
NOTABLE SCIENTISTS

A TO Z
OF

COMPUTER SCIENTISTS

HARRY HENDERSON

For Lisa
From whom I learned how to live in a story.

A TO Z OF COMPUTER SCIENTISTS

Notable Scientists

Copyright © 2003 by Harry Henderson

All rights reserved. No part of this book may be reproduced or utilized in any form or by any
means, electronic or mechanical, including photocopying, recording, or by any information
storage or retrieval systems, without permission in writing from the publisher. For
information contact:

Facts On File, Inc.
132 West 31st Street
New York NY 10001

Library of Congress Cataloging-in-Publication Data

Henderson, Harry, 1951–
A to Z of computer scientists / Harry Henderson.

p. cm.—(Notable scientists)
Includes bibliographical references and index.
ISBN 0-8160-4531-3
1. Computer scientists—Biography. I. Title. II. Series.

QA76.2.A2 H46 2003
004'.092'2—dc21

2002153880

Facts On File books are available at special discounts when purchased in bulk quantities for
businesses, associations, institutions, or sales promotions. Please call our Special Sales
Department in New York at (212) 967-8800 or (800) 322-8755.

You can find Facts On File on the World Wide Web at http://www.factsonfile.com

Text design by Joan M. Toro
Cover design by Cathy Rincon

Printed in the United States of America

VB TECHBOOKS 10 9 8 7 6 5 4 3 2 1

This book is printed on acid-free paper.

CONTENTS

List of Entries vii
Acknowledgments ix

Introduction xi

Entries A to Z 1

Entries by Field 284
Chronology 286

Glossary 289
Bibliography 296

Index 297

vii

Aiken, Howard
Amdahl, Gene M.
Andreessen, Marc
Atanasoff, John Vincent
Babbage, Charles
Backus, John
Baran, Paul
Bartik, Jean
Bell, Chester Gordon
Berners-Lee, Tim
Bezos, Jeffrey P.
Boole, George
Bricklin, Daniel
Brooks, Frederick P.
Burroughs, William S.
Bush, Vannevar
Bushnell, Nolan
Case, Steve
Cerf, Vinton
Church, Alonzo
Codd, Edgar F.
Corbató, Fernando
Crawford, Chris
Cray, Seymour
Davies, Donald Watts
Dell, Michael
Dertouzos, Michael
Diffie, Bailey Whitfield
Dijkstra, Edsger
Drexler, K. Eric
Dreyfus, Hubert

Dyson, Esther
Eckert, J. Presper
Eckert, Wallace J.
Ellison, Larry
Engelbart, Douglas
Estridge, Philip Donald
Eubanks, Gordon
Fanning, Shawn
Feigenbaum, Edward
Felsenstein, Lee
Forrester, Jay W.
Gates, Bill
Gelernter, David Hillel
Gibson, William
Goldstine, Adele
Goldstine, Herman Heine
Gosling, James
Grove, Andrew S.
Hamming, Richard Wesley
Hewlett, William Redington
Hillis, W. Daniel
Holberton, Frances Elizabeth
Hollerith, Herman
Hopper, Grace Murray
Jobs, Steve
Joy, Bill
Kahn, Philippe
Kahn, Robert
Kapor, Mitchell
Kay, Alan C.
Kemeny, John G.

Kernighan, Brian
Kilburn, Thomas M.
Kilby, Jack
Kildall, Gary
Kleinrock, Leonard
Knuth, Donald E.
Kurzweil, Raymond C.
Lanier, Jaron
Lenat, Douglas B.
Licklider, J. C. R.
Lovelace, Ada
Maes, Pattie
Mauchly, John
McCarthy, John
McNealy, Scott G.
Metcalfe, Robert M.
Minsky, Marvin
Moore, Gordon E.
Nelson, Ted
von Neumann, John
Newell, Allen
Noyce, Robert
Nygaard, Kristen
Olsen, Kenneth H.
Omidyar, Pierre
Packard, David
Papert, Seymour
Perlis, Alan J.
Postel, Jonathan B.
Rabin, Michael O.
Raymond, Eric S.

LIST OF ENTRIES

viii A to Z of Computer Scientists

Rees, Mina Spiegel
Rheingold, Howard
Ritchie, Dennis
Roberts, Lawrence
Sammet, Jean E.
Samuel, Arthur
Shannon, Claude E.
Simon, Herbert A.
Stallman, Richard
Stibitz, George

Stoll, Clifford
Stroustrup, Bjarne
Sutherland, Ivan
Thompson, Kenneth
Tomlinson, Ray
Torres Quevedo, Leonardo
Torvalds, Linus
Turing, Alan
Turkle, Sherry
Wang, An

Watson, Thomas J., Sr.
Watson, Thomas, Jr.
Weizenbaum, Joseph
Wiener, Norbert
Wirth, Niklaus
Wozniak, Steve
Yang, Jerry
Zuse, Konrad

ix

Iwish to thank the computer pioneers and their
institutions with which I have corresponded in

my search for information and photos. Without
their kind help the writing of this book would
have been a much more arduous task. I also want
especially to thank Frank K. Darmstadt, Execu-

ACKNOWLEDGMENTS

tive Editor at Facts On File, for his sorely-tried
patience and tireless good nature, which helped
sustain me throughout the process of writing.
Finally, I want as always to express my apprecia-
tion to my wife, Lisa Yount, for her inspirational
creativity and daily love and support.

xi

The Industrial Revolution demonstrated the
growing ability to organize and control the

production of farms, mines, and factories. What
had been relatively simple tasks became increas-
ingly precise and elaborate systems. However
with the growing complexity of economic and
social life came a growing need to organize and
manipulate the vast torrent of information pro-
duced by society.

In the 19th century, pioneers such as
Charles Babbage and Herman Hollerith de-
signed and to some extent implemented me-
chanical systems for data processing. However,
it was only with the advent of electricity and
particularly electronics that a practical auto-
matic digital computer became possible.

In the beginning were the inventors. To build
early computers, the inventors drew mainly upon
two disciplines: the abstract world of mathemat-
ics and the more practical discipline of electrical
and electronic engineering. The pressing needs of
World War II then created a crucible in which
the first computers—such as ENIAC, designed by
J. Presper Eckert and John Mauchly—were built.

As the decades passed, a specific body of
knowledge and methods called computer science
gradually came into being. It drew on a variety of
fascinating, powerful minds such as those of Alan
Turing, Claude Shannon, and Marvin Minsky.
Computer scientists created evolving paradigms
(such as the structured programming movement

INTRODUCTION

with Edsger Dijkstra and Niklaus Wirth) and im-
plemented them in new programming languages
such as Pascal, C, Smalltalk, C++, and Java.
Meanwhile, these researchers continually ex-
tended the boundaries of computer capability into
such realms as artificial intelligence.

To inventors and computer scientists must
be added a crucial third party: the entrepreneur.
Such visionary business leaders as Thomas
Watson Sr. and Thomas Watson Jr. of IBM,
the two Steves (Jobs and Wozniak) of Apple,
and Kenneth Olsen of Digital Equipment
Corporation who turned the inventors’ ideas
into products that changed the industry. In the
realm of software, other entrepreneurs such as
Mitchell Kapor and An Wang popularized new
applications such as spreadsheets and word pro-
cessing, while others, among them Bill Gates,
cut a swath across the entire industry.

In the 1990s, the growth of the Internet, the
World Wide Web, and e-commerce created a
new generation of innovators and entrepreneurs
such as Jeff Bezos of Amazon.com, Pierre
Omidyar of eBay, and Jerry Yang of Yahoo! They
are joined by other young pioneers, including
virtual reality researcher Jaron Lanier and Linux
developer Linus Torvalds.

A science and an industry need a variety
of voices with which to debate its values and
explore its future. Some of these voices, such
as those of Michael Dertouzos and Raymond

xii A to Z of Computer Scientists

Kurzweil, are essentially optimistic, believing that
technology will empower humanity in unimagin-
able ways. Others, such as Clifford Stoll, offer a
critical and cautionary view. Difficult legal and
social questions are addressed by still other voices,
such as Richard Stallman and Eric Raymond (ad-
vocates for software free from corporate control)
and Howard Rheingold and Sherry Turkle, chron-
iclers of virtual communities and explorers of
their psychology and sociology. For all these rea-
sons we have not limited our selections to pure
computer scientists.

The persons selected for inclusion in this book
thus offer a varied array of inventors, computer sci-
entists, and entrepreneurs as well as some people
from other backgrounds who have had a major im-
pact on computer science and technology.

THE ENTRIES

A to Z of Computer Scientists presents the stories
of more than 100 people. Rather than being
characterized by research area or specialty, the
entrants are characterized by background (engi-
neer, mathematician, or other scientist) and by
role (computer scientist, programmer, entrepre-
neur, and inventor). For a few people, writing
played an important role in their careers, so they
are given the category “writer.” Many people fit
into two or occasionally three categories. See the
appendix “Entries by Field.”

It should be clear that hundreds of people
have played important roles in computer science
and technology. The decision was made to explore
a somewhat smaller number of people in greater
depth, in part because brief biographical entries
are already easy to come by. Each entry is an es-
say that not only recounts achievements but places
them in context and explains their significance.

FORMAT

Entries are arranged alphabetically by surname.
The heading for each entry provides the entrant’s
complete name, birth and death dates, countries
where the subject was born and (if different)

where the subject lived at the time of his or her
chief scientific achievement, and field of work.

The text of the entries ranges generally from
about 900 to about 1,750 words, with most
around 1,250. They include the usual biograph-
ical information: date and place of birth and
death, family and childhood (where known), ed-
ucational background, places worked and posi-
tions held, prizes awarded, and so on.

Each entry focuses on one or more major
achievements of the person, such as inventions,
ideas, or enterprises. Technical terms are generally
briefly explained in the text, but the glossary at
the back of the book provides somewhat more ex-
tensive definitions. Quotations from the subject
or by other persons commenting on the subject
are often provided. Longer quotations are set off
in an indented paragraph and placed in italics.

Names in small capital letters within the es-
says indicate cross-references to other persons
who have entries in the book. For those who
wish to learn more about a particular person and
his or her work, a short list of further reading,
including both print and Internet resources, is
provided at the end of each entry.

The book concludes with several appendixes
that may aid readers seeking particular types of
information. In addition to the glossary, the ap-
pendixes include a chronological chart showing
the chief achievements of the persons in the book
arranged by approximate date. This chronology
provides a sort of capsule history of highlights,
focusing mainly on the period from 1940 to date.
There is also a general bibliography listing books
that explore the history of the computer, other
biographies, and concepts of computer science.

The computer field is certainly one of the
most fascinating areas of human activity, as well
as a vital part of the economy and our daily lives.
As fascinating as the machines and ideas are, the
people are equally fascinating in their variety.
Later editions will likely include a larger num-
ber of women and people of different national-
ities and ethnic backgrounds as the computer
field becomes truly global.

1

� Aiken, Howard
(1900–1973)
American
Inventor

Howard Hathaway Aiken was a pioneer in the
development of automatic calculating machines.
Born on March 8, 1900, in Hoboken, New Jersey,
he grew up in Indianapolis, Indiana. He pursued
his interest in electrical engineering by working
at a utility company while in high school. Aiken
then earned a B.A. degree in electrical engi-
neering in 1923 at the University of Wisconsin.

By 1935, Aiken was working on the physics
of how electric charges were conducted in vac-
uum tubes—an important question for the new
technology of electronics. This work required
tedious, error-prone hand calculation. Aiken
therefore began to investigate the possibility of
building a large-scale, programmable, automatic
computing device. As a doctoral student at
Harvard, Aiken aroused considerable interest in
his ideas, particularly from THOMAS J. WATSON SR.,
head of International Business Machines (IBM).
In 1939, IBM agreed to underwrite the building
of Aiken’s first calculator, the Automatic
Sequence Controlled Calculator (ASCC), which
became known as the Harvard Mark I.

Mechanical and electromechanical calcula-
tors were nothing new: indeed, machines from

A
IBM, Burroughs, and others were being increas-
ingly used in business settings. However, ordinary
calculators required that operators manually set
up and run each operation step by step in the
complete sequence needed to solve a problem.
Aiken wanted a calculator that could be pro-
grammed to carry out the sequence automati-
cally, storing the results of each calculation for
use by the next. He wanted a general-purpose
programmable machine rather than an assembly
of special-purpose arithmetic units.

Earlier complex calculators (such as the
Analytical Engine which CHARLES BABBAGE had
proposed a century earlier) were very difficult to
implement because of the precise tolerances
needed for the intricate assembly of mechanical
parts. Aiken, however, had access to a variety
of tested, reliable components, including card
punches, readers, and electric typewriters from
IBM and the mechanical electromagnetic relays
used for automatic switching in the telephone
industry.

Aiken’s Mark I calculator used decimal
numbers (23 digits and a sign) rather than the
binary numbers of the majority of later comput-
ers. Sixty registers held whatever constant data
numbers were needed to solve a particular prob-
lem. The operator turned a rotary dial to enter
each digit of each constant number required
for the calculation. Variable data and program

2 Aiken, Howard

instructions were entered from punched paper
tape. Calculations had to be broken down into
specific instruction codes similar to those in later
low-level programming languages such as “store
this number in this register” or “add this num-
ber to the number in that register.” The results
(usually tables of mathematical function values)
could be printed by an electric typewriter or out-
put on punched cards.

The Mark I was built at IBM’s factory in
Endicott, New York. It underwent its first full-
scale test on Christmas Day 1943, illustrating
the urgency of work under wartime conditions.
The bus-sized machine (about eight feet high by
51 feet long) was then painstakingly disassem-
bled and shipped to Harvard University, where
it was up and running by March 1944. Relatively
slow by comparison with the vacuum tube-based
computers that would soon be designed, the
Mark I was a very reliable machine. A New York
Times article enthused, “At the dictation of a
mathematician, it will solve in a matter of hours
equations never before solved because of their
intricacy and the enormous time and personnel
which would be required to work them out on
ordinary office calculators.”

Aiken then went to work for the U.S. Navy
(and was given the rank of commander), where
his team included another famous computer pio-
neer, the future admiral GRACE MURRAY HOPPER.
The Mark I worked 24 hours a day on a variety
of problems, ranging from solving equations used
in lens design and radar to the ultrasecret design
for the implosive core of the atomic bomb.
Unlike many engineers, Aiken was comfortable
managing fast-paced projects. He once quipped,
“Don’t worry about people stealing an idea. If it’s
original, you’ll have to ram it down their throats.”

Aiken completed an improved model, the
Mark II, in 1947. The Mark III of 1950 and
Mark IV of 1952 were electronic rather than
electromechanical, replacing relays with vac-
uum tubes. The Mark III used a magnetic core
memory (analogous to modern RAM, or random-

access memory) that could store and retrieve
numbers relatively quickly, as well as a magnetic
drum that served the function of a modern hard
disk.

Compared to slightly later digital comput-
ers such as ENIAC and Univac, the sequential
calculator, as its name suggests, could only per-
form operations in the order specified, rather
than, for example, being able to loop repeat-
edly. (After all, the program as a whole was not
stored in any sort of memory, and so previous
instructions could not be reaccessed.) Yet al-
though Aiken’s machines soon slipped out of
the mainstream of computer development, they
did include the modern feature of parallel pro-
cessing, because different calculation units
could work on different instructions at the same
time. Further, Aiken recognized the value of
maintaining a library of frequently needed rou-
tines that could be reused in new programs—
another fundamental of modern software engi-
neering.

Aiken’s work demonstrated the value of
large-scale automatic computation and the use
of reliable, available technology. Computer pio-
neers from around the world came to Aiken’s
Harvard computation lab to debate many issues
that would become staples of the new discipline
of computer science. By the early 1950s Aiken
had retired from computer work and became a
Florida business entrepreneur, enjoying the chal-
lenge of rescuing ailing businesses.

The recipient of many awards, including the
Edison Medal of the Institute of Electrical and
Electronics Engineers and the Franklin Institute’s
John Price Award, Howard Aiken died on March
14, 1973, in St. Louis, Missouri.

Further Reading
Cohen, I. B. Howard Aiken: Portrait of a Computer

Pioneer. Cambridge, Mass.: MIT Press, 1999.
Cohen, I. B., R. V. D. Campbell, and G. Welch, eds.

Makin’ Numbers: Howard Aiken and the Com-
puter. Cambridge, Mass.: MIT Press, 1999.

Amdahl, Gene M. 3

Ferguson, Cassie. “Howard Aiken: Makin’ a Computer
Wonder.” Harvard University Gazette. Available
on-line. URL: http://www.news.harvard.edu/gazette/
1998/04.09/HowardAikenMaki.html. Posted on
April 9, 1998.

� Amdahl, Gene M.
(1922–)
American
Inventor, Entrepreneur

In a long and fruitful career as a computer de-
signer Gene Myron Amdahl created many inno-
vations and refinements in the design of main-
frame computers, the hefty workhorses of the
data processing industry from the 1950s through
the 1970s. Amdahl was born on November 16,
1922, in Flandreau, South Dakota. Amdahl did
his college work in electrical engineering and
physics. When his studies were interrupted by
World War II, he served as a physics instructor
for an army special training program and then
joined the navy, where he taught electronics
until 1946. He then returned to school, receiv-
ing his B.S. degree from South Dakota State
University in 1948 and his doctorate in physics
at the University of Wisconsin in 1952.

As a graduate student, Amdahl worked on
a problem involving the forces binding together
parts of a simple atomic nucleus. He and two fel-
low students spent a month performing the nec-
essary computations with calculators and slide
rules. Amdahl realized that if physicists were
going to be able to move on to more complex
problems they would need greater computing re-
sources. He therefore designed a computer called
the WISC (Wisconsin Integrally Synchronized
Computer). This computer used a sophisticated
procedure to break calculations into parts that
could be carried out on separate processors,
making it one of the earliest examples of the
parallel computing techniques found in today’s
computer processors.

In 1952, Amdahl went to work for IBM,
which was beginning the effort that would lead
to its dominating the business computer indus-
try by the end of the decade. Amdahl worked
with the team that designed the IBM 704. The
704 improved upon the 701, the company’s first
successful mainframe, by adding many new
internal programming instructions, including
the ability to perform floating point calculations
(involving numbers that have decimal points).
The machine also included a fast, high-capacity
magnetic core memory that let the machine
retrieve data more quickly during calculations.
In November 1953, Amdahl became the chief
project engineer for the 704.

On the heels of that accomplishment, new
opportunities seemed to be just around the cor-
ner. Although IBM had made its reputation in
business machines, it was also interested in the
market for specialized computers for scientists.
Amdahl helped design the IBM 709, an exten-
sion of the 704 designed for scientific applica-
tions. When IBM proposed extending the tech-
nology by building a powerful new scientific
computer called STRETCH, Amdahl eagerly
applied to head the new project. However he
ended up on the losing side of a corporate power
struggle, and did not receive the post. He left
IBM at the end of 1955.

Amdahl then worked for several small data
processing companies. He helped design the
RW440, a minicomputer used for industrial
process control. This period gave Amdahl some
experience in dealing with the problems of
startup businesses, experience he would call
upon later when he started his own company.

In 1960, Amdahl rejoined IBM and soon was
involved in several design projects. The one
with the most lasting importance was the IBM
System/360, which would become the most ubiq-
uitous and successful mainframe computer of all
time. In this project, Amdahl further refined his
ideas about making a computer’s central process-
ing unit more efficient. He designed logic circuits

4 Amdahl, Gene M.

that enabled the processor to analyze the in-
structions waiting to be executed (the “pipeline”)
and determine which instructions could be exe-
cuted immediately and which would have to wait
for the results of other instructions. He also used
a cache, or special memory area in which the in-
structions that would be needed next could be
stored ahead of time so they could be retrieved
quickly from high-speed storage. Today’s desktop
personal computers (PCs) use these same ideas
to get the most out of their chips’ capabilities.

The problem of parallel computing is partly
a problem of designing appropriate hardware and
partly a problem of writing (or rewriting) soft-
ware so its instructions can be executed simul-
taneously. It is often difficult to predict how
much a parallel computing arrangement will im-
prove upon using a single processor and con-
ventional software. Amdahl created a formula
called Amdahl’s law, which attempts to answer
that question. In simple terms, Amdahl’s law says
that the advantage gained from using more
processors gradually declines as more processors
are added. The amount of improvement is also
proportional to how much of the calculation can
be broken down into parts that can be run in
parallel. As a result, some kinds of programs can
run much faster with several processors being
used simultaneously, while other programs may
show little improvement.

As a designer, Amdahl coupled hard work
with the ability to respond to sudden bursts of in-
tuition. “Sometimes,” he recalled to author Robert
Slater, “I wake up in the middle of the night and
I’ll be going 60 miles an hour on the way to a so-
lution. I see a mental picture of what is going on
and I dynamically operate that in my mind.”

In 1965, Amdahl was awarded a five-year
IBM fellowship that allowed him to study what-
ever problems interested him. He also helped
establish IBM’s Advanced Computing Systems
Laboratory in Menlo Park, California, which he
directed. However, Amdahl became increasingly
frustrated with what he thought was IBM’s too-

rigid approach to designing and marketing com-
puters. IBM insisted on basing the price of a new
computer not on how much it cost to produce,
but on how fast it could calculate.

Amdahl wanted to build much more power-
ful computers—what would soon be called “su-
percomputers.” But if IBM’s policy were followed,
these machines would be so expensive that vir-
tually no one would be able to afford them. Thus
at a time when increasing miniaturization was
leading to the possibility of much more powerful
machines, IBM did not seem to be interested in
building them. The computer giant seemed to be
content to gradually build upon its financially
successful 360 line (which would become the
IBM 370 in the 1970s). Amdahl therefore left
IBM in 1970, later recalling to Slater that he left
IBM that second time “because I wanted to
work in large computers. . . . I’d have had to
change my career if I stayed at IBM—for I wanted
personal satisfaction.”

To that end, in 1970 he founded the
Amdahl Corporation. Amdahl resolved to make
computers that were more powerful than IBM’s
machines, but would be “plug compatible” with
them, allowing them to use existing hardware
and software. Business users who had already in-
vested heavily in IBM equipment could thus buy
Amdahl’s machines without fear of incompati-
bility. Since IBM was known as “Big Blue,”
Amdahl decided to become “Big Red,” painting
his machines accordingly.

Amdahl would later recall his great satis-
faction in “getting those first computers built
and really making a difference, seeing it com-
pletely shattering the control of the market that
IBM had, causing pricing to come back to real-
istic levels.” Amdahl’s critics sometimes accused
him of having unfairly used the techniques and
knowledge that he had developed at IBM, but
he has responded by pointing to his later tech-
nical innovations. In particular, he was able to
take advantage of the early developments in in-
tegrated electronics to put more circuits on a

Andreessen, Marc 5

chip without making the chips too small, and
thus too crowded for placing the transistors.

After it was introduced in 1975, the Amdahl
470 series of machines, doubled in sales in each
of its first three years. Thanks to the use of larger-
scale circuit integration, Amdahl could sell ma-
chines with superior technology to that of the
IBM 360 or even the new IBM 370, and at a lower
price. IBM responded belatedly to the competi-
tion, making more compact and faster processors,
but Amdahl met each new IBM product with a
faster, cheaper alternative. However, IBM also
countered by using a sales technique that oppo-
nents called FUD—fear, uncertainty, and doubt.
IBM salespersons promised customers that IBM
would soon be coming out with much more pow-
erful and economical alternatives to Amdahl’s
machines. As a result, many potential customers
were persuaded to postpone purchasing decisions
and stay with IBM. Amdahl Corporation began
to falter, and Gene Amdahl gradually sold his
stock and left the company in 1980.

Amdahl then tried to repeat his early success
by starting a new company called Trilogy. The
company promised to build much faster and
cheaper computers than those offered by IBM or
Amdahl. He believed he could accomplish this
by using the new, very-large-scale integrated
silicon wafer technology, in which circuits were
deposited in layers on a single chip rather than
being distributed on separate chips on a printed
circuit board. However, the problem of dealing
with the electrical characteristics of such dense
circuitry, as well as some design errors, somewhat
crippled the new computer design. Amdahl also
found that the aluminum substrate that con-
nected the wafers on the circuit board was caus-
ing short circuits. Even weather, in the form of
a torrential rainstorm, conspired to add to
Amdahl’s problems by flooding a chip-building
plant and contaminating millions of dollars’
worth of chips. Amdahl was forced to repeatedly
delay the introduction of the new machine, from
1984 to 1985 to 1987. He attempted to infuse

new technology into his company by buying Elxsi,
a minicomputer company, but Trilogy never
recovered.

After the failure of Trilogy, Amdahl under-
took new ventures in the late 1980s and 1990s,
including Andor International, an unsuccessful
developer of minicomputers, and Commercial
Data Servers (CDS), which is trying to compete
with IBM in the low-priced end of the main-
frame market.

Amdahl has received many industry awards,
including “Data Processing Man of the Year”
from the Data Processing Management Associa-
tion (1976) and the Harry Goode Memorial
Award from the American Federation of Infor-
mation Processing Societies.

Further Reading
The History of Computing Foundation. “Gene

Amdahl.” Available on-line. URL: http://www.
thocp.net/biographies/amdahl_gene.htm. Down-
loaded on November 25, 2002.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

� Andreessen, Marc
(1971–)
American
Entrepreneur, Programmer

Marc Andreessen brought the World Wide Web
and its wealth of information, graphics, and
services to the desktop, setting the stage for the
“e-commerce” revolution of the later 1990s. As
founder of Netscape, Andreessen also created
the first big “dot-com,” as companies doing busi-
ness on the Internet came to be called.

By the early 1990s, the World Wide Web
(created by TIM BERNERS-LEE) was poised to
change the way information and services were
delivered to users. However, early Web browsers
ran mainly on machines using UNIX, a some-
what esoteric operating system used primarily by

6 Andreessen, Marc

students and scientists on college campuses and
at research institutes (Berners-Lee had been
working at CERN, the European nuclear physics
laboratory.) The early Web generally consisted
only of linked pages of text, without the graph-
ics and interactive features that adorn webpages
today. Besides looking boring, early webpages
were hard for inexperienced people to navigate.
Marc Andreessen would change all that.

Marc Andreessen was born on July 9, 1971,
in New Lisbon, Wisconsin. That made him part
of a generation that would grow up with per-
sonal computers, computer games, and computer
graphics. Indeed, when Marc was only nine years
old he learned the BASIC computer language
from a book in his school’s library, and then pro-

ceeded to write a program to help him with his
math homework. Unfortunately, he did not have
a floppy disk to save the program on, so it dis-
appeared when the school’s janitor turned off the
machine.

Marc got his own personal computer in
seventh grade, and tinkered on many sorts of
programs through high school. He then studied
computer science at the University of Illinois
at Urbana-Champaign. Despite his devotion to
programming, he impressed his fellow students as
a Renaissance man. One of them recalled in an
interview that “A conversation with Andreessen
jumps across a whole range of ungeekish subjects,
including classical music, history, philosophy,
the media, and business strategy. It’s as if he has
a hypertext brain.”

Andreessen encountered the Web shortly
after it was introduced in 1991 by Tim Berners-
Lee. He was impressed by the power of the
new medium, which enabled many kinds of
information to be accessed using the existing
Internet, but became determined to make it
more accessible to ordinary people. In 1993,
while still an undergraduate, he won an intern-
ship at the National Center for Supercomputing
Applications (NCSA). Given the opportunity to
write a better Web browser, Andreessen, together
with colleague Eric Bina and other helpers, set
to work on what became known as the Mosaic
web browser. Since their work was paid for by the
government, Mosaic was offered free to users over
the Internet. Mosaic could show pictures as well
as text, and users could follow Web links simply
by clicking on them with the mouse. The user-
friendly program became immensely popular,
with more than 10 million users by 1995.

After earning his B.S. degree in computer
science, Andreessen left Mosaic, having battled
with its managers over the future of Web brows-
ing software. He went to the area south of San
Francisco Bay, a hotbed of startup companies
known as Silicon Valley, which had become a
magnet for venture capital in the 1990s. There

Marc Andreessen made the World Wide Web
consumer friendly with his graphical Netscape Web
browser. In the mid-1990s, he went on to challenge
Microsoft for dominance on the new frontier of
e-commerce. (CORBIS SABA)

Andreessen, Marc 7

he met Jim Clark, an older entrepreneur who had
been chief executive officer (CEO) of Silicon
Graphics. Clark liked Andreessen and agreed to
help him build a business based on the Web.
They founded Netscape Corporation in 1994, us-
ing $4 million seed capital provided by Clark.

Andreessen recruited many of his former
colleagues at NCSA to help him write a new
Web browser, which became known as Netscape
Navigator. Navigator was faster and more graph-
ically attractive than Mosaic. Most important,
Netscape added a secure encrypted facility that
people could use to send their credit card num-
bers to online merchants. This was part of a two-
pronged strategy: First, attract the lion’s share
of Web users to the new browser, then sell
businesses the software they would need to
create effective Web pages for selling products
and services to users.

By the end of 1994, Navigator had gained
70 percent of the Web browser market. Time mag-
azine named the browser one of the 10 best prod-
ucts of the year, and Netscape was soon selling
custom software to companies that wanted a pres-
ence on the Web. The e-commerce boom of the
later 1990s had begun, and Marc Andreessen was
one of its brightest stars. When Netscape offered
its stock to the public in summer 1995, the com-
pany gained a total worth of $2.3 billion, more
than that of many traditional blue-chip indus-
trial companies. Andreessen’s own shares were
worth $55 million.

Microsoft under BILL GATES had been slow to
recognize the growing importance of the Web.
However, as users began to spend more and more
time interacting with the Netscape window,
Microsoft began to worry that its dominance of
the desktop market was in jeopardy. Navigator
could run not only on Microsoft Windows PCs,
but also on Macintoshes and even on machines
running versions of UNIX. Further, a new pro-
gramming language called Java, developed by
JAMES GOSLING made it possible to write programs
that users could run from Web pages without be-

ing limited to Windows or any other operating
system. If such applications became ubiquitous,
then the combination of Navigator (and other
Netscape software) plus Java could in effect
replace the Windows desktop.

Microsoft responded by creating its own
Web browser, called Internet Explorer. Although
technical reviewers generally considered the
Microsoft product to be inferior to Netscape, it
gradually improved. Most significantly, Microsoft
included Explorer with its new Windows 95 op-
erating system. This “bundling” meant that PC
makers and consumers had little interest in pay-
ing for Navigator when they already had a
“free” browser from Microsoft. In response to
this move, Netscape and other Microsoft com-
petitors helped promote the antitrust case
against Microsoft that would result in 2001 in
some of the company’s practices being declared
an unlawful use of monopoly power.

Andreessen also responded to Microsoft by
focusing on the added value of software for Web
servers, while making Navigator “open source,”
meaning that anyone was allowed to access and
modify the program’s code. He hoped that a
vigorous community of programmers might help
keep Navigator technically superior to Internet
Explorer. However, Netscape’s revenues began
to decline steadily. In 1999 America Online
(AOL) bought Netscape, seeking to add its tech-
nical assets and Webcenter online portal to its
own offerings.

After a brief stint with AOL as its “princi-
pal technical visionary,” Andreessen decided
to start his own company, called LoudCloud.
The company provided website development,
management and custom software (including
e-commerce “shopping basket” systems) for cor-
porations that have large, complex websites.
Through 2001, Andreessen vigorously promoted
the company, seeking to raise enough operating
capital to continue after the crash of the Internet
industry. However, after a continuing decline in
profitability Andreessen sold LoudCloud’s Web

8 Atanasoff, John Vincent

management business to Texas-based Electronic
Data Systems (EDS), retaining the smaller (soft-
ware) side of the business under a new name,
Opsware.

While the future of his recent ventures re-
mains uncertain, Marc Andreessen’s place as one
of the key pioneers of the Web and e-commerce
is assured. His inventiveness, technical insight,
and business acumen made him a model for a new
generation of Internet entrepreneurs. Andreessen
was named one of the Top 50 People Under the
Age of 40 by Time magazine (1994) and has re-
ceived the Computerworld/Smithsonian Award for
Leadership (1995) and the W. Wallace McDowell
Award of the Institute of Electrical and Electronic
Engineers Computer Society (1997).

Further Reading
“Andreessen, Marc,” Current Biography Yearbook.

New York: H. W. Wilson, 1997, p. 12.
Clark, Jim, with Owen Edwards. Netscape Time: The

Making of the Billion-Dollar Startup That Took on
Microsoft. New York: St. Martin’s Press, 1999.

Quittner, Joshua, and Michelle Slatalla. Speeding the
Net: the Inside Story of Netscape and How It
Challenged Microsoft. New York: Atlantic Monthly
Press, 1998.

Sprout, Alison. “The Rise of Netscape,” Fortune, July
10, 1995, pp. 140ff.

� Atanasoff, John Vincent
(1903–1995)
American
Inventor

It is difficult to credit the invention of the first
digital computer to any single individual. Al-
though the 1944 ENIAC, designed by J. PRESPER

ECKERT and JOHN MAUCHLY, is widely considered
to be the first fully functional electronic digital
computer, John Vincent Atanasoff and his grad-
uate assistant Clifford Berry created a machine
five years earlier that had many of the features

of modern computers. Indeed, a court would
eventually declare that the Atanasoff-Berry
Computer (ABC) was the first true electronic
computer.

Atanasoff was born October 4, 1903, in
Hamilton, New York. His father was an electri-
cal engineer, his mother a teacher, and both par-
ents encouraged him in his scientific interests.
In particular, the young boy was fascinated by
his father’s slide rule. He learned about loga-
rithms so he could understand how the slide rule
worked. He also showed his father’s aptitude for
electrical matters: When he was nine years old,

According to a federal court, it was John Atanasoff, not
John Mauchly and J. Presper Eckert, who built the first
digital computer. At any rate, the “ABC” or Atanasoff-
Berry Computer, represented a pioneering achievement
in the use of binary logic circuits for computation.
(Photo courtesy of Iowa State University)

Atanasoff, John Vincent 9

he discovered that some wiring in their house
was faulty, and fixed it.

John blazed through high school in only two
years, making straight A’s. By then, he had de-
cided to become a theoretical physicist. When
he entered the University of Florida, however, he
majored in engineering and mathematics because
the school lacked a physics major. Offered a num-
ber of graduate fellowships, Atanasoff opted for
Iowa State College because he liked its programs
in physics and engineering. He earned his mas-
ter’s degree in mathematics in 1926.

Atanasoff continued on to the University
of Wisconsin, where he earned his doctorate
in physics in 1930. He would remain there as a
professor of physics for the next decade.

Like HOWARD AIKEN, Atanasoff discovered
that modern physics was encountering an in-
creasing burden of calculation that was becom-
ing harder and harder to meet using manual
methods, the slide rule, or even the electro-
mechanical calculators being used by business.
One alternative in development at the time was
the analog computer, which used the changing
relationships between gears, cams, and other
mechanical components to represent quantities
manipulated in equations. While analog com-
puters such as the differential analyzer built by
VANNEVAR BUSH achieved success in tackling
some problems, they tended to break down or
produce errors because of the very exacting me-
chanical tolerances and alignments they re-
quired. Also, these machines were specialized
and hard to adapt to different kinds of problems.

Atanasoff made a bold decision. He would
build an automatic, digital electronic calculator.
Instead of the decimal numbers used by ordinary
calculators, he decided to use binary numbers,
which could be represented by different amounts
of electrical current or charge. The binary logic
first developed by GEORGE BOOLE could also be
manipulated to perform arithmetic directly.

Equally important, at a time when electric
motors and switches drove mechanical calcula-

tors, Atanasoff decided to design a machine
that would be electronic rather than merely
electrical. It would use the direct manipulation
of electrons in vacuum tubes, which is thou-
sands of times faster than electromechanical
switching.

Atanasoff obtained a modest $650 grant
from Iowa State and hired Clifford Berry, a
talented graduate student, to help him. In
December 1939, they introduced a working
model of the Atanasoff-Berry Computer (ABC).
The machine used vacuum tubes for all logical
and arithmetic operations. Numbers were input
from punched cards, while the working storage
(equivalent to today’s random-access memory, or
RAM), consisted of two rotating drums that
stored the numbers as electrical charges on tiny
capacitors. The ABC, however, was not a truly
general purpose computer: It was designed to
solve sets of equations by systematically elimi-
nating unknown quantities. Because of problems
with the capacitor-charge memory system,
Atanasoff and Berry were never able to solve
more than five equations at a time.

As the United States entered World War II,
Atanasoff had to increasingly divide his time be-
tween working on the ABC and his duties at the
National Ordnance Laboratory in Washington,
D.C., where he headed the acoustics division
and worked on designing a computer for naval
use. Eventually the ABC project petered out,
and the machine never became fully operational.

After the war, Atanasoff gradually became
disillusioned with computing. The mainstream
of the new field went in a different direction, to-
ward the general-purpose machines typified by
ENIAC, a large vacuum tube computer. In 1950
Atanasoff discovered that Iowa State had dis-
mantled and partly discarded the ABC. He spent
the remainder of his career as a consultant and
entrepreneur. In 1952, he and his former student
David Beecher founded a defense company,
Ordnance Engineering Corporation. In 1961,
he became a consultant working on industrial

10 Atanasoff, John Vincent

automation, and cofounded a company called
Cybernetics with his son.

In 1971, however, Atanasoff and the ABC
became part of a momentous patent dispute.
Mauchly and Eckert had patented many of the
fundamental mechanisms of the digital computer
on the strength of their 1944 ENIAC machine.
Sperry Univac, which now controlled the
patents, demanded high licensing fees from other
computer companies. A lawyer for one of these
rivals, Honeywell, had heard of Atanasoff’s
work and decided that he could challenge the
Mauchly-Eckert patents. The heart of his case
was that in June 1941 Mauchly had stayed at
Atanasoff’s home and had been treated to an ex-
tensive demonstration of the ABC. Honeywell
claimed that Mauchly had obtained the key idea
of using vacuum tubes and electronic circuits
from Atanasoff. If so, the Atanasoff machine
would be “prior art,” and the Mauchly-Eckert
patents would be invalid. In 1973, the federal
court agreed, declaring that Mauchly and Eckert
“did not themselves invent the automatic elec-
tronic digital computer, but instead derived that
subject matter from one Dr. John Vincent
Atanasoff.”

The decision was not appealed. Despite the
definitive legal ruling, the controversy among
computer experts and historians grew. Defending
his work in public for the first time, Atanasoff

stressed the importance of the ideas that
Mauchly and Eckert had obtained from him, in-
cluding the use of vacuum tubes and binary logic
circuits. Defenders of the ENIAC inventors,
however, pointed out that the ABC was a spe-
cialized machine that was never a fully working
general-purpose computer like ENIAC.

While the dispute may never be resolved, it
did serve to give Atanasoff belated recognition
for his achievements. On October 21, 1983, the
University of Iowa held a special conference cel-
ebrating Atanasoff’s work, and later built a work-
ing replica of the ABC. By the time Atanasoff
died in 1995 at the age of 91, he had been hon-
ored with many awards, including the Computer
Pioneer Medal from the Institute for Electrical
and Electronics Engineers in 1984 and the
National Medal of Technology in 1990.

Further Reading
Burks, A. R., and A. W. Burks. The First Electronic

Computer: The Atanasoff Story. Ann Arbor: Uni-
versity of Michigan Press, 1988.

Mollenhoff, Clark. Atanasoff: Forgotten Father of the
Computer. Ames: Iowa State University Press,
1988.

“Reconstruction of the Atanasoff-Berry Computer
(ABC).” Available on-line. URL: http://www.scl.
ameslab.gov/ABC/ABC.html. Updated on July
18, 2002.

11

� Babbage, Charles
(1791–1871)
British
Inventor, Mathematician

More than a century before the first electronic
digital computers were invented, British mathe-
matician and inventor Charles Babbage con-
ceived and designed a mechanical “engine” that
had most of the key features of modern com-
puters. Although Babbage’s computer was never
built, it remains a testament to the remarkable
power of the human imagination.

Charles Babbage was born on December 26,
1791, in London, to a well-to-do banking fam-
ily that was able to provide him with a first-class
private education. Even as a young child
Babbage was fascinated by mechanisms of all
kinds, asking endless questions and often dis-
secting the objects in search of answers. He be-
came a star student, particularly in math, at
boarding school, where he and some intellectu-
ally inclined friends stayed up late to study.

In 1810 Babbage entered Trinity College,
Cambridge, where he studied advanced calculus
and helped found an organization to reform the
Newtonian discipline along more modern
European lines. By 1815, Babbage had made
such an impact in mathematics and science that
he had been elected a fellow of the prestigious

B
British Royal Society. His reputation continued
to grow, and in 1828 he was appointed Lucasian
Professor of Mathematics at Cambridge, occu-
pying the chair once held by Isaac Newton.

What was becoming a distinguished career in
mathematics then took a different turn, one in
keeping with the times. By the early 19th cen-
tury, the role of mathematics and science in
European society was beginning to change.
Britain, in particular, was a leader in the Industrial
Revolution, when steam power, automated weav-
ing, and large-scale manufacturing were rapidly
changing the economy and people’s daily lives. In
this new economy, “hard numbers”—the mathe-
matical tables needed by engineers, bankers, and
insurance companies—were becoming increas-
ingly necessary. All such tables, however, had to
be calculated slowly and painstakingly by hand,
resulting in numerous errors.

One day, when poring over a table of loga-
rithms, Babbage fell asleep and was roused by a
friend. When asked what he had been dreaming
about, Babbage replied that “I am thinking that
all these tables might be calculated by machines.”

The idea of mechanical computation was
perhaps not so surprising. Already the automatic
loom invented by Joseph-Marie Jacquard was be-
ing controlled by chains of punched cards con-
taining weaving patterns. The idea of controlled,
repetitive motion was at the heart of the new

12 Babbage, Charles

industry. Babbage was in essence applying indus-
trial methods to the creation of the information
that an industrial society increasingly required for
further progress. But although his idea of indus-
trializing mathematics was logical, Babbage was
entering uncharted technological territory.

From 1820 to 1822, Babbage constructed a
small calculator that he called a difference en-
gine. The calculator exploited a mathematical
method for generating a table of numbers and

their squares by repeated simple subtraction and
addition. When the demonstration model suc-
cessfully generated numbers up to about eight
decimal places, Babbage undertook to build a
larger scale version, which he called Difference
Engine Number One. This machine would have
around 25,000 gears and other moving parts and
could handle numbers with up to 20 decimal
places. The machine was even to have a printer
that could generate the final tables directly,
avoiding transcription errors.

By 1830, work was well under way, sup-
ported by both government grants and Babbage’s
own funds. However, Babbage soon became
bogged down with problems. Fundamentally, the
parts for the Difference Engine required a toler-
ance and uniformity that went beyond anything
found in the rough-hewn industry of the time,
requiring new tools and production methods. At
the same time, Babbage was a poorer manager
than an inventor, and in 1833 labor disputes vir-
tually halted the work. The big Difference
Engine would never be finished.

By 1836, however, Babbage, undaunted, had
developed a far bolder conception. He wrote in
his notebook, “This day I had for the first time
a general . . . conception of making an engine
work out algebraic developments. . . . My notion
is that the cards (Jacquards) of the calc. engine
direct a series of operations and then recom-
mence with the first, so it might be possible to
cause the same cards to punch others equivalent
to any number of repetitions.”

As Babbage worked out the details, he de-
cided that the new machine (which he called the
Analytical Engine) would be fed by two stacks of
punched cards. One stack would contain in-
structions that specified the operation (such as
addition or multiplication), while the other
would contain the data numbers or variables. In
other words, the instruction cards would program
the machine to carry out the operations auto-
matically using the data. The required arithmetic
would be carried out in a series of gear-driven cal-

If it had been built, Charles Babbage’s Analytical
Engine, although mechanical rather than electrical,
would have had most of the essential features of
modern computers. These included punched card
input, a processor, a memory (store), and a printer.
(Photo courtesy of NMPTFT/Science & Society
Picture Library)

Backus, John 13

culation units called the mill, while temporary
results and variable values would be stored in a
series of mechanical registers called the store.
The final results could be either printed or
punched onto a set of cards for future use.

The Analytical Engine thus had many of the
features of a modern computer: a central proces-
sor (the mill), a memory (the store), as well as
input and output mechanisms. One feature it
lacked, as revealed in Babbage’s journal entry,
was the ability to store programs themselves in
memory. That is why a repetition (or loop) could
be carried out only by repeatedly punching the
required cards.

The new machine would be a massive and
expensive undertaking. Babbage’s own funds were
far from sufficient, and the British government
had become disillusioned by his failure to com-
plete the Difference Engine. Babbage therefore
began to use his contacts in the international
mathematical community to try to raise support
for the project. He was aided by L. F. Menebrea,
an Italian mathematician, who wrote a series of
articles about the Analytical Engine in France.
He was further aided by ADA LOVELACE (the
daughter of the poet George Gordon, Lord
Byron). She not only translated the French arti-
cles into English, but greatly expanded them, in-
cluding her own example programs and sugges-
tions for applications for the device.

However, like the Difference Engine, the
Analytical Engine was not to be. A contemporary
wrote that Babbage was “frequently and almost no-
toriously incoherent when he spoke in public.” His
impatience and “prickliness” also made a bad im-
pression on some of the people he had to persuade
to support the new machine. Funding was not
found, and Babbage was only able to construct
demonstration models of a few of its components.

As he moved toward old age, Babbage con-
tinued to write incredibly detailed engineering
drawings and notes for the Analytical Engine as
well as plans for improved versions of the ear-
lier Difference Engine. But he became reclusive

and even more irritable. Babbage became noto-
rious for his hatred of street musicians, as chron-
icled in his 1864 pamphlet Observations of Street
Nuisances. Neighbors who supported the musi-
cians often taunted Babbage, sometimes organ-
izing bands to play deliberately mistuned instru-
ments in front of his house.

After Babbage’s death in October 18, 1871,
his remarkable computer ideas faded into ob-
scurity, and he was remembered mainly for his
contributions to economic and social statistics,
another field that was emerging into importance
by the mid-19th century. Babbage therefore had
little direct influence on the resurgence of in-
terest in automatic calculation and computing
that would begin in the late 1930s (many of his
notes were not unearthed until the 1970s).
However, computer scientists today honor
Charles Babbage as their spiritual father.

Further Reading
“The Analytical Engine: the First Computer.” Available

on-line. URL: http://www.fourmilab.ch/babbage/.
Downloaded on October 31, 2002.

Babbage, H. P., ed. Babbage’s Calculating Engines.
London, 1889. Reprinted as vol. 2 of I. Tomash,
ed. Babbage Institute Reprint Series, 1984.

Campbell-Kelly, M., ed. The Works of Charles Babbage.
11 vols. London: Pickering and Chatto, 1989.

Henderson, Harry. Modern Mathematicians. New York:
Facts On File, 1996.

Swade, Doron D. “Redeeming Charles Babbage’s
Mechanical Computer.” Scientific American,
February 1993, p. 86.

� Backus, John
(1924–)
American
Computer Scientist

John Backus led the team that developed FOR-
TRAN, one of the most popular computer
languages of all time, particularly for scientific

14 Backus, John

and engineering applications. Backus also made
significant contributions to computer design and
to the analysis of programming languages.

Born on December 3, 1924, John Backus
grew up in a wealthy family in Philadelphia.
Unlike many computer pioneers, John’s per-
formance in high school showed little promise:
He often flunked his classes and had to go to sum-
mer school. He managed to be accepted at the
University of Pennsylvania in 1942 as a chem-
istry major, but was expelled for failure to attend
classes. He then joined the U.S. Army where he
did better, becoming a corporal, and was placed
in charge of an antiaircraft gun crew. After tak-
ing an aptitude test, however, Backus was re-
vealed to have some talent for engineering, so
the army assigned him to an engineering program
at the University of Pittsburgh. However, he then
took a medical aptitude test and was found sim-
ilarly qualified for medical school, which he at-
tended, only to drop out again.

Uncertain what to do next, Backus became
interested in electronics because he wanted to
build a good hi-fi sound system (something that
hobbyists had to build by hand at the time). He
attended a trade school to learn more about elec-
tronics, and a teacher, asking him to help with
calculations for a magazine article, sparked
Backus’s interest in mathematics. He then went
to Columbia University in New York City, where
he earned a B.A. degree in mathematics in 1949.

At that time, Backus visited the new IBM
Computer Center in Manhattan, where an
early computer called the Selective Sequence
Electronic Calculator (SSEC) was on display. A
tour guide persuaded him to apply for a job, and
he was hired to help improve the SSEC. This
machine used hard-to-read machine codes for
programming, and was also hard to debug. Backus
later noted, as recounted by Dennis Shasha and
Cathy Lazere, that “You had to be there because
the thing would stop running every three min-
utes and make errors. You had to figure out how
to restart it.”

In trying to make the machine easier to use,
Backus began his lifelong interest in program-
ming languages. When a much more capable
machine, the IBM 701, came out, Backus and
some colleagues devised a system called “speed-
coding” that made it easier to specify numbers
in programs. With speedcoding, the significant
digits were specified with a “scaling factor,” sim-
ilar to what are called floating point numbers.
Once the number was coded, the computer
could keep track of the decimal point.

As Backus moved on to the next machine,
the IBM 704, he had an important insight. Why
not write a program that can translate human-
style arithmetic (such as T = A + 1) into the
low-level instructions needed by the machine?
This program, called a compiler, would revolu-
tionize the practice of computer programming.

In 1954, Backus was given the go-ahead to
develop a new high-level computer language
that would use a compiler. It took three years
of intense work to design the language and the
program to translate it. In 1957, the first ver-
sion of the language, called FORTRAN (for
“FORmula TRANslating”) was released for the
IBM 704.

Before the development of FORTRAN,
those scientists who wanted to tap into the power
of computers had to spend months learning the
peculiar machine language for a particular com-
puter. With FORTRAN, scientists could describe
a calculation using notation similar to that in or-
dinary mathematics, and let the computer trans-
late it into machine codes. Even better, as sci-
entists wrote programs for different applications,
many of them became parts of “program libraries”
that other scientists or engineers could use.
Today, millions of lines of tested, reliable
FORTRAN code are waiting to be used.

By the end of the 1950s, Backus was work-
ing with other computer scientists to create a
new language, Algol. While FORTRAN was de-
signed primarily for scientific computing, Algol
was designed to be an all-purpose language that

Baran, Paul 15

could more easily manipulate text as well as
numbers. Algol did not become a commercial
success, perhaps because of the investment in ex-
isting languages. However, Algol had features
that would prove to be very influential in later
languages such as Pascal and C. For example, the
language provided more flexible ways to describe
data structures and the ability to declare “local”
variables that could not be accidentally changed
by other parts of the program.

Backus’s work with Algol also led him to de-
vise a set of grammatical diagrams that could be
used to describe the structure of any computer
language—rather like the way English sentences
can be diagrammed to show the relationships be-
tween the words and phrases. This notation,
which was further developed by the Danish com-
puter scientist Peter Naur, is now known as
Backus-Naur Form, or BNF.

By the 1980s, Backus was working on a
new approach to the structure of programming
languages, called functional programming. Func-
tional languages (such as LISP) use mathematical
functions as their fundamental building blocks,
combining them to yield the desired result.

By the time Backus retired in 1991, he had
received many honorary degrees and awards, in-
cluding the National Medal of Science (1975),
the Association for Computing Machinery
Turing Award (1977), and the Institute of
Electrical and Electronic Engineers Computer
Society Pioneer Award (1980). These honors
reflect both his achievements in computer
science and the value of FORTRAN as a key
that unlocked the power of the computer for
science.

Further Reading
Backus, John. “The History of FORTRAN I, II and

III.” IEEE Annals of the History of Computing 20,
no. 4 (1998): 68–78.

Lee, J. A. N., and Henry Trop, eds. “25th Anniversary
of Fortran,” Special Issue, IEEE Annals of the
History of Computing 6, no. 1 (1984).

Shasha, Dennis, and Cathy Lazere. Out of Their Minds:
The Lives and Discoveries of 15 Great Computer
Scientists. New York: Springer-Verlag, 1997.

� Baran, Paul
(1925–)
Polish/American
Engineer, Computer Scientist

Today millions of e-mail messages travel seam-
lessly from computer to computer, linking people
around the world. A user in Berne, Switzerland,
can click on a webpage in Beijing, China, in only
a few seconds. Building the infrastructure of
switches, routers, and other networks to tie this
worldwide network together was an engineering
feat comparable to creating the U.S. interstate
highway system in the 1950s. While his name is
not well known to the general public, Polish-
born engineer Paul Baran deserves much of the
credit for building today’s Internet.

Baran was born April 29, 1926, in Poland.
Baran’s family immigrated to the United States
shortly after his birth, stayed briefly in Boston,
and settled in Philadelphia, where his father ran
a small grocery store. (The boy delivered gro-
ceries to neighbors with his toy wagon.)

After high school, Baran attended the
Drexel Institute of Technology (later called
Drexel University), where he received a degree
in electrical engineering in 1949. Baran then
received solid work experience in modern
electronics, working at the Eckert-Mauchly
Computer Corporation maintaining the vacuum
tube circuits in Univac, the first commercial elec-
tronic digital computer. Later in the 1950s, Baran
worked for the defense contractor Hughes
Aircraft, helping design systems to process radar
data and to control the Minuteman interconti-
nental ballistic missile (ICBM). Meanwhile, he
took night classes to earn a master’s degree in en-
gineering from the University of California, Los
Angeles, in 1959.

16 Baran, Paul

As the cold war progressed into the early
1960s, military planners were increasingly con-
cerned with how they could maintain contact
with their far-flung radar stations and missile
silos. Baran went to work for the RAND
Corporation, a think tank that studied such
strategic problems. Looking back, Baran ana-
lyzed the problem as follows:

Both the US and USSR were building
hair-trigger nuclear ballistic missile sys-
tems. If the strategic weapons command
and control systems could be more sur-
vivable, then the country’s retaliatory
capability could better allow it to with-
stand an attack and still function; a more
stable position. But this was not a wholly
feasible concept, because long-distance
communication networks at that time
were extremely vulnerable and not able
to survive attack. That was the issue.
Here a most dangerous situation was
created by the lack of a survivable com-
munication system.

In other words, if the communications and
control systems could not survive a nuclear at-
tack, both sides would feel that in a situation of
high international tension, they had better at-
tack first: “Use it or lose it.” Further, even if the
communications systems were not entirely lost
and the attacked side could retaliate, communi-
cations were likely to become so degraded that
negotiations to end the conflict would become
impossible.

Starting in 1960, Baran studied ways to
make the communications system more surviv-
able. He realized that the existing system was too
centralized and that there were no backup links
between the installations that made up the
nodes of the network. That meant that if a key
installation were knocked out, there was no way
to route messages around it to contact the sur-
viving installations.

Baran decided that what was needed was a
decentralized, or “distributed,” network. In such
a network, no one node is essential and each
node is connected to several others. As a result,
even if an attack destroyed a number of nodes,
there would be enough alternate routes to allow
messages to reach the surviving nodes. Baran
built a further level of resiliency into the system
by having it break up messages into smaller
chunks, or “blocks,” that could be sent over
whatever links were currently working, then
reassembled into a complete message after
arriving at the ultimate destination. (This idea
is similar to the packet switching concept, which
had been developed by LEONARD KLEINROCK.)

Messages would be dispatched under the di-
rection of minicomputers (today called “routers”)
that could look up possible routes in tables and
quickly shift from one route to another if nec-
essary. Baran wryly noted that “each message is
regarded as a ‘hot potato,’ and rather than hold
the ‘hot potato,’ the node tosses the message to
its neighbor, who will now try to get rid of the
message.”

Baran’s complete proposal was published
in a lengthy RAND report with the title “On
Distributed Communication.” His ideas were met
with considerable resistance, however. Most net-
work communication would be over phone lines,
and traditional telephone engineers thought in
terms of establishing a single connection between
caller and receiver and sending a complete mes-
sage or series of messages. The idea of breaking
messages up into little bits and sending them
bouncing willy-nilly over multiple routes sounded
pointless and crazy to engineers who prided them-
selves on maintaining communications quality.

However, the Defense Department remained
interested in the advantages of distributed com-
munication, and following a 1967 conference,
began to build a system called ARPANET. The
designers of the system, inspired by Baran’s ear-
lier work, employed Kleinrock’s packet-switching
concept.

Bartik, Jean 17

Baran left RAND in 1968. He founded the
Institute for the Future to help plan for future
technological developments. He also became in-
volved in the promotion of commercial net-
working systems during the 1970s and 1980s,
including Cable Data Associates, Metricom
(a packet radio company), and the cable net-
working company Com21. Baran was honored
in 1987 with the Institute of Electrical and
Electronics Engineers Edwin H. Armstrong
Award (named for a broadcasting pioneer), and
in 1993 with the Electronic Frontier Foundation
Pioneer Award.

Further Reading
Baran, Paul. “Introduction to Distributed Communi-

cations Networks.” RAND Corp. Publication
RM-3420-PR, 1964. Available on-line. URL:
http://www.rand.org/publications/RM/ RM3420/.
Downloaded on November 26, 2002.

Griffin, Scott. “Internet Pioneers: Paul Baran.”
Available on-line. URL: http://www.ibiblio.org/
pioneers/baran.html. Downloaded on October 31,
2002.

Hafner, Katie, and Matthew Lyon. Where Wizards Stay
Up Late: The Origins of the Internet. New York:
Simon and Schuster, 1996.

� Bartik, Jean
(1924–)
American
Programmer, Computer Scientist

When Jean Bartik was starting out in the field
in the early 1940s a “computer” was not a
machine—it was a person who performed calcu-
lations by pushing buttons and pulling levers on
mechanical calculators. Such clerical workers,
mainly women, were necessary for carrying out
the computations needed for aiming artillery, de-
signing airplanes, or even creating the first atomic
bomb. But Bartik would not end up being such a
“computer”—she would learn to program one. As

one of a handful of pioneering programmers for
ENIAC, the world’s first general-purpose elec-
tronic digital computer, Bartik was in on the
ground floor of a technology and industry that
would change the world.

Born on December 27, 1924, Jean grew up
on a farm in northwest Missouri. She was a good
student in science and math, but her athletic tal-
ents were considered more remarkable. In par-
ticular, she was a formidable softball pitcher and
always in demand in after-school games. When
Bartik enrolled in the Northwest Missouri State
Teachers College, its officials tried to persuade
her to major in physical education. However, she
majored in mathematics (as one of only two stu-
dents), earning her B.S. degree in 1945.

By that time, of course, most of her male fel-
low students had gone off to war. Bartik seemed

Jean Bartik (standing) and Betty Holberton answered a
call for “computers” during World War II. At the time,
that was the name for a clerical worker who
performed calculations. But these two computer
pioneers, shown here at a reunion, would go on to
develop important programming techniques for the
ENIAC and later machines. (Courtesy of the
Association for Women in Computing)

18 Bell, Chester Gordon

destined for a career as a math teacher, but her
calculus professor showed her a help wanted ad
for “computers” to join a top secret project at
the army’s Ballistics Research Laboratory in
Aberdeen, Maryland. After Bartik spent a few
months in this essentially clerical job, it was
announced that the lab was looking for people
to operate a new, highly secret computing
machine—ENIAC. Bartik and five other women
were accepted for the project.

When she arrived at the ENIAC facility,
Bartik and her colleagues were confronted by a
daunting sight. The hulking electronic monster
filled the whole room, lighting it by the glow of
thousands of vacuum tubes.

Today, a computer owner expects to receive
a complete illustrated manual with helpful in-
structions for setting up and running the ma-
chine. Online help screens and technical sup-
port lines offer further assistance if a problem
arises. But with ENIAC, Bartik and her five fel-
low “computers” had to start from scratch. They
had only engineering sketches and cryptic lists
of instructions to work with.

Running a program on a modern computer
is as easy as slipping a disk into a drive and mak-
ing a few clicks with the mouse. Running a new
program on ENIAC, however, meant moving
hundreds of plugs to new sockets, setting more
than 3,000 switches, and arranging the input
numbers in many separate “digit trays.” Early pro-
gramming was more like running a machine in a
factory than working at a keyboard on a desk.

Thanks to Bartik and her colleagues,
ENIAC became a workhorse for the war effort.
After the war, ENIAC’s inventors, J. PRESPER

ECKERT and JOHN MAUCHLY, decided to improve
the machine so that it could store programs in
memory. (Previously, they had to be set up by
hand.) Storing programs in memory required
special instructions for putting the program
commands in particular memory locations, and
manipulating them through extremely detailed
instructions called microcode.

In 1948, Bartik left government service and
went to work at the Eckert-Mauchly Computer
Company as it began to develop BINAC (a scaled-
down version of ENIAC) and Univac I, which be-
came the first commercially available computer.
She wrote programs and designed a memory
backup system. She then left the workforce to raise
her family, but in 1967 she returned to the com-
puter field as a technology writer and analyst.

In 1997, Bartik was inducted into the Hall
of Fame of Women in Technology International.
Reflecting on her experience, she says that “I
was just at the right place at the right time. It
was divine providence or fate that selected me
to be an ENIAC programmer.”

Further Reading
NASA. Quest Archives. “Female Frontiers: Jean

Bartik.” Available on-line. URL: http://quest.
arc.nasa.gov/space/frontiers/bartik.html. Down-
loaded on October 31, 2002.

Women in Technology International. “Jean Bartik.”
Available on-line. URL: http://www.witi.com/
center/witimuseum/womeninsciencet/1997/
062297.shtml. Posted on June 22, 1997.

� Bell, Chester Gordon
(1934–)
American
Inventor, Computer Scientist

The room-sized mainframe computers of the
1950s were amazing machines, but they were so
expensive that only the largest businesses, uni-
versities, and government agencies could afford
them. However, during the 1960s a new kind of
computing device, the refrigerator-sized “mini-
computer,” would bring data processing power to
many more institutions. A pioneer in the de-
velopment of minicomputers, Chester Gordon
Bell had a career that continued to evolve
through the decades as he explored the history
and future possibilities of computers.

Bell, Chester Gordon 19

Bell was born on August 19, 1934, in the
small town of Kirksville, Missouri. Even as a
young child he made himself useful in his father’s
electrical business: At age six, he installed a plug
on a wire, and at an age when most kids are
learning to read, Gordon was wiring and fixing
appliances.

After high school, Bell went to the
Massachusetts Institute of Technology (MIT),
where he majored in electrical engineering.
During his college years, he worked during the
summers for General Electric and various manu-
facturing companies, as well as studying the
emerging field of digital electronics. In 1957, hav-
ing completed his B.S. and M.S. degrees, he went

to New South Wales, Australia, on a Fullbright
scholarship, avoiding a final decision about what
he called “the going-to-work problem.”

In Australia, Bell entered fully into the
world of programming and computer design
while teaching courses and helping with various
projects. After returning to the United States in
1959, Bell decided to work toward his doctorate
while pursuing another interest: acoustics and
sound systems. His thesis adviser suggested that
he might want to help develop the TX-0, a new
type of computer being built by MIT. Combining
his interests, Bell equipped the new machine
with sound input and wrote some of the earliest
software for speech recognition.

However, the problem of voice recognition
proved to be very complex. It would take decades
to master, and Bell’s interests were turning more
directly to computer design. It was a fertile time
for innovation. The TX-0 used transistors rather
than vacuum tubes. This meant that more com-
puting power could be packed into a smaller
space, with less power consumption and greater
reliability. Bell began to work with KENNETH H.
OLSEN at a new company, Digital Equipment
Corporation (DEC), to develop the PDP-1, the
first commercial computer to take advantage of
this new technology.

Introduced in 1960, the PDP-1 was consid-
erably smaller than mainframe computers, al-
though it still required four six-foot-tall cabinets.
Unlike mainframes, it did not need expensive
air conditioning or cooling systems. The ma-
chine sold for $120,000—a stiff price by mod-
ern standards, but much less than mainframes
that typically cost many hundreds of thousands
or even millions of dollars.

In developing the PDP-1, they had to make
tradeoffs between size requirements and comput-
ing power. The PDP had a data word length of
18 bits, rather than the 36 bits used by most main-
frames. This meant that it could not easily han-
dle the large numbers used in some scientific cal-
culations. The machine also did not have built-in

Gordon Bell designed the first minicomputers.
Using transistors and then integrated circuits, the
minicomputer had shrunk to refrigerator-size by the
mid-1960s. Their price tag had shrunk as well, making
computing power affordable to smaller businesses and
universities. (Courtesy of Microsoft Corporation)

20 Bell, Chester Gordon

floating-point circuitry for handling decimal
numbers, so such calculations would be slower
than with mainframes. But DEC was betting that
there was a market for more modest computing
capability at a much lower price, and the market
proved them right: Between 1965 and 1980, DEC
sold 50,000 of the PDP-1 and its successors.

Bell continued to believe that simpler was
better: the next machine, the PDP-4, had fewer
programming instructions and took up half the
space of the PDP-1. It sold at half the price but
delivered about five-eighths the performance.
The PDP-4 and the smaller PDP-5’s compactness
made them suitable for use in controlling indus-
trial and chemical processes on the factory floor.
The sleek new breed of minicomputers produced
by DEC and other companies were taking com-
puting out of the sequestered realm of the main-
frames and bringing it to more and different users.

This proliferation would have a profound
impact on the field of computer science and tech-
nology. The PDP-8, introduced in 1965, went be-
yond transistors to integrated circuits that packed
many logic units into a small space. The entire
computer now fit into a space the size of a small
refrigerator. With prices eventually dropping to
less than $10,000, more than 100,000 of the
PDP-8 and its successors would be sold. Just about
any college could afford to buy one or several of
the machines, and with the development of time-
sharing systems, this meant that students could
gain plentiful free computer time. It was this en-
vironment that made possible the cooperative
development of the UNIX operating system and
its vast array of useful software.

The minicomputer architecture spearheaded
by Bell would also have a great impact on later
computer hardware. The PDP-11, released in
1970, pioneered the use of an integrated “bus,”
or data connection system, mounted on a single
large board. The bus had its own controllers for
routing data, freeing the central processor from
managing that task. Later in the decade, the
designers of the first desktop microcomputers

would turn to this design for its simplicity and
reliability. Meanwhile, Bell’s team introduced an-
other feature that had previously been available
only on mainframes: virtual memory. The VAX
(Virtual Address Extension) series of computers
allowed space on disk to be used as though it were
part of the computer’s main memory. This meant
that a VAX computer could run larger (and
more) programs than a PDP.

By 1983, however, Bell had tired of the slug-
gish pace of work in a very large corporation,
and decided to create his own company, Encore,
devoted to developing multiprocessing comput-
ers (that is, machines with many separate proces-
sors that could run many programs at the same
time rather than switching in turn from one pro-
gram to the next). Bell studied the characteris-
tics of successful startup ventures and developed
methods for predicting their success.

After launching Encore and another startup
called the Dana Group, Bell changed direction
yet again. He went to Washington, D.C., and
became the assistant director of the National
Science Foundation, in charge of government
funding for research in computer science and
technology. But while finding an increasing in-
terest in exploring the future of computing, he
also found himself wanting to be a steward of its
past. He cofounded the Computer Museum in
Boston, an organization dedicated to studying
and displaying the history of computer develop-
ment. (When this organization became defunct
in 1999, Bell founded the Computer Museum
History Center at Moffett Field, in Mountain
View, California, to carry on its collection and
work.)

Awards received by Bell include the National
Medal of Technology (1991), fellowships in the
Association for Computing Machinery and the
Institute of Electronic and Electrical Engineers,
and various medals from these and other organi-
zations. He continues to serve on a number of
boards and as a senior researcher at Microsoft’s
Media Presence Research Group, where he is

Berners-Lee, Tim 21

studying future uses of supercomputers and the
implications of “telepresence”—the ability of
people to send their images and even manipulate
objects from a remote location.

Further Reading
Bell, C. Gordon, and John E. McNamara (contribu-

tor). High-Tech Ventures: The Guide to Entrepre-
neurial Success. Reading, Mass.: Addison-Wesley,
1991.

Microsoft Bay Area Research Center. “Gordon Bell’s
Home Page.” Available on-line. URL: http://
research.microsoft.com/users/GBell. Downloaded
on October 31, 2002.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

� Berners-Lee, Tim
(1955–)
British
Computer Scientist

Tim Berners-Lee invented the World Wide Web,
the interconnected realm of words, images, and
sounds that now touches the daily lives of mil-
lions of people around the world.

Born on June 8, 1955, in London, Berners-
Lee was the child of two mathematicians who
were themselves computer pioneers who helped
program the Manchester University Mark I in
the early 1950s. As a boy, Berners-Lee showed
considerable aptitude in solving math puzzles
posed by his parents and building “pretend” com-
puters out of cardboard and running discarded
punched paper tape through them to simulate
their operation.

Berners-Lee always had wide-ranging inter-
ests, however. He would later recall that as a
child he had been given a Victorian children’s
encyclopedia with the title Enquire Within Upon
Everything. From that time, he became intrigued
with the idea that all knowledge could be col-
lected, arranged, and connected.

During high school, in the 1970s Berners-
Lee learned to work with electronics and even
built a working computer using one of the first
commercially available microprocessors. He then
studied physics at Oxford University, receiving
his B.A. degree with honors in 1976. After grad-
uation he worked for several computer-related
companies, writing printer control software and
learning more about operating systems. As a
result of this varied experience, Berners-Lee be-
came familiar with scientists and their comput-
ing needs, the capabilities of current computers,
and the discipline of software engineering.

By 1980, Berners-Lee was working as an
independent consultant at CERN, the giant
European physics research institute. It was there
that his interests turned away from the nuts and
bolts of computer hardware to investigating the
structure of knowledge as it might be dealt with
in computer networks.

Tim Berners-Lee wanted to write a program to help
nuclear scientists keep track of their projects, but he
ended up creating the World Wide Web. It would
change business, education, and the media during the
1990s. (© Henry Horenstein/CORBIS)

22 Berners-Lee, Tim

In his autobiography Weaving the Web (1999),
Berners-Lee recalls his most important insight:
“Suppose all the information stored on computers
everywhere were linked? Suppose I could program
my computer to create a space in which anything
could be linked with anything?” He proceeded to
write a program called Enquire, the name harking
back to his childhood encyclopedia. The basic
idea of Enquire was that each bit of knowledge
could potentially be connected to any other ac-
cording to the needs or interests of the user. This
way of embedding links from one document or
piece of information to another is called hyper-
text, an idea introduced by the work of VANNEVAR

BUSH in the 1950s and TED NELSON in the 1960s.
Accepting a fellowship at CERN in 1984,

Berners-Lee struggled with organizing the dozens
of incompatible computer systems and software
programs that had been brought to the labs by
thousands of scientists from around the world.
With existing systems, each requiring a specialized
access procedure, researchers had trouble sharing
data with one another or learning about existing
software tools that might solve their problems.

By 1989, Berners-Lee had proposed a solu-
tion to the problem of information linkage that
combined the hypertext idea from his Enquire
program with the growing capabilities of the
Internet, which already offered a wide assort-
ment of databases, archives, and other sources of
information. Essentially, he suggested bypassing
traditional database organization and treating
text on all systems as “pages” that would each
have a unique address, a universal document
identifier (later known as a uniform resource lo-
cator, or URL). He and his assistants used high-
lighted text to link words and phrases on one
page to another page, and adapted existing hy-
pertext editing software to create the first World
Wide Web pages. They then programmed a
server to provide access to the pages and created
a simple browser, a program that could be used
by anyone connected to the Internet to read
the pages and follow the links as desired. By

December 1990, the first Web server was run-
ning within the CERN community. By the sum-
mer of 1991, Web servers had begun to appear
throughout the worldwide Internet.

Between 1990 and 1993, word of the Web
spread throughout the academic community as
Web software was written for more computer
platforms. As demand grew for a body to stan-
dardize and shape the evolution of the Web,
Berners-Lee founded the World Wide Web
Consortium (W3C) in 1994. Through a process
of user feedback and refinement, the standards
for addresses (URLs), the transmission protocol
(HTTP), and the hypertext markup language
(HTML) were firmly established.

Together with his colleagues, Berners-Lee has
struggled to maintain a coherent vision of the
Web in the face of tremendous growth and com-
mercialization, the involvement of huge corpora-
tions with conflicting agendas, and contentious
issues of censorship and privacy. His general ap-
proach has been to develop tools that empower
the user to make the ultimate decision about the
information he or she will see or divulge.

In the original vision for the Web, users
would create Web pages as easily as they could
read them, using software no more complicated
than a word processor. While there are programs
today that hide the details of HTML coding and
allow easier Web page creation, Berners-Lee feels
the Web must become even easier to use if it is
to be a truly interactive, open-ended knowledge
system. He believes that users should be empow-
ered to become active participants in the cre-
ation of knowledge, not just passive recipients.

Berners-Lee is also interested in developing
software that can take better advantage of the rich
variety of information on the Web, creating a “se-
mantic” Web that would not simply connect
pieces of information but encode the meaning or
relevance of each connection. This would allow
“bots,” or software agents, to aid researchers by ze-
roing in on the most relevant material. Ultimately,
human beings and machines might be able to

Bezos, Jeffrey P. 23

actively collaborate in the search for knowledge.
The beginning steps in what appears to be a long
process can be seen in the recent emergence of
XML, an information description language, and
RDF, or Resource Description Framework.

Berners-Lee has been honored with numer-
ous awards from computer societies, including the
Association for Computing Machinery and the
Institute for Electrical and Electronic Engineering.
In 1999 he was named by Time magazine as one
of the 100 greatest minds of the century. As of
2003, he worked at the Massachusetts Institute of
Technology Laboratory for Computer Science.

Further Reading
Berners-Lee, Tim. “Papers on Web design issues.”

Available on-line. URL: http://www.w3.org/
DesignIssues.

———. “Proposal for the World Wide Web, 1989.”
Available on-line. URL: http://www.w3.org/
History/1989/proposal.html. Posted in March
1989, May 1990.

Berners-Lee, Tim, and Mark Fischetti. Weaving the
Web. San Francisco: HarperSanFrancisco, 1999.

Luh, James C. “Tim Berners-Lee: An Unsentimental
Look at the Medium He Helped Propel.” Internet
World, January 1, 2000. Available on-line.
URL: http://www.pathfinder.com/time/interstitials/
inter.html.

The World Wide Web Consortium. “Tim Berners-
Lee.” Available on-line. URL: http://www.w3.org/
People/Berners-Lee. Downloaded on October 31,
2002.

� Bezos, Jeffrey P.
(1964–)
American
Entrepreneur

With its ability to display extensive information
and interact with users, the World Wide Web of
the mid-1990s clearly had commercial possibil-
ities. But it was far from clear how traditional

merchandising could be adapted to the on-line
world, and how the strengths of the new medium
could be translated into business advantages. In
creating Amazon.com, “the world’s largest book-
store,” Jeff Bezos would show how the Web could
be used to deliver books and other merchandise
to millions of consumers.

Jeff Bezos was born on January 12, 1964, and
grew up in Miami, Florida. His mother, Jacklyn
Gise, remarried shortly after his birth, so he grew
up with a stepfather, Miguel Bezos, a Cuban who
had fled to the United States in the wake of
Castro’s revolution. Jeff Bezos was an intense,
strong-willed boy who was fascinated by gadgets
but also liked to play football and other sports.
His uncle, Preston Gise, a manager for the
Atomic Energy Commission, encouraged young
Bezos’s interest in technology by giving him

Jeff Bezos wanted a “big” name for his on-line
bookstore, so he named it after the world’s biggest river,
calling it Amazon.com. He proved that goods could be
sold quickly and efficiently on-line, and helped change
the way people shopped. (CORBIS Sygma)

24 Bezos, Jeffrey P.

electronic equipment to dismantle and explore.
Bezos also liked science fiction and became an
enthusiastic advocate for space colonization.

Bezos entered Princeton University in 1982.
At first he majored in physics, but decided that
he was not suited to be a top-flight theorist. He
switched to electrical engineering and graduated
in 1986 summa cum laude. By then he had
become interested in business software applica-
tions, particularly financial networks. Still only
23 years old, he led a project at Fitel, a financial
communications network. He managed 12 pro-
grammers, commuting each week between the
company’s New York and London offices. When
he became a vice president at Bankers Trust, a
major Wall Street firm in 1988, Bezos seemed to
be on a meteoric track in the corporate world.

Bezos became very enthusiastic about the
use of computer networking and interactive soft-
ware to provide timely information for managers
and investors. However, he found that the “old
line” Wall Street firms resisted his efforts. He re-
called to author Robert Spector that their atti-
tude was: “This was something that couldn’t be
done, shouldn’t be done, and that the traditional
way of delivering information in hard copy was
better. . . . The feeling was: Why change? Why
make the investment?”

In 1990, however, Bezos was working at the
D. E. Shaw Company and his employer asked
him to research the commercial potential of the
Internet, which was starting to grow (even
though the World Wide Web would not reach
most consumers for another five years). Bezos
ranked the top 20 possible products for Internet
sales. They included computer software, office
supplies, clothing, music—and books.

Analyzing the publishing industry, Bezos
identified ways in which he believed it was inef-
ficient. Even large bookstores could stock only a
small portion of the available titles, while many
books that were in stock stayed on the shelves for
months, tying up money and space. Bezos be-
lieved that by combining a single huge warehouse

with an extensive tracking database, an on-line
ordering system and fast shipping, he could sat-
isfy many more customers while keeping costs low.

Bezos pitched his idea to D. E. Shaw. When
the company declined to invest in the venture,
Bezos made a bold decision. He recalled to
Spector, “I knew that when I was 80 there was no
chance I would regret having walked away from
my 1994 Wall Street bonus in the middle of the
year. I wouldn’t even have remembered that. But I
did think there was a chance I might regret sig-
nificantly not participating in this thing called the
Internet that I believe passionately in. I also knew
that if I tried and failed, I wouldn’t regret that.”

Looking for a place to set up shop, Bezos
decided on Seattle, partly because the state of
Washington had a relatively small population
(the only customers who would have to pay sales
tax) yet had a growing pool of technically trained
workers, thanks to the growth of Microsoft and
other companies in the area. After several false
starts he decided to call his store Amazon, de-
ciding that the name of the Earth’s biggest river
would be suited to what he intended to become
Earth’s biggest bookstore.

In November 1994, Bezos, his wife
Mackenzie, and a handful of employees began
the preliminary development of Amazon.com in
a converted garage. Bezos soon decided that the
existing software for mail order businesses was
too limited and set a gifted programmer named
Shel Kaphan to work creating a custom program
that could keep track not only of each book in
stock but how long it would take to get more
copies from the publisher or book distributor.

By mid-1995, Amazon.com was ready go on-
line from a new Seattle office, using $145,553
contributed by Bezos’s mother from the family
trust. As word about the store spread through
Internet chat rooms and a listing on Yahoo!, the
orders began to pour in and Bezos had to strug-
gle to keep up. Despite the flood of orders, the
business was losing money, as expenses piled up
even more quickly.

Boole, George 25

Bezos went to Silicon Valley, the heart
of “high tech,” seeking investors to shore up
Amazon.com until it could become profitable.
Bezos’s previous experience as a Wall Street star,
together with his self-confidence, seemed to do
the trick, and he raised $1 million. But Bezos be-
lieved that momentum was the key to long-term
success. The company’s unofficial motto became
“get big fast.” Revenue was poured back into the
business, expanding sales into other product lines
such as music, video, electronics, and software.

The other key element of Bezos’s growth
strategy is to take advantage of the vast database
that Amazon was accumulating—not only in-
formation about books and other products, but
about what products a given individual or type
of customer was buying. Once a customer has
bought something from Amazon, he or she is
greeted by name and given recommendations for
additional purchases based upon what items
other customers who bought that item had also
purchased. Customers are encouraged to write
on-line reviews of books and other items so that
each customer gets the sense of being part of a
virtual peer group. Ultimately, as he told Robert
Spector, Bezos believes that “In the future, when
you come to Amazon.com, I don’t want you just
to be able to search for kayak and find all the
books on kayaking. You should also be able to
read articles on kayaking and buy subscriptions
to kayaking magazines. You should be able to buy
a kayaking trip to anywhere in the world you
want to go kayaking, and you should be able to
have a kayak delivered to your house. You should
be able to discuss kayaking with other kayakers.
There should be everything to do with kayak-
ing, and the same should be true for anything.”

By 1997, the year of its first public stock of-
fering, Amazon.com seemed to be growing at an
impressive rate. A year later, the stock was worth
almost $100 a share, and by 1999 Jeff Bezos’s per-
sonal wealth neared $7.5 billion. Bezos and
Amazon.com seemed to be living proof that the
“new economy” of the Internet was viable and

that traditional “brick and mortar” businesses
had better develop an on-line presence or suffer
the consequences.

However, in 2000 and 2001 the Internet
economy slumped as profits failed to meet in-
vestors’ expectations. Amazon was not exempt
from the new climate, but Bezos remained con-
fident that by refining product selection and
“targeting” customers the company could even-
tually reach sustained profitability. In January
2002, Amazon announced that it had actually
made a profit during the last quarter of 2001.

Regardless of the eventual outcome, Jeff
Bezos has written a new chapter in the history
of retailing, making him a 21st-century coun-
terpart to such pioneers of traditional retailing
as Woolworth and Montgomery. Time magazine
acknowledged this by making him its 1999
Person of the Year, while Internet Magazine put
Bezos on its list of the 10 persons who have most
influenced the development of the Internet.

Further Reading
Grove, Alex. “Surfing the Amazon.” Red Herring, July

1, 1997. Available on-line. URL: http://www.
redherring.com/mag/issue44/bezos.html. Down-
loaded on November 26, 2002.

Southwick, Karen. “Interview with Jeff Bezos of
Amazon.com.” Upside.com, October 1, 1996.
Available on-line. URL: http://www.upside.com/
texis/mvm/story?id=34712c154b. Downloaded on
November 26, 2002.

Spector, Robert. Amazon.com: Get Big Fast: Inside the
Revolutionary Business Model that Changed the
World. New York: HarperBusiness, 2000.

� Boole, George
(1815–1864)
British
Mathematician

The British mathematician and logician George
Boole developed his algebra of logic about a

26 Boole, George

century before the invention of the computer.
However, his search for “the laws of thought” led
to logical rules that are now embedded in the
silicon of computer chips and used every day by
people seeking information through Web search
engines.

Boole was born on November 2, 1815, in
Lincoln, England, to a family in modest cir-
cumstances. The family soon moved to London,
where Boole’s father worked as a shoemaker and
his mother served as a maid. Although the ele-
mentary schooling available to the lower middle
class was limited, Boole supplemented what he
was taught at school by learning Greek and Latin
at home. Boole’s father, whose hobby was mak-
ing scientific instruments, introduced him to
mathematics and science as they worked to-
gether to make telescopes and microscopes.

The family was not able to afford a univer-
sity education, so Boole went to a trade school
where he studied literature and algebra. However,
when Boole was only 16, his father’s business
failed, and the young man became responsible
for supporting the family. With the careers of
minister and teacher available to him, Boole
chose the latter because it paid a little better.
Meanwhile, Boole had bought advanced books
on subjects such as differential and integral cal-
culus and was often distracted from his teaching
duties by a particularly intriguing math problem.

In 1834, when Boole was 19, he decided that
he needed to make more money to support his
aging family. He started his own school, using a
balanced curriculum of his own design. In addi-
tion to languages and literature, his students
learned science and math with an emphasis on
practical applications. Boole also gave lectures
at the Mechanic’s Institute, an organization ded-
icated to providing educational opportunities to
working-class people.

Boole gradually became more involved in the
international world of mathematics. Together
with computer pioneer CHARLES BABBAGE and as-
tronomer William Herschel, Boole founded the

Analytical Society, an organization geared toward
introducing the “modern” European approach to
calculus to British mathematicians, who clung to
the older, less flexible Newtonian methods. At
age 23, Boole wrote his first scientific paper, of-
fering improvements on Joseph-Louis Lagrange’s
methods for analyzing planetary motions.

By 1844, Boole was moving toward an
analysis of how mathematics itself worked. He
became intrigued about how the manipulation
of mathematical operators and symbols might
mirror logic and the operation of the human
mind. His paper “On a General Method in
Analysis” was rejected at first by the prestigious
Royal Society, perhaps because Boole did not
have a formal university degree. However, Boole’s
cause was supported by some top mathemati-
cians, and the paper was eventually not only
published but awarded a gold medal.

By 1849, Boole’s work had made such an im-
pression on his colleagues that all questions
about his background were dropped, and he was
appointed professor of mathematics at the newly
founded Queen’s College in Cork, Ireland. He
would hold this post for the rest of his career.

At this time Boole was working out the prin-
ciples of what would later become known as
Boolean logic. Essentially, Boole developed a
way to represent the abstract operations of logic
using symbols that could be manipulated
through a form of algebra. For example, if a set
of items is designated x, then everything that is
not in x can be expressed as 1 – x, since “one”
is the logical symbol for the entire universe.
Boole also defined operations such as AND (the
items found in both of two sets) and OR (the
items found in either of two sets). He introduced
this work in an 1847 pamphlet titled The
Mathematical Analysis of Logic.

Boole believed that not only logic but hu-
man thought in general might someday be sum-
marized using a system of rules or laws, just as
physicists and astronomers were developing
mathematical descriptions of the behavior of

Bricklin, Daniel 27

planets. This belief is expressed in Boole’s com-
prehensive work on logic, which he published
in 1854 under the title An Investigation into the
Laws of Thought, on Which Are Founded the
Mathematical Theories of Logic and Probabilities.

In his last years Boole married a former stu-
dent, Mary Everest, and had five daughters with
her. At age 49, Boole died after walking through
a cold rain and contracting pneumonia.

Boole would have been an important math-
ematician even if the computer had never been
invented, but the computer brought his work
from the realm of abstract mathematics to the
practical world of engineering. In the mid-20th
century, when inventors turned to designing ma-
chines that could calculate and even “think,”
they found that Boole’s algebra of logic allowed
them to create logic circuits as well as algorithms
or procedures that could be followed automati-
cally to carry out arithmetic and logical opera-
tions. Boolean logic was a perfect fit to the bi-
nary system of 1 and 0 and the use of electronic
switching. And when computers began to store
information in databases, the ability to specify
the “Boolean operators” of AND, OR, and NOT
made it possible to more precisely specify the
information being sought.

Further Reading
Henderson, Harry. Modern Mathematicians. New York:

Facts On File, 1996.
Kramer, Edna E. The Nature and Growth of Modern

Mathematics. Princeton, N.J.: Princeton University
Press, 1981.

MacHale, Desmond. George Boole: His Life and Work.
Dublin: Boole Press, 1985.

� Bricklin, Daniel
(1951–)
American
Inventor, Programmer

Whenever a business executive or manager wants
“the numbers” to summarize profits and losses or

to back up a proposal, the chances are very good
that the data will be provided in the rows and
columns of a spreadsheet. With this versatile cal-
culating tool, a manager can easily apply formu-
las to explore the effects of changes in billing,
shipping, or other business procedures. Investors
can use spreadsheets to chart the performance of
their stocks or compare the returns on different
investments. Now almost as indispensable as the
word processor, the spreadsheet was the inven-
tion of a young programmer named Dan Bricklin.

Bricklin was born on July 16, 1951, in
Philadelphia. He attended Solomon Schechter
Day School and then enrolled at the Mas-
sachusetts Institute of Technology in 1969.
At first he was a mathematics major, but switched
to computer science during his junior year.
Working at the school’s Laboratory for Computer
Science, Bricklin wrote a program with which
users could perform calculations on-line. He also
helped implement APL, a compact, powerful
computer language favored by many scientists and
engineers. During this time, Bricklin developed a
close working relationship with another graduate
student, Bob Frankston, and the two decided that
someday they would start a business together.

After receiving his B.S. degree in electrical
engineering and computer science in 1973,
Bricklin went to work for Digital Equipment
Corporation (DEC), a leading maker of mini-
computers. There he helped design video termi-
nals and computerized typesetting systems. His
most important achievement at that time, how-
ever, was designing and partly writing one of the
earliest word processing programs, called WP-8.

When DEC wanted him to move to an office
in New Hampshire, Bricklin decided to go back
to school instead to get a degree in business ad-
ministration. In 1977 he went to Harvard Business
school. Bricklin continued his programming work
and interest in software design, but he was also in-
terested in gaining more knowledge of and expe-
rience in business. This combination of skills
would not only help him write better software to

28 Bricklin, Daniel

meet business needs, but would also prepare him
when it came time to start his own business.

Sitting in class at Harvard and working
through complicated mock business exercises,
Bricklin became increasingly frustrated with the
difficulty of keeping up with different business
scenarios with only pencil, paper, and calculator.
As recounted by Robert Slater, he recalled that
he then “started to imagine an electronic calcu-
lator, the word processor that would work with
numbers.” After all, he had already written word
processing software that made it much easier for
writers to create and revise their work. Bricklin

began to imagine a sort of electronic blackboard
that, when a formula was writter on it, would au-
tomatically apply it to all the numbers and cal-
culate the results. He later decided that if he were
to write such a program, “The goal [would be] that
it had to be better than the back of an envelope.”

Bricklin found that his fellow students and
his professors were enthusiastic about the idea
of making a “word processor” for numbers. He
sketched out his ideas for the program, then
wrote a simple version in BASIC on an Apple
II microcomputer. It was very slow because
BASIC had to translate each instruction into
the actual machine language used by the micro-
computer. Bricklin talked to Bob Frankston, and
they agreed to develop the program together.
Bricklin would create the overall design and doc-
umentation for the program, while Frankston
would write it in faster-running assembly lan-
guage. They then met with Dan Fylstra, owner
of a small software publishing company, and he
agreed to market the program. In 1979, Bricklin
and Frankston started their own company,
Software Arts, to develop the software.

Bricklin took business classes by day while
Frankston programmed all night. They rushed to
complete the program, and then had to decide
what to call it. After rejecting suggestions such as
“Calculature” and “Electronic Blackboard,” they
settled on VisiCalc. As the program progressed,
Bricklin astounded one of his Harvard Business
School professors by providing detailed results for
one of the “what-if” assignments—never reveal-
ing that VisiCalc was doing the hard work for
him. Later students of software design would ad-
mire the way the program was structured to use
the very limited resources of computers that typ-
ically had only about 48 kilobytes of memory.

In October 1979, VisiCalc was ready to be
offered to users of Apple II and other personal
computers (PCs). Software Arts began to sell
about 500 copies a month, with Bricklin spend-
ing a considerable amount of time giving “demos”
(demonstrations) of the product in computer

Dan Bricklin was a skilled programmer but he
decided to go into business administration. As he tried
to keep up with calculations for a business simulation,
using only pencil, paper and calculator, he decided
that a computer should be able to do a better job. He
invented a new kind of software—the electronic
spreadsheet. (Photo by Louis Fabian Bachrach)

Brooks, Frederick P. 29

stores. As word of the program spread, big ac-
counting firms started to use it, often buying their
first PCs to run the software. As investment an-
alyst Benjamin Rosen remarked at about that
time, “VisiCalc could someday become the soft-
ware tail that wags (and sells) the computer dog.”

Sales grew steadily, reaching 30,000 a month
in late 1981 when the IBM PC appeared on the
scene. Many companies that had been reluctant
to buy a computer named for a fruit were reas-
sured by the IBM name, while a new version
of VisiCalc in turn became a selling point for
the PC. That same year, Bricklin was honored
with the Grace Murray Hopper Award of the
Association for Computing Machinery, given for
significant accomplishments in computing by
people under 30.

But the 1980s also brought new challenges.
Bricklin’s development team came out with a
new program called TK!Solver, designed for solv-
ing more complex equations. However, Bricklin
became embroiled in a lawsuit with Fylstra over
the rights to market VisiCalc. Meanwhile, a
new program called Lotus 1-2-3, developed by
MITCHELL KAPOR, began to take over the spread-
sheet market. Unlike VisiCalc, which provided
only a spreadsheet, Lotus 1-2-3 included a sim-
ple database system and the ability to create
charts and graphics. Kapor eventually bought out
Software Arts.

Bricklin decided to concentrate on design-
ing programs and leave the marketing to others.
His new company, Software Garden, developed
a program called Dan Bricklin’s Demo Program.
It let designers show how a new program will
work even before writing any of its code. The de-
signer creates a storyboard, much like that used
for movies, and defines what is shown when the
user performs a certain action. During the 1990s,
Bricklin became involved with pen computing
(programs that let users draw or write with an
electronic pen), but this application never be-
came very successful. Bricklin’s latest company,
Trellix, designs custom Web pages for companies.

Further Reading
Bricklin, Dan. “Dan Bricklin’s Web Site.” Available

on-line. URL: http://www.bricklin.com/default.
htm. Downloaded on November 26, 2002.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

Wylie, Margie. “The Man Who Made Computers
Useful.” CNET News.com. Available on-line.
URL: http://news.com.com/2009-1082-233609.
html?legacy=cnet. Posted on October 13, 1997.

� Brooks, Frederick P.
(1931–)
American
Computer Scientist

In the early days of computing (the late 1940s
and early 1950s), most programming was done in
a haphazard and improvised fashion. This was not
surprising: Programming was a brand-new field
and there was no previous experience to draw
upon. However, as computers became larger and
programs more complicated, programmers began
to learn more about how to organize and manage
their projects. Based on his personal experience
writing the operating system for the IBM 360
computer, Frederick Brooks described the obsta-
cles and pitfalls that often wrecked software de-
velopment. He did much to transform the craft
of programming to the systematic discipline that
became known as “software engineering.”

Brooks was born on April 19, 1931, in
Durham, North Carolina, but grew up in a small
rural town. His father was a medical doctor and
encouraged Brook’s interest in science. He later
recalled that “I got fascinated with computers at
the age of 13 when accounts of the Harvard
Mark I appeared in magazines. I read everything
I could get in that field and began collecting old
business machines at bankruptcy sales.” In high
school, Brooks plunged into electronics, join-
ing the radio club and the electrical engineer-
ing club. However, he also worked during the

30 Brooks, Frederick P.

summers at hard physical labor, making sheet
metal pipes for the chimneys of tobacco barns.

Brooks then attended Duke University, ma-
joring in physics and mathematics but also main-
taining his hands-on interest in electronics. For
his senior project he built a closed-circuit TV
system. His first love, however, remained com-
puters. After getting his degree from Duke in
1955, he went to Harvard and did graduate work
under the direction of HOWARD AIKEN, inventor
of the Harvard Mark I, and received his Ph.D.
in applied mathematics in 1956.

Aiken, who designed his series of comput-
ers mainly for scientific work, believed that a

different kind of computer would be needed for
business applications. He invited Brooks to work
on designing such a system. Brooks’s work im-
pressed both Aiken and IBM, which (ironically,
perhaps) gave him a job working on STRETCH,
the world’s first “supercomputer,” a scientific ma-
chine not suitable for business. The STRETCH
introduced Brooks to innovative ideas that would
become basic to all modern computers, includ-
ing pipelining (the efficient processing of a col-
lection of instructions to avoid wasting time)
and the use of interrupts, or special signals that
allow the computer to process input (such as
keystrokes) in an orderly way.

By 1960, Brooks had been placed in charge
of all computer system design at IBM, responsi-
ble for creating the new generation of machines
that would make the company’s name a house-
hold word in data processing. Brooks set about
designing what eventually would be called the
IBM System/360. The “System” in the name was
key: IBM decided that there would be a range of
machines utilizing the same basic design, but the
higher-end models would have more memory,
greater processing capacity, or other features.
Unlike other computer companies where soft-
ware written for one machine could not be run
on a more expensive model, programs written on
a low-end 360 would also run on a top-of-the-
line machine. This meant that users could be
confident that their investment in developing
software would not be lost if they chose to up-
grade their hardware.

The development of the hardware for the
IBM 360 proceeded remarkably smoothly, but by
early 1964 the development team had run into a
roadblock. Every computer needs an operating
system, a master control program that runs appli-
cations programs, manages memory and disk stor-
age, and performs all the other “housekeeping”
tasks needed to allow a computer to carry out the
instructions in its software. A computer with the
capabilities and requirements of the System/360
would require a very complex operating system,

Frederick Brooks played a key role in designing the
IBM System/360, perhaps the most successful
computer model of all time. The difficulties he
encountered in running large software projects led
him to rethink management in his book The Mythical
Man-Month. (photo © Jerry Markatos)

Brooks, Frederick P. 31

and the team of nearly 2,000 programmers that
IBM had assigned to the project had gotten hope-
lessly tangled up in implementing it. Brooks took
charge of the project and had them start over with
a “clean” design from the bottom up. In addition
to compatibility and expandability, the IBM
System/360 offered another key innovation.
By the mid-1960s, relatively high-speed, high-
capacity hard disks were beginning to replace
slow tape drives for program storage. Brooks and
his team designed their operating system so that
if the limited amount of main random access
memory (RAM) started to run out, program in-
structions and data could be “swapped” or tem-
porarily stored on the disk. In effect, this allowed
the computer to run programs as though it had
much more memory than was physically installed.
This idea of “virtual memory” is used in all of to-
day’s computers, including desktop PCs.

Brooks had created an architecture and re-
liable operating system that would become the
standard for mainframe computing for decades
to come. But in dealing with the technical and
human problems of managing a large software
development team, he had also gained insights
that he would describe in his book The Mythical
Man-Month. For example, he learned that sim-
ply adding more programmers to a project did
not necessarily speed up the work—indeed, the
need to bring new team members up to speed
and coordinate them could make the situation
worse. Brooks compared the situation to another
human activity, noting that “the bearing of a
child takes nine months, no matter how many
women are assigned.”

Many computer scientists believe in the “wa-
terfall” approach to designing a program. They
start with a complete but general specification of
what the program is supposed to do, from which
flow detailed specifications, and finally the ac-
tual program code is written and rigorously
tested. While Brooks agrees that this method is
necessary for programs that must be absolutely
correct (such as flight control software), he

believes that for most business programs, it is bet-
ter to start with a limited version of the program,
get it running, and then use the feedback from
users to develop the more complete version.

In 1964, with the initial work on the IBM
System/360 winding down, Brooks left IBM and
went to the University of North Carolina to es-
tablish a department of computer science. At the
time, in most universities computer science did
not exist as a separate department, but instead
was taught in departments of mathematics or
electrical engineering. Brooks decided that the
new department would tackle two “leading edge”
problems: the development of computer graph-
ics software, and research into computer under-
standing of human language.

In the mid-1960s, most computers had no
graphics capabilities at all, other than perhaps
printing pictures made of characters or dots, al-
though some enterprising MIT hackers had cre-
ated a game called Space War on a TV screen
connected to a minicomputer. Brooks and his
colleagues Henry Fuchs and John Poulton set out
to create a system that could produce true, mov-
ing, three-dimensional graphics. He believed
that such a system could help people explore and
learn things in new ways. Authors Dennis
Shasha and Cathy Lazere quote some examples:
“Highway safety people on driving simulators,
city planners designing low cost housing who
wanted real-time on-line estimating . . . as-
tronomers concerned with galactic structure,
geologists concerned with underground water
resources.” Brooks also worked with Sun Ho
Kim, a crystallographer from Duke University,
to create models of molecular structure. In 1974
Brooks and Kim demonstrated the system to vis-
itors from the National Institutes of Health.

Since the 1980s, Brooks has also led re-
searchers into many other areas, including ro-
botics and what is today called virtual reality—
interactive scenes that users can “walk
through” and manipulate. In Brooks’s view, all
these applications are examples of “intelligence

32 Burroughs, William S.

amplification”—the ability to use technology
to help humans think better and faster. Brooks
believes that this approach is likely to be more
successful than the traditional approach to arti-
ficial intelligence—making computers think by
themselves and perhaps replace the human mind.

For his achievements in computer and op-
erating system design, graphics, and artificial in-
telligence Brooks has received numerous awards,
including the Institute of Electrical and
Electronics Engineers (IEEE) Computer Society
Pioneer Award (1970), the National Medal of
Technology (1985), and the IEEE John von
Neumann Medal (1993). In 1999 Frederick
Brooks received the Association for Computing
Machinery’s A. M. Turing Award, sometimes re-
ferred to informally as the “Nobel Prize for
Computing,” for his contributions to the field of
software engineering.

Further Reading
Blauuw, Gerrit A., and Frederick P. Brooks Jr.

Computer Architecture: Concepts and Evolution.
Reading, Mass.: Addison Wesley, 1997.

Brooks, Frederick P., Jr. The Mythical Man-Month:
Essays on Software Engineering. 20th Anniversary
Edition. Reading, Mass.: Addison-Wesley, 1995.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds:
The Lives and Discoveries of 15 Great Computer
Scientists. New York: Copernicus, 1995.

University of North Carolina. “Frederick P. Brooks
Home Page.” Available on-line. URL: http://www.
cs.unc.edu/~brooks. Downloaded on October 31,
2002.

� Burroughs, William S.
(1855–1898)
American
Inventor

Computers were not the first machines to
change the way businesses were run. By the
1880s, the typewriter was starting to be used for

preparing letters and reports. However, for book-
keeping, accounting, and other tasks involving
numbers, the only tools available were ledgers,
pens, and the ability to perform arithmetic by
hand. But the late 19th century was an age of
invention, and William Seward Burroughs
would invent the first practical mechanical cal-
culator to come into widespread use.

Burroughs was born on January 28, 1855, in
Auburn, New York. Like most young men of his
day, he had no formal schooling past eighth
grade. Starting at age 15, he tried his hand at
many different jobs. These included working in
a store and as a bank clerk, but office work
seemed to put a strain on his health. He then
worked in his father’s shop making models for
metal casting and then at a woodworking firm
called Future Great Manufacturing Company.
Burroughs’s mix of clerical experience and
hands-on mechanical knowledge would prove to
be ideal for the inventor of an office machine.

From his business experience Burroughs
knew that that bookkeeping by hand was a
tedious and eye-straining activity and that book-
keepers had to spend about half their time
rechecking each calculation for possible errors.
From his work in manufacturing and machine
shops Burroughs believed that it should be
possible to make a reliable calculating machine
on which numbers could be added by pressing
keys and pulling levers.

Mechanical calculators were not new: The
French scientist and philosopher Blaise Pascal,
for example, had hand-built primitive calcula-
tors in the 17th century. But early calculators
jammed easily and usually could only add one
column of figures at a time, requiring the oper-
ator to manually carry the total from one col-
umn to the next. In 1886, Burroughs and three
investors formed the American Arithmometer
Company to develop and market his design for
a reliable calculator.

Burroughs’s machine had a column of num-
bered keys for each column in the numbers to be

Bush, Vannevar 33

input. The operator simply punched the appro-
priate keys and pulled a lever to load the number
into the machine and add it to the previously
loaded numbers. The keyboard had a special lock-
ing feature that prevented accidentally striking an
additional key before entering the number.

Their first model sold for $475—equivalent
to several thousand dollars today. The first batch
of machines had mechanical problems and
tended to register the wrong numbers if the clerk
pulled too hard. This problem was fixed by a fea-
ture called the “dash pot” which produced the
same amount of force on the handle regardless
of the clerk’s efforts.

The improved version began to sell in
increasing numbers. By 1895, the American
Arithmometer Company was selling almost 300
machines a year from a factory employing 65
clerks and manufacturing workers and three sales-
persons. By 1900, the sales and staff had roughly
tripled, but Burroughs did not live to see it. He
died in 1898. Just before his death, the Franklin
Institute gave him an award for his invention.

In 1905, the company was renamed the
Burroughs Adding Machine Company. Improved
machines now had the ability to subtract and to
print both subtotals and totals, making them
more of a true calculator. A motorized version
appeared in 1918. By the 1920s, more elaborate
machines could print text (for billing) as well as
numbers, and the keys were electrically activated
so the operator could simply touch rather than
strike them.

In the 1950s, under the name Burroughs
Corporation, the firm competed with office
machine giant IBM in the emerging computer
market. Although IBM would dominate the main-
frame market, Burroughs became a respected
competitor, the Avis to IBM’s Hertz. In 1986 the
Burroughs and Sperry Corporations merged.

In creating a reliable calculator, Burroughs
helped offices become used to the idea of au-
tomation and thus helped pave the way for the
computer revolution.

Further Reading
Charles Babbage Institute. “Burroughs Corporation

History.” Available on-line. URL: http://www.cbi.
umn.edu/collections/inv/burros/burhist.htm. Up-
dated on April 2, 2002.

Morgan, B. The Evolution of the Adding Machine: The
Story of Burroughs. London: Burroughs Machines,
1953.

� Bush, Vannevar
(1890–1974)
American
Engineer, Inventor

Although largely forgotten today, the analog
computer once offered an alternative way to
solve mathematics problems. Unlike digital
computers with their binary on/off digital cir-
cuits, analog computers use natural properties of
geometry, fluid flow, or electric current to set up
problems in such a way that nature itself can
solve them. Vannevar Bush pioneered important
advances in analog computing. He then went on
explore pathways for future research and the pos-
sibility of using computers to link information
in new and powerful ways.

Vannevar was born on March 11, 1890, in
Everett, Massachusetts, and spent his childhood
in Boston. His father was a Universalist minister;
both of his grandfathers had been sea captains.
Bush graduated from Tufts University in 1913 with
a B.S. degree. During World War I, Bush worked
for General Electric and the U.S. Navy and then
earned his Ph.D. in electrical engineering in a
joint program from Harvard University and the
Massachusetts Institute of Technology (MIT).

During the latter part of the war, Bush
worked on ways to detect the German U-boats
that were devastating Allied shipping. He re-
turned in 1919 to MIT as an associate professor
of electrical engineering. He became a full pro-
fessor in 1923, and served from 1932 to 1938 as
vice president and dean of engineering.

34 Bush, Vannevar

The 1920s and 1930s saw the transforma-
tion of America into a modern technological so-
ciety. In particular, large electrical grids and
power systems were being built around the coun-
try, extending the benefits of electricity into ru-
ral areas. In order to design and operate intri-
cate power systems, electrical engineers had to
deal with complex equations that involved ex-
tensive calculation. Bush became involved in
the design of devices for automatically solving
such problems. In 1927, Bush and his colleagues
and students created a device called a product
integraph that could solve simple equations
through the interaction of specially designed
gears, cams, and other mechanical devices.

During the 1930s, Bush and his team
steadily improved the device and extended its
capabilities so that it could solve a wider range
of calculus problems. The 1930 version, which
they called a differential analyzer, could solve
equations by repeatedly adding and subtracting
quantities until variables “dropped out.” Unlike
the later digital computers, this analog computer
received its inputs in the form of tracings of
graphs with a stylus. The graphs were then
converted into gear motions and the results of
operations were obtained by measuring the dis-
tance various gears had turned. Numbers were
represented in familiar decimal form, not the bi-
nary system that would later be used by most dig-
ital computers. Using the differential analyzer,
engineers could simulate the operation of a
power system and test their designs.

The use of mechanical parts made these com-
puters relatively slow. In 1935, however, Bush be-
gan work on a new machine, which would become
known as the Rockefeller Differential Analyzer
(named after the Rockefeller Foundation, which
funded part of the development). Although an
analog computer, this machine used vacuum
tubes and relays for much of its operation, as
would the ENIAC and other early digital com-
puters. The machine could solve sixth-order
differential equations with up to 18 variables,

and the president of MIT declared it to be “one
of the great scientific instruments of modern
times.” The machine did extensive work on
ballistics and other problems during World
War II, and several copies were made for other
laboratories.

The differential analyzer was a triumph of
analog computing, but the focus would soon shift
to the more versatile and faster digital computer.
The inventors of ENIAC, J. PRESPER ECKERT and
JOHN MAUCHLY, studied Bush’s machine and how
it used vacuum tube circuits, but the machine’s
limitations encouraged them to use digital cir-
cuits rather than analog.

Bush, too, changed the direction of his
work. During the war he served as the chairman
of the National Defense Research Committee
(NDRC), and then became head of the Office
of Scientific Research and Development, which
oversaw wartime research projects including the
development of radar and of the atomic bomb.

Bush used his contacts at major universities
to bring together top scientists and engineers for
projects whose scale, like that of the huge new
Pentagon building, represented a dawning era in
the relationship between government and sci-
ence. Physicist Arthur Compton commented
that Bush’s “understanding of men and science
and his boldness, courage and perseverance put
in the hands of American soldiers weapons that
won battles and saved lives. But his great
achievement was that of persuading a govern-
ment, ignorant of how science works and unfa-
miliar with the strange ways of scientists, to make
effective use of the power of their knowledge.”

In 1945, Bush released a report titled
Science: The Endless Frontier. In it he proposed
the formation of a national research foundation,
which would be independent of the military and
fund research not only in the “hard” sciences of
physics and electronics but in areas such as bi-
ology and medicine as well. Bush hoped that the
organization would be protected from political
pressures and have its priorities set by scientists,

Bushnell, Nolan 35

not Congress. While this proved to be unrealis-
tic, the organization, called the National
Science Foundation, would indeed play a vital
role in many kinds of research. In the comput-
ing field, this would include the development of
supercomputers and the Internet.

Bush’s impact on the further development
of computers was mixed. Because of his attach-
ment to analog computing, Bush opposed fund-
ing for the ENIAC digital computer. Fortunately
for the future of computing, the army funded the
machine anyway. The advantages of digital com-
puting made it dominant by the end of the
1940s, although analog computers survived in
specialized applications.

Bush’s ability to foresee future technologies
would lead him to develop a proposal for a new
way to organize information with the aid of com-
puters. Together with John H. Howard (also of
MIT), he invented the Rapid Selector, a device
that could retrieve specific information from a
roll of microfilm by scanning for special binary
codes on the edges of the film. His most far-
reaching idea, however, was described in an ar-
ticle published in Atlantic Monthly magazine in
July 1945. It was a device that he called the
“Memex”—a machine that would link or asso-
ciate pieces of information with one another in
a way similar to the associations made in the hu-
man brain. Bush visualized the Memex as a desk-
top workstation that would enable its user to
explore the world’s information resources by
following links. This idea became known as
hypertext, and in the 1990s it became the way
webpages were organized on the Internet by TIM

BERNERS-LEE.
Throughout his career, Bush always kept the

possible effects of new technologies in mind, and
he urged his fellow scientists and engineers to
do likewise. As quoted by G. Pascal Zachary,
Bush warned that “One most unfortunate prod-
uct is the type of engineer who does not realize
that in order to apply the fruits of science for the
benefit of mankind, he must not only grasp the

principles of science, but must also know the
needs and aspirations, the possibilities and frail-
ties of those whom he would serve.”

Bush’s numerous awards reflect the diversity
of his work. They include medals from the
American Institute of Electrical Engineers (1935),
American Society of Mechanical Engineers
(1943), and the National Institute of Social
Sciences (1945). In 1964 Bush was awarded the
National Medal of Science.

Further Reading
Bush, Vannevar. “As We May Think.” Atlantic

Monthly, July 1945, p. 101ff. Also available on-
line. URL: http://www.theatlantic.com/unbound/
flashbks/computer/bushf.htm. Downloaded on
November 26, 2002.

Nyce, James M., and Paul Kahn, editors. From Memex
to Hypertext: Vannevar Bush and the Mind’s
Machine. San Diego, Calif.: Academic Press, 1992.

Zachary, G. Pascal. Endless Frontier: Vannevar Bush,
Engineer of the American Century. New York: Free
Press, 1997.

� Bushnell, Nolan
(1943–)
American
Inventor, Entrepreneur

Bloop! Bonk! Bloop! Bonk! That was the sound
of Pong, a crude videogame introduced in 1972.
All it had was two movable “paddles” and a lit-
tle glowing ball to hit with them. Today, no one
would give it a second look, but Pong soon
became a multibillion-dollar game machine in-
dustry, and later inspired programmers to create
similar games for personal computers. Inventor
Nolan Bushnell, with energy as restless as his
game screens, became one of the first modern
Silicon Valley computer pioneers.

Nolan Bushnell was born on February 5,
1943, in Clearfield, Utah, a small town near
the Great Salt Lake. In third grade, he became

36 Bushnell, Nolan

fascinated with electronics when the teacher
asked him to create a demonstration of electricity
from the odds and ends in the class’s “science box.”
After building the demo, he went home and dug
up every switch, flashlight, and other electrical
component he could find, and began to tinker.

Nolan earned his ham (amateur) radio li-
cense when he was only 10 years old. When he
ventured from electronics to more active pur-
suits, he was less successful. An attempt to build
a rocket-powered roller skate succeeded only in
nearly burning down the family’s garage.

Nolan was not a stereotypical nerd, how-
ever. In high school, he played basketball, skied,
and tinkered with cars. In 1961, Bushnell en-
tered Utah State College in Salt Lake City. He
majored in engineering, but he took a broad
range of other courses as well, including eco-
nomics and business classes.

In the next few years, computer scientists
and student “hackers” began to experiment with
connecting the newly developed, affordable
minicomputers to graphics displays. Students
at the Massachusetts Institute of Technology
(MIT), for example, developed Space War, a
game in which players tried to steer blips rep-
resenting spaceships around a solar system,
shooting torpedoes at one another and trying to
master the effects of simulated gravity. Bushnell
began to wonder whether such a game could be
built into a smaller, coin-operated machine for
ordinary people to play.

Meanwhile, Bushnell helped pay his college
expenses by starting his own business, called the
Campus Company, and selling advertising on
free calendars. During the summer he worked at
an amusement park. At first his job was to guess
peoples’ weights and ages (a popular novelty at
the time). However, he was soon promoted to
manager of the park’s games. This gave him the
chance to study a number of different mechan-
ical games and to figure out what elements made
them appeal to people. He concluded that the
most popular games were those that tested
manual dexterity and skill but were not very
complicated.

After graduating from college in 1968 with
a B.S. degree in electrical engineering, Bushnell
tried to get a job at Disneyland, the ultimate
amusement park. When he was turned down, he
moved to Santa Clara, California, in the area
that would soon become known as Silicon
Valley. He worked for two years developing
sound equipment for Ampex Corporation, but
became restless and decided to pursue his dream
of making coin-operated games.

Nolan Bushnell took minicomputer video games out
of the MIT labs and built them into consoles that
began to replace pinball machines in bars and pizza
parlors. His Atari Corporation then invented the
cartridge system that connected video games to the
home TV set. (© Roger Ressmeyer/CORBIS)

Bushnell, Nolan 37

Stuffing a Digital Equipment Corporation
(DEC) PDP minicomputer into a box in an ar-
cade would not have worked—the cheapest ma-
chines cost about $10,000, and they would not
have fit in the box, anyway. Fortunately, by the
early 1970s there was a potential alternative: a
microprocessor, a single small chip that included
all the basic logic and arithmetic functions for a
computer. Combined with some additional chips
and circuits to process input and display graph-
ics, the microprocessor made table-sized video
games possible. Cobbling together the parts on
a table in his daughter’s bedroom, Bushnell built
his first machine, then programmed a simplified
version of the MIT Space War game, calling it
Computer Space.

Bushnell then made a deal with a small
company called Nutting Associates, which had
been making mechanical arcade games. They
agreed to produce his new game machine,
and he became the engineer in charge of the
product. Meanwhile, he and a friend from his
old job at Ampex had been setting up coin-
operated pinball machines in local bars, split-
ting the proceeds with the bar owners. They
made a bit of money by adding the new
Computer Space machines to the route, but
sales were slow.

Using the money he had earned, Bushnell
started a new project. He was convinced that the
space game had been too complicated. After all,
people in bars generally do not want games that
require a lot of concentration. So Bushnell
sketched out the game that became Pong—just
a moving ball, two movable paddles, and a way
to keep score. He and another former Ampex as-
sociate, Al Alcorn, put together the new game
in only three months.

The game worked, but building a unit cost
much more than the $100 that Bushnell thought
people would be willing to pay. None of the game
companies seemed interested in marketing the
game for him. Bushnell then decided to do it on
his own, and started a company called Atari, a

word that in the Asian game of Go means
roughly what “check” does in chess.

Despite the higher price he had to charge,
Bushnell’s Pong game sold like hotcakes after its
introduction in November 1972. Bushnell then
worked on a home version of the game that
could be hooked up to an ordinary TV set. Sears
Roebuck liked that version so much that it
bought up the entire supply in 1974.

After millions of people had bought Pong,
sales began to drop. Bushnell then came up with
a clever idea: Atari designed its machines so that
they could play a variety of different games. All
the user had to do was buy preprogrammed car-
tridges and he or she could play everything from
a car-racing game to games such as poker or even
Scrabble.

People who like to make games also like to
play a lot. As it grew, Atari Corporation’s head-
quarters in Los Gatos, California, began to look
very different from the usual corporate work-
place. Engineers and programmers could wear
jeans and T-shirts, and they were even encour-
aged to brainstorm while relaxing in hot tubs.
The “Atari culture” became the forerunner for
the strange combination of intense work and
laid-back lifestyle that would mark many Silicon
Valley companies in the 1980s and 1990s.

By 1976, Atari was a $40 million company,
but to reach the next level it had to attract ma-
jor investors, especially because it now faced
competition from other video game makers.
Bushnell decided to sell the company to Warner
Communications for $28 million. He kept half
the money as his share and remained chairman
of the company.

Bushnell helped Atari create its first general-
purpose personal computer. The Atari PC had
better graphics than did competitors from Apple
and Radio Shack. Its ability to easily manipulate
patterns called “sprites” to move images on the
screen attracted many game designers. But he
became frustrated because he had to work on
projects that Warner wanted, not the new ideas

38 Bushnell, Nolan

he was constantly thinking up, and he also felt
stuck in just one role. Bushnell, however, be-
lieved that his strength came from a combina-
tion of skills. He would later tell author Robert
Slater that “I’m not the best engineer around.
I’m not the best marketeer. I’m not the best fi-
nancial strategist. But I think I’m better than
anyone at all three of those at the same time.”

So Bushnell left Warner after only two years
and launched a new venture. He had observed
that modern kids like nothing better than video
games and pizza, so why not combine the two?
In 1977, he opened Pizza Time Theatre, which
entertained families with video games and ani-
mated robot characters while they waited for
their pizza. By 1982, there were 200 restaurants
in the chain.

During the 1980s, Bushnell changed his fo-
cus to venture capitalism—finding promising
startup companies and giving them money in re-
turn for a stake in the ownership. One of the com-

panies he nurtured was Androbot, which made a
household robot not unlike the science fiction
creations on the 1960s cartoon The Jetsons. The
robot could detect intruders, do some house-
cleaning, and make clever conversation—but it
turned out to be a novelty rather than a seriously
useful product. In the late 1990s, Bushnell en-
tered the popular new arena of Internet gaming
with his uWink website.

None of Bushnell’s later products was very
successful, but that did not seem to diminish his
joy in trying new things. He was quoted as say-
ing, “Business is the greatest game of all. Lots of
complexity and a minimum of rules. And you
can keep score with the money.”

Further Reading
Cohen, Scott. Zap! The Rise and Fall of Atari. New

York: McGraw-Hill, 1984.
Slater, Robert. Portraits in Silicon. Cambridge, Mass.:

MIT Press, 1987.

39

� Case, Steve
(1958–)
American
Entrepreneur

By the 1980s, personal computers (PCs) were
starting to appear not only in businesses but in
homes. Using a device called a modem, a PC
could be connected to a phone line so it could
exchange data with other computers. Some en-
terprising PC owners set up bulletin boards that
other users could dial into and read and post mes-
sages, as well as downloading the latest game pro-
grams and other files. Meanwhile, some college
students and engineers were communicating over
the Internet, a network that was still unknown
to the general public. The ordinary home PC user
still was not connected to anything.

By the end of the decade, however, easy-to-
use commercial services would change the face
of the on-line world and bring it to millions of
consumers. An entrepreneur named Steve Case
and his company, America Online (AOL),
would become the most successful on-line serv-
ice in history.

Steve Case was born on August 21, 1958, in
Honolulu. His father was a lawyer and his mother
a teacher. Case became interested in business at
a young age, teaming up with his brother Dan,
who was about a year older. Together they started

C
a juice stand (using the plentiful free fruit from
the trees in their backyard). When the brothers
reached their teen years, they named themselves
Case Enterprises and branched out into newspa-
per delivery, selling seeds and greeting cards, and
even publishing an advertising circular under the
name Aloha Sales Agency.

In high school, Steve continued his interest
in publishing, becoming a record reviewer (and
incidentally receiving lots of free music for his
collection, as well as free concert tickets). He
went to the mainland to continue his education,
attending Williams College in Williamstown,
Massachusetts. There he majored in political sci-
ence, which he noted was “the closest thing
to marketing.” He “minored” in rock and roll,
singing for two bands—not very well, as he
would later admit.

Graduating in 1980 with a B.A. degree, he
went to work as a marketer for Procter &
Gamble, working on campaigns for a home per-
manent kit and fabric softener strips. Changing
hairstyles seemed to doom the former product.
In 1982, Case went to PepsiCo, which not only
makes the popular soft drink but owns many
other companies. Case was assigned the task of
visiting the company’s Pizza Hut stores and re-
searching ideas for new flavors of pizza.

Wanting something interesting to do on the
road and in endless motel rooms, Case bought a

40 Case, Steve

Kaypro, an early suitcase-sized “portable” com-
puter. Equipping it with a modem, he connected
to an early on-line service called the Source, and
used it to visit many of the bulletin boards that
were springing up around the country. He later
told an interviewer that “it was all very painful
and time-consuming, but I could glimpse the fu-
ture. There was something magical about being
able to dial out to the world from Wichita.”

In 1983, he met up again with his brother
Dan, who had become an investment banker.
One of Dan’s clients was a company called
Control Video Corporation, which was trying to
set up an on-line service that could deliver Atari
video games to PC users. Unfortunately, the
company was suffering from poor management,
not enough money, and the winding down of the
great video game craze of the 1970s.

In 1985, Case tried to help save the
company (which was now called Quantum
Computer Services) by finding other services be-
sides games that could be delivered on-line.
They linked up with the big PC makers Apple,
Radio Shack, and IBM to develop on-line soft-
ware for their respective operating systems. The
$5 million coming in from these deals turned out
not to be enough to pay the expenses of devel-
oping the software. Investors decided that Case
had bitten off more than he could chew and
called for his firing. However, chief executive
officer Jim Kimsey stuck by him. Gradually the
company began to sign up enough on-line sub-
scribers to become profitable.

Six years later the company changed its
name to America Online (AOL). Like Amazon’s
JEFFREY P. BEZOS would do a few years later, Case
decided to expand the company’s user base as
fast as possible. AOL spent (and continues to
spend) millions of dollars distributing free trial
disks by mail and in magazines, as well as ad-
vertising on TV and radio. The other part of
Case’s strategy was to make deals with compa-
nies that had software or services that they
wanted to offer on-line. Having more things for

users to see, do, and buy on-line would in turn
make AOL a compelling product for still more
users.

Meanwhile, software giant Microsoft had
noticed AOL’s success. First Microsoft cofounder
Paul Allen and then WILLIAM GATES III himself
expressed an interest in buying AOL. Case, how-
ever, vowed to resist the takeover attempt, de-
spite Gates’s threat to develop his own compet-
ing on-line service.

By the mid-1990s, the World Wide Web
(created in 1990 by TIM BERNERS-LEE) was bring-
ing the Internet into the public eye. Recognizing
that people were going to want to access this
vast and growing worldwide network, Case
bought companies that would provide AOL with
the expertise and software needed to connect
people to the Internet. AOL became more prof-
itable in 1993 and 1994, but in 1995 the com-
pany took a loss despite its growing revenues.
This was because AOL had spent even more
money on buying other companies and setting
up new services than the $394 million it had
taken in. With the company reaching 2 million
subscribers that year, Wall Street investors re-
mained confident that it would be profitable in
the long term. Inc. magazine named Case an
Entrepreneur of the Year in 1994.

The rise of AOL was accompanied by
growth pains, however. Sometimes the company
added users faster than it could provide connec-
tions and computer capacity. This resulted in
slow service and complaints from users. Veteran
Internet users tended to look down upon the
flood of AOL users who were posting in Internet
newsgroups as “clueless newbies” who under-
stood nothing about the sophisticated culture of
the Internet. But defenders of the easy-to-use
AOL pointed out that it was more accessible and
reassuring to consumers who were hesitant to
venture directly onto the Internet. Besides, as
Case told an interviewer, “Consumers don’t
want millions of websites. They don’t want to
click on ‘Sports’ and have 18,000 sports websites

Cerf, Vinton 41

pop up. . . . They will rely on people to package
and present the services that are going to be of
the highest quality and the most relevant to
their particular interest.”

In 1995 Microsoft made good on its threat
by starting its own on-line service, Microsoft
Network (MSN), and including it with its
Windows 95 operating system. New PC users
now had an icon on their screens that would
take them directly to MSN. AOL and the other
two leading on-line services, CompuServe
(which AOL later bought) and Prodigy, cried
foul and asked the government to investigate
Microsoft for unfairly using its monopoly on the
operating system. Microsoft would eventually
face a variety of antitrust challenges in the
courts, but meanwhile Case and Gates did not
hesitate to make a deal they thought would be
mutually advantageous. AOL agreed to include
the Microsoft Internet Explorer browser with its
introductory software disks, and Microsoft in
turn agreed that its next operating system,
Windows 98, would include an AOL icon on the
desktop.

The 21st century brought a sharp downturn
in the on-line economy. Rather than try to cut
his losses by reducing services, Case typically
took the opposite approach. In January 2001,
AOL merged with media giant Time Warner,
creating a company, AOL Time Warner, worth
more than $180 billion. Time Warner offered ac-
cess to cable TV (and cable Internet service) as
well as a huge amount of “content”—news and
other features—that AOL can use to make it a
compelling portal, or gateway to the Internet.

Of course, in times of economic uncertainty
and rapidly changing technology, AOL’s future
and Case’s own future plans remain to be seen
(In January 2003 Case announced that he would
resign as chairman of AOL Time Warner, and
he admitted that the company’s performance af-
ter the merger had been disappointing.) Many
industry observers believe Case had alienated
the “traditional media” people at Time Warner

by making extravagant claims for future web ini-
tiatives. Case’s apparently easygoing manner
and laid-back, casual lifestyle has sometimes
fooled competitors into thinking that he is not
also a hard-driving executive. But Case had
proven that he could meet a variety of chal-
lenges, keeping AOL the top brand name in on-
line services.

Further Reading
Roberts, Johnnie L. “How It All Fell Apart: Steve

Case and Jerry Levin Created AOL Time Warner
in a Marriage of Convenience. The Inside Story
of What Went Wrong.” Newsweek, December 9,
2002, p. 52.

Swisher, Kara. aol.com: How Steve Case Beat Bill Gates,
Nailed the Netheads, and Made Millions in the War
for the Web. New York: Times Books, 1999.

� Cerf, Vinton
(1943–)
American
Computer Scientist

Something as complex as the Internet has more
than one inventor. However, when experts are
asked who played the key role in actually get-
ting people around the world to agree on a sin-
gle way to connect computers, they usually point
to Vinton Cerf. Combining technical and hu-
man skills, Cerf led the effort to build the
“plumbing” that lets a user in Moscow, Russia,
send a message to another user in Moscow,
Idaho.

Vinton (usually called Vint) Cerf was born
on June 23, 1943, in New Haven, Connecticut.
He was born prematurely and suffered from a
hearing defect. While not deaf, he still had to
make a special effort to understand and com-
municate with other people. Later, he would re-
flect that this condition may have helped drive
him to find ways to use computers to communi-
cate in new ways.

42 Cerf, Vinton

Despite his disability, Cerf was a bright stu-
dent who especially loved math, science, and sci-
ence fiction. He built “volcanoes” using plaster
of paris and chemicals that sparked and fumed.
When the Soviets orbited Sputnik and America’s
interest turned to space travel, the teenage Cerf
started building model rockets.

Cerf saw his first computer when he was
a 15-year-old high school student, but the
vacuum-tube-filled monster was strictly off
limits to the public. However, two years later,
he and a friend persuaded a sympathetic offi-
cial at the University of California, Los Angeles
(UCLA) to let them use the school’s Bendix
G-15 mainframe. “The bug bit, and I was in-

fected by computers,” Cerf later told an inter-
viewer for Forbes. However, he kept a wide per-
spective and was always interested in making
new connections between things. As would be
recounted in Current Biography, one day, while
walking by a building at high school, he real-
ized that “the whole universe was hooked
together.”

Cerf enrolled in Stanford University and
earned his B.S. degree in mathematics in 1965.
He then went to work as a programmer for IBM,
helping design time-sharing systems that allow
many users to share the same computer. But Cerf
felt the need to explore computer science more
deeply, so he enrolled in the graduate program
at UCLA. His adviser, Jerry Estrin, was working
on the “Snuper Computer”—a system that let a
user working on one computer log onto a remote
computer. Cerf joined this effort and wrote his
thesis on the subject of remote computer moni-
toring. This experience would be important as
Cerf went further into the brand-new field of
computer networking.

Cerf’s colleagues were impressed by his
wide-ranging intelligence, but he found social
life to be more difficult. Because of his hearing
problems, he could not always understand what
other people were saying. He tried to compen-
sate by asking lots of questions. He noted to au-
thors Katle Hafner and Matthew Lyon, however,
that “in a group conversation this can backfire
embarrassingly if the question you ask is one
which has just been asked by someone else. A
variation (equally embarrassing) is to enthusias-
tically suggest something just suggested.”

One day Cerf’s hearing aid dealer arranged
it so that he would meet another hearing-
impaired client, Sigrid Thorstenberg. Soon Cerf
and Thorstenberg, a designer and illustrator,
were chatting about computers, art, and many
other subjects. A year later they were married.

In 1968, Cerf joined ARPANET, a computer
networking project sponsored by the U.S. Defense
Department. Unlike government agencies with

Every time a Web user clicks on a link, the request and
the returning data travel over the electronic “pipes” of
the Internet. Behind the scenes, Vinton Cerf developed
the rules for connecting the electronic plumbing, and
persuaded engineers and institutions to work together
to implement them. (Courtesy of MCI)

Cerf, Vinton 43

more narrowly focused efforts, ARPANET en-
couraged researchers to brainstorm and develop
new ideas and proposals. Cerf and his colleagues
came up with some wild ideas, including on-line
databases and e-mail.

The actual data transmission for the network
would use an idea borrowed from PAUL BARAN, of
the RAND Corporation think tank. Data would
be broken into individually addressed “packets”
that could be sent over many different possible
routes from one computer to another. This meant
that if a breakdown (or perhaps an enemy attack)
brought down one “node,” or connected com-
puter, communications could be detoured around
it. At the destination computer, a program would
reassemble the arriving packets into the complete
message or file.

Cerf’s first job was to test these ideas for com-
puter networking. He wrote simulation programs
that explored how the network would respond as
more users were added. Often the simulated net-
work “crashed.” But gradually they came up with
a workable design, and in late 1969 the first net-
work, the precursor to the Internet, linked com-
puters at UCLA, the Stanford Research Institute
(SRI), the University of California at Santa
Barbara (UCSB), and the University of Utah.
Each of the four computers had an interface mes-
sage processor, or IMP—essentially a huge, so-
phisticated modem, the size of a refrigerator.

By 1972, ARPANET was growing rapidly
as many other universities came onto the net-
work. Cerf and his colleagues jury-rigged phone
lines and connections and put on a demonstra-
tion of the new network at the International
Conference on Computer Communications in
Washington, D.C. The technology was still un-
reliable, but they managed to make it work, and
the importance of networking again grew in the
worldwide community of computer scientists
and engineers.

In the early days of computer networking,
each vendor (such as IBM or Digital Equipment
Corporation) developed networking software

that ran only on its own computers. If computer
users with different kinds of machines were go-
ing to be able to communicate with each other,
there would have to be an agreed-upon proto-
col, or set of rules for constructing, routing, and
reassembling data packets. There had to be
a network that connected all networks—an
“Internet.” Cerf decided that his next task was
to get the different computer manufacturers and
their engineers to agree on one protocol. In
1973, Cerf and his colleague Robert Kahn an-
nounced such a protocol, called TCP/IP (trans-
mission control protocol/Internet protocol).

In the next few years, Cerf went to numer-
ous meetings, presenting the new system and
urging its adoption. He stressed that this uni-
versal networking system could run on any com-
puter anywhere. At one meeting, he made this
point humorously by taking off his coat, tie, and
dress shirt. Underneath was a T-shirt that read
“IP on everything.”

With the Internet well under way, Cerf de-
cided to enter the commercial sector and work on
ways to bring the benefits of digital communica-
tions and networking to consumers. In 1982, he
took a consulting position with MCI, the long-
distance phone company, and helped it develop
an e-mail system. But Cerf also remained closely
involved with the Internet, which was starting to
evolve from a government and university network
to a general public network. In 1986, he joined
Robert Kahn at the Corporation for National
Research Initiatives, a nonprofit group that
sought to plan further developments in high-tech
research. As of 2003, Cerf is senior vice president
of architecture and technology for MCI.

In 1992, Cerf helped found the Internet
Society and became its first president. By then,
the World Wide Web had been invented (by TIM

BERNERS-LEE), though the explosion of the Web
and of e-commerce was still a few years away.
Already, however, the Internet was raising diffi-
cult social issues such as censorship and the need
to protect on-line users from fraud. As political

44 Church, Alonzo

leaders began to call for new regulations for the
Internet, Cerf suggested a different approach. He
wanted software developers to create programs
that people could use to control what they (or
their children) saw on the Web, protect sensi-
tive personal data from disclosure, and safeguard
privacy. Looking at the 21st century, Cerf saw
the Internet becoming truly worldwide, and
merging with the telephone system to become a
seamless web of communication.

Cerf has received many of the highest awards
in computer science, including the Association
for Computing Machinery (ACM) Software
System Award (shared with ROBERT KAHN in
1991) for development of the TCP/IP software
that drives the Internet. The two pioneers also
shared a National Medal of Technology, pre-
sented by President Bill Clinton in 1997.

But one award had a special meaning to Cerf.
In 1998, he received the Alexander Graham Bell
award for his contribution to improving the lives
of the deaf and hard-of-hearing. When he re-
ceived the award, Cerf noted (as recounted by
author Debbie Sklar) that “As an individual who
is hearing-impaired, I’m extremely proud of the
level-playing-field result the text-based Internet
has had on communications among hard-of-
hearing and hearing communities alike.”

Further Reading
Brody, Herb. “Net Cerfing,” Technology Review 101

(May–June 1998): 73ff.
Cerf, Vinton. “Cerf’s Up.” Available on-line. URL:

http://www1.worldcom.com/global/resources/
cerfs_up. Downloaded on October 31, 2002.

Hafner, Katie, and Matthew Lyon. Where Wizards Stay
Up Late: the Origins of the Internet. New York:
Simon and Schuster, 1996.

Schiek, Elizabeth A., ed. Current Biography Yearbook,
1998. “Cerf, Vinton.” New York: H. W. Wilson,
1998, pp. 89–92.

Sklar, Debbie L. “The Bell Tolls for Vint Cerf,”
America’s Network, August 15, 1998, p. 49.

� Church, Alonzo
(1903–1995)
American
Mathematician

Mathematics is perhaps the oldest of the sci-
ences, and computer science is certainly one of
the newest. Since the beginning of computer re-
search in the late 1930s, the two fields have had
a close relationship and have depended on one
another for progress. Engineers need mathe-
maticians not only to provide algorithms, or pro-
cedures for solving problems, but to answer a
fundamental question: What kinds of problems
can be solved by computation? Mathematicians,
in turn, need computers if they are to tackle
problems involving calculations that could not
be finished manually in a lifetime. Logician
and mathematician Alonzo Church would do
much to put computing on a firm mathematical
foundation.

Church was born on June 14, 1903, in
Washington, D.C. His father was a municipal
judge. The Church family had a long mathe-
matical tradition: Alonzo’s great-grandfather,
also named Alonzo Church, had been a profes-
sor of mathematics at Athens College (later the
University of Georgia) and had served as the
school’s president from 1829 to 1859.

Following in those distinguished footsteps,
Church attended Princeton University and re-
ceived his A.B. degree in mathematics in 1924.
Church found that he was very interested in the
logical underpinnings of mathematics. Oswald
Veblen, a distinguished geometer and expert
on mathematical postulates, encouraged young
Church’s interest in the foundations of mathe-
matics.

Responding to Veblen’s encouragement,
Church continued into graduate school at
Princeton and received his Ph.D. in 1927. He
received a National Research Fellowship, and in
1928 he went to Göttingen, Germany, where he

Church, Alonzo 45

discussed his research with David Hilbert and
other noted European mathematicians.

At the beginning of the 20th century,
Hilbert had made a list of what he considered
to be the most important unanswered questions
or problems in mathematics. The 10th problem
on the list asked whether there was a “me-
chanical procedure” that, starting from the ba-
sic axioms of mathematics, could prove whether
any given proposition was true. By “mechani-
cal,” Hilbert meant a set of steps that could
be carried out routinely by mathematicians.
However, by the late 1930s, researchers such as
ALAN TURING were beginning to think in terms
of actual machines that could carry out such
steps.

In 1936, Church used formal logic to prove
that no such procedure could be guaranteed to
work in every case—that arithmetic was “unde-
cidable.” This, of course, did not mean that the
answer to a calculation such as 9 × 7 + 1 could
not be determined precisely. Rather, it meant
that there was no way to prove that an arith-
metic proposition might not come along that
could not be answered.

Church arrived at this result by using re-
cursive functions. A function is an operation
that works on a quantity and yields a result—for
example, the “square” function returns the re-
sults of multiplying a number or quantity by it-
self. Recursion, a powerful idea used in computer
programming today, involves a function calling
upon itself repeatedly until it reaches a defined
end point.

At about the time Church was writing his
proof for Hilbert’s 10th problem, Turing was tak-
ing a different approach. Instead of using func-
tional analysis like Church, Turing constructed
an imaginary machine that could carry out sim-
ple operations repeatedly. Turing showed that
this machine could carry out any definable cal-
culation, but that some calculations were not de-
finable. Turing and Church arrived at the same

conclusion through different routes, but their
approaches were complementary. Both received
credit for placing the theory of computability on
a firm foundation and paving the way for further
research into computing machines.

Church also contributed to future computer
science by developing the “lambda calculus,”
first introduced in 1935. This describes the rules
for combining mathematical functions, using re-
cursion, and building functions up into complex
expressions. Researchers in artificial intelligence
(AI) (such as JOHN MCCARTHY) would later use
the lambda calculus to design powerful “func-
tional languages” such as LISP.

Church taught at Princeton for many years.
In 1961, he received the title of Professor of
Mathematics and Philosophy. In 1967, he took
the same position at UCLA, where he was ac-
tive until 1990. He received numerous honorary
degrees, and in 1990 an international symposium
was held in his honor at the State University of
New York at Buffalo.

Through a long career as a professor of math-
ematics, Church nurtured many students who
became great mathematicians, and he edited an
influential periodical, The Journal of Symbolic
Logic. He retired in 1990 and died five years
later. He was elected to the American Academy
of Arts and Sciences and the U.S. and British
Academies of Science.

Further Reading
Barendregt, H. “The Impact of the Lambda Calculus

in Logic and Computer Science.” The Bulletin of
Symbolic Logic 3, no. 2 (1997): 181–215.

Church, Alonzo. Introduction to Mathematical Logic.
Princeton, N.J.: Princeton University Press, 1956.

“The Church-Turing Thesis.” Available on-line. URL:
http://plato.stanford.edu/entries/church-turing.
Updated on August 19, 2002.

Davis, M. The Undecidable: Basic Papers on Undecidable
Propositions, Unsolvable Problems, and Computable
Functions. Hewlett, N.Y.: Raven Press, 1965.

46 Codd, Edgar F.

� Codd, Edgar F.
(1923–2003)
British
Mathematician, Computer Scientist

The “glue” that makes the Information Age pos-
sible is the organization of data into databases,
or collections of related files containing records
of information. Edgar Codd created the rela-
tional database model that is used today by busi-
nesses, government agencies, and anyone who
needs to organize large quantities of information
so that it can be retrieved reliably. Codd also
made important contributions to other areas of
computing, including multiprogramming and
self-reproducing programs.

Codd was born on August 19, 1923, in
Portland, England. During World War II, he served
as a captain in the Royal Air Force. After the war,
Codd completed his B.A. and M.A. degrees in
mathematics at Oxford University. He then im-
migrated to the United States. After a brief stint
as a mathematics instructor at the University of
Tennessee, Codd went to work at IBM in New
York. There he joined JOHN BACKUS in the de-
velopment of the IBM SSEC (Selective Sequence
Electronic Calculator), an early computer.

From 1953 to 1957, Codd worked for
Computing Devices of Canada, but he then re-
turned to IBM. Codd joined the team working
on STRETCH, an ambitious high-performance
computer. Codd’s special interest was in multi-
programming, or the ability to run many pro-
grams simultaneously. Codd designed an “exec-
utive,” or control program, that could keep track
of the execution of multiple programs. He wrote
a number of influential articles that helped bring
multiprogramming to the attention of the com-
puter science community.

In 1962, Codd took a leave of absence from
IBM to go to the University of Michigan, where
he earned a Ph.D. in communications sciences
in 1965. By then his research interest had shifted
from multiprogramming to the creation of pro-

grams that could reproduce themselves by sys-
tematically applying simple rules to a grid of uni-
form “cells.” In 1968, Codd published a book
called Cellular Automata that elaborated on the
work he had done in his doctoral dissertation.
(The idea of cellular automation would be pub-
licized later by mathematician John Conway,
who designed the “Game of Life” to generate and
“evolve” visual patterns.)

By the late 1960s, Codd’s research took
yet another turn. By that time, corporations and
government agencies were storing huge quantities
of information on giant mainframe computers.
Applications ranged from the Social Security
Administration rolls to large corporate payrolls,
inventory, and transaction records. It was becom-
ing increasingly difficult to manage all this infor-
mation. One fundamental problem was that there
was no standard model or way of organizing and
viewing information in a database. Programmers
created and updated data files using program code
(such as COBOL) often without much regard to
how data in one file (such as inventory records)
might be related to that in other files (such as cus-
tomer information and purchase transactions).

Codd decided to focus on the problem of
specifying the relationships between data records
in a uniform way. His 1970 article “A Relational
Model of Data for Large Shared Data Banks” de-
scribed a database organized as a set of tables. In
a table, the columns represent fields such as cus-
tomer name, customer number, account balance,
and so on. Each row contains one record (in this
case, the information for one customer). A sec-
ond table might hold transaction records, with
the columns representing customer numbers and
item numbers. A relation can be set up between
the two tables, since both have a customer num-
ber column. This means, for example, that the
database user can ask for a report listing the
name of each customer with a list of all trans-
actions involving that customer. The customer
number serves as the “bridge” by which the two
tables can be “joined.”

Corbató, Fernando 47

Codd’s relational model gave programmers
ways to ensure the consistency and integrity of
a database. For example, they can make sure that
no two customers have the same customer num-
ber, which is supposed to be a unique “key” iden-
tifying each customer.

Codd’s work also led directly to the devel-
opment of SQL (structured query language), a
standard way to specify what information is to
be retrieved from a database. Since SQL is not
tied to any particular computer language or op-
erating system, someone who masters this lan-
guage can easily work with many different kinds
of database systems.

Codd retired from IBM in 1984. He estab-
lished two database consulting companies and
continued to publish technical papers defending
the relational database model against more re-
cent challenges and revisions. Codd died at
his Florida home of heart failure on April 18,
2003.

Codd has received a number of important
honors, including the Association for Computing
Machinery Turing Award (1981) for his work in
relational databases, membership in the National
Academy of Engineering (1983), and member-
ship of the American Academy of Arts and
Sciences (1994).

Further Reading
Codd, Edgar F. Cellular Automata. New York: Aca-

demic Press, 1968.
———. “Multiprogramming Scheduling: Parts 1 and

2: Introduction and Theory.” Communications of
the ACM 3, no. 6 (1960): 347–350.

———. “Multiprogramming Scheduling: Parts 3 and 4:
Scheduling Algorithm and External Constraints.”
Communications of the ACM 3, no. 7 (1960):
413–418.

———. The Relational Model for Database Management,
Version 2. Reading, Mass.: Addison-Wesley, 1990.

———. “A Relational Model of Data for Large
Shared Data Banks.” Communications of the
ACM 13, no. 6 (1970): 377–387.

� Corbató, Fernando
(1926–)
American
Computer Scientist

During the 1950s, someone fortunate enough to
have access to a computer had to prepare a pro-
gram on punched cards or tape and hand it over
to the machine’s operator. The large, expensive
mainframe computers could only run one pro-
gram at a time, so each user had to wait his or
her turn. As a result, most users were lucky if they
could run their programs once or twice a day.

As computers gradually gained larger
amounts of “core,” or memory, it was often the
case that whatever program was running needed
only a fraction of the available memory, with
much of the machine’s resources going to waste.
If someone could come up with a way to load
several programs at once and have them share
the memory, the computer could be used much
more efficiently. Users might even be able to use
the computer interactively, typing in commands
and getting results almost instantly. This idea,
called time-sharing, was the achievement of
Fernando Jose Corbató.

Corbató was born on July 1, 1926, in
Oakland, California. As a young man, Corbató
developed an interest in electronics. In 1941,
when he was still in high school, the United
States entered World War II. Corbató knew
that he would be drafted soon, so he looked for
a way that he could serve in a technical spe-
cialty. Fortunately, the U.S. Navy had started
the Eddy Program, which was designed to train
the large number of technicians that would be
needed to maintain the new electronic systems
that were starting to revolutionize warfare—
devices such as radar, sonar, and the loran nav-
igation system. The 17-year-old Corbató there-
fore enlisted in the navy, went through a
one-year electronics training program, and
then served as an electronics technician for the
rest of the war.

48 Corbató, Fernando

The war had ushered in the nuclear age and
made physics into something of a “glamor” field.
After he got out of the navy, Corbató enrolled in
the California Institute of Technology (Caltech)
and earned his bachelor’s degree in physics in
1950. He then went to the Massachusetts
Institute of Technology (MIT) for his graduate
studies, earning his doctorate in physics in 1956.

However, while studying physics at MIT
Corbató encountered Philip M. Morse, who
would later become director of the MIT
Computation Center. In 1951 Morse convinced
Corbató to take on a research assistantship in
the use of digital computers in science and en-
gineering. The program was funded by the Office
of Naval Research, and introduced Corbató to
the navy’s latest and greatest computer, a ma-
chine called Whirlwind. This machine, the “su-
percomputer” of its time, was in great demand
despite its unreliable memory system, which
crashed every 20 minutes or so.

Although the Whirlwind was used mainly
for classified military research, the navy made it
available for civilian projects about three or four
hours of each day. Users such as Corbató gener-
ally only got one “shot” at the machine per day,
so if a program had a bug he would have to try
to figure out the problem, make a new program
tape, and hope it ran properly the next day.
Given how exciting the Whirlwind was to use
(it even had a graphics display), this must have
been quite frustrating.

After getting his doctorate in physics,
Corbató joined the newly formed Computation
Center, which was equipped with one of the
newest commercial mainframes, an IBM 704,
which was shared by MIT, surrounding colleges,
and the local IBM staff. Corbató served in a va-
riety of administrative positions, but his atten-
tion was increasingly drawn to finding ways that
the many users clamoring for access to the com-
puter could share the machine more efficiently.

In 1961, Corbató started a new project,
the development of what would become the

CTSS, or Compatible Time-Sharing System. By
November of that year, Corbató and two fellow
researchers, Marjorie Daggett and Bob Daley,
had put together a crude time-sharing system on
the IBM 709 (which had replaced the 704).
The system took a five-kilobyte portion of the
machine’s memory and inserted into it a tiny op-
erating system which received and processed
commands from up to four users at teletype
terminals, while the rest of the memory was
used by traditional batch programs. This time-
sharing system worked only if no one tried to
run a program that required all the machine’s
memory. In other words, it worked only with pro-
grams that were “compatible,” or well-behaved.

As Corbató described in a conference paper,
the new system allowed a user to:

1. Develop programs in languages compat-
ible with the background system,

2. Develop a private file of programs,
3. Start debugging sessions at the state of

the previous session, and
4. Set his own pace with little waste of

computer time.

In other words, Corbató’s time-sharing sys-
tem introduced most of the features that today’s
programmers and users expect as a matter of
course. The machine efficiently switched back
and forth among the running programs, running
a few instructions at a time. Because computers
are so much faster than human beings, each user
experienced little or no delay in the responses
to commands. Each user in effect could treat the
mainframe as his or her “personal computer.”
(Modern personal computers were still almost
20 years in the future.)

In 1962, however, MIT acquired a new IBM
7090 computer, which included the ability to ex-
ecute a “hardware interrupt.” This meant that
the operating system could serve as a “traffic
cop” and enforce the sharing of computing time
between programs. By 1963, an improved ver-

Crawford, Chris 49

sion of CTSS allowed a single mainframe to be
shared by up to 21 simultaneous users. Corbató
participated in further development of time-
sharing under Project MAC, which eventually
adopted a new time-sharing operating system
called Multics, an ancestor of today’s UNIX
operating system.

Meanwhile, Corbató rose steadily in the ac-
ademic ranks at MIT, becoming an associate pro-
fessor in 1962, a full professor in 1965, and the
associate department head for computer science
and engineering from 1974 to 1978 and 1983 to
1993. Corbató retired in 1996. In 1991 he re-
ceived the prestigious Association for Computing
Machinery Turing Award “for his work in or-
ganizing the concepts and leading the develop-
ment of the general-purpose large-scale time
sharing system and resource-sharing computer
systems CTSS and MULTICS.” He is also a fel-
low of the Institute for Electrical and Electronics
Engineers (IEEE) and recipient of the IEEE
Computer Pioneer Award (1982) and a number
of other fellowships and honors.

Further Reading
Corbató, Fernando, et al. “An Experimental Time-

Sharing System,” Proceedings SJCC 21 (1962):
335–344.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Press, 1995.

� Crawford, Chris
(ca. 1950–)
American
Programmer

Many early computer and video games relied on
simple, compelling action such as chasing, rac-
ing, and shooting. However, starting in the
1970s programmers and computer science stu-
dents began to develop and enjoy a different sort
of game. In games such as the original
Adventure, the player controlled a character

who traveled in an imaginary world and inter-
acted with that world and its inhabitants. When
personal computers became widespread in the
1980s, companies such as Infocom offered more
elaborate versions of adventure and role-playing
games, while other companies specialized in de-
tailed war game simulations.

Unlike film directors, game designers gen-
erally worked in anonymity, with players not
knowing or caring who was designing their en-
tertainment. However, a few game designers be-
gan to stand out because of their creativity and
ambition to raise game design from “mere” pro-
gramming to a true art form. Chris Crawford has
been one of the most innovative of these
designers.

Crawford is reticent about his origins but
says he was born in Texas and was 52 in 2002.
Crawford’s interest in games began in 1966 when
a friend introduced him to Blitzkrieg, a board-
and-counters war game. These games tended
to have many pieces and special rules, so while
they can provide a vivid simulation of war or
other activities, they require much dedication to
play well.

Crawford studied physics in college, earning
his B.S. degree at the University of California,
Davis, in 1972 and his M.S. degree at the
University of Missouri, Columbia, in 1975. He
then taught physics at community college as well
as teaching courses in energy policy through
University Extension. Meanwhile, the first mi-
crocomputer systems had become available.
Crawford bought himself a computer kit, built
his own machine, and began to experiment with
programming computerized versions of his fa-
vorite board games. He realized that the com-
puter had the potential of taking care of rules
interpretation and other details, leaving players
free to think strategically and tactically, more
like real generals and leaders. The computer
could also offer a challenging artificial opponent.

In 1979, Crawford found an opportunity to
turn his longtime hobby of game design into a

50 Crawford, Chris

career. He joined Atari, a company that had be-
come famous for Pong and other video games, and
also marketed a line of personal computers that
featured a sophisticated color graphics system.

Crawford’s first two products for Atari drew
upon his background in energy issues. Energy
Czar put the player in charge of managing an
energy crisis like the one that had occurred only
a few years earlier, in the early 1970s, while
Scram offered a simulated nuclear power plant
that had to be kept under control. (Nuclear
power was a hotly debated issue at the time.)

Crawford was then put in charge of training
programmers to get up to speed on the Atari
computers. During that time he designed two
war games, Eastern Front (1941) (set during
World War II), and Legionnaire, which featured
warfare in the ancient world. Both of these
games were popular and would greatly influence
later designers. Crawford was perhaps the first
designer to successfully translate the concepts of
the old cardboard-counter war games into the
more flexible and interactive world of the com-
puter while keeping them easy to play and un-
derstand. (His 1986 game Patton vs. Rommel
continued the evolution of computer war games
with more sophisticated game mechanics.)
Another popular Crawford title was Excalibur,
which explored the Arthurian legends. Crawford
also described his approach to game design in a
1984 book, The Art of Computer Game Design.

That same year, the video game industry
went into a deep recession, taking down Atari
and leaving Crawford unemployed. He became
a freelance game designer, learned how to pro-
gram the new Apple Macintosh computer, and
in 1985 created what would become his most
successful game: Balance of Power. While most
game designers until then had focused on war,
Crawford’s new game featured diplomacy. Set
in the cold war milieu of NATO, the Soviet
bloc, and nonaligned countries, the nations
in Balance of Power formed complex, ever-
changing relationships based on their different

interests. The game provided a great deal of de-
tail and was absorbing to players who appreci-
ated history and current affairs. It sold a re-
markable 250,000 copies. Crawford wrote a book
(also titled Balance of Power) describing how he
designed the game and exposing some of its
inner workings.

In 1987, Crawford tried to extend his design
skills into a new level of gaming. His game Trust
and Betrayal extended the sophisticated rela-
tionships found in Balance of Power from the
level of nations to that of interpersonal rela-
tionships. Each person in the game could take
on a number of emotional states, as well as re-
membering how he or she had been treated ear-
lier by other characters. While innovative and
intriguing, Trust and Betrayal seemed to be too
far a stretch for most gamers, and did not be-
come a commercial success. (Interestingly, the
current game The Sims, with a less sophisticated
personality model and elaborate graphics, seems
to be quite successful.) In 1989 Crawford also
wrote a revised version of Balance of Power that
reflected the approaching end of the cold war
and a world no longer dominated by the clash
between two superpowers and their allies.

At the start of the 1990s, Crawford contin-
ued refining earlier game systems and develop-
ing new ideas. Guns and Butter put the player
in the role of a macroeconomic planner having
to create a budget that balances military and
social needs, while Balance of the Planet chal-
lenges the player to provide resources while sav-
ing the environment. Together with Balance of
Power, these games provided superb tools for
high school and college students in social stud-
ies, political science, economics, and other
classes to simulate real-world decision making.
Meanwhile, Crawford’s efforts in the traditional
war game field continued with Patton Strikes
Back, which attempted (not entirely success-
fully) to make a war game that was simple
enough to appeal to non-war-gamers while re-
maining a good conflict simulation.

Crawford, Chris 51

Crawford’s game designs have often been con-
troversial because of their emphasis on the “soft”
aspects of character interaction and dynamics as
opposed to the graphic action that seemed to be
demanded by most gamers. In an Omni magazine
on-line interview, Crawford looked back, noting:

There were two fundamental “killer
problems” for my work. The first was the
emphasis on cosmetic demonstration.
People who had just bought the latest,
greatest video or audio card wanted
games that fully utilized these capabili-
ties. This biased game design toward the
cosmetic.

The second killer problem was the
testosterone-soaked nature of computer
games. There is nothing intrinsic in the
medium that demands this, but the audi-
ence drifted in this direction, and so char-
acter interaction got lost in the demand
for louder booms and brighter explosions.

In addition to designing games Crawford has
been very influential in helping to develop game
design as a recognized discipline and to foster
the community of game designers. He created,
edited, and largely wrote The Journal of Computer
Game Design, as well as organizing the first seven
annual meetings of the Computer Game
Developers’ Conference. He also has lectured on
computer game design at many universities
around the world. As he notes in an on-line in-
terview with the website GameGeek Peeks:

I’m a communicator; I thrive on getting
through to people one way or the other.
I enjoy public speaking, I enjoy writing,
and I enjoy using the computer to ex-
press ideas. Computer games people,
though, are coming from a completely
different angle. Their passion is for the
technology; they want to make it jump
through hoops in fascinating new ways.

So they create games that show off great
new hoop-jumping tricks, but they don’t
have anything to say in their games. My
work doesn’t jump through any hoops—
it’s about what I have to say.

Crawford’s current project is an interactive
storytelling system that he calls the Erasmotron.
He has described it as a system based upon
characters that can perform actions and have
repertoires of responses to the actions of other
characters. The “story builder” defines the char-
acter attributes and responses. The player then
enters that world with a character and experi-
ences the interaction as a unique story.

Crawford’s latest book is Understanding
Interactivity, which he believes sums up the in-
sights gained in more than 20 years of game
design. Of course, the theory of interactivity as
discussed by Crawford is applicable to many kinds
of software other than games. Crawford’s seminal
work has been noted in many retrospectives on
the history of computer games appearing in such
magazines as Computer Gaming World.

Further Reading
Crawford, Chris. The Art of Computer Game Design.

Berkeley, Calif.: Osborne-McGraw-Hill, 1984.
———. The Art of Interactive Design. San Francisco:

No Starch Press, 2002.
———. Balance of Power: International Politics as the

Ultimate Global Game. Redmond, Wash.:
Microsoft Press, 1986.

GameGeek Peeks. “Interview with Chris Crawford.”
Available on-line. URL: http://mono211.com/
gamegeekpeeks/chrisc.html. Downloaded on
October 31, 2002.

Omni. “Prime Time Replay: Chat with Chris
Crawford.” Available on-line. URL: http://www.
omnimag.com/archives/chats/em080497.html.
Posted on August 4, 1997.

“Welcome to Erasmatazz.” Available on-line. URL:
http://www.erasmatazz.com. Updated on October
30, 2002.

52 Cray, Seymour

� Cray, Seymour
(1925–1996)
American
Engineer, Inventor

Seymour Cray was an innovative computer de-
signer who pioneered the development of high-
performance computers that came to be called
supercomputers. Cray was born in Chippewa
Falls, Wisconsin, on September 28, 1925, and
attended high school there. After serving in
World War II as an army electrical technician,
Cray went to the University of Minnesota and
earned a B.S. degree in electrical engineering
and then an M.S. degree in applied mathemat-
ics in 1951. (This is a common background for
many of the designers who had to combine
mathematics and engineering principles to cre-
ate the first computers.)

Cray then joined Engineering Research
Associates (ERA), one of a handful of compa-
nies that sought to commercialize the digital
computing technology that had been developed
during and just after the war. Cray soon became
known for his ability to grasp every aspect of
computing from logic circuits to the infant dis-
cipline of software development. For his first
project, he helped design the ERA 1103, one of
the first computers specifically designed for sci-
entific applications.

When ERA and its competitor, the Eckert-
Mauchly Computer Company, were bought by
Remington Rand, Cray became the chief de-
signer of Univac, the first commercially suc-
cessful computer. He also played a key role in
the design of computer circuits using transistors,
which were starting to become commercially
available. One of Cray’s other special projects
was the Bogart, a computer designed for cryp-
tography applications for the new National
Security Agency (NSA).

In 1957, however, Cray and two colleagues
struck out on their own to form Control Data
Corporation (CDC). Their CDC 1604 was one

of the first computers to move from vacuum
tubes to transistors. This powerful machine used
48-bit words and was particularly good for the
“number crunching” needed for scientific prob-
lems as well as engineering applications such as
aircraft design.

Cray’s next achievement was the CDC
6600, an even more powerful 60-bit machine re-
leased in 1963 and considered by many to be the
first “supercomputer.” The machine packed to-
gether 350,000 transistors and generated so
much heat that it required a built-in Freon cool-
ing system. CDC seemed to be well on its way
to achieving dominance in the scientific and en-
gineering computing fields comparable to that
of IBM in business computing. Indeed in a memo

Seymour Cray built sleek supercomputers that
looked—and performed—like something out of
science fiction. Scientists relied on them to understand
what was going on in splitting atoms or folding
proteins, and engineers used them to design new
generations of aircraft. (Courtesy Cray Corporation)

Cray, Seymour 53

to his staff, IBM chief executive officer THOMAS

WATSON JR. reacted with dismay to Cray’s
achievement:

I understand that in the laboratory de-
veloping the [CDC 6600] system there
are only 34 people including the jani-
tor. Of these 14 are engineers and 4 are
programmers . . . Contrasting this mod-
est effort with our vast development ac-
tivities, I fail to understand why we have
lost our industry leadership position by
letting someone else offer the world’s
most powerful computer.

Cray believed the very compactness of his
team was a key to its success, and suggested that
“Mr. Watson [had] answered his own question.”

In 1965, IBM began the ASC project in an
attempt to regain leadership in supercomputing.
By 1969, however, the IBM project had bogged
down and was canceled. IBM then announced a
forthcoming computer, the Model 90. This ma-
chine, however, existed only as a set of schemat-
ics, and CDC believed that IBM was unfairly
using the announcement to deprive CDC of sales.
CDC sued IBM, and the Department of Justice
negotiated a consent decree under which IBM
paid CDC more than $600 million to compen-
sate it for lost revenue.

By the late 1960s, Cray had persuaded CDC
to provide him with production facilities within
walking distance of his home in Chippewa Falls.
There he designed the CDC 7600, ushering in
the next stage of supercomputing. However
CDC disagreed with Cray about the commercial
feasibility of building the even more powerful
computers on Cray’s drawing board. In 1972,
therefore, Cray formed his own company, Cray
Research, Inc.

Cray’s reputation as a computer architect
was so great by then that investors flocked to
buy stock in his company. The design of his rev-
olutionary Cray-1 (released in 1976) resembled

the monolith from the science fiction movie
2001: A Space Odyssey. The Cray-1 was the first
supercomputer to use “vector” or parallel pro-
cessing, where tasks can be assigned to different
processors to speed up throughput (the volume
of data being processed). Cray then left his po-
sition as president of CDC to devote himself full
time to an ambitious successor, the Cray-2. This
machine would not be completed until 1985 be-
cause of problems with the cutting-edge chip
technology being used to pack ever-growing
numbers of chips together. The Cray-2 would
have an unprecedented 2 gigabytes (2 billion
bytes) of internal memory and the ability to
process 1.2 billion floating point operations per
second.

Meanwhile, however, CDC executives had
become worried about the delay and the poten-
tial loss of revenue and assigned another de-
signer, Steve Chen, to design an upgrade for the
original Cray-1.

While costing millions of dollars apiece, the
Cray supercomputers made it possible to perform
simulations in atomic physics, aerodynamics, and
other fields that were far beyond the capabilities
of earlier computers. However, Cray Research
and its spinoff Cray Computer Corporation ran
into financial problems and were bought by
Silicon Graphics (SGI) in 1996.

Cray liked to stress the importance for
designers of getting simple things right when
beginning a new design. When asked what com-
puterized design aids he had used in developing
the Cray-1, he replied that he preferred a num-
ber three pencil and a Quadrille notepad. And
when he was told that Apple had bought a Cray
supercomputer to help them design a new
Macintosh, Cray replied that he had just bought
a Mac to help him design the next Cray.

By the mid-1990s, however, Cray had run
into trouble. The company had spent $300 mil-
lion on developing the Cray-3 without being
able to make it commercially feasible. Cray de-
cided to start over with the even more powerful

54 Cray, Seymour

Cray-4 design (with 64 processors), but the com-
pany had to file for bankruptcy in 1995.

The following year, Cray was involved in an
auto accident that resulted in his death on
October 5, 1996. He left a legacy of powerful ideas
and machines that defined for decades the fron-
tiers of computing. Cray received many honors in-
cluding the Institute of Electrical and Electronics
Engineers (IEEE) Computer Society Pioneer
Award (1980) and the Association for Computing
Machinery/IEEE Eckert-Mauchly Award (1989).

Further Reading
Bell, Gordon. “A Seymour Cray Perspective.” Avail-

able on-line. URL: http://research.microsoft.com/

users/gbell/craytalk. Posted on January 25,
1998.

Breckenridge, Charles W. “A Tribute to Seymour
Cray.” Available on-line. URL: http://www.cgl.
ucsf.edu/home/tef/cray/tribute.html. Posted on
November 19, 1996.

Murray, C. J. The Supermen: The Story of Seymour Cray
and the Technical Wizards behind the Supercomputer.
New York: New York: John Wiley, 1997.

Smithsonian Institute. National Museum of American
History. “Seymour Cray Interview.” Available
on-line. URL: http://americanhistory.si.edu/csr/
comphist/cray.htm. Posted on May 9, 1995.

55

� Davies, Donald Watts
(1924–2000)
British
Computer Scientist

When a user sends an e-mail, the message is bro-
ken up into small blocks of data called packets.
The packets are routed over the network, then
handed off from computer to computer until they
reach their ultimate destination, where they are
reassembled into the complete message. This ver-
satile communications mechanism, called packet-
switching, was just one of the ideas proposed and
developed by an equally versatile British com-
puter scientist named Donald Watts Davies.

Davies was born June 7, 1924, in Treorchy
in the Rhondda valley in Wales. His father,
a clerk at a coal mine, died only a few months
after Davies’s birth. The family then moved
to Portsmouth, England, where Davies attended
elementary and high school.

Young Davies developed a keen interest in
physics, and earned his B.Sc. degree at Imperial
College, London University, in 1943. He added
a mathematics degree in 1947. A standout honor
student, Davies received the Lubbock Memorial
Prize as the leading mathematician at the uni-
versity. During World War II Davies also worked
in the British nuclear research program at
Birmingham University.

D
During his last year at London University,

Davies attended a lecture that would shape his fu-
ture career. He learned about a new project at the
National Physical Laboratory (NPL) that would
build one of Britain’s first stored-program digital
computers, the ACE. Davies quickly signed up for
the project, which was led by one of the world’s
preeminent computer scientists, ALAN TURING.
Together with colleagues such as Jim Wilkinson
and Ted Newman, Davies played an important
role in translating Turing’s revolutionary com-
puter architecture into a working machine, the
ACE, which ran its first program in 1950.

Using the ACE and its successors, Davies
developed many interesting computer applica-
tions, including one of the first automated lan-
guage translation programs. (Responding to cold
war needs, the program translated technical doc-
uments from Russian into English.) Davies also
pioneered the use of computers to simulate real-
world conditions, developing simulations for
road traffic and for the warning and escape sys-
tems used in coal mines.

In 1963, Davies became technical manager
for the Advanced Computer Technology Project
for the British Ministry of Technology (similar to
the U.S. Advanced Research Projects Agency, or
ARPA). In that role, he developed new computer
hardware, including a multiple-processor com-
puter system and a new way to organize and

56 Dell, Michael

retrieve data in file systems. In 1966, Davies was
promoted to director of the NPL’s Autonomics
Division, which he transformed into a wider-
ranging computer science research enterprise.

Davies’s interest then turned to the new
field of networking, or communications links
between computers. He proposed the packet-
switching idea as a way to route messages safely
and efficiently between computers, and his ideas
were well received by the British Post Office
(which also ran the telephone system). In 1967,
at a conference sponsored by the Association for
Computing Machinery (ACM) in Gatlinburg,
Tennessee, Davies presented his packet-switching
ideas. A similar scheme had been proposed ear-
lier by American communications researcher
PAUL BARAN, but it had the rather unwieldy
name of “distributed adaptive message block
switching” and focused mainly on routing phone
messages. Davies, on the other hand, focused
specifically on data transmission and provided
the simpler term “packet-switching.” Davies’
presentation convinced LAWRENCE ROBERTS to
adopt the system for the proposed ARPANET,
which would later become the Internet.

Davies’s interests ranged widely over other
aspects of computer science. During the 1970s
and 1980s, he worked on applications such as
voice recognition, image processing, data secu-
rity, and encryption. In 1984, Davies left the
NPL and became a private consultant, helping
banks and other institutions devise secure data
communications systems.

Donald Davies died on May 28, 2000, while
on a trip to Australia. In recognition of his
achievements, he was made a Commander of the
British Empire (CBE) in 1983 and a fellow of
the Royal Society (Britain’s premier scientific
group) in 1987. (Davies noted that he was par-
ticularly pleased at being able to sign the same
register that bore the signature of Isaac Newton.)
Davies also received the John von Neumann
Award in 1983, as well as other honors in the
field of computer science.

Further Reading
“Donald W. Davies CBE, FRS.” Available on-line.

URL: http://www.thocp.net/biographies/davies_
donald.htm. Updated on July 30, 2001.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Schofield, Jack. “Donald Davies: Simple Idea That
Made the Internet Possible.” Guardian Unlimited.
Available on-line. URL: http://www.guardian.
co.uk/Archive/Article/0,4273,4024597,00.html.
Posted on June 2, 2000.

� Dell, Michael
(1965–)
American
Entrepreneur

In the early days of personal computing, most in-
dividuals (as opposed to organizations) bought
Personal Computers (PCs) from storefront busi-
nesses. There were “name brand” PCs from IBM,
Compaq, Apple, and other major companies, and
there were “clones” put together in the back rooms
of computer shops. Clones offered lower prices and
more flexibility in components such as hard drives,
but quality was more variable. Getting technical
support and repair service could also be a problem
if the shop went out of business.

Many industry experts had believed that
computers were too complicated to sell by mail,
and that users would insist on the assurance that
came from dealing personally with a store. A
Texas entrepreneur named Michael Dell proved
them wrong. His company is now the biggest
seller of PCs, which are mainly sold by phone
and over the Web.

Michael Dell was born on February 23,
1965, in Houston, Texas. As he would recall
later in an interview with Fortune magazine, he
always knew he wanted to run a business. As a
12-year-old he worked as a dishwasher and wa-
ter boy at a Chinese restaurant. He used his earn-
ings to build a stamp collection. Soon he became

Dell, Michael 57

a stamp dealer, selling stamps by mail and run-
ning a stamp auction.

By age 16, Dell had saved enough to buy an
Apple II, one of the first generation of desktop
computers that were revolutionizing information
processing. He used the computer to boost his next
business, selling newspaper subscriptions. Dell re-
alized that people who had just got married were
likely to be moving and setting up new house-
holds, and thus likely to want to start newspaper
subscriptions. Dell went to the local courthouse
and obtained lists of marriage license applicants
and their addresses, and used his computer to gen-
erate letters with subscription offers. As a high
school senior, Dell made enough money selling
subscriptions to buy an $18,000 BMW. This abil-
ity to sense new market opportunities and harness
technology to serve them would be characteristic
of Dell’s career as an entrepreneur.

Dell’s father was an orthodontist and his
mother a stockbroker. They harbored profes-
sional ambitions for their son, specifically want-
ing him to be a doctor, and he obliged by
enrolling in premedical school at the University
of Texas in Austin in 1983. But Dell’s heart was
not in medicine, and he was soon spending his
spare time on a new business enterprise—selling
personal computers.

By the mid-1980s, the IBM PC had become
the dominant form of personal computer.
However, IBM had lost control of the machine’s
architecture, which meant that companies rang-
ing from Compaq, Hewlett-Packard, and Radio
Shack to “no-name” clone shops could make IBM
PC–compatible machines and sell them with
copies of Microsoft’s MS-DOS operating system.

Dell had tinkered with PCs and followed the
industry for some time, and he decided that he
could assemble and sell PCs on his own. Using
remaindered systems and parts, Dell rebuilt and
upgraded PCs to his customers’ specifications,
selling them door to door and by phone and mail.
At a time when computers were usually sold ei-
ther by big corporations or by dealers who often

had little technical knowledge, Dell’s direct, per-
sonalized service proved to be quite successful.

When Dell’s parents found out about his
“sideline,” they reacted angrily. Eventually, they
agreed to let Dell finish the current school year
and then sell PCs through the summer. If sales fell,
Dell would return to school. In the month be-
fore the new semester, Dell sold $180,000 worth
of PCs, and that ended his higher education.

Having proven the success of his methods,
Dell decided that he could achieve much greater
volume of sales—and profits—by building PCs
from scratch, buying motherboards, chips, hard
drives, and other components direct from the
manufacturers. His first machine was called the
Turbo. By 1986, Dell’s annual sales had reached
$34 million. The following year the Dell
Computer Company was born. In 1988, the
company went public, raising $30 million from
selling stock. By then, industry observers and
magazines such as Business Week had begun to
write about the fast-growing company. In 1991,
annual sales hit $546 million.

Dell’s business model relies on several prin-
ciples. Computers are sold directly to corporate
or individual users. A user, for example, can log
onto the Dell website and select a featured con-
figuration (perhaps with some changes), or se-
lect all the features individually, including the
amount of memory, hard drive size, CD or DVD
drives, and video and audio cards. Because a ma-
chine is not assembled until it is ordered, and
Dell uses a “just in time” supply system, cash is
not tied up in parts or inventory. Systems are
built, tested, and shipped within a few days to a
week or so after ordering. User problems are min-
imized by using consistent quality components
and assembly, and by providing prompt techni-
cal support, including overnight or even same-
day service by technicians. It is this sort of
service that has overcome the reluctance of
consumers to buy computers by mail.

By 1992, Dell seemed to be at the top of his
world. Annual sales reached $2 billion, and Dell

58 Dell, Michael

had become the youngest chief executive officer
(CEO) to head a Fortune 500 company. But then
the company “hit the wall.” Sales were growing
faster than the finely tuned infrastructure could
handle, and customers began to complain of de-
lays and bad service. Chasing after growth, Dell
had also begun to sell PCs through stores such
as Wal-Mart and CompUSA. This was a com-
pletely different business model from the com-
pany’s successful direct consumer sales, and
brought new complications that distracted Dell
from his core business.

In addition, Dell had not sufficiently real-
ized the importance of the growing laptop com-
puter market, and when the company finally be-
gan to develop a line of laptops, they used the
less powerful 386 chip instead of the newer 486.
The machines sold sluggishly. Finally, Dell de-
cided to scrap his laptop plans and start over.

In an interview with Fortune magazine, Dell
recalled how things had gotten away from him:

When you are growing a business you re-
ally have little way of determining what
the problems are. You had different parts
of the company believing they were mak-
ing their plan, but when you rolled up
the results of the company you had a big
problem. It was symptomatic of not un-
derstanding the relationship between
costs and revenues and profits within the
different lines of the business.

During 1993, Dell retrenched, bringing in
experienced executives to help streamline the
company, focusing on profitability rather than
raw growth. The company abandoned store sales
to focus exclusively on direct sales, and devel-
oped a competitive laptop called the Latitude.
They also entered the growing market for net-
work servers, ensuring that corporate customers
could meet all their computing needs with Dell
products. The result was a turnaround: By 1994,
Dell had returned to profitability, earning $149
million that year.

Starting in 2001, the computer industry
faced a serious economic decline. While Internet
companies, or “dot-coms,” were hardest hit, PC
manufacturers such as Dell also faced a declin-
ing demand for PCs. By the second quarter of
2001, Dell dominated the industry, ahead of
number-two Compaq and other leading com-
petitors such as Gateway and IBM. While Dell
has held onto its commanding market share, its
revenues have declined. (Dell personally took a
“pay cut” from $225 million in fiscal 2001 to
$100 million in 2002.)

Dell has responded to the decline in revenue
by pushing for even greater efficiency in the com-
pany’s manufacturing and other operations. For
example, its Parmer Lane, Texas, plant assembled
120 computers an hour in 1995, but by 2001, 700
PCs an hour were coming off the assembly line.
Dell has also “outsourced” some operations (such
as technical support) to cheaper foreign labor.
Since Dell cannot know when demand for PCs
will pick up again, he has relentlessly used effi-
ciency improvement and the resulting price cuts
to maintain or increase its market share. He seems
confident that even the recent merger of Compaq
and printer giant Hewlett-Packard (HP) will not
keep Dell Computer from surviving—and thriv-
ing under today’s harsh conditions. (Indeed, in
early 2003 Dell announced it would start selling
its own name-brand printers.)

Dell has been a successful entrepreneur by
any measure. His net worth is somewhere be-
tween $3 billion and $4 billion. In 2001, he was
chosen CEO of the year by Chief Executive mag-
azine. At age 36, he was the youngest executive
ever to win the award. Dell also received an
Internet Industry Leader award in 2000 from the
U.S. Internet Council.

As he told Helen Thorpe of Texas Monthly
in 1997, Dell has no plans of retiring young: “I
don’t imagine many jobs could be more fun
than this. . . . I think if you left the computer
industry after having been in it for a long time,
you’d be incredibly bored, and your brain would
atrophy.”

Dertouzos, Michael 59

Further Reading
Jager, Rama Dev, and Rafael Ortiz. In the Company of

Giants: Candid Conversations with the Visionaries of
the Digital World. New York: McGraw-Hill, 1997.

“The Tech Slump Doesn’t Scare Michael Dell.”
Business Week, April 16, 2001, p. 48.

Thorpe, Helen. “Michael Dell: From Boy Wonder
to Grown-up CEO, He’s Changed Personal
Computing Forever.” Texas Monthly, September
1997, pp. 117ff.

� Dertouzos, Michael
(1936–2001)
Greek/American
Computer Scientist

Born on November 5, 1936, in Athens, Greece,
Michael Dertouzos spent an adventurous boy-
hood accompanying his father (an admiral) in
the Greek navy’s destroyers and submarines.
Showing a technical bent, the boy became in-
terested in Morse code, shipboard machinery, and
mathematics. At the age of 16, Dertouzos became
fascinated by an article about Claude Shannon’s
work in information theory and a project at the
Massachusetts Institute of Technology (MIT)
that sought to build a mechanical robot mouse.
He quickly decided that he wanted to come to
America to study at MIT.

The hardships of World War II brought many
people in Athens to the brink of starvation. After
the war, however, Dertouzos was finally able to
go to America to continue his higher education.
Dertouzos received a Fulbright scholarship that
placed him in the University of Arkansas, where
he earned his bachelor’s and master’s degrees
while working on acoustic-mechanical devices
for the Baldwin Piano company. He was then
able to fulfill his boyhood dream by receiving his
Ph.D. in electrical engineering from MIT in
1964. He promptly joined the MIT faculty, where
he would remain for his entire career. Starting in
1974, he served as director of MIT’s Laboratory
for Computer Science (LCS). This lab became a

hotbed of new ideas in computing, including
computer time-sharing, Ethernet networking,
and public-key cryptography.

Dertouzos believed that the key to people
getting the most out of computers was not hav-
ing many people sharing one big machine, but
having many machines linked together in net-
works. As he explained to an interviewer:

I’d never liked time-sharing. Maybe it was
the Greek in me, but it seemed like a so-
cialist kind of sharing, with central con-
trol, like forcing everyone to ride a bus as
opposed to driving a personal automobile.
And I’d never liked the information-
utility notion . . . Information isn’t natu-
ral gas. It doesn’t come from one place,
or a few places. It comes from all over. It’s
more of a commodity. . . . So in 1976 or
so I was looking for a metaphor of how
the machines [in an online information
system] would interact with each other.
Being Greek, I thought of the Athens flea
market, where I used to spend every
Sunday, and I envisioned an on-line ver-
sion: a community with very large num-
bers of people coming together in a place

Michael Dertouzos helped create the future at MIT’s
Laboratory for Computer Science. He also wrote vividly
about what it will be like to live in a future in which
people wear computers and they are “as natural as the
air we breathe.” (© Reuters NewMedia, Inc./CORBIS)

60 Dertouzos, Michael

where they could buy, sell and exchange
information.

In pursuing his vision, Dertouzos also forged
links outside the academic world. Combining
theoretical interest with an entrepreneur’s eye
on market trends, he started a small company
called Computek in 1968. It made some of the
first “smart terminals” which included their own
processors.

In the 1980s, Dertouzos began to explore the
relationship between developments in informa-
tion processing and the emerging information
marketplace. However, he noted that the spec-
tacular growth of the information industry took
place against a backdrop of the decline of
American manufacturing. Dertouzos’s 1989
book Made in America suggested ways to revital-
ize American industry.

During the 1990s, Dertouzos brought MIT
into closer relationship with the visionary design-
ers who were creating and expanding the World
Wide Web. After Dertouzos’s death, TIM BERNERS-
LEE, inventor of the Web, recalled in a tribute that

Michael met me first in Switzerland, and
later invited me to the LCS. He was to-
tally enthusiastic about the idea of the
Web, of the Consortium, and of making
the whole thing an international collab-
oration. Michael had been promoting
the vision of the Information Market-
place long before the Web came along.
He put in a huge amount of effort to
make things happen, but always did it
with great warmth as well as strength.

Dertouzos combined technological, teach-
ing, and managerial skills to smooth the path for
complex projects. An MIT colleague, FERNANDO

J. CORBATÓ, remarked that

Michael had a broad understanding of
technology and a teacher’s knack for ex-
plaining ideas. One direction in which

this shone was his skill in interfacing with
government sponsors of research. He was
skillful in evoking the best research ideas
from within the laboratory; he could ed-
ucate without being condescending,

Dertouzos was dissatisfied with operating
systems such as Microsoft Windows and with
popular application programs. He believed that
their designers made it unnecessarily difficult for
users to perform tasks, and spent more time on
adding fancy features than on improving the ba-
sic usability of their products. In 1999, Dertouzos
and the MIT LCS announced a new project
called Oxygen. Working in collaboration with
the MIT Artificial Intelligence Laboratory,
Oxygen was intended to design new interfaces
and systems to make computers “as natural a part
of our environment as the air we breathe.”

As a futurist, Dertouzos tried to paint vivid
pictures of possible future uses of computers in
order to engage the general public in thinking
about the potential of emerging technologies.
His 1995 book What Will Be paints a vivid por-
trait of a pervasively digital environment in the
near future. His imaginative future is based on
actual MIT research, such as the design of a
“body net,” a kind of wearable computer and sen-
sor system that would allow people to not only
keep in touch with information but to commu-
nicate detailed information with other people
similarly equipped. This digital world will also
include “smart rooms” and a variety of robot as-
sistants, particularly in the area of health care.

However, What Will Be and his 2001 publi-
cation The Unfinished Revolution are not unalloyed
celebrations of technological wizardry. Dertouzos
has pointed out that there is a disconnect between
technological visionaries who lack understanding
of the daily realities of most people’s lives, and hu-
manists who do not understand the intricate in-
terconnectedness (and thus social impact) of new
technologies. “We made a big mistake 300 years
ago when we separated technology and human-

Diffie, Bailey Whitfield 61

ism,” Dertouzos told an interviewer for Scientific
American. “It’s time to put the two back together.”
Dertouzos’s lifelong hobbies of sailing and wood-
working also expressed his interest in finding
trends and shaping them toward new goals.

Dertouzos received an Institute of Electrical
and Electronics Engineers Fellowship and was
awarded membership in the National Academy
of Engineering. He died on August 27, 2001, af-
ter a long bout with heart disease. He was buried
in Athens near the finish line for the Olympic
marathon.

Further Reading
Dertouzos, Michael. What Will Be: How the New

World of Information Will Change Our Lives. San
Francisco, Calif.: HarperSanFrancisco, 1997.

———. The Unfinished Revolution: Human-Centered
Computers and What They Can Do For Us. New
York: HarperBusiness, 2001.

Leutwyler, Kristin. “What Will Really Be.” Scientific
American, July 1997, pp. 28ff.

“Remembering Technology’s Humanist.” Technology
Review (MIT). Available on-line. URL: http://
www.techreview.com/articles/dertouzos090601.
asp. Posted on September 6, 2001.

Schwartz, John. “Michael L. Dertouzos, 64, Computer
Visionary, Dies,” New York Times, August 30,
2001, p. B9.

� Diffie, Bailey Whitfield
(1944–)
American
Mathematician, Computer Scientist

Bailey Whitfield Diffie was born on June 5, 1944,
in the borough of Queens, New York City. The
following day was D-day, the beginning of the end
of World War II. During that war, cryptography—
the making and breaking of codes—had come of
age. During the cold war years that would follow,
cryptography would become a vast, secret arena,
the province of contending governments. It would
remain so until Whitfield Diffie (who did not use

his original first name) played a key role in de-
veloping public key cryptography. This invention
would eventually put the privacy-guarding powers
of cryptography into the hands of millions of or-
dinary people, much to the consternation of espi-
onage and law enforcement agencies.

Diffie’s parents were both intellectuals. His
father taught Iberian (Spanish) history and cul-
ture at City College in New York, and his mother
had written papers on French history. Liberal in
outlook, both parents seemed comfortable with
the fact that Whit was not following the usual
course of childhood development. Although he
seemed to be very bright, he showed no desire
to learn to read, preferring to listen endlessly as
stories were read to him. Finally, when he was
10, he suddenly decided to read a book called
The Space Cat, and having mastered reading,
went on to devour the Oz books.

One day that same year, Diffie’s fifth-grade
teacher introduced the class to cryptography, ex-
plaining how to solve a substitution cipher—a
simple system in which each letter of the alpha-
bet in a message is replaced by a different letter.
Diffie was fascinated by the mysterious process by
which messages could be hidden from prying
eyes. But as he later recalled to author Steven
Levy, “I never became a very good puzzle solver,
and I never worked on solving codes very much
then or later.” Rather, he was drawn to the chal-
lenge of creating codes (cryptosystems) that
would protect privacy and resist cracking.

Although he was an indifferent high school
student who barely qualified for graduation,
he scored so high on standardized tests that he
won admission to the University of California,
Berkeley in 1962. He studied mathematics there
for two years, but then transferred to the
Massachusetts Institute of Technology (MIT) and
obtained his B.S. degree in mathematics in 1965.

In the early 1960s, MIT was a hotbed of in-
novation in computers. The earliest hackers (ad-
venturous but largely benign explorers of the
computing frontier) were taking advantage of

62 Diffie, Bailey Whitfield

time-sharing and the new, relatively inexpensive
minicomputers such as the PDP-1. Diffie was re-
luctant at first to become involved with com-
puter programming. As he told Levy, “I thought
of computers as very low class. I thought of my-
self as a pure mathematician and was interested
in partial differential equations and topology and
things like that.”

However, by 1965 the Vietnam War was well
under way. Diffie, whose childhood interest in
military matters had been transformed into a
peace-oriented hippie lifestyle, took a job at
Mitre Corporation, a defense contractor, as a way
to escape the draft. At Mitre, Diffie plunged into
computer programming, helping create Mathlab,
a program that allowed mathematicians to not
merely calculate with a computer, but also to ma-
nipulate mathematical symbols to solve equa-
tions. (The program would eventually evolve
into Macsyma, a software package used widely in
the mathematical community.) Flexible work
arrangements allowed Diffie to also spend time
in the MIT artificial intelligence lab, where free-
wheeling hackers under the direction of artificial
intelligence pioneer MARVIN MINSKY were creat-
ing more intelligent software.

By the early 1970s, Diffie had moved to the
West Coast. He worked at the Stanford Artificial
Intelligence Laboratory (SAIL) where he met
LAWRENCE ROBERTS, who was head of information
processing research for ARPA, the Defense
Department’s research agency. His main project
was the creation of the ARPANET, the computer
network that later evolved into the Internet.

Roberts was interested in providing security
for the new network, and (along with artificial in-
telligence pioneer JOHN MCCARTHY) helped revive
Diffie’s dormant interest in cryptography. Diffie
began to read books such as David Kahn’s The
Codebreakers, a popular and richly detailed his-
tory of cryptography, as well as some of the more
technical works that were publicly available.

Diffie learned that modern cryptography op-
erated on the fly, with a computer program called

a black box generating a “key stream,” a series
of digits that was logically combined with the
stream of plain text to generate the encrypted
message, or ciphertext.

By 1974, Diffie had learned that IBM was
developing a more secure cipher system, the DES
(data encryption standard), under government
supervision. What this really meant, Diffie dis-
covered, was the supervision of the National
Security Agency (NSA), the largest and most
secretive of government spy agencies. Diffie be-
came frustrated with the way the NSA doled out
or withheld information on cryptography, mak-
ing independent research in the field very diffi-
cult. He therefore traveled widely, seeking both
relevant information and informed people.

Diffie found one such person in a colleague,
Martin Hellman, a Stanford professor who had
also been struggling on his own to develop a bet-
ter cryptosystem. They decided to pool their
ideas and efforts. Finally, one afternoon in May
1975 while Diffie was house-sitting for John
McCarthy, the pieces came together. As Diffie
later told Steven Levy, “The thing I remember
distinctly is that I was sitting in the living room
when I thought of it the first time and then I
went downstairs to get a Coke and I almost lost
it,” he says. “I mean, there was this moment
when I was thinking about something. What was
it? And then I got it back and didn’t forget it.”

Diffie’s brainstorm became known as public
key cryptography. It combined two important
ideas that had already been discovered by other
researchers. The first idea was the “trap-door
function”—a mathematical operation that is
easily performed “forward” but that is very hard
to work “backward.” Diffie realized, however,
that a trap-door function could be devised that
could be worked backward easily—if the person
had the appropriate key.

The second idea was that of key exchange.
In classical cryptography, a single key is used for
both encryption and decryption. In such a case,
it is absolutely vital to keep the key secret from

Diffie, Bailey Whitfield 63

any third party, so arrangements have to be made
in advance to transmit and protect the key.

Diffie, however, was able to work out the the-
ory for a system that generates pairs of mathe-
matically interrelated keys: a private key and a
public key. Now each participant publishes his or
her public key, but keeps the corresponding pri-
vate key secret. If a user wants to send an en-
crypted message to someone, the user obtains that
person’s public key from the electronic equivalent
of a phone directory. The resulting message can
be decrypted only by the intended recipient, who
uses the corresponding secret, private key.

The public key system can also be used in
reverse, where it becomes a form of “digital sig-
nature” for verifying the authenticity of a mes-
sage. Here a person creates a message encrypted
with his or her private key. Since such a mes-
sage can be decrypted only by using the corre-
sponding public key, any other person can use
that key (together with a trusted third-party key
service) to verify that the message really came
from its purported author.

Diffie and Hellman’s 1976 paper in the IEEE
Transactions on Information Theory began boldly,
with the statement, “We stand today on the brink
of a revolution in cryptography.” This paper soon
came to the attention of three researchers who
would create a practical implementation called
RSA (for Rivest, Shamir, and Adelman).

Through the 1980s, Diffie, resisting urgent
invitations from the NSA, served as manager of
Secure Systems Research for the phone company
Northern Telecom, designing systems for man-
aging security keys for packet-switched data
communications systems (such as the Internet).

In 1991 Diffie was appointed Distinguished
Engineer for Sun Microsystems, a position that has
left him free to deal with cryptography-related
public policy issues. The best known of these is-
sues has been the Clipper Chip, a proposal that
all new computers be fitted with a hardware en-
cryption device that would protect users’ data but
include a “back door” that would allow the gov-

ernment to decrypt data, presumably after obtain-
ing a court order. Along with many civil libertar-
ians and privacy activists, Diffie does not believe
users should have to trust largely unaccountable
government agencies for the preservation of their
privacy. Their opposition was strong enough to
scuttle the Clipper Chip proposal by the end of
the 1990s. Another proposal, using public key
cryptography but having a third party “key escrow”
agency hold the keys for possible criminal inves-
tigation, also has fared poorly.

In testimony before Congress, Diffie summed
up his work by saying, “My feeling was that cryp-
tography was vitally important for personal pri-
vacy, and my goal was to make it better known.
I am pleased to say that if I have succeeded in
nothing else, I have achieved that goal.”

Diffie has received a number of awards for
both technical excellence and contributions to
civil liberties. These include the Institute of
Electrical and Electronics Engineers (IEEE)
Information Theory Society Best Paper Award
(1979), the IEEE Donald Fink Award (1981),
the Electronic Frontier Foundation Pioneer
Award (1994), and the National Computer
Systems Security Award (1996), given by the
National Institute of Standards and Technology
and the NSA.

Further Reading
Diffie, Whitfield. “Interview with Whitfield Diffie on

the Development of Public Key Cryptography.”
Conducted by Franco Furger; edited by Arnd
Weber, 1992. Available on-line. URL: http://
www.itas.fzk.de/mahp/weber/diffie.htm. Updated
on January 16, 2002.

Diffie, Whitfield, and Susan Landau. Privacy on the
Line: The Politics of Wiretapping and Encryption.
Cambridge, Mass.: MIT Press, 1998.

Kahn, David. The Codebreakers: The Story of Secret
Writing. Rev. ed. New York: Scribner, 1996.

Levy, Steven. Crypto: How the Code Rebels Beat the
Government: Saving Privacy in the Digital Age.
New York: Viking Penguin, 2001.

64 Dijkstra, Edsger

� Dijkstra, Edsger
(1930–2002)
Dutch/American
Computer Scientist

By the late 1960s, operating systems and appli-
cations programs had become complex affairs
consisting of hundreds of thousands or even mil-
lions of lines of code. The simple stand-alone
programs that followed a basic “input, process,
output” sequence had given way to systems in
which many procedures or modules depended on
one another in complex ways.

The discipline of computer science was just
beginning to be formalized and its practitioners
were starting to apply theory systematically to
the design of programs. The first generation of
high-level computer languages, such as FOR-
TRAN and COBOL, had given programmers a
crucial ability to represent data and operations
symbolically. Beginning with Algol, the next
generation of languages would offer cleaner pro-
gram structure and improved definition and or-
ganization of data and program modules. In the
1970s, Edsger Dijkstra would become one of the
leading advocates of “structured programming”
and help spur the creation of new langauges and
programming practices.

Dijkstra was born in Rotterdam, the
Netherlands, in 1930 into a scientific family. His
mother was a mathematician and his father was
a chemist. He received intensive and diverse
intellectual training, studying ancient Greek,
Latin, several modern languages, biology, math-
ematics, and chemistry. While majoring in
physics at the University of Leiden, in 1951
he attended a summer school at Cambridge
University in England that kindled what soon
became a major interest in programming.

Returning to the Netherlands the following
year, Dijkstra obtained a position at the
Mathematical Center in Amsterdam, while con-
tinuing to pursue a physics degree. There he
worked with Bram J. Loopstra and Carel S.

Scholten on a computer called ARMAC. His
main task was to write the detailed, precise op-
erational specifications that would guide the en-
gineers who were designing the machine.

Dijkstra’s work soon took him further into
the design of the machine’s control software—
what would become known as an operating sys-
tem. He developed software that could handle
interrupts—that is, signals from peripheral hard-
ware such as card readers or disk drives that
needed attention from the central processor. By
then he had abandoned physics in favor of the
emerging discipline that would become computer
science, and wrote his doctoral dissertation on
interrupt handling. He received his Ph.D. in
1959 from the University of Amsterdam.

Meanwhile, Dijkstra had discovered a fun-
damental algorithm (or mathematical “recipe”)
for finding the shortest path between two points.

Edsger Dijkstra’s ideas about structured programming
helped develop the field of software engineering,
enabling programmers to organize and manage
increasingly complex software projects. (Photo
courtesy of the Department of Computer Sciences,
UT Austin)

Drexler, K. Eric 65

He applied the algorithm to the practical prob-
lem of designing electrical circuits that used as
little wire as possible, and generalized it into a
procedure for traversing treelike data structures.

In 1962, Dijkstra became a professor of math-
ematics at the Technical University in Eindhoven.
Dijkstra began to explore the problem of commu-
nication and resource-sharing within computers.
He developed the idea of a control mechanism
called a semaphore. Like the railroad signaling de-
vice that allows only one train at a time to pass
through a single section of track, the programming
semaphore provides mutual exclusion, ensuring
that two processes do not try to access the same
memory or other resource at the same time.

Another problem Dijkstra tackled involved
the sequencing of several processes that are ac-
cessing the same resources. He found ways to
avoid a deadlock situation, in which one process
had part of what it needed to finish a task but
was stuck because the process holding the other
needed resource was in turn waiting for the first
process to finish. His algorithms for allowing
multiple processes (or processors) to take turns
gaining access to memory or other resources
would become fundamental for the design of new
computing architectures.

In 1973, Dijkstra immigrated to the United
States, where he became a research fellow at
Burroughs, one of the major manufacturers of
mainframe computers. During this time, he
helped launch the “structured programming”
movement. His 1968 statement “GO TO
Considered Harmful” had criticized the use of
that unconditional “jump” instruction because it
made programs hard to read and verify. The
decade’s newer structured languages such as
Pascal and C affirmed Dijkstra’s belief in avoid-
ing or discouraging such haphazard program flow.
Dijkstra’s 1976 book A Discipline of Programming
provided an elegant exposition of structured pro-
gramming that is still studied today.

Beginning in the 1980s, Dijkstra was a
professor of mathematics at the University of

Texas at Austin. He held the Schlumberger
Centennial Chair in Computer Science. His in-
terests gradually shifted from computer science
to mathematical methodology, which finds com-
puter applications in such areas as automatic
generating of programs and proving program cor-
rectness. In 1972, Dijkstra won the Association
for Computing Machinery’s Turing Award, one
of the highest honors in the field. Dijkstra died
on August 6, 2002.

Further Reading
Dijkstra, Edsger Wybe. A Discipline of Programming.

Upper Saddle River, N.J.: Prentice Hall, 1976.
Shasha, Dennis, and Cathy Lazere. Out of the Minds:

The Lives and Discoveries of 15 Great Computer
Scientists. New York: Springer-Verlag, 1995.

� Drexler, K. Eric
(1955–)
American
Engineer, Futurist

Since the 1960s, computer processors have be-
come ever smaller yet more powerful. Today, the
equivalent of millions of transistors can be fabri-
cated onto a single silicon chip. But if K. Eric
Drexler’s provocative vision is correct, technol-
ogy will soon enter a far smaller realm where mol-
ecules and even single atoms become both build-
ing blocks and the machines to assemble them.

Drexler was born on April 25, 1955, in
Oakland, California, and grew up in the small
town of Monmouth, Oregon. A true child of the
space age, he became fascinated with astronomy
as well as space exploration and colonization.
While he was still a teenager, his talent brought
him to the Massachusetts Institute of Technology
(MIT), where he studied aerospace engineering
and computer science. Drexler soon became an
active member in the movement to encourage
space exploration and colonization, participat-
ing in NASA seminars with such visionaries as

66 Drexler, K. Eric

Gerard K. O’Neill, who was designing and pro-
moting space colonies. In 1975, when he was
still only 19, Drexler published his first profes-
sional scientific paper, dealing with the possible
mining of resources from asteroids.

After getting his bachelor’s degree, Drexler
continued into the MIT graduate program,
where he wrote a master’s thesis on space propul-
sion using solar sails. He also worked at MIT’s
Space Systems Laboratory.

While part of Drexler’s mind peered out into
the vastness of space, another part became in-
trigued by the world of the very small. Drexler
became interested in genetic engineering, an ex-
citing field that had begun to emerge in the late
1970s. Around the same time, he also read a talk
that the endlessly imaginative physicist Richard
Feynman had given in 1959. In it, Feynman sug-
gested that simple machines could be built on a
molecular scale and used, among other things,
to store vast amounts of information in pinhead-
sized spaces.

Starting in the mid-1980s, Drexler began to
extend and expand Feynman’s work, working out

more of the physics and engineering needed to
build at the atomic level. He coined the term
nanotechnology (nano is short for nanometer, one-
billionth of a meter). In addition to writing
scientific papers, Drexler introduced nanotech-
nology to the general public with his 1986 book,
Engines of Creation. In 1987, he founded an or-
ganization called the Foresight Institute, to pro-
vide a clearinghouse for nanotech researchers as
well as to publicize the field.

In 1991 Drexler received the first MIT Ph.D.
ever given in the field of molecular nanotech-
nology. He also founded the Institute for
Molecular Manufacturing as a nonprofit nan-
otech research organization. That same year,
Drexler, Chris Peterson, and Gayle Pergamit pub-
lished Unbounding the Future: The Nanotechnology
Revolution.

Although Drexler’s predictions that nano-
technology would become widespread in only a
decade or two seemed to be overoptimistic, there
was steady progress through the 1990s in a vari-
ety of fields relating to nanotech capabilities. For
example, IBM scientists have been able to spell
out the company’s name in individual atoms,
while genetic and biochemical engineers are
gaining an increasingly fine ability to manipulate
tiny pieces of DNA and protein molecules.

Nanotechnology clearly has implications for
both computer design and robotics. As the lim-
its of existing integrated circuit technology
approach, further progress may require that
computer components consist of individual mol-
ecules or even atoms (the latter involves what
has been called quantum computing.) Robots,
too, could be made small enough to, for exam-
ple, travel through the human bloodstream, re-
pairing an aneurysm or cleaning out a blocked
vessel.

However, science fiction writers as well as
some critics have suggested a possible horrific
side to nanotech. One of the goals of nanotech
is to create not merely tiny machines but tiny
machines that can reproduce themselves or even

Shown behind a model of a molecular “nanomachine,”
K. Eric Drexler believes that engineers will soon be
building tiny devices directly from atoms. Besides
leading to the ultimate computers, nanomachines may
someday “grow” houses or swim in the bloodstream to
eliminate cancers or repair diseased organs.
(© Ed Kashi/CORBIS)

Dreyfus, Hubert 67

evolve into new forms of “nano-life.” Such ma-
chines might be landed on Mars, for example,
and spread across the planet, releasing oxygen
from the soil and otherwise preparing the red
planet for eventual human habitation. Here on
Earth, nanomachines might perform the more
prosaic but nonetheless valuable task of break-
ing down oil spills or other forms of pollution
into their harmless constituents. But suppose the
nanomachines got out of control, possibly mu-
tating and changing their behavior so they “dis-
assemble” everything in sight, including humans
and their civilization? While this fear may seem
farfetched, Drexler has been careful to educate
people about the perils as well as the promises
of what might be the ultimate technology of the
21st century.

Drexler’s work has gained him honors as
well as attention. For example, the Association
of American Publishers named Drexler’s
Nanosystems: Molecular Machinery, Manufacturing,
and Computation the 1992 Outstanding Computer
Science Book. And in 1993, Drexler received
the Young Innovator Award given by the Kilby
Awards Foundation, named for JACK KILBY, in-
ventor of the integrated circuit.

Further Reading
Drexler, K. Eric. Engines of Creation: The Coming Era

of Nanotechnology. New York: Anchor Books,
1986. Also available on-line. URL: http://www.
foresight.org/EOC/index.html.

———. Nanosystems: Molecular Machinery, Manu-
facturing, and Computation. New York: John
Wiley, 1992.

Drexler, K. Eric, Chris Peterson, and Gayle Pergamit.
Unbounding the Future: The Nanotechnology
Revolution. New York: William Morrow, 1991.

Foresight Institute. Available on-line. URL: www.
foresight.org. Downloaded on October 31, 2002.

Terra, Richard. “A Visions Profile: Eric Drexler
and Molecular Nanotechnology.” Available on-
line. URL: http://home.earthlink.net/~rpterra/nt/
DrexlerProfile.html. Updated on April 2, 1998.

� Dreyfus, Hubert
(1929–)
American
Philosopher

As the possibilities for computers going beyond
“number crunching” to sophisticated informa-
tion processing became clear starting in the
1950s, the quest to achieve artificial intelligence
(AI) was eagerly embraced by a number of
innovative researchers. For example, ALLEN

NEWELL, HERBERT A. SIMON, and Cliff Shaw at
the RAND Corporation attempted to write pro-
grams that could “understand” and intelligently
manipulate symbols rather than just literal num-
bers or characters. Similarly, the Massachusetts
Institute of Technology’s (MIT’s) MARVIN

MINSKY was attempting to build a robot that
could not only perceive its environment, but in
some sense understand and manipulate it.

Into this milieu came Hubert Dreyfus, who
had earned his Ph.D. in philosophy at Harvard
University in 1964. Dreyfus had specialized in
the philosophy of perception (how people derive
meaning from their environment) and phenom-
enology (the understanding of processes). When
Dreyfus began to teach a survey course on these
areas of philosophy, some of his students asked
him what he thought of the artificial intelligence
researchers who were taking an experimental
and engineering approach to the same topics the
philosophers were discussing abstractly.

Philosophy had attempted to explain the
process of perception and understanding. One
tradition, the rationalism represented by such
thinkers as Descartes, Kant, and Husserl, took
the approach of formalism and attempted to elu-
cidate rules governing the process. They argued
that in effect the human mind was a machine,
albeit a wonderfully complex and versatile one.

The opposing tradition, represented by the
phenomenologists Wittgenstein, Heidegger, and
Merleau-Ponty, took a holistic approach in
which physical states, emotions, and experience

68 Dyson, Esther

were inextricably intertwined in creating the
world that people perceive and relate to.

If computers, which in the 1950s had only
the most rudimentary “senses” and no emotions,
could perceive and understand in the way hu-
mans did, then the rules-based approach of the
rationalist philosophers would be vindicated.
But when Dreyfus had examined the AI efforts,
he published a paper in 1965 titled “Alchemy
and Artificial Intelligence.” His comparison of
AI to alchemy was provocative in its suggestion
that like the alchemists, the modern AI re-
searchers had met with some initial success in
manipulating their materials (such as by teach-
ing computers to perform such intellectual tasks
as playing checkers and even proving mathe-
matical theorems). However Dreyfus concluded
that the kind of flexible, intuitive, and ulti-
mately robust intelligence that characterizes the
human mind could not be matched by any pro-
grammed system. Like the alchemists who ulti-
mately failed to create the “philosopher’s stone”
that could transform ordinary metals into gold,
the AI researchers would, Dreyfus felt, fail to
find the key to true machine intelligence.

Each time AI researchers demonstrated the
performance of some complex task, Dreyfus ex-
amined the performance and concluded that
it lacked the essential characteristics of human
intelligence—the “philosopher’s stone” continued
to elude them. Dreyfus expanded his paper into
the 1972 book What Computers Can’t Do. But crit-
ics complained that Dreyfus was moving the goal-
posts after each play, on the assumption that if a
computer did it, it must not be true intelligence.

Two decades later, Dreyfus reaffirmed his con-
clusions in What Computers Still Can’t Do, while
acknowledging that the AI field had become con-
siderably more sophisticated in creating systems
of emergent behavior, such as neural networks.

Currently a professor in the Graduate School
of Philosophy at the University of California,
Berkeley, Dreyfus continues his work in pure phi-
losophy (including a commentary on phenome-

nologist philosopher Martin Heidegger’s Being and
Time). He also continues his critique of the com-
puter, taking aim at its use in education. In his
book On the Internet, Dreyfus warns that computer
users are being drawn away from the richness of
experience advocated by phenomenologists and
existentialists in favor of a Platonic world of ab-
stract forms. He suggests that online relationships
lack real commitment because they lack real risk.

Further Reading
Dreyfus, Hubert. What Computers Can’t Do: A

Critique of Artificial Reason. New York: Harper
and Row, 1972.

———. What Computers Still Can’t Do. Cambridge,
Mass.: MIT Press, 1992.

Dreyfus, Hubert, and Stuart Dreyfus. Mind over
Machine: The Power of Human Intuitive Expertise
in the Era of the Computer. Rev. Ed. New York:
Free Press, 1988.

———. On the Internet. New York: Routledge, 2001.

� Dyson, Esther
(1951–)
American
Futurist

Events in the computer industry move at a
breakneck pace. At the start of the 1980s, the
personal computer (PC) was pretty much a hob-
byist’s toy; by the end of the decade it seemed
to be on every desk. When the 1990s began,
Internet was an unfamiliar word to most people,
and the World Wide Web did not exist. Ten
years later, however, having Internet access (and
often, one’s own website) seems almost as com-
monplace as having a TV or a phone.

The inventors, managers, entrepreneurs, and
investors who make things happen in the com-
puter industry generally focus on one particular
application—web commerce, for example, or
wireless networking. It takes a special sort of per-
son to make sense out of the broader trends, the

Dyson, Esther 69

emerging technologies that will shape the indus-
try one, five, or 10 years down the road. Such a
person must be a journalist, analyst, visionary,
and an “entrepreneur of ideas” who can package
insight and make it accessible to others. Esther
Dyson is all of these things. Virtually since the
birth of the PC industry, her newsletter Release
1.0 and its successors have told the industry what
would happen next, and why it is important.

Dyson was born on July 14, 1951, in Zurich,
Switzerland, but grew up in Princeton, New

Jersey, home of the Institute for Advanced
Studies, where many of the world’s greatest physi-
cists work. Her father, Freeman Dyson, was one
such physicist, whose imagination and writings
have ranged from nuclear space propulsion to the
dynamics of possible alien civilizations. Dyson’s
mother, Verena Huber-Dyson, was an accom-
plished Swiss mathematician. She and Freeman
were divorced when Esther was five. Two of their
neighbors in Princeton were Nobel Prize winners.

Considering the availability of such role
models, it is probably not surprising that Dyson
was an avid student. Dyson recalled to an inter-
viewer that she and her brother George often
played among “the derelict remains of one of the
first computers.” When she was 14, she began to
study Russian.

At the age of 16, Dyson entered Radcliffe
College, the prestigious women’s college that
is associated with Harvard University. At
Radcliffe, Dyson studied economics but also
gained journalistic experience writing for the
Harvard Crimson. After getting her degree in
economics in 1972, Dyson embarked on a jour-
nalism career, working as a reporter for Forbes
for three years. More than just reporting the
news, Dyson showed early talent as an analyst.
For example, she wrote an article that predicted
that the U.S. computer chip industry would soon
be facing a major challenge from Japan, which
would indeed happen about a decade later.

In 1977, Dyson shifted roles from reporter-
analyst to investment analyst, advising invest-
ment firms about trends, particularly those in-
volving new technology. In 1979, however, she
returned to journalism, writing for the Rosen
Electronics Newsletter, an influential industry
publication. When Benjamin M. Rosen, the
newsletter’s founder, decided to move into the
venture capital field, Dyson bought the newslet-
ter from him and renamed it Release 1.0. (The
name refers to the nomenclature used for the
first commercial version of a software product.)
She also took over responsibility for the PC

Esther Dyson is the daughter of a cutting-edge
physicist, and for more than two decades she has been
on the leading edge of the computer industry. Her
newsletter Release 1.0 has predicted technologies such
as the personal digital assistant (PDA) years before they
come to market. (Courtesy of Edventure Holdings)

70 Dyson, Esther

Forum, an annual conference attended by key
figures in the new personal computer industry.

In the mid-1980s, Dyson dropped Release
1.0 for a time, having decided to start a more
ambitious newspaper-sized publication called
Computer Industry News. However, she found
she was spending most of her time managing the
newspaper rather than exploring and writing
about the future. The newspaper never really
caught on, and after it failed, Dyson revived
Release 1.0.

Release 1.0 quickly gained a reputation for
spotting and highlighting industry trends, often
years before the actual products arrived. For ex-
ample, in a 1990 issue she featured the concept
of the PDA (personal digital assistant), a hand-
held computer that, in the form of machines
such as the Palm Pilot, would be carried by mil-
lions of businesspeople and travelers in the late
1990s.

In the late 1980s, Dyson, who had studied
Russian language and culture, became very in-
terested in the developments in Russia and
eastern Europe as the Soviet Union began to
collapse. She would later recall to interviewer
Elizabeth Corcoran that “watching a market
emerge from the swirling chaos is one of the awe-
inspiring experiences.” She started a newsletter
called Rel-East to report on the technology sec-
tor in Russia and eastern Europe, as well as
founding the East-West High-Tech Forum. She
also founded EDventure Holdings, a venture-
capital fund that focuses much of its attention
on new technology companies in that area.

Moving beyond technology, Dyson has also
been involved in organizations dealing with
global and cultural issues. These include the
Santa Fe Institute, an innovative multidiscipli-
nary scientific research effort; the Institute for
East-West Studies; and the Eurasia Foundation.

During the 1990s, Dyson, along with many
others in the industry, forged new roles involv-
ing the Internet, the Web, and e-commerce. She
chaired the Internet Corporation for Assigned

Names and Numbers (ICANN), the organiza-
tion responsible for developing and defining the
addresses and protocols used to route traffic on
the Internet. She has also served on the board
of the Electronic Frontier Foundation, an or-
ganization involved with civil liberties and pri-
vacy issues in cyberspace. In particular, she sees
education and tools for parents, not legislation
such as the Communications Decency Act of
1995, to be the answer to on-line problems
such as easy access to pornographic or violent
content.

Dyson’s life is extremely hectic and she logs
hundreds of thousands of frequent-flyer miles
each year traveling to conferences. She likes to
start each day with an hour’s swimming. Dyson
has not married or otherwise put down roots.
When asked, as many women are, whether her
gender has made her career more difficult, she
suggested that being a woman might actually be
an advantage. She told interviewer Claudia
Dreifus, “In the computer world, I find, being a
woman, you are not so pressed to conform.
There’s a broader range of character traits that
are acceptable.”

In 1996, Dyson was awarded the Hungarian
von Neumann Medal for “distinction in the dis-
semination of computer culture.” She has also
been named by Fortune magazine as one of the
50 most powerful women in American business.

Further Reading
Dyson, Esther. “Esther Dyson on Internet Privacy.”

CNET News Online. Available on-line. URL:
http://news.com.com/2009-1017-893537.html.
Posted on April 27, 2002.

———. Release 2.1: A Design for Living in the Digital
Age. New York: Broadway Books, 1998.

Kirkpatrick, David. “Esther Dyson: Living the
Networked Life.” Fortune, May 27, 2002,
pp. 168ff.

Edventure Holdings, Inc. “Release 1.0.” Available on-
line. URL: http://www.edventure.com/release1.
Updated on October 2002.

71

� Eckert, J. Presper
(1919–1995)
American
Inventor, Engineer

Today we think of computing as containing well-
defined roles such as engineer, programmer, and
user. But the people who created the first com-
puters had to invent not only the machines, but
also the ways of working with them. The com-
puting pioneers had to make many fundamental
decisions about design and architecture under the
pressure of World War II and the nuclear-fueled
cold war that soon followed. Since there were no
premade parts or even technicians trained in dig-
ital circuitry, they and their assistants had to do
most of the assembly and wiring themselves. As
a result, they created what amounted to hand-
crafted machines, each one demonstrating some-
thing new and bearing a cautionary tale. Together
with JOHN MAUCHLY, J. Presper Eckert played a
key role in the design of what is generally con-
sidered to be the first general-purpose electronic
digital computer, then went on to pioneer the
commercial computer industry.

Eckert was born on April 9, 1919, in
Philadelphia. An only child, he grew up in a
prosperous family that traveled widely and had
many connections with such Hollywood celebri-
ties as Douglas Fairbanks and Charles Chaplin.

E
Eckert was a star student in his private high
school and also did well at the University of
Pennsylvania, where he graduated in 1941 with
a degree in electrical engineering and a strong
mathematics background.

Continuing at the university as a graduate
student and researcher, Eckert met an older re-
searcher named John Mauchly. They found they
shared a deep interest in the possibilities of elec-
tronic computing, a technology that was being
spurred by the need for calculations for such
wartime applications as fire control systems,
radar, and the top secret atom bomb program.
After earning his master’s degree in electrical en-
gineering, in 1942 Eckert joined Mauchly in sub-
mitting a proposal to the Ballistic Research
Laboratory of the Army Ordnance Department
for a computer that could be used to calculate
urgently-needed firing tables for guns, bombs,
and missiles. The army granted the contract, and
the two men organized a team that grew to
50 people, with Eckert, who was only 24 years
old, serving as project manager.

Begun in April 1943, their computer, the
ENIAC (Electronic Numerical Integrator and
Computer) was finished in 1946. While it was too
late to aid the war effort, the room-size machine
filled with 18,000 vacuum tubes demonstrated
the practicability of electronic computing. Its
computation rate of 5,000 additions per second

72 Eckert, Wallace J.

far exceeded the mechanical calculators of the
time. While impressive, the ENIAC did not fea-
ture radical new forms of architecture. Rather, it
was built as an electronic analog to the me-
chanical calculator, with tubes and circuits re-
placing cogs or relays.

A noted mathematician named JOHN VON

NEUMANN helped Eckert and Mauchly to begin
to develop a new machine, EDVAC, for the
University of Pennsylvania. This next generation
of computers had more flexible binary logic cir-
cuits and new forms of memory storage, such as
a mercury delay line, which stored data as pulses
generated by vibrating crystals and circulating
through liquid mercury. (Fortunately for today’s
environmental concerns, this form of memory
has long since vanished from computing.)

While this effort was still underway, Eckert
and Mauchly formed their own business, the
Eckert-Mauchly Computer Corporation, and be-
gan to develop the BINAC (BINary Automatic
Computer), which was intended to be a relatively
compact and lower-cost version of ENIAC. This
machine demonstrated a key principle of modern
computers—the storage of program instructions
along with data. The ability to store, manipulate,
and edit instructions greatly increased the flexi-
bility and ease of use of computing machines.
Among other things, it meant that a program
could execute defined sections (subroutines) and
then return to the main flow of processing.

By the late 1940s, Eckert and Mauchly be-
gan to develop Univac I, the first commercial
implementation of the new computing technol-
ogy. Financial difficulties threatened to sink
their company in 1950, and it was acquired by
Remington Rand. Working as a division within
that company, the Eckert-Mauchly team com-
pleted Univac I in time for the computer to
make a remarkably accurate forecast of the 1952
presidential election results. Eckert went on to
manage the development of later generations of
UNIVAC, including the LARC, a machine de-
signed specifically for scientific applications.

Eckert continued with the Sperry-Rand
Corporation (later called Univac and then
Unisys Corporation) and became a vice president
and senior technical adviser. However, his focus
always remained on technical possibilities rather
than business considerations, and corporate col-
leagues often considered him impractical—a sit-
uation that would be faced by a later generation
who wanted to build personal computers.

Eckert received an honorary doctorate from
the University of Pennsylvania in 1964. In 1969
he was awarded the National Medal of Science,
the nation’s highest award for achievement in
science and engineering. He retired in 1989 and
died on June 3, 1995.

Further Reading
Eckstein, P. “Presper Eckert.” IEEE Annals of the History

of Computing 18, no. 1 (spring 1996): 25–44.
McCartney, Scott. Eniac: The Triumphs and Tragedies

of the World’s First Computer. New York: Berkley
Books, 1999.

Smithsonian Institution. National Museum of
American History. “Presper Eckert Interview.”
Available on-line. URL: http://americanhistory.
si.edu/csr/comphist/eckert.htm. Posted on
February 2, 1988.

� Eckert, Wallace J.
(1902–1971)
American
Astronomer, Inventor

By the early 20th century, scientists had begun
to probe both the tiny world of the atom and
the vast reaches of the universe with ever more
powerful and sophisticated instruments, devis-
ing more sophisticated theories that required
lengthy, complicated calculations with many
variables. Yet the scientist’s mathematical toolkit
still consisted of little more than paper and pen-
cil, aided perhaps by a slide rule or a simple me-
chanical calculator.

Eckert, Wallace J. 73

Wallace John Eckert (who is no relation to
ENIAC pioneer J. PRESPER ECKERT), played a key
role in bringing automated computing to science,
as well as in inducing an office tabulator com-
pany called International Business Machines
(IBM) to build its first computer.

Eckert was born in Pittsburgh, Pennsylvania,
on June 19, 1902, and grew up on a farm in a
small town called Albion. After receiving an
A.B. degree at Oberlin College and master’s de-
grees from both Amherst College and the
University of Chicago, he entered the doctoral
program in astronomy at Columbia University,
completing his Ph.D. at Yale in 1931.

Eckert did his graduate work under Ernest
W. Brown, an astronomer who had developed a
theory for understanding the orbit of the Moon
based on elaborate differential equations ex-
pressing the changes in position over time.
Although Kepler and Newton had provided the
basic theory for planetary orbits, the path of the
Moon was in reality very complex, being influ-
enced not only by the gravity of the Earth but
also that of the Sun, as well as the effects of tidal
forces. After developing his equations, Brown
had to create hundreds of pages of tables that
could be used to look up approximations of val-
ues that could then be plugged into the equa-
tion to obtain the lunar position for a given date.

Having become familiar with the elaborate
calculations required by Brown’s lunar theory,
Eckert soon became convinced that mechanical
help would be increasingly necessary if science
was to continue to make progress. Soon after he
became an assistant instructor at Columbia
University in 1926, he became the first faculty
member to introduce his students to the use of
mechanical calculators.

Meanwhile, another Columbia professor,
Benjamin D. Wood, had established the Columbia
University Statistical Bureau. Its researchers had
access to punch card tabulators donated by IBM.
These tabulators, the descendants of the 19th
century machine invented by HERMAN HOLLERITH

that had automated the U.S. census, were in-
creasingly being used by government and
business to automate the collation and summa-
rization of data.

Eckert believed that this technology could
also be applied to scientific computing. In 1933,
Eckert suggested to IBM’s chief executive offi-
cer, THOMAS J. WATSON SR. that IBM provide
equipment to set up a more elaborate comput-
ing facility at Columbia. Watson was enthusias-
tic about the project, and the Thomas J. Watson
Astronomical Computing Bureau, often simply
called the Watson Lab, was born. Eckert became
the facility’s first director, coordinating projects
with the American Astronomical Society as well
as IBM.

Eckert’s key insight was that separate pieces
of equipment such as card readers, tabulators,
and calculating punches could be linked into a
kind of data processing pipeline, together with
a “mechanical programmer,” a switching system
controlled by mechanical disks that could be set
to direct the machinery to carry out multistep
calculations automatically. While not a full-
fledged computer in the modern sense, Eckert’s
calculating assembly demonstrated the value of
automated calculation for science. His 1940 book,
Punched Card Methods in Scientific Computation,
introduced many scientists to the new technology.

Starting in 1940, Eckert served as director
of the U.S. Nautical Almanac Office in
Washington, D.C., and also worked at the Naval
Observatory, where he introduced automated
computing methods as wartime pressure began
to make the preparation of navigation aids an
urgent priority. One product of his work was the
American Air Almanac, a navigational guide
that would be used by pilots for many years to
come.

Following the war Eckert returned to
Columbia as directory of the Watson Laboratory
as well as working for IBM. During the war
J. Presper Eckert and JOHN MAUCHLY had created
ENIAC, the first large-scale electronic digital

74 Ellison, Larry

computer, a machine far in advance of anything
at IBM. IBM asked Wallace Eckert to help
the company catch up; and he designed the
Selective Sequence Electronic Calculator
(SSEC). This 140-foot-long, U-shaped machine
was a hybrid, using 12,000 vacuum tubes but also
including 21,000 mechanical relays. As the
name implied, the SSEC could choose different
sequences of operations depending on the results
of data tests. IBM eventually moved the SSEC
to the lobby of its New York headquarters where
passersby could marvel at the blinking, whirring
“Giant Brain.” In 1954, Eckert also designed the
NORC (Naval Ordnance Research Calculator),
a machine that set new standards in scientific
computing power and which remained in serv-
ice until 1968.

Eckert used the SSEC to make more accu-
rate calculations of the orbits of the Moon as well
as the planets Jupiter, Saturn, Uranus, Neptune,
and Pluto. His lunar data was so accurate that in
1969, when Apollo astronauts blasted off for the
Moon, their path was guided by the data Eckert
had calculated many years earlier.

Eckert retired from Columbia in 1967.
During more than 20 years of his directorship at
Columbia, more than 1,000 astronomers, physi-
cists, statisticians, and other researchers received
training there in scientific computation. He re-
ceived many honors from the astronomical and
computing communities, including an IBM fel-
lowship (1967), the IBM Award (1969), and the
James Craig Watson Medal of the National
Academy of Science. Eckert died on August 24,
1971.

Further Reading
da Cruz, Frank. “The IBM Selective Sequence

Electronic Calculator.” Available on-line. URL:
http://www.columbia.edu/acis/history/ssec.html.
Posted on January, 2001.

———. “Professor Wallace J. Eckert.” Available
on-line. URL: http://www.columbia.edu/acis/
history/eckert.html. Posted on September 1, 2002.

Eckert, Wallace J. Punched Card Methods in Scientific
Computation. Charles Babbage Institute Reprint
Series, vol. 5. Cambridge, Mass.: MIT Press, 1984.

� Ellison, Larry (Lawrence John Ellison)
(1944–)
American
Entrepreneur

If the word processor is the software that drives
the modern office, the information-processing
engine under the hood of modern business is the
database program. Every employer, commodity,
and transaction involved with a business is
represented by records in a complex system
of interconnected databases. Lawrence (Larry)
Ellison and his Oracle Corporation parlayed
database software into a leading market position,
competing head to head against giants Microsoft
and IBM.

Ellison was born in 1944 in New York City,
but his mother, an unmarried teenager, gave the
boy to her aunt and uncle, Lillian and Louis
Ellison, to raise. Larry Ellison would later de-
scribe his adoptive father, a Russian immigrant,
as tough and hard to get along with. The family
lived on the south side of Chicago in what Ellison
has called a “Jewish ghetto.” In high school,
Ellison was bright but seldom took much inter-
est in his studies. However, when something at-
tracted Ellison’s attention, he could be quite for-
midable. His friend Rick Rosenfeld would later
tell Vanity Fair interviewer Byran Burrough that
“[Ellison] was very intense, very opinionated.
Whatever he was talking about, he was loud
about it. Larry just had an answer to everything.
[Today], he’s the same guy I knew in high school.”

After high school Ellison attended the
University of Illinois, where he did well in sci-
ence classes. When he learned that his adoptive
mother had died suddenly, Ellison dropped out
of school. He later attempted to resume his col-
lege education, but made little headway. Ellison’s

Ellison, Larry 75

adoptive father further discouraged him, saying
he would never amount to anything.

However, the toughness from his upbring-
ing and a certain stubborn streak kept prodding
Ellison to prove his adoptive father wrong. Back
in high school, Ellison had been exposed to some
introductory programming classes, and the 1960s
was a time of high demand for programmers as
businesses began to automate more of the data
processing with mainframe computers. Ellison
went to San Francisco and became a program-
mer for a bank. He then moved south of the city
to the area called Silicon Valley, which was just
starting to become prominent in the rise of in-
tegrated circuit technology and microelectron-
ics. By the end of the 1960s Ellison’s skills had
advanced to the point where he was making a
very nice living and he bought a home, a sports
car, and a sailboat.

In the early 1970s, Ellison received his first
intensive exposure to databases. Ellison worked
for Ampex Corporation to design large data-
base systems, including one for the Central
Intelligence Agency (CIA), which had the code
name “Oracle.”

In 1977, Ellison and a partner, Bob Miner,
used that name to start their own company,
Oracle Corporation. Their first customer was the
CIA. Ellison and Miner ran into a financial
crunch because they did not realize how long it
would take to get money from the government,
but they persevered and soon received a contract
from the U.S. Air Force.

By then programmers were feeling the need
to go beyond simple “flat file” databases to rela-
tional databases (invented by EDGAR F. CODD)
that could connect data fields from different files
together. IBM in particular was developing SQL
(structured query language), a way that users
could easily extract and process information
from many databases with a single command. For
example, a user could ask for the records for all
salespersons with more than $1 million in an-
nual sales and sort them by region.

Ellison and Miner took the SQL specifica-
tions and created their own implementation of
the relational database system, developing a pro-
totype in 1979, two years before the huge but
slower-moving IBM. Ellison recruited a sales
force that shared his hard-driving attitude, and
their product, also called Oracle, seized the lead
in the database market. During the 1980s,
Oracle became the database of choice for many
large corporations, with its market position so
dominant that it seemed secure for years to
come. Meanwhile, Ellison had gained a reputa-
tion for acquisitiveness (building a $40 million
mansion) and ruthlessness, leading to his friend
Steve Jobs (chief executive officer [CEO] of
Apple Computer) dubbing him the “outrageous
CEO poster child.”

However, near the end of 1990 the bubble
burst. Oracle had a disaster that would become
familiar to investors more than a decade later:
The company’s accounting was too aggressive. In
particular, the company had inflated its earnings
reports by recording revenues before the money
had actually been received. Auditors demanded
that Oracle restate its earnings, which resulted
in a $28.7 million loss. With investors losing con-
fidence, the value of Oracle stock plunged by
about 80 percent. The crash also revealed other
problems: In its rush for market dominance,
Oracle had neglected many of the basics of cus-
tomer service, support, and the fixing of software
bugs. The company was now threatened with the
loss of many of its biggest corporate customers.

Ellison did not give up, however. He decided
that he would change the way both he and his
company did business. He hired new manage-
ment, quality control, and customer support
staff. He also decided that he would meet with
many of his customers and listen to their con-
cerns. The new methods turned the company
around, and it recorded earnings of $600 million
in 1996.

Ellison’s personal life shared much of the
roller-coaster nature of his business career. Fond

76 Engelbart, Douglas

of active outdoor sports, Ellison had broken his
neck in 1990 while bodysurfing in Hawaii, and
the following year his elbow was smashed in
a bicycle accident. The required recuperation
gave Ellison time for, as he told interviewer
Burroughs, “confronting all sorts of things in my
life and trying to order them and understand
them. I had to understand my role in life. Who
am I? Who is my family?” This quest led him to,
among other things, finding and reconnecting
to his birth mother, Florence Spellman.

During the later 1990s, Ellison took his
business in new directions. One was the pro-
motion of the “network computer,” or NC, a
stripped-down, diskless, inexpensive personal
computer (PC) that relied on the network for
software and file storage. Besides saving money
for businesses, Ellison thought that the NC, at
a cost of less than $500, might enable schools
to provide computing power at each student’s
desk. Ellison even considered mounting a cor-
porate takeover of Apple so that he could use
their technology to produce network comput-
ers, but STEVE JOBS’s return as CEO of Apple ap-
parently forestalled this plan.

As it happened, the falling prices of regular
PCs at the end of the 1990s made the network
computer something of a moot point. One ad-
vantage touted for the new technology is that
users could run applications via a Web-based
language called Java without having to pay
Microsoft for a copy of Windows for each PC.
This never materialized on a large scale, but in
2000–1, Ellison took a high-profile role in testi-
mony in the legal actions against Microsoft that
accused the software giant of unfairly stifling
competition through what was seen as its mo-
nopolistic control of PC operating systems.

In recent years, Ellison has aggressively pur-
sued the integration of his database software
with the growing use of the World Wide Web
in business, with sales and services increasingly
being handled on-line. He has also created in-
tegrated on-line systems for sectors such as the

automobile industry, signing agreements with
Ford, General Motors, and Daimler Chrysler.

Ellison continues to live a high-energy,
high-risk life, flying his own jet and sailing
world-class sailboats. Ellison remains confident
about the future of his company, having declared
that “IBM is the past, Microsoft the present,
Oracle is the future.”

Further Reading
Schick, Elizabeth A., ed. “Ellison, Lawrence J.”

Current Biography 1998. New York: H. W.
Wilson, 1998, pp. 21ff.

Stone, Florence M. The Oracle of Oracle: The Story of
Volatile CEO Larry Ellison and the Strategies
Behind His Company’s Phenomenal Success. New
York: AMACOM, 2002.

Wilson, Mike. The Difference Between God and Larry
Ellison: Inside Oracle Corporation. New York:
Morrow, 1998.

� Engelbart, Douglas
(1925–)
American
Inventor, Engineer

Before the 1970s, using a computer meant typ-
ing line after line of cryptic commands. If one
got the incantation exactly right, there was a
reasonable chance of getting the expected re-
sults. Of course, it was hard to type the correct
command, command options, and the often
long, complicated file names. The result was of-
ten an equally cryptic error message.

Starting in the 1970s, an engineer named
Douglas Engelbart began to change all that. He
made it possible for a user to simply point to
icons for programs and run them, or to pick up
a file in one folder and move it to another. The
user could do this simply by moving a little box
that became known as a “mouse.”

Engelbart grew up on a small farm near
Portland, Oregon. His father owned a radio store

Engelbart, Douglas 77

in the city, and the boy acquired a keen interest
in electronics. In high school he read about new
inventions including something that put moving
pictures on a screen—television. After graduation,
he went to Oregon State University to major in
electrical engineering, but his studies were inter-
rupted by World War II. During the war, Engelbart
served in the Philippines as a radar technician.
Radar also interested him because like television,
it showed meaningful information on a screen.
During that time, he read a seminal article enti-
tled “As We May Think,” written by VANNEVAR

BUSH. Bush suggested that information could be
stored on microfilms that could be electronically
scanned and linked together to allow the reader
to move from one document to a related docu-
ment. This system, later called “hypertext,” would
be the concept behind the development of the
World Wide Web by TIM BERNERS-LEE.

Bush’s idea of a mechanical microfilm-based
information library was not very practical.
Having been exposed to the visual display of
information in television and radar, Engelbart
began to think about what might be done with
a television-like cathode ray tube (CRT) display
and the new electronic digital computers that
were just starting to come into service.

Engelbart received a B.S. degree in electrical
engineering from Oregon State University in
1948. He then worked for the National Advisory
Committee for Aeronautics (the predecessor of
NASA) at the Ames Laboratory. Continuing
to be inspired by Bush’s vision, Engelbart con-
ceived of a computer display that would allow the
user to visually navigate through information.
Engelbart then returned to college, receiving his
doctorate in electrical engineering in 1955 at the
University of California, Berkeley, taught there
for a few years, and went to the Stanford Research
Institute (SRI), a hotbed of futuristic ideas.

By 1962 Engelbart had developed a new ap-
proach to the use of computers. By then, the ma-
chines had proven their worth as very fast cal-
culators. There had also been some interesting

work in artificial intelligence (AI), the notion
that computers might in some sense “think.”
Engelbart suggested a third possibility, mid-
way between dumb calculators and smart “elec-
tronic brains.” He wrote a seminal paper titled
“Augmenting Human Intellect: A Conceptual
Framework.” In this paper, Engelbart emphasized
the computer as a tool that would enable peo-
ple to better visualize and organize complex in-
formation to meet the increasing challenges of
the modern world. In other words, the computer
would not replace the human brain, but amplify
its power. But for a computer to expand the scope
of the human intellect, it would have to be much
easier and more natural to use.

In 1963, Engelbart left SRI and formed his
own research lab, the Augmentation Research
Center. Five years later, he and 17 colleagues
from the Augmentation Research Center demon-
strated a new kind of computer user interface to
an audience of about 1,000 computer profes-
sionals at a conference in San Francisco. In this
90-minute demonstration, Engelbart presented
what would become the future of personal com-
puting. It included a small box whose movement
on a flat surface correlated with the display of a
pointer on the screen, and whose button could
be used to select menus and objects. The demon-
stration included another exciting new technol-
ogy: networking. Two users 40 miles apart could
access the same screen and work with a docu-
ment at the same time.

This breakthrough in user interfaces was not
the result of a single inspiration, but represented
many hours of work by Engelbart and his col-
leagues, who had tried many other devices in-
cluding joysticks, light pens, and even a pedal
installed inside a desk, intended to be pushed by
the user’s knee. Engelbart found that nothing
seemed to work as well as his simple device,
which was patented in 1970 as an “X-Y Position
Indicator.” But the device clearly needed a sim-
pler name, and apparently someone at the lab
noticed that the small box with its cord trailing

78 Estridge, Philip Donald

like a tail looked a bit like a familiar rodent.
Soon everyone was calling it a “mouse.”

By the mid-1970s, a group at the Xerox Palo
Alto Research Center (PARC) was hard at work
refining this interface, creating an operating sys-
tem in which open programs and documents
were displayed in windows on the screen, while
others could be selected from menus or by click-
ing on icons. Xerox marketed the new system in
the form of a computer workstation called the
Alto, but the machine was too expensive to be
considered a true personal computer. It would
take Apple Computer and later Microsoft to
make it truly ubiquitous in the 1980s and 1990s
(see JOBS, STEVE.)

Besides user interface design, Engelbart also
took a keen interest in the development of the
ARPANET (ancestor of the Internet) and
adapted NLS, a hypertext system he had previ-
ously designed, to help coordinate network
development. (However, the dominant form of
hypertext on the Internet would be Tim Berners-
Lee’s World Wide Web.) In 1989 Engelbart
founded the Bootstrap Alliance, an organization
dedicated to improving the collaboration within
organizations, and thus their performance.
During the 1990s this nurturing of new busi-
nesses and other organizations would become his
primary focus.

Engelbart has been honored as a true pio-
neer of modern computing. In 1997, he received
the Lemelson-MIT Award (and an accompany-
ing $500,000) as well as the Association for
Computing Machinery Turing Award. In 2000
he received the National Medal of Technology.

Further Reading
Bardini, Thierry. Bootstrapping: Douglas Engelbart,

Coevolution, and the Origins of Personal Computing.
Stanford, Calif.: Stanford University Press, 2000.

Bootstrap Alliance. “Douglas Carl Engelbart.”
Available on-line. URL: http://www.bootstrap.org/
engelbart/index.jsp. Downloaded on November
1, 2002.

� Estridge, Philip Donald
(1937–1985)
American
Entrepreneur

Most people associate the personal computer
(PC) with famous names such as BILL GATES and
STEVE JOBS. Far fewer have heard of Philip
Estridge. Chances are good, though, that on
many desks is a direct descendant of the machine
that Estridge and his team designed in 1981: the
IBM PC.

Estridge was born on June 23, 1937, and
grew up in Jacksonville, Florida. His father was
a professional photographer. In 1959, Estridge
graduated from the University of Florida with a
bachelor’s degree in electrical engineering. He
joined IBM in 1959 as a junior engineer at the
Kingston, New York, facility, working on a vari-
ety of government projects, including the SAGE
computerized early-warning defense system and,
in 1963, programming for the NASA Goddard
Space Flight Center. In 1969, Estridge moved
into the area of system design within IBM, serv-
ing from 1975 to 1979 as programming manager
for the Series/1 minicomputer.

By the late 1970s, however, the even
smaller microcomputer had started to appear in
the computer market in the form of machines
such as the Radio Shack TRS-80, Commodore
PET, and particularly, the sleek, all-in-one
Apple II. Equipped with useful software such as
the VisiCalc spreadsheet, invented by DANIEL

BRICKLIN, machines that many IBM executives
had thought of as hobbyist toys were starting to
appear in offices.

Estridge was able to convince IBM’s upper
management that desktop computers repre-
sented a genuine market that IBM should enter,
both for its profit potential and to avoid the
threat to the company’s supremacy in office ma-
chines. Further, Estridge’s proposed concept won
out over two competing company teams, and he
was placed in charge of IBM’s new Entry Systems

Estridge, Philip Donald 79

Unit. He was told to design a desktop computer
system and bring it to market in only a year. In
an industry where systems typically took at least
several years from concept to finished product,
such a schedule was unprecedented. Equally
unprecedented was IBM’s willingness to give
Estridge almost complete independence from
the usual corporate bureaucracy, allowing him
to make key decisions quickly and without in-
terference.

In designing and managing the PC project,
Estridge had to cope with the IBM corporate cul-
ture, which was far different from that of Silicon
Valley and the businesses run by young entre-
preneurs such as Microsoft’s Bill Gates and
Apple’s Steve Jobs. IBM had vast resources in
money, manufacturing plants, and personnel,
but it was not geared to design an entirely new
machine in just a year. Estridge realized that he
would have to use microprocessors, memory, disk
drives, and other “off the shelf” components. He
chose the Intel 8088 processor because it be-
longed to a family of chips closely compatible
with already existing software written for the
CP/M operating system.

As quoted by PC Week in 1985, Bill Gates
recalled that Estridge “had a keen sense of what
IBM was super-good at and what it should use
outside people for.” Gates also noted that Estridge
was willing to stretch the technical capabilities
of the design. At a time when most personal com-
puters were eight-bit (that is, they moved eight
binary digits of data at a time), Estridge insisted
on a more powerful 16-bit design.

There was no time to develop operating sys-
tem software from scratch, so he looked for an
existing system that could be quickly adapted
to the new machine. A new version of CP/M
(Control Program for Microcomputers) seemed
the logical choice, but after negotiations with
CP/M author GARY KILDALL seemed to stall,
Estridge hedged his bets by offering Microsoft’s
PC-DOS and the University of California, Santa
Cruz’s p-System as well. Microsoft’s product was

the cheapest and it quickly became the over-
whelming choice among PC users.

Another of Estridge’s key decisions was to
make the IBM PC an “open platform.” This
meant that, like the Apple II, the PC would not
be restricted to using hardware provided by the
manufacturer. The motherboard was designed
with standard connecting slots into which could
be plugged a growing variety of expansion boards
by third-party manufacturers, including addi-
tional memory (the original machine came with
only 64 kilobytes), serial and parallel ports,
sound and video display cards, and other useful
features. This openness to third-party products
represented a radical departure from IBM’s prac-
tice of trying to discourage third-party manufac-
ture of compatible hardware.

As promised, the IBM PC appeared in April
1981. The company had projected sales of
250,000 machines in the next five years, but
by 1984 1 million PCs were already in use.
Although Apple would answer with its innova-
tive Macintosh that year, the IBM PC and its
successors, the PC-XT and PC-AT, would quickly
dominate the business computing market.
Estridge’s Entry Systems Unit had grown from its
initial force of 12 employees to nearly 10,000,
gaining status as a full corporate division.

By the mid-1980s, however, IBM was start-
ing to be challenged by competition from com-
panies such as Compaq. The same open design
and specifications that gave the IBM PC an ini-
tial boost in the marketplace also allowed com-
petitors to legally “clone,” or reverse-engineer,
functionally compatible machines, which were
often more powerful or less expensive than those
from IBM.

No one will know how Estridge might have
faced these new challenges. His life was tragi-
cally cut short on August 2, 1985, when Delta
Airlines flight 191, carrying him, his wife, Mary
Ann, and many IBM employees, crashed on
landing at Dallas–Fort Worth Airport, the vic-
tim of wind shear from a thunderstorm. Estridge

80 Eubanks, Gordon

was only 47 years old. By then, though, his IBM
PC was changing the way millions of people
worked, learned, and played, and he has been
widely honored as an innovator by publications
ranging from Computerworld and InfoWorld to
Time and Business Week.

Further Reading
Bradley, D. J. “The Creation of the IBM PC.” Byte,

September, 1990, pp. 414–420.
Bunnell, David. “Boca Diary: April–May 1982.” PC

Magazine. Available on-line. URL: http://www.
pcmag.com/article2/0,4149,874,00.asp. Posted on
April 1, 1982.

Freiburger, Paul, and Michael Swaine. Fire in the Valley:
The Making of the Personal Computer. 2d ed.
Berkeley, Calif.: Osborne/McGraw-Hill, 1999.

� Eubanks, Gordon
(1946–)
American
Programmer, Entrepreneur

In the early days of personal computing there
was little distinction between professional pro-
grammers and technically savvy users. Since
there was little commercial software, if one
wanted one’s more or less hand-assembled ma-
chine to do something useful, one wrote pro-
grams in BASIC or (if more ambitious) assem-
bly language. Gordon Eubanks was one of a
number of pioneers who created the better pro-
gramming tools and utilities that helped turn a
hobby into one of the world’s most important
industries.

Eubanks was born on November 7, 1946.
Unlike many computer entrepreneurs, he had no
particular childhood interest in electronics as
such, but he does recall dreaming that he would
one day own his own computer—something that
in the 1950s was rather like owning one’s own
jumbo jet. The next best thing was getting to
work with someone else’s computer, and so

Eubanks studied engineering at Oklahoma State
University, receiving his bachelor’s degree in
1968.

Eubanks spent the 1970s in the navy as a
submarine officer. Later, in a reference to a pop-
ular thriller, he jokingly referred to his service
as “Hunt for Red October stuff.” He believes that
the high-pressure situations faced by cold war
submariners gave him good preparation for the
pressure he would face in creating business op-
portunities in Silicon Valley. Meanwhile, he
took advantage of the opportunities the navy
had to offer, earning a master’s degree in com-
puter science from the Naval Postgraduate
School in Monterey, California. His thesis ad-
viser was GARY KILDALL, the talented program-
mer who had created CP/M, the first widespread
operating system for microcomputers.

By the late 1970s, the personal computer
(PC) was just starting to arrive on the consumer
market in the form of machines such as the
Tandy TRS-80 and Apple II. The more serious
enthusiasts, however, tended to buy more pow-
erful machines, many of which used a standard
motherboard called the S-100 bus. These ma-
chines had the capacity to run significant appli-
cations, but the programming tools were rather
primitive. Working under Kildall’s direction at
Digital Research, Eubanks developed a new
BASIC version called EBASIC, which later be-
came CBASIC. While most early microcom-
puter BASICs had only primitive flow control
statements, such as simple IF–THEN statements,
FOR loops and the GOTO that had been con-
demned as sloppy by EDSGER DIJKSTRA. CBASIC
added an ELSE part to the IF statement and pro-
vided a more general WHILE loop. The lan-
guage also allowed program code to be better or-
ganized into functions and subroutines, breaking
the processing into more logical and manageable
portions.

Meanwhile, important events were about to
reshape the nascent personal computer industry.
By 1980, IBM had undertaken a large, secret

Eubanks, Gordon 81

project to build its own personal computer un-
der the direction of PHILIP DONALD ESTRIDGE.
Gary Kildall’s CP/M was the logical choice for
the new machine’s operating system. Earlier,
when Kildall had asked Eubanks what should be
done about the future of CP/M, Eubanks had
urged him to make it the cornerstone for a busi-
ness plan. However, Kildall seemed to be inter-
ested only in pursuing his technical ideas, not in
developing business relationships.

As recounted in an interview by Clive
Akass, Eubanks then received a phone call from
Tim Patterson, developer of a new disk operat-
ing system (DOS). Patterson warned Eubanks to
start developing a version of CBASIC for DOS.
When Eubanks asked why, Patterson replied “I
can’t tell you, but a big Seattle company has li-
censed it, and licensed it to a hardware company
that’s bigger than anyone you can think of.”
Eubanks asked him to be more specific: “You are
telling me that IBM licensed it from Microsoft.”
Tim replied: “I didn’t say that but you should
definitely support it.” At this point, Eubanks
knew that Kildall had missed one of the biggest
opportunities in the history of computing.

Once the IBM PC came on the market in
1981, CP/M would fade into obscurity and DOS
would be king. In 1982, however, Eubanks and
a partner bought Symantec, a small company
that developed system utilities. Symantec strug-
gled for a time—one payday the company gave
out stock instead of a paycheck. By the later
1980s and 1990s, however, Symantec grew
steadily, finding its niche in selling the kind of
unglamorous but necessary software that PC
users increasingly demanded. Symantec also
bought Norton, one of the best-known names in
system utilities—programs that perform such

tasks as diagnosing system problems, reorganiz-
ing hard drives, or detecting and eradicating
computer viruses. (Today Symantec is one of the
best-known names in antivirus software.)

In 1992, Eubanks and several other
Symantec executives were accused of stealing
trade secrets from software developer Borland
International. However, in 1996 the charges
were dropped. Eubanks also entered the legal
news in 1999 when he became one of the wit-
nesses to testify on behalf of BILL GATES and
Microsoft in the federal antitrust proceedings
against the software giant. Eubanks argued that
with the software market changing so rapidly,
competition is forcing even the biggest compa-
nies such as Microsoft to continually innovate,
and thus monopoly was not really an issue.

In 1999, Eubanks left Symantec and became
chief executive officer of a company called Oblix,
which specializes in software for securing and con-
trolling access to websites. With the increased
concern about security and the need to reliably
verify a person’s identity on-line, this sector of the
market is likely to do well in coming years. In
2000, PC Week listed Oblix among key compa-
nies for “21st Century Infrastructure.” Whatever
coming years may bring, Gordon Eubanks is
widely recognized as an industry pioneer.

Further Reading
Akass, Clive. “Legend of the Fall.” Personal Computer

World, September 1996. Available on-line. URL:
http://images.vnunet.com/v6_image/pcw/pcw_
images/history/eubanks.PDF.

Jaeger, Rama Dev, and Rafael Ortiz. In the Company
of Giants: Candid Conversations with the Visionaries
of the Digital World. New York: McGraw-Hill,
1997.

82

� Fanning, Shawn
(1981–)
American
Inventor, Entrepreneur, Activist

Late in 1999, thousands of mainly young Internet
users found a new way to get music from their fa-
vorite bands—for free! All they had to do was
download some software called Napster, which
let them search for other users who had put tracks
from music CDs on their personal computer’s
(PC’s) hard drive. In turn, they could share their
own music collection by “ripping” (copying) the
tracks from CD to their hard drive, where other
Napster users could find and download them. To
the young music fans who had grown up with
mouse in hand and Walkman on head, Napster
was just one of the many cool technologies they
had seen in the ever-changing world of cyber-
space. To the companies that made those music
CDs, however, Napster was like a big siphon
poised to suck away their profits. After all, why
would people pay $15.00 for a CD if they could
get the same music for nothing?

The source of all this controversy was a col-
lege student named Shawn Fanning. Fanning
was born in 1981 in Brockton, Massachusetts.
His mother, an unmarried teenager, lived with
her own parents, making for a rambunctious
two-generation family. Eventually she married

F
an ex-marine turned bakery truck driver, and
young Fanning soon had four new siblings.

The growing family was often short of
money, but Fanning’s Uncle John took an in-
terest in his education, in particular supporting
his interest in computers by buying him his own
machine and then an Internet connection.
Uncle John had seen computers as a road to a
good future for the boy, who quickly took to the
world of the Internet and programming and
made it his own. When his parents had a falling
out, Fanning was put for a time in a foster home,
but he simply immersed himself further in the
world of computers and on-line chat. During
summer vacations in high school, Fanning
worked at his uncle’s company, NetGames, ab-
sorbing advanced programming techniques from
the Carnegie Mellon University computer sci-
ence students who also worked at the firm.

After graduation, Fanning had planned to
enter the Carnegie Mellon computer science
program himself, but he was not accepted.
Instead, he went to Northeastern University in
Boston, where he was given advanced place-
ment. His college roommate introduced him to
MP3 files, the increasingly popular way to store
and play digitized music on PCs. Fanning de-
cided to learn Windows programming so he
could write programs to organize and play MP3
files.

Fanning, Shawn 83

Fanning was disappointed by the hit-and-
miss process of finding MP3 files on the
Internet—often a file could not be found or
downloaded properly. He got the idea of pro-
gramming a file-sharing service where users could
provide many access points for a given MP3 file,
avoiding the glitches and bottlenecks caused by
relying on a single site. He spent every waking
hour on the program for several weeks. In June
1999 he distributed the software to 30 friends as
a test. He called the program Napster, which had
been his high school nickname and chat room
“handle”—originally referring to his curly hair.

Although Fanning had asked his friends not
to tell anyone else about Napster, after a few days
the program began to appear on various web-
sites, where it was downloaded by about 15,000
people. Before he knew it, Fanning found that

his program had been featured in the “download
spotlight” at the popular site Download.com,
and after that it mushroomed into one of the
most popular Internet downloads ever.

Fanning’s Uncle John saw that Napster had
potential as a business, and he set up the Napster
Corporation for his nephew. Soon a venture cap-
italist named Eileen Richardson was on board,
and the company opened an office in San Mateo,
California. Fanning joined the new generation
of Internet pioneers (such as JERRY YANG and
David Filo of Yahoo!) in leaving college to work
on his business full time.

However, by December 1999 Napster had be-
gun to attract a different kind of attention. The
Recording Industry Association of America
(RIAA) sued the tiny firm because much of the
music being traded over Napster was from copy-
righted commercial CDs. Like other publishers,
the recording companies paid royalties to the cre-
ators of the music and, in turn, had the sole right
to copy and sell it for a profit. Copying a book is
expensive and tedious, but copying an online mu-
sic track is simply a matter of telling a program
to make an exact copy of all the bits in a file.

The recording companies were generally not
very up-to-date with regard to the possibilities
of the Internet—most had not even begun to
think about how they might sell music on-line.
They did understand, however, that Napster en-
abled anyone to get for free the same music they
were trying to sell. If enough people did that, it
would put them out of business.

Napster’s defense was both moral and legal.
The moral defense was based on the argument that
the recording companies were vastly overcharging
for music anyway, and that little of the revenue
went to the musicians themselves. Perhaps
Napster might spur record companies to be more
innovative and to find a way to lower prices and
offer extra value to consumers. Further, the record-
ing companies often ignored what fans considered
to be the most interesting and innovative music
groups. With Napster, listeners might be exposed

When he was barely old enough to vote, Shawn
Fanning came up with a way for computer users to
multiply their music libraries by swapping MP3 files
over the Internet. But recording companies saw
Fanning’s Napster as a threat to their business, and
legal action eventually forced the company out of
business. (CORBIS Sygma)

84 Feigenbaum, Edward

to a much greater variety of musicians. If some-
one liked a track or two they found on Napster, it
was argued, he or she might well buy the CD for
convenience if it were reasonably priced.

Napster’s legal defense was based on the ar-
gument that Napster itself was not violating any-
one’s copyright. Napster did not store music files
on its own server—the actual music was on the
hard disks of thousands of users. Napster only fa-
cilitated the exchange of music, and after all, the
music could be public domain or freely donated
by musicians—it did not have to be copyrighted.

The courts, however, proved unsympathetic
to Napster’s defense. On July 26, 2000, federal
judge Marilyn Hall Patel ordered Napster to
remove all links to copyrighted music from its
database in only two days. The result was a rush
by hundreds of thousands of Napster users to
download as much music as they could get in
the time remaining. Then, as the deadline ap-
proached, the U.S. Court of Appeals for the
Ninth Circuit temporarily blocked the judge’s
ruling. In October, Napster’s lawyers and those
of the RIAA made their formal arguments be-
fore a panel of judges of the appeals court.

On February 12, 2001, the appeals court ruled
that Napster must prevent its users from access-
ing copyrighted material. As a result, the com-
pany was forced to rewrite its software to block
much of the music that had made Napster so at-
tractive to users. Although the company claimed
that it would still be able to create a viable mu-
sic service by paying recording companies fees for
legal access to the music and then charging its
users a small subscription fee, the number of
Napster users plummeted, as did the company’s
revenue. In May 2002, both Napster’s chief ex-
ecutive officer, Konrad Hillers, and Fanning, as
chief technology officer, left the company. On
June 3, the company filed for bankruptcy.

The company’s future viability is much in
doubt, as it owes potentially hundreds of mil-
lions of dollars in damages for copyright viola-
tions and there has been little sign that major
recording labels are interested in making deals

with Napster. In September 2002, a court ruled
out Napster’s proposed acquisition by the giant
German publisher Bertelsmann for $8 million,
citing a conflict of interest.

But the problems for the recording industry,
too, are far from over. Music is still being shared
on-line under such services as Gnutella and
BearShare. Unlike Napster, these services have
no central site or database at all, so it is difficult
for record companies to find someone to sue.

At any rate, Shawn Fanning still has plenty
of time to launch a new career. As of 2002, he’s
barely of legal age. He has appeared on the cover
of magazines such as Fortune and Business Week,
and received a 2000 Technical Excellence
“Person of the Year” award from PC Magazine.
The technology of file-sharing that underlies
Napster might well find new applications in the
ever-changing Internet future.

Further Reading
Evangelista, Benny. “Napster Files For Bankruptcy.” San

Francisco Chronicle, June 3, 2002, on pp. B1, B6.
“Fanning, Shawn.” Current Biography Yearbook. New

York: H. W. Wilson, 2000, pp. 185–189.
Menn, Joseph. All the Rave: The Rise and Fall of Shawn

Fanning’s Napster. New York: Crown Publishers,
2003.

Wood, Chris, and Michael Snider. “The Heirs of
Napster: If Music-Sharing Site Goes Down,
Others are Ready to Move In.” Maclean’s,
February 26, 2001, p. 52.

� Feigenbaum, Edward
(1936–)
American
Computer Scientist, Inventor

When the first large-scale electronic computers
were developed in the late 1940s and early 1950s,
they were given the label “giant brains.” However,
while computers could calculate faster than any
human being, getting a computer program to
actually reason through the steps of solving a

Feigenbaum, Edward 85

problem turned out to be far from easy. Edward
Feigenbaum, a pioneer artificial intelligence
(AI) researcher, came up with a way to take the
knowledge acquired by human experts such as
doctors and chemists and turn it into rules that
computers could use to make diagnoses or solve
problems.

Feigenbaum was born on January 20, 1936,
in Weehawken, New Jersey. His father, a Polish
immigrant, died before Feigenbaum’s first birth-
day. His stepfather, an accountant and bakery
manager, was fascinated by science and regularly
brought young Feigenabum to New York City
to visit the Hayden Planetarium and the vast
American Museum of Natural History. The
electromechanical calculator his stepfather used
to keep accounts at the bakery particularly fas-
cinated the boy. His interest in science gradu-
ally turned to a perhaps more practical interest
in electrical engineering.

While at the Carnegie Institute of Tech-
nology (now Carnegie Mellon University),
Feigenbaum was encouraged by one of his pro-
fessors to venture beyond the curriculum to the
emerging field of computation. He became in-
terested in JOHN VON NEUMANN’s work in game
theory and decision making and met HERBERT A.
SIMON, who was conducting pioneering research
into how organizations made decisions. This in
turn brought Feigenbaum into the early ferment
of artificial intelligence research in the mid-
1950s. Simon and ALAN NEWELL had just devel-
oped Logic Theorist, a program that simulated
the process by which mathematicians proved
theorems through the application of heuristics,
or strategies for breaking problems down into
simpler components from which a chain of as-
sertions could be assembled, leading to a proof.

Feigenbaum quickly learned to program
IBM mainframes and then began writing AI pro-
grams. For his doctoral thesis, he explored the
relation of artificial problem solving to the op-
eration of the human mind. He wrote a com-
puter program that could simulate the human
process of perceiving, memorizing, and organiz-

ing data for retrieval. Feigenbaum’s program, the
Elementary Perceiver and Memorizer (EPAM),
was a seminal contribution to AI. Its “discrimi-
nation net,” which attempted to distinguish be-
tween different stimuli by retaining key bits of
information, would eventually evolve into the
neural network. Together with Julian Feldman,
Feigenbaum edited the 1962 book Computers and
Thought, which summarized both the remarkable
progress and perplexing difficulties encountered
during the field’s first decade.

During the 1960s, Feigenbaum worked to
develop systems that could perform induction
(that is, derive general principles based on the
accumulation of data about specific cases).

Early computers could do arithmetic like lightning, but
they could not think like mathematicians. That
changed when Edward Feigenbaum and his colleagues
created programs that could draw new conclusions by
reasoning from axioms. Later, Feigenbaum would
create the expert system, which reasons from a
“knowledge base” encoded from the experience of
human researchers. (Photo by William F. Miller)

86 Felsenstein, Lee

Working on a project to develop a mass spec-
trometer for a Mars probe, Feigenbaum and his
fellow researchers became frustrated by the com-
puter’s lack of knowledge about basic rules of
chemistry. Feigenbaum then decided that such
rules might be encoded in a “knowledge base”
in such a way that the program could apply it to
the data being gathered from chemical samples.
The result in 1965 was Dendral, the first of what
would become a host of successful and produc-
tive programs known as expert systems. A fur-
ther advance came in 1970 with Meta-Dendral,
a program that could not only apply existing
rules to determine the structure of a compound,
it could also compare known structures with the
existing database of rules and infer new rules,
thus improving its own performance.

During the 1980s Feigenbaum coedited the
four-volume Handbook of Artificial Intelligence.
He also introduced expert systems to a lay
audience in two books, The Fifth Generation
(coauthored with Pamela McCorduck) and The
Rise of the Expert Company (coauthored with
McCorduck and H. Penny Nii).

Feigenbaum combined scientific creativity
with entrepreneurship in founding a company
called IntelliGenetics and serving as a director of
Teknowledge and IntelliCorp. These companies
pioneered the commercialization of expert sys-
tems. Feigenbaum and his colleagues created
the discipline of “knowledge engineering”—
capturing and encoding professional knowledge
in medicine, chemistry, engineering, and other
fields so that it can be used by an expert system.
In what he calls the “knowledge principle,”
Feigenbaum asserts that the quality of knowledge
in a system is more important than the algorithms
used for reasoning. Thus Feigenbaum has tried to
develop knowledge bases that might be main-
tained and shared as easily as conventional data-
bases.

Remaining active in the 1990s, Feigenbaum
was second president of the American Association
for Artificial Intelligence and (from 1994 to

1997) chief scientist of the U.S. Air Force. He
contributed his expertise by serving on the board
of many influential research organizations, in-
cluding the Computer Science Advisory Board
of the National Science Foundation and the
National Research Council’s Computer Science
and Technology Board. The World Congress of
Expert Systems created the Feigenbaum Medal
in his honor and made him its first recipient in
1991. In 1995, Feigenbaum received the presti-
gious Association for Computing Machinery’s
Turing Award.

Further Reading
Feigenbaum, Edward, Julian Feldman, and Paul

Armer, eds. Computers and Thought. Cambridge,
Mass.: MIT Press, 1995.

Feigenbaum, Edward, Pamela McCorduck, and H.
Penny Nii. The Rise of the Expert Company: How
Visionary Companies Are Using Artificial Intelligence
to Achieve Higher Productivity and Profits. New
York: Vintage Books, 1989.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds:
The Lives and Discoveries of 15 Great Computer
Scientists. New York: Copernicus, 1995.

� Felsenstein, Lee
(1945–)
American
Inventor, Engineer

During the 1960s the counterculture espoused
imagination, unconventional lifestyles, and a ro-
mantic rebellion against the Establishment, or
mainstream society. There seemed to be little in
common between the hippies and activists and
the young computer hackers at MIT and else-
where who were stretching the limits of computer
systems and their application—except perhaps
the fact that both tended to think and live un-
conventionally.

However, there were some individuals who
were able to combine attitudes of the counter-

Felsenstein, Lee 87

culture with its social activism and the emerg-
ing computer culture with its intense devotion
to technology. One such person is Lee Felsenstein,
who found that computers and on-line commu-
nications could be turned into powerful tools for
community activism.

Felsenstein was born in 1945 in Phila-
delphia. He attended the University of Cali-
fornia, Berkeley, and received his B.S. degree
in electrical engineering in 1972. Dropping
out for a while in 1967, he worked as an elec-
tronic design engineer for Ampex, building
minicomputer interfaces. By 1972, Felsenstein
was working as chief engineer at a nonprofit
community collective called Resource One in
San Francisco. He came up with the idea of set-
ting up teletype computer terminals connected
to a minicomputer at Resource One to enable
ordinary members of the public to access infor-
mation and post messages. As described on
Felsenstein’s historical web page, a notice on
the terminals explained that: “COMMUNITY
MEMORY is a kind of electronic bulletin board,
an information flea market. You can put your
notices into the Community Memory, and
you can look through the memory for the notice
you want.”

There were already computer networks in
use at some large universities and companies.
Indeed, ARPANET, ancestor of the Internet,
was growing. But Community Memory was the
first on-line service that could be used by ordi-
nary people with no special computer knowl-
edge. It was used, for example, by musicians seek-
ing to buy or sell guitars or to find a gig.

By the mid-1970s, experimenters were start-
ing to build computer systems using the newly
available microprocessor. Felsenstein quickly
saw both the technical and social possibilities
of these devices, and from 1975 to 1986 he
was moderator of a unique organization, the
Homebrew Computer Club. This club, founded
by Fred Moore and Gordon French, met at first
in French’s garage. At a typical meeting, exper-

imenters might demonstrate their latest systems
or give a talk about an engineering problem. (It
was at one such meeting that an enthusiastic
crowd of electronics hobbyists first got to see
STEVE JOBS and STEVE WOZNIAK demonstrate a
prototype of what would soon become the Apple
II, perhaps the most successful of early commer-
cial microcomputers.) All in all, more than 20
separate computer-related companies can trace
their genesis back to contacts made at
Homebrew meetings.

In 1975, Felsenstein applied his own design
ideas to a computer called the Sol-20 (named
for Les Solomon, one of its original designers).
The Sol-20 demonstrated the use of a complete
microcomputer system, combining processor,
keyboard, and a video interface circuit that
Felsenstein designed called the VDM-1. This in-
terface allowed output to be displayed on an or-
dinary TV set. By allowing a separate chip to do
some of the work of preparing video images, the
VDM-1 took considerable burden off the main
processor. This principle is still used in today’s
video cards. The Sol-20 was a capable machine,
but it would be overshadowed the following year
by the Apple II.

Another Felsenstein design was the
Pennywhistle 103, a computer modem kit that
let the owners of early microcomputers get on-
line to the bulletin board systems (BBS) that
were starting to spring up in the late 1970s.

Felsenstein also designed the first portable
computer, the Osborne-1, in 1981. This was not
a laptop or notebook computer in the modern
sense, but more like a suitcase. (An example is on
display at the Smithsonian Museum of American
History, along with a Sol-1.) Adam Osborne
rewarded Felsenstein by making him a founder
and chief engineer of Osborne Computer, Inc.
Unfortunately, the company went bankrupt in
1983.

In 1984, Felsenstein went back to the social
side of the computing field. He was asked by
Stewart Brand (founder of The Whole Earth

88 Forrester, Jay W.

Catalog) to organize the first annual Hacker’s
Conference. At this time, the word hacker still
meant an unconventional but highly talented
programmer who sought to make computers do
exciting new things, not a malicious cyber-thief
or vandal.

The late 1980s saw sweeping changes in the
Soviet Union under the movement called glas-
nost, or “openness.” In 1989, Felsenstein went
to the Soviet Union (soon to be Russia), to
found a company called Glav-PC and provide
consulting services to technology companies
seeking to do business in the newly opened
Russian market. During the 1990s, Felsenstein
served as senior researcher with Interval
Research, a company started by Microsoft exec-
utive Paul Allen to help develop new comput-
ing technologies. By 2003, Felsenstein had
invented a pedal-powered wireless computer to
connect some of the world’s poorest, most iso-
lated people to the Internet.

Lee Felsenstein was honored in 1994 with
the Pioneer Award from the Electronic Frontier
Foundation and inducted into the Computer
Museum of America Hall of Fame in 1998. His
career has demonstrated advances both in hard-
ware technology and the “soft” technology of so-
cial organization and activism.

Further Reading
“Community Memory: Discussion List on the History

of Cyberspace.” Available on-line. URL: http://
memex.org/community-memory.html. Updated
on April 4, 1997.

Fagan, Kevin. “Pedal-Powered e-mail in the Jungle.”
San Francisco Chronicle, January 17, 2003,
pp. A1, A15.

Felsenstein, Lee. “How Community Memory Came
to Be, Part 1 and 2.” Available on-line. URL:
http://madhaus.utcs.utoronto.ca/local/internaut/
comm.html, http://madhaus.utcs.utoronto.ca/local/
internaut/comm2.html. Updated on January 18,
1994.

Freiberger, Paul, and Michael Swaine. Fire in the
Valley: The Making of the Personal Computer. 2nd
ed. New York: McGraw-Hill, 1999.

Levy, Steven. Hackers: Heroes of the Computer
Revolution. Updated ed. New York: Penguin, 2001.

� Forrester, Jay W.
(1918–)
American
Inventor, Engineer

By the late 1940s, the success of ENIAC, the
first large-scale electronic digital computer, had
spurred great interest in the possible application
of computing to science and business. However,
the technology as pioneered by J. PRESPER ECKERT

and JOHN MAUCHLY faced obstacles that threat-
ened to limit its usefulness. The vacuum tubes
used for processing in early computers were un-
reliable and the memory used to store data was
slow and expensive. These and many other chal-
lenges would be met by Jay W. Forrester, whose
pioneering efforts would do much to establish
the computer industry.

Forrester was only a generation away from a
different sort of pioneer. He was born on July 14,
1918, on a remote cattle ranch outside Climax,
Nebraska, which his parents had homesteaded.
As a boy, Forrester attended a one-room school-
house, but he soon learned to supplement his
education. Young Forrester had a boundless in-
terest in mechanical and especially electrical
matters. In his senior year in high school, he used
scavenged auto parts to build a wind-driven
12-volt electrical generator that brought power
to the family ranch for the first time.

Following the expected career path for a
bright boy in rural Nebraska, Forrester planned
to attend the agricultural college at the
University of Nebraska. Just as he was about to
enroll there, however, he decided that he wanted
to pursue his real interest. Instead of agriculture

Forrester, Jay W. 89

school, he enrolled in the electrical engineering
program. He graduated in 1939 as the top stu-
dent in the program and promptly signed up for
graduate studies at the Massachusetts Institute
of Technology (MIT).

At MIT, Forrester first worked as a student
assistant in the MIT High-Voltage Laboratory,
but then switched to the Servomechanisms
(Servo) Laboratory, where he learned about the
complicated electrically-actuated controls that
would be part of a coming revolution in au-
tomation.

Like most students of the time, Forrester
found his studies diverted by wartime needs. In
December 1944, he went to work on an MIT
project to build devices for aeronautical research
for the U.S. Navy. The main device, called an
Aircraft Stability and Control Analyzer (ASCA),
was essentially an analog computer. (Unlike to-
day’s more familiar digital computers, an analog
computer uses the interaction of mechanical or
electronic forces to solve problems.)

The problem with the ASCA was that it
was supposed to simulate the real-time behavior
of an airplane’s rudder, elevator, and other con-
trols as a pilot moved them in a plane traveling
hundreds of miles an hour. This proved to be dif-
ficult to simulate with an analog computer
(which is more “tuned” than “programmed”) and
further, the existing electromechanical mecha-
nisms simply were not fast enough to respond in
real time.

A colleague suggested that Forrester learn
about a new technology called digital comput-
ing, and eventually he was put in touch with the
laboratory where J. Presper Eckert, JOHN VON

NEUMANN, and other researchers were building
an electronic digital computer—the machine
that would be known as ENIAC. Forrester was
immediately impressed by both the speed of elec-
tronic computing (which used no mechanical
parts) and the relative ease of use and versatil-
ity of programmable machines. He persuaded

Gordon Brown, his supervisor and thesis adviser,
to shift the Servo Lab’s efforts from analog to dig-
ital computing, and Forrester became head of a
new division, the Digital Computer Laboratory.

ENIAC and its successor EDVAC were
basically sequential machines—they performed
one task at a time. However, simulating many
real-world activities (such as flying a plane) re-
quires calculating and updating many different
variables at virtually the same time. Forrester
and his assistant Robert R. Everett realized that
existing sequential machines, even electronic
ones, would be too slow to keep up with the real
world. Instead, they began to design a parallel
machine, in which different units could perform
operations at the same time. Because of its ex-
pected speed, the machine would be called
Whirlwind.

However, a fundamental problem with the
first generation of large-scale computers was
the vacuum tube that was its key component.
The typical vacuum tube had a life of about 500
hours. The more tubes one put into a machine,
the more frequently a tube would blow just when
it was needed in a calculation. As a result, the
Whirlwind would grind to a halt several times
a day.

Forrester addressed this problem in two
ways. First, he developed an improved electro-
static storage tube for use in the computer mem-
ory, extending the average tube life to more than
a month. He further improved reliability by de-
signing a circuit that could sense the changes in
electronic characteristics that indicated that a
tube would fail soon. These tubes could then be
replaced during regular maintenance times
rather than disrupting calculations.

As a result of these improvements, by March
1951 the Whirlwind was running reliably for
35 hours a week. Using 16-bit data words, it
could perform more than 20,000 multiplications
a second—roughly comparable in performance
to an early personal computer.

90 Forrester, Jay W.

However, Forrester believed that even the
improved storage tube was not the real answer
to the computer memory problem. For one
thing, tubes were relatively slow and consumed
a great deal of power. One existing alternative
was a cathode ray tube (CRT) similar to that
found in television sets. CRTs in the form of
the Williams tube were already in use for com-
puter memory, but they were not very reliable.
Forrester designed an improved version, the
MIT Storage Tube, which stored 1,024 kilo-
bytes’ worth of data that could be randomly
accessed (that is, any piece of data could be
directly fetched). The only problem was that
the tubes cost $1,000 each, and only lasted
about a month. As recounted by Robert Slater,
Forrester later recalled, it “was not feasible
computer storage. There was simply nothing
that was suitable, and I had a project and a rep-
utation that rested on our solving the problem.
So it was very much a case of necessity being
the mother of invention.”

The CRT was a two-dimensional storage
system, “painting” data on the tube much like
the tiny pixels that make up a TV picture.
Forrester visualized using a three-dimensional
storage system instead. If the data could be stored
on tiny points within a cubelike lattice, much
more data could be fit into the same physical
space. But how could the data actually be stored?

Reading through a technical magazine in
1949, Forrester had come upon an advertisement
for a material called Deltamax that was used to
make cores for magnetic amplifiers. He decided
that storing computer data as spots of magnet-
ism rather than electric charge could provide a
reliable, fast, relatively compact memory system.
Deltamax proved unsuitable, but after experi-
menting with various materials he hit upon the
use of ferrite (iron) cores—tiny doughnut-
shaped discs that would be connected to a three-
dimensional crisscross grid of wires. To store a
binary “1” at a given memory location, electric
pulses are sent down the appropriate two wires

(something like going to a particular street in-
tersection).

By 1953, the Whirlwind had replaced the
storage tubes with two banks of 1024 byte
(1 kilobyte) ferrite core memory. (Although it
would take a few years for the new commercial
computer industry to adopt core memory, for sev-
eral decades thereafter computer people would
use the word core as a synonym for computer
memory.) The Whirlwind was also fitted with a
magnetic drum memory and a tape drive for mass
storage.

Forrester then went to work on another mil-
itary computer project. In 1949, the Soviet
Union had exploded its first atomic bomb, and
suddenly the task of tracking enemy bombers
and directing their interception by fighters be-
came a pressing military problem. Given the
speed of modern aircraft and missiles and the
complexity of radar systems, the U.S. Air Force
decided that an effective air defense system
would have to be integrated through the use of
high-speed computers. The result was SAGE
(Semi-Automated Ground Environment), which
had a number of regional air defense centers,
each with its own Whirlwind computer, with the
machines networked together.

In 1951, Forrester was appointed the pro-
ject’s director. SAGE was a massive and secret
undertaking, a sort of computer version of the
Manhattan Project which had built the first
atomic bomb. Each SAGE installation had a
huge Whirlwind II computer weighing 250 tons
and using more than 50,000 vacuum tubes for
processing. The computer drew a full megawatt
of power and needed a massive cooling system
to prevent overheating. By 1963, SAGE, with
somewhat upgraded computers, had 23 air de-
fense control centers, three combat centers, and
a programming center. The system operated un-
til 1983, when it was finally replaced with solid-
state technology.

Fortunately, the ability of SAGE to defend
against an atomic attack was never tested. The

Forrester, Jay W. 91

project, however, paid considerable dividends
for the development of computer technology
and programming methodology. SAGE was not
only the biggest vacuum tube computer ever
built, it was the first large-scale real-time com-
puter. It pioneered the use of networking and
was thus an ancestor of ARPANET and later the
Internet. The development of large, complex
software programs required new approaches to
organization and management, leading to the
birth of a new field, software engineering.
Further, SAGE operators worked at consoles
that displayed information about targets visually
on a screen, controlled by a light pen. SAGE
thus also contributed to the development of to-
day’s personal computer user interface.

By 1956, however, Forrester’s career had
made a sharp turn from computer engineering to
the use of computers to study social interactions,
including the operation of business management.
He was appointed professor of management at
the new MIT Sloan School of Management and
then became head of its System Dynamics pro-
gram. Forrester went on to write many influen-
tial papers and books on system dynamics and
management.

By the 1970s, Forrester had extended his
work on system dynamics into many areas, in-
cluding economics and the influence of human
activity on the environment. In 1970, he de-

veloped a computer model for the Club of Rome
which predicted that if current trends contin-
ued, humanity would face a dismal future marked
by overpopulation, pollution, starvation, and
poverty. (Forrester’s student Dana Meadows
summarized these predictions in a book called
The Limits to Growth.) Critics such as economist
Julian Simon, however, challenged the model as
skewed and overly pessimistic.

Forrester retired from the Sloan School in
1989, but remained active in applying system dy-
namics to areas such as economic behavior and
education. Forrester has been inducted into the
Inventors Hall of Fame and has received nu-
merous honorary degrees and other awards.

Further Reading
“Jay W. Forrester.” Available on-line. URL: http://

sysdyn.mit.edu/people/jay-forrester.html. Down-
loaded on November 2, 2002.

Redmond, Kent C., and Thomas M. Smith. From
Whirlwind to MITRE: The R&D Story of the
SAGE Air Defense Computer. Boston, Mass.:
MIT Press, 2000.

“SAGE: Cold-War Forerunner to the Information
Age.” Available on-line. URL: http://www.eskimo.
com/~wow-ray/sage28.html. Downloaded on
November 2, 2002.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

92

� Gates, Bill (William Gates III)
(1955–)
American
Entrepreneur, Programmer

Bill Gates built Microsoft, the dominant com-
pany in the computer software field, and in
doing so, became the world’s wealthiest indi-
vidual, with a net worth measured in the tens
of billions.

Born on October 28, 1955, to a successful
professional couple in Seattle, Gates was a
teenager when the first microprocessors became
available to electronics hobbyists. Gates showed
both technical and business talent as early as age
15, when he developed a computerized traffic-
control system. He sold his invention for
$20,000, then dropped out of high school to
work as a programmer for TRW. By age 20, Gates
had returned to his schooling and become a
freshman at Harvard, but then he saw a cover
article in Popular Electronics. The story intro-
duced the Altair, the first commercially avail-
able microcomputer kit, produced by a tiny
company called MITS. This machine consisted
of a case with an Intel 8080 processor, a small
amount of memory, and supporting circuitry.
The “display” consisted of a panel of blinking
lights. Users had to come up with their own key-
board and other peripherals.

G
Although the Altair looked more like a sci-

ence fair project than a business machine, Gates
believed that microcomputing would soon be-
come a significant industry. He recognized that
to be useful, the new machines would need soft-
ware, and whoever could supply what would
become “industry standard” software would
achieve considerable financial success.

Gates and his friend Paul Allen began by cre-
ating an interpreter for the BASIC language that
could run on an Altair with only 4 kilobytes of
memory. Since the Altair itself did not have
enough memory for the editor and other tools
needed to develop the program, Gates and Allen
used a minicomputer at the Harvard Computation
Center to simulate the operation of the Altair’s
processor. Surprisingly, the program worked when
they first tried it out on an actual Altair.

The BASIC interpreter made it possible for
people to write useful applications without hav-
ing to use assembly language. This first product
was quite successful, although to Gates’s annoy-
ance it was illicitly copied by Altair users at the
Homebrew Computer Club and distributed for
free. Although the teenage Gates had been a sort
of proto-hacker, freely exploring whatever com-
puter systems were available, the businessperson
Gates accused the copiers of stealing intellectual
property for which programmers were entitled to
be paid.

Gates, Bill 93

MITS and the Altair soon disappeared,
supplanted by the late 1970s by full-fledged
microcomputers from Apple, Radio Shack,
Commodore, and other companies. But Gates
had shown a shrewd business insight in his early
dealings. When he developed the Altair version
of BASIC, he insisted on license terms that let
him distribute what became known as Microsoft
BASIC to other computer companies as well.
Thus, as Apple and the other companies devel-
oped new microcomputers, they turned to Gates
and Allen’s new company (originally named
Micro-Soft) for this essential software. Even at
this early stage, whenever Gates was asked what
his business goal was, he replied (as recalled by

industry pundits such as Robert X. Cringely) “A
computer on every desk and in every home, run-
ning Microsoft software.” By the end of the
1970s, Microsoft had become the dominant
company in computer languages for microcom-
puters, offering such “grown-up” languages as
FORTRAN and even COBOL.

However, the big breakthrough came in
1980, when IBM decided to market its own mi-
crocomputer, the IBM PC. IBM had decided that
it needed to enter the burgeoning personal com-
puter (PC) market quickly, so contrary to its
usual process of developing its own hardware and
software, “Big Blue,” as IBM is known, decided
to buy a third-party operating system. At the
time, the PC operating system market was dom-
inated by GARY KILDALL’s Digital Research, mak-
ers of CP/M (Control Program/Microcomputer),
an operating system that ran on the majority of
the larger microcomputer systems. However,
when negotiations between IBM representatives
and Kildall broke down due to miscommunica-
tion, IBM decided to hedge its bets by looking
for other operating systems it could offer its users.

Gates agreed to supply IBM with a new op-
erating system. Buying an operating system from
a small Seattle company, Microsoft polished it a
bit and sold it as MS-DOS 1.0. The IBM PC was
announced in 1981, and by 1983 it had become
the standard desktop PC for business and many
home users. Although PC users could buy the
more expensive CP/M or Pascal operating sys-
tems, most stuck with the relatively inexpensive
MS-DOS, so virtually every IBM PC sold re-
sulted in a royalty payment flowing into the cof-
fers of Microsoft. Sales of MS-DOS further ex-
ploded as many other companies rushed to create
clones of IBM’s hardware, each of which also
needed a copy of the Microsoft product.

Now dominant in both languages and oper-
ating systems, Gates and Microsoft looked for
new software worlds to conquer. In the early
1980s, Microsoft was only one of many thriving
competitors in the office software market. Word

Bill Gates is the multibillionaire CEO of Microsoft
Corporation, the leader in operating systems and
software for personal computers. His energy and
market savvy put him in the same league as Ford
and Rockefeller. However, in 2002 a federal court
ordered the company to stop using its market
position unfairly. (Courtesy of Microsoft Corporation)

94 Gates, Bill

processing was dominated by such names as
WordStar and WordPerfect, Lotus 1-2-3 ruled
the spreadsheet roost, and dBase II dominated
databases. But Gates and Microsoft used the
steady revenues from MS-DOS to undertake the
creation of Windows, a much larger operating
system, or OS, which offered a graphical user
interface. The first versions of Windows were
clumsy and sold poorly, but by 1990 Windows
3.0 had become the new dominant OS and
Microsoft’s annual revenues exceeded $1 billion.
Gates relentlessly leveraged both the company’s
technical knowledge of its own OS and its near
monopoly in the OS sector to gain a dominant
market share for Microsoft’s word processing,
spreadsheet, and database programs.

By the end of the decade, however, Gates
and Microsoft faced formidable challenges. The
most immediate was the growth of the Internet
and in particular the World Wide Web, invented
by TIM BERNERS-LEE, and the Netscape Web
browser, developed by MARC ANDREESSEN. The
use of JAMES GOSLING’s Java language with Web
browsers offered a new way to develop and de-
liver software that was independent of the par-
ticular machine upon which the browser was
running. Gates feared this might give competi-
tors a way around Microsoft’s OS dominance.
That dominance itself was being challenged by
Linux, a version of Unix created by Finnish pro-
grammer LINUS TORVALDS. Linux was essentially
free, and talented programmers were busily cre-
ating friendlier user interfaces for the operating
system.

Gates, who had focused so long on the sin-
gle desktop PC and its software, admitted that he
had been caught off guard by the Internet boom,
but said that he would focus on the Internet
from now on. In his 1995 book The Road Ahead,
he proclaimed a vision in which the Internet
and network connectivity would be integral
to modern computing, and Microsoft program-
mers were soon hard at work improving the com-
pany’s Internet Explorer Web browser. Gradually,

Explorer displaced Netscape, and other Microsoft
software acquired Web-related features.

However, Netscape and other competitors
believed that Microsoft had an unfair advan-
tage. They accused Microsoft of using its dom-
inance to virtually force PC makers to include
Windows with new PCs. Then, by including
web browsers and other software “free” as part
of Windows, Microsoft made it very difficult for
competitors who were trying to sell similar soft-
ware. Antitrust lawyers for the U.S. Department
of Justice and a number of states agreed with
the competitors and began legal action in the
late 1990s. In 2000, a federal judge agreed with
the government and later an appeals court es-
sentially ratified a proposed settlement that
would not break up Microsoft but would restrain
a number of its unfair business practices.

Gates’s personality often seemed to be in the
center of the ongoing controversy about
Microsoft’s behavior. Positively, he has been char-
acterized as having incredible energy, drive, and
focus in revolutionizing the development and
marketing of software. But that same personality
is viewed by critics as showing arrogance and an
inability to understand or acknowledge the effects
of its actions. Gates often appears awkward and
even petulant in his appearance in public forums.
On the other hand, Gates and his wife, Melinda,
have through their foundation quietly given more
to charity than anyone else in the world, award-
ing grants for everything from providing computer
access to public libraries to developing vaccines
to fight AIDS. Gates’s achievements and re-
sources guarantee that he will be a major factor
in the computer industry and the broader
American economy for years to come.

Further Reading
Cringely, Robert X. “The New Bill Gates: A Revisionist

Look at the Richest Man on Earth.” Available
on-line. URL: http://www.pbs.org/cringely/pulpit/
pulpit20001123.html. Posted on November 23,
2000.

Gelernter, David Hillel 95

Erdstrom, Jennifer, and Martin Eller. Barbarians Led
by Bill Gates: Microsoft from the Inside, How the
World’s Richest Corporation Wields Its Power. New
York: Holt, 1998.

Gates, Bill, Nathan Myhrvold, and Peter M. Rinearson.
The Road Ahead. Rev. ed. New York: Penguin,
1996.

Lowe, Janet C. Bill Gates Speaks: Insight from the World’s
Greatest Entrepreneur. New York: Wiley, 1998.

� Gelernter, David Hillel
(1955–)
American
Computer Scientist, Writer

It was July 24, 1993, a bit after eight in the morn-
ing. Computer science professor David Gelernter
was sitting at his desk in his Yale University of-
fice. He reached for a package, thinking that it
held one of the many student dissertations that
professors were often called upon to review. He
started to open it and, as he would later recall:
“There was a hiss of smoke, followed by a terrific
flash.” The force of the explosion was so great
that it embedded shrapnel in steel file cabinets.

Gelernter was badly hurt by the blast, and
staggered into the campus health center. He was
rushed by ambulance to the emergency room,
where doctors fought to stop him from bleeding
to death. He recovered with the aid of a series
of surgical operations, but he was left with last-
ing injuries and ongoing pain. His right hand
was maimed, and he would lose the hearing in
one ear and part of the sight of one eye. As re-
counted in his 1997 book Drawing Life, surgery
and physical therapy gradually restored some use
to the remainder of his right hand such that he
could type and even draw—which, given the im-
portance of art to his life, was very significant.

The package had come from a reclusive for-
mer mathematician named Theodore Kaczynski,
who would become known as the Unabomber.
By the time he was arrested in 1996, Kaczynski’s

bombs, targeted mainly at people in computer
and other high-tech fields, had killed three peo-
ple and injured 23.

Gelernter was born in 1955 and grew up in
Long Island, New York. Although his father had
been an early computer pioneer, Gelernter at
first was more interested in the humanities. As
a child he showed considerable talent for art,
winning a youth drawing competition, though
he decided not to go to art school. Later, as a
Yale undergraduate, he studied classical Hebrew
literature as well as art and music. However, feel-
ing the need for better career prospects, he
turned to computer science. Gelernter received
his B.A. degree in computer science at Yale in
1976, and earned his Ph.D. at the State
University of New York (where his father
taught) at Stony Brook in 1982. Ever since, he
has been on the Yale faculty.

In the late 1970s, Gelernter became inter-
ested in parallel processing, the parceling out of
programs so that a number of processors can
work on various parts of the problem while ex-
changing data and avoiding conflicts. Together
with Nicholas Carriero, Gelernter designed a
“coordination language” called Linda. A Linda
program uses data and variables organized into
structures called “tuples,” and a mechanism to
“glue” or bind the separately running program
components together. By harnessing the avail-
able computing power more efficiently, Linda al-
lowed researchers to tackle problems that would
otherwise require an expensive supercomputer.

Gelernter spent at least as much energy
thinking about how the arrival of powerful com-
puting systems would change human life. In his
book Mirror Worlds (1992), he describes a new
use for the massive computing power that par-
allel processing can bring. He envisions a world
in which communities and organizations create
virtual reality counterparts on-line.

For example, a student considering attend-
ing Yale might visit its mirror world and attend
lectures, walk around the campus, explore its

96 Gelernter, David Hillel

history, and otherwise experience it much as
a real-world visitor would. This virtual world
would be dynamic, not static like a book or even
a website. Rather than being some sort of simu-
lation, it would be created constantly from the
real-time data being captured by digital video
cameras and other devices.

To create and maintain this world,
Gelernter’s pioneering techniques for coordinat-
ing many computer processors would have to be
used to their utmost in order to keep up with the
vast the streams of data constantly being carried
from the real campus to its virtual counterpart.
He was eager to accept the challenge. In “The
Metamorphosis of Information Management,”
published in the August 1989 issue of Scientific
American, Gelernter declared that “What iron,
steel and reinforced concrete were in the late 19th
and early 20th centuries, software is now: the pre-
eminent medium for building new and visionary
structures.” By 1990, Gelernter was working on
new ways to search, filter, and organize informa-
tion, outlining techniques that in the later 1990s
would become known as “data mining.”

Gelernter also made it clear that the perva-
sive connection between people and computers
was not without its problems and challenges. His
interest in the arts and humanities led him to
urge that humans bring as much of their feelings
and experience as possible into the process of
designing technology. Unfortunately, in the
mind of Theodore Kaczynski, the Unabomber,
Gelernter was a just a high profile “techno-
nerd.” He became the 23rd target of Kaczynski’s
years-long terror campaign.

Following the bomb attack, Gelernter’s
hands were bandaged and he was unable to hold
a book to read. Instead, he drew upon a rich store
of poetry that he had learned by heart, as well
as listening to the Beethoven string quartets that
he believes are “probably among the spiritually
deepest of all human utterances.”

However, Gelernter also became angry at
the way many people in the media were treat-

ing him. In particular, he did not want to be
viewed as a victim. As he recounts in his book,
Drawing Life: Surviving the Unabomber:

When a person has been hurt and
knocked down, he wants to stand up
and get on with his life and as best he
can, without denying what’s happened
to him. But the idea that you would en-
joy wallowing in victimhood—and this
is—it’s difficult to overstate how re-
lentless this obsession is in the press. It’s
not a word that comes up once or twice
but something you hear again and again.

Gelernter was particularly upset when some
accounts in the press suggested that his views on
the need for a human dimension to technology
were somehow similar to those found in the
Unabomber’s antitechnology manifesto.

In his writings during the years following the
attack, Gelernter emphasized a culturally con-
servative critique of modern intellectuals. He ar-
gued that they had taken the virtue of tolerance
and elevated it to an absolute refusal to make
moral judgments. As a result, according to
Gelertner, society has released the floodgates
that restrain violence and destructiveness.

Like cyber-critic CLIFFORD STOLL, Gerlernter
became increasingly skeptical about the ways in
which computers were actually being used. But
unlike the Unabomber’s “solution” of blowing up
the machines and their adherents, Gelertner sug-
gests in his later works that technology can and
should be humanized. In The Muse in the Machine
(1994) he provides a counterpoint to the bitter
sharpness of Drawing Life. He suggests that the
quest for an abstract artificial intelligence would
fail until researchers began to create “artificial
emotions” that would allow machines to experi-
ence senses and feelings more like those out of
which human consciousness arises. To do so, he
suggests that science become reacquainted with
the world of artists, poets, and musicians.

Gibson, William 97

Consciousness, Gelernter said, was like a
continuum or spectrum. At one end is the “high
focus” of logical reasoning, typified by abstract
mathematics and the logic encoded in most
computer programs. At the other end, that of
“low focus,” attention broadens to encompass
feelings, symbolism, and analogy. He believes
that “When people suddenly place right next to
each other two things that they never used to
think of together, that seem completely unre-
lated, all of a sudden the creative insight
emerges.” For artificial intelligence to be real in-
telligence, it would have to somehow accom-
modate both ends of the spectrum.

Gelernter believes that current computer
systems fall far short of helping humans manage
their lives better. He admits that the Internet is
useful for buying things and finding particular
pieces of information, but says that it in its pres-
ent form it is crude and “prehistoric” because of
the lack of thoughtful structuring of knowledge.
He has also suggested replacing the idea of a
computer user’s electronic desktop, full of poorly
organized files, with a sort of database called
a lifestream. It would organize all work and data
in relation to the passage of time, allowing
people to find something according to what
was happening in their lives around that time.
He has developed a software program called
Scopeware that provides such a facility for PC
and palm computer users.

Further Reading
Gelernter, David Hillel. Drawing Life: Surviving the

Unabomber. New York: Free Press, 1997.
———. Machine Beauty: Elegance and the Heart of

Technology. New York: Basic Books, 1999.
———. Mirror Worlds: Or the Day Software Puts the

Universe in a Shoebox: How It Will Happen and
What It Will Mean. New York: Oxford University
Press, 1992.

———. The Muse in the Machine: Computerizing the
Poetry of Human Thought. New York: Free Press,
1994.

� Gibson, William
(1948–)
American/Canadian
Writer

Many people think that the branch of literature
called science fiction (SF) is mainly about pre-
dicting the future, but SF writers generally be-
lieve their work is more about the idea of the fu-
ture than the attempt to foresee it in detail. SF
authors did more or less predict such achieve-
ments as space travel and even the atomic bomb
(described by H. G. Wells in 1914), but the
literary crystal ball was far less successful when
it came to computers. The “Golden Age” sci-
ence fiction of the 1930s usually had its space
pilots navigating with the aid of slide rules and
steering their ships manually. Even after the dig-
ital computer was invented, science fiction com-
puters tended to resemble bigger ENIACs or
Univacs that might control the world. The idea
of personal computers used by millions of ordi-
nary people in their daily lives was scarcely
anticipated.

Meanwhile, science fiction writers had cre-
ated a rich tapestry of stories about space travel,
alien encounters, future cities, and robots. But
by the 1960s and 1970s, SF writers such as
Harlan Ellison, John Brunner, and Philip K.
Dick had begun to experiment with new forms.
Epic quests and the “space opera” battles be-
tween good and evil were replaced by stories that
gave greater emphasis to the social and psycho-
logical aspects of future changes.

In the 1980s, a writer named William Ford
Gibson would touch off a new literary move-
ment. Ironically, a writer who insists on using a
typewriter rather than a word processor would
become known for depicting a dark, surreal fu-
ture in which computer technology both ampli-
fies and transforms the human mind.

Gibson was born on March 17, 1948, in
Conway, South Carolina. His father, a contrac-
tor at the Oak Ridge, Tennessee, facility where

98 Gibson, William

the atomic bomb was built died when William
was only six years old. The family moved to
Whytheville, near the Appalachian foothills
in Virginia where Gibson’s mother helped set
up the small town’s first library and served as its
volunteer librarian. This naturally encouraged
Gibson’s love of books. As a young teenager, he
became an enthusiastic science fiction fan and
started contributing articles and drawings to
fanzines. However, when Gibson went to an
Arizona boarding school for his later high school
years, his interest in science fiction diminished.

When he was 19, Gibson’s mother died. The
Vietnam War was at its height, and like many
thousands of other American young men he
moved to Canada to escape the draft, making
only occasional trips back to the United States.
Gibson earned a B.A. degree in literature at the
University of British Columbia in 1977. He and
his wife (a language instructor) and their chil-
dren have lived in Vancouver, British Columbia,
since 1972.

When their first child was born, Gibson’s
wife had better career prospects than did her
husband, so Gibson became a stay-at-home dad.
He began to use his spare time to write short sto-
ries. His first notable success was “Burning
Chrome,” published in 1982 by Omni magazine.
In this story, Gibson coined the term cyberspace
to refer to the reality that computer-linked users
experienced.

With his first novel, Neuromancer (1984)
Gibson launched something that could be called
either a new kind of science fiction or a new
genre of literature entirely. The novel begins
with this line: “The sky above the port was the
color of television, tuned to a dead channel.” In
its desolation, this image echoes that used by the
poet T. S. Eliot in his long poem The Love Song
of J. Alfred Prufrock, in which the reader is in-
vited to go “When the evening is spread out
against the sky / Like a patient etherised upon a
table.” Gibson further develops the contrast be-
tween the flashy, fast-paced technology used by

elite cyber-“cowboys” who “jack” their minds
into the computer network, and the emotionally
dead world that they inhabit. It is a world of frag-
ments and flashes of connection. It is also a
world where the artificial and the natural have
merged or interpenetrated each other, where
the sky is television and people live inside the
machine.

In the novels that followed, Count Zero
(1986) and Mona Lisa Overdrive (1988), Gibson
further develops his near-future world. The
world is culturally diverse (many striking scenes
are set in high-tech Tokyo), but dominated by
global corporations that have secrets they will
readily kill to protect. The physical environ-
ment is decayed and polluted. Discovery, pur-
suit, and escape drive the plot at a rapid pace,
and there are echoes of the noir film and the
hard-boiled detective made famous by Raymond
Chandler.

The word cyberpunk had been coined as
early as 1980 to refer to stories with amoral,
gritty, high-tech characters. (It also drew from
the punk rock movement of the 1970s.) But
Gibson’s work led to a vigorous literary move-
ment, as other writers such as Bruce Sterling,
Rudy Rucker, and John Shirley began to ex-
plore the impact of computer technology on
society.

Gibson himself was not particularly com-
fortable with the cyberpunk label. He continued
to explore divergent aspects of the cyberworld
and to evoke different atmospheres. His The
Difference Engine (1990) is set in an alternate
history in which the mechanical computer in-
vented by CHARLES BABBAGE was actually built
(powered by steam), and high technology was
combined with a Victorian worldview. A later,
loosely connected group of novels includes
Virtual Light (1993), which portrays the survivors
of a millennial cataclysm in a divided California;
Idoru (1996) describes a new kind of media
star—an artificially created celebrity; and All
Tomorrow’s Parties (2000) continues the chase to

Goldstine, Adele 99

a post-quake San Francisco Bay Bridge inhab-
ited by a sprawling community of outcasts.

Gibson’s work has been adapted to other
media. His story Johnny Mnemonic became a
motion picture in 1995, and numerous video
games of the late 1990s portray post-apocalyptic
cyberpunk-style settings.

By then, cyberpunk as a distinctive move-
ment had faded, with its imagery becoming part
of the stock-in-trade of science fiction. How-
ever, the idea of cyberspace had taken on a life
of its own in the computer field. Although
Gibson has claimed to know nothing about
computers (and little about science in general),
his depiction of the social effects of computer
networking were seen as quite relevant to life
in Internet chat rooms and on-line games.
Everyone from computer scientists to teenage
hackers began to think in terms of cyberspace.
Gibson’s work influenced the creation of virtual
reality software by such pioneers as JARON

LANIER, as well as the efforts of privacy advo-
cates and activists such as the “cypherpunks”
who want ordinary people to have access to en-
cryption to protect their privacy from govern-
ments and corporations.

Gibson has won the highest honors in sci-
ence fiction, including both the Nebula and
Hugo Awards for Neuromancer as best novel,
1984.

Further Reading
Gibson, William. Burning Chrome. New York: Arbor

Books, 1986.
———. Neuromancer. New York: Ace Books, 1984.
———. Virtual Light. New York: Bantam Books,

1993.
“Gibson, William.” In Contemporary Novelists. 7th ed.

Chicago: St. James Press, 2001.
“History of Cyberpunk.” Available on-line. URL:

http://project.cyberpunk.ru/idb/history.html. Up-
dated on November 2, 2002.

Olsen, Lance. William Gibson. San Bernardino, Calif.:
Borgo Press, 1992.

� Goldstine, Adele
(1920–1964)
American
Mathematician, Programmer

During the 1940s, the abstruse world of theo-
retical mathematics and the switches and vac-
uum tubes of electrical engineers came together
in the development of the modern computer.
While it seemed logical to hire mathematicians
to program the first computers, this did not mean
that it was easy for them to adjust to a new tech-
nology and in the process create a new disci-
pline. Adele Goldstine was one of the pioneers
who built the bridge between mathematics and
technology.

Goldstine was born on December 21, 1920,
and grew up in New York City. She went to
Hunter College High School and then attended
Hunter College, earning a B.A. degree in math-
ematics. She then went to the University of
Michigan for graduate study, earning her master’s
degree in mathematics. While there she met her
future husband, HERMAN HEINE GOLDSTINE, also a
mathematician. They were married in 1941.

As the United States entered World War II,
Herman Goldstine, a first lieutenant in the
army, was assigned to the Aberdeen Proving
Grounds in Maryland. His task was to prepare
the ballistic tables needed for aiming guns and
bombs. He quickly realized that people using the
mechanical calculators of the time could never
keep up with the demand for these tables, which
had to be prepared for every combination of gun,
shell, and fuse. Indeed, a single complete calcu-
lation needed 20 hours of work by a skilled op-
erator. (The differential analyzer, a mechanical
analog computer invented by VANNEVAR BUSH,
was considerably faster, but not fast enough.)
Herman Goldstine then learned about the work
of J. PRESPER ECKERT and JOHN MAUCHLY, who
were proposing that a new kind of calculator,
called ENIAC, be built using electronic (vac-
uum tube) technology.

100 Goldstine, Adele

Meanwhile, Adele Goldstine had joined the
war effort. At first she worked as one of the
mathematicians, or “computers,” assigned to
manually calculate tables at the Moore School
in Philadelphia (at the time, computer referred
to a person, not a machine.) By the time the
group numbered 75 it had exhausted the local
pool of mathematically trained people, so she
was sent on a tour of universities throughout
New England in search of more recruits.
Eventually this effort was supplanted by the
WACs (Women’s Army Corps) which provided
additional trained personnel.

Adele Goldstine, however, was about to get
a challenging new job. When ENIAC was fi-
nally ready in 1946, the war was over but the
appetite for calculation was as great as ever.
People were clamoring for computers for every-
thing from designing sleek new jet planes to un-
derstanding nuclear reactions in proposed power
plants. ENIAC was a huge machine, filling a 30-
by-50-foot room with rows of cabinets along
each wall. When it was running, the ENIAC’s
18,000 vacuum tubes drew 160,000 watts of
power, dimming lights in the surrounding neigh-
borhood. ENIAC was about 1,000 times faster
than any mechanical calculator, but it was hard
to access that power. The reason is that ENIAC
was not like modern computers in one impor-
tant respect. There were no instructions that
could be typed into a terminal or compiled into
programs to direct the machine. In fact, ENIAC
could not store its own instructions at all. To set
up ENIAC to tackle a problem, the machine had
to be literally rewired by setting hundreds of
switches and plugging in cables. The machine
had “drawers” called digit trays full of numbers
where the constant values needed for the pro-
gram were input.

Scientists who wanted to take advantage of
ENIAC’s capabilities and the growing number of
people learning to program the machine (in-
cluding women such as JEAN BARTIK and FRANCES

ELIZABETH HOLBERTON) needed to have a clear

description of this new and unfamiliar technol-
ogy. Adele Goldstine was given the job of docu-
menting the operation of ENIAC. As she wrote
in her diary (quoted in Notable Women Scientists):

At first I thought I would never be able
to understand the workings of the ma-
chine since this involved a knowledge of
electronics that I did not have at all. But
gradually as I lived with the job and the
engineers helped to explain matters to
me, I got the subject under control. Then
I began to understand the machine and
had such masses of facts in my head I
couldn’t bring myself to start writing.

Goldstine eventually wrote a complete set
of manuals for the machine, ranging from a tech-
nical overview to detailed information for the
technicians who would have to maintain it.

Later, Goldstine and mathematician JOHN

VON NEUMANN worked together to give ENIAC
the ability to “understand” and store instructions
similar to those found in modern computers.
With 50 instructions permanently wired into the
machine, ENIAC could now be programmed
from punch cards instead of having to be set up
by hand. Goldstine also developed flow dia-
grams—charts that became the most common
tool for designing programs and describing their
operation. She also wrote many of the major pro-
grams for ENIAC to enable it to perform calcu-
lations for the atomic laboratory at Los Alamos,
New Mexico.

Adele Goldstine’s career was tragically cut
short when she developed cancer and died in
November 1964. In recent years, her pioneering
work has been honored in retrospective, at meet-
ings and in historical publications.

Further Reading
“Goldstine, Adele.” In Notable Women Scientists,

Proffitt, Pamela, editor. Detroit: Gale Group,
2000.

Goldstine, Herman Heine 101

Goldstine, Adele. “Report on the ENIAC.” Ordnance
Department, U.S. Army, 1946. Available on-
line. URL: http://ftp.arl.army.mil/~mike/comphist/
46eniac-report. Downloaded on December 1,
2002.

McCartney, Scott. ENIAC: The Triumphs and
Tragedies of the World’s First Computer. New York:
Berkeley Books, 1999.

� Goldstine, Herman Heine
(1913–)
American
Mathematician, Writer

Like most inventions, the modern digital elec-
tronic computer resulted from a combination of
circumstances—in this case, the wartime needs
of the military, the availability of suitable tech-
nology, and an insight into how that technol-
ogy might be used. The other key ingredient was
the ability to link innovators with the military
and government authorities who might be will-
ing to finance their research. Herman Goldstine
played an important role in the birth of the
computer through both technical contributions
and leadership.

Goldstine was born on September 13, 1913,
in Chicago. He received his B.S. degree in math-
ematics at the University of Chicago and con-
tinued there, earning his M.S. degree in 1934
and Ph.D. in 1936. He then served as a research
assistant and instructor. In 1939, he moved to
the University of Michigan, becoming an assis-
tant professor.

Shortly after the United States entered
World War II, Goldstine joined the U.S. Army.
In August 1942, he was transferred to the
Ballistic Research Laboratory as a first lieu-
tenant. His assignment was to speed up the
process of calculating trajectories for guns and
bombs, a tedious and exacting process that had
to be repeated for each variation in gun, eleva-
tion, shell type, wind speed, humidity, and so on.

At the time, the calculations were per-
formed by teams of skilled mechanical calcula-
tor operators, often women with mathematics
degrees, who were known as “computers.”
(Given the prevailing attitude of the times, it
was rare for women to work as full-fledged math-
ematicians.) Manually calculating just one
ballistics table took 20 person-hours. The dif-
ferential analyzer, a mechanical analog computer
invented by VANNEVAR BUSH, could reduce this
time to 15 minutes, but with thousands of tables
needed this was not fast enough.

A month after arriving at his new job,
however, Lieutenant Goldstine learned that
two researchers at the University of Pennsyl-
vania’s Moore School of Electrical Engineering,
J. PRESPER ECKERT and JOHN MAUCHLY, were look-
ing into the possibility of building a new kind of
calculator. Instead of using mechanical or even
electrical relays, they proposed using vacuum
tubes. This meant that the switching between
the binary values of 1 and 0 would be at the
speed of electrons, allowing for calculations to
be at least 1,000 times faster.

Goldstine went to the Moore School and
got up to speed on Eckert and Mauchly’s ideas.
He was in a key position to get them the fund-
ing they needed, thanks to his work at the
Ballistic Research Laboratory. Ordinarily the
army officials, or “brass,” tended to be skeptical
about apparently outlandish proposals from
civilians. But by late 1942, the war was reach-
ing a crucial point. Facing challenges such as the
German U-boats in the Atlantic and locked in
a “wizard’s war” fought over radar systems, mili-
tary leaders were starting to realize how vital
technological superiority would be. Being able
to “crunch numbers” thousands of times faster
just might be the difference that would make the
hundreds of thousands of guns and bombs rolling
off America’s assembly lines effective enough to
turn the tide.

Thus, when Goldstine brought Eckert and
Mauchly to his superiors, they quickly agreed to

102 Gosling, James

fund would be known as Project PX. They would
build ENIAC (Electronic Numerical Integrator
and Computer). Goldstine then used his math-
ematical knowledge to help with designing the
machine. By late 1945, ENIAC was performing
calculations for the secret nuclear weapons proj-
ect. The machine was officially unveiled on
February 18, 1946.

Much of the operation of ENIAC was han-
dled by a group of talented (and now largely for-
gotten) women, including JEAN BARTIK, FRANCES

ELIZABETH HOLBERTON, and Goldstine’s wife,
ADELE GOLDSTINE, who wrote the system docu-
mentation and reports and supervised the train-
ing of programmers.

Herman Goldstine left the army in 1945,
and became a researcher with the Institute
for Advanced Study at Princeton, New Jersey,
from 1946 to 1957. Together with JOHN VON

NEUMANN, Goldstine worked on the development
of the institute’s own computer. Their research
included improving computer architecture by
giving a machine the ability to store its program
instructions along with data. This “stored pro-
gram concept” made computers more flexible
and easier to program. For example, a program
could repeat an operation (loop) without hav-
ing to continually reload cards or tape. In the
debate between von Neumann and Mauchly
over who had originated the stored program
concept, Goldstine strongly defended von
Neumann’s claim.

In 1958, Goldstine moved to IBM, as a re-
search planner and then as director of mathe-
matical sciences at the Thomas J. Watson
Research Center (1958–65), director of scien-
tific development of the data processing division
(1965–67) and consultant to the director of re-
search (1967–69). Goldstine was appointed an
IBM fellow in 1967, serving until his retirement
in 1973.

Goldstine’s interests ranged beyond the
technical to the historical and philosophical. His
1972 book The Computer from Pascal to von

Neumann recounts the development of the key
ideas of computing, especially those of John von
Neumann, which led to the modern computer’s
ability to store programs as well as data. The dis-
cussion of ideas is spiced with personal stories
from the early days of computing.

Goldstine was elected to the American
Philosophical Society and served as its director
from 1984 to 1997. He has also received the
Harry Goode Award from the American
Federation of Information Processing Societies
(1979), the Institute of Electrical and Electronics
Engineers Pioneer Award (1982), and the
National Medal of Science (1985).

Further Reading
Goldstine, Herman. The Computer from Pascal to von

Neumann. Princeton, N.J.: Princeton University
Press, 1972.

McCartney, Scott. ENIAC: The Triumphs and Tragedies
of the World’s First Computer. New York: Berkeley
Books, 1999.

� Gosling, James
(1955–)
Canadian
Computer Scientist

Users interact with today’s webpages in many
ways, ranging from simple forms to elaborate on-
line games and simulations. TIM BERNERS-LEE es-
tablished the basic structure for webpages with
his hyptertext markup language (HTML).
Developers could add animation and interactive
features using facilities such as CGI (common
gateway interface), but writing larger, more elab-
orate programs to run on webpages was difficult.
This changed when Canadian computer scien-
tist James Gosling turned a failed software proj-
ect into Java, one of the most successful pro-
gramming languages of all time.

Gosling was born in Canada in 1955. He
earned a bachelor’s degree at the University of

Gosling, James 103

Calgary in 1977 and in 1983 received his doc-
torate at Carnegie Mellon University, an insti-
tution noted for advanced work in computer
science.

During the 1980s, Gosling worked on some
important extensions to the UNIX operating sys-
tem. These included a version of UNIX for com-
puters with multiple processors and “Andrew,” a
programming system and toolkit that gives UNIX
users a graphical interface similar to that in
Windows and Macintosh systems. In 1984,
Gosling joined Sun Microsystems, a developer of
powerful graphic workstation computers.

In 1991, Gosling and other researchers
began to develop a programming language code-
named Green. This language was object-
oriented, encapsulating data and functions
together into components that could communi-
cate with each other. Sun then combined
Gosling’s project with another effort called First
Person. The new focus was to develop a pro-
gramming system that would allow applications
to be written for “smart” consumer products such
as TV remote controls. However, the consumer
electronics industry proved to be less than en-
thusiastic about the proposed products.

Meanwhile, another Sun researcher, David
Ungar, was involved in a project called Self. It
was an effort to develop a programming system
in which programs could be run on a variety of
different computer systems by providing a “vir-
tual machine” for each system. The virtual ma-
chine on each computer executed the program’s
instructions and tied them into the particular
codes needed by that platform. This meant that
a developer could write one program and have
it run on many different machines—unlike
Microsoft Windows, for example, which runs
only on Intel-compatible PCs.

Gosling decided to create a language that
would be suitable for such multiplatform pro-
gramming. His language, code-named Oak, was
also object-oriented, and took much of the struc-
ture and syntax of BJARNE STROUSTRUP’s popular

C++ language. Gosling streamlined the some-
what complex C++ language by removing what
he felt were seldom used, misunderstood, and
puzzling features.

In 1995, the public was given an overview
of the new language, now called Java. Java was
vigorously promoted by another key Sun com-
puter scientist, BILL JOY. Sun soon made a Java
Development Kit available for free to software
developers to encourage them to begin to write
Java applications. The timing could not have
been better: by the mid-1990s the graphical web
browser first developed by MARC ANDREESSEN

James Gosling invented Java, a language ideal for
brewing up applications to run on Web browsers and
servers. For a time, Java’s ability to run on any sort of
hardware or operating system seemed to threaten the
dominance of Microsoft Windows on the desktop.
(Courtesy of Sun Microsystems)

104 Gosling, James

was making the Web attractive and accessible to
millions of PC users. Web developers were thus
eager to find a way to quickly write small pro-
grams that users could download and run from
websites.

Java offered many advantages for this pur-
pose. Many programmers already knew C++, so
they could quickly pick up Java. Java programs
could be developed using the free development
system from Sun, and once linked to a webpage,
anyone using Netscape, Microsoft Internet
Explorer, or other browsers could access the
page, click on a link or button, and the program
would download and then be run by the “Java
virtual machine” in the Web browser. (Java
could also be used to write stand-alone programs
that did not need a Web browser to run.)

The splash made by Java alarmed BILL GATES,
chief executive officer of Microsoft. Since Java
programs could run on any desktop, laptop, or
handheld computer that had a virtual machine,
it did not matter what operating system the ma-
chine used. If Java became popular enough,
software developers might start writing major busi-
ness software such as word processors, databases,
and spreadsheets using Java. A computer maker
could then sell computers with a free operating
system such as LINUS TORVALDS’s Linux, and users
might have everything they need without hav-
ing to ever buy a copy of Microsoft Windows.

Gates responded by creating new versions of
programming languages and tools that made it
easier for Web developers to write software for
Windows, taking advantage of the huge number
of machines already running that operating sys-
tem. Although Java was embraced by IBM and
many other companies, Microsoft tried to dis-
courage its use. So far, while Java has not re-
placed Windows, it has maintained its strength
as the preferred language for Web development.

Gosling continues as a vice president and
researcher at Sun, holding a fellowship.
Recently, he has been working on specifications
for a version of Java for real-time programming

as well as on creating Java systems tailored to
the small hand-held computers called personal
digital assistants (PDAs).

Like many other computer scientists, Gosling
is also interested in the growing importance of
“distributed computing”—having many comput-
ers and computerlike devices in homes and work-
places communicating with one another and
sharing data. But this new world of computing
brings risks as well as powerful capabilities. As
Gosling said at a 2002 conference: “When con-
sumer electronics companies start to attempt net-
working, it’s frightening. You read their specifica-
tions and say, ‘That was a bad idea 20 years
ago—and it still is.’ You can’t just add a coat of
‘secure’ paint when you’re done.” Gosling’s secu-
rity concerns extend to all the new kinds of Web
services that have been hyped in recent years,
such as “pushing” content onto users’ screens.

Microsoft’s latest salvo in the battle to gain
control of Web development is called .Net (or
dot-Net), a computer language framework de-
signed to let programs and components work
seamlessly over the network. Although .Net has
the advantage of being a single structure backed
by the resources of the world’s most powerful
software company, Gosling believes that the
J2EE (Java 2 Enterprise Edition) offers a more
flexible range of technologies for users with vary-
ing needs. Besides, as he noted at a developer’s
conference, “the J2EE market is a community,
while .Net is the product of a corporation.”

When asked by an interviewer what it is like
being a researcher at Sun, Gosling replied: “The
goal of any research lab is to do things that are
kind of weird and outlandish and risky. In most
IT [information technology] organizations, the
big goal is to succeed, which means, ‘Don’t take
risks.’ But in a research lab, if you aren’t failing
often enough, you aren’t taking enough risks.”

Gosling has been the recipient of numerous
awards, including the PC Magazine 1997 “Person
of the Year” award and the InfoWorld Innovators
Hall of Fame (2002).

Grove, Andrew S. 105

Further Reading
Gosling, James. “Java: an Overview.” Available

on-line. URL: http://java.sun.com/people/jag/
OriginalJavaWhitepaper.pdf. Posted on February
1995.

“James Gosling Home Page.” Available on-line. URL:
http://java.sun.com/people/jag. Downloaded on
November 2, 2002.

Sliwa, Carol. “Gosling: 5 Years on, Diversity of Java
Has Been Surprise,” Computerworld, June 26,
2000, p. 86.

� Grove, Andrew S. (András Gróf)
(1936–)
Hungarian/American
Engineer, Entrepreneur

Diamonds are lumps of carbon, and computer
chips are (mostly) lumps of sand, except that na-
ture shaped the former and human ingenuity the
latter. The modern computer industry would not
have been possible without researchers such as
JACK KILBY and ROBERT NOYCE, who discovered
how to pack thousands of functional circuits
onto tiny silicon chips. But equally, without en-
trepreneurs like Andrew Grove, microprocessors
would not have become an integral part of not
only personal computers (PCs) but calculators,
cell phones, microwave ovens, and dozens of
other appliances used daily.

Grove was born András Gróf on September
2, 1936, in Budapest to a Jewish family. His
father, George, owned a dairy and his mother,
Maria, was a bookkeeper. In 1940, young Grove
contracted scarlet fever and almost died from the
deadly disease. He was left with damaged hear-
ing, although a series of operations in his adult-
hood restored it.

Grove’s family was disrupted by the Nazi
conquest of Hungary early in World War II. His
father was conscripted into a work brigade that
amounted to slave labor. Andrew and his mother
then faced the Nazi roundup in which many

Hungarian Jews were sent to their death in con-
centration camps. The Groves were taken in by
a Christian family, who risked their own lives to
shelter them. Grove later recalled to Time in-
terviewer Joshua Cooper Ramo that his mother
told him that “I had to forget my real name and
that . . . if they said ‘Write your name,’ I couldn’t
write [my real name] down.”

Although the family survived and was re-
united after the war, Hungary had come under
Soviet control. Food and heating fuel were hard
to come by. Because the Groves had owned a
business before the war, communists persecuted
them as capitalists as well as Jews. Nevertheless,
Grove was a good student in high school, par-
ticularly excelling in chemistry.

In 1956, while Grove was studying at the
university in Budapest, another crisis arrived. A
number of Hungarian activists rebelled against
the Soviet-supported communist government.
The Soviets responded by invading the country,
sending tanks into the streets of Budapest. Like
many other university students, Grove feared

Andrew Grove’s family in Hungary fled the Nazis. He
then got himself smuggled across the border to escape
the communists. Once in the United States, Grove
zeroed in on the new semiconductor industry and
eventually built Intel, the world’s largest maker of
computer chips, weathering technical challenges and
competition from Japan. (Photo provided by Intel
Corporation)

106 Grove, Andrew S.

that he would be arrested by the occupying
forces. He and a friend made a dangerous border
crossing into Austria, paying a smuggler to take
them over little-used routes. Grove then came to
the United States aboard a refugee ship, arriving
with only about $20 in his pocket. Changing his
name to Andrew Grove, he lived with his uncle
in New York and studied chemical engineering
at the City College of New York, where he re-
ceived his bachelor’s degree with honors in 1960.

Grove then earned his Ph.D. in chemical
engineering at the University of California at
Berkeley (in only three years) and became a
researcher at Fairchild Semiconductor in 1963
and then Assistant Director of Development
in 1967. Meeting Robert Noyce and GORDON

MOORE, Grove soon became familiar with the
work on an exciting new technology—the inte-
grated circuit, which places many tiny compo-
nents such as transistors to form extremely
dense, compact circuits. Grove eventually com-
piled his accumulated knowledge into a text-
book, Physics and Technology of Semiconductor
Devices, which became a standard in the field.

The research team Grove joined had been
trying to use silicon to create semiconductor
chips, but the electronic characteristics varied
too much. Eventually, Grove and the other re-
searchers found out that the sodium used in the
curing process was the source of the problem.
Both Noyce and Moore were impressed by
Grove’s scientific skills and also by the way he
had stepped into managing the research effort.
Thus, when they decided to leave Fairchild and
start their own semiconductor company, they
invited Grove to join them.

Grove had been intended to become direc-
tor of engineering, but the small company, called
Intel, needed a director of operations so badly
that he soon moved to that post. He established
a management style that featured what he called
“constructive confrontation”—characterizing it
as a vigorous, objective discussion where oppos-
ing views could be aired without fear of reprisal.

However, Grove, who had not yet had his hear-
ing surgically fixed, sometimes turned off his
hearing aid when he no longer wanted any in-
put. Critics characterized the confrontations as
more harsh than constructive.

Grove always strove to nail down the key
factors that contributed to efficiency and pro-
duction, trying to make the way operations were
run as precise as the placement of transistors on
the silicon chips that were revolutionizing com-
puting. In doing so, he sometimes angered
employees, as in 1971, when he reminded em-
ployees that they were expected to work a full
day on December 24.

Scrooge or not, Grove earned the respect of
both colleagues and competitors as an ace prob-
lem solver who finished projects on time and
under budget. He also took the initiative in re-
sponding to changing market conditions. In the
late 1970s, desktop computers were starting to
come into use. It was unclear whether Intel
(maker of the 8008, 8080, and subsequent
processors) or Motorola (with its 68000 proces-
sor) would dominate the market for processors
for these new machines.

To win the competition, Grove emphasized
the training and deployment of a large sales
force, and by the time the IBM PC debuted in
1982, it and its imitators would all be powered
by Intel chips, which would also be used in many
appliances and other devices. Later, when other
companies attempted to “clone” Intel’s chips,
Grove did not hesitate to respond with lawsuits.
Although competitors such as Advanced Micro
Devices (AMD) and Cyrix eventually won the
right to make competing chips, Intel has held
on to the lion’s share of the market through a
combination of pushing the technological bar
higher and maintaining brand consciousness
through the “Intel Inside” ad campaign.

As late as the mid-1980s, however, most of
Intel’s revenue came not from microprocessors but
from memory chips, called DRAMs. However,
Japanese companies had begun to erode Intel’s

Grove, Andrew S. 107

share of the memory chip market, often “dump-
ing” products below their cost. Instead of trying
to compete with the superefficient Japanese
manufacturing technology, Grove took a more
radical step. He decided to get Intel out of the
memory market, even though it meant downsiz-
ing the company until the growing micro-
processor market made up for the lost revenues.
In 1987, Grove had weathered the storm and be-
come Intel’s chief executive officer (CEO). He
summarized his experience of intense stress and
the rapidly changing market with the slogan
“Only the paranoid survive.”

During the 1990s, Intel introduced the pop-
ular Pentium line and then had to deal with
mathematical flaws in the first version of the chip
that resulted in Intel having to pay $475 million
to replace the defective chips. The Pentium was
steadily improved, with the Pentium IV reach-
ing a clock speed of more than 2.5 gigahertz, or
billions of cycles per second, in 2002. Meanwhile,
Grove had to fight a personal battle against
prostate cancer that had been diagnosed in 1994.
He eventually opted for an experimental radia-
tion treatment that put the disease into remis-
sion. Although his overall health remained good,
Grove relinquished his CEO title at Intel in
1998, remaining chairman of the board.

Through several books and numerous arti-
cles, Grove has had considerable influence on
the management of modern electronics manu-
facturing. He has received many industry awards,
including the Institute of Electrical and
Electronic Engineers Engineering Leadership
Recognition Award (1987), and the American
Electronics Association Medal of Achievement
(1993). In 1997 he was named CEO of the Year
by CEO Magazine and was Time magazine’s Man
of the Year.

Further Reading
Burgelman, Robert, and Andrew S. Grove. Strategy Is

Destiny. New York: Simon and Schuster, 2001.
Grove, Andrew. High Output Management. 2nd ed.

New York: Vintage Books, 1995.
———. One-on-One with Andy Grove. New York:

Putnam, 1987.
———. Only the Paranoid Survive. New York:

Doubleday, 1996.
Intel Corporation. “Andy Grove.” Available on-line.

URL: http://www.intel.com/pressroom/kits/bios/
grove.htm. Downloaded on November 2, 2002.

Ramo, Joshua Cooper. “Man of the Year: Andrew S.
Grove—A Survivor’s Tale.” Time, December 29,
1997, pp. 54ff.

108

� Hamming, Richard Wesley
(1915–1998)
American
Mathematician, Computer Scientist

A flood of data bits pours through the Internet
every second of every day. But whether they
make up an e-mail message, a photo image, or
a software program, those bits are subject to
numerous possible mishaps on their way to a per-
sonal computer. If interference between mes-
sages or from some nearby piece of electronic
equipment “flips” a bit from zero to one, or one
to zero, the meaning of the data will change. The
results could be minor, such as an e-mail con-
taining the sequence of letters “thk” instead of
“the,” or a picture having a tiny dot of the wrong
color. On the other hand, a wrong bit could
translate to a garbled instruction, making a
downloaded program “crash.”

Richard Hamming found a way not just to
detect data errors, but to fix them so that the
data received exactly matches the data sent. As
a result, users of the world’s computer networks
may have to cope with network “traffic jams”
slowing down their downloads, but they can be
confident that the data they receive is reliable.

Hamming was born on February 11, 1915,
in Chicago. His father was a native of the
Netherlands who had fought in the Boer War.

H
Left for dead on the battlefield, he somehow re-
covered and later immigrated to the United
States, where he worked for some time as a cow-
boy in Texas before ending up with a more
sedentary job as a credit manager.

As a student at Chicago’s Crane Technical
High School, Hamming became interested in
mathematics after, as he later recalled, he “real-
ized that he was a better mathematician than
the teacher.” Also interested in engineering,
Hamming had begun to pursue that career at
Crane Junior College when that institution
closed because of the financial problems of the
Great Depression. His only scholarship offer
came from the University of Chicago, which had
a mathematics department but no engineering
department, so Hamming switched to mathe-
matics. He received his B.S. degree in 1937, then
earned an M.A. degree at the University of
Nebraska in 1939 and a Ph.D. from the
University of Illinois in 1942.

Hamming taught for the next two years but
in April 1945, as recounted by J. A. N. Lee, he
received a letter from a friend who wrote “I’m
in Los Alamos, and there is something interest-
ing going on down here. Come down and work.”
Intrigued and wanting to contribute to the war
effort, Hamming took the train to Los Alamos,
followed by his wife, Wanda, a month later.
While Wanda worked as a human “computer” at

Hamming, Richard Wesley 109

a desk calculator, Richard Hamming was intro-
duced to a room full of IBM machines that were
sort of a cross between calculators and modern
computers. These electromechanical relay cal-
culators clicked and clacked furiously as they
ran, putting Hamming in mind of “the mad sci-
entist’s laboratory.”

Hamming’s job was to fix and restart these
mechanical computers whenever they broke
down. While he had only the vaguest notion
that the calculations involved the design of an
atomic bomb of incredible power, he did see how
the use of computers meant “that science was
going to be changed” by the ability to perform
calculations automatically that were too lengthy
for humans to compute.

After the United States dropped atomic
bombs on Japan and the war ended, most of the
researchers left Los Alamos for other jobs.
Hamming, however, remained for six months
because he had become intrigued by the process
that had so accurately predicted the perfor-
mance of the bombs. He traced out the chains
of calculations and observed “feedback loops”
that had detected and corrected errors, refining
the numbers to make them more and more ac-
curate. He also observed how the scientists had
learned from their work and from one another
as they became a team. Hamming’s study re-
vealed how a stupendous engineering problem
had been solved not by trained engineers but by
imaginative scientists. Hamming realized that
becoming a mathematician rather than an en-
gineer had been fortunate, because, as he re-
called, to J. A. N. Lee “As an engineer, I would
have been the guy going down manholes instead
of having the excitement of frontier research
work.”

Hamming’s Los Alamos experience would
shape his career in other ways as well. It estab-
lished his interest in the theory of automatic
error correction and also his interest in the
teaching of the discipline that would eventually
become known as computer science.

In 1946, Hamming went to work at Bell
Telephone Laboratories, one of the nation’s pre-
mier private research organizations. There he
joined three other mathematicians: communi-
cations theorist CLAUDE E. SHANNON, Donald P.
Ling, and Brockway McMillan. Together they
called themselves the Young Turks.

As he expressed in his interview with Lee,
Hamming believed that he and other young
mathematicians who had come of age during the
war represented a generation with a new ap-
proach to scientific research:

During the war we all had to learn things
we didn’t want to learn to get the war
won, so [we] were all cross-fertilized. We
were impatient with conventions, and
often had responsible jobs very early.

Given their attitude, it was not surprising
that the Young Turks “did unconventional
things in unconventional ways and still got valu-
able results. Thus management had to tolerate
us and let us alone a lot of the time.” Hamming,
for example, had been assigned to work on elas-
ticity theory, but he was soon paying much more
attention to the laboratory’s computers them-
selves than to the work he was supposed to do
with them.

One of Hamming’s first discoveries came
from his work in training researchers who had
used analog computers to use the new digital
computers. His work and research resulted both
in a textbook and a patent for the “Hamming
window,” a way to examine part of a signal or
spectrum while minimizing interference from
other regions. Hamming found cutting-edge re-
search to be challenging and satisfying, telling
Lee that “if you don’t work on important prob-
lems, it’s not likely that you’ll do important
work.” He also found it exhilarating: “The emo-
tion at the point of technical breakthrough is bet-
ter than wine, women, and song put together.”
However, Hamming’s brashness and intensity

110 Hewlett, William Redington

sometimes irritated colleagues, who accused him
of not listening enough to what others had to say.

By the late 1940s Hamming had focused his
research on finding a way for computers to find
and fix errors automatically. Claude Shannon’s
work had shown that errors could be limited by
including a certain amount of redundant infor-
mation in a data transmission, but it was unclear
how that redundant data could actually be used.

Hamming’s system, called Hamming codes,
is based on the idea of parity. In its simplest form,
parity involves adding an extra bit to each group
of data bits being transmitted, so that the total
group always has an odd or even number of one
bits. For example, if “odd parity” is being used,
the data bit group 10101010 (which has four one
bits, an even number) another one bit would be
added to make the number of ones odd:
101010101. Similarly, with the data bit group
11000111, which already has five ones (an odd
number), a zero would be added, 110001110.

The receiving system then counts the num-
ber of one bits in each data group and checks to
see whether it is still odd (if odd parity is being
used). If a bit has been “flipped” from one to zero
(or vice versa) during transmission, the count
will be even, and the receiver knows that an er-
ror has occurred and can request that the trans-
mitting system resend the data.

Hamming elaborated the simple parity idea
by using multiplication and a special matrix, or
group of digits. As a result of using two parity
digits, Hamming codes can even detect when
two separate errors have occurred—errors that
otherwise might cancel each other out.
Alternatively, Hamming codes can be limited to
detect only single errors but also to determine
which bit had the error. This means the data can
be corrected without having to retransmit it.

In addition to his work on error correction,
Hamming also made contributions to the devel-
opment of higher-level, easier-to-use program-
ming languages—work that would help lead to
today’s structured programming languages.

Hamming retired from Bell Labs in 1976,
but his career was not over. He became head of
the computer science department at the Naval
Postgraduate School in Monterey, California. In
his teaching, he tried to instill in his students
the same flexibility and openness that he had
demonstrated at Bell Labs. He believed that this
was more important than imparting large
amounts of detailed knowledge that was likely
to be obsolete by the time his students were
working in the real world. After a long, produc-
tive career, Hamming died on January 7, 1998.

Hamming received numerous awards in-
cluding the Association for Computing
Machinery (ACM) Turing Award in 1968 (he
had served as that organization’s president in
1958). The ACM also created the Hamming
Medal in his honor. Hamming was also awarded
the Emmanuel R. Piore Award of the Institute
of Electrical and Electronic Engineers in 1979.

Further Reading
Hamming, Richard W. The Art of Doing Science and

Engineering: Learning to Learn. New York: Taylor
& Francis, 1997.

———. “How To Think About Trends” in Peter J.
Denning and Robert M. Metcalfe, editors. Beyond
Calculation: The Next Fifty Years of Computing.
New York: Springer-Verlag, 1997, pp. 65–74.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995, pp. 360–366.

� Hewlett, William Redington
(1913–2001)
American
Engineer, Entrepreneur

Most people have heard the story about the two
guys who started a high-tech company in a
garage and built it into a mega-corporation. Was
this Steve Jobs and Steve Wozniak and Apple
Computer in 1977? Perhaps, but the original
“garage” story is much older. In 1939, William

Hewlett, William Redington 111

Hewlett and DAVID PACKARD started an elec-
tronics company when the future Silicon Valley
was mostly fruit orchards.

Hewlett was born on May 20, 1913, in Ann
Arbor, Michigan, and the family moved to San
Francisco when he was three. Hewlett’s father,
a physician and professor of medicine, died of a
brain tumor when the boy was only 12. Later
Hewlett speculated that if his father had lived
longer, he might have chosen a career in medi-
cine instead of engineering.

From a young age, Hewlett was interested in
science and constructed elaborate home experi-
ments. However, he did not do well in reading
or writing because he suffered from dyslexia, a
learning disability that was not well understood
in the 1920s. Despite these problems, Hewlett
graduated from the academically challenging
Lowell High School and was then admitted to
Stanford University, where he earned his B.A.
degree in 1934. He would go on to earn a mas-
ter’s degree in electrical engineering at the
Massachusetts Institute of Technology in 1936
and another engineering degree at Stanford in
1939.

In his freshman year, Hewlett met David
Packard and they soon became friends. With the
encouragement of Frederick Terman, their fa-
vorite electrical engineering professor, they de-
cided to start their own electronics company.
Their starting capital consisted of $538 and a
Sears drill press. Their “factory” was the garage
next door to Packard’s, which today bears a his-
torical placard proclaiming it the “birthplace of
Silicon Valley.” They flipped a coin to determine
the order in which their names would appear,
and the result was the Hewlett-Packard
Corporation, soon to be known simply as HP.

Hewlett took the lead in invention and en-
gineering, while Packard focused on business
matters. Hewlett’s first few inventions were of
limited value—they included a harmonica
tuner, an automatic urinal flusher, and a foul-
line indicator for bowling alleys. Hewlett re-

called to interviewers Rama Dev Jager and
Rafael Ortiz that, “Our original idea was to take
what we could get in terms of an order. Most of
our initial jobs were contract jobs—ranging from
just about anything.”

However, Hewlett then turned to a design
he had developed in graduate school for a
resistance-capacitance audio oscillator. This
device made it possible to accurately and less
expensively test audio signals, a capability in-
creasingly needed by the broadcast, sound
recording, and defense industries. After deter-
mining that there was some interest in the
product, they started to manufacture and sell
it. (The Walt Disney Studios bought eight os-
cillators for use in producing a new animated
film, Fantasia.)

As money came in, the company expanded
rapidly, moving from the garage to a rented
building in nearby Palo Alto. When World War
II came along, Packard was exempted because of
his role in managing the company’s defense con-
tracts, but Hewlett went into the army. He
started in the Signal Corps but ended up as head
of the army’s New Development Division with
the rank of lieutenant colonel.

After the war, Hewlett returned to HP to
lead the company’s research and development
efforts. He would become vice president in 1947,
executive vice president in 1957, president in
1964, and chief executive officer (CEO) in 1969.
He would oversee many innovative products, in-
cluding the scientific calculator, which burst
upon the market in 1972 and quickly made
the slide rule obsolete, and the laser printer,
which went from an expensive accessory for the
largest offices to a common desktop companion.
(Indeed, although HP has produced computers
and a variety of other kinds of systems, the com-
pany is best known today for its laser and inkjet
printers. In 2002, however, the company seemed
to be undertaking a new direction following its
contentious acquisition of Compaq, a leading
personal computer manufacturer.)

112 Hillis, W. Daniel

With Packard, Hewlett established a man-
agement style that became known as “the HP
way.” While it attracted much hype in manage-
ment circles, Hewlett emphasized to Jager and
Ortiz that “most of it is really common sense.
The customer comes first. Without profits, the
company will fail.” To keep customers, HP em-
phasized building solid, dependable products
that emphasized reliability over flashiness.
However, independent-minded employees some-
times found the company’s emphasis on team-
work to be stultifying. Meanwhile, Hewlett
continued to take an interest in engineering
problems, often brainstorming with researchers
and uncovering hidden problems, a process that
was dubbed “the Hewlett effect.”

Beyond HP, Hewlett devoted much of his
time and resources to a variety of philanthropic
efforts, especially in the areas of education (serv-
ing as a trustee of Mills College in Oakland,
California, as well as Stanford University) and
medicine (as a director of what became the
Stanford Medical Center as well as the Kaiser
Foundation Hospital and Health Plan Board).
He also served with scientific and technical or-
ganizations such as the Institute of Radio
Engineers (which later became the Institute of
Electrical and Electronics Engineers, or IEEE)
the California Academy of Sciences, the
National Academy of Engineering, and the
National Academy of Arts and Sciences.

In 1966, Hewlett and his wife, Flora, formed
the William and Flora Hewlett Foundation, a
major nonprofit that funds a variety of projects
with an emphasis on conflict resolution, educa-
tion, environment, family and community de-
velopment, performing arts, population, and
U.S.–Latin American relations.

William Hewlett died on January 12, 2001.
His achievements have been recognized by many
awards including 13 honorary degrees, the
National Medal of Science (1991), and the
National Inventors Hall of Fame Award.

Further Reading
Allen, Frederick E. “Present at the Creation.”

American Heritage 52 (May–June 2001): 21ff.
Jager, Rama Dev, and Rafael Ortiz. In the Company of

Giants: Candid Conversations with the Visionaries
of the Digital World. New York: McGraw-Hill,
1997, pp. 225–232.

Packard, David, David Kirby, and Karen Lewis. The
HP Way: How Bill Hewlett and I Built Our
Company. New York: HarperBusiness, 1996.

� Hillis, W. Daniel
(1956–)
American
Computer Scientist

Imagine a sprawling computer made only from
Tinkertoy parts and fishing line that is smart
enough to beat anyone at tic-tac-toe. Computer
scientist W. Daniel Hillis built it while he was
still in college, and today it is on display at the
Boston Computer Museum. While this Babbage-
like device might seem silly, it illustrates an im-
portant aspect of Hillis’s success in “thinking
outside the box” and bringing a radically differ-
ent architecture to computing while showing his
inventiveness in many startling ways.

Hillis was born on September 25, 1956, in
Baltimore. His father was a doctor specializing
in disease epidemics who frequently traveled, so
the family lived in many different places and his
parents generally taught him at home. As a boy,
Hillis was an avid reader of science fiction who
built toy robots and spaceships from whatever
parts he could find around the house. His ambi-
tion was to attend the Massachusetts Institute of
Technology (MIT), and upon acceptance there
he started out studying neurophysiology, having
become interested in the “hardware” aspects of
the human mind. However, after Hillis received
his bachelor’s degree in mathematics in 1978,
one of his advisers suggested that he learn about

Hillis, W. Daniel 113

another kind of hardware—the computers being
used at MIT’s famous Artificial Intelligence
Laboratory.

As Hillis worked toward his master’s degree
(received in 1981), he plunged into challenging
artificial intelligence (AI) problems such as pat-
tern recognition. By studying how a human baby
learns to recognize its mother’s face, AI re-
searchers hoped to find algorithms that would
allow computers to identify the significant fea-
tures in pictures or allow a robot to better “un-
derstand” and interact with its environment.
Hillis’s Tinkertoy project and his general inter-
est in toys also got him a summer job working
on electronic toys for Milton Bradley.

After working with pattern recognition,
Hillis concluded that if computers were going to
perform as well as the human brain at such tasks,
they would have to function more like the hu-
man brain. Conventional computers have a sin-
gle processor that takes one instruction at a time
and applies it to one piece of data at a time.
Although the sheer speed of electronics makes
computers far better at calculation than the
human brain, the latter is much better at recog-
nizing patterns. Just making the computer big-
ger and giving it more data will not solve the
problem. As Hillis explained to a reporter: “If
you try to make the computer smarter by giving
it more information, it takes longer to process
the answer, so it gets more stupid.”

Unlike the single processor in most com-
puters, the brain’s millions of neurons simulta-
neously respond to stimuli (such as light) and
signals from neighboring neurons, in turn firing
off their own signals. Thus the recognition of a
face by a human baby involves a sort of sum-
ming up of the work of many individual “proces-
sors.” Researchers such as MARVIN MINSKY and
SEYMOUR PAPERT had developed a way in which
computers could simulate the operation of such
a neural network, and it had shown considerable
promise in tackling AI tasks.

However, Hillis believed that if a computer
was really going to work like a brain, it too would
have to have many separate processors working
at the same time—a technique called parallel
processing. Hillis decided to take this technique
to its logical extreme. In 1986, he finished the
design for a computer called the Connection
Machine. It had 65,536 very simple processors
that each worked on only one bit of data at a
time. But since there were so many processors
and they worked so fast, it meant that, for ex-
ample, a pattern recognition program could deal
with all the pixels of an image simultaneously.
(Calculations on matrices or arrays of data would
also be lightning fast, since all the bits would
be calculated at once.) The first working
Connection Machine was finished in 1986.

In 1988, having received his Ph.D., Hillis
left MIT to work with Thinking Machines
Corporation, a company he had founded in 1983
to develop parallel processing computers based
on the Connection Machine principle. His ma-
chines were attractive to many users because
while they had thousands of processors, the to-
tal cost of components was still much less than
in regular mainframes or supercomputers, so a
Connection Machine cost only about a third as
much.

The exterior of the Connection Machine
had a futuristic cube design, created by architect
Maya Lin. Hillis admitted to an interviewer that
while its blinking red lights “had some diagnos-
tic use,” the real reason for them was, “Who
wants to spend his life working on something
that looks like a refrigerator?”

Although the Connection Machine was im-
pressive, serious hurdles had to be overcome be-
fore it could be brought into widespread use.
Regular computer languages and operating systems
did not have the facilities needed to coordinate
multiple processors and allow them to communi-
cate with one another. Therefore, “parallelized”
versions of languages such as FORTRAN had to

114 Hillis, W. Daniel

be developed. Programmers then had to be re-
trained to think in new terms, and a library of soft-
ware tools and applications developed. Observers
also noted that the original Connection
Machine did not provide enough memory to al-
low each processor to work efficiently.

Hillis soon came out with an improved model,
Connection Machine 2. While the commercial
market was still slow to adopt the new design, of-
ficials at the Defense Department’s Advanced
Research Projects Agency (ARPA) saw a long-
term advantage to parallel processing for dealing
with the intensive calculation needs of applica-
tions such as nuclear weapons simulation. ARPA
bought millions of dollars’ worth of Connection
Machines for its own use, as well as encouraging
outside researchers to adopt them. (Eventually, the
General Accounting Office investigated ARPA
for limiting its grants to one company, and the
agency began to allow other companies to partic-
ipate in parallel computing contracts.) In addition
to the military, Thinking Machines also sold
Connection Machines to such researchers as
earthquake scientists and airplane designers.

In 1991, Thinking Machines reached a high
point of $65 million in sales, and had attracted
much industry attention. Even IBM entered into
an agreement to include some of the Connection
Machine’s technology in its own parallel com-
puter designs.

Thinking Machines soon ran run into fi-
nancial difficulties, however, losing $17 million
in 1992. In part, this was due to a reduction
of federal spending on computer technology.
However, the commercial market for large-scale
parallel computers also remained relatively
small, in part because the ever-growing power of
conventional computers enabled them to keep
up with many demanding applications. Further,
a competing architecture called “cluster com-
puting,” which uses networks of conventional
computers to work together on problems, offered
an attractive alternative path to greater com-
puting power.

Thinking Machines experimented with
building computers that used smaller numbers of
more powerful processors that could be ex-
panded as desired, but they sold only modestly.
Although the company set a new sales record of
$90 million in 1993, it had not really overcome
either the challenges of the marketplace or the
conflicts that had flared up between top execu-
tives. The company filed for bankruptcy in 1994,
and after reorganizing changed its emphasis to
developing software for “data mining,” or the ex-
traction of useful patterns from large databases.
This business in turn was acquired by the large
database company Oracle in 1999.

When Hillis founded his company he had
stated that his ultimate goal was to “build think-
ing machines,” and he continued to devote time
to applying parallel computing to image recog-
nition and other AI problems. In 1989, he de-
veloped a computer vision system based on a
Connection Machine that could recognize ob-
jects. While it was far better than systems based
on sequential computers, Hillis’s computerized
“eye” was disappointing: it still took several min-
utes to recognize objects that the human eye and
brain can process in a fraction of a second.

Hillis has also been disappointed in the re-
sults of four decades of research in trying to get
computers to “reason” in a way similar to human
thinking. As he told one interviewer (quoted in
Current Biography Yearbook, 1995), “I’ve been
surprised at how little progress there’s been. In
retrospect, I think I was personally naive about
how difficult common-sense reasoning was.”
Comparing AI to other sciences, Hillis says that
“the science of intelligence resembles astronomy
before Galileo invented his telescope. . . . I am
like a telescope builder.” Hillis’s patient per-
spective can also be seen in a project called the
Millennium Clock, being implemented by an or-
ganization called the Long Now Foundation.
This clock is designed to “tick” only once a year
and contains a “century hand” that would move
one mark every 100 years.

Holberton, Frances Elizabeth 115

Hillis has always taken a broad view of the
significance of computing. His book The Pattern
on the Stone provides a guide to “the simple ideas
that make computers work,” offering sophisti-
cated insight into computer science even for
readers who lack a mathematical or computing
background. In this and other writings, Hillis
suggests that rather than there being any one
stupendous breakthrough, machine intelligence
will gradually emerge or evolve just as biologi-
cal intelligence has. And although the specific
parallel computing architecture that Hillis and
his company developed had some limitations,
the general idea of computation through net-
worked, cooperating objects has become in this
age of the Internet a pervasive way of tackling
applications.

Hillis’s inventiveness extends well beyond
parallel computing: He holds more than 40 U.S.
patents including one for disk arrays, a technique
that uses multiple hard disk drives working in
tandem to speed up data storage or provide real-
time “mirror” backups.

Hillis continues his work at MIT, often star-
tling visitors who see him driving around in an
old fire engine. Those who arrive at his office will
find it filled with toys. Hillis serves as editor or
advisory board member for a number of scientific
organizations, including the Santa Fe Institute,
a multidisciplinary research center dedicated
to “emerging sciences.” He has received the
Association for Computing Machinery’s Grace
Murray Hopper Award (1989), the Ramanujan
Award (1988), and the Spirit of American
Creativity Award (1991).

Further Reading
Hillis, W. Daniel. “The Millennium Clock.” Wired,

1995. Available on-line. URL: www.wired.com/
wired/scenarios/clock.html. Downloaded on
November 2, 2002.

———. The Pattern on the Stone: The Simple Ideas That
Make Computers Work. New York: Basic Books,
1998.

Long Now Foundation. Available on-line. URL:
http://www.longnow.org. Updated on October
10, 2002.

Moritz, Charles, ed. “Hillis, W. Daniel.” Current
Biography Yearbook. New York: H. W. Wilson,
1995.

Thiel, Timiko. “The Connection Machines CM-1 and
CM-2.” Available on-line. URL: http://mission.
base.com/tamiko/cm/cm-text.htm. Downloaded
on November 2, 2002.

� Holberton, Frances Elizabeth
(Betty Holberton)
(1917–2001)
American
Programmer, Mathematician

One of the ironies of computer history is that al-
though the field was largely male-dominated at
least until the 1990s, the majority of the first
programmers to actually put the machines to
work were women. Only today are historians
starting to give wider public recognition to the
group of female computing pioneers that in-
cludes JEAN BARTIK and Frances Elizabeth (Betty)
Holberton.

Frances Elizabeth Holberton was born in
1917 in Philadelphia. Her father and grandfather
were both astronomers, and they encouraged
young Holberton to pursue her interest in sci-
ence and particularly mathematics. Holberton’s
father had a liberal attitude about women pursu-
ing careers and was scrupulous about treating his
daughter and sons equally. This support helped
her endure the teasing of classmates who saw her
as a (literally) cross-eyed nerd.

Holberton went to the University of
Pennsylvania with the intention of majoring in
mathematics. At the time, however, women
mathematicians were very rare, and one of her
advisers, firmly believing that women belonged
at home raising children, convinced Holberton
to major in English and journalism—the kind of

116 Holberton, Frances Elizabeth

career suitable for a bright woman who would
work a few years before marrying and settling
down.

Holberton began her journalistic career as
a writer for the Farm Journal, where she got a
chance to use her mathematical knowledge in
compiling and reporting on consumer spending
and farming statistics. However, when the
United States entered World War II an urgent
call went out for mathematically trained women.
The women (about 80 in number) were needed
to perform massive, tedious computations for
gun firing tables, using hand calculators at the
Moore School at the University of Pennsylvania.

Shortly after she took her place in the ranks
of human “computers,” Holberton was offered
an opportunity to join a secret project. Two re-
searchers, J. PRESPER ECKERT and JOHN MAUCHLY,
had been funded by the army to build an elec-
tronic digital computer called ENIAC. This ma-
chine would be able to calculate a firing table in
a less than a minute, an operation that would
take about 20 hours with a hand calculator. But
people needed to learn how to set up the ma-
chine’s intricate switches and wiring connec-
tions to enable it to perform a calculation. They
needed programmers.

Holberton (along with Jean Bartik) became
part of the first small group of women who
learned to program ENIAC. At first, military se-
curity rules barred the women from actually en-
tering the ballroom-size space containing the
massive ENIAC. Another member of the pro-
gramming team, John Mauchly’s wife, Kay
McNulty Mauchley Antonelli, later recalled in
an interview for Computerworld.

They gave us all the blueprints, and we
could ask the engineers anything. We
had to learn how the machine was built,
what each tube did. We had to study how
the machine worked and figure out how
to do a job on it. So we went right ahead
and taught ourselves how to program.

Finally the women were allowed entry and
they could start to set up calculations—such as
those needed by the scientists who were work-
ing on an even more secret project, the build-
ing of the first atomic bombs.

In 1947, Holberton left the ENIAC facility
and went to work for the company that Eckert
and Mauchly had set up to build the first com-
mercial computers based on an improved ENIAC
design. This new machine, Univac, was used in
the 1950 census and then made a public splash
when it correctly predicted Dwight Eisenhower’s
victory in the 1952 presidential election.

Having experienced the difficulty of pro-
gramming computers by wires and switches and
later, cryptic numeric instructions, Holberton
felt a strong need to create a more user-friendly
way to program Univac. She developed what
amounted to one of the first programming lan-
guages, an instruction code called C-10. This
code allowed abbreviated commands (such as “a”
for add and “b” to bring a number into the
processor) to be typed at a keyboard. She also
persuaded the computer’s designers to move the
numeric keypad near the keyboard where it
could be used more easily for entering numbers
in to the machine. She even persuaded the com-
pany to change the computer’s color from black
to less intimidating beige.

In her later career Holberton worked on a
variety of projects. She developed a number of
data processing routines (such as a sorting pro-
gram) that other programmers could then use to
create applications such as payroll and inventory
processing. She also wrote a “sort generator,”
helping pioneer the use of programs that could
automatically generate customized data process-
ing routines. Additionally, Holberton con-
tributed to the development of the higher-level
FORTRAN and COBOL programming lan-
guages (see also GRACE MURRAY HOPPER) while
working at the navy’s David Taylor Model Basin
and the National Bureau of Standards (from
which she retired in 1983).

Hollerith, Herman 117

Elizabeth Holberton died on December 8,
2001, in Rockville, Maryland. Fortunately, she
lived long enough to become part of the new in-
terest in the history of women in science and
technology. She was honored by the Association
for Women in Computing with its Lovelace
Award. Her work is also recounted as part of the
Univac exhibit at the Smithsonian’s National
Museum of American History.

Further Reading
Association for Women in Computing. Available on-

line. URL: http://www.awc-hq.org. Downloaded
on November 2, 2002.

Levy, Claudia. “Betty Holberton Dies; Helped U.S.
Develop Computer Languages.” Washington Post,
December 11, 2001, p. B07.

McCartney, Scott. ENIAC: The Triumphs and
Tragedies of the World’s First Computer. New York:
Berkeley Books, 1999.

Petzinger, Thomas, Jr. “Female Pioneers Fostered
Practicality in Computer Industry.” Wall Street
Journal, November 22, 1996, p. B1.

� Hollerith, Herman
(1860–1929)
American
Inventor

“Do not bend, fold, staple, or mutilate.” This
once famous phrase was often found on the
punched cards that served as Social Security and
payroll checks. The ubiquitous punch card trans-
ported data to and from the first generations of
huge mainframe computers. Herman Hollerith
invented the automatic tabulating machine, a
device that could read the data on punched cards
and display running totals. His invention would
become the basis for the data tabulating and pro-
cessing industry.

Hollerith was born on February 29, 1860, in
Buffalo, New York. His father, George, a classi-
cal language teacher, died from an accident

when the boy was only seven years old. His
mother, Franciska, came from a family of skilled
locksmiths that had immigrated to America and
gone into the carriage-building business. After
George died, Franciska kept the family going by
starting a hat-making business.

As a boy, young Hollerith was an excellent
student in every subject except spelling, which
he apparently hated with such a passion that
he once jumped out of a window to avoid tak-
ing a spelling test. When he was only 15,
Hollerith won a scholarship to New York City
College, and after studying there he went to
the Columbia School of Mines in New York
City, graduating in 1879. By then his main in-
terests were mathematics, engineering, and
drawing.

A portrait of Herman Hollerith next to one of his
punch card tabulator machines. Such machines made
it possible to complete the 1890 U.S. census in a
fraction of the time needed by earlier methods. (Photo
courtesy Computer Museum History Center)

118 Hollerith, Herman

After graduation, he went to work for the
U.S. Census as a statistician. The 1880 census
nearly broke down under the demands for count-
ing the demographic and economic statistics be-
ing generated by what was rapidly becoming one
of the world’s foremost industrialized nations.
Among other tasks, Hollerith compiled vital sta-
tistics for Dr. John Shaw Billings, who suggested
to him that using punched cards and some sort
of tabulator might keep the census from falling
completely behind in 1890.

Hollerith left the Census Bureau in 1882
to teach mechanical engineering at the
Massachusetts Institute of Technology (MIT).
He continued to think about the tabulation
problem with the aid of some of his MIT col-
leagues. One day, while riding on a train,
Hollerith noticed the system that railroad con-
ductors used to keep track of which passengers
had already paid their fare. The tickets included
boxes with descriptions of basic characteristics
such as gender or hair color. When the conduc-
tor punched a passenger’s ticket, he created a
“punch photograph” by punching the appropri-
ate description boxes. Hollerith decided that
similar cards could be used to record and tabu-
late the census data for a person.

Hollerith began to design a punch card tab-
ulation machine. His design was partly inspired
by the Jacquard loom, an automatic weaving ma-
chine that worked from patterns punched into
a chain of cards. He then got a job with the U.S.
Patent Office, partly to learn the procedures he
would need to follow to patent his tabulator.
(Eventually he would file 30 patents for various
data-processing devices.) He tested his machine
with vital statistics in Baltimore, New York, and
New Jersey.

Hollerith’s system included a punch device
that a clerk could use to record variable data in
many categories on the same card (a stack of
cards could also be prepunched with constant
data, such as the number of the census district).
The cards were then fed into a device something

like a small printing press. The top part of the
press had an array of spring-loaded pins that cor-
responded to tiny pots of mercury (an electrical
conductor) in the bottom. The pins were elec-
trified. Where a pin encountered a punched hole
in the card, it penetrated through to the mer-
cury, allowing current to flow. The current
created a magnetic field that moved the corre-
sponding counter dial forward one position. The
dials could be read after a batch of cards was fin-
ished, giving totals for each category, such as an
ethnicity or occupation. The dials could also be
connected to count multiple conditions (for ex-
ample, the total number of foreign-born citizens
who worked in the clothing trade).

Hollerith received a contract to provide tab-
ulators for the 1890 census, at the same time fin-
ishing his doctoral dissertation at the Columbia
School of Mines, titled “The Electric Tabulating
System.” Aided by Hollerith’s machines, a cen-
sus unit was able to process 7,000 records a day
for the 1890 census, about 10 times the rate in
the 1880 count. As a result, the census was com-
pleted in two years as compared to the six years
the previous count had taken.

The value of his machines having been con-
clusively demonstrated, Hollerith founded the
Tabulating Machine Company in 1896. Soon his
machines were being sold all over the world, as
far as Russia, which was undertaking its first
national census.

Starting around 1900, Hollerith brought out
improved models of his machines that included
such features as an automatic (rather than hand-
fed) card input mechanism, automatic sorters,
and tabulators that boasted a much higher speed
and capacity. Hollerith machines soon found
their way into government agencies involved
with vital statistics, agricultural statistics, and
other data-intensive matters, as well as insurance
companies and other businesses.

Unfortunately, Hollerith was a much better
inventor than he was a businessperson. He
quarreled with business partners and family

Hopper, Grace Murray 119

members. Facing vigorous competition and in
declining health, Hollerith sold the Tabulating
Machine Company, which merged with the
International Time Recording Company and
the Computing Scale Company of America. The
new company, CTR (Computing-Tabulating-
Recording) changed its name in 1924 to
International Business Machines—IBM.

Hollerith continued to work as a consultant
in the tabulating industry, and his stock and
proceeds from the sale of the company ensured
him a comfortable life. He built a new home
and bought a farm. On November 17, 1929,
Hollerith died of a heart attack.

The punched card, often called the
Hollerith card, became a staple of business and
government data processing. Companies such as
IBM built more elaborate machines that could
sort the cards and even perform basic calcula-
tions using the data. When the digital computer
was invented in the 1940s, the punch card was
a natural choice for storing programs and data.
Gradually, however, high-speed tape and disk
drives would take over the job, although there
are still a few users of punch cards today.

Further Reading
Austrian, G. D. Herman Hollerith: Forgotten Giant

of Information Processing. New York: Columbia
University Press, 1982.

Kistermann, F. W. “The Invention and Development
of the Hollerith Punched Card.” Annals of the
History of Computing 13, no. 3 (1991): 245–259.

� Hopper, Grace Murray
(1906–1992)
American
Computer Scientist, Mathematician

Possibly the most famous woman in computing
is Grace Hopper. Grace Brewster Murray Hopper
was an innovator in the development of high-
level computer languages in the 1950s and 1960s

as well as the highest ranking woman in the U.S.
Navy. She is best known for her role in the de-
velopment of COBOL, which became the pre-
mier language for business data processing.

Hopper was born in New York City on
December 9, 1906. As a child, she often ac-
companied her grandfather, a civil engineer,
watching and asking questions as he worked with
his maps and surveying equipment. The inquis-
itive girl also caused consternation when she dis-
mantled all seven of the family’s clocks in order
to figure out how the alarms worked.

Hopper’s family believed strongly in educa-
tion for girls as well as boys. Young Hopper
excelled at school, particularly in math
classes. After graduating from high school,
Hopper went to Vassar, a prestigious women’s
college, graduating in 1928 with a bachelor’s
degree and Phi Beta Kappa honors in mathe-
matics and physics. She then went to Yale
University for graduate study, receiving her
M.A. degree in mathematics in 1930. Four years
later, she became the first woman to receive a
Ph.D. in mathematics from Yale. Meanwhile,
she had married Vincent Foster Hopper, whom
she would divorce in 1945.

Hopper taught at Vassar as a professor of
mathematics from 1931 to 1943, when she joined
the U.S. Navy at the height of World War II. As
a lieutenant, junior grade, in the WAVES
(Women Accepted for Volunteer Emergency
Service), she was assigned to the Bureau of
Ordnance, where she worked in the Computation
Project at Harvard under pioneer computer de-
signer HOWARD AIKEN. She became one of the first
coders (that is, programmers) for the Mark I, a
large, programmable computer that used electro-
mechanical relays rather than electronics. She
also edited and greatly contributed to the docu-
mentation for the Mark I, compiling it into a 500-
page work, Manual of Operations for the Automatic
Sequence Controlled Calculator.

After the war, Hopper worked for a few years
in Harvard’s newly established Computation

120 Hopper, Grace Murray

Laboratory, helping with the development of the
Mark II and Mark III. During this time, a famous
incident occurred. One day the machine had
failed, and when she investigated, Hopper found
that a large moth had jammed a relay. She taped
the moth to the system logbook and wrote, “First
actual case of bug being found.” Although the
term bug had been used for mechanical glitches
since at least the time of Edison, the incident
did make bug a more common part of the vo-
cabulary of the emerging discipline of computer
programming.

In 1949, Hopper became senior mathemati-
cian at the Eckert-Mauchly Corporation, the
world’s first commercial computer company.
J. PRESPER ECKERT and JOHN MAUCHLY had in-
vented ENIAC, an electronic computer that was

much faster than the Mark I and its electro-
mechanical successors, and were now working
on Univac, which would become the first com-
mercially successful electronic digital computer.
She would stay with what became the Univac
division under Remington Rand (later Sperry
Rand) until 1971.

While working with Univac, Hopper’s main
focus was on the development of programming
languages that could allow people to use symbolic
names and descriptive statements instead of bi-
nary codes or the more cryptic forms of assembly
language. (This work had begun with John
Mauchly’s development of what was called Short
Code and FRANCES ELIZABETH HOLBERTON’s “sort
generator.”)

In 1952, Hopper developed A-0, the first
compiler (that is, a program that could translate
computer language statements to the correspon-
ding low-level machine instructions.) She then
developed A-2, a compiler that could handle
mathematical expressions. The compiler was the
key tool that would make it possible for pro-
grammers to write and think at a higher level
while having the machine itself take care of the
details of moving and manipulating the data. In
her paper “The Education of a Computer,”
Hopper looked toward the development of
increasingly capable compilers and other pro-
gramming tools so that “the programmer may
return to being a mathematician.”

But Hopper knew that business computer
users were at least as important as mathemati-
cians and engineers. In 1957 she developed
Flow-Matic. This was the first compiler that
worked with English-like statements and was
designed for a business data processing envi-
ronment.

In 1959 Hopper joined with five other com-
puter scientists to plan a conference that would
eventually result in the development of specifi-
cations for a common business language. Her
earlier work with Flow-Matic and her design in-
put played a key role in the development of what

Grace Murray Hopper created the first computer
program compiler and was instrumental in the design
and adoption of COBOL. When she retired, she was
the first woman admiral in U.S. Navy history. (Photo
courtesy of Unisys Corporation)

Hopper, Grace Murray 121

would become the COBOL language. COBOL,
in turn, would be the main business program-
ming language for decades to come.

Hopper had retained her navy commission,
and after her retirement in 1966 she was soon
recalled to active duty to work on the navy’s data
processing needs. Even after Hopper reached the
official retirement age of 62, the navy gave her
repeated special extensions because they found
her leadership to be so valuable. She finally re-
tired in 1986 with the rank of rear admiral.

Hopper spoke widely about data processing
issues, especially the need for standards in com-
puter language and architecture, the lack of
which she said cost the government billions of
dollars in wasted resources. Admiral Hopper died
January 1, 1992, in Arlington, Virginia, and was
buried at Arlington Cemetery with full military
honors. By then she had long been acknowl-
edged as, in the words of biographer J. A. N. Lee,
“the first lady of software and the first mother-
teacher of all computer programmers.” She has
become a role model for many girls and young
women considering careers in computing.

Hopper received numerous awards and hon-
orary degrees, including the Computer Sciences
Man (sic) of the Year (1969), the U.S. Navy
Distinguished Services Medal (1986), and the
National Medal of Technology (1991). The
Association for Computing Machinery created
the Grace Murray Hopper Award to honor dis-
tinguished young computer professionals. And
the navy named a suitably high-tech Aegis de-
stroyer after her in 1996.

Further Reading
Billings, C. W. Grace Hopper: Navy Admiral and Com-

puter Pioneer. Hillfield, N.J.: Enslow Publishers,
1989.

“Grace Murray Hopper (1906–1992).” Available
on-line. URL: http://www.unh.edu/womens-
commission/hopper.html. Downloaded on No-
vember 2, 2002.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Spencer, Donald D. Great Men and Women of
Computing. Ormond Beach, Fla.: Camelot
Publishing, 1999.

122

� Jobs, Steve
(1955–)
American
Entrepreneur

As late as the 1970s, computers were large,
forbidding-looking devices. The idea that peo-
ple might actually have computers in their
homes seemed absurd. Even when the microchip
made desktop computers possible, it seemed un-
likely that ordinary office workers or school-
children could learn to use them productively.
One of the most important things that changed
this perception was the creation of the colorful
computer with the friendly name—Apple.
Behind the Apple is the innovative, energetic,
and often controversial Steve Jobs. Jobs was co-
founder of Apple Computer and shaped the
development and marketing of its distinctive
Macintosh personal computer (PC).

Jobs was born on February 24, 1955, in Los
Altos, California. He showed an enthusiastic
interest in electronics starting in his years at
Homestead High School and gained experience
through summer work at Hewlett-Packard, one
of the dominant companies of the early Silicon
Valley. In 1974, he began to work for pioneer
video game designer Nolan Bushnell at Atari.
However, Jobs was a child of the counterculture
as well as of the electronics age. He soon left

J
Atari for a trip to India, and when he returned
after a few months he went to work on a farm.

Jobs’s technical interests soon revived. He
became a key member of the Homebrew Com-
puter Club, a group of hobbyists who designed
their own microcomputer systems using early
microprocessors. Meanwhile, Jobs’s friend STEVE

WOZNIAK had developed plans for a complete
microcomputer system that could be built using
a single-board design and relatively simple cir-
cuits. In it, Jobs saw the potential for a stan-
dardized, commercially viable microcomputer
system. Jobs persuaded Wozniak to give up his
job at Hewlett-Packard. They formed a company
called Apple Computer (apparently named for
the vanished orchards of Silicon Valley). To raise
starting capital, Jobs sold his Volkswagen bus and
Wozniak his programmable calculator. They built
a prototype they called the Apple I, and when it
seemed to work well they began to assemble more
of them by hand. Although they could only
afford to build a few dozen of the machines, they
sold 50 to the Byte Shop in Mountain View,
probably America’s first home computer store.
The machines made a favorable impression on
the computer enthusiast community.

By 1977, Jobs and Wozniak were marketing
a more complete and refined version, the Apple
II. Unlike kits that could be assembled only by
experienced hobbyists, the Apple II was ready to

Jobs, Steve 123

use “out of the box.” It could be connected to
an ordinary audiocassette tape recorder for stor-
ing programs. When connected to a monitor or
an ordinary TV, the machine could create color
graphics that were dazzling compared to the
monochrome text displays of most computers.
Users could buy additional memory (the first
model came with only 4 kilobytes of RAM) as
well as cards that could drive devices such as
printers or add other capabilities.

The ability to run DANIEL BRICKLIN’s spread-
sheet program VisiCalc propelled the Apple II
into the business world, and about 2 million of
the machines were eventually sold. In 1982, when
Time magazine featured the personal computer as
its “man” of the year, Jobs’s picture appeared on

the cover. As he relentlessly pushed Apple for-
ward, supporters pointed to Jobs’s charismatic
leadership, while detractors said that he could be
ruthless when anyone disagreed with his vision of
the company’s future. However, by then industry
giant IBM had entered the market. Its 16-bit com-
puter was more powerful than the Apple II, and
IBM’s existing access to corporate purchasing de-
partments resulted in the IBM PC and its clones
quickly dominating the business market.

Jobs responded to this competition by de-
signing a PC with a radically different user in-
terface, based largely on work conducted during
the 1970s at the Xerox PARC laboratory. The
first version, called the Lisa, featured a mouse-
driven graphical user interface that was much
easier to use than the typed-in commands
required by the Microsoft/IBM DOS. While
the Lisa’s price tag of $10,000 kept it out of the
mainstream market, Jobs kept his faith in the
concept. In 1984, Apple marketed Lisa’s succes-
sor, the Macintosh, which provided much the
same features at a much more competitive price.
The machine quickly grabbed public attention
when it was introduced in a Super Bowl com-
mercial in which a rebellious woman runs out of
a crowd of human drones and shatters a screen
image of Big Brother. The message was that the
Macintosh was the alternative to the stultifying,
corporate IBM. The Mac was to be “the com-
puter for the rest of us.”

The Macintosh attracted millions of users,
particularly in schools, although the IBM PC
and its progeny continued to dominate the busi-
ness market. Apple was now a major corpora-
tion, but Jobs kept his intense (many said “ar-
rogant”) attitude and his focus on implementing
his vision of computing. Jobs had recruited John
Sculley, former chief executive officer (CEO) of
PepsiCo, to serve as Apple’s CEO and take care
of corporate considerations. But Sculley, consol-
idating his power base on Apple’s board, essen-
tially pushed Jobs aside, eventually leaving him
with a tiny office that Jobs called “Siberia.”

Stephen Jobs cofounded Apple Computer, developing
the pioneering Apple II with Steve Wozniak in 1977. In
1984, Jobs introduced the Macintosh with its attractive
graphics and easy-to-use interface. After leaving Apple,
Jobs returned in 1997 to help the company deal with
slumping sales. (© Douglas Kirkland/CORBIS)

124 Joy, Bill

Jobs chafed at having no real work to do,
and left the company in the fall of 1985. He then
plunged into a number of innovative technolo-
gies. Using the money from selling his Apple
stock, Jobs bought a controlling interests in
Pixar, a graphics studio that had been spun off
from LucasFilm. (Pixar would become well
known in 1995 with the release of the film Toy
Story, a tour de force of computer-generated im-
agery created from a cluster of 117 powerful Sun
SPARCstations—computer workstations using
specially designed processors.)

Jobs had his own ideas about graphics pro-
cessing. He founded a new company called
NextStep, or NeXT. The company focused on
high-end graphics workstations that used a so-
phisticated object-oriented operating system.
However, while NeXT’s software (particularly its
development tools) was innovative, the com-
pany was unable to sell enough of its hardware
and closed that part of the business in 1993.

By 1996, Jobs had superior software but no
hardware. Apple, meanwhile, had a Macintosh
with an operating system more than 10 years old—
one that no longer looked or worked significantly
better than Microsoft’s new Windows 95 for IBM-
compatible PCs. Apple was thus in the market for
a new operating system, and Jobs’s NextStep won
out over a competing, more expensive system
called BeOS. As part of the deal, Jobs became an
adviser to Apple’s then CEO, Gil Amelio.

In 1997, with Apple’s sales falling drasti-
cally, Amelio was removed by the board of di-
rectors. They appointed Jobs as interim CEO.
Jobs quickly brought many of the executives
from NeXT to Apple, and in 1998 Jobs was con-
firmed as CEO.

Jobs had some success in revitalizing Apple’s
consumer product line with the iMac, a color-
ful, slim version of the Macintosh. He promoted
fresh interest in Apple’s products with a new slo-
gan, “Think Different.” Jobs also focused on de-
velopment of the new Mac OS X, a blending of
the power of UNIX with the ease-of-use of the
traditional Macintosh interface.

In April 2003 Jobs launched Apple’s iTunes
Music Store. The new service offered 200,000
music tracks for download at 99 cents apiece.
The effort was backed by major record labels that,
together with Jobs, are betting that consumers
are willing to pay a modest amount for high-
quality, reliable, legal music downloads as an
alternative to the free file-sharing services.

Although the technical innovations were car-
ried out by others, Jobs’s vision and entrepreneur-
ial spirit played a key role in bringing personal
computing to a larger audience. The Macintosh
interface that he championed would become the
norm for personal computing, albeit in the form
of Microsoft Windows on IBM PC-compatible sys-
tems. By maintaining Apple’s presence in the mar-
ket, he has also helped to maintain competition
and innovation in PC hardware and software.

Jobs has been honored with the National
Technology Medal (1985), and the Jefferson
Award for Public Service (1987), and was named
Entrepreneur of the Decade by Inc. magazine
(1989).

Further Reading
Angelelli, Lee. “Steve Paul Jobs.” Available online.

URL: http://www.histech.rwth-aachen.de/www/
quellen/Histcomp/Jobs.html. Downloaded on
January 28, 2003.

Deutschman, Alan. The Second Coming of Steve Jobs.
New York: Broadway Books, 2000.

Levy, Steven. Insanely Great: The Life and Times of the
Macintosh, the Computer That Changed Everything.
New York: Penguin, 2000.

� Joy, Bill
(1954–)
American
Computer Scientist, Entrepreneur

Many of the most innovative software ideas were
developed not in the business world of main-
frames or IBM personal computers (PCs), but in
college campuses and research labs where mini-

Joy, Bill 125

computers and workstations run an operating
system called UNIX. Bill Joy developed many of
the key utilities used by users and programmers
on UNIX systems. He then became one of the
industry’s leading entrepreneurs and later, a
critic of some aspects of computer technology.

Joy was born in 1954 in Detroit, Michigan.
He was an extremely precocious child, reading
at age three and tackling advanced mathemat-
ics by age five. Because he was bored with school,
his teachers thought he was learning disabled.
However, when his intelligence was measured, it
was literally off the scale. After skipping grades
here and there, he graduated from Farmington
High School at the minimum allowable age of 15.

Joy then attended the University of
Michigan. Although he started out intending to
be a math major, he soon became fascinated by
computers and switched to computer science.
After getting his undergraduate degree in 1975,
Joy enrolled in the University of California,
Berkeley in the computer science department.

UC Berkeley was a good choice for Joy. It
was one of the two poles of the UNIX universe,
the other being AT&T Bell Labs, where the op-
erating system had been developed by KENNETH

THOMPSON and DENNIS RITCHIE. Joy worked with
Thompson, who was now at Berkeley, to add fea-
tures such as virtual memory (paging), which al-
lows a computer to use the disk as an extension
of memory, giving it the capacity of a larger ma-
chine. He also added TCP/IP networking sup-
port to the operating system for use with Digital
Equipment Corporation’s (DEC) VAX mini-
computers. TCP/IP would prove very important
as more and more computers were connected to
the ARPANET (later the Internet.)

These developments eventually led to the
distribution of a distinctive version of UNIX
called Berkeley Software Distribution (BSD),
which rivaled the original version developed at
AT&T’s Bell Laboratories. The BSD system
also popularized features such as the C shell
(a command processor) and the text editors
“ex” and “vi.”

As opposed to the tightly controlled AT&T
version, BSD UNIX development relied upon
what would become known as the open source
model of software development. This encour-
aged programmers at many installations to cre-
ate new utilities for the operating system, which
would then be reviewed and integrated by Joy
and his colleagues. BSD UNIX gained industry
acceptance and was adopted by DEC, makers of
the popular VAX series of minicomputers.

In 1982, Joy left UC Berkeley and with
SCOTT G. MCNEALY cofounded Sun Micro-
systems, a company that became a leader in the

Bill Joy made key contributions to the UNIX operating
system, including developing its network file system
(NFS). As a cofounder of Sun Microsystems, Joy then
helped develop innovative workstations and promoted
Java as a major language for developing Web
applications. However, Joy also warns of the dangers of
runaway technology. (Courtesy of Sun Microsystems)

126 Joy, Bill

manufacture of high-performance UNIX-based
workstations. With its powerful, expandable
processors and high-end graphics, the Sun
workstation became the tool of choice for
scientists, engineers, designers, and even movie-
makers, who were starting to use computer an-
imation and imagery techniques. By the early
1990s, Sun had become a billion-dollar com-
pany and Joy had acquired a comfortable $10
million or so in personal net worth.

Even while becoming a corporate leader, Joy
continued to refine UNIX operating system
facilities, developing the Network File System
(NFS), which was then licensed for use not only
on UNIX systems but on VMS, MS-DOS, and
Macintosh systems. Joy’s versatility also ex-
tended to hardware design, and he helped cre-
ate the Sun SPARC reduced instruction set
(RISC) microprocessor that gave Sun worksta-
tions much of their power.

In the early 1990s, Joy turned to the grow-
ing world of Internet applications and embraced
Java, a programming language created by JAMES

GOSLING. He developed specifications, processor
instruction sets, and marketing plans. Java be-
came a very successful platform for building ap-
plications to run on Web servers and browsers
and to support the needs of e-commerce. As
Sun’s chief scientist since 1998, Joy has led the
development of Jini, a facility that would allow
not just PCs but many other Java-enabled de-
vices such as appliances and cell phones to com-
municate with one another.

Recently, however, Joy has expressed serious
misgivings about the future impact of artificial
intelligence and related developments on the
future of humanity. Joy remains proud of the
achievements of a field to which he has con-
tributed much. However, while rejecting the vi-
olent approach of extremists such as Theodore
Kaczynski (known as the Unabomber), Joy points
to the potentially devastating unforeseen conse-
quences of the rapidly developing capabilities of
computers. Unlike his colleague RAYMOND C.

KURZWEIL’s optimistic views about the coexis-
tence of humans and sentient machines, Joy
points to the history of biological evolution and
suggests that superior artificial life-forms will dis-
place humans, who will be unable to compete
with them. He believes that given the ability to
reproduce themselves, intelligent robots or even
“nanobots” might soon be uncontrollable.

Joy also expresses misgivings about biotech-
nology and genetic engineering, seen by many as
the dominant scientific and technical advance of
the early 21st century. He has proposed that gov-
ernments develop institutions and mechanisms to
control the development of such dangerous tech-
nologies, drawing on the model of the agencies
that have more or less successfully controlled the
development of nuclear energy and the prolifer-
ation of nuclear weapons for the past 50 years.

Joy received the Association for Computing
Machinery’s Grace Murray Hopper Award for his
contributions to BSD UNIX before the age of 30.
In 1993, he was given the Lifetime Achievement
Award of the USENIX Association, “for pro-
found intellectual achievement and unparalleled
services to the UNIX community.” He also re-
ceived the Computerworld Smithsonian Award
for Innovation in 1999.

Further Reading
Joy, Bill, ed. The Java Language Specification, Second

Edition. Reading, Mass.: Addison-Wesley, 2000.
Joy, Bill. “Why the Future Doesn’t Need Us.” Wired

8, no. 4, April 2000. Available on-line. URL:
http://www.wired.com/wired/archive/8.04/joy.html.
Downloaded on December 2, 2002.

O’Reilly, Tim. A Conversation with Bill Joy. Available
on-line. URL: http://www.openp2p.com/pub/a/
p2p/2001/02/13/joy.html. Posted on February 13,
2001.

Williams, Sam. “Bill Joy Warns of Tech’s Dangerous
Evolution.” Upside.com, January 18, 2001.
Available on-line. URL: http://www.upside.com/
Open_Season/3a648a96b.html. Downloaded on
December 2, 2002.

127

� Kahn, Philippe
(1952–)
French/American
Entrepreneur, Programmer

The growth of personal computing in the 1980s
brought tremendous opportunities not only for
developing software but for creating the com-
pilers and other tools needed by programmers.
Philippe Kahn was a pioneer in bringing inno-
vative features and technical excellence to the
personal computer (PC) industry.

Kahn was born in Paris in 1952 to a French
mother and a German father. As a high school
student, Kahn had many interests and talents.
He wrote his first computer program at the age
of 10 and was fascinated by the endless possi-
bilities of software. He was an excellent science
and math student, but had other interests as
well. On the weekends, the teenage Kahn earned
spending money by playing saxophone in a jazz
group. And, as he had achieved his black belt in
karate at age 16, it was unlikely that this par-
ticular nerd was picked on more than once.

As a graduate student at the Swiss Federal
Institute of Technology during the 1970s, Kahn
worked with NIKLAUS WIRTH, helping him with
the development of Pascal, which became a pop-
ular computer language because of its clean
structure and way of organizing programs. He

K
also worked on the software for the Micral com-
puter, which was developed by André Truong.
Although the Micral was never sold, some his-
torians consider it to be the first personal com-
puter, predating the better-known Altair.

When Kahn came to California in 1982,
he had $2,000, no job, and not even a green
card allowing permanent U.S. residence.
Nevertheless, he founded a company called
Borland International which quickly became a
market leader in programming languages and
software tools. At the time, if someone wanted
to develop “serious” software for a machine such
as the IBM PC, he or she had to buy an expen-
sive, hard-to-use BASIC or FORTRAN com-
piler from Microsoft.

Kahn put his intimate knowledge of Pascal
implementation to work to create an alternative,
Turbo Pascal, first released in 1983. Turbo Pascal
put all the tools a programmer needed—editor,
debugger, program window—together on the
desktop. The compiler processed code at seem-
ingly lightning-like speed, and the minimalist
standard Pascal language was supplemented with
graphics, file management, and other facilities.
The whole package cost about $50, compared to
the $500 or so for the Microsoft product.

Programmers flocked to Turbo Pascal and
used it to create thousands of PC applications.
Borland grew steadily through the 1980s until it

128 Kahn, Philippe

had several thousand employees and sales of about
$500 million a year. Meanwhile, Borland created
similar programming environments for C, the lan-
guage that was rapidly supplanting Pascal as the
mainstream language for software development,
and then moved on to C++, the object-oriented
successor to C developed by BJARNE STROUSTRUP.

Another very successful Borland product
was Sidekick. This program took advantage of
an obscure feature of MS-DOS that allowed
small programs to be tucked away in an unused
portion of memory and then activated by a key
combination. With Sidekick, a user running, for
example, WordStar and needing an address for
a letter could bring up Sidekick and retrieve the
information from a simple database, read or make
calendar entries, or even dial phone numbers—
all without closing the WordStar program. While
this ability to run more than one program at a
time would become standard with Windows, at
the time it was a programming tour de force that
introduced a whole new category of software, the
personal information manager, or PIM. Borland
also developed the Quattro spreadsheet and
Paradox database management system, both of
which attracted a considerable following.

By the 1990s, however, Borland was facing in-
creasing competition from Microsoft, which had
developed its own low-cost integrated program-
ming environments for C, C++, and Visual
BASIC, all closely tied into the Windows operat-
ing system. Borland responded with Delphi, a
Pascal-based system that also provided Windows-
based visual programming. Although many pro-
grammers continued to prefer the Borland
products, Microsoft’s increasingly elaborate envi-
ronments eventually took over most of the mar-
ket for Windows software development tools.

Borland’s spreadsheet and database products
were also facing stiff competition from Microsoft,
which introduced its Excel spreadsheet and
Access database as part of its Microsoft Office
software suite. Although Kahn tried to fight back
with the acquisition of Ashton-Tate, developer

of the venerable dBase program, Borland also had
to deal with an expensive, time-consuming copy-
right infringement suit that accused its Quattro
Pro spreadsheet of too closely mimicking the
original Lotus 1-2-3 spreadsheet (now owned by
IBM). Although Borland finally won in the U.S.
Supreme Court in 1996, by then the market bat-
tle had been lost to Microsoft.

By the mid-1990s, the first “Internet boom”
was underway, and Kahn wanted to revitalize
Borland by taking the company in a new
direction, specializing in networking and the
sharing of information between computers.
However, the company’s board of directors was
unwilling to support his plans. The year 1995
marked perhaps the lowest point in Kahn’s ca-
reer: He was essentially fired by Borland’s board
of directors and in his personal life was em-
broiled in a divorce that cost him his $9 mil-
lion house. Meanwhile, the plunging value of
Borland stock had wiped out most of Kahn’s net
worth.

However, Kahn showed the same resiliency
he had displayed as a newly arrived immigrant.
In 1995, together with his new wife, Sonia Lee,
Kahn founded Starfish Software to specialize
in systems for wireless linking and synchro-
nization of “connected information devices”
such as palmtop computers. One such device
was Rolodex Electronics Xpress. This credit
card-sized device has a built-in personal infor-
mation manager, a system for keeping track of
contacts, appointments, and notes. The device
allows the user to make an Internet connection
with a desktop or laptop PC to retrieve and dis-
play information needed “in the field.” Kahn’s
efforts have led to the industry adoption of
the TrueSynch standard for communicating
and updating information between devices
from different manufacturers. The growing ca-
pabilities of handheld computing devices and
the new “smart” cell phones are likely to rep-
resent a continuing strong market for this type
of software.

Kahn, Robert 129

Kahn sold Starfish in 1998, but continued
to run it as a division of the Motorola corpora-
tion. About the same time, Kahn founded a new
company, LightSurf Technologies, which focuses
on instant digital imaging, allowing pictures to
be transmitted and received regardless of file for-
mat or platform. As he explained to an audience
at the Vortex 2000 industry conference:

What we want to do is what the Polaroid
camera did, the Land camera 50 years
ago, which is click, pull out, pass it on
to the next person. Except that here, in-
stead of sharing a little photograph, what
you want is to have that image instantly
share over the Internet, with the people
you choose to share it with.

Kahn is famous for his physical energy and
brashness. He has been known to jump into a
swimming pool while dressed in a tuxedo, and
he enjoys dirt biking, snowboarding, and surfing.
Another sport in which he has been successful
is sailboat racing, which requires paying atten-
tion to subtle changes while making long-term
plans—not unlike the skills required of a suc-
cessful CEO in a rapidly changing industry that
has seen its share of stormy weather. While some
observers noted a new sense of maturity in Kahn
as he approached age 50, it seems clear that his
brash, restless energy has not waned.

Together with Sonia Lee, Kahn has estab-
lished the nonprofit Lee-Kahn Foundation to
promote educational, health, and particularly
environmental concerns. Byte magazine has
named Kahn as one of the 20 most important
people in the history of the computer industry.

Further Reading
Kahn, Philippe. “Philippe Kahn on the Wireless

Internet.” Dr. Dobb’s Tech Netcast. November 10,
1999. Available online. URL: http://technetcast.
ddj.com/tnc_program.html?program_id=64.
Downloaded on December 2, 2002.

Kellner, Thomas. “Survivor: Philippe Kahn Making
Comeback with LightSurf.” Forbes, July 9, 2001,
p. 128.

Metcalfe, Robert. Vortex 2000 ING Executive Forums.
[Interview with Philippe Kahn.] Available on-line.
URL: http://www.lightsurf.com/news/tech_speak/
ts_052500.html. Posted on May 25, 2000.

� Kahn, Robert
(1938–)
American
Engineer, Computer Scientist

In order for the Internet to reliably connect com-
puters around the world, there must be a proto-
col, or agreement about how data will be for-
matted and handled. Robert Kahn played a key
role in developing this protocol (called TCP/IP)
and in the general architecture for the network
that eventually became the Internet. One might
say that he paved the Information Highway.

Kahn was born on December 23, 1938, in
Brooklyn, New York. He attended Queens
College and then City College of New York, re-
ceiving a bachelor’s degree in electrical engi-
neering in 1960. He then went to Princeton
University for his advanced study. During his
postgraduate years, Kahn also worked for Bell
Laboratories, one of the nation’s foremost pri-
vate research laboratories.

After receiving his doctorate in electrical
engineering from Princeton University in 1964,
Kahn accepted a position as assistant professor
at the Massachusetts Institute of Technology. In
1966, he took what he thought would be a brief
sabbatical at Bolt, Beranek, and Newman
(BBN), a pioneering company in computer net-
working and communications. Kahn quickly re-
alized that BBN was at the heart of a coming
revolution in how computers and their users
would communicate, so he took the position of
senior scientist to help BBN to design and im-
plement new computer networks.

130 Kahn, Robert

With more and more data being stored in
government and business databases, the need to
exchange data between different computer sys-
tems was becoming urgent. However, each type
of computer had its own way of organizing the
bits and bytes of data into meaningful words or
numbers. If one computer system, such as a DEC
PDP minicomputer, were to “understand” a mes-
sage from another, such as an IBM mainframe,
the data would have to be converted in real time
to a format that the destination system could
read. In 1969, Kahn led the team that developed
the Interface Message Processor (IMP), which
was essentially a specialized minicomputer. Once
a properly configured IMP was provided for each
computer, they could communicate over ordi-
nary phone lines.

Meanwhile, Defense Department officials
had become convinced that the nation needed
a decentralized computer networking system
that would allow facilities (such as radar stations
and interceptor bases) to maintain communica-
tions even in the face of a nuclear attack. Kahn,
together with VINTON CERF, LEONARD KLEINROCK,
and LAWRENCE ROBERTS, worked out network
protocols based on a system called packet-
switching in which data could be broken into
small, separately addressed pieces and relayed
from one computer to another until they reached
their destination, where they are reassembled
into the original message. Such a system can take
advantage of whatever connections are fastest,
while also having the ability to reroute commu-
nications if a particular participant or “node” in
the network is no longer functioning.

In 1972, Kahn took a key role in the lead-
ership of this effort by joining the Information
Processing Technology Office (IPTO) of the
Defense Advanced Research Projects Agency
(DARPA). Kahn became responsible for man-
aging the program that developed ARPANET,
ancestor of the Internet.

After Cerf joined Kahn in 1973, the two re-
searchers built on an existing limited network

protocol to develop the transmission control
protocol/Internet protocol, or TCP/IP. The TCP
part of the protocol handles error detection and
transmission of packets containing errors, while
the IP handles the overall addressing and pro-
cessing of messages built from the packets.

With TCP/IP, any two computer systems (or
entire networks) could communicate simply by
following the rules for constructing packets and
bundling them into messages. It did not matter
what kind of data—word, number, picture, or
something else—was in the packets. Once the
message was transported to the destination, an
appropriate program could process the data. It is
this flexibility that makes it possible today for a
variety of e-mail programs, Web browsers, data-
base programs, and other kinds of software to
work together over the Internet.

Kahn became director of the ITPO in 1979,
continuing the development of ARPANET
there until 1985. During this time, he also con-
ducted research on extending and generalizing
the concept of the packet-switched network to
work with radio (wireless) and satellite commu-
nications (SATNET). In 1977, this intercon-
nection had been shown by a now-famous
demonstration in which messages were sent
around the world using a mixture of satellite and
ground line Internet links.

In 1986, Kahn left ITPO to found and head
the nonprofit Corporation for National Research
Initiatives (CNRI). This organization serves as a
funding and coordination center for developing
the technologies needed for what became known
as the national information infrastructure—the
high-capacity data networks essential for the
Internet that would blossom with the coming of
the World Wide Web in the 1990s. In this effort,
Kahn and the CNRI worked together with
the National Science Foundation (NSF) and
DARPA, developing five “testbed” gigabit
(billion-bit-per-second) networks. Kahn also de-
veloped the idea of the Knowbot, a program that
could automatically link to different kinds of

Kapor, Mitchell 131

databases or other information sources over the
Internet to retrieve requested information.

As it became clear that the 1990s would see
an explosion in use of the Internet, Kahn also
played a key role in the founding of the Internet
Society, an organization that developed new tech-
nical standards for the network and sponsored
seminars on social and other issues relating to the
network. However, after an ongoing disagreement
over some of these issues, Kahn left the board of
directors of the Internet Society in 1996.

Like many complex developments, the
Internet has no single inventor or “founding fa-
ther.” However, as Peter Kirsten wrote in the
Annals of the History of Computing, “It was really
Bob Kahn to which the major credit must go; it
was his vision that started the main packet net-
work technologies and their interconnection.”

Robert Kahn has gotten used to the fact that
his work has not brought him the celebrity en-
joyed by other pioneers such as Netscape’s MARC

ANDREESSEN or even TIM BERNERS-LEE, creator of
the World Wide Web. Indeed, Kahn remarked,
in an interview: “It’s amazing the number of peo-
ple who don’t know what the Internet really is.
It’s an architecture for interconnecting net-
works. It’s not the World Wide Web. That’s just
an application on top of the Internet.”

Despite the lack of fame, Kahn’s work is
well known within the technical community.
He has received numerous awards including the
PC Magazine Lifetime Award for Technical
Excellence (1994), the Charles Stark Draper
Prize of the National Academy of Engineering
for 2001 (shared with Vinton Cerf, Leonard
Kleinrock, and Lawrence Roberts), the Prince
of Asturias Award for Scientific and Technical
Research (2002) and the prestigious National
Medal of Technology (1997).

Further Reading
Corporation for National Research Initiatives.

Available on-line. URL: www.cnri.reston.va.us.
Updated on October 17, 2002.

Hafner, Katie, and Matthew Lyon. Where Wizards Stay
Up Late: The Origins of the Internet. New York:
Simon and Schuster, 1996.

Kahn, Robert E. [Interview] Omni, December 1992,
pp. 83ff.

� Kapor, Mitchell
(1950–)
American
Entrepreneur, Programmer

Most of the computer pioneers had a heavy tech-
nical background—typically, college studies in
fields such as mathematics, electrical engineering,
and (starting in the 1970s) computer science.
However, there are some individuals who bring a
quite different set of experience and skills into the
computer field. Such is the case with Mitchell
Kapor, whose Lotus 1-2-3 program firmly estab-
lished the spreadsheet as a business tool.

Kapor was born on November 1, 1950, in
Brooklyn, New York, and attended public school
in Freeport, Long Island. As a student at Yale
University in the 1960s, he fashioned a cus-
tomized degree program in cybernetics that that
included diverse studies in psychology, cognitive
science, linguistics, and computer science.

After receiving his bachelor’s degree in 1971,
Kapor worked at such odd jobs as radio disk
jockey, teacher of transcendental meditation, and
computer programmer. He then went to Campus-
Free College (later called Beacon College) in
Boston to study psychological counseling. He
received his master’s degree in counseling psy-
chology in 1978 and worked for a short time as a
counselor at the New England Memorial Hospital
in Stoneham, Massachusetts.

While he was finishing his psychology stud-
ies Kapor had become intrigued by the personal
computer (PC), which was just coming onto
the market. He bought an Apple II and learned
to program it so he could earn some extra
money as a consultant. He then realized that

132 Kapor, Mitchell

he could adapt a statistical charting program
called TROLL from the Massachusetts Institute
of Technology (MIT) to the Apple II, making
it available to more students and researchers.
He called his version of the program “Tiny
Troll.”

Kapor then met DANIEL BRICKLIN, inventor
of VisiCalc, the first PC spreadsheet program.
VisiCalc had become the first true “hit” of the
PC software market, leading thousands of busi-
ness users to buy Apple II computers. Kapor
worked with Bricklin at Personal Software to
create VisiPlot, a program that creates charts and

graphs from the data in VisiCalc spreadsheets.
In 1980, Kapor sold all the rights to the new pro-
gram to VisiCorp for $1 million.

Kapor then joined with business partner
Jonathan Sachs to found Lotus Development in
1982, with the objective of creating a new spread-
sheet program. This program, Lotus 1-2-3, inte-
grated spreadsheet, graphing, and simple database
functions into a single program with an easier-to-
use, more consistent interface. Lotus 1-2-3 also
provided on-line help screens to make it easier for
businesspeople to master the unfamiliar technol-
ogy. The program was written for the new IBM
PC, which had rapidly overtaken the Apple II as
the desktop computer of choice for business ap-
plications. Lotus 1-2-3 was a perfect fit for the
booming PC market. In 1983, the year of its re-
lease, Lotus made $53 million in revenue, which
jumped to $156 million the following year and
$258 the third year, with the two-person com-
pany growing to more than 2,300 employees.

By 1986, however, Kapor was ready to move
on to other ideas. As he told a Newsweek inter-
viewer: “I was in a period of soul-searching,
thinking about the immensity of changes [going
from] two guys in a basement five years ago to
the world’s biggest software company. I felt the
company was in great shape. . . . It was time the
torch passed to the second generation of leader-
ship.” He therefore left the management ranks
at Lotus, though he continued to work on a pro-
gram called Lotus Agenda. This was one of the
first programs to allow the user to keep track of
personal information such as contacts, phone
numbers, calendar entries, and notes. It started
a new class of software called the personal in-
formation manager, or PIM. (See PHILIPPE KAHN

for another approach to this type of software.)
In 1987, Kapor started a new company, ON

Technology. Kapor’s goal was to focus on devel-
oping technology that would allow groups of
people to share documents and work together on
projects. This emphasis on “groupware” was in
keeping with the trend in the later 1980s and

Mitchell Kapor founded Lotus, whose 1-2-3 integrated
spreadsheet program became an early hit for the IBM
PC. He then cofounded a group to help protect civil
liberties in cyberspace. (CORBIS SABA)

Kay, Alan C. 133

1990s toward on networking and connectivity
rather than focusing on the stand-alone PC.
Further, Kapor wanted to achieve a new level of
user-friendliness. He acknowledged in a “Design
Manifesto” issued at a 1990 technical conference
that existing operating systems just were not
good enough: “Sooner or later, everyone that I
know, except perhaps the most hard-core tech-
nical fanatic, wants to pick up the machine off
the desk and throw it through the window.”

Kapor recruited some top computer scien-
tists from MIT, Harvard, and the Xerox Palo
Alto Research Center (where the mouse and
windows had been invented). However, by 1989
the ambitious attempt to create a new operating
system had bogged down and many of the key
programmers left for other projects. The com-
pany was able to develop only a few relatively
minor applications.

In 1990, Kapor turned his attention to the
social issues that were starting to emerge as more
people used on-line communications such as
bulletin boards, chat rooms, and Internet news-
groups. For example, that same year Steve
Jackson Games was nearly driven out of business
when the government seized its computers in
connection with an investigation of hackers
who were accused of accessing proprietary in-
formation. Although the game company had no
real connection with the alleged hacker, the
Secret Service refused to return the equipment,
even though under the First Amendment pub-
lishers enjoy special protection. Eventually a fed-
eral judge ruled in favor of Jackson, awarding
damages.

In response to the collision between law en-
forcement and new technology, Kapor and an-
other “cyber-activist,” John Perry Barlow, formed
the Electronic Frontier Foundation (EFF). This
group became known as a sort of American
Civil Liberties Union for cyberspace, taking
on the government and big corporations over is-
sues such as privacy and free expression. Kapor
served on the board of the EFF until 1994.

During 1992 and 1993, Kapor also served as chair
of the Massachusetts Commission on Computer
Technology, which was set up to investigate com-
puter crime and related civil liberties issues. As
the 1990s continued, he also served on the
Computer Science and Technology Board of the
National Research Council and the National
Information Infrastructure Advisory Council, as
well as teaching courses in software design and
computer-related social issues as an adjunct pro-
fessor at the MIT Media Lab. He has also been
active as a venture capitalist with Accel Partners
and philanthropist, heading the Mitchell Kapor
Foundation. Kapor received the 1996 Computer
History Museum Fellow Award.

Further Reading
Cringely, Robert X. Accidental Empires: How the Boys

of Silicon Valley Make Their Millions, Battle Foreign
Competition, and Still Can’t Get a Date. New York:
HarperCollins, 1993.

Electronic Freedom Foundation. Available on-
line. URL: http://www.eff.org. Downloaded on
November 2, 2002.

Kapor, Mitchell. “Civil Liberties in Cyberspace.”
Scientific American, September 1991, p. X.

� Kay, Alan C.
(1940–)
American
Computer Scientist

If Alan Kay had not done his pioneering work,
personal computers (PCs) would still exist. But
cryptic commands might have to be typed one
line at a time, resulting in the operating system
sending back text messages. There might never
have been easy-to-click icons and a visual desk-
top for organizing work.

Alan Kay developed a variety of innovative
concepts that changed the way people use com-
puters. Because he devised ways to have comput-
ers accommodate users’ perceptions and needs,

134 Kay, Alan C.

Kay is thought by many to be the person most
responsible for putting the “personal” in personal
computers. Kay also made important contribu-
tions to object-oriented programming (a term he
coined), changing the way programmers organ-
ized data and procedures in their work.

Kay was born on May 17, 1940, in
Springfield, Massachusetts. His family moved to
Australia shortly after his birth, but the family
returned to the United States because of the
threat of a Japanese invasion of Australia. His
father developed prostheses (artificial limbs) and
his mother was an artist and musician. These
varied perspectives probably contributed to Kay’s
interest in interaction with and perception of
the environment.

An independent streak and a questioning
mind also apparently characterized Kay from an
early age, as he recalled later to Dennis Shasha
and Cathy Lazere:

By the time I got to school, I had al-
ready read a couple hundred books. I
knew in the first grade that they were
lying to me because I had already been
exposed to other points of view. School
is basically about one point of view—
the one the teacher has or the textbooks
have. They don’t like the idea of hav-
ing different points of view, so it was a
battle. Of course I would pipe up with
my five-year-old voice.

As he got older, Kay became a talented gui-
tarist and singer and considered music as a ca-
reer. However, after a brief stint at Bethany
College in West Virginia, he was expelled for
protesting the school’s Jewish quota. After
spending some time in Denver, Colorado, teach-
ing music, he joined the U.S. Air Force.

In the early 1960s, Kay was working as a pro-
grammer at Randolph Air Force Base, near
Denver. His job was to write the detailed data

processing instructions, called assembly lan-
guage, for a Burroughs 220 mainframe computer.
His problem was that he needed to share this
data with other types of computers owned by the
air force, but each type of mainframe computer,
such as Burroughs, Sperry Univac, or IBM, had
its own completely different data format.

Kay then came up with an interesting idea.
He decided to create “packages” that included
data and a set of program functions for manipu-
lating the data. By creating a simple interface,
other users or programs could access the data.
They did not need to know how the data was
organized or understand the details of exactly
how the data access function worked. Although
his idea did not catch on at the time (Kay said
to Cade Metz “I didn’t get the big grok [realiza-
tion] until 1966,”) Kay had anticipated object-
oriented programming, a concept that he and
other computer scientists would bring to center
stage in the 1970s and 1980s.

Meanwhile, later in the 1960s, while com-
pleting work for his Ph.D. at the University of
Utah, Kay further developed his object-oriented
ideas. He helped IVAN SUTHERLAND with the de-
velopment of a program called Sketchpad that
enabled users to define and work with onscreen
graphics objects, while also working on the de-
velopment of SIMULA, the first programming
language specifically designed to work with ob-
jects. Indeed, Kay coined the term object-oriented
at this time.

Kay viewed object-oriented programs as
consisting of objects that contained appropriate
data that could be manipulated in response to
“messages” sent from other objects. Rather than
being rigid, top-down procedural structures, such
programs were more like teams of cooperating
workers—or, to use one of Kay’s favorite
metaphors, like biological organisms interacting
in an environment. Kay also worked on parallel
programming, in which programs carried out sev-
eral tasks simultaneously. He likened this struc-

Kay, Alan C. 135

ture to musical polyphony, in which several
melodies are sounded at the same time.

Kay participated in the Defense Advanced
Research Projects Agency (DARPA)-funded re-
search that was leading to the development of
the Internet. One of these DARPA projects was
FLEX, an attempt to build a computer that could
be used by nonprogrammers using onscreen con-
trols. While the bulky technology of the late
1960s made such machines impracticable, FLEX
incorporated some ideas that would be used in
later PCs, including multiple onscreen windows.

During the 1970s, Kay worked at the inno-
vative Xerox Palo Alto Research Center
(PARC). Kay designed a laptop computer called
the Dynabook, which featured high-resolution
graphics and a graphical user interface. While
the Dynabook was only a prototype, similar ideas
would be used in the Alto, a desktop personal com-
puter that could be controlled with a new point-
ing device, the mouse (invented by DOUGLAS

ENGELBART). A combination of high price and
Xerox’s less-than-aggressive marketing kept the
machine from being successful commercially, but
STEVE JOBS would later use its interface concepts
to design what would become the Macintosh.

On the programming side, Kay developed
Smalltalk, a language that was built from the
ground up to be truly object-oriented. Kay’s
worked showed that there was a natural fit
between object-oriented programming and an
object-oriented user interface. For example, a
button in a screen window could be represented
by a button object in the program, and clicking
on the screen button could send a message to
the button program object, which would be pro-
grammed to respond in specific ways.

After leaving PARC in 1983, Kay briefly
served as chief scientist at Atari and then moved
to Apple, where he worked on Macintosh and
other advanced projects. In the early 1990s, Kay
anticipated many of the trends in computer use
that would be prominent at the start of the 21st

century. He saw a transition from “personal com-
puting” to “intimate computing,” characterizing
the latter as the use of mobile, wireless-networked
computers that would use programs called “soft-
ware agents” to help people find and track the
data and daily communications (see also PATTIE

MAES). As these agents become smarter and more
capable, the idea of programming will be largely
replaced by users “training” their agents much in
the way that an executive might train a new as-
sistant. In 1996, Kay became a Disney Fellow and
Vice President of Research and Development at
Walt Disney Imagineering. In 2002 Kay moved
to a research environment reminiscent of
PARC—Hewlett-Packard Laboratories. He told
an interviewer that “the goal [of his new work] is
to show what the next big relationship between
people and computing is likely to be.”

Kay retains a strong interest in how com-
puters are being used (and abused) in schools.
Reflecting on the success of the Macintosh, he
noted later in an interview with Judy Schuster

I think the thing that surprised me is that
computers are treated much more like
toasters, [with] predefined functions
mainly having to do with word process-
ing and spreadsheets or running packaged
software, and less as an artistic material
to be shaped by children and teachers.

Looking back at his father’s work with pros-
thetics, he also noted in the same interview, “Put
a prosthetic on a healthy limb and it withers.”
He believes that instead of being like cars, com-
puters should be more like bicycles, amplifying
the intellectual “muscles” of children and other
learners.

Kay has won numerous awards, including an
American Academy of Arts and Sciences fellow-
ship, the Association for Computing Machinery
Software Systems Award, and the J. D. Warnier
Prize.

136 Kemeny, John G.

Further Reading
Gasch, Scott. “Alan Kay.” Availale on-line. URL:

http://ei.cs.vt.edu/~history/GASCH.KAY.HTML.
Posted in 1996.

Kay, Alan. “The Early History of Smalltalk.” In
Thomas J. Bergin Jr. and Richard G. Gibson Jr.,
eds. History of Programming Languages II.
Reading, Mass.: Addison-Wesley, 1996.

Shasha, Dennis, and Cathy Lazere. “Alan C. Kay: A
Clear Romantic Vision.” In Out of Their Minds:
The Lives and Discoveries of 15 Great Computer
Scientists. New York: Copernicus, 1995.

Metz, Cade. “The Perfect Architecture.” PC
Magazine, September 4, 2001, p. 187.

Schuster, Judy. “A Bicycle for the Mind, Redux.”
Electronic Learning, vol. 13, April 1994, p. 66.

� Kemeny, John G.
(1926–1992)
Hungarian/American
Mathematician, Computer Scientist

In the early days of computing, learning to pro-
gram was very difficult. Programs had to be writ-
ten as a series of precise, detailed instructions,
usually punched onto cards. The finished pro-
gram was then handed over to the machine op-
erator, who fed them to the computer. Since the
programmer had no way to verify or test the in-
structions before submitting them, chances were
good that one or more errors would crop up, halt-
ing the program or making its results useless. The
programmer would then have to go through the
whole tedious process of correcting and resub-
mitting the cards, often several times.

In the mid-1960s, however, a Dartmouth
mathematician and professor named John
Kemeny, together with a colleague, Thomas
Kurtz, developed a new language called BASIC
(for beginner’s all-purpose symbolic instruction
code). With BASIC, a student programmer could
type simple commands at a Teletype terminal, re-
ceiving instant feedback from the computer. Any

errors could be fixed on the spot, and the pro-
gram run again to test whether it was correct.

Kemeny was born in Budapest, Hungary, on
May 31, 1926. In 1940, the family fled to the
United States because they believed that their
country would soon fall to the Germans, who
had already seized Czechoslovakia and Poland.
The family settled in New York. When young
Kemeny went to an American high school, he
knew German and Latin as well as his native
Hungarian, but not a word of English.
Nevertheless, by the time he graduated in 1943,
he led his class in academic honors.

Kemeny enrolled in Princeton University
to study mathematics and philosophy, but in

John Kemeny, together with Thomas Kurtz, invented
BASIC, an easy-to-use interactive programming
language that let many students learn how to tap the
power of computers. Kemeny then became president
of Dartmouth College, leading that institution through
the social tumult of the early 1970s. (Courtesy
Dartmouth College Library)

Kemeny, John G. 137

1945 he received both his American citizenship
and a draft notice. Because of his mathematical
background, the army put him to work as a
“computer”—that is, a person who performed
complex calculations using the electromechani-
cal calculating machines of the time. His work-
place was Los Alamos, New Mexico, where the
secret Manhattan Project was designing the
atomic bomb. While at Los Alamos, Kemeny
worked under JOHN VON NEUMANN, the promi-
nent mathematician who was becoming increas-
ingly involved in the design of electronic digital
computers (see also J. PRESPER ECKERT and JOHN

MAUCHLY). Kemeny soon shared von Neumann’s
enthusiasm for the possibilities of computing.

After the war Kemeny, returned to
Princeton and he graduated with top honors in
1947, having served as president of the German
Club and the Roundtable as well as having par-
ticipated in the Court Club and the fencing
team. He then studied for his doctorate, which
he received only two years later. During his grad-
uate studies, Kemeny worked with ALONZO

CHURCH, the logician who had helped establish
the theory of computability, as well as with
Albert Einstein, who was working on his unified
field theory.

After earning his Ph.D., Kemeny joined the
Princeton faculty as an instructor in mathemat-
ical logic, though he later taught philosophy for
several years. In 1953, he moved to Dartmouth
College as a professor of mathematics and phi-
losophy. He would remain there for the rest of
his career. From 1954 to 1957, Kemeny served
as chairman of the Dartmouth mathematics de-
partment, where he pioneered new methods of
teaching mathematics. His emphasis on intro-
ducing advanced mathematics concepts into ear-
lier stages of the curriculum and discarding rote
drills and problem sets would help inspire the
“New Math” movement that would later perco-
late down to the elementary school curriculum.

Dartmouth had no computer of its own at
the time, so Kemeny frequently commuted 135

miles each way to use the computer at the
Massachusetts Institute of Technology. He was
therefore able to keep up with developments in
computing, particularly the announcement of
FORTRAN in 1957. Kemeny thought that
FORTRAN represented an important step in
making computers easier for scientists and engi-
neers to use, because it accepted ordinary math-
ematical expressions rather than requiring the
bit-by-bit specifications used by assembly lan-
guage. “All of a sudden,” Kemeny recalled in his
1972, book Man and the Computer “access to
computers by thousands of users became not only
possible but reasonable.”

In 1959, Dartmouth finally got a computer,
and Kemeny encouraged his students to use it
just as they would the library or any other cam-
pus resource. However, existing computer op-
erating systems allowed only one program to
run at a time, and thus only one person at a
time could have access to the expensive ma-
chine. Since the computer actually had enough
memory to store several programs, Kemeny,
sharing ideas also being developed by JOHN

MCCARTHY and J. C. R. LICKLIDER, thought that
it would make sense to have a computer load
multiple programs and let them “take turns”
running. Since the computer is much faster
than human response time, the effect would be
as though each user had his or her own dedi-
cated machine.

Kemeny and a team of students and col-
leagues therefore developed the Dartmouth
Time-Sharing System, or DTSS, which became
available in 1964. The system was gradually ex-
panded into a network that linked Dartmouth
to 24 high schools and 12 other colleges in New
England. Once time-sharing was available, it be-
came practicable to think of making computing
truly available to any student who might bene-
fit from it. The problem was that the existing
languages, even FORTRAN, were hard to use
because programmers had to master their often
complicated syntax.

138 Kemeny, John G.

Kemeny and a colleague, Thomas Kurtz, de-
cided to take a different approach to teaching
programming. They simplified the existing
FORTRAN language and added simple PRINT
and INPUT commands that made it easy to sub-
mit data, process it, and get the results. They then
wrote an interactive compiler that could take pro-
gram statements directly from students at termi-
nals, compile them, and display the results almost
instantly. Each instruction line began with a line
number, and students could use a simple editing
facility to recall and correct any line that con-
tained an error. Kemeny and Kurtz also pioneered
the idea of “beta testing”—they encouraged as
many students as possible to use their prototype
BASIC system and report any “bugs” they found.

Kemeny and Kurtz were interested in help-
ing students, not making money, so they did not
try to market their language. (Dartmouth owned
the copyright, but made the BASIC system
available for free to anyone who wanted to use
it, such as General Electric, which distributed it
with its own time-sharing system.)

In 1970, Kemeny became president of
Dartmouth College. In that office, like many
other college administrators, he was faced with
the antiwar protests and social changes that had
rocked the 1960s. Kemeny believed in that uni-
versities needed to reach out to the surrounding
communities and in turn be more open to them.
He made the college coeducational in 1972 and
also worked to increase minority enrollment.
(Kemeny himself was the first person of Jewish
background to be appointed president of an Ivy
League school.)

Kemeny also supported campus antiwar
protests, particularly in response to the U.S.
invasion of Cambodia in April 1970 and the
killing of four students by National Guard troops
at Kent State University in Ohio. Many liberals
praised his progressive policies, but some of the
more conservative alumni loudly objected, par-
ticularly when he banned the school’s Indian
sports mascot as racist.

Following the accident at the Three Mile
Island nuclear power plant in 1979, Kemeny
served as chair of an investigatory commission
appointed by President Carter. The commission
concluded that the nuclear industry had not paid
sufficient attention to known safety problems
and that regulators had been lax and biased in
favor of the industry as opposed to public safety.

In 1980, Kemeny stepped down from the
presidency of Dartmouth and his focus returned
to the use of computers in education. One of the
things both Kemeny and Kurtz were concerned
about was what had happened to their BASIC
language. Starting in the late 1970s, a variety of
dialects, or versions of the language, had been
written to run on the various models of personal
computers. Because each version was somewhat
different, programs written for an Apple II, for
example, could not be run on an IBM PC with-
out extensive modifications. Further, to the ex-
tent that a “standard” version of BASIC had
been created by Microsoft, the language was
poorly structured, particularly in lacking a proper
mechanism for defining procedures and local
variables, which could protect against data val-
ues being inadvertently changed.

Responding to this situation, Kemeny and
Kurtz developed True BASIC in 1985, starting
a company of the same name to sell it along with
various educational software packages. They
hoped that having a modern, consistent version
of the language would make BASIC fully capa-
ble of becoming the language of choice for main-
stream programming. However, although their
language was well designed and well regarded by
many computer scientists, their effort had come
too late. C and particularly the object-oriented
C++ would dominate the field, and BASIC,
with the exception of Microsoft Visual BASIC
(which gradually became better structured),
would largely disappear.

Kemeny died on December 26, 1992. He was
honored with the Computer Pioneer Award of the
Institute of Electrical and Electronics Engineers

Kernighan, Brian 139

(1985). To acknowledge and carry on Kemeny’s
work in modernizing the mathematics curricu-
lum, the Alfred P. Sloan Foundation funded the
building of the Albert Bradley Center for math-
ematics study and research at Dartmouth.

Further Reading
Kemeny, John. Back to BASIC: The History,

Corruption and Future of the Language. Reading,
Mass.: Addison-Wesley, 1985.

———. Random Essays on Mathematics, Education,
and Computers. Upper Saddle River, N.J.:
Prentice-Hall, 1964.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

� Kernighan, Brian
(1942–)
Canadian/American
Computer Scientist, Writer

Many people assume that writing a computer
program is something like writing a novel. The
writer starts with a blank sheet of paper (or an
empty screen), and writes every last instruction
from scratch. Actually, however, it is more like
designing a new car model. The designer uses
many standard components and creates only
those custom parts needed to define the new
car’s distinctive style and features. Similarly, pro-
grammers today generally rely on tested compo-
nents, such as routines for sorting or formatting
data, and write only the new code they need to
complete the tasks needed for the particular ap-
plication. Brian Kernighan demonstrated the ef-
fectiveness of this “software tools” approach to
programming, and made major contributions to
the development and growth of the UNIX pro-
gramming environment.

Brian Kernighan was born in 1942 in
Toronto, Canada. He received his bachelor’s de-
gree in engineering physics from the University
of Toronto in 1964. Toward the end of his un-

dergraduate years he saw his first computer, an
IBM 650, and he gradually became interested in
programming.

Kernighan came to the United States in
1965 and enrolled at Princeton University, earn-
ing a Ph.D. in electrical engineering in 1969.
(He specialized in computer science, but at the
time this was a subspecialty within electrical en-
gineering, not a separate discipline.)

That same year, he joined Bell Laboratories
in Murray Hill, New Jersey, and has spent his ca-
reer in its Computing Sciences Research Center.
He had arrived just in time for a revolution in
computer operating systems. Two researchers,
KENNETH THOMPSON and DENNIS RITCHIE, were
developing UNIX. Besides being able to multi-
task, or run many programs at the same time,
UNIX made it easy to write small programs that
did useful things and then connect them to-
gether with software “pipes” that let the data
flow from one program to the next in a stream
of bytes.

Consider, for example, the task of finding
and extracting selected lines of text, sorting
them, and then printing them as a table. A user
of a traditional operating system would have to
write a program for each task. The “find” pro-
gram would have to put the lines it found into
a temporary data file. The sort program would
then have to open this file, read in the lines, sort
them, and write an output file. The table-making
program would have to open the file and format
it into a table, writing the results to still another
file. With UNIX, however, the find, sort, and
table programs could all be linked with the pipe
symbol, and the data would flow through them,
being processed by each program in turn and
emerge in the final output.

To Kernighan and other UNIX pioneers,
features like pipes and streams were more than
neat technical ideas, they embodied a distinc-
tive philosophy or approach to software design.
Rather than writing programs, they were mak-
ing tools others could use and build on. Together

140 Kilburn, Thomas M.

with P. J. Plauger, Kernighan wrote a book called
Software Tools that illustrated how a set of basic
tools for working with data, formatting text, and
performing other tasks could be linked together
to tackle formidable data processing tasks.

Ritchie (with some help from Thompson)
was developing the C language at the same time
Kernighan and his colleagues were designing
UNIX tools. C has been criticized by some peo-
ple as having too-cryptic syntax and for not
giving programmers enough of a safety net in
dealing with matters such as converting one type
of data to another. But as he explained to Mihai
Budiu, Kernighan believes that

C is the best balance I’ve ever seen be-
tween power and expressiveness. You
can do almost anything you want to do
by programming fairly straightforwardly
and you will have a very good mental
model of what’s going to happen on the
machine; you can predict reasonably
well how quickly it’s going to run, you
understand what’s going on and it gives
you complete freedom to do whatever
you want.

Kernighan continues to work on a variety of
projects that suit his needs and interests. For ex-
ample, he has written a program to convert
mathematical formulas from the format used by
eqn (a UNIX program used for typesetting equa-
tions) to HTML or XML formats suitable for
posting on Web pages. On a larger scale, to-
gether with colleagues David Gay and Bob
Fourer, he is developing AMPL, a language de-
signed for optimizing the solution to mathemat-
ical problems. The developers intend to have
AMPL create objects that can be “plugged in”
to a main program without the authors of the
latter having to worry about how it works.

Kernighan has received the 1997 USENIX
Lifetime Achievement Award for “books that ed-
ucated us all, for tools we still use, and for insights

in the use of language as a bridge between peo-
ple and machines.” He is also a Bell Laboratories
Fellow (1995) and has been elected a member of
the American Academy of Engineering.

Further Reading
“Brian Kernighan.” Available on-line. URL: http://cm.

bell-labs.com/cm/cs/who/bwk. Downloaded on
December 3, 2002.

Budiu, Mihai. “An Interview with Brian Kernighan.”
Available on-line. URL: http://www-2.cs.cmu.edu/
~mihaib/kernighan-interview. Posted on July
2000.

Kernighan, Brian W., and Bob Pike. The Practice of
Programming. Reading, Mass.: Addison-Wesley,
1999.

———. The Unix Programming Environment. Upper
Saddle River, N.J.: Prentice Hall, 1992.

Kernighan, Brian W., and P. J. Plauger. Software Tools.
Reading, Mass.: Addison-Wesley, 1976.

Kernighan, Brian W., and Dennis M. Ritchie. The C
Programming Language. Upper Saddle River, N.J.:
Prentice Hall, 1988.

� Kilburn, Thomas M.
(1921–2000)
British
Engineer, Inventor

Most accounts of computer history tend to focus
on developments in the United States. Two lead-
ing candidates for the inventor of the electronic
digital computer, JOHN VINCENT ATANASOFF and
the team of J. PRESPER ECKERT and JOHN MAUCHLY,
were American, and American companies would
come to dominate the computer hardware and
software industries. However, British researchers
would also built important early computers and
helped develop key concepts of modern com-
puter architecture. A good example is engineer
and computer designer Thomas Kilburn.

Thomas Kilburn was born on August 11,
1921, in Dewsbury, Yorkshire, in the United

Kilburn, Thomas M. 141

Kingdom. As a boy, Kilburn showed considerable
talent in mathematics, which he pursued almost
to the exclusion of other interests. He then went
to Cambridge University and graduated with first
class honors in mathematics in 1942.

When World War II broke out in 1939,
Kilburn served in the air reserve squadron at
Cambridge, and hoped to become a pilot in the
Royal Air Force. However, the authorities
viewed his ability in mathematics as more
valuable, and the noted scientist and philospher
C. P. Snow recruited Kilburn into the secret
Telecommunications Research Establishment
(TRE) at Great Malvern. There he worked with
Frederick C. Williams on improving radar sys-
tems, a technology that had provided a crucial
edge in defending Britain against the German
Luftwaffe. Kilburn’s wartime work also gave him
a solid background in electronics to complement
his mathematical ability. That combination
would be a crucial one for many computer
pioneers.

After the war, Kilburn went to the electri-
cal engineering department at the University
of Manchester. There he worked again with
Williams, helping him develop a way to use
cathode-ray tubes (CRTs), similar to those found
in television sets, as a form of computer mem-
ory. While Williams had come up with the ba-
sic idea, Kilburn worked out the precise way to
direct the electron beams to store data bits on
the tube surface. Williams and Kilburn thus cre-
ated a fast random-access computer memory.
(“Random access” meant that any piece of data
could be stored or retrieved directly without hav-
ing to go through intervening data.) By 1947,
what had become known as the Williams tube
could store 2,048 binary digits, or bits, on a
single CRT.

The availability of a reasonably large, fast
memory made it possible to build a new type of
computer. Earlier electronic computers such as
the American ENIAC could not store their pro-
grams in memory. This meant that programs

either had to be preset (such as by throwing
switches or plugging in cables) or read, one in-
struction at a time, from punched cards during
processing.

In the new machine, which was christened
the Baby, the entire set of program instructions
could be read from cards or punched tape and
stored using the Williams memory tube. This
brought a new dimension of flexibility to pro-
gramming. It meant that a program could be bro-
ken up into separate sections or subroutines and
the computer could “jump” as required from one
part of the program to another, and program
“loops” could be run without having to punch
duplicate cards. Given sufficient memory, data,
too, could be stored and retrieved randomly,
considerably speeding up processing. Although
the Americans were also developing “stored pro-
gram computers,” historians generally credit the
Baby of 1948 with being the first such machine.

The Baby was more of a demonstration than
a complete computer, so the Manchester team
proceeded to develop the Manchester Mark I
(and a commercial version, the Ferranti Mark
I). The latter machine, which came into service
in 1951, not only had a CRT memory that could
store 10,000 binary digits, it also had a second-
ary magnetic drum memory, the ancestor of
today’s hard disk drives. Its early operating soft-
ware and program libraries were developed by
ALAN TURING. The Mark I was technically suc-
cessful, but the commercial market for comput-
ers in Britain was slow to develop, and the Mark
I would eventually be overwhelmed by IBM and
other American manufacturers.

When Williams decided to concentrate on
noncomputer electronics in 1951, Kilburn was
put in charge of computer engineering research
at Manchester. Kilburn and his team then made
a series of important developments. In 1954,
they built a computer called the MEG that could
handle floating-point decimal operations and
ran about 30 times faster than the Mark I. A
commercial version, the Mercury, replaced the

142 Kilburn, Thomas M.

Williams CRT memory with a new, more reli-
able technology, an array of tiny doughnut-
shaped magnetic cores.

Another interesting project by Kilburn’s
group was a small computer built in 1953 that
used transistors instead of vacuum tubes for its
processing elements. The first of its kind, the
Transistor Computer proved that the newly in-
vented transistor was a viable computer compo-
nent that would be increasingly used as more
reliable types of transistors were introduced.

In 1956, the Kilburn team concluded that
with the availability of transistors, magnetic core
memory, and other technologies it was feasible
to build a much faster computer. This machine,
called MUSE (for mu, or microsecond) was de-
signed to execute 1 million instructions per sec-
ond. This was about 1,000 times faster than the
Ferranti Mark I. Like its counterparts in the
United States, the LARC and IBM STRETCH,
this new generation of computers had the speed
and capacity to run large, complex software pro-
grams. The machine (renamed ATLAS) came
into full service in 1964. For several years, the
ATLAS was the world’s most powerful and so-
phisticated computer, and the three full-sized
and three smaller versions that were built gave
unprecedented computing power to the British
scientific community.

The power of this machine and the new
generation of mainframes typified by the IBM
System 360 made it both possible and necessary
to develop new computer languages and com-
piler systems such as developed by JOHN BACKUS

with FORTRAN and through the guiding
inspiration of GRACE MURRAY HOPPER with
COBOL.

Following the success of ATLAS, Kilburn
took on a new task, turning his computer group
within the Manchester electrical engineering
department into a separate department of com-
puter science. As head of this department,
Kilburn was responsible for creating a complete
curriculum for a field that was only beginning to

be defined. The Manchester computer science
department was the first of its kind in Britain
and possibly in Europe.

Once the new department had been organ-
ized, Kilburn and his associates continued their
research. They built a new machine, the MU5,
which incorporated sophisticated new operating
system features, including the ability to “seg-
ment” code so it could be shared by more than
one running program.

Kilburn retired in 1981 and died on January
17, 2001, in Trafford, England. He received nu-
merous honors, becoming a Fellow of the pres-
tigious Royal Society in 1965 and a Commander
of the British Empire (CBE) in 1973. He is also
a recipient of the Computer Pioneer Award
of the Institute of Electrical and Electronics
Engineers (IEEE) Computer Society (1982) and
the Eckert-Mauchly Award, given jointly by the
IEEE and the Association for Computing
Machinery (1983), “for major seminal contribu-
tions to computer architecture spanning a period
of three decades [and for] establishing a tradi-
tion of collaboration between university and
industry which demands the mutual under-
standing of electronics technology and abstract
programming concepts.”

Further Reading
Bellis, Mary. “Inventors of the Modern Computer:

The Manchester Baby.” About.com. Available
on-line. URL: http://inventors.about.com/library/
weekly/aa060998.htm. Posted on June 9, 1998.

Goldstine, Herman H. The Computer: from Pascal to von
Neumann. Princeton, N.J.: Princeton University
Press, 1972.

University of Manchester. “Tom Kilburn (1921–2001).”
Available on-line. URL: http://www.computer50.
org/mark1/kilburn.html. Downloaded on Novem-
ber 2, 2002.

Wilkinson, Barry. “Stored Program Computer.”
Available on-line. URL: http://www.cs.wcu.edu/
~abw/CS350/slides1.pdf. Downloaded on Novem-
ber 2, 2002.

Kilby, Jack 143

� Kilby, Jack
(1923–)
American
Engineer, Inventor

Vacuum tubes made the electronic computer
possible. Transistors made it smaller and more
reliable. But it took the integrated circuit, in-
vented virtually simultaneously by Jack St. Clair
Kilby and ROBERT NOYCE, to make computers
small enough to fit on people’s desks or even in
their pockets.

Kilby was born in Jefferson City, Missouri,
on November 8, 1923. Kilby’s father was an elec-
trical engineer who became president of Kansas
Power Company when the boy was four years old.
The family thus moved to Great Bend, Kansas.
Both parents loved books, and the family often
recited memorized passages of Shakespeare.

Young Kilby had his heart firmly set on fol-
lowing in his father’s footsteps and becoming an
electrical engineer. He recalled to T. R. Reid that
when his father used a ham radio to communi-
cate with customers after the great blizzard of
1937, “I first saw how radio, and by extension,
electronics, could really impact people’s lives by
keeping them informed and connected, and giv-
ing them hope.” Kilby also learned from his fa-
ther that engineering was not just what one
could build, but whether one could build it
cheaply enough. As he noted to Reid:

You could design a nuclear-powered
baby bottle warmer, and it might work,
but it’s not an engineering solution. It
won’t make sense in terms of cost. The
way my dad always liked to put it was
that an engineer could find a way to do
for one dollar what everybody else could
do for two.

Kilby also had his heart set on attending the
Massachusetts Institute of Technology (MIT),
one of the nation’s premier engineering schools.

Unfortunately, Kilby failed the MIT entrance
exam with a score of 497, three below the min-
imum 500 points needed. Disappointed, he en-
rolled in the University of Illinois, which both
of his parents had attended.

Kilby’s studies were abruptly cut off by the
Japanese bombing of Peal Harbor and the U.S.
entry into World War II. Kilby promptly enlisted
in the U.S. Army Signal Corps, where he gained
practical electronics skills building and design-
ing radio equipment. At the time, a portable
radio for infantry use weighed 60 pounds and

Jack Kilby learned practical electronic engineering the
hard way, building radios for U.S.-backed guerrillas
fighting the Japanese in Burma during World War II.
In 1959, he patented the integrated circuit, which
allowed many components to be embedded in a
single chip. Kilby and Robert Noyce (who patented
a different process) share credit for the invention.
(Courtesy of Texas Instruments)

144 Kilby, Jack

often broke down in the field. In modern war,
soldiers, particularly those involved in scouting
or special operations such as guerrilla attacks
against the Japanese in Burma, desperately
needed lighter, more compact communications.
Kilby’s engineering superiors sent him to
Calcutta to buy radio parts on the black market.
They then cobbled them together into impro-
vised transmitters that were lighter yet more
powerful than the official army issue.

After the war, Kilby returned to the
University of Illinois and earned his bachelor’s
degree in electrical engineering in 1947. He
then took a position with the Centralab Division
of Globe Union, Inc., in Milwaukee, Wisconsin.
This early work established what would become
the overall goal for his career: building ever more
compact and reliable electronic circuits and thus
reducing the wiring and other manufacturing
steps that added cost and complexity.

One way to do this is to use printing
techniques to create the electrical conducting
path directly on the surface of the circuit
board. Kilby made two important early contri-
butions to printed circuit technology, the use of
silk-screening techniques and the printing of
carbon resistors directly on a ceramic circuit base.
Meanwhile, he also earned his master’s degree
in electrical engineering at the University of
Wisconsin.

Kilby, like many other electronic engineers,
had been inspired by the invention of the tran-
sistor in 1947. He attended a 1952 symposium
at Bell Labs in Murray Hill, New Jersey, in which
endless possibilities for using the compact
devices were discussed. In 1958, Kilby moved
to Dallas-based Texas Instruments (TI). That
company had a U.S. Army contract to build
“Micro-Modules,” small, standardized compo-
nents that already had the necessary wires built
in and that could be simply snapped together to
make circuits.

But Kilby believed that this approach was
cumbersome, because the modules were still rel-

atively bulky and large numbers of them would
still have to be put together to make the more
elaborate types of circuits. Kilby conceived the
idea of eliminating the wiring entirely and pack-
ing the transistors, resistors, capacitors, and
other components directly onto a tiny chip of
semiconducting material. Because Kilby, as a
new employee, did not qualify for vacation, he
spent that summer using equipment borrowed
from deserted labs to build a prototype using a
tiny germanium chip. It was crude, but it worked.

In February 1959, TI filed a patent for Kilby’s
invention. Four months later, another researcher,
Robert Noyce of Fairchild Semiconductor filed
a patent for an integrated circuit that he had
been developing independently. Although the
two inventors respected one another, the com-
panies became locked in a bitter legal battle.
Eventually the courts awarded Kilby the patent
for his integrated circuit design, but also upheld
Noyce’s patent for his process for manufacturing
integrated circuits, which was different from that
used by Kilby.

There was still the problem of getting this
rather esoteric invention into a profitable con-
sumer product. Transistor radios already were
becoming popular. TI chairman Patrick T.
Haggerty suggested that Kilby build a small
calculator using an integrated circuit. Since a
calculator circuit was considerably more com-
plicated than that in a radio, it would nicely
show off the benefits of the new integrated cir-
cuit technology. Kilby, together with Jerry D.
Merryman and James H. Van Tassel, patented
the first handheld electronic calculator in 1967.
In order to provide printed output from the ma-
chine, Kilby also devised a printing technique
that used heat to burn letters onto special paper.

Kilby left TI in 1970 and worked as a pri-
vate consultant. He continued to develop a va-
riety of inventions (he holds more than 60
U.S. patents). He also taught electrical engi-
neering at Texas A&M University until 1984.
As the personal computer and other electronics

Kildall, Gary 145

technology became pervasive in the 1980s and
1990s, one might have expected Kilby to em-
brace it. However, he prefers an analog rather
than a digital watch, confesses a continuing
fondness for his slide rule, and for a hobby takes
black-and-white photographs with an old
Hasselblad camera.

For many years Kilby’s work, unlike that of
people who invented computers, was largely
unknown outside of the technical community.
This changed in 2000, however, when Kilby got
a call from the Royal Swedish Academy of
Sciences. He had won the 2000 Nobel Prize in
physics for his work on integrated semiconduc-
tor technology. Kilby has been the recipient of
numerous other awards, including the Institute
of Electrical and Electronics Engineers David
Sarnoff Award (1966), the National Medal of
Science (1969), induction into the National
Inventors Hall of Fame (1982), and the National
Medal of Technology (1990).

Further Reading
Reid, T. R. The Chip: How Two Americans Invented

the Microchip and Launched a Revolution. Rev. Ed.
New York: Random House, 2001.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

Texas Instruments. Integrated Circuit Fact Sheets.
Available on-line. URL: http://www.ti.com/corp/
docs/company/history/firstic.shtml. Downloaded
on November 2, 2002.

� Kildall, Gary
(1942–1994)
American
Computer Scientist, Entrepreneur

To transform the first microcomputers from sci-
ence projects to practical business tools required
a way for ordinary users to create, organize, and
manage files. Programmers, too, needed some
means to instruct the computer how to control

such devices as disk drives and printers. What
was needed was an operating system complete
enough to get the job done, versatile enough to
allow for new kinds of hardware, and small
enough to fit in the limited memory of early per-
sonal computers (PCs). Gary Kildall created the
first widely used operating system for PCs. And
if a crucial negotiation had worked out differ-
ently he, not BILL GATES, might have become the
king of software.

Kildall was born on May 19, 1942, in
Seattle, Washington. His family ran a naviga-
tion school for sailors. As a high school student,
Kildall was more interested in tinkering with
cars and other machines than in academic sub-
jects. Among other things, Kildall built a bur-
glar alarm and a Morse code training device
(using a tape recorder and a binary flip-flop
switch). After graduating from high school, Kildall
taught navigation at his father’s school, and this
kindled a growing interest in mathematics.

Kildall went to the University of Washington,
intending to become a mathematics teacher.
However, his mathematics courses also gave him
the opportunity to work with computers. After
he took a couple of programming courses, his fo-
cus changed to computer science. Soon he was
spending most of his time writing FORTRAN
programs at the university’s computer center.

In the mid-1960s, Kildall joined the naval
reserve. This allowed him to continue his edu-
cation without having to face the Vietnam War
draft; he fulfilled his service requirements by at-
tending Officer Candidate School during the
summer. He earned his bachelor’s degree in
computer science in 1967 and continued with
graduate studies. Working on the university’s
Burroughs 5500 mainframe gave him experience
in file systems and storage techniques, while he
also delved into the workings of an Algol lan-
guage compiler.

Kildall received his master’s degree in 1969.
The navy then called him to active duty, giving
him the choice of serving on a destroyer in the

146 Kildall, Gary

waters off Vietnam or teaching computer science
at the Naval Postgraduate School in Monterey,
California. Kildall recalled that to Robert Slater
“It took me a couple of microseconds to make a
decision about that.”

While teaching naval students about com-
puters, he earned his doctorate in 1972, writ-
ing a dissertation on “global flow analysis”—
techniques for making computer code as
efficient as possible. Together with his compiler
studies, this work would give Kildall a solid back-
ground in the design and structure of operating
systems and programming environments.

Shortly after getting his doctorate, Kildall
was looking at a bulletin board at the University
of Washington when he saw a notice offering to
sell an Intel 4004 microprocessor chip for $25.
This chip was the first of its kind, providing all
the basic operations needed for computing. It
thus offered the potential for building comput-
ers small and inexpensive enough for anyone
to own.

Kildall did not have the parts or knowledge
to actually turn the microprocessor into a work-
ing computer, so he did the next best thing.
He wrote a program on the university’s IBM
System/360 that simulated the operation of the
Intel 4004. It responded to the various instruc-
tions described in the 4004 manual in the
same way the real chip would have, had it been
connected to appropriate memory and input/
output chips.

As he learned more about the 4004’s reper-
toire of operations, Kildall began to think of pos-
sible applications for the chip. For example, he
thought it might be possible to create a device
that could automate some of the operations that
navigators had to do by hand. The problem was
that the chip only had built-in instructions for
the simplest math operations, such as addition
and subtraction. Multiplication and division
could be done by carrying out sequences of
addition or subtraction, but more complicated
operations (such as the trigonometric functions

needed for navigation) were difficult to program.
Nevertheless, Kildall wrote code to carry out a
number of useful mathematical operations.

When Kildall contacted Intel, their engi-
neers were impressed by the repertoire of ad-
vanced math functions he had coded. Kildall
thus became a part-time consultant for Intel
while continuing his teaching duties as associ-
ate professor at the Naval Postgraduate School.

In 1973, Intel came out with a more ad-
vanced microprocessor, the 8008. Kildall rewrote
his simulator to work with the new processor,
and he also persuaded Intel that the new chip
needed a systems implementation language—a
tool that would let programmers more easily ac-
cess the processor’s particular features and de-
velop programming utilities such as editors and
assemblers. Kildall’s new language, called PL/M
(Programming Language for Microprocessors)
became a valuable tool for the community that
was starting to work together to develop the
tools and applications that would make “serious”
computing with microprocessor possible.

Now that the microprocessor had become
more powerful, the main barrier to creating a
truly useful desktop microcomputer was finding
a faster way to store and retrieve programs and
data. Punched paper tape was cheap but slow
and prone to breakage. Magnetic tape was bet-
ter, but still relatively slow, and in order to re-
trieve a specific piece of data on the tape, all
the intervening tape had to be read through
first.

One obvious solution was the magnetic disk
drive, which had been pioneered by IBM and
used on mainframes since the late 1950s. Hard
drives were bulky and very expensive at the time,
but in 1973 the floppy disk drive (which had
also been invented by IBM) began to be sold on
the general market by Shugart. Kildall suggested
to Shugart that building an interface and con-
troller board for floppy drives would enable them
to be used with the new microcomputer systems
that were starting to be developed.

Kildall, Gary 147

Using his PL/M language and a simulation
of the microcomputer system, Kildall wrote a set
of routines for writing data to the drive, storing
it as files, and reading it back. Eventually his
friend John Torode was able to get a controller
to work with the drive, and Kildall found that
his basic file system worked pretty well. By 1973,
he had added other utilities that users would
need, such as a program for copying files. He now
had the essentials for the operating system called
CP/M (Control Program for Microcomputers).

By 1976, many other experimenters were
building “homebrew” microcomputer systems,
and Jim Warren, editor of the hobbyist magazine
Dr. Dobb’s Journal, suggested that Kildall sell
CP/M directly to experimenters through an ad
in the publication. Soon hundreds of orders were
coming for the software at $75 a copy.

Sensing the growing business opportunity,
Kildall and his wife, Dorothy McEwen, founded
a company originally called Intergalactic Digital
Research (the “Intergalactic” was soon dropped.)
By 1977, about 100 companies had bought li-
censes to use CP/M for various microcomputer-
based products, and that number grew to about
1,000 by the end of the 1970s. By 1984, the com-
pany would have $44.6 million in annual sales.
But as McEwen later recalled to Slater, “There
was never any thought of having a big company.
It was just something that happened. It seemed
like the right thing to do.”

In 1977 Glen Ewing, a former student of
Kildall’s, suggested that he take the parts of
CP/M that had to do with low-level operations
such as disk access be separated out and organ-
ized into a module called BIOS, or Basic Input/
Output System. Kildall immediately recognized
the value of this idea. Once a BIOS was created,
when someone wanted to use CP/M with a dif-
ferent hardware configuration, only the BIOS
had to be customized, not the operating system
as a whole.

Such smart technical decisions helped make
CP/M very popular with many companies that

marketed PCs in the late 1970s. Having so many
machines running the same operating system
meant that programs once written could then be
run on many different machines. There were
soon hundreds of software packages for CP/M
systems.

In 1980, however, came a fateful turning
point. IBM had decided to bring out is own per-
sonal computer. They naturally wanted to use
the well-proven, versatile CP/M. Unfortunately
for some reason Kildall was not informed that
the IBM people were coming. According to one
account, Kildall was out flying his private plane
when the people from “Big Blue” arrived, but he
later said that he was simply out on a business
trip until late that afternoon.

At any rate, McEwen, who handled mar-
keting for the firm, received the IBM represen-
tatives. According to Kildall’s account to Robert
Slater, they “threw a nondisclosure agreement at
her, which is a typical IBM thing that scares
everybody.” McEwen was alarmed at the lan-
guage in the agreement, including IBM’s state-
ment that they wanted to be able to use any ideas
they heard while meeting with Digital. Further,
negotiations soon bogged down because IBM
wanted to pay a flat $200,000 for the right to
use CP/M, while Kildall wanted either more
money up front or a royalty to be paid for each
IBM PC sold.

Meanwhile, however, IBM had turned to
Bill Gates and Microsoft, asking him about pos-
sible alternatives. Gates quickly bought an ob-
scure operating system from Seattle Computer
Products, tweaked it, and renamed it PC-DOS.
IBM then licensed that operating system for its
forthcoming PC, and the rest was history. When
Kildall learned about what had happened and
then looked at PC-DOS, he bitterly complained
that the latter operating system was virtually a
clone of CP/M, using essentially the same names
and syntax for commands. However, he decided
that he did not have money to take on IBM
in a protracted legal battle, and was mollified

148 Kleinrock, Leonard

somewhat when IBM agreed to license CP/M
86 as an option for the IBM PC. Unfortunately,
few users wanted to pay $250 for the CP/M
option when PC-DOS already came with the
machine.

Kildall was disappointed but did not give up.
In 1984, Digital Research marketed DR-DOS,
an operating system that combined the best fea-
tures of CP/M and PC-DOS and could even mul-
titask (run more than one program at a time).
While a considerable technical achievement, it
gained little market share in a world dominated
by PC-DOS. Kildall also developed GEM
(Graphical Environmental Manager), which
offered a graphical user interface several years
before the coming of Microsoft Windows, but
this product fell afoul of Apple, which believed
that it too closely copied the Macintosh user
interface.

By the later 1980s, Kildall was broadening
his interests. He pioneered the use of videodisks
and later, CD-ROMS for providing multimedia
content to PC users, and he also established two
video production companies. In 1990, however,
he reduced his activities and moved to a suburb
of Austin, Texas, where he lived quietly and
worked on fund-raising for children with AIDS.

Kildall died suddenly on July 11, 1994. On
July 6, he had walked into a Monterey bar while
wearing motorcycle leathers and biker-style
patches and apparently got into a fight with bik-
ers, suffering head injuries that would prove fa-
tal. Although police investigated, no one was
ever charged. Kildall was posthumously honored
by the Software Publishers Association in 1995
and received the Excellence in Programming
Award from Dr. Dobb’s Journal in 1997.

Further Reading
Slater, Robert. Portraits in Silicon. Cambridge, Mass.:

MIT Press, 1987.
Swaine, Michael. “Gary Kildall and Collegial Entre-

preneurship.” Dr. Dobb’s Special Report, spring

1997. Available on-line. URL: at http://www.
ddj.com/documents/s=928/ddj9718i/9718i.htm.

Wharton, John. “Gary Kildall, Industry Pioneer, Dead
at 52.” Microprocessor Report 8 (August 1, 1994):
10ff.

� Kleinrock, Leonard
(1934–)
American
Engineer, Computer Scientist

When an email is sent, the message is turned into
a series of small chunks of data, each individu-
ally addressed to the destination computer.
Routing software then looks up that address to
see how the packets should be relayed through a
series of “nodes” or computer locations between
the sending computer and the destination mail
server. When the packets arrive at the server,
sometimes over several different routes, they are
reassembled into the complete message, which is
left in the appropriate user mailbox to be picked
up by the recipient’s mail program. This system
of packet-switching and routing was invented by
Leonard Kleinrock, one of the pioneers whose
work made today’s Internet possible.

Kleinrock was born in 1934 and grew up in
New York City. One day when he was only six
years old, he was reading a Superman comic
book when he became intrigued by a centerfold
that explained how to build a crystal radio. It
included a list of parts. The used razor blade
could be obtained from his father (accompanied,
one would hope, by a safety lecture). The piece
of pencil lead and empty toilet paper roll were
easy enough to find around the house. The ear-
phone he apparently swiped from a public tele-
phone. Only one part, a “variable capacitor,”
momentarily stumped the boy. However, he soon
persuaded his mother to take him on the sub-
way down to a radio/electronics store. The boy
then confidently asked the store clerk for a vari-
able capacitor, only to be asked in turn: “What

Kleinrock, Leonard 149

size do you want?” He had no idea, but when he
explained what he was building, the helpful
clerk provided the correct part. After he went
home he assembled the radio and was soon lis-
tening to music “for free,” since the crystal ra-
dio used the power in the radio signal itself—no
batteries required.

The crystal radio was only the first of young
Kleinrock’s many electronics projects, built from
cannibalized old radios and other equipment. He
attended the Bronx High School of Science,
home of many of the nation’s top future engi-
neers. However, when it came time for college
the family had no money to pay for his higher
education, so he attended night courses at the
City College of New York (then tuition-free)
while working as an electronics technician and
later as an engineer to help with the family fi-
nances. Because of his limited course time, he
took more than five years to graduate, but in
1957 he graduated first in his class (day and

evening) and had earned a fully paid fellowship
to the Massachusetts Institute of Technology
(MIT).

At MIT, Kleinrock had ample opportunity
to work with computers, but unlike the major-
ity of students who focused on programming,
operating systems, and information theory,
Kleinrock was still a “radio boy” at heart. Instead
of following the pack, he became interested in
finding ways for computers and their users to
communicate with each other. The idea of com-
puter networking was in its infancy, but he sub-
mitted a proposal in 1959 for Ph.D. research in
network design.

In 1961, Kleinrock published his first paper,
“Information Flow in Large Communication
Nets.” Existing telephone systems did what was
called “circuit switching”—to establish a con-
versation, the caller’s line is connected to the
receiver’s, forming a circuit that exists for the
duration of the call. This meant that the circuit
would not be available to anyone else, and that
if something was wrong with the connection
there was no way to route around the problem.

Kleinrock’s basic idea was to set up data con-
nections that would be shared among many users
on an as-needed basis (called “demand access”).
In Kleinrock’s version of demand access (later to
be called packet switching), instead of the whole
call (or data transmission) being assigned to a
particular circuit, it would be broken up into
packets that could be sent along whatever circuit
was most direct. If there was a problem, the
packet could be resent on an alternate route. This
form of “dynamic resource sharing” provided
great flexibility as well as more efficient use of
the available circuits. Kleinrock further elabo-
rated his ideas in his dissertation, for which he
was awarded his Ph.D. in 1963. The following
year, MIT published his book Communications
Nets, the first full treatment of the subject.

Kleinrock then joined the faculty at the
University of California, Los Angeles (UCLA),
where he started to work his way up the academic

Leonard Kleinrock invented packet-switching, the
process by which e-mail and other data is broken up
into small pieces and routed across the Internet to its
destination. This method of distribution makes the
Internet robust, because if one machine fails, an
alternate routing can be used. (Photo by Louis
Bachrach)

150 Kleinrock, Leonard

ladder. Meanwhile, the Defense Department,
stunned by the apparent triumph of Soviet tech-
nology in Sputnik, had created an Advanced
Research Projects Agency, or ARPA. ARPA had
a particular interest in improving communica-
tions technology, particularly in finding ways
to create communications networks that could
survive in wartime conditions while linking re-
searchers at different universities and laborato-
ries together in peacetime. When they learned
of Kleinrock’s work on packet-switching, ARPA’s
researchers believed that they might have found
the solution to their needs.

In 1968, ARPA asked Kleinrock to design a
packet-switched network that would be known
as ARPANET. The computers on the network
would be connected using special devices called
Interface Message Processors (IMPs), special-
purpose minicomputers that would be designed
and built by the Cambridge firm of Bolt,
Beranek, and Newman (BBN). The overall proj-
ect was under the guidance and supervision of
one of Kleinrock’s MIT office mates, LAWRENCE

ROBERTS.
On October 29, 1969, they were ready to test

the system. Kleinrock sat at a terminal at UCLA,
connected to a computer with an Interface
Message Processor. His assistant, Charles Kline,
established a regular voice telephone connection
to Stanford Research Institute (SRI), where the
other computer and its IMP waited at the end of
the data line.

For their first message, Leonard Kleinrock
chose the word login, commonly used as a
prompt for connecting to a remote computer.
The receiving computer was cleverly pro-
grammed to finish the word by adding the “in”
after the remote user had typed log.

Kline typed the l, and a few seconds later it
appeared on the terminal as it was “echoed” back
from Stanford. He then typed the o, which like-
wise appeared. He typed the g, at which point
the remote computer was supposed to finish the
word. Instead, the SRI host system crashed.

After making adjustments for about an hour,
however, they were able to complete the whole
experiment. Login is hardly as dramatic as
Samuel Morse’s “What hath God wrought?” or
Alexander Graham Bell’s “Watson, come here,
I need you!” Nevertheless, a form of communi-
cation had been created that in a few decades
would change the world as much as the telegraph
and telephone had done.

The idea of computer networking did not
catch on immediately, however. Besides requir-
ing a new way of thinking about the use of
computers, many computer administrators were
concerned that their computers might be
swamped with users from other institutions, or
that they might ultimately lose control over the
use of their machine. Kleinrock worked tirelessly
to convince institutions to join the nascent net-
work. By the end of 1969, there were just
four ARPANET “nodes”: UCLA, SRI, the
University of California, Santa Barbara, and the
University of Utah. By the following summer,
there were 10.

During the 1970s, Kleinrock trained many of
the researchers who advanced the technology of
networking. While Kleinrock’s first network was
not the Internet of today, it was the precursor to
the Internet and an essential step in its develop-
ment. In successfully establishing communica-
tion using the packet-switched ARPANET,
Kleinrock showed that such a network was prac-
ticable. Lawrence Roberts, ROBERT KAHN, and
VINTON CERF then created the TCP/IP (trans-
mission control protocol/Internet protocol),
which made it possible for many types of com-
puters and networks to use the packet system.
E-mail, Net news, the Gopher document re-
trieval system, and ultimately the World Wide
Web would all be built upon the sturdy data high-
way that Kleinrock and other early ARPANET
researchers designed.

In a UCLA press statement on July 3, 1969,
(included in his “The First Days of Packet
Switching”) Kleinrock predicted, “We will prob-

Knuth, Donald E. 151

ably see the spread of ‘computer utilities,’ which
will service individual homes and offices across
the country.” This prediction would come true in
the 1980s with the development of large on-line
services such as CompuServe and America
Online, and especially in the 1990s with the
World Wide Web, invented by TIM BERNERS-LEE.
However, Kleinrock believes that the Internet of
today still has shortcomings and remains incom-
plete. It is largely “desk-bound,” requiring that
people sit at computers, and is often dependent
on the availability of a particular machine.

Kleinrock looks toward a future where most
network connections are wireless, and accessible
through a variety of computerlike devices such as
hand-held “palmtop” computers, cell phones, and
others not yet imagined. In such a network, the
intelligence or capability is distributed through-
out, with devices communicating seamlessly so
the user no longer need be concerned about what
particular gadget he or she is using. Since the
1990s, Kleinrock has advocated this “nomadic
computing” idea as energetically as he had spread
the early gospel of the ARPANET. He is also af-
filiated with TTI/Vanguard, a forum for executive
technology planning, and is chairman of the
board of Nomadix, a company involved with mo-
bile networking and Internet access.

Although his name is not well known to the
general public, Kleinrock has won considerable
recognition within the technical community.
This includes Sweden’s L. M. Ericsson Prize
(1982), the Marconi Award (1986), and the
National Academy of Engineering Charles Stark
Draper Prize (2001).

Further Reading
Hafner, Katie, and Matthew Lyon. Where Wizards Stay

Up Late: The Origins of the Internet. New York:
Simon and Schuster, 1996.

Kleinrock, Leonard. “The First Days of Packet
Switching.” Available online. URL: http://www.lk.
cs.ucla.edu/LK/Presentations/sigcomm2.pdf.
Posted on August 31, 1999.

“Leonard Kleinrock, Inventor of the Internet
Technology.” Available on-line. URL: http://www.
lk.cs.ucla.edu. Downloaded on November 2,
2002.

� Knuth, Donald E.
(1938–)
American
Computer Scientist

In every field, there are a few persons whose
work is recognized as “magisterial”—creating a
comprehensive, authoritative view of the es-
sential elements and developments in the field.
Most computer scientists have tended to spe-
cialize in a particular area such as computer
language structure, algorithms, operating sys-
tem design, or networking. Donald Knuth,
however, has combined penetrating insight
into algorithms with a sweeping view of the art
of programming.

Knuth was born on January 10, 1938, in
Milwaukee, Wisconsin. His father worked as a
bookkeeper and also ran a printing business. As
a young boy, Knuth was thus exposed both to the
algorithmic patterns of mathematics and the vi-
sual patterns of printed type, and these two worlds
came together to form his lifelong interest.

As an eighth grader, Knuth entered a con-
test sponsored by a candy company. Participants
tried to create as many words as possible from
the letters in the phrase “Zeigler’s Giant Bar.”
Knuth’s list of 4,500 words far exceeded the con-
test’s official list of only 2,500. Knuth’s victory
assured his school a new television set and a co-
pious supply of candy bars.

In high school, Knuth became fascinated
with algebra. Working without outside help, he
devised a way to find the equation that described
any pattern of connected straight lines. This
type of system would become essential when
Knuth later devised his computer typesetting
system. Knuth also had a deep interest in music,

152 Knuth, Donald E.

becoming a capable pianist and later trying his
hand at composition. In 1956, Knuth graduated
from high school with a record-setting grade
point average, and then enrolled in the Case
Institute of Technology to study physics.

Knuth was a dedicated student who con-
stantly pushed himself to achieve ever more
ambitious goals, but he also had a wry sense of
humor. His first published article as a college
freshman was not a scientific paper but a hu-
morous article for Mad magazine called “The
Potrzebie System of Weights and Measures,” a
parody of the official standards for the metric
system.

While working at a summer job preparing
statistical graphs, Knuth learned about the
school’s IBM 650 computer. The machine was
in daily use, but that was no problem—Knuth
simply starting spending what he would later
describe as “many pleasant evenings” working
with the machine. Knuth’s growing interest in
computing led him to switch majors from
physics to mathematics. He also applied his
growing programming skills to writing a pro-
gram that evaluated the performance of mem-
bers of the Case basketball team, helping coaches
to use the players more efficiently. Some ob-
servers credited Knuth with helping the team
win the league championship in 1960. That
year, he graduated, and the faculty was so im-
pressed with his work that they awarded him a
master’s degree simultaneously with the ex-
pected bachelor’s degree.

Knuth entered the computer industry by
working for Burroughs, a business machine com-
pany that was trying to compete with IBM in
the growing computer field. Besides helping
Burroughs with software development, Knuth
enrolled at the California Institute of Technology
(Caltech) to study for his doctorate, which he re-
ceived in 1963. Five years later, he became a pro-
fessor of computer science at Stanford University,
where he would spend most of his career. Knuth’s
first major contribution to computer science was

his development of LR(k) or “left to right, right-
most” parsing, which proved to be the optimal
way for a compiler to look through a program
statement and process the individual tokens
(words and numbers) according to the rules of
the language.

Beyond particular technical challenges,
Knuth was particularly interested in surveying
and furthering the development of computer sci-
ence as a discipline. During the 1960s, he served
as editor of the journal Programming Languages
of the Association for Computing Machinery
(ACM). He introduced new course topics into
the Stanford curriculum. His focus on data struc-
tures and algorithms would help propel the
movement toward better structured programs in
the 1970s.

As far back as the early 1960s, many com-
puter scientists saw a need to bring together the
many things that researchers were learning
about algorithms, data structures, compiler de-
sign, and other topics. Although papers were be-
ing written for technical journals, there were few
books that could serve as useful references. In
1962, the publisher Addison-Wesley asked
Knuth (then a graduate student) if he would be
willing to write a book about compilers.

Knuth began to work on the book, thinking
at first that he would just have to compile ex-
isting ideas, organize them, and maybe write an
overview. However, as he worked Knuth began
to see how the theories of various computer
scientists working on different topics fit into
a larger picture, and he began to write large
amounts of new material. Instead of a single
book, Knuth ended up writing the first of a mon-
umental series that would be called the Art of
Computer Programming. The first volume, pub-
lished in 1968, is titled Fundamental Algorithms.
It deals with the basic “recipes” for processing
data, starting with mathematical foundations,
and uses an example computer processor called
MIX to illustrate computer architecture. By the
time the reader has worked with the various data

Kurzweil, Raymond C. 153

structures and tackled the dozens of example
problems, he or she has a solid understanding of
how to solve a variety of kinds of problems with
a computer.

Although the Art of Computer Program-
ming was intended to have seven volumes in
all, Knuth put it aside after the first volume to
work on a new system of computerized typeset-
ting. Bringing together his love of type design
and his arsenal of programming tools, Knuth de-
veloped Metafont, a programming language
designed for creating and modifying typefaces
according to mathematical rules. He also de-
veloped TeX, a typesetting system that allowed
users unprecedented control and precision in
arranging text. Meanwhile, Knuth also cham-
pioned the idea of “literate programming,”
developing formats for integrating program doc-
umentation and source code in a way that makes
it much easier for people to understand how a
program works.

Knuth eventually returned to working on
the Art of Computer Programming series and has
produced two more volumes thus far. In his spare
time he also designed a 1,000-pipe church or-
gan. Knuth has received many of the highest
awards in the computer science field, including
the ACM Turing Award (1974), the Institute
of Electrical and Electronic Engineers (IEEE)
Computer Pioneer Award (1982), the American
Mathematical Society’s Steele Prize (1986), and
the IEEE John von Neumann Medal (1995).

Further Reading
Knuth, Donald E. The Art of Computer Programming.

Vols. 1–3. 3rd ed. Reading, Mass.: Addison-
Wesley, 1998.

———. Computers and Typesetting. Volumes A–E.
Reading, Mass.: Addison-Wesley, 2000.

———. Literate Programming. Stanford, Calif.: Center
for the Study of Language and Information, 1992.

“Don Knuth’s Home Page.” Available on-line. URL:
http://www-cs-faculty.stanford.edu/~knuth. Down-
loaded on November 2, 2002.

� Kurzweil, Raymond C.
(1948–)
American
Inventor, Entrepreneur, Writer

Today blind people can “read” regular books and
magazines without having to learn Braille.
Musicians have the realistic, yet synthetic,
sound of dozens of different instruments at their
fingertips. Tomorrow, perhaps intelligent com-
puters and human beings will form a powerful
new partnership. These inventions and forecasts
and many more have sprung from the fertile
imagination of Raymond Kurzweil.

Kurzweil was born on February 12, 1948, in
Queens, New York, to an extremely talented
family. Kurzweil’s father, Fredric, was a concert
pianist and conductor. Kurzweil’s mother, Hanna,
was an artist, and one of his uncles was an
inventor.

Young Kurzweil’s life was filled with music
and technology. His father taught him to play
the piano and introduced him to the works of
the great classical composers. Meanwhile, he
had also become fascinated by science and gadg-
ets. By the time he was 12, Kurzweil was build-
ing his own computer and learning how to
program. He soon wrote a statistical program
that was so good that IBM distributed it. When
he was 16, Kurzweil programmed his computer
to analyze patterns in the music of famous com-
posers and then create original compositions in
the same style. His work earned him first prize
in the 1964 International Science Fair, a meet-
ing with President Lyndon B. Johnson in the
White House, and an appearance on the televi-
sion show I’ve Got a Secret.

In 1967, Kurzweil enrolled in the Mas-
sachusetts Institute of Technology (MIT),
majoring in computer science and literature.
Because he spent all of his spare time hidden
away, working on his own projects, he became
known as “the Phantom” to his classmates. One
of these projects was a program that matched

154 Kurzweil, Raymond C.

high school students to appropriate colleges, us-
ing a database of 2 million facts about 3,000 col-
leges. It used a form of artificial intelligence (AI)
called an expert system, which applied a set of
rules to appropriate facts in order to draw con-
clusions. The publisher Harcourt Brace paid
$100,000 for the program, plus a royalty.

By the time Kurzweil received his B.S. de-
gree from MIT in 1970, he had met some of the
most influential thinkers in AI research, such as
MARVIN MINSKY. Kurzweil had become fascinated
with the potential of AI to aid and expand hu-

man potential. In particular, he focused on pat-
tern recognition, or the ability to classify or
recognize patterns such as the letters of the al-
phabet on a page of text. Pattern recognition was
the bridge that might allow computers to recog-
nize and work with objects in the world the same
way people do.

Early character recognition technology was
limited because it could match only very precise
shapes. This meant that such a system could only
recognize one or a few character fonts, making
it impractical for reading most of the text found
in books, newspapers, and magazines. Kurzweil,
however, used his knowledge of expert system
and other AI principles to develop a program
that could use general rules and relationships to
“learn” to recognize just about any kind of text.
This program, called Omnifont, could be com-
bined with the flatbed scanner (which Kurzweil
invented in 1975) to create a system that could
scan text and convert the images into the actual
alphabetical characters, suitable for use with pro-
grams such as word processors. This technology
would be used in the 1980s and 1990s to con-
vert millions of documents to electronic form.
In 1974 Kurzweil established the Kurzweil
Computer Products company to develop and
market this technology.

Kurzweil saw a particularly useful applica-
tion for his technology. If printed text could be
scanned into a computer, then it should be pos-
sible to create a synthesized voice that could read
the text out loud. This would enable visually
handicapped people to have access to virtually
all forms of printed text. They would no longer
be limited to large print or Braille editions.

It would be a formidable challenge, how-
ever, because pronunciation is not simple. It is
not enough simply to recognize and render the
40 or so unique sounds (called phonemes) that
make up English speech, because the sound of a
given phoneme can be changed by the presence
of adjacent phonemes. Kurzweil had to create an
expert system with hundreds of rules for prop-

Ray Kurzweil is one of America’s most prolific and
diversified inventors. His innovations include a
reading machine for the blind, the flatbed scanner,
and a music synthesizer. Kurzweil has also written
about a future in which computers eventually exceed
human intelligence. (Photo © Michael Lutch)

Kurzweil, Raymond C. 155

erly voicing the words in the text. From 1974 to
1976, Kurzweil worked at the problem while try-
ing to scrounge enough money to keep his com-
pany afloat. By the early 1980s, however,
Kurzweil Reading Machines (KRMs) were open-
ing new vistas for thousands of visually handi-
capped people.

Kurzweil sold his company to Xerox for
about $6 million, which gave him plenty of
money to undertake his next project. The blind
musician Stevie Wonder had been one of the
earliest users of the KRM, and he suggested to
Kurzweil that he develop a music synthesizer.
Using AI techniques similar to those used in the
KRM, Kurzweil created an electronic synthesizer
that can faithfully reproduce the sounds of
dozens of different instruments, effectively put-
ting an orchestra at a musician’s fingertips.

In the 1980s and 1990s, Kurzweil applied his
boundless inventiveness to a number of other
challenges, including speech recognition. The
reverse of voice synthesis, speech recognition in-
volves the identification of phonemes (and thus
words) in speech that has been converted into
computer sound files. Kurzweil sees a number of
powerful technologies being built from voice
recognition and synthesis in the coming decade,
including telephones that automatically trans-
late speech. He believes that the ability to con-
trol computers by voice command, which is
currently rather rudimentary, should also be
greatly improved. Meanwhile, computers will
be embedded in everything from eyeglasses to
clothes, and since such computers will not have
keyboards, voice input will be used for much of
the activities of daily life.

During the 1990s, Kurzweil became a
provocative writer on the significance of com-
puting and its possible future relationship to

human aspirations. His 1990 book The Age of
Intelligent Machines offered a popular account of
how AI research would change many human ac-
tivities. In 1999 Kurzweil published The Age of
Spiritual Machines. It claims, “Before the next
century is over, human beings will no longer be
the most intelligent or capable type of entity on
the planet. Actually, let me take that back. The
truth of that last statement depends on how we
define human.” Kurzweil suggests that the dis-
tinction between human and computer will
vanish, and an intelligence of breathtaking ca-
pabilities will emerge from the fusion if a num-
ber of perils can be avoided.

Whatever the future brings, Raymond
Kurzweil has become one of America’s most
honored inventors. Among other awards he has
been elected to the Computer Industry Hall of
Fame (1982) and the National Inventors Hall
of Fame (2002). He has received the Association
for Computing Machinery Grace Murray Hopper
Award (1978), Inventor of the Year Award
(1988), the Louis Braille Award (1991), and the
National Medal of Technology (1999).

Further Reading
Kurzweil, Raymond. The Age of Intelligent Machines.

Cambridge, Mass.: MIT Press, 1990.
———. The Age of Spiritual Machines: When

Computers Exceed Human Intelligence. New York:
Putnam, 1999.

KurzweilAI.net. Available on-line. URL: http://www.
kurzweilai.net. Downloaded on November 2,
2002.

Kurzweil Technologies. Available on-line. URL: http://
www.kurzweiltech.com/ktiflash.html. Downloaded
November 2, 2002.

“The Muse (Inventor and Futurist Ray Kurzweil).”
Inc., March 15, 2001, p. 124.

156

� Lanier, Jaron
(1960–)
American
Computer Scientist, Inventor

Many of the pioneers of computer science and
technology grew up when there were no com-
puters (or only largely inaccessible mainframe
ones). They studied fields such as electrical en-
gineering, mathematics, or physics, and later
became intrigued by the potential of computing
and became computer scientists or engineers.
However, computers have now been around long
enough for a new generation of innovators—peo-
ple who came of age along with the personal
computer (PC), powerful graphics workstations,
and other technology. An example of this new
generation is Jaron Lanier, who pioneered the
technology of “virtual reality,” or VR, which is
gradually having an impact on areas as diverse as
entertainment, education, and even medicine.

Lanier was born on May 3, 1960, in New
York City, although the family would soon move
to Las Cruces, New Mexico. Lanier’s father was
a Cubist painter and science writer and his
mother a concert pianist (she died when the boy
was nine years old). Living in a remote area, the
precocious Lanier learned to play a large variety
of exotic musical instruments and created his
own science projects.

L
Lanier dropped out of high school, but sym-

pathetic officials at New Mexico State Uni-
versity let him take classes there when he was
only 14 years old. Lanier even received a grant
from the National Science Foundation to let
him pursue his research projects. Although he
became fascinated by computers, he took an
unconventional approach to their use. Inspired
perhaps by the symbolic artistic world of his
father, Lanier tried to create a computer lan-
guage that would rely on understandable, “uni-
versal” symbols rather than cryptic commands
and mathematical constructs.

After two years, however, Lanier left New
Mexico State without completing his degree, hav-
ing decided to go to Bard College in Annandale-
on-Hudson, New York, to study computer music
composition. He soon dropped out of Bard as well,
helped organize protests against local nuclear
power plants, and then returned to New Mexico,
where he briefly supported himself by raising goats
and acting as an assistant midwife.

By the mid-1980s, Lanier had gotten back
into computing by creating sound effects and
music for Atari video games and writing a com-
mercially successful game of his own called
Moondust. He developed a reputation as a ris-
ing star in the new world of video games.

It was at this time that Lanier decided that
worlds depicted by games such as Moondust were

Lanier, Jaron 157

too limited, and he began to experiment with
ways to immerse the player more fully in the ex-
perience. Using money from game royalties, he
joined with a number of experimenters and built
a workshop in his house. One of these colleagues
was Tom Zimmermann, who had designed a
“data glove” that could send commands to a
computer based on hand and finger positions.

At age 24, Lanier and his experiments were
featured in an article in Scientific American. One
of the editors had asked him the name of his
company. Lanier therefore decided to start one,

calling it VPL (Visual or Virtual Programming
Language) Research. As the 1980s progressed,
investors became increasingly interested in the
new technology, and Lanier was able to expand
his operation considerably, working on projects
for NASA, Apple Computers, Pacific Bell,
Matsushita, and other companies.

Lanier coined the term virtual reality to de-
scribe the experience created by this emerging
technology. A user wearing a special helmet with
goggles, body sensors, and gloves, has a computer-
generated scene projected such that the user ap-
pears to be “within” the world created by the
software. The world is an interactive one: When
the user walks in a particular direction, the world
shifts just as the real world would. The gloves
appear as the user’s “hands” in the virtual world,
and objects in that world can be grasped and ma-
nipulated much like real objects. In effect, the
user has been transported to a different world
created by the VR software.

That “different world” could be many
things. It could be a simulated Mars for training
NASA astronauts or rover operators, or a hu-
man body that could give surgeons a safe way to
practice their technique. For many ordinary peo-
ple, their first experience of VR would be in the
form of entertainment. Although not full-
fledged VR, many of the techniques developed
by Lanier would be used to make “first person”
video games more realistic. Virtual roller coaster
and other rides, which combine projected VR
and effects with physical movement, can provide
thrills that would be impossible or too unsafe to
build into a conventional ride.

Virtual reality technology had existed in
some form before Lanier; it perhaps traces its
roots back to the first mechanical flight simula-
tors built during World War II. However, exist-
ing systems such as those used by NASA and the
air force were extremely expensive, requiring
powerful mainframe computers. They also lacked
flexibility—each system was built for one partic-
ular purpose and the technology was not readily

Jaron Lanier developed innovative virtual reality
technology starting in the 1980s. Immersive graphics
and sound place the user “inside” a computer-
generated world, and special gloves and even body
suits let the user interact with virtual objects. Today
virtual reality is used for education, conferencing, and
entertainment. (Photo courtesy of Jaron Lanier)

158 Lenat, Douglas B.

transferable to new applications. Lanier’s essen-
tial achievement was to use the new, inexpen-
sive computer technology of the 1980s to build
versatile software and hardware that could be
used to create an infinite variety of virtual worlds.

Unfortunately, the hippielike Lanier (self-
described as a “Rastafarian hobbit” because of his
dreadlocks) did not mesh well with the big busi-
ness world into which his initial success had
catapulted him. Lanier had to juggle numerous
simultaneous projects as well as becoming em-
broiled in disputes over his patents for VR tech-
nology. In 1992, Lanier lost control of his patents
to a group of French investors whose loans to VPL
Research had not been paid, and he was forced
out of the company he had founded. Lanier was
philosophical about this turn of events, noting, “I
think what we’ve done has permanently changed
the dialogue and rhetoric around the future of me-
dia technology, and that’s not bad.”

Lanier did not give up after leaving VPL.
During the 1990s, he founded several new com-
panies to develop various types of VR applica-
tions. These include the Sausalito, California–
based software company Domain Simulations
and the San Carlos, California, company New
Leaf Systems, which specialized in medical ap-
plications for VR technology. Another company,
New York–based Original Ventures, focuses on
VR-based entertainment systems.

Today Lanier also serves as lead scientist for
the National Tele-Immersion Initiative, a coali-
tion of universities that are studying possible ad-
vanced applications for the high-bandwidth
Internet 2 infrastructure. Another of Lanier’s re-
cent research areas involves what he calls “phe-
notropics.” This involves programs using AI
techniques rather than strict protocols for con-
necting and cooperating with one another.

Like the World Wide Web, virtual reality
technology has been proclaimed as the harbin-
ger of vast changes in human existence, as can
be seen in the writings of nanotechnologist K.
ERIC DREXLER and inventor/futurist RAYMOND C.

KURZWEIL. Surprisingly, Lanier has rejected the
viewpoint that he calls “cybernetic totalism.”
Lanier does not deny that technology will
change human lives in very important ways, but
he objects to the idea that technology is some
sort of inevitable and autonomous force beyond
human control. As stated in his article “One
Half of a Manifesto” he believes that “whatever
happens will be the responsibility of individual
people who do specific things.”

Besides writing and lecturing on virtual re-
ality, Lanier is active as both a musician and an
artist. He has written compositions such as
Mirro/Storm for the St. Paul Chamber Orchestra
and the soundtrack for the film Three Seasons,
which won an award at the Sundance Film
Festival. Lanier’s paintings and drawings have
also been exhibited in a number of galleries.

Further Reading
“Jaron Lanier’s Homepage.” Available on-line. URL:

http://people.advanced.org/~jaron. Downloaded
on November 3, 2002.

Lanier, Jaron. Information as an Alienated Experience.
New York: Basic Books, 2002.

———. “One Half of a Manifesto.” Available on-line.
URL: www.edge.org/3rd_culture/lanier/lanier_
index.html. Downloaded on November 3, 2002.

Sherman, William R., and Alan B. Craig. Understanding
Virtual Reality: Interface, Application, and Design.
San Francisco: Morgan Kaufmann, 2002.

� Lenat, Douglas B.
(1950–)
American
Computer Scientist

Computers are wonderful for computing, but
teaching them to reason has been a long and
often tedious process. Artificial intelligence re-
searchers have created expert systems in which
the program is given detailed knowledge about
a subject in the form of rules or assertions. But

Lenat, Douglas B. 159

Douglas Lenat has tried to do something more—
to give computers something like the common
sense that most humans take for granted.

Douglas Lenat was born in Philadelphia
on September 13, 1950, and also lived in
Wilmington, Delaware. His parents ran a soda-
bottling business. Lenat became enthusiastic
about science in sixth grade when he started
reading Isaac Asimov’s popular nonfiction books
about biology and physics.

About that same time, however, Lenat’s
father died suddenly, and economic problems
meant that the family had to move frequently.
As a result, Lenat was constantly being enrolled
in new schools. Each school would put him in
the beginning, rather than advanced, track be-
cause they had not evaluated him, and he often
had to repeat semesters.

Lenat turned to science projects as a way of
breaking out of this intellectual ghetto. In 1967,
his project on finding the nth prime number got
him into the finals in the International Science
Fair in Detroit. At the fair, he and other con-
testants were judged by working scientists, and
in many ways treated as scientists themselves.
This experience confirmed Lenat’s desire for a
scientific career.

In 1968, Lenat enrolled in the University of
Pennsylvania to study mathematics and physics,
graduating in 1972 with bachelor’s degrees in both
disciplines plus a master’s degree in applied math.
However, he became somewhat disenchanted
with both disciplines. He did not believe he could
quite reach the top rank of mathematicians. As
for physics, he found it to be too abstract and
bogged down with its ever growing but incoher-
ent collection of newly discovered particles.

Lenat became intrigued when he took an in-
troductory course in artificial intelligence (AI).
Although the field was still very young (“like be-
ing back doing astronomy right after the inven-
tion of the telescope,” he told authors Dennis
Shasha and Cathy Lazere), it offered the possi-
bility of “building something like a mental am-

plifier that would make you smarter, hence would
enable you to do even more and better things.”

At the time, the most successful approach
to practical AI had been rule-based or expert
systems. These programs could solve mathe-
matical problems or even analyze molecules.
They did it by systematically applying sets of
specific rules to a problem. But while this ap-
proach could be quite effective within narrow
application areas, it did not capture the wide-
ranging, versatile reasoning employed by human
beings. According to Shasha and Lazere, AI re-
searchers had ruefully noted that “It’s easier to
simulate a geologist than a five-year-old.”
Human beings, even five-year-olds, were
equipped with a large fund of what is called

Artificial intelligence researcher Douglas Lenat
programmed computers to use heuristics, or problem-
solving techniques similar to those employed by
human mathematicians. In 1984, he embarked on a
10-year project to create a giant database of
“common sense” facts that would give computer
programs broad knowledge about the world and
human society. (Courtesy of Cyc Corporation)

160 Lenat, Douglas B.

common sense. Because of this, humans ap-
proaching a given situation already know a lot
about what to do and what not to do.

Inspired by JOHN MCCARTHY, who was try-
ing to overcome such shortcomings, Lenat went
to Stanford University for his doctorate, after
first trying the California Institute of Technology
for a few months. Lenat’s adviser was Cordell
Green, who had made considerable advances in
what is known as “automatic programming.”
This is the attempt to set up a system that ac-
cepts a sufficiently rigorous description of a prob-
lem and then generates the program code needed
to solve the problem.

Lenat became interested in applying this
idea to mathematics. For his doctoral thesis,
he wrote a program called AM (Automated
Mathematician). The program “thinks” like a
human mathematician. It applies heuristics (a
fancy term basically meaning “guesses”) that
experience has shown to often be fruitful. For
example, since many mathematical operations
produce interesting results with certain values
such as zero and one, the program will try these
values and draw conclusions if they yield unusual
results. Similarly, if several different techniques
lead to the same result, the program will con-
clude that the result is more likely to be correct.

The AM program used 115 assertions or rules
from set theory plus 243 heuristic rules. By ex-
ploring combinations of them, it was able to de-
rive 300 mathematical concepts, including such
sophisticated ones as “Every even number greater
than three is the sum of two primes.” (This was
known to mathematicians as Goldbach’s conjec-
ture.) The AM program intrigued a number of
mathematicians as well as other computer scien-
tists such as DONALD E. KNUTH, who were inter-
ested in what paths the program took or did not
take, and what happened as it moved farther from
its mathematical moorings.

After receiving his Ph.D. in 1976, Lenat
became an assistant professor at Carnegie
Mellon University for two years, then returned

to Stanford. He continued to explore the use
of heuristics in programs. His new program,
Eurisko, was an attempt to generalize the
heuristic reasoning that had been surprisingly
successful with AM, and to allow the program
to not only apply various heuristics but to for-
mulate and test new ones. Eurisko turned out
to have some interesting applications to areas
such as playing strategy games and designing
circuits.

A continuing problem with heuristic pro-
grams is that they have very limited knowledge
of the world—they are basically limited to a few
hundred assertions provided by the programmer.
Therefore, by the mid-1980s Lenat had turned his
attention to creating a large “knowledge base”—
a huge set of facts that ideally would be compa-
rable to those available to an educated adult. AI
pioneer MARVIN MINSKY had devised the concept
of “frames,” which are sets of facts about particu-
lar objects or situations (such as parts of a car or
steps involved in taking an airline flight). Lenat
got together with Minsky and ALAN C. KAY and
together they did a literal “back of the envelope”
calculation that about 1 million frames would be
needed for the new program. Lenat dubbed it Cyc
(short for “encyclopedia”). A consortium called
the Microelectronics and Computer Technology
Corporation, or MCC, agreed to undertake what
was estimated to be at least a 10-year project, be-
ginning in 1984.

Lenat pointed out to Shasha and Lazere that
if this project succeeded

This would basically enable natural lan-
guage front-ends and machine learning
front-ends to exist on programs. This
would enable knowledge sharing among
application software, like different
expert systems could share rules with
one another. It’s clear that this would
revolutionize the way computing
worked. But it had an incredibly small
chance of succeeding. It had all these

Licklider, J. C. R. 161

pitfalls—how do you represent time,
space, causality, substances, devices,
food, intentions, and so on.

On the website for Lenat’s new company,
Cycorp, which took over the project after it spun
off from MCC in 1995, some examples of what
Cyc can now do are highlighted:

Cyc can find the match between a user’s
query for “pictures of strong, adventur-
ous people” and an image whose cap-
tion reads simply “a man climbing a
cliff.” Cyc can notice if an annual salary
and an hourly salary are inadvertently
being added together in a spreadsheet.

Cyc can combine information from
multiple databases to guess which physi-
cians in practice together had been
classmates in medical school. When
someone searches for “Bolivia” on the
Web, Cyc knows not to offer a follow-
up question like “Where can I get free
Bolivia online?”

Cyc works by making and testing theories
and checking them against the knowledge base.
In a broad sense, it combines the heuristic ap-
proach that Lenat had pioneered with AM and
Eurisko and the expert system and frames work
by Minsky and EDWARD FEIGENBAUM.

The problem with applying expert system
technology more widely and generally is that a
system first needs access to a broad base of
knowledge. To overcome this bottleneck, Lenat
undertook the now 20-year-long CYC project:
as an attempt to capture the culture’s “consen-
sus reality” into a single, functional knowledge
base. It has been a grueling task, but by the late
1990s Lenat believed that the CYC system knew
enough about the world that it would be able to
start teaching itself more.

Meanwhile, Lenat has promoted knowledge
technology widely and effectively. He has con-

sulted with U.S. government agencies on na-
tional security-related technology, was a founder
of Techknowledge, Inc., and has served on advi-
sory boards at Inference Corporation, Thinking
Machines Corporation, TRW, Apple, and other
companies.

Although a decisive breakthrough had not
occurred by the end of the 1990s, Cyc appeared
to have a number of promising applications,
including the creation of much smarter search
engines and the analysis of patterns in large data-
bases, often called “data mining.” Lenat’s re-
search continues.

Lenat has received a number of awards for
papers submitted to American Association for
Artificial Intelligence (AAAI) conferences and
became an AAAI Fellow in 1990. He has been a
keynote or featured speaker at many conferences.

Further Reading
“Child’s Play.” The Economist (U.S.), January 12,

1991, p. 80ff.
Cycorp. Available on-line. URL: http://www.cyc.com/

Downloaded November 3, 2002.
Lenat, Douglas B., and R. V. Guha. Building Large

Knowledge-Based Systems: Representation and
Inference in the Cyc Project. Reading, Mass.:
Addison-Wesley, 1990.

Shasha, Dennis, and Cathy Lazere. Out Of Their
Minds: The Lives and Discoveries of 15 Great
Computer Scientists. New York: Copernicus, 1995.

Stork, David G., editor. Hal’s Legacy: 2001’s Computer
as Dream and Reality. Cambridge, Mass.: MIT
Press, 1996.

� Licklider, J. C. R.
(1915–1990)
American
Computer Scientist, Scientist

Most of the early computer pioneers came from
backgrounds in mathematics or engineering.
This naturally led them to focus on the computer

162 Licklider, J. C. R.

ing responses. They were thus creating the first
maps of a planet less known than Mars—the hu-
man brain—pinpointing the motor center, the
vision center, and other major regions.

In 1942, Licklider’s knowledge of neuro-
science was enlisted for the war effort when he
went to work at the U.S. Army Air Corps’ newly
created Psycho-Acoustics Lab at Harvard
University. (The lab was headed by physicist Leo
Beranek, who would later play an important role
in building the first computer networks). Their
task was to understand how the very noisy en-
vironment of modern war, such as that found in
a bomber, affected the ability of soldiers to func-
tion. Licklider’s particular area of research was
on how interference and distortion in radio sig-
nals affected a listener’s ability to correctly in-
terpret speech. Much to his surprise and that of
his colleagues, Licklider discovered that while
most forms of distortion made speech harder to
understand, one particular kind, which he called
“peak-clipping,” actually improved reception.
(In peak-clipping, the consonants ended up be-
ing emphasized in relation to the surrounding
vowels.) This work also gave Licklider valuable
experience in seeing how small things could
greatly affect the quality of the interactions be-
tween persons and machines.

After the war, Licklider also participated in
a study group at the Massachusetts Institute of
Technology (MIT) led by NORBERT WIENER, pi-
oneer in the new field of cybernetics, in the late
1940s. Wiener’s restless, high-energy mind threw
ideas at his colleagues like sparks coming off a
Tesla coil. Some of those sparks landed in the
receptive mind of Licklider, who through
Wiener’s circle was coming into contact with the
emerging technology of electronic computing
and its exciting prospects for the future. In turn,
Licklider’s psychology background allowed him
a perspective quite different from the mathe-
matical and engineering background shared by
most early computer pioneers. This perspective

as a tool for computation and information pro-
cessing. Joseph Carl Robnett Licklider, however,
brought an extensive background in psychology
to the problem of designing interactive computer
systems that could provide better communication
and access to information for users. Along the
way he helped make today’s Internet possible.

Licklider was born on March 11, 1915, in
St. Louis, Missouri. His father was a proverbial
“self-made man,” having started as a farmer, then
worked on the railroad to support his family
when his own father died. Later he learned how
to write and design advertisements, and finally
ended up as a very successful insurance agent.

Young Licklider, called Rob by his friends,
was caught up in the passion for flying that had
been ignited by the exploits of Charles Lindbergh
and other pioneer aviators. He became a highly
skilled maker of hand-carved model airplanes.
When he became 16, his interest switched to
cars, and his parents bought him an old clunker
on the condition that he not actually drive it off
their property. He took the car completely apart
and painstakingly put it back together until he
understood how every part worked.

During the 1930s, he attended Washington
University in St. Louis, his active mind flitting
from one subject to another. By the time he was
finished, he had earned not one B.A. degree but
three: in psychology, mathematics, and physics.
He concentrated on psychology for his graduate
studies, earning an M.A. degree at Washington
University and then receiving his Ph.D. from the
University of Rochester in 1942.

The kind of psychology that intrigued
Licklider was not the abstract or symbolic sys-
tems of Freud and the other psychoanalysts who
were becoming popular, but the study of how the
brain worked physically, how perception was
processed, and of cognition. This study was com-
ing into its own as researchers using a new tool,
the electroencephalograph, or EEG, were stim-
ulating different areas of the brain and measur-

Licklider, J. C. R. 163

could be startling to Licklider’s colleagues. As
William McGill recalled much later in an in-
terview, cited by M. Mitchell Waldrop

Lick was probably the most gifted intu-
itive genius I have every known.
Whenever I would finally come to Lick
with the mathematical proof of some re-
lation, I’d discover that he already knew
it. He hadn’t worked it out in detail, he
just . . . knew it. He could somehow en-
vision the way information flowed, and
see relations that people who just ma-
nipulated the mathematical symbols
could not see. It was so astounding that
he became a figure of mystery to all the
rest of us . . .

Cybernetics emphasized the computer as a
system that could interact in complex ways with
the environment. Licklider added an interest in
human-computer interaction and communica-
tion. He began to see the computer as a sort of
“amplifier” for the human mind. He believed
that humans and computers could work together
to solve problems that neither could successfully
tackle alone. The human could supply imagina-
tion and intuition, while the computer provided
computational “muscle.” Ultimately, according
to the title of his influential 1960 paper, it might
be possible to achieve a true “Man-Computer
Symbiosis.”

During the 1950s, Licklider taught psy-
chology at MIT, hoping eventually to establish
a full-fledged psychology department that would
elevate the concern for what engineers call
“human factors.” (Psychology at the time was a
section within the economics department.)
From 1957 to 1962 he worked the private sector
as a vice president for engineering psychology
at Bolt, Beranek, and Newman, the company
that would become famous for pioneering net-
working technology.

In 1962, the federal Advanced Research
Projects Agency (ARPA) appointed Licklider to
head a new office focusing on leading-edge de-
velopment in computer science. Licklider soon
brought together research groups that included
in their leadership three of the leading pioneers
in artificial intelligence (AI): JOHN MCCARTHY,
MARVIN MINSKY, and ALLEN NEWELL. By promot-
ing university access to government funding,
Licklider also fueled the growth of computer sci-
ence graduate programs at major universities
such as Carnegie Mellon University, University
of California at Berkeley, Stanford University,
and MIT.

In his research activities, Licklider focused
his efforts not so much on AI as on the develop-
ment of interactive computer systems that could
promote his vision of human-computer symbio-
sis. This included time-sharing systems, where
many human users could share a large computer
system, and networks that would allow users on
different computers to communicate with one an-
other. He believed that the cooperative efforts of
researchers and programmers could develop com-
plex programs more quickly than teams limited
to a single agency or corporation.

Licklider’s efforts to focus ARPA’s resources
on networking and human-computer interaction
provided the resources and training that would,
in the late 1960s, begin the development of what
became the Internet. Licklider spent the last two
decades of his career teaching at MIT, expand-
ing the computer science program and forging
connections with other disciplines such as the
social sciences. Before his death on June 26,
1990, he presciently predicted that by 2000, peo-
ple around the world would be linked in a global
computer network. Licklider received the
Franklin Taylor Award of the Society of
Engineering Psychologists (1957), served as
president of the Acoustical Society of America
(1958), and received the Common Wealth
Award for Distinguished Service in 1990.

164 Lovelace, Ada

Further Reading
“J. C. R. Licklider (1915–1990) [Biographical Time-

line].” Available on-line. URL: http://www.
columbia.edu~jrh29/years.html. Downloaded on
November 3, 2002.

Licklider, J. C. R. “The Computer as Communication
Device.” Science and Technology, April 1968.
Available on-line. URL: http://www.memex.org/
licklider.pdf. Downloaded on December 2, 2002.

———. “Man-Computer Symbiosis.” IRE Transactions
on Human Factors in Electronics HFE-1 (March
1960): 4–11. Available on-line. URL: http://www.
memex.org/licklider.pdf. Downloaded on Decem-
ber 2, 2002.

Waldrop, M. Mitchell. The Dream Machine: J. C. R.
Licklider and the Revolution That Made Computing
Personal. New York: Viking, 2001.

� Lovelace, Ada (Augusta Ada Byron
Lovelace; Ada, Countess of Lovelace)
(1815–1852)
British
Mathematician, Computer Scientist

It was remarkable enough for a woman in early-
19th-century Britain to become recognized in
the world of mathematics. But Ada, Countess of
Lovelace would add to that the distinction of be-
coming arguably the world’s first computer pro-
grammer and technical writer. Her work both
helped explain the proposed Analytical Engine
of CHARLES BABBAGE and recognized potential
applications that would not be realized for more
than 100 years.

Augusta Ada Byron was born on December
10, 1815, in London, England. Her father was
the English Romantic poet Lord Byron. Byron
was notorious for his various romantic affairs,
and Lady Byron and her daughter separated from
the poet only five weeks after the birth. Lady
Byron tried to raise her daughter strictly to pre-
vent her falling into the kind of dissolute life
that she saw in her husband. According to bi-

ographer Joan Baum, “She arranged a full study
schedule for her child, emphasizing music and
arithmetic—music to be put to purposes of so-
cial service, arithmetic to train the mind.”

Other children might have rebelled against
such a program, but Ada showed both talent and
passion for mathematics. Since schools beyond
the elementary level were generally not avail-
able for girls, she was taught by a succession of
tutors. Several of them were eminent mathe-
maticians, such as William Frend of Cambridge
and especially the logician August de Morgan of
the University of London. The latter would de-
scribe his pupil as “an original mathematical in-
vestigator, perhaps of first-rate eminence.”

In 1835, Ada Byron married William King,
the eighth Baron King. When he became the
first earl of Lovelace in 1838, this made his wife
the countess of Lovelace. Unusual among men
of his time, King supported his wife’s mathe-
matical studies and took pride in her accom-
plishments. However because of the aristocratic
disdain for practical accomplishments, she
would be pressured to sign her writings with only
the initials “A. A. L.”

A few years earlier, Byron had attended a
party hosted by Mary Fairfax Somerville, one of
the few prominent female scientists of her day.
There she met Charles Babbage, who was in-
trigued by her mathematical interests and be-
came her mentor and friend. In 1834, Babbage
showed her some of the plans for his proposed
calculating machines, the Difference Engine and
the Analytical Engine.

In the late 1830s, Babbage embarked on an
international tour to raise interest (and hopefully,
funding) for the building of his machines. After
a lecture in Italy in 1840, an Italian military en-
gineer named Luigi Federico Menabrea wrote an
article about the Analytical Engine that ap-
peared in a French publication. In 1842, Babbage
asked Lovelace to prepare an English translation.

However, Lovelace’s article, which was pub-
lished in Taylor’s Scientific Memoirs in 1843, was

Lovelace, Ada 165

much more than a translation. She added seven
extensive notes that introduced new topics and
many additional examples of the machine’s op-
eration. Lovelace’s notes explained the use of the
“store” (what would be called memory today),
the organization and writing of programs, and
even the use of loops to execute operations re-
peatedly and the breaking of instructions into
sets of what today are called subroutines.

Lovelace also included a set of detailed in-
structions for calculating Bernoulli numbers,
which suggests to 20th-century scholars that
Lovelace is entitled to be called the world’s first
computer programmer. Looking at possible ap-
plications for the device, Lovelace suggested that
the engine’s speed and accuracy would make it
possible to carry out calculations that would be
impractical for human “computers.”

Unfortunately, Lovelace’s personal affairs
and health both became problematic. Lovelace
became involved in a number of sexual affairs,
and as a result of one with John Crosse, possi-
bly involving blackmail, she eventually pawned
the Lovelace diamonds to pay his debts. As she
fell further into debt, she turned to horse racing,
possibly using a mathematical system in an at-
tempt to recoup her losses, but she only fell far-
ther behind.

Lovelace had always suffered from “delicate”
health, having had measles and scarlet fever as
a child and possibly migraine headaches and

“fits” throughout her life. On November 27,
1852, she died of uterine cancer, her dreams of
a scientific career and a new world of machine-
woven mathematics unfulfilled.

Although his Analytical Engine would
never be built, Babbage deeply appreciated
Lovelace’s work. Writing to her son Viscount
Ockham, as quoted by Betty Toole, Babbage said
that “In the memoir of Mr. Menabrea and still
more in the excellent Notes appended by your
mother you will find the only comprehensive
view of the Anal. Eng. which the mathemati-
cians of the world have yet expressed.”

Historians have argued about the true ex-
tent of Lovelace’s mathematical ability, but her
remarkable presence and writings have been
increasingly appreciated, both in their own
right and as an inspiration for young women
seeking scientific careers. A modern structured
programming language, Ada, was named in her
honor.

Further Reading
Baum, Joan. The Calculating Passion of Ada Byron.

Hamden, Conn.: Archon Books, 1986.
Stein, Dorothy. Ada: A Life and a Legacy. Cambridge,

Mass.: MIT Press, 1985.
Toole, Betty A., ed. Ada: Enchantress of Numbers: A

Selection from the Letters of Lord Byron’s Daughter
and Her Description of the First Computer. Mill
Valley, Calif.: Strawberry Press, 1992.

166

� Maes, Pattie
(1961–)
Belgian/American
Computer Scientist

Someday, perhaps, computers will no longer give
an error message or find nothing because the user
misspelled a search term. Wading through web-
sites and on-line catalogs to find good buys will
be passé. Indeed, people will no longer have to
type specific commands or click buttons. Rather,
the computer will act like the perfect assistant
who seems to know what you want before you
want it. If that day comes, it will be due in large
part to the pioneering work of Pattie Maes, de-
veloper of what has come to be called software
agent technology.

Born on June 1, 1961, in Brussels, Belgium,
Maes was interested in science (particularly bi-
ology) from an early age. She received bache-
lor’s (1983) and doctoral (1987) degrees in
computer science and artificial intelligence from
the University of Brussels.

In 1989, Maes moved from Belgium to
United States to work at the Massachusetts
Institute of Technology (MIT), where she joined
the Artificial Intelligence Lab. She worked with
Rodney Brooks, the innovative researcher who
had created swarms of simple but intriguing in-
sectlike robots. Two years later, she became an

M
associate professor at the MIT Media Lab, famed
for innovations in how people perceive and in-
teract with computer technology. At the Media
Lab, she founded the Software Agents Group to
promote the development of a new kind of com-
puter program.

Generally speaking, traditional program-
ming involves directly specifying how the
computer is to go about performing a task. The
analogy in daily life would be having to take care
of all the arrangements for a vacation oneself,
such as finding and buying the cheapest airline
ticket, booking hotel rooms and tours, and so
on. But since their time and expertise are lim-
ited, many people have, at least until recently,
used the services of a travel agent.

For the agent to be successful, he or she must
have both detailed knowledge of the appropri-
ate area of expertise (travel resources and
arrangements in this case) and the ability to
communicate with the client, asking appropri-
ate questions about preferences, priorities, and
constraints. The agent must also be able to main-
tain relationships and negotiate with a variety
of services.

Maes’s goal has been to create software
agents that think and act much like their hu-
man counterparts. To carry out a task using an
agent, the user does not have to specify exactly
how it is to be done. Rather, the user describes

Maes, Pattie 167

the task, and the software engages in a dialogue
with the user to obtain the necessary guidance.

Today, many people obtain their airline tick-
ets and other travel arrangements via websites
such as Expedia.com or Travelocity.com. While
these sites can be convenient and helpful for bar-
gain hunters, they leave most of the overall trip
planning to the user. With a software travel agent
using the technology that Maes is developing, the
program could do much more. It would know—
or ask about—such things as the vacation budget
and whether destinations involving nature, his-
tory, or adventure are preferred. The program
might even know that a family member has se-

vere asthma and thus the hotels should be within
half an hour of a hospital.

The software agent would use its database
and procedures to put together an itinerary based
on the user’s needs and desires. It would not only
know where to find the best fares and rates, it
would also know how to negotiate with hotels
and other services. Indeed, it might negotiate
with their software agents.

Software agents are often confused with ex-
pert systems such as those developed by EDWARD

FEIGENBAUM and the “frames” approach to rea-
soning pioneered by MARVIN MINSKY. However,
Maes explained in an interview with Red
Herring magazine that “Rather than the heavily
knowledge-programmed approach of strong AI
proponents like Marvin Minsky, I decided to see
how far simpler methods of statistically based
machine learning would go.”

The expert system relies upon a “knowledge
base” of facts and rules, and uses a rather rigid
procedure to match rules and facts to draw con-
clusions. Software agents, on the other hand, act
more like people: They have goals and agendas,
they pursue them by trying various techniques
that seem likely to work, and they are willing to
act on probability and accept “good enough”
rather than perfect results, if necessary.

Some critics are worried that software agents
might compromise privacy because they would
know or be able to find out many intimate details
about people. Other critics are concerned that if
highly capable software agents take over most of
the thinking and planning of people’s daily lives,
people may become passive and even intellectu-
ally stunted. Maes acknowledges this danger,
quoting communications theorist Marshall
McLuhan’s idea that “every automation is ampu-
tation.” That is, when something is taken over by
automation, people “are no longer as good at
whatever’s been automated or augmented.” As an
example, she cites the pocket calculator’s effect
on basic arithmetic skills. However, Maes says
that she is trying to emphasize designing software

Pattie Maes wants to promote the computer from tool
to full-fledged assistant. She is creating “software
agents” that can carry out general tasks without the
user having to specify details or give commands. This
could include making travel arrangements, shopping,
handling routine e-mail, or watching the news for
items of interest. (Photo by Romana Vysatova)

168 Maes, Pattie

agents that help people more easily cooperate to
accomplish complex tasks, not trying to replace
human thinking skills.

In 1995, Maes cofounded Firefly Networks,
a company that attempted to create commercial
applications for software agent technology.
Although the company was bought by Microsoft
in 1998, one of its ideas, “collaborative filtering,”
can be experienced by visitors to sites such as
Amazon.com. Users in effect are given an agent
whose job it is to provide recommendations for
books and other media. The recommendations
are based upon observing not only what items
the user has already purchased, but also what else
has been bought by people who bought those
same items. More advanced agents can also tap
into feedback resources such as user book reviews
on Amazon or auction feedback on eBay.

Maes started a new venture called Open
Ratings in 1999. Its software evaluates and pre-
dicts the performance of a company’s supply
chain (the companies it relies upon for obtain-
ing goods and services), which in turn helps the
company plan for future deliveries and perhaps
change suppliers if necessary. Since then, Maes
has founded or participated in several other ven-
tures related to e-commerce.

A listing of Maes’s current research projects
at MIT conveys many aspects of and possible ap-
plications for software agents. These include the
combining of agents with interactive virtual re-
ality, using agent technology to create characters
for interactive storytelling, the use of agents to
match people with the news and other informa-
tion they are most likely to be interested in, an
agent that could be sent into an on-line market
to buy or sell goods, and even a “Yenta” (Yiddish
for matchmaker) agent that would introduce
people who are likely to make a good match.

Other ideas on Maes’s drawing board in-
clude creating agents that get feedback from
their user over time and adapt their procedures
accordingly. For example, an agent can learn
from what news items the user does not look at,

and employ that information to predict how the
user will respond in the future. Some of the ap-
plications most likely to arrive soon include
agent-based Web search engines and intelligent
e-mail filtering programs that can dig the mes-
sages most likely to be of interest or importance
out of the sea of spam (unsolicited e-mail) and
routine correspondence.

Maes has participated in many high-profile
conferences, such as the (American Association
for Artificial Intelligence and the Association for
Computing Machinery (ACM) Siggraph, and her
work has been featured in numerous magazine
articles. She was one of 16 modern visionaries cho-
sen to speak at the 50th anniversary of the ACM.
She has also been repeatedly named by Upside
magazine as one of the 100 most influential people
for development of the Internet and e-commerce.
Time Digital featured her in a cover story and se-
lected her as a member of its “cyber elite.”
Newsweek put her on its list of 100 Americans to
be watched in the year 2000. Also in 2000, the
Massachusetts Interactive Media Council gave her
its Lifetime Achievement Award.

Rather to Maes’s amusement, a People mag-
azine feature nominated her as one of their “50
most beautiful people” for 1997, noting that she
had worked as a model at one time and that her
striking looks have made her a “download diva.”
She deprecatingly notes that it is not hard to
turn male eyes at MIT, because that institution
still has a severe shortage of women.

Further Reading
D’Inverno, Mark and Michael Luck, editors. Under-

standing Agent Systems. New York: Springer-
Verlag, 2001.

Maes, Pattie. “Intelligence Augmentation: A Talk
with Pattie Maes.” Available on-line. URL:
http://www.edge.org/3rd_culture/maes. Download-
ed on November 3, 2002.

“Pattie Maes’ Home Page.” Available on-line. URL:
http://pattie.www.media.mit.edu/people/pattie.
Updated on January 29, 1998.

Mauchly, John 169

“Pattie Maes on Software Agents: Humanizing the
Global Computer.” Internet Computing Online.
Available on-line. URL: http://www.computer.
org/internet/v1n4/maes.htm. Downloaded on
November 3, 2002.

� Mauchly, John
(1907–1980)
American
Engineer, Inventor

Together with J. PRESPER ECKERT, John William
Mauchly codesigned the earliest full-scale digi-
tal computer, ENIAC, and its successor, Univac,
the first commercially available computer. His
and Eckert’s work went a long way toward es-
tablishing the viability of the computer industry
in the early 1950s.

Mauchly was born on August 30, 1907, in
Cincinnati, Ohio. However, the family moved
to Chevy Chase, Maryland. Young Mauchly
loved to build electrical things: When he was
only five, he improvised a flashlight. He also
built intercoms and alarms and made pocket
money installing electric bells and fixing broken
wiring. But perhaps his most practical invention
came when he was about 12 years old. By then,
his love of late-night reading was colliding with
his curfew. To solve the problem, he wired a pres-
sure switch to a loose board in one of the stairs
leading up to his bedroom and made it part of a
circuit to which he attached a small light near
his bed. Whenever a patrolling parent stepped
on the board, the switch opened the circuit and
the light went out, giving the boy ample time to
shut off his room light. When the parent de-
scended the stairs, the switch toggled again,
turning the warning light back on.

Mauchly attended the McKinley Technical
High School in Washington, D.C., where he was
a top math and physics student and in his senior
year edited the school newspaper. After gradua-
tion, his father wanted him to study engineer-

ing, which he considered to be a better paying
and more reliable career than pure science.
Mauchly won an engineering scholarship to
Johns Hopkins University, but he soon became
bored with engineering, which seemed to him to
be mainly working by rote from a “cookbook.”
In his sophomore year, he changed his major to
physics. (The University recognized his knowl-
edge and talent, and he was allowed to take grad-
uate courses.)

The spectral analysis problems he tackled for
his Ph.D. (awarded in 1932) and in postgraduate
work required a large amount of painstaking cal-
culation. So, too, did his later interest in weather
prediction, which led him to design a mechani-
cal computer for harmonic analysis of weather
data. Convinced that progress in calculation
would be needed to prevent science from getting

John Mauchly is shown here with a portion of ENIAC.
Completed in 1946, ENIAC is often considered to be
the first large-scale electronic digital computer. (Photo
courtesy of Computer Museum History Center)

170 Mauchly, John

bogged down, Mauchly would keep pondering the
problem even after he left research for teaching.

Mauchly taught physics at Ursinus College
in Philadelphia from 1933 to 1941. He had a def-
inite knack for getting students’ attention in his
lectures. His last lecture before Christmas became
a particular favorite—one year he used a skate-
board to demonstrate Newton’s laws of motion,
and another time he wrapped Christmas presents
in colored cellophane and showed students how
to use the principles of spectroscopy to see
through the wrapping to the goodies within.

In 1939, Mauchly decided to learn more
about electronics, particularly the use of vacuum
tubes that could be set up to count a rapid se-
ries of electronic pulses. He learned about binary
switching circuits (“flip-flops”) and experi-
mented with building electronic counters, using
miniature lightbulbs because they were much
cheaper (though slower) than vacuum tubes. His
experiments convinced him that electronic, not
merely electrical circuits would be the key to
high-speed computing.

On the eve of World War II, Mauchly went
to the University of Pennsylvania’s Moore
School of Engineering and took a course in mil-
itary applications of electronics. He then joined
the staff and began working on contracts to pre-
pare artillery firing tables for the military.
Realizing how intensive the calculations would
be, in 1942 he wrote a memo proposing that an
electronic calculator be built to tackle the prob-
lem. The proposal was rejected at first, but by
1943 table calculation by mechanical methods
was falling even farther behind. HERMAN HEINE

GOLDSTINE, who had been assigned by the army
to break the bottleneck, approved the project.

With Mauchly providing theoretical design
work and J. Presper Eckert heading the engineer-
ing effort, the Electronic Numerical Integrator
and Computer, better known as ENIAC, was
completed too late to influence the outcome of
the war. However, when the huge machine with
its 18,000 vacuum tubes and rows of cabinets was

demonstrated in February 1946, it showed that
electronic logic circuits could be harnessed to-
gether to carry out calculations about 1,000 times
faster than an electromechanical calculator, and
with reasonable reliability.

ENIAC, however, was far from easy to use.
In its original configuration, it was “pro-
grammed” by plugging dozens of wires into jacks
to set up the flow of data. However, Mauchly
and Eckert, working with the mathematician
JOHN VON NEUMANN, gradually redesigned the
machine. For example, a set of prewired logic
modules were connected to a card reader so the
machine could be programmed from punched
cards, which was much faster than having to
rewire the whole machine.

Mauchly and Eckert left the Moore School
in 1946 after a dispute about who owned the
patent for the computer work. They jointly
founded what became known as the Eckert-
Mauchly Computer Corporation, betting on
Mauchly’s confidence that there was sufficient
demand for computers not only for scientific or
military use but for business applications as well.
By 1950, however, they were struggling to sell
and build their improved computer, Univac,
while fulfilling existing government contracts
for a scaled-down version called BINAC. These
computers included a crucial improvement:
They were able to store their program’s instruc-
tions in memory, allowing instructions to be re-
peated (looped) or even modified.

In 1950, they sold their company to
Remington Rand, while continuing to work on
Univac. In 1952, Univac stunned the world by
correctly predicting the presidential election re-
sults on election night, long before most of the
votes had come in.

Early on, Mauchly saw the need for a better
way to write computer programs. Univac and
other early computers were programmed through
a mixture of rewiring, setting switches, and en-
tering numbers into registers. This made pro-
gramming difficult, tedious, and error-prone.

McCarthy, John 171

Mauchly wanted a way that variables could be
represented symbolically: for example, Total
rather than a register number such as 101. Under
Mauchly’s supervision, William Schmitt wrote
what became known as Brief Code. It allowed
two-letter combinations to stand for both vari-
ables and operations such as multiplication or
exponentiation. A special program read these
instructions and converted them to the neces-
sary register and machine operation commands.
While primitive compared to later languages
such as Fortran or COBOL, Brief Code repre-
sented an important leap forward in making
computers more usable.

Mauchly stayed with Remington Rand and
its successor, Sperry Rand, until 1959, but then
left over a dispute about the marketing of Univac.
He continued his career as a consultant and lec-
turer. Mauchly and Eckert also became embroiled
in a patent dispute arising from their original work
with ENIAC. Accused of infringing on Sperry
Rand’s ENIAC patents, Honeywell claimed that
the ENIAC patent was invalid, with another
computer pioneer, JOHN VINCENT ATANASOFF,
claiming that Mauchly and Eckert had obtained
crucial ideas after visiting his laboratory in 1940.

In 1973, Judge Earl Richard Larson ruled in
favor of Atanasoff and Honeywell. However,
many historians of the field give Mauchly and
Eckert the lion’s share of the credit, because they
built full-scale, practical machines.

Mauchly played a key role in founding the
Association for Computing Machinery (ACM),
one of the field’s premier professional organiza-
tions. He served as its first vice president and sec-
ond president. He received many tokens of
recognition from his peers, including the Howard
Potts Medal of the Franklin Institute, the
National Association of Manufacturers Modern
Pioneer Award (1965), the American Federation
of Information Processing Societies Harry Good
Memorial Award for Excellence (1968) and the
Institute for Electrical and Electronics Engineers
Computer Society Pioneer Award (1980). The

ACM established the Eckert-Mauchly Award for
excellence in computer design. John Mauchly
died on January 8, 1980.

Further Reading
McCartney, Scott. ENIAC: The Triumphs and

Tragedies of the World’s First Computer. New York:
Berkeley Books, 1999.

Stern, N. “John William Mauchly: 1907–1980,”
Annals of the History of Computing 2, no. 2 (1980):
100–103.

� McCarthy, John
(1927–)
American
Computer Scientist, Mathematician

In the 1950s, popular articles often referred to
computers as “giant brains.” But while the com-
puters of the time were indeed giant, and could
calculate amazingly rapidly, they were not really
brains. Computers could not reason the way
people could, drawing conclusions that went be-
yond their precise instructions, or learn how to
do things better. However, a number of re-
searchers believed that this could change: the
calculating power of the electronic computer
could be organized in such a way as to allow for
what came to be known as artificial intelligence,
or AI. Starting in the 1950s, John McCarthy
played a key role in the development of artifi-
cial intelligence as a discipline, as well as de-
veloping LISP, the most popular language in AI
research.

John McCarthy was born on September 4,
1927, in Boston, Massachusetts. His father, an
Irish immigrant, was active in radical labor
politics. His mother, a Lithuanian Jew, was
equally militant, involved in women’s suffrage
and other issues. Both were members of the
Communist party, making young McCarthy
what would be known as a “red diaper baby.”
McCarthy’s father was also an inventor and

172 McCarthy, John

technological enthusiast, and the family placed
a high value on science. These influences were
translated in the young McCarthy into a passion
for mathematics.

The family moved to California when the
boy was still young, in part because his prodigal
intellect was accompanied by poor health. He
skipped much of grade school, attended Belmont
High School in Los Angeles, and graduated
when he was only 15. He entered the California
Institute of Technology (Caltech) in 1944 to
major in mathematics, but was called into the

army, where he served as a clerk, returning to
Caltech to get his bachelor’s degree in 1948.

McCarthy then earned his Ph.D. at
Princeton University in 1951. During the 1950s,
he held teaching posts at Stanford University,
Dartmouth College, and the Massachusetts
Institute of Technology.

Although he seemed destined for a promi-
nent career in pure mathematics, he encoun-
tered computers while working during the
summer of 1955 at an IBM laboratory. He was
intrigued with the potential of the machines for
higher-level reasoning and intelligent behavior.
He coined the term artificial intelligence (AI) to
describe this concept. The following year, he or-
ganized a conference that brought together peo-
ple who would become key AI researchers,
including MARVIN MINSKY. In the Dartmouth
AI Project Proposal, McCarthy suggested that

the study is to proceed on the basis of
the conjecture that every aspect of
learning or any other feature of intelli-
gence can in principle be so precisely
described that a machine can be made
to simulate it. An attempt will be made
to find how to make machines use lan-
guage, form abstractions and concepts,
solve kinds of problems now reserved for
humans, and improve themselves.

At the time, McCarthy was working on a
chess-playing program. Because of its complex-
ity, chess was an attractive subject for many
early AI researchers. McCarthy invented a
method for searching through the possible
moves at a given point of the game and “prun-
ing” those that would lead to clearly bad posi-
tions. This “alpha-beta heuristic” would become
a standard part of the repertoire of computer
game analysis.

McCarthy believed that the overall goal of
AI required the incorporation of deep mathe-

Starting in the mid-1950s, John McCarthy pioneered
artificial intelligence (AI) research, organizing the key
1956 Dartmouth conference. He also developed the
LISP programming language, a powerful tool for AI
programming. (Photo courtesy of John McCarthy)

McCarthy, John 173

matical understanding. Mathematics had well-
developed symbolic systems for expressing its
ideas. McCarthy decided that if AI researchers
were to meet their ambitious goals, they would
need a programming language that was equally
capable of expressing and manipulating symbols.
Starting in 1958, he developed LISP, a language
based on lists that could flexibly represent data
of many kinds and even allowed programs to be
fed as data to other programs.

According to one mathematician quoted
in the book Scientific Temperaments (1982) by
Philip J. Hilts:

The new expansion of man’s view of the
nature of mathematical objects, made
possible by LISP, is exciting. There ap-
pears to be no limit to the diversity of
problems to which LISP will be applied.
It seems to be a truly general language,
with commensurate computing power.

LISP, rather than traditional procedural lan-
guages such as FORTRAN or Algol, would be
used in the coming decades to code most re-
search AI research projects, because of its sym-
bolic, functional power. McCarthy continued to
play an important role in refining the language,
while moving to Stanford in 1962, where he
would spend the rest of his career.

McCarthy also contributed to the develop-
ment of Algol, a language that would in turn
greatly influence modern procedural languages
such as C. In addition, he helped develop new
ways for people to use computers. Consulting
with Bolt, Beranek, and Newman (the company
that would later build the beginnings of the
Internet), he helped design time-sharing, a sys-
tem that allowed many users to share the same
computer, bringing down the cost of computing
and making it accessible to more people. He also
sought to make computers more interactive, de-
signing a system called THOR that used video

display terminals. Indeed, he pointed the way to
the personal computer in a 1972 paper titled
“The Home Information Terminal.”

McCarthy’s life has taken him beyond in-
tellectual adventures. He has climbed moun-
tains, flown planes, and jumped from them, too.
Although he came to reject his parents’ marx-
ism and what he saw as the doctrinaire stance
of the radical left, since the 1960s McCarthy has
been active in political issues. In recent years,
he has been especially concerned that computer
technology be used to promote rather than sup-
press democracy and individual freedom. He has
suggested that the ability to review and, if nec-
essary, correct all computer files containing
personal information be established as a funda-
mental constitutional right.

In 1971, McCarthy received the prestigious
A. M. Turing award from the Association for
Computing Machinery. In the 1970s and 1980s,
he taught at Stanford and mentored a new gen-
eration of AI researchers. He has remained a
prominent spokesperson for AI, arguing against
critics such as philosopher Hubert Dreyfus who
claim that machines could never achieve true
intelligence. As of 2001, McCarthy is Professor
Emeritus of Computer Science at Stanford
University.

Further Reading
“John McCarthy’s Home Page.” Available on-line.

URL: http://www-formal.stanford.edu/jmc. Down-
loaded on November 3, 2002.

McCarthy, John. “The Home Information Terminal.”
Man and Computer: Proceedings of the International
Conference, Bordeaux, France, 1970. Basel: S.
Karger, 1972, pp. 48–57.

———. “Philosophical and Scientific Presuppositions
of Logical AI” in H. J. McCarthy, and Vladimir
Lifschitz, eds. Formalizing Common Sense: Papers
by John McCarthy. Norwood, N.J.: Ablex, 1990.

McCorduck, Pamela. Machines Who Think. New York:
W. H. Freeman, 1979.

174 McNealy, Scott G.

� McNealy, Scott G.
(1954–)
American
Entrepreneur

Today’s world of software consists of two huge
continents and islands of various sizes. The largest
continent is controlled by Microsoft and its
Windows operating system, used by the majority
of business and personal computers. A decent-
sized island is inhabited by the enthusiastic users
of the Macintosh, particularly people involved in
desktop publishing and video applications. But
the second-largest continent is not well-known
to most ordinary computer users. It is the land of
UNIX, the powerful operating system developed
by DENNIS RITCHIE in the early 1970s and given
new popularity in the 1990s by LINUS TORVALDS,
developer of a variant called Linux.

Computers running UNIX are the mainstay
of many university computer science depart-
ments, research laboratories, scientists, and en-
gineers. They include the powerful graphics
workstations that visualize molecules or gener-
ate movie effects, made by Sun Microsystems,
the multibillion-dollar company founded by en-
trepreneur Scott McNealy.

McNealy was born November 13, 1954, in
Columbus, Indiana, but grew up in the Detroit
suburb of Bloomfield Hills. His father was a suc-
cessful business executive who became vice chair-
man of American Motors Corporation (AMC) in
1962. Young McNealy took a lively interest in his
father’s business and liked to help him figure out
ways to improve AMC’s competitive position
against its larger competitors. He was also a good
athlete, doing well in ice hockey, tennis, and golf.

After graduating from Cranbrook Kingswood
preparatory school, McNealy enrolled in Harvard
University, which had one of the nation’s foremost
programs in business and economics. He received
his B.A. degree in economics in 1976. When he
initially had trouble getting into a good graduate
business school, he decided to experience the

other side of industry by becoming a factory fore-
man at Rockwell International Corporation’s
plant in Ashtabula, Ohio. Because he had to work
double shifts in anticipation of a pending strike,
McNealy became exhausted, contracted hepatitis,
and spent six weeks in the hospital.

He then managed to get into Stanford
Business School, where he earned his MBA in
1980. Although intelligent, McNealy had little
interest in theoretical studies. Rather, he focused
on what he considered to be practical skills that

Scott McNealy cofounded Sun Microsystems, whose
powerful workstations became the tool of choice for
scientific visualization, engineering, and graphics. As
Sun’s chief executive officer, McNealy embraced
network computing and the Java language as a way to
revitalize the company’s business during the
1990s. (Courtesy of Sun Microsystems)

McNealy, Scott G. 175

would advance his career. He also preferred mak-
ing things to thinking about them, resigning a
position at FMC Corporation because, as he told
Fortune magazine, “FMC put me on a strategy
team, and I wanted to be a plant manager.”

In 1981, McNealy got his first hands-on ex-
perience in Silicon Valley’s burgeoning computer
industry when he became director of manage-
ment for Onyx Systems, a San Jose microcom-
puter manufacturer. But he had seen enough of
the corporate lifestyle in his father’s career, and
would later tell Industry Week that his real am-
bition had been “to run a machine shop . . . my
own little business with 40 or 50 people.”

As it happened, McNealy would soon start
making things, but not in the way he had imag-
ined. In 1982, an engineer and former Stanford
classmate named Vinod Khosla had gotten to-
gether with another Stanford graduate, Andreas
V. Bechtolsheim, and software developer BILL JOY

to start a company to manufacture computers.
They invited McNealy to join them as director
of manufacturing, even though, as he later
noted, “I didn’t know what a [computer] disk
drive was. I couldn’t explain the concept of an
operating system.”

The new company, Sun Microsystems, had
a clear vision of what it wanted to build. At the
time, desktop computers were not powerful
enough to do much beyond word processing and
spreadsheets, and they had only primitive graph-
ics capabilities. Only mainframes or perhaps
minicomputers were viable options for scientists
and engineers who needed the best possible com-
puting performance.

Sun’s workstations brought together the
powerful microprocessors (including the Sun
SPARC with its innovative instruction set) with
leading-edge high-resolution graphics capabili-
ties and UNIX, the “serious” operating system
already preferred by most scientific and engi-
neering programmers. At a time when personal
computers (PCs) generally stood alone, isolated
on desktops, Sun’s computers included built-in

networking. The goal was to give each user both
generous computing power and the ability to
share data and collaborate.

The Sun business plan became a shining
success as the 1980s advanced. In 1984, Sun had
to raise money to be able to manufacture enough
computers to meet the exploding demand, and
McNealy was able to persuade Kodak, one of
Sun’s customers, to invest $20 million. At about
the same time, Khosla, who had been Sun’s chief
executive officer (CEO), left the team. McNealy
was tapped for a temporary appointment as pres-
ident, and was confirmed as president and CEO
a few months later.

The next milestone came in 1987, when Sun
and AT&T signed an agreement under which
Sun would develop a new version of AT&T’s
UNIX system, and then an agreement allowing
AT&T to purchase a 20 percent interest in Sun.
These events alarmed other computer and soft-
ware developers who feared that the AT&T al-
liance would give Sun an inside track on UNIX
development perhaps comparable to what
Microsoft had with Windows. In May 1988,
many of Sun’s biggest competitors, including
IBM, Digital Equipment Corporation, and
Hewlett-Packard, formed the Open Software
Foundation, dedicated to creating a new, non-
proprietary version of UNIX. This effort did not
pan out, and the UNIX alternative eventually
came from a different direction—Linus Torvald’s
Linux. But Sun’s competitors did enter the work-
station market with their increasingly powerful
desktop systems, and at the end of 1989 Sun had
its first quarterly loss in earnings.

Industry analysts looked at Sun’s faltering per-
formance and the departure of some key execu-
tives and began to wonder if Sun had grown too
large too fast. McNealy responded by changing the
way the company was organized. Originally, the
company had seven separate groups that competed
internally for new projects, the idea being that this
competition would sharpen their skills and keep
their energy level high. But the competition had

176 Metcalfe, Robert M.

gotten out of hand, and often the groups were
spending more time obstructing other groups’ proj-
ects than finishing their own. McNealy drastically
simplified the organization, combining the seven
units into only two, and taking direct responsibil-
ity for engineering and manufacturing. He also cut
costs while encouraging employee initiative.

For the first half of the 1990s, the new Sun
seemed to shine brighter than ever, retaining its
number-one position in the workstation market
despite the increased competition. However, by
mid-decade the workstation market had started
to stagnate, and as desktop PCs with ever more
powerful chips came out many tasks that formerly
required a dedicated workstation could be now be
accomplished with an ordinary PC. At the high
end, Sun revitalized its workstations with the new
UltraSPARC processor, creating machines pow-
erful enough for the demanding movie industry,
which was starting to produce movies entirely by
computer, such as 1995’s Toy Story.

Sun attempted a counterattack by starting
to build its own low-cost PCs equipped with its
Solaris UNIX system. However, these systems
did not sell well, mainly because they were not
compatible with Windows, Microsoft’s domi-
nant operating system in the PC market.
Another Sun initiative, the “network computer”
(a stripped-down, diskless PC that ran software
from and stored data on a server) also largely
failed, in part because the price of a full-fledged
PC kept dropping.

Brighter prospects came from the explosive
growth in the Internet and particularly the World
Wide Web in the later 1990s. Sun’s computers
long had built-in networking capabilities (its slo-
gan, in fact, was “the computer is the network”),
and UNIX Web server software was powerful and
stable, making it the preferred choice of the bur-
geoning Web development community. McNealy
made a key decision that further strengthened
Sun’s position in the new Web world: He backed
JAMES GOSLING in the development of his new
language, Java. This language, something of a

streamlined version of C++, included the key
ability to run programs under virtually any oper-
ating system, including both UNIX and
Windows. With Java, Web sites could download
small programs called applets to a user’s Web
browser, and programmers could write larger,
more traditional programs as well. While Java has
not replaced Windows in the core office market,
the freely distributed language has helped prevent
Microsoft from taking over the Web.

McNealy became for many the champion for
those who saw BILL GATES and Microsoft as stifling
competition and innovation in the industry.
Starting in 1998, along with other industry lead-
ers McNealy testified against Microsoft, accusing
the giant company of using its control of Windows
to gain unfair advantage in the PC market.
Although the judgment went against Microsoft,
the consequences were not yet resolved as of 2002.

Sun’s revenues rose healthily, with its stock
going from $30 to $120 in 1999. However, since
then the general downturn in the stock market
and particularly in the tech sector has made life
much tougher for Scott McNealy and Sun, as it
has for other entrepreneurs. McNealy continues
to work long hours, warning of more storms to
come while proclaiming his faith in the long-
term health of the industry.

Further Reading
Schlender, Brent. “The Adventures of Scott McNealy,

Javaman.” Fortune, October 13, 1997, pp. 70ff.
Southwick, Karen, and Eric Schmidt. High Noon: The

Inside Story of Scott McNealy and the Rise of Sun
Microsystems. New York: Wiley, 1999.

� Metcalfe, Robert M.
(1946–)
American
Engineer, Entrepreneur, Writer

Having access to a computer network is now
taken for granted, almost as much as having

Metcalfe, Robert M. 177

electricity, gas, and running water. Computers in
most offices and schools and in an increasing
number of homes are linked together into local
networks, which in turn are connected to the
Internet. Robert Metcalfe created Ethernet, the
most widely used standard for wiring computers
into a network.

Metcalfe was born in 1946 in Brooklyn,
New York, and grew up nearby, on Long Island.
From the age of 10 his ambition was to become
an electrical engineer. For an eighth grade sci-
ence project, young Metcalfe converted a model
train controller into a simple electronic calcula-
tor. His interest in electronics would soon be-
come focused on computers. In high school, he
attended a Saturday morning science class spon-
sored by Columbia University, where students
were given the opportunity to write programs
and run them on an IBM mainframe.

In 1964, Metcalfe entered the Massachusetts
Institute of Technology (MIT), and in 1969 he
received bachelor’s degrees in both electrical en-
gineering and business management. The 1960s
saw solid state electronics move from transistors
to printed circuits to integrated circuit chips, and
Metcalfe became part of a generation that was at
home in both technology and business.

During his years at MIT, Metcalfe gained
programming experience on mainframe com-
puters, including an aging IBM 7094 and a
Univac. However, the most exciting develop-
ment was the arrival of a minicomputer on loan
from the Digital Equipment Corporation (DEC).
This sleek, refrigerator-sized machine cost “only”
$30,000. However, shortly after Metcalfe was put
in charge of the machine, a thief or thieves
carted it away. Dismayed, Metcalfe screwed up
his courage to tell DEC officials what had hap-
pened. To his relief, DEC decided to take ad-
vantage of the incident by proclaiming their ma-
chine the first computer small enough to steal.

After graduating from MIT, Metcalfe went
to Harvard, where he earned an M.S. degree in
applied mathematics (1970) and a Ph.D. in com-

puter science (1973). Meanwhile, he had become
deeply interested in computer networking. His
doctoral dissertation on packet-switched net-
works (a concept first developed by LEONARD

KLEINROCK) was written while working with the
Advanced Research Projects Agency (ARPA),
which was creating ARPANET which would
eventually become the Internet. Metcalfe also
designed the IMP, or Interface Message Processor,
a special-purpose minicomputer that served as a
data communications link between machines on
the ARPANET. However, Metcalfe did more for
ARPANET than just design hardware—he also
“evangelized” for the network, promoting its pos-
sible applications in a pamphlet titled “Scenarios
for the ARPANet.” Later, referring to a popular
line of handbooks, he would call this “the first
Internet for Dummies.”

Metcalfe became disillusioned with Harvard
when its officials would not allow their com-
puters to be connected to the ARPANET, so he
moved back to MIT. There he worked with an
early network called the Aloha Net, which
linked together computers in MIT’s Project
MAC. A local network (computers wired to-
gether in an office or other facility) would com-
plement the long-range ARPANET. Metcalfe
began to sketch out a local network architecture
that would eventually become Ethernet.

In 1972, Metcalfe went to work for Xerox.
Although this company was primarily known to
the public for its copying machines, it had es-
tablished an innovative computer laboratory in
California called the Palo Alto Research Center,
or PARC. Researchers at this laboratory, such as
ALAN C. KAY, would soon create the windowed,
mouse-driven graphical computer user interface
that is so familiar today.

Xerox was especially interested in network-
ing because it had developed the laser printer,
which then cost many thousands of dollars. If
computers in an office (which at the time were
minicomputers, since PCs had not yet been in-
vented) could be connected into a network, they

178 Metcalfe, Robert M.

could share a laser printer, making it a more at-
tractive purchase—if the network was fast
enough to keep up with the printer. Metcalfe
and his associate David R. Boggs decided that
they could solve this problem by building a high-
speed local area computer networking system.

Metcalfe’s Ethernet (so called because it
transmitted through a rather ethereal medium of
wires) could link computers of any type as long
as they had the appropriate interface card and
followed the rules, or protocol. Ethernet adopted
the packet-switching idea that had been pio-
neered with ARPANET, in which data is bro-
ken into small pieces, routed across the network,
and reassembled at the destination. It also
adopted a simple traffic control system. Before
sending data, each computer waits until the line
is clear. If a “collision” occurs because two com-
puters inadvertently start sending at the same
time, they stop and each waits a random time
before transmitting again.

Importantly, with Ethernet data could flow
at a fast 10 megabits (million bits) per second,
meaning that printers would receive data fast
enough to not stand idle and users working with
other computers on the network would experi-
ence a prompt response. Ethernet was an-
nounced to the world in a 1976 paper titled
“Ethernet: Distributed Packet-Switching for
Local Computer Networks.”

Meanwhile, Metcalfe moved to the PARC
Xerox Systems Development Division in 1976,
helping develop the Star, the innovative but
commercially unsuccessful computer from which
STEVE JOBS and Apple would largely take the de-
sign of the Macintosh. During this time, he also
taught part time at Stanford.

Metcalfe thought that Ethernet had consid-
erable commercial potential, but Xerox did not
seem able to exploit it. Finally, in 1979 Metcalfe
left to start his own company in Santa Clara,
California. It was called 3Com, which stood
for “computer communications compatibility.”
There he would wear many hats from division

manager to president to chief executive officer
(CEO), and he reveled as much in exercising his
business skills as his technical ones, noting that
most engineers did not understand the real im-
portance of selling as a skill. He was able to per-
suade many companies both in the computer
field (DEC, Intel, and Xerox) and outside
(General Electric, Exxon) to adopt Ethernet-
based networks as their standard. Looking back,
Metcalfe told Technology Review that he is most
proud of increasing the company’s revenue “from
0 to $1 million a month.”

Ethernet came into its own in the 1980s
when PCs began to proliferate on desktops. The
local area network, or LAN, enabled office users
to share not only printers but also servers, com-
puters with high-capacity hard drives and power-
ful applications. Novell and later Microsoft built
networked operating systems on the foundation
of Ethernet. If ARPANET and the Internet are
the information superhighway, then Ethernet is
the information boulevard, with speeds today of
up to 1 billion bits a second. Meanwhile, 3Com
became a Fortune 500 company.

Metcalfe’s relations with the venture capi-
talists and board of directors who controlled
3Com were not very good, however. Even while
he had done so much to increase the company’s
revenue he had been essentially demoted to vice
president, and in 1990 the board chose Eric
Benhamou, a young engineer, rather than
Metcalfe, to be CEO.

Metcalfe decided to leave 3Com. More than
that, he changed careers, becoming a publisher.
He became publisher of InfoWorld, the flagship
journal of the PC industry, and served as chief
technology officer of its parent company, Intern-
ational Data Group (IDG), which would pub-
lish a popular series of how-to books “for
Dummies.” Metcalfe also became a journalist,
writing a regular InfoWorld column called “From
the Ether” until September 2000.

As a journalist and self-styled “technology
pundit,” Metcalfe tried to predict the future di-

Minsky, Marvin 179

rection of the industry. His predictions were of-
ten controversial and sometimes wrong, as in
1996 when he warned of the imminent collapse
of the Internet from traffic overload. However,
his 1999 claim that Internet “dot-com” stocks
were vastly overvalued and would soon collapse
proved more prescient. Metcalfe continues to be
active in a number of areas, including the ven-
ture capital firm Polaris Venture Partners.

Metcalfe has won a number of major awards,
including the Association for Computing Ma-
chinery Grace Murray Hopper Award (1980)
and the Institute for Electrical and Electronic
Engineers Alexander Graham Bell Medal
(1988) and its Medal of Honor (1996).

Further Reading
Metcalfe, Robert, and David R. Boggs. “Ethernet:

Distributed Packet Switching for Local Com-
puter Networks.” Communications of the ACM 19
(July 1976): 395–404. Available on-line. URL:
http://www.acm.org/classics/apr96. Downloaded
on December 3, 2002.

———. “How Ethernet was Invented.” Annals of the
History of Computing 16 (1994): 81.

Spurgeon, Charles E. Ethernet: The Definitive Guide.
Sebastapol, Calif.: O’Reilly, 2000.

———. “Invention Is a Flower, Innovation Is a Weed.”
Technology Review 102 (November 1999): 54.

� Minsky, Marvin
(1927–)
American
Computer Scientist, Inventor

Starting in the 1950s, Marvin Minsky played a
key role in the establishment of artificial intel-
ligence (AI) as a discipline. Combining cogni-
tive psychology and computer science, Minsky
developed ways to make computers function in
more “brainlike” ways and then offered provoca-
tive insights about how the human brain itself
might be organized.

Minsky was born in New York City on
August 9, 1927. His father was an ophthalmol-
ogist—in a memoir, Minsky noted, “Our home
was simply full of lenses, prisms, and diaphragms.
I took all his instruments apart, and he quietly
put them together again.” Minsky’s father was
also a musician and a painter, making for a rich
cultural environment.

Minsky proved to be a brilliant science stu-
dent at the Fieldston School, the Bronx High
School of Science, and the Phillips Academy.
He would later recall being “entranced” by ma-
chinery from an early age.

Before he could go to college, World War II
intervened, and Minsky enlisted in the U.S.
Navy, entering electronics training in 1945 and
1946. He then went to Harvard University,
where he received a B.A. degree in mathemat-
ics in 1950. Although he had majored in math-
ematics at Harvard and then went to Princeton
for graduate study in that field, Minsky was also
interested in biology, neurology, genetics, and
psychology, as well as many other fields of sci-
ence. (His study of the operation of crayfish
claws would later transfer to an interest in robot
manipulators.)

Minsky recalled in a memoir published in
the journal Scanning that

perhaps the most amazing experience of
all was in a laboratory course wherein a
student had to reproduce great physics
experiments of the past. To ink a zone
plate onto glass and see it focus on a
screen; to watch a central fringe emerge
as the lengths of two paths become the
same; to measure those lengths to the
millionth part with nothing but mirrors
and beams of light—I had never seen
any things so strange.

This wide-ranging enthusiasm for the idea
of science and of scientific exploration helped
Minsky move fluidly between the physical and

180 Minsky, Marvin

life sciences, seeing common patterns and sug-
gestive relationships.

Minsky had become fascinated by the most
complex machine known to humankind—the
human brain. (He would later describe the brain
as a “meat machine.” However, calling the brain
a machine did not mean that it was simple and
“mechanical.” Rather it meant that the brain
was richly complex but accessible to scientific
understanding.)

Minsky found the hottest thing in contem-
porary psychology, the behaviorism of B. F.
Skinner, to be unsatisfactory because it focused
only on behavior, ignoring the brain itself en-
tirely. On the other hand, traditional psycholo-
gists who based their work on Freud and his
followers seemed to deal only with ideas or
images, not the process of thinking itself. He de-
cided to explore psychology from a completely
different angle.

In 1951, Minsky and Dean Edmonds de-
signed SNARC, the Stochastic Neural-Analog
Reinforcement Computer. At the time, it was
known that the human brain contains about
100 billion neurons, and each neuron can form
connections to as many as 1,000 neighboring
ones. Neurons respond to electronic signals that
jump across a gap (called a synapse) and into
electrode-like dendrons, thus forming connec-
tions with one another. But what caused par-
ticular connections to form? How did the
formation of some connections make others
more probable? And how did these networks re-
late to the brain’s most important task—learning?
Minsky was surprised to find out how little
researchers knew about how the brain actually
did its work.

Since it was known that the brain used elec-
trical signaling, Minsky decided to create an
electrical model that might capture some of the
brain’s most basic behavior. SNARC worked
much like a living brain. Its electrical elements
responded to signals in much the same way as
the brain’s neurons. The machine was given a

task (in this case, solving a maze), but unlike a
computer, was not given a program that told it
how to perform it. Instead, the artificial neurons
were started with random connections. If a par-
ticular connection brought the machine closer
to its goal, the connection was “reinforced”
(given a higher value that made it more likely
to persist). Gradually, a network of such rein-
forced connections formed, enabling SNARC to
accomplish its task. In other words, SNARC had
“learned” how to do something. Minsky then
used the results of his research for his thesis for
his Ph.D. in mathematics.

Another researcher, Frank Rosenblatt,
would later build on this research to create the
Perceptron, containing what became known as
a neural network. Today, neural network software
is used for applications such as the automatic
recognition of characters, graphic elements, and
spoken words.

In 1954, Minsky received his Ph.D. in
mathematics. The following year, he invented
and patented the confocal scanning micro-
scope, an optical instrument that produced
sharper images than the best existing micro-
scropes. However, Minsky never promoted the
invention, so later researchers would receive
most of the credit for it.

The year 1956 was key in the development
of artificial intelligence. That year, Minsky
was an important participant in the seminal
Dartmouth Summer Research Project in Arti-
ficial Intelligence, which set the agenda for this
exciting new field for years to come. (There are
many ways to define artificial intelligence, or
AI. Minsky’s common-sense definition is that
artificial intelligence is “the field of research
concerned with making machines do things that
people consider to require intelligence.”)

Not surprisingly, researchers tended to split
into groups that emphasized different paths to
the goal of creating an artificial intelligence.
One group, including Rosenblatt and others pur-
suing neural networks, believed that developing

Minsky, Marvin 181

more sophisticated neural networks was the key
to creating a true computer intelligence. Minsky
and his colleague SEYMOUR PAPERT, however, be-
lieved that the neural network or perceptron had
limited usefulness and could not solve certain
problems. They believed that AI researchers
should pay more attention to cognition—the ac-
tual process of thinking. Minsky would describe
this as switching from “trying to understand how
the brain works to what it does.” Thus, although
exploring the biological roots of the brain had
been fruitful, Minsky gradually moved to focus-
ing on the structure and processing of informa-
tion, a field that would become known as
cognitive science (or cognitive psychology).

Minsky moved to the Massachusetts
Institute of Technology (MIT) in 1957, serving
as a professor of mathematics from 1958 to 1961,
later switching to the electrical engineering
department. During the same time, Minsky
and JOHN MCCARTHY established Project MAC,
MIT’s first AI laboratory. In 1970, Minsky
and McCarthy founded the MIT Artificial
Intelligence Laboratory.

During the 1960s, Minsky and many other
researchers turned to robotics as an important
area of AI research. Robots, after all, offered the
possibility of reproducing intelligent, humanlike
behavior through interaction between a ma-
chine and its environment. But to move beyond
basic perception to the higher order ways in
which humans think and learn, Minsky believed
that the robot (or computer program) needed
some sort of way to organize knowledge and
build a model of the world.

Minsky developed the concept of frames.
Frames are a way to categorize knowledge about
the world, such as how to plan a trip. Frames can
be broken into subframes. For example, a trip-
planning frame might have subframes about air
transportation, hotel reservations, and packing.
Minsky’s frames concept became a key to the
construction of expert systems that today allow
computers to advise on such topics as drilling for

oil or medical diagnosis. (This field is often
called knowledge engineering.)

In the 1970s, Minsky and his colleagues at
MIT designed robotic systems to test the ability
to use frames to accomplish simpler tasks, such
as navigating around the furniture in a room.
The difficult challenge of giving a robot vision
(the ability not only to perceive but “under-
stand” the features of its environment) would
also absorb much of their attention.

Although he is primarily an academic,
Minsky did become involved in business ven-
tures. He and Seymour Papert founded Logo
Computer Systems, Inc., to create products based
upon the easy-to-use but versatile Logo language.
In the early 1980s, Minsky established Thinking
Machines Corporation, which built powerful
computers that used as many as 64,000 proces-
sors working together.

Minsky continued to move fluidly between
the worlds of the biological and the mechanical.
He came to believe that the results of research
into simulating cognitive behavior had fruitful
implications for human psychology. In 1986,
Minsky published The Society of Mind. This book
suggests that the human mind is not a single en-
tity (as classical psychology suggests) or a system
with a small number of often-warring subenti-
ties (as psychoanalysis asserted). It is more use-
ful, Minsky suggests, to think of the mind as
consisting of a multitude of independent agents
that deal with different parts of the task of liv-
ing and interact with one another in complex
ways. What we call mind or consciousness, or
a sense of self, may be what emerges from this
ongoing interaction.

Since 1990, Minsky has continued his re-
search at MIT, exploring the connections be-
tween biology, psychology, and the creations of
AI research. One area that intrigued him was the
possibility of linking humans to robots so that
the human could see and interact with the en-
vironment through the robot. This process, for
which Minsky coined the word “telepresence,” is

182 Moore, Gordon E.

already used in a number of applications today,
such as the use of robots by police or the mili-
tary to work in dangerous areas under the guid-
ance of a remote operator, and the use of surgi-
cal robots in medicine.

Minsky’s wide-ranging interests have also in-
cluded music composition (he designed a music
synthesizer). His legacy includes the mentoring
of nearly two generations of students in AI and
robotics, as well as his seeking greater public sup-
port for AI research and computer science.

Minsky has received numerous awards,
including the Association for Computing
Machinery Turing Award (1969) and the
International Joint Conference on Artificial
Intelligence Research Excellence Award (1991).

Further Reading
Franklin, Stan. Artificial Minds. Cambridge, Mass.:

MIT Press, 1995.
“Marvin Minsky Home Page.” Available on-line.

URL: http://www.media.mit.edu/people/minsky.
Downloaded on November 3, 2002.

McCorduck, Pamela. Machines Who Think. New York:
W. H. Freeman, 1979.

Minsky, Marvin. “Memoir on Inventing the Confocal
Scanning Microscope.” Scanning, vol. 10, 1988,
pp. 128–138.

———. The Society of Mind. New York: Simon and
Schuster, 1986.

� Moore, Gordon E.
(1929–)
American
Entrepreneur

The microprocessor chip is the heart of the mod-
ern computer, and Gordon Moore deserves much
of the credit for putting it there. His insight into
the computer chip’s potential and his business acu-
men and leadership would lead to the early suc-
cess and market dominance of Intel Corporation.

Moore was born on January 3, 1929, in the
small coastal town of Pescadero, California,
north of San Francisco. His father was the lo-
cal sheriff and his mother ran the general store.
Young Moore was a good science student, and
he attended the University of California,
Berkeley, receiving a B.S. degree in chemistry
in 1950. He then went to the California
Institute of Technology (Caltech), earning a
dual Ph.D. in chemistry and physics. He thus
had a sound background in materials science
that helped prepare him to evaluate the emerging
research in transistors and semiconductor de-
vices that would begin to transform electronics
in the later 1950s.

After spending two years doing military
research at Johns Hopkins University, Moore
returned to the West Coast to work for Shockley
Semiconductor Labs in Palo Alto. However,
William Shockley, who would later share in a
Nobel Prize for the invention of the transistor,
alienated many of his top staff, including Moore,
and they founded their own company, Fairchild
Semiconductor, in 1958. (This company was ac-
tually a division of the existing Fairchild Camera
and Instrument Corporation.)

Moore became manager of Fairchild’s engi-
neering department and the following year,
director of research. He worked closely with
ROBERT NOYCE, who was developing a revolu-
tionary process for laying the equivalent of
many transistors and other components onto a
small chip.

Moore and Noyce saw the potential of this
integrated circuit technology for making elec-
tronic devices, including clocks, calculators, and
computers, vastly smaller yet more powerful. In
1965, he formulated what became widely known
in the industry as Moore’s law. This prediction
suggested that the number of transistors that
could be put in a single chip would double about
every year (later it would be changed to 18
months or two years, depending on who one

Moore, Gordon E. 183

talks to). Remarkably, Moore’s law still held true
into the 21st century, although as transistors get
ever closer together, the laws of physics begin to
impose limits on current technology.

Moore, Robert Noyce, and ANDREW S. GROVE

found that they could not get along well with the
upper management in Fairchild’s parent com-
pany, and decided to start their own company,
Intel Corporation, in 1968, using $245,000 plus
$2.5 million from venture capitalist Arthur
Rock. They made the development and applica-
tion of microchip technology the centerpiece of
their business plan. Their first products were
RAM (random access memory) chips.

Seeking business, Intel received a proposal
from Busicom, a Japanese firm, for 12 custom
chips for a new calculator. Moore and Grove
were not sure they were ready to undertake such
a large project, but then Ted Hoff, one of their
first employees, told them he had an idea. What
if they built one chip that had a general-purpose
central processing unit (CPU) that could be
programmed with whatever instructions were
needed for each application? With the support
of Moore and other Intel leaders, the project got
the go-ahead. The result was the microproces-
sor, and it would revolutionize not only com-
puters but just about every sort of electronic
device. Intel’s pioneering work in microprocess-
ing would become especially valuable in the later
1970s when Japanese companies with advanced
manufacturing techniques began to make mem-
ory chips more cheaply than Intel could. Intel
responded by going out of the memory business
and concentrating on building ever more pow-
erful microprocessors.

Under the leadership of Moore, Grove, and
Noyce, Intel established itself in the 1980s as the
leader in microprocessors, starting when IBM
chose Intel microprocessors for its hugely success-
ful IBM PC. IBM’s competitors, such as Compaq,
Hewlett Packard, and later Dell, would also use
Intel microprocessors for most of their PCs.

As Moore recalled to Fortune magazine:
“Andy [Grove] and I have completely different
views of the early years. To me, it was smooth.
We grew faster than I thought. But Andy
thought it was one of the most traumatic peri-
ods of his life.” Meanwhile, Moore would serve
as vice president, president, chief executive of-
ficer, then chairman of the board at Intel, finally
retiring from the company in 1995.

The public is often especially interested in
what the most successful entrepreneurs see in the
future. In an interview with the MIT Technology

Gordon Moore and his Intel Corporation have provided
generations of ever more powerful microprocessors for
the computers found on most desktops. Moore also
made a remarkably accurate prediction that processor
power would double every 18 months to two years.
(Photo provided by Intel Corporation)

184 Moore, Gordon E.

Review at the start of the 21st century, however,
Moore disclaimed such predictive powers:

I calibrate my ability to predict the fu-
ture by saying that in 1980 if you’d
asked me about the most important ap-
plications of the microprocessor, I
probably would have missed the PC.
In 1990 I would have missed the
Internet. So here we are just past 2000,
I’m probably missing something very
important.

Nevertheless, Moore does think that new
developments in fields such as molecular biol-
ogy are important and exciting. In computing,
Moore looks toward reliable, widespread speech
recognition technology as the key to many more
people using computers in many new and inter-
esting ways.

In his retirement, Moore enjoys fishing at
his summer home in Hawaii while also becom-
ing involved in environmental issues. He pur-
chased thousands of acres of Brazilian rain forest
in order to protect the species that are rapidly

disappearing in the face of large-scale develop-
ment. In 2002 Moore pledge $5 billion of his
Intel stock to the newly created Gordon E. and
Betty I. Moore Foundation, which emphasizes
environmental research. Moore has also had a
longtime interest in SETI, or the search for ex-
traterrestrial intelligence.

Moore has been awarded the prestigious
National Medal of Technology (1990), as well
as the Institute of Electrical and Electronics
Engineers Founders Medal and W. W. McDonnell
Award, and the Presidential Medal of Freedom
(2002).

Further Reading
Burgelman, Robert, and Andrew S. Grove. Strategy Is

Destiny. New York: Simon and Schuster, 2001.
Intel Corporation. “Executive Bios: Gordon Moore.”

Available on-line. URL: http://www.intel.com/
pressroom/kits/bios/moore.htm. Downloaded on
November 3, 2002.

“Laying Down the Law.” Technology Review 104 (May
2001): 65.

Mann, Charles. “The End of Moore’s Law?”
Technology Review 103 (May 2000): 42.

185

� Nelson, Ted (Theodor Holm Nelson)
(1937–)
American
Computer Scientist, Inventor

The 1960s counterculture had an ambivalent re-
lationship with science and technology. While
embracing electronic music, laser shows, and
psychedelic chemistry, it generally viewed the
mainframe computer as a dehumanizing force
and a symbol of the corporate establishment.
However, a young visionary named Ted Nelson
would appear on the scene, proclaiming to the
flower children that they could and should un-
derstand computers. His pioneering ideas about
using hypertext to link ideas via computer and
his manifesto Computer Lib/Dream Machines
helped spawn a sort of computer counterculture
that would have far-reaching consequences.

Nelson was born in 1937 to actress Celeste
Holm and director Ralph Nelson, but he was
raised by his grandparents in the Greenwich
Village neighborhood in New York City. Nelson
attended Swarthmore College in Pennsylvania,
earning a B.A. degree in philosophy in 1959. He
then enrolled in Harvard University’s graduate
program in sociology and received his master’s
degree in 1963.

Nelson’s first encounter with computers was
by way of a programming course for humanities

N
majors. He became intrigued not with the ma-
chine’s calculating abilities but by its potential for
organizing textual material. His master’s project
was an attempt to write a system that could help
writers organize and revise their work. This ambi-
tious project failed, largely because it was at-
tempted long before the development of word pro-
cessing, and most programs could do little more
with text than store it in data fields and print it
out. The mainframe languages of the time had lit-
tle built-in support for text operations, so routines
for text processing had to be written from scratch.

Although the programming bogged down,
Nelson had hit on the concept that he dubbed
“hypertext.” The idea, familiar to today’s Web
users, is to create links that allow the reader to
move at will from the current document to re-
lated documents. (VANNEVAR BUSH is usually
given the credit for first conceptualizing hyper-
text, though he did not use that term. However,
his Memex machine, proposed in the 1940s,
would have been an electromechanical micro-
film reading device, not a computer.)

Nelson formally introduced the idea of hy-
pertext in a 1965 paper titled “A File Structure
for the Complex, the Changing and the
Indeterminate.” This title hints at the implica-
tions of hypertext as a dynamic (changing) sys-
tem of documents that combines the depth and
detail of print with the ability to quickly update

186 von Neumann, John

the content and to create endless potential paths
for readers.

Nelson also contributed to the movement
that led to the personal computer. In his 1974
book Computer Lib/Dream Machines, he made
computers accessible to a new generation that was
suspicious of a technology that was often associ-
ated with the oppressive behavior of governments
and corporations. Along with LEE FELSENSTEIN and
his pioneering computer bulletin board, and ed-
ucators such as JOHN G. KEMENY and Thomas Kurtz
(inventors of BASIC), Nelson helped create an
interest in computers among students and ac-
tivists at a time when “computer” meant a main-
frame or minicomputer connected to time-sharing
terminals. Thus, when the microprocessor made
the personal computer practical in the later
1970s, there was already a culture of experi-
menters primed to use the new technology in
imaginative ways.

In the late 1960s, Nelson started work on
Project Xanadu, an ambitious hypertext system.
The name intentionally evokes the exotic
Mongolian city in Coleridge’s poem “to represent
a magic place of literary memory and freedom,
where nothing would be forgotten.” Nelson has
drawn a clear distinction between the structure
of Xanadu and that of the World Wide Web, in-
vented by TIM BERNERS-LEE in the early 1990s.
Nelson asserts on his home page that “The Web
isn’t hypertext, it’s decorated directories.” In his
view, the Web is one-way hypertext: The reader
can browse and follow links, but only the au-
thorized webmaster of a site can create new links.

In Xanadu, writers can collaborate through
“transclusion,” or incorporation of existing doc-
uments (with their links intact) in new ones.
Nelson suggested that one of the Internet’s
biggest current issues, the protection of intellec-
tual property, could be built into such a system
because the links and ownership would “follow”
quoted material into new documents. At all
times, readers could delve into the differences
and branchings between versions of a document.

However, as decades passed and nothing
reached the market, Xanadu began to be derided
by many pundits as the ultimate in “vaporware,”
or software that is promised and hyped but never
actually released.

Although there are still commercial possibil-
ities and the Xanadu code was released as “open
source” (available to any programmer for non-
commercial use) in 1999, the legacy of Nelson’s
work on Xanadu is likely to remain subtle. By coin-
ing the term hypertext and showing how it might
work, Nelson inspired a number of implementa-
tions, including especially Tim Berners-Lee’s
World Wide Web. And the vision of a hypertext
system that truly allows both collaboration and the
ability to automatically track the history and re-
vision of text remains an intriguing possibility and
challenge. Indeed, Xanadu is perhaps closer to
what Berners-Lee originally envisioned for the
Web than to today’s Web with its limited hyper-
text, documents visually formatted like paper doc-
uments, and relatively passive reading.

Nelson continues his work today, teaching
at Keio University, Fujisawa, Japan (where he
received a Ph.D. in 2001), and the University
of Southampton in England.

Further Reading
Nelson, Ted. Computer Lib/Dream Machines. Rev. ed.

Redmond, Wash.: Microsoft Press, 1987.
Project Xanadu. Available on-line. URL: http://xanadu.

com. Downloaded on November 3, 2002.
“Ted Nelson Home Page.” Available on-line. URL:

http://ted.hyperland.com. Downloaded on
November 3, 2002.

� von Neumann, John
(1903–1957)
Hungarian/American
Mathematician, Computer Scientist

Every field, it seems, is graced with a few strik-
ingly original minds that seemingly roam at will

von Neumann, John 187

through the great problems of science. In their
wake, they leave theories and tools, each of
which would be a major achievement to mark
an entire career. Physics had Newton and
Einstein and chemistry and biology had Pasteur.
Mathematics and its infant offspring, computer
science, had John von Neumann. Von Neumann
made wide-ranging contributions in fields as di-
verse as pure logic, simulation, game theory, and
quantum physics. He also developed many of the
key concepts for the architecture of the modern
digital computer and helped design some of the
first successful machines.

Von Neumann was born on December 28,
1903, in Budapest, Hungary, to a family with
banking interests who also cultivated intellectual
activity. As a youth, he showed a prodigious tal-
ent for calculation and interest in mathematics,
but his father opposed his pursuing a career
in pure mathematics. Therefore, when von
Neumann entered the University of Berlin in
1921 and the University of Technology in Zurich
in 1923, he ended up with a Ph.D. in chemical
engineering. However, in 1926 he went back to
Budapest and earned a Ph.D. in mathematics with
a dissertation on set theory. He then served as a
lecturer at Berlin and the University of Hamburg.

During the mid-1920s, the physics of the
atom was a dramatic arena of scientific contro-
versy. Two competing mathematical descriptions
of the behavior of atomic particles were being
offered by Erwin Schrödinger’s wave equations
and Werner Heisenberg’s matrix approach. Von
Neumann showed that the two theories were
mathematically equivalent. His 1932 book, The
Mathematical Foundations of Quantum Mechanics,
remains a standard textbook to this day. Von
Neumann also developed a new form of algebra
in which “rings of operators” could be used to
describe the kind of dimensional space encoun-
tered in quantum mechanics.

Meanwhile, von Neumann had become in-
terested in the mathematics of games, and de-
veloped the discipline that would later be called

game theory. His “minimax theorem” described
a class of two-person games in which both play-
ers could minimize their maximum risk by fol-
lowing a specific strategy.

In 1930, von Neumann immigrated to the
United States, where he became a naturalized
citizen and spent the rest of his career. He taught
mathematical physics at Princeton University
until 1933, when he was made a Fellow at the
new Institute for Advanced Study in Princeton.
He served in various capacities there and as a
consultant for the U.S. government.

In the late 1930s, interest had begun to turn
to the construction of programmable calculators
or computers. The theoretical work of ALAN

John von Neumann developed automata theory
as well as fundamental concepts of computer
architecture, such as storing programs in memory
along with the data. This scientific Renaissance man
also did seminal work in logic, quantum physics,
simulation, and game theory. (Photo courtesy of
Computer Museum History Center)

188 von Neumann, John

TURING and ALONZO CHURCH had shown the
mathematical feasibility of automated calcula-
tion, although it was not yet clear whether
electromechanical or electronic technology was
the way to go.

Just before and during World War II, von
Neumann worked on a variety of problems in
ballistics, aerodynamics, and later, the design of
nuclear weapons. All of these problems cried out
for machine assistance, and von Neumann be-
came acquainted both with British research in
calculators and the massive Harvard Mark I pro-
grammable calculator built by HOWARD AIKEN.

A little later, von Neumann learned that two
engineers at the University of Pennsylvania, J.
PRESPER ECKERT and JOHN MAUCHLY, were work-
ing on a new kind of machine: an electronic dig-
ital computer called ENIAC that used vacuum
tubes for its switching and memory, making it
about 1,000 times faster than the Mark I.
Although the first version of ENIAC had already
been built by the time von Neumann came on
board, he served as a consultant to the project at
the University of Pennsylvania’s Moore School.

The earliest computers (such as the Mark I)
read instructions from cards or tape, discarding
each instruction as it was performed. This
meant, for example, that to program a loop, an
actual loop of tape would have to be mounted
and controlled so that instructions could be re-
peated. The electronic ENIAC was too fast for
tape readers to keep up, so it had to be pro-
grammed by setting thousands of switches to
store instructions and constant values. This te-
dious procedure meant that it was not practica-
ble for anything other than massive problems
that would run for many days.

In his paper “First Draft of a Report on the
EDVAC,” published in 1945, and his more
comprehensive “Preliminary Discussion of the
Logical Design of an Electronic Computing
Instrument” (1946) von Neumann established
the basic architecture and design principles of
the modern electronic digital computer.

Von Neumann’s key insight was that in fu-
ture computers the machine’s internal memory
should be used to store constant data and all in-
structions. With programs in memory, looping or
other decision making can be accomplished sim-
ply by “jumping” from one memory location to
another. Computers would have two forms of
memory: relatively fast memory for holding in-
structions, and a slower form of storage that
could hold large amounts of data and the results
of processing. (In today’s personal computers
these functions are provided by the random ac-
cess memory (RAM) and hard drive, respec-
tively.) The storage of programs in memory also
meant that a program could treat its own in-
structions like data and change them in response
to changing conditions.

In general, von Neumann took the hybrid de-
sign of ENIAC and conceived of a design that
would be all-electronic in its internal operations
and store data in the most natural form possible
for an electronic machine—binary, with 1 and 0
representing the on and off switching states and,
in memory, two possible “marks” indicated by mag-
netism, voltage levels, or some other phenome-
non. This logical design would be consistent and
largely independent of the vagaries of hardware.

Eckert and Mauchly and some of their
supporters later claimed that they had already
conceived of the idea of storing programs in
memory, and in fact they had already designed
a form of internal memory called a mercury de-
lay line. Whatever the truth in this assertion, it
remains that von Neumann provided the com-
prehensive theoretical architecture for the mod-
ern computer, which would become known as
the von Neumann architecture. Von Neumann’s
reports would be distributed widely and would
guide the beginnings of computer science re-
search in many parts of the world.

Looking beyond EDVAC, von Neumann,
together with HERMAN HEINE GOLDSTINE and
Arthur Burks, designed a new computer for the
Institute for Advanced Study that would embody

Newell, Allen 189

the von Neumann principles. That machine’s de-
sign would in turn lead to the development of
research computers for RAND Corporation, the
Los Alamos National Laboratory, and in several
countries, including Australia, Israel, and even
the Soviet Union. The design would eventually
be commercialized by IBM in the form of the
IBM 701.

In his later years, von Neumann continued
to explore the theory of computing. He studied
ways to design computers that could auto-
matically maintain reliability despite the loss of
certain components, and he conceived of an ab-
stract self-reproducing automaton, planting the
beginnings of the field of cellular automation.
He also advised on the building of Princeton’s
first computer in 1952 and served on the Atomic
Energy Commission, becoming a full commis-
sioner in 1954.

Von Neumann’s career would be crowned
with many awards reflecting his diverse con-
tributions to science and technology. These in-
clude the Distinguished Civilian Service
Award (1947), Presidential Medal of Freedom
(1956), and the Enrico Fermi Award (1956).
Von Neumann died on February 8, 1957, in
Washington, D.C.

Further Reading
Aspray, William. John von Neumann and the Origins of

Modern Computing. Cambridge, Mass.: MIT
Press, 1990.

Heims, S. J. John von Neumann and Norbert Wiener:
From Mathematics to the Technologies of Life and
Death. Cambridge, Mass.: MIT Press, 1980.

Lee, J. A. N. “John Louis von Neumann.” Avail-
able on-line. URL: http://ei.cs.vt.edu/~history/
VonNeumann.html. Updated on February 9,
2002.

Von Neumann, John. The Computer and the Brain.
New Haven: Yale University Press, 1958.

———. Theory of Self-Reproducing Automata. Edited
and compiled by Arthur W. Burks. Urbana:
University of Illinois Press, 1966.

� Newell, Allen
(1927–1992)
American
Computer Scientist

According to pioneer artificial intelligence re-
searcher Herbert Simon, there are four funda-
mental questions that science can ask: “the na-
ture of matter, the origins of the universe, the
nature of life, the workings of mind.” In a mov-
ing tribute to his colleague, Simon says that
Allen Newell devoted his long and productive
career to pursuing that last question. As Newell
would be quoted in a memoir by Herbert Simon:

The scientific problem chooses you; you
don’t choose it. My style is to deal with
a single problem, namely, the nature of
the human mind. That is the one prob-
lem that I have cared about throughout
my scientific career, and it will last me
all the way to the end.

In the dawning computer age, a concern with
the workings of the mind was very likely to bring
a researcher into contact with what would be-
come known as artificial intelligence research,
or AI. In AI, two strands are inextricably inter-
twined: the growing capabilities of machines and
their relationship to possible understandings of
human mental functioning.

Newell was born on March 19, 1927, in San
Francisco. His father was a distinguished profes-
sor of radiology at Stanford Medical School. In
an interview with Pamela McCorduck for her
1979 book Machines Who Think, Newell de-
scribes his father as

in many respects a complete man. . . .
He’d built a log cabin up in the moun-
tains. . . . He could fish, pan for gold,
the whole bit. At the same time, he
was the complete intellectual. . . . Within
the environment where I was raised, he

190 Newell, Allen

was a great man. He was extremely ide-
alistic. He used to write poetry.

This example of a wide-ranging life and intel-
lect would be carried into young Newell’s early
years as well. Spending summers at his father’s
log cabin in the Sierra Nevada range instilled in
him a love of the mountains, and for a time he
wanted to be a forest ranger when he grew up.
The tall, rugged boy also naturally excelled at
sports, especially football. At the same time
Lowell High School in San Francisco offered a
demanding academic program that encouraged
his intellectual interests.

When World War II began, Newell enlisted
in the navy. Following the war, he served on one
of the ships monitoring the nuclear tests at
Bikini Atoll, and was assigned the task of map-
ping the distribution of radiation in the area.
This kindled an interest in science in general
and physics in particular. When Newell left the
navy, he enrolled in Stanford University to study
physics. (He wrote his first scientific paper, on
X-ray optics, in 1949.)

While at Stanford, Newell took a course
from George Polya, a mathematician who had
done important work in heuristics, or methods
for solving problems. The idea that problem-
solving itself could be investigated scientifically
and developed into a set of principles would be a
key to the approach to artificial intelligence later.

While still a graduate student, Newell
also worked at RAND Corporation, a center of
innovative research, in 1949–50. There he en-
countered game theory, the study of the resolu-
tion of competing interests. (This field had been
established by JOHN VON NEUMANN and Oskar
Morgenstern earlier in the 1940s and would be-
come rather famous later through the life and
work of John Nash.) Newell’s work led him to
research on organization theory, which in turn
got him involved with experiments with indi-
viduals in groups who were given simulated
problems to solve.

This effort eventually turned into an air
force project at the Systems Research Laboratory
at RAND that created a simulation of an entire
air force early warning station—this at a time
when such stations were the key to defense
against an anticipated Soviet nuclear bomber
attack. Running such a large-scale simulation re-
quired creating simulated radar displays, and that
in turn meant Newell and his colleagues had to
harness the power of computers. Using a primi-
tive punch-card calculator, Newell devised a way
to print out continuously updated positions for
the blips on the simulated radar screen.

Fortunately, computer technology was rap-
idly advancing, with the Massachusetts Institute
of Technology, IBM, and others developing com-
puters that could store much more complex
programs electronically. With stored programs,
computers could modify data and even instruc-
tions in response to input conditions. In 1954,
Newell attended a RAND seminar in which
visiting researcher Oliver Selfridge described a
computer system that could actually recognize
and manipulate patterns, such as characters in
strings. According to Simon’s memoir, Newell ex-
perienced a “conversion experience” in which he
realized “that intelligent adaptive systems could
be built that were far more complex than any-
thing yet done.” He could do this by combining
what he had learned about heuristics (problem-
solving) with bits of simulation and game theory.

Newell decided to use chess as the test bed
for his ideas. Researchers such as ALAN TURING

and CLAUDE E. SHANNON had already made some
headway in writing chess programs, but these ef-
forts focused on a relatively mechanical, “brute
force” approach to generating and analyzing pos-
sible positions following each move. Newell, how-
ever, tried to simulate some of the characteristics
that a human player brings to the game, includ-
ing the ability to search not for the theoretically
best move but a “good enough” move, and the
ability to formulate and evaluate short- and long-
term goals. For example, a computer chess player

Newell, Allen 191

might have short-term goals, such as clearing a
file for its rook, as well as longer term goals such
as taking control of the king side in preparation
for an all-out attack on the opponent’s king. In
1955, Newell presented his ideas in a conference
paper titled “The Chess Machine: An Example
of Dealing with a Complex Task by Adaptation.”

That same year, Newell moved to Carnegie
Mellon University (CMU) in Pittsburgh. The
arena was changed from chess to mathematics,
and Newell, working with Herbert Simon and
Clifford Shaw, applied his ideas to writing a pro-
gram called the Logic Theory Machine (LTM)
which could prove mathematical theorems. By
1956, the program was running and demon-
strated several proofs. Interestingly, unlike the
usual procedure, it worked backward from a hy-
pothesized theorem to the axioms from which it
could be proven. In a paper, recounted in
Simon’s memoir, Newell described the LTM as
“a complex information processing system . . .
capable of discovering proofs for theorems in
symbolic logic. This system, in contrast to the
systematic algorithms . . . ordinarily employed in
computation, relies heavily on heuristic meth-
ods similar to those that have been observed in
human problem solving activity.” An important
part of the project was the development of
an “information processing language,” or IPL.
Unlike regular programming languages that
specify exact procedures, IPL was a higher-level
logical language that could later be turned into
machine-usable instructions. This way of out-
lining programs, called pseudocode, would be-
come a standard tool for software development.

By 1960, Newell and his collaborators had
created a more powerful program called the
General Problem Solver, or GPS. This program
could be given a specification for a “problem do-
main,” a set of operators (ways to manipulate the
elements of the problem domain), and guidelines
about which operators were generally applicable
to various situations. The program could then de-
velop a solution to the problem using appropri-

ate application of the operators. Then, in a further
refinement, the program was given the ability to
discover new operators and their appropriate
use—in other words, it could learn and adapt.

Meanwhile, the Newell team had also cre-
ated a chess-playing program called NSS (named
for the last initials of the researchers). While
NSS was not as strong a player as the “brute
force” programs, it successfully applied auto-
mated problem-solving techniques, making it an
“interesting” player. (Around this time, Newell
predicted that within a decade the chess cham-
pion of the world would be a computer. If one
accepts the 1997 victory of IBM’s Deep Blue
over Garry Kasparov as legitimate, Newell’s pre-
diction was off by about three decades.)

During the 1960s and 1970s, Newell delved
more deeply into fundamental questions of
“knowledge architecture”—how information
could be represented within a program in a way
such that the program might appear to “under-
stand” it. Newell’s “Merlin” program was an am-
bitious attempt to create a program that could
understand AI research itself, being able to
demonstrate and explain various other AI pro-
grams. Unfortunately, the program never worked
very well.

Besides AI research, Newell became in-
volved in a number of other areas. One was an
attempt to build a simulation of human cogni-
tive psychology called the Model Human
Processor. It was hoped that the simulation
would help researchers at the Xerox Palo Alto
Research Center (PARC) who were devising
what would become the modern computer user
interface with mouse-driven windows, menus,
and icons. The research was summarized in a
book titled The Psychology of Human-Computer
Interaction (1983).

Since the early 1970s, Newell had a lively
interest in ARPANET, which gradually became
the Internet. During the 1980s, Newell made im-
portant contributions to the CMU computer sci-
ence curriculum and department, and to the

192 Noyce, Robert

establishment of Andrew, the campus computer
network.

Finally, Newell attempted to draw together
the models of cognition (both computer and hu-
man) that he and many other researchers had
developed. His last problem-solving program,
SOAR, demonstrated ideas that he explained in
his book Unified Theories of Cognition. These
techniques included learning by grouping or
“chunking” elements of the problem, and the
ability to break problems into subgoals or sub-
problems and then working back up to the so-
lutions. Drawing on research from a number of
different universities, the SOAR project con-
tinues today. It remains a tribute to Newell, one
of whose maxims according to Simon was
“Choose a project to outlast you.”

Newell died on July 19, 1992. He had pub-
lished 10 books and more than 250 papers and
was the recipient of many honors. In 1975 he
received the Association for Computing
Machinery (ACM) Turing Award for his con-
tributions to artificial intelligence. In turn the
ACM, with sponsorship of the American
Association for Artificial Intelligence, estab-
lished the Newell Award for “contributions that
have breadth within computer science, or that
bridge computer science and other disciplines.”
Just before his death, Newell was awarded the
National Medal of Science.

Further Reading
Card, Stuart K., et al. The Psychology of Human-

Computer Interaction. Hillsdale, N.J.: Lawrence
Earlbaum Associates, 1983.

McCorduck, Pamela. Machines Who Think. San
Francisco: W. H. Freeman, 1979.

Newell, Alan. Unified Theories of Cognition. Cambridge,
Mass.: Harvard University Press, 1994.

Rosenblum, Paul S., et al. editors. The Soar Papers:
Research on Integrated Intelligence. Cambridge,
Mass.: MIT Press, 1993.

Simon, Herbert A. “Allen Newell, March 19,
1927–July 19, 1992.” Biographical Memoirs,

National Academy of Science. Available on-
line. URL: http://stills.nap.edu/readingroom/books/
biomems/anewell.html.

� Noyce, Robert
(1927–1990)
American
Inventor, Entrepreneur, Engineer

The region just south of San Francisco that be-
came informally known as Silicon Valley was born
in the 1960s when researchers discovered how to
build thousands of miniature components into
complex circuits inscribed on tiny bits of specially
treated silicon—a valuable relative of ordinary
sand. At the same time, a new corporate/techni-
cal culture was born, one driven largely by inno-
vation and gauged by merit rather than traditional
hierarchy. Robert Noyce played a key role in both
the technology and the culture.

Noyce was born on December 12, 1927, in
Burlington, Iowa. His father was a clergyman.
From an early age, Noyce liked to tinker with a
variety of machines. He enrolled in Grinnell
College in 1946. As an undergraduate physics
major, Noyce quickly acquired a reputation as a
prankster and a bit of a troublemaker—a local
farmer was enraged when he learned that Noyce
had stolen one of his pigs for a college luau.

In 1948, one of Noyce’s teachers had man-
aged to obtain a couple samples of an exciting
new invention, the transistor. The possibilities
of the compact device helped steer Noyce away
from pure science. When he graduated that same
year with a B.S. degree in physics and mathe-
matics, he went to the Massachusetts Institute
of Technology (MIT) to study for his Ph.D. in
electronics, which he received in 1953.

After his studies at MIT, Noyce worked at
first as a research engineer at Philco Corporation,
but in 1956 he joined William Shockley, one of
the inventors of the transistor, at his new com-
pany, Shockley Semiconductor Laboratories.

Noyce, Robert 193

However, Shockley’s abrasive style increasingly
grated on Noyce and many other engineers, and
he insisted on using germanium instead of a ma-
terial many considered superior—silicon.

As writer Tom Wolfe would later remark:

With his strong face, his athlete’s build,
and the Gary Cooper manner, Bob
Noyce projected what psychologists call
the halo effect. People with the halo ef-
fect seem to know exactly what they’re
doing and moreover make you want to
admire them for it. They make you see
the halos over their heads.

Thus when eight engineers decided to leave
Shockley’s company and strike out on their own,
they naturally turned to the charismatic Noyce
for leadership, even though he had not yet turned
30. In 1957, they started a new company,
Fairchild Semiconductor, a division of Fairchild
Camera and Instrument, which was seeking
larger involvement in the burgeoning solid state
electronics industry.

As engineering research manager at Fairchild,
Noyce, unlike Shockley, did not try to
micromanage. The corporate culture he created,
with cubicles instead of offices and a minimum
of hierarchy and “perks,” would become familiar
to the next generation of computer designers and
programmers.

In this atmosphere, research proceeded re-
markably quickly. The transistor had replaced the
bulky, power-consuming vacuum tube as an elec-
tronic switch and amplifier. The next step was to
form tiny transistors on the surface of a chip of
semiconducting material such as germanium or
silicon. This process could be compared to the
difference between carving words on a page and
using a printing press—if one also imagined
printing a whole page of text into a space the size
of the period at the end of a sentence!

The development of the miniature solid-
state technology had also received an urgent
boost: The same year Noyce and his colleagues
had gone into business, the Soviets launched
Sputnik. The Russian rockets were much larger
than the American ones: to compete, the United
States had to make its payloads much smaller,
and the integrated circuit would be the key.
Space and military applications would in turn
create technology that fed into the civilian sec-
tor, resulting in (among other things) more com-
pact, powerful calculators and computers.

In February 1959, Texas Instruments filed a
patent for the work of JACK KILBY, who had
developed an alternate approach to integrated
circuits, and Noyce followed with his version
in July of that year. From 1962 to 1967 the

Robert Noyce saw great possibilities for the transistor
shortly after its invention in 1948. However, his desire
for miniaturization soon went beyond separate
transistors to integrated circuits that could place
thousands of the devices on a single chip. In 1959,
Noyce and Jack Kilby both filed patents for the new
technology, and they share the credit for the invention
that made the modern desktop computer possible.
(Photo provided by Intel Corporation)

194 Nygaard, Kristen

companies engaged in a protracted legal battle
over whose patent was valid. The courts even-
tually ruled in favor of Noyce, and the compa-
nies agreed to license each other’s technology.
Meanwhile, Noyce had became Fairchild’s gen-
eral manager and vice president in 1959 and
from 1965 to 1968 served as group vice presi-
dent in the parent company.

The boom in what would soon become
known as Silicon Valley was well underway, and
investment money poured in as venture capital-
ists sought to start new semiconductor compa-
nies. Many of Fairchild’s best engineers accepted
these lucrative offers, and in June 1968 Noyce
himself left. Joining GORDON E. MOORE and
ANDREW S. GROVE, and funded by venture capi-
talist Arthur Rock, they founded Intel (short for
either “integrated electronics” or “intelligence.”)

Noyce at first concentrated Intel’s efforts on
developing integrated random access memory
(RAM) chips, which would replace the older
magnetic “core” memories. Intel’s 1103 RAM
chip launched a new generation of mainframes
and minicomputers.

As the 1970s progressed, miniaturization ef-
forts moved from the memory to the central pro-
cessing unit, or CPU, the part of the computer
that actually performs arithmetic and logical op-
erations. In 1971, Intel had developed the first
microprocessor, the Intel 4004, dubbed a “com-
puter on a chip.” By mid-decade, a more pow-
erful chip, the Intel 8080, would become the
most popular chip for the new personal computer
(PC), and the 1980s would confirm Intel’s mar-
ket dominance when the IBM PC established
the dominant PC architecture.

In 1978, Noyce retired from active involve-
ment in Intel and became chairman of the
Semiconductor Industry Association, devoting
his efforts to lobbying on behalf of the now pow-
erful industry as it struggled with Japanese com-
petition, eventually ceding the memory market
while maintaining dominance in microproces-
sors. In 1988, Noyce agreed to head Sematech,

a government-funded semiconductor research
consortium whose mission is to propel American
microchip technology ahead of equally ambi-
tious Japanese projects.

Noyce died on June 5, 1990. He received
numerous medals, including the Ballantine
Medal of the Franklin Institute (1966), the
Institute of Electrical and Electronics Engineers
(IEEE) Medal of Honor (1978) and Computer
Society Pioneer Award (1980); the Faraday
Medal of the Institution of Electrical Engineers
(1979); the National Medal of Science (1979)
and National Medal of Technology (1987).

In 2000, Jack Kilby received the Nobel Prize
in physics for his work on integrated circuits.
Most observers believe that Noyce would have
shared in this award, except that Nobel prizes
are not given posthumously.

Further Reading
Cortada, James W. Historical Dictionary of Data

Processing. Westport, Conn.: Greenwood Press,
1987.

Leibowitz, Michael R. “Founding Father: Robert
Noyce.” PC/Computing, May 1989, pp. 94 ff.

Wolfe, Tom. “The Tinkerings of Robert Noyce.”
Esquire, December 1983, pp. 346ff.

� Nygaard, Kristen
(1926–2002)
Norwegian
Computer Scientist

Many programmers today are familiar with object-
oriented programming, which breaks programs
into well-defined, modular parts that interact in
specified ways. The very popular language C++,
invented by BJARNE STROUSTRUP, uses object-
oriented principles, as does Smalltalk, an innova-
tive language created by ALAN C. KAY. But rela-
tively few people know that it was a Norwegian
computer scientist named Kristen Nygaard who
created Simula, the first object-oriented language.

Nygaard, Kristen 195

Nygaard was born on August 27, 1926, in
Oslo, Norway. He earned his master’s degree in
mathematics at the University of Oslo in 1956.
His master’s thesis was on the theory of “Monte
Carlo methods,” an approach to simulation
through the application of probability. By then
he had been working as a programmer and op-
erational research specialist for the Norwegian
Defense Research Establishment, where he
would continue until 1960. Nygaard had thus
acquired both the theoretical and practical pro-
gramming knowledge needed to develop com-
puter simulations.

At the time, however, computer simulations
were difficult to design and implement. This
was largely because existing languages such as
FORTRAN or even the better-structured Algol
were designed to carry out a series of procedures,
with the computer doing one thing at a time.
With simulations, however, the researcher is try-
ing to model the behavior of real-world objects,
which can be everything from subatomic parti-
cles to customers waiting in a bank line.

Nygaard began therefore to think in terms of
how to make the object rather than the procedure
the building block of programming. From 1961 to
1965 Nygaard, working with Ole-Johan Dahl, de-
veloped a programming language called Simula,
short for “Simulation Language.” This language
was built upon the procedural structure of Algol,
but included the ability to have procedures or “ac-
tivities” running at the same simulated time. Each
procedure would keep track of where it had left
off so it could be resumed, and the system as a
whole would coordinate everything.

This scheme made it much easier to simu-
late situations in which many objects are in-
volved, whether in a relatively simple structure
such as a queue (that is, a waiting line) or more
complex interactions. As Xerox and Apple re-
searcher Larry Tesler was quoted in a New York
Times obituary by John Markoff. “[Nygaard] un-
derstood that simulation was the ultimate ap-
plication of computers. It was a brilliant stroke.”

In 1967, Nygaard and Dahl announced an
improved version of the language, Simula 67.
The first Simula language had been essentially
grafted onto Algol. In Simula 67, however, the
concepts of the class and object were made ex-
plicit. A class is a description of the structure
and properties of a thing, for example, a circle.
It includes both internal information (such as
the circle’s radius) and procedures or capabilities
that can be used by the program (such as to draw
the circle on the screen). Once a class is defined,
particular instances (objects) of that class are
created and used by the program. For example,
several actual circle objects might be created
from the circle class and then drawn. Another
interesting feature in Simula 67 is the ability to
create a new class and have it “inherit” features
from a previous class, much as children acquire
features from their parents but then develop
their own distinctive identity.

Although Simula never achieved wide-
spread use, the papers describing the language
were very influential in computer science circles.
When Alan Kay, for example, read about
Simula, he not only developed his own object-
oriented language, Smalltalk, he and fellow re-
searchers at the Xerox Palo Alto Research
Center (PARC) began to create object-oriented
operating systems and in particular, the user in-
terface that would be adopted later by the Apple
Macintosh and then Microsoft Windows. Thus
the objects (menus, icons, windows) that per-
sonal computer (PC) users work with every day
are descendants of the object-oriented ideas
pioneered by Nygaard.

Meanwhile, Bjarne Stroustrup also encoun-
tered Nygaard’s ideas, and for him they repre-
sented a way to improve the popular C pro-
gramming language so that it could deal with
increasingly complex modern applications. He in-
corporated Nygaard’s key ideas of classes, objects,
and inheritance into his new C++ language.

Nygaard served briefly as a professor in
Århus, Denmark from 1975 to 1976, and then

196 Nygaard, Kristen

moved to the University of Oslo, where he
would be a professor until 1996. Nygaard con-
tinued his theoretical work, developing Delta, a
“general system description language” with Erik
Holbaek-Hanssen and Petter Haandlykken.

Nygaard’s interests increasingly expanded to
include the political and social spheres. Starting
in the early 1970s, he did research for Norwegian
trade union organizations and explored the so-
cial impact of technology. He was also one of the
country’s first major environmental activists,
heading the environment protection committee
for the Norwegian Association for the Protection
of Nature. Nygaard also became active in the
leadership of the left-wing Venstre party, and also
helped lead a successful movement opposing
Norway’s admission into the European Union,
which activists feared would weaken labor rights
and environmental protections.

As the founder of a key paradigm for pro-
gramming and language design, Nygaard received
numerous awards. In 1990, the Computer
Professionals for Social Responsibility presented
him with the Norbert Wiener Prize for his re-

search on the social impact of computer tech-
nology, and he also became a member of the
Norwegian Academy of Science. In 2001,
Nygaard and Ole-Johan Dahl received the
Association for Computing Machinery Turing
Award, and in 2002 the two researchers were
awarded the Institute of Electrical and Electronics
Engineers von Neumann Medal for their key
contributions to the development of object-
oriented programming. Nygaard died on August
9, 2002.

Further Reading
“Home Page for Kristen Nygaard.” Available on-line.

URL: http://www.ifi.uio.no/~kristen. Downloaded
on November 3, 2002.

Markoff, John. “Kristen Nygaard, 75, Who Built
Framework for Modern Computer Languages.”
[Obituary] New York Times, August 14, 2002,
pp. A19ff.

Wikipedia, the Free Encyclopedia. “Kristen Nygaard.”
Available on-line. URL: http://www.wikipedia.
org/wiki/Kristen_Nygaard. Updated on October
25, 2002.

197

� Olsen, Kenneth H.
(1926–)
American
Entrepreneur, Engineer

By the early 1960s, IBM had become the colos-
sus of the computer industry, dominating sales
of the large mainframe computers that were in-
creasingly handling the data processing needs of
large corporations and government agencies.
However, the transistor and later, the integrated
circuit microchip, would offer the possibility of
building smaller, yet powerful computers that
could be used by small companies, universities,
and other users who could not afford a tradi-
tional mainframe. Kenneth Olsen and Digital
Equipment Corporation (DEC) would pioneer
these new minicomputers and Olsen would lead
the company through the difficult decades to
come.

Olsen was born on February 20, 1926, in
Stratford, Connecticut, in a working-class com-
munity consisting largely of Norwegian, Polish,
and Italian immigrants. His father designed fac-
tory equipment, including a machine to make
safety pins and another to make universal joints
for cars. He held several patents and later be-
came a successful machine salesman.

As a boy, Olsen spent several summers work-
ing in a machine shop. A family friend, an elec-

O
trical engineer, supplied the boy with technical
manuals, which he was said to prefer to comic
books. Olsen also fixed friends’ and neighbors’
radios for free, and a girlfriend was quite im-
pressed when Olsen rigged a metal detector to
find a watch she had lost at the beach.

Olsen’s father taught a Bible class and his
mother played the piano at the local church.
The family’s fundamentalist Christian back-
ground would play an important part in shaping
Olsen’s personality, and religion would always
play a major role in his life. One of his high
school teachers described Olsen as “quiet,
dreary, and smart,” yet in adulthood he would
combine a solid, down-home manner with great
energy, flexibility, and ability to innovate.

Olsen was still in high school when the
United States entered World War II, but in 1944
he joined the navy, where he received his first
formal training in electronics technology. After
the war he entered the Massachusetts Institute
of Technology (MIT), where his intelligence and
drive enabled him to keep up with much better
prepared classmates. He earned his bachelor’s
degree in electrical engineering in 1950 and
master’s in 1952.

The success of JOHN MAUCHLY and J. PRESPER

ECKERT with ENIAC at the University of
Pennsylvania had put electronic digital comput-
ing in the technological forefront. MIT had

eagerly begun its own digital computer labora-
tory and Olsen joined its innovative research
projects including the powerful Whirlwind, a
computer designed as a real-time flight simulator
for the air force. Besides its innovative architec-
ture, Whirlwind also pioneered the use of inter-
active screen displays and controls. Olsen was put
in charge of a group that built a small-scale test
version of the machine’s innovative ferrite core
memory, a relatively fast, compact magnetic
memory that replaced cumbersome memory
tubes. This early work in making computers
smaller and more interactive helped lay the foun-
dation for his later development of the mini-
computer industry. Meanwhile, according to
Peter Petre’s biography of Olsen in Fortune mag-
azine, Jay Forrester, head of the lab, had found
Olsen to be a “first-class practical engineer.”

Olsen took a sudden six-month leave from
MIT in 1950, when he went to Sweden, to court
and marry Eeva-Liisa Aulikki Valve, a Finnish
exchange student he had met earlier. To support
himself while in Sweden, Olsen took a job as an
electrician in a ball-bearing factory. This com-
bination of decisiveness and persistence would
become familiar to Olsen’s colleagues and com-
petitors in the decades to come.

When the U.S. Air Force began to build
SAGE, a huge air defense control computer
complex in 1951, the work took place at an IBM
factory at Poughkeepsie, New York. Olsen was
sent there to monitor the project’s progress. In
doing so, Olsen was shocked at what he found
to be the IBM culture: as noted in his Fortune
biography, “It was like going to a Communist
state. They knew nothing about the rest of the
world, and the world knew nothing about what
was going on inside.” Olsen confided to Norman
Taylor, his MIT supervisor, that he had found
IBM’s production methods to be inefficient. “I
can beat these guys at their own game,” Olsen
declared.

After returning to MIT, Olsen learned about
another key technology when he led the project

to build a small experimental computer that used
transistors instead of vacuum tubes. By the late
1950s, engineers were well aware of the poten-
tial advantages of transistors, which were much
more compact than vacuum tubes and consumed
much less power. However, the reliability of the
various types of transistors being developed was
still in question. The “transistor computer”
helped demonstrate the viability of using all
solid-state technology.

Although Olsen had thought about the idea
of starting his own company, it was Harold
Ockenga, his pastor at the Park Street Church
in Boston, who spurred him to take action.
Although Ockenga was fundamentalist and con-
servative, he was quite willing to use the latest
technology to carry on a radio ministry. Ockenga
asked Olsen to revamp the church’s Sunday
school, which had become disorganized and neg-
lected. Olsen, who had no formal management
training, read all the management books he
could find at the local library. He organized com-
mittees to plan the redevelopment of the school
and applied marketing techniques to get the
congregation to give the necessary financial sup-
port. As a result of this successful campaign,
Olsen found not only that he had some man-
agement ability, but that he wanted to manage.

In 1957 Olsen, together with his brother
Stan and a colleague, Harlan E. Anderson,
founded the Digital Equipment Corporation
(DEC). Their starting capital consisted of
$70,000 from a venture capital company headed
by Harvard professor Charles Doriot, who would
also become a lifelong friend. DEC’s business
plan was to develop and market all-transistor
versions of the various circuit modules used
in engineering test equipment. The company
rented space in an abandoned mill and had no
office—just a battered desk next to the manu-
facturing equipment.

DEC had modest success with its compo-
nent business, but Olsen decided he wanted to
tackle the computer industry head on. As an

198 Olsen, Kenneth H.

Olsen, Kenneth H. 199

engineer he realized that there were many tasks,
such as monitoring scientific experiments, that
would benefit greatly from computerization.
However, a mainframe would be too expensive
and unnecessarily powerful for such applications.
Olsen conceived of building a simpler, more com-
pact computer using the transistor component
technology with which he had become familiar.

In 1960, DEC introduced the PDP-1. (PDP
stood for “programmed data processor,” a down-
to-earth name that avoided much of the intim-
idating baggage around the word computer.)
About the size of a large refrigerator, the PDP-
1 consumed much less power than a mainframe
and did not require a special air-conditioned
computer room. The new “minicomputer” could
thus go where computers had been unable to go
before, such as scientific laboratories, engineer-
ing workshops, and factory floors.

The PDP-1 cost only $120,000, a fraction of
the cost of an IBM mainframe. During the 1960s
and early 1970s, subsequent models became
more capable, yet cheaper. The PDP-8 became
the first mass-produced minicomputer in 1965,
and the PDP-11 of 1970 became a workhorse of
laboratories and college computing departments
where a new generation of computer scientists
and engineers was busy developing such inno-
vations as the UNIX operating system and the
Internet. Further, many of the architectural fea-
tures of the minicomputer, such as the use of
a single “motherboard” to hold components,
would be adopted in the later 1970s by the
builders of the first desktop computers.

DEC prospered through the 1970s, growing
from essentially a three-person company to one
with 120,000 employees, second only to IBM in
the computer industry. Olsen’s management
style, in which engineers formed more than 30
separate groups within the company, helped spur
innovation and flexibility. However, the 1980s
would bring new challenges.

According to writer David Ahl, Olsen had
told the audience at a 1977 World Future

Society meeting that “there is no reason for any
individual to have a computer in his home.”
Olsen and DEC had thus virtually ignored the
infant personal computer (PC) industry, while,
ironically, stolid IBM in 1980 had decided to
give its engineers free rein to build what became
the IBM PC.

Throughout the 1980s, the PC would be-
come more powerful and increasingly able to
take over applications that had previously re-
quired a minicomputer. At the same time, an-
other company, Sun Microsystems under SCOTT

G. MCNEALY, had developed desktop workstations
that used powerful new microprocessors. These
workstations, which ran UNIX, began also to
compete directly with DEC minicomputers.
Starting in 1982, when a market downturn com-
bined with falling earnings sent DEC stock
plunging, the company essentially went into a
decline from which it would never recover.

Despite having some success with its new
line of minicomputers using VAX (virtual ad-
dress extension, a flexible memory system), DEC
found itself increasingly in debt. Olsen’s once-
praised management techniques were increas-
ingly questioned. In particular, the many groups
within the company were criticized as leading to
incessant battles.

In 1983, the company was reorganized.
Olsen had believed that by giving managers re-
sponsibility for profitability as well as produc-
tion, he would make them mini-entrepreneurs
and motivate them to new heights of success.
Now, however, he concluded that the functions
needed to be separated. However, the destruc-
tion of a system of relationships that had been
built up over many years left many managers and
engineers confused and demoralized.

That same year, DEC introduced the
Rainbow, its belated entry into the PC market.
However, the system was premium priced and
worse, incompatible with the industry standard
that had been established by IBM. DEC turned
away from the desktop to focus on a new area,

networking. It promoted Ethernet networks for
offices. Networks were indeed a key trend of the
later 1980s, and industry analysts began to pro-
claim DEC’s recovery.

However, their optimism proved premature.
By 1992, DEC was again heavily in debt, and
Olsen retired in October of that year. The com-
pany was eventually bought by the PC maker
Compaq.

Despite the difficulties and controversy over
his management style, Olsen has been hailed by
Fortune magazine as “America’s most successful
entrepreneur.” DEC revolutionized the industry
with its minicomputer technology, and helped
create an alternative to the IBM corporate cul-
ture. Olsen has received many honors, includ-
ing the Founders Award from the National
Academy of Engineering (1982), the Institute of
Electrical and Electronics Engineers Founders
Medal (1993) and the National Medal of
Technology (also 1993).

Further Reading
Petre, Peter. “America’s Most Successful Entrepreneur.”

Fortune, October 27, 1986, pp. 24ff.
Rifkin, Glenn, and George Harrar. The Ultimate

Entrepreneur: The Story of Ken Olsen and Digital
Equipment Corporation. Chicago: Contemporary
Books, 1988.

� Omidyar, Pierre
(1967–)
French-Iranian/American
Entrepreneur, Inventor

In looking for the most important achievements
of the information age, it is natural to focus on
the technology—the chips and other compo-
nents, the operating systems, the programming
languages and software. But some of the most in-
teresting and far-reaching developments are as
much social as technical—bulletin boards, chat
rooms, and e-mail, for example. They change the

way people communicate and sometimes the
way they buy and sell. One example of the lat-
ter is the e-commerce pioneered by JEFFREY P.
BEZOS and Amazon.com. Another even more
remarkable example is the on-line auction pio-
neered by Pierre Omidyar and his hugely suc-
cessful eBay. On this website, millions of people
bid for millions of items, while thousands of sell-
ers run full- or part-time businesses selling art,
antiques, collectibles, and just about every con-
ceivable item.

Omidyar was born on June 27, 1967, in
Paris. His family is of Iranian descent, and the
name Omidyar means “he who has hope on his
side” in Farsi. When he was six years old,
Omidyar’s family moved to Washington, D.C.
His father, a doctor, accepted a position at Johns
Hopkins University Medical Center. Omidyar’s

200 Omidyar, Pierre

Pierre Omidyar’s eBay runs hundreds of thousands of
auctions every day in which millions of users bid on
virtually everything imaginable. Although e-commerce
has been hyped as a remarkable business opportunity,
so far only eBay has been a consistently profitable
“dot-com.” (Corbis SABA)

Omidyar, Pierre 201

parents then divorced, but the family kept in
close touch.

While working in his high school library,
Omidyar encountered his first computer and it
was love at first sight. He wrote a program to
catalog books and continued to delve into pro-
gramming, becoming what he later described as
a “typical nerd or geek,” often avoiding gym class
in favor of extra computer time.

After graduating from high school, Omidyar
enrolled at Tufts University to study computer
science. However, after three years he became
bored with classes and left school to go to Silicon
Valley, the booming high-tech area just south of
San Francisco. He helped develop a drawing pro-
gram for the new Apple Macintosh, but after a
year returned to Tufts finish his degree, which
he received in 1988. He then returned to the
valley to work for Claris, a subsidiary of Apple.
There he developed MacDraw, a very popular
application for the Macintosh.

By 1991, Omidyar had broadened his inter-
est in computer graphics and drawing to an
emerging idea called “pen computing.” This in-
volved using a special pen and tablet to allow
computer users to enter text in ordinary hand-
writing, which would be recognized and con-
verted to text by special software. Omidyar and
three partners formed a company called Ink
Development to work on pen computing tech-
nology. However, the market for such software
was slow to develop. The partners changed their
company name to eShop and their focus to
e-commerce, the selling of goods and services
on-line. However, e-commerce would not become
big business until the mid-1990s when the graph-
ical browser invented by MARC ANDREESSEN of
Netscape made the Web attractive and easy to
use. Meanwhile, Omidyar also did some graph-
ics programming for the movie effects company
General Magic.

Omidyar continued to think about the pos-
sibilities of e-commerce. The standard model
was to take an existing business (such as a book-

store) and put it on-line. Although electronic,
this kind of commerce essentially followed the
traditional idea of “one to many”—one business
selling goods or services to a number of cus-
tomers who had no particular relationship to one
another.

Omidyar, however, was interested in com-
munities and the idea of decentralized control
and access to the new technology. As he would
later tell author Gregory Ericksen:

The businesses that were trying to come
onto the Internet were trying to use the
Internet to sell products to people—
basically, the more people, the more
stuff that could be sold. Coming from a
democratic, libertarian point of view,
I didn’t think that was such a great idea,
having corporations just cram more
products down peoples’ throats. I wanted
to give the individual the power to be a
producer as well.

Omidyar learned more about Web pro-
gramming and then created a site called
AuctionWeb. (Popular lore has it that he did so
to buy and sell collectible Pez dispensers for his
fiancée, Pamela Wesley, but it was later admit-
ted that the story had been created for publicity
purposes.) AuctionWeb was based on a simple
idea: Let one user put up something for bid, and
have the software keep track of the bids until
the end of the auction, at which point the high-
est bid wins.

At first, Omidyar made AuctionWeb free for
both buyers and sellers, but as the site exploded
in popularity his monthly Internet service bill
shot up from $30 to $250. Omidyar then started
charging sellers 10 cents per item listed, plus a
few percent of the selling price if the item sold.
Much to his surprise, Omidyar’s mailbox started
filling up with small checks that added up to
$250 the first month, then $1,000, $2,000,
$5,000 and $10,000. As recounted to Gregory

Ericksen Omidyar recalls his amazement: “I re-
ally started [what became] eBay not as a com-
pany, but as a hobby. It wasn’t until I was nine
months into it that I realized I was making more
money from my hobby than [from] my day job.”

Seeking money to expand his company,
Omidyar received it from a surprising source—
Microsoft, which bought his former company,
eShop, with Omidyar receiving $1 million as his
share. Omidyar then analyzed the auction busi-
ness more closely. An auction is what econo-
mists call an “efficient market” in that it tends
to create prices that satisfy both seller and buyer.
However, traditional auctions have high over-
head costs because the auction company has to
get the goods from the seller (consigner), accu-
rately describe and publicize them in a catalog,
and pay for the auctioneer, related staff, and
shipping the goods to the winners.

Omidyar’s key insight was that the essence
of an auction was bringing seller and potential
buyers together. Thanks to the Web, it was now
possible to run an auction without cataloger,
auctioneer, or hotel room. The job of describing
the item could be given to the seller, and digi-
tal photos or scanned images could be used to
show the item to potential bidders. The buyer
would pay the seller directly, and the seller would
be responsible for shipping the item.

Because eBay’s basic overhead costs are
limited to maintaining the Web site and devel-
oping the software, the company could charge
sellers about 2 percent instead of the 10–15 per-
cent demanded by traditional auction houses.
Buyers would pay no fees at all. And because the
cost of selling is so low, sellers could sell items
costing as little as a few dollars, while regular
auction houses generally avoid lots worth less
than $50–$100.

With the aid of business partner and expe-
rienced Web programmer Jeff Skoll, Omidyar re-
vamped and expanded the site, renaming it eBay
(combining the “e” in electronic with the San
Francisco Bay near which they lived). Unlike

the typical e-commerce business that promised
investors profit sometime in the indefinite fu-
ture, eBay made money from the first quarter and
just kept making more.

When Omidyar and Skoll sought venture
capital funding in 1996, it was not that they
needed money but that they needed help in tak-
ing the next step to become a major company.
Through their relationship with a venture cap-
ital firm, Benchmark, they gained not only
$5 million for expansion but the services of Meg
Whitman, an experienced executive who had
compiled an impressive track record with firms
such as FTD (the flower delivery service), the
toy company Hasbro, Procter & Gamble, and
Disney. Although she was not initially impressed
by eBay, Whitman was eventually persuaded to
become the company’s vice president in charge
of marketing. eBay’s growth continued: By the
end of 1997 about 150,000 auctions were being
held each day.

In 1998 they decided to take the company
public. The timing was not good, since the Dow
Jones Industrial Average dropped several hun-
dred points while they were preparing their ini-
tial public offering. But in the “road show” in
which Omidyar and Whitman met with prospec-
tive investors, they were quietly effective. When
eBay stock hit the market it began to soar. As
writer Randall Stoss reported: “Down in San
Jose, eBay employees abandoned their cubicles
and formed a giant conga line, a snake of con-
joined, singing delirious adults that wound
through an ordinary-looking office in an ordi-
nary smallish office building in an ordinary-
looking business park.” By the time the trading
day ended, Omidyar’s stock was worth $750 mil-
lion and Whitman and the other key players had
also done very well.

Despite a worrisome system crash in June,
1999 was another year of impressive growth for
eBay. The company kept adding new auction
categories and special programs to reward high
volume “power sellers.” However, the company

202 Omidyar, Pierre

Omidyar, Pierre 203

had its critics. One possible weakness in the eBay
model was that it relied heavily on trust by the
seller and especially the buyer. What if a buyer
won an item only to receive something that was
not as described or worse, never received any-
thing at all? But while this happened in a small
number of cases, Omidyar through his attention
to building communities for commerce had de-
vised an interesting mechanism called feedback.
Both sellers and buyers were encouraged to post
brief evaluations of each transaction, categorized
as positive, neutral, or negative. A significant
number of negative feedbacks served as a warn-
ing signal, so both sellers and buyers had an in-
centive to fulfill their part of the bargain. As
Omidyar explained to Ericksen, “We encourage
people to give feedback to one another. People
are concerned about their own reputations, and
they are very easily able to evaluate other peo-
ple’s reputations. So it turns out that people kind
of behave more like real people and less like
strangers.” The system was not perfect, but the
continued patronage of several million users sug-

gested that it worked. (An escrow system was
also made available for more expensive items.)

As the 21st century dawned, Omidyar be-
came less personally involved with eBay. In 1998,
he stepped down as chief executive officer, and,
the post passed to Whitman. Omidyar and his
wife, Pam, turned their attention toward running
a foundation for helping community education
programs, particularly with regard to computer lit-
eracy. The couple also moved back to Omidyar’s
birthplace, Paris, to live in a modest home.

Further Reading
Cohen, Adam. “Coffee with Pierre: Creating a Web

Community Made Him Singularly Rich.” Time,
December 27, 1999, pp. 78ff.

———. The Perfect Store: Inside eBay. New York:
Little, Brown & Company, 2002.

Ericksen, Gregory K. Net Entrepreneurs Only: 10
Entrepreneurs Tell the Stories of Their Success. New
York: Wiley, 2000.

Sachs, Adam. “The Millionaire No One Knows.”
Gentlemen’s Quarterly, May 2000, p. 235.

204

� Packard, David
(1912–1996)
American
Entrepreneur, Engineer

The technological powerhouse known today as
Silicon Valley can be said to have begun in a
Palo Alto garage where two young engineers,
David Packard and WALTER REDLINGTON HEWLETT,
started Hewlett-Packard (HP) with a treasury of
$538. In 2000, the company and its affiliates
would have $60 billion in sales. In the inter-
vening decades, Packard created a new form of
corporate management for a new industry.

Packard was born on September 7, 1912, in
Pueblo, Colorado. His father was an attorney; his
mother, a teacher. Packard’s childhood was well
balanced, including the many outdoor activities
available in the small rural community, as well as
plenty of books. His favorites were those about
science and electrical technology. He built his
own radio while still in elementary school.
However, the tall, strapping Packard also excelled
in football, basketball, and track in high school.

After high school, Packard enrolled in
Stanford University to study electrical engi-
neering. At Stanford, he was president of his fra-
ternity, Alpha Delta Phi and a star on the track
team. He earned his bachelor’s degree with high
honors in 1934.

P
After taking some graduate courses at the

University of Colorado, Packard worked at
General Electric in Schenectady, New York. He
started out on the traditional electrical engi-
neering side, where a supervisor replied to his
interest in electronics by informing Packard that
the field would never amount to anything.
Undeterred, Packard managed to get assigned to
the vacuum tube electronics department.

Packard then decided to resume his graduate
studies, returning to Stanford for his master’s de-
gree, which he earned in 1939. Meanwhile, how-
ever, he had begun to talk with a college friend,
another electrical engineer named William R.
Hewlett, about the possibility of their going into
business together. While another famous pair,
STEVE JOBS and STEVE WOZNIAK, would make a
similar decision four decades later, they would do
so in the relatively healthy economy of the mid-
1970s. Packard and Hewlett, however, were still
in the throes of the Great Depression—by the late
1930s the economy had improved somewhat, but
was still very uncertain.

In 1939, Packard and Hewlett set up shop
in Packard’s garage, with that $538 in capital
and a smattering of secondhand equipment.
Hewlett won a coin toss, so the firm was dubbed
Hewlett-Packard. Packard seemed to gravitate
toward the business side, leaving most of the
technical work to Hewlett. They tinkered with

Packard, David 205

a variety of inventions, including an electronic
harmonica tuner, a weight reduction machine,
and a bowling alley foul-line indicator.

Their first successful product, however, was
an audio oscillator that Hewlett had written
about for his college thesis. This device offered
a superior and much less expensive way to
measure and generate signals needed for broad-
casting, the recording industry, and the defense
industry that was beginning to tool for war.

One of their first sales of the audio oscilla-
tor was to a new movie production studio run by
Walt Disney, who bought eight of the devices at
$71.50 each for use in the production of the
sound track of the groundbreaking animated film
Fantasia (1940). All in all, Hewlett-Packard
made $1,653 in profit their first year. They then
began a practice that the company would follow
for three decades: They promptly invested their
profit into expanding their production facilities
near Stanford, having outgrown the garage.
(The cordial relationship between the company
and Stanford, which had owned the land, was a
prototype for the close cooperation between ma-
jor universities and industry that would grow in
the 1950s and 1960s.)

During the 1950s, HP became a major pro-
ducer of electronic test instruments and compo-
nents, including parts for the growing computer
industry. In the 1960s, they increasingly inno-
vated, rather than just supplying the industry. By
the 1970s, the company had become well-known
for pioneering the electronic calculator (first
desktop, then hand-held), which soon banished
the slide rule from engineering offices.

But David Packard’s greatest contributions to
the industry would be managerial, not technical.
He was one of the first to establish the “open”
style that is characteristic of high-tech compa-
nies today. Workers had flexible cubicles and an
open floor plan—not even Packard and Hewlett
had private offices. Product development was not
directed from above, but carried out by small
groups that included their own engineers, re-

search and development, and marketing compo-
nents. In effect, the increasingly large company
was run as a group of smaller companies.
Employees were encouraged to make suggestions
and even drop in on a project to work awhile if
they felt they could make a contribution.

Another aspect of what became known as
the “HP way” was regard for employees’ welfare.
In an economic downturn, instead of laying off
some employees, everyone’s working hours and
thus salaries were cut, even those of Packard and
Hewlett. The level of employee benefits also set
an industry standard. Meanwhile, Packard roamed
freely through all the groups and projects—so
much so that his staff awarded him an honorary
“degree” of M.B.W.A., or “Master by Wandering
Around.”

Packard’s high profile as an executive made
him an increasingly important player in American
business. He served on the boards of such compa-
nies as National Airlines, General Dynamics
Corporation, and United States Steel, and finan-
cial firms such as Crocker-Citizens National Bank
and Equitable Life Insurance of America.

Business led to politics and Packard, a
Republican, was increasingly courted by party of-
ficials and officeholders. When Richard Nixon
became president in 1968, he appointed Packard
as deputy secretary of defense under Defense
Secretary Melvin Laird. Nixon supporters touted
Packard’s proven business success as bringing a
necessary discipline to the Pentagon’s $80 bil-
lion budget. However, critics pointed out that
HP was one of the nation’s biggest defense con-
tractors, to the tune of about $100 million a year.
They suggested that this would create a conflict
of interest. Packard responded by agreeing to put
his HP stock in a charitable trust that would ben-
efit from the proceeds and then return the shares
to him after he had left office.

Frustrated by Washington politics, Packard
left the post after only two years. In his autobi-
ography The HP Way, he wrote that working
with the Washington bureaucracy was “like

pushing one end of a 40-foot rope and trying to
get the other end to do what you want.” In 1972
Packard returned to HP as its chairman and chief
executive officer, although he and Hewlett re-
tired from active involvement in 1977.

During the 1980s, HP made a name for itself
in the area for which it is best known today—
the computer printer. The company’s ink jet and
laser printers continue to be very popular today.
Packard and Hewlett made a brief reappearance
at HP in 1990 when the company ran into
financial and organizational trouble. After reor-
ganizing the company without layoffs, Packard
retired for good in 1993. He died on March 26,
1996. In 2000, the company and its spinoff,
Agilent, had $60 billion in sales.

The significance of Packard and Hewlett’s
achievement can be found on a placard on that
original garage door, naming it as “the birthplace
of Silicon Valley.” By creating a culture that fos-
tered creativity and innovation, Packard did
much to shape the astonishing growth of the
electronics and computer industry in the last
decades of the 20th century.

Packard received numerous awards, includ-
ing the Gandhi Humanitarian Award and
Presidential Medal of Freedom, both awarded in
1988. Packard also created an ongoing gift to the
community in the form of the David and Lucille
Packard Foundation, which upon Packard’s
death was endowed with his entire fortune of
$6.6 billion. The foundation has a particular in-
terest in helping further the education of mi-
nority children. Separate bequests also went to
Stanford and to historically black colleges.

Further Reading
Allen, Frederick E. “Present at the Creation.” American

Heritage, vol. 52, May–June 2001, p. 21.
Moritz, Charles, ed. Current Biography Yearbook 1969,

pp. 318–321.
Packard, David. The HP Way: How Bill Hewlett and I

Built Our Company. New York: HarperBusiness,
1996.

� Papert, Seymour
(1928–)
South African/American
Computer Scientist

Lists, pattern-matching, control structures, recur-
sion . . . back in the 1960s when the discipline of
computer science was getting off the ground, such
esoteric topics were viewed as being only suitable
for professionals or at best, college students. But
a decade or so later, one could find elementary
school students exploring these and other con-
cepts by typing at a keyboard and moving a
“turtle” across the floor or the screen. They were
using LOGO, a special computer teaching lan-
guage invented by Seymour Papert, an artificial
intelligence pioneer and innovative educator.

Papert was born in Pretoria, South Africa,
on March 1, 1928. He attended the University
of Witwatersrand, earning his bachelor’s degree
in mathematics in 1949 and Ph.D. in 1952. As
a student he became active in the movement
against the racial apartheid system, which had
become official South African policy in 1948.
His unwillingness to accept the established or-
der and his willingness to be an outspoken ac-
tivist would serve him well later when he took
on the challenge of educational reform.

Papert went to Cambridge University in
England and earned another Ph.D. in 1952, then
did mathematics research from 1954 to 1958.
During this period artificial intelligence, or AI,
was taking shape as researchers began to explore
the possibilities for using increasingly powerful
computers to create or at least simulate intelli-
gent behavior. In particular, Papert worked closely
with another AI pioneer, MARVIN MINSKY, in
studying neural networks and perceptrons. These
devices made electronic connections much like
those between the neurons in the human brain.
By starting with random connections and rein-
forcing appropriate ones, a computer could actu-
ally learn a task (such as solving a maze) without
being programmed with instructions.

206 Papert, Seymour

Papert, Seymour 207

Papert’s and Minsky’s research acknowledged
the value of this achievement, but in their 1969
book Perceptrons they also suggested that this
approach had limitations, and that researchers
needed to focus not just on the workings of brain
connections but upon how information is actu-
ally perceived and organized.

This focus on cognitive psychology came to-
gether with Papert’s growing interest in the
process by which human beings assimilated
mathematical and other concepts. From 1958
to 1963, he worked with Jean Piaget, a Swiss psy-
chologist and educator. Piaget had developed a

theory of learning that was quite different from
that held by most educators. Traditional educa-
tional theory tended to view children as being
incomplete adults who needed to be “filled up”
with information.

Piaget, however, observed that children did
not think like defective adults. Rather, children
at each stage of development had characteristic
forms of reasoning that made perfect sense in
terms of the tasks at hand. Piaget believed that
children best developed their reasoning skills by
being allowed to exercise them freely and learn
from their mistakes, thus progressing naturally.
(This idea became known as constructivism.)

In the early 1960s, Papert went to the
Massachusetts Institute of Technology (MIT),
where he cofounded the MIT Artificial
Intelligence Laboratory with Minsky in 1965.
He also began working with children and de-
veloping computer systems better suited for al-
lowing them to explore mathematical ideas.
“Somewhere around that time,” Papert recalled
to MIT News, “I got the idea of turning tech-
nology over to children to see what would hap-
pen as they explored it.” The tool that he cre-
ated to enable this exploration was the LOGO
computer language.

First implemented in 1967, LOGO was
based on Lisp, a language developed by JOHN

MCCARTHY for AI research. LOGO has many of
the same powerful capabilities for working with
lists and patterns, but Papert simplified the
parenthesis-laden syntax and added other fea-
tures to make the language more “friendly.”

LOGO provided a visual, graphical envi-
ronment at a time when most programming re-
sulted in long, hard-to-read printouts. At the
center of the LOGO environment is the “tur-
tle,” which can be either a screen cursor or an
actual little robot that can move around on the
floor, tracing patterns on paper. Young students
can give the turtle simple instructions, such as
FORWARD 50 or RIGHT 100 and draw every-
thing from squares to complicated spirals. As

Seymour Papert created LOGO, a programming
language that makes sophisticated computer science
concepts accessible even to young children. He
believes that the key to education is “constructivism,”
or learning by doing, not the passive reception of
information. (Photo courtesy of Seymour Papert)

students continued to work with the system,
they could build more complicated programs by
writing and combining simple procedures. As
they work, the students are exploring and grasp-
ing key ideas such as repetition and recursion
(the ability of a program to call itself repeatedly).

As computer use became increasingly preva-
lent in daily life in the 1980s, a debate rose over
the concept of “computer literacy.” What would
the next generation need to learn about com-
puting to be sufficiently prepared for the coming
century? Some critics, such as CLIFFORD STOLL,
proclaimed that computers were overrated and
that what was needed was a rededication to qual-
ity interactions between teachers and students.
Many pragmatic educators, on the other hand,
decided that students needed to be prepared to
use software such as word processors and spread-
sheets (and in the later 1990s, the World Wide
Web), but they did not really need to understand
computers.

In creating LOGO, Papert believed that he
had demonstrated that “ordinary” students could
indeed understand the principles of computer
science and explore the wider vistas of mathe-
matics. But when he saw how schools were
mainly using computers for rote learning, he be-
gan to speak out more about problems with the
education system. Building on Piaget’s work,
Papert called for a different approach as de-
scribed in MIT News:

When we say we educate children, it
sounds like something we do to them.
That’s not the way it happens. We don’t
educate them. We create contexts in
which they will learn. The goal of our
research is to find ways of helping even
the youngest children take charge of
their own learning.

Papert often makes a distinction between
“instructivism,” or the imparting of information
to students, and “constructivism,” or a student

learning by doing. Using LOGO, a child learns
by trying things out, observing the results, and
making modifications.

Papert also helped with the development of
LEGO LOGO, a product that uses the popular
building toy to create robots that can then be
programmed using the LOGO language. LOGO
itself has also continued to evolve, including
versions that allow for parallel programming
(the creation of many objects that can operate
simultaneously) and can be used to create arti-
ficial life simulations.

Papert retired from MIT in 1998, but re-
mains very active, as can be seen from the many
websites that describe his work. Papert lives in
Blue-Hill, Maine, and teaches at the University
of Maine. He has also established the Learning
Barn, a laboratory for exploring innovative
ideas in education. Papert has worked on ballot
initiatives to have states provide computers for
all their students, as well as working with
teenagers in juvenile detention facilities. Today,
educational centers using LOGO and other
ideas from Papert can be found around the
world.

Papert has received numerous awards includ-
ing a Guggenheim fellowship (1980), Marconi
International fellowship (1981), the Software
Publishers Association Lifetime Achievement
Award (1994), and the Computerworld Smith-
sonian Award (1997).

Further Reading
Abelson, Harold, and Andrea DiSessa. Turtle

Geometry: The Computer as a Medium for Exploring
Mathematics. Cambridge, Mass.: MIT Press, 1981.

“The Connected Family Website.” Available on-line.
URL: http://www.connectedfamily.com. Down-
loaded on November 3, 2002.

Harvey, Brian. Computer Science Logo Style. 3 vols.
2nd ed. Cambridge, Mass.: MIT Press, 1997.

Papert, Seymour. The Children’s Machine: Rethinking
School in the Age of the Computer. New York: Basic
Books, 1993.

208 Papert, Seymour

Perlis, Alan J. 209

———. The Connected Family: Bridging the Digital
Generation Gap. Marietta, Ga.: Longstreet Press,
1996.

———. Mindstorms: Children, Computers and Powerful
Ideas. 2nd ed. New York: Basic Books, 1993.

“Papert Describes his Philosophy of Education.” MIT
News. Available on-line. URL: http://web.mit.edu/
newsoffice/++/1990/may16/23181.html. Posted
on May 16, 1990.

“Professor Seymour Papert.” Available on-line. URL:
http://www.papert.org. Downloaded on Novem-
ber 3, 2002.

� Perlis, Alan J.
(1922–1990)
American
Computer Scientist, Mathematician

The first computers were generally built by elec-
trical engineers and programmed by mathemati-
cians. As the machines became larger and more
capable and more extensive programs were de-
veloped, the pioneer programmers and computer
designers began to feel a need to develop a sys-
tematic body of theory and knowledge. They
gradually realized that if computing was going to
play a central part in so many human activities,
it would have to be understood and taught as a
science even while remaining more of an art for
many of its most skilled practitioners. Perhaps no
one played a greater part than Alan Perlis in the
establishment of computer science as a discipline.

Perlis was born on April 1, 1922, in
Pittsburgh, Pennsylvania. He attended the
Carnegie Institute of Technology (now Carnegie
Mellon University) and received a B.S. degree
in chemistry in 1943. He then switched his fo-
cus to mathematics, taking graduate courses at
both the California Institute of Technology
(Caltech) and the Massachusetts Institute of
Technology (MIT); he received an M.S. degree
(1949) and a Ph.D. (1950) in mathematics from
the latter institution.

The power of the new digital computing
technology was drawing mathematicians and sci-
entists into new research tracks, and Perlis was
no exception. Following his graduation he
worked as a research mathematician at the U.S.
Army’s Aberdeen Proving Grounds, and in 1952
he briefly joined Project Whirlwind, an ambi-
tious MIT program to develop a computer fast
and powerful enough to provide real-time simu-
lation of air defense operations.

Perlis then went to Purdue, where he was an
assistant professor of mathematics from 1952 to
1956. The director of the Statistical Laboratory
had decided that the engineering department
needed a computer. In the early 1950s, however,
a computer was not an “off the shelf ” item. Most
were custom built or early prototypes of later
commercial machines. Perlis recalled later in a
talk on computing in the Fifties reprinted in J.
A. N. Lee’s Computer Pioneers that early com-
puters could be strange indeed:

At Purdue we searched for one year for
a computer—the university having given
us $5,000 and a Purdue automobile to
travel through the eastern and middle-
western part of the country. We saw some
very strange computers. One I will never
forget was being developed by Facsimile
in New York City in a loft, in the Lower
East Side, on the third floor that one
reached by going up on a rickety freight
elevator. The machine was called the
Circle Computer. It had one important
attribute: there was a socket on the top
of the computer into which one could
plug an electric coffee pot. The Circle
Computer showed me that machines re-
ally do have a personality . . . the Circle
Computer would only run when one of
its designers was in the same room.

Eventually they found something called a
Datatron 205, which cost $125,000. Perlis and

his colleagues then had to design programming
courses around it, which was difficult because
the very concept of a programming language was
still quite tenuous. (GRACE MURRAY HOPPER, for
example, had just started to work with a com-
piler that could handle symbolic instruction
codes.) Perlis began working on a compiler of
his own, and he continued this work when he
moved to Carnegie in 1956.

Carnegie obtained an IBM 650, a machine
that marked IBM’s entry into computing, and
Perlis finished his compiler, which he called
IT, for Interpretive Translator. Perlis said that
he “will never forget the miracle of seeing that
first program compiled, when an eight-line
Gaussian elimination [mathematical procedure]
program was expanded into 120 lines of assem-
bly language.”

In 1957, Perlis designed and taught what
might well be the first true course in programming.
Earlier courses had started either with mathemat-
ics and then a machine implementation, or with
the study of the circuitry and operation of the ma-
chine itself. This new course talked about how
programs were organized and structured, and then
gave examples in both the higher-level compiler
language and assembly language.

Perlis’s courses were very popular with the
engineers who wanted to learn to program. Of
course there was only one computer, and thus,
as Perlis recounts in his historical talk

the way one used the computer in those
days was to line up on Monday morn-
ing to sign up for time in blocks half an
hour to an hour or even two hours af-
ter midnight. A cot was always kept
next to the computer, and in the air-
conditioning unit of the computer there
was a small chamber in which one kept
beer and Coca-Cola.

In the late 1950s, pioneer computer scien-
tists began to work together to create a new

higher-level structured programming language,
one that would eventually be called Algol. (Algol
in turn would inspire the Pascal and C languages
in the 1970s.) Perlis was appointed chairman of
the committee that created Algol. Meanwhile,
Perlis served as chairman of the Carnegie math-
ematics department and, from 1960 to 1964, di-
rector of the computation center.

In 1962, Perlis became cochairman of an in-
terdisciplinary program in systems and commu-
nications sciences. This led to support from the
Defense Department’s Advanced Research
Projects Agency (ARPA), which in 1965 funded
a graduate department of computer science.
Perlis served as its first chairman, until 1971.

In 1971, Perlis moved to Yale, where he built
that university’s computer science department
and served as its chairman in the latter half of
the decade. He also taught at the California
Institute of Technology. During this time he
wrote two authoritative textbooks, Introduction
to Computer Science (1972) and A View of
Programming Languages (1970), coauthored with
B. A. Galler.

Moving into the 1980s, Perlis served on a
number of national committees and advisory
boards in the National Science Foundation,
the Pennsylvania Council on Science and
Technology, and the National Research Council
Assembly. He was always an advocate for the
importance of computer science and an ex-
plainer of its relationship to other disciplines and
interests.

Perlis also kept his eye on the future. When
hearing talks about how chip technology was pro-
gressing, he commented, in his historical talk:
“Isn’t it wonderful that we can now pack 100
ENIACs in one square centimeter?” He predicted
that computers would soon become as ubiquitous
(and thus effectively invisible) as electric motors.
However, he also left his profession with a chal-
lenge: “Computers really are an explanation of
what we are. Our goal, of course, ought to be to
use this tool of our age . . . to help us understand

210 Perlis, Alan J.

Postel, Jonathan B. 211

why we are the way we are, today and forever.”
Perlis died on February 7, 1990.

As a pioneer, Perlis achieved a number of
“firsts”—he was the first president of the
Association of Computing Machinery (ACM),
the first winner of the ACM Turing Award, and
the first head of the Computer Science
Department at Carnegie Mellon University. He
was also elected to the American Academy of
Arts and Sciences (1973) and the National
Academy of Engineering (1976).

Further Reading
“Alan J. Perlis, 1922–1990: A Founding Father of

Computer Science as a Separate Discipline.”
Communications of the ACM, 33 (May 1990):
604ff.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Perlis, Alan. “Epigrams in Programming.” Available
on-line. URL: http://www.cs.yale.edu/homes/
perlis-alan/quotes.html. Downloaded on Novem-
ber 3, 2002.

� Postel, Jonathan B.
(1943–1998)
American
Computer Scientist

When a Web user types a URL (uniform resource
locator) into a browser, what ensures that the re-
quest will get to the website serving that page?
Just as a modern postal system could not work
without each building having a unique address,
the Internet could not work without a system to
assign names and numbers to sites so that soft-
ware can properly direct Web requests, e-mail,
and other messages. The aptly named Jonathan
Postel was largely responsible for setting up the
Internet address system, and he served as its man-
ager and steward for nearly 30 years.

Postel was born on August 6, 1943, in
Altadena, California. After attending Van Nuys

High School and a local community college, he
enrolled in the University of California, Los
Angeles (UCLA), where he earned a bachelor’s
degree in engineering in 1966 and a master’s de-
gree in 1968. He went on to receive his Ph.D.
from UCLA in 1974.

In the late 1960s, the Defense Department’s
Advanced Research Projects Agency (ARPA)
funded the development of a new kind of de-
centralized network that could be used to con-
nect many different kinds of computers. At
UCLA, Postel and his former high school class-
mate VINTON CERF worked on the software that
in October 1969 first connected a UCLA com-
puter with three other facilities to create the be-
ginnings of ARPANET, ancestor of the Internet.

At UCLA’s Network Management Center,
Postel helped run tests to monitor the perfor-
mance of the network. He also coauthored or
edited many of the documents called RFCs (re-
quest for comments) that announced proposed
specifications for everything from TCP/IP (the
basic protocol for routing packets on the
Internet) to SMTP (simple mail transfer proto-
col, the basis for virtually all e-mail used today).
Resisting all pressures from the government
agencies that funded the work, he insisted that
all RFCs be unclassified and publicly available.

In the early days, the numbers needed to tell
the software where to find each computer on the
network were assigned more or less arbitrarily—
for a time, Postel kept track of them on a piece
of paper. But as the number of machines on the
network grew to tens and then hundreds, such
an ad hoc system became impracticable. After
all, users could not be expected to remember a
number such as 63.82.155.27 to log onto a com-
puter or send someone e-mail.

Postel and his colleagues devised the do-
main name system (DNS) to translate between
the cryptic numbers used by the network and
names such as ucla.edu or well.com. By using
standard suffixes such as .com for commercial
(business) or .edu for educational institutions,

212 Postel, Jonathan B.

locations on the Internet could be better iden-
tified as well as separated into manageable
groups or domains. This division made it possi-
ble to allocate blocks of numbers to allow for a
smoother expansion of the network as new users
came on-line. Postel was also responsible for a
small but important feature—the “dot,” or pe-
riod, used to separate parts of a domain name.

Postel served as director of the Internet
Assigned Numbers Authority (IANA), which
managed the domain system until its role was
taken over in 1998 by the nonprofit Internet
Corporation for Assigned Names and Numbers
(ICANN). (Postel was also a founding member
of this organization.)

Postel’s involvement with the Internet went
well beyond the narrowly technical. He was al-
ways interested in the overall architecture of the
network and in its growing impact on society as
a whole. Postel was the first individual member
of the Internet Society, and founded the Internet
Architecture Board.

Postel joined the UCLA faculty in 1977 and
remained there for the rest of his life. His achieve-
ments may not have been as exciting as the
invention of a new kind of computer or the me-
teoric rise of an entrepreneur such as Bill Gates.
After his death, colleague Stephen Crocker was
quoted in the New York Times obituary as saying

Jon’s greatest achievement was operat-
ing IANA. It was a very central part of
the infrastructure. As mundane and as
simple as it seemed, he set policies that
made it very easy for the network to
grow. He minimized bureaucratic delay
and at the same time kept silly and non-
sensical things to a minimum.

Rather more poetically, Postel’s long-time
colleague Vinton Cerf said that “Jon has been
our North Star for decades. He was the Internet’s
Boswell [chronicler] and its technical con-
science.” In the last years of his life, the bearded
Postel, often described as looking like an Old
Testament prophet, quietly advocated for the ex-
pansion of the Internet and the seamless addi-
tion of new services such as shared applications
and teleconferencing.

Postel died on October 16, 1998, following
emergency heart surgery. Postel’s honors include
the SIGCOMM award (1998) and the Silver
Medal of the International Telecommunications
Union (1998). The Postel Center for Experi-
mental Networking (PCEN) has been estab-
lished to carry on Postel’s work by supporting
visiting scholars and research. The Internet
Society has also established the Jonathan B.
Postel Service Award.

Further Reading
Cohen, Danny. “Remembering Jonathan B. Postel:

Working with Jon.” Available on-line. URL:
http://www.postel.org/remembrances/cohen-story.
html. Posted on November 2, 1998.

Hafner, Katie. “Jonathan Postel Is Dead at 55; Helped
Start and Run Internet.” New York Times,
October 18, 1998, p. 139.

Internet Assigned Numbers Authority (IANA)
Available on-line. URL: http://www.iana.org.
Updated on August 25, 2002.

Postel Center for Experimental Networking (PCEN).
Available on-line. URL: http://www.postel.org/
jonpostel.html. Updated on January 7, 2002.

Rader, Ross William. “One History of DNS.”
Available on-line. URL: http://www.byte.org/
one-history-of-dns.pdf. Posted on April 25, 2001.

213

� Rabin, Michael O.
(1931–)
German/American
Mathematician, Computer Scientist

To most people, the chief virtues of the computer
are speed and accuracy. If a program is working
properly, it should give the right answer every
time. Indeed, most of the functions of business
and government assume and depend on the reli-
ability of their data processing systems. However,
a mathematician and computer scientist named
Michael Rabin has shown how previously insur-
mountable problems can be tackled if one allows
for randomness and is willing to accept results that
are highly probable but not absolutely guaranteed.

Rabin was born to a Jewish family in Breslau,
Germany (today Wroclaw, Poland) in 1931. His
father was a rabbi and professor at Breslau’s
Theological Seminary, who had come from Russia.
Rabin’s mother was also a scholar, with a Ph.D. in
literature, and was a writer of children’s stories.

Rabin’s father remembered the bitter history
of anti-Jewish pogroms in his native Russia.
When the Nazis took power in Germany in
1933, he went to the board members of the
Theological Seminary and urged them to move
the institution to Jerusalem. However, they, like
many German Jews, considered themselves to be
patriotic Germans and believed that their na-

R
tion needed them to provide a liberal, human-
ist voice. They refused to leave, but in 1935
Rabin and his family moved to Haifa in what
was then called Palestine.

In elementary school in Haifa, young Rabin
became fascinated with microbiology, having read
the classic book Microbe Hunters by Paul de Kruif.
However, when he was about 12, Rabin encoun-
tered two older students sitting in the corridor try-
ing to solve geometry problems. They had found
a problem they could not solve, and challenged
the younger boy to tackle it. Rabin solved the
problem and as he later told an interviewer, “the
fact that by pure thought you can establish a truth
about lines and circles by the process of proof,
struck me and captivated me completely.”

Rabin then came into conflict with his fa-
ther, who wanted him to attend religious school,
while he wanted to pursue science at the secu-
lar Reali School. He won the argument, and af-
ter graduating from the Reali School entered
Hebrew University in Jerusalem, earning a mas-
ter’s degree in mathematics in 1953.

At the time, people in Israel were just start-
ing to read about digital computing. Rabin be-
came interested in some of the field’s deepest and
most abstract questions. He read a paper by ALAN

TURING about computability, or the question of
what kinds of mathematical problems were the-
oretically solvable by a computer. He also learned

about the Turing Machine, a very simple com-
puter that can carry out only two operations
(making a mark or skipping a space), which
Turing had shown was fundamentally equivalent
to any future digital computer. The idea that
mathematics could not only solve problems but
determine whether problems could be solved
seemed amazingly powerful.

Israel did not yet have a computer center,
so Rabin decided to move to the United States.
He studied mathematics briefly at the University
of Pennsylvania but then went to Princeton to
earn a Ph.D. in logic, which he received in 1956.
There he studied under ALONZO CHURCH, who
had created a theory of computability that was
different from, but functionally equivalent to,
that of Turing. His doctoral thesis discussed the
computability of mathematical structures called
groups. By representing groups using a structure
similar to that of programs, he showed that for
many groups it was not possible to demonstrate
certain properties, such as whether the group is
commutative. (Ordinary numbers are commuta-
tive for multiplication because, for example, 3 ×
5 is equal to 5 × 3.)

In 1957, Rabin and another young mathe-
matician, Dana Scott, were given summer jobs
by IBM Research and allowed to pick any math-
ematical topic of interest. What they chose to
develop was a fundamentally different approach
to computing, which they called nondetermin-
ism. Computers normally followed defined steps
such that each time the same input was given,
the result should be the same. This can be mod-
eled by what is called a “finite state machine.”
A very simple example is a traffic light: If the
light is green, the next state will always be yel-
low, the next state after that red, and so on.

Rabin and Scott created a finite state ma-
chine in which the next state after a given input
was not forever fixed, but instead might be one
of several possibilities. Any path that leads to the
defined goal (or end state) is considered accept-
able. They then used set theory to show that any

given indeterminate state machine could be con-
verted to an equivalent determinate one.

Published in 1959, their paper proved to
have fundamental applications in many areas
of computer science, where programmers could
chose between deterministic and nondetermin-
istic algorithms depending on which seemed to
better represent the problem or application.

Meanwhile, Rabin continued his research
for IBM. Artificial intelligence pioneer JOHN

MCCARTHY gave him a problem in cryptography,
namely how to make it hard for an enemy to de-
termine the cipher key from an intercepted mes-
sage. Rabin realized that there were mathemat-
ical functions that are easy to do “forward” but
very hard to do backward. Using such a function
would make a code hard to crack. For example,
as JOHN VON NEUMANN had pointed out, a 100-
digit number squared results in a 200-digit num-
ber. If the middle 100 digits are then extracted,
the result is easy to calculate from the original
number (with a computer, anyway), but would
take virtually forever for someone else to deter-
mine, since that person would have to square all
the possible original numbers, extract the mid-
dle 100 digits, and compare them to the key.

This problem and solution interested Rabin
in another issue, computational difficulty or com-
plexity. That is, once a problem has been shown
to be theoretically solvable, how is the minimum
amount of work (mathematical operations) meas-
ured that it inherently requires? Working with
Michael Fischer of Yale University, Rabin devel-
oped tools that could be used to determine the
complexity of a given algorithm, and thus its prac-
ticality given the available computing resources.

Rabin’s work on complexity or difficulty also
had clear applications for cryptography, since it
provided tools for estimating how “strong” (hard
to crack) a particular code was. One of the most
common ways to create cryptosystems (code
schemes) in the mid to late 20th century in-
volved multiplying two very large prime num-
bers. This is because factoring such a number

214 Rabin, Michael O.

Rabin, Michael O. 215

(determining what numbers multiply together to
get that number) requires a huge amount of com-
putation—hopefully more than the would-be
code breaker can muster.

The problem of getting those large primes is
also difficult, though. For the past four centuries
or so, mathematicians have tried to come up
with a way to quickly test whether some large
number is prime, rather than having to painstak-
ingly examine large numbers of possible factors.
One test called the Reimann hypothesis seemed
to work well, but mathematicians had failed to
prove that it would always work.

In 1975, however, Rabin took a different ap-
proach to the problem. Building on previous
work by Gary Miller, he developed a “primality”
test where randomly chosen numbers between 1
and the number to be tested were tested for a
certain relationship. If any of the random num-
bers showed that relationship, the number in
question was not prime. But Rabin’s insight was
that if 150 of these random numbers were tested
and the relationship was not found, the number
was almost certainly a prime. (The probability
that it is not prime is less than one in 1 trillion
trillion trillion trillion trillion trillion trillion!)
Building his procedure into a program, Rabin’s
colleague Vaughan Pratt was able to quickly gen-
erate huge prime numbers such as 2400 – 593.

Besides finding an easy way to generate
primes for the public key cryptography, first de-
veloped in the mid-1970s, Rabin’s method had
shown the power of randomization and allowing
for a small possibility of error. Randomization is
used today in computer networks. If two machines
try to send a message at the same time, the result
is an electronic “collision.” If each machine is pro-
grammed simply to wait some fixed time n after
a collision, they will promptly collide again.
However, if the program calls for each machine
to generate a random number and wait that long,
chances are a new collision will be avoided.

In 2001, Rabin came up with a new way to
apply randomization to create what he believes

would be an uncrackable code. The inherent
weakness in most codes is that the longer a given
key is used, the more likely it is that “eaves-
droppers’ can crack the code by applying vari-
ous statistical techniques to the encrypted text.
Traditionally, therefore, intelligence agencies
used a “one-time pad” for their most sensitive
communications. As the name implies, it con-
tains a random key that is used only for one mes-
sage, making it virtually impossible to crack. The
disadvantage is that perhaps thousands of differ-
ent one-time pads must be generated, stockpiled,
and distributed for use. Besides being cumber-
some and expensive, such a system is vulnerable
to surreptitious diversion or copying of the pads.

Rabin has found an ingenious way to create
an electronic version of the one-time pad. Using
a set of rules, each of the two users selects ran-
dom digits from a variety of sources, such as sig-
nals from TV satellites, fluctuating values such
as stock averages, even the contents of websites.
This creates a unique key known only to the two
users, who can then use it to encode their com-
munications. Because a large number of random
bits of information have been selected from a
virtually infinite universe of ephemeral data, the
only way someone would break the code would
be to know when the key was being made and
record all those data streams—a virtually im-
possible task even given future ultrapowerful
supercomputers. If Rabin’s scheme achieves a
practical implementation, it would, of course,
represent a mortal threat to codebreakers such
as the National Security Agency.

In addition to his work on nondeterministic
algorithms, complexity, and randomization, Rabin
has also worked on parallel computing and the
MCB software environment for coordination of
computers in “clusters.” He has developed the
IDA (Information Dispersal Algorithm) as a way
to prevent data loss in case of system failure, and
has also applied his randomization techniques in
developing the protocols that maintain commu-
nication between the machines. Rabin and his

216 Raymond, Eric S.

doctoral student Doug Tygar also developed
ITOSS (Integrated Toolkit for Operating System
Security), a facility that could be added to cur-
rent or future operating systems to make them
harder to hack.

Today Rabin divides his time between
his posts as the Albert Einstein Professor of
Mathematics and Computer Science at Hebrew
University, Jerusalem, and as Thomas J. Watson
Sr. Professor of Computer Science at Harvard
University. In 1976, Rabin and Dana Scott shared
the Association for Computing Machinery Turing
Award for their work on nondeterministic state
machines.

Further Reading
Brooks, Michael. “Your Secret’s Safe: The Ephemeral

Signals That Flood the Airwaves Are the Key to
Creating an Uncrackable Code.” New Scientist,
173, no. 2324 (January 5, 2002): 20ff.

Kolata, Gina. “Order Out of Chaos in Computers;
Computer Scientists are Controlling Decision-
making with Probabilistic Methods, Which
Work in Cases Where Determinism Does Not.”
Science, 223 (March 2, 1984): 917ff.

“Dr. Michael O. Rabin.” Available on-line. URL:
http://www.sis.pitt.edu/~mbsclass/hall_of_fame/
rabin.htm. Downloaded on November 3, 2002.

Shasha, Dennis, and Cathy Lazere. Out of Their Minds:
The Lives and Discoveries of 15 Great Computer
Scientists. New York: Copernicus, 1995.

� Raymond, Eric S.
(ca. 1958–)
American
Programmer, Writer

The first generation of computer pioneers came
from traditional backgrounds in mathematics,
engineering, or science. They conceived of ideas,
invented machines, and sometimes founded cor-
porations. By the time a new generation was
born in the 1950s and 1960s, both computers
and the discipline of computer science were

available as a career. However, just as the chil-
dren of immigrants often strike out on their own
and create a new or hybrid culture, many of the
most interesting and innovative members of the
new generation valued the intense experience of
the machine over formal credentials and created
a new way of work and life. They proudly took
the name “hackers.” One of them was Eric
Steven Raymond, whose mastery of operating
systems and software was matched by his passion
and skill as an advocate for open source software.

Raymond was born in about 1958 in Boston
but has lived most of his life in Pennsylvania.
He studied mathematics and philosophy at the
University of Pennsylvania but did not receive
a degree. He is a self-taught programmer and
computer scientist with a prodigious knowledge
of languages and operating systems.

Raymond’s résumé begins with work at the
Wharton School Computer Center, where from
1977 to 1979 he worked in development and
support for software written in APL, LISP, and
Pascal. He also wrote his first computer manual
(for LISP). Later he would write numerous arti-
cles, books, and HOW-TO files on a wide vari-
ety of computer topics.

Raymond then worked from 1980 to 1981
at Burroughs Corporation’s Federal and Special
Systems Group, where he helped develop a va-
riety of artificial intelligence (AI) software, in-
cluding theorem-proving systems and specialized
languages. His next excursion was into the
burgeoning world of microcomputing where
Raymond, as lead programmer of MicroCorp, de-
veloped business software and a program that
translated specially structured BASIC state-
ments into code that would run with IBM
(Microsoft) BASIC.

In the mid-1980s, Raymond entered the
UNIX world, with which he would become most
closely associated. Moving between a variety of
IBM and DEC machines, Raymond developed
software and provided administration and sup-
port for both “flavors” (Berkeley BSD and
AT&T) of UNIX.

Raymond, Eric S. 217

Having acquired this breadth and depth of
experience, Raymond in 1985 launched a career
as an independent consultant. Besides writing a
variety of software for local businesses ranging
from a medical practice to a truck-dispatch serv-
ice, Raymond increasingly became both a student
(he often refers to himself as an anthropologist)
and an explainer and advocate for “hacker
culture.”

It is important to note at this point that the
term hacker as used by Raymond and by many of
the most creative innovators in the computer
field does not mean people who maliciously and
often mindlessly run cracking scripts or insert
viruses into computer systems. In his book The
Hacker Dictionary, Raymond defines the “hacker
ethic” as follows:

1. The belief that information-sharing is
a powerful positive good, and that it is an
ethical duty of hackers to share their ex-
pertise by writing open-source code and
facilitating access to information and to
computing resources wherever possible.
2. The belief that system-cracking for fun
and exploration is ethically OK as long
as the cracker commits no theft, vandal-
ism, or breach of confidentiality.

The second part of the definition is, of course,
somewhat controversial, and some hackers (in
Raymond’s sense) refrain from even benign sys-
tem-cracking. Hackers generally prefer to use the
term cracker to refer to the malicious hacker.

The Hacker’s Dictionary is occasionally re-
published in revised form, but the freshest copy
is available on-line as the Jargon File. It is an in-
valuable resource for researchers who want to
understand a culture that has developed over
decades. Like such groups as the Society for
Creative Anachronism, neopagans, shooting en-
thusiasts, and science fiction fans (all of which
include Raymond) the hacker culture has not
only its special jargon but its traditions, mores,
and worldview.

Raymond also made a major contribution
to revising the software infrastructure for the
Netnews newsgroup system. Although Netnews
has been largely eclipsed by the World Wide
Web, chat, and conferencing systems, it played
an important part in the 1980s and 1990s as a
channel for both technical information and the
forming of communities of interest.

From 1993 to 1999, Raymond organized and
ran a nonprofit project to provide free Internet
access to the citizens of Chester County,
Pennsylvania. His responsibilities ran the full
gamut from technical specifications to publicity
and fund-raising. Raymond also served from
1998 to 2002 as a member of the board of di-
rectors of VA Linux Systems, a major vendor of
the open source operating system.

Raymond is perhaps best known to the gen-
eral computing community as a tireless and ar-
ticulate advocate for open source software. The
open source movement, begun by RICHARD

STALLMAN and his GNU Project, is sometimes
mistakenly described as “free software.” Actually
open source is not about what software costs, but
what people are allowed to do with it. According
to a statement by Raymond on the Electronic
Frontier Foundation website

The core principles of open source are
transparency, responsibility, and auton-
omy. As open source developers, we
expose our source code to constant
scrutiny by expert peers. We stand be-
hind our work with frequent releases
and continuing inputs of service and in-
telligence. And we support the rights of
developers and artists to make their own
choices about the design and disposition
of their creative work.

In June 1998, Raymond and Bruce Perens
cofounded the Open Source Initiative, a non-
profit foundation that provides education about
the open source concept and certifies products
as open source. Raymond’s 1999 collection of

essays, The Cathedral and the Bazaar, recounts his
study and participation in the hacker culture and
describes what he considers to be the key bene-
fits of open source software. He believes that the
“bazaar,” or freewheeling market created by open
source, produces more robust and reliable soft-
ware than proprietary efforts even by companies
with the resources of a Microsoft. To capture it
in a slogan, Raymond says that “given enough
eyeballs, all bugs are shallow.” In other words,
with many people communicating and collabo-
rating, it is much easier to fix problems.

Raymond can often be found on panels at
science fiction conventions and he continues to
enjoy live-action role-playing, in which he, not
surprisingly, often portrays a formidable wizard.

Further Reading
Dibona, Chris. Open Sources: Voices from the Open

Source Revolution. Sebastopol, Calif.: O’Reilly,
1999.

Levy, Steven. Hackers: Heroes of the Computer
Revolution. Updated ed. New York: Penguin, 2001.

Open Source Initiative. Available on-line. URL:
http://www.opensource.org. Downloaded on De-
cember 5, 2002.

Raymond, Eric. The Cathedral and the Bazaar: Musings
on Linux and Open Source by an Accidental Revo-
lutionary. Revised and expanded ed. Sebastapol,
Calif.: O’Reilly, 2001.

———. The New Hacker’s Dictionary. 3rd ed.
Cambridge, Mass.: MIT Press, 1996. Also avail-
able on-line. URL: http://catb.org/~esr/jargon/
html. Updated in September 2002.

� Rees, Mina Spiegel
(1902–1997)
American
Mathematician, Computer Scientist

Although the applicability of computers to math-
ematics seems obvious now, it was not obvious
how computers could be made available to the

many mathematicians who could benefit from
them, or how they should be trained to use them.
At the same time, the role of mathematics in
technology and thus in society changed dramat-
ically in the course of the 20th century. Mina Rees
played an important role in that transformation.

Rees was born on August 2, 1902, in
Cleveland, Ohio. When she was only two, her
family moved to the Bronx, New York. Her ex-
cellent grades (particularly in math) led to her
eighth-grade teacher suggesting that she apply
to Hunter College High School, an advanced
program sponsored by Hunter College.

Rees graduated from high school as class vale-
dictorian, and then enrolled in Hunter College.
In 1923 she graduated with an A.B. degree in
mathematics with top academic honors (Phi Beta
Kappa and summa cum laude); she had also served
as student body president and yearbook editor.

While working on her master’s degree at
Columbia University, Rees taught mathematics
at Hunter College High School. In 1926 she re-
ceived her M.A. degree. She obtained a post as
an instructor at Hunter, while continuing her
studies at Columbia. However, she was quoted
in her obituary notice by the American
Mathematical Society (AMS) as recalling:

When I had taken four of their six-
credit graduate courses in mathematics
and was beginning to think about a the-
sis, the word was conveyed to me—no
official ever told me this but I learned—
that the Columbia mathematics depart-
ment was really not interested in hav-
ing women candidates for Ph.D’s. This
was a very unpleasant shock.

Undeterred, she enrolled at the University
of Chicago and earned her doctorate in 1931.
She then returned to Hunter as an assistant pro-
fessor, becoming an associate professor in 1940.

In 1943, during the height of World War II,
Rees left Hunter to work as a technical aide and

218 Rees, Mina Spiegel

Rees, Mina Spiegel 219

administrative assistant to the chief of the
Applied Mathematics Panel of the National
Defense Research Committee. There she learned
to recruit and manage other mathematicians
working on war-related projects, including ad-
vances in rocket propulsion and hydrofoil boats
as well as advances in computers. After the war,
Rees was awarded the President’s Certificate of
Merit and, from Great Britain, the King’s Medal
for Service in the Cause of Freedom.

After the war, Rees decided not to return to
academia. In 1946, she moved to the Office of
Naval Research. She ran its mathematical branch
and then from 1949 to 1953 served as director of
the Mathematical Sciences Division. Besides
helping to shape the navy’s technological trans-
formation in the electronic age, she also became
increasingly involved with computer-related proj-
ects such as the Whirlwind at the Massachusetts
Institute of Technology, the first real-time com-
puter simulator system. The Institute of Electrical
and Electronics Engineers (IEEE) Annals of the
History of Computing later recounted that

applied mathematics became a re-
spected and growing field . . . due in
large part to the influence of Rees, who
early on recognized that adequate fund-
ing was not being supplied by the
United States’ computing research and
development programs that focused on
using the appropriate mathematical
methods in connection with automatic
digital equipment. Rees helped to initi-
ate and provide funding in those areas.

Built under the overall direction of JAY W.
FORRESTER, Whirlwind was not simply a bigger,
faster computer, but one that required a new ar-
chitecture and the development and interfacing
of new data storage methods (including mag-
netic tape) and input/output devices such as
Teletypes. As the project continued, Rees be-
came more skeptical and concerned that the

engineers had insufficient mathematical expe-
rience to deal with the design issues. As the
project became bogged down and increasingly
over budget, Reese and naval officials consid-
ered trying to downsize the project. Whirlwind
did become operational in the early 1950s,
but only after the air force had joined in the
funding.

While working military projects, Rees be-
came involved in the new discipline of opera-
tions research, which can be described as the
scientific study of organizations and processes.
This field would become increasingly important

Mathematician Mina Rees bridged the gap between
the world of mathematics and the new technology of
computing. A gifted administrator, Rees oversaw
important early computer projects such as Whirlwind,
the first computer simulator with a graphics display
and interactive input. Later, she became the first
woman president of the prestigious American
Association for the Advancement of Science. (Courtesy
of the Graduate Center, City University of New York)

for the complicated logistics requirements of the
modern military.

Rees was not primarily a researcher, but she
did write and review papers on mathematical
subjects such as division algebra, statistics, and
in particular, computer applications. She also
wrote about the importance of mathematics
education and asserted that “it is the duty of
teachers and research mathematicians and ad-
ministrators to aid young people to discover the
richness and the variety of mathematics and to
seek careers that will provide intellectual as well
as other rewards.”

In an August 1954 article for Scientific
Monthly, Rees suggested that researchers prepare
to take advantage of a new generation of com-
puters:

In the immediate future, we may expect
smaller and faster machines with bigger
appetites—ability to handle more com-
plex problems more quickly. The devices
that will make such machines possi-
ble—the transistor, the magnetic-core
memory, the many types of miniaturized
components—are well understood.

Although she worked largely behind the
scenes, the mathematical and technical com-
munity was well aware of her vital role. In 1953,
the American Mathematical Society declared in
a resolution that

Under her guidance, basic research in
general, and especially in mathematics,
received the most intelligent and whole-
hearted support. No greater wisdom and
foresight could have been displayed and
the whole post-war development of
mathematical research in the United
States owes an immeasurable debt to the
pioneer work of the Office of Naval
Research and to the alert, vigorous and
farsighted policy conducted by Miss Rees.

That same year, Rees finally returned to ac-
ademia, becoming a full professor at Hunter
College and then dean of the faculty. When the
City University of New York (CUNY) estab-
lished its first graduate program in 1961, it hired
Rees to serve as its first dean. In 1968, she be-
came provost of the CUNY Graduate Division,
and the following year she became president of
the Graduate School and University Center. In
1972, the year she retired from CUNY, she be-
came the first woman president of the prestigious
American Association for the Advancement of
Science (AAAS). The New York Times took that
occasion to comment that

the examples set by Marie Curie, Lisa
Meitner, Margaret Mead, Mina Rees
and many others prove that scientific
creativity is not a male monopoly. The
gross under-representation of women
among scientists implies, therefore, a
very substantial loss for American soci-
ety through its failure fully to utilize all
the talented women who might have
gone into science.

In 1962, Rees received the first Award for
Distinguished Service to Mathematics of the
American Mathematical Society. She was also
awarded the Public Welfare Medal of the
National Academy of Sciences in 1983 and the
IEEE Computer Society Pioneer Award (1989).
Rees died on October 25, 1997, at the age of 95.

Further Reading
Association for Women in Mathematics. “Biographies

of Women Mathematicians.” Available on-line.
URL: http://www.agnesscott.edu/lriddle/women/
women.htm. Updated on August 27, 2002.

Cortada, James W. Historical Dictionary of Data
Processing Biographies. Westport, Conn.: Green-
wood Press, 1987.

Green, Judy, et al. “Mina Spiegel Rees (1902–1997).”
Notices of the AMS, vol. 45, August 1998.

220 Rees, Mina Spiegel

Rheingold, Howard 221

Available on-line. URL: http://www.ams.org/
notices/199807/memorial.rees.pdf.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Rees, Mina. “The Computing Program of the Office
of Naval Research, 1946–53.” Annals of the
History of Computing, 4, no. 2 (1982): 102–120.

� Rheingold, Howard
(1947–)
American
Writer

On his website, Howard Rheingold says that he
“fell into the computer realm from the typewriter
dimension, then plugged his computer into his
telephone and got sucked into the net.” A pro-
lific writer, explorer of the interaction of human
consciousness and technology, and chronicler of
virtual communities, Rheingold has helped peo-
ple from students to businesspersons to legisla-
tors understand the social significance of the
Internet and communications revolution.

Rheingold was born in 1947 in Tucson,
Arizona. He was educated at Reed College in
Portland, Oregon, but has lived and worked for
most of his life in the San Francisco Bay Area. As
he recalled later in a speech, Rheingold bought
his first personal computer (PC) mainly because
he thought word processing would make his work
as a writer easier. In 1983, he bought a modem
that cost $500 and ran at the barely adequate
speed of 1200 baud, or bits per second. He was
soon intrigued by the “rich ecology of the thou-
sands of PC bulletin board systems that ran off
single telephone lines in people’s bedrooms.”
Interacting with these often tiny cyberspace vil-
lages helped Rheingold develop his ideas about the
nature and significance of virtual communities.

In 1985, Rheingold joined the WELL
(Whole Earth ’Lectronic Link), a unique and re-
markably persistent community that began as an
unlikely meeting place of Deadheads (Grateful

Dead fans) and computer hackers. Compared to
most bulletin boards, the Well was more like the
virtual equivalent of the cosmopolitan San
Francisco Bay Area. Later, Rheingold recalled in
a speech on BBC Online that

In the fifteen years since I joined the
WELL, I’ve contributed to dozens of
such fund-raising and support activities.
I’ve sat by the bedside of a dying, lonely
woman, who would have died alone if
it had not been for people she had pre-
viously known only as words on a
screen. I’ve danced at four weddings of
people who met online. I’ve attended
four funerals, and spoke at two of them.

The sum and evaluation of these experiences
can be found in Rheingold’s seminal book The
Virtual Community (1993; revised 2000), which
represents both a participant’s and an observer’s
tour through the on-line meeting places that had
begun to function as communities. In addition to
the WELL, Rheingold also explores MUDs
(multi-user dungeons) and other elaborate on-
line fantasy role-playing games; NetNews (also
called Usenet) groups; chat rooms; and other
forms of on-line interaction. (Toward the end of
the 1990s, much conferencing became Web
based, and a new phenomenon, the web log, or
“blog,” allowed people to maintain a sort of in-
teractive diary. Rheingold’s use of his website for
communicating his thoughts pretty much antic-
ipates the blog.)

Suggesting that the question of whether on-
line communities are “real” communities may be
missing the point. Rheingold chronicled the ro-
mances, feuds (“flame wars”), and growing pains
that made the WELL seem much like a small
town or perhaps an artist’s colony that just hap-
pened to be in cyberspace. Rheingold manages
the Brainstorms Community, a private webcon-
ferencing community that allows for thoughtful
discussions about a variety of topics.

Around 1999, Rheingold started noticing the
emergence of a different kind of virtual commu-
nity—a mobile, highly flexible, and adaptive one.
In his 2002 book Smart Mobs, Rheingold gives
examples of groups of teenagers coordinating their
activities by sending each other text messages
on their cell phones. In Seattle, Washington, in
1999, anti–World Trade Organization protesters
used mobile communications and websites to
rapidly shift and “swarm” their objectives, often
outflanking police who relied upon traditional
communications and chains of command.
Rheingold believes that the combination of mo-
bile and network technology may be creating a
social revolution as important as that triggered by
the PC in the 1980s and the Internet in the 1990s.

Rheingold has written many books and ar-
ticles. In 1994 he updated the Whole Earth
Catalog, a remarkable resource book by Stewart
Brand that had become a bible for the move-
ment toward a more self-sufficient life in the
1970s. Like LEE FELSENSTEIN and TED NELSON,
Rheingold saw the computer (and computer
networks in particular) as a powerful tool for cre-
ating new forms of community. The original edi-
tion of his book Tools for Thought (1985) with
its description of the potential of computer-
mediated communications seems prescient today
after a decade of the Web. Rheingold’s Virtual
Reality (1991) introduced the immersive tech-
nology that was being pioneered by such re-
searchers as JARON LANIER.

Another track that Rheingold pursued in
the 1980s was the exploration of consciousness
and cognitive psychology. His books in this area
include Higher Creativity (written with Willis
Harman, 1984), The Cognitive Connections (writ-
ten with Howard Levine, 1986) and Exploring
the World of Lucid Dreaming (written with
Stephen LaBerge, 1990).

Rheingold ventured into publishing in
1994, helping design and edit HotWired, which
he soon quit “because I wanted something more
like a jam session than a magazine.”

In 1996, Rheingold launched Electric
Minds, an innovative company that tried to of-
fer virtual community-building services while at-
tracting enough revenue from contract work and
advertising to become self-sustaining and prof-
itable in about three years. He received financ-
ing from the venture capital firm Softbank. After
only a few months, the company was out of busi-
ness. Rheingold believes that what he learned
from the experience is that venture capitalists,
who want a quick and large return on the in-
vestment were “not a healthy way to grow a so-
cial enterprise.”

Rheingold then started a more modest ef-
fort, Rheingold Associates, which “helps com-
mercial, educational, and nonprofit enterprises
build on-line social networks and knowledge
communities.”

According to Rheingold and coauthor Lisa
Kimball, some of the benefits of creating such
communities include the ability to get essential
knowledge to the community in times of emer-
gency, to connect people who might ordinarily
be divided by geography or interests, to “amplify
innovation” and to “create a community mem-
ory” that prevents important ideas from getting
lost. Rheingold continues to both create and
write about new virtual communities.

Further Reading
Hafner, Katie. The Well: A Story of Love, Death & Real

Life in the Seminal Online Community. New York:
Carroll & Graf, 2001.

“Howard Rheingold.” Available on-line. URL:
http://www.rheingold.com. Updated on July 31,
2002.

Kimball, Lisa, and Howard Rheingold. “How Online
Social Networks Benefit Organizations.” Avail-
able on-line. URL: http://www.rheingold.com/
Associates/onlinenetworks.html. Downloaded on
December 2, 2002.

Rheingold, Howard. “Community Development in
the Cybersociety of the Future.” BBC Online.
Available on-line. URL: http://www.partnerships.

222 Rheingold, Howard

Ritchie, Dennis 223

Together with Kenn Thomson, Dennis Ritchie
developed the UNIX operating system and the C
programming language, two of the most important
developments in the history of computing. (Photo
courtesy of Lucent Technologies’ Bell Labs)

org.uk/bol/howard.htm. Downloaded on
November 3, 2002.

———. Tools for Thought: The History and Future
of Mind-Expanding Technology. 2nd rev. ed.
Cambridge, Mass.: MIT Press, 2000.

———. The Virtual Community: Homesteading on the
Electronic Frontier. Rev. ed. Cambridge, Mass.:
MIT Press, 2000. (The first edition is also avail-
able on-line. URL: http://www.rheingold.com/
vc/book.)

Richards, Dan. “The Mind of Howard Rheingold.”
Mindjack, Issue 9/1/1999. Available on-line. URL:
http://mindjack.com/interviews/howard1.html.
Downloaded on January 28, 2003.

The WELL. Available on-line. URL: http://www.well.
com. Downloaded on November 3, 2002.

� Ritchie, Dennis
(1941–)
American
Computer Scientist

Although most personal computer (PC) users are
familiar with Windows or perhaps the Macintosh,
many computers in universities, research labora-
tories, and even Web servers and Internet service
providers run the UNIX operating system.
Together with Ken Thompson, Dennis Ritchie
developed UNIX and the C programming lan-
guage—two tools that have had a tremendous im-
pact on the world of computing for three decades.

Ritchie was born on September 9, 1941, in
Bronxville, New York. He was exposed to com-
munications technology and electronics from an
early age because his father was director of the
Switching Systems Engineering Laboratory at
Bell Laboratories. (Switching theory is closely
akin to computer logic design.) Ritchie attended
Harvard University and graduated with a B.S.
degree in physics. However, by then his inter-
ests had shifted to applied mathematics and in
particular, the mathematics of computation,
which he later described as “the theory of what

machines can possibly do.” For his doctoral the-
sis he wrote about recursive functions—recur-
sion is the ability of a function to invoke itself
repeatedly until it reaches a limiting value. This
topic was proving to be important for the defi-
nition of new computer languages in the 1960s.

In 1967, Ritchie decided that he had had
enough of the academic world. Without finish-
ing the requirements for his doctorate, he started
work at Bell Labs, his father’s employer. Bell Labs
is an institution that has made a number of key
contributions to communications and informa-
tion theory.

By the late 1960s, computer operating
systems had become increasingly complex and

unwieldy. As typified by the commercially suc-
cessful IBM System/360, each operating system
was proprietary, had many hardware-specific
functions and tradeoffs in order to support a fam-
ily of upwardly-compatible computer models,
and was designed with a top-down approach.
This meant that software written for an IBM
computer, for example, would not run on a
Burroughs computer without the necessity of
changing large amounts of system-specific code.

During his graduate studies, however, Ritchie
had encountered a different approach to design-
ing an operating system. A new system called
Multics was being designed jointly by Bell Labs,
the Massachusetts Institute of Technology (MIT),
and General Electric. Multics was quite different
from the batch-processing world of mainframes:
It was intended to allow many users to share a
computer. Ritchie had also done some work with
MIT’s Project Mac. The MIT computer students,
the original “hackers” (in the positive meaning of
the term), emphasized a cooperative approach to
designing tools for writing programs. This, too,
was quite different from IBM’s highly structured
and centralized approach.

Unfortunately, the Multics project grew in-
creasingly unwieldy. Bell Labs withdrew from the
Multics project in 1969, and Ritchie and his col-
league Ken Thompson then decided to apply
many of the same principles to creating their own
operating system. Bell Labs did not want to sup-
port another operating system project, but they
eventually let Ritchie and Thompson use a DEC
PDP-7 minicomputer. Although small and al-
ready obsolete, the machine did have a graphics
display and a Teletype terminal that made it suit-
able for the kind of interactive programming they
preferred. They decided to call their system
UNIX, punning on Multics by suggesting some-
thing that was simpler and better integrated.

Instead of designing from the top down,
Ritchie and Thompson worked from the bottom
up. They designed a way to store data on the
machine’s disk drive and gradually wrote the

necessary utility programs for listing, copying,
and otherwise working with the files. Thompson
did the bulk of the work on writing the operat-
ing system, but Ritchie made key contributions
such as the idea that devices (such as the key-
board and printer) would be treated the same
way as other files. Later, he reconceived data
connections as “streams” that could connect not
only files and devices but applications and data
being sent using different protocols. The ability
to flexibly assign input and output, as well as to
direct data from one program to another, would
become hallmarks of UNIX.

When Ritchie and Thompson successfully
demonstrated UNIX, Bell Labs adopted the sys-
tem for its internal use. UNIX turned out to be
ideal for exploiting the capabilities of the new
PDP-11 minicomputer. As Bell licensed UNIX
to outside users, a unique community of user-
programmers began to contribute their own
UNIX utilities. This decentralized but coopera-
tive culture would eventually lead to the advo-
cacy of freely shared “open source” software by
activists such as RICHARD STALLMAN and ERIC S.
RAYMOND.

In the early 1970s, Ritchie also collaborated
with Thompson in creating C, a streamlined ver-
sion of the earlier BCPL and CPL languages. C
was a “small” language that was independent of
any one machine but could be linked to many
kinds of hardware, thanks to its ability to directly
manipulate the contents of memory. C became
tremendously successful in the 1980s. Since
then, C and its offshoots C++ and Java have
become the dominant languages used for most
modern programming.

Ritchie also played an important role in
defining the standards for C and in promoting
good programming practices. He coauthored the
seminal book The C Programming Language with
BRIAN KERNIGHAN.

Ritchie and Thompson still work at Bell Labs’
Computing Sciences Research Center. (When
AT&T spun off many of its divisions, Bell Labs

224 Ritchie, Dennis

Roberts, Lawrence 225

became part of Lucent Technologies.) Ritchie has
developed an experimental operating system
called Plan 9 (named for a cult science-fiction
movie). Plan 9 attempts to take the UNIX phi-
losophy of decentralization and flexibility even
further, and is designed especially for networks
where computing resources are distributed.

Ritchie has received numerous awards, of-
ten given jointly to Thompson. These include
the Association for Computing Machinery
Turing Award (1985), the Institute of Electrical
and Electronics Engineers Hamming Medal
(1990), the Tsutomu Kanai Award (1999), and
the National Medal of Technology (also 1999).

Further Reading
“Dennis Ritchie Home Page.” Available on-line. URL:

http://www.cs.bell-labs.com/who/dmr. Updated
in October 2002.

Kernighan, B. W., and Dennis M. Ritchie. The C
Programming Language. 2nd ed. Upper Saddle
River, N.J.: Prentice Hall, 1989.

Lohr, Steve. Go To. New York: Basic Books, 2001.
Ritchie, Dennis M., and Ken Thompson. “The Unix

Time-Sharing System.” Communications of the
ACM 17, no. 7 (1974): 3365–3375.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

� Roberts, Lawrence
(1937–)
American
Computer Scientist

The year 1969 saw the culmination of one great
technical achievement and the beginnings of
another. In July of that year, humans first set foot
on the Moon. In October, a group of researchers
successfully sent a message between computers
using a new kind of networking system. As with
the Apollo Project, that system, which eventu-
ally became the worldwide Internet, was the
product of a number of people. These include

LEONARD KLEINROCK, who came up with the use
of packet-switching to transmit messages be-
tween computers, and VINTON CERF and ROBERT

KAHN, who created the actual transmission rules,
or protocol, called TCP/IP. But the overall de-
sign and management of the project was the re-
sponsibility of Lawrence Roberts.

Roberts was born on December 21, 1937, in
Connecticut. He attended the Massachusetts
Institute of Technology (MIT), earning his
bachelor’s degree in 1959, master’s degree in
1960, and Ph.D. in 1963. After getting his doc-
torate Roberts joined the Lincoln Laboratory at
MIT, where he worked with the transistorized
computers TX-O, TX-1, and TX-2. These ma-
chines were the forerunners of what would be-
come the minicomputer.

While at Lincoln Lab, Roberts met J. C. R.
LICKLIDER, who had developed and publicized a
concept for what he rather grandiosely called
“the intergalactic network”—a proposal to link
computers worldwide using common rules for
sending and receiving data. In 1962, Licklider
had become director of a new computer research
program run by the Defense Department’s
ARPA (Advanced Research Project Agency).
Licklider’s work inspired Roberts to begin think-
ing about how such a network might actually be
built. Part of the answer came in 1964, when
Leonard Kleinrock wrote his seminal book
Communications Nets on packet-switching, the
system where data is broken into separately ad-
dressed portions (packets) and routed from com-
puter to computer over a network.

The following year, Roberts successfully
connected his MIT TX-2 computer to a Q-32
computer operated by Thomas Marrill in
California. For Roberts, this experiment showed
two things. Computers could make a connection
in real time and access one other’s data and pro-
grams. However, the existing telephone system
was not reliable or flexible enough. The phone
system uses what is called circuit switching: Each
call is assigned a specific circuit or route through

226 Roberts, Lawrence

the system. This means that if circuit noise or
some other problem leads to loss of data or in-
terruption of service, the connection itself will
be lost. Roberts and Marill reported on the re-
sults of their experiment in a paper titled
“Toward a Cooperative Network of Time-Shared
Computers.”

Roberts became even more convinced that
Kleinrock’s packet-switching, idea would be far
superior to circuit-switching. With packet-
switching, communication does not depend on
the existence (and persistence) of any particu-
lar circuit or route. Since data is dispatched in
routable packets, the network system itself can
manage the flow of packets and, if necessary,
reroute them to a different circuit.

Licklider and other researchers at ARPA
shared Roberts’s ideas, and the head of the
ARPA Information Processing Technology
Office (IPTO), Robert Taylor, received $1 mil-
lion in funding for a new computer network. In
1966, he hired Roberts to create the overall
design and plan for what would become
ARPANET. This plan was published under the
title of “Multiple Computer Networks and
Intercomputer Communication.” Note the
words multiple and intercomputer—this is the ba-
sis for the Internet, which is not a network but
a “network of networks.” The plan specified such
matters as how users would be identified and
authenticated, the sequence of transmission of
characters, the method for checking for errors,
and the retransmission of data if errors occurred.

Roberts also wrote a plan for setting up and
administering the network. This plan, titled
“Resource Sharing Computer Networks,” em-
phasized that the ability of users to log into re-
mote computers and run programs there would
greatly increase the resources potentially avail-
able to researchers, as well as the efficient uti-
lization of computer systems.

In June 1968, Taylor approved Roberts’s
plan. Roberts and his colleagues at ARPA
worked together with a group at Bolt, Beranek,

and Newman, a pioneer computer networking
company. They designed and implemented the
Interface Message Processor (IMP). This was a
minicomputer configured to serve as a bridge and
link between computers on the new network.
(The IMP was about the size of a refrigerator.
Today its function is served by a much smaller
machine called a router.)

On October 29, 1969, the first successful
full-fledged network messages were sent by
Kleinrock and his colleagues between comput-
ers at the University of California, Los Angeles
and the Stanford Research Institute. This date
is often considered to be birthdate of the
Internet. By now, Roberts had become head
of the ARPA computer program after Taylor’s
departure.

In 1973, Roberts left the ARPA IPTO to
enter the private sector as the chief executive
officer (CEO) of Telenet, the first private
packet-switched network carrier. Meanwhile,
new applications for computer networks were
emerging. As Roberts recalled to interviewer
Bruce Sullivan, Roberts had originally thought
of the network as primarily an extension of ex-
isting data services and applications:

[In 1969 what] I was envisioning was
that all the mainframe computers would
be able to exchange all their data, and
allow anybody to get at any information
they wanted at any time they wanted
throughout the world, so that we would
have what is effectively the Web func-
tionality today.

However, only a few years later, as Roberts
recalled:

By ’71, we got the network running and
started using it and found that e-mail
was a major factor. We realized that it
would also be replacing the mail, and so
on for communications, and then soon

Roberts, Lawrence 227

after that I realized it would replace it
for voice, eventually. In ’81, I made a
speech where I said it would take 20
more years, but voice would be con-
verted in 2001 to the Internet. And
that’s basically about what’s happening.

Roberts wrote RD, the first program that
allowed users to read and reply to email.

In 1979, Roberts left Telenet after it was sold
to GTE. In 1982 Roberts served briefly as pres-
ident and CEO of the express company DHL.
He then served for 10 years as chairman and
CEO of NetExpress, a company specializing in
packetized ATM (asynchronized transfer mode)
and facsimile equipment. Through the 1990s,
Roberts was involved with other networking
companies including ATM Systems (1993–98),
and Packetcom.

In the 21st century, Roberts continues to do
networking research. As founder, chairman, and
CEO of Caspian Networks, he closely monitored
the continuing growth of the Internet. He re-
ported that Internet traffic had increased four-
fold between April 2000 and April 2001.
(However, some critics said that this represented
a growth in capacity, not actual usage.) Roberts
resigned most of his posts with Caspian
Networks in 2002, but retained the role of chief
technology officer. Ironically, Roberts reported

in 2002 that he still could not get broadband
Internet access to his own home.

As one of a handful of Internet pioneers,
Roberts has received numerous awards, includ-
ing the Harry Goode Memorial Award of the
American Federation of Information Processing
Societies, 1976; the Institute of Electrical and
Electronics Engineers (IEEE) Computer Pioneer
Award (charter recipient); the Interface
Conference Award, the L. M. Ericsson Prize
(1982); the IEEE Computer Society Wallace
McDowell Award (1990); the Association for
Computing Machinery SIGCOMM Award
(1998); and the National Academy of Engineers
Charles Stark Draper Prize (2001).

Further Reading
“Dr. Lawrence G. Roberts Home Page.” Available

on-line. URL: http://packet.cc. Downloaded on
November 3, 2002.

Hafner, Katie, and Matthew Lyon. Where Wizards Stay
Up Late: The Origins of the Internet. New York:
Touchstone Books, 1998.

Haring, Bruce. “Who Really Invented the Net?” USA
Today Tech Report, September 2, 1999. Available
on-line. URL: http://www.usatoday.com/life/
cyber/tech/ctg000.htm.

Sullivan, Bruce. “Internet Founder Working on
Secret Optical Brew.” ISP Business News 7,
January 8, 2001, n.p.

228

� Sammet, Jean E.
(1928–)
American
Computer Scientist

Among the pioneering generation of program-
mers and computer scientists, there were a few
remarkable figures who helped bridge the gap be-
tween the craft of programming and the science
of data processing. Jean Sammet was one such
bridge-builder, as well as becoming one of the
first historians of computing.

Sammet was born on March 23, 1928, in
New York City. She proved to be an exceptional
math student from an early age. She attended
Mount Holyoke College and received a B.A. de-
gree in mathematics in 1948. She then entered
the University of Illinois and earned her mas-
ter’s degree in only one year. At the university,
she taught mathematics for three years before re-
turning to New York to become a teaching as-
sistant at Barnard College.

In 1953, she went to work for Sperry, the
company that had taken over the development
and marketing of Univac, the first commercial
electronic digital computer. From 1955 to 1958,
she was the leader of a programming group.
During this time, programming was in transi-
tion, growing out of the ad hoc efforts involv-

S
ing the earliest computers into a systematic
discipline that could be taught and practiced
consistently.

In pursuit of this goal, Sammet lectured
on programming principles at Adelphi College
(1956–57); in 1958, she taught one of the
first courses in programming in FORTRAN.
FORTRAN was the first widely used “modern”
programming language in that it used names, not
numeric addresses, to stand for variables, and
made it relatively easy for mathematicians, sci-
entists, and engineers to write computer code
that corresponds to mathematical formulas
(hence the name FORmula TRANslator).

From 1958 to 1961, Sammet worked at
Sylvania Electric Products as a programmer.
Sammet also headed the development of soft-
ware tools (such as a compiler) for a military pro-
gram called MOBIDIC, which was intended to
build a series of “mobile digital computers” that
could be mounted in trucks for field use. This
work provided Sammet with detailed hands-on
experience in program language design, struc-
ture, and implementation.

During that time, Sammet also became in-
volved with the design of perhaps the most suc-
cessful programming language in history, COBOL
(Common Business-Oriented Language). From
June to December 1959, she served on the

Sammet, Jean E. 229

short-range committee that developed the ini-
tial specifications for the language. (It should
be noted that although the earlier work of
GRACE MURRAY HOPPER had considerable influ-
ence on the design of COBOL, Hopper did not
actually serve on the committee that developed
the language.)

In 1961, Sammet moved to IBM, where
she organized and managed the Boston
Programming Center in the IBM Data Systems
Division. She developed the concept for
FORMAC, the first generalized language for
manipulating algebraic expressions, and then
managed its development. For this work she
received an IBM Outstanding Contribution
Award in 1965. Sammet continued working
in various posts at IBM, functioning as both a
lecturer and a consultant.

Sammet was very active in many of the ac-
tivities of the Association for Computing
Machinery (ACM), a preeminent computing or-
ganization. She served as the organization’s vice
president from 1972 to 1974; then, from 1974
to 1976, Sammet served as its first woman
president. In 1977, she was made a member of
the National Academy of Engineering.

In 1978, Sammet became the IBM division
manager for Ada, the new structured program-
ming language that was being promoted by
the federal government. Besides making plans
for implementing and using the language at
IBM, she also served as an IBM representative
for Ada standardization activities. She contin-
ued these activities until her retirement in 1988.

Besides being an expert in programming lan-
guages, Sammet also became one of the first his-
torians of the field. Her 1969 book Programming
Languages: History and Fundamentals combined
both aspects of her work. During the 1970s, as
participants in the field began to think more
about the need to preserve and celebrate its early
history, Sammet attended a number of confer-
ences and symposia. Perhaps her most significant

achievement in this respect was when she con-
ceived and planned the first ACM SIGPLAN
History of Programming Languages (HOPL)
conference in 1978, and chaired the second con-
ference (HOPL-2) in 1983. Sammet was also ac-
tive in the American Federation of Information
Processing Societies (AFIPS), serving from 1977
to 1979 as chairman of its History of Computing
Committee and helping create the Institute of
Electrical and Electronic Engineers (IEEE) jour-
nal Annals of the History of Computing.

Sammet also served from 1983 to 1998 on
the board of directors of the Computer Museum,
and (from 1991) the executive board of the
Software Patent Institute. She has maintained
extensive archives of her work that offer schol-
ars an unparalleled view at how the institutions
of computing functioned in their formative and
mature years.

Awards received by Sammet include the
ACM Distinguished Service Award (1985) “For
dedicated, tireless and dynamic leadership in
service to ACM and the computing community;
for advancing the art and science of computer
programming languages and recording its his-
tory.” She was also part of the charter group of
ACM Fellows (1994) and received the Lovelace
Award of the Association for Women in
Computing (1989).

Further Reading
Association for Women in Computing. Available on-

line. URL: http://www.awc-hq.org. Downloaded
on November 3, 2002.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Sammet, Jean E. “The Early History of COBOL,” in
History of Programming Languages, Richard L.
Wexelblat, editor. New York: Academic Press,
1981.

———. Programming Languages: History and Funda-
mentals. Upper Saddle River, N.J.: Prentice-Hall,
1969.

� Samuel, Arthur Lee
(1901–1990)
American
Computer Scientist

When researchers first accepted the challenge of
creating artificial intelligence (AI) they naturally
gravitated toward programming an artificial game
player. Board games in particular offered several
advantages as an arena for AI experiments. The
rules were clear, the domain was restricted, and
the experience of expert human players was
available in the form of recorded games. As J. A.
N. Lee notes, “Programs for playing games fill the
role in AI research that the fruit fly (Drosophila)
plays in genetics. Drosophilae are convenient
for genetics because they breed quickly, and
games are convenient for AI because it is easy
to compare computer performance with that of
people.”

CLAUDE E. SHANNON and ALAN TURING laid
much of the groundwork at the beginning of the
1950s and began to devise algorithms that would
allow a computer chess player to choose reason-
able moves. By the end of the decade, ALAN

NEWELL and HERBERT A. SIMON had made con-
siderable progress.

The first truly impressive computer player
was devised by Arthur Samuel for checkers.
Although simpler than chess, checkers (draughts)
offered plenty of challenge. Samuel would use his
increasingly powerful checkers programs as a plat-
form for developing and testing basic learning
strategies that would become part of modern AI
research.

Samuel was born in 1901 in Emporia,
Kansas. After getting his B.S. degree at the
College of Emporia in 1923, he studied at the
Massachusetts Institute of Technology (MIT) for
his master’s degree in electrical engineering
(awarded in 1926) while working intermittently
at the General Electric facility in Schenectady,
New York. He then taught at MIT as an in-
structor in electrical engineering for two years.

In 1928, Samuel moved to Bell Telephone
Laboratories, one of the nation’s foremost re-
search facilities in the emerging discipline of
electronics. Samuel’s research focused on the be-
havior of space charges between parallel elec-
trodes in vacuum tubes. Later, during World War
II, he worked on developing the TR-box, a de-
vice that automatically disconnects a radar unit’s
receiver while the transmitter is running, thus
preventing the transmitter from burning out the
receiver.

After the war, Samuel became a professor
of electrical engineering at the University of
Illinois. The successful demonstration of ENIAC,
the first large-scale electronic digital computer,
was inspiring many institutions to build their
own computing machines. Samuel became in-
volved in the Illinois effort. During this time, he
first became interested in the idea of program-
ming a computer to play checkers. However, he
did not finish the program, probably because
delays in the computer project meant there was
no machine to test it on.

In 1949, Samuel joined IBM’s Poughkeepsie
laboratory, where the preeminent maker of office
equipment was trying to enter the nascent com-
puter market. Samuel worked on the develop-
ment of IBM’s first major computer, the 701. This
machine, like ENIAC, used vacuum tubes for its
logic functions. For memory, it used a Williams
tube. This was a cathode-ray tube similar to that
used in a television. However, instead of show-
ing a picture, the tube’s electron gun deposited
charges on the inner surface of the tube. These
charges represented the ones and zeroes of binary
computer data. Samuel was able to improve this
technology considerably, increasing the tube’s
data storage capacity from 512 bits to 2,048, as
well as improving the tube so that on the aver-
age it only failed once every half hour.

While working on hardware, Samuel did not
forget about software. He revived his checkers
program and wrote a working version for the
701. Just before the Samuels Checkers-Playing

230 Samuel, Arthur Lee

Samuel, Arthur Lee 231

Program was demonstrated, IBM’s founder and
president, THOMAS J. WATSON SR., predicted that
a successful demonstration would raise the price
of IBM stock by 15 points.

The demonstration was successful and the
prediction correct. Samuel’s program did not
merely apply a few simple principles and check
for the best move in the current position. Instead,
he “trained” the program by giving it the records
of games played by expert checker players, with
the good and bad moves indicated. The program
then played through the games and tried to
choose the move in each position that had been
marked as good. By adjusting its criteria for choos-
ing moves, it was able to choose the correct move
more often. In other words, the program was
learning to play checkers like an expert.

Samuel continued to work on his program.
In 1961, when asked to contribute the best game
it had played as an appendix to an important col-
lection of AI articles called Computers and
Thought, Samuel instead decided to challenge
the Connecticut state checkers champion, the
nation’s fourth-ranked player, to a game. Samuel’s
program won the game, and the champion gra-
ciously provided annotation and commentary to
the game, which was included in the book.

Besides demonstrating the growing ability
of computers to “think” as well as compute,
Samuel’s success helped shape the ongoing de-
velopment of computers. Computer designers
began to think more in terms of computers be-
ing logical and symbolic information processors
rather than just very fast calculators. The abil-
ity of computers to process logical instructions
was thus expanded and improved.

The techniques developed by the checkers
program became standard approaches to games
and other AI applications. One relatively pow-
erful technique is alpha-beta pruning. In an ar-
ticle on machine learning, Samuel described it
as follows: “a technique for not exploring those
branches of a search tree that analysis indicates
not to be of further interest either to the player

making the analysis (this is obvious) or to his op-
ponent (and this is frequently overlooked).” This
ability to quickly winnow out bad moves and fo-
cus on the more promising sequences would be-
come even more important in chess, where there
are far more possible moves to be considered.

In 1966, Samuel retired from IBM and went
to Stanford University, where he continued his
research. He did some work on speech recogni-
tion technology and helped develop the operat-
ing system for SAIL (the Stanford Artificial
Intelligence Laboratory). He also mentored a
number of researchers who would carry on the
next generation of AI work. Many of his stu-
dents later fondly recalled his kindness and help-
fulness. Samuel continued to work on software
well into his eighties. His last major project in-
volved improving a program for printing text in
multiple fonts. He also wrote software docu-
mentation and a partial autobiography.

Samuel died on July 29, 1990, following a
struggle with Parkinson’s disease. In his long ca-
reer, he had been honored by being elected a fel-
low of the Institute of Electrical and Electronic
Engineers (IEEE), the American Physical
Society, the Institute of Radio Engineers, and
the American Institute of Electrical Engineers.
He was also a member of the Association for
Computing Machinery and the American
Association for the Advancement of Science.
He also received the IEEE Computer Pioneer
Award (1987).

Further Reading
Hsu, Feng-Hsiung. Behind Deep Blue: Building the

Computer that Defeated the World Chess Champion.
Princeton, N.J.: Princeton University Press, 2002.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Samuel, Arthur L. “Some Studies in Machine Learning
Using the Game of Checkers.” In Computers and
Thought, Edward A. Feigenbaum and Julian
Feldman, editors. New York: McGraw-Hill, 1983,
pp. 71–105.

� Shannon, Claude E.
(1916–2001)
American
Mathematician, Computer Scientist

In the modern world, information and commu-
nication are inextricably bound. Data travels
over a complex communications network that
includes everything from decades-old phone lines
to optical fiber, wireless, and satellite links. The
information age would not have been possible
without a fundamental understanding of how in-
formation could be encoded and transmitted
electronically. Claude Shannon developed the
theoretical underpinnings for modern informa-
tion and communications technology and then
went on to make important contributions to the
young discipline of artificial intelligence (AI).

Shannon was born in Gaylord, Michigan, on
April 30, 1916. His father was an attorney and
probate judge, his mother a language teacher and
a high school principal. Shannon’s extended fam-
ily included a grandfather who had patented sev-
eral inventions and a distant cousin who was a
rather more famous inventor—Thomas Edison.
(Shannon’s sister Catherine would become a pro-
fessor of mathematics.)

As a boy, Shannon loved to tinker with both
mechanical and electrical equipment. Moving
well beyond the prepackaged possibilities of
Erector sets, he not only endlessly tinkered with
radios but even built a working telegraph system
linking his house with a friend about half a mile
away. He persuaded the local phone company to
give him some surplus equipment, and then “up-
graded” the service from telegraph to telephone.

Shannon enrolled in the University of
Michigan both prepared for and inclined toward
a career in electrical engineering. However, as
he began to take mathematics courses he decided
that he was interested in that field as well, par-
ticularly in symbolic logic, where the logical al-
gebra of GEORGE BOOLE would prove increasingly
important for telephone switching systems and

especially the development of electronic com-
puters. Thus, when Shannon graduated in 1936
he had earned bachelor’s degrees in both math-
ematics and electrical engineering.

One day Shannon saw a notice on a bul-
letin board looking for someone to run a ma-
chine called a differential analyzer at the
Massachusetts Institute of Technology (MIT).
He took the job and also enrolled for graduate
study, receiving a master’s degree in electrical
engineering and a Ph.D. in mathematics, both
in 1940.

The differential analyzer had been built by
VANNEVAR BUSH. It was an analog computer.
Unlike today’s digital computers, an analog com-
puter uses the interaction of continually varying
physical quantities, translated into varying me-
chanical force or voltage levels. To solve a dif-
ferential equation with the differential analyzer,
Shannon had to translate the various variables
and constants into a variety of physical settings

232 Shannon, Claude E.

Claude Shannon developed the fundamental theory
underlying modern data communications, as well as
making contributions to the development of artificial
intelligence, such as algorithms for computer chess-
playing and a mechanical “mouse” that could learn its
way through a maze. (Photo courtesy of Lucent
Technologies’ Bell Labs)

Shannon, Claude E. 233

and arrangements of the machine’s intricate
electromechanical parts.

Unlike earlier purely mechanical analog
computers, the differential analyzer was driven by
electrical relay and switching circuits. Shannon
became interested in the underlying mathemat-
ics of these control circuits. He then realized that
their fundamental operations corresponded to
the Boolean algebra he had studied in under-
graduate mathematics classes. It turned out that
the seemingly abstract Boolean AND, OR, and
NOT operations had a practical engineering use.
Any circuit could, in principle, be described as a
combination of such logical operations.

Shannon used the results of his research in
his 1938 M.S. thesis, titled “A Symbolic
Analysis of Relay and Switching Circuits.” This
work, often considered to be one of the most
important master’s theses ever written, was hon-
ored with the Alfred Nobel prize of the com-
bined engineering societies (this is not the same
as the more famous Nobel Prize.)

Along with the work of ALAN TURING and
JOHN VON NEUMANN, Shannon’s logical analysis
of switching circuits would become essential to
the inventors who would build the first digital
computers in just a few years. (Demonstrating the
breadth of his interests, Shannon’s Ph.D. thesis
would be in an entirely different application—
the algebraic analysis of problems in genetics.)

In 1941, Shannon joined Bell Laboratories,
perhaps America’s foremost industrial research
organization. The world’s largest phone company
had become increasingly concerned with how to
“scale up” the burgeoning telephone system and
still ensure reliability. The coming of war also
highlighted the importance of cryptography—se-
curing one’s own transmissions while finding
ways to break opponent’s codes. Shannon’s ex-
isting interests in both data transmission and
cryptography neatly dovetailed with these needs.

For security reasons, Shannon’s paper titled
“A Mathematical Theory of Cryptography”
would not be published until after the war. But

Shannon’s most lasting contribution would be to
the fundamental theory of communication. His
formulation explained what happens when in-
formation is transmitted from a sender to a re-
ceiver—in particular, how the reliability of such
transmission could be analyzed.

Shannon’s 1948 paper “A Mathematical
Theory of Communication” was published in The
Bell System Technical Journal. Shannon identified
the fundamental unit of information: the binary
digit, or “bit,” which would become familiar to
computer users. He showed how to measure the
redundancy (duplication) within a stream of data
in relation to the transmitting channel’s capacity,
or bandwidth. Finally, he showed methods that
could be used to automatically find and fix errors
in the transmission. In essence, Shannon founded
modern information theory, which would become
vital for technologies as diverse as computer net-
works, broadcasting, data compression, and data
storage on media such as disks and CDs.

One of the unique strengths of Bell Labs is
that it did not limit its researchers to topics that
were directly related to telephone systems or even
data transmission in general. Like Alan Turing,
Shannon became interested after the war in the
question of whether computers could be taught
to perform tasks that are believed to require true
intelligence. He developed algorithms to enable
a computer to play chess and published an arti-
cle on computer chess in Scientific American in
1950. He also became interested in other aspects
of machine learning, and in 1952 he demon-
strated a mechanical “mouse” that could solve
mazes with the aid of a circuit of electrical relays.

The mid-1950s proved to be a very fertile
intellectual period for AI research. In 1956,
Shannon and AI pioneer JOHN MCCARTHY put
out a collection of papers titled “Automata
Studies.” The volume included contributions by
two other seminal thinkers, JOHN VON NEUMANN

and MARVIN MINSKY.
Although he continued to do research, by the

late 1950s Shannon had changed his emphasis to

teaching. As Donner Professor of Science at MIT
(1958–78) Shannon delivered lectures that in-
spired a new generation of AI researchers. During
the same period, Shannon also explored the so-
cial impact of automation and computer tech-
nology as a Fellow at the Center for the Study of
Behavioral Sciences in Palo Alto, California.

Even in retirement Shannon was an energetic
and stimulating presence. A Scientific American
writer recorded a visit to Shannon’s home:

Without waiting for an answer, and over
the mild protests of his wife, Betty, he
leaps from his chair and disappears
into the other room. When I catch up
with him, he proudly shows me his
seven chess-playing machines, gasoline-
powered pogostick, hundred-bladed
jackknife, two-seated unicycle and
countless other marvels.

Shannon would receive numerous presti-
gious awards, including the Institute of Electrical
and Electronics Engineers Medal of Honor and
the National Medal of Technology (both in
1966). Shannon died on February 26, 2001, in
Murray Hill, New Jersey.

Further Reading
Horgan, John. “Claude E. Shannon: Unicyclist,

Juggler and Father of Information Theory.”
Scientific American, January 1990, pp. 22ff.

Shannon, Claude Elwood. “A Chess-Playing Machine.”
Scientific American, February 1950, pp. 48–51.

———. “A Mathematical Theory of Communication.”
Bell System Technical Journal 27 (July and October
1948): 379–423, 623–656. Also available on-line.
URL: http://cm.bell-labs.com/cm/ms/what/shan-
nonday/paper.html. Downloaded on December 5,
2002.

Waldrop, M. Michael. “Claude Shannon: Reluctant
Father of the Digital Age.” Technology Review. July/
Aug. 2001, n.p. Also available on-line. URL:
http://www.techreview.com/articles/waldrop0701.
asp. Downloaded on December 5, 2002.

� Simon, Herbert A.
(1916–2001)
American
Computer Scientist, Scientist

There is science, and then there is the science
of science itself. Herbert Simon used innovative
computer simulations to develop a new under-
standing of how scientists and mathematicians
solve problems and how people make decisions.

Simon was born on June 15, 1916, in
Milwaukee, Wisconsin. His father was an elec-
trical engineer and inventor; his mother was an
accomplished pianist. Young Simon was a bright
student who skipped three semesters in high
school. He would later describe himself as “in-
trospective, bookish, and sometimes lonely” in
school—yet paradoxically, he was effective so-
cially, becoming president of most of the clubs
he joined.

Simon entered the University of Chicago
when he was only 17. While studying for his
B.A. degree in political science (awarded in
1936) Simon studied the operation of the
Milwaukee Recreation Department. This study
in public administration inspired what would be
the core concern of Simon’s research career—
the process of decision making, whether by peo-
ple or computers.

After graduation, Simon worked for several
years for the International City Manager’s
Association. As an assistant to Clarence Ridley
(who had been one of his teachers), Simon
helped devise mathematical methods for evalu-
ating the effectiveness or efficiency of munici-
pal services. While doing this work, Simon was
introduced to automated information processing
in the form of IBM punch-card tabulation
equipment. This made him aware of the poten-
tial value of the new computing technology that
would emerge in the 1940s.

In 1939, Simon moved to the University of
California, Berkeley, to head a Rockefeller
Foundation–funded study of local government.

234 Simon, Herbert A.

Simon, Herbert A. 235

During this time, he also completed the work for
his University of Chicago Ph.D. (awarded in
1943). His doctoral dissertation, which would
later be published in book form in 1947 as
Administrative Behavior, was an analysis of deci-
sion-making in the hierarchies of organizations.
Later, Simon would explain to Constance
Holden of Psychology Today that during this time
behaviorism (stimulus-response and condition-
ing) was king and the analysis of cognitive be-
havior was out of fashion. “You couldn’t use a
word like ‘mind’ in a psychology journal—you’d
get your mouth washed out with soap.”

Meanwhile, Simon had joined the political
science faculty at the Illinois Institute of
Technology; in 1946, he became chair of the de-
partment. In 1949, he joined the new business
school at Carnegie Institute of Technology in
Pittsburgh, which later became Carnegie Mellon
University (CMU).

Simon would spend the rest of his career at
CMU and it was there that his interests in de-
cision making and information processing would
be joined in the emerging discipline of artificial
intelligence (AI). In 1952 Simon met ALLEN

NEWELL, who would became his closest collabo-
rator. Simon noted that “We both viewed man’s
mind as a symbol-manipulating or information-
processing system, but we lacked the language
and the technology that were needed.”

In 1955–56 Simon, Newell, and Clifford
Shaw began to create computer models to simu-
late the way people solved problems. They had
people work through logic problems while writ-
ing down their reasoning process step by step—
premises, assertion, deductions, and so on. The
scientists then wrote a computer program that
could work with a set of premises in the same way.
This program, called Logic Theorist (and a later,
more elaborate version, called General Problem
Solver, or GPS) coincided with the seminal
Dartmouth Summer Conference that both publi-
cized the newly named field of artificial intelli-
gence and set its basic agenda for decades to come.

Traditionally, logicians and analysts had
tended to operate from the assumption of com-
plete knowledge—that is, that decision makers
or problem solvers had, or at least had access to,
all the knowledge they needed to solve a prob-
lem. Simon and J. R. Hayes, however, had ex-
plored the process of solving poorly structured
or partially understood problems, and wrote a
program called Understand, which built up a se-
ries of increasingly complete problem definitions
and then proceeded to solve the problem.

Simon then brought a similar insight to eco-
nomics. Economists, too, tended to write about
a market in which all the participants had per-
fect or complete knowledge with which they
could act in such a way as to maximize profits
(or minimize losses). Simon pointed out that in
actual business decisions, information is incom-
plete and thus decision makers had to take un-
certainty into consideration and arrive at a
compromise. He called this behavior or strategy
“satisficing.” “Bounded rationality,” Simon’s new
approach to understanding economic decision
making, would gain in influence through the
1960s and 1970s and would earn him the Nobel
Prize in economics in 1978.

During the 1980s, Simon continued his re-
search and writing, moving seamlessly between
economics, psychology, and computer science
and helping foster connections between the dis-
ciplines in the curriculum at CMU. In addition
to completing the second volume of a book
called Models of Thought, Simon also published
an autobiography, Models of My Life. In his in-
troduction to the latter book, he tried to explain
how he had approached his multifaceted work:

I have been a scientist, but in many sci-
ences. I have explored mazes, but they
do not connect into a single maze. My
aspirations do not extend to achieving
a single consistency in my life. It will be
enough if I can play each of my roles
creditably, borrowing sometimes from

one for another, but striving to repre-
sent fairly each character when he has
his turn on stage.

In addition to the 1978 Nobel Prize in
economics, Simon has received many other
awards and positions. These include his election
to the National Academy of Sciences, becoming
chairman of the National Research Council
Division of Behavioral Sciences (1967), and his
appointment to the President’s Science Advisory
Committee (1968). He received the American
Psychological Association Distinguished Scien-
tific Contribution Award (1969), the Associa-
tion for Computing Machinery Turing Award
(1975; shared with Alan Newell), and the
National Medal of Science (1986).

Further Reading
Holden, Constance. “The Rational Optimist: Will

Computers Ever Think Like People? This Expert
in Artificial Intelligence Asks, Why Not?”
Psychology Today, October 1986, pp. 54ff.

McCorduck, Pamela. Machines Who Think. New York:
W. H. Freeman, 1979.

Simon, Herbert. Administrative Behavior. 3rd ed. New
York: Macmillan, 1976.

———. Models of My Life. New York: Basic Books,
1991.

———. Models of Thought. New Haven, Conn.: Yale
University Press, 1979.

� Stallman, Richard
(1953–)
American
Computer Scientist, Writer

Most of the software familiar to today’s computer
users comes in a box with the name of a corpo-
ration such as Microsoft on it. The source code,
or the instructions that make the software run,
is a proprietary secret. Thus the program can be
fixed or improved only by the company that sells

it. Users are consumers with a generally passive
relationship to the product.

Richard Matthew Stallman had a different
idea about how software should be developed
and distributed. Stallman, who himself created
some of the finest software development tools,
believed that the source code should be made
freely available so that a community of pro-
grammers and users could continually improve
it. He thus became the highly visible leader of
a loosely organized but influential movement
called “open source.”

Stallman was born on March 16, 1953, in
New York. He showed aptitude for mathematics
from a young age, starting to explore calculus
when he was eight. Later, while in a summer
camp, he found that one of the counselors had
a manual for the IBM 7094 mainframe computer.
The boy read through it and began to write sim-
ple programs. Even though he had no access to
an actual computer, Stallman was hooked. As he
recalled to Steven Lohr: “I just wanted to write
programs. I was fascinated,” he recalled. In high
school, Stallman signed up for an IBM program
that gave promising students access to time on
a computer. He quickly became such a proficient
programmer that IBM hired him to work for
them during his last summer before college.

Stallman then enrolled in Harvard Univer-
sity, where he received a B.A. degree in physics
in 1974. He soon was living what writer Steven
Levy would later describe as the “hacker ethic”
of untrammeled access to technology. The time-
sharing computer at Harvard normally deleted a
student’s work when he or she logged off the sys-
tem, and there was no disk or tape storage.
However, Stallman discovered that if he logged
onto two terminals instead of one, the system
would not remove his data. As Stallman ex-
plained to Lohr “I did not like rules. I still don’t.
It was an intellectual exercise expressing what I
thought of rules.” Certainly, it would not be the
last time Stallman challenged rules that he
thought were pointless and limiting.

236 Stallman, Richard

Stallman, Richard 237

In 1971, while still a Harvard undergradu-
ate, Stallman began to make a name for himself
at the Artificial Intelligence Laboratory at the
nearby Massachusetts Institute of Technology
(MIT). He helped improve the MIT operating
system called ITS (Incompatible Time Sharing,
a joking reference to the CTS, or Compatible
Time Sharing, system that MIT hackers consid-
ered to be pathetic). At a time when operating
systems were normally controlled by computer
makers, Stallman said to Lohr that at MIT “any-
body with ability was welcome to come in and
try to improve the operating system. We built
on each other’s work.”

Stallman essentially lived a double life. By
day, he was a hardworking graduate student; at
night, he was a member of the crew of MIT
hackers who would be made famous by Steven
Levy. Levy observed, “When the people in the
lab discovered after the fact that he was simul-
taneously earning a magna cum laude degree in
physics at Harvard, even those master hackers
were astonished.”

Stallman also gained a reputation for taking
the initiative in the endless war between MIT
officials and hackers over computing resources.
As he recalled to Levy:

The terminals were thought of [as] be-
longing to everyone, and professors
locked them up in their offices on pain
of finding their doors broken down. . . .
Many times I would climb over ceilings
or underneath floors to unlock rooms
that had machines in them that people
needed to use, and I would usually leave
behind a note explaining to the people
that they shouldn’t be so selfish as to
lock the door.

When administrators began to require that
users have passwords, Stallman encouraged his
fellow hackers to use just a simple carriage
return.

However, Stallman was not merely a gadfly.
He did serious, high-quality work in developing
software tools. In particular he developed Emacs,
an editor for writing programs. It is perhaps his
finest achievement as a software engineer. Far
more than a text editor, Emacs was itself pro-
grammable and extendable using a language sim-
ilar to LISP. Since LISP was the language of
choice for artificial intelligence programming, re-
searchers happily took to the powerful Emacs for
help in writing their programs. Stallman and a
variety of collaborators would continue to extend
Emacs through the 1980s, such as by creating a
multiwindow version for use with X-Windows, a
popular graphical user interface for UNIX.

By the mid-1970s, however, commercialism
was invading the UNIX world. Stallman’s su-
pervisor Russ Noftsker left MIT to start his own
LISP development company, Symbolics. He re-
cruited many of the top MIT hackers to join
him. This angered Stallman, who believed that
this exodus to the private sector had destroyed
the unique cooperative environment at MIT.
Stallman formed a rival company, LMI, which
developed cheaper alternatives to the software
Symbolics was trying to sell to MIT and others.

In 1983, Stallman began the GNU Project.
GNU is a recursive acronym that stands for
“GNU’s not UNIX.” At the time, anyone who
wanted to use UNIX had to buy an expensive
license because the operating system was the
property of AT&T, whose Bell Laboratories had
developed it in the early 1970s. However, it was
legal to create a version of UNIX that was func-
tionally compatible (that is, responded to com-
mands in exactly the same way), provided that
the copyright-protected AT&T source code was
not used. Stallman decided to do just that.

Over the next two decades, Stallman and a
large number of collaborators around the world
worked to create GNU as a free and compatible
alternative to UNIX. One of Stallman’s most im-
portant contributions to the effort was the GNU
C compiler, a “portable” compiler that works

with dozens of different operating systems.
Stallman also developed the GNU symbolic de-
bugger (GDB). Using these tools, Stallman and
his collaborators created free, compatible GNU
versions of most of the standard UNIX utilities.

In 1985, Stallman left MIT to found the
Free Software Foundation. Besides promoting
the GNU project, the FSU also promotes the
concept of open source software. The essence of
open source was stated in Stallman’s original
“GNU Manifesto” as follows: “Everyone will be
permitted to modify and redistribute GNU, but
no distributor will be allowed to restrict its fur-
ther redistribution.” In order to facilitate this
idea, Stallman created the General Public
License (GPL), which requires not only that
source code be included with any released ver-
sion of a program (the open source concept), but
additionally, that any improved or expanded ver-
sion be free.

Stallman is often acerbic when asked about
“open source” software that actually comes with
restrictions or that is part of a corporate mar-
keting strategy (as with Netscape). He com-
plains that “the important ideas have been san-
itized away. Open source [has become]
corporate-friendly.” Another sore spot for
Stallman subject is Linux, the open source
UNIX variant created by LINUS TORVALDS.
Although he acknowledges Torvalds’s achieve-
ment in creating the kernel (the “core” of the
operating system’s functions), he is unhappy that
many people do not realize that most of the util-
ities used by Linux users were created by the
GNU project. Stallman urges people to refer to
the new operating system as “GNU/Linux.”

Continuing to hack interesting projects and
promote his pure vision of free software, Stallman
pursues a number of avocations. He has written
in The Hacker’s Dictionary that his “hobbies in-
clude affection, international folk dance, flying,
cooking, physics, recorder, puns, science fiction,
fandom and programming: I magically get paid
for doing the last one.”

Stallman received a MacArthur Foundation
fellowship in 1990, the Association for
Computing Machinery Grace Hopper Award
(for achievement by a computer scientist under
30) in 1991, and the Institute of Electrical and
Electronics Engineers Computer Pioneer Award
of 1998 (shared with Linus Torvalds).

Further Reading
DiBona, Chris, Sam Ockman, and Mark Stone, edi-

tors. Open Sources: Voices from the Open Source
Revolution. Sebastopol, Calif.: O’Reilly, 1999.

Free Software Foundation. Available on-line. URL:
http://www.fsf.org/fsf. Updated on June 12, 2002.

Levy, Steven. Hackers: Heroes of the Computer
Revolution. Updated ed. New York: Penguin, 2001.

Lohr, Steven. Go To. New York: Basic Books, 2001.
Stallman, Richard M. “The GNU Manifesto.” (1985,

1993). Available on-line. URL: http://www.
gnu.org/gnu/manifesto.html. Downloaded on
December 6, 2002.

———. Gnu Emacs Manual. Lincoln, Nebr.:
iUniverse.com, 2000.

———. “The Right to Read.” Communications of the
ACM 40 (February 1997): 85–87.

� Stibitz, George
(1904–1995)
American
Mathematician, Inventor

Between the hand-cranked calculator and the
fully electronic digital computer came a transi-
tional period in which many of the ideas behind
the modern computer were first implemented us-
ing electromechanical technology. George Stibitz
was a pioneer in using the binary logic of GEORGE

BOOLE to build circuits that could do arithmetic.
Stibitz was born on April 20, 1904, in York,

Pennsylvania. His mother had been a mathe-
matics teacher before marriage, and his father
was a professor of theology. The family moved
to Dayton, Ohio, shortly after Stibitz’s birth.

238 Stibitz, George

Stibitz, George 239

Young Stibitz showed considerable academic ap-
titude and was enrolled in a special high school.

Stibitz then enrolled in Denison University
in Granville, Ohio, receiving a bachelor’s degree
in mathematics in 1926. He went on to earn a
master’s degree in physics at Union College in
Schenectady, New York, the following year.
After working for a year at the General Electric
facility in Schenectady, Stibitz enrolled in
Cornell University, where he received his Ph.D.
in mathematical physics in 1930.

By 1931, jobs were hard to come by, but de-
spite the Great Depression Stibitz found not just
a job but probably the ideal position—he be-
came a researcher at the Bell Telephone
Laboratory. The telephone giant’s farsighted ex-
ecutives were concerned about the growing com-
plexity and extent of the telephone system and
the need to further automate its operations.
Calls that used to be connected by operators
were increasingly being made automatically by
sequences of relays—electromagnetically acti-
vated switches. Telephone engineers needed a
better overall theory that could guide them in
building complicated switch sequences.

Stibitz was hired to study this matter. At the
time, he was not very familiar with how relays
worked, but as he studied them he realized that
they were essentially binary (two-valued, on and
off) devices. This meant that the algebraic logic
that English mathematician George Boole had
defined almost a century earlier was directly ap-
plicable to the behavior of the relays. For ex-
ample, two relays in a series corresponded to the
AND operation, while two in parallel worked
like an OR. More complicated arrangements
could be constructed by combining these and a
few other basic operations.

By 1937, Stibitz had moved beyond under-
standing relays to using them for a new purpose
that had nothing to do with telephones. One of
the consequences of Boolean algebra is that
arithmetic operations such as addition can be
defined in terms of a sequence of logical opera-

tions. As a demonstration, Stibitz assembled two
relays, connected them to flashlight bulbs and a
battery, and came up with a two-digit binary
adder. With 1 representing a closed switch and
0 an open one, if the adder were set to 01 and
another 1 pulse was fed to it, the result would
be 10—binary for 1 + 1 = 2. This first demon-
stration device was dubbed the “model K” be-
cause Stibitz had built it in his kitchen. Today,
a replica is on display at the Smithsonian
Institution.

After he demonstrated the device to his col-
leagues at Bell Labs, Stibitz built a multidigit ver-
sion and started to design a calculator based on
binary relay circuits. However, the binary num-
ber system was quite unfamiliar to most people
at the time. Stibitz therefore came up with a way
to convert the output of the binary circuits to
ordinary decimal numbers. He did this through
the clever method of adding three to each of the
pair of binary numbers being fed into the adder.
This total addition of six meant that a total of
decimal nine would become 15, which is 1111
in binary. Therefore, the next number would cre-
ate an overflow (or carry) in both decimal and
binary form. Further, the binary complement of
a sum in this “excess-3” format was the same as
the binary form of the decimal complement.
This created a sort of “bridge” between the bi-
nary and decimal representations.

At first, the Bell executives were not terri-
bly impressed with these developments. After
all, electromechanical calculators were readily
available. But gradually they realized that they
were going to have to tackle problems that re-
quired too much calculation to be handled by
mechanical calculators. They therefore funded a
full-scale model of a calculator based on Stibitz’s
logical arithmetic.

In January 1940, the new device was ready.
It was called the Complex Number Calculator
(CNC) Model 1, because it was designed to work
with complex numbers (numbers consisting of
both real and imaginary parts). Such numbers

turn up regularly in physics and electronics work.
Stibitz drew a schematic for a machine that could
handle eight-digit complex numbers. He origi-
nally suggested using existing rotary telephone
switches, but a colleague, S. B. Williams had the
inspired idea of using newly developed crossbar
switches to store the numbers, and relays to trans-
mit the numbers through the machine.

The final version of the machine had 10
crossbar switches and 450 relays. It could multi-
ply two eight-digit complex numbers after about
30 seconds of furious clicking and clacking.
While very slow by modern computer standards,
it was considerably faster than having human
operators perform the equivalent sequence of
operations on ordinary desk calculators—and
assuming the numbers were input correctly, there
was no need to worry about operator error.

Another ingenious aspect of the Model 1 is
that it used Teletypes as input and output de-
vices. This not only made for much easier data
entry and printouts, it allowed for something
that astonished the audience at the annual meet-
ing of the American Mathematical Society
at Dartmouth College in New Hampshire in
September 1940. The audience was provided
with a Teletype and invited to type numbers. The
numbers were converted to codes and sent along
a telegraph line to the Model 1, which was in
New York. The machine performed the calcula-
tion and sent the results back along the line to
Dartmouth, where they were printed out for the
audience to see. This was the first-ever demon-
stration of remote computing, and showed how
data could be converted to codes and transmit-
ted using an existing communications system. In
a sense, today’s Internet is a remote descendant
of what happened that day.

When World War II arrived, so did the mil-
itary’s voracious appetite for calculations for ar-
tillery tables. Bell Labs gave Stibitz leave to join
the National Defense Research Council, where
he worked on improved versions of the CNC.
Model 2 allowed sequences of instructions—a

program—to be loaded from a punched tape,
allowing the same set of calculations to be per-
formed on different sets of data. He even incor-
porated error correction codes. Model 5, which
came into service in 1945, added the use of the
more flexible floating point decimal representa-
tion. It also provided a form of temporary mem-
ory by saving intermediate results on punched
tape and feeding them back into later stages of
the calculation. The program could even use in-
structions to “jump” to a different tape based on
the result of a test—the equivalent of an IF . . .
THEN statement in modern programming.

After the war, Stibitz did not return to Bell
Labs. Instead, he moved to Vermont, where he
became an independent consultant in applied
mathematics and worked on projects for a num-
ber of government agencies and corporations. In
1946, he joined the Department of Physiology
at Dartmouth College, where he worked with
medical researchers to use computers to explore
the diffusion of gases and drugs through the body.
He retired in 1972 but continued to have a lively
interest in computing.

In the end, relay computers like Stibitz’s and
one (unknown to Stibitz) also designed by
KONRAD ZUSE in Germany proved to be too slow.
The path to the modern computer lay instead
through electronics, as demonstrated by ENIAC,
built by J. PRESPER ECKERT and JOHN MAUCHLY.
However, Stibitz had laid a solid foundation in
logic circuit design, numeric representation, in-
put, output, and even data communications.

Stibitz died on January 31, 1995. He and
Konrad Zuse shared the Harry Goode Award of
the American Federation of Information Pro-
cessing Societies (1965). Stibiz also received the
Institute of Electrical and Electronics Engineers
Computer Pioneer Award (1982).

Further Reading
Bernstein, Jeremy. Three Degrees Above Zero: Bell Labs

in the Information Age. New York: Charles
Scribner’s Sons, 1984.

240 Stibitz, George

Stoll, Clifford 241

Goldstine, H. H. The Computer from Pascal to von
Neumann. Princeton, N.J.: Princeton University
Press, 1993.

Stibitz, George R., and Jules A. Larrivee. Mathematics
and Computers. New York: McGraw-Hill, 1957.

� Stoll, Clifford
(1950–)
American
Writer, Programmer, Scientist

Clifford Stoll did not start out having much in-
terest in computers. He was an astronomer, and
found that field to be quite absorbing enough.
However, one day when he was working at
Lawrence Berkeley Laboratory, he was asked to
help the computer staff find out why two ac-
counts on the lab’s computers differed by
75 cents. The resulting odyssey put Stoll on the
trail of a hacker-spy and on an obstacle course
created by reluctant administrators and uninter-
ested Federal Bureau of Investigation (FBI)
agents. His remarkable experience led him to
write a best-selling book called The Cuckoo’s Egg
and launched him on a new career as a critic
(some would say gadfly) devoted to challenging
what he sees as excessive hype about the capa-
bilities of computers and warning of society’s ex-
cessive dependence on the machines.

Stoll was born on June 4, 1950, in Buffalo,
New York. He attended the University of Buffalo,
receiving his B.A. degree in 1973, and then earned
his doctorate in astronomy from the University
of Arizona in 1980. During the 1980s, he worked
as an astronomer and astrophysicist at a number
of institutions, including the Space Telescope
Institute in Baltimore, the Keck Observatory in
Hawaii, and the Harvard-Smithsonian Center for
Astrophysics in Massachusetts. It was while work-
ing at the Lawrence Berkeley Laboratory in 1988
that he encountered the now-famous 75-cent er-
ror. Next, as Stoll recounted to an interviewer:
“I . . . look at the accounting system, and lo! The

program’s working right. I go and look at my files
and say, “Oh, jeez. Here’s somebody breaking into
my computer.”

Stoll became concerned because the labo-
ratory worked on a number of government proj-
ects, and if someone was embezzling money or
perhaps stealing classified information, the gov-
ernment funders—and ultimately, Congress—
might become quite unhappy, leading to serious
repercussions for the lab’s work. But also, as a
scientist, Stoll became intrigued with the break-
in as a phenomenon. How was the thief getting
in? To what extent were the lab’s computer sys-
tems compromised?

When he found the files that the unknown
hacker had retrieved and squirreled away in an
account on the lab computer, Stoll became con-
siderably more concerned. Now he was think-
ing, as he recalled in The Cuckoo’s Egg

“Why is somebody breaking into a mil-
itary computer, stealing information,
[and] . . . copying it across networks into
some machine in Europe? Why is it that
this person is obsessed with things like
Strategic Defense Initiative [and] . . .
North American Air Defense?” Imme-
diately, it comes up in my mind, “Oh.
We’re looking at a spy.”

Stoll realized that he could simply erase the
unknown account and block it, and the hacker
would likely go elsewhere. But if this was just
the tip of an espionage iceberg, did he have an
obligation to let the hacking continue while he
tried to trace its origin? To his dismay, however,
Stoll found that the lab administrators just
wanted to avoid liability. Further, when he con-
tacted the FBI, they essentially said they were
not interested in some mysterious petty com-
puter fraud. However, Stoll had better luck with
the Central Intelligence Agency (CIA), which
began to work with him as he started to trail the
mysterious hacker.

Not being a computer expert, Stoll had to
teach himself about computer security as he
worked. He gradually followed the hacker’s files
back to their sources, which included missile test
ranges in Alabama and White Sands, a defense
contractor in McLean, Virginia, and finally to a
house in Hanover, Germany and a freelance spy,
a 25-year-old German hacker named Markus
Hess who was selling U.S. government secrets
to the KGB in exchange for money and cocaine.

As a result of Stoll’s year-long effort, which
he chronicled in The Cuckoo’s Nest, many
Americans, including intelligence officials, be-
came aware for the first time how vulnerable the
growing computer networks were to espionage,
and that the supposed firewall between classified
and public information was porous. (A Public
Broadcasting Service special, The KGB, The
Computer, and Me was based on the book.)

Stoll’s adventures in cyberspace led through
the 1990s to explorations into other aspects of
computer use. Stoll became convinced that the
Internet and the “information highway” that was
being touted so exuberantly in the mid-1990s
was too often a road to nowhere. In his 1995
book Silicon Snake Oil, he suggests that too many
people are becoming passive “Internet addicts,”
just as an earlier generation had been mesmer-
ized by TV. In his many public appearances, Stoll
has a number of one-liners at hand. For exam-
ple, he asks, “Why are drug addicts and com-
puter aficionados both called ‘users’?”

One of Stoll’s biggest concerns is the
overemphasis on bringing computers into the
schools. In Silicon Snake Oil, he argues that

Our schools face serious problems, in-
cluding overcrowded classrooms, teacher
incompetence, and lack of security. Local
education budgets barely cover salaries,
books, and paper. Computers address
none of these problems. They’re expen-
sive, quickly become obsolete, and drain
scarce capital budgets.

On a more philosophical level, Stoll has ar-
gued that computers are likely to be used as a
substitute for the intimate relationship between
teacher and student that he believes is essential
for real education. He warns that what is seen on
the screen, however intricate and dazzling, is no
substitute for the experience of human relation-
ships and the natural world. Stoll’s next book,
High Tech Heretic, continued those themes.

Of course, Stoll has attracted his own share
of critics. One critic, Etelka Lehoczky, writing
in Salon, suggests that “for all his familiarity
with computers, Stoll’s view of their place in
the world has all the good-vs.-evil simplicity of
a born-again Christian’s—or a recovering alco-
holic’s.” Others complain that Stoll offers little
practical advice on how best to use computer
technology in education and elsewhere. Stoll in
turn denies that he is simply negative about
computers and their role: As he insists to in-
terviewer John Gerstner of Communication
World

Nor am I a curmudgeon. I am not cyn-
ical. I feel it is important to be skep-
tical, but not cynical. I have hope for
the future. I look forward with opti-
mism, but I am cynical of claims made
for the future. I’m an astronomer and
a physicist and as such I am paid to be
skeptical.

Further Reading
“Cliff Stoll Resources.” Available on-line. URL:

http://www.badel.net/resources/stoll.htm. Posted
on February 26, 2000.

“Clifford Stoll.” Available on-line. URL: http://
www.crpc.rice.edu/CRPC/GT/msirois/Bios/stoll.
html. Updated on September 3, 2000.

Gerstner, John. “Cyber-Skeptic: Cliff Stoll.” Commu-
nication World, June–July 1996, n.p.

Stoll, Clifford. The Cuckoo’s Egg: Tracking a Spy
Through the Maze of Computer Espionage. New
York: Pocket Books, 2000.

242 Stoll, Clifford

Stroustrup, Bjarne 243

In the 1980s, Bjarne Stroustrup created the object-
oriented C++ language. By letting programmers
organize complex software better while building on
their existing skills, C++ became the most popular
language for general applications programming.
(Photo courtesy of Bjarne Stroustrup)

———. High Tech Heretic: Reflections of a Computer
Contrarian. New York: Anchor Books, 2000.

———. Silicon Snake Oil: Second Thoughts on the
Information Superhighway. New York: Doubleday,
1995.

� Stroustrup, Bjarne
(1950–)
Danish
Computer Scientist

By the late 1970s, researchers such as KRISTEN

NYGAARD and ALAN C. KAY had laid the founda-
tions for a new way of thinking about computer
programs. This paradigm, called object-oriented
programming, provided a way for programs to
model the real-world behavior of different kinds
of objects and their properties and functions.
However, languages such as Simula and Smalltalk
were confined mainly to research laboratories.
The language used for most non-mainframe pro-
gramming was C, which was serviceable but not

object oriented. Bjarne Stroustrup had the idea
of taking a popular language and recasting it as
an object-oriented one, making it suitable for
the complex software architecture of the late
20th century.

Stroustrup was born on December 30, 1950,
in Århus, Denmark. Growing up, Stroustrup
seemed more interested in playing soccer than
engaging in academic pursuits. However, one
teacher who saw his potential gradually awak-
ened the boy’s interest in mathematics.

As a student at the University of Århus, his
interests were not limited to computing (indeed,
he found programming classes to be rather dull).
However, unlike literature and philosophy, pro-
gramming did offer a practical job skill, and
Stroustrup began to do contract programming
for Burroughs, an American mainframe com-
puter company. To do this work, Stroustrup had
to pay attention to both the needs of applica-
tion users and the limitations of the machine,
on which programs had to be written in assem-
bly language to take optimal advantage of the
memory available.

By the time Stroustrup received his master’s
degree in computer science from the University
of Århus, he was an experienced programmer,
but he soon turned toward the frontiers of com-
puter science. He became interested in distrib-
uted computing (writing programs that run on
multiple computers at the same time) and de-
veloped such programs at the Computing
Laboratory at Cambridge University in England,
where he earned his Ph.D. in 1979.

The 1970s was an important decade in com-
puting. It saw the rise of a more methodical ap-
proach to programming and programming lan-
guages. It also saw the development of a powerful
and versatile new computing environment: the
UNIX operating system and C programming lan-
guage developed by DENNIS RITCHIE and KENNETH

THOMPSON and Bell Laboratories. Soon after
getting his doctorate, Stroustrup was invited to
join the famous Bell Labs. That institution had

become notable for giving researchers great free-
dom to pursue what interested them. Stroustrup
was told to spend a year getting to know what
was going on at the lab, and then they would
ask him what he would like to pursue.

Stroustrup looked for ways to continue his
work on distributed computing. However, he was
running into a problem: traditional program-
ming languages such as FORTRAN, Algol, or C
were designed to have the computer perform just
one task, step by step. While a program was
likely to divide the processing into subroutines
to make it more manageable, the overall flow of
execution was linear, detouring into and return-
ing from subroutines (also called procedures or
functions) as necessary.

Stroustrup decided that he needed a lan-
guage that was better than C at working with
the various modules running on the different
computers. He studied an early object-oriented
language called Simula. It had a number of key
concepts, including the organization of a pro-
gram into classes, entities that combined data
structures and associated capabilities (meth-
ods). Classes and the objects created from
them offered a better way to organize large
programs. For example, instead of calling on
procedures to draw graphics objects such as
windows on the screen, a window object could
be created that included all the window’s char-
acteristics and the ability to draw, move, re-
size, or delete the window. This approach also
meant that the internal data needed to keep
track of the window was “encapsulated” in the
window object where it could not be inadver-
tently changed by some other part of the pro-
gram. The rest of the program communicated
with the window object by using its defined
methods as an interface.

Stroustrup found that object-oriented pro-
gramming was particularly suited for his projects
in distributed computing and parallel program-
ming. After all, in these systems there were by
definition many separate entities running at the

same time. It was much more natural to treat
each entity as an object.

However, Simula was fairly obscure and pro-
duced relatively slow and inefficient code. It was
also unlikely that the large community of systems
programmers who were using C would switch to
a completely different language. Instead, starting
in the early 1980s Stroustrup decided to add ob-
ject-oriented features (such as classes with mem-
ber functions, user-defined operators, and inher-
itance) to C. At first he gave the language the
rather unwieldy name of “C with Classes”
However, in 1985 he changed the name to C++.
(The ++ is a reference to an operator in C that
adds one to its operand, thus C++ is “C with
added features.”)

At first, some critics criticized C++ for re-
taining most of the non-object-oriented features
of C (unlike pure object languages such as
Smalltalk), while others complained that the
overhead required in processing classes made
C++ slower than C. However, Stroustrup clev-
erly designed his C++ compiler to produce not
machine-specific code but C source code. In ef-
fect, this meant that anyone who already had a
C compiler could use C++ and could optimize
the C code later if necessary. (Soon the devel-
opment of more efficient compilers made this
generally unnecessary.) The fact that C++ was
built upon the familiar syntax of C made the
learning curve relatively shallow, and Stroustrup
aided it by writing a clear, thorough textbook
called The C++ Programming Language.

In 1990, Fortune magazine included
Stroustrup in a cover feature titled “America’s Hot
Young Scientists.” By the early 1990s, there were
an estimated 500,000 C++ programmers. The ap-
plications programming interfaces that were
needed to allow programmers to use the many
services of complex operating systems such as
Microsoft Windows were reorganized as C++
classes, making learning them considerably easier.

In the mid-1990s, a language called Java was
designed by JAMES GOSLING. It can be thought of

244 Stroustrup, Bjarne

Sutherland, Ivan 245

as a somewhat streamlined C++ designed to run
on Web servers and browsers. Although Java has
become popular for such applications, it has not
displaced C++ for the bulk of applications and
systems programming.

With the popularity of C++ came the need
to establish official standards. Stroustrup was not
pleased with his new responsibilities. He noted
in 1994 in PC Week that “writing code is fun,
planning a standards meeting is not fun. I don’t
get my hands dirty enough.”

Stroustrup has continued to work at AT&T
Labs (one of the two successors to the original
Bell Labs). He is head of the Large-Scale
Program Research Department. Stroustrup re-
ceived the 1993 Association for Computing
Machinery Grace Hopper Award for his work on
C++ and is an AT&T Fellow.

Further Reading
“Bjarne Stroustrup’s Homepage.” Available on-line.

URL: http://www.research.att.com/~bs/homepage.
html. Downloaded on November 3, 2002.

Gribble, Cheryl. “History of C++.” Available on-line.
URL: http://www.hitmill.com/programming/cpp/
cppHistory.asp. Updated on November 3, 2002.

Stroustrup, Bjarne. The C++ Programming Language.
3rd ed. Reading, Mass.: Addison-Wesley, 2000.

———. The Design and Evolution of C++. Reading,
Mass.: Addison-Wesley, 1995.

� Sutherland, Ivan
(1938–)
American
Computer Scientist, Inventor

Today it is hard to think about computers with-
out interactive graphics displays. Whether one is
flying a simulated 747 jet, retouching a photo, or
just moving files from one folder to another, every-
thing is shown on the screen in graphical form.

For the first two decades of the computer’s
history, however, computers lived in a text-only

world except for a few experimental military sys-
tems. During the 1960s and 1970s, Ivan Edward
Sutherland would almost single-handedly create
the framework for modern computer graphics
while designing Sketchpad, the first computer
drawing program.

Sutherland was born on May 16, 1938, in
Hastings, Nebraska; the family later moved to
Scarsdale, New York. His father was a civil
engineer, and as a young boy Sutherland was
fascinated by the drawing and surveying instru-
ments his father used. This interest in drawing
and geometry would be expressed later in his de-
velopment of computer graphics.

When he was about 12, Sutherland and his
brother got a job working for a pioneer computer
scientist named Edmund Berkeley. Berkeley
would play a key role in the direction of
Sutherland’s career as a computer scientist. As
Sutherland described in a 1989 interview, for the
Association for Computing Machinery (ACM),
Berkeley

had a wonderful “personal computer”
called Simon. Simon was a relay ma-
chine about the size of a suitcase; it
weighed about 50 pounds. It had six
words of memory of two bits each—so
a total of 12 bits of memory. And it
could do 2-bit arithmetic, which meant
that using double precision arithmetic
you could add numbers up to 15 to get
sums up to 30.

Berkeley encouraged young Sutherland to
play with Simon. Simon could only add, but
Sutherland decided to see if he could get it to
divide. Eventually, he wrote a program that let
the machine divide numbers up to 15 by num-
bers up to three (remember, the machine only
held 12 bits). However, in order to do so, he had
to actually rewire the machine so that it could
do a conditional test to determine when it
should stop.

Berkeley also introduced Sutherland to
CLAUDE E. SHANNON, at Bell Labs. Shannon was
the creator of information theory and one of the
world’s foremost computer scientists. Years later,
Sutherland would become reacquainted with
Shannon at the Massachusetts Institute of
Technology (MIT), when Shannon became his
dissertation adviser.

Sutherland first attended Carnegie Mellon
University, where he received a B.S. degree in
electrical engineering in 1959. The following
year, he earned an M.A. degree from the
California Institute of Technology (Caltech).
He then went to MIT to do his doctoral work
under Shannon at the Lincoln Laboratory.

At MIT, Sutherland was able to work with
the TX-2, an advanced (and very large) transis-
torized computer that was a harbinger of the
minicomputers that would become prevalent
later in the decade. Unlike the older main-
frames, the TX-2 had a graphics display and
could accept input from a light pen as well as
switches that served a function similar to today’s
mouse buttons. The machine also had 70,000
36-bit words of memory, an amount that would
not be achieved by personal computers (PCs)
until the 1980s. Having this much memory made
it possible to store the pixel information for de-
tailed graphics objects.

Having access to this interactive machine
gave Sutherland the idea for his doctoral disser-
tation (submitted in 1963). He developed a pro-
gram called Sketchpad. Doing so required that
he develop a whole new approach to computer
graphics. MIT hackers had succeeded in draw-
ing little blobs to represent spaceships in their
early-1960s game Spacewar, but drawing realis-
tic objects required developing algorithms for
plotting pixels and polygons as well as scaling
objects in relation to the viewer’s position.
Sutherland’s Sketchpad could even automati-
cally “snap” lines into place as the user drew on
the screen with the light pen. Besides drawing,
Sketchpad demonstrated the beginnings of the

graphical user interface that would be further de-
veloped by such researchers as ALAN C. KAY and
DOUGLAS ENGLEBART at the Xerox Palo Alto
Research Center in the 1970s and would reach
the consumer in the 1980s.

After demonstrating Sktechpad in 1963 and
receiving his Ph.D. from MIT, Sutherland took
on a quite different task. He became the direc-
tory of the Information Processing Techniques
Office (IPTO) of the Defense Department’s
Advanced Research Projects Agency (ARPA).
Taking over from J. C. R. LICKLIDER, Sutherland
managed a $15 million budget. While continu-
ing his research on graphics, Sutherland also
oversaw the work on computer time-sharing and
the networking research that would eventually
lead to ARPANET and the Internet. In 1966
Sutherland went to Harvard, where he devel-
oped the first computerized head-mounted display
(HMD)—a device now used in many applica-
tions, including aviation and the military.

In 1968, Sutherland and David Evans went
to the University of Utah, where they established
an IPTO-funded computer graphics research pro-
gram. Sutherland’s group brought computer
graphics to a new level of realism. For example,
they developed the ability to place objects in
front of other objects, which required intensive
calculations to determine what was obscured.
They also developed an idea, suggested by Evans,
called incremental computing. Instead of draw-
ing each pixel in isolation, they used information
from previously drawn pixels to calculate new
ones, considerably speeding up the rendering of
graphics. The results began to approach the re-
alism of a photograph. (The two researchers also
founded a commercial enterprise, Evans and
Sutherland, to exploit their graphics ideas. It be-
came one of the leaders in the field.)

In 1976, Sutherland left the University of
Utah to serve as the chairman of the computer
science department at Caltech. Working with a
colleague, Carver Mead, Sutherland developed
a systematic concept and curriculum for integrated

246 Sutherland, Ivan

Sutherland, Ivan 247

circuit design, which became the specialty of the
department. He would later point out that it was
the important role that geometry played in lay-
ing out components and wires that had intrigued
him the most.

An underlying theme of Sutherland’s ap-
proach to programming is that developing bet-
ter ways to visualize what one is trying to do is
essential. He noted in the ACM interview that
“the hard parts of programming are generally
hard because it’s understanding what the prob-
lem is that’s hard.”

Sutherland sometimes got involved in fun,
slightly bizarre side projects. One was a machine
dubbed the Trojan Cockroach. In 1979, a col-
league, Mark Raibart, had suggested building
a robot that could hop on one leg. The half-
ton, 18-horsepower, gas-powered, hydraulic-
actuated machine could locomote, sort of, on a
good day. However, as he told the ACM inter-
viewer it “would break down and then we’d
have this half ton of inert iron in the parking
lot and we’d have to figure out how to get back
home again.”

Sutherland left Caltech in 1980 and started
a consulting and venture capital firm with Bob
Sproull, whom he had met years earlier at
Harvard. In 1990, Sun Microsystems bought the
company and made it the core of Sun Labs,
where Sutherland continues to work as a Sun
Microsystems Fellow. Sutherland received the
prestigious Turing Award from the Association
for Computing Machinery in 1988.

Further Reading
Frenkel, Karen A. “Ivan E. Sutherland 1988 A. M.

Turing Award Recipient.” Communications of the
ACM 32 (June 1989): 711ff.

Raibert, M. H., and I. E. Sutherland. “Machines
that Walk.” Scientific American, January 1983,
pp. 44–53.

Sutherland, Ivan E. “Sketchpad—A Man-Machine
Graphical Communication System.” Proceedings
of the Spring Joint Computer Conference, Detroit,
Mich., May 1963.

Sutherland, Ivan E., and C. A. Mead. “Microelectronics
and Computer Science.” Scientific American,
September 1977, pp. 210–228.

248

� Thompson, Kenneth
(1943–)
American
Computer Scientist

As primary developer of the UNIX operating sys-
tem, Kenneth Lane Thompson created much of
the programming and operating environment
that has been used by universities, research lab-
oratories, and an increasing number of other
users since the 1970s.

Thompson was born on February 4, 1943, in
New Orleans. His father was a navy fighter pi-
lot, and Thompson’s family moved frequently.
By the time he was two, the family had lived in
San Diego, Seattle, San Francisco, Indianapolis,
and Kingsville, Texas, where the family lived
during much of Thompson’s boyhood.

The boy often hung around a Kingsville
shop that serviced the shortwave radios that the
isolated oil town used instead of telephones. He
learned about electronics by tinkering with the
radios in the shop. Thompson started saving his
allowance so he could buy a wondrous new com-
ponent, a transistor, which cost $10. However,
one day he found that the shop was selling them
for only $1.50, so he was able to buy several.
Only later did he suspect that his father had
made a quiet arrangement with the shop to pro-
vide his son with a special discount. Thompson

T
was also allowed to join radio technicians who
serviced radios on oil rigs, climbing up to reach
the equipment.

In 1960, Thompson journeyed to a quite dif-
ferent world when he enrolled in the University
of California, Berkeley to study electrical engi-
neering. As an undergraduate, he worked in the
computer center, writing utility programs and
helping other users debug their programs. He
also participated in a work-study program at
General Dynamics (a defense contractor) in San
Diego.

Thompson received his bachelor’s degree in
electrical engineering from Berkeley in 1965 and
earned a master’s degree the following year.
However, by then his interests had shifted al-
most completely from electrical engineering to
software design. He later recalled, to Robert
Slater that “I used to be an avid hacker in an
electrical sense, building things. And ever since
computers, I find it similar. Computing is an ad-
diction. Electronics is a similar addiction but not
as clean. Much dirtier. Things burn out.”

In 1966, Thompson went to work at Bell
Laboratories, a hotbed of innovation in com-
puter science that had hosted such researchers
as CLAUDE E. SHANNON, father of information
theory. Thompson fit well into the unconven-
tional “hacker” culture at Bell Labs, sometimes
working for 30 hours at a stretch.

Thompson, Kenneth 249

At that time, Bell Labs was heavily invested
(along with the Massachusetts Institute of
Technology (MIT) and General Electric) in a
project called Multics. Multics was intended to
be a new operating system built from the ground
up to accommodate hundreds of users running
programs at the same time. However, the ambi-
tious project had bogged down, and in 1969 Bell
Labs withdrew from it.

Thompson believed that a multiuser, mul-
titasking operating system could still be built
using a simpler approach. Thompson wrote a
proposal for such a system, but Bell Labs offi-
cials, still unhappy in the wake of the Multics
debacle, turned down Thompson’s proposal.
But Thompson was not willing to give up. He
found an unused PDP-7 minicomputer in a stor-
age room. Although it was obsolete, the ma-
chine had been used as an interactive terminal
for a mainframe. It had a fast hard drive, a
graphics display, and a Teletype for entering
text—just the right hardware for designing an
operating system that would be used interac-
tively.

During the Multics project, Thompson had
worked with another young researcher, DENNIS

RITCHIE, and the two had found that they worked
well together. Ritchie agreed to join Thompson
in designing the new operating system. They
started by designing a file system—a set of fa-
cilities for storing and retrieving data on the disk
drive. As Ritchie later recalled to Slater,

In the process it became evident that
you needed various commands and
software to test out the file system. You
can’t just sit there, you’ve got to make
files and copy them. And so we wrote
a small command interpreter that
would [process] things that you typed
to the keyboard . . . that is the essence
of an operating system: something to
read the commands, something to hold
the data.

The process of building the new operating
system was very tedious. The PDP-7 did not have
a compiler for turning programs into runnable
machine code, so Thompson and Ritchie had to
write the operating system code on a GE main-
frame. A program called a cross-assembler then
translated the instructions to ones that could run
on the PDP-7. The instructions would be
punched from the GE machine onto paper tape
that could then be loaded into the PDP-7.
Eventually Thompson was able to get a program
editor and assembler running on the smaller
machine, and life became a little easier.

Finally Thompson, with Ritchie’s assistance,
had a primitive but workable operating system.
The name they chose for it was UNIX (origi-
nally spelled Unics), which was a pun meant to
suggest that the new system was simpler and
better integrated than the behemoth Multics.
However, there remained the problem of how to
get people to use the new system on contempo-
rary hardware. Given Bell Labs’s resistance to
their project, they decided to create a sort of
software Trojan horse. They told lab officials
that they wanted to develop an office text-
processing system (what today is called a word
processor). After some resistance, the lab agreed
to give them a new PDP-11 minicomputer.

It turned out that the new machine’s disk
drive had not arrived, causing months of delay.
However, by that time Thompson had managed
to finagle the purchase of a more powerful com-
puter. Thompson and Ritchie were able to set
up a demonstration UNIX-based text processing
system with three users at Teletypes. UNIX
worked surprisingly well, and soon other de-
partments were clamoring for time on the new
machine so they could keep up with the grow-
ing flood of paperwork around the lab.

Thompson had also had a hand in the im-
provement of computer languages. At the start
of the 1970s, there was much interest in creat-
ing a streamlined, well-structured language for
systems and general applications programming.

In 1970, Thompson created an experimental
language called B. Ritchie in turn came up with
C, which would become the dominant computer
language by the end of the decade. Thompson
then rewrote UNIX in C so that the operating
system could be implemented on virtually any
machine that had a C compiler. This is what
made UNIX into a “portable” operating system
that, unlike the dominant personal computer op-
erating systems of the 1980s and 1990s, was not
tied to a particular kind of hardware.

Thompson also worked at the University of
California, Berkeley, with BILL JOY and Ozalp
Babaoglu to create a new version of UNIX that
included paging (a way of flexibly managing and
extending memory) and other features for the
new generation of DEC VAX minicomputers.
This became the well-regarded BSD version of
UNIX, and a later version (SunOS) would be
used by Bill Joy at Sun Microsystems.

By the 1980s, however, Thompson had
largely moved on from UNIX to other interests.
One of these interests, chess, dated back to his
childhood. In 1980, Thompson and Joe H.
Conden developed a computer chess program
called BELLE. This program won the 1980
World Computer Chess Championship, and by
1983 it was strong enough to earn the official
U.S. Chess Federation rank of Master.

Besides lecturing and teaching in various
places during the 1980s and 1990s, Thompson
also worked on a new operating system called
Plan 9. In 1983, Thompson became a Bell Labs
Fellow and also shared the Association for
Computing Machinery Turing Award with
Dennis Ritchie. The citation for the award reads
as follows:

The success of the UNIX system stems
from its tasteful selection of a few key
ideas and their elegant implementation.
The model of the UNIX system has led
a generation of software designers to new
ways of thinking about programming.

The genius of the UNIX system is its
framework, which enables programmers
to stand on the work of others.

Thompson was also elected to the U.S.
Academy of Science and the U.S. Academy of
Engineering in 1980, and in 1998 Thompson
and Ritchie were awarded the National Medal
of Technology. Thompson retired from Bell Labs
in 2000.

Further Reading
“The Creation of the UNIX Operating System.”

2002. Available on-line. URL: http://www.
bell-labs.com/history/unix. Downloaded on
November 3, 2002.

Slater, Robert. Portraits in Silicon. Cambridge, Mass.:
MIT Press, 1987.

Thompson, Kenneth, and Dennis M. Ritchie. Unix
Programmer’s Manual. 6th ed. Santa Barbara, Calif.:
Computer Center, University of California, 1979.

———. “The Unix Time-Sharing System: Unix
Implementation.” Bell System Technical Journal
57, no. 6 (1978): 1931–1946.

� Tomlinson, Ray
(1941–)
American
Computer Scientist

Every day, millions of e-mail messages zip around
the world. The addresses that direct these mis-
sives all contain a little symbol, @, between the
recipient’s name and the address of the mail serv-
ice. Few e-mail users know that it was Ray
Tomlinson who first developed the system of
sending messages between computers and inci-
dentally, rescued the @ symbol from the obscure
reaches of the keyboard.

Tomlinson was born in 1941 in the tiny town
of Vale Mills, New York. As a boy, he incessantly
took things apart to see how they worked. When
he was 12, his mother, despairing of being able

250 Tomlinson, Ray

Tomlinson, Ray 251

to keep any household appliances in working or-
der, bought him a radio kit, which sparked in
Tomlinson a passion for electronics.

Tomlinson attended Rensselaer Polytechnic
Institute in New York, earning a bachelor’s
degree in electrical engineering in 1963. He
then went to the Massachusetts Institute of
Technology (MIT) and received his master’s de-
gree in 1965. Meanwhile, he had become ac-
quainted with computers as an intern at IBM in
Poughkeepsie, New York, in 1960. He read a
manual and wrote a program without knowing
whether it would work. “I didn’t know there
were assemblers and compilers,” he recalled, “but
I understood that if I put holes in cards, things
would happen.”

While continuing at MIT for his doctorate,
Tomlinson was supposed to be working for his
dissertation on a voice recognition system,
mainly the tricky matter of interfacing analog
circuits to a digital computer system. But
Tomlinson’s interest kept wandering from hard-
ware to software. Finally he left MIT without
finishing his doctorate and got a job with the
pioneering computer networking firm Bolt,
Beranek, and Newman (BBN) in Cambridge,
Massachusetts, where he still can be found
today.

BBN was probably the single most impor-
tant company for building the hardware infra-
structure for the networks that would eventually
become ARPANET and then the Internet.
According to his former colleague Harry
Forsdick, Tomlinson fit perfectly into the effort
at BBN, who called him “a silent warrior . . . He
is so quiet and self-deprecating but he’s been the
role model for young programmers at BBN for
years. He’s the best coder I’ve ever seen, bar
none.”

By the early 1970s, the first networks were
starting to link computer centers at universities
and laboratories. However, these networks were
not used by people to send messages, but to trans-
fer files and run programs. The only message

facility was something called SNDMSG, which
basically let users on a computer leave messages
for each other in a file. SNDMSG, however, only
allowed a user to communicate with another user
with an account on the same computer.

However, in 1971 Tomlinson had also been
working on a file-transfer program called
CPYNET, which allowed files to be copied over
the network from one computer to another. The
idea that then came to him, seems simple in ret-
rospect, like most great ideas: Why not combine
SNDMSG and CPYNET? With the programs
connected, a user at one computer could post a
message to a file on his or her computer.
CPYNET could then send the file containing
the message to the computer where the recipi-
ent had an account. That user could then use
that computer’s SNDMSG program to read the
message. Of course, quite a bit of software had
to be written to tie together the whole system.
For example, there had to be a way to read the
address in a message file and figure out which
computer it referred to so the proper CPYNET
command could be constructed.

After a certain amount of tinkering,
Tomlinson got the program to work. Later he
would be asked what was in the first e-mail mes-
sage ever sent between computers. A bit ruefully
he remarked that unlike the famous “What hath
God wrought?” of Morse or Bell’s “Watson, come
here, I need you!” the first e-mail message was
probably something like QWERTYUIOP—the
top line of alphabetical characters on a keyboard.

As with the telegraph and telephone, it took
a while for people to figure out what to do with
this new capability. Jerry Burchfiel, Tomlinson’s
colleague at BBN, remembered to interviewer
Judith Newman that “when Ray came up with this
electronic host-to-host e-mail demo over a week-
end, my first reaction was maybe we shouldn’t tell
anybody. [E-mail] didn’t fit under the contract
description for the work we were doing.”
Burchfiel went on to say that “he was like every-
one else. I had no idea it would take over the

world.” But LAWRENCE ROBERTS, head of com-
puter communications research for ARPA (the
Advanced Research Projects Agency of the
Defense Department), liked the idea of e-mail
and decided that it would be built into all the
systems BBN designed for its clients.

To set up a standard protocol for e-mail, it
was necessary to specify rules for how machine
addresses would be constructed. In particular,
Tomlinson needed a symbol to separate the user
name from the name of the user’s host computer.
Later he would say to Newman that the choice
of @ was pretty obvious: “You couldn’t use a sin-
gle [alphabetical] letter or number, because that
would be confusing. It had to be something brief,
because terseness was important. As it turns out,
@ is the only preposition on the keyboard. I just
looked at it, and it was there. I didn’t even try
any others.”

As the volume of e-mail increased, users
complained that it was hard to read because it
arrived with all messages run together in a sin-
gle file. Lawrence Roberts, a manager at ARPA,
then wrote a program called RD. It allowed users
to read, reply to, save or delete messages one at
a time.

Although Tomlinson would become known
in the computer commmunity as the “guy who
invented e-mail,” he accomplished many more
formidable achievements behind the scenes. For
example, he played an important role in devel-
oping Telnet, the facility that allows users to log
into a remote computer and run programs there.
He also contributed to the implementation of
TCP/IP, the basic protocol for Internet data
transmission.

In 1980, Tomlinson designed a microcom-
puter called Jericho from selecting chips all the
way to the system software. Forsdick describes it
as “an amazing tour de force of software and
hardware. He has always been the ultimate trou-
bleshooter, whether it was fixing the dishwasher
in your kitchen or solving some esoteric prob-
lem in microcode.”

As for what Tomlinson thinks of today’s pro-
liferation of e-mail, he muses:

It’s kind of interesting to contemplate
what fraction of a cent I would have to
get on the use of every @ sign to exceed
Bill Gates’s fortune. It’s a very tiny
amount—like 0.000001 cent or some-
thing. Especially with the amount of
spam out there. Of course, then I’d be
praying for spam, instead of condemn-
ing it.

Tomlinson has received several awards,
including the 2000 George Stibitz Computer
Pioneer Award of the American Computer
Museum, the 2001 “Webby” award of the
International Academy of Digital Arts and
Sciences, and the 2002 Discover magazine Award
for Innovation in Science and Technology.

Further Reading
Campbell, Tod. “The First E-mail Message.” Pre Text

Magazine. March 1998. Available on-line. URL:
http://www.pretext.com/mar98/features/story2.
htm. Downloaded on December 6, 2002.

Festa, Paul. “Present at the ‘E’-Creation.” CNET
News.com. October 10, 2001. Available on-line.
URL: http://news.com.com/2008-1082-274161.
html?legacy=cnet. Downloaded on December 6,
2002.

Hafner, Katie. “Billions Served Daily, and Counting.”
New York Times, December 6, 2001, p. G1.

Tomlinson, Ray. “In the Beginning, a Note to Himself.”
New York Times, December 6, 2001, p. G9.

� Torres Quevedo, Leonardo
(1852–1936)
Spanish
Engineer, Inventor

In the 18th century, a tradition of building au-
tomata, or very complex automatic mechanical
devices, flourished. Although a few automata,

252 Torres Quevedo, Leonardo

Torres Quevedo, Leonardo 253

such as the famous chess-playing “Turk,” had a
concealed human operator, most relied upon
very carefully designed sequences of motion con-
trolled by studs and cams.

The 19th century saw the first complete
design for a mechanical digital computer by
CHARLES BABBAGE as well as the beginnings
of analog computing and automatic controls.
The little-known but interesting career of the
Spanish inventor Leonardo Torres Quevedo
covers roughly the span between Babbage and
the first modern digital computers.

Torres Quevedo was born on December 28,
1852, in Santa Cruz de Iguna in the province of
Santander, northern Spain. He grew up in Bilbao
and spent two years in a Catholic school in
France. After completing his secondary educa-
tion, Torres Quevedo enrolled in the Escuela de
Caminos in Madrid, graduating in 1876 with a
degree in civil engineering.

However, Torres Quevedo was not particu-
larly interested in civil engineering. A generous
inheritance from a distant relative gave him the
financial freedom to pursue his many ideas and
inventions (including an airship design that
would be used in World War I).

His inventions in the computing field began
in the 1890s when Torres Quevedo became
interested in representing and solving mathe-
matical equations mechanically. In 1893, he
demonstrated a machine that used an ingenious
combination of logarithmic scales (as in a slide
rule) arranged geometrically to solve a wide
variety of algebraic equations. The device was
demonstrated in 1895 to a meeting of the French
Association for the Advancement of Science.

Early in the 20th century, Torres Quevedo
became increasingly interested in using electri-
cal controls to operate machines. He also ex-
perimented with radio control (which he called
telekino), building a small boat that could be
steered by remote control from several kilome-
ters away, as well as designs for radio-controlled
torpedoes.

By 1906, Spanish scientists were so impressed
by Torres Quevedo’s ideas that they successfully
lobbied for government support to establish a na-
tional Institute for Applied Mechanics, of which
Torres Quevedo was naturally appointed director.
(The organization’s name was later changed to
Institute of Automatics.)

However, Torres Quevedo was much more
than an inspired tinkerer. He continually worked
on developing new concepts and notations to
describe machines on an abstract level, much in
the way that ALAN TURING would do about 30
years later.

In 1911, Torres Quevedo built an automated
chess machine that unlike the Turk really was
automatic, although it could only perform rook
and king vs. king endgames. The machine in-
cluded electrical sensors to pick up the piece lo-
cations and a mechanical arm to move pieces.

Torres Quevedo’s 1913 paper “Essais sur
l’Automatique” (Essays on Automatics) built his
ideas upon the earlier work of CHARLES BABBAGE

which had been largely forgotten. In his paper,
Torres Quevedo described such modern com-
puter ideas as number storage, look-up tables,
and even conditional branching (as in IF . . .
THEN statements). In 1920, he built a less
ambitious device that demonstrated the practi-
cality of a keyboard-driven electromechanical
calculator. It was connected to a typewriter that
was used as the input/output device. However,
he did not attempt to create a commercially
viable version of the device.

Torres Quevedo died on December 18, 1936,
in Madrid in the midst of the Spanish Civil War.

Further Reading
Cortada, James W. Historical Dictionary of Data

Processing Biographies. New York: Greenwood
Press, 1987.

Ralston, Anthony, Edwin D. Reilly, and David
Hemmendinger, editors. Encyclopedia of Computer
Science. 4th ed. London: Nature Publishing
Group, 2000.

� Torvalds, Linus
(1969–)
Finnish
Computer Scientist

Linus Torvalds developed Linux, a free version
of the UNIX operating system that has become
the most popular alternative to proprietary op-
erating systems. Today, reliable Linux systems
can be found running countless Web servers and
workstations.

Torvalds was born on December 28, 1969,
in Helsinki, Finland. His childhood coincided
with the microprocessor revolution and the be-
ginnings of personal computing. At age 10, he
received a Commodore personal computer (PC)
from his grandfather, a mathematician. He
learned to write his own software to make the
most out of the relatively primitive machine.

In 1988, Torvalds enrolled in the University
of Helsinki to study computer science. There
he encountered UNIX, a powerful and flexible
operating system that was a delight for pro-
grammers who liked to tinker with their
computing environment. Having experienced
UNIX, Torvalds could no longer be satisfied
with the operating systems that ran on most
PCs, such as MS-DOS, which lacked the pow-
erful command shell and hundreds of utilities
that UNIX users took for granted.

Torvalds’s problem was that the UNIX copy-
right was owned by AT&T, which charged
$5,000 for a license to run UNIX. To make mat-
ters worse, most PCs were not powerful enough
to run UNIX, so he would probably need a work-
station costing about $10,000.

At the time, the GNU project was under-
way, led by RICHARD STALLMAN, who had created
the concept of open source software. The Free
Software Foundation (FSF) was attempting to
replicate all the functions of UNIX without us-
ing any of AT&T’s proprietary code. This would
mean that the AT&T copyright would not ap-
ply, and the functional equivalent of UNIX

could be given away for free. Stallman and the
FSF had already provided key tools such as the
C compiler (Gnu C) and the Emacs program ed-
itor. However, they had not yet created the core
of the operating system, known as the kernel.
The kernel contains the essential functions
needed for the operating system to control the
computer’s hardware, such as creating and man-
aging files on the hard drive.

After looking at Minix, another effort at a
free UNIX for PC, Torvalds decided in 1991 to

254 Torvalds, Linus

Finnish programmer Linus Torvalds created Linux, a
free version of the UNIX operating system. Its
reliability and utility enhanced by a community of
volunteer developers, Linux today powers many Web
servers as well as providing an alternative to expensive
proprietary operating systems for workstations and the
desktop. (© James A. Sugar/CORBIS)

Torvalds, Linus 255

write his own kernel and put it together with
the various GNU utilities to create a working
UNIX clone. Originally Torvalds wanted to call
the new system Freax (for “free Unix” or “freaks”
or “phreaks,” a term sometimes used by hackers).
However, the manager of the website through
which Torvalds wanted to provide his system dis-
liked that name. Therefore, Torvalds agreed to
use the name Linux (pronounced LIH-nucks),
combining his first name, Linus, and the “nix”
from UNIX. In October 1991, the first version,
modestly labeled .02, was made available for ftp
download over the Internet.

Torvalds adopted the General Public
License (GPL) developed by Stallman and the
FSU, allowing Linux to be distributed freely by
anyone who agreed not to place restrictions on
it. The software soon spread through file trans-
fer protocol (ftp) sites on the Internet, where
hundreds of enthusiastic users (mainly at uni-
versities) helped to improve Linux, adding fea-
tures and writing drivers to enable it to work
with more kinds of hardware.

Even more so than Stallman’s GNU proj-
ect, Linux became the best-known example of
the success of the open-source model of soft-
ware development and distribution. Because the
source code was freely available, programmers
could develop new utilities or features and send
them to Torvalds, who served as the gatekeeper
and decided when to incorporate them and
when it was time to release a new version of the
Linux kernel.

By the mid-1990s, the free and reliable Linux
had become the operating system of choice for
many website servers and developers. A number
of companies created their own added-value
Linux distributions, including such names as Red
Hat, Debian, and Caldera. Meanwhile, many
large companies such as Corel, Informix, and
Sun began to offer Linux distributions and
products.

The combination of the essentially free
Linux operating system and Java, a language de-

veloped by JAMES GOSLING primarily to run pro-
grams on Web servers and browsers, threatened
to be the one-two punch that knocked out
Microsoft Windows, the heavyweight champion
of PC software. Linux had undeniable populist
appeal: It was democratic and communitarian,
not corporate. The main drawback for Linux as
a PC operating system was the vast number of
software packages (including the key office soft-
ware developed by Microsoft) that ran only on
Windows, and the fact that Linux was somewhat
harder for new users to set up.

Meanwhile Torvalds, who still worked at the
University of Helsinki as a researcher, faced an
ever-increasing burden of coordinating Linux de-
velopment and deciding when to release succes-
sive versions. As more companies sprang up to
market software for Linux, they offered Torvalds
very attractive salaries, but he did not want to be
locked into one particular Linux package.
Torvalds also found that he was in great demand
as a speaker at computer conferences, particularly
groups of Linux developers and users.

Instead, in 1997 Torvalds moved to
California’s Silicon Valley where he became a
key software engineer at Transmeta, a company
that makes Crusoe, a processor designed for mo-
bile computing. However, Torvalds continues to
keep strong ties to the Linux community.

As Torvalds told PC Magazine he believes
that with the growth in free and open source op-
erating software “the business model for software
will evolve away from selling standard blocks of
software such as Windows toward a future where
software is customized to meet specific needs.” As
of 2002, Linux has thus not made serious inroads
into the PC market, although a number of de-
velopments may eventually make Linux more
competitive even there. These include improved
installation programs and “Lindows,” a Linux
package that can run Windows programs through
emulation. Meanwhile, the penguin, the friendly
symbol for Linux adopted by Torvalds, waddles
forward confidently into the future.

Torvalds has received numerous awards for
his work on Linux, which reflect its widespread
populist appeal. He was the PC Magazine 1999
Person of the Year. In 2002, Internet Magazine
proclaimed him one of the top 10 “gods of the
Internet.” The Takeda Foundation in Japan
named Torvalds and open source pioneer
Richard Stallman as corecipients of its 2001
award, and Reader’s Digest made him its 2000
“European of the Year.” Torvalds told his own
story in his autobiography, Just for Fun.

Further Reading
Bartholomew, Doug. “Lord of the Penguins.” Industry

Week 249 (February 7, 2000): 52.
Dibona, Chris. Open Sources: Voices from the Open

Source Revolution. Sebastopol, Calif.: O’Reilly,
1999.

Moody, Glenn. Rebel Code: Linux and the Open Source
Revolution. New York: Allen Lane, 2001.

Torvalds, Linus. Just for Fun: The Story of an Accidental
Revolutionary. New York: HarperBusiness, 2001.

� Turing, Alan
(1912–1954)
British
Mathematician, Computer Scientist

At the dawn of the computer age, Alan Mathison
Turing’s startling range of original thought led
to the creation of many branches of computer
science, ranging from the fundamental theory of
computability to the question of what might
constitute true artificial intelligence.

Turing was born in London on June 23,
1912. His father worked in the Indian (colonial)
Civil Service, and his mother came from a fam-
ily that had produced a number of distinguished
scientists. Because his parents were often away,
Turing was raised mainly by relatives until he
was of school age, and then went as a boarding
student to various schools and finally going to
Sherborne, a college preparatory school.

As a youth, Turing showed great interest and
aptitude in both physical science and mathe-
matics, although he tended to neglect other sub-
jects. One of his math teachers further observed
that Turing “spends a good deal of time appar-
ently in investigations of advanced mathemat-
ics to the neglect of elementary work.”

When he entered King’s College, Cambridge,
in 1931, Turing’s mind was absorbed by
Einstein’s relativity and the new theory of
quantum mechanics, subjects that few of the
most advanced scientific minds could grasp. At
this time, he also encountered the work of
mathematician JOHN VON NEUMANN, a many-
faceted mathematical genius who would also be-
come a great computer pioneer. Meanwhile,
Turing pursued the study of probability and
wrote a well-regarded thesis on the Central
Limit Theorem.

Turing’s interest then turned to one of the
most perplexing unsolved problems of contem-
porary mathematics. Kurt Gödel had shown that
in any system of mathematics there will be some
assertion that can be neither proved nor dis-
proved. But another great mathematician, David
Hilbert, had asked whether there was a way to
tell whether any particular mathematical asser-
tion was provable.

Instead of pursuing conventional mathe-
matical strategies to tackle this problem, Turing
reimagined the problem by creating the Turing
Machine, an abstract “computer” that performs
only two kinds of operations: writing or not
writing a symbol on its imaginary tape, and pos-
sibly moving one space on the tape to the left
or right. Turing showed that from this simple
set of states, any type of calculation could be
constructed. His 1936 paper “On Computable
Numbers,” together with ALONZO CHURCH’s
more traditional logical approach, defined the
theory of computability. After publishing this
paper, Turing then came to America, studied at
Princeton University, and received his Ph.D. in
1938.

256 Turing, Alan

Turing, Alan 257

Turing did not remain in the abstract realm,
however, but began to think about how actual
machines could perform sequences of logical
operations. When World War II erupted, Turing
returned to Britain and went into service with
the government’s secret code-breaking facility at
Bletchley Park. He was able to combine his pre-
vious work on probability and his new insights
into computing devices, such as the early spe-
cial-purpose computer COLOSSUS, to help an-

alyze cryptosystems, such as the German Enigma
cipher machine, and to design specialized code-
breaking machines.

As the war drew to an end, Turing’s imagi-
nation brought together what he had seen of the
possibilities of automatic computation, and par-
ticularly the faster machines that would be
possible by harnessing electronics rather than
electromechanical relays. In 1946, after he had
moved to the National Physical Laboratory in
Teddington, England, he received a government
grant to build the Automatic Computing Engine,
or ACE. This machine’s design incorporated such
advanced programming concepts as the storing of
all instructions in the form of programs in mem-
ory without the mechanical setup steps required
for machines such as the ENIAC. Another of
Turing’s important ideas was that programs could
modify themselves by treating their own instruc-
tions just like other data in memory. However,
the engineering of the advanced memory system
ran into problems and delays, and Turing left the
project in 1948 (it would be completed in 1950).
Turing also continued his interest in pure math-
ematics and developed a new interest in a com-
pletely different field, biochemistry.

Turing’s last and perhaps greatest impact
would come in the new field of artificial intelli-
gence. Working at the University of Manchester
as director of programming for its Mark 1 com-
puter, Turing devised a concept that became
known as the Turing test. In its best-known vari-
ation, the test involves a human being commu-
nicating via a Teletype with an unknown party
that might be either another person or a com-
puter. If a computer at the other end is suffi-
ciently able to respond in a humanlike way, it
may fool the human into thinking it is another
person. This achievement could in turn be con-
sidered strong evidence that the computer is
truly intelligent. Since Turing’s 1950 article,
“Computing Machinery and Intelligence,” com-
puter programs such as ELIZA and Web “chat-
terbots” have been able to temporarily fool

Alan Turing “invented” an imaginary computer and
showed how it could be used to determine what
mathematical problems were computable. During
World War II, Turing helped the Allies build
automated systems to crack German U-boat codes.
Later, Turing raised many of the key questions that
would shape the field of artificial intelligence. (Photo
© Photographer, Science Source/Photo Researchers)

people they encounter, but no computer program
has yet been able to pass the Turing test when
subjected to extensive, probing questions by a
knowledgeable person.

Turing also had a keen interest in chess and
the possibility of programming a machine to
challenge human players. Although he did not
finish his chess program, it demonstrated some
relevant algorithms for choosing moves, and led
to later work by CLAUDE E. SHANNON, ALLEN

NEWELL, and other researchers—and ultimately
to Deep Blue, the computer that defeated world
chess champion Garry Kasparov in 1997.

However, the master code breaker Turing
himself held a secret that was very dangerous in
his time and place: He was gay. In 1952, the so-
cially awkward Turing stumbled into a set of cir-
cumstances that led to his being arrested for ho-
mosexual activity, which was illegal and heavily
punished at the time. The effect of his trial and
forced medical “treatment” suggested that the
coroner was correct in determining Turing’s
death from cyanide poisoning on June 7, 1954,
a suicide.

Alan Turing’s many contributions to com-
puter science were honored by his being elected
a Fellow of the British Royal Society in 1951
and by the creation of the prestigious Turing
Award by the Association for Computing
Machinery, given every year since 1966 for out-
standing contributions to computer science.

In recent years, Turing’s fascinating and
tragic life has been the subject of several auto-
biographies and even the stage play and TV film
Breaking the Code.

Further Reading
Henderson, Harry. Modern Mathematicians. New York:

Facts On File, 1996.
Herken, R. The Universal Turing Machine. 2nd ed.

London: Oxford University Press, 1988.
Hodges, A. Alan Turing: The Enigma. New York:

Simon & Schuster, 1983. Reprint, New York:
Walker, 2000.

Turing, Alan M. “Computing Machinery and
Intelligence.” Mind 49 (1950): 433–460.

———. “On Computable Numbers, with an
Application to the Entscheidungsproblem.”
Proceedings of the London Mathematical Society 2,
no. 42 (1936–37): 230–265.

———. “Proposed Electronic Calculator.” In A. M.
Turing’s ACE Report of 1946 and Other Papers. B.
E. Carpenter and R. W. Doran, eds. Charles
Babbage Institute Reprint Series in the History
of Computing, vol. 10. Cambridge, Mass.: MIT
Press, 1986.

The Alan Turing Home Page. Available on-line.
URL: http://www.turing.org.uk/turing. Updated
on October 13, 2002.

� Turkle, Sherry
(1948–)
American
Scientist, Writer

The computer has had a tremendous impact on
business and many other aspects of daily life.
Many analysts and pundits have sought to un-
derstand the ongoing impact of developments
such as the personal computer, the Internet,
e-commerce, and mobile communications. How-
ever, relatively few researchers have looked
at how computer networking may be affecting
people psychologically. Sherry Turkle is a pio-
neer in this study who has raised provocative
questions about cyberspace and the self.

Turkle was born Sherry Zimmerman on
June 18, 1948, in Brooklyn, New York. When
she was born, her biological father had left,
and she received a new last name, Turkle, from
her stepfather. Because she was referred to as
Zimmerman at school but Turkle at home, she
first experienced what would become a central
theme of her later work—the question of mul-
tiple identities.

After graduating from Abraham Lincoln
High School as valedictorian in 1965, she

258 Turkle, Sherry

Turkle, Sherry 259

enrolled in Radcliffe College (which later be-
came part of Harvard University) in Cambridge,
Massachusetts. However, when she was a jun-
ior her mother died, she quarreled with her
stepfather, and dropped out of Radcliffe be-
cause she was no longer able to keep up with
her studies.

Turkle then went to France, where she
worked as a live-in house cleaner for about a year
and a half. The late 1960s in France was a time
of both social and intellectual turmoil. A new
movement called post-structuralism was offering
a radical critique of modern institutions. Turkle
became fascinated by its ideas and attended sem-
inars by such key figures as Michel Foucault and
Roland Barthes. Turkle, who had been some-
what shy, found that she was tapping into an al-
ternate identity. As she later told author Pamela
McCorduck, “I just knew that when I was in
France—hey! I felt in touch with another aspect
of my self. And I saw my job as bringing that
through into English-speaking Sherry.”

Post-structuralism and postmodernism see
identity as something constructed by society or
by the individual, not something inherent. The
new philosophers spoke of people as having mul-
tiple identities between which they could move
fluidly. Being able to try on a new identity for
herself, Turkle could see the applicability of
these ideas to her own life and explore how they
might also explain the changes that were sweep-
ing through society.

The year 1968 was marked by social protest
and civil unrest in many countries. In the United
States, the movement against the Vietnam War
was reaching its peak. In Czechoslovakia, an up-
rising against the Soviet client state failed, and
in France, a large uprising of students and work-
ers eventually also failed to achieve significant
reform. Turkle pondered the aftereffects of that
failed revolution. Many French intellectuals
turned inward, embracing the psychoanalytical
theories of Freud that had been generally re-
garded with suspicion earlier. She considered the

relationship between social conflict and the
adoption of ideas.

Turkle decided to return to the United
States to resume her studies. In 1970, she re-
ceived an A.B. degree in social studies, summa
cum laude, at Radcliffe. After working for a year
with the University of Chicago’s Committee on
Social Thought, she enrolled in Harvard, re-
ceiving an M.A. degree in sociology in 1973. She
went on to receive her doctorate in sociology
and personality psychology in 1976. The title
of her dissertation was “Psychoanalysis and
Society: The Emergence of French Freud.” In it,
she showed how many French people had re-
sponded to severe social stress by using the ideas
of Freud and the postmodern Freudian Jacques
Lacan to create what amounted to a new iden-
tity. Turkle expanded her findings in her first
book, Psychoanalytic Politics: Freud’s French
Revolution, published in 1978.

After getting her Harvard Ph.D., Turkle ac-
cepted a position as an assistant professor of so-
ciology at the nearby Massachusetts Institute of
Technology (MIT). Here she found a culture as
exotic as that of the French intellectuals, but
seemingly very different. In encountering the
MIT hackers who would later be described in
Steven Levy’s book, she “came upon students
who talked about their minds as machines. I be-
came intrigued by the way in which they were
using this computer language to talk about their
minds, including their emotions, whereas I used
a psychoanalytic one.”

For many of the MIT computer students, the
mind was just another computer, albeit a com-
plicated one. An emotional overload required
“clearing the buffer,” and troubling relationships
should be “debugged.” Fascinated, Turkle began
to function as an anthropologist, taking notes on
the language and behavior of the computer stu-
dents. In her second book, The Second Self: Com-
puters and the Human Spirit (1984), Turkle said
that the computer for its users is not an inanimate
lump of metal and plastic, but an “evocative

object” that offers images and experiences and
draws out emotions. She also explained that the
computer could satisfy deep psychological needs,
particularly by offering a detailed but structured
“world” (as in a video game) that could be mas-
tered, leading to a sense of power and security.

Although the computer culture of the time
was largely masculine, Turkle also observed that
this evocative nature of technology could also al-
low for a “soft approach,” based on relationship
rather than rigorous logic. Of course, this “femi-
nine” approach usually met with rejection. As
Turkle told an interviewer, “Being a girl comes
with a message about technology—‘Don’t touch
it, you’ll get a shock.’ ” Turkle believed that this
message had to be changed if girls were not to be
left behind in the emerging computer culture.

Turkle had already observed how computer
activities (especially games) often led users to as-
sume new identities, but she had mainly studied
stand-alone computer use. In the 1990s, how-
ever, on-line services and the Internet in par-
ticular increasingly meant that computer users
were interacting with other users over networks.
In her 1995 book Life on the Screen, Turkle takes
readers inside the fascinating world of the MUD,
or multi-user dungeon. In this fantasy world cre-
ated by descriptive text, users could assume any
identity they wished. An insecure teenage boy
could become a mighty warrior—or perhaps a se-
ductive woman. A woman, by assuming a male
identity, might find it easier to be assertive and
would avoid the sexism and harassment often
directed at females.

Cyberspace offers promises, perils, and po-
tential, according to Turkle. As with other me-
dia, the computer world can become a source of
unhealthy escapism, but it can also give people
practice in using social skills in a relatively safe
environment—although there can be difficulty
in transferring skills learned on-line to a face-to-
face environment.

Although the computer has provided a new
medium for the play of human identity, Turkle

has pointed out that the question of identity
(and the reality of multiple identities) is inher-
ent in the modern (or postmodern?) world. As
she noted in an interview for the MIT Technology
Review, “We live an increasingly multi-roled ex-
istence. A woman may wake up as a lover, have
breakfast as a mother, and drive to work as a
lawyer. . . . So even without computer networks,
people are challenged to think about their iden-
tities in terms of multiplicity.”

Increasingly, people no longer log in to a com-
puter, do some work, then log out. The connec-
tion is always on, and with laptops, notebook
computers, and palm computers the connection is
available everywhere. High-capacity (broadband)
networks also make it possible to deliver video and
sound. Looking to the future, Turkle suggested to
an interviewer for Fortune magazine that

broadband is an intensive and extensive
computational presence in which the
computer doesn’t become just an in-
strumental machine to get things
done—to do things for us—but a sub-
jective machine that changes us, does
things to us. It opens up the computer
as a partner in daily life in a way that it
hasn’t been before.

Turkle suggests that the boundary between
cyberspace and so-called real life is vanishing,
and thus “It’s going to create a kind of crisis
about the simulated and the real. The notion of
what it is to live in a culture of simulation—how
much of that counts as real experience and how
much of that is discounted—is going to become
more and more in the forefront of what people
think and talk about.”

Turkle married artificial intelligence pioneer
and educator SEYMOUR PAPERT; the marriage
ended in divorce. She continues today at MIT
as a professor of the sociology of science and as
director of the MIT Initiative on Technology
and Self. She has received a number of fellow-

260 Turkle, Sherry

Turkle, Sherry 261

ships, including a Rockefeller Foundation
Fellowship (1980), a Guggenheim Fellowship
(1981), Fellow of the American Association for
the Advancement of Science (1992), and World
Economic Forum Fellow (2002).

In 1984 Turkle was selected as Woman of
the Year by Ms. magazine, and she has made a
number of other lists of influential persons, such
as the “Top 50 Cyber Elite” of Time Digital (1997)
and Time Magazine’s Innovators of the Internet
(2000).

Further Reading
“Sherry Turkle” [Home page] Available on-line. URL:

http://web.mit.edu/sturkle/www. Downloaded on
November 3, 2002.

Turkle, Sherry. Life on the Screen: Identity in the Age
of the Internet. New York: Simon and Schuster,
1995.

———.The Second Self: Computers and the Human
Spirit. New York: Simon and Schuster, 1984.

———.“Session with the Cybershrink.” Technology
Review 99 (February–March 1996): 41ff.

262

� Wang, An
(1920–1990)
Chinese/American
Inventor, Entrepreneur

There was a time not long ago when “word
processor” meant an office machine, not a pro-
gram running on a personal computer (PC). From
the 1970s through the early 1980s, An Wang’s
Wang Laboratories dominated the word proces-
sor market. Wang also invented the magnetic
memory “core,” an important form of mainframe
memory until the advent of the memory chip.

An Wang, whose name means “Peaceful
King,” was born in Shanghai, China, on February
7, 1920. The family sometimes also lived in
the village of Kun San, about 30 miles from
Shanghai, where his father taught English.
Young Wang started school in third grade when
he was six years old, because the school had no
earlier grades.

When Wang was only 16, he entered the
Chiao Tung University, the Shanghai technical
school that has been called “the MIT of China.”
By then, however, Japan was invading China,
Shanghai was being bombed, and the country-
side was plunging into turmoil. Wang tried to
concentrate on his electrical engineering stud-
ies, as well as improving the English skills that
his father had imparted. One way he practiced

W
English was by translating popular science arti-
cles from American magazines to Chinese and
publishing them in a digest. Meanwhile, the
fighting came closer to the university, although
it was not overrun.

In 1940, Wang received his bachelor’s degree
in electrical engineering and began to work as a
teaching assistant at the university. However, in
1941 he volunteered to help the Chinese army
design and build radio equipment for use by
troops in the field. It is there that Wang learned
to be what he described as a “seat of the pants
engineer”—scrounging parts to build generators
and fleeing constant Japanese bombing raids.

After the war, the Nationalist Chinese gov-
ernment sponsored a program to send engineers
to the United States to learn about the latest
technology. When Wang arrived in the United
States in June 1945, he soon decided to take a
step further and enroll at Harvard University.
Because he already had practical experience,
he was rushed quickly through the program,
receiving a master’s degree in 1946. In 1947,
he entered Harvard’s doctoral program in ap-
plied physics. By then, however, China was
again embroiled in war, this time between the
Nationalist and Communist forces. In his mem-
oir Lessons (1986) Wang explained his decision
not to return to China. “I . . . knew myself well
enough to know that I could not thrive under a

Wang, An 263

totalitarian Communist system. I had long been
independent, and I wanted to continue to make
my own decisions about my life.”

In 1948, Wang received his Ph.D. in engi-
neering and applied physics. He also received a
research fellowship at the Harvard Computer
Laboratory, which would prove to be a crucial
turning point in Wang’s career. Wang worked
under HOWARD AIKEN, who had designed the
Harvard Mark I, a huge programmable calcula-
tor that used thousands of electromechanical re-
lays. Wang’s assignment was to devise a storage
(memory) system for this machine that did not
rely on slow mechanical motion.

Magnetism seemed to be a good possibility,
since data stored as little bits of magnetic mate-
rial need not be continually refreshed. It was easy
enough to magnetize something, creating a pos-
itive or negative magnetic “flux” that could
stand for the binary 1 and 0. The problem was
that reading the flux to determine whether it
was a 1 or 0 reversed it, destroying the data.
Wang spent weeks wracking his brain trying to
come up with a solution to the dilemma. One
afternoon, while walking through Harvard Yard,
the solution suddenly came to him (as recounted
in Current Biography Yearbook 1987): “It did not
matter whether or not I destroyed the informa-
tion while reading it. . . . I could simply rewrite
the data immediately afterward.”

Having solved that problem, Wang still had
to create the memory device itself. After trying
a nickel-iron alloy trade-named Deltamax he fi-
nally decided on ferrite, an iron composite. The
ferrite was shaped into tiny doughnut-like rings
and arranged in a three-dimensional lattice.
Wang’s patented “ferrite core memory” would
become the standard fast memory device for
mainframe computers in the 1950s and 1960s.

In 1951, Wang left Harvard and started his
own company, Wang Laboratories, to manufac-
ture magnetic core memories and hopefully to
develop other new technologies. Wang was cre-
ative in finding applications for the devices—

one of the earliest was the electronic scoreboard
at New York City’s Shea Stadium.

Wang Laboratories grew slowly, until in 1956
Wang was able to sell his memory patents to IBM
for $400,000. Wang used the money to expand
the company’s production to include electronic
counters, controls for automatic machine tools,
and data coding devices. By the early 1960s,
Wang had also designed LINASEC, an electronic
typesetting system that became popular with
newspapers, and LOCI, a desktop scientific cal-
culator. This and Wang’s later calculators gave
scientists and engineers a relatively inexpensive
alternative for calculations too complex for a
simple calculator but which did not require an
expensive computer. Wang Laboratories’ sales
grew steadily from $2.5 million in 1965 to $6.9
million in 1967, the year the company went pub-
lic as one of the year’s hottest stocks.

Wang anticipated that the calculator mar-
ket would soon be flooded with cheaper models,
so he decided to start building minicomputers.
The System 2200, introduced in 1972, was sold
to businesses for the attractive price of $8,000
and ran software written in the relatively easy-
to-use BASIC programming language.

Wang believed that business data processing
had three key aspects—calculation, text process-
ing, and data processing. Leaving the calculators
to others, Wang decided to focus on text pro-
cessing. After all, the creation and revision of doc-
uments accounts for the bulk of activity in any
office. Thus, the same year the System 2200 came
out Wang introduced the Model 1200 Word
Processing System. In doing so, Wang was chal-
lenging IBM, whose typewriters and related
equipment had long dominated the office market.

While the first Wang word processor used a
typewriter equipped with magnetic tape cassettes
to store text, the next model, the WPS, used a
cathode-ray tube, allowing text to be created and
edited on screen. This was the birth of modern
word processing. Wang’s word processors and of-
fice computers sold well and Wang opened a

large new factory in Lowell, Massachusetts, re-
vitalizing that city of old factories and mills.

In 1979, Wang launched a new family of ma-
chines called the Office Information System.
These systems integrated word processing and
database functions, anticipating the modern of-
fice application suite. Wang then added facili-
ties for processing voice, images, and video and
for networking users together. The goal was to
integrate an office’s entire document, data pro-
cessing, and communications needs into a sin-
gle system that could be scaled upward to meet
a company’s growing needs.

By 1981, Wang seemed to be well on the
way to achieving his business goals. The com-
pany was earning $100 million a year and had
been growing at an annual rate of 55 percent for
the preceding five years. However, Wang’s at-
tempt to achieve lasting domination of the of-
fice information systems market ran into formi-
dable challenges.

A number of very large companies, includ-
ing Hewlett-Packard and Digital Equipment
Corporation (DEC), began to offer systems that
competed with at least a portion of Wang’s
offerings. But the ultimate downfall of Wang
Laboratories turned out to be the IBM PC, which
debuted in 1982. At first, the PC with its limited
memory and storage capacity could not match the
performance of Wang’s word processing and in-
formation systems. However, as Wang struggled
to make its advanced technology (especially net-
working) work smoothly and to convince busi-
nesses to buy equipment that cost many thousands
of dollars, the PC like the proverbial tortoise be-
gan to overtake Wang’s hare. In 1985, Wang
Laboratories’ phenomenal growth finally shud-
dered to a halt: Earnings dropped precipitously
and the company laid off 1,600 workers.

By the late 1980s, the PC’s processor, dis-
play, memory, and hard drive had all been up-
graded. Perhaps more important, unlike those
committed to the dedicated Wang equipment,
PC users could buy whatever software they

wished. A new generation of software such as
WordPerfect, dBase, and Lotus 1-2-3 gave the
PC open-ended capabilities. In the following
decade, software suites such as Microsoft Office
would add the integration that had been such
an attractive feature of the Wang system.

Wang, who had partly retired from the com-
pany, returned in an attempt to turn Wang
Laboratories around. He streamlined operations
and landed a huge $480 million contract to sup-
ply minicomputers to the U.S. Air Force. Wang
also developed an improved Wang Integrated
Office Solution. In 1986, he named his son Fred
Wang as chief executive officer. Unfortunately,
the turnaround was only temporary, and by the
end of the decade the company’s fortunes were
again in decline. An Wang died of esophageal
cancer on March 24, 1990.

He had reached the first rank both as inven-
tor and entrepreneur, perhaps by following his
own observation that “success is more a function
of consistent common sense than it is of genius.”
He received the U.S. government’s Medal of
Liberty in 1986, and in 1988 he was elected to
the National Inventors Hall of Fame. Wang also
donated generously to many philanthropic causes,
including a performing arts center in Boston, a
clinic at Massachusetts General Hospital, and his
own Wang Institute of Graduate Studies, spe-
cializing in training software engineers.

Further Reading
Bensene, Rick. “Wang Laboratories: From Custom

Systems to Computers.” Available on-line. URL:
http://www.geocities.com/oldcalculators/d-wang-
custom. html. Posted on October, 2001

Kenney, Charles C. Riding the Runaway Horse: The
Rise and Decline of Wang Laboratories. Boston:
Little, Brown, 1992.

Moritz, Charles, ed. “Wang, An.” Current Biography
Yearbook, 1987. New York: H. W. Wilson, 1987,
pp. 586–590.

Wang, An, and Eugene Linden. Lessons: An
Autobiography. New York: Addison-Wesley, 1986.

264 Wang, An

Watson, Thomas J., Sr. 265

� Watson, Thomas J., Sr.
(1874–1956)
American
Entrepreneur

For more than a generation, the word most closely
associated with “computer” in the public mind had
three letters: IBM. Just as Bell became the iconic
name for telephone and Ford for the automobile,
the products of International Business Machines
dominated the office through most of the 20th
century. The business leader who took the com-
pany from typewriters and tabulators to the main-
frame computer was Thomas J. Watson Sr.

Watson was born February 17, 1874, in
Campbell, New York. His father was a success-
ful lumber dealer and the family also ran a farm.
Watson did well in school, attending first the
Addison (New York) Academy, and then the
School of Commerce in Elmira, New York.
Although Watson’s father wanted him to study
law, young Watson was determined to make his
own way. Watson’s first job after graduation in
1892 was as a salesman selling pianos, organs,
and sewing machines from a wagon near Painted
Post, New York.

In 1898, Watson entered the corporate
world at National Cash Register (NCR), having
been hired by a reluctant manager after persist-
ent visits to his office. It was a tough year to start
a corporate career: the country was in the midst
of an economic depression and it was difficult to
generate many sales. Nevertheless, Watson soon
impressed his superiors with his continued per-
sistence and energy, which by 1898 made him
the top salesman in the company’s Buffalo of-
fice. Watson would later attribute his success to
following “certain tried and true homilies,” and
he would later use slogans to focus the attention
of his employees at IBM.

Watson continued to move up through the
managerial and executive ranks, becoming gen-
eral sales manager at NCR’s home office in
Dayton, Ohio, in 1903. Watson’s aggressive pur-

suit of sales and targeting of the competition
eventually took him to the edge of ethics and
legality. NCR’s executives asked him to do some-
thing about the companies that were selling sec-
ondhand cash registers and thus undercutting
NCR’s business. Watson responded by creating
and running a used cash-register company that
was supposedly independent but in reality was se-
cretly funded by NCR. The company successfully
undercut its competitors, but in 1910 NCR’s
main competitor, the American Cash Register
Company, sued NCR for violating the Sherman
Antitrust Act, and the government joined in the
suit. On February 13, 1913, NCR and a number
of its executives, including Watson, were con-
victed of antitrust violations. Watson was fined
$5,000 and sentenced to one year in prison.

An appeals court overturned Watson’s con-
viction in 1915, but by then he had left NCR.
The company had wanted him to sign a consent
decree admitting illegal practices. Watson had
steadfastly refused, claiming that he had done
nothing illegal. Watson was then fired. Later he
would say that it was then that he vowed to form
a company even larger than the mighty “Cash,”
as NCR was informally called.

Watson was not out of work for long. He was
offered the job of general manager at a com-
pany called Computing-Tabulating-Recording,
or C-T-R. This company manufactured items such
as time clocks, scales, and punch-card tabulators
(using technology that had been developed in the
late 19th century by HERMAN HOLLERITH).

Watson marshaled the sales and managerial
skills he had mastered at NRC to build C-T-R’s
business. He decided to focus on the tabulating
machine part of the business, seeing it as hav-
ing the most growth potential. Refining prac-
tices common at NCR, Watson emphasized the
motivation and training of the sales force. He
gave each salesman a defined territory and a
sales quota. Salesmen who made their quotas
were given a special recognition as members of
the “100 Percent Club.” A dress code and the

required abstention from alcoholic beverages
resulted in a disciplined sales force and a repu-
tation for conservatism that would later charac-
terize IBM’s corporate culture.

Overall, Watson’s management philosophy
was that the company needed to be sales driven.
All other divisions, including research and de-
velopment and manufacturing, were expected to
understand what was needed to promote sales.
Slogans such as “Sell and Serve,” “Aim High,”
and especially “Think,” were used in offices and
company meetings.

The fruits of Watson’s priorities and practices
soon became evident. C-T-R’s sales rose from $4.2
million in 1914 to $8.3 million in 1917, largely
accounted for by a growing market share in the
tabulating equipment area. In 1924, Watson be-
came chief executive officer of C-T-R. That same
year, he changed the company’s name to some-
thing that better reflected the scope of his ambi-
tions: International Business Machines, or IBM.

Under Watson’s leadership, IBM expanded
its product line, particularly card sorters and tab-
ulators, which grew in capabilities and became
essential to many large corporations and gov-
ernment offices. By the eve of World War II,
IBM’s annual sales were approaching $25 mil-
lion. The New York Times referred to Watson as
“an industrial giant” and later the Saturday
Evening Post attributed IBM’s success to Watson’s
“ingenuity in creating new markets, perfecting
of educational-sales technique, and stubborn
strength for hard work.”

Although Watson was also criticized for be-
ing a foe of labor unions he did support President
Franklin D. Roosevelt’s New Deal economic pro-
grams, although he stayed out of direct involve-
ment with politics. Watson also promoted the
“International” part of the company’s name
through a high-profile exhibit at the 1939
World’s Fair in New York and the slogan “world
peace through world trade.”

Watson had shown some interest in com-
putation (the product line included some basic

electromechanical calculators) but during the
war years he became more aware of the poten-
tial of large-scale automatic computation. He be-
came an important backer of the research of
HOWARD AIKEN at Harvard, who built the Mark
I, a huge programmable calculator (or early com-
puter) that used relays for its operation. Watson
became upset when the Mark I was unveiled at
Harvard because he thought that Aiken and the
university had taken most of the credit while
downplaying IBM’s important role in the fund-
ing and research.

After the war, Watson and other IBM exec-
utives debated over whether the company should
produce electronic digital computers. IBM did
produce a small machine, the Selective Sequence
Electronic Calculator (SSEC), but the usually
aggressive and innovative Watson seemed reluc-
tant to commit the company to computers on a
large scale. However, it is also true that no one
in the late 1940s really knew whether there was
a viable market for more than a few of the huge,
unwieldy vacuum tube computers.

However, the urgings of his son THOMAS

WATSON JR., and the success of ENIAC’s suc-
cessor Univac, built by J. PRESPER ECKERT and
JOHN MAUCHLY with assistance from JOHN VON

NEUMANN, spurred IBM to respond. Watson
backed his son’s instincts in committing the
company wholeheartedly to the computer age.
In 1952, Watson made his son the company pres-
ident while retaining the chairmanship of the
board. Thomas Watson Sr. died on June 19,
1955. He had left a company with a worldwide
reputation and annual revenues of $700 million.

Watson had considerable interest in the
arts, to which he contributed generously. He
also contributed to innovations in the medical
field, including arthritis research and the de-
velopment of an eye bank for corneal trans-
plants. Watson received the U.S. Medal of
Merit for meritorious service during World War
II. He received numerous awards from other
countries as well.

266 Watson, Thomas J., Sr.

Watson, Thomas, Jr. 267

Further Reading
“Facts, Factoids, Folklore.” Datamation 32 (January 1,

1986): 42ff.
Rodgers, W. THINK: A Biography of the Watsons and

IBM. New York: Stein and Day, 1969.
Sobel, Robert. Thomas Watson, Sr., IBM and the

Computer Revolution. Frederick, Md.: Beard Books,
2000.

Watson, T. J., Jr. and P. Petre. Father, Son, and Company:
My Life at IBM. New York: Bantam, 1990.

� Watson, Thomas, Jr.
(1914–1993)
American
Entrepreneur

In the course of three decades, THOMAS J. WAT-
SON SR. had built the small Computing-
Tabulating-Recording company (CTR) into the
giant International Business Machines (IBM),
taking it to the dawn of the computer age. His
son Thomas Watson Jr. took the reins in the
early 1950s and built IBM’s computer business
until its mainframes dominated business and
government data processing.

Thomas Watson Jr. was born on January 8,
1914, in Dayton, Ohio. He was the eldest son of
Thomas Watson Sr., the chief executive office
(CEO) of IBM. The boy was exposed to his fa-
ther’s business from a very young age: At five years
of age, he was given a tour of the IBM factory.
When he was nine, Watson Jr. joined his father
on an inspection tour of the company’s European
plants. As Watson would later tell the New York
Herald Tribune on the verge of his taking over the
reins of IBM: “I take real pride in being a great
man’s son. My father has set a fine example for
me. Because he is who he is, I realize that nearly
every act of mine will be scrutinized very closely.”

However, that was in retrospect. In actual-
ity, the young Watson responded to the nearly
overwhelming presence of his father by rebel-
lion: He became known as “Terrible Tommy

Watson,” and often got into trouble for pranks.
Alternately, he became depressed and lacked
self-confidence.

After attending various private secondary
schools, at which he was an indifferent student,
Watson Jr. enrolled in Brown University in
Providence, Rhode Island, graduating in 1937
with a B.A. degree, again without any academic
distinction. That same year, he joined IBM as a
junior salesman. His father kept a scrupulous
hands-off policy, making it clear that there
would be no favoritism. Watson Jr. was assigned
to one of the toughest sales districts, the Wall
Street area in New York. Well aware that all eyes
(including his father’s) were on him, Watson Jr.
buckled down and not only met his sales quota
but exceeded it by 150 percent.

During World War II, Watson Jr. enlisted as
a private in the U.S. Army Air Force. He be-
came a pilot and flew on difficult ferry missions
between Alaska and Russia and later flew staff
missions between Russia and the Middle East.
By the time of his discharge in 1946, he had

Thomas J. Watson Sr. (at right) turned a tabulator
company into the office machine giant IBM. His son
Thomas Watson Jr. (at left) then took the company
into the computer age in the early 1950s. It would
dominate the market for mainframe computers for
three decades or more. (IBM Corporate Archives)

reached the rank of lieutenant colonel and had
earned a U.S. Air Medal.

Upon return to IBM, Watson Jr. was rapidly
groomed to step into the responsibilities gradu-
ally being relinquished by his aging father.
Watson Jr. started as vice president in charge of
sales and was appointed to the board of direc-
tors four months later. In 1949, he became ex-
ecutive vice president, and in 1952 he replaced
his father as IBM’s president, with his father be-
coming chairman of the board.

IBM had made its success on electro-
mechanical technology—typewriters, tabulators,
and calculators of increasing sophistication.
World War II had seen the birth of a much faster
and more versatile information-processing tech-
nology—the electronic digital computer pio-
neered by researchers such as J. PRESPER ECKERT

and JOHN MAUCHLY, who had built the giant vac-
uum tube computer ENIAC at the University of
Pennsylvania. Now Eckert and Mauchly had
started a company to produce an improved elec-
tronic computer, Univac.

But while small companies were willing to
build on a radical new technology, IBM was in
a more difficult position. A company that has
built such a commanding position on one tech-
nology cannot easily shift to another while
maintaining its business, and Watson Sr. was re-
luctant to make the investment needed for new
factories, particularly when it was not clear
whether the market for the large, expensive ma-
chines would amount to more than a few dozen.

However, by 1955 Time was reporting that
“the mechanical cogs and gears have given way
to electronic circuits, cathode-ray tubes, and
transistors.” It was largely the result of the firm
conviction of Watson Jr. that computers were
the wave of the future, as well as the need he
felt to match and, if possible, exceed the
achievements of the father he admired.

Watson Sr. died on June 19, 1955, and the
following year Watson Jr. became IBM’s CEO.
At that time, the company had grown to 72,500

employees and had annual revenue of $892 mil-
lion. With Watson Jr. in control, the company
developed its IBM 702 (primarily an accounting
machine), the 650 (designed for smaller busi-
nesses) and the 701 (a scientific computer). The
threat from Sperry-Rand’s Univac subsided. IBM
also extended its research and introduced inno-
vations such as the first disk drive (with the IBM
305 RAMAC), which had a capacity of five
megabytes.

In the early 1960s, IBM’s product line be-
came fully transistorized with the 1400 series.
The IBM/system/360, announced in 1964, rede-
fined the mainframe computer. It was designed
to be scalable, so that users could start with a
small system and add larger models without any
hardware or software becoming incompatible.
This era also marked the introduction of the first
integrated circuits, the next step in miniaturiza-
tion after the transistor.

As a manager, Watson Jr. inherited many use-
ful practices from his father, but had innovations
of his own. One was the “penalty box” by which
an executive who had made a serious mistake
would be temporarily moved from the fast track
to a post where he had time to think things over.
But although he drove people hard and could be
harsh, Watson Jr. did not want meek compliance.
He once noted, “I never hesitated to promote
someone I didn’t like. The comfortable assis-
tant—the nice guy you like to go fishing with—
is a great pitfall. I looked for those sharp, scratchy,
harsh, almost unpleasant guys who see and tell
you about things as they really are.”

With IBM’s growing dominance came in-
creased legal threats of antitrust action. In 1952,
Watson Jr. had settled a case with the govern-
ment over his father’s objections. In 1969, the
government filed a more serious case in which
it claimed that IBM dominated the computer in-
dustry to such an extent that the company
should be broken up. IBM had always sold every-
thing as a package—hardware, software, and
service. This “bundling” had made it very diffi-

268 Watson, Thomas, Jr.

Weizenbaum, Joseph 269

cult for competitors to get a toehold in the IBM-
compatible software market. Under pressure
from the government, Watson agreed to “un-
bundle” the hardware and software components
and sell them separately. The case would drag
on until 1981 when the Reagan administration
dropped it.

In 1970, Watson Jr. had a heart attack.
Although he recovered, the experience made
him decide to take an earlier retirement to
reduce health-threatening stress. Watson did
retain some input into the company’s executive
board, however. Meanwhile, he indulged his pas-
sion for sailing, making long voyages, including
one to Greenland and the Arctic Circle.

As a successful business leader, Watson Jr.
was also in great demand for government serv-
ice. In the Kennedy administration, he had
served on a number of advisory commissions.
President Johnson asked Watson Jr. to be his sec-
retary of commerce, but he declined. In 1979,
Watson did take the post of U.S. ambassador to
Moscow. He entered at a time of high tension
between the United States and the Soviet
Union as a result of the latter’s invasion of
Afghanistan and disputes over the deployment
of new missile systems. During the 1980s,
Watson Jr. became an advocate for arms reduc-
tion. He also watched and occasionally offered
advice as IBM launched the IBM PC, the ma-
chine that would define a whole new computer
market.

In addition to sailing, Watson Jr. enjoyed
flying small planes (including jets and a heli-
copter), and collecting scrimshaw and antique
cars. He also took the time to write his autobi-
ography, Father, Son and Company: My Life at
IBM and Beyond.

Thomas Watson Jr. died on December 31,
1993, from complications from a stroke. He re-
ceived many awards from trade groups in recog-
nition of his business leadership and ranks high
in many lists of the 20th century’s greatest
executives.

Further Reading
“The Businessman of the Century: Henry Ford, Alfred

P. Sloan, Tom Watson, Jr., Bill Gates.” Fortune,
November 22, 1999, pp. 108ff.

Rodgers, W. THINK: A Biography of the Watsons and
IBM. New York: Stein and Day, 1969.

Watson, T. J., Jr., and P. Petre. Father, Son, and
Company: My Life at IBM. New York: Bantam,
1990.

� Weizenbaum, Joseph
(1923–)
German/American
Computer Scientist

Since its inception in the early 1950s, research
in artificial intelligence (AI) has led to dramatic
achievements and frustrating failures (or partial
successes). Although researchers have had to ac-
cept that the challenge of creating computer pro-
grams that exhibit true humanlike intelligence is
more difficult than they had imagined, most have
continued to be basically optimistic about the ef-
fort and sanguine about its potential results.
However, one researcher, Joseph Weizenbaum,
after writing one of the most famous programs in
the history of AI, became one of the most per-
sistent and cogent critics of the AI project itself.

Weizenbaum was born on January 8, 1923,
in Berlin to Jewish parents. In 1934, he enrolled
in a Berlin preparatory school, but after two se-
mesters he was dismissed because of recently
passed Nazi racial laws. In 1936, the Weizenbaum
family, increasingly fearful about the future in
Germany, emigrated to the United States.

In 1941, Weizenbaum enrolled in Wayne
State University in Detroit, Michigan. The fol-
lowing year, he enlisted in the U.S. Army Air
Corps. After the war, he resumed his study of
mathematics. While working as a research assis-
tant, Weizenbaum had the opportunity to help
design and build an early digital computer, and
although he received his master’s degree in

mathematics in 1950, he would spend his career
in the computer field.

From 1955 to 1963, Weizenbaum worked for
General Electric’s Computer Development
Laboratory as a systems engineer. During this
time, he would oversee the design and imple-
mentation of the first integrated computerized
banking system, for Bank of America.

In 1963, Weizenbaum returned to academia,
joining the faculty at the Massachusetts Institute
of Technology (MIT), which had one of the na-
tion’s foremost programs in artificial intelligence
research. He contributed to the development of
the time-sharing computer system at MIT and
early computer networks, but the work for which
he would be most remembered started with his
interest in natural language processing. This was
the effort to get computers to communicate in
ordinary language and ideally, to carry on mean-
ingful conversations with human beings.

In 1966, Weizenbaum created a remarkable
program called ELIZA (named for the character
in George Bernard Shaw’s play Pygmalion who is
taught “proper English” by Professor Henry
Higgins). ELIZA was remarkable not for its com-
plexity or for innovative use of AI techniques,
but for the way it used a few simple procedures
to convey the impression that it was a true arti-
ficial intelligence—or indeed, a real person.

ELIZA worked by identifying key words and
basic sentence structure and then “mirroring”
the user’s statements back, much in the manner
of the nondirective psychotherapy that Carl
Rogers had made popular. A sample snippet of
human-ELIZA dialog might look like this
(ELIZA’s words are in caps).

Men are all alike.
IN WHAT WAY?
They’re always bugging us about some-
thing or other.
CAN YOU THINK OF A SPECIFIC
EXAMPLE?
Well, my boyfriend made me come here.

YOUR BOYFRIEND MADE YOU
COME HERE
He says I’m depressed much of the time.
I AM SORRY TO HEAR YOU ARE
DEPRESSED
It’s true. I am unhappy
DO YOU THINK COMING HERE
WILL HELP YOU NOT TO BE UN-
HAPPY
I need some help, that much seems
certain.
WHAT WOULD IT MEAN TO YOU
IF YOU GOT SOME HELP
Perhaps I could learn to get along with
my mother.
TELL ME MORE ABOUT YOUR
FAMILY

According to legend, one night Weizenbaum
had absent-mindedly gone home without shut-
ting down ELIZA on his terminal. Around 4 A.M.
a graduate student went looking for Weizenbaum
(whom he thought was still logged onto the com-
puter). Having run into problems with his pro-
gram, the student wanted to ask Weizenbaum to
log off so he would have access to the whole com-
puter, which might speed up his debugging effort.

When the student arrived there was no one
in Weizenbaum’s office, but the terminal was on
and a cursor was blinking. Thinking Weizenbaum
had logged on from home, the student typed,
“Joe, please log off.”

The interaction then proceded something
like this:

WHY DO YOU SAY JOE LOG OFF?
I need the computer for an AI demo to-
morrow, Joe
WHAT MAKES YOU BELIEVE
THAT?
Joe, I’m serious. I’ve got a demo here to-
morrow and I need the computer.
PERHAPS THE PEOPLE YOU
HANG AROUND WITH COULD
HAVE CAUSED THIS.

270 Weizenbaum, Joseph

Weizenbaum, Joseph 271

The student grew increasingly angry at what
seemed to be Weizenbaum’s obnoxious behav-
ior, and finally called him at home. It took
awhile for Weizenbaum to realize that the stu-
dent had been talking to ELIZA. ELIZA had in-
advertently passed the test that ALAN TURING

had posed, in which a human user tries to de-
termine whether he or she is talking to another
human being or a computer.

Weizenbaum’s 1976 book Computer Power and
Human Reason is a collection of essays that both
explain the achievements of AI pioneers and point
out their limitations. In particular, Weizenbaum
became dismayed at the ease with which many
people responded to ELIZA as though it were hu-
man. This posed the possibility that computer
technology would be allowed to create shallow
substitutes for a human intelligence that science
was no longer really trying to understand. If, as
Weizenbaum observes, “the computer programmer
is creator of universes for which he alone is re-
sponsible. . . . Universes of almost unlimited com-
plexity. . .” then indeed the computer scientist
must take responsibility for his or her creations.
This is the challenge that Weizenbaum believes
has not been taken seriously enough.

As the 1960s progressed, the United States
plunged into the Vietnam War and racial ten-
sion crackled in the streets of major cities.
Weizenbaum became increasingly concerned
that technology was being used for warlike and
oppressive purposes. Later, he recalled that

The knowledge of behavior of German
academics during the Hitler time
weighed on me very heavily. I was born
in Germany, I couldn’t relax and sit by
and watch the university in which I now
participated behaving in the same way.
I had to become engaged in social and
political questions.

As an activist, Weizenbaum campaigned
against what he saw as the misuse of technology

for military purposes, such as missiles and mis-
sile defense systems. He was founder of a group
called Computer Professionals Against the ABM
(antiballistic missile). In a 1986 article, he wrote
that:

It is a prosaic truth that none of the
weapon systems which today threaten
murder on a genocidal scale, and whose
design, manufacture and sale condemns
countless people, especially children, to
poverty and starvation, that none of
these devices could be developed with-
out the earnest, even enthusiastic coop-
eration of computer professionals. It
cannot go on without us! Without us the
arms race, especially the qualitative arms
race, could not advance another step.

Although most pundits consider the com-
puter to be a source of revolutionary innovation,
Weizenbaum has suggested that it has actually
functioned as a conservative force. He gives the
example of banking, which he had helped auto-
mate in the 1950s. Weizenbaum asks

Now if it had not been for the computer,
if the computer had not been invented,
what would the banks have had to do?
They might have had to decentralize, or
they might have had to regionalize in
some way. In other words, it might have
been necessary to introduce a social
invention, as opposed to the technical
invention.

Weizenbaum does not consider himself to be
a Luddite, however, and he is not without recog-
nition of the potential good that can come from
computer technology:

Perhaps the computer, as well as many
other of our machines and techniques,
can yet be transformed, following our

own authentically revolutionary trans-
formation, into instruments to enable us
to live harmoniously with nature and
with one another. But one prerequisite
will first have to be met: there must be
another transformation of man. And it
must be one that restores a balance be-
tween human knowledge, human aspi-
rations, and an appreciation of human
dignity such that man may become wor-
thy of living in nature.

As a practical matter, he says, “The goal is
to give to the computer those tasks which it can
best do and leave to man that which requires (or
seems to require) his judgment.”

During the 1970s and 1980s, Weizenbaum
not only taught at MIT but also lectured or
served as a visiting professor at a number of in-
stitutions, including the Center for Advanced
Studies in the Behavioral Sciences at Stanford
(1972–73), Harvard University (1973–74), and
the Technical University of Berlin and the
University of Hamburg.

In 1988, Weizenbaum retired from MIT. That
same year, he received the Norbert Wiener Award
for Professional and Social Responsibility from
Computer Professionals for Social Responsibility
(CPSR). In 1991, he was given the Namur Award
of the International Federation for Information
Processing. He has also received European
honors, such as the Humboldt Prize from the
Alexander von Humboldt Foundation in
Germany.

Further Reading
Ben-Aaron, Diana. “Weizenbaum Examines Compu-

ters [and] Society.” The Tech (Massachusetts
Institute of Technology) vol. 105, April 9, 1985.
Available on-line. URL: http://the-tech.mit.edu/
V105/N16/weisen.16n.html.

ELIZA. Available on-line. URL: http://www.uwec.edu/
jerzdg/orr/articles/IF/canon/Eliza.htm. Updated
on March 6, 2001.

Weizenbaum, Joseph. Computer Power and Human
Reason San Francisco: W. H. Freeman, 1976.

———. “ELIZA—A Computer Program for the Study
of Natural Language Communication Between
Man and Machine.” Communications of the ACM,
9 (January 1966): 35–36. Available on-line. URL:
http://i5.nyu.edu/~mm64/x52.9265/january1966.
html. Downloaded on December 9, 2002.

� Wiener, Norbert
(1894–1964)
American
Mathematician, Computer Scientist

Although computers often appear to be abstract
entities, they exist in, and interact with, the
physical world. Indeed, today many “hidden”
computers control the heat and air conditioning
in homes, help steer cars, and for that matter,
assemble parts for those cars in the factory.
Norbert Wiener developed the theory of cyber-
netics, or the process of communication and
control in both machines and living things. His
work has had an important impact on philoso-
phy and on design principles.

Wiener was born on November 26, 1894, in
Columbia, Missouri. His father was a professor
of Slavic languages at Harvard University, and
spurred an interest in communication which the
boy combined with an avid pursuit of mathe-
matics and science (particularly biology). A
child prodigy, Wiener started reading at age
three. His father force-fed him knowledge far
ahead of his years. He demanded perfect answers
to every question or problem and became en-
raged when the boy made mistakes. Later, in his
autobiography Ex-Prodigy (1953), Wiener would
reveal how his father had made him feel a sense
of inadequacy that, together with his isolation
from other children, stunted Wiener’s social
development.

Wiener’s academic development proceeded
at a dizzying pace, however. He entered Tufts

272 Wiener, Norbert

Wiener, Norbert 273

Norbert Wiener developed the science of cybernetics,
or automatic control systems. To do so, he drew on
physiology, neurology, mathematics, and electronics. In
this book The Human Use of Human Beings, he argued
for bringing humanist values to decisions about how to
employ technology. (Photo © Bettmann/CORBIS)

University at age 11 and earned his B.A. degree
in mathematics in 1909 at the age of 14, after
concluding that his lack of manual dexterity
made biological work too frustrating. He earned
his M.A. degree in mathematics from Harvard
only three years later, and his Harvard Ph.D. in
mathematical logic just a year later, in 1913,
when he was still only 18. Wiener then traveled
to Europe on a fellowship, where he met lead-
ing mathematicians such as Bertrand Russell,
G. H. Hardy, Alfred North Whitehead, and
David Hilbert. When America entered World
War I, Wiener served at Aberdeen Proving
Ground in Maryland, where he designed artillery
firing tables.

After the war, Wiener was appointed as an
instructor in mathematics at the Massachusetts
Institute of Technology (MIT), where he would
serve until his retirement in 1960. He contin-
ued to travel widely, serving as a Guggenheim
Fellow at Copenhagen and Göttingen in 1926
and a visiting lecturer at Cambridge (1931–32)
and Tsing-Hua University in Beijing (1935–36).
Wiener’s scientific interests proved to be as wide
as his travels, including research into stochastic
and random processes (such as the Brownian
motion of microscopic particles) where he
sought more general mathematical tools for the
analysis of irregularity. His work took him into
the front rank of world mathematics.

During the 1930s, Wiener began to work
more closely with MIT electrical engineers who
were building mechanical analog computers. He
learned about feedback controls and servo-
mechanisms that enabled machines to respond
to forces in the environment.

When World War II came, Wiener did se-
cret military research with an engineer, Julian
Bigelow, on antiaircraft gun control mecha-
nisms, including methods for predicting the fu-
ture position of an aircraft based upon limited
and possibly erroneous information.

Wiener became particularly interested in
the feedback loop—the process by which an ad-

justment is made on the basis of information
(such as from radar) to a predicted new position,
a new reading is taken and a new adjustment
made, and so on. (He had first encountered these
concepts at MIT with his friend and colleague
Harold Hazen.) The use of “negative feedback”
made it possible to design systems that would
progressively adjust themselves, such as by in-
tercepting a target. More generally, it suggested
mechanisms by which a machine (perhaps a ro-
bot) could progressively work toward a goal.

Wiener’s continuing interest in biology led
him always to relate what he was learning about
control and feedback mechanisms to the behav-
ior of living organisms. He had followed the
work of Arturo Rosenbleuth, a Mexican physi-
ologist who was studying neurological condi-
tions that appeared to result from excessive or
inaccurate feedback. (Unlike the helpful nega-
tive feedback, positive feedback in effect ampli-
fies errors and sends a system swinging out of
control.)

By the end of World War II, Wiener,
Rosenbleuth, the neuropsychiatrist Warren

McCulloch, and the logician Walter Pitts were
working together toward a mathematical de-
scription of neurological processes such as the
firing of neurons in the brain. This research,
which started out with the relatively simple
analogy of electromechanical relays (as in the
telephone system), would eventually result in
the development of neural network theory,
which would be further advanced by MARVIN

MINSKY. More generally, these scientists and oth-
ers such as JOHN VON NEUMANN had begun to
develop a new discipline for which Wiener in
1947 gave the name cybernetics. Derived from a
Greek word referring to the steersman of a ship,
it suggests the control of a system in response to
its environment.

The field of cybernetics attempted to draw
from many sources, including biology, neurol-
ogy, logic, and what would later become robot-
ics and computer science. Wiener’s 1948 book
Cybernetics, or Control and Communication in the
Animal and the Machine was as much philo-
sophical as scientific, suggesting that cybernetic
principles could be applied not only to scien-
tific research and engineering but also to the
better governance of society. (On a more prac-
tical level, Wiener also worked with Jerome
Wiesner on designing prosthetics to replace
missing limbs.)

Although Wiener did not work much di-
rectly with computers, the ideas of cybernetics
would indirectly influence the new disciplines of
artificial intelligence (AI) and robotics.
However, in his 1950 book The Human Use of
Human Beings, Wiener warned against the pos-
sible misuse of computers to rigidly control or
regiment people, as was the experience in
Stalin’s Soviet Union. Wiener became increas-
ingly involved in writing these and other popular
works to bring his ideas to a general audience.

Wiener received the National Medal of
Technology from President Johnson in 1964.
The accompanying citation praised his “mar-
velously versatile contributions, profoundly orig-

inal, ranging within pure and applied mathe-
matics, and penetrating boldly into the engi-
neering and biological sciences.” He died on
March 18, 1964, in Stockholm, Sweden.

Further Reading
Heims, Steve J. John von Neumann and Norbert Wiener:

From Mathematics to the Technologies of Life and
Death. Cambridge, Mass.: MIT Press, 1980.

Rosenblith, Walter, and Jerome Wiesner. “A Memoir:
From Philosophy to Mathematics to Biology.”
Available on-line. URL: http://ic.media.mit.edu/
JBW/ARTICLES/WIENER/WIENER1.HTM.
Downloaded on November 3, 2002.

Wiener, Norbert. Cybernetics, or Control and
Communication in the Animal and Machine.
Cambridge, Mass.: MIT Press, 1950. 2nd ed., 1961.

———. The Human Use of Human Beings: Cybernetics
and Society. Boston: Houghton Mifflin, 1950.
2nd ed., New York: Avon Books, 1970.

———. Invention: The Care and Feeding of Ideas.
Cambridge, Mass.: MIT Press, 1993.

� Wirth, Niklaus
(1934–)
Swiss/American
Computer Scientist

By the 1970s, computer programmers were writ-
ing extensive and increasingly complicated pro-
grams in languages such as FORTRAN (for
science) and COBOL (for business). While serv-
iceable, these languages were limited in their
ability to define data and control structures and
to organize large programs into manageable
pieces. Niklaus Wirth created new programming
languages such as Pascal that helped change
the way computer scientists and programmers
thought about their work. His work influenced
later languages and ways of organizing program
resources.

Wirth was born on February 15, 1934,
in Winterthur, Switzerland. His father was a

274 Wirth, Niklaus

Wirth, Niklaus 275

professor of geography. He received a bachelor’s
degree in electrical engineering at the Swiss
Federal Institute of Technology (ETH) in 1958,
then earned his M.S. degree at Canada’s Laval
University in 1960. He then went to the
University of California, Berkeley, where he re-
ceived his Ph.D. in 1963 and taught in the newly
founded computer science department at nearby
Stanford University.

By then, Wirth had become involved with
computer science and the design of programming
languages. He helped implement a compiler for
the IBM 704 for a language called NELIAC, a
version of Algol. This work gave Wirth famil-
iarity with the practical problems of implement-
ing languages with regard to specific hardware,
and it also motivated him to look more closely
at language design. He noted that since computer
hardware could be designed using modules with
specific connections for the flow of electrical sig-
nals, software should also consist of modules of
code with defined connections, not a tangled
mess of control “jumps” and data being accessed
from all over the program.

Wirth returned to the ETH in Zurich in
1968, where he was appointed a full professor of
computer science. He had been part of an effort
to improve Algol. Although Algol offered bet-
ter program structures than earlier languages
such as FORTRAN, the committee revising the
language had become bogged down in adding
many new features to the language that would
become Algol-68.

Wirth believed that adding several ways to
do the same thing did not improve a language
but simply made it harder to understand and less
reliable. Between 1968 and 1970, Wirth there-
fore crafted a new language, named Pascal after
the 17th-century mathematician who had built
an early calculating machine.

The Pascal language required that data be
properly defined and allowed users to define new
types of data, such as records (similar to those
used in databases). It provided all the necessary

control structures such as loops and decision
statements. Following the new thinking about
structured programming (which had been intro-
duced as a concept by EDSGER DIJKSTRA), Pascal
retained the GOTO statement (considered “un-
safe” because it made programs confusing and
hard to debug) but discouraged its use.

Pascal became the most popular language for
teaching programming. By the 1980s, versions
such as UCSD Pascal and later, Borland’s Turbo
Pascal, developed by PHILIPPE KAHN, were bring-
ing the benefits of structured programming to
desktop computer users. Meanwhile, Wirth was
working on a new language, Modula-2. As the
name suggested, the language featured modules,
packages of program code that could be linked
to programs to extend their data types and func-
tions. Wirth also designed a computer worksta-
tion called Lilith. This powerful machine not
only ran Modula-2; its operating system, device
drivers, and all other facilities were also imple-
mented in Modula-2 and could be seamlessly in-
tegrated, essentially removing the distinction
between operating system and application pro-
grams. Wirth also helped design Modula-3, an
object-oriented extension of Modula-2, as well
as another language called Oberon, which was
originally intended to run in embedded systems
(computers installed as control systems in other
devices). Wirth also gave attention to multipro-
gramming (the design of program that could
perform many tasks simultaneously, coordinat-
ing the exchange of data between them).

Looking back at the development of object-
oriented programming (OOP), the next para-
digm that captured the attention of computer
scientists and developers after structured pro-
gramming, Wirth has noted that OOP is not
new. Its ideas (such as encapsulation of data) are
largely implicit in structured procedural pro-
gramming, even if it shifted the emphasis to
binding functions into objects and allowing
new objects to extend (inherit from) earlier
ones. But he believes the fundamentals of good

programming have not changed in 30 years. In a
1997 interview, Wirth noted that “the woes of
software engineering are not due to lack of tools,
or proper management, but largely due to lack of
sufficient technical competence. A good designer
must rely on experience, on precise, logic think-
ing; and on pedantic exactness. No magic will do.”

Besides being noted for the clarity of his
ideas, Wirth could also demonstrate a wry sense
of humor. When asked how his last name should
be pronounced, Wirth referred to a concept in
programming in which a variable can be either
passed to a procedure by reference (address) or
by value (the actual number stored). Wirth said
that his last name should be pronounced “Virt”
if by reference, but “Worth” if by value!

Wirth has received numerous honors,
including the Association for Computing
Machinery Turing Award (1984) and the Institute
of Electrical and Electronics Engineers Computer
Pioneer Award (1987).

Further Reading
Pescio, Carlo. “A Few Words with Niklaus Wirth.”

Software Development 5, no. 6 (June 1997).
Available on-line. URL: http://www.eptacom.net/
pubblicazioni/pub_eng/wirth.html. Downloaded
on December 9, 2002.

Wirth, Niklaus. Algorithms + Data Structures =
Programs. Englewood Cliffs, N.J.: Prentice Hall,
1976.

———. Project Oberon: The Design of an Operating
System and Compiler. Reading, Mass.: Addison-
Wesley, 1992.

———. “Recollections about the Development of
Pascal.” In Bergin, Thomas J., and Richard G.
Gibson, eds. History of Programming Languages-
II. New York: ACM Press; Reading, Mass.:
Addison-Wesley, 1996, pp. 97–111.

———. Systematic Programming: an Introduction.
Englewood Cliffs, N.J.: Addison-Wesley, 1973.

Wirth, Niklaus, and Kathy Jensen. PASCAL User
Manual and Report. 4th ed. New York: Springer-
Verlag, 1991.

� Wozniak, Steve
(1950–)
American
Inventor, Electrical Engineer

Steven Wozniak’s last name may sound like a com-
puter, but what he is best known for is designing
one. Besides designing the simple but elegant
Apple II personal computer, Wozniak cofounded
Apple Computer Corporation and was a key in-
novator in its early (pre-Macintosh) years.

Born on August 11, 1950, in San Jose,
California, Wozniak grew up to be a classic elec-
tronics whiz. This was perhaps not surprising;
Wozniak’s father was a designer of high-tech
satellite guidance systems at the Lockheed
Missiles and Space facility in nearby Sunnyvale.
He was always at hand to help his son explore
the principles of electronics.

Young Wozniak built his own transistor ra-
dio. He also built a working electronic calcula-
tor when he was 13, winning the local science
fair. (However, courses other than mathematics
and science bored Wozniak, and he got poor
grades in them.)

By the time he graduated from Homestead
High School, Wozniak knew that he wanted to
be a computer engineer. He tried community
college but soon quit to work with a local com-
puter company. Although he then enrolled in
the University of California, Berkeley (UC
Berkeley), to study electronic engineering and
computer science, he dropped out in 1971 to go
to work again, this time as an engineer at
Hewlett-Packard, at that time one of the most
successful companies in the young Silicon
Valley.

By the mid-1970s, Wozniak was in the midst
of a technical revolution in which hobbyists ex-
plored the possibilities of the newly available
microprocessor, or “computer on a chip.” A reg-
ular attendee at meetings of the Homebrew
Computer Club, Wozniak and other enthusiasts
were excited when the MITS Altair, the first

276 Wozniak, Steve

Wozniak, Steve 277

At a time when microcomputers usually came as kits
requiring patience and skill with a soldering gun,
Steve Wozniak designed the sleek, easy-to-use Apple
II. Hooked up to a cassette recorder and a TV or
monitor, the friendly machine named for a fruit
demonstrated that the desktop computer could be a
tool for everyone. Wozniak later produced rock
festivals and today promotes new wireless technology.
(Courtesy of Alan Luckow)

complete microcomputer kit, came on the mar-
ket in 1975. The Altair, however, had a tiny
amount of memory, had to be programmed by
toggling switches to input hexadecimal codes
(rather like ENIAC), and had very primitive in-
put/output capabilities. Wozniak decided to
build a computer that would be much easier to
use—and more useful.

Wozniak’s prototype machine, the Apple I,
had a keyboard and could be connected to a TV
screen to provide a video display. He demon-
strated it at the Homebrew Computer Club and
among the interested spectators was his younger
friend STEVE JOBS. Jobs had a more entrepreneur-
ial interest than Wozniak, and spurred him to set
up a business to manufacture and sell the ma-
chines. Together they founded Apple Computer

in June 1976. Their “factory” was Jobs’s parents’
garage, and the first machines were assembled
by hand.

Wozniak designed most of the key parts of
the Apple, including its video display and later,
its floppy disk interface, which is considered a
model of elegant engineering to this day. He
also created the built-in operating system and
BASIC interpreter, which were stored in read-
only memory (ROM) chips so the computer
could function as soon as it was turned on.

In 1981, just as the Apple II was reaching
the peak of its success, Wozniak was almost
killed in a plane crash. He took a sabbatical from
Apple to recover, get married, and return to UC
Berkeley (under an assumed name!) to finish his
B.S. degree in electrical engineering and com-
puter science.

Wozniak’s life changes affected him in other
ways. As Apple grew and became embroiled in
the problems and internal warfare endemic to
many large companies, “Woz” sold large amounts
of his Apple stock and gave the money to Apple
employees whom he thought had not been
properly rewarded for their work. He watched
as the company’s clumsily designed Apple III
failed in the marketplace. Wozniak did not
want to be a manager, remarking to an inter-
viewer in 1994 that “I was meant to design
computers, not hire and fire people.” He left
Apple for good in 1985 and founded Cloud
Nine, an ultimately unsuccessful company that
designed remote control and “smart appliance”
hardware intended to put everything at a home-
owner’s fingertips.

Showing an exuberant energy that ranged
beyond the technical into the social and artistic
areas, Wozniak produced two rock festivals that
lost $25 million, which he paid out of his own
money. He would be quoted as saying “I’d rather
be liked than rich.”

A theme for Wozniak’s life and work might
be found in a speech he gave to a Macintosh
convention in 2000. He said, “I really wanted

technology to be fun. The best technology
should be for people.” He then paused, and in a
softer voice, added, “to play games.”

In early 2002, Wozniak announced a new
venture, Wheels of Zeus (wOz), a company that
would develop a variety of “intelligent” wireless
devices to take advantage of modern communi-
cations technology and GPS (global positioning
system) technology.

Since the 1990s, Wozniak has organized a
number of charitable and educational programs,
including cooperative activities with people in
the former Soviet Union. He particularly enjoys
classroom teaching, bringing the excitement of
technology to young people. In 1985, Wozniak
received the National Medal of Technology.

Further Reading
Cringely, Robert X. Accidental Empires: How the Boys

of Silicon Valley Make Their Millions, Battle Foreign
Competition, and Still Can’t Get a Date. Reading,
Mass.: Addison-Wesley, 1992.

Freiberger, Paul, and Michael Swaine. Fire in the
Valley: the Making of the Personal Computer. 2nd
ed. New York: McGraw-Hill, 1999.

Kendall, Martha E. Steve Wozniak, Inventor of the
Apple Computer. 2nd rev. ed. Los Gatos, Calif.:
Highland Publishing, 2001.

Srivastava, Manish. “Steven Wozniak.” Available on-
line. URL: http://ei.cs.vt.edu/~history/WOZNIAK.
HTM. Downloaded on January 28, 2003.

Woz.org. Available on-line. URL: www.woz.org.
Updated on September 27, 2002.

278 Wozniak, Steve

279

� Yang, Jerry (Chih-Yuan Yang)
(1968–)
Chinese/American
Entrepreneur, Inventor

The generation born in the 1960s and 1970s
grew up in a world where computers were largely
taken for granted. While hardware innovation
continued, the new frontier for the 1990s was
the Internet and particularly the World Wide
Web, which had been developed by TIM

BERNERS-LEE. Like most frontiers, however, the
Web lacked much in the way of maps for trav-
elers. Jerry Yang and his partner, David Filo, co-
founded Yahoo!, the company and website that
provided the best-known portal and guide to the
burgeoning world of the Web.

Chih-Yuan Yang was born on November 6,
1968, in Taiwan (the Republic of China). His
father died when he was only two years old. His
mother, a teacher of English and drama, found
her son to be bright and inquisitive. (He started
to read Chinese characters when he was only
three.)

When Yang was 10, the family moved to the
United States. At that time, Yang received an
Americanized first name, Jerry. Although Yang
was made fun of at first because he knew no
English, he was lightning fast in math and after
three years was also in an advanced English class.

Y
Yang went to Stanford University to study

electrical engineering, earning simultaneous bach-
elor’s and master’s degrees in 1990. Embarking
on his doctoral studies, Yang met David Filo,
with whom he taught in a program in Japan.
Yang and Filo were supposed to be working on
systems for computer-aided design of electronic
circuits, but because their adviser had gone on
sabbatical, Yang and Filo were left mainly on
their own.

One of their pastimes was surfing the Web
with their Netscape browser. However, Yang in
particular was frustrated by the lack of an or-
ganized way to approach the growing variety of
resources on the Web. Deciding to do something
about the problem, in 1994 Yang created a web-
site called “Jerry’s Guide to the World Wide
Web.” On it he started listing what he consid-
ered to be the best websites, divided into vari-
ous categories. The list (to which Filo also
started contributing) proved to be amazingly
popular, registering a million “hits” (people ac-
cessing the page) a day. The site was so popular,
in fact, that the Stanford system administrator
complained that it was tying up their computer.

Yang and Filo were finally getting close to
completing their doctoral work, but they decided
that what had started as a hobby was more im-
portant than their Ph.Ds. They decided to move
their list site to a commercial Web server and

280 Yang, Jerry

turn it into a business. While Filo coded an ex-
panded program to better organize the material
on the site, Yang tried to find ways to use the
site to earn money. One possibility was selling
advertising, but no one knew whether people
would pay to advertise on the Web, a medium
that many businesspeople barely knew existed.
Another possibility was to have companies pay
a small royalty for each hit their website received
by being linked through Yang and Filo’s site.

Early in 1995, Yang and Filo went on a hunt
for a venture capitalist willing to invest in their
ideas. At first they had no luck, but then they
met Mike Moritz of Sequoia Capital, who had
invested in many successful high-tech compa-
nies such as Apple, Cisco Systems, and Oracle.
Moritz later to author Robert Reid recalled that
his first impression of the two graduate students’
operation was not very promising:

[They] were sitting in this cube with the
shades drawn tight, the Sun [Web]
servers geneating a ferocious amount of
heat, the answering machine going on
and off every couple minutes, golf clubs
stashed against the walls, pizza cartons
on the floor, and unwashed clothes
strewn around. It was every mother’s
idea of the bedroom she wished her sons
never had.

Nevertheless, Mortiz was impressed by the
young entrepreneurs’ intelligence and energy.
He agreed to invest $1 million in their venture.
However, they needed a catchier name than
“Jerry and Dave’s List.” They decided on Yahoo!
(complete with exclamation point). They
claimed that the name stood for “Yet Another
Hierarchic Officious Oracle.” (The hierarchic
part referred to the organization of the listing
into various levels of topics and subtopics.)

The Yahoo! site proved to be immensely
popular. Previously, Web users seeking specific
information had only search engines that were

sometimes useful but often spewed out hundreds
of irrelevant listings. With Yahoo, however, users
could browse categories of information and find
sites that had been reviewed for suitability by
Yahoo! employees.

Yahoo!’s popularity translated to marketabil-
ity: In August 1995, the company sold advertis-
ing to five businesses for $60,000 apiece. Revenues
grew further as Yang and Tim Koogle (who even-
tually came the company’s chief executive offi-
cer) began to forge relationships with “content
providers” such as the Reuters news service. These
relationships gave the linked companies access to
millions of Web users while in turn making
Yahoo! a more attractive place to visit.

Besides adding news, weather, stock quotes,
and other features, Yahoo! also drew in users
through another of Yang’s initiatives—the abil-
ity of users to create their own custom Yahoo!
page with the news and other features they de-
sired. When users took advantage of this feature
they made Yahoo! their browser’s default page,
ensuring that they would begin each Web ses-
sion through the portal of Yahoo!

By the beginning of 2000, Yahoo! was get-
ting 190 million visitors a month and earning
nearly $1 billion in annual revenue. Despite his
new personal wealth, Yang’s lifestyle remained
modest and his image remained one that young
people easily identified with. Yang often expressed
his astonishment at the business giant that had
come out of a few Web pages. He told an inter-
viewer that “I’m like a kid in a candy store—
except the candy store is the size of an airport.”

However, the 21st century has brought dif-
ficult challenges to Internet-based companies in
general and Yahoo! in particular. Companies
such as America Online (AOL) and Microsoft
(with its MSN network) were creating Web in-
formation portals of their own. Another threat
was that a media conglomerate such as Time-
Warner (which later merged with AOL) would
use its vast existing resources of content to pro-
vide on-line offerings that Yahoo! could not

Yang, Jerry 281

match. Against this background there was also
the bursting of the Internet stock bubble, and
the general market decline of 2001–02, all of
which dried up much of the advertising revenue
flowing to the Web. In the first quarter of 2001,
Yahoo!’s earnings plunged 42 percent.

One possibility was that Yahoo! would try
to acquire a media company to strengthen its
content, or even buy the remarkably successful
on-line auction company eBay. While Koogle fa-
vored such acquisitions, Yang refused, wishing to
stick with what he saw as Yahoo!’s core business
as a Web information integrator. Yang has also
tried to distance himself from the corporate
infighting and focus on presenting a positive
image of Yahoo! to the outside world.

Yahoo! still has considerable financial re-
sources and has better prospects than most dot-
coms. Whatever happens, Yang has achieved
remarkable stature as a business innovator and
one of the pioneers of the age of e-commerce.
Yang received the 1998 PC Magazine “People of
the Year” award.

Further Reading
Elgin, Ben, et al. “Inside Yahoo!” Business Week, May

21, 2001, pp. 114ff.
Reid, Robert H. Architects of the Web: 1,000 Days That

Built the Future of Business. New York: John
Wiley, 1997.

Schlender, Brent. “How a Virtuoso Plays the Web.”
Fortune, March 6, 2000, pp. F-79ff.

282

� Zuse, Konrad
(1910–1995)
German
Engineer, Inventor

Great inventions seldom have a single parent.
Although popular history credits Alexander
Graham Bell with the telephone, the almost for-
gotten Elisha Gray invented the device at almost
the same time. And although ENIAC, designed
by J. PRESPER ECKERT and JOHN MAUCHLY, is
widely considered to be the first practical elec-
tronic digital computer, another American in-
ventor, JOHN VINCENT ATANASOFF, built a smaller
machine on somewhat different principles that
also has a claim to being “first.” Least known of
all is Konrad Zuse, perhaps because he did most
of his work in a nation soon to be engulfed in
the war it had begun.

Zuse was born on June 22, 1910, in Berlin,
Germany, but grew up in East Prussia. He at-
tended the Braunsberg High School, which
specialized in the classics (Greek and Latin).
However, Zuse had become fascinated with en-
gineering, and in 1927 went to the Technical
University in Berlin to study civil engineering,
receiving his degree in 1935.

Zuse went to work at the Henschel aircraft
plant in Berlin, where he was assigned to study
the stress on aircraft parts during flight. At the

Z
time, such calculations were carried out by go-
ing through a series of steps on a form over and
over again, plugging in the data and calculating
by hand or using an electromechanical calcula-
tor. Like other inventors before him, Zuse began
to wonder whether he could build a machine
that could carry out these repetitive steps auto-
matically.

Zuse was unaware of the nearly forgotten
work of CHARLES BABBAGE and that of other in-
ventors in America and Britain who were be-
ginning to think along the same lines. He also
had little background in electrical engineering,
though later he would note that this lack of ex-
perience also meant a lack of preconceptions,
thus enabling him to try new ideas.

With financial help from his parents (and
the loan of their living room), Zuse began to as-
semble his first machine from scrounged parts.
His first machine, the Z1, was completed in
1938. The machine used slotted metal plates
with holes and pins that could slide to carry out
binary addition and other operations (in using
the simpler binary system rather than decimal,
Zuse was departing from other calculator de-
signers). Such memory as was available was pro-
vided in similar fashion.

The Z1 had trouble storing and retrieving
numbers and never worked well. Undeterred,
Zuse began to develop a new machine that used

Zuse, Konrad 283

electromechanical telephone relays (a ubiquitous
component that was also favored by HOWARD

AIKEN). The new machine worked much better,
and Zuse successfully demonstrated it at the
German Aerodynamics Research Institute in
1939.

With World War II underway, Zuse was able
to obtain funding for his Z3, which was able to
carry out automatic sequences from instructions
(Zuse used discarded movie film instead of
punched tape). The relatively compact (closet-
sized) machine used 22-bit words and had 600
relays in the calculating unit and 1,800 for the
memory. It also had an easy-to-use keyboard that
made many operations available at the touch of
a button, but the machine could not do branch-
ing or looping like modern computers.

The Z3 was destroyed in a bombing raid in
1944. However, Zuse also designed the special-
ized, simplified S1, which was used to design the
guidance system for the V-1, an early “cruise mis-
sile” that was launched in large numbers against
targets in Britain and western Europe toward the
end of the war.

Meanwhile, Zuse used spare time from his
military duties at the Henschel aircraft company
to work on the Z4, which was completed in 1949.
This machine was more fully programmable and
was roughly comparable to Howard Aiken’s Mark
I. What amazed American and British observers
was that Zuse had designed the machine almost
single-handedly, without either the ideas or re-
sources available to designers such as Aiken.

By that time, however, Zuse’s electro-
mechanical technology had been surpassed by
the fully electronic vacuum tube computers such
as ENIAC and its successors. (Zuse had consid-

ered vacuum tubes but had rejected them, be-
lieving that their inherent unreliability and the
large numbers needed would make them im-
practicable for a large-scale machine.) During
the 1950s and 1960s, Zuse ran a computer com-
pany called ZUSE KG, which eventually pro-
duced electronic vacuum tube computers.

Zuse’s most interesting contribution to
computer science was not his hardware but a
programming language called Plankalkül, or
“programming calculus.” Although the language
was never implemented, it was far ahead of its
time in many ways. It started with the radically
simple concept of grouping individual bits to
form whatever data structures were desired. It
also included program modules that could oper-
ate on input variables and store their results in
output variables. Programs were written using a
notation similar to mathematical matrices.

Zuse labored in obscurity even within the
computer science fraternity. However, toward
the end of his life his work began to be publi-
cized. He received numerous honorary degrees
from European universities as well as awards and
memberships in scientific and engineering acad-
emies. Zuse also took up abstract painting in his
later years. He died on December 18, 1995.

Further Reading
Bauer, F. L., and H. Wössner. “The Plankalkül of

Konrad Zuse: A Forerunner of Today’s Program-
ming Languages.” Communications of the ACM 15
(1972): 678–685.

Lee, J. A. N. Computer Pioneers. Los Alamitos, Calif.:
IEEE Computer Society Press, 1995.

Zuse, Konrad. The Computer—My Life. New York:
Springer-Verlag, 1993.

284

COMPUTER SCIENCE

Backus, John
Baran, Paul
Bartik, Jean
Bell, Chester Gordon
Berners-Lee, Tim
Brooks, Frederick P.
Cerf, Vinton
Codd, Edgar F.
Corbató, Fernando
Davies, Donald Watts
Dertouzos, Michael
Diffie, Bailey Whitfield
Dijkstra, Edsger
Feigenbaum, Edward
Gelernter, David Hillel
Gosling, James
Hamming, Richard Wesley
Hillis, W. Daniel
Hopper, Grace Murray
Joy, Bill
Kahn, Robert
Kay, Alan C.
Kemeny, John G.
Kernighan, Brian
Kildall, Gary
Kleinrock, Leonard
Knuth, Donald E.
Lanier, Jaron
Lenat, Douglas B.
Licklider, J. C. R.

Lovelace, Ada
Maes, Pattie
McCarthy, John
Minsky, Marvin
Nelson, Ted
von Neumann, John
Newell, Allen
Nygaard, Kristen
Papert, Seymour
Perlis, Alan J.
Postel, Jonathan B.
Rabin, Michael O.
Rees, Mina Spiegel
Ritchie, Dennis
Roberts, Lawrence
Sammet, Jean E.
Samuel, Arthur
Shannon, Claude E.
Simon, Herbert A.
Stallman, Richard
Stroustrup, Bjarne
Sutherland, Ivan
Thompson, Kenneth
Tomlinson, Ray
Turing, Alan
Weizenbaum, Joseph
Wiener, Norbert
Wirth, Niklaus

ENGINEERING

Baran, Paul

Bush, Vannevar
Cray, Seymour
Drexler, K. Eric
Eckert, J. Presper
Engelbart, Douglas
Felsenstein, Lee
Forrester, Jay W.
Grove, Andrew S.
Hewlett, William Redington
Kahn, Robert
Kilburn, Thomas M.
Kilby, Jack
Kleinrock, Leonard
Lenat, Douglas B.
Mauchly, John
Metcalfe, Robert M.
Noyce, Robert
Olsen, Kenneth H.
Packard, David
Torres Quevedo, Leonardo
Wozniak, Steve
Zuse, Konrad

ENTREPRENEURISM

Amdahl, Gene M.
Andreessen, Marc
Bezos, Jeffrey P.
Bushnell, Nolan
Case, Steve
Dell, Michael
Ellison, Larry

ENTRIES BY FIELD

Entries by Field 285

Eubanks, Gordon
Fanning, Shawn
Gates, Bill
Grove, Andrew S.
Hewlett, William Redington
Jobs, Steve
Joy, Bill
Kahn, Philippe
Kapor, Mitchell
Kildall, Gary
Kurzweil, Raymond C.
McNealy, Scott G.
Metcalfe, Robert M.
Moore, Gordon E.
Noyce, Robert
Olsen, Kenneth H.
Omidyar, Pierre
Packard, David
Wang, An
Watson, Thomas J., Sr.
Watson, Thomas, Jr.
Yang, Jerry

INVENTION

Aiken, Howard
Amdahl, Gene M.
Atanasoff, John Vincent
Babbage, Charles
Bell, Chester Gordon
Bricklin, Daniel
Burroughs, William S.
Bush, Vannevar
Bushnell, Nolan
Cray, Seymour
Eckert, J. Presper
Eckert, Wallace J.
Engelbart, Douglas
Fanning, Shawn

Feigenbaum, Edward
Felsenstein, Lee
Forrester, Jay W.
Hollerith, Herman
Kilburn, Thomas M.
Kilby, Jack
Kurzweil, Raymond C.
Lanier, Jaron
Mauchly, John
Minsky, Marvin
Nelson, Ted
Noyce, Robert
Omidyar, Pierre
Stibitz, George
Sutherland, Ivan
Torres Quevedo, Leonardo
Wang, An
Wozniak, Steve
Yang, Jerry
Zuse, Konrad

MATHEMATICS

Babbage, Charles
Boole, George
Church, Alonzo
Codd, Edgar F.
Diffie, Bailey Whitfield
Goldstine, Adele
Goldstine, Herman Heine
Hamming, Richard Wesley
Holberton, Frances Elizabeth
Hopper, Grace Murray
Kemeny, John G.
Lovelace, Ada
McCarthy, John
von Neumann, John
Perlis, Alan J.
Rabin, Michael O.

Rees, Mina Spiegel
Shannon, Claude E.
Stibitz, George
Turing, Alan
Wiener, Norbert

PROGRAMMING

Andreessen, Marc
Bartik, Jean
Bricklin, Daniel
Crawford, Chris
Eubanks, Gordon
Fanning, Shawn
Gates, Bill
Goldstine, Adele
Holberton, Frances Elizabeth
Kahn, Philippe
Kapor, Mitchell
Raymond, Eric S.
Stoll, Clifford

WRITING

Dertouzos, Michael
Drexler, K. Eric
Dreyfus, Hubert
Dyson, Esther
Gelernter, David Hillel
Gibson, William
Goldstine, Herman Heine
Kernighan, Brian
Kurzweil, Raymond C.
Metcalfe, Robert M.
Raymond, Eric S.
Rheingold, Howard
Stallman, Richard
Stoll, Clifford
Turkle, Sherry

286

1836 Charles Babbage conceives of the
Analytical Engine.

1843 Ada Lovelace explains the work of
Charles Babbage.

1847 George Boole introduces his “Algebra
of Logic.”

1886 William Burroughs founds the Amer-
ican Arithmometer Company.

1890 Herman Hollerith’s tabulator aids the
U.S. Census.

1893 Leonardo Torres Quevedo demon-
strates an equation-solving machine.

1924 Thomas Watson Sr. changes his com-
pany’s name to IBM.

1927 Vannevar Bush develops the Differ-
ential Analyzer.

1936 Alonzo Church and Alan Turing pub-
lish theories of computability.

1939 John Atanasoff demonstrates the
ABC computer.

William Hewlett and David Pac-
kard start Hewlett-Packard.

1941 George Stibitz builds the Complex
Number Calculator.

1942 Hermann Goldstine becomes head of
ENIAC project.

1944 Howard Aiken’s Mark I calculator is
installed at Harvard.

1946 J. Presper Eckert and John Mauchly
complete ENIAC.

Adele Goldstine documents ENIAC
and trains programmers.

John von Neumann describes the
modern stored program computer.

1947 Wallace J. Eckert builds SSEC elec-
tronic calculator for IBM.

Norbert Wiener coins the term
cybernetics.

1948 Claude Shannon revolutionizes com-
munications theory.

Jean Bartik begings to develop pro-
grams for BINAC and Univac. ca.
late 1940s

Richard Hamming develops error-
correcting codes.

Elizabeth Holberton develops sym-
bolic programming commands.

1949 Mina Rees begins to direct mathemat-
ical research for the U.S. Navy.

1950 Claude Shannon describes algorithms
for computer chess.

Alan Turing proposes a test for
determining artificial intelligence.

1951 Thomas Kilburn develops larger, faster
electronic and magnetic memory.

Marvin Minsky builds SNARC
neural network computer.

An Wang starts to market magnetic
core memories.

1952 Univac predicts the results of the
presidential election.

Thomas Watson Jr. takes charge at
IBM, backs computer development.

1953 Jay Forrester introduces magnetic
“core” memory in the Whirlwind.

1956 John McCarthy organizes Dartmouth
conference on artificial intelligence
(AI) research.

CHRONOLOGY

Chronology 287

Newell, Simon, and Shaw demon-
strate automated theorem-proving.

1957 Jim Backus’s FORTRAN language is
released.

Grace Hopper’s Flow-Matic com-
piles English-like commands.

Alan Perlis develops programming
and computer science courses.

1958 John McCarthy begins to develop
LISP language.

1959 Jack Kilby and Robert Noyce patent
different versions of the integrated
circuit.

1960 Gordon Bell and Kenneth Olsen in-
troduce the PDP-1 minicomputer.

Kenneth Olsen’s Digital Equipment
Corporation introduces the PDP-1
minicomputer.

1961 Fernando Corbató begins implement-
ing time-sharing at the Massachusetts
Institute of Technology (MIT).

Arthur Samuel’s checkers program
beats a champion.

1962 Joseph Licklider becomes head of
ARPA computer research.

1963 Ivan Sutherland develops interactive
Sketchpad program.

1964 Paul Baran publishes “On Distributed
Communications.”

The IBM System/360 series is
developed by Gene Amdahl and
Frederick Brooks.

John Kemeny and Thomas Kurtz
develop BASIC at Dartmouth.

1965 Edward Feigenabum invents the ex-
pert system.

Moore’s law predicts rapid doubling
of processor power.

Theodor Nelson coins the term
hypertext.

Seymour Papert founds the MIT
artificial intelligence laboratory

1966 Lawrence Roberts put in charge of
designing ARPANET.

Joseph Weizenbaum’s ELIZA pro-
gram bemuses computer users.

1967 Donald Davies and Lawrence Roberts
further develop packet-switching.

Kristen Nygaard’s Simula 67 intro-
duces object-oriented programming.

Seymour Papert develops the LOGO
language at MIT.

1968 Edsger Dijkstra urges structured pro-
gramming in his paper “GOTO
Considered Harmful.”

Douglas Engelbart demonstrates
the mouse and graphical interface.

Donald Knuth publishes first vol-
ume of The Art of Computer Pro-
gramming.

Gordon Moore, Robert Noyce, and
Andrew Grove found Intel Corpo-
ration.

Niklaus Wirth begins to develop
Pascal.

1969 The ARPANET is successfully tested
by Leonard Kleinrock.

1970 Edgar Codd introduces the relational
database model.

Alan Kay begins to develop object-
oriented Smalltalk language.

Marvin Minsky and John McCarthy
found Stanford AI Laboratory.

Ken Thompson and Dennis Ritchie
begin to design UNIX.

1971 Ray Tomlinson invents e-mail.
1972 Dennis Ritchie begins to develop the

C language.
Nolan Bushnell introduces Pong,

which becomes a runaway seller.
Hubert Dreyfus critiques AI in

What Computers Can’t Do.
Lee Felsenstein’s Community Mem-

ory becomes the first computer bulletin
board.

An Wang markets the first dedi-
cated word processing system.

1973 Vinton Cerf and Robert Kahn an-
nounce the TCP/IP network protocol.

Gary Kildall develops CP/M oper-
ating system.

1974 Jean Sammet becomes first woman
president of the Association for Com-
puting Machinery (ACM).

1975 Michael Rabin devises a new way to
test for prime numbers.

288 A to Z of Computer Scientists

1976 Seymour Cray’s Cray 1 redefines su-
percomputing.

Whitfield Diffie and Martin Hell-
man reveal public key cryptography.

Brian Kernighan publishes Software
Tools.

Raymond Kurzweil demonstrates a
reading machine for the blind.

Robert Metcalfe introduces Ethernet.
1977 Steve Wozniak’s Apple II is released.
1979 Daniel Bricklin’s VisiCalc spread-

sheet becomes a hit for the Apple II.
Larry Ellison’s Oracle begins to de-

velop relational databases.
1980 Bill Gates scores a coup in selling the

DOS operating system to IBM.
1981 The IBM PC, designed by Philip

Estridge, enters the market.
1982 Esther Dyson’s Release 1.0 becomes a

leading computer industry journal.
Gordon Eubanks enters utility soft-

ware market with Symantec.
Bill Joy and Scott McNealy found

Sun Microsystems.
Jonathan Postel outlines the Inter-

net domain name server organization.
1983 Philippe Kahn releases Turbo Pascal

1.0.
Mitchell Kapor releases Lotus 1-2-3

spreadsheet.
Jaron Lanier begins commercial

virtual reality research.
Richard Stallman begins the GNU

project for open-source UNIX.
Bjarne Stroustrup begins to de-

velop C++
1984 William Gibson’s novel Neuromancer

popularizes cyberspace.
Steve Jobs markets the Apple Mac-

intosh.
Douglas Lenat begins to compile a

huge knowledge base called Cyc.
Sherry Turkle explores computer

culture in The Second Self.

1985 Chris Crawford’s Balance of Power
game mirrors the cold war.

1986 K. Eric Drexler’s Engines of Creation
introduces nanotechnology.

W. Daniel Hillis builds the first
Connection Machine.

Marvin Minsky proposes theory of
multiple intelligences.

1987 Andrew Grove becomes chief execu-
tive officer of Intel Corporation.

1988 Dell Computer goes public after grow-
ing direct personal-computer sales.

Clifford Stoll begins to track a mys-
terious hacker at a government lab.

1991 Tim Berners-Lee’s World Wide Web
appears on the Internet.

Steve Case’s America Online
reaches out to home users.

Eric Raymond publishes The New
Hacker’s Dictionary.

Linus Torvalds releases the first ver-
sion of Linux.

1992 The Internet Society is founded.
1993 David Gelernter is badly injured by

the Unabomber.
Howard Rheingold’s The Virtual

Community explores on-line life.
1994 Marc Andreessen and Jim Clark

found Netscape.
1995 Michael Dertouzos writes What Will Be,

his book about a computerized future.
James Gosling’s Java language is

introduced.
Pattie Maes begins commercial de-

velopment of “software agents.”
Jerry Yang and David Filo’s Yahoo!

becomes popular on the Web.
1997 Jeff Bezos’s Amazon.com goes public.
1998 Pierre Omidyar’s eBay goes public and

has a banner year.
2001 Michael Rabin proposes an unbreak-

able randomized code.
2002 Shawn Fanning’s Napster files for

bankruptcy after losing in court.

289

algorithm A step-by-step procedure for solving
a problem.

analog computer A computer that uses natu-
ral forces or relationships to solve problems. Its
values are continuously variable, rather than dis-
crete as in digital computers.

applet A small Java program that runs in a
user’s Web browser.

ARPA (Advanced Research Projects Agency)
An agency of the U.S. Department of Defense
which, starting in the mid-1960s, funded com-
puter research projects such as ARPANET, an-
cestor of the Internet.

artificial intelligence (AI) The attempt to cre-
ate computer programs, systems, or robots that
exhibit behavior characteristic of human intel-
ligence, such as the ability to adapt to changing
conditions and to learn.

Backus-Naur Form (BNF) A standard nota-
tion for describing the grammatical structure of
computer languages.

BASIC (Beginners’ All-purpose Symbolic
Instruction Code) An easy-to-use, interactive
computer language developed by John Kemeny

GLOSSARY

and Thomas Kurtz at Dartmouth College in the
mid-1960s and later used on many personal
computers.

broadband An Internet connection that can
transport large quantities of data, as over a ca-
ble or DSL line. This makes it practical to re-
ceive media such as streaming video or sound.

browser A program that connects to and dis-
plays Web pages.

bulletin board system (BBS) A dial-up system
(first developed in the late 1970s) that allowed
users to post messages and share files.

C A sparse but powerful computer language
developed in the early 1970s by Dennis Ritchie
and often used for systems programming.

C++ A version of C developed in the early
1980s by Bjarne Stroustrup. It includes object-
oriented features such as classes for better or-
ganization of programs. It has largely supplanted
C for most applications.

character recognition The identification of al-
phabetic characters from printed matter and
their translation to character codes stored in the
computer.

290 A to Z of Computer Scientists

COBOL (COmmon Business-Oriented Lan-
guage) A programming language developed in
the late 1950s, based considerably on previous
work by Grace Hopper. COBOL became the
preferred language for business programming
with mainframe computers for more than two
decades.

cognitive psychology The study of the process
of cognition (thinking) in human beings. The
field has both contributed to and benefited from
research in artificial intelligence.

Compiler A program that takes instructions
written in a higher-level (symbolic) computer lan-
guage and translates them into low-level machine
codes that can be executed by the processor.

computer science The study of the design,
programming, and operation of computers. It in-
cludes topics such as algorithms, data structures,
and computer language grammar.

core Computer memory consisting of a lattice
of tiny doughnut-shaped ferrite (iron) rings that
can be magnetized in two different ways to in-
dicate a 1 or 0 in the data. Core was the primary
kind of fast random-access memory for comput-
ers from the mid-1950s until it was supplanted
by memory chips.

cybernetics A term coined by Norbert Wiener,
derived from a Greek word meaning the steers-
man of a boat. It refers to the science of auto-
matic control of machines. It has largely been
subsumed into computer science.

cyberspace A term popularized in the science
fiction novel Neuromancer (1984) by William
Gibson. It refers to the world perceived by com-
puter users as they interact with computer pro-
grams and with one another. Virtual reality is an
intense form of cyberspace that immerses the
user in graphics and sound.

database An organized collection of files con-
taining information. Information is usually bro-
ken down into records, each containing the
information about one “thing” (such as a cus-
tomer). Records in turn are broken into fields
which contain particular items of information,
such as a phone number or zip code.

data glove A glove that contains sensors and
transmitters such that its position can be tracked
by a computer system. It allows the user to in-
teract with a virtual reality simulation, such as
by picking up virtual objects.

data mining The analysis of data in databases
to extract patterns or other information that can
be used for purposes such as marketing.

data structure A way of representing or or-
ganizing a particular kind of information in a
computer. For example, an integer (whole num-
ber) might be stored as two or four 8-bit bytes
in memory.

differential analyzer A form of analog computer
developed by Vannevar Bush in the 1930s. It could
solve sets of equations using several variables.

digital computer A computer that stores in-
formation as specific digits (numbers), usually
using the binary system (1 and 0). Digital com-
puters have largely replaced analog computers,
which stored data as continuous quantities based
on natural forces or relationships.

distributed In computer design, refers to stor-
ing data or programs in a number of different
locations (or different computers). Distributed
systems can offer greater flexibility and the abil-
ity to work around failures.

DNS (Domain Name System) The system
that sets up a correspondence between names
such as “stanford.edu” or “well.com” and the

Glossary 291

numbers used to route messages around the
Internet. The part of an Internet address fol-
lowing the “dot” is a domain, and domains cor-
respond to different types of sites, such as .edu
(educational institutions) or .com (businesses).

dot-com A business that is heavily involved
with the Internet and World Wide Web, such as
an on-line bookstore.

e-commerce Short for “electronic commerce,”
it is the buying and selling of goods and services
on-line.

electromechanical A system using electricity
and/or magnetism together with mechanical
parts, such as relays or switches. Some electro-
mechanical computers were built in the late
1930s and early 1940s but they were soon re-
placed by electronic computers.

electronic Involving the control of the flow of
electrons with no mechanical parts. The first elec-
tronic control device was the vacuum tube. The
transistor replaced the vacuum tube in the 1950s,
and in the 1960s the equivalent of thousands of
transistors were built into tiny integrated circuits.

expert system A program that uses a set of
rules (a knowledge base) to perform analyses or
make decisions. The rules are usually developed
in consultation with humans who are experts in
performing the task that the software is intended
to implement.

file-sharing system A program (such as the ill-
fated Napster) that lets users make files (such as
MP3 music files) readily available to other users.

file system A system for organizing data into
files on a storage device such as a hard disk. Files
are usually grouped into directories or folders.
The file system also provides programs with a
way to read, write, or copy files.

floating point A method of keeping track of
the location of the decimal point (and thus the
magnitude) of a number.

FORTRAN (FORmula TRANslation) A pro-
gramming language designed by John Backus and
his colleagues in the mid-1950s. Because of its abil-
ity to handle mathematical expressions, it became
the most widely used language for scientific and
engineering applications, although it began to de-
cline in the 1970s with the popularity of C.

frame In artificial intelligence, a way of or-
ganizing “common sense” knowledge so that
computer programs can work with it. For exam-
ple, a frame might include information about the
steps involved in a visit to a restaurant (being
seated, ordering food, eating, paying for the
meal, and so on).

ftp (file transfer protocol) A program de-
signed for copying files between computers in a
UNIX network. (Versions are now available for
Windows and other operating systems.)

graphical user interface (GUI) A way of con-
trolling a computer using visual cues (menus and
icons) and a pointing device, usually a mouse.
The first modern GUI was developed in the
1970s by Alan Kay and others at the Xerox Palo
Alto Research Center. It was then adopted by
Steve Jobs for the Macintosh (1984) and later
by Microsoft Windows.

HTML (hypertext mark-up language) A sys-
tem of codes originally devised by Tim Berners-
Lee for formatting and otherwise controlling
text, graphics, and links on a Web page.

HTTP (hypertext transport protocol) Also
developed by Berners-Lee as part of the World
Wide Web system, HTTP is a standard set of
rules for connecting Web servers and browser so
that Web pages can be fetched and displayed.

hypertext The embedding of links in text doc-
uments that allow the reader to go to other parts
of the document or to other documents.
Although the idea of hypertext was outlined by
Vannevar Bush in the 1940s, the term itself was
coined by Ted Nelson in the mid-1960s. Today
the World Wide Web is the most familiar ex-
ample of hypertext.

integrated circuit A circuit whose compo-
nents are embedded into a single “chip” such as
of silicon. Today the equivalent of millions of
transistors can be embedded in a chip the size of
a thumbnail.

Internet The worldwide connection of many
millions of computers and networks that use a
standard system for transferring data.

Java A language (similar to C++) designed by
James Gosling in the mid-1990s. It is primarily
used for applications related to the World Wide
Web.

knowledge base An organized collection of
rules that describe a subject (such as protein
chemistry) in such a way that an expert system
can use it to make decisions or recommenda-
tions, perform analyses, and so on.

knowledge engineering The design of knowl-
edge bases and expert systems.

Lambda calculus A system for manipulating
mathematical functions devised by Alonzo
Church. It was a key to the design of LISP and
other functional programming languages.

Linux A freely available version of the UNIX
operating system. Developed by Linus Torvalds
in the early 1990s, today Linux is very popular
for Web servers and workstations, although it
has not made much headway against Windows
on the desktop.

LISP (LISt Processing Language) A language
designed by John McCarthy in the late 1950s
primarily for artificial intelligence research.
Unlike most languages that are designed for
specifying procedures, LISP is built around lists
of symbols and functions that manipulate them.
This makes it easy to write programs that can
modify themselves.

LOGO A language designed by Seymour Papert
in the late 1960s to teach computer science con-
cepts, particularly to young people. Although
functionally similar to LISP, LOGO uses simpler
syntax and features a graphic “turtle” that can be
manipulated on the screen or even driven in the
form of a small wheeled robot.

mainframe A large computer (named for the
big cabinet that held the central processing
unit). Originally, virtually all computers were
mainframes, but in the 1960s when the smaller
minicomputer came along, the term mainframe
was adopted to distinguish the larger machines.

microprocessor An integrated circuit chip that
contains a complete arithmetic and logic process-
ing unit. It can thus serve as the CPU (central
processing unit) of a computer. The availability of
microprocessors in the mid-1970s spurred the cre-
ation of the personal computer (PC).

minicomputer A type of computer built start-
ing in the early 1960s. It is smaller than a main-
frame but larger than today’s personal computers.
Minicomputers generally handled data in small
chunks but made computing power considerably
more affordable to smaller schools and busi-
nesses.

nanotechnology The direct manipulation
of molecules or even single atoms. Nano-
technologists such as K. Eric Drexler hope to build
tiny machines that could act as computer com-
ponents or even robots for a variety of purposes.

292 A to Z of Computer Scientists

Glossary 293

neural network A system first developed by
researchers such as Marvin Minsky in the 1950s.
It mimics the operation of the brain, in which
individual nodes act like neurons and respond
to stimuli by sending signals. “Correct” responses
can be reinforced, allowing the system to grad-
ually “learn” a task.

object-oriented programming (OOP) A way
of organizing programs into objects that have de-
fined characteristics and capabilities. The pro-
gram then runs by creating suitable objects based
on a definition called a class, and then inter-
acting with them. Object-oriented programming
became popular starting in the 1980s with the
development of languages such as Smalltalk and
particularly C++.

open source The distribution of software
along with its program codes, allowing users to
freely modify or extend the program. Generally
users are required to include the modified source
if they in turn distribute or sell the program.
This alternative to proprietary software was
publicized by Richard Stallman; today the most
widely used open-source product is probably
Linux.

operating system (OS) The software that con-
trols the basic operation of a computer, includ-
ing access to files, connection to printers or
other devices, and processing of user commands.
Applications programs call upon the operating
system when they want to perform a task such
as opening a file.

packet switching Developed by Leonard
Kleinrock and others during the 1960s, packet-
switching is the breaking up of messages into
small separately addressed chunks (packets) for
transmission over the network. The ability to use
many alternate routes for packets makes it pos-
sible to get around failures or outages as well as
to use the connections most efficiently.

parallel processing The use of more than one
processor, either in a single computer or in a
group of computers. Special programming lan-
guages can be used to assign various program
tasks to different processors.

parity A system of error detection where each
group of data bits is set so that it always has an
even (or odd) number of 1 bits. As a result, if
the data arrives with an odd number of ones
when it should be even (or vice versa), the sys-
tem knows that an error has occurred.

pipe A facility for connecting the output of
one program to the input of another. Made
popular by UNIX, pipes make it possible to use
several simple utility programs in succession to
perform a more elaborate task.

portability The ability of a program or operat-
ing system to be easily adapted to many differ-
ent models of computer.

portal A website, such as Yahoo!, that offers
access to many kinds of information or services
in one place.

punch card A card with columns of spaces that
can be punched out to indicate various data
items. Punch cards were first used for automatic
data processing by Herman Hollerith in the
1890s. They were widely used with mainframe
computers until the 1970s, when they were
largely replaced by magnetic tape and disk
drives.

RAM (random access memory) A form of
memory in which the computer can fetch any
desired bit of data directly without having to go
through intervening information (as with a tape
drive). Early forms of RAM include cathode-ray
tubes (CRTs), magnetic drums, and magnetic
“core.” Today RAM is in the form of memory
chips.

relational database A database system in which
data from different files can be connected by re-
ferring to a field (such as a customer number)
that they have in common. This allows for more
efficient and better-defined organization of data.

relay An electromagnetic switch that is trig-
gered by an electrical impulse. Relays were used
extensively in the telephone system starting in
the 1930s and were adopted to early computers
before the advent of electronics (vacuum tubes),
which is about 1,000 times faster.

scalable Of a computer system, the ability to
smoothly and easily add capacity while keeping
existing hardware and software. One of the IBM
System/360’s selling points was its scalability.

semiconductor A material such as germanium
or treated silicon that is neither a good conduc-
tor nor a good insulator, but whose conductiv-
ity can be controlled, thus controlling the flow
of electrons. The semiconductor is the basis of
the transistor and thus of modern computer com-
ponents.

software agent A program that helps a user
perform tasks based on general instructions,
much in the way that a human, such a travel
agent, might do.

speech synthesis The generation of spoken
words by the proper combination of sound ele-
ments (phonemes).

SQL (structured query language) A standard
system for specifying data and operations to be
performed using a relational database. For ex-
ample: SELECT * WHERE COST > 50.00
would extract all records where the Cost field
exceeded $50.00.

stored program concept Early computers such
as ENIAC did not store instructions but simply

read them from cards, then executed and dis-
carded them. This made it difficult to change
programs or perform repetition (looping). In
1945, John von Neumann formalized the idea
that computers should store their instructions in
memory where they could be referred to repeat-
edly, making looping and self-modifying pro-
grams much easier.

structured programming A movement start-
ing in the 1970s that emphasized the proper con-
trol of program flow (with loops and the like),
the avoidance of haphazard GOTO “jumps” and
the grouping of code into procedures or subrou-
tines. This movement was reflected in the
writing of Edsger Dijkstra and the design of
languages such as C (by Dennis Ritchie) and
particularly Pascal (by Niklaus Wirth).

subroutine A defined portion of a program
that performs a specified task and then returns
control to the main program. This allows large
programs to be broken into more manageable
pieces. The structured programming movement
led to further refinement in the form of proce-
dures and functions that accepted only data of a
specified type and that did not allow internal
variables to be changed from other parts of the
program.

supercomputer A somewhat nebulous term re-
ferring to a computer of unusual speed and
power, often built for experimental purposes or
for particular applications (such as aircraft de-
sign or nuclear physics) that required as much
processing power as possible. Seymour Cray built
a series of famous supercomputers in the 1970s
and 1980s.

tabulator A device that counts data from
punched cards, sorts cards, and so on. Tabulators
were first built by Herman Hollerith in the late
19th century, and IBM sold increasingly elabo-
rate punch card systems in the 1920s and 1930s.

294 A to Z of Computer Scientists

Glossary 295

TCP/IP (transmission control protocol/inter-
net protocol) The basic rules for routing data
around the Internet and for managing transmis-
sion. TCP/IP was developed by Vinton Cerf and
Robert Kahn and announced in 1973.

time-sharing A system that allows many users
to use the same computer. The computer rapidly
switches from one user or program to the next,
giving each a small amount of execution time.
If the system capacity is not strained, each user
experiences virtually instant response. Time-
sharing was a valuable innovation in the 1960s
and 1970s, when computers were relatively
expensive. However, today each user generally
has his or her own computer.

transistor A device that allows the control of
an electron flow, turning it on or off, amplifying
it, and so on. The transistor replaced the vac-
uum tube during the 1950s because it is more
compact and uses much less power.

UNIX A popular operating system developed
by Kenneth Thompson and Dennis Ritchie in
the early 1970s. It is characterized by having a
“kernel” containing core functions (such as the
file system and device control) and allowing for
a variety of user command processors (called
shells). UNIX also uses “pipes” to allow programs
to be connected to one another. During the
1970s, UNIX users developed many additional
utilities, and UNIX became the operating system
of choice for campuses and research laboratories.

virtual community The experience of ongoing
relationship between participants in an on-line

system. As with physical communities, members
of virtual communities can form friendships,
conduct feuds, and work together on projects.
The WELL (Whole Earth ’Lectronic Link) be-
came a famous virtual community starting in the
mid-1980s.

virtual machine A system that interprets in-
structions in a general language (such as Java)
for a particular hardware or operating system en-
vironment.

virtual reality The use of realistic graphics and
sound and interactive devices (such as data
gloves) to give the user the experience of being
immersed in a world generated by the computer.
Virtual reality has been used for military and
medical training, entertainment, and other ap-
plications.

voice recognition The conversion of speech to
text by analyzing its sound elements (phonemes)
and identifying the words.

workstation A computer specialized for tasks
such as computer-aided design or graphics.
Workstations are generally more powerful than
ordinary PCs, although the distinction has di-
minished in recent years.

World Wide Web The system of pages of in-
formation and media linked by hypertext and ac-
cessible over the Internet. The Web was created
by Tim Berners-Lee in the early 1990s and be-
came popular in the mid-1990s with the advent
of graphical Web browsers such as Mosaic and
Netscape.

296

Bach, M. J. The Design of the Unix Operating
System. Upper Saddle River, N.J.: Prentice
Hall, 1986.

Berlinksi, David. The Advent of the Algorithm:
The Idea That Rules the World. New York:
Harcourt, 2000.

Biermann, Alan W. Great Ideas in Computer
Science: A Gentle Introduction. 2nd ed.
Cambridge, Mass.: MIT Press, 1997.

Brookshear, J. Glenn. Computer Science: An
Overview. 6th ed. Reading, Mass.: Addison-
Wesley, 2000.

Cortada, James W. Historical Dictionary of Data
Processing: Biographies. New York:
Greenwood Press, 1987.

Freiberger, Paul, and Michael Swaine. Fire in the
Valley: The Making of the Personal Computer.
New York: McGraw-Hill, 1999.

Goldstine, Hermann. The Computer from Pascal
to von Neumann. Princeton, N.J.: Princeton
University Press, 1972.

Greenia, Mark W. History of Computing: An
Encyclopedia of the People and Machines that
Made Computer History. Revised CD Ed.
Lexikon Services, 2001.

Hafner, Katie, and Matthew Lyon. Where Wizards
Stay Up Late: The Origins of the Internet. New
York: Simon and Schuster, 1996.

Hillis, Daniel W. The Pattern on the Stone: The
Simple Ideas that Make Computers Work. New
York: Basic Books, 1998.

Kernighan, B. W., and R. Pike. The Unix
Programming Environment. Upper Saddle
River, N.J.: Prentice Hall, 1984.

BIBLIOGRAPHY

Kidder, Tracy. The Soul of a New Machine. New
York: Modern Library, 1997.

Knuth, Donald E. The Art of Computer
Programming. Vols. 1–3. 3rd ed. Reading,
Mass.: Addison-Wesley, 1998.

Lee, J. A. N. Computer Pioneers. Los Alamitos,
Calif.: IEEE Computer Science Press, 1995.

Levy, Steven. Hackers: Heroes of the Computer
Revolution. Updated ed. New York: Penguin,
2001.

Malone, Michael S. The Microprocessor: A
Biography. New York: Springer-Verlag, 1995.

McCartney, Scott. ENIAC: The Triumphs and
Tragedies of the World’s First Computer. New
York: Berkeley Books, 1999.

Raymond, Eric. The New Hacker’s Dictionary. 3rd
ed. Cambridge, Mass.: MIT Press, 1996.

Shasha, Dennis, and Cathy Lazere. Out of Their
Minds: The Lives and Discoveries of 15 Great
Computer Scientists. New York: Springer-
Verlag, 1997.

Slater, Robert. Portraits in Silicon. Cambridge,
Mass.: MIT Press, 1987.

Spencer, Donald D. The Timetable of Computing.
Ormond Beach, Fla.: Camelot Publishing,
1999.

White, Ron. How Computers Work. Millenium
ed. Indianapolis, Ind.: Que, 1999.

Winslow, Ward. The Making of Silicon Valley: A
100-Year Renaissance. Palo Alto, Calif.: Santa
Clara Valley Historical Association, 1996.

297

INDEX

A

A-0 (program) 120
A-2 (program) 120
ABC. See Atanasoff-Berry Computer
ACE computer 55, 257
ACM. See Association for

Computing Machinery
activists

Fanning, Shawn 82–84
Felsenstein, Lee 86–88

Ada (language) 165, 229
Ada, Countess of Lovelace. See

Lovelace, Ada
Advanced Research Projects

Agency (ARPA). See also
ARPANET system

Licklider, J. C. R., at 163
packet-switching at 150
parallel processing at 114

Adventure (game) 49
The Age of Intelligent Machines

(Kurzweil) 155
The Age of Spiritual Machines

(Kurzweil) 155
AI. See artificial intelligence
Aiken, Howard 1–3, 30, 266
Aircraft Stability and Control

Analyzer (ASCA) 89
air defense systems 90–91
Akass, Clive 81
Alcorn, Al 37
Algol (language) 14–15, 173, 210,

275

algorithms 151, 152
Allen, Paul 88, 92
All Tomorrow’s Parties (Gibson)

98–99
Aloha Net 177
alpha-beta pruning 231
Altair computer kit 92, 276–277
Alto computer 135
AM (Automated Mathematician)

160
Amazon.com 24–25
Amdahl, Gene M. 3–5
Amdahl Corporation 4–5
Amdahl’s law 4
Amelio, Gil 124
American Arithmometer Company

32–33
America Online (AOL)

Andreessen, Marc, at 7
Case, Steve, at 40–41
establishment of 40
growth of 40–41
merger with Time Warner 41
Microsoft and 40, 41
Netscape purchased by 7

AMPL (language) 140
analog computers

definition of 89
functions of 33, 34
problems with 9

Analytical Engine 12–13, 164
Analytical Society 26
Andor International 5
Andreessen, Marc 5–8, 6

“Andrew” interface 103
Androbot 38
Antonelli, Kay McNulty Mauchly

116
AOL. See America Online
AOL Time Warner 41
APL (language) 27
Apple Computer 122–124, 276–277
Apple I computer 122, 277
Apple II computer 122–123, 277
arcade games 37
ARMAC computer 64
ARPA. See Advanced Research

Projects Agency
ARPANET system

Baran, Paul, and 16
Cerf, Vinton, and 42–43
Kleinrock, Leonard, and 150
Metcalfe, Robert, and 177
packet-switching in 56, 150,

225–226
Postel, Jonathan, and 211
Roberts, Lawrence, and 62,

225–226
artificial intelligence (AI) 67

cognition and 181
coining of term 172
critique of 68
definition of 180
Dreyfus, Hubert, and 67–68
of ELIZA 270–271
Feigenbaum, Edward, and

85–86
games and 230–231

Note: Page numbers in boldface indicate main topics. Page numbers in italic refer to illustrations.

artificial intelligence (continued)
Hillis, W. Daniel, and 113, 114
Kurzweil, Raymond, and 154
Lenat, Douglas, and 158–160
Licklider, J. C. R., and 163
McCarthy, John, and 171–173
Minsky, Marvin, and 179–182
neural networks and 180–181
Newell, Allen, and 189–192
Papert, Seymour, and 206–207
robotics and 181
Samuel, Arthur, and 230–231
Shannon, Claude, and 233
Turing test for 257–258, 271
Weizenbaum, Joseph, and

269–272
The Art of Computer Game Design

(Crawford) 50
Art of Computer Programming

(Knuth) 152–153
ASCA. See Aircraft Stability and

Control Analyzer
ASCC. See Automatic Sequence

Controlled Calculator
Ashton-Tate 128
Association for Computing

Machinery (ACM) 171
astronomers

Eckert, Wallace J. 72–74
Stoll, Clifford 241–243

“As We May Think” (Bush) 77
Atanasoff, John Vincent 8, 8–10
Atanasoff-Berry Computer (ABC)

8, 9, 10
Atari Corporation 37, 50
ATLAS computer 142
auctions, on-line 200–203
Augmentation Research Center 77
Automated Mathematician. See AM
automatic programming 160
Automatic Sequence Controlled

Calculator (ASCC) 1–2

B

Babbage, Charles 11–13, 12
Lovelace, Ada, and 13, 164, 165
Torres Quevedo, Leonardo, and

253

Baby computer 141
Backus, John 13–15
Backus-Naur Form (BNF) 15
Balance of Power (game) 50
Balance of the Planet (game) 50
Ballistic Research Library 101
Baran, Paul 15–17
Barlow, John Perry 133
Bartik, Jean 17, 17–18
BASIC (language)

development of 136, 138
Gates’ work in 92, 93
versions of 138

Basic Input/Output System. See
BIOS

Baum, Joan 164
BBN. See Bolt, Beranek, and

Newman
BearShare 84
Bechtolsheim, Andreas V. 175
Beecher, David 9
Bell, Chester Gordon 18–21, 19
Bell Laboratories

Hamming, Richard, at 109,
110

Ritchie, Dennis, at 223–224
Shannon, Claude, at 233
Stibitz, George, at 239
Stroustrup, Bjarne, at 243–244
Thompson, Kenneth, at

248–250
Benhamou, Eric 178
Beranek, Leo 162
Berkeley, Edmund 245–246
Berkeley Software Distribution

(BSD) 125
Berners-Lee, Tim 21, 21–23, 60
Berry, Clifford 8, 9
beta testing 138
Bezos, Jeffrey P. 23, 23–25
Billings, John Shaw 118
Bina, Eric 6
BINAC computer 72
binary logic 9, 10
BIOS (Basic Input/Output System)

147
blogs 221
BNF. See Backus-Naur Form
body nets 60
Bogart computer 52

Boggs, David R. 178
Bolt, Beranek, and Newman (BBN)

129, 163, 173, 251
Boole, George 25–27, 239
Boolean logic 26
Bootstrap Alliance 78
Borland International 81, 127–128
Brand, Stewart 87–88
Bricklin, Daniel 27–29, 28, 132
Brief Code 171
Brooks, Frederick P. 29–32, 30
Brooks, Rodney 166
Brown, Ernest W. 73
Brown, Gordon 89
browsers, Web

early 5–6
Internet Explorer 7, 41, 94
Netscape 7

BSD. See Berkeley Software
Distribution

Budiu, Mihai 140
bug, use of term 120
Burchfiel, Jerry 251–252
Burrough, Bryan 74, 76
Burroughs, William S. 32–33
Burroughs Corporation 33, 152
Bush, Vannevar 33–35, 77, 185
Bushnell, Nolan 35–38, 36
Busicom 183
buttons 135
Byron, Lord 164

C

C (language) 128, 140, 224, 250
C++ (language) 103, 244–245
C-10 (language) 116
cache 4
calculators, first mechanical 32–33.

See also specific types
calculus, lambda 45
Campus Company 36
Carriero, Nicholas 95
Case, Dan 39, 40
Case, Steve 39–41
cathode ray tubes (CRTs) 90, 141
CBASIC (language) 80
CDC. See Control Data Corporation
CDC 1604 computer 52

298 A to Z of Computer Scientists

CDC 6600 computer 52
CDC 7600 computer 53
CD-ROMs 148
CDS. See Commercial Data Servers
Cellular Automata (Codd) 46
Census, U.S. 116, 118
Central Intelligence Agency (CIA)

databases 75
Cerf, Vinton 41–44, 42, 130, 211,

212
CERN 21–22
checkers 230–231
Chen, Steve 53
chess 172, 190–191, 233, 250, 253,

258
chronology 286–288
Church, Alonzo 44–45, 137
CIA. See Central Intelligence

Agency
circuits, integrated 106, 143, 144,

182, 193–194
Clark, Jim 7
classes 195, 244
Clipper Chip 63
clones 56, 79
cluster computing 114
CNC. See Complex Number

Calculator
CNRI. See Corporation for National

Research Initiatives
COBOL (language) 121, 228–229
Codd, Edgar F. 46–47
The Codebreakers (Kahn) 62
Cold War, communications in 16
collaborative filtering 168
Columbia University 73, 74
Commercial Data Servers (CDS) 5
Communications Nets (Kleinrock)

149
Community Memory 87
Compatible Time-Sharing System.

See CTSS
compiler programs 120, 152, 210
Complex Number Calculator

(CNC) 239–240
Compton, Arthur 34
CompuServe 41
computability 213–214, 256
The Computer from Pascal to von

Neumann (Goldstine) 102

Computer Game Developers’
Conference 51

Computer Museum 20
Computer Museum History Center

20
Computers and Thought (Feigenbaum

and Feldman) 85
computer science

establishment of discipline
209–210

mathematics and 44
computer scientists xi

Backus, John 13–15
Baran, Paul 15–17
Bartik, Jean 17–18
Bell, Chester Gordon 18–21
Berners-Lee, Tim 21–23
Brooks, Frederick P. 29–32
Cerf, Vinton 41–44
Codd, Edgar F. 46–47
Corbató, Fernando 47–49
Davies, Donald Watts 55–56
Dertouzos, Michael 59–61
Diffie, Bailey Whitfield 61–63
Dijkstra, Edsger 64–65
Feigenbaum, Edward 84–86
Gelernter, David Hillel 95–97
Gosling, James 102–105
Hamming, Richard Wesley

108–110
Hillis, W. Daniel 112–115
Hopper, Grace Murray

119–121
Joy, Bill 124–126
Kahn, Robert 129–131
Kay, Alan C. 133–136
Kemeny, John G. 136–139
Kernighan, Brian 139–140
Kildall, Gary 145–148
Kleinrock, Leonard 148–151
Knuth, Donald E. 151–153
Lanier, Jaron 156–158
Lenat, Douglas B. 158–161
Licklider, J. C. R. 161–164
Lovelace, Ada 164–165
Maes, Pattie 166–169
McCarthy, John 171–173
Minsky, Marvin 179–182
Nelson, Ted 185–186
Neumann, John von 186–189

Newell, Allen 189–192
Nygaard, Kristen 194–196
Papert, Seymour 206–209
Perlis, Alan J. 209–211
Postel, Jonathan B. 211–212
Rabin, Michael O. 213–216
Rees, Mina Spiegel 218–221
Ritchie, Dennis 223–225
Roberts, Lawrence 225–227
Sammet, Jean E. 228–229
Samuel, Arthur Lee 230–231
Shannon, Claude E. 232–234
Simon, Herbert A. 234–236
Stallman, Richard 236–238
Stroustrup, Bjarne 243–245
Sutherland, Ivan 245–247
Thompson, Kenneth 248–250
Tomlinson, Ray 250–252
Torvalds, Linus 254–256
Turing, Alan 256–258
Weizenbaum, Joseph 269–272
Wiener, Norbert 272–274
Wirth, Niklaus 274–276

Computer Space (game) 37
Computing-Tabulating-Recording

(C-T-R) 265–266
Computrek 60
Connection Machine 113–114
Control Data Corporation (CDC)

52–53
Control Program for

Microcomputers. See CP/M
Control Video Corporation 40
Conway, John 46
Corbató, Fernando 47–49, 60
Corcoran, Elizabeth 70
core memory 90, 263
Corporation for National Research

Initiatives (CNRI) 43, 130
counterculture 86–87, 185
Count Zero (Gibson) 98
CP/M (Control Program for

Microcomputers) 79, 81, 93,
147–148

CPYNET program 251
Crawford, Chris 49–51
Cray, Seymour 52, 52–54
Cray-1 computer 53
Cray-2 computer 53
Cray-3 computer 53

Index 299

Cray-4 computer 54
Cray Research, Inc. 53–54
Cringely, Robert X. 93
Crocker, Stephen 212
CRTs. See cathode ray tubes
cryptography 61

definition of 61
Diffie, Whitfield, and 61, 62–63
government role in 62, 63
public key 62–63
Rabin, Michael, and 214–215
Shannon, Claude, and 233

C-T-R. See Computing-Tabulating-
Recording

CTSS (Compatible Time-Sharing
System) 48–49

The Cuckoo’s Egg (Stoll) 241–242
cybernetics 10, 162–163, 272–274
cyberpunk 98–99
cyberspace 98
Cyc (program) 160–161

D

Daggett, Marjorie 48
Daley, Bob 48
Dartmouth College 137, 138
Dartmouth Time-Sharing System

(DTSS) 137
databases

definition of 46
lifestream 97
relational model of 46–47, 75

database software
by Oracle 75
role of 74

data encryption standard. See DES
data mining 96, 114
Davies, Donald Watts 55–56
dBase program 128
DEC. See Digital Equipment

Corporation
decision making 234–235
Dell, Michael 56–59
Dell Computer Company 57–58
Delphi operating system 128
Deltamax 90
Demo Program, Dan Bricklin’s 29
Dendral (expert system) 86

Dertouzos, Michael 59–61
DES (data encryption standard) 62
The Difference Engine (Gibson) 98
Difference Engine Number One

calculator 12, 13
differential analyzers 34, 232–233
Diffie, Bailey Whitfield 61–63
digital computers

invention of first 8, 10
patents on 10

Digital Equipment Corporation
(DEC) 19–20, 27, 177,
197–200

Digital Research 147, 148
Dijkstra, Edsger 64, 64–65
A Discipline of Programming

(Dijkstra) 65
disk operating system. See DOS
distributed networks 16, 43
domain name system (DNS)

211–212
DOS (disk operating system),

CBASIC version for 81
dot-Net (language) 104
Drawing Life (Gelernter) 95, 96
DR-DOS 148
Dreifus, Claudia 70
Drexler, K. Eric 65–67, 66
Dreyfus, Hubert 67–68
DTSS. See Dartmouth Time-

Sharing System
Dynabook computer 135
Dyson, Esther 68–70, 69
Dyson, Freeman 69

E

Eastern Front (game) 50
EBASIC (language) 80
eBay 202–203
Eckert, J. Presper 71–72

Goldstine, Herman, and 101
Mauchly, John, and 71, 72,

170–171
Eckert, Wallace J. 72–74
Eckert-Mauchly Computer

Company 52, 72, 120, 170
Eddy Program 47
Edmonds, Dean 180

EDS. See Electronic Data Systems
EDVAC computer 72
EDventure Holdings 70
EFF. See Electronic Frontier

Foundation
Einstein, Albert 137
electrical engineer, Wozniak, Steve

276–278
Electronic Data Systems (EDS) 8
Electronic Frontier Foundation

(EFF) 70, 133
Electronic Numerical Integrator and

Computer. See ENIAC
Elementary Perceiver and

Memorizer (EPAM) 85
Eliot, T. S. 98
ELIZA (program) 270–271
Ellison, Larry (Lawrence John)

74–76
Emacs 237
e-mail 250–252
Encore 20
Energy Czar (game) 50
Engelbart, Douglas 76–78
Engineering Research Associates

(ERA) 52
engineers

Baran, Paul 15–17
Bush, Vannevar 33–35
Cray, Seymour 52–54
Drexler, K. Eric 65–67
Eckert, J. Presper 71–72
Engelbart, Douglas 76–78
Felsenstein, Lee 86–88
Forrester, Jay W. 88–91
Grove, Andrew S. 105–107
Hewlett, William Redington

110–112
Kahn, Robert 129–131
Kilburn, Thomas M. 140–142
Kilby, Jack 143–145
Kleinrock, Leonard 148–151
Lenat, Douglas B. 158–161
Mauchly, John 169–171
Metcalfe, Robert M. 176–179
Noyce, Robert 192–194
Olsen, Kenneth H. 197–200
Packard, David 204–206
Torres Quevedo, Leonardo

252–253

300 A to Z of Computer Scientists

Wozniak, Steve 276–278
Zuse, Konrad 282–283

Engines of Creation (Drexler) 66
ENIAC (Electronic Numerical

Integrator and Computer)
Bartik, Jean, and 17–18
Bush, Vannevar, and 34, 35
development of 71–72, 170
differential analyzers and 34
documentation manuals for

100
Eckert, J. Presper, and 71–72
as first digital computer 8
funding for 101–102
Goldstine, Adele, and 99–100
Holberton, Betty, and 116
Mauchly, John, and 71, 170
Neumann, John von, and 188
patent dispute over 171
programming of 18, 116

Enquire (program) 22
entrepreneurs xi

Amdahl, Gene M. 3–5
Andreessen, Marc 5–8
Bezos, Jeffrey P. 23–25
Bushnell, Nolan 35–38
Case, Steve 39–41
Dell, Michael 56–59
Ellison, Larry 74–76
Estridge, Philip Donald 78–80
Eubanks, Gordon 80–81
Fanning, Shawn 82–84
Gates, Bill 92–95
Grove, Andrew S. 105–107
Hewlett, William Redington

110–112
Jobs, Steve 122–124
Joy, Bill 124–126
Kahn, Philippe 127–129
Kapor, Mitchell 131–133
Kildall, Gary 145–148
Kurzweil, Raymond C.

153–155
McNealy, Scott G. 174–176
Metcalfe, Robert M. 176–179
Moore, Gordon E. 182–184
Noyce, Robert 192–194
Olsen, Kenneth H. 197–200
Omidyar, Pierre 200–203
Packard, David 204–206

Wang, An 262–264
Watson, Thomas, Jr. 267–269
Watson, Thomas J., Sr.

265–267
Yang, Jerry 279–281

EPAM. See Elementary Perceiver
and Memorizer

ERA. See Engineering Research
Associates

ERA 1103 computer 52
Erasmotron 51
error correction, automatic 108,

109, 110
Estridge, Philip Donald 78–80
Estrin, Jerry 425
Ethernet 177–178
Eubanks, Gordon 80–81
Eurisko (program) 160
Evans, David 246
Everett, Robert R. 89
Ewing, Glen 147
Excalibur (game) 50
expert systems 86, 154, 167

F

Fairchild Semiconductor 106, 182,
193–194

Fanning, Shawn 82–84, 83
feedback loops 273
Feigenbaum, Edward 84–86, 85
Feldman, Julian 85
Felsenstein, Lee 86–88
Ferranti Mark I computer 141
ferrite core memory 90, 263
Feynman, Richard 66
Filo, David 279–280
finite state machine 214
Firefly Networks 168
First Person project 103
FLEX project 135
floating point calculations 3, 14
Flow-Matic compiler 120
FORMAC (language) 229
Forrester, Jay W. 88–91
FORTRAN (language) 13–14, 228
Fourer, Bob 140
frames 160, 181
Frankston, Bob 27, 28

French, Gordon 87
Fuchs, Henry 31
function(s)

definition of 45
recursive 45, 223

functional programming 15
Fundamental Algorithms (Knuth)

152–153
futurists

Drexler, K. Eric 65–67
Dyson, Esther 68–70

Fylstra, Dan 28, 29

G

games. See also specific games
and artificial intelligence

230–231
by Crawford, Chris 49–51
first 36, 37
microprocessors in 37
psychology of 260

game theory 187, 190
Gates, Bill (William), III 92–95, 93

America Online and 40
on Estridge, Philip 79
Java and 104
personality of 94

Gates, Melinda 94
Gay, David 140
Gelernter, David Hillel 95–97
GEM (Graphical Environmental

Manager) 148
General Problem Solver (GPS)

191, 235
Gibson, William 97–99
Glav-PC 88
global flow analysis 146
glossary 289–295
glove, data 157
GNU Project 237–238, 254–255
Gnutella 84
Goldstine, Adele 99–101
Goldstine, Herman Heine 99,

101–102, 170, 188
Gosling, James 94, 102–105, 103
GPS. See General Problem Solver
Graphical Environmental Manager.

See GEM

Index 301

graphics, early, development of 31,
245–247

Green (language) 103
Green, Cordell 160
Gróf, András. See Grove, Andrew S.
groupware 132
Grove, Andrew S. 105, 105–107,

183
Guns and Butter (game) 50

H

hacker(s)
meanings of term 88, 217
at MIT 61–62, 237
Raymond, Eric, as 216–218
Stallman, Richard, as 237

Hacker’s Conference 88
Hafner, Katle 42
Haggerty, Patrick T. 144
Hamming, Richard Wesley 108–110
Hamming codes 110
Hamming window 109
Harcourt Brace 154
Harvard Mark I calculator 1–2, 119,

266
Harvard Mark II calculator 2
Harvard Mark III calculator 2
Hellman, Martin 62, 63
heuristics 160, 190
Hewlett, William Redington

110–112, 204–206
Hewlett-Packard Corporation (HP)

111–112, 204–206
Hilbert, David 45
Hillers, Konrad 84
Hillis, W. Daniel 112–115
Hilts, Philip J. 173
Hoff, Ted 183
Holberton, Frances Elizabeth

(Betty) 115–117
Hollerith, Herman 117, 117–119
Homebrew Computer Club 87, 92,

122, 276
Honeywell 10
Hopper, Grace Murray 119–121,

120
HP. See Hewlett-Packard

Corporation

Huber-Dyson, Verena 69
human factors 163
hypertext, invention of 22, 35, 77,

185–186

I

IBM (International Business
Machines)

Aiken, Howard, at 1, 2
Amdahl, Gene M., at 3–4
antitrust case against 268–269
Apple’s competition with 123
Brooks, Frederick, at 30–31
Burroughs Corporation and 33
CDC’s competition with 53
clones of 57, 79
Codd, Edgar F., at 46
Eckert, Wallace J., at 73–74
establishment of 119, 266
Estridge, Philip, at 78–80
and Harvard Mark I calculator

1, 2
Microsoft’s partnership with

79, 93
nanotechnology at 66
pricing by 4, 5
Watson, Thomas J., Sr., at

265–266
IBM 701 mainframe 14
IBM 704 mainframe 3, 14
IBM 709 mainframe 3, 48
IBM Model 90 computer 53
IBM PCs

and CP/M 79, 81, 93, 147–148
development of 78–80
Microsoft products on 79, 93

IBM System/360 mainframe 3–4,
30–31, 268

ICANN. See Internet Corporation
for Assigned Names and Numbers

icons 76
identity 258–260
IDG. See International Data Group
Idoru (Gibson) 98
iMac computer 124
IMP. See Interface Message

Processor
incremental computing 246

Infocom 49
information processing language

(IPL) 191
Information Processing Technology

Office (IPTO) 130
InfoWorld (journal) 178
Intel 4004 microprocessor 146, 194
Intel 8008 microprocessor 146
Intel Corporation

establishment of 106, 183, 194
Grove, Andrew, at 106, 183
Kildall, Gary, and 146
Moore, Gordon, at 182, 183
Noyce, Robert, at 194

intelligence amplification 31–32
IntelliGenetics 86
Interface Message Processor (IMP)

130, 150, 177, 226
International Business Machines.

See IBM
International Data Group (IDG) 178
Internet. See also World Wide Web

Baran, Paul, and 15
Berners-Lee, Tim, and 22
Cerf, Vinton, and 41, 43–44
invention of 41
regulation of 43–44
vs. World Wide Web 131

Internet Corporation for Assigned
Names and Numbers (ICANN)
70

Internet Explorer, Microsoft 7, 41,
94

Internet Society 43, 131
interrupts 30, 64
Interval Research 88
inventors xi

Aiken, Howard 1–3
Amdahl, Gene M. 3–5
Atanasoff, John Vincent 8–10
Babbage, Charles 11–13
Bell, Chester Gordon 18–21
Bricklin, Daniel 27–29
Burroughs, William S. 32–33
Bush, Vannevar 33–35
Bushnell, Nolan 35–38
Cray, Seymour 52–54
Eckert, J. Presper 71–72
Eckert, Wallace J. 72–74
Engelbart, Douglas 76–78

302 A to Z of Computer Scientists

Fanning, Shawn 82–84
Feigenbaum, Edward 84–86
Felsenstein, Lee 86–88
Forrester, Jay W. 88–91
Hollerith, Herman 117–119
Kilburn, Thomas M. 140–142
Kilby, Jack 143–145
Kurzweil, Raymond C.

153–155
Lanier, Jaron 156–158
Mauchly, John 169–171
Minsky, Marvin 179–182
Nelson, Ted 185–186
Noyce, Robert 192–194
Omidyar, Pierre 200–203
Stibitz, George 238–241
Sutherland, Ivan 245–247
Torres Quevedo, Leonardo

252–253
Wang, An 262–264
Wozniak, Steve 276–278
Yang, Jerry 279–281
Zuse, Konrad 282–283

IPL. See information processing
language

IPTO. See Information Processing
Technology Office

iTunes Music Store 124

J

J2EE. See Java 2 Enterprise Edition
Jacquard, Joseph-Marie 11
Jager, Rama Dev 111, 112
Java

C++ and 103, 244–245
development of 102, 103–104
Joy, Bill, and 103, 126
Microsoft and 7, 94, 104
Sun Microsystems and 176

Java 2 Enterprise Edition (J2EE)
104

Jobs, Steve 75, 122–124, 123, 277
Johnny Mnemonic (Gibson) 99
The Journal of Computer Game

Design 51
Joy, Bill 103, 124–126, 125, 250
Justice Department, in Microsoft

antitrust case 94

K

Kaczynski, Theodore 95, 96
Kahn, David 62
Kahn, Philippe 127–129
Kahn, Robert 43, 129–131
Kaphan, Shel 24
Kapor, Mitchell 29, 131–133, 132
Kay, Alan C. 133–136, 195
Kemeny, John G. 136–139
kernel 254
Kernighan, Brian 139–140
key exchange 62–63
Khosla, Vinod 175
Kilburn, Thomas M. 140–142
Kilby, Jack 143, 143–145, 193–194
Kildall, Gary 79, 81, 93, 145–148
Kim, Sun Ho 31
Kimsey, Jim 40
Kirsten, Peter 131
Kleinrock, Leonard 148–151, 149,

225–226
Kline, Charles 150
Knowbot program 130–131
knowledge architecture 191
knowledge bases 86, 160
knowledge engineering 86, 181
Knuth, Donald E. 151–153
KRMs. See Kurzweil Reading

Machines
Kurtz, Thomas 136, 138
Kurzweil, Raymond C. 153–155,

154
Kurzweil Computer Products 154
Kurzweil Reading Machines

(KRMs) 155

L

lambda calculus 45
LAN. See local area network
languages, computer 14–15. See also

specific languages
functional programming of 15
grammatical diagrams of 15

Lanier, Jaron 156–158, 157
laptops, by Dell 58
Larson, Earl Richard 171
Lazere, Cathy 31, 134, 159

Lee, J. A. N. 108, 109, 121, 209,
230

Lee, Sonia 128, 129
Legionnaire (game) 50
Lenat, Douglas B. 158–161, 159
Levy, Steven 61, 62, 236, 237
Licklider, J. C. R. 161–164, 225
lifestream database 97
LightSurf Technologies 129
The Limits to Growth (Meadows) 91
Lin, Maya 113
Linda (language) 95
Linux operating system 94,

254–256
LISP (language) 173, 207, 237
literacy, computer 208
local area network (LAN) 178
logic

binary 9, 10
Boolean 25–27, 239

Logic Theorist (program) 85
Logic Theory Machine (LTM)

191
LOGO (language) 206–208
Loopstra, Bram J. 64
Los Alamos

Hamming, Richard, at
108–109

Kemeny, John, at 137
Lotus 1-2-3 program 29, 132
Lotus Agenda program 132
Lotus Development 132
LoudCloud 7–8
Lovelace, Ada (Augusta Ada Byron)

13, 164–165
LTM. See Logic Theory Machine
Lyon, Matthew 42

M

MAC, Project 181, 224
Macintosh computer 123, 124
Macsyma software package 62
Made in America (Dertouzos) 60
Maes, Pattie 166–169, 167
Man and the Computer (Kemeny)

137
Manchester Mark I computer 141
Mark calculator. See Harvard Mark

Index 303

Massachusetts Institute of
Technology (MIT)

Corbató, Fernando, at 48–49
Dertouzos, Michael, at 59, 60
Diffie, Whitfield, at 61–62
Drexler, K. Eric, at 65–66
Forrester, Jay, at 89, 91
hackers at 61–62, 237
Maes, Pattie, at 166
Metcalfe, Robert, at 177
Minsky, Marvin, at 181
Oxygen project at 60

mathematicians
Babbage, Charles 11–13
Boole, George 25–27
Church, Alonzo 44–45
Codd, Edgar F. 46–47
Diffie, Bailey Whitfield 61–63
Goldstine, Adele 99–101
Goldstine, Herman Heine

101–102
Hamming, Richard Wesley

108–110
Holberton, Frances Elizabeth

115–117
Hopper, Grace Murray

119–121
Kemeny, John G. 136–139
Lovelace, Ada 164–165
McCarthy, John 171–173
Neumann, John von 186–189
Perlis, Alan J. 209–211
Rabin, Michael O. 213–216
Rees, Mina Spiegel 218–221
Shannon, Claude E. 232–234
Stibitz, George 238–241
Turing, Alan 256–258
Wiener, Norbert 272–274

mathematics, computer science and
44

Mathlab program 62
Mauchly, John 169, 169–171

and Atanasoff, John 10
and Eckert, J. Presper 71, 72,

170–171
and EDVAC computer 72
and ENIAC computer 71, 170
and Goldstine, Herman 101

MCC. See Microelectronics and
Computer Technology Corporation

McCarthy, John 171–173, 172
McCorduck, Pamela 86, 189
McEwen, Dorothy 147
McGill, William 163
MCI 43
McLuhan, Marshall 167
McNealy, Scott G. 174, 174–176
Meadows, Dana 91
MEG computer 141
memory

ferrite core 90, 263
forms of 188
Intel’s business in 106–107
random-access 141
time-sharing of 47, 48–49
virtual 20, 31

Menebrea, L. F. 13
Mercury computer 141–142
mercury delay line 72
Merryman, Jerry D. 144
Meta-Dendral 86
Metafont (language) 153
Metcalfe, Robert M. 176–179
Metz, Cade 134
Micral computer 127
Microelectronics and Computer

Technology Corporation (MCC)
160–161

microfilms, linkage of information
on 35, 77

microprocessors
definition of 37
by Intel 106–107, 183, 194
Moore, Gordon, and 182, 183
in videogames 37

Microsoft 92–94
America Online and 40, 41
antitrust case against 7, 41, 76,

81, 94, 176
Borland’s competition with 128
IBM’s partnership with 79, 93
Internet Explorer by 7, 41, 94
Java and 7, 94, 104
Linux’s competition with 94,

255
Netscape’s competition with 7
Windows by 94

Microsoft Network (MSN) 41
Millennium Clock 114
Miner, Bob 75

minicomputers 18–20
Minsky, Marvin 160, 179–182,

206–207
Mirror Worlds (Gelernter) 95
MIT. See Massachusetts Institute of

Technology
Mitre Corporation 62
MIT Storage Tube 90
modems, for personal computers 39
Modula-2 (language) 275
Modula-3 (language) 275
Mona Lisa Overdrive (Gibson) 98
Moondust (game) 156
Moore, Fred 87
Moore, Gordon E. 106, 182–184,

183
Moore’s law 182–183
Moritz, Mike 280
Morse, Philip M. 48
Mosaic web browser 6
mouse, development of 76, 77–78
MP3 files 82–83
MS-DOS 1.0 93
MSN. See Microsoft Network
MU5 computer 142
Multics operating system 49, 224,

249
multiprogramming 46, 275
MUSE computer 142
The Muse in the Machine (Gelernter)

96
music

computer synthesis of 155
on Napster 82–84

The Mythical Man-Month (Brooks)
31

N

nanotechnology 66–67
Napster 82–84
National Cash Register (NCR)

265
National Center for

Supercomputing Applications
(NCSA) 6

National Science Foundation
Bell, Gordon, at 20
establishment of 34–35

304 A to Z of Computer Scientists

National Security Agency (NSA),
cryptography under 62, 63

Naur, Peter 15
Naval Ordnance Research

Calculator. See NORC
Navy, U.S. 48–49
NC. See network computer
NCR. See National Cash Register
NCSA. See National Center for

Supercomputing Applications
Nelson, Ted (Theodor Holm)

185–186
Netscape Corporation

AOL’s purchase of 7
establishment of 5, 7
in Microsoft antitrust case 94

Netscape Navigator 7
network(s)

distributed 16, 43
Ethernet and 177–178
local area 178
printers on 177–178
TCP/IP for 43

network computer (NC) 76
Neumann, John von 186–189,

187
and EDVAC computer 72
Feigenbaum, Edward, and 85
Goldstine, Herman, and 102,

188
Kemeny, John, and 137

Neuromancer (Gibson) 98
Newell, Allen 189–192, 235
NeXT 124
Nii, H. Penny 86
NLS (hypertext system) 78
nondeterminism 214
NORC (Naval Ordnance Research

Calculator) 74
Norton 81
Noyce, Robert 192–194, 193

Grove, Andrew, and 106, 183
and integrated circuit

144, 182
Moore, Gordon, and

182–183
NSA. See National Security Agency
NSS program 191
Nutting Associates 37
Nygaard, Kristen 194–196

O

Oak (language) 103
Oberon (language) 275
object-oriented programming

(OOP) 134, 135, 243–244, 275
Oblix 81
Olsen, Kenneth H. 197–200
Omidyar, Pierre 200, 200–203
Omnifont program 154
O’Neill, Gerard K. 66
ON Technology 132–133
On the Internet (Dreyfus) 68
Onyx Systems 175
OOP. See object-oriented

programming
open platforms, of IBM PCs 79
Open Ratings 168
open source software 125, 217–218,

236, 238, 254–255
operating systems. See specific types
operations research 219–220
Oracle (software) 75
Oracle Corporation 75–76
Ordnance Engineering Corporation

9
Ortiz, Rafael 111, 112
Osborne, Adam 87
Osborne-1 computer 87
Osborne Computer, Inc. 87
Oxygen project 60

P

Packard, David 111–112, 204–206
packet-switching

and ARPANET project 43,
150, 225–226

development of 55, 56, 130,
148–150

in Ethernet 178
Palo Alto Research Center (PARC)

177, 178, 191
Papert, Seymour 181, 206–209,

207, 260
Paradox database management

system 128
parallel processing 4, 95, 113–115
parallel programming 134–135

PARC. See Palo Alto Research
Center

parity, and data integrity 110
Pascal (language) 127, 275
Pascal, Blaise 32
Patel, Marilyn Hall 84
The Pattern on the Stone (Hillis) 115
pattern recognition 113, 154
Patterson, Tim 81
Patton Strikes Back (game)
Patton vs. Rommel (game) 50
PC-DOS 147–148
PC Forum 69–70
PCs. See personal computers
PDAs (personal digital assistants) 70
PDP-1 computer 19–20, 199
PDP-4 computer 20
PDP-5 computer 20
PDP-8 computer 20, 199
PDP-11 computer 20, 199
pen computing 29, 201
Pennywhistle 103 87
Pentium processors 107
perception, philosophy of 67
Pergamit, Gayle 66
Perlis, Alan J. 209–211
personal computers (PCs). See also

IBM PCs
clone 57
modems for 39

personal digital assistants. See PDAs
personal information manager

(PIM) 128, 132
Peterson, Chris 66
phenomenology 67–68
physics, calculations in 1, 9
Physics and Technology of

Semiconductor Devices (Grove)
106

Piaget, Jean 207, 208
PIM. See personal information

manager
pipelining 30
Pixar 124
Pizza Time Theatre 38
Plan 9 operating system 225
Plankalkül (language) 283
Plauger, P. J. 140
PL/M (Programming Language for

Microprocessors) 146–147

Index 305

Pong (game) 35, 37
portable computers, first 87
Postel, Jonathan B. 211–212
post-structuralism 259
Poulton, John 31
prime numbers 214–215
printers

by HP 111, 206
networked 177–178

processing, parallel 4, 95, 113–115
Prodigy 41
product integraph 34
programmers

Andreessen, Marc 5–8
Bartik, Jean 17–18
Bricklin, Daniel 27–29
Crawford, Chris 49–51
Eubanks, Gordon 80–81
Fanning, Shawn 82–84
Gates, Bill 92–95
Goldstine, Adele 99–101
Holberton, Frances Elizabeth

115–117
Kahn, Philippe 127–129
Kapor, Mitchell 131–133
Raymond, Eric S. 216–218
Stoll, Clifford 241–243

programming
automatic 160
early challenges of 136
functional 15
object-oriented 134, 135,

243–244, 275
parallel 134–135
software tools approach to

139–140
structured 64, 65

Programming Language for
Microprocessors. See PL/M

Project PX 102
pseudocode 191
psychological research

by Licklider, J. C. R. 162–163
by Minsky, Marvin 179, 180,

181
by Turkle, Sherry 258–260

public key cryptography 62–63
punch card tabulation 117–119
Punched Card Methods in Scientific

Computation (Eckert) 73

Q

Quantum Computer Services 40
Quattro spreadsheet 128

R

Rabin, Michael O. 213–216
Ramo, Joshua Cooper 105
RAND Corporation 16, 190
random-access memory 141
randomization 215
Raymond, Eric S. 216–218
recursive functions 45, 223
Rees, Mina Spiegel 218–221, 219
Reid, T. R. 143
Release 1.0 (newsletter) 69–70
Rel-East (newsletter) 70
remote computer monitoring 42
Resource One 87
Rheingold, Howard 221–223
Richardson, Eileen 83
Ritchie, Dennis 223, 223–225

and C language 140, 250
and UNIX 139, 249

The Road Ahead (Gates) 94
Roberts, Lawrence 62, 225–227
robots

artificial intelligence and 181
by Bushnell, Nolan 38
nanotechnology and 66
in telepresence 181–182

Rock, Arthur 183
Rockefeller Differential Analyzer 34
Rolodex Electronics Xpress 128
Rosen, Benjamin 29, 69
Rosenblatt, Frank 180
Rosenfeld, Rick 74
RW440 minicomputer 3

S

Sachs, Jonathan 132
SAGE (Semi-Automated Ground

Environment) 90–91, 198
SAIL. See Stanford Artificial

Intelligence Laboratory
Sammet, Jean E. 228–229

Samuel, Arthur Lee 230–231
Santa Fe Institute 70, 115
scanners 154
Schmitt, William 171
Scholten, Carel S. 64
Schuster, Judy 135
Science: The Endless Frontier (Bush)

34
science fiction (SF) 97–99
scientists

Licklider, J. C. R. 161–164
Simon, Herbert A. 234–236
Stoll, Clifford 241–243
Turkle, Sherry 258–261

Scopeware (program) 97
Scott, Dana 214
Scram (game) 50
Sculley, John 123
Selective Sequence Electronic

Calculator (SSEC) 14, 74, 266
Self project 103
semaphore 65
Semi-Automated Ground

Environment. See SAGE
semiconductors 106
SF. See science fiction
Shannon, Claude E. 232, 232–234

Dertouzos, Michael, and 59
Hamming, Richard, and 109,

110
Sutherland, Ivan, and 246

Shasha, Dennis 31, 134, 159
Shockley, William 182, 192–193
Shugart 146–147
Sidekick (program) 128
signatures, digital 63
Silicon Snake Oil (Stoll) 242
Simon, Herbert A. 234–236

Feigenbaum, Edward, and 85
Newell, Allen, and 189, 190,

191, 192
Simon, Julian 91
The Sims (game) 50
Simula (language) 194–195, 244
simulations 195
Sketchpad (program) 134, 245, 246
Sklar, Debbie 44
Skoll, Jeff 202
Slater, Robert 28, 38, 90, 146, 147,

248, 249

306 A to Z of Computer Scientists

Smalltalk (language) 135, 195
SNARC (Stochastic Neural-Analog

Reinforcement Computer) 180
SNDMSG program 251
Snow, C. P. 141
Snuper Computer 42
SOAR program 192
The Society of the Mind (Minsky)

181
software agents 135, 166–168
Software Arts 28, 29
software engineering 29
Software Garden 29
Software Tools (Kernighan and

Plauger) 140
Sol-20 computer 87
Solomon, Les 87
source code 236
space exploration and colonization

65–66
Space War (game) 31, 36, 37, 246
speech recognition software 19, 155
speedcoding 14
Spellman, Florence 76
spreadsheets

invention of 27–29
Quattro 128

SQL (structured query language)
47, 75

SRI. See Stanford Research Institute
SSEC. See Selective Sequence

Electronic Calculator
Stallman, Richard 236–238,

254–255
Stanford Artificial Intelligence

Laboratory (SAIL) 62, 231
Stanford Research Institute (SRI)

77
Star computer 178
Starfish Software 128–129
Stibitz, George 238–241
Stochastic Neural-Analog

Reinforcement Computer. See
SNARC

Stoll, Clifford 208, 241–243
storage tubes 89–90
stored program concept 102
streams, data 224
STRETCH computer 3, 30, 46
Stroustrup, Bjarne 243, 243–245

structured programming 64, 65
structured query language. See SQL
substitution ciphers 61
Sun Microsystems

establishment of 125–126,
175

Gosling, James, at 103, 104
McNealy, Scott, at 175–176

supercomputers, development of
52, 53

Sutherland, Ivan 134, 245–247
Symantec 81

T

Tabulating Machine Company
118–119

tabulating machines, automatic
117–119

TCP/IP (transmission control
protocol/Internet protocol) 43,
129–130

Telenet 226–227
telepresence 181–182
Terman, Frederick 111
Tesler, Larry 195
Texas Instruments (TI) 144,

193–194
TeX typesetting system 153
Thinking Machines Corporation

113, 114
Thompson, Kenneth 125, 224,

248–250
Thorstenberg, Sigrid 42
3Com 178
TI. See Texas Instruments
time-sharing 47, 48–49, 137, 163,

173
Time Warner, merger with America

Online 41
Tiny Troll program 132
TK!Solver program 29
Tomlinson, Ray 250–252
Toole, Betty 165
Torode, John 147
Torres Quevedo, Leonardo

252–253
Torvalds, Linus 254, 254–256
Transistor Computer 142

transistors 142, 193
transmission control

protocol/Internet protocol. See
TCP/IP

trap-door functions 62
Trellix 29
Trilogy 5
Trojan Cockroach 247
TROLL program 132
True BASIC (language) 138
Truong, André 127
Trust and Betrayal (game) 50
Turbo Pascal 127, 275
Turing, Alan 256–258, 257

and ACE computer 55, 257
artificial intelligence test of

257–258, 271
Church, Alonzo, and 45
Rabin, Michael, and 213–214

Turkle, Sherry 258–261
TX-0 computer 19
TX-2 computer 246

U

Unbounding the Future: The
Nanotechnology Revolution
(Drexler et al.) 66

Understanding Interactivity
(Crawford) 51

The Unfinished Revolution
(Dertouzos) 60

Ungar, David 103
uniform resource locators. See URLs
Univac computer 52, 116, 120, 170
University of Manchester 141–142
University of North Carolina 31
UNIX operating system

“Andrew” interface for 103
development of 139, 223–224,

248–250
Gosling, James, and 103
Joy, Bill, and 125–126
pipes in 139
Ritchie, Dennis, and 223–224
significance of 174
Thompson, Kenneth, and

248–250
utilities for 125

Index 307

URLs (uniform resource locators)
211

utilities, system 81, 125

V

vacuum tubes, in digital computers
9, 10, 89

Van Tassel, James H. 144
VAX (Virtual Address Extension)

computers 20
VDM-1 (video interface circuit) 87
Veblen, Oswald 44
venture capitalism

Bushnell, Nolan, in 38
definition of 38
Dyson, Esther, in 70

videogames. See games
Virtual Address Extension. See VAX

computers
Virtual Light (Gibson) 98
virtual memory

Bell, Gordon, and 20
Brooks, Frederick, and 31
first use of 31

virtual reality (VR) 95–96
coining of term 157
Gelernter, David, and 95–96
Lanier, Jaron, and 156–158

VisiCalc 28–29, 123, 132
VisiPlot 132
Visual or Virtual Programming

Language. See VPL
voice recognition software 19
von Neumann, John. See Neumann,

John von
VPL (Visual or Virtual Programming

Language) Research 157
VR. See virtual reality

W

W3C. See World Wide Web
Consortium

Waldrop, M. Mitchell 163

Wang, An 262–264
Wang Laboratories 263–264
Warner Communications 37–38
Warren, Jim 147
Watson, Thomas J., Sr. 73,

265–267, 267, 268
Watson, Thomas, Jr. 53, 266, 267,

267–269
Watson Laboratory 73–74
web logs 221
Weizenbaum, Joseph 269–272
WELL (Whole Earth ’Lectronic

Link) 221
What Computers Can’t Do (Dreyfus)

68
What Computers Still Can’t Do

(Dreyfus) 68
What Will Be (Dertouzos) 60
Whirlwind computer 48, 89–90,

198, 209, 219
Whirlwind II computer 90
Whitman, Meg 202, 203
Wiener, Norbert 162, 272–274,

273
William and Flora Hewlett

Foundation 112
Williams, Frederick C. 141
Williams tube 141
Windows operating system

in antitrust case 94
development of 94

Wirth, Niklaus 127, 274–276
WISC (Wisconsin Integrally

Synchronized Computer) 3
Wisconsin Integrally Synchronized

Computer. See WISC
Wolfe, Tom 193
Wonder, Stevie 155
Wood, Benjamin D. 73
word processing software 27, 28,

262–264
World Wide Web. See also

Internet
early browsers for 5–6
vs. Internet 131
invention of 21–23
Netscape’s impact on 7

World Wide Web Consortium
(W3C) 22

Wozniak, Steve 122–123,
276–278, 277

WP-8 program 27
writers xii

Dertouzos, Michael 59–61
Drexler, K. Eric 65–67
Dreyfus, Hubert 67–68
Dyson, Esther 68–70
Gelernter, David Hillel

95–97
Gibson, William 97–99
Goldstine, Herman Heine

101–102
Kernighan, Brian 139–140
Kurzweil, Raymond C.

153–155
Metcalfe, Robert M.

176–179
Raymond, Eric S. 216–218
Rheingold, Howard 221–223
Stallman, Richard 236–238
Stoll, Clifford 241–243
Turkle, Sherry 258–261

X

Xanadu, Project 186
Xerox 177–178

Y

Yahoo! 279–281
Yang, Jerry (Chih-Yuan Yang)

279–281

Z

Z1 calculator 282–283
Z3 calculator 283
Z4 calculator 283
Zimmerman, Tom 157
Zuse, Konrad 282–283

308 A to Z of Computer Scientists

	Contents
	List of Entries
	Acknowledgments
	Introduction
	A
	B
	C
	D
	E
	F
	G
	H
	J
	K
	L
	M
	N
	O
	P
	R
	S
	T
	W
	Y
	Z

	Entries by Field
	Chronology
	Glossary
	Bibliography
	Index

