See also Thermal entries
diffusion and, 53–54
monitoring, 109, 111–112
in thermal oxidation of silicon, 30–31, 32

Temperature sensors, 110–111
Test structures

electrical, 102–105
functional, 105
for wafer defects, 101–102

Testing
final, 106–107
hypothesis, 140–144, 182, 183, 229–231,

234–235, 388–389, 410
of integrated circuits, 75

Thermal conductivity gauges, 110
Thermal mass flowmeter, 110
Thermal operations, monitoring, 109–111. See

also Temperature entries
Thermal oxidation, 26

oxide quality in, 33–34
of silicon, 27–31
thin oxide growth in, 31–32

Thermocompression bonding, 79
Thermocouples, 109
Thermoelectric effect, 109
Thermopile, 109
Thermosonic bonding, 79
Thin-film deposition, inspecting, 84
Thin films. See also Blanket thin films; Film

entries; Patterned thin films
in IC fabrication, 26, 58–61

Thin oxide growth, in thermal oxidation of
silicon, 31–32

3-sigma (3σ) control charts, 183
3-sigma (3σ) control limits, 185–186, 193, 194
Three-transistor DRAM cell, simulating with

VLASIC software, 163–167
Thresholding, with PIES, 394
Threshold voltage rolloff, in gate engineering,

73
Throughput

of e-beam systems, 44
exposure tools and, 35
in semiconductor manufacturing, 15

Time-series diagnosis, 402–403, 404, 405
Time-series modeling, in statistical process

control, 221–223
Time-to-yield metric, 174–176
Tolerance design, in Taguchi method, 262
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Tool attachments, 4
Tool signatures, 402–403
Tool variables, in equipment state

measurements, 108–109
Top numbers

in gradual controller operation mode, 339
in Yates algorithm, 258

Toshiba study (1986), 7
Total dopant diffusion, 55
Total reflection coefficients, 89
Total sum of squares, 235
Transceiver applications, for BiCMOS

technology, 74–75
Transformable nonadditivity, 247
Transformation of data, 244, 246–249
Transformation of response variable, 244
Transistor chains, 102–105
Transistors, fabrication of, 11–12
Traps, at silicon–silicon dioxide interface, 33
Treatment effect (τi), 242
Trench isolation technology, 5t, 6
Trends

in control charts, 184, 185
in cusum charts, 209
regression charts and, 287–289

Trial control limits, for fraction nonconforming
chart, 188

Triangular Murphy yield model, 153
Tungsten, in IC fabrication, 61
Turret lathe, 4
Twin tub, 71
Two-level factorial design, 250–255

blocking of, 254–255
interaction effects in, 251–252
main effects in, 251
standard error in, 252–254

Two-level IC-CIM architecture, 13–14
Two-parameter regression models, 277–283

with nonzero intercept, 280–283
Two-sided cusum, 211, 212
2-sigma (2σ) control limits, 186
Two-way ANOVA, 245
Two-way designs, analysis of variance in,

245–249
Type I error, 140, 182, 184
Type II error, 140, 182

u chart, 186, 193–195. See also Defect density
chart (u chart)

Ultra-high-efficiency particulate air (ULPA)
filters, 99

Ultrasonic bonding, 79
Ultraviolet (UV) radiation, in p–n junction

fabrication, 10–11

Unacceptability regions, in design centering,
172

Uniform density function, 152–153
Unique fault combinations, 151t
United States, electronics industry in, 7, 8
Unit processes

in IC fabrication, 25–61
in semiconductor manufacturing, 9–11

Unreliable performance, diagnosing, 379–380
Upper control limit (UCL), 182, 183, 184

for acceptance charts, 207–208
for defect chart, 193
for defect density chart, 193–195
for exponentially weighted moving-average

charts, 214
in feedforward control, 358, 359
for fraction nonconforming chart, 187, 188,

189
malfunction alarms and, 353
for moving-average charts, 212
in multivariate process variability, 220
for s and x charts, 203–204
for variable control chart, 197–199, 200

Upper cusum (C+), 210
Upper natural tolerance limit (UNTL), 206
Upper specification limit (USL), 205, 206

for acceptance charts, 207–208
in feedforward control, 358, 359
for modified charts, 207
in variable control charts, 196

Validity, standard error and, 252
Value measure, with MERLIN, 389
Van der Pauw structure, 98
van der Waals electrostatic force, 94
Vapor-phase epitaxy (VPE), 60
Variability. See also Variation

between-sample and within-sample, 199
defined, 123
multivariate control of, 220–221
product, 122–123
of semiconductor manufacturing, 17

Variable objects, with MERLIN, 385, 386
Variables. See also Principal components

for automated recipe generation, 356–357
control charts for, 195–215
dependent, 273–274
independent, 273–274
indicator, 280
with MERLIN, 385, 387
screening of, 295, 296
transformation of, 244

Variable sample size, for fraction
nonconforming chart, 189–191
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Variance (σ2), 123, 125, 127, 129, 130. See also
Sample variance (s2)s

confidence intervals and, 137–140
cusum charts for, 211–212
estimating, 136
evolutionary operation and, 304
mean tests with known, 141–142
mean tests with unknown, 142–143
in online diagnosis, 410
in principal-component analysis, 306–307,

307–309
tests on, 143–144

Variance–covariance matrix
malfunction alarms and, 353
for multivariate models, 284

Variance-stabilizing data transformations, 248
Variation, diagnosing, 379–380. See also

Variability
Vector algebra

for multivariate models, 283–284
for principal-component analysis, 306, 309

Vector geometry
ANOVA table and, 236–237, 238
for randomized block ANOVA models,

242–243
Vector of correction term coefficients (�γ),

with model update algorithm, 356
Vectors

for automated recipe generation, 356–357
in CVD diagnosis, 401

Vector scan systems
for e-beam lithography, 44–45
for X-ray lithography, 46

Vernier caliper, 4
Vertical oxidation furnaces, 32
Very likely state, with PIES, 393–394
Via chain structure, 103–105
Via diameter, 183
Virtual manufacturing environment, in

semiconductor manufacturing, 15
Viscosity, in Taguchi method, 263, 264
VLASIC (VLSI LAyout Simulator for

Integrated Circuits), 162–167

Wafers. See also Silicon wafers
chemical vapor deposition onto, 60–61
in cleanroom air monitoring, 99
defect density on, 156–157
die separation on, 76
dry etching of, 48–51
electrical testing of, 102–107
equipment state measurements and,

107–118
exposure tools and, 35, 36, 37

faults in, 148
global yield loss on, 159
in IC fabrication, 61–63
implantation monitoring for, 117
impurity diffusion into, 52–56
in integrated circuit fabrication, 11–12
intelligent manufacture of, 369–373
lithography operation monitoring and,

116–117
monitor, 83, 92
monitoring for particle defects, 100–102
in NMOS fabrication, 67–70
with n–p–n bipolar transistors, 63–66
pattern transfer to, 41–43
physical vapor deposition onto, 59–60
planarization of, 61, 62
processing cost of, 15–16
scribing of, 76
silicon deposition on, 338–339, 343, 344
software for estimating defects on, 162–167
wet chemical etching of, 47–48
yield of, 148

Wafer state characterization, 84–85
Wafer state measurements, in process

monitoring, 82–83, 84–107
Wafer yield losses, 148

assignable causes of, 149
Waveforms, 86

in RF monitoring, 116
Wavelength (λ), 85, 87, 90–91

electron, 95
in photolithography, 37–38

Weibull distribution, in maintenance diagnosis,
408–409

Weighted average, 213–214
Weighting schemes, with run-by-run control,

348–351
Weight matrices

with fuzzy logic, 316–317
in neural networks, 310–311, 312, 313
with run-by-run control, 349–350

Weights, for automated recipe generation, 357
Well formation, in CMOS circuits, 72
Western Electric rules, for control charts,

185–186, 208
Wet chemical etching, 47–48

dry etching versus, 48–49
Wet oxidation, 9–10

growth kinetics of, 27–31
oxide quality during, 33

Whitney, Eli, 3
Windowing technique, for global yield loss

estimation, 159
Window size, with model update algorithm, 355
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Wire bonding, of integrated circuits, 79
Within-lot statistics, 199–200
Within-sample variability, 199
Within-treatment sum of squares, 233, 234
Witness plates, 99
Workcells, 369–373

in semiconductor manufacturing, 14–15
Work-in-progress (WIP) monitoring, 13

x charts, 195, 196–199, 199–200
average run length for, 200, 201
in bivariate process control, 216
operating characteristic curve for, 200–202

X-ray lithography (XRL), 45–46. See also
Lithography

Y0 factor, 159
Yates algorithm, for analyzing factorials, 258
Yield, 122

analysis of variance and, 232, 234–235,
235–236

assessing in IC fabrication, 102
critical area and, 150
defects and, 150
defined, 147, 148–149
design centering and, 171–174
evolutionary operation and, 301, 303
functional, 148, 149–155, 156–159, 160,

162–167
mask, 39

modeling, 22, 147–176
with multivariate regression models,

284–285
Murphy’s integral of, 152–154
negative binomial model of, 154–155
parametric, 148, 149, 159–161, 167–171,

173–174
Poisson model of, 151–152, 153
randomized block experiments and,

241–242
as response surface methodology example,

289–294, 295
Seeds exponential model of, 153–154, 155
of semiconductor manufacturing, 15, 16,

17–18, 22
simulating, 160–161, 161–171
in statistical experimental design, 229–231
time-to-yield and, 174–176
types of, 148

Yield groups, 176
Yield improvement, in semiconductor

manufacturing, 17–18
Yield learning, in semiconductor

manufacturing, 17–18
Yield learning coefficient, 175, 176
Yield learning curve, 174–176
Yield loss, 148

assignable causes of, 149
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