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Preface

Distribution theory lies at the interface of probability and statistics. It is closely related
to probability theory; however, it differs in its focus on the calculation and approxima-
tion of probability distributions and associated quantities such as moments and cumulants.
Although distribution theory plays a central role in the development of statistical method-
ology, distribution theory itself does not deal with issues of statistical inference.

Many standard texts on mathematical statistics and statistical inference contain either a
few chapters or an appendix on basic distribution theory. I have found that such treatments
are generally too brief, often ignoring such important concepts as characteristic functions
or cumulants. On the other hand, the discussion in books on probability theory is often too
abstract for readers whose primary interest is in statistical methodology.

The purpose of this book is to provide a detailed introduction to the central results of
distribution theory, in particular, those results needed to understand statistical methodology,
without requiring an extensive background in mathematics. Chapters 1 to 4 cover basic topics
such as random variables, distribution and density functions, expectation, conditioning,
characteristic functions, moments, and cumulants. Chapter 5 covers parametric families of
distributions, including exponential families, hierarchical models, and models with a group
structure. Chapter 6 contains an introduction to stochastic processes.

Chapter 7 covers distribution theory for functions of random variables and Chapter 8 cov-
ers distribution theory associated with the normal distribution. Chapters 9 and 10 are more
specialized, covering asymptotic approximations to integrals and orthogonal polynomials,
respectively. Although these are classical topics in mathematics, they are often overlooked
in statistics texts, despite the fact that the results are often used in statistics. For instance,
Watson’s lemma and Laplace’s method are general, useful tools for approximating the
integrals that arise in statistics, and orthogonal polynomials are used in areas ranging from
nonparametric function estimation to experimental design.

Chapters 11 to 14 cover large-sample approximations to probability distributions. Chap-
ter 11 covers the basic ideas of convergence in distribution and Chapter 12 contains several
versions of the central limit theorem. Chapter 13 considers the problem of approximating
the distribution of statistics that are more general than sample means, such as nonlin-
ear functions of sample means and U-statistics. Higher-order asymptotic approximations
such as Edgeworth series approximations and saddlepoint approximations are presented in
Chapter 14.

T have attempted to keep each chapter as self-contained as possible, but some dependen-
cies are inevitable. Chapter 1 and Sections 2.1-2.4, 3.1-3.2, and 4.1-4.4 contain core topics
that are used throughout the book; the material covered in these sections will most likely be

Xi



xii Preface

familiar to readers who have taken a course in basic probability theory. Chapter 12 requires
Chapter 11 and Chapters 13 and 14 require Chapter 12; in addition, Sections 13.3 and 13.5
use material from Sections 7.5 and 7.6.

The mathematical prerequisites for this book are modest. Good backgrounds in calculus
and linear algebra are important and a course in elementary mathematical analysis at the
level of Rudin (1976) is useful, but not required. Appendix 3 gives a detailed summary of
the mathematical definitions and results that are used in the book.

Although many results from elementary probability theory are presented in Chapters 1
to 4, it is assumed that readers have had some previous exposure to basic probability
theory. Measure theory, however, is not needed and is not used in the book. Thus, although
measurability is briefly discussed in Chapter 1, throughout the book all subsets of a given
sample space are implictly assumed to be measurable. The main drawback of this is that it
is not possible to rigorously define an integral with respect to a distribution function and
to establish commonly used properties of this integral. Although, ideally, readers will have
had previous exposure to integration theory, it is possible to use these results without fully
understanding their proofs; to help in this regard, Appendix 1 contains a brief summary of
the integration theory needed, along with important properties of the integral.

Proofs are given for nearly every result stated. The main exceptions are results requiring
measure theory, although there are surprisingly few results of this type. In these cases,
I have tried to outline the basic ideas of the proof and to give an indication of why more
sophisticated mathematical results are needed. The other exceptions are a few cases in which
a proof is given for the case of real-valued random variables and the extension to random
vectors is omitted and a number of cases in which the proof is left as an exercise. [ have
not attempted to state results under the weakest possible conditions; on the contrary, I have
often imposed relatively strong conditions if that allows a simpler and more transparent
proof.

Evanston, IL, January, 2005
Thomas A. Severini
severini@northwestern.edu



1

Properties of Probability Distributions

1.1 Introduction

Distribution theory is concerned with probability distributions of random variables, with
the emphasis on the types of random variables frequently used in the theory and application
of statistical methods. For instance, in a statistical estimation problem we may need to
determine the probability distribution of a proposed estimator or to calculate probabilities
in order to construct a confidence interval.

Clearly, there is a close relationship between distribution theory and probability theory; in
some sense, distribution theory consists of those aspects of probability theory that are often
used in the development of statistical theory and methodology. In particular, the problem
of deriving properties of probability distributions of statistics, such as the sample mean
or sample standard deviation, based on assumptions on the distributions of the underlying
random variables, receives much emphasis in distribution theory.

In this chapter, we consider the basic properties of probability distributions. Although
these concepts most likely are familiar to anyone who has studied elementary probability
theory, they play such a central role in the subsequent chapters that they are presented here
for completeness.

1.2 Basic Framework

The starting point for probability theory and, hence, distribution theory is the concept of
an experiment. The term experiment may actually refer to a physical experiment in the
usual sense, but more generally we will refer to something as an experiment when it has
the following properties: there is a well-defined set of possible outcomes of the experiment,
each time the experiment is performed exactly one of the possible outcomes occurs, and
the outcome that occurs is governed by some chance mechanism.

Let Q2 denote the sample space of the experiment, the set of possible outcomes of the
experiment; a subset A of €2 is called an event. Associated with each event A is a probability
P(A). Hence, P is a function defined on subsets of €2 and taking values in the interval [0, 1].
The function P is required to have certain properties:

P P(R2)=1
(P2) If A and B are disjoint subsets of €2, then P(A U B) = P(A) + P(B).



2 Properties of Probability Distributions

(P3) If Ay, A,, ..., are disjoint subsets of €2, then

P (L:J1 A,,) = ;P(A,,).

Note that (P3) implies (P2); however, (P3), which is concerned with an infinite sequence
of events, is of a different nature than (P2) and it is useful to consider them separately.
There are a number of straightforward consequences of (P1)-(P3). For instance, P(¢J) = 0,
if A denotes the complement of A, then P(A¢) = 1 — P(A), and, for A, A, not necessarily
disjoint,

P(A; U Ay) =P(A)) + P(Ay) — P(A; N Aj).

Example 1.1 (Sampling from a finite population). Suppose that 2 is a finite set and that,
foreach w € Q,

P({w}) =c

for some constant c. Clearly, ¢ = 1/|2| where |€2| denotes the cardinality of €2.
Let A denote a subset of 2. Then

P(A) = ﬂ
€2
Thus, the problem of determining P(A) is essentially the problem of counting the number
of elementsin A and Q. O

Example 1.2 (Bernoulli trials). Let
Q={xeR"x=0x,....,x),x;=00rl, j=1,...,n}

so that an element of €2 is a vector of ones and zeros. For w = (x1, ..., x,) € L, take
n
P)=[]ova -0
j=1

where 0 < 6 < 11is a given constant. [

Example 1.3 (Uniform distribution). Suppose that Q@ = (0, 1) and suppose that the prob-
ability of any interval in 2 is the length of the interval. More generally, we may take the
probability of a subset A of €2 to be

P(A):/dx. O
A

Ideally, P is defined on the set of all subsets of 2. Unfortunately, it is not generally
possible to do so and still have properties (P1)—(P3) be satisfied. Instead P is defined only
on a set F of subsets of Q; if A C Q is not in F, then P(A) is not defined. The sets in F
are said to be measurable. The triple (2, F, P) is called a probability space; for example,
we might refer to a random variable X defined on some probability space.

Clearly for such an approach to probability theory to be useful for applications, the set
JF must contain all subsets of 2 of practical interest. For instance, when €2 is a countable
set, 7 may be taken to be the set of all subsets of 2. When 2 may be taken to be a
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Euclidean space RY, F may be taken to be the set of all subsets of R? formed by starting
with a countable set of rectangles in R¢ and then performing a countable number of set
operations such as intersections and unions. The same approach works when €2 is a subset
of a Euclidean space.

The study of theses issues forms the branch of mathematics known as measure theory.
In this book, we avoid such issues and implicitly assume that any event of interest is
measurable.

Note that condition (P3), which deals with an infinite number of events, is of a different
nature than conditions (P1) and (P2). This condition is often referred to as countable additiv-
ity of a probability function. However, it is best understood as a type of continuity condition
on P. It is easier to see the connection between (P3) and continuity if it is expressed in terms
of one of two equivalent conditions. Consider the following:

(P4) If Ay, Ay, ..., are subsets of Q satisfying A} C A, C -- -, then

o0
P (U An> = lim P(A,)
n—oo
n=1

(P5) If Ay, Ay, ..., are subsets of Q satisfying A} D A, D -- -, then

P (Q An) = lim P(A,).

Suppose that, as in (P4), A, As, ... is a sequence of increasing subsets of 2. Then we
may take the limit of this sequence to be the union of the A, ; that is,

lim A, = G Ay

n—00
n=1

Condition (P4) may then be written as
p ( lim An) — lim P(A,).
n—00 n—00

A similar interpretation applies to (P5). Thus, (P4) and (P5) may be viewed as continuity
conditions on P.
The equivalence of (P3), (P4), and (P5) is established in the following theorem.

Theorem 1.1. Consider an experiment with sample space 2. Let P denote a function defined
on subsets of 2 such that conditions (P1) and (P2) are satisfied. Then conditions (P3), (P4),
and (P5) are equivalent in the sense that if any one of these conditions holds, the other two
hold as well.

Proof. First note that if Aj, A, ... is an increasing sequence of subsets of €2, then
Af, A5, ... is a decreasing sequence of subsets and, since, foreachk = 1,2, ...,

k ¢ k
(U An) = mAf”
n=1 n=1

c o0
(nm An> — () A = lim AC.

n— 00
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Suppose (P5) holds. Then
P(lim A7) = lim P(47)
n—oo n—oo
so that
P(1im A,) =1-Pf(1im A,)} =1- lim P(4) = lim P(,).
n—o00 n—00 n—o0o n—o00

proving (P4). A similar argument may be used to show that (P4) implies (P5). Hence, it
suffices to show that (P3) and (P4) are equivalent.

Suppose Ay, A, ... 1is an increasing sequence of events. Forn = 2, 3, ..., define
A=A, NAS .

Then, for1 <n <k,

Ay N A= (A, NAY N (A5 NAS).
Note that, since the sequence Aj, Ay, ... is increasing, and n < k,

A, NA,=A,
and
A NAL = Ay
Hence, since A,, C A;_1,
A, NAc=A,NAL =0

Suppose w € Ay. Theneitherw € Ay_jorw € Aj_| N A = A similarly, if w € Ag_;
then either w € Ay, orw € A{N A NA;_, = Aj_;. Hence, » must be an element of
either one of Ay, Ay_1, ..., Ay or of A;. That s,

AkZAIUAQUA3U“'UAk;

hence, taking A; = A,

and

Now suppose that (P3) holds. Then

00 o) k
P(lim A;) =P A, =) PA, =1l P(4,) = lim P(4
(lim Ay) (anjl n) ; (An) kLrIolo; (Ay) = lim P(Ap),
proving (P4).

Now suppose that (P4) holds. Let Ay, A,, ... denote an arbitrary sequence of disjoint
subsets of €2 and let

o0
Ay = UAn.

n=1
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Define
~ k
Ac=JA; k=1.2...;
n=1

note that A, A, ...is an increasing sequence and that

A() = lim Ak.

k— 00

Hence, by (P4),

k 00
P(Ap) = lim P(Ay) = lim ;Pmn) = ;P(An),

proving (P3). It follows that (P3) and (P4) are equivalent, proving the theorem. M

1.3 Random Variables

Let w denote the outcome of an experiment; that is, let @ denote an element of 2. In many
applications we are concerned primarily with certain numerical characteristics of w, rather
than with w itself. Let X : Q@ — X, where X is a subset of R? forsomed = 1, 2, ..., denote
a random variable; the set X is called the range of X or, sometimes, the sample space of
X. For a given outcome w € €2, the corresponding value of X is x = X(w). Probabilities
regarding X may be obtained from the probability function P for the original experiment.
Let Px denote a function such that for any set A C &X', Px(A) denotes the probability that
X € A. Then Py is a probability function defined on subsets of X and

Pyx(A) = P({w € 2 X(w) € A)).

We will generally use aless formal notation in which Pr(X € A)denotes Py (A). Forinstance,
the probability that X < 1 may be written as either Pr(X < 1) or Px{(—o0, 1]}. In this book,
we will generally focus on probabilities associated with random variables, without explicit
reference to the underlying experiments and associated probability functions.

Note that since Py defines a probability function on the subsets of X, it must satisfy
conditions (P1)—(P3). Also, the issues regarding measurability discussed in the previous
section apply here as well.

When the range X’ of a random variable X is a subset of Re forsomed = 1,2, ..., itis
often convenient to proceed as if probability function Py is defined on the entire space RY.
Then the probability of any subset of X is 0 and, for any set A C R?,

Py(A)=Pr(X € A) =Pr(X € AN X).

It is worth noting that some authors distinguish between random variables and random
vectors, the latter term referring to random variables X for which X is a subset of R? for
d > 1. Here we will not make this distinction. The term random variable will refer to either
a scalar or vector; in those cases in which it is important to distinguish between real-valued
and vector random variables, the terms real-valued random variable and scalar random
variable will be used to denote a random variable with X C R and the term vector random
variable and random vector will be used to denote a random variable with X ¢ R4, d > 1.
Random vectors will always be taken to be column vectors so that a d-dimensional random
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vector X is of the form

X1
X
X = .
X4
where X, X, ..., X, are real-valued random variables.

For convenience, when writing a d-dimensional random vector in the text, we will write
X = (X4, ..., Xy) rather than X = (X, ..., X;)T. Also, if X and Y are both random
vectors, the random vector formed by combining X and Y will be written as (X, Y), rather
than the more correct, but more cumbersome, (X7, Y7)T. We will often consider random
vectors of the form (X, Y) with range X x ); a statement of this form should be taken to
mean that X takes values in X and Y takes values in ).

Example 1.4 (Binomialdistribution). Consider the experiment considered in Example 1.2.
Recall that an element w of €2 is of the form (x1, ..., x,,) where each x; is either O or 1. For
an element w € €2, define

X(w) = ij.
j=1

Then
Pr(X = 0) = P((0,0,...,0) = (1 —6)",
Pr(X = 1) =P((1,0,...,0) +P(0,1,0,...,0)) + - -- + P((0,0,...,0, 1))
=nf(1 —0)""".

It is straightforward to show that
n
Pr( X =x) = < )9*(1 -6, x=0,1,...,n;
X
X is said to have a binomial distribution with parameters n and 6. O

Example 1.5 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with range X = (0, 1)3. For any subset of A € &, let

Pr(XeA):/// dt dt, dts.
A

Here the properties of the random vector X are defined without reference to any underlying
experiment.
As discussed above, we may take the range of X to be R3. Then, for any subset A € R3,

Pr(X eA):/// dty dt, dts. O
AN(0,1)3

Let X denote random variable on R? with a given probability distribution. A support of
the distribution, or, more simply, a support of X, is defined to be any set Xy C R such that

Pr(X € Xp) = 1.
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The minimal support of the distribution is the smallest closed set X, C R such that
Pr(X € Ap) = 1.

That is, the minimal support of X is a closed set A} that is a support of X, and if X is
another closed set that is a support of X, then Xy C A&].

The distribution of a real-valued random variable X is said to be degenerate if there
exists a constant ¢ such that

Pr(X =¢) = 1.

For a random vector X, with dimension greater than 1, the distribution of X is said to be
degenerate if there exists a vector a # 0, with the same dimension as X, such that a7 X
is equal to a constant with probability 1. For example, a two-dimensional random vector
X = (X1, X,)hasadegenerate distribution if, as in the case of areal-valued random variable,
it is equal to a constant with probability 1. However, it also has a degenerate distribution if

Prai X1+ ax X, =c¢c) =1

for some constants ay, a;, c. In this case, one of the components of X is redundant, in the
sense that it can be expressed in terms of the other component (with probability 1).

Example 1.6 (Polytomous random variable). Let X denote a random variable with range

X ={x1,..., xXn}
where xi, ..., x, are distinct elements of R. Assume that Pr(X = x;) > 0 for each j =
1, ..., m. Any set containing &’ is a support of X; since &’ is closed in R, it follows that the

minimal support of X is simply X. If m = 1 the distribution of X is degenerate; otherwise
it is nondegenerate. [J

Example 1.7 (Uniform distribution on the unit cube). Let X denote the random variable
defined in Example 1.5. Recall that for any A C R?,

Pr(X € A) = / f f dt; dt, dts.
AN(0,1)3

The minimal support of X is [0, 11*. O

Example 1.8 (Degenerate random vector). Consider the experiment considered in Exam-
ple 1.2 and used in Example 1.4 to define the binomial distribution. Recall that an element
w of Q is of the form (xq, ..., x,) where each x; is either 0 or 1. Define Y to be the
two-dimensional random vector given by

Y(w) = (ij, 22)6?) .
j=1 =1
Then
Pr(2, - 1DTY =0) = 1.

Hence, Y has a degenerate distribution. O
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1.4 Distribution Functions

Consider a real-valued random variable X. The properties of X are described by its proba-
bility function Py, which gives the probability that X € A for any set A C R. However, itis
also possible to specify the distribution of a random variable by considering Pr(X € A)fora
limited class of sets A; this approach has the advantage that the function giving such proba-
bilities may be easier to use in computations. For instance, consider sets of the form (—o0, x],
for x € R, so that Py {(—o0, x]} gives Pr(X < x). The distribution function of the distribu-
tion of X or, simply, the distribution function of X, is the function F = Fx : R — [0, 1]
given by

Fx)=Pr(X <x), —o0<x < o0.

Example 1.9 (Uniform distribution). Suppose that X is a real-valued random variable
such that

Pr(XEA):/ dx, ACR;
AN(0,1)

X is said to have a uniform distribution on (0, 1).
The distribution function of this distribution is given by

0 ifx<0
dx:{x if0<x<1.

F(x) =Pr{X € (—oo, x]} :/
1 ifx>1

(—00,x]N(0,1)

Figure 1.1 givesaplotof F. O

1.0

0.6

F ()
0.4

0.2

-1.0 -0.5 a.0 0.5 1.0 1.5 2.0
X

Figure 1.1. Distribution function in Example 1.9.
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Figure 1.2. Distribution function in Example 1.10.

Note that when giving the form of a distribution function, it is convenient to only give
the value of the function in the range of x for which F(x) varies between 0 and 1. For
instance, in the previous example, we might say that F(x) = x, 0 < x < 1; in this case it
is understood that F'(x) =0 forx <0and F(x) = 1forx > 1.

Example 1.10 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and 6, as described in Example 1.4. Then

Pr(X = x) = <”>9’C(1 —6y, x=0.1,....n
X

and, hence, the distribution function of X is

Fo= Y (7)9%1—9)"—1’.
j=01sj=x N

Thus, F is a step function, with jumps at 0, 1, 2, ..., n; Figure 1.2 gives a plot of F for the
casen=2,0=1/4. O

Clearly, there are some basic properties which any distribution function F must possess.
For instance, as noted above, F must take values in [0, 1]; also, F must be nondecreasing.
The properties of a distribution function are summarized in the following theorem.

Theorem 1.2. A distribution function F of a distribution on R has the following properties:
(DF1) lim,_, o F(x) =1;lim,_, _o F(x) =0
(DF2) If x; < x5 then F(x1) < F(x3)
(DF3) lim_o+ F(x +h) = F(x)
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(DF4) limj,_,o+ F(x —h) = F(x—) = F(x) — Pr(X = x) = Pr(X < x).

Proof. Leta,, n=1,2,... denote any increasing sequence diverging to co and let A,
denote the event that X < a,. ThenPx(A,) = F(a,)and A; C A, C ---withU2, A, equal
to the event that X < oo. It follows from (P4) that

lim F(a,) = Pr(X < 00) = 1,
n—oo

establishing the first part of (DF1); the second part follows in a similar manner.

To show (DF2), let A; denote the event that X < x; and A, denote the event that x; <
X < x. Then Ay and A, are disjoint with F(x;) = Px(A;) and F(x;) = Px(A; U Ay) =
Px(A;) + Px(A,), which establishes (DF2).

For (DF3) and (DF4), leta,,n = 1,2, ..., denote any decreasing sequence converging
to 0, let A, denote the event that X < x + a,, let B,, denote the event that X < x — a,,, and
let C, denote the event that x —a, < X <x.ThenA; D A, D ---and N2, A, is the event
that X < x. Hence, by (P5),

Pr(X <x)= F(x) = lim F(x + a,),
n—oo

which establishes (DF3).
Finally, note that F(x) = Px(B,) + Px(C,) and that C; D C, D --- with N2

> Cn equal
to the event that X = x. Hence,

F(x)= lim F(x —a,)+ lim Px(C,) = F(x—) 4+ Pr(X = x),

n—oo

yielding (DF4). ®

Thus, according to (DF2), a distribution function is nondecreasing and according to
(DF3), a distribution is right-continuous.

A distribution function F gives the probability of sets of the form (—oo, x]. The following
result gives expressions for the probability of other types of intervals in terms of F; the
proof is left as an exercise. As in Theorem 1.2, here we use the notation

Fx=)= lim F(x —h).

Corollary 1.1. Let X denote a real-valued random variable with distribution function F.
Then, for x; < xa,
(i) Pr(x; < X < x3) = F(x2) — F(x1)
(ii) Pr(x; < X < x3) = F(x2) — F(x1—)
(iii) Pr(x; < X < x3) = F(x2—) — F(x1—)
(iv) Pr(x; < X < xp) = F(xo—) — F(xy)

Any distribution function possesses properties (DF1)—(DF4). Furthermore, properties
(DF1)—(DF3) characterize a distribution function in the sense that a function having those
properties must be a distribution function of some random variable.

Theorem 1.3. If a function F : R — [0, 1] has properties (DF1)—~(DF3), then F is the
distribution function of some random variable.
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Proof. Consider the experiment with € = (0, 1) and, suppose that, for any set A € €2,
P(A) given by

P(A) = f dx.
A

Given a function F satisfying (DF1)—~(DF3), define a random variable X by
X(w) = inf{x € R: F(x) > w}.
Then
Pr(X <x)=P({w € Q: X(w) <x}) =P({w € @ w < F(x)}) = F(x).

Hence, F is the distribution function of X. M

The distribution function is a useful way to describe the probability distribution of a
random variable. The following theorem states that the distribution function of a random
variable X completely characterizes the probability distribution of X.

Theorem 1.4. If two random variables X, X, each have distribution function F, then X,
and X, have the same probability distribution.

A detailed proof of this result is beyond the scope of this book; see, for example, Ash
(1972, Section 1.4) or Port (1994, Section 10.3).

It is not difficult, however, to give an informal explanation of why we expect such a
result to hold. The goal is to show that, if X; and X, have the same distribution function,
then, for ‘any’ set A C R,

Pr(X; € A) =Pr(X; € A).
First suppose that A is an interval of the form (ag, a;]. Then
Pr(X; € A) = F(a;) — F(ap), j=1,2

so that Pr(X; € A) = Pr(X, € A). The same is true for A°. Now consider a second interval
B = (by, b1]. Then

? ifb0>a1 0ra0>b1
B ifag < by < b; < ay
ANB=1{ A ifbg <ayg <a; <b
(ap, b1] if by < a; and by < ag
(bo, a1] ifa; < byanday < by

In each case, A N B is an interval and, hence, Pr(X; € AN B) and Pr(X; € AU B) do not
depend on j = 1, 2. The same approach can be used for any finite collection of intervals.
Hence, if a set is generated from a finite collection of intervals using set operations such as
union, intersection, and complementation, then Pr(X; € A) = Pr(X, € A).

However, we require that this equality holds for ‘any’ set A. Of course, we know that
probability distibutions cannot, in general, be defined for all subsets of R. Hence, to pro-
ceed, we must pay close attention to the class of sets A for which Pr(X; € A) is defined.
Essentially, the result stated above for a finite collection of intervals must be extended to
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a countable collection. Although this does hold, the proof is more complicated and it is
useful, if not essential, to use a more sophisticated method of proof.

A number of useful properties of distribution functions follow from the fact a distribution
function is nondecreasing. The following result gives one of these.

Theorem 1.5. Let F denote the distribution function of a distribution on R. Then the set of
points x at which F' is not continuous is countable.

Proof. Let D denote the set of points at which F has a discontinuity. For each positive
integer m, let D,, denote the set of points x in R such that F has a jump of at least 1/m at
x and let n,, denote the number of elements in D,,. Note that

o0
D= U D,
m=1

since
lim F(x)=1 and lim F(x)=0,
X—>00 X—>—00

n,, < m. It follows that the number of points of discontinuity is bounded by >_°_ m. The
result follows. W

Discrete distributions

Hence, although a distribution function is not necessarily continuous, the number of jumps
must be countable; in many cases it is finite, or even 0. Let X denote a real-valued random
variable with distribution function F. If F is a step function, we say that the X has a discrete
distribution or is a discrete random variable.

Example 1.11 (Integer random variable). Let X denote a random variable with range
X ={1,2,...,m}forsomem = 1,2, ..., and let

0, =Pr(X =j), j=1,....m.

The distribution function of X is given by

0 ifx <1
01 ifl <x<2
0, + 6, if2<x<3
F(x)=4.
O+ +60,_1 ifm—1<x<m
1 ifm<x
where 6y, ..., 6, are constants summing to 1. Hence, F is a step function and X has a

discrete distribution. O

Distribution functions for random vectors
For a random vector X taking values in RY, the distribution function is defined as the
function F : R¢ — [0, 1] given by

F(x) =Pr{X € (—o0, x1] X (=00, x] X ---(—00, x41}, x=(x1,...,Xxq).
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If X is written in terms of component random variables X1, ..., X each of which is real-
valued, X = (X, ..., Xy), then

Fx)=Pr(Xy <xi,..., Xq < xy).
Example 1.12 (Two-dimensional polytomous random vector). Consider a two-
dimensional random vector X with range
X ={x GRZ:x:(i,j), i=1,....myj=1,...,m}
and let
0;j = Pr{X = (@, j)}.

The distribution function of X is given by

0 ifx;<lorx; <1
011 ifl <x;<2and1<x;, <2
011 + 612 ifl<x; <2and2 <x, <3
011+ +6im ifl<x;<2andm < x,
Fx)=1. , X = (x1, x2).
O 4 -+ O ifm<xjandl <x, <2
O+ +60u+0p+---+6,, ifm<x;and2 <x <3
1 ifm <xyandm < x,

This is a two-dimensional step function. O

Example 1.13 (Uniform distribution on the unit cube). Consider the random vector X
defined in Example 1.5. Recall that X has range X = (0, 1)? and for any subset A C X',

PI‘(XGA)Z/// dtydty dts.
A

Then X has distribution function
X3 X2 X1
F(X)=/ / f dtidtydtz =x1x0x3, x=(x1,x2,x3), 0<x; <1, j=1,2,3
o Jo Jo

with F(x) =0 if min(xy, x2,x3) < 0. If x; > 1 for some j=1,2,3, then F(x)=
x1xx3/xj5if x; > 1,x; > 1 forsome i, j = 1,2, 3, then F(x) = x1x2x3/(x;x;). O

Like distribution functions on R, a distribution function on R? is nondecreasing and
right-continuous.

Theorem 1.6. Let F denote the distribution function of a vector-valued random variable
X taking values in RY.
(i) If x =(x1,...,x3) and y = (y1, ..., yq) are elements of R? such that xX; <y,
j=1,...,d, then F(x) < F(y).
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(i) If X, = (X1, -y Xna), 1= 1,2, ... is a sequence in R? such that each sequence
Xpjy n=1,2,...1s a decreasing sequence with limit x;, j =1, ...,d, then

lim F(x,) = F(x).
n—0oQ

Proof. Letx = (x1,x2,...,xg)andy = (y1, y2, ..., Yq) denote elements of R4 satisfying
the condition in part (i) of the theorem. Define

A= (—00,x1] X -+ x (=00, x4]
and
B = (_OO, )’1] X X (_001 yd]

Then F(x) = Px(A), F(y) = Px(B) and part (i) of the theorem follows from the fact that
A CB.
For part (ii), define

Anz(_oo’xn]]X”'(_Oovxl‘ld]v n=1727-"-
Then Ay D A, D ---and
msozlAn - (_oov )C]] X e X (_Oov xn]-

The result now follows from (P5). M

We saw that the probability that a real-valued random variable takes values in a set (a, b]
can be expressed in terms of its distribution, specifically,

Pr(a < X < b) = F(b) — F(a).

A similar result is available for random vectors, although the complexity of the expression
increases with the dimension of the random variable. The following example illustrates the
case of a two-dimensional random vector; the general case is considered in Theorem 1.7
below.

Example 1.14 (Two-dimensional random vector). Let X = (X, X») denote a two-
dimensional random vector with distribution function F. Consider the probability

Pr(ay < X1 < b1, ay < X2 < by);
our goal is to express this probability in terms of F.
Note that
Pr(a; < Xy < b1, ap < Xo <by) =Pr(X) <b1,a2 < Xo < by)

—Pr(X) <a1,a0 < X2 < by)

=Pr(X, < by, Xo < by) —Pr(X| < b1, X2 < ap)
—Pr(X| < a1, Xo < by) +Pr(Xy < ay, X2 <ay)

= F (b1, by) — F(by, a2) — F(ai1, by) + F(ar, a2),

which yields the desired result. O
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It is clear that the approach used in Example 1.14 can be extended to a random variable
of arbitrary dimension. However, the statement of such a result becomes quite complicated.

Theorem 1.7. Let F denote the distribution function of a vector-valued random variable
X taking values in R%.

Foreach j=1,...,d, let —00 < aj < b; < 0o and define the set A by

A =(a, b1] x -+ x (aq, bgl.

Then
Px(A) = A(b — a)F(a)
where a = (ay, ...,aq), b = (b, ..., by), and for any arbitrary function h on R¢,
AD)h(x) = Ay p Ao, -+ Aap,h(x),
Ajch(x) = h(x + cej) — h(x).
Here e is the jth coordinate vector in RY (0,...,0,1,0,...,0).

Proof. First note that

Al p—aFla) = F(b1,as,...,a0) — F(ay,az, ..., aq)

=Priai < X1 <b, X2 Zaz, ..., Xqg < ag).

Each of the remaining operations based on A ;, bj—ajs where j = 2, ..., d, concerns only the
corresponding random variable X ;. Hence,

A2 py—ay At p—a F(@) =Pr(ay < X1 <bi,a0 < Xy < by, X3 < a3,..., Xq < ay),

and so on. The result follows. M

1.5 Quantile Functions

Consider a real-valued random variable X. The distribution function of X describes its
probability distribution by giving the probability that X < x for all x € R. For example, if
we choose an x € R, F(x) returns the probability that X is no greater than x.

Another approach to specifying the distribution of X is to give, for a specified probability
p € (0, 1), the value x, such that Pr(X < x,) = p. That s, instead of asking for the proba-
bility that X < 1, we might ask for the point x such that Pr(X < x) = .5. One complication
of this approach is that there may be many values x, € R such that Pr(X < x,) = p or no
such value might exist. For instance, if X is a binary random variable taking the values 0
and 1 each with probability 1/2, any value x in the interval [0, 1) satisfies Pr(X < x) =1/2
and there does not exist an x € R such that Pr(X < x) = 3/4.

For a given value p € (0, 1) we define the pth quantile of the distribution to be

inf{z: F(z) > p}.

Thus, for the binary random variable described above, the .5th quantile is 0 and the .75th
quantile is 1.
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The quantile function of the distribution or, more simply, of X, is the function Q :
(0,1) — R given by

Q@) = inf{z: F(z) > t}.

The quantile function is essentially the inverse of the distribution function F; however,
since F' is not necessarily a one-to-one function, its inverse may not exist. The pth quantile
of the distribution, as defined above, is given by Q(p),0 < p < 1.

Example 1.15 (Integer random variable). Let X denote a random variable with range
X ={1,2,...,m}forsomem =1,2,..., and let

6, =Pr(X =j), j=1,....m.

The distribution function of X is given in Example 1.11; it is a step function with jump 6;
atx = j.

The quantile function of X may be calculated as follows. Suppose that ¢ < 6. Then
F(x) > t provided that x > 1. Hence, Q(t) = 1. If 0y <t < 6 + 6,, then F(x) > t pro-
vided that x > 2 so that Q(¢) = 2. This procedure may be used to determine the entire
function Q. It follows that

if0 <t <6
ifo, <t <6,+6,
if6,+6, <t <60, +6,+ 65 .

wW N =

Q@) =

m if6+---+0,_1 <t <1

Figure 1.3 gives plots of F and Q for the case in whichm =3, 6, = 1/4, 6, = 1/2, and
03 =1/4. O
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Figure 1.3. Quantile and distribution functions in Example 1.15.
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Figure 1.4. Quantile and distribution functions in Example 1.16.

Example 1.16 (Standard exponential distribution). Let X denote a real-valued random
variable with distribution function F(x) = 1 — exp(—x), x > 0; this distribution is known
as the standard exponential distribution. The quantile function of the distribution is given
by Q(t) = —log(l —1),0 <t < 1. Figure 1.4 gives plots of F and Q. O

A median of the distribution of a real-valued random variable X is any point m € R
such that

1 1
Pr(X <m) > 3 and Pr(X >m) > E;

note that a median of a distribution is not, in general, unique. It may be shown that if X has
quantile function Q, then Q(.5) is a median of X; this problem is given as Exercise 1.20.

Example 1.17 (Standard exponential distribution). Let X have a standard exponential
distribution as discussed in Example 1.16. Since, for any x > 0,

Pr(X <x)=1-Pr(X > x)
and
Pr(X > x) = exp(—x), x >0,

it follows that the median of the distribution is m = log(2). O

Example 1.18 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and 6, as described in Example 1.4. Then X is a discrete
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random variable with
n
Pr( X =x) = < )9"(1 -0, x=0,...,n
X

where 0 < 6 < 1. Let m( denote the largest positive integer for which

) (”.)9/‘ (1-0)" <
J

j=0

N =

If

o . . 1
3 (".)9/(1 —o0y < =,
=0 \J 2

then the median of the distribution is m + 1; otherwise, any value in the interval (m,
mg + 1) is a median of the distribution. O

There are a number of properties that any quantile function must satisfy; for convenience,
we use the convention that Q(0) = —oo.

Theorem 1.8. Consider a real-valued random variable X with distribution function F and
quantile function Q. Then
(i) O(F(x)) <x, —00<Xx <00
(ii) F(Q) >t O0<tr<1
(iii) Q(t) < x ifandonly if F(x) >t
(iv) IfF’1 exists, then Q(t) = F~(t)
(v) If t1 <1y, then Q(11) < Q(t2)

Proof. Define the set A(¢) by
A(t)={z. F(z) >t}

so that Q(¢) = inf A(¢). Then A[F(x)] clearly contains x so that Q[ F(x)] = inf A[F (x)]
must be no greater than x; this proves part (i). Note that if F(x) = 0, then A(t) = (—o00, x1]
for some x; so that the result continues to hold if Q(F(x)) is taken to be —oo in this case.

Also, for any element x € A(¢), F(x) > t; clearly, this relation must hold for any
sequence in A(?) and, hence, must hold for the inf of the set, proving part (ii).

Suppose that, for a given x and ¢, F(x) > t. Then A(¢) contains x; hence, Q(¢) < x.
Now suppose that Q(t) < x; since F is nondecreasing, F'(Q(t)) < F(x). By part (ii) of the
theorem F(Q(t)) > ¢ so that F'(x) > ¢, proving part (iii).

If F is invertible, then A, = {x: x > F~!(t)} so that Q(t) = F~'(t), establishing
part (iv).

Let #t; < 1. Then A(t;) D A(tp). It follows that the

inf A(t)) < inf A(%y);

part (v) follows. H
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Example 1.19 (A piecewise-continuous distribution function). Let X denote areal-valued
random variable with distribution function given by

0 ifx <0
ifx=0
—exp(—x)/2 if0<x <o0

Fx)=11
I

Then
0 if0<t<1/2
o = { “log2(1 —1)) if1)2<t<1"
This example can be used to illustrate the results in Theorem 1.8. Note that, for x > 0,
0 ifx=0
Q(F () = { —log(2(exp(—x)/2)) if0 < x < 00
for x < 0, F(x) = 0 so that Q(F(x)) = —oo. Similarly,

_ |3 ifr <1/2 L ifr<a,2
Few) = { % —exp(log2(1 —1)))/2 ifl1)2<t<1 - { ;

This illustrates parts (i) and (ii) of the theorem.

Suppose x < 0. Then Q(¢) < x does not hold for any value of t > O and F(x) =0 > ¢
does not hold for any ¢# > 0. If x =0, then Q(¢) <x if and only if r <1/2, and
F(x)=F@0)=1/2>1t if and only if ¢ < 1/2. Finally, if x >0, Q(t) < x if and
only if

= X,

>1.
toif12<t<1 =

—log(2(1 — 1) < x,
that is, if and only if # < 1 — exp(—x)/2, while F(x) > ¢ if and only if
1 —exp(—x)/2 > t.

This verifies part (iii) of Theorem 1.8 for this distribution.
Part (iv) of the theorem does not apply here, while it is easy to see that part (v)
holds. O

We have seen that the distribution of a random variable is characterized by its distribution
function. Similarly, two random variables with the same quantile function have the same
distribution.

Corollary 1.2. Let X| and X, denote real-valued random variables with quantile functions
Q1 and Q», respectively. If Q1(t) = Q»(t), 0 <t < 1, then X, and X, have the same
probability distribution.

Proof. Let F; denote the distribution function of X;, j =1, 2, and fix a value x(. Then
either F(xo) < Fa(xo), F1(xo) > Fa(xo), or Fi(xo) = Fa(xo).
First suppose that F(xg) < F»(xp). By parts (i) and (v) of Theorem 1.8,

0>(F1(xp)) < Oa2(F2(xp)) < xo.

Hence, by part (iii) of Theorem 1.8, F>(xo) > Fi(xo) so that F(xg) < F>(x¢) is impossible.
The same argument shows that F>(xo) < Fj(xg) is impossible. It follows that F;(xo) =
F>(xp). Since x is arbitrary, it follows that F; = F5, proving the result. H
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1.6 Density and Frequency Functions

Consider a real-valued random variable X with distribution function F and range X’. Sup-
pose there exists a function p : R — R such that

X

F(x):/ p)dt, —o0<x <oo. (1.1
—00

The function p is called the density function of the distribution or, more simply, of X; since

F is nondecreasing, p can be assumed to be nonnegative and we must have

/00 px)dx = 1.

o0

We also assume that any density function is continuous almost everywhere and is of
bounded variation, which ensures that the Riemann integral of the density function exists;
see Sections A3.1.8, A.3.3.3, and A3.4.9 of Appendix 3.

In this case, it is clear that the distribution function /' must be a continuous function; in
fact, F is an absolutely continuous function. Absolute continuity is stronger than ordinary
continuity; see Appendix 1 for further discussion of absolutely continuous functions. Hence,
when (1.1) holds, we say that the distribution of X is an absolutely continuous distribution;
alternatively, we say that X is an absolutely continuous random variable.

Conversely, if F is an absolutely continuous function, then there exists a density func-
tion p such that (1.1) holds. In many cases, the function p can be obtained from F by the
fundamental theorem of calculus; see Theorem 1.9 below. It is important to note, however,
that the density function of a distribution is not uniquely defined. If

p1(x) = pa(x) for almost all x,

and
F(x)= /X pi(t)dt, —oo0 <x < 00,
then
F(x)= /X p2(t)dt, —o0 < x < 00;
—o0

see Section A3.1.8 of Appendix 3 for discussion of the term “almost all.” In this case, either
p1 or p, may be taken as the density function of the distribution. Generally, we use the
version of the density that is continuous, if one exists.

The following theorem gives further details on the relationship between density and
distribution functions.

Theorem 1.9. Let F denote the distribution function of a distribution on R.
(i) Suppose that F is absolutely continuous with density function p. If p is continuous
at x then F'(x) exists and p(x) = F'(x).
(ii) Suppose F'(x) exists for all x € R and

/OO F'(x)dx < oo.

[e.¢]

Then F is absolutely continuous with density function F'.
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(iii) Suppose that F is absolutely continuous and there exists a function p such that
F'(x) = p(x)  foralmostallx.
Then p is a density function of F.

Proof. 1f F is absolutely continuous with density p, then

F(x) =/ p()dt, —oo <x < o0.
—0o0
Hence, part (i) follows immediately from the fundamental theorem of calculus, given in
Appendix 1 (Section A1.6). Part (ii) is simply a restatement of result (2) of Section A1.6.

To prove part (iii), note that if F' is absolutely continuous, then there exists a function f
such that

F(x)= /X f@)dt, —oo <x < o0
and N
F'(x) = f(x) for almost all x.
It follows that f(x) = p(x) for almost all x so that

F(x):/ pt)dt, —oo < x < 00,

—00

aswell. W

Example 1.20 (Uniform distribution on (0, 1)). Let X denote a random variable with the
uniform distribution on (0, 1), as defined in Example 1.9. Then X has distribution function

Fu)z/’m, 0<x<l1
0

so that X has an absolutely continuous distribution with density function
px)=1, 0<x=<1.
Note that the density function of X may also be taken to be

(x):{l fO0<x <1
p 0 otherwise

Example 1.21 (Distribution function satisfying a Lipschitz condition). Consider the dis-
tribution with distribution function given by

0 ifx <1
F(?C)={(x—l)2 fl<x<2.
1 ifx>2

We first show that there exists a constant M such that, for all x;, x, € R,
[F(x2) — F(x))| < M|xy — x1].

This is called a Lipschitz condition and it implies that F is an absolutely continuous function
and, hence, that part (iii) of Theorem 1.9 can be used to find the density of the distribution;
see Section A1.5 of Appendix 1 for further details.
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Distribution Function

Fx)
0.00.20.40.60.81.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

Density Function

P(x)
00 05 1.0 1.5 2.0

0.0 0.5 1.0 1.5 2.0 25 3.0
X

Figure 1.5. Distribution and density functions in Example 1.21.
First consider the case in which x; < 1 and 1 < x, < 2; then
|F(x2) = FOepl = (x2 = 1)? < |2 = xi.
If x; and x, are both in [1, 2], then
|F(x2) — F(xp)| = |23 — x7 +2(x1 — x2)| < |x1 +x2 4 2[Jx2 — x1] < 6]x2 — x5
ifx, > 1land 1 < x, < 2, then
|F(x) — Fxp| = |1 = (2 = 1| = |x5 — 2x2| = xalxp — 2 < 2|x5 — x4,
Finally, if x; < 1 and x, > 2,
[F(x2) = F(x))] <1 < |x2 —xq].

Since F satisfies a Lipschitz condition, it follows that F is absolutely continuous and

that the density function of the distribution is given by
F'(x) if]<x<2={2(x—1) ifl <x <2
0 otherwise 0 otherwise

pe) = |

Figure 1.5 contains plots of F and p. O

Note that, by the properties of the Riemann integral, if X has an absolutely continuous
distribution with density p, then, for small € > 0,

x+€/2
Pr(x—e/2<X<x+6/2)=/ p(t)dt = p(x)e.

x—€/2
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Hence, p(x) can be viewed as being proportional to the probability that X lies in a small
interval containing x; of course, such an interpretation only gives an intuitive meaning to
the density function and cannot be used in formal arguments. It follows that the density
function gives an indication of the relative likelihood of different possible values of X. For
instance, Figure 1.5 shows that the likelihood of X taking a value x in the interval (1, 2)
increases as x increases.

Thus, when working with absolutely continuous distributions, density functions are
often more informative than distribution functions for assessing the basic properties of
a probability distribution. Of course, mathematically speaking, this statement is nonsense
since the distribution function completely characterizes a probability distribution. However,
for understanding the basic properties of the distribution of random variable, the density
function is often more useful than the distribution function.

Example 1.22. Consider an absolutely continuous distribution with distribution function
Fx)=(G-2x)x—17% 1<x<2

and density function

p(x) = {6(2—x)(x—1) if 1 <{c<2 '

0 otherwise
Figure 1.6 gives a plot of F' and p. Based on the plot of p it is clear that the most likely
value of X is3/2 and, forz < 1/2, X = 3/2 — zand X = 3/2 + z are equally likely; these
facts are difficult to discern from the plot of, or the expression for, the distribution function.
The plots in Figure 1.6 can also be compared to those in Figure 1.5, which represent the

distribution and density functions in Example 1.21. Based on the distribution functions,

Distribution Function

(
0.00.20.40.6 0.8 1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

Density Function

o]
c
=
o w
o
o
0.0 0.5 1.0 1.5 2.0 2.5 3.0
X

Figure 1.6. Distribution and density functions in Example 1.22.
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one might conclude that the distributions are very similar; however, the density functions
indicate important differences in the distributions. O

In giving expressions for density functions, it is often convenient to give the value of the
density function, p(x), only for those values of x for which the value is nonzero. For instance,
in the previous example, the density function might be given as p(x) = 6(2 — x)(x — 1),
1 < x < 2; this statement implies that for x < 1 orx > 2, p(x) = 0.

Discrete distributions
A second important special case occurs when F is a step function. Suppose that F has
jumps at xi, x», . ... In this case,

F)y= ) plx))

Jixj<x
where p(x;) is the size of the jump of F at x;. Hence,
pa) =Pr(X =x;), j=1....

In this case, X is a discrete random variable and the function p will be called the frequency
Sfunction of the distribution. The set of possible values of X is given by X = {x, x2,...,}.

Example 1.23 (Binomial distribution). Let X denote the random variable defined in Exam-
ple 1.4. Then X = {0, 1,...,n} and

Pr(X = x) = (”)9)6(1 —oy*, x=0,1,....nm
X

here 0 < 6 < 1 is a constant. Hence, the distribution function of X is given by

Fo= Y (?)9/’(1—9)”‘-/‘

Jj=0,1,...n;j<x

so that X is a discrete random variable with frequency function
n X n—x
a1 -6y, x=0,1,...,n. O
X
A random variable can be neither discrete nor absolutely continuous.

Example 1.24 (A distribution function with discrete and absolutely continuous compo-
nents). Let X denote a real-valued random variable such that, for any A C R,

1 1
Pr(X € A) = EI{OEA} + E Aﬁ(o )exp(—t) drt.
,00

Thus, X is equal to 0 with probability 1/2; if X is not equal to O then X is distributed like
a random variable with probability function

/ exp(—t)dt.
AN(0,00)
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0.6 0.8 1.0

F(x)
0.4

0.2

X

Figure 1.7. Distribution function in Example 1.24.

The distribution function of X is given by

0 ifx <0
Fx)=1{1 ifx=0
1 —exp(—x)/2 if0<x <o0

Recall that this distribution was considered in Example 1.19; a plot of F is given in
Figure 1.7.

Note that, although F is clearly not continuous, it is continuous aside from the jump
at x = 0 and it can be written as a weighted sum of an absolutely continuous distribution
function and a distribution function based on a discrete distribution. Let

CCR HE
and
Fuelo) = { (1) — exp(—x) iig ;)(c) '
Note that Fj is a step function, Fy is absolutely continuous, and
F = le + lFac.
2 2

Hence, the distribution of X is not absolutely continuous, since F cannot be written
as an integral and, since F is not a step function, the distribution of X is not discrete. In
these cases, we say that X has a mixed distribution, with discrete and absolutely continuous
components. [
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Random vectors
The concepts of discrete and absolutely continuous distributions can be applied to a vector-
valued random variable X = (X1, ..., X;) as well. If the distribution function F of X may

be written
Xd X1
F(Xh---,xd):/ / p(t)de
—00 —0oQ

for some function p on RY, then X is said to have an absolutely continuous distribution
with density p. If the range of X is a countable set X with

px)=Pr(X =x), xedk,

then X is said to have a discrete distribution with frequency function p.

Example 1.25 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with the uniform distribution on (0, 1)3, as defined in Example 1.7. Then,

for any A € R?
Pr(X € A) = /// dty dt, dts.
AN(0,1)3

Hence, X has an absolutely continuous distribution with density function

px)=1, xe€(0,1)>. O

Example 1.26 (A discrete random vector). Let X = (X, X») denote a two-dimensional
random vector such that

Pr(X = (0, 0)) = % Pr(X = (1,0)) = %, and Pr(X = (0, 1)) = %.

Then X is a discrete random variable with range {(0, 0), (0, 1), (1, 0)} and frequency function

1 +
p(xl,x2)=5—(x‘4—“), 0=01 x=01 0

1.7 Integration with Respect to a Distribution Function

Integrals with respect to distribution functions, that is, integrals of the form

f 8(x)dF(x),
R

play a central role in distribution theory. For readers familiar with the general theory of
integration with respect to a measure, the definition and properties of such an integral
follow from noting that F defines a measure on R¢. In this section, a brief description of
such integrals is given for the case in which X is a real-valued random variable; further
details and references are given in Appendix 1.

Suppose X is areal-valued random variable with distribution function F. Then we expect
that

F(x) = / dF(t);

—00
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more generally, for any set A C R, we should have

Pr(X € A) = / dF(x).
A

It is also natural to expect that any definition of an integral satisfies certain linearity and
nonnegativity conditions:

/ [a161() + (1 dF() = a f g dF(x) + az / 200 dF(x)
R R R
and

/g(x)dF(x) >0 whenever g(x) >0 forall x.

R

These properties, together with a continuity property, can be used to give a precise definition
to integrals of the form

/ g(x)d F(x);
R

see Appendix 1 for further details.

Although this type of integral can be computed for any distribution function F, the
computation is particularly simple if the distribution is either absolutely continuous or
discrete. Suppose X has an absolutely continuous distribution with density p. Then

Flx) = / " dF@ = f " pdr;

this result generalizes to

/ g(X)dF(X)=/ gx)p(x)dx,

oo —00
provided that the integrals exist. If X has discrete distribution with frequency function p, a
similar result holds, so that

o0
f gx)dF(x) =) g(x)p(x),
- xeX
provided that the sum exists.
Thus, if attention is restricted to random variables with either an absolutely continuous
or discrete distribution, then

gx)dF(x) = ; (1.2)

/ o [, g(x)p(x)dx if X is absolutely continuous
o D rex 8x)p(x)  if X is discrete

here p represents either the density function or the frequency function of the distribution.
The case in which the distribution is neither absolutely continuous nor discrete may be
viewed as an extension of these results. If X is a random vector taking values in R4, then
(1.2) generalizes in the obvious manner:

g(x)dF(x) =

/00 fRa g(x)p(x)dx if X is absolutely continuous
o Y ver 8x)p(x) if X is discrete
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1.8 Expectation

Let X denote a real-valued random variable with distribution function F. The expected
value of X, denoted by E(X), is given by

E(X) = /Oo x dF(x),

o0
provided that the integral exists. It follows from the discussion in the previous section that,
if X has a discrete distribution, taking the values x1, x, . . . with frequency function p, then

E(X) = ij p(xj).
J
If X has an absolutely continuous distribution with density p, then

E(X) = /00 x p(x)dx.

oo

There are three possibilities for an expected value E(X): E(X) < oo, E(X) = +o0, or
E(X) might not exist. In general, E(X) fails to exist if the integral

/ooxdF(x)

fails to exist; see Appendix 1. Hence, the expressions for E(X) given above are valid only
if the corresponding sum or integral exists. If X is nonnegative, then E(X) always exists,
although we may have E(X) = oo; in general, E(X) exists and is finite provided that

E(X|) = /oo x| dF(x) < 00.

]

Example 1.27 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and 6, as described in Example 1.4. Then X is a discrete
random variable with frequency function

px) = <n>9X(1 -0, x=0,....n
x

so that
1 n
E(X) = x( )9"(1 —0)"™ =nb. O
x=0 B

Example 1.28 (Pareto distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

p) =6x" x =1,
where 0 is a positive constant; this is called a Pareto distribution with parameter 6. Then
oo oo
E(X) =f x0x~ 0D gx = 9/ x % dx.
0 0
Hence, if 0 < 1, E(X) = o0;if 6 > 1, then

E(X) = 0 0
Te—1
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Example 1.29 (Cauchy distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

1
(1 +x2)’
this is a standard Cauchy distribution. If E(X) exists, it must be equal to

/ dezf de—/ _ X i
oo (1 +x2) o (1 +x2) o (1l +x2)

/ — L dx=oc0,
o w1+ x2)

it follows that E(X) does not exist. [

px) = — 00 < X < 0%

Since

Now suppose that X is a random vector X = (X, ..., Xy), where X;, j =1,...,d,is
real-valued. Then E(X) is simply the vector (E(X), ..., E(Xy)).

Example 1.30 (Uniform distribution on the unit cube). Let X = (X, X», X3) denote a
three-dimensional random vector with the uniform distribution on (0, 1); see Examples 1.7
and 1.25. Then X has an absolutely continuous distribution with density function

px)=1, xe (0,1
It follows that
! 1
E(Xy) =/ xdx = —.
0 2

Similarly, E(X,) = E(X3) = 1/2. It follows that E(X) = (1/2,1/2,1/2). O

Expectation of a function of a random variable

Let X denote a random variable, possibly vector-valued, and let g denote a real-valued
function defined on X, the range of X. Let ¥ = g(X) and let H denote the distribution
function of Y. Then

E(Y) =/ ydH(y)

o0

provided that the integral exists. An important result is that we may also compute E(Y) by

E(Y) = /Xg(X)dF(X) (1.3)

so that the probability distribution of Y is not needed to compute its expected value.
When X has a discrete distribution, with frequency function p, proof of this result is
straightforward. Let f denote the frequency function of Y. Then

E(Y) =Y yf(.
y

Note that
S =Py =y)=Pr(X e {x: g) =y))= D px).

x:g(x)=y
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Hence,

EX) =Y > @)=Y > gx)p).

Yy xig(x)=y Yy x:ig(x)=y

Since every x value in the range of X leads to some value y in the range of Y, it follows that

E(Y) =) g(0)p(x).

In the general case, the result is simply the change-of-variable formula for integration, as
discussed in Appendix 1; see, for example, Billingsley (1995, Theorem 16.13) for a proof.
The result (1.3) is usually expressed without reference to the random variable Y:

E[g(X)]=/Xg(X)dF(X)

provided that the integral exists. Note that it causes no problem if g(x) is undefined for x € A
for some set A such that Pr(X € A) = 0; this set can simply be omitted when computing
the expected value.

Example 1.31 (Standard exponential distribution). Let X denote a random variable with
a standard exponential distribution; see Example 1.16. Then X has density function

px) =exp(—x), 0<x < o0.

Consider the expected value of X" where r > 0 is a constant. If E(X") exists, it is given by

o0
/ x" exp(—x)dx,
0

which is simply the well-known gamma function evaluated at r + 1, I'(r + 1); the gamma
function is discussed in detail in Section 10.2. O

Expected values of the form E(X") for r = 1, 2, ... are called the moments of the dis-
tribution or the moments of X. Thus, the moments of the standard exponential distribution
arer!,r =1,2,.... Moments will be discussed in detail in Chapter 4.

Example 1.32 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with the uniform distribution on (0, 1)*; see Example 1.30.Let Y = X; X, X3,
where X = (X, X5, X3). Then

1 1 1
1
E(Y) = / / f X1xox3dx1dxydxy = —. O
o Jo Jo 8

Given the correspondence between E[g(X)] and integrals of the form

/ g(x)d F(x),
X

many important properties of expectation may be derived directly from the corresponding
properties of integrals, given in Appendix 1. Theorem 1.10 contains a number of these; the
proof follows immediately from the results in Appendix 1 and, hence, it is omitted.
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Theorem 1.10. Let X denote a random variable with range X.
(i) If g is a nonnegative real-valued function on X, then E[g(X)] > 0and E[g(X)] =0
if and only if Pr[g(X) =0] = 1.
(ii) If g is the constant function identically equal to ¢ then E[g(X)] = c.
(iii) If g1, 82, ..., 8m are real-valued functions on X such that E[|g;(X)|] < oo,
j=1,...,m, then

E[g1(X) + -+ gn(X)] = E[g1(X)] + - - - + E[gn(X)].

(iv) Let g1, g2, ... denote an increasing sequence of nonnegative, real-valued functions
on X with limit g. Then

lim E[g, (X)] = E[g(X)].
(v) Let g1, 82, . . . denote a sequence of nonnegative, real-valued functions on X. Then
E[liminf g,(X)] < liminfE[g,(X)].
n—o0 n—00

(vi) Let g1, g2, - .. denote a sequence of real-valued functions on X. Suppose there exist
real-valued functions g and G, defined on X, such that, with probability 1,

g(X)] = G(X), n=1,2,...,
and
Jlim g,(X) = g(X).
IfE[G(X)] < oo, then
Jim Efg,(X)] = E[g(X)].

An important property of expectation is that the expectation operator E(-) completely
defines a probability distribution. A formal statement of this fact is given in the following
theorem.

Theorem 1.11. Let X and Y denote random variables.

E[g(X)] = E[g(Y)]

for all bounded, continuous, real-valued functions g, if and only if X and Y have the same
probability distribution.

Proof. 1f X and Y have the same distribution, then clearly E[g(X)] = E[g(Y)] for all
functions g for which the expectations exist. Since these expectations exist for bounded g,
the first part of the result follows.

Now suppose that E[g(X)] = E[g(Y)] for all bounded continuous g. We will show that
in this case X and Y have the same distribution. Note that we may assume that X and Y have
the same range, neglecting sets with probability 0, for if they do not, it is easy to construct
a function g for which the expected values differ.

The proof is based on the following idea. Note that the distribution function of a random
variable X can be written as the expected value of an indicator function:

Pr(X < z) = Elljx<y].
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The function g(x) = I, <;) is bounded, but it is not continuous; however, it can be approx-
imated by a bounded, continuous function to arbitrary accuracy.

First suppose that X and Y are real-valued random variables. Fix a real number z and,
for € > 0, define

1 iftr <z
gé(t)Ege(t;Z)zil—(f—Z)/E ifz<t<z+e;
0 ift >z+4e¢

clearly g. is bounded and continuous and

z+e€
E[ge(X)] = Fx(2) +/ [1—(x —2)/eldFx(x)

where Fx denotes the distribution function of X. Using integration-by-parts,

1 z+e
Elg(X)] = / Fy(v)dx.

Hence, for all ¢ > 0,

1 zte€ 1 z+e€
—/ Fx(x)dx = —/ Fy(y)dy
€ J; € J;

or, equivalently,

z+e€

1 z+e€ 1
Fx@ ~ Fr@) = - / [Fx(0) — Fx(@ldx - / [Fy(y) — Fy(2)]dy.

Z

Since Fy and Fy are non-decreasing,

1 zte 1 zt+e
|Fx(z) — Fy(2)| = 2/ [Fx(x) — Fx(z)ldx + 2/ [Fy(y) — Fy(2)]dy,
z z
and, hence, for all ¢ > 0,

|Fx(z) — Fy(@)| < [Fx(z+¢€) — Fx()] + [Fy(z +€) — Fy(2)].

Since Fx and Fy are right-continuous, it follows that Fx(z) = Fy(z); since z is arbitrary, it
follows that Fx = Fy and, hence, that X and Y have the same distribution.

The proof for the case in which X and Y are vectors is very similar. Suppose X and Y
take values in a subset of R?. For a given value of 7 € RY, let

A= (-00,z1] X -+ x (=00, 7]

and p(t) be the Euclidean distance from ¢ to A. For € > 0, define

1 if p(t) = 0
g =gt;0)=411—p@)/e if0<p(t)<e;
0 if p(t) > €

clearly g is bounded; since p is a continuous function on R?”, g is continuous as well.
Let Xg = p(X) and Yy = p(Y); then X and Y| are real-valued random variables, with
distribution functions Fx, and Fy,, respectively. Note that

Elg.(X)] = Fx(2) + / [1 = x/e]dFy,(x)
0
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so that
Fx(2) — Fy(2) = / [1 = x/e]d Fy,(x) — / [1 = y/eldFr, ().
0 0

Using integration-by-parts,

€

1 [¢ 1
Fx(@ ~ Fr@) = - / [Fx0) — Fx(O)ldx + / [Fro(y) — Fyy(O)]dy.
0 0

The result now follows as in the scalar random variable case. M

Inequalities
The following theorems give some useful inequalities regarding expectations; the proofs of
Theorems 1.12—1.14 are left as exercises.

Theorem 1.12 (Cauchy-Schwarz inequality). Let X denote a random variable with range
X and let g1, g, denote real-valued functions on X. Then

Ellg1(X)g2(X)[1* < Elgi(X)’|E[g2(X)’]
with equality if and only if either E[gj(X)z] = 0 for some j = 1,2 or
Prg1(X) = cg2(X)] =1
for some real-valued nonzero constant c.
Theorem 1.13 (Jensen’s inequality). Let X denote a real-valued random variable with

range X and let g denote a real-valued convex function defined on some interval containing
X such that E(|X]) < oo and E[|g(X)|] < oco. Then

g[E(X)] = E[g(X)].

Theorem 1.14 (Markov’s inequality). Let X be a nonnegative, real-valued random vari-
able. Then, for all a > 0,

Pr(X >a) < lE(X).
a

Theorem 1.15 (Holder inequality). Let X denote a random variable with range X and let
81, &2 denote real-valued functions on X. Let p > 1 and q > 1 denote real numbers such
that1/p +1/q = 1. Then

1 1
E(|g1(X)g2(X)]) = E(Ig1(X)”) 7 E(|g2(X)|")7 .
The proof is based on the following lemma.

Lemma 1.1. Let a, b, a, B denote positive real numbers such that « + 8 = 1.
(i) a*b?P < aa + Bb.
(ii) If p > land q > 1 satisfy 1 /p + 1/q = 1, then
a’ bt
ab < — + —.
4 q
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Proof. Consider the function f(x) = —log(x), x > 0. Then
') = xiz >0, x>0
so that f is convex. It follows that
flaa + Bb) < af(a) + Bf(b);
that is,
—log(aa + pb) < —[alog(a) + Blog(d)].
Taking the exponential function of both sides of this inequality yields
aa + Bb > a®bP,

proving part (i).
Consider part (ii). Let « = 1/p and 8 = 1/q. Then, by part (i) of the theorem applied
to a? and b9,

ab = a™b?% < aa? + BbY,

proving part (ii). W

Proof of Theorem 1.15. Theresultis clearly true if E(|g;(X)|?) = oo or E(|g2(X)|?) = oo
so we may assume that E(|g;(X)|”) < oo and E(|g2(X)|?) < oo.

If E(]g1(X)|?) = 0 then |g;(X)| = 0 with probability 1, so that E(|g;(X)g.(X)]) =0
and the result holds; similarly, the result holds if E(|g;(X)|?) = 0. Hence, assume that
E(lg1(X)[?) > 0 and E(|g1(X)|?) > 0.

Applying part (ii) of Lemma 1.1 to

181(X)| ~ and 182(X)| N
E(lg1(X)|7)» E(1g2(X)[9)«
it follows that
181(X)182(X)] -l lg2(X)|

E(lg:(X)|P)7 E(lga(X)9)s ~ PEUS1(X)IP) ~ gE(Ig2(X)9)”
Taking expectations of both sides of this inequality shows that

E(g1(X)g2(X)]) L
E(|g1(X)]7) 7 E(|g2(X)|7)

1
S_
P q

the result follows. M

1.9 Exercises

In problems 1 through 6, let 2 and P denote the sample space and probability function, respectively,
of an experiment and let A, A,, and A; denote events.

1.1 Show that

P(A1 U Ay) = P(A1) + P(A2) — P(A; N Ay).
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Let A; \ A, denote the elements of A, that are not in A,.
(a) Suppose A, C Aj. Show that

P(A;\ A2) = P(A1) — P(Ay).
(b) Suppose that A, is not necessarily a subset of A;. Does
P(A1\ A7) =P(A)) — P(4,)
still hold?
Let A;AA, denote the symmetric difference of A| and A,, given by

A1AA = (A1 \ A) U (A2 )\ AY).

Give an expression for P(A;AA;) in terms of P(A;), P(A,), and P(A; N A,).
Show that
P(A1) < P(A; N Ay) + P(AY).
Show that
(a) P(A;UA,) <P(Ay) +P(A2)
(b) P(A; NAy) > P(Ay) +P(Ay) — 1.

Find an expression for Pr(A; U A, U A3) in terms of the probabilities of A;, A,, and A3 and
intersections of these sets.

Show that (P3) implies (P2).
Let 2 and P denote the sample space and probability function, respectively, of an experiment
and let A, A,, ... denote events. Show that

Pr (G An) < iP(An).
n=1 n=1

Consider an experiment with sample space 2 = [0, 1]. Let D(-) denote a function defined as
follows: for a given subset of €2, A,

D(A) = sup |s —¢].

s,\teA

Is D a probability function on ©?
Let X denote a real-valued random variable with distribution function F. Call x a support point
of the distribution if

Fx+e€)— F(x—¢€)>0 foralle > 0.
Let X, denote the set of all support points of the distribution. Show that &} is identical to the
minimal support of the distribution, as defined in this chapter.
Prove Corollary 1.1.

Let X; and X, denote real-valued random variables with distribution functions F; and F,,
respectively. Show that, if

Fi(b) — Fi(a) = F2(b) — Fx(a)

for all —0o < a < b < 00, then X; and X, have the same distribution.

Let X denote a real-valued random variable with distribution function F such that F(x) = 0 for
x <0. Let
l/x ifx>0
X) =
F { 0 otherwise

and let Y = f(X). Find the distribution function of Y in terms of F.
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Properties of Probability Distributions

Let F| and F, denote distribution functions on R. Which of the following functions is a distri-
bution function?

(@) F(x)=aF (x)+ (1 —a)F(x), x € R, where « is a given constant, 0 < o < 1

(b) F(x) = Fi(x)F2(x),x € R

(¢) Fx)=1— Fi(—x),x € R.

Let X denote a real-valued random variable with an absolutely continuous distribution with
density function
@) 2x 0
X)= ——=, <X < oo.
PO= ey

Find the distribution function of X.
Let X denote a real-valued random variable with a discrete distribution with frequency function

1
p(x):a, x=1,2,....

Find the distribution function of X.

Let X, X5, ..., X,, denote independent, identically distributed random variables and let F
denote the distribution function of X ;. Define

. 1
F@t) = - ;Imﬁ,, — 00 <t < 00.

Hence, this is a random function on R. For example, if €2 denotes the sample space of the
underlying experiment, then, for each r € R,

. 1 n
Fiw) = ;I{X,’(w)stl’ w e Q.

Show that £(-) is a genuine distribution function. That is, for each w € €2, show that F()(w)
satisfies (DF1)—(DF3).

Let X denote a nonnegative, real-valued random variable with an absolutely continuous distri-
bution. Let F' denote the distribution function of X and let p denote the corresponding density
function. The hazard function of the distribution is given by

H) = p(x)

=—— x>0
1—F(x)

(a) Give an expression for F in terms of H.

(b) Find the distribution function corresponding to H(x) = Ao and H(x) = Xy + A, x, where
Ao and XA, are constants.

Let X denote a real-valued random variable with a Pareto distribution, as described in Exam-

ple 1.28. Find the quantile function of X.

Let X denote a real-valued random variable and let Q denote the quantile function of X. Show

that Q(.5) is a median of X.

Let X, and X, denote real-valued random variables such that, for j = 1, 2, the distribution of

X ; has a unique median m ;. Suppose that Pr(X; > X,) > 1/2. Does it follow that m; > m,?

Let F, and F, denote distribution functions for absolutely continuous distributions on the real

line and let p; and p, denote the corresponding density functions. Which of the following

functions is a density function?

(a) ap(ax)where o > 0

(b) p¥p, ™ where 0 <o <1

©) apy+(1 —a)py where0) <a <1
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Prove the Cauchy-Schwarz inequality.
Hint: E{[g,(X) — tg2(X)]*} > 0 for all ¢. Find the minimum of this expression.

Prove Jensen’s inequality.
Hint: For a convex function g, show that there exists a constant ¢ such that

g(x) = g(E(X)) + c(x — E(X))
for all x € R.

Prove Markov’s inequality.

Let X denote a real-valued random variable with distribution function F'; assume that E(| X|) <
oo. Show that

=3 0
E(X) = / (1= F(x))dx — / F(x)dx
0 —

= /w[l — F(x) — F(—x)]dx.
0

Let X denote a real-valued random variable with distribution function F. Find the distribution
functions of | X| and X, where
X+ — { X ifX>0 .
0 otherwise
Let £, denote the set of real-valued random variables X satisfying E(X?) < oo. Show that

L5 is a linear space: if X; and X, are elements of £, and a and b are scalar constants, then
aX|+bX, € L.

Consider the space of random variables £, described in Exercise 1.28. Let 0 denote the random
variable identically equal to 0 and, for X € £,, write X = 0if Pr(X = 0) = 1. Define a function
[| - || on £, as follows: for X € L», || X||> = E(X?). Show that || - || defines a norm on L,: for
all X; and X, in £, and all scalar constants a,

(a) ||X;|| = 0and||X|]|=0ifand onlyif X; =0

(b) 11X1 + Xoll < [1X11] + [1X2]

(© llaX|| = lal [I1X]]

Let X denote a real-valued random variable and suppose that the distribution of X is symmetric
about 0; that is, suppose that X and — X have the same distribution. Show that, forr =1, 3, ...,
E(X") = 0 provided that E(X") exists.

Let X be real-valued random variable with a discrete distribution with frequency function

px) = A% exp(—A)/x!, x=0,1,2,...

where A > 0; this is a Poisson distribution with parameter A. Find E(X).

Let X denote a real-valued random variable with an absolutely continuous distribution with
density ax*~!,0 < x < 1. Find E[X"].

Let X denote a real-valued random variable with quantile function Q and assume that E(| X|) <
oo. Show that

1
E(X) = / 01 dt. (1.3)
0

Let g denote a function defined on the range of X such that E[|g(X)|] < oo. Find an expression
for E[g(X)] similar to (1.4).

Let X denote a real-valued, non-negative random variable with quantile function Q; assume
that E(X) < 00. Fix 0 < p < 1 and let x,, = Q(p) denote the pth quantile of the distribution.
Show that

X, < E(X).

l—p
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1.35 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

1

px) = m exp(—%ﬁ), — 00 < X < 00.

Let g : R — R denote a differentiable function such that E[|g’(X)|] < co. Show that

E[¢'(X)] = E[Xg(X)].

1.10 Suggestions for Further Reading

The topics covered in this chapter are standard topics in probability theory and are covered in many
books on probability and statistics. See, for example, Ash (1972), Billingsley (1995), Karr (1993),
and Port (1994) for rigorous discussion of these topics. Capinski and Kopp (2004) has a particularly
accessible, yet rigorous, treatment of measure theory. Casella and Berger (2002), Ross (1995), Snell
(1988), and Woodroofe (1975) contain good introductory treatments. Theorem 1.11 is based on
Theorem 1.2 of Billingsley (1968).
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Conditional Distributions and Expectation

2.1 Introduction

Consider an experiment with sample space €2 and let P denote a probability function on 2
so that a given event A C 2 has a probability P(A). Now suppose we are told that a certain
event B has occurred. This information affects our probabilities for all other events since
now we should only consider those sample points w that are in B; hence, the probability
P(A) must be updated to the conditional probability P(A|B). From elementary probability
theory, we know that

P(ANB)
P(A|B) = ———,
P(B)
provided that P(B) > 0.

In a similar manner, we can consider conditional probabilities based on random variables.
Let (X, Y) denote arandom vector. Then the conditional probability that X € A givenY € B
is given by

Pr(X e ANY € B)
Pr(Y € B)

Pr(X € A|Y € B) =

provided that Pr(Y € B) > 0.

In this chapter, we extend these ideas in order to define the conditional distribution and
conditional expectation of one random variable given another. Conditioning of this type
represents the introduction of additional information into a probability model and, thus,
plays a central role in many areas of statistics, including estimation theory, prediction, and
the analysis of models for dependent data.

2.2 Marginal Distributions and Independence

Consider a random vector of the form (X, Y), where each of X and Y may be a vector
and suppose that the range of (X, Y) is of the form & x YV sothat X € X and Y € ). The
probability distribution of X when considered alone, called the marginal distribution of X,
is given by

PriX e A)=Pr(X e A, Y €)), ACAX.
Let F denote the distribution function of (X, Y). Then

Pr(X € A) :/ dF(x,y).
AxY

39



40 Conditional Distributions and Expectation

Let Fx denote the distribution function of the marginal distribution of X. Clearly, Fx
and F are related. For instance, for any A C X,

Pr(X € A) = / dFx(x).
A

Hence, Fx must satisfy

/dFX(x) :/ dF(x,y)
A AxY
forall A C X.

The cases in which (X, Y') has either an absolutely continuous or a discrete distribution
are particularly easy to handle.

Lemma 2.1. Consider a random vector (X,Y), where X is d-dimensional and Y is q-
dimensional and let X x ) denote the range of (X, 7).
(i) Let F(xy,...,Xq, Y1, ..., Yq) denote the distribution function of (X,Y). Then X
has distribution function

Fx(xi,...,xq) = F(xq,...,x4,00,...,00)
= lim --- lim F(x,...,Xq, Y1,.--, Yg)-
y—>00 Yq—>00

(ii) If (X, Y) has an absolutely continuous distribution with density function p(x, y)
then the marginal distribution of X is absolutely continuous with density function

px(x) = / p(x, y)dy,x € R?
R‘I

(iii) If (X,Y) has a discrete distribution with frequency function p(x,y), then the
marginal distribution of X is discrete with frequency function of X given by

px(x) = Zp(x, y),x € X.
yey

Proof. Part (i) follows from the fact that
Pr(X; <xi,...,Xg <x0) =Pr(X; <x;,...,Xg<x4,Y1 <00,...,Y, <00).
Let A be a subset of the range of X. Then, by Fubini’s Theorem (see Appendix 1),
Pr(X € A) = / / p(x,y)dydx = / px(x)dx,
A JRY A

proving part (ii). Part (iii) follows in a similar manner. W

Example 2.1 (Bivariate distribution). Suppose that X and Y are both real-valued and that
(X, Y) has an absolutely continuous distribution with density function

px,y)=6(1—-x—y), x>0,y>0, x+y<1.
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Then the marginal density function of X is given by
oo
px) =6 [ (1= = Dl dy
0

1—x
:6/ 1—x—y)dy=31-x)> 0<x<l.
0

Since p(x, y) is symmetric in x and y, the marginal density of ¥ has the same form. O

Example 2.2 (Multinomial distribution). Let X = (X, ..., X,,) denote a random vector
with a discrete distribution with frequency function

n
p(xl,-..,xm)=<
X1, X2, ...

forx; =0,1,...,n,j=1,2,...,m, Z';'zlxj = n; here 0y, ..., 6,, are nonnegative con-
stants satisfying 6; + - - - + 6,, = 1. This is called the multinomial distribution with param-
eters n and (04, ..., 6,,). Note that

( n ) n!
X1, X2, .. vy X Xl oox,!

Consider the marginal distribution of X . This distribution has frequency function

X1 X2 Xm
91 92 N Qm s
k) xm

px, (x1)

n

= > P& Xt )

m
(X25ees X )12 1y X j=N—1

n
ny\ . n—Xx X !
= o z 02 ... 9%
()Cl) ! 0 (xz,...,xm) 2 "

m
X2, ees X )1 D g X j=R—X]

n\ . ! i n—x 6 \" 6 m
= 07'(1 — )" ™ n
(xl) 1( 1) @ Z <X2,...,xm><1—91> <1—91>

X2, X, ,,,):2'7:2 Xj=n—x

n\ . .
:< )911(1—91)" ol
x|

Hence, the marginal distribution of X; is a binomial distribution with parameters
nand 6,. 0O

Example 2.3 (A distribution that is neither discrete nor absolutely continuous). Let
(X, Y) denote a two-dimensional random vector with range (0, o) x {1, 2} such that, for
any set A C (0,00)and y =1, 2,

1
PriXe A, Y =y)= 5/ yexp(—yx)dx.
A

Thus, the distribution of (X, Y') is neither discrete nor absolutely continuous.
The marginal distribution of X has distribution function

Fx()=Pr(X <x)=Pr(X <x, Y =) +Pr(X <x, Y =2)

1
=1- E[exp(—x) +exp(—2x)], 0 <x <oo.
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This is an absolutely continuous distribution with density function

%[exp(—x) + 2 exp(—2x)].

Since, fory =1, 2,

1 [ 1
Pr(Y =y) = 5/ yexp(—yx)dx = >
0

it follows that Y has a discrete distribution with frequency function 1/2,y =1,2. O

Independence

Consider a random vector (X, Y) withrange X x ). We say X and Y are independent if for
any A C X and B C ), theevents X € A and Y € B are independent events in the usual
sense of elementary probability theory; that is, if

Pr(X € A,Y € B) =Pr(X € A)Pr(Y € B).

Independence may easily be characterized in terms of either distribution functions or
expected values.

Theorem 2.1. Let (X, Y) denote a random vector with range X x Y and distribution func-
tion F. Let Fx and Fy denote the marginal distribution functions of X and Y, respectively.
(i) X and Y are independent if and only if for all x, y

F(x,y) = Fx(x)Fy(y).

(ii) X andY are independent if and only if for all bounded functions g, : X — R and
2:Y—>R

E[g1(X)82(Y)] = E[g1(X)]E[g2(Y)].

Proof. Suppose X and Y are independent. Let m denote the dimension of X and let n
denote the dimension of Y. Fix x = (x1, ..., x,)and y = (yq, ..., y»); let

A= (—00,x1] X X (—00, X;]
and
B = (=00, y1] x -+ x (=00, y,l
so that
Fx,y)=Pr(X € A,Y ¢ B), Fx(x)=Pr(X € A), and Fy(y)=Pr(Y € B).
Then
F(x,y)=Pr(X € A,Y € B)=Pr(X € A)Pr(Y € B) = Fx(x)Fy(y).

Now suppose F(x, y) = Fx(x)Fy(y). Since Fx(x)Fy(y) is the distribution function of
a random variable (X, Y;) such that X, and Y, are independent with marginal distribution
functions Fy and Fy,respectively, it follows that (X, Y) has the same distributionas (X 1, Y1);
that is, X and Y are independent. This proves part (i).
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If X and Y are independent,

Elg1(X)g2(Y)] = /

XxY

81(0)g(y)dF(x,y) = / 81(0)g2(y) dFx(x) dFy(y)

Xx)
= E[g1(X)]E[g2(Y)].

Conversely, suppose that E[g;(X)g>(Y)] = E[g1(X)]E[g2(Y)] for all bounded, real-valued,
g1, &2. Let d; denote the dimension of X and let d, denote the dimension of Y. Then, for a
given x € R% and a given y € R%, let g| denote the indicator function for the set

(=00, x1] X -+ X (=00, xq,]
and let g, denote the indicator function for the set
(=00, y1] X -+ X (=00, ya I

here x = (x1, ..., xg)and y = (y1, ..., ya,)- Since E[g1(X)g2(Y)] = E[g1(X)]E[g2(Y )], it
follows that F'(x, y) = Fx(x)Fy(y). Since x and y are arbitrary, X and Y are independent;
this proves part (ii). M

For the case in which the distribution of (X, Y) is either absolutely continuous or discrete,
it is straightforward to characterize independence in terms of either the density functions
or frequency functions of X and Y. The formal result is given in the following corollary to
Theorem 2.1; the proof is left as an exercise.

Corollary 2.1.
(i) Suppose (X,Y) has an absolutely continuous distribution with density function p
and let px and py denote the marginal density functions of X and Y, respectively.
X and Y are independent if and only if
p(x,y) = px(x) pr(y)

for almost all x, y.
(ii) Suppose (X, Y) has a discrete distribution with frequency function p and let px and
py denote the marginal frequency functions of X and

p(x,y) = px()pr(y)
forall x,y.

Example 2.4 (Bivariate distribution). Consider the distribution considered in Exam-
ple 2.1. The random vector (X, Y) has an absolutely continuous distribution with density
function

pl,y)=6(1-x—-y), x>0, y>0, x+y<l
and the marginal density of X is
px(x)=31—-x)? 0<x<l;

the same argument used to derive px may be used to show that the marginal density of ¥
is also

pr(M=31-y?% 0<y<l.
Clearly, p # px py so that X and Y are not independent. [J
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Independence of a sequence of random variables

Independence of a sequence of random variables may be defined in a similar manner.
Consider a sequence of random variables X, X, ..., X,, any of which may be vector-
valued, with ranges X, &>, ..., respectively; we may view these random variables as the
components of a random vector. We say X, X», ..., X, are independent if for any sets
Ay, Ay AL A C X, j=1,...,n,theevents X € Ay, ..., X, € A, are indepen-
dent so that

PI'(X] S A[, ...,Xn € A,,) =Pr(X1 S Al)Pr(Xn € A,,)

Theorem 2.2 gives analogues of Theorem 2.1 and Corollary 2.1 in this setting; the proof
is left as an exercise.

Theorem 2.2. Let X1, ..., X, denote a sequence of random variables and let F denote
the distribution function of (X1, ..., X,). Foreach j =1, ..., n, let X; and F; denote the
range and marginal distribution function, respectively, of X ;.
(i) X1, ..., X, are independent if and only if for all xy, ..., x, with x; € R4, di =
dim(X)),

F(X], --~axn) = Fl(xl)"'Fn(xn)-

(ii) X1, X2, ..., X, are independent if and only if for any sequence of bounded, real-
valued functions g1, 82, ..., 8, & : X; >R, j=1,...,n,

E[g1(X1)g2(X2) - - ga(X,)] = E[g1(X1)] - - - E[gx(X)].

(iii) Suppose (X1, ..., X,) has an absolutely continuous distribution with density func-
tion p. Let p; denote the marginal density function of X;, j=1,...,n. Then
X1, ..., Xy are independent if and only if

P(xl» ~--axn) - pl(xl)"'pn(xn)

for almost all x1, xa, ..., Xx,.
(iv) Suppose (X1, ..., X,) has a discrete distribution with frequency function f. Let p;
denote the marginal frequency function of X;, j =1,...,n. Then X, ..., X, are

independent if and only if
p(X1, ey xn) = Pl(xl) te pn(xn)
forall x1, x3, ..., xy.
Example 2.5 (Uniform distribution on the unit cube). Let X = (X, X», X3) denote a

three-dimensional random vector with the uniform distribution on (0, 1); see Examples
1.7 and 1.25. Then X has an absolutely continuous distribution with density function

px,x2,x3) =1, x;€(0,1), j=1273.
The marginal density of X is given by

1 pl
p1(x1) =/ / dx,dxz =1, 0<ux; <1.
0o Jo

Clearly, X, and X3 have the same marginal density. It follows that X, X,, X3 are
independent. O
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Example 2.6 (Multinomial distribution). Let X = (X4, ..., X,,) denote a random vector
with a multinomial distribution, as in Example 2.2. Then X has frequency function

n . !

1nX2 X

p(xlw--yxnz):( )91 92 "'0,,7"1a
x17x27~--’xm

forx; =0,1,...,n, j=1,...,m, ZT:1 xj = n; here 60y, ..., 6, are nonnegative con-
stants satisfying 6; +--- +6,, = 1.
According to Example 2.2, for j = 1, ..., m, X ; has a binomial distribution with param-

eters n and 6; so that X ; has frequency function

n Xj n—x
«9j 1-6)"", x;=0,1,...,n.
Xj

Suppose there existsa j = 1,2, ..., m such that 0 < 6; < 1; it then follows from part (iv)
of Theorem 2.2 that X, X», ..., X,, are not independent. This is most easily seen by noting
that Pr(X; = 0) > Oforall j = 1,2, ..., m, while

PI'(X] =X2==Xm =0)=0
If all 6; are either O or 1 then X, ..., X, are independent. To see this, suppose that
6y =1land 6, = --- = 6,, = 0. Then, with probability 1, X; =nand X, =--- = X,, = 0.

Hence,

E[gi(X1) - gn(Xm)] = g1(1)82(0) - - - g (0) = E[g1(X1)] - - - E[gm (X )]

and independence follows from part (ii) of Theorem 2.2. O

Random variables X1, X», ..., X, are said to be independent and identically distributed
if, in addition to being independent, each X ; has the same marginal distribution. Thus, in
Example 2.5, X, X, X3 are independent and identically distributed. The assumption of
independent identically distributed random variables is often used in the specification of
the distribution of a vector (X1, X5, ..., X,).

Example 2.7 (Independent standard exponential random variables). Let X, X, ...,
X, denote independent, identically distributed, real-valued random variables such that each
X ; has a standard exponential distribution; see Example 1.16. Then the vector (X1, ..., X,,)
has an absolutely continuous distribution with density function

p(X1, ..., Xy) = Hexp(—x_,-) = eXp (‘Z)‘.f), x;>0, j=1,...,n O
j=1 j=1

It is often necessary to refer to infinite sequences of random variables, particularly in
the development of certain large-sample approximations. An important result, beyond the
scope of this book, is that such a sequence can be defined in a logically consistent manner.
See, for example, Feller (1971, Chapter IV) or Billingsley (1995, Section 36). As might
be expected, technical issues, such as measurability of sets, become much more difficult in
this setting. An infinite sequence of random variables X, X», ... is said to be independent
if each finite subset of {X |, X», ...} is independent.
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2.3 Conditional Distributions

Consider random variables X and Y. Suppose that Y is a discrete random variable taking
the values 0 and 1 with probabilities 8 and 1 — 6, respectively, where 0 < 6 < 1. From
elementary probability theory we know that the conditional probability that X € A given
that Y = y is given by

Pr(X € A,Y =
Pr(X € AlY = y) = r(P Y)
(Y =y)

, Q2.1

provided that y = 0, 1 so that Pr(Y = y) > 0. Hence, for any set A, the conditional proba-
bility function Pr(X € A|Y = y) satisfies the equation

Pr(X e A)=Pr(X € A,Y =0)+Pr(X € A,Y = )
=Pr(X € AlY = 0)Pr(Y = 0) +Pr(X € A]Y = D)Pr(Y = 1)

= /oo Pr(X € AlY = y)dFy(y).

o]

Furthermore, for any subset B of {0, 1},

Pr(X €A, Y €B)=) P(X €A, Y =y)=) Pr(X € A|Y = y)Pr(Y =y)

yeB yeB
= / Pr(X € AlY = y) dFy(y). (2.2)
B

Now suppose that ¥ has an absolutely continuous distribution and consider Pr(X €
A|Y = y). If the distribution of Y is absolutely continuous, then Pr(Y = y) = O for all y so
that (2.1) cannot be used as a definition of Pr(X € A|Y = y). Instead, we use a definition
based on a generalization of (2.2).

Let (X, Y) denote a random vector, where X and Y may each be vectors, and let ¥ x )
denote the range of (X, Y). In general, the conditional distribution of X givenY = y is a
function g(A, y), defined for subsets A C X and elements y € ) such that for B C Y

Pr(X €e A,Y e B) = / q(A, y)dFy(y) (2.3)
B

where Fy denotes the marginal distribution function of ¥ and such that for each fixed
y € YV, q(-, y) defines a probability distribution on X'. The quantity g(A, y) will be denoted
by Pr(X € AlY =y).

Example 2.8 (Two-dimensional discrete random variable). Let (X,Y) denote a two-
dimensional discrete random variable with range
{1,2,...,m} x{1,2,...,n}
Foreachi =1,2,...,mlet
qi(y) =Pr(X =i|Y =y).
Then, according to (2.3), ¢1(¥), . . ., gm(y) must satisfy
Pr(X =i,Y = j) = ¢;(j)Pr(Y = ))

foreachi =1,...,mand j=1,...,n.
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Hence, if Pr(Y = j) > 0, then
Pr(X =i,Y = j)
Pr(Y =j)
if Pr(Y = j) =0, Pr(X = i|Y = j) may be taken to have any finite value. O

Pr(X =ilY = j) =

Example 2.9 (Independent random variables). Consider the random vector (X, Y') where
X and Y may each be a vector. If X and Y are independent, then, F', the distribution function
of (X, Y), may be written

F(x,y) = Fx(x)Fy(y)

for all x, y, where Fx denotes the distribution function of the marginal distribution of X
and Fy denotes the distribution function of the marginal distribution of Y.
Hence, the conditional distribution of X given Y = y, ¢(-, y) must satisfy

//d&@ﬁﬂ@=/hM»Mﬂ@)
BJA B

Clearly, this equation is satisfied by

mmw=/dmu>
A
so that

Pr(X € AlY = y) = / dFx(x) = Pr(X € A). O
A

Two important issues are the existence and uniqueness of conditional probability distri-
butions. Note that, for fixed A, if B satisfies Pr(Y € B) =0, then Pr(X € A,Y € B) = 0.
The Radon-Nikodym Theorem now guarantees the existence of a function g(A, -) satisfying
(2.3). Furthermore, it may be shown that this function may be constructed in such a way
that g(-, y) defines a probability distribution on & for each y. Thus, a conditional proba-
bility distribution always exists. Formal proofs of these results are quite difficult and are
beyond the scope of this book; see, for example, Billingsley (1995, Chapter 6) for a detailed
discussion of the technical issues involved.

If, for a given set A, q1(A, -) and ¢»2(A, ) satisfy

/Bql(A,y)dFy(y)=/3612(A,y)dFy(y)

for all B C Y and ¢1(A, y) =Pr(X € A|Y = y), then ¢2(A,y) =Pr(X € AlY = y) as
well. In this case, ¢1(A, y) and ¢g»(A, y) are said to be two versions of the conditional
probability. The following result shows that, while conditional probabilities are not unique,
they are essentially unique.

Lemma 2.2. Let (X,Y) denote a random vector with range X x Y and let q,(-, y) and
¢2(-, y) denote two versions of the conditional probability distribution of X givenY = y.
For a given set A C X, let

Wo={yeV: qA,y) # q(A, )}
Then Pr(Y € )y) = 0.
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The conclusion of this lemma can be stated as follows: for any A C X, q1(A,y) =
q2(A, y) for almost all y (Fy). As in the statement of the lemma, this means that the set
of y for which ¢;(A, y) = ¢»(A, y) does not hold has probability 0 under the distribution
given by Fy. Alternatively, we may write that g, (A, -) = g2(A, -) almost everywhere (Fy),
or, more simply, q;(A, ) = q2(A, -) a.e. (Fy).

Proof of Lemma 2.2. Fixaset A C X.Forn=1,2,..., define

YVo={yeV:lq(A,y) — q(A, y)| > 1/n}.
Note that Y} C ), --- and

U yn = yO'
n=1

Foreachn=1,2,..., let

B, ={yeY.qi(A,y)—q(A,y) > 1/n}

and

Co={yeV:q2A,y) —qi(A,y) > 1/n}

sothat Y, =B, UC,,n=1,2,....
Fix n. Since both ¢; and ¢, satisfy (2.3),

0= [ a@andro - [ aanaro = [ dre = es)
B, B, nJg, n
so that Pr(Y € B,) =0. Similarly, Pr(Y € C,) =0. Hence, for each n=1,2,...,
Pr(Y € Y,) =0.

By condition (P4) on probability distributions, given in Chapter 1, together with the fact
thaty():Y] UYZU"',

Pr(Y € V) = lim Pr(Y € ),) =0,
n—o00o

proving the result. MW

Here we will refer to the conditional probability, with the understanding that there may
be another version of the conditional probability that is equal to the first for y in a set of
probability 1.

It is important to note that, when Y has an absolutely continuous distribution, conditional
probabilities of the form Pr(X € A|Y = yy) for a specific value yy € ) are not well defined,
exceptas afunction g(A, y) satisfying (2.3) evaluated at y = yy, and this fact can sometimes
cause difficulties.

For instance, suppose we wish to determine Pr(X € A|(X,Y) € B), for some sets A
and B,A C Xand B C X x ), where Pr((X, Y) € B) = 0. Suppose further that the event
(X,Y) € B can be described in terms of two different random variables W and Z, each of
which is a function of (X, Y); that is, suppose there exist functions W and Z and values wy
and z in the ranges of W and Z, respectively, such that

{6, y) € X x Ve W(x, y) =wo} ={(x,y) € X x V: Z(x, y) = z0} = B.
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Let gw(A,w)=Pr(X € A|IW =w) and ¢z(A,z) =Pr(X € A|Z =z). Then Pr(X €
A|(X,Y) € B) is given by both gy (A, wo) and gz(A, zo); however, there is no guaran-
tee that gw (A, wo) = qz(A, zo) so that these two approaches could yield different results.
This possibility is illustrated in the following example.

Example 2.10. Let X and Y denote independent random variables such that

PriX =1)=Pr(X =¢) = %,

for some constant ¢ > 1, and Y has an absolutely continuous distribution with density

1
p(y):i, —-l<y<l.

Let Z = XY . Note that the events Z = 0 and Y = O are identical; that is, Z = 0 if and
only if Y = 0. However, it will be shown that

Pr(X =1/Z =0) #Pr(X = 1Y =0).
Using (2.3), forz € R,
1 1
Pr(Z <z)= EPr(Z <zlIX=1+ EPr(Z <z|X =c¢).
Since the events X = 1 and X = ¢ both have nonzero probability, we know from elementary
probability theory that, for x = 1, c,
Pr(Z <zl X =x)=2Pr(XY <z N X =x)=2Pr(Y <z/x NX =x)
=2Pr(Y <z/x)Pr(X =x) =Pr(Y <z/x).

It follows that, for z > —c,

1 z/c 1 z
Pr(ZSz):Z/ dy+1/ dy
-1 -1

so that Z has an absolutely continuous distribution with density
1

1
Z_Iv<c _Iz< .
pz(2) ac zi<a + 7liz<n

Define

0 if|z] > 1

e+ 1) iflzl<1° 2.4

h(z) = {
It will be shown that 4(z) = Pr(X = 1|Z = z). To do this, first note that, for B C R,
1
Pr(X:lﬁZeB):Pr(X:lﬂYeB):—/ dz.
4 Jpac-1,
Using (2.4),
[ n@dre = [ tapa@dz =g [
z z\2) = — Yiz1<npz\2)dz = — z
B pe41 =Y 4 Jpa-11)

so that (2.3) is satisfied and, hence, Pr(X = 1|Z = z) = h(z) as claimed.
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Consider Pr(X = 1Y = 0). Since X and Y are independent, it follows from Example 2.9
that

1
PIX = 1Y =0)=Pr(X = 1) = -.

Note that the event Y = 0 is equivalent to the event Z = 0. Using (2.4),
¢

Pr(X =1|Z=0) = ,
( | )=

Thus, two different answers are obtained, even though the events ¥ =0 and Z = 0 are
identical.

Some insight into this discrepency can be obtained by considering the conditioning events
|Y| < eand |Z| < €, for some small €, in place of the events Y = 0 and Z = 0, respectively.
Note that the events |Y | < € and |Z| < € are not equivalent. Suppose that c is a large number.
Then, |Z| < € strongly suggests that X is 1 so that we would expect Pr(X = 1| |Z]| < €) to
be close to 1. In fact, a formal calculation shows that, forany 0 < € < 1,

Pr(X = 1]Z] <€) = —
(X = 1] | |<6)—C_|_1,
while, by the independence of X and Y,

1
PX =1V <e)=Pr(X =1)= .

results which are in agreement with the values for Pr(X = 1|Z = 0) and Pr(X = 1|Y =0)
obtained above. O

Conditional distribution functions and densities
Since Pr(X € A|Y = y) defines a probability distribution for X, for each y, there exists a
distribution function Fxy(x|y) such that

Pr(X € AlY =y) = / dFxy(x|y);
A

the distribution function Fyy (-|y) is called the conditional distribution function of X given
Y = y.By(2.2), F,thedistribution function of (X, Y, Fy, the marginal distribution function
of Y, and Fyy are related by

F(x,y) = Fxy&|y)Fy(y) for all x, y.

If the conditional distribution of X given Y = y is absolutely continuous, then

Pr(X € AlY =y) = / pxy(x|y)dx
A

where pyx|y(-]y) denotes the conditional density of X given Y = y. If the conditional dis-
tribution of X given Y = y is discrete, then

Pr(X € AlY =y) =Y pxy(x]y)

xeA

where px|y(-]y) denotes the conditional frequency function of X givenY = y.
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Theorem 2.3. Consider a random vector (X, Y) where either or both of X and Y may be
vectors.
(i) Suppose that (X,Y) has an absolutely continuous distribution with density p and
let py denote the marginal density function of Y . Then the conditional distribution
of X givenY =y is absolutely continuous with density pxy given by

P, y)
pxyy(x|y) =
pr(y)
provided that py(y) > 0; if pyr(y) =0, pxyy(x|y) may be taken to be any finite

value.

(ii) Suppose that (X, Y) has a discrete distribution with frequency function p and let py
denote the marginal frequency function of Y . Then the conditional distribution of X
given'Y =y is discrete with frequency function pxy(x|y), given by

p(x, y)
pxiy(x|y) =
pr(y)
provided that py(y) > 0, if py(y) = 0, pxy(x|y) may be taken to have any finite

value.

Proof. Consider case (i) in which the distribution of (X, Y') is absolutely continuous. Then
Pr(X € A|Y = y) must satisfy

Pr(X € A,Y € B) = / Pr(X € AlY = y)py(y)dy.
B

For y satisfying py(y) > 0, let

q(A,y)=/ P g
4 pr(y)

Then

/q(A,y)py(y)dy=//p(x,y)dxdy=Pr(X €AY € B)
B BJA

so that

Pr(X € A|Y =y)=/ de.
A pr(y)

Note that the value of ¢(A, y) for those y satisfying py(y) = O is irrelevant. Clearly this
distribution is absolutely continuous with density px|y as given in the theorem.
The result for the discrete case follows along similar lines. W

Example 2.11 (Bivariate distribution). Consider the distribution considered in Exam-
ple 2.1. The random vector (X, Y) has an absolutely continuous distribution with density
function

px,y)=6(1-x—-y), x>0, y>0, x+y<1
and the marginal density of ¥ is

pr(»)=31-y?% 0<y<l.
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Hence, the conditional distribution of X given Y = y is absolutely continuous with density
function

1
pxy(xly) =2——--, O<x<l-—y
(I—y

where0 <y < 1. O

Example 212 (Trinomial distribution). Let (X, X», X3) be a random vector with a
multinomial distribution with parameters n and (6, 6,, 63); see Example 2.2. This is some-
times called a trinomial distribution. It was shown in Example 2.2 that the marginal distri-
bution of X is binomial with parameters » and 6.

Hence, (X, X», X3) has frequency function

P(xl ’ x2) = ( )9?92‘293‘,3

and the marginal frequency function of X is given by

X1, X2, X3

Px,(x1) = (n >9i"‘ (1 —=op)".
X1

It follows that the conditional distribution of (X5, X3) given X| = x; is discrete with fre-
quency function

(,",)0n'0%0 (n —x1> 63267

N T O+ Oy

X2, X3
where x5, x3 =0, ..., n —x; with x, + x3 =n — xy, for x; =0, ..., n; recall that 6; +
6, + 65 = 1.

That is, the conditional distribution of (X,, X3) given X; = x; is multinomial
with parameters n — x; and (6,/(62 + 63), 03/(0> + 03)). Alternatively, we can say
X, has a binomial distribution with parameters n — x; and 6,/(6, + 63) with X3 =
n—x;—X,. 0O

Example 2.13 (A mixed distribution). Let (X, Y) denote a two-dimensional random vec-
tor with the distribution described in Example 2.3. Recall that this distribution is neither
absolutely continuous nor discrete.

First consider the conditional distribution of X givenY = y. Recall that for A C R™ and
y=12,

1
Pr( X e A, Y =y) = 5/ yexp(—yx)dx.
A
Note that
1
Pr(X <x,Y =y)= 5[1 —exp(—yx)], x>0, y=1,2

so that, fory =1, 2,

Pr(X <x|Y =y)=1—-exp(—yx), x>0.
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Since
X

Pr(X <x|Y =y) = / yexp(—yx)dx,
0

it follows that, for y = 1, 2, the conditional distribution of X given Y = y is absolutely
continuous with density function y exp(—yx), x > 0.

It is worth noting that this same result may be obtained by the following informal method.
Since, for A C YVand y = 1, 2,

1
PriXe A, Y =y)= Ef yexp(—yx)dx,
A
the function
1
7 eXp(=yx)

plays the role of a density function for (X, Y') with the understanding that we must integrate
with respect to x and sum with respect to y. Since the marginal distribution of Y is discrete
with frequency function 1/2, y = 1, 2, the conditional density function of X givenY =y
is yexp(—yx), x > 0.

Now consider the conditional distribution of ¥ given X = x. Recall that the marginal
distribution of X is absolutely continuous with density function

1

E[exp(—x) + 2exp(—2x)], x > 0.
Using the informal method described above, the conditional distribution of ¥ given X = x,
x > 0, has frequency function

y exp(—yx)
exp(—x) + 2 exp(—2x)’

It is easy to verify that this result is correct by noting that

y=1,2.

1
Pr(Y =y, X e A) = 2 / yexp(—yx)dx
A

_ f y exp(—yx)
h 4 exp(—x) + 2exp(—2x)

px(x)dx, y=1,2.

Hence, the conditional distribution of ¥ given X = x is discrete with
1

PrY =1|X = =1—-Pr(Y =2|X = R —
" | *) T | 2 1 4 2exp(—x)

forx >0. O

2.4 Conditional Expectation

Let (X, Y) denote a random vector with range X x Y and let Fxy (-|y) denote the distribu-
tion function corresponding to the conditional distribution of X givenY = y. For a function
g:X — Rsuch that E[|g(X)|] < oo, E[g(X)|Y = y] may be defined by

E[g(X)Y =y]=/Xg(X)dFX|y(XIy).
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It is sometimes convenient to define E[g(X)|Y = y] directly, without reference to
Fxy(-|y). First consider the case in which g(x) = I,c4) for some set A C X. Then
E[g(X)|Y = y] =Pr[X € A|Y = y] sothat E[g(X)|Y = y] satisfies the equation

E[g(X)I{YeB}]Z/E[g(X)IY = yldFy(y)
B

forall B C ).
This definition can be extended to an arbitrary function g. Suppose that g: X — R
satisfies E[|g(X)|] < co. We define E[g(X)|Y = y] to be any function of y satisfying

E[g(X)yep] = / E[g(X)IY = yldFy(y) (2.5)
B

forall sets B C ). The issues regarding existence and uniqueness are essentially the same as
they are for conditional probabilities. If E[|g(X)|] < oo, then the Radon-Nikodym Theorem
guarantees existence of the conditional expected value. Conditional expected values are not
unique, but any two versions of E[g(X)|Y = y] differ only for y in a set of probability 0.
Let Fx |y (-|y) denote the conditional distribution function of X givenY = y and consider

h(y) = /Xg(X)dew(XIy)-
Then

/h(}’)dFy(}’)=f/g(X)dFX|Y(X|y)dFY(y)=/ Liyepyg(x)dFx y(x, y)
B BJx XX

= E[g(X)]yep].

Hence, one choice for E[g(X)|Y = y] is given

E[g(X)IY = y] Z/g(X)dew(XIy);

that is, the two approaches to defining E[g(X)|Y = y] considered here are in agreement.
Generally speaking, the expression based on Fxy(-|y) is more convenient for computing
conditional expected values for a given distribution, while the definition based on (2.5) is
more convenient for establishing general properties of conditional expected values.

Example 2.14 (Bivariate distribution). Let (X, Y) denote a two-dimensional random vec-
tor with the distribution described in Example 2.1. This distribution is absolutely continuous
with density function

px,y)=6(1-x—-y), x>0, y>0, x+y<1;

itwas shown in Example 2.11 that the conditional distribution of X givenY = y is absolutely
continuous with density function

(xly) = 222X =
X =L
Py 1=y

, O0<x<l-—y

where 0 < y < 1. It follows that

-y 1
E[X|Y =y] = f x(l—x—y)dx:g(l—y), O0<y<l. O
0

(1—y)?
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Example 2.15 (A mixed distribution). Let (X, Y ) denote atwo-dimensional random vector
with the distribution described in Example 2.3 and considered further in Example 2.13.

Recall that the conditional distribution of X given Y = y is absolutely continuous with
density function y exp(—yx), x > 0. It follows

E(X|Y =y) =1/y. 5

The following theorem gives several properties of conditional expected values. These
follow immediately from the properties of integrals, as described in Appendix 1, and, hence,
the proof is left as an exercise. In describing these results, we write that a property holds for
“almost all y (Fy)” if the set of y € ) for which the property does not hold has probability
0 under Fy.

Theorem 2.4. Let (X,Y) denote a random vector with range X x ); note that X and Y
may each be vectors. Let g, . .., gn denote a real-valued functions defined on X such that
E[lgi(X)]] < o0, j=1,...,m.Then

(i) If g\ is nonnegative, then

E[lgi(X))Y =y] =0 for almost all y (Fy).
(ii) If g\ is constant, g;(x) = c, then

E[lgi(X))Y =yl=c for almost all y (Fy).
(iii) For almost all y (Fy),

E[gi(X) + -+ gn(XY = y] =E[si(X)]Y = y] + - + E[gn(X)]Y = y].

Note that E[g(X)|Y = y]is a function of y, which we may denote, for example, by f(y).
It is often convenient to consider the random variable f(Y'), which we denote by E[g(X)|Y]
and call the conditional expected value of g(X) given Y. This random variable is a function
of Y, yet it retains some of the properties of g(X). According to (2.5), E[g(X)|Y] is any
function of Y satisfying

E{g(X)yepy) = E{E[g(X|Y Ijyeny} forall B C ). (2.6)

The following result gives a number of useful properties of conditional expected values.

Theorem 2.5. Let (X, Y)denote a random vector withrange X x Y, letT : Y — T denote
a function on Y, let g denote a real-valued function on X such that E[|g(X)|] < oo, and
let h denote a real-valued function on Y such that E[|g(X)h(Y)|] < oo. Then
(i) E(ELg(X)|Y 1} = E[g(X)]
(ii) E[g(X)h(Y)|Y] = h(Y)E[g(X)|Y ] with probability 1
(iii) E[g(X)|Y, T (Y)] = E[g(X)|Y ] with probability 1
(iv) E[g(X)|T (V)] = E{E[g(X)IY|T (Y )} with probability 1
(v) Elg(X)|T (Y)] = E{E[g(X)|T (Y)]|Y } with probability 1



56 Conditional Distributions and Expectation

Proof. Part (i) follows immediately from Equation (2.6) with B taken to be ).
Let f(y) = E[g(X)|Y = y]; then, for almost all y (Fy),

f= / g(x)dFxyy(x|y).
X

Hence, forany B C ),
/ hELg (XY = ydFy(y) = / ) fX () dFxy (x1y) dFy (¥)
B B

=// Iiyeryg(A(y)dFx y(x, y)’
XxY

= E[lyyepyg(X)n(Y)]

so that (2.6) is satisfied; part (ii) follows.
By (2.6), for any B C ),

E{E[gXDIY, TY ) yes Tvyery} = Elg(X)yen, T(v)ery] = E[g(X)y ey

part (iii) now follows from (2.6).
Let g(Y) = E[g(X)|Y]. Then, by (2.6),

E{E[g(W)In(Y ) Linw)esor} = EL8Y Minriea]

for any subset A of the range of 4(y). Let B C ) denote a set satisfying
Linryeay = Liyepy  with probability 1.
Then, by (2.6),
E[g(M)Ipweay] = E{E[gX)IY Iiyeny} = Elg(X)yepy] = E[g(X)nw)eay]-

That is, for all subsets A of the range of A(-),

E{E[g(M)|h(Y)nryea) = E[e(XDnr)eay]-
It now follows from (2.6) that

E[g(M)|h(Y)] = E[g(X)|A(Y)],

proving part (iv).
Note that E[g(X)|/(Y)] is a function of Y such that

E{|[E[¢(X)[A(Y)]I} < E{E[|g(X)| [2(Y)]} = E[|g(X)|] < 005
part (v) now follows from part (iii). M
Example 2.16. Let Y = (Y|,Y,) where Y;,Y, are independent, real-valued random
variables, each with a uniform distribution on (0, 1). Let X denote a real-valued random

variable such that the conditional distribution of X givenY = y has an absolutely continuous
distribution with density

pxiy(xly) = exp{—x/(n + )}, x>0

yi+y
where y = (y1, y2) and y; > 0, y, > 0.
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It is straightforward to show that
EX|Y1,Y2) =Y+ 1>

and, since each of Y, Y, has expected value 1/2, it follows from part (i) of Theorem 2.5
that E(X) = 1.

Now consider E(X|Y;). Since E(X|(Y, Y2)) =Y, + Y>, it follows from part (iv) of
Theorem 2.5 that

EXIY) =EY1 + oY) =Y +EQX) =Y, + 1/2. O
The following characterization of conditional expected values is often useful.

Theorem 2.6. Let (X,Y) denote a random vector with range X x Y and let g denote a
real-valued function on X .
(i) Suppose that E[|g(X)|] < oo and let Z denote a real-valued function of Y such that
E(Z]) < 0. If

Z =E[g(X)|Y] with probability 1
then
E[Zh(Y)] = E[g(X)h(Y)] (2.7)
for all functions h = Y — R such that
E[|h(Y)|]] <oo and E[|g(X)h(Y)]] < oco.

(ii) If Z is a function of Y such that (2.7) holds for all bounded functions h : Y — R
then

Z = E[g(X)|Y] with probability 1.

Proof. Suppose Z = E[g(X)|Y] with probability 1. Let / be a real-valued function on Y
such that E[|2(Y)|] < oo and E[|g(X)h(Y)|] < oco. Then, since

{Z —E[g(X)|Y1}h(Y) =0 with probability 1,
E{(Z — E[g(X)IY Dh(Y)} = 0.
It follows from Theorem 2.5 that
E{E[¢(X)IY1h(Y)} = E[g(X)h(Y)] < oo,
so that
E[Zh(Y)] = E{E[g(X)|Y ]h(Y)} = E[g(X)h(Y)],

proving the first part of the theorem.

Now suppose that (2.7) holds for all bounded functions #:) — R. Let B C ). Since
h(y) = Ijyep) is a bounded, real-valued function on Y, it follows that (2.6) holds for any B.
Part (ii) follows. M



58 Conditional Distributions and Expectation

Conditional expectation as an approximation

Conditional expectation may be viewed as the solution to the following approximation
problem. Let X and Y denote random variables, which may be vectors. Let g(X) denote
a real-valued function of X and suppose that we wish to approximate the random variable
g(X) by areal-valued function of Y. Suppose further that we decide to measure the quality
of an approximation A(Y) by E[(g(X) — h(Y })?]. Then the best approximation in this sense
is given by h(Y) = E[g(X)|Y]. This idea is frequently used in the context of statistical
forecasting in which X represents a random variable that is, as of yet, unobserved, while Y
represents the information currently available. A formal statement of this result is given in
the following corollary to Theorem 2.6.

Corollary 2.2. Let (X, Y) denote a random vector with range X x ) and let g denote a
real-valued function on X such that E[g(X)?] < oo. Let Z = E[g(X)|Y]. Then, for any
real-valued function h on'Y such that E[h(Y)*] < oo,

E[(h(Y) — g(X))’] = EI(Z — g(X))’]
with equality if and only if h(Y) = Z with probability 1.

Proof. Note that
E[(h(Y) — g(X)Y'] = El(h(Y) = Z + Z — g(X))’]
= El(h(Y) — 2’1+ El(Z — g(X))’] + 2E{(h(Y) — Z)(Z — g(X))}.
Since Z is a function of Y, h(Y) — Z is a function of Y. Furthermore,
E[lh(Y) — Z|] = E[|h(Y)I]1 + E[IZ]] < 00
and
Ell2CO |A(Y) — Z|] < E[g(X)* 1 BlA(Y) — Z|*]:
< Ellg(X)1") 2E[IA(Y)*] + 2E[|Z"1}* < e,
using the fact that
E[|Z|"] = E(E[g(X)|Y I’} < B{E[g(X)*|Y ]} = E[¢(X)] < oc.

Hence, by Theorem 2.6,

E{(n(Y) — Z)Z} = E{(h(Y) — Z)g(X)}
so that

E[(h(Y) — ¢(X))’] = E[(h(Y) = Z)’] + EU(Z — g(X))’].
It follows that

E[(g(X) — h(¥))] = E[(g(X) — Z)*]
with equality if and only if E[(h(Y) — Z)?] = 0, which occurs if and only if 2(Y) = Z with
probability 1. W

Example 2.17 (Independent random variables). Let Y denote a real-valued random vari-
able with E(Y?) < oo and let X denote a random vector such that X and Y are independent.
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Note that E(Y|X) = u, where u = E(Y). Then, according to Corollary 2.2, for any real-
valued function /2 of Y,

E[(h(X) — Y)*] < E[(Y — w)*];

that is, the best approximation to ¥ among all functions of X is simply the constant function
h(X)y=upn. O

Example 2.18. Let X and Y denote real-valued random variables such that E(X*) < oo
and E(Y*) < oo. Suppose that Y = X + Z where Z is a real-valued random variable with
E(Z) = 0 and E(Z?) = 1; assume that X and Z are independent.

Then, according to Corollary 2.2, the best approximation to Y among functions of X is

EY|X)=EX + Z|X)=X.
The best approximation to ¥> among functions of X is

E(Y|X) = E[(X + 2)*|X) = E(X?|X) + EQX Z|X) + E(Z*|X)
= X% +2XE(Z|X) + E(Z%
=X>+1.

Hence, although the best approximation to Y is X, the best approximation to Y? is
X? 4 1, not X2. This is due to the criterion used to evaluate approximations.  [J

2.5 Exchangeability

Recall that random variables X, X», ..., X, are independent and identically distributed if
they are independent and each X ; has the same marginal distribution. An infinite sequence
of random variables X, X, ... is independent and identically distributed if each finite
subset is.

Exchangeability provides a useful generalization of this concept. Recall that a permuta-
tion of (1,2, ..., n) is a rearrangement of the form (i, ...,7,) such thateach 1 <i; <n
is an integer and i; # i} for j # k. Real-valued random variables X1, ..., X, are said
to have an exchangeable distribution or, more simply, to be exchangeable if the distribu-
tion of (X, ..., X,) is the same as the distribution of (X;,, ..., X;,) for any permutation
(1,02, ..., ip)of (1,2,...,n).

As noted above, the simplest example of exchangeability is the case of independent,
identically distributed random variables. A formal statement of this is given in the following
theorem; the proof is straightforward and is left as an exercise.

Theorem 2.7. Suppose X1, ..., X, are independent identically distributed random vari-
ables. Then X1, ..., X, are exchangeable.

Example 2.19 (Bivariate distribution). Consider the distribution considered in Exam-
ples 2.1 and 2.11. The random vector (X, Y) has an absolutely continuous distribution
with density function

px,y)=6(1—-x—y), x>0, y>0, x+y<1.
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Let g denote a bounded, real-valued function defined on (0, 1)>. Then

1 1
Elg(X,Y)] = [ f 9. YI6(1 = — P yyery da dy
0 0

1 1
= /0 /0 g(yv X)6(1 -y - X)I{y+x<l} dy dx = E[g(Y’ X)]

It follows that (Y, X) has the same distribution as (X,Y) so that X,Y are exchan-
geable. O

Example 2.20. Let (X, X;) denote a two-dimensional random vector with an absolutely
continuous distribution with density function

1
px,y)=—, O<xy<x <l
X

Note that X, < X; with probability 1. Let (Y1, ¥»2) = (X2, X1). Then
PI‘(YZ < Yl) =0.

It follows that (Y, Y») does not have the same distribution as (X, X»); that is, (X,, X;)
does not have the same distribution as (X, X»). It follows that the distribution of (X, X»)
is not exchangeable. [J

Suppose that X, X», ..., X, are exchangeable random variables. Then the distribution
of (X1, X5, ..., X,) is the same as the distribution of (X;, Xy, ..., X,). In this case,

Pr(iXi <x,Xo<o0,..., X, <o) =Pr(X, <x,X| <00,..., X, < ).

That is, the marginal distribution of X is the same as the marginal distribution of X»; it
follows that each X ; has the same marginal distribution. This result may be generalized as
follows.

Theorem 2.8. Suppose X1, ..., X, are exchangeable real-valued random variables. Let m
denote a positive integer less than or equal to n and let t,, . . ., t,, denote distinct elements
of {1,2, ..., n}. Then the distribution of (X,,, ..., X,,) does not depend on the choice of

tytay .. by

Proof. Fixmandlett,..., t, andry,...,r, denote two sets of distinct elements from
{1,2,...,n}. Then we may find t,,,+1, ..., #, in {1, ..., n} such that (¢, ..., #,) is a permu-
tation of (1, 2, ..., n); similarly, suppose that (r{, ..., r,) is a permutation of (1, 2, ..., n).
Then (X, ..., X;,)and (X,,, ..., X,,) have the same distribution. Hence,

Pr(X, <xi,...., X, <xm, X;,,, <00,...,X; <00)

=Pr(X, <x1,.... X, <xp, X <00,..., X, < 00);

T'm Tm+1

the result follows. M

Thus, exchangeable random variables X, . .., X, are identically distributed and any two
subsets of X1, ..., X, of the same size are also identically distributed. However, exchange-
able random variables are generally not independent.
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Let 7 denote a subset of the set of all permutations of (1, ..., n). A function 2:R" — R”
is said to be invariant with respect to T if for any permutation t € 7, h(x) = h(tx). Here t
isoftheformt = (i, ..., i,)and tx = (x;,, X;,, . . ., X;,). If 7 is the set of all permutations,
h is said to be permutation invariant.

Example 2.21 (Sample mean). Let h denote the function on R” given by
heo) = - Z ( )
X)=—» xj, X=(X1,...,%pn).
n ‘= ! :

Since changing the order of (x1, ..., x,) does not change the sum, this function is permu-
tation invariant. [

Theorem 2.9. Suppose X1, ..., X, are exchangeable real-valued random variables and h
is invariant with respect to T for some set of permutations T . Let g denote a real-valued
function on the range of X = (X1, ..., X,) such that E[|g(X)|] < oo. Then

(i) The distribution of (g(tX), h(X)) is the same for all T € T.

(ii) E[g(X)|h(X)] = E[g(t X)|h(X)], with probability 1, for all t € T.

Proof. Since X, ..., X, are exchangeable, the distribution of (g(t X), #(t X)) is the same
for any permutation 7. Part (i) now follows from the fact that, for t € 7, h(rX) = h(X)
with probability 1.

By Theorem 2.6, part (ii) follows provided that, for any bounded, real-valued function
f on the range of &,

E[E[g( X)IA(X)]f (h(X)] = E[g(X) f (h(X))].
Since
E[E[g(z X)|A(X)] f (h(X))] = E[E[g(z X) f (R(X)|h(X)]] = E[g(z X) f (h(X))],

part (ii) follows provided that

E[g(zX) f(h(X))] = E[g(X) f (h(X))];

the result now follows from part (i). W

Example 2.22 (Conditioning on the sum of random variables). Let X, X»,..., X,
denote exchangeable, real-valued random variables such that

E[|X;[l<oo, j=1,....n,

andlet S = 3 _, X ;. Since § is a permutation invariant function of X, ..., X, it follows
from Theorem 2.9 that E[X ;|S] does not depend on j. This fact, together with the fact that

S =E(SIS)=E[Y_ X,IS1= ) ELX;|S]
=1 j=1

shows that E(X;|S) = S/n. O
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2.6 Martingales

Consider a sequence of real-valued random variables {X;, X5, ...}, such that E(|X,|) <
oo forall n =1,2,.... The sequence {X, X», ...} is said to be a martingale if for any
n=1,2,...,

E(XI1+]|X]7 ceey Xn) =X,

with probability 1.

A martingale may be viewed as the fortunes of a gambler playing a sequence of fair
games with X, denoting the fortune of the gambler after the nth game, n = 2,3, ..., and
X | representing the initial fortune. Since the games are fair, the conditional expected value
of X, 41, the fortune at stage n + 1, given the current fortune X,, is X,,.

Example 2.23 (Sums of independent random variables). LetY,,Y>, ...denote asequence
of independent random variables each with mean 0. Define

Xn:Y1+"'+Yna n:1,2,...

Then

EX,un1lX1, .., X)) = EXXGIX, -, X)) + B[ X, -, X)),
Clearly, E(X,|X1, ..., X,) = X,, and, since (X, ..., X,) is a function of (¥i,...,Y,),
E(Y,+11X1, ..., Xn) = 0. It follows that {X, X», ...} is a martingale. O

Example 2.24 (Polya’s urn scheme). Consider an urn containing b black and r red balls.
A ball is randomly drawn from the urn and ¢ balls of the color drawn are added to the urn.
Let X, denote the proportion of black balls after the nth draw. Hence, Xg = b/(r + b),

b
Pi[ X, =b+0)/+b+c)=1—-Pr[X,=b/+b+0)] = P
and so on.
Let Y, = 1 if the nth draw is a black ball and O otherwise. Clearly,
PI'(Y,H_] = 1|X1, ...,Xn) = X,,,.
After n draws, there are r + b + nc balls in the urn and the number of black balls is given
by (r + b 4+ nc)X,. Hence,

(r+b+nc)X, +Y,yic
r+b+m+ 1)

Xn+1 =

so that

r+b+no)X,+ X,c
T b+t e
it follows that {X |, X, ...} is a martingale. O

E[X,r1lX1, ..., X,]

n»

Using the interpretation of a martingale in terms of fair games, it is clear that if the
gambler has fortune c after n games, then the gamblers expected fortune after a number of
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additional games will still be c. A formal statement of this result for martingales is given in
the following theorem.

Theorem 2.10. Let {X, X», ...} be a martingale and let n and m be positive integers. If
n < m, then

E(X,| X1, ..., X)) =X,
with probability 1.

Proof. Since {X|, X», ...} is a martingale,
E[X,+1|X1, ..., X,] = X, with probability 1.
Note that
E[Xui2l X1, ..o Xul = E[E(X 42| X1, o, X, X DI X -, X
=E[X,+1|X1, ..., X, ] =X,
with probability 1. Similarly,
E(Xni31X1, ..o Xo) = EIE(X 31 X1 oo Xy Xt X2 | X5 -0 X
=EX,12/X1,..., X)) =X,

with probability 1. Continuing this argument yields the result. W

The martingale properties of a sequence X, X», ... can also be described in terms of
the differences

Dy=Xp,—Xn_1, n=12,...

where Xy = 0. Note that, foreachn = 1,2, ..., (X4, ..., X,) is a one-to-one function of
(Dyq, ..., D,) since

Xw=D1+---+D,,, m=12...,n
Suppose that {X, X5, ...} is a martingale. Then, by Theorem 2.5,
E{D,1|D1, ..., D,} = E{ED, 11X, ..., X)|D1, ..., Dy}
=E{EX,+1 — Xu|X1,...., XDy, ..., D} =0, n=1,2,....
A sequence of real-valued random variables Dy, D5, ... satisfying
E{D,+1|Dy,....D,} =0, n=1,2,...

is said to be a sequence of martingale differences.

As noted above, if X, X, ... is a martingale, then X, can be interpreted as the fortune
of a gambler after a series of fair games. In the same manner, if Dy, D, ... is a martingale
difference sequence, then D,, can be interpreted as the amount won by the gambler on the
nth game.

Example 2.25 (Gambling systems). Suppose that a gambler plays a series of fair games
with outcomes Dy, D, ... such that, if the gambler places a bet B, on the nth game, her
winnings are B, D,,. For each n, the bet B, is a function of D, ..., D,_, the outcomes of
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the first » — 1 games, but, of course, B, cannot depend on D,,, . ... We take B; = 1 so that
initial fortune of the gambler is given by D;. The random variables B, B, ... describe
how the gambler uses the information provided by the game to construct her series of bets
and is called a gambling system. The gambler’s fortune after n games is thus

Wis1t = Bi1D1+ -+ 4+ Bpy1 Dyt
Then, using the fact that D, D, ... is a martingale difference sequence, and assuming
that B,, Bs, ... are bounded,

E(Wn+l|Dla --~7Dn) = Dl +BZD2 + - +BnDn +E(Bn+1Dn+l|D17 e Dn)
=D+ B,D,+---+B,D, + B, 1\E(D41|D1, ..., Dy)
=D+ B,D,+---+B,D,=W,.

It follows that E(W,.1) = E(W,),n =1, 2, ... so that
E(W) =EWy)=---;

that is, the expected fortune of the gambler after n» games is always equal to the initial
fortune. Thus, a gambling system of the type described here cannot convert a fair game into
one that is advantageous to the gambler. O

2.7 Exercises

2.1 Let X and Y denote real-valued random variables such that the distribution of (X, Y) is abso-
lutely continuous with density function p(x, y). Suppose that there exist real-valued nonnegative
functions g and /4 such that

/wg(x)dx<oo and fooh(y)dy<oo

oo o0

and
px,y) = g(@)h(y), —00<x <00, —00<Yy < O00.

Does it follow that X and Y are independent?

2.2 Let X and Y denote independent random vectors with ranges X" and ), respectively. Consider
functions f: X — Rand g:) — R. Does it follow that f(X) and g(Y) are independent random

variables?
2.3 Let X, X5, ..., X,, denote real-valued random variables. Suppose that foreachn = 1,2, ..., m,
(X1, ..., X,—1) and X, are independent. Does it follow that X, ..., X,, are independent?

2.4 Let X and Y denote real-valued random variables such that the distribution of (X, Y') is absolutely
continuous with density function

1
px,y)=—=—, x>1 y>1/x.
x3y
Find the density functions of the marginal distributions of X and Y.
2.5 Let X and Y denote real-valued random variables such that the distribution of (X, Y) is discrete

with frequency function

1 e! +2—(x+,v)

== x,y=0,1,....
px,y) e iyl X,y

Find the frequency functions of the marginal distributions of X and Y.
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Prove Corollary 2.1.
Prove Theorem 2.2.

Let (X, Y) denote a random vector with an absolutely continuous distribution with density
function p and let px and py denote the marginal densities of X and Y, respectively. Let
Px)y (-|y) denote the density of the conditional distribution of X given Y = y and let pyx(-|x)
denote the density of the conditional distribution of ¥ given X = x. Show that

pr(y)
provided that py(y) > 0. This is Bayes Theorem for density functions.

pxjy(x]y) =

Consider a sequence of random variables X, X», ..., X, which each take the values 0 and 1.
Assume that

PriX; =D)=1-PrX; =0)=¢, j=1,...,n
where 0 < ¢ < 1 and that
Pr(X; =11X;,, =D =4, j=2,...,n.

(@) FindPr(X; =0[X;_; =1),Pr(X; = 1|X,;,_; =0), Pr(X; =0|X,;_; =0).

(b) Find the requirements on A so that this describes a valid probability distribution for
Xy, X,

Let X and Y denote real-valued random variables such that the distribution of (X, Y) is absolutely

continuous with density function p and let py denote the marginal density function of X . Suppose

that there exists a point x, such that px(xo) > 0, px is continuous at x,, and for almost all y,

p(-, y) is continuous at xq. Let A denote a subset of R. For each € > 0, let

d(e)=Pr(Y € Alxg < X <x¢+€].
Show that
PrlY € A|X = xo] = lirr(l)d(e).
e

Let (X, Y) denote a random vector with the distribution described in Exercise 2.4. Find the den-
sity function of the conditional distribution of X given Y = y and of the conditional distribution
of Y given X = x.
Let X denote areal-valued random variable withrange X, suchthat E(|X|) < co.Let Ay, ..., A,
denote disjoint subsets of X'. Show that
n
EX) = ZE(XlX € Aj)Pr(X € A)).

j=1
Let X denote a real-valued random variable with an absolutely continuous distribution with
distribution function F' and density p. For ¢ > 0, find an expression for Pr(X > 0]|X| = ¢).
Let X, Y, and Z denote random variables, possibly vector-valued. Let X denote the range of X
and let ) denote the range of Y. X and Y are said to be conditionally independent given Z if,
forany A C X and B C ),

Pr(X € A, Y € B|Z) = Pr(X € A|Z)Pr(Y € B|Z)

with probability 1.
(a) Suppose that X and Y are conditionally independent given Z and that Y and Z are inde-
pendent. Does it follow that X and Z are independent?

(b) Suppose that X and Y are conditionally independent given Z and that X and Z are condi-
tionally independent given Y. Does it follow that X and Y are independent?
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Let X and Y denote random vectors with ranges X and ), respectively. Show that, if X and ¥
are independent, then

E[g(X)[Y] = E[g(X)]

for any function g: X — R such that E[|g(X)|] < oo.
Does the converse to this result hold? That is, suppose that

E[g(X)IY] = E[g(X)]
for any function g: X — R such that E[|g(X)|] < co. Does it follow that X and Y are indepen-
dent?

Prove Theorem 2.4.

Let X, Y and Z denote real-valued random variables such that (X, Y) and Z are independent.
Assume that E(]Y|) < oco. Does it follow that

E(Y|X, Z) = E(Y|X)?

Let X denote a nonnegative, real-valued random variable. The expected residual life function
of X is given by

R(x)=EX —x|X >x), x>0.

Let F denote the distribution function of X.
(a) Find an expression for R in terms of the integral

/*00 F(t)dt.

(b) Find an expression for F in terms of R.
(c) Let X, and X, denote nonnegative, real-valued random variables with distribution functions
F and F, and expected residual life functions R; and R,. If
Ri(x) = Ry(x), x>0

does it follow that
Fi(x) = Fr(x), —oc0o<ux < o0?

Let £, denote the linear space of random variables X such that E(X?) < oo, as described in
Exercises 1.28 and 1.29. Let X |, X, denote elements of £,; we say that X | and X, are orthogonal,
written X] 1 X2, if E[X]Xz] =0.

Let Z denote a given element of £, and let £,(Z) denote the elements of £, that are functions
of Z.Foragivenrandom variable Y € £,,let P;Y denote the projection of Y onto £,(Z), defined
to be the element of £,(Z) such that Y — P,Y is orthogonal to all elements of £,(Z). Show that
P;Y =EY|Z).

Let X, X,, andZ denote independent, real-valued random variables. Assume that
Pr(Z=0)=1-PrZ=1)=«

for some 0 < o < 1. Define
Y — X, ifzZ=0
TlX, fz=1"

(a) Suppose that E(X;) and E(X») exist. Does it follow that E(Y') exists?
(b) Assume that E(]X;]) < oo and E(|X,|) < oco. Find E(Y | X/).
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Let (X, Y) denote a two-dimensional random vector with an absolutely continuous distribution
with density function

1
ple,y) = —exp(=y), 0<x <y <oo.
y

Find E(X"|Y) forr =1,2,....
For some n =1,2,..., let Y, Y, ..., Y, denote independent, identically distributed, real-
valued random variables. Define

XjZYjYH_], j=1,...,i’l.

(a) Are X, X», ..., X, independent?
(b) Are X, X5, ..., X, exchangeable?
Let X and Y denote real-valued exchangeable random variables. Find Pr(X <Y).
Prove Theorem 2.7.
Let Xy, X1, ..., X, denote independent, identically distributed real-valued random variables.
For each definition of Yy, . .., Y, given below, state whether ornot Yy, ..., Y, are exchangeable
and justify your answer.
@Y =X;—Xo,j=1,...,n.
b)Y, =X, —X;1,j=1,...,n.
(© Y;=X,—-X,j=1,...,nwhere X =3""_, X;/n.
) Y; = G/mX;+ 0 = j/mXe. j=1,....n.
Let Yy, Y,, ... denote independent, identically distributed nonnegative random variables with
E(Y;)=1.Foreachn =1,2,..., let
X, =Y, ---Y,.

Is {X, X5, ...} amartingale?
Let {X1, X», ...} denote a martingale. Show that

E(X)) =EXy) =---.

Exercises 2.28 and 2.29 use the following definition. A sequence of real-valued random
variables {X{, X5, ...} such that E[|X,|] < oo, n = 1,2, ..., is said to be a submartingale if,
foreachn=1,2,...,

E[X,,+1|X|, e Xn] > Xn

with probability 1.
Show that if {X, X,, ...} is a submartingale, then {X, X5, ...} is a martingale if and only if

E(X)) =EXy) =---.

Let {X;, X», ...} denote a martingale. Show that {|X|, | X[, ...} is a submartingale.

2.8 Suggestions for Further Reading

Conditional distributions and expectation are standard topics in probability theory. A mathematically
rigorous treatment of these topics requires measure-theoretic probability theory; see, for example,
Billingsley (1995, Chapter 6) and Port (1994, Chapter 14). For readers without the necessary back-
ground for these references, Parzen (1962, Chapter 2), Ross (1985, Chapter 3), Snell (1988, Chapter 4),
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and Woodroofe (1975, Chapter 10) give more elementary, but still very useful, discussions of condi-
tioning.

Exercise 2.19 briefly considers an approach to conditional expectation based on projections in
spaces of square-integrable random variables. This approach is developed more fully in Karr (1993,
Chapter 8).

Exchangeable random variables are considered in Port (1994, Chapter 15). Schervish (1995,
Chapter 1) discusses the relevance of this concept to statistical inference.

Martingales play an important role in probability and statistics. The definition of a martingale
used in this chapter is a special case of a more general, and more useful, definition. Let X, X», ...

and Yy, Y,, ... denote sequences of random variables and suppose that, foreachn =1,2,..., X,
is a function of Y1, Y5, ..., Y,. The sequence (X, X, ...) is said to be a martingale with respect to
Y1, Y, .. 0)if

E(X17+1|Y17---7Y)1)=Xn, l’l=1,2,....

Thus, the definition used in this chapter is a special case in which Y,, is takentobe X,,n = 1,2, ....
See, for example, Billingsley (1995, Section 35), Karr (1993, Chapter 9), Port (1994, Chapter 17),
and Woodroofe (1975, Chapter 12) for further discussion of martingales.
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Characteristic Functions

3.1 Introduction

The properties of a random variable may be described by its distribution function or, in some
cases, by its density or frequency function. In Section 1.8 it was shown that expectations of
the form E[g(X)] for all bounded, continuous, real-valued functions g completely determine
the distribution of X (Theorem 1.11). However, the entire set of all bounded, continuous
real-valued functions is not needed to characterize the distribution of a random variable in
this way.

Let X denote areal-valued random variable with distribution function F. Foreacht € R,
let g, denote a function on the range of X such that E[|g;(X)|] < oco. Then the function

o0

W(t) = E[g/(X)] :/ &(X) dF(x), t€R,

—00

gives the expected values of all functions of the form g,. If the set of functions G =
{g:: t € R} is chosen appropriately, then function W will completely characterize the dis-
tribution of X, and certain features of F will be reflected in W. In fact, we have already
seen one simple example of this with the distribution function, in which g;(x) = I <.

A function such as W is called an integral transform of F; the properties of an integral
transform will depend on the properties of the class of functions G. In this chapter, we
consider a particular integral transform, the characteristic function. Two other integral
transforms, the Laplace transform and the moment-generating function, are discussed in
Chapter 4.

The characteristic function of the distribution of a random variable X, or, more simply,
the characteristic function of X, is defined as

o(t) = px(t) = Elexp(itX)] = / exp(itx)dF(x), —oo <t < o0,

—00

where exp(itx) is a complex number; writing
exp(itx) = cos(tx) + 1 sin(tx),

as described in Appendix 2, we may write ¢(t) = u(¢) + iv(¢t) where
oo

u(t) = /00 cos(tx)dF(x) and v(t) :/ sin(tx) d F (x). (3.1

o0 o0

69
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Figure 3.1. Characteristic function in Example 3.1.

Thus, a characteristic function may be viewed as two real-valued functions, u#(-) and v(-),
the real and imaginary parts of ¢(-), respectively. Note that, since cos and sin are bounded
functions, the characteristic function of a random variable always exists.

Example 3.1 (Uniform distribution on the unit interval). Let X denote a real-valued
random variable with distribution function

Fx)=x, 0<x<Il1.
The characteristic function of this distribution is given by

exp(i.t) -1 _ sin(?) + il — cos(t)

, teR.

1
o(1) /O exp(itx) dx ” ; ;

Plots of the real and imaginary parts of ¢ are given in Figure 3.1. O

Example 3.2 (Standard normal distribution). Let Z denote a real-valued random variable
with an absolutely continuous distribution with density function

1
p(z) = ———exp (——22> , —00 <z <00
b4

this is called the standard normal distribution. The characteristic function of this distribution
is given by

(t)——1 /Oo 1) (—1 2) dz = (—11‘2 teR
®© _\/(271) 7ooexp(l Z) exp 22 z = exp > , e R.
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Thus, aside from a constant, the characteristic function of the standard normal distribution
is the same as its density function. O

Example 3.3 (Binomial distribution). Let X denote a real-valued random variable with a
discrete distribution with frequency function

p(x) = (")9"(1 —0)y, x=0,....m
X

here 6 and n are fixed constants, with 6 taking values in the interval (0, 1) and n taking
values in the set {1, 2, ...}. This is a binomial distribution with parameters n and 6. The
characteristic function of this distribution is given by

- . n X n—x
o(t) = ;exp(zrx)(x>e (1—0)

= (1-0) Z (:) (9 e;li(igfx)>

x=0

=[1—-0 4 60exp(it)]".

Plots of the real and imaginary parts of ¢ for the case n = 3,0 = 1/2 are given in
Figure 3.2. O
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Figure 3.2. Characteristic function in Example 3.3.
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Example 3.4 (Gamma distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

— ’Ba a—1 _
fx)= F((x)x exp(—px), x>0

where o and 8 are nonnegative constants. This is called a gamma distribution with param-
eters o and B.
The characteristic function of this distribution is given by

o

oo
o) = / exp(itx) P x* Lexp(—Bx)dx
0 INCY)
o o] o
= P exp—(p — i) =
I'(a) Jo (B —it)
The characteristic function has a number of useful properties that make it convenient
for deriving many important results. The main drawback of the characteristic function is
that it requires some results in complex analysis. However, the complex analysis required is
relatively straightforward and the advantages provided by the use of characteristic functions
far outweigh this minor inconvenience. For readers unfamiliar with complex analysis, a brief
summary is given in Appendix 2.

, —o0 <t <Oo0. O

3.2 Basic Properties

Characteristic functions have a number of basic properties.

Theorem 3.1. Let ¢(-) denote the characteristic function of a distribution on R. Then
(i) @ is a continuous function
(ii) @) < 1forallt € R
(iii) Let X denote a real-valued random variable with characteristic function ¢, let
a, b denote real-valued constants, and let Y = aX + b. Then ¢y, the characteristic
function of Y, is given by

@y (t) = exp(ibt)p(at).

(iv) u is an even function and v is an odd function, where u and v are given by (3.1).

Proof. Note that

o0

lp(r +h) — ()] < f lexp{ix(t + h)} — exp{itx}| d Fx(x)

5/ |exp{ixh} — 1| dFx(x).

Note that | exp{ixh} — 1] is a real-valued function bounded by 2. Hence, the continuity of
¢ follows from the Dominated Convergence Theorem (see Appendix 1), using the fact that
exp(ixh) is continuous at # = 0. This establishes part (i).

Part (ii) follows from the fact that

o] < / lexplitx}| dFy(x) < 1.

o0

Parts (iii) and (iv) are immediate. W
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Example 3.5 (Uniform distribution on the unit interval). In Example 3.1 it is shown that
the characteristic function of this distribution is given by
1 .
t)—1
o) = / exp(itx)dx = M.
0 it
Hence, part (ii) of Theorem 3.1 implies that for all —co < ¢ < oo,
lexp(ir) — 1] < [¢].

This is a useful result in complex analysis; see Appendix 2. O

Example 3.6 (Normal distribution). Let Z denote a real-valued random variable with a
standard normal distribution and let i and o be real-valued constants with ¢ > 0. Define
arandom variable X by

X=0Z+p.

The distribution of X is called a normal distribution with parameters 1 and o .
Recall that the characteristic function of Z is exp(—t2/2); according to part (iii) of
Theorem 3.1, the characteristic function of X is

- X ANE _0_22 .
exp(iut) exp 2at = exp 2t +iut). O

Uniqueness and inversion of characteristic functions
The characteristic function is essentially the Fourier transform used in mathematical anal-
ysis. Let g denote a function of bounded variation such that

/00 lg(x)|dx < o0.

o]

The Fourier transform of g is given by

G@) = ﬁ /Z gx)expfitx}dx, oo <t < o0.

The following result shows that it is possible to recover a function from its Fourier transform.

Theorem 3.2. Let G denote the Fourier transform of a function g, which is of bounded
variation.
(i) G(t) > 0ast — Zoo.
(ii) Suppose xq is a continuity point of g. Then
1 T
g(xg) = m Tlglgc /4 G(t)exp{—itxo}dt.

Proof. The proof of this theorem uses the Riemann-Lebesgue Lemma (Section A3.4.10)
along with the result in Section A3.4.11 of Appendix 3.
Note that part (i) follows provided that

(o]
lim / g(x) sin(tx)dx =0
t—o00 J_ o
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and that

[e¢]

lim g(x) cos(tx)dx = 0.
oo

t—oo |

These follow immediately from the Riemann-Lebesgue Lemma.
Now consider part (ii). Note that it suffices to show that

T 00
g(xg) = i lim / / g(x) cos(t(x — xp))dx dt (3.2)
2 T-oo J_7 J_o
and
T o)
Tlim f / g(x)sin(t(x — xp))dx dt = 0. (3.3)
=0 J_T J-c0

Consider (3.3). Changing the order of integration,

T [e9) oo T
/ / g(x) sin(t(x — x¢))dx dt = / gx) / sin(t(x — xo))dtdx.
T J- —00 -T

Equation (3.3) now follows from the fact that, for T > 0,

T
/ sin(t(x — xp))dt = 0.

T

Now consider (3.2). Again, changing the order of integration, and using the change-of-
variable u = x — xo,

T o0 oo T
/ f g(x) cos(t(x — xp))dx dt = f g(x)/ cos(t(x — xg))dt dx
T J—00 —00 T

o sin(T u)
=/ g(u + xop) ” du.

o0

It now follows from Section A3.4.11 that

. &0 sin(T u)
lim g(u + xo) du = g(xp). 1
T—oo J_ o u

The following theorem applies this result to characteristic functions and shows that the
distribution function of a real-valued random variable may be obtained from its characteristic
function, at least at continuity points of the distribution function.

Theorem 3.3. Let X denote a real-valued random variable with distribution function F
and characteristic function ¢. If F is continuous at xo, X1, Xo < X1, then

/T exp{—itxo} — exp{—itx}
_T it

F(xy) — F(xo) = 2i lim o(t)dt.

7T T—o0

Proof. Fix x. Define

h(y) = F(x +y) = F(y).
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Then 4 is of bounded variation and for any @ < b
b b b
[ oy = [“Feenay - [T Foay
a a a

b+x a+x
=/ F(z)dz—f F(z)d:z
b a

<[F(b+x)— F(a)lx <x.

Hence,

/ Ih() dy < oo,

o0

It follows from the Theorem 3.2 that
1 T o]
h(y) = — lim / exp{—ity} {/ h(z)exp(itz)} dzdy
271 T—o00 -T —00

provided that /4 is continuous at y; note that, in this expression, the integral with respect to
dz is simply the Fourier transform of /. Consider the integral

/OO h(z)exp{itz}dz = %/oo h(z)dexp{itz}.

oo
Using integration-by-parts, this integral is equal to
exp{z tz}

——/ explitz} dh(z) + h(z )‘

Note that exp{i¢z} is bounded,

lim 4(z) = lim h(z) = 0,
z—>—00

and
/00 explitz}dh(z) = /oo explitz}dF(x +z) — /oo explitz} dF(z)
= g()[exp{—irx} —1].
Hence,
o exp(—itx)
/ h(z)exp(itz)dz = (p(t)it,
oo i
so that

T _. _ _.
h(y):i 1imf exp{—ity} — exp{ lt(x+y)}(p(l‘)dl‘,

it
provided that /4 is continuous at y, which holds provided that F is continuous at x and
x 4+ y. Choosing y = x¢ and x = x| — x¢ yields the result. H

Thus, given the characteristic function of a random variable X we may determine differ-
ences of F, the distribution function of X, of the form F (x;) — F(xp) for continuity points
Xo, X1. However, since set of points at which Fx is discontinuous is countable, and F is
right-continuous, the characteristic function determines the entire distribution of X. The
details are given in the following corollary to Theorem 3.3.
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Corollary 3.1. Let X and Y denote real-value random variables with characteristic func-
tions @x and @y, respectively. X and Y have the same distribution if and only if

px (1) = @y(), —o00 <t < o0. (3.4)

Proof. Clearly,if X andY have the same distribution then they have the same characteristic
function.

Now suppose that (3.4) holds; let Fx denote the distribution function of X and let Fy
denote the distribution function of Y. It follows from Theorem 3.3 that if ¢ and b are
continuity points of both Fx and Fy, then

Fx(b) — Fx(a) = Fy(b) — Fy(a).

Leta,,n=1,2,..., denote a sequence of continuity points of both Fx and Fy such
that a,, diverges to —oo as n — 00. Note that, since the points at which either Fx or Fy is
not continuous is countable, such a sequence must exist. Then

Fx(b) — Fx(a,) = Fy(b) — Fy(a,), n=1,2,...
so that

FX(b) - FY(b) = lim FX(an) - FY(an) =0.

Hence, Fx(b) and Fy(b) are equal for any point b that is a continuity point of both Fx and
Fy.

Now suppose at least one of Fy and Fy is not continuous at b. Let b,, n = 1,2, ...,
denote a sequence of continuity points of Fx and Fy decreasing to b. Then

FX(bn)sz(bn), n:1,2,...
and, by the right-continuity of Fx and Fy,
Fx(b) = Fy (D),

proving the result. W

Characteristic function of a sum

The following result illustrates one of the main advantages of working with characteristic
functions rather than with distribution functions or density functions. The proof is straight-
forward and is left as an exercise.

Theorem 3.4. Let X and Y denote independent, real-valued random variables with char-
acteristic functions gx and @y, respectively. Let ¢x .y denote the characteristic function of
the random variable X +Y . Then

ox+y () = ox(Dey (), t€R.

The result given in Theorem 3.4 clearly extends to a sequence of n independent ran-
dom variables and, hence, gives one method for determining the distribution of a sum
X, +---+ X, of random variables X1, ..., X,; other methods will be discussed in
Chapter 7.
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Example 3.7 (Chi-squared distribution). Let Z denote a random variable with a standard
normal distribution and consider the distribution of Z2. This distribution has characteristic
function

/_oo exp(itz? J(Z 5 exp (—%zz) dz = «/(lzn) /_: exp [—%(1 — 2it)zz} dz

. 1
(1 —2it)s
Now consider independent standard normal random variables Z;, Z,, ---, Z,, and let

X = Z?+---+ Z2. By Theorem 3.4, the characteristic function of X is
)= —=-
v (1 —2it):

Comparing this result to the characteristic function derived in Example 3.4 shows that X
has a gamma distribution with parameters « = n/2 and B = 1/2. This special case of the
gamma distribution is called the chi-squared distribution with n degrees of freedom; note
that this distribution is defined for any positive value of n, not just integer values. O

Example 3.8 (Sum of binomial random variables). Let X; and X, denote independent
random variables such that, for j = 1, 2, X ; has a binomial distribution with parameters n
and 6;. Recall from Example 3.3 that X ; has characteristic function

;) =[1-0; +0;expit)]", j=12.
Let X = X + X»,. Then X has characteristic function
@(t) = [1 =60 + 01 exp(in)]"'[1 — 6, + B2 exp(it)]™.

Hence, if 6 = 6,, then X also has a binomial distribution. O

An expansion for characteristic functions
It is well known that the exponential function of a real-valued argument, exp(x), can be
expanded in a power series in x:
X i
X
exp(x) = -

|
=0/

The same result holds for complex arguments, so that

0o it j
exp(itx) = Z < f) ;
= J

see Appendix 2 for further discussion. Thus, the characteristic function of a random variable
X can be expanded in power series whose coefficients involve expected values of the form
E(X™),m=0,1,....

This fact can be used to show that the existence of E(X™), m =1, 2, ..., is related to
the smoothness of the characteristic function at 0; in particular, if E(|X|™) < oo, then ¢x
is m-times differentiable at 0. The converse to this result is also useful, but it applies only
to moments, and derivatives, of even order. Specifically, if ¢y is 2m-times differentiable at
0 then E(X?") < oo. The details are given in the following theorem.
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Theorem 3.5. Let X denote a real-valued random variable with characterstic function ¢(-).
If, for somem = 1,2, ..., E(X™) exists and is finite, then

o=1+3 ("J’.—,)jaxf) + o) as t— 0
=

and, hence, ¢ is m-times differentiable at 0 with
eV(0) = )EXY), j=1,....m.
If, for somem = 1,2, ..., go(z’")(O) exists, then E(X*") < oo.

Proof. Assume that E(X") exists and is finite for some m = 1,2, .... By Lemma A2.1
in Appendix 2, we may write

expfit} = i (ljt% + R, ()
j=0 7
where
[Rn()] < min|e|™*! /(m + DY, 2¢|" /m!}.
Hence,
X (i)/E(XY)

o) = Elexpl{itX}] =1+ Z j'
j=1 :

+ E[R, (1X)].

It remains to be shown that
|E[R,(tX)]|
[z]™
We know that |E[R,,(tX)]| < E[|R,(¢X)|] and that

HR,(tX b dkas
m!| R >|<min{|||| 72|X|m}‘
1" m+1)

—0 ast— 0.

Let

Il 2Ux|” if 1] > 20m + 1/Je]
M, = — 2|x|"} = . .
) m‘“{ w1 2K 1+ 1) if [x] < 20m + 1D/Je|

Hence, it suffices to show that
E[M;(X)] >0 as r— 0.
Note that for each x, M;(x) — 0 as t — 0. Furthermore,
|M ()] < 2|x|"

and, under the conditions of the theorem, E(2| X |") < oo.Itnow follows from the Dominated
Convergence Theorem (see Appendix 1) that

EM,(X)] -0 ast— 0.

This proves the first part of the theorem.
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Now suppose that ¢®(0) exists. Writing ¢®(0) in terms of the first derivative ¢’ and
then writing ¢’ in terms of ¢, we have

w(h) 20(0) + ¢(=h)
h2

9(0) =

Now,

@(h) —2¢(0) + ¢(—h) = E[exp(ihX) — 2 + exp(—ihX)]
= E{[exp(ih X /2) — exp(—ihX/Z)]z} = E{[2i sin(hX/2)]2}.

Hence,
. [i sin(hX/2)]?
) — I 2
4 (O)_%E{ hX/27 X}
and
: 2

By Fatou’s Lemma,
in(h X /2)? in(hX /2)?
lim E M)ﬂ > E {liminf MXZ
h—0 (hX/2)? h—0  (hX/2)?
and since

. sin(¢)
lim =
t—0 t

we have that
E(X?) < ¢?(0)]

so that E(X?) < oo.
The general case is similar, but a bit more complicated. Suppose that ¢?™)(0) exists for
somem =1,2,....Since

(p(2m72)(h) _ 2()0(2”172)(0) + (p(2m72)(_h)

(2m) 0)=1
e = li i

it may be shown by induction that

2m
¢ = lim Z( 1>'( >¢((J—M)h)

Furthermore,

Z( 1)( )w((J—rn)h) {Z( 1)/( )exp[z(]—m)hX]}

= E{[exp(ihX /2) — exp(—ihX /2)]*"}
= E{[2i sin(hX/2)]*"}.
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The remainder of the proof is essentially the same as the m = 1 case considered above.
Since

. .
P2 (0) = limE{—[l sinchX/2)} X””}

h—0 (hX/Z)Zm
and
. 2m
0m)] = tim E | SROX/2T o |
70 (hX /2)¥

and by Fatou’s Lemma (see Appendix 1),

in(hX /2)>m
im E | SROX/DT on | L poyom),
h—0 (hX/2)2m

it follows that
E(X?™) < |9@™(0)|

so that E(X?") < oco. N

Example 3.9 (Normal distribution). Let X denote a random variable with a normal dis-
tribution with parameters © and o; see Example 3.6. This distribution has characteristic
function

0'2 2
@(t) = exp —71 +iut).

Clearly, ¢(t) is m-times differentiable for any m = 1,2, ... so that E(X") exists for all
r=1,2,....1Itis straightforward to show that

¢ 0)=p and ¢"(0)=—(u*+0?)
so that

EX)=p and EX?) =p’>+o2 O

Example 3.10 (Gamma distribution). Consider a gamma distribution with parameters «
and B, as in Example 3.4; recall that this distribution has characteristic function
o) = ﬂ— t e R.
(B —in)
Since the density function p(x) decreases exponentially fastas x — 00, it is straightforward
to show that E(X™) exists for any m and, hence, the moments may be determined by
differentiating ¢.
Note that
(m) . (_\m L _ 13 ¢
() = —(=)"[a(@+ 1) (a+m 1)]7(/3 iy
so that

1
@™ (0) = —(—iY"[a(@ +1)--- (@ +m — 1>]ﬂ—m
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and, hence, that
g+ 1)---(x+m—1)

E(X™) = T

Random vectors
Characteristic functions may also be defined for vector-valued random variables. Let X
denote a random vector taking values in R?. The characteristic function of X is given by

o(t) = px(t) = Elexp(it’ X)], t e R

Many of the basic results regarding characteristic functions generalize in a natural way
to the vector case. Several of these are given in the following theorem; the proof is left as
an exercise.

Theorem 3.6. Let (-) denote the characteristic function of a random variable taking values
in RY. Then
(i) @ is a continuous function

(ii) || < 1,1 € R?

(iii) Let X denote a d-dimensional random vector with characteristic functin ¢x. Let
A denote an r x d matrix, let b denote a d-dimensional vector of constants,
and let Y = AX + b. Then @y, the characteristic function of Y, satisfies ¢y (t) =
exp(itT b)px (ATt).

(iv) Let X and Y denote independent random variables, each taking values in RY, with
characteristic functions ¢x and @y, respectively. Then

Ox+v (1) = ex (Dey (t).

As in the case of a real-valued random variable, the characteristic function of a random
vector completely determines its distribution. This result is stated without proof in the
theorem below; see, for example, Port (1994, Section 51.1) for a proof.

Theorem 3.7. Let X and Y denote random variables, taking values in R4, with char-
acteristic functions ¢x and @y, respectively. X and Y have the same distribution if and

only if
ox(t) = gy(t), teR

There is a very useful corollary to Theorem 3.7. It essentially reduces the problem of
determining the distribution of a random vector to the problem of determining the distri-
bution of all linear functions of the random vector, a problem that can be handled using
methods for real-valued random variables; the proof is left as an exercise.

Corollary 3.2. Let X and Y denote random vectors, each taking values in R?. X and Y
have the same distribution if and only if a” X and a” Y have the same distribution for any
a € RY.

Another useful corollary to Theorem 3.7 is that it is possible to determine if two random
vectors are independent by considering their characteristic function; again, the proof is left
as an exercise.
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Corollary 3.3. Let X denote a random vector taking values in R? and let X = (X4, X»)
where X, takes values in RY and X, takes values in R®. Let ¢ denote the characteris-
tic function of X, let ¢, denote the characteristic function of X, and let ¢, denote the
characteristic function of X,. Then X and X, are independent if and only if

o(t) = pi1(t)p(ta) forallt = (1, 1), t € RY, 1, € R%,

Example 3.11 (Multinomial distribution). Consider a multinomial distribution with
parameters n and (6, ..., 6,), ZT=1 0; = 1. Recall that this is a discrete distribution with
frequency function

n .
X1 pX Xom
p(-xlv"'a-xm)=< )911922“'9m
X1, X2, o vy X

forx; =0,1,...,n,j=1,...,m,such that Z?:l Xx; = n; see Example 2.2.
The characteristic function of the distribution is given by

@(t) =Y exp(itixi + - + ity Xn)p(X1, .., Xn)
X
where the sum is over all

(X1, ..., xp) €EX = [(xl,...,xm)e{O,l,...}m: Zx,-:n}.
i=1

Hence,
n . . ) ,
o) = Z < )[eXp(m)@l]’1 < [exp(ity )0 1™
X -x15-x25"-7-xm
- zm:exp(il‘j)Qj Z( " )
= ~ \X1, X2, ..o, X
exp(it))f, exp(ity)om |
X I - e 7 -
> explit)o); > explit;)o,
m n
= |:Z exp(itj)Gj:|
j=1
where t = (t1, ..., ty).

Using Theorems 3.6 and 3.7, it follows immediately from this result that the sum of r
independent identically distributed multinomial random variables with n = 1 has a multi-
nomial distribution withn =r. 0O

3.3 Further Properties of Characteristic Functions

We have seen that the characteristic function of a random variable completely determines
its distribution. Thus, it is not surprising that properties of the distribution of X are reflected
in the properties of its characteristic function. In this section, we consider several of these
properties for the case in which X is a real-valued random variable.
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In Theorem 3.5, it was shown that the existence of expected values of the form E(X™), for
m=1,2,...,isrelated to the smoothness of the characteristic function of X at 0. Note that
finiteness of E(|X|™) depends on the rates at which F(x) - 1 as x — oo and F(x) - 0
as x — —oo; for instance, if X has an absolutely continuous distribution with density p,
then E(]X|™) < oo requires that |x|" p(x) — 0 as x — Fo0. That is, the behavior of the
distribution function of X at 00 is related to the smoothness of its characteristic function
at 0.

The following result shows that the behavior of |p(¢)| for large ¢ is similarly related to
the smoothness of the distribution function of X.

Theorem 3.8. Consider a probability distribution on the real line with characteristic func-
tion . If

/oo lp(D)]dr < o0

[e¢]

then the distribution is absolutely continuous. Furthermore, the density function of the
distribution is given by

1 oo
px) = —/ exp(—itx)p(t)dt, x €R.
21 J_ o

Proof. By Lemma A2.1, |exp(it) — 1| < |t] so that for any xg, x1,

| exp(—itxq) — exp(—itx))| = | exp(—itxo)| |1 — exp{—it(x; — x)}| <[]l — xol.
3.5
Hence, for any T > 0,
T _.t _ _.Z‘ o0
lim / exp{—itxo) — expl ’xl}w(t)dz]sm—xd f leldt.  (3.6)
T—o00 -T it PSS

Let F denote the distribution function of the distribution; it follows from Theorem 3.3,
along with Equation (3.6), that, for any xo < x; at which F is continuous,

1 T —itxo} — exp{—it
Fxy) — Fxp) = — lim/ expl=itxo} — expi=itxi}
27'[ T—o0 -T it
_ L /“’O exp{—itxo} — exP{_itxl}(p(t)dt.
27 J_so it
Since
| exp(—itxg) — exp(—itxy)| < [t |x; — xol,
it follows that
1 o
|F(x1) — F(x0)| < E/ lp)ldt |x1 —xol =M |x1 — xol

for some constant M.
Now let x and y, y < x, be arbitrary points in R, i.e., not necessarily continuity points
of F. There exist continuity points of F', xo and x;, such that xo < y < x < x; and

[x1 — xol < 2[x — yl.
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Then
[F(x)— F)| < |F(x1) — F(xo)| < M|x1 — xo| <2M|x —y|.

That is, F satisfies a Lipschitz condition and, hence, is absolutely continuous; see
Appendix 1.
Fix x and &. By Theorem 3.3,
Fx+h) —F(x) 1

) — [ Gunyd

where

exp{—itx} —exp{—it(x + h)}

ith '
It follows from (3.5) that, for all &, |G;(¢)] < 1 so that, by the Dominated Convergence
Theorem (see Appendix 1),

Pt PO _ L™ Gty

im
h—0 h 27 J_ oo

Gp(t) =

where
] ) . 1 —exp{—ith}
Go(t) = l%l_r)rz) Gj(t) = exp{—itx} }11_1)12] T
By Lemma A2.1,
1 —exp(—ith) =ith + Ry(th)

where |R,(th)| < (th)2/2. Hence,
1 —exp(—ith) _
h—0 ith N

1

so that Go(¢) = exp(—itx) and

. Fx+h)—-Fx) 1 /OO
Iim ——MFM = —

Lim p o exp(—itx)p(t)dt.

oo

Hence, F is differentiable with derivative

F'(x) = %/ exp(—itx)p(t)dt.

The result now follows from Theorem 1.9. MR

Hence, for those cases in which the integral of the modulus of the characteristic function
is finite, Theorem 3.8 gives an alternative to Theorem 3.3 for obtaining the distribution of a
random variable from its characteristic function. When this condition is satisfied, calculation
of the integral in Theorem 3.8 is often easier than calculation of the integral appearing in
Theorem 3.3.

Example 3.12 (Normal distribution). Let X denote a random variable with a normal
distribution with parameters p and o, as described in Example 3.6. The characteristic
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function of this distribution function is

2
@(t) = exp <—%t2 +i/u>, 00 <t < 00.

o0 00 5
/ lp@®)l 5/ exp (-%ﬁ) dt = «/(0277);

hence, by Theorem 3.8, the distribution of X has density function

Note that

px)
— i * U_2t2 / t dt
=5 _ooexp{—z —z(x—,u)}
= L [T exp —"—2[12 20 — e fo? — (x - /o1 drexp | - —
21 J_o 2 202

1 1 )
= ——exps—(x — , —00 < 0.
0./(Q27) p{ 202(x 2 } =
It follows that this is the density of the normal distribution with parameters ¢ and 0. O
Example 3.13 (Ratio of normal random variables). Let Z, and Z, denote independent
scalar random variables such that each Z;, j = 1, 2, has a standard normal distribution.

Define a random variable X by X = Z;/Z,. The characteristic function of this distribution
is given by

¢(t) = Elexp(itZ1/Z)] = E{Elexp(itZ1/Z2)| 221}, —00 <t < 0.
Since the characteristic function of Z; is exp(—t2 /2) and Z; and Z; are independent,

et)=E |:exp (—%lz/zg)} = /;OO \/(1271) exp {—%(12/22 + 22)} dz

=exp(—|tf]), —oo <t < o00.

The density of this distribution may be obtained using Theorem 3.8. Since

/ exp(—|t|)dt = 2,

o0

it follows that the distribution of X has density function

px) = L /oo exp(—itx)exp(—|t|) dt
2r J_

oo

1 [ 1 [
= —/ exp(—itx)exp(—t)dt + —/ exp(itx)exp(—t)dt

27 0 27 0
1 1 n 1
T 27 [ 14ix 1—ix

1 1
=——, —00 <X <.

w1+ x2

Hence, X has a standard Cauchy distribution; see Example 1.29. O
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In Theorem 3.8 it was shown that if |@(#)| — O fast enough as |¢| — oo for

/ ()] dt

to be finite, then the distribution is absolutely continuous. The following theorem gives a
partial converse to this: if X has an absolutely continuous distribution, then the characteristic
function of X approaches 0 at 00. Furthermore, the smoothness of p is related to the rate
at which the characteristic function approaches 0.

Theorem 3.9. Let X denote a real-valued random variable with characteristic function ¢.
If the distribution of X is absolutely continuous with density function p then

o) >0 as |t| - oo. (3.7)
If p is k-times differentiable with
oo
/ PP )l dx < oo,
—00
then

lp)] = o(|t| ™) as |t| > oo.

Proof. If X has an absolutely continuous distribution with density p, then the characteristic
function of X is given by

<Px(l)=/ exp(itx)p(x)dx.

[e¢]

Hence, (3.7) follows directly from Theorem 3.2.
Suppose p is differentiable. Then, using integration-by-parts,

1 , o 1™ N
ox(t) = —explitr)p)| == f exp(itx)p'(x) dx.
it —o0 Il J_oo
Clearly, p(x) must approach 0 at +c0 and, since exp(i¢x) is bounded,
1 o0
ex(t) = —.—/ exp(itx)p’(x)dx.
it J_ o
If p’ satisfies

/ |p'(x)|dx < o0,

oo

then Theorem 3.2 applies to p’ so that
o0
‘/ exp(itx)p’(x)dx‘ — 0 as [t — oo.
—00

Hence,
lox(®)] = o(t|™") as || — oo.

The results for the higher-order derivatives follow in a similar manner. W
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Example 3.14 (Uniform distribution on the unit interval). Consider the uniform distri-
bution on the unit interval; the characteristic function of this distribution is given by

o) =/ explitx)dx = ZRED =1 _ @, (C"S( ) ) o<1 < oo,
0 it t t
Hence,
in(z)? 1) —1)?
oo = TOECEO =D 042 as 11— oo

so that the density of this distribution is differentiable, at most, one time. Here p(x) = 1 if
0 < x < 1 and p(x) = 0 otherwise so that p is not differentiable. I

Example 3.15 (Binomial distribution). Consider a binomial distribution with parameters
n and 6. The characteristic function of this distribution is given by

o(t) =[1 — 6 + 0 exp(it)]"
so that
lo()] = [(1 — 6)* +26(1 — 0) cos(t) + 6%]>.
It is easy to see that

liminf |p()| = |20 — 1]" and limsup |e(?)| = 1

[t] =00 |t|—o00
so that ¢(#) does not have a limit as |f| — 0; see Figure 3.2 for a graphical illustration of
this fact. It follows that the binomial distribution is not absolutely continuous, which, of
course, is obvious from its definition. O

Symmetric distributions
The distribution of X is said to be symmetric about a point xy if X — xo and —(X — xp)
have the same distribution. Note that this implies that

Fxo+x)=1—F({(xog —x)—), —00<x <00,

where F' denotes the distribution function of X.
The following theorem shows that the imaginary part of the characteristic function of a
distribution symmetric about O is 0; the proof is left as an exercise.

Theorem 3.10. Let X denote a real-valued random variable with characteristic fun-
ction @. The distribution of X is symmetric about 0 if and only if ¢(t) is real for all
—00 <t < 00.

Example 3.16 (Symmetrization of a distribution). Let X denote a real-valued random
variable with characteristic function ¢. Let X, X, denote independent random variables,
such that X; and X, each have the same distribution as X, and let Y = X| — X,. Then Y
has characteristic function

@y (t) = E[exp(iX ) exp(=itX»)] = ¢(1)p(—1)

= lp()*, —oo <t <00
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Hence, the distribution of Y is symmetric about 0; the distribution of Y is called the sym-
metrization of the distribution of X.

For instance, suppose that X has a uniform distribution on the interval (0, 1). Then Y
has characteristic function

sin()? + (cos(t) — 1)?
ey(t) = o , —00 <t < 00

see Example 3.14. O

Lattice distributions
Let X denote a real-valued discrete random variable with range

X ={x1,x2,...}

where x| <x < ---and Pr(X =x;) >0, j =1, 2,.... The distribution of X is said to
be a lattice distribution if there exists a constant b such that, for any jandk, x; — x; isa
multiple of b. This occurs if and only if X is a subset of the set

{a+bj, j=0+1,42, ..}

for some constant a; b is said to be a span of the distribution. A span b is said to be a
maximal span if b > b; for any span b;.

Stated another way, X has a lattice distribution if and only if there is a linear function of
X that is integer-valued.

Example 3.17 (Binomial distribution). Consider a binomial distribution with parameters
n and 6. Recall that range of this distribution is {0, 1, ..., n} with frequency function

px) = (n>9x(1 -0, x=0,1,...,n.
x

Hence, this is a lattice distribution with maximal span 1. O

Example 3.18 (A discrete distribution that is nonlattice). Let X denote a real-valued
random variable such that the range of X is X = {0, 1, \/2}. Suppose this is a lattice
distribution. Then there exist integers 7 and n and a constant b such that

J2=mb and 1=nb.

It follows that /2 = m/n for some integers m, n. Since /2 is irrational, this is impossible.
It follows that the distribution of X is non-lattice.

More generally, if X has range X = {0, 1, ¢} for some ¢ > 0, then X has a lattice
distribution if and only if ¢ is rational. O

The characteristic function of a lattice distribution has some special properties.

Theorem 3.11.
(i) The distribution of X is a lattice distribution if and only if its characteristic function
o satisfies |@(t)| = 1 for some t # 0. Furthermore, if X has a lattice distribution,
then |p(t)| = 1 if and only if 21/t is a span of the distribution.
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(ii) Let X denote a random variable with a lattice distribution and let ¢ denote its
characteristic function. A constant b is a maximal span of the distribution if and
only if o2 /b) = 1 and

lp®)| <1 forall 0 < |t| < 2m/b.
(iii) Let X denote a random variable with range X that is a subset of
fa+bj, j=0,£1,%2,..}

and let ¢ denote the characteristic function of the distribution. Then, for all —oo <
<00,

k
o(1) = exp (—2nk%i>¢ <t+2n5), k=0,41,42,....

Thus, if a = 0, the characteristic function is periodic.

Proof. Suppose X has a lattice distribution. Then the characteristic function of X is of the
form

@(t) = explita) Y explitjb}p;

j=—00

where the p; are nonnegative and sum to 1. Hence,

¢(2m/b) = exp{i2ma/b} Z exp{i2nj}p; = exp{i2ma/b}

p—

so that

le(2m/b)| = 1.
Now suppose that |¢(¢)| = 1 for some ¢ # 0. Writing
o) = y1 +iy2,

we must have y? + y3 = 1. Let F denote the distribution function of the distribution. Then

/exp{itx} dF(x) = exp{itz}

for some real number z. It follows that

f[exp{itz} —exp{itx}]dF(x) =0

and, hence, that

/[cos(tz) —cos(tx)]dF(x) = /[1 —cos(t(x — z2))]dF(x) = 0.

Note that 1 — cos(#(x — z)) is nonnegative and continuous in x. Hence, F must be discon-
tinuous with mass points at the zeros of 1 — cos(#(x — z)). It follows that the mass points
of the distribution must be of the form z 4+ 27 j/¢, for j = 0, 1, . ... This proves part (i)
of the theorem.
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Let
t*=inf{t eR: ¢t >0 and |p@&)| =1}.
Then 277 /t* is the maximal span of the distribution and
o) < 1 for |t| < t*.
That is, the maximal span b = 27/t* satisfies
lpQr/b)l =1
and
()] <1 for|t| <2 /b,

proving part (ii).
Let p; =Pr(X =a +bj), j =0,£1,%2,.... Then

o(t)= Y pjexplit(a+bj)
Jj=—00
and

ot + 2k /b) = Z pjexplit(a + bj)} exp{i2nk(a + bj)/b}

j=—00

o0
= exp(i2rka/b) Y pjexplit(a + bj)}exp(i2mkj).
j=—00
Part (iii) of the theorem now follows from the fact that
exp(i2wkj) = cos(kj2m) +i sin(kj2r)=1. A

Example 3.19 (Binomial distribution). Consider a binomial distribution with parameters
n and 6. The characteristic function of this distribution is given by

o) =1[1—6+0exp(it)]"
so that
lo()] = [(1 — 6)> +20(1 — ) cos(r) + 6°]%.

Hence, |@(z)] = 1 if and only if cos() = 1; that is, |@(¢t)| = 1 if and only if t = 27 for
some integer ;.

Thus, according to part (1) of Theorem 3.11, the binomial distribution is a lattice distri-
bution. According to part (ii) of the theorem, the maximal spanis 1. O

3.4 Exercises

3.1 Let X denote a real-valued random variable with a discrete distribution with frequency function
px)=0(1-06), x=0,1,...;

where 6 is a fixed constant, 0 < 6 < 1. Find the characteristic function of X.
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Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

1
px) = 3 exp(—|x]), —oo<x < oo.

This is the standard Laplace distribution. Find the characteristic function of X.
Let X denote a real-valued random variable with a uniform distribution on the interval (a, b),
b > a. That is, X has an absolutely continuous distribution with density function

1
px)=—, a<x<b;
b—a

here a and b are fixed constants. Find the characteristic function of X.

Let X denote a real-valued random variable with distribution function F and characteristic
function ¢. Suppose that ¢ satisfies the following condition:

1 T
lim — t)dt =2.
T%Tﬁrw()

Based on this, what can you conclude about the distribution of X. Be as specific as possible.

Let X, and X, denote independent real-valued random variables with distribution functions F,
F,, and characteristic functions ¢, ¢,, respectively. Let Y denote a random variable such that
X1, X2, and Y are independent and

Pr(Y =0)=1—-Pr(Y = ) =«

for some 0 < o < 1. Define
7 _ X, %f Y=0 .
X, ify=1
Find the characteristic function of Z in terms of ¢y, ¢,, and «.

Let X denote a real-valued random variable with characteristic function ¢. Suppose that
lp(D)] = () = 1.

Describe the distribution of X; be as specific as possible.
Prove Theorem 3.4.

Let X, and X, denote independent random variables each with a standard normal distribution
and let Y = X, X,. Find the characteristic function and density function of Y.

Prove Theorem 3.6.
Let X and X, denote independent random variables, each with the standard Laplace distribution;
see Exercise 3.2. Let Y = X; + X,. Find the characteristic function and density function of Y.
Prove Corollary 3.2.

Let X denote a real-valued random variable with characteristic function ¢. Suppose that g is a
real-valued function on R that has the representation

gx) = /Oc G(t)exp(itx)dt

for some function G satisfying

/Oo IG(t)|dt < oo.

o]
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Show that
men=/ GO dr.
—00
Consider a distribution on the real line with characteristic function

ot)=1- 12/2)exp(—t2/4), —00 <t < 00.
Show that this distribution is absolutely continuous and find the density function of the distri-
bution.

Let ¢, ..., ¢, denote characteristic functions for distributions on the real line. Let ay, . .., a,
denote nonnegative constants such that a; + - - - + @, = 1. Show that

p(t) = Za,w,-(t), —00 <t <00
j=1

is also a characteristic function.

Let X and Y denote independent, real-valued random variables each with the same marginal
distribution and let ¢ denote the characteristic function of that distribution. Consider the random
vector (X 4+ Y, X — Y) and let ¢y denote its characteristic function. Show that

@o((t1, 1) = @t + t)p(t — 1), (1, 12) € R%.

Consider an absolutely continuous distribution on the real line with density function p. Suppose
that p is piece-wise continuous with a jump at xo, —00 < xy < oco. Show that

/ lp(n)] dr = oo,

o0
where ¢ denotes the characteristic function of the distribution.

Suppose that X is a real-valued random variable. Suppose that there exists a constant M > 0
such that the support of X lies entirely in the interval [—M, M]. Let ¢ denote the characteristic
function of X. Show that ¢ is infinitely differentiable at 0.

Prove Corollary 3.3.
Let X denote a real-valued random variable with characteristic function

o) = %[cos(t) +cos(tm)], —oo<t < o0.

(a) Is the distribution of X absolutely continuous?
(b) Does there exist an r such that E(X") either does not exist or is infinite?
Let ¢ denote the characteristic function of the distribution with distribution function
0 ifx <0
Fxy= { 1 —exp(—x), if0<x<oo’

Show that this distribution is absolutely continuous and that

/ lp@)| dt = oo.

o0
Thus, the converse to Theorem 3.8 does not hold.
Find the density function of the distribution with characteristic function
1—t) ifje <1
0 otherwise

o) = |
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Let the random variable Z be defined as in Exercise 3.5.
(a) Suppose that, for each j = 1, 2, the distribution of X; is symmetric about 0. Is the distri-
bution of Z symmetric about 0?

(b) Suppose that X and X, each have a lattice distribution. Does Z have a lattice distribution?

Let X denote a real-valued random variable with an absolutely continuous distribution. Suppose
that the distribution of X is symmetric about 0. Show that there exists a density function p for
the distribution satisfying

px) = p(—x) for all x.

Let X denote a d-dimensional random vector with characteristic function ¢. Show that X has a
degenerate distribution if and only if there exists an @ € R? such that

lp@’t)) =1  forall reR?.
Prove Theorem 3.10.

3.5 Suggestions for Further Reading

A comprehensive reference for characteristic functions is Lukacs (1960); see also Billingsley (1995,
Section 26), Feller (1971, Chapter XV), Karr (1993, Chapter 6), Port (1994, Chapter 51), Stuart
and Ord (1994, Chapter 4). See Apostol (1974, Chapter 11) for further details regarding Fourier
transforms. Lattice distributions are discussed in detail in Feller (1968). Symmetrization is discussed
in Feller (1971, Section V.5).
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Moments and Cumulants

4.1 Introduction

Let X denote a real-valued random variable. As noted in Chapter 1, expected values of
the form E(X"), forr = 1, 2, ..., are called the moments of X. The moments of a random
variable give one way to describe its properties and, in many cases, the sequence of moments
uniquely determines the distribution of the random variable. The most commonly used
moment is the first moment, E(X), called the mean of the distribution or the mean of X. In
elementary statistics courses, the mean of a distribution is often described as a “measure of
central tendency.”

Let © = E(X). The central moments of X are the moments of X — . The most com-
monly used central moment is the second central moment, E[(X — 1)?], called the variance.
The variance is a measure of the dispersion of the distribution around its mean.

In this chapter, we consider properties of moments, along with associated quantities such
as moment-generating functions and cumulants, certain functions of the moments that have
many useful properties.

4.2 Moments and Central Moments

Let X denote a real-valued random variable. It is important to note that, for a given value
of 7, E(X") may be infinite, or may not exist. As with any function of X, if

E(1X"]) = E(IX]") < o0,
then E(X") exists and is finite. If, for some r, E(|X|") < oo, then,
E(X|') <00, j=1,2,...,r.

This follows from Jensen’s inequality, using the fact that the function ¢, ¢t > 0, is convex
for m > 1; then,

E(IX|))7 <E[(X|))7] = E(IX|") < oo.
so that E(|X]/) < oo.

Example 4.1 (Standard exponential distribution). In Example 1.31 it was shown that if
X has a standard exponential distribution, then

EX)=T@¢+1), r>0.

Hence, the moments of X arer!,r =1,2,.... O

94
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Example 4.2 (Cauchy distribution). Let X denote a random variable with a standard
Cauchy distribution; see Example 1.29. The same argument used in that example to show
that E(X) does not exist may be used to show that E(X") does not exist when r is an odd
integer and E(X") = oo when r is an even integer. [J

Central moments

Let X denote a real-valued random variable such that E(|X|) < oo and let 4 = E(X). As
noted earlier, the central moments of X are the moments of the random variable X — .
Clearly, the first central moment of X, E(X — ), is 0. The second central moment of
X, E[(X — w)?], is called the variance of X, which we will often denote by Var(X). The
standard deviation of X, defined to be the (positive) square root of its variance, /Var(x),
is also often used. Note that, if u exists, Var(X) always exists, but it may be infinite. The
following theorem gives some simple properties of the variance. The proof is straightforward
and left as an exercise.

Theorem 4.1. Let X denote a real-valued random variable such that E(X?) < oo. Then
(i) Var(X) < o0
(ii) Var(X) = E(X?) — u? where u = E(X)
(iii) Let a,b denote real-valued constants and let Y = aX + b. Then Var(Y) =
a* Var (X).
(iv) For anyc € R, E[(X — ©)*] > Var (X) with equality if and only if c = .
(v) Foranyc € R,

1
Pr{|X — u| = c} = — Var(X).
c
Part (v) of Theorem 4.1 is known as Chebyshev’s inequality.

Example 4.3 (Standard exponential distribution). Suppose that X has a standard expo-
nential distribution. Then, according to Example 4.1, E(X) = 1 and E(X?) = 2. Hence,
Var(X)=1. O

Since (X — ) ,r = 3,4, ..., may be expanded in powers of X and u, clearly the central
moments may be written as functions of the standard moments. In particular, the central
moment of order r is a function of E(X/) for j=1,2,...,rsothatif E(|X|") < oo, then
the central moment of order r also exists and is finite.

Example 4.4 (Third central moment). Let X denote a random variable such that E(|X |*) <
00. Since

(X — )’ =X —3uX?+3u*X — 1%,
it follows that

E[(X — n)’] = E(X?) — 3uE(X?) 4+ 21°. 0



96 Moments and Cumulants

Moments of random vectors
Let X and Y denote real-valued random variables such that E(X?) < oo and E(Y?) < oo.
In addition to the individual moments of X and Y, E(X), E(Y), E(X?), E(Y?), and so on, we
may also consider the moments and central moments of the random vector (X, Y), which
are called the joint moments and joint central moments, respectively, of (X, Y); the terms
product moments and central product moments are also used.

The joint moment of (X, Y) of order (r, s) is defined to be E(X"Y?), given that the
expected value exists. Similarly, if uy = E(X) and uy = E(Y), the joint central moment
of order (r, s) is defined to be

E[(X — ux) (Y — uy)’l.

The most commonly used joint moment or joint central moment is the central moment
of order (1, 1), generally known as the covariance of X and Y. The covariance of X and Y
will be denoted by Cov(X, Y) and is given by

Cov(X,Y) =E[(X — ux)(Y — puy)] = E(XY) — puxpy.

Note that the Cov(X, Y) = Cov(Y, X) and that Cov(X, X) = Var(X). It follows from The-
orem 2.1 that if X and Y are independent, then Cov(X, Y) = 0.

The covariance arises in a natural way in computing the variance of a sum of random
variables. The result is given in the following theorem, whose proof is left as an exercise.

Theorem 4.2. Let X andY denote real-valued random variables such that E(X?) < oo and
E(Y?) < co. Then

Var(X +Y) = Var(X) + Var(Y) + 2 Cov(X, Y)
and, for any real-valued constants a, b,

Cov(aX +b,Y)=a Cov(X,Y).

The results of Theorem 4.2 are easily extended to the case of several random variables;
again, the proof is left as an exercise.

Corollary 4.1. LetY, X, ..., X, denote real-valued random variables such that
E(Y?) < oo, E(X7) < oo, j=1,...,n.

Then

Cov <Y, ZX,) - ZCOV(Y, X))
Jj=1 Jj=1
and

Var <Z Xj> = Z Var(X ;) + 2 ZCOV(X,-, X))
=1

=1 J i<j
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Correlation
The correlation of X and Y, which we denote by p(X, Y), is defined by

Cov(X,Y)
pXY) = ——
[Var(X) Var(Y )]

provided that Var(X) > 0 and Var(Y) > 0. The correlation is simply the covariance of
the random variables X and Y standardized to have unit variance. Hence, if a, b, ¢, d are
constants, then the correlation of aX + b and ¢Y + d is the same as the correlation of X
and Y.

The covariance and correlation are measures of the strength of the linear relationship
between X and Y; the correlation has the advantage of being easier to interpret, because of
the following result.

Theorem 4.3. Let X and Y denote real-valued random variables satisfying E(X?) < oo
and E(Y?) < oo. Assume that Var(X) > 0 and Var(Y) > 0. Then

(i) p(X,Y)* <1

(ii) p(X,Y)> =1 if and only if there exist real-valued constants a, b such that

Pr(Y =aX +b) = 1.
(iii) p(X,Y) = 0if and only if, for any real-valued constants a, b,
E{[Y — (aX + b))’} = Var(Y).

Proof. lLetZ =(X,Y), g1(Z) =X — ux, and g2(Z) =Y — uy, where uy = E(X) and
ny = E(Y). Then, by the Cauchy-Schwarz inequality,

Elg1(2)g2(2)]* < Elg1(Z)*] Elg2(2)*].
That is,
E[(X — pux)(Y — py)]* < Var(X) Var(Y);

part (i) follows.

The condition p(X, Y)? = 1 is equivalent to equality in the Cauchy-Schwarz inequality;
under the conditions of the theorem, this occurs if and only there exists a constant ¢ such
that

Pr(Y — py = (X —ux)) = 1.

This proves part (ii).
By part (iv) of Theorem 4.1, for any constants a and b,

E{[Y — (@X + b)) = E{IY — py — a(X — px)’}
= Var(Y) + a® Var(X) — 2a Cov(Y, X)
If p(X,Y) =0, then Cov(Y, X) = 0 so that, by Theorem 4.1,
E{[Y — (aX + b)]*} > Var(Y) + a* Var(X) > Var(Y).
Now suppose that, for any constants a, b,

E{[Y — (aX + b)]*} > Var(Y).
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Let oy = Var(X) and o7 = Var(Y). Taking

Oy
a= —,O(X, Y)
Ox

and
oy
b=pny — —pX,ux,
ox
we have that
oy 2 Oy
Var <Y — —p(X, Y)X) =Var(Y) + p(X,Y)  Var(Y) — 2—p(X, Y) Cov(X, Y)
ox ox

=1 — p(X,Y)*)Var(Y).

Therefore, we must have p(X, Y) = 0O, proving part (iii). N

According to Theorem 4.3, 0 < p(X, Y)? < 1 with p(X, Y)? =1 if and only if Y is,
with probability 1, a linear function of X. Part (iii) of the theorem states that p(X, Y ¥ =0
if and only if the linear function of X that best predicts ¥ in the sense of the criterion
E{[Y — (aX + b)]?} is the function with @ = 0 and b = E(Y); that is, X is of no help in
predicting Y, at least if we restrict attention to linear functions of X. The restriction to linear
functions is crucial, as the following example illustrates.

Example 4.5 (Laplace distribution). Let X denote a random variable with an absolutely
continuous distribution with density function

1
px) = 3 exp{—I|x|}, —o00 <x < 00;

this distribution is called the Laplace distribution. Note that E(X) = 0, E(X 2y=2, and
E(X?) =0.
LetY = X2. Then

Cov(Y, X) =E[(Y —2)X] =E[X® -2X]=0

so that p(Y, X) = 0. Hence, linear functions of X are not useful for predicting Y. However,
there are clearly nonlinear functions of X that are useful for predicting Y; in particular, X2
yields Y exactly. O

Covariance matrices

Joint moments and joint central moments for sets of more than two real-valued random
variables may be defined in a similar manner. For instance, the joint moment of (X, ..., X4)
of order (iy, ip, ..., ig) is given by

B[x} - X{]

provided that the expectation exists. Such moments involving three or more random vari-
ables arise only occasionally and we will not consider them here.

Let X denote a d-dimensional random vector and write X = (X, X», ..., X4), where
Xy, ..., Xy are real-valued. We are often interested in the set of all covariances of pairs
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of (X;, X ). Let
o;; =Cov(X;, X)), i,j=1,...,d.

It is often convenient to work with these covariances in matrix form. Hence, let ¥ denote
the d x d matrix with (i, j)th element given by o;;; note that this matrix is symmetric. The
matrix X is known as the covariance matrix of X. The following theorem gives some basic
properties of covariance matrices; the proof is left as an exercise.

Theorem 4.4. Let X denote a d-dimensional random vector such that E(XT X) < 0o and
let X denote the covariance matrix of X. Then

(i) Var(@'X)=a"Xa, a eR?

(ii) X is nonnegative definite

4.3 Laplace Transforms and Moment-Generating Functions

Let X denote a real-valued random variable. Consider the expected value E[exp{r X }] where
t is a given number, —00 < ¢ < 0o. Since exp{r X} is a nonnegative random variable, this
expected value always exists, although it may be infinite.

The expected value of exp{r X} is closely related to the characteristic function of X,
the expected value of exp{itX}. However, there is an important difference between the
functions exp{rx} and exp{itx}. Although exp{izx} is bounded, with |exp{itx}| = 1, the
function exp{sx} is unbounded for any nonzero ¢ and grows very fast as either x — oo or
x — —oo. Hence, for many random variables, the set of values of ¢ for which E{exp(z X)}
is finite is quite small.

Suppose there exists number § > 0 such that E[exp{r X}] < oo for [t| < §. In this case,
we say that X, or, more precisely, the distribution of X, has moment-generating function

Myx(¢) = E[exp{tX}], |t| <.

As noted above, it is not unusual for a random variable to not have a moment-generating
function.

Laplace transforms
The situation is a little better if X is nonnegative. In that case, we know that E{exp(r X)} < oo
for all + < 0. Hence, we may define a function

L(t) = E{exp(—tX)}, t>0;

we will refer to this function as the Laplace transform of the distribution or, more simply,
the Laplace transform of X.

Example 4.6 (Gamma distribution). Consider the gamma distribution with parameters o
and B, as discussed in Example 3.4. The Laplace transform of this distribution is given by

p X% exp(—Bx)dx = p

— >0 O
['(e) B+

L(t) = /‘00 exp(—tx)
0
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Example 4.7 (Inverse gamma distribution). Let X denote a scalar random variable with
an absolutely continuous distribution with density function
x73 exp(—1/x), x > 0;

this is an example of an inverse gamma distribution. The Laplace transform of this distri-
bution is given by

an:/wamﬁmfﬁmmqmmx=m&awxtza
0

Here K, denotes the modified Bessel function of order 2; see, for example, Temme
(1996). O

As might be expected, the properties of the Laplace transform of X are similar to those
of the characteristic function of X; in particular, if two random variables have the same
Laplace transform, then they have the same distribution.

Theorem 4.5. Let X and Y denote real-valued, nonnegative random variables. If Lx(t) =
Ly(t) forallt > 0, then X and Y have the same distribution.

Proof. Let Xo = exp{—X} and Yy = exp{—Y}. Then X( and Y, are random variables
taking values in the interval [0, 1]. Since Lx (t) = Ly (¢), it follows that E[X(’)] = E[Yé] for
all¢ > 0; in particular, this holds for# = 1, 2, .. .. Hence, for any polynomial g, E[g(X()] =
E[g(Yo)].

From the Weierstrass Approximation Theorem (see Appendix 3), we know that any
continuous function on [0, 1] may be approximated to arbitrary accuracy by a polynomial.
More formally, let /# denote a bounded, continuous function on [0, 1]. Given € > 0, there
exists a polynomial g, such that

sup |h(z) = g(2)] < €.
z€[0,1]
Then
ELA(Xo) = h(Yo)] — Elgc(Xo) = g(Yo)] | =| ELA(X0) = g(Xo)] — E[h(Yo) — g(Yo)]
< Ellh(Xo) = 8(X)ll + ELh(Yo) — g (o)
< 2e.

Since E[ge(Xo) — g.(Y0)] =0,
E[h(X0)] — E[A(Yo)] |< 2¢

and, since € is arbitrary, it follows that E[#(X()] = E[A(Y()] for any bounded continuous
function 4. It follows from Theorem 1.14 that X, and Y, have the same distribution. That
is, for any bounded continuous function f, E[ f(X¢)] = E[ f (Yy)]. Let g denote a bounded,
continuous, real-valued function on the range of X and Y. Since X = —log(Xo) and
Y = —log(Yy), g(X) = f(Xo) where f(¢t) = g(—log()), 0 <t < 1. Since g is bounded
and continuous, it follows that f is bounded and continuous; it follows that

E[g(X)] = E[f(Xo)] = E[f(Yo)] = E[g(Y)]

so that X and Y have the same distribution. M
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Let X denote a real-valued random variable with Laplace transform L. The Laplace
transform has the property that moments of X may be obtained from the derivatives of L(t)
at t = 0. Note that since L(¢) is defined only for ¢t > 0, £(0), £L”(0), and so on will refer to
the right-hand derivatives of £(¢) at ¢ = 0; for example,

L(h) — L(0)

£ = fim =05

Theorem 4.6. Let X denote a real-valued, nonnegative random variable and let L denote
its Laplace transform. Suppose that, for some m = 1,2, ..., E[X"] < oo. Then L"™(0)
exists and

E[X™] = (=1)"L£™(0).
Conversely, if L"(0) exists, then B(X™) < oo.
Proof. We will consider only the case m = 1; the general case follows along similar lines.

Note that, by the mean-value theorem, for all %, x, there exists a g = q(x, h),0 < g < h,
such that

exp(—hx) — 1 = —x exp(—q(x, h)x)h. 4.1)
Hence,
%1_% qx,h)=0
and, for all 4 > 0 and all x,
exp{—q(x, h)h} < 1.

By (4.1), the existence of £/ (0) is related to the existence of
o0
lim —x exp{—q(x, h)x}dF(x).
h—0t 0
Suppose that £(0) exists. Then the limits
00 —h -1 00
tim /0 % aF@ = lim [ —x explq(r. v} dF0)

exist and are finite. By Fatou’s Lemma (see Appendix 1),

o.¢] o0
lim x exp{—q(x, h)x}dF(x) > f x liminf exp{—q(x, h)x}dF(x)
h—0% Jo 0 h—0+

oo
:/ xdF (x),
0
so that E(X) < oo.

Suppose E(X) < oo. Since, for 7 > 0, x exp(—hx) < x and, for all x > 0,
x exp(—hx) > x ash — 0

by the Dominated Convergence Theorem (see Appendix 1),

oo

lim —x exp{—hx}dF(x) = —E(X).
h—0t 0

Hence, £ (0) exists and is equal to —E(X). ®
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Example 4.8 (Inverse gamma distribution). Consider the inverse gamma distribution con-
sidered in Example 4.7. The Laplace transform of this distribution is given by

L(t) = 2tK>(2/1)

where K, denotes a modified Bessel function. The following properties of the modified
Bessel functions are useful; see, for example, Temme (1996) for further details.
The derivative of K, satisfies

K1) = —Kum1(6) = ~K,(0).

The function K, for v = 0, 1, 2 has the following behavior near 0:

2/t? ifv=2
K,@t)~ 1/t ifv=1 ast — 0.
—log(t) ifv=0

Using these results it is easy to show that
L) = =2/tK1(2/t)
and that £'(0) = —1. Hence, E(X) = 1. Similarly,
L'(t) = 2Ko(24/t) ~ log(1/t) ast — 0

so that £”(0) does not exist. It follows that E(X?) is not finite. O

The Laplace transform of a sum of independent random variables is easily determined
from the Laplace transforms of the individual random variables. This result is stated in the
following theorem; the proof is left as an exercise.

Theorem 4.7. Let X and Y denote independent, real-valued nonnegative random variables
with Laplace tranforms Lx and Ly, respectively. Let Lx 1y denote the Laplace transform
of the random variable X + Y . Then

Lxyy(t)=Lx@®Ly(t), t=>0.

Example 4.9 (Gamma distribution). Let X and X, denote independent random variables
such that, for j = 1,2, X; has a gamma distribution with parameters «; and ;. Let L;
denote the Laplace transform of X ;, j = 1, 2. Then

aj

J
(Bj + 1)~
Let X = X + X,. The Laplace transform of X is therefore given by

1 Qa2

L(t) = L2 ;
(B1 + ) (B + )™

see Example 4.6. It follows that X has a gamma distribution if and only if 8; = §,. O
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Moment-generating functions
The main drawback of Laplace transforms is that they apply only to nonnegative random
variables. The same idea used to define the Laplace transform can be applied to a random
variable with range R, yielding the moment-generating function; however, as noted earlier,
moment-generating functions do not always exist.

Let X denote a real-valued random variable and suppose there exists a number § > 0
such that E[exp{t X}] < oo for |t| < §. In this case, we say that X has moment-generating
function

M(t) = Mx(t) = Elexp{tX}], |t| <3&;

d is known as the radius of convergence of Mx. The moment-generating function is closely
related to the characteristic function of X and, if X is nonnegative, to the Laplace transform
of X.

Example 4.10 (Poisson distribution). Let X denote a discrete random variable taking
values in the set {0, 1, 2, ...} and let

p(x) =A% exp(—=A)/x!, x=0,1,2,...

denote the frequency function of the distribution, where A > 0. This is a Poisson distribution
with parameter A.
Note that, for any value of ¢,

Elexp(tX)] = ) _ exp(tx)L" exp(—1)/x!
x=0

= ) _lexp(A]" exp(~4)/x! = exp{lexp(r) — 1]A}.
x=0

Hence, the moment-generating function of this distribution exists and is given by
M (t) = exp{[exp(t) — 1]A}, —o0 <t < o0. O
Example 4.11 (Exponential distribution). Let X denote a random variable with a standard

exponential distribution. Recall that this distribution is absolutely continuous with density
function

px) =exp(—x) x> 0.
Note that

Elexp(tX)] = /00 exp(tx) exp(—tx)dx;
0

clearly, for any ¢ > 1, E[exp(tX)] = oo; hence, the moment-generating function of this
distribution is given by

1
M@)=——, |t 1.
0=1— ltl<

This function can be compared with the Laplace transform of the distribution, which can
be obtained from Example 4.6 by taking o = 8 = 1:

1
LH)=—— t>0. O
® 1+1¢ -
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Example 4.12 (Log-normal distribution). Let X denote a real-valued random variable
with an absolutely continuous distribution with density function

1
x/(27)

this is an example of a log-normal distribution. Consider the integral

1
p(x) = exp{—g[log(xnz}, x >0

o 1 1
/(; exp(tx)x\/(zﬂ) exp {—E[log(x)]z} dx

1 [e¢)
= m/(; exp{tx — [log(x)]*/2 — log(x)} dx.

Since for any ¢ > 0,
tx — [log(x)]2/2 —log(x) ~tx asx — oo,

it follows that E[exp(zx)] = oo for all # > 0 and, hence, the moment-generating function
of this distribution does not exist. [

When moment-generating functions exist, they have many of the important properties
possessed by characteristic functions and Laplace transforms. The following theorem shows
that the moment-generating function can be expanded in a power series expansion and that
moments of the distribution can be obtained by differentiation.

Theorem 4.8. Let X denote a real-valued random variable with moment-generating func-
tion Mx(t), |t| < 8, for some § > 0. Then E[X"] exists and is finite for alln = 1,2, ...
and

My (t) = Zr" E(X")/n!, |t| <S8.
n=0

Furthermore,

EX")=MP©0), n=1,2,....

Proof. Choose t # 0 in the interval (—§, 6). Then E[exp{t X }] and E[exp{—¢X}] are both
finite. Hence,
Elexp{|tX|}] = Elexp(t X)I; x>0] + Elexp(—2 X)) x <o ]
< Elexp{rX}] + E[exp{—tX}] < oc.

Note that, since

~ .

[z X |/
exp{liX|) =) o

Jj=0

n!
| X|" < W exp{|tX]}, n=0,1,2,....

It follows that E[| X|"] < co forn = 1, 2, ... and, hence, that E[X"] exists and is finite for
n=12,....
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For fixed ¢, define
Fulx) =) (xy /.
=0

Note that for each fixed x,
fa(x) — exp{tx} as n — oo.

Also,

| fu(0)] <

> ) /j
Jj=0

< Y lexl//jt < expllex(}
j=0

and, for |t]| < 4,
E[exp(]t X ])] < oo.
Hence, by the Dominated Convergence Theorem (see Appendix 1),

lim E[£,(X)] = ) /B(X7)/jl = Mx(0), |t <.
j=0

That is,
o0
My (t) = Zt”E(X”)/n!, It] < 6.
n=0

The remaining part of the theorem now follows from the fact that a power series may be
differentiated term-by-term within its radius of convergence (see Appendix 3). MW

Example 4.13 (Poisson distribution). Let X denote a random variable with a Poisson
distribution with parameter A; see Example 4.10. Recall that the moment-generating function
of this distribution is given by

M (t) = expf{lexp(t) — 1]1}, —o0 <t < 0.
Note that

M'(t) = M(t) exp(t)A,

M"(t) = M(t) exp(2t)A> + M(t) exp(t)r
and
M"(t) = M(1)[x exp(t) + 3(x exp(1))* + (L exp(1))*].
It follows that
EX)=M @) =%  BX)=M'0)=2+xr
and
E(X?) = A+ 327 + 17

In particular, X has mean A and variance A. O
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Example 4.14 (Log-normal distribution). Let X denote a random variable with the log-
normal distribution considered in Example 4.12; recall that the moment-generating function
of this distribution does not exist. Note that

. o 1 1
E(X") = /0 X' W exp {—E[log(x)]z} dx
7 axorr) )
= /;OO exp(r t)\/(zn) exp( 2t ) dt

1
= exp <§r2> .

Hence, all the moments of the distribution exist and are finite, even though the moment-
generating function does not exist. That is, the converse to the first part of Theorem 4.8
does not hold. O

If two moment-generating functions agree in a neighborhood of 0, then they represent
the same distribution; a formal statement of this result is given in the following theorem.

Theorem 4.9. Let X and Y denote real-valued random variables with moment-generating
functions Mx(t), |t| < dx, and My(t), |t| < 8y, respectively. X and Y have the same dis-
tribution if and only if there exists a § > 0 such that

My (1) = My(2), [t] <8.

Proof. Note that, since My (¢) and My (¢) agree in a neighborhood of 0,
E(XX/)=EY/), j=1,2,....
Since, for |t| < §,
E(exp{7|X1}) =< E(exp{rX}) + E(exp{—1X}) < oo,

it follows that moment-generating function of |X| exists and, hence, all moments of |X|
exist. Let

y, =E(X), j=12....

Since
0 .
> yit!/jt < oo fort| <8,
Jj=0
it follows that
t
lim 22 —0, | <.
j—o0o J'

By Lemma A2.1,

|hx|n+l

(n+ D!

| explinx) - S ihay <
7=0
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Hence,
)exp{izx} exp{ihx}—i(ihx)j/j' o
= T w4+
and
Ny T " Y
t+h)— —/ ix) explitx}dFx(x)| < ———,
ox(t + h) ;J! ) explitx} dFy(0) = <8
where ¢x denotes the characteristic function of X .
Note that
/ (ix)* explitx}dFx(x) = P(1).
Hence,
n 1
|h|n+ Vn+1
t+h)— (’) — n=12,....
x(t + h) ;:J L O <3
It follows that
. ni
wx<r+h>=27¢§{)<r), | <. 4.2)
j=0

Applying the same argument to ¥ shows that gy, the characteristic function of Y, satisfies

[e¢]

or(t+h) =) l; o0, |h| <. (4.3)

=

Taking ¢ = 0 and using the fact that

¢x (0) = E(X") = B(r*) = ¢,(0),
it follows that
ex () = @y(0), || <d
and also that
oWy =P, k=1,2,..., |1] <6
Taking t = §/2 in (4.2) and (4.3) shows that

¢x(5/2+h)=2] 0y (3/2), |hl <3

j=0
and
> pi
or(8/2+h) =Y — i 9(8/2), |h| <.
j=0
Since

o96/2) = o®(5/2), k=1,2,...,
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it follows that
ox(8/2+ h) =oy(§/2+ h), |h]| <3$.
The same argument may be used with —§/2 so that
ox(=8/24+h) = ¢y(=8/2+h), |h] <6

and, hence, that

35
ex() =y(0), Jt] < bR
Using this same argument with § and —4, it can be shown that

ox() = @y (1), |t| < 28.

Continuing in this way shows that

ré
ox(O) =gy (), 1l < —
forany r = 1,2, ... and, hence, that
ox(t) = oy (), —o0 <1 < 00.

It now follows from Corollary 3.1 that X and ¥ have the same distribution. W

Hence, in establishing that two random variables have the same distribution, there is a
slight difference between moment-generating function and characteristic functions. For the
distributions of X and Y to be the same, ¢y (¢) and ¢y (#) must be equal for all # € R, while
Mx (t) and My (¢) only need to be equal for all ¢ in some neighborhood of 0.

Theorem 4.9 is often used in conjunction with the following results to determine the
distribution of a function of random variables. The first of these results shows that there
is a simple relationship between the moment-generating function of a linear function of
a random variable and the moment-generating function of the random variable itself; the
proof is left as an exercise.

Theorem 4.10. Let X denote a real-valued random variable with moment-generating func-
tion Mx(t), |t| < 8. Let a and b denote real-valued constants and let Y = a + bX. Then
the moment-generating function of Y is given by

My (t) = exp(at)Mx(bt), |t| < §/|b].

Like characteristic functions and Laplace transforms, the moment-generating function
of a sum of independent random variables is simply the product of the individual moment-
generating functions. This result is given in the following theorem; the proof is left as an
exercise.

Theorem 4.11. Let X and Y denote independent, real-valued random variables, let Mx(t),
[t| < 8x, denote the moment-generating function of X and let My (t), |t| < 8y, denote the
moment-generating function of Y. Let Mx 1y (t) denote the moment-generating function of
the random variable X +Y . Then

My y(t) = Mx(t)My(t), |t| < min(8x, dy)

where Mx 1y (t) denotes the moment-generating function of the random variable X +7Y .
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Example 4.15 (Poisson distribution). Let X| and X, denote independent random variables
such that, for j = 1, 2, X ; has a Poisson distribution with mean A ;; see Example 4.10. Then
X ; has moment-generating function

M (t) = exp{lexp(t) — 1]A;}, —o0 <t < o0.
Let X = X + X,. By Theorem 4.11, the moment-generating function of X is given by
M(t) = Mi(OMs(t) = expllexp(t) — 11(k1 + A1)}, —00 <1 < 00.

Note that this is the moment-generating function of a Poisson distribution with mean
A1 + Az. Thus, the sum of two independent Poisson random variables also has a Poisson
distribution. O

Example 4.16 (Sample mean of normal random variables). Let Z denote a random vari-
able with standard normal distribution; then the moment-generating function of Z is given
by

M(t) = foo exp(tz) ——— \/(2 ) exp (—%22> dx = exp(t2/2), —00 <t < 0.

Let i« and o denote real-valued constants, ¢ > 0, and let X denote a random variable
with a normal distribution with mean p and standard deviation o. Recall that X has the
same distribution as u + o Z; see Example 3.6. According to Theorem 4.10, the moment-
generating function of X is given by

My (1) = exp(ut) exp(c?t?/2), —oo <t < oo.

Let X1, X, ..., X, denote independent, identically distributed random variables, each
with the same distribution as X. Then, by repeated application of Theorem 4.11, Z7=1 X
has moment-generating function

exp(nut) exp(n02t2/2), —0 <t <0
and, by Theorem 4.10, the sample mean X = Z_’;:] X ;/n has moment-generating function
Mx(t) = exp(ut) exp[(az/n)tz/Z], —00 <t < 0.

Comparing this to My above, we see that X has a normal distribution with mean u and
standard deviation o'//n. O

Moment-generating functions for random vectors

Moment-generating functions are defined for random vectors in a manner that is analo-
gous to the definition of a characteristic function for a random vector. Let X denote a
d-dimensional random vector and let # denote an element of R?. If there exists a8 > 0 such
that

E(exp{t' X}) <00  forall ||f]| <8,
then the moment-generating function of X exists and is given by

Mx(t) = E@exp{t' X}), t e RY, ||t]] < &
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as in the case of a real-valued random variable, § is known as the radius of convergence
of M X-

Many of the properties of a moment-generating function for a real-valued random vari-
able extend to the vector case. Several of these properties are given in the following theorem;
the proof is left as an exercise.

Theorem4.12. Let X andY denote d-dimensional random vectors with moment-generating
functions Mx and My, and radii of convergence §x and Jy, respectively.
(i) Let A denote an m x d matrix of real numbers and let b denote an element of R?.
Then M sx +p, the moment-generating function of AX + b, satisfies

Maxip(t) = exp{t" B}Mx (A1), ||t]| < 84

for some §4 > 0, possibly depending on A.
(ii) If X and Y are independent then M .y, the moment-generating function of X + 7Y,
exists and is given by

Myx1y(t) = Mx(©)My(?), |lt|| < min(dx, dy).
(iii) X and Y have the same distribution if and only if there exists a § > 0 such that

Mx(t) = My () forall ||t]] <.

As s the case with the characteristic function, the following result shows that the moment-
generating function can be used to establish the independence of two random vectors; the
proof is left as an exercise.

Corollary 4.2. Let X denote a random vector taking values in R? and let X = (X4, X>»)
where X, takes values in R®" and X, takes values in R%. Let M denote the moment-
generating function of X with radius of convergence 8, let M| denote the moment-generating
function of X with radius of convergence 8§, and let M, denote the moment-generating
function of X, with radius of convergence 8.

X1 and X, are independent if and only if there exists a 8§y > 0 such that for all t = (t;, t»),
ty e R" 1, e R®, ||t]] < 8,

M@) = M(t)M ().

4.4 Cumulants

Although moments provide a convenient summary of the properties of a random variable,
they are not always easy to work with. For instance, let X denote a real-valued random
variable and let @, b denote constants. Then the relationship between the moments of X and
those of aX + b can be quite complicated. Similarly, if Y is a real-valued random variable
such that X and Y are independent, then the moments of X 4+ Y do not have a simple
relationship to the moments of X and Y.

Suppose that X and Y have moment-generating functions My and My, respectively.
Some insight into the properties described above can be gained by viewing moments of
a random variable as derivatives of its moment-generating function at O, rather than as
integrals with respect to a distribution function. Since the moment-generating function of
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aX + bis given by exp(bt)Mx (at), it is clear that repeated differentiation of this expression
with respect to ¢ will lead to a fairly complicated expression; specifically, by Leibnitz’s rule
for differentiation (see Appendix 3), the nth moment of aX + b is given by

3 (",)b"fafE(Xf), n=0,1,....

=0 N
Similarly, the moment-generating of X + Y is given by M (t)My (¢) and differentiating this
function can lead to a complicated result.

In both cases, the situation is simplified if, instead of using the moment-generating

function itself, we use the log of the moment-generating function. For instance, if M,x1p
denotes the moment-generating function of aX + b, then

log M, x1+(t) = bt + log Mx(at)

and the derivatives of log M,x.,(t) at t = 0 have a relatively simple relationship to the
derivatives of log Mx(at). Of course, these derivatives no longer represent the moments
of the distribution, although they will be functions of the moments; these functions of the
moments are called the cumulants of the distribution. In this section, the basic theory of
cumulants is presented.

Let X denote a real-valued random variable with moment-generating function My (¢),
|t| < 6. The cumulant-generating function of X is defined as

Kx(t) = log Mx(t), |t| <.

Since, by Theorem 4.8, My has a power series expansion for ¢ near 0, the cumulant-
generating function may be expanded

[o¢]
A
Kx(t) = Zﬁt Ll <8

where k1, k3, ... are constants that depend on the distribution of X. These constants are
called the cumulants of the distribution or, more simply, the cumulants of X. The constant
«; will be called the jth cumulant of X; we may also write the jth cumulant of X as « ;(X).

Hence, the cumulants may be obtained by differentiation of K, in the same way that
the moments of a distribution may be obtained by differentiation of the moment-generating
function:

d’
ki = —Kx(t , J=1,2,....
J dti X ( ) =0 J

Example 4.17 (Standard normal distribution). Let Z denote a random variable with a
standard normal distribution. It is straightforward to show that the moment-generating
function of this distribution is given by

My(t) = /'00 exp(tz) ———— \/(2 ) exp <—%zz> dz = exp(t2/2), —00 <t <00

and, hence, the cumulant-generating function is given by
L)
Kz(t)zit , —00 <t <OoQ.

It follows thatk; =0,k = 1,and k; =0, j =3,4,....
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Now let X denote a random variable with a normal distribution with parameters p and
o > 0. Then X has the same distribution as 0 Z + u; see Example 3.6. It follows that X
has moment-generating function

Myx(t) = exp(ut)Mz(ot) = exp(ut) exp(c°t?/2), —o0 <t < 00

and, hence, the cumulant-generating function of X is

1
Kx() = ut + Eaztz, —00 <t < Q.

The cumulants of X are given by k1(X) = u, k2(X) = o2, and ki(X)=0,;=3,4,..;
the distribution of X is often described as a normal distribution with mean p and standard
deviationo. O

Example 4.18 (Poisson distribution). Let X denote a random variable with a Poisson
distribution with parameter A; see Example 4.10. Here

Myx(t) = exp{lexp(t) — 1]A}, —oo <t < 00
so that
Kx(t) = [exp(t) — 1]A, —o0 <t < 00.

It follows that all cumulants of this distribution are equal to A. O

Example 4.19 (Laplace distribution). Let X denote a random variable with a standard
Laplace distribution; see Example 4.5. This distribution is absolutely continuous with den-
sity function

1
px) = EGXP{—|X|}, —00 < X < 00.

Hence, the moment-generating function of the distribution is given by

1
Mx (1) = T—2

5o <1

and the cumulant-generating function is given by
Kx(t) = —log(1 — %), |t| < 1.

It follows that k] = 0,k =2, k3 =0,and k4, = 12. O

Since

<, CEB(X/
Mx(t)=) t/ (j, 2 <,
AT

Kx(t) = log Mx() = log [1 + thE(Xf)/j!j| .
=1

J
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Hence, it is clear that cumulants are functions of moments. The exact relationship may be
obtained by expanding
log [1 + tjE(Xj)/j!}
j=1

in a power series in ¢ and then equating terms with an expansion for the cumulant generating
function. For example,

[e¢]

' T 1 2 21,2
log |1+ ) t/E(X7)/j!|=EX)t+ 5[E(X ) — E(X)?]¢
j=1 '

1 3 2 2
+ 5 [BOC) — BEQOE(X®) — 2(E(XY)

—EXOHEX)E + - -
so that

ki =E(X), k2 =EX? —EX)*, «; =EX?) — E(X)E(X?) — 2[E(X?) — E(X)*]E(X).

Hence, the first cumulant is the mean of X, the second cumulant is the variance of X, and,
with a little algebra, it may be shown that the third cumulant is E[(X — E(X })?], often called
the skewness of X.

The general form of the relationship between moments and cumulants is based on the
relationship between the coefficients of a power series and the coefficients in an expansion
of the log of that power series. Consider a function

al(t) /Z; i t

defined for ¢ in a neighborhood of 0. Suppose that a(#) > 0 for ¢ near 0 and write

B(t) = loga(r) = Z ﬂ,—{ﬂ'.
=0 J*

Clearly, the coefficients f;, B2, . . . are functions of «j, &y, . . . . The following result can be
used to determine an expression for «, in terms of §y, ..., B,; conversely, an expression
for B, can be given in terms of oy, . .., o,.

Lemma4.1. Define the functions a(t) and B(t) and the coefficients a1, ay, .. .and By, Ba, . ..
as above. Then oy = exp(Bo) and

r r
Oy = Z ( .),3_]'4,_]0[,‘__/, r = 0, 1, e
=0 N
Proof. Note that
d’ d’
= = i =0,1,....
% dt’ a(t)’zzo and B dt’ 'B(t)‘mo’ j =01
The result relating ¢y and By follows immediately.
Since «(t) = exp{B(¢)},

/(1) = exp{B(O}B'(1) = a()B'(D).
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Hence, by Leibnitz’s rule,

dr : i
o) = Z( )Eﬂ (t )d,r Fa(0).

j=0

The result now follows by evaluating both sides of this expressionatt = 0. W

Hence, applying this result to the moment-generating and cumulant-generating functions
yields a general formula relating moments to cumulants. In this context, «, ay, . .. are the
moments and 1, B2, ... are the cumulants. It follows that

EXh =) (;)K./JrlE(Xr_j), r=01,....

Jj=0
An important consequence of this result is that «, is a function of E(X), ..., E(X").
Lemma 4.1 can also be used to derive an expression for central moments in terms of
cumulants by interpreting o, ap, ... as the central moments and f;, B, ..., under the

assumption that &) = B; = 0. Hence,
E[(X — 1=k,  ElX —pw’l=x
and
E[(X — u)*] = k4 + 343,

The approach to cumulants taken thus far in this section requires the existence of the
moment-generating function of X. A more general approach may be based on the charac-
teristic function. Suppose that X has characteristic function ¢x (¢) and that E(X") exists and
is finite. Then, by Theorem 3.5, (p(m)(O) exists and, hence, the mth derivative of log (pg”)(t)
at t = 0 exists. We may define the jth cumulant of X, 1 < j < m, by

o 1 dl o (t)
Kj Gy dii g Yx

Of course, if the cumulant-generating function X exists, it is important to confirm that
the definition of cumulants based on the characteristic function agrees with the definition
based on the cumulant-generating function. This fact is established by the following lemma.

Lemma 4.2. Let X denote a random variable with moment-generating function Mx and
characteristic function ¢x. Then, foranym = 1,2, ...,

m

dl«m

m

log My()| = loggx(0)]

(l')m dtm
Proof. Fix m. Since the mth moment of X exists we may write
m . .
Mx() =1+ /E(X’)/jl +o(t™) as t — 0
Jj=1
and

ox(t) =1+ Y (YEX/)/jl+o(™) as 1 — 0.
j=1
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Hence, we may write
log Mx(t) = h(t; E(X), ..., E(X™)) + o(t™)

for some function /4. Since ¢x (¢) has the same expansion as Mx (¢), except with iz replacing
t, we must have

log x(t) = h(it; E(X), ..., E(X™)) + o(t™).

It follows that

m m
log Mx(t ‘ = 1 t ‘ .
o CEMxO| = G tegex ()]
The result now follows from the fact that
— 1 t ) =" 1 t ‘ . ]
a og ¢x(t) o dGoy og px(1) o

Therefore, the log of the characteristic function has an expansion in terms of the cumu-
lants that is similar to the expansion of the characterstic function itself in terms of moments.

Theorem 4.13. Let X denote a real-valued random variable and let px denote the charac-
teristic function of X. If E(|X|™) < oo, then

log(px () = Y _(it)k;/jl +o(t™) ast — 0

j=1
where k1, k2, . .., ky denote the cumulants of X .
If, for somem = 1,2, ..., <p(2'”)(0) exists then k1, k2, . . . , kKo all exist and are finite.

Proof. We have seen that if E(X") exists and is finite, then

m

pr)=1+Yy Of,—,)jE(Xf) +o(t™) ast— 0.

Jj=1

Since, for a complex number z,

d
log(l1+2z) = Z(—l)-/z-f/j +o(|z|Y) as|z| = 0,

j=1
foranyd =1, 2, ..., it follows that log(¢(¢)) may be expanded in a series of the form

m

log(p(t) = Y _(i)c;/jl+ot™) ast — 0,

Jj=1

for some constants ¢y, ¢y, . . ., ¢;;. Using the relationship between cumulants and moments,
it follows that these constants must be the cumulants; that is, ¢; = «;, proving the first part
of the theorem.

The second part of the theorem follows from the fact that the existence of @®™M(0)
implies that all moments of order less than or equal to 2m exist and are finite. Since each
ki, j=1,...,2m,is afunction of these moments, the result follows. H
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Although cumulants may be calculated directly from the characteristic function, there
are relatively few cases in which the moment-generating function of a distribution does not
exist, while the characteristic function is easily calculated and easy to differentiate. It is
often simpler to calculate the cumulants by calculating the moments of the distribution and
then using the relationship between cumulants and moments.

Example 4.20 (Log-normal distribution). Let X denote a random variable with the
log-normal distribution considered in Example 4.14. Recall that, although the moment-
generating function of this distribution does not exist, all moments do exist and are
given by

1
E(X") = exp <§r2> , r=1,2,....
Hence,
k1 = exp(1/2), k, = exp(2) —exp(1), k3 = exp(9/2) — 3 exp(5/2) + 2 exp(3/2),

andsoon. 0O

Earlier in this section, the relationship between the the cumulants of a linear function
of a random variable and the cumulants of the random variable itself was described. The
following theorem gives a formal statement of this relationship for the more general case
in which the moment-generating function does not necessarily exist.

Theorem 4.14. Let X denote a real-valued random variable with mth cumulant «,,(X) for
somem = 1,2,...andletY = aX + b for some constants a, b. Then the mth cumulant of
Y, denoted by k,,(Y), is given by

aki(X)+b ifm=1

Km(Y): {dem(X) lfm :2,3, e

Proof. Let ¢px and gy denote the characteristic functions of X and Y, respectively. We
have seen that gy (t) = exp(ibt)px (at). Hence,

log(py (1)) = ibt + log(px(at)).
If E(|X|™) < oo then, by Theorem 4.13,

log(px (1)) = Z(if)jk_/(x)/j! +o(™) as t — 0

Jj=1

it follows that

m

log(gy (1) = ibt + Y (ita) i;(X)/j! + o(t™)

j=1

= (it)ax1(X) + b) + Y (i) alk;(X)/j! + o(t™).
j=2

The result now follows from Theorem 4.13. H
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Example 4.21 (Laplace distribution). Let X denote a random variable with a standard
Laplace distribution; see Example 4.19. Let i and ¢ > 0 denote constants and let ¥ =
o X + w; the distribution of Y is called a Laplace distribution with location parameter p
and scale parameter 0.

Using the results in Example 4.19, together with Theorem 4.14, the first four cumulants
of this distribution are u, 262, 0, and 126*. O

Example 4.22 (Standardized cumulants). Consider a random variable X with cumu-
lants «q, k2, ... and consider], the standardized variable Y = (X — «)/+/k2. The cumulants
of Y are given by 0, 1, k; /x5, j = 3,4, .... The cumulants of ¥ of order 3 and greater are
sometimes called the standardized cumulants of X and are dimensionless quantities. They
are often denoted by p3, p4, ... so that

pi(X) = ki(X)/ka(X)?, j=3.4,.... O

We have seen that if X and Y are independent random variables, then the characteristic
function of X + Y satisfies
ox 1y (1) = ox (O)py (1);

hence,

log px 1y (1) = log px(¢) + log gy (7).

Since the cumulants are simply the coefficients in the expansion of the log of the character-
istic function, it follows that the jth cumulant of X 4 Y will be the sum of the jth cumulant
of X and the jth cumulant of Y.

Theorem 4.15. Let X and Y denote independent real-valued random variables with mth
cumulants «,,(X) and «,,(Y), respectively, and let k,,(X + Y) denote the mth cumulant of
X +Y.Then

Km(X + Y) = Km(X) + Km(Y)-
Proof. We have seen that px .y () = ¢x(¢)@y(t). Hence, by Theorem 4.13,

log(ex 1y (1)) = log(ex (1)) + log(ey (1) = Z(if)'i(Kj(X) +x;(Y)/j1 + ol™).

j=1

The result now follows from noting that

log gy 4y (1) = Y (i) k;(X +Y)/j! + o(t™)

j=1

astr— 0. W

Example 4.23 (Independent identically distributed random variables). Let X |, X», ...,
X, denote independent, identically distributed scalar random variables and let k1, k>, . . .
denote the cumulants of X;. Let S = Z'}zl X ;. Then

ki(S)=nk;, j=1,2,....
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The standardized cumulants satisfy

(=D

pi(S)=pi/n'T . j=3.4...

where p3, 04, ... denote the standardized cumulants of X;. O

Cumulants of a random vector
Let X = (X4, ..., Xy) denote a d-dimensional random vector. Joint cumulants of elements
of X may be defined using the same approach used to define the cumulants of a real-valued
random variable. For simplicity, we consider only the case in which the moment-generating
function of X exists. However, as in the case of a real-valued random variable, the same
results may be obtained provided only that moments of a certain order exist.

Let M denote the moment-generating function of X with radius of convergence § > 0.
Then the cumulant-generating function of X is given by K (¢) = log M(¢) and the joint

cumulant of order (iy, ..., iy), where the i; are nonnegative integers, is given by
girt - +ia |
Kiywig = o K (O] 3
at' --- ot}
here t = (1, ..., t;). Although this definition may be used to define joint cumulants of

arbitrary order, the most commonly used joint cumulants are those in which i + --- +
ig = 2, for example, k119...0, K1010...0, and so on.
The following result gives some basic properties of joint cumulants.

Theorem 4.16. Let X = (X, ...,X,) denote a d-dimensional random vector with
cumulant-generating function K .
(i) Fix 1 < j < d and assume that

Zikzo.

[y

Then the joint cumulant of order (i1, . .., ig) is the i jth cumulant of X ;.

(ii) Suppose that,forsomel < j <k <d,i; =iy =1landi; +---+is =2.Thenthe
Jjoint cumulant of order (iy, . .., iq) is the covariance of X;, and X;, .

(iii) Suppose that,for1 < j <k < d, X ; and Xy are independent. Then any joint cumu-
lant of order (iv, ...,iq) wherei; > 0 andi; > 01is 0.

(iv) LetY denote a d-dimensional randomvariable such that all cumulants of Y existand
assume that X and Y are independent. Let k;,...;,(X), ki,...,(Y), and k;,..;,(X +Y)
denote the cumulant of order (iy, ...,ig) of X, Y,and X + Y, respectively. Then

K',']...,'d(X +Y)= Kil---id(X) + Kil---id(Y)-

Proof. Consider part (i); without loss of generality we may assume that j = 1. Let K,
denote the cumulant-generating function of X ;. Then

Ki(t)=K({(t,0,...,0)).

Part (i) of the theorem now follows.
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Suppose that d = 2. Let a and b denote constants and let Z = aX; + bX,. Then the
cumulant-generating function of Z is given by

K7(s) = K((as, bs)).

It follows that the second cumulant of Z, Var(Z), is given by

82
Var(Z) = @KX((as, bs)) |X:0
2

9’ 9?
=a’ —Kx(1,0)], _,+ bZWKX(O, 1), _o+2ab
2

002 Kx(t. )],

0110t
Hence, by part (i) of the theorem,
Var(Z) = a* Var(X;) + b* Var(X,) + 2abki;

it follows that k;; = Cov(X, X>).

Now consider the case of general d; without loss of generality we may assume that
j = 1l and k = 2. Part (ii) of the theorem now follows from an argument analogous to the
one used in the proof of part (i): the cumulant-generating function of (X, X») is given by
Kx((t1, 1,0, ...,0)) so that, from the result above, Cov(X1, X3) = k119...0-

Consider part (iii). Without loss of generality we may take j = 1 and k = z. Let K,
denote the cumulant-generating function of X and let K, denote the cumulant-generating
function of (X», ..., X4). Then

K(t) = Ki(t1) + K»(7)

where t = (t1,...,t;) and f = (12, ..., ty). It follows that
0K ) =0
0t10t -

proving the result.
The proof of part (iv) follows from the same argument used in the scalar random variable
case (Theorem 4.15). W

Example 4.24 (Multinomial distribution). Let X = (X1, ..., X,;) denote arandom vector
with amultinomial distribution, as in Example 2.2. The frequency function of the distribution
is given by

n !
X1y .oey X)) = 071057 ...05m,
P " X1, X2, .oy Xy 172 "
forx; =0,1,...,n, j=1,...,m, Z';:lxj = n; here 61, ..., 0, are nonnegative con-
stants satisfying ; + --- +6,, = 1.
Fort = (t4, ..., ty),

m m m X
E |:exp (Z th_,-)j| = Z (Xl . ) nexp(tjxj)é’}’
j=1 Xlyeees Xt 1 R
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where the sum is over all nonnegative integers xp, xs, . .., X, summing to n. Writing
d . < o exp(t;)0,; K
exp(t;x_')@‘-’ = exp(t;)0; S ,
11:11 m ; 7 11:[1 21 exp(t;)0;

it follows from the properties of the multinomial distribution that the moment-generating
function of X is

n

Mx(t)=|:Zexp(tj)9j:| [Zexp(tj)ej] . t=(t1,... 1) €R™
j=1

j=1
The cumulant-generating function is therefore given by

n

Kx(t) = n log [Z exp(z,)ej} .

=1
It follows that, for j = 1, ..., m,
E(X;) = no;, Var(X ;) = nb;(1 —6;)
and, for j,k=1,...,m,
Cov(X;, X;) = —nb,;6;.

Thus, the covariance matrix of X is the m x m matrix with (j, k)th element given by

| ne;(1—0;) if j =k
gk = { —n06,  ifj £k =
4.5 Moments and Cumulants of the Sample Mean
Let Xy, X5, ..., X,, denote independent, identically distributed, real-valued random vari-
ables. Let
_ l n
X,=- X;
) 2
j=1
denote the sample mean based on X, X5, ..., X,.

In this section, we consider the moments and cumulants of X ,,. First consider the cumu-
lants. Let k1, ks, ... denote the cumulants of X; and let «;(X,), k2(X,), ... denote the
cumulants of X ,,. Using Theorems 4.14 and 4.15, it follows that

_ 1 .
k) (Xn) = —mphejs J =12 (4.4)

For convenience, here we are assuming that all cumulants of X exist; however, it is clear
that the results only require existence of the cumulants up to a given order. For instance,
k2(X,) = k»/n holds only provided that «;, exists.

To obtain results for the moments of X,, we can use the expressions relating moments
and cumulants; see Lemma 4.1. Then

E(X,) =E(X,) and E(Xi) = nT_lE(Xl)z + %E (x3).
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Another approach that is often useful is to use the fact that, forr =2,3, ...,

o1 [ '
1D B 90 s e
j=1

J1=1 Jr=1

and then take the expected value of resulting sum. For instance, consider E(X 2). Since

X= 1 ZZZXX X

i=1 j=I k=
B(5) = LYY Ewx X0
i=1 j=1 k=1
In order to evaluate
n
> EXGX X)),

i, jk=1
we must keep track of the number of terms in the sum in which i, j, k are unique, the number
in which exactly two indices are equal, and so on. It is straightforward to show that of the

n3 terms in
Z Z Zx XX,

i=1 j=I k=
n terms have all indices the same, 3n(n — 1) terms have exactly two indices the same, and
in n(n — 1)(n — 2) terms all indices are unique. Hence,

n

> E(XiX,;Xi) = nE (X}) 4 3n(n — DE(X))E (X7) + n(n — 1)(n — 2)E(X1)’.
i,j k=1

It follows that

_3) _ n—1)mn-2)
n2

EX,)® + E(XI)E( D)+ 1E(X)

The same approach can be used for any moment of X, although the algebra becomes
tedious very quickly. The following theorem gives expressions for the first four moments;
the proof is left as an exercise.

Theorem4.17. Let X1, X», ..., X, denote independent, identically distributed, real-valued
random variables such that E(X?}) < oo and let

_ 1 <&
= - X;.
n=a X
j=1
The moments of X ,, satisfy

_ _ —1 1 1
E(X,) = EXn). E(X}) = “——EC01)? + B (X}) = EC)? + — [E(X3) — B2

E(X?)

E(X1)’ + E(XE (X7) + =

_3)_ (n—1n-2) 3n—1)
B n? n?

3 1
= EX)*+ = [EQXDE (X7) —E(X0)* ]+ — [2EX 1)’ = 3B(X)E (X7) +B (X])],
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and
—Dn-2 -
# S0 =D v )+ 20 Ve () L ()

6
= B(X* + — [EX1)E (X7) — EX )]
+ % [1 1E(X1)* — 18E(X1)’E (X7) + 4E(X1)E (X]) + 3E (Xf)z]
+ % [E (X¥) + 12E(X, E (X?) — 4E(X)E (X}) — 3E (X3)* — 6E(X1)4] :

Example 4.25 (Standard exponential distribution). Let X, X», ..., X, denote indepen-

dent, identically distributed random variables, each with a standard exponential distribution.

The cumulant-generating function of the standard exponential distribution is — log(1 — ),

|t] < 1; see Example 4.11. Hence, the cumulants of the distribution are given by «, =

=D, r=1,2,.... It follows from (4.4) that the cuamulants of X, = Z?:I X;/n are
given by

1
n—1
The moments of the standard exponential distribution are given by

K/'(Xn) =

r—n! r=1,2,....

oo
E(X’{)Z/O xlexp(—x)dx =rl, r=12,....

Hence, the first four moments of X, are given by E(X,) = 1,

_ 1 _ 3 2
E(Xﬁ)=1+—, E(Xﬁ)=1+—+—2,
n n n
and
4 6 11 6
E(Xn)=l+—+—2+—3. O
n n n

Expressions for moments and cumulants of a sample mean can also be applied to sample
moments of the form

1 n
— E X" m=1,2,...
n 4

Jj=1

by simply redefining the cumulants and moments in the theorem as the cumulants and
moments, respectively, of X". This is generally simpler to carry out with the moments,
since the moments of X" are given by E(X""), E(X?"), .. ..

Example 4.26 (Standard exponential distribution). As in Example 4.25, let X,
X», ..., X, denote independent, identically distributed, standard exponential random
variables and consider the cumulants of

ll’l
T, ==Y X2
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It follows from the results in Example 4.25 that
E(XY)=@n!, r=12,....

Hence, the first four moments of 7, are given by E(T,,) = 2,

20 120 592

B(7)=4+2.  E(I)=8+ 2+

n n n

and
480 5936 31584

E(T,;‘)=16+7+7+ —

Central moments of X,

Results analogous to those given in Theorem 4.17 for the moments can be obtained for
the central moments by taking E(X;) = 0 and then interpreting E(X?), E(X}), and E(X{)
in Theorem 4.17 as central moments. The resulting expressions are given in the following
corollary; the proof is left as an exercise.

Corollary4.3. Let X, X», ..., X, denote independent, identically distributed, real-valued
random variables and let

1 n
X, ==Y X,
”‘/:1

Assume that E[X‘l‘] < 00. Let uw = E(X1), and let .y, 3, g denote the second, third, and
fourth central moments, respectively, of X 1. Let u>(X,), u3(X,), and (X ,) denote the
second, third, and fourth central moments, respectively, of X ,. Then E(X,)) = p,

_ 1 - 1
pa(Xp) = —pha, m3(Xp) = — 3
n n

and

] 3n—1) , 1 30, 1 )
M4(Xn)=TM2+EM4=ﬁﬂ2+n—3(ﬂ4—3ﬂz)'

Example 4.27 (Standard exponential distribution). As in Examples 4.25 and 4.26, let
X1, X2, ..., X, denote independent, identically distributed, standard exponential random
variables. It is straightforward to show that the first four central moments of the standard
exponential distribution are 0, 1, 2, 9; these may be obtained using the expressions for
central moments in terms of cumulants, given in Section 4.4. It follows from Corollary 4.3
that the first four central moments of X, are 0, 1 /n,2/ n2, and

3 6

PR

respectively. O

We can see from Corollary 4.3 that, as k increases, the order of E[(X,, — wYlasn — oo
is a nondecreasing power of 1/n:

_ R 1 _ , 1 _ . 1
E[(X, —w)1=0 E E[(X, —w)1=0 pel X E[(X, —w)'1=0 el

The following theorem gives a generalization of these results.
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Theorem 4.18. Let X, X», ..., X, denote independent, identically distributed, real-
valued random variables such that all moments of X, exist and are finite. Let i = E(X)
and

_ 1 &
X, =- X:.
n nZ J
Jj=1
Then, fork =1,2,...,

E(X, - w*"1=0 (ik) and E[(X, - w*1 =0 (%) as n — oo.
n n

Proof. The proof is by induction. For k£ = 1, the result follows immediately from Theorem
4.17. Assume that the result holds for k = 1,2, ..., m.Foreach j = 1,2,..., let
iy =El(X, —w'l.

Note that, applying Lemma 4.1 to the moment- and cumulant-generating functions of X, —
1L, the cumulants and central moments of X, are related by

r

r —
Pry1 = Z <j)Kj+l(Xn),arjv r=0,1,....

=0

Since, by (4.4), k;+1(X,) = O(1/n’), and taking jio = 1,

_  _ 1
Hr41 = ZMr—jO <—/> .
=0 "
Consider r = 2m. Then, since the theorem is assumed to hold fork = 1,2, ..., m,
[ OGe) =13, 2m -1
Hom=i= 0 ifj=0,2,4,....2m

Hence,

Pami1 = O W +0 nm+l1 +0 nm+l1 +--+0 W =0 n_m

asn — 00.
Now consider » = 2m + 1. Then

_ 1 1 1 1
M2m+2=0(n—m>+0(nm+1>+~~+0(W) =0 (n_”'>

asn — oo.
It follows that the result holds for k = m + 1, proving the theorem. M

4.6 Conditional Moments and Cumulants

Let X denote a real-valued random variable and let ¥ denote a random variable which
may be a vector. The conditional moments and cumulants of X given ¥ = y are simply
the moments and cumulants, respectively, of the conditional distribution of X givenY = y;
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substituting the random variable Y for y yields the conditional moments and cumulants of
X given Y. In this section, we consider the relationship between the conditional moments
and cumulants of X given Y and the unconditional moments and cumulants of X. As we
will see, this is one area in which it is easier to work with moments than cumulants.

Suppose that E(|X|) < co. We have seen (Theorem 2.5) that E(X) = E[E(X|Y)]. The
same result holds for any moment of X, provided that it exists. Suppose that, for some r,
E(|X|") < oo; then E(X") = E[E(X"|Y)].

Now consider cumulants; for simplicity, suppose that the cumulant-generating function
of X, K, and the conditional cumulant-generating function of X givenY = y, K (-, y), both
exist. Then, for any integerm = 1,2, ...,

m t‘]
K@) = Z FKj +o0(t™) ast—0
=

where k1, k2, ... denote the (unconditional) cumulants of X. Similarly,

m j

K, y)= Z %Kj(y)—f-o(tm) ast — 0

j=1

where k1(y), k2(), . . . denote the conditional cumulants of X given Y = y. The conditional
cumulants of X givenY are then given by «1(Y), k2(Y), . ... Given the indirect way in which
cumulants are defined, the relationship between conditional and unconditional cumulants
is not as simple as the relationship between conditional and unconditional moments.

For the low-order cumulants, the simplest approach is to rewrite the cumulants in terms
of moments and use the relationship between conditional and unconditional moments. For
instance, since the first cumulant is simply the mean of the distribution, we have already
seen that

k1 = B[k (Y)].
For the second cumulant, the variance, note that

K2 = B(X?) — E(X)* = E[E(X?|Y)] — E[E(X|Y)]
= E[E(X?|Y)] — E[E(X|Y)*] + E[E(X|Y)*] — E[E(X |V)]?
= E[Var(X|Y)] + Var[E(X|Y)].
We now consider a general approach that can be used to relate conditional and uncon-

ditional cumulants. The basic idea is that the conditional and unconditional cumulant-
generating functions are related by the fact that K (¢) = log E[exp{K (¢, Y)}]. Ast — O,

K(t) =1ogE |:exp {Z t-in(Y)/j! }] + o(t™). 4.5)
=1

Note that k;(Y), ..., k,,(Y) are random variables; let K, (1, . . ., t,;) denote the cumulant-
generating function of the random vector (k1 (Y), ..., k,;(Y)). Then, by (4.5),

K(t) = log Kp(t, /2, ..., t" /m!) + o(t™) ast — O.
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This result can now be used to express the unconditional cumulants in terms of the con-
ditional ones. Although a general expression relating the conditional and unconditional
cumulants may be given, here we simply outline the approach that may be used.

Consider «;. Note that

moog j—1
K'(t)=Y —Ku(t,1?/2,...,t"/m! ) 4.6

(1) ;Btj (t,1°/ /M), (4.6)

Let &;,..i, denote the joint cumulant of order (i1, ..., i) of (k1(Y), ..., kn(Y)); we will

use the convention that trailing Os in the subscript of i will be omitted so that, for example,
i10...0 Will be written ic;. Then evaluating (4.6) at t = 0 shows that

k1 = K'(0) = &y;

that is, the first cumulant of X is the first cumulant of «;(Y'). Of course, this is simply the
result that

E(X) = E[E(X|Y)].

Now consider the second cumulant of X. We may use the same approach as that used
above; the calculation is simplified if we keep in mind that any term in the expansion of
K" (¢) in terms of the derivatives of K,, that includes a nonzero power of ¢ will be 0 when
evaluated at = 0. Hence, when differentiating the expression in (4.5), we only need to
consider

d

d d
— K, 122, .. " m) + — K, 1272, . 1" m)e
a | o (t, 17/ /m)Jrat2 (¢, 17/ /M)}

t=0

= 8—21( (t,12/2, ..., 1" /m)) —i—iK (t,12/2, ..., t"/m!)
8112 m 9 ’ 9 8[2 m 9 9. ’

=0 =0

It follows that
K2 = K"(0) = &y + Koi;
that is,
Var(X) = Var[E(X|Y)] 4 Var[E(X|Y)].

The expressions for the higher-order cumulants follow in a similar manner. We may
obtain K"’(0) by taking the second derivative of

3 9
— K, 12)2, .. " m) + — K (£, 12/2, .. " m))t
aty oty

d
+ —Kn(t,12/2, ..., " /m)t2)2
0t3
at t = 0. The result is

k3 = i3 + 3ic11 + Kooi -

Example 4.28 (Poisson random variable with random mean). Let X denote a Poisson
random variable with mean Y and suppose that Y is a random variable with a standard
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exponential distribution. That is, the conditional distribution of X given Y is Poisson with
mean Y and the marginal distribution of Y is a standard exponential distribution.
It follows from Example 4.13 that

E(X|Y)=Y, EX?*|Y)=Y +Y? and EXX}|Y)=Y +3Y>+7°.
Since E(Y") = r!, it follows that
E(X)=1, E(X?) =3, and E(X°)=13.

From Example 4.18, we know that all conditional cumulants of X given Y are equal to
Y. Hence,

Var(X) = E[Var(X|Y)] + Var[E(X|Y)] = 2.

To determine k3, the third cumulant of X, we need k3, the third cuamulant of E(X|Y) =7,
kK11, the covariance of E(X |Y') and Var(X |Y), that is, the variance of Y, and i1 , the expected
value of k5(Y) =Y.

Letting yy, 3, . . . denote the cumulants of the standard exponential distribution, it fol-
lows that

K3 =y3+ 2y + y1.

According to Example 4.11, the cumulant-generating function of the standard exponential
distribution is — log(1 — ¢). Hence,

yi=1, =1 and py;3=2.

It follows that k3 = 6. O

4.7 Exercises

4.1 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

o
a

a—1 _
F(oz)l exp{—px}, x>0,

px) =

where ¢ > 0 and 8 > O; this is a gamma distribution. Find a general expression for the moments
of X.

4.2 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

_Te+p)

- T@r(p)
where o > 0 and B8 > 0; this is a beta distribution. Find a general expression for the moments
of X.

4.3 Prove Theorem 4.1.

4.4 Prove Theorem 4.2.

4.5 Prove Corollary 4.1.

4.6 Prove Theorem 4.4.

"1 =x)f" 0<x<1,

px)



128

4.7

4.8

4.9

4.10

4.11

4.12

4.13
4.14

4.15

4.16

4.17
4.18
4.19

4.20

4.21

Moments and Cumulants

Let X denote a d-dimensional random vector with covariance matrix X satisfying |X| < oo.
Show that X has a nondegenerate distribution if and only if ¥ is positive definite.

Let X and Y denote real-valued random variables such that X has mean wy and standard
deviation o, Y has mean py and standard deviation oy, and X and Y have correlation p.
(a) Find the value of 8 € R that minimizes Var(Y — 8X).

(b) Find the values of 8 € R such that Y and Y — X are uncorrelated.

(¢) Find the values of 8 € R such that X and Y — 8X are uncorrelated.

(d) Find conditions under which, for some 8, Y — X is uncorrelated with both X and Y.

(e) Suppose that E(Y |X) = « + BX for some constants «, 8. Express « and B in terms of
MUx, Uy, O0x, Oy, .

Let X and Y denote real-valued random variables such that E(X?) < oo and E(Y?) < oco. Sup-
pose that E[X Y] = 0. Does it follow that p(X, Y) = 0?

Let X and Y denote real-valued identically distributed random variables such that E(X?) < oo.
Give conditions under which

p(X, X +Y)* > p(X,Y).

Let X and Y denote real-valued random variables such that E(X?) < oo and E(Y?) < oo and
let o denote the correlation of X and Y. Find the values of p for which

E[(X —Y)?*] > Var(X).

Let X denote a nonnegative, real-valued random variable; let ' denote the distribution function
of X and let £ denote the Laplace transform of X. Show that

L) = [/00 exp(—tx)F(x)dx, t>0.
0

Prove Theorem 4.7.
Let X denote a nonnegative, real-valued random variable and let £(¢) denote the Laplace trans-
form of X. Show that
" @ L(t)>=0, t=>0.
dtn

A function with this property is said to be completely monotone.
Let X denote a random variable with frequency function

px)=0(1-6)", x=0,1,2,...

where 0 < 6 < 1.
Find the moment-generating function of X and the first three moments.

Let X denote a real-valued random variable and suppose that, forsomer = 1, 2, ..., E(|X|") =
00. Does it follow that E(| X |") = coforallm =r 4+ 1,r +2,...?

Prove Theorem 4.10.
Prove Theorem 4.11.

Let X denote a random variable with the distribution given in Exercise 4.15. Find the cumulant-
generating function of X and the first three cumulants.

Let X denote arandom variable with a gamma distribution, as in Exercise 4.1. Find the cumulant-
generating function of X and the first three cumulants.

Let Y be a real-valued random variable with distribution function F and moment-generating
function M (¢), |t| < §, where § > 0 is chosen to be as large as possible. Define

B =inf{M(): 0 <t < §}.
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4.23

4.24

4.25
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Suppose that there exists a unique real number 7 € (0, §) such that M (7) = B.
(a) Show that Pr(Y > 0) < 8.

(b) Show that M'(t) = 0.

(c) Let

G(x) = %/A exp(ty)dF(y), —oo <x < 00.

Note that G is a distribution function on R and let X denote a random variable with
distribution function G. Find the moment-generating function of X.
(d) Find E(X).
Let X denote a real-valued random variable with distribution function F. Let K(¢), |t]| < 4,
& > 0, denote the cumulant-generating function of X; assume that § is chosen to be as large as
possible.
Leta > 0 be a fixed, real-valued constant and define a function

K., (t)=K(@)—at, t>0.
Define
po = Inf{K,(¢): 0 <t < §}.

(a) Calculate p,, as a function of a, for the standard normal distribution and for the Poisson
distribution with mean 1.

(b) Show that
Pr(X > a) < exp(p,).

(c) Let Xy, X5, ..., X, denote independent random variables, each with the same distribution

as X. Obtain a bound for
Pr (M - a)
n

that generalizes the result given in part (b).

Let X denote a real-valued random variable with moment-generating function Mx(¢), |t| < &,
& > 0. Suppose that the distribution of X is symmetric about 0; that is, suppose that X and —X
have the same distribution. Find «;(X), j = 1,3,5,....

Consider a distribution on the real line with moment-generating function M (z), || < 8,8 > 0
and cumulants k1, k5, . ... Suppose that E(X") = 0,7 =1, 3,5, .... Show that

K1:K3:"':0.

Does the converse hold? That is, suppose that all cumulants of odd order are 0. Does it follow
that all moments of odd order are 0?

Let X and Y denote real-valued random variables and assume that the moment-generating
function of (X, Y') exists. Write

1
M(ti, 1) = Elexp(t X + 6LY)], (1§ +13)° <3,

K(t, ) =logM(t, 1), and let k;;, i, j = 0, 1, ..., denote the joint cumulants of (X, Y).
Let S = X, 4+ X, and let K denote the cumulant-generating function of S.
(a) Show that

Ks(t) = K(t,1), |t| <8//2.
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4.26

4.27

4.28

4.29

4.30

4.31

4.32

4.33

Moments and Cumulants

(b) Let«;(S), j =1,2,..., denote the cumulants of S. Show that
Kk2(S) = K20 + 2K11 + Koo.
(c) Derive a general expression for «;(S) in terms of k., i,k =1,2,....

Let X and Y denote discrete random variables, with ranges X and ), respectively. Suppose that
X and ) each contain m distinct elements of R, for some m = 1, 2, ... ; assume that, for each
x € Xandeachy e ),

Pr(X =x)>0 and Pr(Y =y)>0.
Suppose that
EX/))=E(Y’), j=12,....m.

Does it follow that X and Y have the same distribution? Why or why not?

Let (X, Y) denote a two-dimensional random vector with joint cumulants «;;, 7, j = 1,2, ....
Given an expression for Var(XY') in terms of the «;;.
Let X, X,, ... denote a sequence of real-valued random variables such that X, X,, ... are

exchangeable and (X, X,,...) is a martingale. Find the correlation of X; and X, i, j =
1,2,....

For each n =1,2,..., let (X1,Y1), (X2, Y2),...,(X,,Y,) denote independent, identically
distributed, two-dimensional random vectors with joint cumulants «;;, i, j =1,2,.... Let
X = > o1 Xj/n and Y = > -1 Yi/n. Find r = 1,2, ... such that Var(XY) = 0(n™") as
n — oo.

Let (X, Y1), ..., (X,,Y,) denote independent, identically distributed random vectors such that,
for each j, X; and Y are real-valued; assume that all moments of (X, Y;) exist and are finite.
Let

_ 1 & _ 1 &
X =- X; and Y = — Y;.
n; J n;,

(a) Express E(XY) and E()_(ZY) in terms of the moments of (X, Y;).

(b) Express the cumulants of (X, ¥) of orders (1, 1) and (2, 1) in terms of the cumulants of
(X1, Y1)

Let X and Y denote real-valued random variables. Let «1(Y), k»(Y), . .. denote the cumulants of

the conditional distribution of X given Y and let ky, >, ... denote the cumulants of the marginal

distribution of X.

(a) Show that E[«(Y)] < k7 and E[k,(Y)] < «».

(b) Does the same result hold for x3(Y) and «3? That is, is it true that E[«3(Y)] < «3?

Let X, Y, and Z denote real-valued random variables such that E(X?), E(Y?), and E(Z?) are all

finite. Find an expression for Cov(X, Y) in terms of Cov(X, Y |Z), E(X|Z), and E(Y |Z).

Let X4, ..., X, denote real-valued, exchangeable random variables such that E(X f) < 00. Let

§S=Y X;.Forl <i < j < n, find the conditional correlation of X; and X ; given S.

4.8 Suggestions for Further Reading

Moments and central moments, particularly the mean and variance, are discussed in nearly every
book on probability. Laplace transforms are considered in detail in Feller (1971, Chapters XIII and
XIV); see also Billingsley (1995, Section 22) and Port (1994, Chapter 50). Laplace transforms are
often used in nonprobabilistic contexts; see, for example, Apostol (1974, Chapter 11) and Widder
(1971). Moment-generating functions are discussed in Port (1994, Chapter 56); see Lukacs (1960)
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for a detailed discussion of the relationship between characteristic functions and moment-generating
functions.

Stuart and Ord (1994, Chapter 3) gives a comprehensive discussion of cumulants; in particular,
this reference contains extensive tables relating cumulants to moments and central moments. Another
excellent reference on cumulants is McCullagh (1987) which emphasizes the case of vector-valued
random variables and the properties of cumulants under transformations of the random variable.

Cramér (1946, Chapter 27) gives many results on the moments, central moments, and cumulants of
the sample mean; similar results are also given for the sample variance, a topic that is not considered
here. Conditional cumulants are discussed in McCullagh (1987, Section 2.9); the approach used in
Section 4.6 to relate unconditional and conditional cumulants is based on Brillinger (1969).
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Parametric Families of Distributions

5.1 Introduction

Statistical inference proceeds by modeling data as the observed values of certain random
variables; these observed values are then used to draw conclusions about the process that
generated the data. Let Y denote a random variable with probability distribution P. The
function P is typically unknown and the goal is to draw conclusions about P on the basis of
observing Y = y. The starting point for such an analysis is generally the specification of a
model for the data. A model consists of a set of possible distributions P such that we are
willing to proceed as if P is an element of P.

Thus, in addition to the properties of the individual distributions in P, the properties of
the family itself are of interest; it is these properties that we consider in this chapter.

5.2 Parameters and Identifiability

Consider a family P of probability distributions. A parameterization of P is a mapping
from a parameter space © to the set P so that P may be represented

P = (P(-;0): 0 € O}.

Hence, corresponding to any statement regarding the elements P of P is an equivalent
statement regarding the elements 6 of ©.

Example 5.1 (Normal distributions). Let P denote the set of all normal distributions with
finite mean and nonnegative variance. For 8 = (u, o), let P(-; 6) be the normal distribution
with mean p and standard deviation o and take ® = R x R™. Then P may be written

P = {P(;0):0 € O).

Let Py denote the subset of P consisting of those normal distributions with mean 0. Then
Py consists of those elements of P of the form P(-;0) with = (0,0),0 > 0. O

Example 5.2 (Distributions with median 0). Let P denote the set of all probability distri-
butions on the real line such that O is a median of the distribution. An element P of P is

132
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given by
P(A; F) = / dF(x)
A

where F is a distribution function on the real line satisfying F(0) > 1/2 and F(0—) > 1/2.
Let F denote the set of all nondecreasing, right-continuous functions on R satisfying

lim F(x)=0, lim F(x)=1, FO)> 1/2, and F(0—) > 1/2.
X——00 X—>00

Then the elements of P may be written P(-; F') where F' € F so that F is the parameter
space for the model. O

In parametric statistical inference, the set of possible distributions is assumed to be
parameterized by a finite-dimensional parameter so that ® is a subset of finite-dimensional
Euclidean space; such a model is said to be a parametric model. Models that are not
parametric are said to be nonparametric. The model described in Example 5.1 is a parametric
model, with © a subset of R2; the model described in Example 5.2 is nonparametric. Here
we will focus on parametric models.

In a parametric model for a random variable Y with parameter 6, all quantities based on
the probability distribution of ¥ will depend on the value of 6 under consideration. When
we wish to emphasize this we will include the parameter in the notation of these quantities;
for instance, we will write probabilities as Pr(-; 6) and expectations as E(-; ).

Example 5.3 (Normal distributions). Consider a random variable Y with a normal distri-
bution with mean u and standard deviation o, where —o0o0 < < 0o and o > 0, and let
6 = (u, o). Then

E(Y;0)=un, E¥%0)=pup’+o’

and the characteristic function of Y is given by

2
o(t;0) = exp (—%t2+/u't>, —00 <t < 00. O

Although in the discussion above models have been described in terms of probabil-
ity distributions, we may equivalently describe the model in terms of distribution func-
tions, density or frequency functions when these exist, or even characteristic functions.
In many cases, either all the distributions in P are absolutely continuous or all are dis-
crete with the same minimal support. In these cases, we describe the model in terms of
either the density functions or the frequency functions; such a function is called the model
function of the model. Furthermore, we will generally describe such a model informally,
by specifying the model function and the parameter space, without explicit construction
of the set P.

Example 5.4 (Normal distributions). Consider the set of normal distributions considered
in Examples 5.1 and 5.3. A more informal way of describing this set is the following:
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consider arandom variable Y with a normal distribution with mean p and standard deviation
o, where —00 < u < oo and o > (. The model function of the model is

1 1
[0)= ———expl—==(— W', — :
p(y;0) UJ(Zn)eXP{ 262@ M)} 00 <y <00
where 0 = (u,0) e Rx R*. O

A parameterization of a model is not unique; for example, given a model with parameter
0, the model may also be parameterized by any one-to-one function of 6. Selection of a
parameterization is arbitrary, although in certain cases a particular parameterization may
be more useful if, for example, it simplifies the interpretation of the results.

Example 5.5 (Poisson distribution). Let X denote a random variable with a Poisson dis-
tribution with mean A > 0; the model function is therefore given by

plx;A) = AT exp(—A)/x!, x=0,1,....

Let P denote the set of all such Poisson distributions with mean A > 0.

If X represents the number of “arrivals” observed in a given unit of time, then A represents
the mean arrival rate measured in arrivals per unit of time. We could also parameterize the
model in terms of & = 1/, which has the interpretation as the mean time between arrivals.
The set P could be described as the set of all Poisson distributions with # > 0. The model
function in terms of 6 is given by

f(x;0) =0 exp(—1/0)/x!, x=0,1,....

A statistical analysis could be based on either parameterization. O

Identifiability

One requirement of a parameterization is that it be identifiable; that is, there must be exactly
one value of 6 € ® corresponding to each element of P. Stated another way, a parame-
terization P(-; 0), 6 € ©, of P is identifiable if 6; # 6, implies that P(-; 6,) # P(-;6,). The
condition for identifiability may also be expressed in terms of the model function; however,
when doing so, it is important to keep in mind that absolutely continuous distributions
whose density functions are equal almost everywhere are, in fact, the same distribution.
For instance, if two density functions differ at only a finite number of points, the densities
represent the same distribution.

Example 5.6 (Binomial distribution with a random index). Let X denote a random vari-
able with a binomial distribution with parameters n and , 0 < n < 1, and suppose that n is
itself a random variable with a Poisson distribution with mean A > 0. Take 8 = (5, A) with
®=(0,1) xR,

Consider a model for X. Given n, X has a binomial distribution so that

Pr(X = x|n) = (”)n)‘(l —y T, x=0,1,....n.
X
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It follows that, forany x =0, 1, ...,

Pr(X = x) = <L> exp(—1) Z (Z)(l —n)"A"/n!

1 —n

1-17

_ (&) exp(—1)(1 — A" Y (1 — )2 /j!
j=0

= k)"% exp{(l —mA}

= (nA)" exp(—ni)/x!

so that X has a Poisson distribution with mean nA.
Hence, the model function is given by

p(x;0) = (mA)* exp(—nA)/x!, x=0,1,....

Since the distribution of X depends on 6 = (), A) only through nA, the parameterization
given by 0 is not identifiable; that is, we may have (11, A1) # (12, A2) yet 1A = nA;.

Suppose that instead we parameterize the model in terms of i = nA with parameter
space R™. The model function in terms of this parameterization is given by

Y exp(—y)/x!, x=0,1,...

and it is straightforward to show that this parameterization is identifiable. O

Statistical models are often based on independence. For instance, we may have indepen-
dent identically distributed random variables X, X, ..., X,, such that X has an absolutely
continuous distribution with density p;(-;0) where 8 € ®. Then the model function for the
model for (X1, ..., X,) is given by

PG, x:0) =[] pr(xj:0);
j=1

a similar result holds for discrete distributions. More generally, the random variables
X1, X5, ..., X, may be independent, but not identically distributed.

Example 5.7 (Normal distributions). Let X1, ..., X, denote independent identically dis-
tributed random variables, each with a normal distribution with mean @, —00 < u < 00
and standard deviation ¢ > 0. The model function is therefore given by

1 1 n
x;0) = ———expy ——— xi— )2y, x=(x,...,x,) €R";
Pi0) = s p{ 202;(, u)} (1 )

here 8 = (u,0)and ® = R x R*.

Now suppose that X, ..., X,, are independent, but not identically distributed; specifi-
cally, foreach j = 1,2, ..., n,let X; have anormal distribution with mean §¢; and standard
deviationo > 0, where1y, ..., t, are fixed constants and 8 and o are parameters. The model
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function is then given by

1 1 &
x;0)= ————expr——— x;i— BtV x=(0,...,x,) €RY
P = o p{ 202;(, ﬂ,)} (x, )
here = (8,0)and ® =R x R*. 0O

Likelihood ratios
Likelihood ratios play an important role in statistical inference. Consider a parametric model
for a random variable X with model function p(-;6), 8 € ®. A function of X of the form

p(X;61)
p(X;60)

where 6y, ) € ©, is called a likelihood ratio. For cases in which the true parameter value
6 is unknown, the ratio p(x;6;)/p(x;6) may be used as a measure of the strength of the
evidence supporting 6 = 6, versus 6 = 6y, based on the observation of X = x.

Note that
X;0
E [P( 1) : 90} _
p(X;6p)

for all 8; € ©. To see this, suppose that X has an absolutely continuous distribution with
density function p(-;6p). Then

’ [p(X;QO)ﬁO} B /—oo P(x;@o)p(x’%)dx

oo
= / px;0)dx = 1.
—00
A similar result holds for frequency functions.
Another important property of likelihood ratios is given in the following example.

Example 5.8 (Martingale property of likelihood ratios). Consider a sequence of real-
valued random variables Y, Y5, ...; in particular, we are interested in the case in which
Y, Y, ... are not independent, although the following analysis also applies in the case
of independence. Suppose that, for each n = 1, 2, ..., distribution of Y}, Y,..., Y, is
absolutely continuous with density function p,(-;0) where 6 is a parameter taking values
in a set ®. We assume that for each 8 € ® the density functions p,(-;0),n = 1,2, ..., are
consistent in the following sense. Fix n. For any m < n the marginal density of (Y1, ..., Y;,;)
based on p,(-;0) is equal to p,,(-;0). That is,

oo o0
Pm(}’hu-,)’m;@):/ / pn(ylw--symaym-&-la--~7yn;9)dym+l"'dym feO.

—00 —00

Let 6y and 6, denote distinct elements of ® and define
Yi,...,Y,;0
Xn:pn(l f 1)’ — 12
pI‘L(Yls ML) Yvns 90)

where Y1, Y», ... are distributed according to the distribution with parameter 6,. Note that

the event p, (Y1, ..., Y,;6p) = 0 has probability 0 and, hence, may be ignored.



5.3 Exponential Family Models 137

Then

> Yi,..., Y, v;0 Yi,..., Y., v:6
E(Xn+1|Y11 o Yn;Qo) :/ pn+1( 1 n y l)pn+1( 1 ns Y O)
—oo Put1(Y1, oo Yo, y360)  pu(Yy, ..., Y5 6h)

dy

fm Pur1(Y1, ..., Yo, y361)
—00 pn(Ylvu-»Yn;eO)
. Pu(Y1, ..., Yy501)

pn(Yl, ML) Yn;QO)
=X,

Since (X1, ..., X,) is a function of (Y1, ..., Y,),

E(X,11X1, ..., X0300) = E[E(X, 11 X1, ..o, X, Y, o0, Y 00) [ XL .oy X 60)
= E[E(X,11|Y1, ..., Y3 00)| X1, - .., X3 60]
:E[Xn|X17 ---»Xn;QO] = Xn~

It follows that X, X5, ... is a martingale. O

5.3 Exponential Family Models

Many frequently used families of distributions have a common structure. Consider a family
of disributions on R?, {P(-;0): 0 € ®}, such that each distribution in the family is either
absolutely continuous or discrete with support not depending on 6. For each 0, let p(-;0)
denote either the density function or frequency function corresponding to P(-; 8). The family
of distributions is said to be an m-parameter exponential family if each p(-; 8) may be written

p(y;0) = exp{c(0) T(y) — AOY(y), yeY (5.1

where Y CRY,¢c:® > R", T: Y —>R", A:® >R, andh:Y — R™. It is important
to note that the representation (5.1) is not unique; for example, we may replace c(6) by
c(0)/2 and T(y) by 2T (y).

Example 5.9 (Normal distributions). Let Y denote a random variable with a normal dis-
tribution with mean u, —00 < u < oo and standard deviation ¢ > 0; then Y has density
function

1 1
Wexp{—ﬁ(y —;1,)2}, —00 <y < 00.

Hence, 0 = (i, o) and ® = R x R*. This density may be written
1 1 u? 1
exp {——2y2 + ﬂy - —M—z —logo} —F, Y€k
o o (2n)2

This is of the form (5.1) with T(y) = (yz, y),
1
c(8) = (— —), 0 =(u,o),

202 o2

AB) = n2/(26%) — logo, h(y) = (27)"2, and Y = R. Hence, this is a two-parameter
exponential family distribution. O
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Example 5.10 (Poisson distributions). As in Example 5.5, let P denote the set of all
Poisson distributions with mean A > 0; the model function is therefore given by

p(x;A) = AT exp(—A)/x!, x=0,1,....

This can be written
1
exp{x log(A) — k}—‘, xef{0,1,2,...};
x!

hence, this is a one-parameter exponential family with c(A) = log(X), T'(x) = x, A(L) = A,
h(x)=1/x,and X ={0,1,2,...}. O

One important consequence of the exponential family structure is that if Y1, Y5, ..., Y,
are independent random variables such that the marginal distribution of each Y; has model
function of the form (5.1), then the model function for Y = (Y1, ..., Y,) is also of the form
(5.1). The situation is particularly simple if Y1, ..., Y, are identically distributed.

Example 5.11 (Exponential distributions). Let Y denote a random variable with density
function

1
g exp(—y/0), y>0

where 6 > 0; this is an exponential distribution with mean 6. This density function may be
written in the form (5.1) with T'(y) = y, c(f) = —1/6, A(#) = log 8, and h(y) = 1. Hence,
this is a one-parameter exponential family distribution.

Now suppose thatY = (Yy, ..., Y,)where Yy, ..., Y, areindependent random variables,
each with an exponential distribution with mean 6. Then the model function for Y is given

by
i)

This is of the form (5.1) with T(y) = Z;:] v, c(@)=—1/8, A®) =nlog6, and
h(y) = 1; it follows that the distribution of Y is also a one-parameter exponential family
distribution. [

Natural parameters

It is often convenient to reparameterize the models in order to simplify the structure of the
exponential family representation. For instance, consider the reparameterization n = c(6)
so that the model function (5.1) becomes

exp(n T(y) — A[BNAG). v €.
Writing k() for A[6(n)], the model function has the form
exp{n’ T(y) — k(m}h(y), y € ; (5.2)
the parameter space of the model is given by

Ho=1{neR".n=1c0), 6 € OL



5.3 Exponential Family Models 139

The model function (5.2) is called the canonical form of the model function and the
parameter 7 is called the natural parameter of the exponential family distribution. Note
that the function k can be obtained from 7', i, and ). For instance, if the distribution is
absolutely continuous, we must have

fy expln () — k() dy = 1, 1€ Hy
so that
k(n) = log fy exp{n’ T(n}h(y)dy.
The set
H=(neR" /y expln’ Ty dy < o0}

is the largest set in R” for which (5.2) defines a valid probability density function; it is
called the natural parameter space. A similar analysis, in which integrals are replaced by
sums, holds in the discrete case.

Consider an exponential family of distributions with model function of the form

exp{n’ T(y) —k(m}h(y), y e,

where n € Hy and Hj is a subset of the natural parameter space. In order to use this family
of distributions as a statistical model, it is important that the parameter 7 is identifiable. The
following result shows that this holds provided that the distribution of 7' (Y’) corresponding
to some 1o € H is nondegenerate; in this case, we say that the rank of the exponential family
is m, the dimension of 7.

Lemma 5.1. Consider an m-dimensional exponential family with model function

exp{n” T(y) — k(mih(y), y €,

where n € Hy C 'H. The parameter 1 is identifiable if and only if T (Y') has a nondegenerate
distribution under some 1y € H.

Proof. We consider the case in which the distribution is absolutely continuous; the argu-
ment for the discrete case is similar. The parameter 7 is not identifiable if and only if there
exist 11, 2 € Hy such that

f expln] T(y) — k(n)}h(y)dy = / exp {n3 T(y) — k(n2)} h(y) dy
A A
for all A C Y. That is, if and only if

/AGXP{(m —10) T(y) = [k(n1) — k(o)1 exp {n§ T(y) — k(no)} h(y) dy

= /; exp{(n2 — n0)" T(y) — [k(n2) — k(no)1} exp {ng T(y) — k(n0)} h(y)dy

where 7 is an arbitrary element of .
This is true if and only if

exp {n] T(Y) — k(n)} = exp {n3 T(¥Y) — k(n2)}
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with probability 1 under the distribution of ¥ with parameter ny. It follows that » is not
identifiable if and only if, with probability 1 under the distribution with parameter 7o,

(m —m) TY) = k(n2) — k(m).

That is, n is not identifiable if and only if 7(Y) has a degenerate distribution under the
distribution with parameter ng. Since 1 is arbitrary, it follows that 7 is not identifiable if and
only if T(Y) has a degenerate distribution under all g € H. Equivalently, 1 is identifiable
if and only if 7'(Y) has a nondegenerate distribution for some no € H. W

An important property of the natural parameter space 7 is that it is convex; also, the
function k is a convex function.

Theorem 5.1. Consider an m-dimensional exponential family of probability distributions

exp{n” T(y) — k(M}h(y), y €.

Then the natural parameter space 'H is a convex set and k is a convex function.

Proof. We give the proof for the case in which the distribution is absolutely continuous.
Let n; and 1, denote elements of H and let 0 < ¢ < 1. By the Holder inequality,

fy exp{[tn] +(1 — ) [T} h(y)dy
= fy exp {tn] T(M}exp {(1 — n) T(»} h(y)dy

= fy exp {7 T} exp {nI T} ™ h(y)dy
t (1-1)
< [ /y exp{n?ny)}h(y)dy} [ /y exp {n] T(y)}h@)dy] < .

It follows that 5, + (1 — t)n, € H and, hence, that H is convex. Furthermore,

explk(tm + (I — )m)} < exp{tk(n) + (1 — Hk(n2)},
proving that k is a convex function. W
The function k is called the cumulant function of the family. This terminology is based
on the fact that if the natural parameter space is open set, in which case the exponential

family is said to be regular, then the cumulant-generating function of 7'(Y) may be written
in terms of k.

Theorem 5.2. Let Y denote a random variable with model function of the form

exp{n” T(y) — k(M}h(y), y e,

where n € 'H and 'H is an open set. Then the cumulant-generating function of T'(Y') under
the distribution with parameter n € H is given by

Kr(t;m) =k(n+1) — k@), 1t €R", ||l <6

for some § > 0.
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Proof. The proof is given for the case in which the distribution is absolutely continuous.
Let M denote the moment-generating function of 7'(Y). Then

M(t) = Elexp{t’ T(Y)}]

= /y exp{t” T(y)}exp{n” T(y) — k(m)}h(y)dy

= / exp{(t +m)" T(y) — k(m}h(y)dy.
Yy
For sufficiently small ||¢||, ¢ + n € H. Then, by definition of the function k,

M(t) = exp{k(r + n) — k(n)},

proving the result. MW

Example 5.12 (Poisson distributions). Consider the family of Poisson distributions
described in Example 5.10. Recall that the model function is given by

px;A) = A exp(—A)/x!, x=0,1,...
which can be written
1
exp{x log(A) — k}—', x€{0,1,2,...}.
x!

Hence, the natural parameter is n = log(A), the natural parameter space is H = R, and
the cumulant function is k(n) = exp(n). It follows that the cumulant-generating function
of X is

exp(t +n) —exp(n), teR.
In terms of the original parameter A, this can be written

Aexp(r) — 1], reR. O

Example 5.13 (Exponential distributions). Consider the family of exponential distribu-
tions described in Example 5.11. Recall that the model function is given by

éeXp(—y/G), y >0,
where 0 > 0; this may be written
exp{ny +log(-m}, y >0
where —oco < 1 < 0. It follows that the cumulant-generating function of Y is given by
log(r —n) —log(=n), [t] < —n.

In terms of the original parameter 6, this can be written

1
log(6t + 1), |t| < 7" 0



142 Parametric Families of Distributions

Some distribution theory for exponential families

The importance of exponential family distributions lies in the way in which the parameter
of the model interacts with the argument of the density or frequency function in the model
function. For instance, if p(y;#) is of the form (5.1) and 6y and 6, are two elements of the
parameter space, then log[ p(y; 61)/p(y;6p)] is a linear function of 7' (y) with coefficients
depending on 6y, 6;:

p(y;61)

p(y:600)
This type of structure simplifies certain aspects of the distribution theory of the model,
particularly those aspects concerned with how the distributions change under changes in
parameter values. The following lemma gives a relationship between expectations under
two different parameter values.

= A(60) — ABy) + [c(61) — c(@)" T ().

Lemma 5.2. Let Y denote a random variable with model function of the form

exp{n” T(y) — k(M}h(y), y €V,

where n € 'H.
Fixno € Handlet g : Y — R. Then

E[g(Y); n] = exp{k(no) — k(n)}E[g(Y) exp{(n — no)" T(¥)}; nol
for any n € 'H such that

E[lg(Y)I;n] < oo.

Proof. The proofis given for the case in which Y has an absolutely continuous distribution.
Suppose E[|g(Y)|; n] < oo; then the integral

f gp(y;mdy
y

exists and is finite. Note that

; Y,
/ gyp(y;n)dy = / g(y)Mp(y; no)dy =E [g(Y)M; 770] ;
Y Y p(y;no) p(Y;n0)
The result now follows from the fact that
Y,
PO ko) — k() expl(n — mo) T(V)). m
p(Y;n0)

Consider a random variable Y with model function of the form
exp{c(®)" T(y) — AO)}h(y);

this function can be written as the product of two terms, the term given by the exponential
function and A (y). Note that only the first of these terms depends on 6 and that term depends
on y only through T'(y). This suggests that, in some sense, the dependence of the distribution
of Y on 6 is primarily through the dependence of the distribution of 7'(Y) on 6. The following
two theorems give some formal expressions of this idea.
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Theorem 5.3. Let Y denote a random variable with model function of the form
exp{c(®)' T(y) — AO)}h(y), y €,

where 8 € ©. Then the conditional distribution of Y given T (Y) does not depend on 6.

Proof. Letn = c(0), H denote the natural parameter space of the model, and
Ho={neH:n=1c),0 € B}.
Then the model function for this model can be written

exp{n” T(y) — k(mih(y), y €,

where n € Hy. Hence, it suffices to show that the conditional distribution of Y given T'(Y),
based on this model, with the parameter space enlarged to H, does not depend on 7.

We prove this result by showing that for any bounded, real-valued function g on ),
E[g(Y)|T;n] does not depend on 7.

Fix no € H. The idea of the proof is that the random variable

Z = E[g(V)|T;m0]
satisfies
E[Zh(T);n] = E[g(Y)r(T); n]
for any n € 'H, for all bounded functions % of T. Hence, by Theorem 2.6,
Z =E[gM)[T;n].
That is, for all ny, n € H,
E[g(Y)[T;n] = E[g(Y)IT: nol,

which proves the result.
We now consider the details of the argument. Let & denote abounded, real-valued function
on the range of T. Then, since Z and g(Y) are bounded,

E[|Zh(T)|;n] < oo and E[|g(Y)r(T)[;n] < 003
by Lemma 5.2,

E[ZA(T); n] = exp{k(n) — k(no)YE[Zh(T) exp{(n — no)" T}; mo]

and
E[g(Y)A(T); n] = exp{k(n) — k(110)}E[g(Y)A(T) exp{(n — no)" T}; mol.
Let
ho(T) = h(T) exp{(n — no) T}
Note that

E[lho(T)]; nol = expl{k(no) — k(M}E[|A(T)];n] < oo.
It follows that

E[Zho(T); no]l = E[g(Y)ho(T); m0]



144 Parametric Families of Distributions

so that
E[ZA(T);n] = E[g(Y)h(T);n]
for all bounded /. Hence, by Theorem 2.6,
Z = E[g(V)[T;m0] = Elg(M)IT:n],

proving the result. M

Theorem 5.4. Let Y denote a random variable with model function of the form
exp{c(0)" T(y) — A}h(y), y €,
where 6 € ® and c : ® — R". Let
Ho=1{neH:n=c), 6cB}

where H denotes the natural parameter space of the exponential family, and let Z denote
a real-valued function on ).
(i) If Z and T (Y) are independent, then the distribution of Z does not depend on 6 € Q.
(ii) If Ho contains an open subset of R™ and the distribution of Z does not depend on
0 € ©, then Z and T (Y) are independent.

Proof. We begin by reparameterizing the model in terms of the natural parameter n = c(0)
so that the model function can be written

exp{n” T(y) — k(}h(y), y €,

with parameter space H,.
Suppose that Z and 7 (Y) are independent. Define

o(t;n) = Elexp(itZ);n], t€R, neH.
Then, by Lemma 5.2, for any ny € H
@(1;m) = exp{k(no) — k(D)Elexp(it Z) exp{(n — no) T(Y)};mol, 1 €R, neH.
Since Z and T (Y) are independent,
@(1;m) = exp{k(no) — k(nYElexp(it Z); nolElexp{(n — no) T(V)};mol, t €R, neH.
Since
Elexp{(n — 10)" T(V)}; 110] = exp{k(1) — k(10)}
and E[exp(it Z); no] = ¢(¢; no), it follows that, for all n, ny € H,
p;n) = @(t;no), t€R

so that the distribution of Z does not depend on n € H and, hence, it does not depend on
n € Hy. This proves (i).

Now suppose that the distribution of Z does not depend on 1 € H, and that there exists
a subset of Hy, H;, such that H; is an open subset of R”. Fix ny € H; and let g denote
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a bounded function on the range of Z; then there exists a §; > 0 such that exp[tg(Z)] is
bounded for |f| < &;. Hence, by Lemma 5.2, for any n € H,

Ef{explrg(Z)]; n} = exp{k(10) — k(m)}Elexplrg(Z)] exp{(n — 10)" T(Y)}; no]-
Using the fact that
Elexp{(n — no)" T(Y)}; nol = exptk(n) — k(no)},
it follows that, for all n € H and all |7]| < &,
E{explrg(Z) + (n — no)" T(Y)]; o} = E{explzg(2)]; }Elexp{(n — o) T(Y)}; 1o].
For § > 0, let
H(S) = {n € H: [In — noll < 8}

and let 6, > 0 be such that H(8,) C Hj; since H; is an open subset of R™ and ny € H;,
such a 6, must exist. Then, since the distribution of g(Z) does not depend on 5 for n € Hy,
for n € H(8,) and |¢| < 4y,

E{exp[tg(2)]; n} = E{exp[tg(2)]; no}.
It follows that, for all n € H(5;) and all |7] < &y,
E{expltg(Z) + (n — no)" T(Y)1; no} = Efexpltg(Z)]; no}Elexp{(n — no)" T(Y)}; mol.

That is, the joint moment-generating function of g(Z) and 7'(Y) can be factored into the
product of the two marginal moment-generating functions. Hence, by Corollary 4.2 g(Z)
and T'(Y) are independent and by part (ii) of Theorem 2.1, Z and T'(Y) are independent,
proving part (ii) of the theorem. H

Example 5.14 (Bernoulli random variables). LetY = (Yy,...,Y,)where Y, ..., Y, are
independent random variables such that
Pr(Y; =1;0)=1-Pr(Y; =0;0) =6, j=0,...,n,
where 0 < 6 < 1. Then, for all y;, ..., y, in the set {0, 1},
Pr{Y = (1, ..., ya); 0} = 0X1=1 (1 — 0)"~Li=1 1,

It follows that the model function of Y can be written

9 n
exp {log (m> Zyj + nlog(l — 9)} ,
j=1

and, hence, this is a one-parameter exponential family of distributions, with natural param-
eter n = logh — log(l — @) and T(y) = Z;zl V).

We have seen that the distribution of 7'(Y) is a binomial distribution with parameters n
and 6. Hence,

OLi=1Yi(1 — Q)= Li=1Yi
a7

PriY = (yi, ..., yIT(Y) = 150} =
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provided that t = Z?=1 v;. This probability simplifies to
1
()
for all yy, ..., y, taking values in the set {0, 1} such that Z'}zl yj =t

That is, given that Z’;:  Y; = t, each possible arrangement of 1s and Os summing to ¢
is equally likely. O

Example 5.15 (Exponential random variables). Let Y, ..., Y, denote independent, iden-
tically distributed random variables each distributed according to the absolutely continuous
distribution with density function

O exp{—0y}, y>0

where & > 0. Then Y = (Y1, ..., Y,) has model function

9"exp{—6’2yj}, Y=l ..., ) € (0, 00)";
j=1

hence, this is a one-parameter exponential family of distributions with natural parameter
n=—60,H=(—00,0),and T(y) = Z?:] yj-

Leta,, ..., a, denote real-valued, nonzero constants and let Z = Z'}z 1ajlogY;. Then
Z has moment-generating function

n

Mz(:0)=E ieXP [f > a 10g(Yj)} ;9} =] [E(¥;":0)
j=1

j=1

gt T g a lt| < 1/max(|ail, ..., la,l).

B H Pat+1) [l Tlat+1)
j=1
It follows that the distribution of Z does not depend on 6 if and only if Z?:l aj=0.
Hence, since Ho = H, by Theorem 5.4, > 7,_, a;log(¥;) and } ’;_, ¥; are independent
ifandonlyif }7_,a; =0. O

In applying the second part of Theorem 5.4 it is important that 7, contains an open
subset of R™. Otherwise, the condition that the distribution of Z does not depend on 6 € ®
is not strong enough to ensure that Z and 7' (Y) are independent. The following example
illustrates this possibility.

Example 5.16. LetY; and Y, denote independent Poisson random variables such that Y; has
mean 6 and Y, has mean 1 — 6, where 0 < 8 < 1. The model function for the distribution
of Y = (Y1, Y3) can then be written

1
exp{logfy; + log(l — Q)yZ}T, yi=0,1,...;v»=0,1,....
Yi:y2:

Hence, c¢(8) = (log8, log(1 — 0)) and T (y) = (y1, ¥2)-

Let Z =Y, + Y,. Then, by Example 4.15, Z has a Poisson distribution with mean
6 + (1 — 6) = 1 so that the distribution of Z does not depend on 6. However, Z and (Y7, Y>)
are clearly not independent; for instance, Cov(Z, Y;;6) = 6.
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Note that

Ho = {(m, m2) € R*:exp(n1) + exp(n2) = 1}
={(z1,22) € RN z1 + 20 = 1}.

It follows that 7, is a one-dimensional subset of R? and, hence, it does not contain an open
subset of RZ. O

5.4 Hierarchical Models

Let X denote a random variable with a distribution depending on a parameter A. Suppose
that A is not a constant, but is instead itself a random variable with a distribution depending
on a parameter 6. This description yields a model for X with parameter 6.

More specifically, consider random variables X and A, each of which may be a vector.
The random variable X is assumed to be unobserved and we are interested in the model for
X. This model is specified by giving the conditional distribution of X given A, along with
the marginal distribution of A. Both of these distributions may depend on the parameter
0, taking values in a set ® C R™, for some m. Hence, probabilities regarding X may be
calculated by first conditioning on A and then averaging with respect to the distribution of
M. For instance,

Pr(X < x;60) = E[Pr(X < x|A;0);0]

where, in this expression, the expectation is with respect to the distribution of A. The result
is a parametric model for X.

If the conditional distribution of X given X is an absolutely continuous distribution, then
the marginal distribution of X is also absolutely continuous. Similarly, if the conditional
distribution of X given A is discrete, the marginal distribution of X is discrete as well.

Theorem 5.5. Let X and )\ denote random variables such that the conditional distribution
of X given A is absolutely continuous with density function p(x|A;0) where 0 € © is a
parameter with parameter space ©. Then the marginal distribution of X is absolutely
continuous with density function

px(x;0) = E[p(x]|1;6);0], 0 € O.

Let X and ) denote random variables such that the conditional distribution of X given
A is discrete and that there exists a countable set X, not depending on A, and a conditional
frequency function p(x|X\;0) such that

Y opine)=1, €06
xeX

for all \. Then the marginal distribution of X is discrete with frequency function

px(x;0) = E[p(x|A;0);0], xe X, 0¢€0O.

Proof. First suppose that the conditonal distribution of X given A is absolutely continuous.
Let g denote a bounded continuous function on the range of X, which we take to be R4,
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and let A denote the range of A. Then

E[g(X);6] = E{E[g(x)|A;0]; 0} =/ {/ g(X)p(XIA;G)dx} dF;(x;0).
A R4

By Fubini’s Theorem,

/ {/ g(x)p(xlk;H)dx} de(k;0)=/ g(x){f p(xlk;G)de(A;G)} dx
A R4 R4 A

so that X has an absolutely continuous distribution with density px, as given above.
Now suppose that the conditional distribution of X given A is discrete with frequency
function p(x|A;6) and support X. Then

Pr(X = x:0) = {g{p(XIA;H);G}, gi ; ; ’

proving the result. M

Example 5.17 (Negative binomial distribution). Let X denote a random variable with
a Poisson distribution with mean A and suppose that A has a gamma distribution with
parameters « and . Then the marginal distribution of X is discrete with frequency function

ﬂ “ > xqa—1
ATAYT exp{—A} dA

F(a)x! 0
_ B Th+ow
© T(a)x! (B + 1)¥+

(e A o
a—1 ) Bxiyte

here @ > 0 and B > 0. This distribution is called the negative binomial distribution with
parameters o and B.
This distribution has moment-generating function

M@) =%+ B —exp{t) ™, t <log(l+ B).
It is straightforward to show that E(X;6) = «/8 and

Var(x: 0y = 2P+
B B
The geometric distribution is a special case of the negative binomial distribution corre-
sponding to o = 1.
The Poisson distribution may be obtained as a limiting case of the negative binomial
distribution. Suppose X has a negative binomial distribution with parameters o and § where
o = A8, A > 0. Then

px;a, B) =

AMB—1 A8
prX =xapy= (TN AT o
AB—1 (B+ 1)+
and
. 1Y exp{—A}
lim Pr(X =x;A, )= ——, x=0,1,....
p—o00 x! g
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Models for heterogeneity and dependence

The advantage of a hierarchical representation of a model is that in many applications
it is natural to construct models in this way. For instance, hierarchical models are useful
for incorporating additional heterogeniety into the model. Specifically, suppose that we
are willing to tentatively assume that random variables X1, ..., X,, are independent and
identically distributed, each with a distribution depending on a parameter A. However, we
may believe that there is more heterogeniety in the data than this model suggests. One
possible explanation for this is that the assumption that the same value of A applies to each
X; may be too strong. Hence, we might assume that the distribution on X; dependson ., j =
1,...,n. However, taking Ay, ..., A, as arbitrary parameter values may potentially allow
too much heterogeniety in the model. An alternative approach is to assume that A, ..., A,
is a random sample from some distribution. The resulting distribution thus contains two
sources of variation in the X;: the variation inherent in the conditional distribution of X;
given A, and the variation in the values in the sample Ay, ..., A,.

Example 5.18 (Negative binomial distribution). Suppose that X has a negative binomial
distribution, as described in Example 5.17. Then

E(X;0) = % and Var(X;0) = aptl1

B B
where 6 = (a, 8)T € R2. In Example 5.17 it was shown that the distribution of X may
be viewed as a Poisson distribution with mean A, where A has a gamma distribution with
parameters « and S.
If X has a Poisson distribution, then

Var(X) _1
E(X)

s

for the negative binomial distribution considered here,

Var(X;0) _ 1

EX.0) B

Hence, B measures the overdispersion of X relative to that of the Poisson distribution. [

Hierarchical models are also useful for modeling dependence. For instance, as above,
suppose that X, ..., X,, are independent random variables, each with the same distribu-
tion, but with parameter values A1, ..., A, respectively, where the A ; are random variables.
However, instead of assuming that A, ..., A, are independent, identically distributed ran-
dom variables, we might assume that some of the A ; are equal; this might be appropriate if
there are certain conditions which affect more than one of X1, ..., X,. These relationships
among A, ..., A, will induce dependence between X, ..., X,,. This idea is illustrated in
the following example.

Example 5.19 (Normal theory random effects model). Let X | and X, denote real-valued
random variables. Suppose that, given A, X; and X, are independent, identically distributed
random variables, each with a normal distribution with mean A and standard deviation o.
Note that the same value of X is assumed to hold for both X; and X>.
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Suppose that A is distributed according to a normal distribution with mean u and standard
deviation 7. Note that X has characteristic function

Elexp(itX)] = E{E[exp(itX,|A)]} =E [exp (im - %azﬂ)}

1
= exp {itu — 5(12 + az)tz}

it follows that X is distributed according to a normal distribution with mean p and variance
72 + 02, Clearly, X, has the same marginal distribution as X;.
However, X and X, are no longer independent. Since

E(X1X,) = E[E(X; X2|M)] = EQ\?) = 2 + 12,
it follows that
Cov(Xi, Xp) = 72

and, hence, that the correlation of X; and X is t2 / (t? + o?). Hence, although, conditionally
on X, X| and X, are independent, marginally they are dependent random variables.

The distribution of (X, X») is called the bivariate normal distribution; its properties
will be considered in detail in Chapter §. O

5.5 Regression Models

Consider a parametric model on Y C R, P = {P(-;A): A € A}. Suppose that Yi, ..., 7Y,
are independent random variables such that, for each j = 1, ..., n, the distribution of ¥ is
the element of P corresponding to a parameter value A ;. Hence, Y1, ..., ¥, are independent,
but are not necessarily identically distributed.

Let x1, x5, .. ., x,, denote a known sequence of nonrandom vectors such that, for each
Jj =1,...,n, there exists a function % such that

)"j =h(xj;9)

for some 6 in a set ®. Thus, the distribution of Y; depends on the value of x;, along with the
value of 6 and the function k. The vectors xi, ..., x, are known as covariates or explana-
tory variables; the random variables Y1, ..., Y, are called the response variables. The
response variables and covariates are sometimes called dependent and independent vari-
ables, respectively; however, those terms will not be used here, in order to avoid confusion
with the concept of independence, as discussed in Section 2.2.

In aregression model, the function 4 is known, while 6 is an unknown parameter. Interest
generally centers on the relationship between Y; and x;, j = 1, ..., n, as expressed through
the function /. Regression models are very widely used in statistics; the goal of this section
is to present a few examples illustrating some of the regression models commonly used.

Example 5.20 (Additive error models). Suppose that each distribution in P has a finite
mean. Let

ju(x;,0) = E(Y;;6).
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Then we may write
Y, =ux;,0)+e;, j=1,...,n

where €; is simply ¥; — wu(x;, ). If, for each j, the minimal support of the distribution of
€ does not depend on the values of x; and 6, we call the model an additive error model.

By construction, €1, . . ., €, are independent random variables each with mean 0 and with
a distribution depending on 6. Often additional assumptions are made about the distribution
of €1, ..., ¢€,. For instance, it may be reasonable to assume that €y, ..., €, are identically
distributed with a specific distribution. [

Example 5.21 (Linear models). Let Yy, ..., Y, denote independent scalar random vari-
ables such that each Y; follows an additive error model of the form

Y, = u(x;,0) +e€;.

Suppose further that & may be written (8, o), where § is a vector and o > 0 is a scalar such
that w(x;; ) is a linear function of 8,

w(xj.0) = x;p
and the distribution of ¢; depends only on o, the standard deviation of the distribution of
Y;. Thus, we may write
YjZXj,B+O'Zj, j=1,...,l’l

where 71, ..., z, have known distributions. A model of this type is called a linear model,
when z4, ..., z, are assumed to be standard normal random variables, it is called a normal-
theory linear model. 0O

Example 5.22 (Linear exponential family regression models). Let Yy, ...,Y, denote
independent scalar random variables such that Y; has an exponential family distribution
with model function of the form

p(y;xj) =exp {A] T(y) — kG.j)} h(y),
as discussed in Section 5.3. Suppose that
L,-:x‘,-,B, j:l,...,n

where, as above, x1, ..., x, are fixed covariates and $ is an unknown parameter. Hence, the
density, or frequency function, of Y1, ..., Y, is

exp {ﬁT > Xl Ty - Zk(x,-ﬁ)] [TrGp.
j=1 Jj=1 j=1

This is called a linear exponential family regression model; it is also a special case of a
generalized linear model.

For instance, suppose that Y1, ..., Y, are independent Poisson random variables such
that Y; has mean A; with logA; = x;B. Then Y1, ..., Y, has frequency function

n n n 1 )
exp{ﬂTijyj—Zexp(xj,B)}HF, yi=0,1,2,...; j=1,....,n. Qg
j=1 j=1 :

j=1 J
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In some cases, the explanatory variables are random variables as well. Let (X, ¥;),
j =1,...,n, denote independent random vectors such that the conditional distribution of
Y; given X; = x; is the element of P corresponding to parameter value

)"j =h(xj;6)

for some known function 2. Then the model based on the conditional distribution of
Yy, ..., Y, given (Xy, ..., X;) = (x1, ..., x,) is identical to the regression model con-
sidered earlier. This approach is appropriate provided that the distribution of the covariate
vector (X, ..., X,) does not depend on 6, the parameter of interest. If the distribution of
(X1, ..., X,) is also of interest, or depends on parameters that are of interest, then a model
for the distribution of (X1, Y1), ..., (X,, ¥,) would be appropriate.

Example 5.23. Let (X, Y1), ..., (X,, Y,) denote independent, identically distributed pairs
of real-valued random variables such that the conditional distribution of ¥; given X; = x
is a binomial distribution with frequency function of the form

x\ ,
( )95(1—91)’“_); y=0,1,...,x,
y

where 0 < 0; < 1, and the marginal distribution of X; is a Poisson distribution with mean
92, 92 > 0.

If only the parameter 6; is of interest, then a statistical analysis can be based on the con-
ditional distribution of (Y1, ..., Y,) given (X4, ..., X,) = (x1, ..., x,), which has model
function

(o

j=1 \Yi

If both parameters 6; and 6, are of interest, a statistical analysis can be based on the
distribution of (X1, Y1), ..., (X,, Y,), which has model function
n Xj

——2 —exp(—62)0;" (1 — 6, 7. O
o Vit = !

5.6 Models with a Group Structure

For some models there is additional structure relating distributions with different parameter
values and it is often possible to exploit this additional structure in order to simplify the
distribution theory of the model. The following example illustrates this possibility.

Example 5.24 (Normal distribution). Let X denote arandom variable with a normal distri-
bution with mean u, —00 < u < oo and standard deviation o, o > 0. Using characteristic
functions it is straightforward to show that the distribution of X is identical to the dis-
tribution of u + o Z, where Z has a standard normal distribution. Hence, we may write
X=pn+oZ

Let b and ¢ denote constants with ¢ > 0 and let Y = b 4 ¢X. Then we may write ¥ =
cit + b + (co)Z so that Y has the same distribution of X except that u is modifiedtocu + b
and o is modified to co. Hence, many properties of the distribution of ¥ may be obtained
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directly from the corresponding property of the distribution of X. For example, if we know
that

E(X* = 30* 4+ 61%0% + ut,
it follows immediately that
E(Y*) = 3c*o* 4 6(ci + b)>c*o* + (cp + b)™.

Now consider n independent random variables X, X5, ..., X, such that the marginal
distribution of each X; is the same as the distribution of X above. Then we may write
Xj=u+0oZ;,j=1,...,n,where Zi, ..., Z, are independent standard normal random
variables. Let X = Y}_, X;/n;since X = u + o Z where Z = 37_, Z;/n, it follows that
the relationship between X and Z is the same as the relationship between X; and Z;. For
instance, if we know that Z has a normal distribution with mean 0 and standard deviation
1/4/n, it follows immediately that X has a normal distribution with mean p and standard
deviation o/ /n. The statistic X is an example of an equivariant statistic.

Consider the statistic

X1 —

T=——.
X> —

| <

It follows immediately from the facts that X; = 4+ 0 Z; and X =  + 0 Z that T has the
same distribution as

Z\ - Z
Z,—Z
so that the distribution of T does not depend on u or o. Hence, when studying the distri-
butional properties of 7 we can assume that u = 0 and o = 1. This is an example of an

invariant statistic. [

The goal of this section is to generalize the ideas presented in the previous example. Let
X denote a random variable with range X and probability distribution P taking values in
a set P. The key idea in Example 5.24 is that there is an algebraic operation on the space
X that corresponds to changes in the distribution of X; we will refer to these algebraic
operations as transformations. Hence, we need to specify a set of transformations on X" and
relate them to the different distributions in P. In order to do this, it is convenient to use the
language of group theory.

Consider a transformation g : X — X. We require that g is one-to-one, so that g(x;) =
g(xy) implies that x; = x,, and onto, so that every x; € X may be written g(x,) for some
xp € X. We will be interested in a set of such transformations together with an opera-
tion that allows two transformations to be combined. There are a number of conditions
such a combination must satisfy in order for the set of transformations to be useful. For
instance, if two transformations are combined, they must form another transformation and
every transformation must have an inverse transformation such that, if the transformation
is combined with its inverse, an identity tranformation taking each x € X back to x is
formed.

More formally, let G denote a group of transformations g : ¥ — X’. Recall that a group
is a nonempty set G together with a binary operation o such that the following conditions
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are satisfied

(Gl) Ifg,gpeGthengiog, €

(G2) If g1, 82,83 € G then (g1 0 g2) 0 g3 = g1 0 (82 © g3)

(G3) There exists an element e € G, called the identity element, such that for each g € G,
e o g = g oe = g

(G4) For each g € G, there exists an element g~! € G such that g o g~ -1

=8 og=e
We assume further that, for a suitable topology on G, the operations

(81, 8)—~> 8108

and g — g~ ! are continuous. Often, the group G can be taken to be finite-dimensional

Euclidean space with the topology on G taken to be the usual one. For simplicity, we will
suppress the symbol o when writing group operations so that, for example, g1g> = g1 © g».
So far, we have only described how the transformations in G must relate to each other.
However, it is also important to put some requirements on how the transformations in G act
on X.
Let g1, g2 € G. Since g»x is an element of X', we may calculate g;(g,x). We require that
the result is the same as applying g1 g» to x; that is,

(TD) gi(g2x) = (g182)x.

We also require that the identity element of the group, e, is also the identity transformation
on X

(T2) ex =x, x e X.

Example 5.25 (Location and scale groups). In statistics, the most commonly used trans-
formations are location and scale transformations. Here we take X = R”.

First consider the group G of scale transformations. That is, G; = R™ such that for any
a € G and x € X, ax represents scalar multiplication. It is easy to see that this is a group
with the group operation defined to be multiplication; that is, for a;, a; in G, a;a; denotes
the multiplication of a; and a,. The identity element of the group is 1 and a~! = 1/a. For
the topology on G; we may take the usual topology on R.

We may also consider the set G; of location transformations. Then G, = R and for b € G
andx € X, bx = x + bl, where 1, denotes the vector of length n consisting of all 1s. The
group operation is simple addition, the identity element is 0, b~! = —b, and the topology
on G; may be taken to be the R-topology.

Now consider the group of location—scale transformations, Gi;. The group Gj; = RT x R
such that for any (a, b) € Gi; and any x € X,

(a,b)x =ax + bl,.
Let (a;, by) and (a», by) denote elements of Gj;. Then
(a1, bpl(az, br)x] = a1(axx + by1,) + b11, = ajax + (a1bs + bi)1,.
Hence, the group operation is given by

(a1, b)(az, by) = (a1az, aiby + by).
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The identity element of the group is (1, 0) and since

1 b 1 b
I (a’b)z(aab) T =(150)7
a a a a
(1 b
(a,b)y” =|-.—).
a a

The topology on Gi; may be taken to be the usual topology on R%. [

Transformation models

Recall that our goal is to use the group of transformations G to relate different distributions in
P. Consider a random variable X with range X" and let G denote a group of transformations
on X. The set of probability distributions P is said to be invariant with respect to G if
the following condition holds: if X has probability distribution P € P, then the probability
distribution of g X, which can be denoted by P, is also an element of P. That is, for every
P € Pandevery g € G there exists aP; € P such that, for all bounded continuous functions
h: X —> R,

Ep[h(gX)] = Ep [h(X)]

where Ep denotes the expectation with respect to Pand Ep denotes expectation with respect
to Py. In this case we may write P; = gP so that we may view g as operating on P as well
ason X.

We have already considered one example of a class of distributions that is invariant with
respect to a group of transformations when considering exchangeable random variables in
Section 2.6.

Example 5.26 (Exchangeable random variables). Let X, X», ..., X, denote exchange-

able real-valued random variables and let G denote the set of all permutations of (1, 2, .. ., n).
Hence,if X = (X;,...,X,)and g = (n,n — 1, ..., 2, 1), for example, then
gX =X, Xp—1, ..., X1).

It is straightforward to show that G is a group and, by definition, the set of distributions of
X is invariant with respect to G. O

Suppose P is a parametric family of distributions, P = {P(-;0): 0 € ®}.If P is invariant
with respect to G and if X is distributed according to the distribution with parameter 6,
then gX is distributed according to the distribution with parameter g6, so that g may be
viewed as acting on the parameter space ®. In statistics, such a model is often called a
transformation model.

Example 5.27 (Exponential distribution). Let X, X», ..., X,, denote independent, iden-
tically distributed random variables, each distributed according to an exponential
distribution with parameter & > 0. Hence, the vector X = (X1, ..., X,) has density

p(x;@):@”exp{—@ij}, x;>0, j=1,...,n.
j=l1
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For a function # : R" — R,

E[h(X);H]:/ f h(x)@"exp{—@ij} dxy---dx,.

Consider the group of scale transformations Gs. For a € G, using a change-of-variable
for the integral,

E[h(aX);0] =/ / h(ax)@”exp{—@ ij} dx; ---dx,
0 0 =

=/w.../wh(x)ﬂexp{—(e/a)zxj} dxi---dx,.
0 0 @ =1

It follows that if X has an exponential distribution with parameter 6, then aX has an
exponential distribution with parameter value 6 /a and, hence, this model is a transformation
model with respect to G,. The elements of G, are nonnegative constants; fora € i, the action
ofaon ®is givenbyab =0/a. O

In many cases, the parameter space of a transformation model is isomorphic to the group
of transformations G. That is, there is a one-to-one mapping from G to ® and, hence, the
group of transformations may be identified with the parameter space of the model. In this
case, the group G may be taken to be the parameter space ©.

To see how such an isomorphism can be constructed, suppose the distribution of X is
an element of P which is invariant with respect to a group of transformations G. Fix some
element 6 of ® and suppose X is distributed according to the distribution with parameter
6o. Then, for g € G, gX is distributed according to the distribution with parameter value
0, = gby, forsome 8; € . Hence, we can write ) for g so that, if X is distributed according
to the distribution with parameter 6y, 6, X is distributed according to the distribution with
parameter 6. If, for each 6 € O, there is a unique g € G such that 9 = g6y and g6y = g26p
implies that g; = g, then ® and G are isomorphic and we can proceed as if ® = G. The
parameter value 6y may be identified with the identity element of G.

Example 5.28 (Exponential distribution). Consider the exponential distribution model
considered in Example 5.27; for simplicity, take n = 1. Let g =a > 0 denote a scale
transformation. If X has a standard exponential distribution, then gX has an exponential
distribution with parameter 6; = 1/a.

The group G may be identified with ® using the correspondence a — 1/6. If X has a
standard exponential distribution, then 6 X has an exponential distribution with parameter 6.
Hence, 6 X = X/0; the identity element of the group is the parameter value corresponding
to the standard exponential distribution, 1. The same approach may be used for a vector
X1,....Xy). O

Example 5.29 (Location-scale models). Let X denote a real-valued random variable with
an absolutely continuous distribution with density pg satisfying po(x) > 0, x € R. The
location-scale model based on py consists of the class of distributions of gX, g € g

Is
where Ql(sl) denotes the group of location-scale transformations on R.
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Suppose X is distributed according to py and let g = (o, ) denote an element of gf; ),
Then

o0 o0

h(gx)po(x)dx :/ h(ox + ) po(x) dx

—00

Elh(gX)] = /

—00

o AN
2/ h(x)po <¥);dx.

Hence, the distribution of g X is absolutely continuous with density function

1 X —uU
px;0) = —P0<
o

o

), —00 < X < 00.

The model given by

{p(-:;6):0 = (o, ), 0 >0, —o0 < u < oo}
is a transformation model with respect to g{j’.

For instance, consider the case in which py denotes the density of the standard normal
distribution. Then the set of distributions of X is simply the set of normal distributions with
mean p and standard deviation o.

Now consider independent, identically distributed random variables X1, ..., X,, each
distributed according to an absolutely continuous distribution with density function of the
form p(-; ), as given above. The density for (X, ..., X,) is of the form

1 X; —
;npo< a'u>, —00o<x; <00, i=1,...,n.

Clearly, the model for (X1, ..., X,) is a transformation model with respect to G;;. O

Letx € X. The orbit of x is that subset of X" that consists of all points that are obtainable
from x using a transformation in G; that is, the orbit of x is the set

O(x) = {x; € X: x; = gx for some g € G}.

Example 5.30 (Location-scale group). Let X = R" and consider the group of location-
scale transformations on X’. Then two elements of R”, x; and x,, are on the same orbit if
there exists (a, b) € G such that

x1 = axy + bl,,

that is, if there exists a constant a > 0 such that the elements of x; — ax, are all equal.
For a given element x € X,

Ox)={x€eX:xy=ax+bl,, a>0, —00 <b < o0}. d

Invariance

Now consider a function T : ¥ — R¥. We say that 7'(X) is an invariant statistic with respect
toGif,forallg € Gandall x € X, T(gx) = T(x). Thatis, T is constant on the orbits of X
Hence, if T is invariant, then the probability distribution of 7'(g X) is the same forall g € G.
In particular, if the family of probability distributions of X is invariant with respect to G then
the distribution of 7'(X) is the same for all P € P. Thus, in order to find the distribution of
T (X) we may choose a convenient element P € P and determine the distribution of 7'(X)
under P.
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Example 5.31 (Location group). Let ¥ = R" and consider the group of location transfor-
mations on &X’. Consider the function
X1 —X
Tx)=x—[(1}x)/n]1, = : ,

X, — X

where ¥ = Z;zlxj/n. Since bx = x + bl, forb € G,

T(bx)=x+bl, — [1](x +b1,)/n] 1,
=x+bl, —[(1])x) /n] 1, — b1,
=x— [(lgx) /n] 1, =T(x);

hence, T is invariant with respect to G;. O

Example 5.32 (Cauchy distribution). Let X, X», X3, X4 denote independent, identically
distributed random variables, each with a normal distribution with mean y and standard
deviation o. As noted earlier, this model for (X, X;, X3, X4) is a transformation model
with respect to Gis.

For x € R*, x = (x1, x2, x3, x4), let

T(x) = X1 — X2

X3 — X4 ’
()

This function is invariant with respect to g{j ) since, for g = (o, n) € G.”,

_xmAw-Ontw _x-x o
(ox3+p)—(0xa+p) x3—x4 .
Hence, the distribution of 7'(X), X = (X1, X2, X3, X4), does not depend on the value of ©

and o under consideration.
Forinstance, take 4 = 0and 0> = 1/2. Then X; and X, each have characteristic function

T(gx)

@(1) = exp(—1?/4), —o0 <t < 00.
Hence, X; — X has characteristic function
p()p(—t) = exp(—t?/2), —00 <t < 0.

It follows that X; — X, has a standard normal distribution; similarly, X3 — X also has
a standard normal distribution. Furthermore, X; — X, and X3 — X4 are independent. It
follows from Example 3.13 that 7(X) has a standard Cauchy distribution. O

The statistic T is said be a maximal invariant if it is invariant and any other invariant
statistic is a function of T'. That is, if 7} is invariant, then there exists a function 4 such that,
foreachx € X,

Ti(x) = (T (x)).
Theorem 5.6. Let X denote a random variable with range X and suppose that the distri-
bution of X is an element of

P = {P(;6): 6 € O,



5.6  Models with a Group Structure 159

Let G denote a group of transformations from X to X and suppose that P is invariant with
respect to G. Let T denote a function from X to R*.
The following conditions are equivalent:
(i) T is a maximal invariant
(ii) Let x1, x5 denote elements of X such that x, ¢ O(xy). Then T is constant on O(x;),
i =1,2and T(x1) # T(xy).
(iii) Let x1,x; € X. T(x1) = T (x) if and only if there exists g € G such that x; = gx,.

Proof. We first show that conditions (ii) and (iii) are equivalent. Suppose that condition
(ii) holds. If T (x;) = T(x;) for some x;, x, € X, then we must have x, € O(xy) since
otherwise condition (ii) implies that 7'(x;) 5% T (x;). Since T is constant on O (x;), it follows
that T'(x;) = T (xy) if and only if x, € O(x;); that is, condition (iii) holds.

Now suppose condition (iii) holds. Clearly, T is constant on O(x) for any x € X'. Fur-
thermore, if x, x, are elements of X’ such that x, ¢ O(x;), there does not exist a g such
that x; = gx; so that T'(x;) # T (x,). Hence, condition (ii) holds.

We now show that condition (iii) and condition (i) are equivalent. Suppose that condition
(iii) holds and let 77 denote an invariant statistic. 7 is maximal invariant provided that T;
is a function of T. Define a function % as follows. If y is in the range of 7" so that y = T'(x)
for some x € X, define h(y) = T(x); otherwise, define A (y) arbitrarily. Suppose x;, x; are
elements of X’ such that T'(x;) = T(x,). Under condition (iii), x; = gx, for some g € G
so that T1(x;) = Ti(x3); hence, h is well defined. Clearly, A(7T (x)) = Ti(x) so that T is a
maximal invariant. It follows that (iii) implies (i).

Finally, assume that 7' is a maximal invariant, that is, that (i) holds. Clearly, x, = gx;
implies that T'(x;) = T (x;). Suppose that there does not exist a g € G satisfying x, = gx;.
Define a statistic 7 as follows. Let y;, y», ¥3 denote distinct elements of R If x € O(xy),
Ti(x) = y1,if x € O(x2), T1(x) = y», if x is not an element of either O(x;) or O(x;), then
Ti(x) = y3. Note that 7; is invariant. It follows that there exists a function %z such that
Ti(x) = h(T (x)), x € X, so that h(T (x1)) # h(T (x;)); hence, T (x1) # T (x,). Therefore
condition (iii) holds. MW

Theorem 5.6 gives a useful description of a maximal invariant statistic. The range X of a
random variable X can be divided into orbits. Two points x;, x; lie on the same orbit if there
exists a g € G such that x, = gx;. An invariant statistic is constant on orbits. An invariant
statistic 7" is a maximal invariant if, in addition, it takes different values on different orbits.
Hence, a maximal invariant statistic completely describes the differences between the orbits
of X'; however, it does not give any information regarding the structure within each orbit.

Example 5.33 (Location group). Let X = R" and consider the group of location transfor-
mations on X. In Example 5.31 it was shown that the function

Tx)=x—[(1]x)/n]1,

is invariant.
Suppose that xy, x, are elements of R”. Then T'(x;) = T (x,) if and only if

X — [(l,{xl) /n] 1, =x, — [(1:)(2) /n] 1,,
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that is, if and only if
x1=x + {[1L 1 —x2)] /n} 1, = x2 + 571,

where b* = [1,{(x1 — x7)]/n. It follows from part (iii) of Theorem 5.6 that 7' is a maximal
invariant. O

Consider an invariant statistic 7. According to part (ii) of Theorem 5.6, in order to show
that T is not a maximal invariant, it is sufficient to find x, x, in X that lie on different orbits
such that 7 (x;) = T (x»).

Example 5.34 (Cauchy distribution). Consider X = R* and for x € R*, x = (x1, 12,
X3, x4), let

T(x) = X1 — X2

X3—)C4.

In Example 5.32, it is shown that 7 is invariant with respect to gfj ).
Consider two elements of X', x = (1,0, 1,0) and X = (1, 0, 2, 1). Note that since for
a >0,

1,0,2,1)—-a(1,0,1,00=(1 —a,0,2—a, 1)

there does not exist an a such that the elements of x — aX are all equal. Hence, x and ¥ lie
on different orbits; see Example 5.30. Since T'(x) = T(X) = 1, it follows from part (ii) of
Theorem 5.6 that T is not a maximal invariant. O

Equivariance
Consider a group G acting on a set X’ and let T denote a statistic, T : X — ) for some set
Y. Suppose that G also acts on Y. The statistic T is said to be equivariant if foreach g € G,

T(gx)=gT(x), xelX.

Note that two different applications of the transformation g are being used in this expression:
gx refers to the action of g on X', while g7 (x) refers to the action of g on ).

Equivariance is an important concept in statistics. For instance, consider a transformation
model for a random variable X, with respect to a group of transformations G; let X’ denote
the range of X and let ® denote the parameter space. Let T denote an estimator of 6, a
function T : X — ©. Hence, if X = x is observed, we estimate the value of 8 to be 7 (x).
The estimator is equivariant if the estimate corresponding to gx, g € G, is g7 (x).

Example 5.35 (Estimation of a location parameter). Let X denote a real-valued random
variable with an absolutely continuous distribution with density pg satisfying po(x) > O,
x € R. Consider the location model based on pg consisting of the class of distributions of
gX, g€ gf“ where Ql(l) denotes the group of location transformations on R.

Suppose X is distributed according to pg and let g = 6 denote an element of g{”. Then

the distribution of g X is absolutely continuous with density function

p(x;0) = polx —6), —o0 < x < 00.



5.6  Models with a Group Structure 161

The model given by
{p(-;0): —o0 <6 < oo}

is a transformation model with respect to g{”. For g € gf‘) and0 e ® =R, g0 =0+ g.

Now consider independent, identically distributed random variables X1, ..., X,, each
distributed according to an absolutely continuous distribution with density function of the
form p(-;6), as given above. The density for (X, ..., X,,) is of the form

n
HPO(X_,'—G), —00 < X; <00, [ =j,...,N.
j=1

and the model for (X, ..., X,,) is atransformation model with respectto G and g6 = 0 + g.
Now consider 7', an estimator of the location parameter 6. The estimator is equivariant
if, for any b € R,

T(x +bl,)=T(x)+ b;

that is, 7' is equivariant if adding a constant b to each observation shifts the estimate of 6
byb. O
Theorem 5.7. Consider a space X and let G denote a group acting on X. If a statistic T is
equivariant then for each x1, x, € X,

T(x1) = T(xy) impliesthat T(gx)) = T(gxy) forall g €G.

Conversely, if

T(x1) = T(x2) impliesthat T(gx,) = T(gx;) forall g € G,
then the action of G on ), the range of T (X), may be defined so that T is equivariant.
Proof. Let T be an equivariant statistic and suppose 7'(x;) = T(x2). Let g € G. Then, by
the definition of equivariance,

T(gx)=gT(x), i=12.
Hence,
T(gx1) = gT(x1) = gT(x2) = T(gx2).

Now suppose that T'(gx;) = T(gx,) for all g € G whenever T (x;) = T(x,). Forg € G
and x € X, define g7 (x) = T(gx). Since T (x;) = T (x,) implies T (gx;) = T(gx>), gT(x)
is well defined. It remains to verify that (T1) and (T2) are satisfied.

Note

eT(x)=T(ex) =T(x),
verifying (T1) and that
81(&2T(x)) = &1 T (g2x) = T(g182x) = T((g182)%) = (8182)T (%),
verifying (T2). The result follows. H
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Based on Theorem 5.7, it is tempting to conclude that T is equivariant if and only if
T (x1) = T(x) implies that T'(gx;) = T(gx»). Note, however, that this statement does not
require any specification of the action of G on 7(X). Theorem 5.7 states that there is a
definition of the action of G such that T is equivariant. The following simple example
illustrates this point.

Example 5.36. Let X = R and let G = R™. For g € G define gx to be multiplication of
g and x. Let T (x) = |x|. Clearly, T (x;) = T(x,) implies that T(gx;) = T (gx,). However,
equivariance of 7 depends on how the action of G on T(X’) is defined. Suppose that
gT(x) =T(x)/g. Then T is not equivariant since 7(gx) = |gx| while gT(x) = |x|/g.
However, we may define the action of G on T'(X) in a way that makes T equivariant. In
particular, we may use the definition g7'(x) = T (gx) so that, for y € T(X), gy denotes
multiplication of g and y. O

Consider a random variable X with range X and distribution in the set
P ={P(-;6): 6 € ®}.

Let G denote a group of transformations such that P is invariant with respect to G and that
G and O are isomorphic.

Let T; denote a maximal invariant statistic. Then, as discussed above, T;(x) indicates
the orbit on which x resides. However, 77 does not completely describe the value of x
because it provides no information regarding the location of x on its orbit. Let 7> denote
an equivariant statistic with range equal to ®; hence, the action of a transformation on the
range of 7, is the same as the action on G. Then T,(x) indicates the position of x on its
orbit. The following theorem shows that 7}(x) and T(x) together are equivalant to x.

Theorem 5.8. Let X denote a random variable with range X and suppose that the distri-
bution of X is an element of

P = [P(+0): 0 € ©).

Let G denote a group of transformations from X to X and suppose that P is invariant with
respect to G. Suppose that G and ® are isomorphic.

LetT : X - R", T = (T, T»), denote a statistic such that Ty is a maximal invariant
and T, is an equivariant statistic with range ©®. Then T is a one-to-one function on X.

Proof. The theorem holds provided that 7'(x;) = T (x,) if and only if x; = x;. Clearly,
x1 = x, implies that T'(x;) = T (x;); hence, assume that 7'(x;) = T (x,).

Since Ti(x;) = Ti(x2), x; and x, lie on the same orbit and, hence, there exists g € G
such that x, = gx;. By the equivariance of 75,

Tr(x1) = Ta(x2) = Ta(gx1) = gTa(xy).

Note that T'(x;) may be viewed as an element of G. Let 8; = T>(x;)~! and let 6, denote
the identity element of ®. Then

0, = Tr(x1)01 = gT(x1)0,
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so that

0. = gTh(x1)01 = g.

Hence, g = e, the identity element of G, and x; = x,. W

Therefore, under the conditions of Theorem 5.8, a random variable X may be written as
(T(X), T»(X)) where the distribution of 7}(X) does not depend on 6 and the distribution
of T(X) varies with 6 in an equivariant manner.

Example 5.37 (Location model). As in Example 5.35, let (X, ..., X,,) denote a random
vector with density function of the form

[Jrox;—6). x=@x1.....x)eR"
j=1

where pg is a density function on R. Consider the model corresponding to 6§ € ® = R.
This model is invariant under the group of location transformations, as described in
Example 5.25.

In Example 5.33 it is shown that the statistic

1
T](X)Z(XI—)_C,...,,X'”—X)T, X =- xja
n .

is amaximal invariant; the statistic 7>(x) = X is equivariant, since T>(x + 61,) = Tr(x) + 6,
and the range of 75 is ®. Hence, an observation x € R” may be described by X, together
with the residual vector T7(x). O

Under the conditions of Theorem 5.8, the random variable X is equivalent to a maximal
invariant statistic 77 and an equivariant statistic 75. It is important to note that these statistics
are not unique, even taking into account the equivalence of statistics. Let T>(X) and 75(X)
denote two equivariant statistics and let h(x) = To(x) ™! T>(x). Then, for any g € G,

h(gx) = Ta(gx) ' Ta(gx) = g ' Ta(x) ' gTa(x) = gg ™' T, ' Ta(x) = h(x).

It follows T>(X)~'75(X) is an invariant statistic and, hence, a function of 7;(x). That is,
T>(X) is not a function of T>(X) alone.
These points are illustrated in the following example.

Example 5.38 (Exponential random variables). As in Example 5.28, let X =
(X1,..., X,) where X1, ..., X, are independent, identically distributed random variables,
each with an exponential distribution with mean 0, § € ® = R™. As shown in Exam-
ple 5.28, this model is invariant under the group of scale transformations. Here X = (R*)"
and x, X € X are in the same orbit if x = aX for some a > 0.

Forx = (xy,...,x,) € &,letTy(x) = (x2/x1, X3/X1, - . ., X, /x1). Clearly, T} is invariant
and it is easy to see that if x = aX for some a > 0, then Tj(x) = T1(X); hence, T1(X) is a
maximal invariant statistic.
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Let

1 n
Th(x) = p E X;.
=1

Note that T>(x) takes values in ® and, for a > 0, T>(ax) = aT>(x); hence, T>(X) is an
equivariant statistic with range ©. It now follows from Theorem 5.8 that X is equivalent to
(T1(X), T,(X)). This can be verified directly by noting that

nT(X)

X =
A+ YL X/ XD

and X; = X(X;/X1), j =2,...,n,sothat X is a function of (71(X), To(X)).

As noted above, the statistics 77(X) and 7,(X) used here are not unique; for instance,
consider 75(X) = X;. Clearly X, is an equivariant statistic with range © so that X is
equivalent to (7;(X), T>(X)). Also,

ey RO 1Y X 1 ~ X
LX) nX) = LX) n X1 n 1+; X,

is a function of T1(X). O
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5.7 Exercises

Suppose that n computer CPU cards are tested by applying power to the cards until failure. Let
Yy, ..., Y, denote the failure times of the cards. Suppose that, based on prior experience, it is
believed that it is reasonable to assume that each Y; has an exponential distribution with mean
A and that the failure times of different cards are independent. Give the model for Yy, ..., Y,
by specifying the model function, the parameter, and the parameter space. Is the parameter
identifiable?

In the scenario considered in Exercise 5.1, suppose that testing is halted at time ¢ so that only
those failure times less than or equal to ¢ are observed; here c is a known positive value. For card
J>J=1,...,n, werecord X;, the time at which testing is stopped, and a variable D; such that
D; = 1if afailure is observed and D; = 0 if testing is stopped because time c is reached. Hence,
if D; = 0 then X; = c. Give the model for (X, D), ..., (X,, D,), including the parameter and
the parameter space. Is the parameter identifiable?

Let X and Y denote independent random variables. Suppose that
PiX=1)=1-Pr(X=0=A, O<i<l;

if X = 1, then Y has a normal distribution with mean | and standard deviation o, while if X = 0,
Y has a normal distribution with mean u( and standard deviation o. Here u( and w, each take
any real value, while o > 0. Let Y1, ..., Y, denote independent, identically distributed random
variables such that Y; has the distribution of Y. Give the model for Y, ..., ¥, by specifying the
model function, the parameter, and the parameter space. Is the parameter identifiable?

As in Exercise 5.1, suppose that n CPU cards are tested. Suppose that for each card, there is a
probability  that the card is defective so that it fails immediately. Assume that, if a card does
not fail immediately, then its failure time follows an exponential distribution and that the failure
times of different cards are independent. Let R denote the number of cards that are defective; let
Yy, ..., Y,_g denote the failure times of those cards that are not defective. Give the model for
R, Y, ..., Y,_g,along with the parameter and the parameter space. Is the parameter identifiable?
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Consider a parametric model {Py: 6 € ®} for a random variable X. Such a model is said to be
complete if, for a real-valued function g,

E[g(X);01=0, 6 €O,
implies
Prlg(X)=0;0] =1, 6 € ©O.
For each of the models given below, determine if the model is complete.
(a) P, is the uniform distribution on (0, 6) and ® = (0, c0)
(b) P, is the absolutely continuous distribution with density
26°
—x¥! exp(—@xz), x>0,
')
and ® = (0, co0)

(c) Py is the binomial distribution with frequency function of the form

3
p(x;0) = < >9X(1 -0y, x=0,1,2
X

and ® = (0, 1).
Consider the family of absolutely continuous distributions with density functions

T+ p)
F(e)l(B)
where 6 = («, 8) and ® = (0, 00) x (0, 00). This is known as the family of beta distributions.
Show that this is a two-parameter exponential family by putting p(y;6) in the form (5.1). Find
the functions ¢, T', A, h and the set ).
Consider the family of gamma distributions described in Example 3.4 and Exercise 4.1. Show
that this is a two-parameter exponential family. Find the functions ¢, T', A, h and the set ) in
the representation (5.1).

p(y;0) Y=y, 0<y <1,

Consider the family of absolutely continuous distributions with density function
0
p(y;0) = W’ y>1

where 8 > (. Show that this is a one-parameter exponential family of distributions and write p
in the form (5.1), giving explicit forms for ¢, 7', A, and h.

Consider the family of discrete distributions with density function
0 -1 .
p(y;e>=<l+yy )95"(1—92)& y=0,1,...

where 6 = (60, 6,) € (0, 00) x (0, 1). Is this an exponential family of distributions? If so, write
p in the form (5.1), giving explicit forms for ¢, T, A, and h.

Let X denote a random variable with range &’ such that the set of possible distributions of
X is a one-parameter exponential family. Let A denote a subset of &’ and suppose that X is
only observed if X € A; let Y denote the value of X given that it is observed. Is the family of
distributions of Y a one-parameter exponential family?
Consider the family of absolutely continuous distributions with density functions

¢2

A
eXP{—ZJ"Hf’—g}» y>0

p(y;0) = I
(2ry?)?

where 6 = (¢, 1) € (R*). Is this an exponential family of distributions? If so, write p in the
form (5.1), giving explicit forms for ¢, T, A, and A.
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Let Y denote a random variable with an absolutely continuous distribution with density p(y;6),
where p is given in Exercise 5.11. Find the cumulant-generating functionof ¥ + 1/Y — 2.

Let Y denote a random variable with density or frequency function of the form

exp{nT (y) — k(m}h(y)

where n € H C R. Fix ny € H and let s be such that E{exp[sT(Y)]; no} < co. Find an expres-
sion for Cov(T'(Y), exp[sT (Y)]; no) in terms of the function k.

A family of distributions that is closely related to the exponential family is the family of expo-
nential dispersion models. Suppose that a scalar random variable X has a density of the form

p(x;n, o?) = exp{[nx — k(n]/o’}th(x;0%), ne H

where for each fixed value of o> > 0 the density p satisfies the conditions of a one-parameter

exponential family distribution and H is an open set. The set of density functions {p(-; 1, 62):n €

H,o? > 0} is said to be an exponential dispersion model.

(a) Find the cumulant-generating function of X.

(b) Suppose that a random variable Y has the density function p(-;7, 1), that is, it has the
distribution as X except that 0% is known to be 1. Find the cumulants of X in terms of the
cumulants of Y.

Suppose Y is a real-valued random variable with an absolutely continuous distribution with
density function

pr(y;n) = exp{ny —k(mih(y), y €,

where n € H C R, and X is a real-valued random variable with an absolutely continuous dis-
tribution with density function

px(x;n) = exp{nx — k(M}h(x), x € X,

where n € H. Show that:

(a) ifk = k, then Y and X have the same distribution, that is, for each neH,Fy(;n) = Fx(;n)
where Fy and Fy denote the distribution functions of ¥ and X, respectively

(b) if E(Y;n) = E(X;n) forall n € H then Y and X have the same distribution

(¢) if Var(Y;n) = Var(X;n) for all n € H then Y and X do not necessarily have the same
distribution.

Let X denote a real-valued random variable with an absolutely continuous distribution with
density function p. Suppose that the moment-generating function of X exists and is given by
M), |t| < to.

Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function of the form

p(y;0) = c(0) exp(@y)p(y),

where c(-) is a function of 6.
(a) Find requirements on 6 so that p(-;6) denotes a valid probability distribution. Call this
set ©.

(b) Find an expression for ¢(-) in terms of M.
(c) Show that {p(-;0): 6 € ©} is a one-parameter exponential family of distributions.
(d) Find the moment-generating function corresponding to p(-; ) in terms of M.

LetY,, Y,, ..., Y, denote independent, identically distributed random variables such that Y, has
density p(y;0) where p is of the form

p(y;0) = exp(nT(y) — k(Mh(y), yelV
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and 7 takes values in the natural parameter space H. Let S = Z?:l T(;).

Let A= A(Yy,...,Y,) denote a statistic such that for each n € H the moment-generating
function of A, M (t; n), exists for ¢ in a neighborhood of 0 and let M(t; n) denote the moment-
generating function of S.

(a) Find an expression for the joint moment-generating function of (A, ),

M(t1, t2;m) = Ey(exp{ti A + 12S})

in terms of M4 and Mj.
(b) Suppose that for a given value of 1, 1,

0
—E(A;n) =0.
87’] n=ng
Find an expression for Cov(S, A;no).
Let Y, ..., Y, denote independent binomial random variables each with index m and success

probability 6. As an alternative to this model, suppose that Y; is a binomial random variable
with index m and success probability ¢ where ¢ has a beta distribution. The beta distribution is
an absolutely continuous distribution with density function

r
Md,a*l(] _¢)ﬂ*17 0<¢p<1
C(@)l(B)
where a > 0 and 8 > 0. The distribution of Yy, ..., Y, is sometimes called the beta-binomial

distribution.
(a) Find the density function of Y.

(b) Find the mean and variance of Y.

(c) Find the values of the parameters of the distribution for which the distribution reduces to
the binomial distribution.

Let (Y;1,Yj»), j =1,2,...,n, denote independent pairs of independent random variables such

that, for given values of A, ..., A,, ¥;; has an exponential distribution with mean /A; and

that Y;, has an exponential distribution with mean 1/4;. Suppose further that A, ..., A, are

independent random variables, each distributed according to an exponential distribution with

mean 1/¢, ¢ > 0. Show that the pairs (Y}, Yj»), j =1, ..., n, are identically distributed and

find their common density function.

Let A and X1, ..., X,, denote random variables such that, given A, X, ..., X, are independent

and identically distributed. Show that X, ..., X, are exchangeable.

Suppose that, instead of being independent and identically distributed, X, ..., X,, are only

exchangeable given A. Are X1, ..., X, exchangeable unconditionally?

Consider a linear exponential family regression model, as discussed in Example 5.22. Find an

expression for the mean and variance of T'(Y;).

Show that G, G, and G each satisfy (G1)-(G4) and (T1) and (T2).

Let P denote the family of normal distributions with mean 6 and standard deviation 6, where
0 > 0.Is this model invariant with respect to the group of location transformations? Is it invariant
with respect to the group of scale transformations?

Let Yy, ..., Y, denote independent, identically distributed random variables, each uniformly

distributed on the interval (0;, 6,), 6; < 0,.

(a) Show that this is a transformation model and identify the group of transformations. Show
the correspondence between the parameter space and the transformations.

(b) Find a maximal invariant statistic.

Let X denote an n-dimensional random vector and, for g € R”, define the transformation

gX=X+g.



168

5.26

5.27

5.28

5.29

Parametric Families of Distributions

Let G denote the set of such transformations with g restricted to a set A C R” and define g, g,
to be vector addition, g; + g,. Find conditions on A such that G is a group and that (T1) and
(T2) are satisfied.

Consider the set of binomial distributions with frequency function of the form

n !
( )9"(1 -0, x=0,1,...,n
X

where n is fixedand 0 < 0 < 1. Forx € X = {0, 1, ..., n}, define transformations g, and g,
by gox =x and gjx =n — x.
(a) Define gog1, 180, 8080, and g1 g; so that {go, g}, together with the binary operation defined
by these values, is a group satisfying (T1) and (T2). Call this group G.
(b) Show that the set of binomial distributions described above is invariant with respect to G.
Find g¢0 and g,0 for 6 € (0, 1).
(c) Is the set of binomial distributions a transformation model with respect to G?
(d) Let x € X. Find the orbit of x.
(e) Find a maximal invariant statistic.
Suppose that the random vector (X1, ..., X,) has an absolutely continuous distribution with
density function of the form
Hpo(xj —60), —oo<xj<oo, j=1,...,n,
j=1
where 6 € R and pj is a density function on the real line. Recall that this family of distributions
is invariant with respect to Gi; see Example 5.35.
Let T denote an equivariant statistic. Show that the mean and variance of 7 do not depend on
0. Let S denote an invariant statistic. What can be said about the dependence of the mean and
variance of S on 6?

Let X = R"*" letv denote the vector in X’ with the first n elements equal to 1 and the remaining
elements equal to 0, and let u# denote the vector in X with the first n elements equal to 0 and
the remaining elements equal to 1. Let G = R? and for an element g = (a, b) € G, define the
transformation

gx=x4+av+bu, xedi.

For each of the models given below, either show that the model is invariant with respect to G or

show that it is not invariant with respect to G. If a model is invariant with respect to G, describe

the action of G on the parameter space ®; that is, for g € G and 6 € O, give g6.

(a) X1, Xs,..., X, are independent, identically distributed random variables, each with a
normal distribution with mean 6, —oo < 6 < oo.

(b) X1, X», ..., X,1m are independent random variables, such that X, ..., X,, each have a
normal distribution with mean p; and X,y, ..., X,4,» each have a normal distribution
with mean ,; here 8 = (i, o) € R?.

(¢) X1, X,,..., X, are independent random variables such that, foreach j = 1,...,n +m,
X; has a normal distribution with mean p;; here 6 = (i1, ..., tlyym) € R,

(d) X, X,,..., X, are independent random variables such that X, ..., X, each have an
exponential distribution with mean p; and X,,41, ..., X,+» €ach have an exponential dis-

tribution with mean ,; here 8 = (i, u,) € (RH)2.
Consider the model considered in Exercise 5.28. For each of the statistics given below, either
show that the statistic is invariant with respect to G or show that it is not invariant with respect
to G. If a statistic is invariant, determine if it is a maximal invariant.
(@ T) =Y x;/n =00 x;/m
(b) T(x)=x1 =3 x;/n
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(©) T(x)=(x2— X1, X3 = X1, -0\ Xp = X1, Xp42 = Xntls -+ » Xntm — Xnt1)
(d) T(x)=(x —% X — %, ..., X — X) where & = 3 "2V x; /(n + m).

5.30 Let Fy, ..., F, denote absolutely continuous distribution functions on the real line, where n is
a fixed integer. Let ® denote the set of all permutations of (1, ..., n) and consider the model P
for an n-dimensional random vector X = (X}, ..., X,,) consisting of distribution functions of
the form

F(xp, .o, x,,0) = Fg (x1) -+ - Fy, (x),
0 =(6,...,6,) € ©.The sample space of X, X', may be taken to be the subset of R” in which,
forx = (x1,...,x,) € X, xy,...,x, are unique.
Let G denote the set of all permutations of (1, ..., n) and, for g € G and x € X, define
8x = (Xgy, ..y Xg,).

(a) Show that P is invariant with respect to G.

(b) For g € G, describe the action of g on 6 € ©. Thatis, by part (a), if X has parameter 6 € 0,
then g X has parameter 6, € ®; describe 6, in terms of g and 6.

(c) Let x € X. Describe the orbit of x. In particular, for the case n = 3, give the orbit of
(x1,x2,x3) € X.

(d) Let T(x) = (xqy, - - ., X)) denote the vector of order statistics corresponding to a point
x € X. Show that T is an invariant statistic with respect to G.

(e) Is the statistic T defined in part (d) a maximal invariant statistic?

(f) Forx € X,let R(x) denote the vector of ranks of x = (x1, ..., x,). Note that R takes values
in ©. Is R an equivariant statistic with respect to the action of g on ®?

5.8 Suggestions for Further Reading

Statistical models and identifiability are discussed in many books on statistical theory; see, for example,
Bickel and Doksum (2001, Chapter 1) and Gourieroux and Monfort (1989, Chapters 1 and 3). In the
approach used here, the parameter is either identified or it is not; Manski (2003) considers the concept
of partial identification.

Exponential families are discussed in Bickel and Doksum (2001, Section 1.6), Casella and Berger
(2002, Section 3.4), and Pace and Salvan (1997, Chapter 5). Comprehensive treatments of exponential
family models are given by Barndorff-Nielsen (1978) and Brown (1988). Exponential dispersion
models, considered briefly in Exercise 5.14 are considered in Pace and Salvan (1997, Chapter 6).
Schervish (1995, Chapter 8) contains a detailed treatment of hierarchical models and the statistical
inference in these models; see also Casella and Berger (2002, Section 4.4).

Regression models play a central role in applied statistics. See, for example, Casella and Berger
(2002, Chapters 11 and 12). Rao and Toutenburg (1999) is a comprehensive reference on statistical
inference in a wide range of linear regression models. McCullagh and Nelder (1989) considers a
general class of regression models that are very useful in applications. Transformation models and
equivariance and invariance are discussed in Pace and Salvan (1997, Chapter 7) and Schervish (1995,
Chapter 6); Eaton (1988) contains a detailed treatment of these topics.
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Stochastic Processes

6.1 Introduction

Statistical methods are often applied to data exhibiting dependence; for instance, we may

observe random variables X, X», ... describing the properties of a system as it evolves in

time. In these cases, a model is needed for the dependence structure of the observations.

In the present chapter, we consider some probability models used for dependent data. The

usual point of view is that the X ; are ordered in time, although this is not always the case.
In general, we are concerned with a collection of random variables

(X, teT)

For each ¢, X, is a random variable; although the X, may be vector-valued, here we only
consider the case in which the X, are real-valued. Such a collection of random variables is
called a stochastic process. The index set 7 is often either a countable set, in which case
we refer to {X,: t € T} as adiscrete time process, or an interval, possibly infinite, in which
case we refer to {X,: t € 7} as a continuous time process.

In this chapter, we consider two cases, discrete time processes in which

T=7=1{0,1,2,..)

and continuous time processes with 7 = [0, co). Note that, in both cases, the starting point
of t+ = 0 is arbitrary and other starting points, such as ¢ = 1, could be used if convenient;
this is sometimes done in the examples. Also, in some cases, it is mathematically convenient
to assume that the processes have an infinite history so that

T=1{.,-1,01,..1}

or 7 = (—00, 00). We assume that there is a set X C R such that, for each ¢t € 7, the
random variable X, takes values in X’; X is called the state space of the process.

Associated with each process {X;: t € T} is the set of finite-dimensional distributions.
Fix a positive integer n and let ¢, ...,t, be elements of 7. Then the distribution of
(X4, - .., X;,)1s finite-dimensional and may be handled by standard methods. The distribu-
tions of all such vectors for all choices of n and ¢4, . . ., t, are called the finite-dimensional
distributions of the process. In general, the finite-dimensional distributions do not com-
pletely determine the distribution of the process. However, for discrete time processes it is
true that finite-dimensional distributions determine the distribution of the process. That is,
if forany n and any ¢, ..., t, in Z,

Xy, ..., X,) and (Y,,....Y,)

170
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have the same distribution, then the two processes have the same distribution. The proofs
of these results require rather sophisticated methods of advanced probability theory; see,
for example, Port (1994, Chapter 16) and Billingsley (1995, Chapter 7).

6.2 Discrete Time Stationary Processes

Perhaps the simplest type of discrete time process is one in which Xg, X, X», ... are
independent, identically distributed random variables so that, for each i and j, X; and X ;
have the same distribution. A generalization of this idea is a stationary process in which,
forany n = 1, 2, ... and any integers ¢, ..., t,,

(er--~,Xt,,) and (Xr|+h,--~,Xt,,+h)

have the same distribution forany h = 1,2, .. ..

Example 6.1 (Exchangeable random variables). Let Xy, X1, ... denote a sequence of
exchangeable random variables. Then, foranyn = 0, 1, ..., X¢, X1, ..., X, are exchange-
able. It follows from Theorem 2.8 that any subset of X, X1, ... of size m has the same
marginal distribution as any other subset of X, X1, ... of size m. Clearly, this implies that

the condition for stationarity is satisfied so that the process {X;: ¢t € Z} is stationary. O

The following result gives a necessary and sufficient condition for stationarity that is
often easier to use than the definition.

Theorem 6.1. Let {X,: t € Z} denote a discrete time process and define

YIZXI+1, t=0,1,2,....
Then {X,: t € 1L} is stationary if and only if {Y,: t € Z} has the same distribution as
{X;: t €eZ}.

Proof. Clearlyif{X,: ¢t € Z}isstationary then {X,: ¢t € Z}and {Y;: ¢t € Z} have the same
distribution. Hence, assume that {X,: ¢t € Z} and {Y;: ¢t € Z} have the same distribution.
Fixn=1,2,...and #1, .. .t, in Z. Then, by assumption,

D
(Xfp ey th) = (X11+11 ey an+1)~

D. - . N
Here the symbol = is used to indicate that two random variables have the same distribution.
Hence,

(Xt eTY2 (X1, 1 € Z).
It then follows that
Xs:t ey 2 (¥, t €2).
That is,

D
(Xn y e Xt”) = (Xt,+zs BRI Xt,1+2)-
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Continuing in this way shows that, forany 4 =0, 1, ...,

D
(ti DR Xf,,) = (th-Hﬂ L) Xt/1+h)7

proving the result. H

Example 6.2 (First-order autoregressive process). Let Zy, Z,, Z», ... denote a sequence

of independent, identically distributed random variables, each with a normal distribution
with mean 0 and variance 2. Let —1 < p < 1 and define

1 el
X mzo lff—O
! X, 1+ 2Z, ift=1,2,3,..."

The stochastic process {X;: t € Z} is called a first-order autoregressive process.
Foreacht =0,1,2,..., letY, = X;1;. Define

5 _{pZ0+\/(1—p2)Zl ift =0
=

Zion ifr=1,2.."
then
1 7 : .
Y, = { —\/(1—,02)2(1 ift =0 .
oY1 +2Z, ift=1,273,...

It follows that the process {X,: ¢ € Z} is stationary provided that (Zo, Z1, .. .) has the same
distribution as (Zy, Zy, .. .). Clearly, Zo, Z,, ... are independent and each of Z;, Z», ... is
normally distributed with mean O and standard deviation o. It follows that {X,: ¢t € Z} has
the same distribution as {Y,: ¢t € Z} and, hence, {X,: ¢ € Z} is stationary, provided that ZO
has a normal distribution with mean 0 and standard deviation o.

Since Zj and Z; are independent, identically distributed random variables each with
characteristic function

1
exp (—50212> , —00 <t < 00,

it follows that the characteristic function of Zj, is

1 1 1
exp <—502;02t2> exp <—502(1 - pz)t2> = exp (—50212) :

It follows that {X,: ¢ € Z} is stationary.

Figure 6.1 contains plots of four randomly generated first-order autoregressive processes
basedon p =0, 1/2,—-1/2,9/10 and 0% = 1. Note that, in these plots, the processes are
presented as continuous functions, rather than as points at integer values of . These functions
are constructed by taking the value at an integer ¢ to be X; and then using line segments to
connect X; and X,. O

The following theorem shows that certain functions of a stationary process yield another
stationary process.

Theorem 6.2. Suppose {X,: t € 1} is a stationary process. For each t € Z define
Y[ = f(X[, XtJrlv .o .)

where f is a real-valued function on X*°. Then {Y,: t € 1} is stationary.
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Figure 6.1. Randomly generated autoregressive processes.

Proof. Let h denote a nonnegative integer and consider the event

Ap =1 <y, Youn < y2, .- b
We need to show that the probability of A; does not depend on /. Note that

Ao ={f(X1, X2, ...,) <y, fX2, X3, ...,) <y, ...} ={(X1, X2, ...) € B}
for some set B. Similarly, forh = 1,2, ...,
Ap =A{X14n, X241, ...,) € B}

Since the distribution of (X4, X244, - ..) is the same for all 4, the result follows. W
Example 6.3 (Moving differences). Let Zy, Z,, ... denote a sequence of independent,
identically distributed random variables and define

X, =Zn—-2,, t=0,1,2,....
It follows immediately from Theorem 6.2 that {X,: ¢ € Z} is stationary. More generally,

{X,: t € Z} is stationary provided only that {Z,: ¢ € Z} is itself a stationary process. O

Covariance-stationary processes
Consider a process {X;: ¢t € Z} such that, for each r € Z, E(X tz) < 00. The second-order
properties of this process are those that depend only on the mean function

e =EX,), t€l
and the covariance function

K(s,t) = Cov(X,, X;), s,tel.
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The process is said to be second-order stationary, or covariance stationary, if ., and
K (s + h,t 4+ h) do not depend on h. Hence, {X,: t € Z} is covariance stationary provided
that u, is constant, that is, does not depend on #, and K (s, t) depends on s, ¢ only through
the difference |s — ¢[; in this case we write u, = u and K (s, t) = R(|s — ¢|) for some
function R on Z. The function R is known as the autocovariance function of the process;
the autocorrelation function of the process is also useful and is given by

o) =R(@#)/R0O), t=0,1,....

Example 6.4 (Moving differences). Let {Z,: t € Z} denote a covariance-stationary pro-
cess and define

X[:Z[+1_Z[, t:0,1,....

According to Example 6.3, {X;: ¢ € Z} is stationary provided that {Z,: ¢ € Z} is stationary;
here we assume only that {Z;: ¢ € Z} is covariance stationary.
Clearly, E(X;) = 0 for all ¢. Let Cov(Z;, Z;) = Rz(|t — s]); then

Cov(Xr, Xe+n) = 2Rz(|h]) — Rz(|h — 11) — Rz(Jh + 1)).
Since |h — 1| = | — h + 1], it follows that Cov(X,, X,+,) depends on 4 only through |4| so

that {X,: ¢ € Z} is covariance stationary. [

Example 6.5 (Partial sums). Let Zy, Z1, Z», ... denote a sequence of independent, iden-
tically distributed random variables, each with mean 0 and standard deviation o. Consider
the process defined by

X;ZZO+"'+ZH t:O,l,....

Then E(X,) = 0 and Var(X,) = r0%; hence, the process is not stationary.
The variance of the process can be stabilized by considering

 Zo+---+Z,

= s =1,2,...
i+
which satisfies E(Y,) = 0 and Var(Y,) = 0% forallr =0, 1,2, .... However,
2
Cov(Y;,Y)= ——————min(s + 1,1+ 1
e Xo= g ey o™ )

so that {Y,: ¢ € Z} is not covariance stationary. [J

6.3 Moving Average Processes

Let...,e_1, €, €1, ... denote a doubly infinite sequence of independent random variables
such that, foreach j,E(¢;) = Oand Var(¢;) = landlet.. ., a_;, ag, @y, . . . denote a doubly
infinite sequence of constants. Consider the stochastic process {X,: ¢ € Z} defined by

X;= ) ajej, t=0.1,.... (6.1)

j=—0
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The process {X;: t € Z} is known as a moving average process. Two important special
cases are the finite moving average process

q
X, = Z()ljé,_j, t=0,1,...,
Jj=0

where ¢ is a fixed nonnegative integer, and the infinite moving average process,
o
Xo=) ajej, t=01,....
—

In fact, it may be shown that a wide range of stationary processes have a representation of
the form (6.1). We will not pursue this issue here; see, for example, Doob (1953).

Before proceeding we must clarify the exact meaning of (6.1). For each n =0, 1, ...
define

n
X = Z oj€—j, = 0,1,....

j=—n
Then, foreacht =0, 1, ..., X; is given by
X; = lim X,;. (6.2)

n—o0

Hence, we need a precise statement of the limiting operation in (6.2) and we must verify
that the limit indeed exists.

The type of limit used in this context is a limit in mean square. Let Yy, Yy, ... denote a
sequence of real-valued random variables such that E(Y jz) <o00,j=0,1,.... We say that
the sequence Y,,, n =0, 1, ..., converges in mean square to a random variable Y if

lim E[(Y, — Y)*] =0. (6.3)
n—oo

The following result gives some basic properties of this type of convergence; the proof is
left as an exercise.

Theorem 6.3. Let Yy, Yy, ... denote a sequence of real-valued random variables such that

E(sz) <ooforall j =0,1,...andletY denote a real-valued random variable such that

lim E[(Y, — Y)*] = 0.

(i) E(Y?) < oo.
(ii) Suppose Z is real-valued random variable such that

lim E[(Y, — Z)*] = 0.
n—00
Then
Pr(Z=Y)=1.
(iii) B(Y) = lim,_, o E(Y,)) and E(Y?) = lim,_ o, E(Y?).

Recall that, in establishing the convergence of a sequence of real numbers, it is often
convenient to use the Cauchy criterion, which allows convergence to be established without



176 Stochastic Processes

knowing the limit by showing that, roughly speaking, the terms in the sequence become
closer together as one moves down the sequence. See Section A3.2 in Appendix 3 for
further details.

The same type of approach may be used to establish convergence in mean square of a
sequence of random variables. Theorem 6.4 gives such a result; as in the case of convergence
of a sequence of real numbers, the advantage of this result is that it may be shown that a
limiting random variable exists without specifying the distribution of that random variable.

Theorem 6.4. Let Yy, Yy, ... denote a sequence of real-valued random variables such that
E(sz) <ooforall j =0,1,....Suppose that for every € > 0 there exists an N > 0 such
that

E[(Y, — Y,)] <¢€

forallm,n > N, in this case we say that Y,,n =0, 1, ..., is Cauchy in mean square.
IfY,, n=0,1,...,is Cauchy in mean square, then there exists a random variable Y
with E(Y?) < oo such that

lim E[(Y, — Y)*] = 0.
n—0oQ

Proof. Fix j=1,2,.... Since Yy, Yy, ... is Cauchy in mean square, we can find m, n,
m > n, such that

B[ — V)] < —
m n _4,/'

Thus, we can identify a subsequence n1, 1y, ... such that

1
2 .
Bl — )" < 550 J =120

Jj+1

Define

Tw=Y Vo1 =Yl m=12....

I

1

J

Let © denote the sample space of the underlying experiment so that, for each m =
1,2,....T, = T,(w), v € Q.Note that the terms in the sum forming T}, are all nonnegative
so that, for each w € €, either lim,,_, o, 7,,(®) exists or the sequence diverges. Define a
random variable T by

T(w) = lim Tp(w), oeQ
m—0o0

if the limit exists; otherwise set T (w) = oo.
Note that for any real-valued random variables Z, Z, such that E(Z ?) <o0o,j=1,2,

1 172 1 1
[£(23)° +E(23)°] —BlZi + 22 = 2B (23)* E(23)" — 2E(Z122) 2 0,
by the Cauchy-Schwarz inequality. Hence,

E[(Zi + 221} <E(Z2)° +E(Z2)".
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It follows that

1

m 2
E %Z (Z n+1_Ynj|)
<> B[ - Yo PP
j=1
<ii <1.
DI

Since, by Fatou’s lemma,

E(T?) < liminfE(T?),
m-—00

it follows that E(T'2?) < 1 and, hence, that Pr(T < co) = 1. This implies that

NE

(Y"ﬂrl - Y"j)
1

~.
Il

converges absolutely with probability 1.
Hence, the limit of

m
Ym +Z nj+1 =

J=1

as m — 00 exists with probability 1 so that we may define a random variable

00
Y = Yﬂ] + Z (Y"j+1 - Y"j) .
j=1

Note that

Y = lim Y, with probability 1.

j—oo
Consider E[(Y,, — Y)?]. Since Y,, > Y as j — o0,
Y-Y, = hm (Yn/- _Yn)
j—o00

and, by Fatou’s lemma,

/—)OO

E[(Y, — Y)2] = E[jli)rgo (Y., — Y,,)z} < liminfE[ (¥, - ¥,)*].
Fix € > 0. Since Yy, Y1, ... is Cauchy in mean square, for sufficiently large n, j,
E[(r,-1.)"] =<
Hence, for sufficiently large n,
E[(Y, —Y)] <e.

Since € > 0 is arbitrary, it follows that

lim E[(Y, — Y)*] = 0.
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Furthermore, since (¢ + b)? < 2a? + 2b2,
E(Y?) = E{[Y, + (¥ — Y,)I*} < oo,

proving the result. MW

We now consider the existence of the stochastic process defined by (6.1).

Theorem 6.5. Let ..., €_1, €, €, ... denote independent random variables such that, for
each j,E(e;) = 0and Var(e;) =l andlet ..., a_i, g, ay, ... denote constants.
If
o0
3 a? <0
j—
then, for eacht =0, 1, ..., the limit
n
lim o€

exists in mean square.

Proof. Fixt=0,1,....Forn=1,2,...define

j==n
Form > n,
—(n+1)
Xt — Xt = Zoejet,—i- Zozjef,
j=—m Jj=n+1
and
—(n+1)
EMWnM—Za+Za
j=—m j=n+1
Let
n
:Zoz?, n=1,2,....
=1
Since Y% j==o0 a < 00, lim,,_, o, A, exists. It follows that A, is a Cauchy sequence of real

numbers: given e > 0 there exists an N; such that
|A, — Ayl <€, n,m> Nj.

That is, given € > 0, there exists an N such that

m
E oz? <€/2, n,m> Nj.

Jj=n+1
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Similarly, there exists an N; such that

—(n+1)
Z oz? <€/2, n,m> N,.

j=—m
Hence, given € > 0, there exists an N such that
E[(Xnt - th)2] <€, n,m> N.

That is, foreach t =0, 1,..., X,,;,, n =1,2, ..., is Cauchy in mean-square. The result
now follows from Theorem 6.4. W

The autocovariance function of a moving average process is given in the following
theorem.

Theorem 6.6. Let {X,: t € Z} be a moving average process of the form

00
X;= ) ajej t=0.1,...

j=—00
where . .., €_y, €, €1, . .. is a sequence of independent random variables such that E(e ;) =
Oand Var(e;) =1,j=...,-1,0,1,..., and
o0
3 a? <0
j=—00

Then {X,: t € L} is a second-order stationary process with mean 0 and autocovariance
function

[e¢]
RY= " ajajn, h=0%1,42,....
j=—00

If ..., €_1, €0, €, ... are identically distributed, then {X,: t € 1} is stationary.

Proof. Fixh=0,1,...anddefineY, = X;,, t=0,1,.... Then
o0 o0
Y, = Z Aj€ppj = Z ojip€—j.

j==o0 j==o00

Fix t and define
n
X = Z Q€
j=—n

and

n
Y = E oy n€—j

j=n

Then

n
Xp —Yu = E (aj - aj+h)61—j;

j=—n
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since
o0 [0¢]
Z (@ — o)’ <4 Z o < 0o,
j=o0 j=—00
it follows that X, — Y,,, converges to X, — Y, in mean square. Hence,
o0
Var(X, —Y,) = lim Var(Xy —Yu) = Y (@) =y’
j=—00
Similarly,
oo
Var(X,) = Var(Y) = Y a;;
j=—00

hence,

o0 &) o0
2Cov(X, Y =2Cov(X, Xpyn) =2 D g — D (@ —ojun)’ =2 ) o,

j=—00 j=—00 j=—00

proving the first result.

To prove the second result, letY, = X,,;, ¢t =0,1,.... Then

Y[= Z Aj€ry1—j, t=0,1,
j==00
Since ..., €_y, €, €1, . . . are identically distributed, we may write
Y, = Z oj€—j, t=0,1,....
j==00

It follows that the process {Y;: ¢ € Z} has the same structure as {X,: ¢ € Z}. It now follows
from Theorem 6.1 that {X,: t € Z} is stationary. W

Example 6.6 (Finite moving average process). Consider the gth-order finite moving aver-
age process,

q
X, = ZOKJ‘E,__/‘, t=0,1,...,
—

where ¢ is a fixed nonnegative integer; here €_,, €_,41, ... is a sequence of independent
random variables such that, for each j, E(¢;) =0 and Var(e;) =1 and ap, a1, ..., oy
are constants. This model is of the general form considered above with o; =0, i < —1,
i > g + 1; hence, the condition of Theorem 6.6 is satisfied.

It follows that the covariance function of the process is given by

R(h):{z‘;:gajaHh ith=0.1..4q _
0 ifh=q+1,qg+2,...
Thus, observations sufficiently far apart in time are uncorrelated.

Figure 6.2 contains plots of four randomly generated moving average processes with
aj=1,j=1,2,...,q,and with the ¢; taken to be standard normal random variables, for
q =0,1,2,5. As in Figure 6.1, the processes are shown as continuous functions, rather
than as points. O
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Figure 6.2. Randomly generated moving average processes.

Example 6.7 (Moving differences of a moving average process). Let {Z,: t € Z} denote
a moving average process and let

X, =Zp—2Z,, t=12,....

Write

o0
Z[ - E ajet_j

j=—00

where 332 af < 00. Then we may write

o0 o0 o0
X = E Qj€ry1—j — E e = E (o1 —aj)e—j.
o =0 i
Note that

[e¢]

o0
2 2
D @i—a =4 Y af < oo

j=—00 j=—00

it follows that {X;: ¢ € Z} is also a moving average process.
By Theorem 6.6, the autocovariance function of the process is given by

R(h) = Z (o1 — @)1 — Ajrn)-

j=00
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Since

o0 ]

2
Z locjpr — ol |ojpner — ajpnl < Z (@jr1 —aj)” < o0,
fram fram®

we may write

o0 o0 o0 o0
R(h) = E O 101 — E OO pht1 — E ojp1jn + E OO

j=—00 j=—0 j=—00 j=—0

o0 o0 o0
=2§ ojjp — E o jhtl — E o1

Jj=—00 j=—00 Jj=—00
= Rz(|h]) = Rz(|h + 1]) — Rz(lh — 1])

where R; denotes the autocovariance function of the process {Z;: t € Z}. This is in agree-
ment with Example 6.4. 0O

6.4 Markov Processes
If Xo, X4, ... are independent, real-valued random variables, then
Pr(Xn-H <x|Xi,....X,) = Pr(Xn-H <Xx)

with probability 1. If X, X1, ... is a Markov process, this property is generalized to allow
Pr(X,+1 < x|Xy,..., X,) todepend on X,;:

Pr(X,41 < x|X1, ..., Xp) = Pr(X,11 < x|X,).
That is, the conditional distribution of X, given X, ..., X, does not depend on Xy, .. .,

Xu-1.

Example 6.8 (First-order autoregressive process). Consider the first-order autoregressive
process considered in Example 6.2:

1 : —
Xt: mzo ift =0
pXi1+ 272, ift=1,2,...

where Zy, Z1, Z, . . . is asequence of independent, identically distributed random variables,
each with a normal distribution with mean 0 and variance 0> and —1 < p < 1.
Note that we may write

X, = Zo+p' ' Zi+ o+ pZi + Zss

V(1= p?)
thus, foreachr =0, 1,2, ..., Z,+; and (X, ..., X,) are independent. Using the fact that
Ximi=pXi+Ziy, t=1,2,...,

it follows that, for each s € R,
E{exp(isX,+1)|Xo, ..., X;} = E{lexp(ispX,) exp(isZ;+1)|Xo, - .., X;}
= exp(ispX,)E{exp(isZ;+1)}-

Hence, the first-order autoregressive process is a Markov process. [
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Markov chains
A Markov chain is simply a Markov process in which the state space of the process is a
countable set; here we assume that the state space is finite and, without loss of generality,
we take it to be {1, ..., J} for some nonnegative integer J. A Markov chain may be either
a discrete time or a continuous time process; here we consider only the discrete time case.

Since a Markov chain is a Markov process, the conditional distribution of X, given
X1, ..., X, depends only on X,. This conditional distribution is often represented by a
matrix of transition probabilities

P,.’j:’+1 =Pr(X,p1 = jI1X, =0), i,j=1,...,J.

If this matrix is the same for all + we say that the Markov chain has stationary transition
probabilities; in the brief treatment here we consider only that case.

Hence, the properties of the process are completely determined by the transition proba-
bilities P;; along with the initial distribution, the distribution of Xg. Let P denote the J x J
matrix with (i, j)th element P;; and let p denote a 1 x J vector with jth element

pj:Pr(onj), JZI,,J

We will say that a process {X(¢): t € Z} has distribution M(p, P) if it is a discrete time
Markov chain with transition matrix P and initial distribution p.

Example 6.9 (Two-state chain). Consider a Markov chain model with two states. Hence,
the transition probability matrix is of the form

o ]l —«
P‘(l—ﬂ g )

where « and B take values in the interval [0, 1]; for simplicity, we assume that 0 < o < 1
and 0 < B8 < 1. For instance,

PriX,=1|Xy=1)=a and Pr(X;=1|X;=2)=1-8.
The initial distribution is given by a vector of the form (6, 1 — ) so that
PriXo=1)=1-Pr(Xo=2)=10

where0 <6 <1. O

Example 6.10 (Simple random walk with absorbing barrier). Suppose that, at time 0, a
particle begins at position 0. Attime 1, the particle remains at position 0 with probability 1/2;
otherwise the particle moves to position 1. Similarly, suppose that at time ¢ the particle is at
position m. Attime ¢ + 1 the particle remains at position m with probability 1/2; otherwise
the particle moves to position m + 1. When the particle reaches position J, where J is some
fixed number, no further movement is possible. Hence, the transition probabilities have the
form

1 ifi=Jand j=J

1/2 ifi < J andeither j =iorj=1i+1
P[J' :I
0 otherwise
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For instance, for J = 4,

1212 0 0

P 0 1/2 12 0
o 0 0 1/2 1/2
O 0 O 1
The initial distribution is given by a vector of the form (1,0, ..., 0) to reflect the fact

that the particle begins at position 0. O

The joint probability that Xo = 7 and X| = j is given by p; P;;. The marginal probability
that X| = j may be written

J J
Pr(X, = j)=Y Pr(X; = j|Xo=0iPr(Xo=i)=)_ P;p:.
i=1 i=1
Therefore, the vector of state probabilities for X | may be obtained from the vector of initial
probabilities p and the transition matrix P by the matrix multiplication, p P. The vector
of probabilities for X, may now be obtained from pP and P in a similar manner. These
results are generalized in the following theorem.

Theorem 6.7. Let {X,: t € Z} denote a discrete time process with distribution M(p, P).
Then
(i) Pr(Xo = jo, X1 =ji,--.» Xo = Ju) = PisPioji Pjrjo -~ Pju_ri,
(ii) The vector of state probabilities for X,,n = 1,2, ..., is given by pP".
(iii) Letr =0, 1,2, .... Then the distribution of {X,,,: t € Z}is M(pP", P).

Proof. Part (i) follows directly from the calculation

Pr(Xo = jo. X1 =Ji, ..., X0 = jn)
= Pr(Xy = jo)Pr(X; = j1lXo = jo)---Pr(X,, = julXo = jo, ..., Xu—1 = ju=1)
= Pr(Xo = jo)Pr(X| = j1|Xo = jo)Pr(X2 = jo| X1 = j1) - Pr(X,, = julXuo1 = Ju—)-

Part (ii)) may be established using induction. The result for » = 1 follows from the
argument given before the theorem. Assume the result holds for n = m. Then

J
Pr(Xpy1 = j) = ZPr(Xm+l = JIXm = DPr(X,, =10)

i=1

so that the vector of state probabilities is given by (pP™)P = pP™*!, proving the result.

To prove part (iii), it suffices to show that, foranyr = 1,2,...,andanyn =1,2, ...,
the distributions of (X¢, X1, ..., X,,) and (X,, X, 41, ..., X,4,) are identical. From part (i)
of the theorem,

Pr(Xo = jo, X1 =j1,.... Xo = J) =0y Pjoj Pirjp - - Pjr_rj (6.4)

0.J1
and

Pr(X, = jo. Xot1 = J1s s Xon = Ju) = 4o Pjijo -+ Pji_ij, (6.5)
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where ¢ = (q1, . . ., ¢ ) denotes the vector of state probabilities for X,. Note that (6.5) is of
the same form as (6.4), except with the vector p replaced by ¢; from part (ii) of the theorem,
q = pP’,proving the result. W

Example 6.11 (Two-state chain). Consider the two-state Markov chain considered in
Example 6.9. The vector of state probabilities for X is given by

o 1-—

(6, 1—9)(1_ﬂ 5

“) —(Ba+(1—6)1—p8), 60 —a)+(—6)B). (6.6)

Hence,
Pr(X;=1)=1-Pr(X; =2) =0a + (1 — 0)(1 — B).

The position of the chain at time 2 follows the same model, except that the vector of
initial probabilities (6, 1 — ) is replaced by (6.6). Hence,

Pr(X,+1 = 1) = aPr(X, = 1) + (1 — H)Pr(X,, = 2)
=@+p—-DPr(X,=1)+{—-p).

Thus, writing r, =Pr(X, =1), c=a+ B — 1, and d = 1 — 8, we have the recursive
relationship

Fppp=crp,+d, n=0,1,2,...
with ry = 6. It follows that

Fpo1 =c(crp_1+d)+d = ra1+cd+d=c*crno+dl+cd+d
=+ (P H e+ Dd,

and so on. Hence,

n ) 1— +8—-1 n+1
Fagr = o+ d ; ol =(@+B— 10+ (1-p) 2(05_ (aﬂ—i- ﬁ))

For the special case in whicha + 8 =1,
Pr(X,;;=1)=1—-8, n=0,1,2,.... O
The matrix P gives the conditional distribution of X, ,; given X, =i, for any i =

1, ..., J; hence, the probabilities in P are called the one-step transition probabilities. We
may also be interested in the m-step transition probabilities

Pi(jm) =Pr(X,ym = jI1Xu =10).

The following theorem shows how the m-step transition probabilities can be obtained
from P.

Theorem 6.8. Let {X,: t € Z} denote a discrete time process with distribution M(p, P).
Then, for any r < m, the m-step transition probabilities are given by

J
m _ ") pm—r)
Py =3 PP
k=1
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Hence, the matrix P™ with elements Pi(;"), i=1,....J,j=1,...,J, satisfies
P™ =pOPUT r=0,....m

so that P = P™ = P x -+ x P.
Proof. Since the process is assumed to have stationary transition probabilities,

J
P =PiXp = jIXo=1) =Y _Pr(Xpy = j. X, = kIXo =)
k=1

J
=Y Pr(X, = j|X, =k, Xo = D)Pr(X, = k|Xo = i)

I
Ead
M\ T
LR

Pr(X,, = jIX, = K)Pr(X, = k|Xo =1)

~
Il

1

~

(m—r) p(r)
P Py,
k=1

proving the result. M

Example 6.12 (Simple random walk with absorbing barrier). Consider the simple random
walk considered in Example 6.10. For the case J = 4, it is straightforward to show that the
matrix of two-step transition probabilities is given by

1/4 1/2 1/4 0
0 1/4 1/2 1/4
0 0 1/2 1/2
0 0 0 1
The matrix of four-step transition probabilities is given by
1/16 1/4 7/16 1/4
0 1/16 3/8 9/16
0 0 1/4 3/4 ) 0
0 0 0 1
Suppose that the distribution of X is identical to that of Xy; that is, suppose that the

vector of state probabilities for X is equal to the vector of state probabilities for Xg. This
occurs whenever

pP =p.
In this case p is said to be stationary with respect to P.

Theorem 6.9. Let {X;: t € Z} denote a discrete time process withan M (p, P) distribution.
If p is stationary with respect to P, then {X,: t € L} is a stationary process.

Proof. LetY, = X,;1,t =1,2,.... According to Theorem 6.1, it suffices to show that
{X;: t € Z} and {Y;: t € Z} have the same distribution. By Theorem 6.7, {Y;: t € Z} has
distribution M (p P, P). The result now follows from the fact that pP = p. ®
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Example 6.13 (Two-stage chain). Consider the two-stage Markov chain considered in
Examples 6.9 and 6.11. The initial distribution p = (6, 1 — 0) is stationary with respect to
P whenever

0 =00+ (1—-06)1—pB);

that is, whenever,

0 1-p
-0 11—«
in which case
1-8
T2 @+p) H

6.5 Counting Processes

A counting process is an integer-valued, continuous time process {X,: ¢ > 0}. Counting
processes arise when certain events, often called “arrivals,” occur randomly in time, with
X, denoting the number of arrivals occurring in the interval [0, ¢]. Counting processes are
often denoted by N (¢) and we will use that notation here.

It is useful to describe a counting process in terms of the interarrival times. Let Ty, Ty, . . .
be a sequence of nonnegative random variables and define

Sc=Ti +---+Tx.
Suppose that N (¢) = n if and only if
S, <t and S,y >1;

Then {N(¢): t > 0} is a counting process. In the interpretation of the counting process in
terms of random arrivals, 7] is the time until the first arrival, 75 is the time between the first
and second arrivals, and so on. Then S, is the time of the nth arrival.

If Ty, T,, . .. are independent, identically distributed random variables, then the process
is said to be a renewal process. If T, T, . . . has a stationary distribution then {N (¢): ¢ > 0}
is said to be a stationary point process.

Example 6.14 (Failures with replacement). Consider a certain component that is subject
to failure. Let T denote the failure time of the original component. Upon failure, the original
component is replaced by a component with failure time 7,. Assume that the process of
failure and replacement continues indefinitely, leading to failure times 77, 75, .. .; these
failure times are modeled as nonnegative random variables. Let {N(¢z): ¢t > 0} denote the
counting process corresponding to 71, 15, . ... Then N(¢) denotes the number of failures in
the interval [0, ¢]. If Ty, T>, . .. are independent, identically distributed random variables,
then the counting process is a renewal process.

Figure 6.3 gives plots of four randomly generated counting processes of this type in which
Ty, T, . . . are taken to be independent exponential random variables with A = 1/2, 1,2, 5,
respectively. O
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Figure 6.3. Randomly generated counting processes.

The mean value function of a counting process is given by

u(®) =E[N(@)], t=0.

Example 6.15 (A model for software reliability). Suppose that a particular piece of soft-
ware has M errors, or “bugs.” Let Z; denote the testing time required to discover bug j,
j=1,..., M. Assume that Z;, Z,, ..., Zy are independent, identically distributed ran-
dom variables, each with distribution function F. Then S, the time until an error is detected,
is the smallest value among Z;, Z,, ..., Zy; Sz, the time needed to find the first two bugs,
is the second smallest value among Z|, Z,, ..., Zy, and so on.

Fix a time . Then N (¢), the number of bugs discovered by time ¢, is a binomial random
variable with parameter M and F (¢). Hence, the mean value function of the counting process
{N(t): t = 0} is given by

w(t) = MF(t), t>0. O

Let F,(-) denote the distribution function of S, = Ty + - - - + T,,. The following result
shows that the function w(-) can be calculated directly from Fy, F», .. ..

Theorem 6.10. Let {N(¢t): t > 0} denote a counting process and let S,, denote the time of
the nth arrival. Then

() ="y F(t)

n=1

where F, denotes the distribution function of S,,.
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If the number of possible arrivals is bounded by M, then
M
u(t) =y Fy(t).
n=1

Proof. Fix t.Let A, denote the indicator of the event that the nth arrival occurs before 7,
that is, that S, < ¢. Then F,(r) = E(A,) and

N@) = iA"'
n=1

Hence,
u() =EIN@O] =Y E(A,) =Y F(0),
n=1 n=1

proving the first result.
If there are at most M arrivals, then the indicator A, is identically equal to O for n =
M+ 1,M +2,....The second result follows. MW

Poisson processes
The most important counting process is the Poisson process. A counting process {N(¢):
t > 0} is said to be a Poisson process if the following conditions are satisfied:

PP1) NO)=0
(PP2) {N(#): t = 0} has independent increments: if

O0<to=t1 = Zty,
then the random variables
N(t1) — N(1), N(t2) = N(t1), ..., N(ty) — N(tm—1)
are independent.

(PP3) There exists a constant . > 0 such that, for any nonnegative s, t, N(t 4+ s5) — N(s)
has a Poisson distribution with mean Ar.

The condition that differences of the form N (¢ + s) — N (s) follow a Poisson distribution,
condition (PP3), may be replaced by a condition on the behavior of N (¢) for small ¢, provided
that the distribution of N (¢ 4+ s) — N(s) does not depend on s. Consider the following
conditions.

(PP4) For any ¢ > 0, the distribution of N (¢ 4+ s) — N(s) is the same for all s > 0.
(PPS) lim,_,o Pr[N () > 2]/t = 0 and for some positive constant A,

. PrIN(@) =1]
m-—-——— =

li
t—0 t

The equivalence of condition (PP3) and conditions (PP4) and (PP5) is established in the
following theorem.

A

Theorem 6.11. Suppose that a given counting process {N(t): t > 0} satisfies conditions
(PP1) and (PP2). The process satisfies condition (PP3) if and only if it satisfies conditions
(PP4) and (PP5).
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Proof. First suppose that conditions (PP1), (PP2), and (PP3) are satisfied so that the
process is a Poisson process. Then, for any r > 0, N(¢) has a Poisson process with mean
At. Hence,

lirr(l)Pr[N(t) =1]/t = lirr(l)k exp(—At) = A
t— —
and
00 . .
Pr{N(r) > 21/t = Y M t/™" exp(—an)/j!
j=2

<A )Y () exp(—rt)/j!

o0
=1

< A[1 — exp(—At)].
It follows that

limsup Pr[N () > 2]/t < limsup A[1 — exp(—At)] = 0.

t—0 t—0

Hence, (PP5) holds. Condition (PP4) follows directly from (PP3).
Now assume that (PP1), (PP2), (PP4), and (PP5) hold. Note that (PP5) implies that

lim{Pr{N (1) = 0] — 1}/t = — im{Pr[N () = 1] + PrIN() = 2]}/t = =1 (6.7)
Using (PP2) and (PP4),

Pr[N(s +1t) =0] =Pr[N(s) =0, N(s+1t)— N(s) =0] =Pr[N() = O0]Pt[N(s) =0].

Hence,
Pr[N(s +1) = 03 “PING =01 _ b o o PINO t: 011
By (6.7),
%PY[N(S) = 0] = —APr[N(s) = 0],
that is,

d
— logPr[N(s) = 0] = —A.
ds
Solving this differential equation yields
Pr[N(s) = 0] = exp{—As}, s>0.
Now consider Pr[N (s + ¢) = 1]. Note that
Pr[N(s +1) = 1] = Pr[N(s) = O]Pr[N(¢r) = 1] + Pr[N(s) = 1]Pr[N(¢) = O].

Hence,

PN(s +1)=1] PfN()=1] | PiN(s) = 1]
Pr[N(s +1)=0] Pr[N(t)=0] ' Pr[N(s) = 0]




6.5 Counting Processes 191

Extending this argument shows that, forany m = 1,2, ...,
Pr[N(s) = 1] Pr[N(s/m) = 1]
=m .
Pr[N(s) = 0] Pr[N(s/m) = 0]
Since this holds for any m,
Pr[N(s) = 1] . Pr[N(s/m) = 1]
— = limm—.
Pr[N(s) =0] m—co Pr[N(s/m)=0]

Note that, from (6.7),
r}{i_)moPr[N(s/m) =0]=1
and, from (PP5), writing ¢ for s/m,
mli_r)noomPr[N(s/m) =1]=s }T})Pr[N(t) = 1]/t = sA.
It follows that
Pr[N(s) = 1] = APr[N(s) = 0] = sA exp{—As}.

In a similar manner, we may write
Pr{N(s) =2] = (Z)Pr[N(s/m) = 11?Pr[N(s/m) = 0]" >

+ mPr[N(s/m) = 2]Pr[N(s/m) = 0]" "

for any m =1, 2, .... Using the expressions for Pr[N(s) = 0] and Pr[N(s) = 1] derived
above, we have that, foranym = 1,2, ...,

Pr[N(s) = 2] = (1 — 1/m)(sA)? exp{—sA}/2 + mPr[N(s/m) = 2] exp{—(1 — 1/m)sA}.
Letting m — oo it follows that

_ (sA)? exp{—sAi}

Pr[N(s) = 2] >

The general case follows along similar lines:

Pr[N(s) =n] = (r:)Pr[N(s/m) = 1]"Pr[N(s/m) =0]""+ R

_m(m—1)~--(m—n+1)

mn

(As)" exp{—As} + R
where R is a finite sum, each term of which includes a factor of the form Pr[N(s/m) = j]

for some j > 2. Letting m — oo, and using (PP5), yields the result. W

Distribution of the interarrival times
Consider a Poisson process {N(¢): ¢+ > 0} and let T denote the time until the first arrival
occurs. Since, for any ¢ > 0,

X >t if and only if N(¢) =0,
it follows that

Pr(X, <1) =1 —Pr(N(t) = 0) = | — exp{—At}.
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Hence, T has an exponential distribution with rate parameter A. More generally, the interar-
rival times 71, T, . . . are independent, identically distributed exponential random variables.
Conversely, if Ty, T,, . .. are known to be independent exponential random variables then
the counting process is a Poisson process. Thus, a counting process is a Poisson process if
and only if the interarrival times are independent exponential random variables.

A formal proof of this result is surprisingly difficult and will not be attempted here; see,
for example, Kingman (1993, Section 4.1). It is easy, however, to give an informal argument
showing why we expect the result to hold.

We have seen that 7} has an exponential distribution. Now consider

Pr(T, > t|T) =1;) =Pr[N({t +1) — N(t) =0|T) = 4].
Since a Poisson process has independent increments, we expect that
Pr[N(t1 +1) = N(t;) =0T\ = t;] = Pr[N(ty + 1) — N(t;) = 0] = exp(—Ar).  (6.8)

Hence, T and T, are independent and the marginal distribution of T, is an exponential
distribution with parameter A. This approach may be carried out indefinitely:
Pr(T, > t|Ty =t1,..., Tp—1 = ty—1)
=Pr[Nt1 +--+tma+8) = N@ + -+ +1y—1) =0]
= exp{—At}.
The difficulty in carrying out this argument rigorously is in showing that (6.8) actually
follows from (PP2). For instance, the event that 7} = ¢, is the event that N (¢) jumps from

0to 1 at# = #; and, hence, it is not a straightforward function of differences of the form
N(t;) — N(t;—) for some set of ¢;.

6.6 Wiener Processes

A Wiener process or Brownian motion is a continuous time process {W;: ¢t > 0} with the
following properties:

(W1) Pr(Wy=0) =1
(W2) The process has independent increments: if
O0<to=<ti < =Ztn,
then the random variables
Wi, =Wy, Wo, =Wy, oo W, — W,

are independent.
(W3) For t, > t; > 0, W,, — W, has a normal distribution with mean O and variance
Hh—1.

Processes satisfying (W1)—(W3) can always be defined in such a way so as to be con-
tinuous; hence, we assume that (W4) is satisfied as well:

(W4) For every realization of the process, W, is a continuous function of z.

Two basic properties of Wiener processes are given in the following theorem.
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Theorem 6.12. Let {W,: t > 0} denote a Wiener process.
(i) Foragivenh > 0, letY, = Wy, — W),. Then {Y,: t > 0} is a Wiener process.
(ii) Let K(t,s) = Cov(W,, Wy). Then

K(t,s) = min(¢, 5).

Proof. Toverify part (i) it is enough to show that the process {Y,: ¢ > 0} satisfies conditions
(W1)—(W4). Clearly, Yy = 0 and since

Ytl - Yto = Wh+f| - Wh+f07

{Y;: t > 0} has independent increments. Continuity of the sample paths of Y, follows imme-
diately from the continuity of Z,. Hence, it suffices to show that (W3) holds.
For0 <t < 1,

Ytz - Yz, = Wh+tz - Wh+t1

has a normal distribution with mean 0 and variance (h + t,) — (h + ;) = t, — t;, verifying
(W3). Hence, {Y,: t > 0} is a Wiener process.
Suppose ¢t < s. Then

K(t,s) = Cov(W,, Ws) = Cov(W,, W, + W, — W,)
= Cov(W,, W,) + Cov(W,, Wy, — W,).

By (W2), W, and W; — W, are independent. Hence, K (¢, s) = ¢; the result follows. W

Example 6.16 (A transformation of a Wiener process). Let {W,: t > 0} denote a Wiener
process and for some ¢ > 0 define Z, = W, /c,t > 0. Note that Z; = W so that Pr(W, =
1).Let0 <ty <ty <--- <ty;then

Zi, —Zy = Weoyfc =Wy [e, j=1,....m.

Hence, {Z,: t > 0} has independent increments. Furthermore, th — Z,H has a normal
distribution with mean 0 and variance

cztj _ cztj_] L,
-t
C2 J J
Finally, continuity of Z, follows from continuity of W,; hence, Z, is a continuous function.
It follows that {Z,: ¢t > 0} is also a Wiener process. [

Rigorous analysis of Wiener process requires advanced results of probability theory and
analysis that are beyond the scope of this book. Hence, in this section, we give an informal
description of some of the properties of Wiener processes.

Irregularity of the sample paths of a Wiener process

By definition, the paths of a Wiener process are continuous; however, they are otherwise
highly irregular. For instance, it may be shown that, with probability 1, a Wiener process
{W,: t > 0} is nowhere differentiable. Although a formal proof of this fact is quite difficult
(see, for example, Billingsley 1995, Section 37), it is not hard to see that it is unlikely that
derivatives exist.
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Consider
Wipn — W,
h
for small /; of course, the derivative of W, is simply the limit of this ratio as # — 0. Since

W, — W, has variance h, the difference W,,, — W, tends to be of the same order as /%;
for instance,

6.9)

E(W,sh — Wi]) = Qh/m)?.

Thus, (6.9) tends to be of order s , which diverges as 7 — 0.
Let f : [0, c0) — R denote a continuous function of bounded variation and consider the
quantity

Qu(f) =Y _LfG/m) — (= D/m].
=1
This is a measure of the variation of f over the interval [0, 1]. Note that
0.(f) < max lfG/n) = f((G—1)/n)l Z |fG/n) = f((G—D/n)l.
<j< =y

Since f is continuous on [0, co) it is uniformly continuous on [0, 1] and, hence,

lim max |f(j/n)— f((j —1/n)=0.

n—00 1< <n

Since f is of bounded variation,
Z [fG/nm) — f((—D/n)
=1

is bounded in n. Hence, Q,(f) approaches 0 as n — oc.

Now consider Q, as applied to {W;: t > 0}. By properties (W2) and (W3), W,,, —
Wi—iym, j =1,...,n, are independent, identically distributed random variables, each
with a normal distribution with mean 0 and variance 1/n. Hence, foralln = 1,2, ...,

n
E Z(Wj/n —Wi—nym)* = L;
j=1
thatis, E[Q,(W;)] = 1foralln = 1, 2, .. .. This suggests that the paths of a Wiener process
are of unbounded variation, which is in fact true; see, for example, Billingsley (1968,
Section 9).

The Wiener process as a martingale
Since, for any s > t, Wy — W, and W, are independent, it follows that

E[W,|W,] = E[W, — W|W;] + E[W,|W,] = W,,

a property similar to that of martingales. In fact, a Wiener process is a (continuous time)
martingale; see, for example, Freedman (1971). Although a treatment of continuous time
martingales is beyond the scope of this book, it is not difficult to construct a discrete time
martingale from a Wiener process. Let {W;: ¢ > 0} denote a Wiener process and let 0 <
1] <t < t3 < ---denote an increasing sequence in [0, co). Foreachn =1, 2, ..., define



6.7 Exercises 195

Z, = W, . Then, since there is a one-to-one correspondence between {Z,, Z,, ..., Z,} and
{Zl, Zz - Zl5 Z3 - 227 LRI Z}'I - Zf’l—l}7

ElZ, 1|2y, ... 20 =ElZy1l21, 22— 24, ..., Zy — Zy—1]
=Zy+ElZy1 —Z)Z1, 2y - 2y, ..., Zy — Zy].
Since
ElZy1 = Zy|Z2y, 2y — 2y, ..., Zy — Zy—1]

=E(Z,., - Z,1Z2,,Z,,— Z4, ..., Zs, — Z;,_,]

=0
by properties (W2) and (W3), it follows that

ElZyilZy, ..., Zy1 = Zy;

that is, the process {Z,: t = 1, 2, ...} is a martingale.

6.7 Exercises

6.1 Forsomeqg =1,2,...,letY;,...,Y,and Z,, ..., Z, denote real-valued random variables such
that

E¥;,)=EZ)=0, j=1,...,q,

for some positive constants o7, ..., oy,
E(Y;Y;)=E(Z;Z;)=0 for i#j

and E(Y;Z;) = Oforall i, j.
Let ay, ..., o, denote constants and define a stochastic process {X,: ¢ € Z} by

q
X = Z[Yf cos(ar;t) + Z; sin(et)], t=0,....
j=I1

Find the mean and covariance functions of this process. Is the process covariance stationary?

6.2 Let Z_y, Zy, Zy, ... denote independent, identically distributed real-valued random variables,
each with an absolutely continuous distribution. For eacht = 0, 1, ..., define
X — 1 ifZ, > Z,_;
Tl ifZ,<Z

Find the mean and covariance functions of the stochastic process {X,: t € Z}. Is this process
covariance stationary? Is the process stationary?

6.3 Let{X,: t € Z} and {Y,: t € Z} denote stationary stochastic processes. Is the process {X, + Y;:
t € 7} stationary?
6.4 Let Zy, Z,, ... denote a sequence of independent, identically distributed random variables; let

X, =max{Z,,..., Z,}, t=0,1,...
where s is a fixed positive integer and let
Y, =max{Z,...,Z,}, t=0,1,....

Is {X;: t € Z} a stationary process? Is {Y,: ¢ € Z} a stationary process?
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6.5

6.6

6.7

6.8

6.9

6.10
6.11

Stochastic Processes

Let {X;: t € Z} denote a stationary stochastic process and, for s,t € Z, let K(s,t) =
Cov(X,, X,). Show that if

lim K(s, ) = K(0,0)

§,1—>00

then there exists a random variable X such that

lim E[(X, — X)?] = 0.

n—o0

LetY, Yy, Y, ... denote real-valued random variables such that
lim E[(Y, — Y)?] = 0.
n—oo

Leta, ag, ay,...and b, by, by, . .. denote constants such that

lima, =a and lim b, = b.
n—o0 n—oo

Forn=0,1,...,let X, =a,Y, + b, and let X = aY + b. Does it follow that
lim E[(X, — X)*] = 0?
n—00

Let {X;: t € Z} denote a moving average process. Define

m

Y=Y c¢iX,j t=0.1,...

Jj=0
for some constants cg, ¢y, ..., . Is {¥;: t € Z} a moving average process?

Let {X,: t € Z} denote a stationary stochastic process with autocovariance function R(-). The
autocovariance generating function of the process is defined as

o0

C@= Y R, |z1<L

j=—00

Show that the autocorrelation function of the process can be obtained by differentiating C(-).
Let {X,: t € Z} denote a finite moving average process of the form

q
X/: E o €
j=0

where €, €1, . .. are uncorrelated random variables each with mean 0 and finite variance o2, Let
C(-) denote the autocovariance generating function of the process (see Exercise 6.7) and define

q
D(z) = Zajz”j, lz| < 1.
=0

Show that

C(iz)=0*D()DE™Y, |zl <1.

Prove Theorem 6.3.

Let R(-) denote the autocovariance function of a stationary stochastic process. Show that R(-)
is positive semi-definite in the sense that forall#; <#, < ... < t,, wherem = 1, ..., and all
real numbers z(, 2o, ..., Zp,

m

ZiR([,- — l‘j)Z,'Zj > 0.

i=1 j=1
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Let {X,: t € Z} denote a finite moving average process of the form

q
X,Z E o€
=0

where €, €, . .. are uncorrelated random variables each with mean 0 and finite variance o2.
Suppose that
aj=——, j=0,1,...,q9.
7 q + 1
Find the autocorrelation function of the process.
Let €_y, €9, €1, . .. denote independent random variables, each with mean 0 and standard devi-

ation 1. Define
X =ape; +oy6,_q, t=0,1,...

where o« and «; are constants. Is the process {X,: ¢t € Z} a Markov process?

Consider a Markov chain with state space {1, 2, ..., J}. A state i is said to communicate with
a state j if

P,»(;) >0 forsome n=0,1, ...
and

P;;l)>0 forsome n=0,1,....

Show that communication is an equivalence relation on the state space. That is, show that a
state i communicates with itself, if i communicates with j then j communicates with i, and if
i communicates with j and j communicates with &, then i communicates with k.

Let {X,: t € T} denote a Markov chain with state space {1,2,...,J}. Foreachr =0,1,...,
let Y, = (X,, X,+1) and consider the stochastic process {Y;: ¢ € Z}, which has state space

{1,..., 7} x{1,...,J}.
Is {Y,: t € T} a Markov chain?

Let Yy, Y,, ... denote independent, identically distributed random variables, such that
Pr(Y,=j)=p;, j=1,...,J,
where py +---+ p; = 1. Foreacht =1,2, ..., let
X, = max{Yy,..., Y, }.

Is {X,: t € Z} a Markov chain? If so, find the transition probability matrix.

Let P denote the transition probability matrix of a Markov chain and suppose that P is doubly
stochastic; that is, suppose that the rows and columns of P both sum to 1. Find the stationary
distribution of the Markov chain.

A counting process { N (¢): t > 0} is said to be anonhomogeneous Poisson process with intensity
function A(-) if the process satisfies (PP1) and (PP2) and, instead of (PP3), for any nonnegative
s,t, N(t +s) — N(s) has a Poisson distribution with mean

t+s
/ Mu)du.

Assume that A(-) is a positive, continuous function defined on [0, c0).
Find an increasing, one-to-one function 4 : [0, 00) > [0, oo) such that {N(¢): ¢ > 0} is a Poisson
process, where N (t) = N (h(t)).
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6.19 Let {N(¢): t > 0} denote a nonhomogeneous Poisson process with intensity function A(-). Let
T denote the time to the first arrival. Find Pr(T| < ¢) and Pr(T|, < ¢t|N(s) = n), s > t.

6.20 Let {N(¢): t > 0} denote a stationary point process with N(0) = 0. Show that there exists a
constant m > 0 such that E[N(¢)] = mt,t > 0.

6.21 Let {N(¢#)! : t > 0} denote a Poisson process. Find the covariance function of the process,
K(t,s) = Cov(N(t),N(s)), t=>0,s>0.
6.22 Let {W,: t > 0} denote a Wiener process and define
X, =2, —tZ, 0<t<l.

The process {X,: 0 <t < 1} is known as a Brownian bridge process. Does the process {X,:
0 <t < 1} have independent increments?

6.23 Let {X,: 0 <t < 1} denote a Brownian bridge process, as described in Exercise 6.22. Find the
covariance function of the process.

6.24 Let {W,: t > 0} denote a Wiener process and let
X[ = L'(I)Wf([), > 0

where c¢(-) is a continuous function and f(-) is a continuous, strictly increasing function with
f(0) = 0. Show that {X,: ¢t > 0} satisfies (W1) and (W2) and find the distribution of X, — X,

t>s.

6.8 Suggestions for Further Reading

The topic of stochastic processes is a vast one and this chapter gives just a brief introduction to this
field. General, mathematically rigorous, treatments of many topics in stochastic processes are given
by Cramér and Leadbetter (1967) and Doob (1953); a more applications-oriented approach is taken
by Parzen (1962) and Ross (1995). Karlin (1975) and Karlin and Taylor (1981) provide an in-depth
treatment of a wide range of stochastic processes. Stationary and covariance-stationary processes
are discussed in detail in Yaglom (1973); see also Ash and Gardner (1975), Cox and Miller (1965,
Chapter 7), and Parzen (1962, Chapter 3).

Moving average processes are used extensively in statistical modeling; see, for example, Anderson
(1975) and Fuller (1976). Markov processes are discussed in Cox and Miller (1965); Norris (1997)
contains a detailed discussion of Markov chains. Stationary distributions of Markov chains play a
central role in the limiting behavior of the process, a topic which is beyond the scope of this book;
see, for example, Norris (1997).

Kingman (1993) gives a detailed discussion of Poisson processes; in particular, this reference
considers in detail spatial Poisson processes. Wiener processes are discussed in Billingsley (1995,
Chapter 37) and Freedman (1971).
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Distribution Theory for Functions
of Random Variables

7.1 Introduction

A common problem in statistics is the following. We are given random variables X, ..., X,,
such that the joint distribution of (X . .., X,) isknown, and we are interested in determining
the distribution of g(Xy, ..., X,), where g is a known function. For instance, X1, ..., X,
might follow a parametric model with parameter 6 and g(X1, ..., X,) might be an estimator
or a test statistic used for inference about 6. In order to develop procedures for inference
about 6 we may need certain characteristics of the distribution of g(X1, ..., X,).

Example 7.1 (Estimator for a beta distribution). Let X, ..., X,, denote independent,
identically distributed random variables, each with an absolutely continuous distribution
with density

Gx(”l, O<x<1

where 0 > 0. This is a special case of a beta distribution.
Consider the statistic

1 n
=) logXj;
n 4

j=1

this statistic arises as an estimator of the parameter 6. In carrying out a statistical analy-
sis of this model, we may need to know certain characteristics of the distribution of this
estimator. [

In the earlier chapters, problems of this type have been considered for specific examples;
in this chapter we consider methods that can be applied more generally.

7.2 Functions of a Real-Valued Random Variable

First consider the case in which X is a real-valued random variable with a known distribution
and we want to determine the distribution of ¥ = g(X) where g is a known function. In
principle, this is a straightforward problem. Let X denote the range of X and let Y = g(X)
denote the range of ¥ so that g : X — ). For any subset A of )/,

Pr(Y e A)=Pr(X e {x € X: g(x) € A}) = / dFx(x), (7.1)

{xeX: g(x)eA}

199
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yielding the distribution of Y. For instance, if X has a discrete distribution with frequency
function py, then the distribution of Y is discrete with frequency function

pr(y) = Z px(x).

xeX:g(x)=y

However, in more general cases, difficulties may arise when attempting to implement this
approach. For instance, the set {x € X:g(x) € A}isoften complicated, making computation
of the integral in (7.1) difficult. The analysis is simplified if g is a one-to-one function.

Theorem 7.1. Let X denote a real-valued random variable with range X and distribution
function Fx. Suppose that Y = g(X) where g is a one-to-one function on X.Let Y = g(X)
and let h denote the inverse of g.

(i) Let Fy denote the distribution function of Y . If g is an increasing function, then

Fy(y) = Fx(h(y)), ye)Y
If g is a decreasing function, then
Fy(y)=1—=Fx(h(y)-), yel.

(ii) If X has a discrete distribution with frequency function pyx, then Y has a discrete
distribution with frequency function py, where

pr(y) = px(h(y)), ye€.

(iii) Suppose that X has an absolutely continuous distribution with density function px
and let g denote a continuously differentiable function. Assume that there exists
an open subset Xy C X with Pr(X € Xy) = 1 such that |g'(x)| > 0 for all x € Xy
and let Yy = g(Xy). Then Y has an absolutely continuous distribution with density
function py, where

pr(y) = px(hONIK' DI,y € Do

Proof. 1If g is increasing on X, then, for y € ),
Fy(y) =Pr(Y =y) =Pr(X =< h(y)) = Fx(h(y)).
Similarly, if g is decreasing on X, then
Pr(Y < y) =Pr(X = h(y)) =1 —-Pr(X < h(y)) =1— F(h(y)-).
Part (ii) follows from the fact that, for a one-to-one function g,

Pr(Y =y) =Pr(X = g(y)).
Consider a bounded function f defined on )y = g(Xp). Since Pr(X € &p) = 1,

ELf(Y)] = / Flg)px(x) dx.
Xo

By the change-of-variable formula for integration,

E[f (V)] :/y FOMpx (I () dy.
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It follows that the distribution of Y is absolutely continuous with density function

px(hODIKOI. v € Vo3

part (iii) follows. W

Note that in applying part (iii) of Theorem 7.1, often the set Xj may be taken to be X.
Also note that parts (i) and (ii) of the theorem give Fy(y) only for y € ); in typical cases,
values of Fy(y) for y € ) can be obtained by inspection.

Example 7.2 (Lognormal distribution). Let X denote a random variable with a normal
distribution with mean p and standard deviation o. Let Y = exp(X) so that logY has a
normal distribution; the distribution of Y is known as a lognormal distribution.

Recall that the distribution of X is absolutely continuous with density function

1 1
px(x) = m exp {—p X — /L)z}, —00 < X < 00.
We may write Y = g(X) with g(x) = exp(x); then g’(x) = exp(x) > 0 for all x € R and
g has inverse h(y) = log(y). Hence, Ay = X = R and ) = (0, 0co). It follows that the
distribution of Y is absolutely continuous with density

_ 1 L 2
pr(y) = Y o g0 eXP{ 752 108(Y) — 1) } y > 0. O

Example 7.3 (Empirical odds ratio). Let X denote a random variable with a binomial
distribution with parameters n and 6; then the distribution of X is discrete with frequency
function

px(x) = <Z>9’“(1 -0y, x=0,...,n.

Let

o X+1 /2

T n—=X+1/2
hence, if X denotes the number of successes in # trials, Y denotes a form of the empirical
odds ratio based on those trials. The function g is given by g(x) = (x + 1/2)/(n — x + 1/2)

with inverse
n+1/2)y —1/2
h(y) = —————.
I1+y

It follows that the distribution of Y is discrete with frequency function

n
pr(y) = ( )0’“”(1 -y
! h(y)
for values of y in the set

1 3 5
2n+1'2n—12n-3""

g(X):{ ..,2n+1}. O
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Example 7.4 (Weibull distribution). Let X denote a random variable with a standard expo-
nential distribution so that X has an absolutely continuous distribution with distribution
function

Fx(x)=1—exp(—x), x>0
and density
px(x) =exp(—x), x> 0.

Let Y = X7 where 6 > 0. The function glx) = x7 has inverse x = y?. It follows that
Y has an absolutely continuous distribution with distribution function

Fy(y)=1—exp(—y"), y>0

and density function

0—1

pr() =0y"""exp(—y"), y>0.

The distribution of Y is called a standard Weibull distribution with index 6. O

7.3 Functions of a Random Vector

In this section, we consider the extension of Theorem 7.1 to the case of a random vector.
Let X denote a random vector with range X’; consider a function g on X and let Y =
g(X). Because of the possible complexity of the function g, even when it is one-to-one,
an analogue of part (i) of Theorem 7.1 is not available. Part (ii) of Theorem 7.1, which
does not use the dimension of X in any meaningful way, is simply generalized to the vector
case. Part (iii) of the theorem, which is essentially the change-of-variable formula for
integration, is also easily generalized by using the change-of-variable formula for integrals
on a multidimensional space.

Recall that if ¢ is a function from R? to R?, then the Jacobian matrix of g is the d x d
matrix with (i, j)th element given by dg; /0x; where g; denotes the ith component of the
vector-valued function g; this matrix will be denoted by dg/dx. The Jacobian of g at x is
the absolute value of the determinant of the Jacobian matrix at x, and is denoted by

‘Bg(x)
ax I

Theorem 7.2. Let X denote a d-dimensional random vector with an absolutely continuous
distribution with density function px. Suppose that Y = g(X) where g : X — R denotes
a one-to-one continuously differentiable function. Let X denote an open subset of X such
that Pr(X € Xy) = 1 and such that the Jacobian of g is nonzero on Xy. Then Y = g(X) has
an absolutely continuous distribution with density function py, given by

dh(y)

b e 9
3y y €

Pr(y) = px(h(y)|

where Yy = g(Xp).
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Proof. Thisresult is essentially the change-of-variable formula for integrals. Let f denote
a bounded real-valued function on ). Then, since f(¥) = f(g(X)),

E[f(Y)] =E[f(g(X)] = /X JF(eW)px(x)dx.

Using the change-of-variable y = g(x), we have that

f@ﬂ—Lfomﬂmwﬂ(”M

The result follows. W

Note that the condition that the Jacobian of g is nonzero is identical to the condition that
the Jacobian of # is finite.

Example 7.5 (Functions of standard exponential random variables). Let X, X, denote
independent, standard exponential random variables so that X = (X, X;) has an absolutely
continuous distribution with density function

px(x1,x2) = exp{—(x1 + 1)}, (x1,x2) € (RM)?
Let Y, = /(X 1X5) and Y, = /(X/X>). Hence,
Y =1, 1y) = g(X) = (g1(X), g2(X))
where
g1(x) = /(x1x2) and g2(x) = /(x1/x2).
The inverse function is given by 4 = (h, h,) where

hi(y) =yiy> and ha(y) = yi/y2

which has Jacobian
‘Bh(y)‘ 2y1

The set Xy may be taken to be (R*)? and g(Xp) =
It follows that the distribution of (Y, Y3) is absolutely continuous with density function

2y
pr(y1, y2) = —yl exp{—yi(1/y2+y2)}, y1>0, y»>0. O
2

Example 7.6 (Products of independent uniform random variables). Let X1, X,, ..., X,
denote independent, identically distributed random variables, each with a uniform distribu-
tion on the interval (0, 1). Let

Yi=X1, L =X1X,, ..., Y, =X1Xo---X,.

Letting X =(Xy,...,X,) and Y =({1,...,Y,) we have Y = g(X) where g =
(g1,--.,&n) with

J
g =J]x. x=@.....x.
i=1
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The inverse of this function is given by & = (hy, ..., h,) with
hi(y)=yj/yi-1, j=12,....n

here y = (y1,..., yn)and yo = 1.
The density function of X is given by

px(x)=1, xe(,1)".
We may take Xy = (0, 1)"; then
gX)=y=01,-.., R 0<y, <y,_1 <--- <y <1}L

It is easy to see that the matrix d4(y)/dy is a lower triangular matrix with diagonal elements
1,1/y1,...,1/y,—1. Hence,

’ dh(y) ) _

It follows that ¥ has an absolutely continuous distribution with density function

1
prW)=—"— 0<yp<yp<---<y<Ll O
Yo Yn—1

Functions of lower dimension

Let X denote a random variable with range X C RY, d > 2. Suppose we are interested
in the distribution of go(X) where gy : X — R?, ¢ < d. Note that, since the dimension
of go(X) is less than the dimension of X, Theorem 7.2 cannot be applied directly. To use
Theorem 7.2 in these cases, we can construct a function g; such that g = (go, g) satisfies
the conditions of Theorem 7.2. We may then use Theorem 7.2 to find the density of g(X) and
then marginalize to find the density of go(X). This approach is illustrated on the following
examples.

Example 7.7 (Ratios of exponential random variables to their sum). Let X, X,, ..., X,
denote independent, identically distributed random variables, each with a standard expo-
nential distribution. Let

Xl XZ Xn—l
R L R A B A L —
X144+ X, X144+ X, X144+ X,
and suppose we want to find the distribution of the random vector (Y1, ..., Y,_1).
Clearly, the function mapping (X, ..., X,)to(Yy, ..., Y,_1)isnotone-to-one. LetY, =

Xi+---+4+ X,.Then, writingY = (Y,...,Y,)and X = (X4, ..., X,,),wehaveY = g(X)
where g = (g1, ..., g») is given by

gn(x) =x1 + -+ x,, gj(x)_ ()C)

The function g is one-to-one, with inverse 4 = (hy, ..., h,) where

hi)=yjyn, j=1,...,n—=1, and h,(y)=0—=y1—- = Yp_1)Vn-
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Then
Yo 0 -0 n
e 0
oh(y) e 2
0 0 - yn_ll
—Yn —Yn " —¥n 11— ’117 Y
It follows that
3h(y)) a1
— | =yl
dy

The distribution of X is absolutely continuous with density function
px(x) = exp {—Zx,}, X =, x) € (R
J=1
Hence, we may take Xy = (R*)" and

n—1
Yo = g(Xo) = {()’1,-~-,)’n—1) e, 1) " Zyj < 1} x R*.

j=1

It follows that the distribution of Y is absolutely continuous with density

Py =y""lexp(=y.), ¥y =1, -5 Ya) € Do

To obtain the density of (Y, ..., Y,_1), as desired, we need to marginalize, eliminating
Y,. This density is therefore given by

/ Yy lexp(—y)dy = (n — 1),
0

n—1
(V1o s Yu1) € {(yl, ) €0, 1) Y Ty < 1} :
-

J

Hence, the density of (Y, ..., ¥,_1) is uniform on the simplex in R O

Example7.8 (Estimator for a beta distribution). AsinExample7.1,let Xy, ..., X, denote
independent, identically distributed random variables, each with an absolutely continuous
distribution with density

9x9_1, O<x<1

where 6 > 0 and consider the statistic

1 n
Yi=-=) logX;.
j=1

n <

In order to use Theorem 7.2 we need to supplement Y; with functions Y;,...,Y,
such that the transformation from (X, ..., X,) to (Y1, ..., Y,) satisfies the conditions of
Theorem 7.2.
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Leth = —IOng,j—_ 2,...,]’[. Ihean = gj(Xl,...,Xn),j—_ 1,...,]’[, where
( ) 1 n |
g1 X1, ..., X ————E 0g X
1\A1 n ~ J

and
gj(xi, ..., xy) =—logx;, j=2,...,n.
The function g = (g1, ..., g,) has inverse h = (hy, ..., h,) where
hi(yt, s yn) = exp{—nyr + (y2 + - - + )}
and
hi(yi, ..o y0) =exp(=y;), j=2,...,n.

It follows that the Jacobian of the transformation 4 is given by

dh(y)
dy
Here X = (0, 1)" and since the Jacobian of 4 is finite for

‘ = n exp(—ny).

yegX)={, ..., yn) €(0,00)": yo4+--- 4y, < nyi},

we may take Xy = X.
The density of X = (X1, ..., X,) is given by

px(ns e X3 0) = 0" O<xp <1, j=1,,m
it follows that the density of Y = (Y1, ..., Y,) is given by
0" exp {—n(6 — 1)y }nexp(—ny;) = nb" exp(—ndy;)

forO <y;,j=2,....,n,and y, +--- +y, < ny.
In order to obtain the density of Y; we need to integrate out y», ..., y, from the joint
density. Hence, the density of Y, is given by

(ny)"™!
(n—1)!

where 0 < y; < oo. Note that this is the density of a gamma distribution. [

nyi ny1=y3—+—Yn
no" exp(n@yl)/ e / dy, -+ - dy, = no" exp(—nby;)
0 0

Example7.9 (Cauchydistribution). Let X, X, denote independent random variables each
with a standard normal distribution and consider the distributionof Y| = X/ X,.In Example
3.13 the density of ¥, was found using a method based on the characteristic function; here
we determine the density function using a method based on Theorem 7.2.

In order to use the change-of-variable formula given in Theorem 7.2 we need to con-
struct a one-to-one function. For instance, let Y, = X, and consider Y = (Y1, 1») = g(X) =
(81(X), g2(X)) where

g1(x) = x1/x2 and go(x) = xa.
The inverse of this transformation is given by 4 = (hy, h;) with

hi(y) = yiy2 and ha(y) = yo;
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it follows that

\ah(”\ = nal.

Here we must take Xy = R x [(—o00, 0) U (0, 00)] so that V) = g(Xp) = Xp.
The density function of (X, X;) is given by

1 1
px(x) = —CXP{—E(X%—FX%)}, (x1,x2) € R%.

Hence, the density function of (Y1, Y>) is given by

1 1 2\ .2 2

pry) =z—exp{—=(1+y7)yif Iyl O1n.y)eR
2r 2
and the marginal density of Y, is given by

1 [ 1 1 [
7 /foo ly2| exp {_5(1 +y12)y§} dy, = ;/0 exp{— (1+y{)t}dr
=, —O0 <Yy <O
7 (1+57) 1
This is the density of the standard Cauchy distribution. O

The distributions considered in the following two examples occur frequently in the
statistical analysis of normally distributed data.

Example 7.10 (t-distribution). Let X and X, denote independent random variables such
that X has a standard normal distribution and X, has a chi-squared distribution with v
degrees of freedom. The distribution of

X
V(X2/v)
is called the ¢-distribution with v degrees of freedom. The density of this distribution may

be determined using Theorem 7.2.
Let Y, = X,. Writing X = (X, Xp)and Y = (Y1, Y3), X = h(Y) where h = (hy, h»),

Y, =

hi(y) = yl://vyz» ha(y) = ya.
Hence,
‘ah(y)‘ — S/,

The density of X is given by

1 1 1 v 1
px(x) = m exXp <_§x12) mx; eXp <_§X2>, x € R x (0, OO)

Hence, by Theorem 7.2, Y has density

1 1 = 1
pY(y):\/(erv)% (%)y2 exp{—z(yl/v—i—) } y € R x (0, 00).
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It follows that the marginal density of Y, is given by

1 i 1

\/(ZTM(E)/ ¥y’ lexp{—i(yf/v—f- l)yz} dy,
2

1 F(_l) +1)/2

_\/(7-“)) F()( /+) , »meR

This is the density of the 7-distribution with v degrees of freedom. O

Example 7.11 (F-distribution). Let X and X, denote independent random variables such
that X; has a chi-squared distribution with v; degrees of freedom and X, has a chi-squared
distribution with v, degrees of freedom. Let

_ X,

Xo/vy’
the distribution of Y; is called the F-distribution with (vi, v;) degrees of freedom. The
density of this distribution may be determined using Theorem 7.2.
LetY, = X,. Writing X = (X1, Xp)and Y = (Y1, Y3), X = h(Y) where h = (hy, h»),

V
h(y) = v—;ylyz, ha(y) = y2.

Hence,
‘ah(y)’
= —.
The density of X is given by
1 v?'*l 7-1 1 2
px(x) = mm)— X, expy—=(x; +x2)¢, x€(0,00).
F(HI3) 2

Hence, by Theorem 7.2, Y has density

(vi/v2)? Uopo uiaog 1 (v
Py = <7 ye oy ? expi—z|—=yi+1)ymp. ye( 00
P (3) 2\

It follows that the marginal density of Y, is given by

(v /v2)? gop [ wea 1 /v
) W »’ exp 5 —yvi+ 1)y dy
0 1%

Er T3
Flagm) ot pE

- W;(ﬁ) <_> 1—% y1 € (0, 00).
? 2 (3—;)’1 + 1)

This is the density of the F -distribution with (vq, v,) degrees of freedom. O

Functions that are not one-to-one

Even in cases in which the dimension of Y is the same as the dimension of X, it is not
possible to apply Theorem 7.2 if the function g is not one-to-one. However, if the set X’
may be partitioned into subsets such that g is one-to-one on each subset, then the change-
of-variable formula may be applied on each subset. The results may then be combined to
obtain the result for g(X).
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Theorem 7.3. Let X denote a random vector with an absolutely continuous distribution
with density function px. Let X}, - - -, &, denote disjoint open subsets ofR" such that

Pr (X € LmJX,) =1
i=1

Let g denote a function on X and let gV denote the restriction of g to X;. Assume that, for
eachi =1,...,m, g(i) is one-to-one and continuously differentiable with inverse hD and
the Jacobian g is nonzero on X;. ThenY = g(X) has an absolutely continuous distribution
with density function py, given by

3h(’)(y)

pr(y) = pr (RO() ‘

Iyeyy, ye€g(UL, X))
where Y; = g(X;).
Proof. Let f denote a bounded function on ). Then,
BLF(0N)] = / FgC)px(x)dx = Z / (7)) px(x) dx.
On X;, g% is one-to-one and continuously differentiable so that the change-of-variable

formula may be applied to the integral over &;. Hence,

u , D
E[fNI=) /y FOpx (h“(y)))%} dy.
i=l1 i

The result follows by interchanging integration and summation, which is valid since the
sum is finite. M

Example 7.12 (Product and ratio of standard normal random variables). Let X, X,
denote independent random variables, each with a standard normal distribution. Let

X1
X,
Writing X = (X1, Xp) and Y = (Y3, Y»), it follows that Y = g(X), g = (g1, &2), where

Y] X1X2 and Y2

g1(x) = x1x2 and g2(x) = x1/x2.

Clearly this is not a one-to-one function on R?; for instance, (x|, x2) and (—x, —x7) yield
the same value of g(x), as do (x;, —x;) and (—x1, x3).

The function is one-to-one on the four quadrants of R?. Hence, take X} = RT x R¥,
X, =RT xR, X3=R™ x R", and X; = R~ x R™. The restriction of g to each X; is
one-to-one, with inverses given by

KOO = VG1y), JO1/y2),  BP0) = WV 3132), —/31/y2)s

B = (=/312), VO1/52), hPO) = (= 01y2), —/(1/y2)

and Jacobians

‘8h(”(y)‘
2Iyzl
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The set g(Uf_, &) is (RT)? U (R™)?. It is worth noting that the partition (X; U A3), (X3 U
Xy) could also be used, although this choice introduces some minor complications.
The density of X is given by

1 1
px(x) = Eexp{—i (xlz—i—x%)}, x € R%.

Consider the transformation on X. Since xlz + x22 = y1y2 + y1/y2, the contribution to the
density of Y from A} is

1
47 |y2|

1 +32
eXp{—i(ylszryl/yz)}, y € (RT)".

It is easy to see that the same result holds for Aj.
The contribution to the density from either A, or A is the same, except that y is restricted
to (R™)%. Hence, the density function of Y is given by

1 1
exp {—5()’1)’2 + yl/yz)} Ijyemeyy + z———exp {_E()’l)’z + yl/)’2)} Ijyewr-y

e
27| ya| 27| ya|

1
= exp {__(YI}’z + yl/}’Z)} ., ye RH?UR. 0
27| ys| 2

Application of invariance and equivariance
When the distribution of X belongs to a parametric model, it is often convenient to take
advantage of invariance or equivariance when determining the distribution of Y.

Let X denote a random variable with range X and suppose that the distribution of X is
an element of

P = (P(:;0): 0 € O}

and that P is invariant with respect to some group of transformations. If Y is a function
of X, and is an invariant statistic, then the distribution of ¥ does not depend on 6; hence,
when determining the distribution of ¥, we may assume that X is distributed according to
Px (-; 6p) where 6, is any convenient element of ®. The resulting distribution for Y does not
depend on the value chosen.

Example 7.13 (Ratios of exponential random variables to their sum). Let X, X, ...,
X, denote independent, identically distributed random variables, each with an exponential
distribution with parameter 6, 8 > 0. As in Example 7.8, let

Xl X2 anl
= Yby=—— ., Y =
X1+"'+Xn Xl+"’+Xn Xl+"'+Xn

Recall that the set of exponential distributions with parameter 6 € (0, co) forms a trans-
formation model with respect to the group of scale transformations; see Example 5.27. Note
that the statistic (Y, ..., Y,_1) is invariant under scale transformations: multiplying each
X ; by a constant does not change the value of (¥y,...,Y,_1). Hence, to determine the
distribution of (Y1, ..., Y,—1) we may assume that X, ..., X, are distributed according to
a standard exponential distribution.

It follows that the distribution of (Yy,...,Y,—;) is the same as that given in
Example 7.7. O

Y,
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Equivariance may also be used to simplify the determination of the distribution of a
statistic. Suppose that the distribution of a random variable X is an element of

P ={P(;0): 6 € O}

and that P is invariant with respect to some group of transformations. Suppose that we may
identify the group of transformations with ® so that if X is distributed according to the
distribution with parameter value e, the identity element of the group, then 8 X is distributed
according to P(-; ).

Suppose that the distributions in P are all absolutely continuous and that the density of
P(-; 0) is given by px(-; 8). Then, by Theorem 7.2,

00~ x
ox ‘

In computing the Jacobian here it is important to keep in mind that ~!x refers to the
transformation 6 ~' applied to x, not to the product of #~! and x.

Now let Y = g(X) denote an equivariant statistic so that the set of distributions of Y also
forms a transformation model with respect to ®. Then we may determine the distribution of
Y under parameter value 6 using the following approach. First, we find the density function
of Y under the identity element e, py(-; e), using Theorem 7.2. Then the density function
of Y under parameter value 6 is given by

90~y
dy ’

The advantage of this approach is that, in some cases, it is simpler to apply Theorem 7.2 to
px(+; e) than to apply it to px(-; 6) for an arbitrary value of 6 € ©.

px(x;0) = px(é’_'x;e)‘

Pr(y:6) = py(©~'yie)

Example 7.14 (Difference of uniform random variables). Let X, X, denote indepen-
dent, identically distributed random variables, each distributed according to the uniform
distribution on the interval (6;, 6,), where 6, > 6,. The uniform distribution on (0, 6,) is
an absolutely continuous distribution with density function

p(x;0) = , B <x <6,

0 — 6,
Suppose we are interested in the distribution of X, — X;.

The family of uniform distributions on (6, 6;) with —oo < 8; < 8, < oo is invariant
under the group of location-scale transformations. Let Z,, Z, denote independent random
variables each uniformly distributed on the interval (0, 1). Then the distribution of (X, X»)
is the same as the distribution of

(02 — 01)(Z1, Z2) + 6.
It follows that the distribution of X, — X is the same as the distribution of
(02 — 01)(Z2 — Zy);

hence, the distribution of X, — X can be obtained by first obtaining the distribution of
Z» — Z and then using Theorem 7.1 to find the distribution of X, — X;.
LetY, = Z, — Z, and Y, = Z,;. Then the joint density of Yy, > is

1, O<y;<1, O<y;+ ;<.
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Hence, the marginal density of Y is

11—y if0<y <1

Jo M dy, if0<y <1
:{1+yl if—1<y <0

Sl dyy if—1<y <0
=1—1Inl, Inl<L

It follows that the distribution of X, — X | under parameter value (0;, 6,) has density

|7] 1
1-— , |t 6, — 0.
( 60 ) 60, [t] < 6, — 0y O

7.4 Sums of Random Variables

Let Xy, ..., X, denote a sequence of real-valued random variables. We are often interested
in the distribution of § = Z’;:l X ;. Whenever the distribution of X is absolutely continuous,
the distribution of § may be determined using Theorem 7.2. However, the distribution of a
sum arises so frequently that we consider it in detail here; in addition, there are some results
that apply only to sums.

We begin by considering the characteristic function of S.

Theorem 7.4. Let X = (X4, ..., X,) where X, X», ..., X, denote real-valued random
variables. Let px denote the characteristic function of X and let s denote the characteristic
function of $ = 3_| X ;. Then

ps(t) = px(tv), teR

wherev =(1,...,1) e R".

Proof. The characteristic function of X is given by
ox(t) = Elexp{it’ X}], t € R".
Since S = vT X, the characteristic function of S is given by
¢s(t) = Elexp{itv' X}] = gx(tv), 1 €R,

verifying the theorem. M

Example 7.15 (Sum of exponential random variables). Let X, ..., X, denote indepen-
dent, identically distributed random variables, each with density function

rexp{—Ax}, x>0

where A > 0; this is the density function of the exponential distribution with parameter A.
The characteristic function of this distribution is given by

oo
o(t) = / exp(itx)rexp(—Ax)dx = —00 <t < Q.

0 O —it)’
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It follows that the characteristic function of X = (X4, ..., X,) is
n
ox(ti, ... 1) = [ [ o).
=1

Hence, the characteristic function of S = Z?:l X ; is given by

n

H=et) = ——.

s =00 =

This is the characteristic function of the gamma distribution with parameters n and A; see
Example 3.4. It follows that S has a gamma distribution with parameters n and A. O

The techniques described in the previous section can be used to find the density or
frequency function of a sum.

Theorem1.5. Let X = (X1, ..., X)) where X1, ..., X, denotes a sequence of real-valued
random variables, let S = Z?zl X and let S denote the range of S.
(i) Suppose X has a discrete distribution with frequency function p. Then S has a
discrete distribution with frequency function pg where

ps(s) = > p(xi, ..., x), sES
(1) Yy =)

(ii) Suppose X has an absolutely continuous distribution with density function p. Then
S has an absolutely continuous distribution with density function ps where

o0 o0 n
ps(s):/ / p S—ij,xz,...,xn dxy---dx,,s € R
—00 —00 j=2

Proof. Let f denote a bounded, real-valued function defined on S, the range of S. Then,
if X has discrete distribution with frequency function f,

Ef )= Y. fEpba,....x)=) > FE)p@r ... x)

(xp,..,xp)eX ses {(xl,....x,z):Zlej:s}

=> f) 3 POXL s Xn);

S5 {m) Ty xy=s)

part (i) of the theorem follows.
Now suppose that X has an absolutely continuous distribution with density function p.
To prove part (ii), we can use Theorem 7.2 with the function

n
g(-x)z(sv-x27~-‘y-xn)y S=ij‘.
J=1

Then Y = g(X) has density
POr =244 Yu) Y2, o Y
note that the Jacobian here is equal to 1. Hence, the marginal density of Y; = S is

o0 o0
/ / PO — 2+ -+ Y)y2, oo Y dyr - - dyy;
—00 —00

rewriting this in terms of s = y; and x; = y;, j = 2, ..., n, proves the result. M
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Example 7.16 (One-parameter exponential family distribution). Consider a one-
parameter exponential family of absolutely continuous distributions with density functions
of the form

exp{c(@)y —d(}h(y), y €Y

wheref € ®,c:0® > R,d:® - R,andh: Y — R™.
Let Yy, Y5, ..., Y, denote independent, identically distributed random variables, each
distributed according to this distribution. Then (Y1, ..., Y},) has density

n

p(y;0) = exp {ZC(Q)Y/ - nd(f))} [T1rO0, y=01 ..o ey
j=1

j=1

It follows that § = _, ¥, has density

f / exp{c(O)s —y2 — ... = yu) —d(@)}h(s —y2 — -+ — yy)
y y

X exp {Zc(e)yj —(n— l)d(e)} Hh(yj)dyz ody,

= j=2
= exple@s —nd®)) [ - [ ns =32 == [T hOpdya--dn
Y y j=2

Hence, the model for § is also a one-parameter exponential family model. O

Example7.17 (Multinomial distribution). Let X = (X4, ..., X,,) denote arandom vector
with a discrete distribution with frequency function

n X1 X Xn
P(X1y ooy X3 01y o, O) = 0,'65*---6,",
X1, X2, ... X

forx; =0,1,...,n, j=1,...,m, Z'j":l x; = n; here 6y, ..., 6, are nonnegative con-
stants satisfying ZT:] 0; = 1.Recall that this is a multinomial distribution with parameters
nand (0, ..., 0,); see Example 2.2.

LetS = X +---+4+ X,,—1. Then § has a discrete distribution with frequency function

n X1 X X,
pS(S)ZZ(X] X )91 056,
s AAm

Xy

here

m—1
X, = !(xl,...,xm_l) eZ™: ij = s} .
=1

Letn = " 0; so that §,, = 1 — 1. Then

_ n 01\" (9m1 )X"’l
— l _ n—s p— ceo | —
ps(s) = 1" (1 =) ;<xl,x2,...,xm><n) .
(x " ) N 0, o Om—1 et
— n?(l _ n)nfx 1s~:Y~me ( ) (_> - ( ) .
; (){l xm) X1y ey Xm n n
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(.xl,.l.1.,x,,,) _ n! _ <l’l)
(X1 ° ) N stx,! - s

...... X1

Since

it follows that

n B s 0:\" /6,\" B \
o=(ra-rx(, tL )G G) (G
ps s ; Xl eoos Xm—1 n n n
Note that
()G (5
X1y ooy Xm—1 n n

is the frequency function of a multinomial distribution with parameters s and

91/17,...,9,",1/77.

B G ()
/Ys x1,...,xn171 77 T’

ps(s;01, ..., 0m) = (”)ns(l -m'’, s=0,...,n
S

Hence,

and, therefore,

so that S has a binomial distribution with parameters n and Z’;:ll 0;. O

Example 7.18 (Sum of uniform random variables). Let X |, X, denote independent, iden-
tically distributed random variables, each with a uniform distribution on the interval (0, 1);
hence, (X, X,) has an absolutely continuous distribution with density function

p(i,x) =1, (x1,x2) € (0, 1.
LetS = X + X,. Then § has an absolutely continuous distribution with density function
1
ps(s) = / Lo<s—x, <11 o<, <1} dX2.
0

Note that ps(s) is nonzero only for 0 < s < 2. Suppose 0 < s < 1; then

ps(s) =/ dx; =s.
0

Suppose 1 < s < 2, then

1
PS(S)=/ dxy =2 —s.
s—1

It follows that S has density function

0 ifs <Qors >?2

ps(S):{S fo<s <1
2—s5 l<s<?2

The distribution of S is called a triangular distribution. O
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Example 7.19 (Dirichlet distribution). Let (X, Y) denote a two-dimensional random vec-
tor with an absolutely continuous distribution with density function

_ I +012+Ol3)x

— 0{]71 0{271 1_ _ 0(371’
Mel@r@)” » 477

p(x,y)
wherex > 0,y > 0,x + y < 1;here oy, oy, 3 are positive constants. Let Z =1 — X — Y;
then the distribution of (X, Y, Z) is an example of a Dirichlet distribution.
Consider the distribution of X + Y. According to Theorem 7.5, S has an absolutely
continuous distribution with density function

F(a1+a2+a3) /S oar—1_ ar—1 oz—1
_ontetes) [fo metgent _gmlg
Ps8) = i Ty o § 7 2 -9

1
_ oy + ar + a3) sa1+a271(1 _ S)a371 f = u)aﬁ]ua271 du
0

C(a)T (0 (a3)

RN o %)) garka—l(] _ g C(ap)T(a2)
INCIDINC)INCE) (o) + a2)
r

= —(al +a2 +a3)s(xl+0{2—l(1 — s)a3_l’ O <5< l

[(ar 4+ @)l (a3)

This is the density function of a beta distribution; see Exercises 4.2 and 5.6. O

7.5 Order Statistics

Let X, ..., X, denote independent, identically distributed, real-valued random variables.
The order statistics based on X, X, ..., X,, denoted by X1y, X(2), ..., X(n), are simply
the random variables X, X», ..., X, placed in ascending order. That is, let 2 denote the
underlying sample space of the experiment; then, for each w € €2,

Xay(w) = min{X(w), ..., X,(®)},

X 2)(w) is the second smallest value from X(w), ..., X,(w) and so on, up to X,)(w),
the maximum value from X;(w), ..., X,(w). Hence, the random variables Xy, ..., X(y
satisfy the ordering

Xy =Xo==Xu.

There are at least two ways in which order statistics arise in statistics. One is that process
generating the observed data might involve the order statistics of some of underlying, but
unobserved, process. Another is that order statistics are often useful as summaries of a set
of data.

Example 7.20 (A model for software reliability). Consider the model for software reli-
ability considered in Example 6.15. In that model, it is assumed that a piece of software
has M errors or “bugs.” Let Z; denote the testing time required to discover bug j, j =
1,..., M. Assume that Z;, Z,, ..., Zy are independent, identically distributed random
variables.
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Suppose that testing is continued until 7 bugs have been discovered. Then Sy, the time
needed to find the first discovered bug, is the first order statistic Z(y; S, the time needed
to find the first two bugs, is the second order statistic Z(;), and so on. Thus, a statistical
analysis of this model would require the distribution of (Zyy, ..., Z¢y). O

Example 7.21 (The sample range). Let X, ..., X, denote independent, identically dis-
tributed random variables. One measure of the variability in the data {X, ..., X,} is the
sample range, defined as the difference between the maximum and minimum values in the
sample; in terms of the order statistics, the sample range is given by X(,) — X(1. O

The distribution theory of the order statistics is straightforward, at least in principle. Let
F denote the distribution functionof X ;, j = 1, ..., n. The event that X,y < ¢ is equivalent
tothe eventthat X; <¢, j =1, ..., n. Hence, X, has distribution function F,, given by

Fuy(t) = F(t)".

Similarly, the event that X,_;) < ¢ is equivalent to the event that at least n — 1 of the X ;
are less than or equal to ¢. Hence, X ,_1) has distribution function F,_1), given by

Fan(t) = F@)" +nF @y~ (1 = F(0)).

This same approach can be used for any order statistic. The result is given in the following
theorem; the proof is left as an exercise.

Theorem 7.6. Let X1, X5, ..., X, denote independent, identically distributed real-valued
random variables, each with distribution function F . Then the distribution function of X ()
is given by F,) where

n

Fan() =" (’Z)F(t)i(l —F@)"", —oo<t < 0.

i=m

Example 7.22 (Pareto random variables). Let X, X», ..., X, denote independent, iden-
tically distributed random variables, each with an absolutely continuous distribution with
density function

Ox~ 0D x> 1,

where 6 is a positive constant. Recall that this is a Pareto distribution; see Example 1.28.
The distribution function of this distribution is given by

t
F(t):f Ox O Dgy =1—-¢79, > 1.
1

Hence, the distribution function of X, the mth order statistic, is given by

F(n1)(t)=2(lz)(l_t_e)i(t_e)n_i, t>1. O

i=m
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When the distribution given by F is either absolutely continuous or discrete, it is possible
to derive the density function or frequency function, respectively, of the distribution.

Theorem7.7. Let X1, X», ..., X, denote independent, identically distributed, real-valued
random variables each with distribution function F and range X .
(i) If X\ has a discrete distribution with frequency function p, then X,y has a discrete
distribution with frequency function

m n+k—m _ k _ o
e E. oo (-

k=1 =k

fort € X; here ty is the largest element of X less than t.
(ii) If X1 has an absolutely continuous distribution with density function p, then X )
has an absolutely continuous distribution with density function

Pan() = n(” 1)F(r)’“‘[l — FOI™"p(t), —o0 <1 < oo,
m

Proof. First consider the case in which X has a discrete distribution. Let # denote a fixed
element of X'. Each observation X, ..., X, falls into one of three sets: (—o0, #y], {t}, or
[t1, 00). Here 7y denotes the largest element of X’ less than ¢, and #; denotes the smallest
element of X’ greater than ¢. Let Ny, N, N3 denote the number of observations falling into
these three sets, respectively. Then

m n+k—m

Pr(X(m =1) = ZPr(Nl —m—k, Ny>k)= Z Z Pr(N, =m — k, N> = ).
k=1 k=1 j=k

Note that (N, N,) has a multinomial distribution with

Pr(Ny =ny, Ny =np) = ( )F(fo)"'P(I)"2(1 — F)",

np, ny, n3

ny + ny + n3 = n, where F and p denote the distribution function and frequency function,
respectively, of the distribution of X;. Hence,

Pr(X(m = 1)
m n+k—m n X .
=y > (m b m—mtk— )F(m)’""p(t)f(l — F(e)"H
k=1 j=k A
m n+k—m _ + k ) .
=Y F )’”( . ) (” " )p(f)f(l — F()y" k=i
kgl: 0 m—k 12:1; J

the result in part (i).
Now suppose that X; has an absolutely continuous distribution. Recall from Theorem
7.6 that X,y has distribution function

n

F(m)(l) = Z (’:)F([)’(l — F(Z))”ﬂ”

i=m
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and, since F' is an absolutely continuous function, F{,,) is absolutely continuous. Let ¢ denote
a continuity point of p; then, by Theorem 1.7, F’(¢) exists and

/ _ . (n i—1q n—i _ - (" i1 _ n—1—i
%(r)—Zz(JF(r) (1= F0)" p(t) ,;(n z>(l.)F(r>(1 F@0)"™" p(o).

i=m

Using the identities

i n n—1 n
1)) =),

it follows that

m n—1
Zl(n)F(f)l_l(l — F(l‘))n_i = Z (] + 1)( ) n >F([)](1 _ F(Z))n—l—j
i=m \F j=m—1 J+1
n—1
=n ). (" ; 1)F(r)f(l —F@) '
Jj=m—1
and
i —1 nFl‘i(l—Fl‘n_]_i— in_lthl_Ftn—l—i
2 ’)(i) @ = F®) —ni=m< I. ) 0 (1= Foy—'.
Hence,

Flp (1) = n(” ; I)F(t)j (1- F(t))"“‘fp(t)\j:m_l
= n(" B 1)F(z)’“‘(l — F@)" " p(),
m—1

proving part (ii).

Since p is continuous almost everywhere, it follows that F(’m) exists almost everywhere
and, hence, part (iii) of Theorem 1.9 shows that p(,)(t) = F(/m)(t) is a density function of
X(m). | ]

Example 7.23 (Geometric random variables). Let X, X», ..., X, denote independent,
identically distributed random variables, each distributed according to a discrete distribution
with frequency function

0(1—0), x=0,1,....

This is a geometric distribution; see Example 5.17. It is straightforward to show that the
distribution function of this distribution is given by

Fxy=1—-(1—-6y*"", x=0,1,....



220 Distribution Theory for Functions of Random Variables

It follows that X ), the mth order statistic, has a discrete distribution with frequency function

DPomy(t)

n +k—n

=Z< : ) 1—(-6)y1"" knzl(n_m+k)9-f(1—e>’-’(l—9)“*”(”"”“‘”
= \m—k

- i T = —eyrra — gy im e (i)j
—\m—k -6/

Example 7.24 (Uniform random variables). Let X, X», ..., X, denote independent,
identically distributed random variables, each distributed according to the uniform dis-
tribution on (0, 1). The density function of this distribution is Ijo,; .1} and the distribution
function is ¢, 0 < t < 1. It follows that X,,, the mth order statistic, has an absolutely
continuous distribution with density function

—1
D)) = n(n )tm_l(l - 0<t<l.
m—1

This distribution is known as a beta distribution with parameters m and n —m + 1.
In general, a beta distribution with parameters « and B is an absolutely continuous
distribution with density function

'+ B)
F(a)T'(B)

here « > 0 and 8 > 0 are not restricted to be integers.
By Theorem 7.6, X, has distribution function

Z (’?)tf(l —t 0<t <.
1

i=m

¥ l1=x)f" 0<x<1;

Hence, we obtain the useful result

n—1 /1 =L — ) g f: Ve -y 0<t<1
J— fr —_ < .
"\m—1 0 . ! L i ’ = O

l=m

Pairs of order statistics
An approach similiar to that used in Theorem 7.6 can be used to determine the distribution
function of a pair of order statistics.

Theorem7.8. Let X1, X», ..., X, denote independent, identically distributed, real-valued
random variables each with distribution function F. Let Xy, X, ..., X denote the
order statistics of X1, ..., X, andletm < r.

Then

PI'(X(m) <s, X(,«) <t)
> im Z_’;;i,qax(o,,~_i) (i immis JFGYTF @) = FOU L= FOI ifs <t

i,jin—i—j

Pr(Xq) <t) ifs>t
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Proof. Fixs,t;ift <s,then X <t implies that X(,,) <t <s,m < r, so that
Pr(Xim =5, Xy =) =Pr(X¢y < 1).

Now suppose thats < ¢; let N denote the number of the observations X1, ..., X, falling
in the interval (—oo, s], let N, denote the number of observations falling in the interval (s, ],
and let N3 =n — Ny — N,. Then, form < r,

Pr(Xgm <s, X¢p <t)=Pr(Ny =m, N +N>>r)
n n—i
=>" > PNy =i Ny=)).
i=m j=max(0,r —i)

Since (Ni, N2, N3) has a multinomial distribution, with probabilities F(s), F(t) —
F(s), 1 — F(t), respectively, it follows that

Pr(X(m) <y, X(’,) < [)
n n—i " | | | |
= Z Z ( . . ,>F(S)I[F(t) —F)V[1 = FO1—,
i=m j=max(0,r —i) L, j,n—1—]

as stated in part (i). MW

If the distribution function F' in Theorem 7.8 is absolutely continuous, then the dis-
tribution of the order statistics (X, X)) is absolutely continuous and the corresponding
density function may be obtained by differentiation, as in Theorem 7.7. However, somewhat
suprisingly, it turns out to be simpler to determine the density function of the entire set of
order statistics and then marginalize to determine the density of the pair of order statistics
under consideration.

Theorem 1.9. Let X1, X5, ..., X, denote independent, identically distributed real-valued
randomvariables each with distribution function F . Suppose that the distribution function F
is absolutely continuous with density p. Then the distribution of (X 1), . . ., X(n)) is absolutely
continuous with density function

nlp(x) - plxy), X1 <Xz <-- <X

Proof. Let t denote a permutation of the integers (1, - - -, n) and let
Xr)={x e X "ixy <Xp, <+ <Xg)
where X denotes the range of X . Let
Xy = U, X(7)
where the union is over all possible permutations; note that
Pr{Xy,..., X)) e A} =1

and, hence, we may proceed as if Aj is the range of X = (X1, ..., X,).
LettX = (X4, ..., X)), let Xy = (X1, ..., X(n)) denote the vector of order statistics,
and let 2 denote a bounded, real-valued function on the range of X . Then

E[A(X ()] = ZE{h(X(-))I{XeX(r)}}~
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Note that, for X € X(7), X() = tX. Hence,

E{h(X )ixexay) = E{h(t X)xex@y}-

Let 7 denote the identity permutation. Then the event that X € X(t) is equivalent to the
event that X € X (7p). Hence,

E[h(X )] = Y Bl X)lexexcon)}-

Since X1, ..., X, are independent and identically distributed, for any permutation t,
7 X has the same distribution as X. It follows that

Elh(X )] = Y Bh(X)xexmy} = n'ECONxex];
T
the factor n! is due to the fact that there are n! possible permutations. The result follows. R

As noted above, the density function of (X(y), ..., X)) may be used to determine the
density function of some smaller set of order statistics. The following lemma is useful in
carrying out that approach.

Lemma 7.1. Let p denote the density function of an absolutely continuous distribution on
R and let F denote the corresponding distribution function. Then, for any n = 1,2, ...,
and anya < b,

) )
n! / te / p(X1) e p(xn)l{a<x1 <xp<---<X,<b} dX1 s dxn = [F(b) - F(a)]n~
—00 —00

Proof. Let Xy, X», ..., X, denote independent, identically distributed random variables,
each distributed according to the distribution with distribution function ¥ and density
function p. Then, according to Theorem 7.9, the density function of (X(j), ..., X)) is
given by

nlp(xy) - pxy), —00 <X <Xy <--+ <X, < O0.

It follows that
Pria < Xy <+ < Xu < b)
[e.¢] oo
= n'f / p(xl)"'p(xn)I{a<x|<xz<---<x,,<b} dX1 "'dxn~
—00 —00
Note that the eventa < X1y < -+ < X(») < b is simply the event that all observations fall
in the interval (a, b). Hence,
Pra<Xn < <Xuy<b)=Prla<X;<b,a<X,<b,...,a<X,<Db)
=Pr(a < X; <b)---Pr(a < X, <b)
=[F() - F@]",
proving the result. M
Using Lemma 7.1 together with Theorem 7.9 yields the density function of any pair of

order statistics; note that the same approach may be used to determine the density function
of any subset of the set of all order statistics.
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Theorem7.10. Let X, X,, ..., X, denote independent, identically distributed, real-valued
random variables, each with an absolutely continuous distribution with density p and
distribution function F. Let X1y, X(), ..., X denote the order statistics of X1, ..., X,
and letm < r.

The distribution of (X on), X)) is absolutely continuous with density function

n!
m=-DIr—m—D!(n—r)

T F ()" F () = F ()l ™" L= F ()]"™ plain) pla)
for x,, < x;.
Proof. The density function of (X (1), X(2), ..., X(»)) is given by
nlp(xy) - - p(xy), —00 <X <Xy <--+ <X, < O0O.
The marginal density of (X, X)), m < r, is therefore given by
(o] oo
n! / . / px1) - POy <o <oy X1+ dXp—y AX gy -+ - dXp 1 dXpyy - - - d Xy,
—0oQ —0oQ
Note that

I{Xl <Xy <<Xp) T I{Xl <-~~<xm}I{xm <X+l <--~<X,-}I{xr <Xyl < <Xp}e

By Lemma 7.1,

/_w-'-/_w PO POl < oy n) A0 Ay = e F )™

/ e / P(Xm+1) te P(Xr—l)l{xm <Ay <o <Xp— <Xy} d-merl e dxrfl
—00 —00
S O
= Xr) — Xm s
r—m-—1)!

and

00 [
/ e / p(xr‘+1) te p(xn)l{x,- <Xy <vor <Xy <Xp} dxl'+1 e dxn
—00 —00
1

= ol = P

The result follows. W

Example 7.25 (Order statistics of exponential random variables). Let X, X5, ..., X,
denote independent, identically distributed random variables, each with an exponential
distribution with parameter A > 0; this distribution has density function A exp(—Ax), x > 0,
and distribution function 1 — exp(—Ax), x > 0.

According to Theorem 7.9, (X1, ..., X(»)) has an absolutely continuous distribution
with density function

n
n!\" exp(—k E x_,-), 0<X]<Xp<- <X, <OO.
j=1
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Let
Y''"=Xu, h=Xo— X1, Y0 =X — Xu-1);
note that, if X, ..., X, denote event times of some random process, then Xy, ..., Xy
denote the ordered event times and Y7, ..., Y, denote the inter-event times.
The density function of ¥ = (Y1, ..., Y,) can be obtained from Theorem 7.2. We can

write (X(]), ey X(n)) = h(Y) = (h](Y), ey hn(Y)) where
hi)=y+-+y;, j=1,...,n
It follows that the Jacobian of % is 1 and the density of Y is given by

pr(y) = n!A" exp{—=Alyr + (1 +y2) + -+ (1 + y)l}
=n!\" exp{—AZ(n—j+1)yj}, yi>0, j=1,...,n
Jj=1

Since n! = ]_[';: 1(n — j+ 1), it follows that Yy, ..., Y, are independent exponential ran-
dom variables such that Y; has parameter (n — j + DA. O

Example 7.26 (Range of uniform random variables). Let X, X,, ..., X, denote inde-
pendent, identically distributed random variables, each distributed according to a uniform
distribution on (0, 1). Consider the problem of determining the distribution of X, — X (1),
the difference between the maximum and minimum values in the sample.

The joint distribution of (X (1), X)) is absolutely continuous with density function

)n—2

nn — )(x, —x1 , O<x;<x,<1.

LetT = X(,) — X1y and Y = Xy). Then, using Theorem 7.2, the distribution of (T, Y) is
absolutely continuous with density function

pt,y)y=nn—1"2 O0<y<t+y<l.

Hence, the marginal density of T is

1—¢
prt) = / nn— D" 2dy =n(n— D" 21 —1), 0<t<1.
0

Thus, the distribution of 7T is a beta distribution with parameters n — 1 and 2; see Example
7.24. 0O

7.6 Ranks

Let Xy, ..., X, denote independent, identically distributed, real-valued random variables
and let Xy, ..., X(y) denote the corresponding order statistics. It is easy to see that
X1, ..., Xy)and (X 1y, ..., X(,)) are not equivalent statistics; in particular, it is not possible
to reconstruct Xy, ..., X, givenonly X(y), ..., X(,). The missing information is the vector
of ranks of Xy, ..., X,.

The rank of X; among X, ..., X, is its position in the order statistics and is defined to
be the integer R;, 1 < R; < n, satisfying X; = X(g,), provided that X, ..., X, are unique.

Here we assume that common distribution of X, X», ..., X, is absolutely continuous so
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that X, ..., X, are unique with probability 1. Let R = (R, ..., R,) denote the vector of
ranks.
The following theorem summarizes the properties of R.

Theorem 7.11. Let X1, ..., X, denote independent, identically distributed, real-valued
random variables, each with an absolutely continuous distribution. Then
(i) The statistic (R, X(.)) is a one-to-one function of X.
(ii) (Ry, ..., Ry)isuniformly distributed on the set of all permutations of (1, 2, ..., n);
that is, each possible value of (R, ..., R,) has the same probability.
(iii) Xy and R are independent
(iv) For any statisticT =T (X1, ..., X,) such that E(|T|) < oo,

E[T|R =r] =E[T(X¢), X(r)s - -+ Xr)]

wherer = (ry,ra, ..., rp).
Proof. Clearly, (R, X(,)is afunction of (X1, ..., X,). Part (i) of the theorem now follows
from the fact that X ; = X(Rj), j=1,...,n.
Let 7 denote a permutation of (1,2, ..., n) and let

X)={x e X"ixy, <X, <-+- <X}
Let
Xo = U X(7)
where the union is over all possible permutations of (1,2, ..., n). Note that
Pr{Xy,..., X)) e A} =1

so that we may proceed as if the range of (X1, ..., X,) is &p.
Let / denote a real-valued function of R = R(X) such that E[4(R)] < oco. Then

E[h(R)] = ) E[R(R(X )ixexoy]-

Note that, for X € X(t), R(X) = t. Hence,

E[h(R)] = Y Elh(lixexy] = Y h(@PH(X € X(0)).

Let 7 denote the identity permutation. Then
X € X(7) if and only if X € X(7)

and, since the distribution of (X, X5, ..., X,)isexchangeable, 7 X has the same distribution
as X. Hence,

Pr(X € X(7)) = Pr(t X € X(vp)) = Pr(X € X (10)).
Since there are n! possible permutations of (1, 2, ..., n) and

ZPr(X € X(1) =1,
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it follows that Pr(X € X' (7)) = 1/n! for each 7 and, hence, that
1
BUA(R) = — > h(r)

proving part (ii).

Part (iii) follows along similar lines. Let g denote a bounded function of X, and let &
denote a bounded function of R.

Note that

E[g(X()h(R)] = ZE[g(X(.))h(R(X))I{XeX(r)}]
= ZE[g(TX)h(T)I{XeX(r)}]
= Z h(DE[g(t X)) e xex(m)]
= Z h(OE[Z(X)xex(z)]

= Elg(X)xexn] ) _ h(r)

1
= n!E[g(X)xex ()] ! Z h(t)

= E[g(X(.)IE[R(R)],

proving part (iii).
Finally, part (iv) follows from the fact that any statistic T = T (X) may be written as
T(R, X(,) and, by part (iii) of the theorem,

E[T|R =r] =E[T(R, X())IR =r] =E[T(r, X(;))] = E[T X¢y)s - -+ » Xr)]- |

Example 7.27 (Mean and variance of linear rank statistics). Let R, R, ..., R, denote
the ranks of a sequence of independent and identically distributed real-valued random
variables, each distributed according to an absolutely continuous distribution. Consider a
statistic of the form

T = iajRj
=1

where ay, as, ..., a, is a sequence of constants. Here we consider determination of the
mean and variance of T.
Note that each R; has the same marginal distribution. Since

ZRJ — M’ (7.2)
=1 2

it follows that E(R;) = (n +1)/2, j =1,...,n. Also, each pair (R;, R;) has the same
marginal distribution so that Cov(R;, R ;) does not depend on the pair (i, j).
Leto? = Var(R;) and ¢ = Cov(R;, R;). By (7.2),

Var (Z R_,«) =no*+nn—1)ec=0
Jj=1
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so that

To find o2, note that R; = j with probability 1/x. Hence,

Z 2 _ (4 1)(2n+1)

Since E(R|) = (n + 1)/2, it follows that 0> = (n> — 1)/12 and ¢ = —(n + 1)/12.
Now consider the statistic 7. The expected value of T is given by

n+1<
E(T) = 2 JZ::/I_/;

the variance of T is given by

) -1, n+1
Var(T) =0 Za + 2¢ Za,a, =13 Zaj Za,al
j=1

i<j i<j

For instance, consider a; = j; when the data are collected in time order, the statistic
Z?: | JRj may be used to test the hypothesis of a time trend in the data. If the data are in
fact independent and identically distributed, this statistic has mean

n(n + 1)>?
4
and variance
N n+1 n(n+1)(n—1)
2 7= Z = 144 -

Example 7.28 (Conditional expectation of a sum of uniform random variables). Let

X1, ..., X, denote independent, identically distributed random variables, each uniformly
distributed on (0, 1) and let a, . . ., a, denote a sequence of constants. Consider
E {Zajx,-uel, ...,R,,}
Jj=1
where (Ry, ..., R,) denotes the vector of ranks.
Let(ry, ..., r,)denote a permutationof (1, ..., n). According to Theorem 7.11, part (iv),

n n n
Zanj|R1 =T1y..., Rn =r,,} =E {Zan(rj)} = ZdjE{X(,-/.)}
j=1 j=1 j=1

From Example 7.19, we know that X, has a beta distribution with parameters m and
n —m + 1; hence, it is straightforward to show that

m
E{X(m)} = m
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It follows that

n

n
7
E Za_,-Xj|R1=r1,...,Rn=rn}:Zaj J
{,-=1 =l

so that

n 1 n
E{Za,X,-|R1, ...,Rn} = —12a,Rj;
= n+1l=

that is, E{Z'}:l a;jX;|Ry, ..., R,}is alinear rank statistic. O

7.7 Monte Carlo Methods

Let X denote a random variable, possibly vector-valued, with distribution function Fy.
Suppose we are interested in the probability Pr(g(X) < y) where g is a real-valued function
on the range of X and y is some specified value. For instance, this probability could represent
a p-value or a coverage probability. In this chapter, we have discussed several methods of
determining the distribution of Y = g(X). However, these methods often require substantial
mathematical analysis that, in some cases, is very difficult or nearly impossible.

Consider the following alternative approach. Suppose that we may construct a process
that generates data with the same distribution as X; let Xy, ..., Xy denote independent,
identically distributed random variables, each with the same distribution as X and let

Let

. 1 &
Py = I ;I{Y/sy}

denote the proportion of Y, ..., Yy that are less than or equal to y. Thus, if N is large
enough, we expect that

Py ~Pr(Y <y).
Hence, we use Py as an estimate of Pr(Y < ). In fact, any type of statistical method, such
as a confidence interval, may be used to analyze the data generated in this manner.
This approach is known as the Monte Carlo method. The Monte Carlo method is a vast
topic. In this section, we give only a brief overview of the method; for further details, see
Section 7.9.

Example 7.29 (Ratio of exponential random variables to their sum). Let X = (X1, X3)
denote arandom vector such that X |, X, are independent, identically distributed exponential
random variables with mean A and let Y = X /(X + X»); see Example 7.7. Consider the
probability Pr(Y < 1/4) for A = 1.

To estimate this probability, we can generate N pairs of independent standard exponential
random variables, (X, X51), ..., (X1n5, X2n), and define

X1

Y =———, j=1,...,N.
! X1+ Xy /
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When this approach was used with N = 1,000, the estimate 13N = 0.244 was obtained; when
N = 10,000 was used, the estimate 13N = 0.2464 was obtained. Recall that the distribution
of Y is uniform on the interval (0, 1); thus, the exact probability Pr(Y < 1/4)is 1/4. O

Of course, use of the Monte Carlo method requires that we be able to generate random
variables with a specified distribution. Standard statistical packages generally have proce-
dures for generating data from commonly used distributions. In many cases if the density
or distribution function of X is available, then it is possible to construct a method for gen-
erating data with the same distribution as X; this is particularly true if X is real-valued or
is a random vector with independent components. These methods are generally based on
a procedure to generate variables that are uniformly distributed on (0, 1); such procedures
are well-studied and widely available. However, depending on the exact distribution of X,
the actual method required to generate the data may be quite sophisticated. The following
two examples illustrate some simple methods that are often applicable.

Example7.30 (Generation of standard exponential random variables). Consider genera-
tion of observations with a standard exponential distribution, required in Example 7.29. Let
U denote arandom variable that is uniformly distributed on (0, 1) andlet X = —log(1 — U).
Then

Pr(X <x)=Pr(U <1 —exp(—x)) =1—exp(—x), x>0.

Hence, a sequence of independent uniform random variables may be easily transformed to
a sequence of independent standard exponential random variables.

This approach, sometimes called the inversion method, can be used whenever X has
distribution function F on the real line and the quantile function corresponding to F is
available; see the proof of Theorem 1.3. O

Example 7.31 (Hierarchical models). Suppose that the random variable X follows a hier-
archical model, as discussed in Section 5.4. Specifically, suppose that the distribution of X
can be described in two stages: the conditional distribution of X given a random variable
A and the marginal distribution of A. If algorithms for generating data from the conditional
distribution of X given A and from the marginal distribution of A are both available, then
random variables from the distribution of X may be generated using a two-stage process.
Foreach j =1,..., N, suppose that A ; is drawn from the marginal distribution of A; then
we can draw X ; from the conditional distribution of X given A = A ;.

This method can also be used in cases in which the distribution of X is not originally
described in terms of a hierarchical model, but it is possible to describe the distribution of
X in terms of a hierarchical model. O

The primary advantage of the Monte Carlo method is that it may be used in (nearly)
every problem; it is particularly useful in cases, such as the one in the following example,
in which an exact analysis is very difficult.

Example 7.32 (An implicitly defined statistic). Let X = (Z,, ..., Z,) where the Z; are
independent and identically distributed standard exponential random variables and consider
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the statistic Y =Y (Zy, ..., Z,) defined by the following equation:

n

Y (2] —1)logz; =n.

Jj=1
This statistic arises in connection with estimation of the parameters of the Weibull distri-
bution.

Since an explicit expression for Y in terms of Z;, ..., Z, is not available, an exact
expression for the distribution of Y is difficult, if not impossible, to determine. However, the
Monte Carlo method is still easily applied; all that is needed is an algorithm for determining
Y from a given value of X = (Z;,...,Z,). O

There are a number of disadvantages to the Monte Carlo method. One is that, if the
method is repeated, that is, if a new set of observations is generated, a new result for f’N is
obtained. Although the variation in different values of Py may be decreased by choosing a
very large value of N, clearly it would be preferable if two sets of “identical” calculations
would lead to identical results. This is particularly a problem in complex settings in which
generation of each Y'; is time-consuming and, hence, N must be chosen to be relatively small.
In view of this variation, it is standard practice to supplement each estimate of Pr(Y < y)
with its standard error.

Example 7.33 (Ratio of exponential random variables to their sum). Consider the proba-
bility considered in Example 7.29. When the Monte Carlo analysis was repeated, the results
Py = 0.246 for N = 1,000 and Py = 0.2428 for N = 10,000 were obtained. These may
be compared to the results obtained previously. O

A second drawback of the Monte Carlo method is that, because no formula for Pr(Y < y)
is available, it may be difficult to see how the probability varies as different parameters in
the problem vary.

Example 7.34 (Ratio of exponentials random variables to their sum). Recall
Example 7.29. The probability of interest was Pr(Y < 1/4), calculated under the assumption
that . = 1. Suppose that we now want the same probability calculated under the assumption
that A = 5. Note that the distribution of the statistic
X
X1+ X2

does not depend on the value of A. To see this, note that we may write X; = AZ;, j = 1,2,
where Z, Z, are independent standard exponential random variables; this result also follows
from the general results on invariance presented in Section 5.6.

When the Monte Carlo approach was used with A = 5 and N = 10,000, the result was
Py = 0.2500. Although this is close to the result calculated under A = 1 (0.2464), it is not
clear from these values that the two probabilities are exactly equal. O

Despite these drawbacks, the Monte Carlo method is a very useful and powerful method.
It is invaluable in cases in which an exact analysis is not available. Furthermore, the gen-
erality of the Monte Carlo method gives the statistical analyst more flexibility in choosing
a statistical model since models do not have to be chosen on the basis of their analytical
tractability. Also, even in cases in which an exact analysis is possible, results from a Monte
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Carlo analysis are very useful as a check on the theoretical calculations. When approxima-
tions to Pr(Y < y) are used, as will be discussed in Chapters 11-14, the results of a Monte
Carlo study give us a method of assessing the accuracy of the approximations.

The importance of the drawbacks discussed above can be minimized by more sophis-
ticated Monte Carlo methods. For instance, many methods are available for reducing the
variation in the Monte Carlo results. Also, before carrying out the Monte Carlo study, it is
important to do a thorough theoretical analysis. For instance, in Example 7.34, even if the
distribution of X /(X + X») is difficult to determine analytically, it is easy to show that
the distribution of this ratio does not depend on the value of X; thus, the results for A = 1
can be assumed to hold for all A > 0.

7.8 Exercises
7.1 Let X denote a random variable with a uniform distribution on the interval (0, 1). Find the density
function of
X
Y =—.
1-X
7.2 Let X denote a random variable with a standard normal distribution. Find the density function of
Y=1/X.
7.3 Let X denote a random variable with a Poisson distribution with mean 1. Find the frequency
function of ¥ = X /(1 + X).
7.4 Let X denote a random variable with an F-distribution with v; and v, degrees of freedom. Find
the density function of
_ V1 X
S L+ /)X
7.5 Let X, and X, denote independent, real-valued random variables with absolutely continuous
distributions with density functions p, and p,, respectively. Let Y = X/ X,. Show that Y has
density function

py(y)=/ lzIp1(zy)pa(z) dz.

o0

7.6 Let X, X, denote independent random variables such that X; has an absolutely continuous
distribution with density function

Ajexp(—Ajx), x>0,

j =1,2,where A; > 0 and A, > 0. Find the density of ¥ = X,/ X,.

7.7 Let X1, X», X3 denote independent random variables, each with an absolutely continuous distri-
bution with density function

Aexp{—Ax}, x>0

where A > 0. Find the density function of Y = X + X, — X;.

7.8 Let X and Y denote independent random variables, each with an absolutely continuous distribution
with density function

1
p(x) = 3 exp{—|x|}, —oo <x < o0.

Find the density functionof Z = X + Y.
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Let X, and X, denote independent random variables, each with a uniform distribution on (0, 1).
Find the density function of ¥ = log(X,/X>).

Let X and Y denote independent random variables such that X has a standard normal distribution
and Y has a standard exponential distribution. Find the density function of X + Y.

Suppose X = (X, X,) has density function
p(xi, x2) ZXI_ZXQ_Z, x> 1, x, > 1.

Find the density function of X X,.

Let X1, ..., X, denote independent, identically distributed random variables, each of which is
uniformly distributed on the interval (0, 1). Find the density function of 7 = []_, X .
Let Xy, X», ..., X, denote independent, identically distributed random variables, each with an

absolutely continuous distribution with density function 1/x2, x > 1, and assume that n > 3.
Let

Y, =X;X,, j=1,...,n—1

Find the density function of (Y1, ..., Y,_1).

Let X be a real-valued random variable with an absolutely continuous distribution with density
function p. Find the density function of ¥ = | X|.

Let X denote a real-valued random variable with a z-distribution with v degrees of freedom.
Find the density function of ¥ = X2.

Let X and Y denote independent discrete random variables, each with density function p(-; 0)
where 0 < 6 < 1. For each of the choices of p(-; ) given below, find the conditional distribution
of X given S = s where S =X +7Y.

@@ p(j;0)=(1-6)0/, j=0,...

(b) p(j;0) = (1 —O)[—log1 —O)/j!, j=0,...

(© p(j;0)=60"""/[j(—log(1 =), j=0,...

Suppose that S = 3 is observed. For each of the three distributions above, give the conditional
probabilities of the pairs (0, 3), (1, 2), (2, 1), (3, 0) for (X, Y).

Let X and Y denote independent random variables, each with an absolutely continuous distri-
bution with density function
o
—, x>1
ya+l

where @ > 1. Let S = XY and T = X/Y. Find E(X|S) and E(T'|S).

Let X denote a nonnegative random variable with an absolutely continuous distribution. Let
and p denote the distribution function and density function, respectively, of the distribution.
The hazard function of the distribution is defined as

h(x) = ﬂ, x > 0.
1—F(x)
Let X, ..., X, denote independent, identically distributed random variables, each with the
same distribution as X, and let
Y = min(Xy, ..., X,).

Find the hazard function of Y.

Let X, X, denote independent random variables, each with a standard exponential distribution.
Find E(X;| + X,|X| — X») and E(X| — X,|X| + X»).

Let X, ..., X, denote independent random variables such that X ; has a normal distribution
with mean p; and standard deviation o ;. Find the distribution of X.
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Let X, ..., X, denote independent random variables such that X ; has an absolutely continuous
distribution with density function

1 aj—1
pi(x)) =T(@)™'x}"" exp{—x;}, x;>0

where @; > 0, j = 1,..., n. Find the density functionof ¥ = }"_, X;.

Let X4, ..., X, denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the density function of R = X, — X1).

Prove Theorem 7.6.

Let X, X2, ..., X, be independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

Let X, denote the jth order statistic of the sample. Find E[X;,]. Assume that n > 2.

Let X, X», X3 denote independent, identically distributed random variables, each with an expo-
nential distribution with mean A. Find an expression for the density function of X3/ X ).

Let X4, ..., X, denote independent, identically distributed random variables, each with a uni-
form distribution on (0, 1) and let X, ..., X(,, denote the order statistics. Find the correlation
of X and X(;),7 < j.

Let X4, ..., X, denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the distribution of

DX = X
=1

Let X = (X, ..., X,) where X, ..., X, are independent, identically distributed random vari-
ables, each with an absolutely continuous distribution with range X'. Let Xy = (X1, ..., X))
denote the vector of order statistics and R = (Ry, ..., R,) denote the vector of ranks corre-
sponding to (X, ..., X,).

(a) Let & denote a real-valued function on X”. Show that if / is permutation invariant, then

h(X)=h(X.,)  withprobability 1

and, hence, that #(X) and R are independent.

(b) Does the converse hold? That is, suppose that #(X) and R are independent. Does it follow
that 4 is permutation invariant?

Let U;, U, denote independent random variables, each with a uniform distribution on the interval
(0, 1). Let

X; = /(=2 logU,) cos(2rUs)
and
X, = /(=2 logU)) sinQRrU,).

Find the density function of (X, X»).

Consider an absolutely continuous distribution with nonconstant, continuous density function p
and distribution function F such that F(1) = 1 and F'(0) = 0. Let (X4, Y1), (X5, Y»), ... denote
independent pairs of independent random variables such that each X ; is uniformly distributed
on (0, 1) and each Y is uniformly distributed on (0, ¢), where

¢ = sup p(t).

0<r<1
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Distribution Theory for Functions of Random Variables

Define a random variable Z as follows. If Y| < p(X}), then Z = X,. Otherwise, if Y, < p(X>),
then Z = X,. Otherwise, if Y3 < p(X3), then Z = X3, and so on. That is, Z = X ; where

j=min{i: ¥; < p(X;)}.

(a) Showc > 1.

(b) Find the probability that the procedure has not terminated after n steps. That is, find the
probability that Z = X ; for some j > n. Based on this result, show that the procedure will
eventually terminate.

(¢) Find the distribution function of Z.

Let X denote a random variable with an absolutely continuous distribution with density func-

tion p and suppose that we want to estimate E[/(X)] using Monte Carlo simulation, where

E[|h(X)|] < oo. Let Yy, Y5, ..., Y, denote independent, identically distributed random vari-

ables, each with an absolutely continuous distribution with density g. Assume that the distribu-

tions of X and Y, have the same support. Show that

1 < p(Y;
E{n 3 P ’)h(Yj)} = E[h(X)].
Jj=1

g(Yj)

This approach to estimating E[4(X)] is known as importance sampling; a well-chosen
density g can lead to greatly improved estimates of E[4(X)].

7.9 Suggestions for Further Reading

The problem of determining the distribution of a function of a random variable is discussed in many
books on probability and statistics. See Casella and Berger (2002, Chapter 2) and Woodroofe (1975,
Chapter 7) for elementary treatments and Hoffmann-Jorgenson (1994, Chapter 8) for a mathematically
rigorous, comprehensive treatment of this problem.

Order statistics are discussed in Stuart and Ord (1994, Chapter 14) and Port (1994, Chapter 39).
There are several books devoted to the distribution theory associated with order statistics and ranks;
see, for example, Arnold, Balakrishnan, and Nagaraja (1992) and David (1981).

Monte Carlo methods are becoming increasingly important in statistical theory and methods.
Robert and Casella (1999) gives a detailed account of the use of Monte Carlo methods in statistics;
see also Hammersley and Handscomb (1964), Ripley (1987), and Rubinstein (1981).
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Normal Distribution Theory

8.1 Introduction

The normal distribution plays a central role in statistical theory and practice, both as a model
for observed data and as a large-sample approximation to the distribution of wide range of
statistics, as will be discussed in Chapters 11-13. In this chapter, we consider in detail the
distribution theory associated with the normal distribution.

8.2 Multivariate Normal Distribution

A d-dimensional random vector X has a multivariate normal distribution with mean vector
n e R? and covariance matrix X if, for any a € RY, T X has a normal distribution with
mean a’ 1 and variance a” Za. Here ¥ is ad x d nonnegative-definite, symmetric matrix.
Note that a” ¥a might be 0, in which case a’ X = a” u with probability 1.

The following result establishes several basic properties of the multivariate normal dis-
tribution.

Theorem 8.1. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean vector . and covariance matrix %.
(i) The characteristic function of X is given by

1
@(t) = exp {itTp, — EtTEt} , te RY.

(ii) Let B denote a p x d matrix. Then BX has a p-dimensional multivariate normal
distribution with mean vector B and covariance matrix B BT.

(iii) Suppose that the rank of ¥ is r < d. Then there exists a (d — r)-dimensional
subspace of R, V, such that for any v € V,

PrivT(X — ) =0} = 1.

There exists an r x d matrix C such that Y = CX has a multivariate normal
distribution with mean C u and diagonal covariance matrix of full rank.

(iv) Let X = (X1, X»)where X is p-dimensional and X, is (d — p)-dimensional. Write
w = (i1, no) where ju; € R? and p, € R4=P, and write

2 2312)
Y =
<221 X»

235
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where X11isp X p, X1 = EZTI isp x(d— p)andXyis(d — p) x (d — p). Then
X1 has a multivariate normal distribution with mean vector (, and covariance
matrix ;.
(v) Using the notation of part (iv), X and X, are independent if and only if 31, = 0.

(vi) Let Yy = M1 X and Y, = My X where My is an r x d matrix of constants and M,
is an s x d matrix of constants. If M{ XM, = 0 then Y| and Y, are independent.

(vii) Let Z1, ..., Z; denote independent, identically distributed standard normal ran-
dom variables and let Z = (Z, . .., Zg). Then Z has a multivariate normal distri-
bution with mean vector 0 and covariance matrix given by the d x d identity matrix.
A random vector X has a multivariate normal distribution with mean vector . and
covariance matrix X if and only if X has the same distribution as u + X 2 Z.

Proof. Let a € R%. Since a” X has a normal distribution with mean a’ 14 and variance
al X a, it follows that

2
Elexp{it(a’ X)}] = exp {it(aTu) — E(aTza)} .
Hence, for any 1 € R¢,
1
Elexp{it’ X}] = exp {itTu - EITEI} ,

proving part (i).

Leta € R”. Then BTa € R so that a” BX has a normal distribution with mean a” Bu
and variance a’ BY B a; that is, for all a € R?, a” (BX) has a normal distribution with
mean a’ (Bp) and variance a’ (BX BT )a. Part (ii) of the theorem now follows from the
definition of the multivariate normal distribution.

Suppose that ¥ has rank r; let (Aq, e1), ..., (A, e,) denote the eigenvalue—eigenvector
pairs of X, including multiplicities, corresponding to the nonzero eigenvalues so that

Y= AlelelT + -+ )»,e,erT.

Consider the linear subspace of R¢ spanned by {ej, ..., e,} and let V denote the orthog-
onal complement of that space. Then, for any v € V, £v = 0; hence, v7 X has a normal
distribution with mean v’ and variance 0, proving the first part of (iii). For the matrix C
take the r x d matrix with jth row given by ejr. Then CXCT is the diagonal matrix with
Jjth diagonal element A ;. This proves the second part of (iii).

Part (iv) of the theorem is a special case of part (ii) with the matrix B taken to be of the
form

B=(I, 0)

where I, is the p x p identity matrix and O is a p x (d — p) matrix of zeros.

Let ¢; denote the characteristic function of X, let ¢, denote the characteristic function
of X», and let ¢ denote the characteristic function of X = (X, X,). Then, from parts (i) and
(iv) of the theorem,

1
(pl(t) = exp {itT,l/Ll — EITEUZ‘} , L€ RP’
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1
() = exp {itT/,Lz - Ethzzt} , te Rdﬁp,
and
.. T 1 T d

o(t) = exp qit M_Et Xty, teRY

here u; =E(X;), j =1,2.
Lett; € R?, 1, e R™P andt = (¢, t,). Then
=1l + 13 o

and

T = IITEUll + Z‘ZTEzztz + ZZITZIQIQ.
It follows that

o(t) = @i(t)ea(t2) exp {—t] ot} .

Part (v) of the theorem now follows from Corollary 3.3.
To prove part (vi), let
= ()

and let Y = M X. Then, by part (ii) of the theorem, Y has a multivariate normal distribution
with covariance matrix

)

M ,T XM, MlT XM,
MIEM, MIZM,
the result now follows from part (v) of the theorem.
Leta = (aj, ...,as) € R:. Thena’ Z = Z?Zl a;Z; has characteristic function

d d d
1
’ [exp {” Z“fz’” ~ [ Tetexpiira;z, = [ Texp (- 3a3r*)
j=1 j=l1 j=1
14
= exp —EZaJZ.tZ , teR,
=

which is the characteristic function of a normal distribution with mean O and variance
Z?: 1 a]2.. Hence, Z has a multivariate normal distribution as stated in the theorem.

Suppose X has the same distribution as u + X > Z. Then a” X has the same distribution
as a” i + a” ¥ Z, which is normal with mean a” y and variance

141
aly¥i¥2a = aTZa;

it follows that X has a multivariate normal distribution with mean vector © and covariance
matrix X.

Now suppose that X has a multivariate normal distribution with mean vector p and
covariance matrix X. Then, for any a € R?, a” X has a normal distribution with mean a” 1%
and variance a’ T a. Note that this is the same distribution as a” (u + X /4 ); it follows from



238 Normal Distribution Theory

Corollary 3.2 that X has the same distribution as u© + X > Z. Hence, part (vii) of the theorem
holds. W

Example 8.1 (Bivariate normal distribution). Suppose that X = (X, X,) has a two-
dimensional multivariate normal distribution. Then X, the covariance matrix of the distri-

bution, is of the form
0’12 012
Y= 5
021 0j

where 0/.2 denotes the variance of X;, j = 1,2, and 01> = o02; denotes the covariance of
Xi, X;.
We may write o1, = po103 so that p denotes the correlation of X; and X,. Then

(5 0002

It follows that X is nonnegative-definite provided that

(1)

is nonnegative-definite. Since this matrix has eigenvalues 1 — p, 1 4+ p, X is nonnegative-
definite forany —1 < p < 1. If p = +£1, then X, /0y — pX, /0, has variance 0. O

Example 8.2 (Exchangeable normal random variables). Consider a multivariate normal
random vector X = (X, X, ..., X,;) and suppose that X, X, ..., X,, are exchangeable
random variables. Let ¢ and ¥ denote the mean vector and covariance matrix, respectively.
Then, according to Theorem 2.8, each X; has the same marginal distribution; hence, 1
must be a constant vector and the diagonal elements of ¥ must be equal. Also, each pair
(X;, X ;) must have the same distribution; it follows that the Cov(X;, X ;) is a constant, not
depending on i, j. Hence, ¥ must be of the form

l IO p “ e p

2 2 p 1 p “ e p
=0 .

e pp -1

for some constants o > 0 and p. Of course, X is a valid covariance matrix only for certain
values of p; see Exercise 8.8. O

Example 8.3 (Principal components). Let X denote a d-dimensional random vector with
a multivariate normal distribution with mean vector u and covariance matrix X. Consider
the problem of finding the linear function a’ X with the maximum variance; of course, the
variance of a” X can be made large by choosing the elements of a to be large in magnitude.
Hence, we require a to be a unit vector. Since

Var(a’ X) = a’ Za,

we want to find the unit vector a that maximizes a’ Za.
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Let(A1, e1), ..., (A4, eg) denote the eigenvalue—eigenvector pairsof X, A > Ay > - -+ >
A4, SO that

Y= )»1616{ + -+ kdedeg.

Note we may write a = cje; + - - - cgeq for some scalar constants cy, ¢, ..., cg; since
a’a = 1, it follows that ¢ + - -+ + 3 = 1.
Hence,

a’Ya = )Llc? + .. —l—)»dcf,,

which is maximized, subject to the restriction c% + .4+ cfi =1, by c% =1, c% =...=
¢3 = 0. That is, the variance of a” X is maximized by taking a to be the eigenvector
corresponding to the largest eigenvalue of ¥; a” X is called the first principal component
of X. O

Example 8.4 (The multivariate normal distribution as a transformation model). Consider
the class of multivariate normal distributions with mean vector u € R? and covariance
matrix ¥, where X is an element of the set of all d x d positive-definite matrices; we will
denote this set by Cy.

For A € C;and b € R? let

(A,b)X = AX +b.
Consider the set of transformations G of the form (A4, b) with A € C; and b € R¥. Since
(A1, b1)(Ag, bo)X = A1(AoX + Do) + b1 = A1 Ao X + A1bo + b,
define the operation
(A1, b1)(Ag, bo) = (A1Ag, A1by + by).

It is straightforward to show that G is a group with respect to this operation. The identity
element of the group is (1, 0) and the inverse operation is given by

(A, b)y ' =@, —Aa7 D).

If X has a multivariate normal distribution with mean vector u and covariance matrix
%, then, by Theorem 8.1, (A, b)X has a multivariate normal distribution with mean vector
A + b and positive definite covariance matrix AX AT, Clearly, the set of all multivariate
normal distributions with mean vector ;« € R? and covariance matrix ¥ € C, is invariant
with respect to G.

As discussed in Section 5.6, G may also be viewed as acting on the parameter space of
the model C; x R?; here

(A,b)X(E, n) = (ASA", Ap+b). O
Density of the multivariate normal distribution

For the case in which the covariance matrix is positive-definite, it is straightforward to
derive the density function of the multivariate normal distribution.

Theorem 8.2. Let X be a d-dimensional random vector with a multivariate normal dis-
tribution with mean  and covariance matrix 2. If |Z| > 0 then the distribution of X is
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absolutely continuous with density
| 1
Qm) 2T exp {—E(x —w'E - M)} , xeR’

Proof. Let Z be a d-dimensional vector of independent, identically distributed standard
normal random variables. Then Z has density

e R A I
expy—=zi ¢ = (@m expy—=z2 2¢, 2 .
i1 )2 2 2

By Theorem 8.1 part (vi), the density of X is given by the density of u + $:Z. Let
W=upu+% 4 ; this is a one-to-one transformation since |%| > 0. Using the change-of-
variable formula, the density of W is given by

d 1 0
Q27)"* exp {—5<w — )T e w — u)} ﬁ .

The result now follows from the fact that

) l
Zloizrt
ow

Example 8.5 (Bivariate normal distribution). Suppose X is a two-dimensional random
vector with a bivariate normal distribution, as discussed in Example 8.1. The parameters
of the distribution are the mean vector, (1, i2), and the covariance matrix, which may be

written
s _ ( 012 ,00102)
= 5 .
pPO102 0,

The density of the bivariate normal distribution may be written

2
1 1 X1 — K1
exp | —
2o/ —p») 0| 20— |\ o
_ _ _ 2l
_ 2pxl M1 X2 — U2 n (Xz Mz) j“ ’
[on] (o)) (op)

for ()C],XQ) € Rz. O

8.3 Conditional Distributions

An important property of the multivariate normal distribution is that the conditional distri-
bution of one subvector of X given another subvector of X is also a multivariate normal
distribution.

Theorem 8.3. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean | and covariance matrix .
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Write X = (X1, X2) where X is p-dimensional and X, is (d — p)-dimensional, u =
(1, o) where g € R? and u, € R?, and

2 E12>
E =
<221 X»
where $11is p x p, Z12 = 21, is p x (d — p), and E is (d — p) x (d — p).

Suppose that |Xy| > 0. Then the conditional distribution of X given X, = x, is a
multivariate normal distribution with mean vector

-1
w1+ Z12X5, (X2 — u2)
and covariance matrix

- 2122{2153%

Proof. Let
I, -5,
7 ( p 122y, ) X:
0 I,
then Z has a multivariate normal distribution with covariance matrix

DITIRD P Hd SN
0 Y

where ¢ = d — p. Write Z = (Z;, Z,) where Z; has dimension p and Z, has dimension q.
Note that Z, = X5,. Then, by part (v) of Theorem 8.1, Z; and X, are independent. It follows
that the conditional distribution of Z; given X, is the same as the marginal distribution of
Z1, multivariate normal with mean p; — X3 22_21 > and covariance matrix

X - 231222_2] 0.
Since

Zi =X\ - 2Ty Xo,

X1 =27+ iy X,

and the conditional distribution of X given X, = x; is multivariate normal with mean given
by

E(Z1|X2 = x2) + Z1222721)62 = — z3122{21M2 + z31222721962 =+ 2312232721()62 — u2)
and covariance matrix

- 2122{21221,
proving the theorem. W
Example 8.6 (Bivariate normal). Suppose that X has a bivariate normal distribution, as
discussed in Example 8.5, and consider the conditional distribution of X; given X, = x;.

Then X = 012, Yo = poyoy, and Ty = 022. It follows that this conditional distribution
is normal, with mean

o1
m1+po—(x2 — u2)
02
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and variance

ol — pPol = (1 — pHoi. o

Example 8.7 (Least squares). Let X be a d-dimensional random vector with a multivariate
normal distribution with mean u and covariance matrix X. Write X = (X, X,), where X
is real-valued, and partition u and X in a similar manner: © = (i1, ®2),

X X )
Y= .
( 31 X
For a given 1 x (d — 1) matrix A and a given scalar a € R, define

S(A,a) =E[(X| —a— AX2)*]1 = (11 —a — Apa)* + 211 + AZpAT — 254

and suppose we choose A and a to minimize S(A, a).
First note that, given A, a must satisfy

a=pu;— Au,
so that (u; —a — A,u2)2 = 0. Hence, A may be chosen to minimize
ATnAT —2%,AT. 8.1
Write A = 21222}1 + A;. Then
ATHAT =25 AT = A SpAT — 2,35 8. 8.2)

Minimizing (8.1) with respect to A is equivalent to minimizing (8.2) with respect to A;.
Since X, is nonnegative-definite, (8.2) is minimized by A; = 0; hence, (8.1) is minimized
by A =% 22_21. That is, the affine function of X, that minimizes E[X| — (a + AX»)]? is
given by

1+ T (Xa — pa),

which is simply E(X|X>). This is to be expected given Corollary 2.2. O

Conditioning on a degenerate random variable
Theorem 8.3 may be extended to the case in which the conditioning random vector, X», has
a singular covariance matrix.

Theorem 8.4. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean . and covariance matrix X.

Write X = (X1, X;) where X, is p-dimensional and X, is (d — p)-dimensional, u =
(i1, 1) where v € RP and j1, € R*?, and

X X
> =
<221 2322)
where 11 is p X p, L1 = 2p1 is p X (d — p), and Xy is (d — p) X (d — p). Let r =

rank(Xy,) and suppose that r < d — p. Then the conditional distribution of X, given
X5 = x» is a multivariate normal distribution with mean vector

w1+ 1225, (x0 — w2)
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and covariance matrix
X — XXy 20,

provided that x» is such that for any vector a satisfying a’ ¥pa =0, a’ x» = a” u,. Here
%, denotes the Moore—Penrose generalized inverse of X;.

Proof. By part (iii) of Theorem 8.1, there is a linear transformation of X, to (¥, ¥>) such
that Y; is constant with probability 1 and Y, has a multivariate normal distribution with full-
rank covariance matrix. Furthermore, Y, = C X, where C is an r x (d — p) matrix with
rows taken to be the eigenvectors corresponding to nonzero eigenvalues of X;; see the
proof of Theorem 8.1. Hence, the conditional distribution of X given X, is equivalent to
the conditional distribution of X given Y>. Since the covariance matrix of Y; is of full-rank,
it follows from Theorem 8.3 that this conditional distribution is multivariate normal with
mean vector
-1
w1+ 213233 (2 — u3)
and covariance matrix
T — T35 Ta

where 3 denotes the mean of Y;, X3 denotes the covariance of X and Y,, and X33 denotes
the covariance matrix of Y5.
By considering the transformation

X\ (1, 0 X,
Y,/ \0 C X, )’
it follows from Theorem 8.1 that

i3 =XpCl,

T3 = CEpCT,

and pu3 = Cu,. Hence, the conditional distribution of X; given X, = x; is multivariate
normal with mean

w1+ ZpCTCEnCTI7 Clxy — 1a)
and covariance matrix
i — ZpCT[CEnC I CSy,

provided that x; is such that for any vector a such that a” X, has variance 0, a” x, = a” us;
see Example 8.8 below for an illustration of this requirement.

Recall that ¥, = CT DC where D is a diagonal matrix with diagonal elements taken to
be the nonzero eigenvalues of X,. Note that

Y0 CT[CE»CT1ICEn = CT D (ccTpeccH ' «cecTybe
=C'DC = %y,
since (CCT) and D are invertible. Hence,

=, =cTcspc’ '
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is a generalized inverse of X,,. Furthermore,
T T T
Y, =Xy,

and both 2'2"2222 and X, EZTZ are symmetric. It follows that 2;2 = X,,, the Moore—Penrose
inverse of X,,. W

In fact, it has been shown by Rao (1973, Section 8a.2) that the result of Theorem 8.4
holds for any choice of generalized inverse.

Example 8.8 (Bivariate normal distribution). Suppose that X has a bivariate normal
distribution, as discussed in Example 8.5, and consider the conditional distribution of
X, given X, = x;. Suppose that the covariance matrix of X, is singular; that is, sup-
pose that 0, = 0. The Moore—Penrose generalized inverse of 0 is 0 so that the conditional
distribution of X given X, = x; is a normal distribution with mean p; and variance 012.
This holds provided that x, is such that for any vector a such that a” X, has variance 0,
a” x, = a” py; in this case, this means that we require that x, = . Note that X, = , with

probability 1. O

8.4 Quadratic Forms

Much of this chapter has focused on the properties of linear functions of a multivariate
normal random vector X; however, quadratic functions of X also often occur in statistical
methodology. In this section, we consider functions of X of the form X7 AX where A is a
symmetric matrix of constants; such a function is called a quadratic form. We will focus
on the case in which A is a nonnegative-definite matrix.

Example 8.9 (Sample variance). Let X, ..., X, denote independent, identically dis-
tributed, real-valued random variables such that X ; has a normal distribution with mean 0
and variance o2 and let

n

1 _
§% = X;— X)?
n—1 Z( J )
j=1
where X = Y_, X;/n. i
LetX = (X4, ..., X,). Then X = mX wherem denotesa 1 x n vector with each element
taken to be 1/n. Since, for any vector ¢ = (cy, ..., ¢;) € R",

Z(Xj — X =X —-—mm"mX)" (X —nm"mX) = X", — nm"m)" (I, — nm"m)X.
j=1
Let
1 T T T 1 T
A= —U, —nm m) (I, —nm' m) = ——(I, — nm" m);
n—1 n—1

then S = XTAX. O
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Thus, the previous example shows that the sample variance is a quadratic form. Similarly,
the sums of squares arising in regression analysis and the analysis of variance can also
generally be expressed as quadratic forms. Quadratic forms also arise in the approximation
of the distribution of certain test statistics.

Since the term in the exponent of the multivariate normal distribution, —xT E’lx/ 2,1s
a quadratic form in x, it is a relatively simple matter to determine the moment-generating
function and, hence, the cumulant-generating function, of a quadratic form.

Theorem 8.5. Let X denote a d-dimensional random vector with a multivariate nor-
mal distribution with mean vector 0 and covariance matrix X%, || > 0. Let A be a
d x d nonnegative-definite, symmetric matrix and let Q = X7 AX. Then Q has cumulant-
generating function

1 d
Ko(t) = = Zlog(l —2th), |t] <8

k=1
where Ay, ..., Ag are the eigenvalues of XA and § > 0. The jth cumulant of Q is given by
d_ .
D27 = DL
k=1

Proof. Consider E[exp{t X” AX}], which is given by

1
/ (271)_% |E|_% exp {—ExTZ_lx} exp{rx” Ax} dx
R4

y 1
= (271)_5/|2|_2 exp {——)CT[E_1 — 2tA]x} dx.
Rd 2
Note that |2 ~! — 2¢ A| is a continuous function of ¢ and is positive for r = 0; hence, there
exists a § > 0 such that
I —2tA| >0 for |f] <36.
Thus, for |t| < 6,
d 1 1 1 1
Q)" |T|72 exp {—ExT[Z_l — 2tA]x} dx = 2|72 |27 = 2tA2
Rd
= |I; - 2TAT | 2.

Let B= $:AX:. Note that Bisa symmetric nonnegative-definite matrix so that we may
write

B=PDPT

where P is an orthogonal matrix and D is a diagonal matrix with diagonal elements given
by the eigenvalues of B or, equivalently, the eigenvalues of X A. It follows that

|I; —2tPDPT| =|P(I; —2tD)PT| = |I; — 2tD| = ]_[(1 —2t1))
j=1
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where A, ..., A4 denote the eigenvalues of B. Hence, Q has cumulant-generating function

1 d
Ko@) =—3 > log(l —2ta0). |t] <8
k=1

the expression for the cumulants follows easily from differentiating Ko. H

Recall that the sum of squared independent standard normal random variables has a
chi-squared distribution (Example 3.7). That is, if Z is a d-dimensional random vector with
a multivariate normal distribution with mean 0 and covariance matrix given by I;, then
the quadratic form Z” Z has a chi-squared distribution. A general quadratic form X7 AX
has a chi-squared distribution if it can be rewritten as the sum of squared independent
standard normal random variables. A necessary and sufficient condition for this is given in
the following theorem.

Theorem 8.6. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix ¥. Let A be a d x d nonnegative-definite,
symmetric matrix and let Q = XT AX. Q has a chi-squared distribution if and only if ¥ A
is idempotent. The degrees of freedom of the chi-squared distribution is the trace of Z A.

Proof. From Theorem 8.5, the cumulant-generating function of Q is

1 d
Kot)=—3 Zlog(l —2M), t] < 8,
k=1

where Aq, ..., Ay are the eigenvalues of XA and § > 0. If X A is idempotent, then each A
is either O or 1. Suppose that r eigenvalues are 1. Then

1
Ko(t) = —3r log(1 =20), 1] <34,

which is the cumulant-generating function of a chi-squared random variable with r degrees
of freedom. Hence, by Theorem 4.9, Q has a chi-squared distribution with r degrees of
freedom.

Now suppose that

1
Ko@) = —Er log(1 — 2t)

for some r; that is, suppose that

d
> log(l —2ta) = rlog(1 —21), |t| <8,
k=1

for some § > 0. For any positive number A,

log(1 —262) = — Y _1)711/j,

j=1
for sufficiently small |¢|. Hence,

d

d )
D log(l —2034) = =Y Y @a) 11/
k=1 j=1

k=1
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forall |¢| < €, for some € > 0. It is straightforward to show that the double series converges
absolutely and, hence, the order of summation can be changed:

d d oo 00 d
D log(l —2h) ==Y Y Cnyt/ /==Y (Z A,i) 2l /j
k=1 k=1 j=1 j=1 \k=1
for all [¢| < €. This implies that

d
dui=r o j=12..., (8.3)
k=1

and, hence, that each Ay is either O or 1.

To prove this last fact, consider a random variable W taking value Ay, k =1,2,...,d
with probability 1/d; note that, by (8.3), all moments of W are equal to r/d. Since W is
bounded, its moment-generating function exists; by Theorem 4.8 it is given by

1+ - Z eXp{t} — 11 =1 —r/d)+ (r/d) expit},

which is the moment-generating function of a random variable taking the values 0 and 1
with probabilities 1 — r/d and r/d, respectively. The result follows. W

Example 8.10 (Sum of squared independent normal random variables). Let X,
X5, ..., X, denote independent, real-valued random variables, each with a normal distribu-
tion with mean 0. Let of = Var(X;), j = 1,...,n, and suppose thatcrj2 >0,j=1,...,n
Consider a quadratic form of the form

n
Q=) a;X;]
=1

where ay, ay, . . ., a, are given constants.

Let X = (X4, ..., X,). Then X has a multivariate normal distribution with covariance
matrix ¥, where ¥ is a diagonal matrix with jth diagonal element given by sz_ Let A
denote the diagonal matrix with jth diagonal element a;. Then Q = X7 AX.

It follows from Theorem 8.6 that Q has a chi-squared distribution if and only if £ A is
idempotent. Since X A is a diagonal matrix with jth diagonal element given by a jojz, it
follows that Q has a chi-squared distribution if and only if, for each j = 1, ..., n, either
aj=0ora; = 1/0].2. O

The same basic approach used in part (iii) of Theorem 8.1 can be used to study the joint
distribution of two quadratic forms, or the joint distribution of a quadratic form and a linear
function of a multivariate normal random vector.

Theorem 8.7. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix X. Let Ay and A, be d x d nonnegative-
definite, symmetric matrices and let Q ; = XTAjX, j=12
(i) If AyX Ay = 0 then Q1 and Q; are independent.
(ii) Let Y = MX where M is an r x d matrix. If A;XMT =0 then Y and Q, are
independent.
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Proof. LetAy, ..., A, denote the nonzero eigenvalues of A; andletey, ..., e, denote the
corresponding eigenvectors; similarly, let y, .. ., y;, denote the nonzero eigenvalues of A,
and let vy, ..., v,, denote the corresponding eigenvectors. Then

A= )»1616{ +-+ )urle,lerT]
and
Ay =yviv] 4+ Yvnvl.
Suppose A1 XA, = 0. Then

ef A1 A = hyjef Zvj =0

so that e,{Evj =O0forall j=1,...,mand k =1, ..., r;. Let P; denote the matrix with
columns ey, ..., e, and let P, denote the matrix with columns vy, ..., v,,. Then
PlxP,=0.

It follows that PITX and PZTX are independent. Since Q) is a function of Per and O, isa
function of PJ X, it follows that Q; and Q, are independent, proving part (i).

The proof of part (ii) is similar. As above, Q; is a function of P;X. Suppose that
A1ZMT = 0. Since A} = PyDP] where D is a diagonal matrix with diagonal elements
Alyeons Arps

PDP/ =M™ =0.

It follows that P/ £ M” = 0; hence, by part (vi) of Theorem 8.1, P/ X and M X are inde-
pendent. The result follows. H

The following result gives a simple condition for showing that two quadratic forms are
independent chi-squared random variables.

Theorem 8.8. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix 1;. Let Ay and A, be d x d nonnegative-
definite, symmetric matrices and let Q; = X TA X, j =1,2. Suppose that

X'X =01+ Q..

Let r; denote the rank of Aj, j = 1,2. Q1 and Q, are independent chi-squared random
variables with r| and r, degrees of freedom, respectively, if and only if ri +r, = d.

Proof. Suppose Q; and Q, are independent chi-squared random variables with »; and r;
degrees of freedom, respectively. Since, by Theorem 8.6, X X has a chi-squared distribution
with d degrees of freedom, clearly we must have | + r, = d; for example, E(X” X) = d,
E(Q1) = r1, E(Q2) = rp, and E(X" X) = E(Q1) + E(Q2).

Suppose that r; +r, =d. Let Ay, ..., A,, denote the nonzero eigenvalues of A; and
letey, ..., e, denote the corresponding eigenvectors; similarly, let y, ..., y,, denote the
nonzero eigenvalues of A, and let vy, ..., v,, denote the corresponding eigenvectors. Then

T T
Ay = Aiere] + -+ Ay ene,,
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and
Ay = ylvlvlT + -4 y,zv,zvz;.
Note that
A+ A,=PDPT
where D is a diagonal matrix with diagonal elements Ay, ..., A, ¥1,..., ¥, and P is a
matrix with columns ey, ..., €., Vi, ..., V,; recall that r; + r, = d. Since

A+ A,=PDPT =1,,
and D has determinant

M dnyyio v 70,

it follows that | P| # 0.
Since Aje; = Aje; and (A; + Az)e; = ey, it follows that

A2€j:(1—)\‘j)ej, j:l,.”,rl.

That is, either A; = 1 or ¢; is an eigenvector of A,. However, if ¢; is an eigenvector of
A, then two columns of P are identical, so that |P| =0; hence, A; =1, j =1,...,r;
similarly, y; = 1, j =1, ..., r. Furthermore, all the eigenvectors of A; are orthogonal to
the eigenvectors of A, and, hence,

A1A2=O and A2A1=O.

Also, since (A} + A3)A; = Ay, itfollows that A; is idempotent; similarly, A, is idempotent.
It now follows from Theorem 8.6 that Q; and O, have chi-squared distributions. To
prove independence of Q| and Q», note that

O1=nmYYi+- +2,7Y,

"1t

where ¥; = eJTX, j=1,...,r. Similarly,

Or=nZ{Zi+ -+ 2. Z,

where Z; = vaX . Since each e; is orthogonal to each v;, it follows from Theorem 8.1
that ¥; and Z; are independent, i =1,...,r, j=1,...,r. Hence, Q; and Q, are
independent. M

In the following corollary, the result in Theorem 8.8 is extended to the case of several
quadratic forms; the proof is left as an exercise. This result is known as Cochran’s Theorem.

Corollary8.1. Let X denote a d-dimensional random vector with a multivariate normal dis-
tribution with mean 0 and covariance matrix 1. Let Ay, As, ..., Ay bed X d nonnegative-
definite, symmetric matrices and let Q; = XTAjX, j=1,...,m, such that

X'X=014+ 02+ + Ou.

Let r; denote the rank of Aj, j =1,...,m. Qy, Qa, ..., Q, are independent chi-squared
random variables, such that the distribution of Q j has r j degrees of freedom, j =1, ..., m,
ifand only if ri + -+ +ry, =d.
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Example 8.11 (Analysis of variance). Let X denote a d-dimensional random vector with
a multivariate normal distribution with mean vector © and covariance matrix given by 1.
Let M denote a p-dimensional linear subspace of R? and let Py be the matrix representing
orthogonal projection onto M here orthogonality is with respect to the usual inner product
on R?. Hence, for any x € R?, Pyyx € M and

(x — Pyx)'y=0 forall ye M.

Note that Pp4 has rank r, the dimension of M. Consider the linear transformation given
by the matrix I; — Pu. It is easy to show that this matrix represents orthogonal projection
onto the orthogonal complement of M hence, the rank of I; — Ppyisd —r.

Since

XTX = X", — Py)X + XTPuX,

it follows that the quadratic forms X7 (I; — Pr)X and X7 PyX are independent chi-
squared random variables with d — r and r degrees of freedom, respectively.
Now suppose that R¢ may be written

RI=M, oMy ® - &M,

where My, M,, ..., M, are orthogonal linear subspaces of R4 so that if x; € M; and
X (S Mj, i ;é j,

x; x; =0.

Let Py4, denote orthogonal projection onto M; and let r; denote the dimension of M,

j=1,..., J;itfollows thatr; +---+r; =d.
Let O; = X" Py, X, j=1,...,J.Then

X'X=01+ - +0Qy

and @y, ..., Q; are independent chi-squared random variables such that Q; has degrees
of freedomr;, j=1,...,J. O

8.5 Sampling Distributions

In statistics, the results of this chapter are often applied to the case of independent real-
valued, normally distributed random variables. In this section, we present some classic
results in this area.

Theorem 8.9. Let Xy, ..., X, denote independent, identically distributed standard normal
random variables. Let
X = ! Z X
= 2 f

and let
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Then X has a normal distribution with mean 0 and variance 1/n, (n — 1)S? has a chi-
squared distribution with n — 1 degrees of freedom, and X and S* are independent.

Proof. Letmgdenoteal x n vector of all ones, letm = my/n andlet X = (X, ..., Xp).
Then X = mX and

(n — 1)S2 =X —nm™'mX)T (X —nm™mX) = X", —nm"m)T I, — nm" m)X.

The marginal distribution of X follows from Theorem 8.1. Note thatmm? = 1 /n.Hence,

I — anm)T(I — anm) =1—2nm"m+ nzmT(mmT)m =1—nm"m
so that, by Theorem 8.6, (n — 1)S? has a chi-squared distribution with degrees of freedom
equal to the trace of I — nm” m. Note that each diagonal elementof I — nmTmis1 — 1/n =
(n — 1)/n so that the trace is n — 1.
Finally, (I — nmTm)mT = m” — nm” (mmT) = 0 so that, by Theorem 8.7, X and S are
independent. W

The distribution of the ratio \/nX /S now follows immediately from the definition of the
t-distribution given in Example 7.10. The distribution of nX?/S? is also easily determined.

Corollary8.2. Let X1, ..., X, denote independent, identically distributed standard normal
random variables. Let

and let

$*=)"(X; - X)/n - 1).
j=1
Then

(i) /nX/S has a t-distribution with n — 1 degrees of freedom.
(ii) nX?*/S?* has a F-distribution with (1, n — 1) degrees of freedom.

Proof. From Theorem 8.9, X and S are independent; \/n)_( has a standard normal dis-
tribution, n X2 has a chi-squared distribution with 1 degree of freedom, and (n — 1)S 2 has
a chi-squared distribution with n — 1 degrees of freedom. The results now follow easily
from the definitions of the ¢#- and F-distributions, given in Examples 7.10 and 7.11,
respectively. W

The statistics X and S? considered in Theorem 8.9 may be interpreted as follows. Define
the vector mg as in the proof of Theorem 8.9. Then the projection of a random vector X
onto the space spanned by m is Xmy. The statistic

(n—1DS* = "(X; - X)
j=1
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may be viewed as the squared length of the residual vector, X minus its projection. Theo-
rem 8.9 states that the projection Xm and the length of the residual vector are independent
random variables and that any linear function of the projection has a normal distribution.

This result holds much more generally and, in fact, this generalization follows almost
immediately from the results given above.

Theorem 8.10. Let X denote an n-dimensional random vector with a multivariate normal
distribution with mean vector 0 and covariance matrix given by o’1,. Let M denote a
p-dimensional linear subspace of R" and let Py be the matrix representing orthogonal
projection onto M.

Let a € R" be such that a” Pypja > 0.

(i) a¥ P\ X has a normal distribution with mean 0 and variance (a’ Pya)o?.
(ii) Let S* = XTI, — Pv)X/(n — p). Then (n — p)S?/o? has a chi-squared distribu-
tion with n — p degrees of freedom.
(iii) S* and Py X are independent.
(iv)
a’ PyX
(@’ Ppa)z [XT(Ig — Pu)X/(n — p)I2

has a t-distribution with n — p degrees of freedom.

Proof. LetY =a” PyyX and S* = X" (1, — P\)X/(n — p). Since Pl (I, — Py) = 0, it
follows from Theorem 8.7 that Py, X and S? are independent. From Theorem 8.1, a” Py X
has a normal distribution with mean 0 and variance (a’ Pysa)o?. From Theorem 8.6,
(n — p)S?/o? has a chi-squared distribution with n — p degrees of freedom. Part (iv) fol-
lows from the definition of the ¢-distribution. M

Example 8.12 (Simple linear regression). LetY,, Y, ..., Y, denote independent random
variables such that, for each j = 1,2, ..., n, Y; has a normal distribution with mean S, +
Biz; and variance o%.Herez, 22, . .., z, are fixed scalar constants, not all equal, and By, B,
and o are parameters.

Let Y =(Yy,...,Y,) and let Z denote the n x 2 matrix with jth row (1 z;), j =
1,...,n.Let M denote the linear subspace spanned by the columns of Z. Then

Pu=22Z"72)"'7".
Let 8 = (Bo B1) and let
B=z"z)'z7y
so that Py(Y = Zp. Consider the distribution of
'(B-B)
[cTZ(ZTZ)"1ZTc]2 S

where §2 = YT(I; — P\)Y/(n —2) and ¢ € R?.

Let X =Y — Zg. Then X has a multivariate normal distribution with mean vector 0 and
covariance matrix o21,. Note that

B-—p=2"2)'z"x
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and ¢ (8 — B) = a” Py X where a = Z(Z" Z)~'¢. It now follows from Theorem 8.10 that
T has a t-distribution with n — 2 degrees of freedom. O

8.1

8.2

8.3

8.4

85

8.6

8.7

8.8

8.9

8.6 Exercises

Let X denote a d-dimensional random vector with a multivariate normal distribution with covari-
ance matrix ¥ satisfying |X| > 0. Write X = (X1, ..., X,), where Xy, ..., X, are real-valued,
and let p;; denote the correlation of X; and X ; fori # j.

Let R denote the d x d matrix with each diagonal element equal to 1 and (i, j)th element equal
to p;j, i # j.Find a d x d matrix V such that

X =VRYV.

Let Y denote a d-dimensional random vector with mean vector w. Suppose that there exists
m € R such that, for any a € R?, E(a”Y) = a”m. Show that m = u.

Let X = (X4, ..., Xy) have a multivariate normal distribution with mean vector p and covari-
ance matrix X. For arbitrary nonnegative integers iy, ..., iz, find «;,..;,, the joint cumulant of
(X, ..., Xy)of order (iy, ..., iy).

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
1 and covariance matrix X. Let (A1, e1), ..., (A4, €4) denote the eigenvalue—eigenvector pairs of
Y, M =A>--->Ag.Foreachj=1,...,d,letY; = eITX andletY = (Y3, ..., Y,). Find the
covariance matrix of Y.

Let X = (X4, ..., X4) where X, ..., X, are independent random variables, each normally dis-
tributed such that X; has mean u; and standard deviation o > 0. Let A denote a d x d matrix
of constants. Show that

E(XTAX)=o?tr(A) + ul Ap

where . = (iy, ..., la)-

Let X and X, denote independent, d-dimensional random vectors such that X ; has a multivariate
normal distribution with mean vector ; and covariance matrix X;, j = 1,2. Let X = X; + X>.
Find the mean vector and covariance matrix of X. Does X have a multivariate normal distribution?
Consider a multivariate normal random vector X = (X, X5, ..., X,,) and suppose that
X1, X5, ..., X, are exchangeable random variables, each with variance 1, and let ¥ denote

the covariance matrix of the distribution. Suppose that Z'}=] X, =1 with probability 1;
find X.

Consider a multivariate normal random vector X = (X, X,, ..., X,,) and suppose that
X1, X5, ..., X, are exchangeable random variables, each with variance 1, and let ¥ denote
the covariance matrix of the distribution. Then

ppp 1

for some constant p; see Example 8.2. Find the eigenvalues of ¥ and, using these eigenvalues,
find restrictions on the value of p so that ¥ is a valid covariance matrix.

Let X = (X1, Xa, ..., X,) where X, X,, ..., X, are independent, identically distributed ran-
dom variables, each with a normal distribution with mean 0 and standard deviation o. Let B
denote an orthogonal n x n matrix and let ¥ = (¥}, ..., Y,) = BX. Find the distribution of
Yi,....Y,.
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8.10

8.11

8.12

8.13

8.14

8.15

8.16

Normal Distribution Theory

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix I;. Let {v,, ..., v,} be an orthonormal basis for R¢ and let
Y1, ..., Y, denote real-valued random variables such that

X=Ywv +- -+ Y

then Yy, ..., Y, are the coordinates of X with respect to {vy, ..., v4}.

(a) Find an expressionforY;, j =1,...,d.

(b) Find the distribution of (Yy, ..., Y,).

Let X denote a d-dimensional multivariate normal random vector with mean vector u and

covariance matrix o2 I; where 62 > 0. Let M denote a linear subspace of R such that u € M.
Let ¢ € RY be a given vector and consider Var(b” X) where b € R satisfies b” u = ¢ u. Show
that Var(b” X) is minimized by b = Pyc.

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector  and covariance matrix given by /. Suppose that R may be written

Rd=M1®M2€B"'@M1

where M, M, ..., M, are orthogonal linear subspaces of R?. Let Py, denote orthogonal
projection onto M and let Y; = Py X, j = 1,...,d. Show that Yy, ..., ¥; are independent.

Let X be a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix X. Write X = (X, X,) where X, is p-dimensional and X, is

(d — p)-dimensional, and
X X
2 =
( 2 X )

where 11 is p x p, £1a = X1, is p x (d — p), and Ty, is (d — p) x (d — p); assume that
[2,2] > 0.

Find E[X]TXI | X, = x,].

Let X = (X4, X», X3) denote a three-dimensional random vector with a multivariate normal
distribution with mean vector 0 and covariance matrix . Assume that

Var(X,) = Var(X,) = Var(X3) = 1
and let

pij = Cov(X;, X;), i#j.

(a) Find the conditional distribution of (X, X,) given X3 = x3.

(b) Find conditions on p,, p13, p23 so that X; and X, are conditionally independent given
X3 = x3.

(c) Suppose that any two of X, X», X5 are conditionally independent given the other random
variable. Find the set of possible values of (pi2, p13, 023).

Let X denote a d-dimensional random vector and let A denote a d X d matrix that is not

symmetric. Show that there exists a symmetric matrix B such that X’ AX = X" BX.

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean

0 and covariance matrix ;. Let A; and A, be d x d nonnegative-definite, symmetric matrices

and let Q; = XTAjX, J =1,2,and let r; denote the rank of A;, j = 1, 2. Show that 0, and

0, are independent chi-squared random variables if and only if one of the following equivalent

conditions holds:

(i) AjA; = A and A)A, = A,
@) ri+rn=r
(iii) A1A, = AA; =0.
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8.18

8.19

8.20

8.21

8.22

8.23
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Let X, X», ..., X, denote independent random variables such that X ; has a normal distribution
with mean O and variance sz >0,j=1,...,n,and let
n _ _ 1 n
T=)Y (X;—X)7, X=-) X,

2% =% w2 %

= =1
Find conditions on o7, .. ., o2 so that there exists a constant ¢ such that ¢T has a chi-squared
distribution with » degrees of freedom. Give expressions for ¢ and r.
Let Zy, ..., Z, denote independent random variables, each with a standard normal distribution,
and let 8y, ..., 8, denote real-valued constants.

Define a random variable X by

X = (Z;+8).
j=1
The distribution of X is called a noncentral chi-squared distribution with n degrees of freedom.
(a) Show that the distribution of X depends on 4y, ..., §, only through

8 = Xn:az-;
=1

82 is called the noncentrality parameter of the distribution.
(b) Find the mean and variance of X.

Suppose that X, and X, are independent random variables such that, for j = 1,2, X; has a
noncentral chi-squared distribution with n; degrees of freedom, n; = 1, 2, .. ., and noncentrality
parameter yjz > 0. Does X; + X, have a noncentral chi-squared distribution? If so, find the
degrees of freedom and the noncentrality parameter of the distribution.

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector ¢ and covariance matrix X, which is assumed to be positive-definite. Let A denote a
d x d symmetric matrix and consider the random variable

0=XTAX.

Find conditions on A so that Q has a noncentral chi-squared distribution. Find the degrees of
freedom and the noncentrality parameter of the distribution.

Let X = (X, ..., X,) denote a random vector such that X, ..., X,, are real-valued, exchange-
able random variables and suppose that X; has a standard normal distribution. Let

=) (X;—X)
j=1

Let p = Cov(X;, X;). Find the values of p for which 52 has a chi-squared distribution.

Let X = (X, ..., X,) denote a random vector such that X, ..., X,, are real-valued, exchange-
able random variables and suppose that X has a standard normal distribution. Let

S QN 1 & _
X=->"X;, and §*= — DX - X
n n— y
j=1 j=1

Find the values of p for which X and S? are independent.

Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix given by the identity matrix. For a given linear subspace of R?,
M, define

- mi —mlP
DM) = min [|X —m]|
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where || - || denotes the Euclidean norm in R, that is,

lIx1)? = xTx.

(a) Find the distribution of D(M).
(b) Let M, and M, denote linear subspaces of R¢. Find conditions on M, and M, under
which D(M,) and D(M,) are independent.

8.24 Let X denote an n-dimensional random vector with a multivariate normal distribution with
mean vector 0 and covariance matrix given by o2I,. Let M, and M, denote orthogonal linear
subspaces of R" and let P; denote the matrix representing orthogonal projection onto M,
j =1, 2. Find the distribution of

XT"P X
Xrpx’

8.25 Prove Corollary 8.1.

8.7 Suggestions for Further Reading

An excellent reference for properties of the multivariate normal distribution and the associated sam-
pling distributions is Rao (1973, Chapter 3). Stuart and Ord (1994, Chapters 15 and 16) contains a
detailed discussion of the distribution theory of quadratic forms and distributions related to the normal
distribution, such as the chi-squared distribution and the F-distribution. Many books on multivariate
statistical analysis consider the multivariate normal distribution in detail; see, for example, Anderson
(1984) and Johnson and Wichern (2002).
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Approximation of Integrals

9.1 Introduction

Integrals play a fundamental role in distribution theory and, when exact calculation of an
integral is either difficult or impossible, it is often useful to use an approximation. In this
chapter, several methods of approximating integrals are considered. The goal here is not
the determination of the numerical value of a given integral; instead, we are concerned with
determining the properties of the integrals that commonly arise in distribution theory. These
properties are useful for understanding the properties of the statistical procedures that are
based on those integrals.

9.2 Some Useful Functions

There are a number of important functions that repeatedly appear in statistical calculations,
such as the gamma function, the incomplete gamma function, and the standard normal distri-
bution function. These functions are well-studied and their properties are well-understood;
when an integral under consideration can be expressed in terms of one of these functions,
the properties of the integral are, to a large extent, also well-understood. In this section,
we consider the basic properties of these functions; further properties are presented in the
remaining sections of this chapter.

Gamma function
The gamma function is defined by

I'(x) = /000 t*Lexp(—t)dt, x > 0.
The most important property of the gamma function is its recursion property:
'x+1)=xI'x), x>0.
This, together with the fact that I'(1) = 1, shows that
'm+1)=n!, n=0,1,2,...

so that the gamma function represents a generalization of the factorial function to non-
integer positive arguments. These properties are formally stated in the following theorem.

257
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Theorem 9.1. I'(x + 1) =xI'(x), x > 0, andforn =0,1,..., T’'(n+ 1) =n.
Proof. Using integration-by-parts,

oo 00 oo
Frx+1 = / t* exp(—t)dt = —t* exp(—z‘)’0 + x/ t*Lexp(—t)dt = xT'(x).
0 0
Hence, for an integer n,
I'n+1)=nl'n)=nn—DI'n—1)=---=n!l"'Q),;
the second result now follows from the easily verified fact that I'(1) =1. H

A function closely related to the gamma function is the beta function. Let r and s be
nonnegative real numbers. Define

1
B(r, s):/ 1 = dr
0

this function appears in the normalizing constant of the density of the beta distribution. The
following theorem gives an expression for the beta function in terms of the gamma function.

Theorem 9.2.
TG

= , r>0,5>0.
L'r+s)

B(r.s)

Proof. Note that, forr > 0 ands > 0,

o]

F(r)F(s):/ t’_lexp(—t)dt/ '~ Lexp(—t)dt
0 0

o0 (o]
= / / tf_ltg_l exp{—(t; + 1)} dt, dt,.
o Jo

Using the change-of-variable x; = t; + 1, x, = 11 /(t; + t2), we may write

o0 o0
/ / 177 5 exp{—(t) + 1)} dty dt
0 0
1 00
=/ / X1 = x0) T exp(—x1) dixy dxa
0 0
1

o0
:/ xg_l(l—xz)“ldxzv/ xf“_lexp(—xl)dxl
0 0

= B(r. )T (r + ).

proving the result. MW

The value of the gamma function increases very rapidly as the argument of the function
increases. Hence, it is often more convenient to work with the log of the gamma function
rather than with the gamma function itself; a plot of this function is given in Figure 9.1.
Clearly, log I'(x) satisfies the recursive relationship

logI'(x + 1) = logx + log I'(x).

In addition, the following result shows that log I'(x) is a convex function.

Theorem 9.3. The function logI'(x), x > 0, is convex.
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Figure 9.1. Log-gamma function.
Proof. Let0 < o < 1. Then, for x; > 0, x, > 0,

o0 1
logM'(ax; + (1 — a)xy) = log/ (tx‘)“(txz)lfo‘; exp(—1)dt.
0

By the Holder inequality,
o0 1 o0
log / (1) ()~ exp(—1) dt < alog< / ra! exp(—t)dt)
0 0

[o.¢]
+ (1 — ) log (/ ! exp(—t)dt).
0

It follows that

logT(ax; + (1 — a)xp) < alogI'(x;) + (1 — &) log I'(x,),
proving the result. MW

Let
d
Y(x) = Tr logT'(x), x>0

X

denote the logarithmic derivative of the gamma function. The function v inherits a recursion
property from the recursion property of the log-gamma function. This property is given in
the following theorem; the proof is left as an exercise.

Theorem 9.4.

1/f(x+1)=1//(x)+%, x>0
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Forn=1,2,...,
1

1 1
_ - T , 0.
Y(x +n) x+x+1+ +x+n_1+1ﬁ(x) x>

Incomplete gamma function
The limits of the integral defining the gamma function are 0 and co. The incomplete gamma
function is the function obtained by restricting the region of integration to (0, y):

y
y(x,y) =/ A exp(—t)dt, x>0,y >0.
0

Thus, considered as a function of y for fixed x, the incomplete gamma function is, aside
from a normalization factor, the distribution function of the standard gamma distribution
with index x.

The following theorem shows that, like the gamma function, the incomplete gamma
function satisfies a recursive relationship; the proof is left as an exercise.

Theorem 9.5. For x > Oandy > 0,
y(x+ 1 y) =xy(x,y) = y* exp(—y).
It is sometimes convenient to consider the function
Flx,y) = /ootx_l exp(—1)dt = T'(x) — y(x, y).
y

When x is an integer, I'(x, y)/ I'(x), and, hence, y(x, y)/ '(x), can be expressed as a
finite sum.

Theorem 9.6. Forn =1,2, ...,

L.y _ 5y
NORE ; il exp(=y), y>0;
equivalently,
y(n,y) _

n—1 _j
y

=1-> = exp(-y), y>0.
['(n) =

Proof. Note that, using the change-of-variable s =t — y,

/00 [”71 exp(—[)dz‘ = eXp(—y)/w(S + y)"ﬂ eXp(—S) ds
y 0
oo n—1 n— 1 Ty .
= eXP(—)’)/ Z ( . >s" 'y’ exp(—s)ds
0 j=0 J
n—1 n — 1 .
= Zexp(—y)yj( . )F('l =J)
Jj=0 J

n—1 yj
= Zexp(—y),—'(n — D
— J!
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That is,

n—=1 _j
My =Y. % exp(—y)T(n),

=0

proving the result. MW
For general values of x, the following result gives two series expansions for y(x, y).

Theorem 9.7. Forx > 0andy > 0,

2 (=1 y

X, - 9.1
y(x,y) = ZO TS ©.1)
= [(x) 4
=ex Yy, 9.2
p(— y)ZF()H-JJrl) 9.2)
Proof. Recall that, for all x,
0 .
exp(x) = Y _x//jl;
=0

hence,

y(x,y) = /y *Lexp(—t)dt = /y ! Z(—l)-"r-"/j!dz
j=0

0 0

j=0 J' 0
I
=t XA

Note that the interchanging of summation and integration is justified by the fact that

1 Y i1 Sl | yx+j
g = g = e <o

for all y, x. This proves (9.1).
Now consider (9.2). Using the change-of-variable u = 1 — ¢/y, we may write

y 1
y(x,y) = / r*Lexp(—t)dt =/ v (1 —u)y ! exp{—y(1 —u)}du
0 0
1
=y eXp(—y)/ (1 —u)y*~" exp(yu)du
0

1 00
=ytexpy) [ =Y /gt
0 iz
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Since
o0 1 oo
S [a—w o it Yy = exp)
=070 j=0
we may interchange summation and integration. Hence, by Theorem 9.2,
00 Jj 1
y(x, y) = y* exp(—y) Z %/0 (1 —uy~"u du

y/ T(j + DI (x)
= y" exp(— }’)Z 'm

which, after simplification, is identical to (9.2). H

Standard normal distribution function

Let
12)
——z7), —oc0o<z<o00

1
Jan) xp( 2

denote the standard normal density function and let

¢(z) =

CID(z)zfZ ¢t)ydt, —o0<z<0

denote the standard normal distribution function.
Although ®(z) is defined by an integral over the region (—o0, z), calculation of ®(z),
for any value of z, only requires integration over a bounded region. Define

Do(z) = f¢(r)dr, 2> 0.
0

The following result shows that ®(z) can be written in terms of ®((z); also, by a change-
of-variable in the integral defining @, it may be shown that @ is a special case of the
incomplete gamma function y (-, -). The proof is left as an exercise.

Theorem 9.8.

% — ®o(—z) ifz<0
P(z) =
3+ P ifz=0

® . 1 1 22
0(z) = L/—ny <§ 3) .

Hence, using Theorem 9.8, together with the series expansions for y (-, -) given in The-
orem 9.7, we obtain the following series expansions for ®((-); these, in turn, may be used
to obtain a series expansion for ®(-). The result is given in the following theorem, whose
proof is left as an exercise.

and, for z > 0,
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Theorem 9.9. For z > 0,

Bo() 1 i (=1)/ 2+ 1 . —z? i 72+
= : = xp | — —
COT Vem & it 2j 11 2272 ) & airGi 4 3/2)

Since ¢(z) > 0 for all z, ®(-) is a strictly increasing function and, since it is a distribution
function,

lim ®(z) =1 and lim &(z) =0.
—>—00

—> 0

The following result gives some information regarding the rate at which ®(z) approaches
these limiting values; the proof follows from L’Hospital’s rule and is left as an exercise.

Theorem 9.10.

fim 2@ 1 tim 2@
>0 @(2)/z

0 $(2))7

The following result gives precise bounds on
1 —&(2) d(2)
an
$(2)/z #(2)/z

that are sometimes useful.

Theorem 9.11. For z > 0,

b =1 0@ = %«p(z).
Forz <0,
|z 1
%0 < 00 < 6.

Proof. Fix z > 0. Note that

/ exp(—x2/2) dx =f —xexp(—x2/2)dx < —/ xexp(—x2/2)dx.
z z X Z Jz
Since

4 exp(—x2/2) = —x exp(—x2/2),
dx

o0
/ x exp(—x2/2)dx = exp(—z%/2)
4
so that
exp(—x“/2)dx =< —exp(—z°/2)
. Z
or, equivalently,

1 —®(z) < é(ﬁ(Z)-
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To verify the second inequality, note that

1+ 1/12)/00 exp(—x?/2)dx > /Oo(l + 1/x%) exp(—x?/2) dx.
Since

AL exp(—a?/2) = (1 4 1/2%) exp(—22/2).

dx x

> 2 2 1 2
/ (14 1/x7) exp(—x~/2)dx = Eexp(—z /2),

which proves the result for z > 0.
The result for z < 0 follows from the fact that, forz < 0, (z) =1 — d(—z). H

9.3 Asymptotic Expansions

In many cases, exact calculation of integrals is not possible and approximations are needed.
Here we consider aproximations as some parameter reaches a limiting value. In general
discussions that parameter is denoted by n and we consider approximations as n — 00;
different notation for the parameter and different limiting values are often used in specific
examples. Note that, in this context, n is not necessarily an integer.

Let f denote a real-valued function of a real variable n. The series

o0
Z ajn_j
=0
is said to be an asymptotic expansion of f if, foranym = 1,2, ...,
m .
fm) =Y "an™ + Rysi(n)
=0

where R,,11(x) = O(n~"*D)as n — oo; that is, where "' R, 1 () remains bounded as
n — oo. This is often written
o0
fn) ~ Zajn_j as n — oo.
j=0
It is important to note that this does not imply that
> .
fy=Y am,
Jj=0
which would require additional conditions on the convergence of the series. An asymptotic
expansion represents a sequence of approximations to f(n) with the property that the order
of the remainder term, as a power of n~lis higher than that of the terms included in the
approximation. It is also worth noting that, for a given value of n, the approximation based
on m terms in the expansion may be more accurate than the approximation based on m + 1
terms in the approximation.
In many cases, an entire asymptotic expansion is not needed; that is, we do not need to
be able to compute an approximation to f(n) with error of order O(n~") for any value of
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m. It is often sufficient to be able to approximate f(n) with error O(rn~") for some given
fixed value of m, oftenm = 1 or 2.

Example 9.1. Consider the function defined by

o 1
f(x)Z/O 1+t/xeXp(_t)dt’ 0<x < o0.

Recall that, for z # 1,

1—-z"
4242+ +7" =
11—z
Hence,
1 t 1 -l Mmoo
-1-= - _lm—l— —1ym
1+1/x x+x2+ +=D x’"*1+( )xm1+t/x
so that
m—1 .
!
_ 1L
F@) = (=15 + Ru()
j=0
where

| R () /ww ! (—ydr < ™
w ()| = — exp(— < —.
o Xxm1+1t/x P xm

It follows that
o0
Y (=1
=0

is a valid asymptotic expansion of f(x) as x — oo. Thus, we may write

/oo ! (—t)dt =1 1+0( =2
exp(— =1—-- s
o 1-+1t/x P X *

*© 1 1 2
—Ndt=1——+ =4+ 0x™),
A1+w““) —+ 5+ 067

and so on. For x > 0, let

? 1 A 1 2
fo(x)=1—— and f3(x):]__+_2.
X x X

Table 9.1 gives the values of f »(x) and f 3(x), together with f(x), for several values of x.
Although both approximations are inaccurate for small values of x, both are nearly exact
for x = 30.

Note, however, that

;(—1)/]!/x-' 75/0 =y exp(—1)dr;

in fact, the series diverges for any value of x. O
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Table 9.1. Approximations in Example 9.1.

X fx) fa(x) f3(x)
1 0.596 0 2.000
2 0.722 0.500 1.000
5 0.852 0.800 0.880

10 0.916 0.900 0.920

20 0.954 0.950 0.955

30 0.981 0.980 0.981

Integration-by-parts
One useful technique for obtaining asymptotic approximations to integrals is to repeatedly
use integration-by-parts. This approach is illustrated in the following examples.

Example 9.2 (Incomplete beta function). Consider approximation of the integral

/ 71 = P dy,
0

where o > 0 and 8 > 0, for small values of x > 0. This is the integral appearing in the
distribution function corresponding to the beta distribution with density

r
4((1 +'B)x°‘_l(l —x)ﬁ_l, 0<x<1
F()T(B)
and it is known as the incomplete beta function.
Using integration-by-parts,
X 1 X _ l X
/ N1 =P dr = =1 — t)fH‘ + ﬂ—/ *(1 — )P~ 2dt
o 0 o 0

0
1 —1 [
= —x*(1—x)"14+ ﬂ—/ (1 — )P~ dr.
o o 0
For 8 > 2,

x 1
/ (1 —0)f2dr < xott
0 o+ 1

while for 0 < 8 < 2,

* 1
/ (1 —0)f2dr < (1 —x)f? xoth
0 o + 1

hence, we may write

x 1
/ 0= ldr = —x*(1 = x)’ ' [1+ 0(x)] asx — 0.
0 o

Alternatively, integration-by-parts may be used on the remainder term, leading to the

expansion
* 1 -1
/ 21— lar = L — o 1+ P2 i) asx o o,
0 o a+11—x

Further terms in the expansion may be generated in the same manner.
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Table 9.2. Approximations in Example 9.2.

Relative
X Exact Approx. error (%)
0.50 0.102 0.103 1.4
0.20 0.0186 0.0186 0.12
0.10 0.00483 0.00483 0.024
0.05 0.00123 0.00123 0.0056

Table 9.2 contains values of the approximation

1 p—1 «x
(1 =)+ 2=
ax( *) |:+a+11—x]

for the case o = 2, B = 3/2, along with the exact value of the integral and the relative
error of the approximation. Note that for these choices of « and S, exact calculation of the
integral is possible:

15

The results in Table 9.2 show that the approximation is extremely accurate even for relatively
large values of x. O

x 1 4 2 s 2 3
/ (=)t di=— 4+ 21 —x)> -2 —x)2.
0 5 3

Example 9.3 (Normal tail probability). Consider the function

d(z) = f o(t)dt

where ¢ denotes the density function of the standard normal distribution. Then, using
integration-by-parts, we may write

é(z)z/ ¢(t)dt:/ %t(p(t)dt

z

LY ‘w—/ml (t)dt
t¢ z . t2¢

1 *1
2¢(Z)_~L t—3t¢(t)dt

1 1 1
26 - 500 + / Sowar

Hence,

_ 1 1 1Y) -
B = -4(2) — 59() + o( 4> )

Z

1 - 1 1
[1 + 0(7)] B(2) = $(2) [— - —3} ,
Z Z Z

as z — oo. That is,
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or,

b0 = plor— 2 o1 5+0(%)]
Z_Zl—i—O(v_ZZ z? 5

as z — 00.
Note that this approach may be continued indefinitely, leading to the result that

- 1 1 3 2k 1 1
CD(Z)=¢(Z)|:E—Z—3+Z—5+"'+(—1)k— +O<Z2kT>:|

2k Z2k+1

asz — oo, foranyk =0,1,2,.... O

9.4 Watson’s Lemma

Note that an integral of the form

o0
/ t* exp(—nt)dt,

0
where « > —1 and n > 0, may be integrated exactly, yielding

° r 1
/ 1% exp(—nt)dt = %
0 n

Now consider an integral of the form

/ h(t) exp(—nt)dt
0

where £ has an series representation of the form

h(t) =) _a;tl.
=0

Then, assuming that summation and integration may be interchanged,

00

00 00 oo NG 1
/ h(t)exp(—nt)dt = Zaj/ t! exp(—nt)dt = Zaj%.
0 =0 0 =0 n

Note that the terms in this series have increasing powers of 1/n; hence, if n is large,
the value of the integral may be approximated by the first few terms in the series. Watson’s
lemma is a formal statement of this result.

Theorem 9.12 (Watson’s lemma). Let h denote a real-valued continuous function on
[0, 00) satisfying the following conditions:

(i) h(t) = O(exp(bt)) ast — oo for some constant b

(ii) there exist constants ¢y, C1, ..., Cma1, A0y A1y« » i1,

—l<ay<a < <apm

such that

m

hp(t) = Z cjt%
=0
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satisfies
h(t) = hpu(t) + O@*+) ast — 0T,
Consider the integral
T
I, = / h(t) exp{—nt}dt, 0<T < oo.
0

Then

2 er(aj + 1) 1
I, = Z; T + 0 A as n — 00.
=

Proof. Fix 0 < e < T. There exists a constant K such that
|h(1)| < K exp{bt}, t>e.

Hence, for sufficiently large n,

IA

K b
- exp(—(n — b)e]

O(M> as n — o0.

n

T 00
‘f h(t) exp{—nt}dt‘ < K/ exp{—(n — b))} dt

Consider the integral

€

/€ h(t) exp{—nt}dt = /é fzm(t) exp{—nt}dt +/ R, (t) exp{—nt}dt
0 0 0

where R, (1) = O(t*+)ast — 0. Forany a > —1,

€ oo [o¢]
/ t* exp{—nt}dt =/ t* exp{—nt}dt —/ t* exp{—nt}dt.
0 0 €
Note that
o r 1
/ t* exp{—nt}dt = Lﬂ
0 notl
and

exp{ne} /Oot"‘ exp{—nt}dt = /oo t* exp{—n(t —€)}dt

= /oo(t + €)® exp{—nt}dt = O(1)
0

as n — oo. It follows that

€ Mo +1)
t% exp{—nt}dt = EPTT + O(exp{—ne}).
0

Hence, for any € > 0,

/e hon(0) exp(—nt}dt = w + O(exp{—ne)).
0 j=0 /
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Note that, since R,,(t) = O(t*+') as t — 0T, there exists a constant K,, such that for
sufficiently small €,

[Ru()] < Kyt

Hence,

)
nam+l+l ’

€ €
/ IR, (1) exp{—nt}dt < Km/ 14+t exp{—nt}dt < K,
0 0

It follows that
T
1, =/ h(t) exp{—nt}dt
0
€ € T
=/ (1) exp{—nt}dt—i—/ R, (1) exp{—nt}dt—i—/ h(t) exp{—nt}dt
0 0 €

GG ED o expinen + 0( - +1> * 0<exp{_n6}> ’
n m+1

aj+1
=0 n-i n

proving the theorem. W

Example 9.4 (Exponential integral). Consider the exponential integral function defined
by

*1
El(z)=/ ;exp(—u)du;

this function arises in a number of different contexts. See, for example, Barndorff-Nielsen
and Cox (1989, Example 3.3) for a discussion of a distribution with density function given
by E 1-

Consider an asymptotic expansion for E(z) for large z. In order to use Watson’s lemma,
the integral used to define E; must be rewritten. Note that, using the change-of-variable
t=u/z—1,

] © ]
/; " exp(—u)du = exp(—z)/0 T+ exp(—zt)dt.

The function h(¢) = 1/(1 + ¢) satisfies the conditions of Watson’s lemma with a; = j and
cj=(—1),j=0,1,....Hence, foranym =0, 1, ...,

m . ~! 1
E\(z) = exp(—2) [z;(—l)’y]ﬁ + O(Zm+l )} :
=

Since this holds for all m we may write

o0 .
- !
~ _ 1)y L
E(z) ~ exp( z);( 1) Py as n — 0o. O
Example 9.5 (Ratio of gamma functions). Consider an asymptotic expansion of the ratio
of gamma functions I'(z)/ I'(z + x) for large values of z and fixed x. By Theorem 9.2 we
can write

1
T _ L /uZ*l(l—u)de.
Fe+x Ty
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Hence, using the change—of—variable t = —log(u),
I'z)
Fz+x) T

and an asymptotic expansion for this integral may be derived using Watson’s lemma.
Note that we may write

/ (1 —exp(—1)*~ 1exp( zt)dt

1— exp(—z))“
t

[1 —exp(—)]" ' =1 <
and, as t — O,

x—1
<ﬂ) S !

hence,
- 1
(1 —exp(—1))" ' = = S0 =Dt + O ast — 0.

It now follows from Watson’s lemma that

/ (1 — exp(—1))*~" exp(—zt)dt = (x) l(x—l)w+0< : )

2 Z,H—l Z)H—Z

and, hence, that

I'(z + x) - zx 2 gxtl

r 1 1 -1
@) = Lx ) 0( ) as z — oQ. O
Zx+2

Watson’s lemma may be generalized to allow the function 4 in

T
/ h(t) exp{—nt}dt
0

to depend on n.

Theorem 9.13. Let hy, hy, ... denote a sequence of real-valued continuous functions on
[0, 00) satisfying the following conditions:

(i) sup, h,(t) = O(exp(bt)) as t — oo for some constant b.

(ii) There exist constants Cuo, Cl, - -+, Cagnt+1)y 0 = 1,2, ..., ap, ar, ..., Gmy1,

—l<ay<a; < <apu

such that

B (1) = i Cnjt®
j=0
satisfies
ha(1) = b (£) + R (1)
where

sup R, () = O(t+') as t — 0T,
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Consider the integral

T,
I, =/ h,(t) exp{—nt}dt
0

where Ty, Ts, ... are bounded away from 0. Then

_ “ ch(aj—i—l) 1
I = Z nai+l +0 nams1+1 )"

Jj=0

Proof. Fix € > 0 such that € < T, for all n. There exists a constant K such that for all
n=1,2,...,

|h(B)] < K exp{bt}, t>e.

Hence, for sufficiently large n,

K b
- oxp(—(n — b)e)

= O<Lp{_n6}) asn — o0.

n

T, 00
/ h,(t) exp{—nt}dt 5[(/ exp{—(n — b)t} dt

Consider the integral

€

€ €
f h,(t) exp{—nt}dt :/ fznm(t) exp{—nt}dt +/ R, (t) exp{—nt}dt.
0 0 0
For any € > 0,

i eniTaj + 1)

T + O(exp{—ne})

/ hom () exp{—nt}dt =
0

j=0
and

C(amer +1)
nam+l+1 :

€
f | Run(1)] exp{—nt}dt < K,
0

The theorem follows from combining these results. W

Example 9.6 (Tail probability of the t-distribution). Consider the integral

[e'e) 2 7(";1)
/ (1 + y—) dy
z v

which, aside from a normalizing constant, is the tail probability of the z-distribution with v
degrees of freedom. We will derive an asymptotic expansion for this integral as v — oo.
Using the change-of-variable

1 y? 1 22
t= -1 1+— ) — =1 1+ —,
20g(+v> 2Og<+v

o0 2 _ wth «/V 0 _1
/ (I+y“/v)" 2 dy= —_/ (1 — exp(=2t)/c,) "2 exp(—vt)dt
z c: Jo

we may write
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Table 9.3. Approximations in Example 9.6.

Relative
z v Exact Approx. error (%)
1.5 2 0.136 0.174 27.5
1.5 5 0.0970 0.113 16.8
1.5 10 0.0823 0.0932 13.4
1.5 25 0.0731 0.0814 11.4
2.0 2 0.0918 0.0989 7.8
2.0 5 0.0510 0.0524 2.7
2.0 10 0.0367 0.0372 1.3
2.0 25 0.0282 0.0284 0.6
3.0 2 0.0477 0.0484 1.4
3.0 5 0.00150 0.00150 0.3
3.0 10 0.00667 0.00663 0.6
3.0 25 0.00302 0.00300 0.7

where ¢, = 1 + z?/v. To use Theorem 9.13, we may use the expansion

_ _ -1 _ Ve 1 1 3 1 5
(1 — exp(—=21)/cy) _J(cv—l)[l cv—1t+(cu—l+2(cv—1)2>t+""

Note, however, that as v — oo, ¢, — 1, so that Theorem 9.13 can only be applied if, as
v — 00, 72 /v remains bounded away from 0. Hence, we assume that z is such that

ZZ

— =b+o0(l) asv— oo,
v

for some b > 0.
Applying Theorem 9.13 yields the result

o0 2 —(v+1)
/ (I+y/v)"2 dy
1

B 1 1 1 1+ 1 +3 1 1+01
e =D v e —1? cv—1 " 2(,—12) 13 4

asv — ooand z2/v — b > 0.

When this expansion is used to approximate the integral, we will be interested in the value
for some fixed values of v and z. Hence, it is important to understand the relevance of the
conditions that v — oo and 72 /v — b > 01in this case. Since we are considering v — 00,
we expect the accuracy of the approximation to improve with larger values of v. However,
for a fixed value of z, a larger value of v yields a value of z2/v closer to 0. Hence, if v is
larger, we expect high accuracy only if z is large as well. That is, when approximating tail
probabilities, we expect the approximation to have high accuracy only when approximating
a small probability based on a moderate or large degrees of freedom.

Table 9.3 gives the approximations to the tail probability Pr(7T > z), where T has a
t-distribution with v degrees of freedom, given by

T((v+1)/2) 1 1 1 11 1 3001 1
JOOT(/2) (59 e, = 1) [E Taoin T (cv i 2 (c, — 1)2> F] ’
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along with the exact value of this probability and the relative error of the approximation,
for several choices of z and v. Note that, for a fixed value of z, the relative error of the
approximation decreases as v increases. However, very high accuracy is achieved only if z
is large as well. In fact, based on the results in this table, a large value of z appears to be at
least as important as a large value of v in achieving a very accurate approximation. [J

Consider an integral of the form

/;T] h(u) exp {—guz} du;

Ty

clearly, this integral may be transformed into one that may be handled by Watson’s lemma
by using the change-of-variable t = u?/2. This case occurs frequently enough that we give
the result as a corollary below; it is worth noting that the case in which & depends on n can
be handled in a similar manner.

Corollary 9.1. Let h denote a real-valued continuous function on [0, 0o) satisfying the
following conditions:

(i) h(t) = O(exp(bt?)) as |t| — oo for some constant b

(ii) there exist constants cg, 1, . . . , Cma1 Such that

m

h(t) = chﬂ’ + 0™ ast — 0.
Jj=0

Consider the integral
T n
I, :/ h(t) exp {——tz} dt
—T 2
where Ty > 0 and T; > 0. Then
L5

I = Z 0212'i+%1_‘(j +1/2) + 0 ! as n — oo
o j=0 nits '

Proof. First suppose that 7} = Ty = T. Note that

T T
a2l g = _ _ne
/411(0 exp{ 2t } dt _/0 [A(t) + h(—1)] expi 2t ] dt

_ / M) + R0
0

V(@u)

= /T h(u) exp{—nu}du.
0

Since

h(t) =Y cjt! + 0("™") ast— 0,
j=0
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- u i " . C~2% m
hu) =Y c;2but + 3 (=1 +0(u7)
e+ 2V o
L% - 1 . 1
= Z2f+ic2juf_5 +0 (u%> as u — 07
=0
It follows from Watson’s lemma that

L3

T 200 +1/2 1
/ h(t)exp[—%tz}dtzzcj U+ /)+0< - ) as n — 0.
-T

Jj=0 nits

Now suppose that T} > Ty. Then

T,

/_joh(t) eXP{—%tz}dt = /_:J h(t) exp[—%ﬂ]dt -|-/T0 h(z) exp{—gtz}dt

To n T2
- h ——1’1d 0< {——0 })
/_TO () exp[ 2t } t+ exp > n

The result now follows as above.
Finally, suppose that Ty > 7. Since

/TTLh(t) exp {—gtz} dt = /:01 h(—t) exp {—gtz} dt,

the argument given above applies here as well, with /; in place of &, where h(¢) = h(—1).
Clearly, h; has the same expansion as i, with coefficients ¢;, given by

_ _ ] ifjiseven

=\ —¢; ifjisodd
The result now follows from the fact that the expansion of the integral depends only on ¢, ;,
j=0,1,.... |

Example 9.7 (Expected value of a function of a normal random variable). Let X denote
a random variable with a normal distribution with mean 0 and variance n~'; for instance,
X may be a sample mean based on n independent identically distributed standard normal
random variables. Let 4 denote a function satisfying the conditions of Corollary 9.1 for any
m = 1,2, ... and consider E[/(X)]. In particular, assume that

()
h(z):Zhl(O)ﬂ'.

=i

Note that
Bl = Y /Oc h(t) ex (—fﬂ) dt
Jem ) PAT)A

Hence, it follows immediately from Corollary 9.1 that, as n — oo,

Jn S hCHO2ITIT( +1/2) | & hCD0)2IT( +1/2) 1

E[h(X)] ~ -
0] V@) = Q)nit: = eprd/y o =
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9.5 Laplace’s Method

Laplace’s method provides a futher generalization of the results of the previous section to
the case in which the integral under consideration is not exactly of the form

T
/ h(t) exp(—nt)dt
0

or

T
/ h(r) exp(—nt?/2)dt.

Ty

Consider an integral of the form

b
/ h(y) exp{ng(y)}dy.

Then, by changing the variable of integration, we can rewrite this integral in a form in
which Corollary 9.1 may be applied. It is worth noting that Theorem 9.14 below may be
generalized to the case in which g and 4 both depend on n; however, we will not consider
such a generalization here.

Theorem 9.14. Consider the integral

b
I, = / h(y) exp{ng(y)}dy, —oco<a<b<oo

where
(i) g is three-times differentiable on (a, b)
(ii) h is twice-differentiable on (a, b) and h(y) = O(exp(dyz)) as |y| = oo, for some
constant d
(iii) g is maximized aty =y, wherea <y < b
(iv) §(9) =0, 1’| > 0forally # 9, and g"(9) < 0.

If [h(y)| > O, then
V2)h(P)

Ayt

[—ng" ()]

I, = exp{ng(y)} [1+0m™H] asn — oo.
If h(9) = 0, then
I, = exp{ng(&)}O(%) as n — oo.
n2

Proof. Note that

b b
| 40 explng) dy = exping3)) [ 1) expi-nig(h) - g dy.
Consider the change-of-variable

u = sgn(3 — Y2IgP) — g}
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so that u is a one-to-one function of y with

1,
Fu =g —gO).

Then
udu = —g'(y)dy.

Note that, since g is maximized at $ and |g’(y)| > O for all y # 9, it follows that g’(y) < 0
for y > $ and g’(y) > 0 for y < §. Hence, u and g’(y) have the same sign and

dy _u
du I g'(y)

It follows that

u(b)

b n “
h - V) — dy = h 2 o ¢
/a (y) exp{—nl[g(®) — g1} dy fw) (y()) exp{ 2" }g«y(u» !

uh) n
= / h(u) exp {——uz} du.
u(a) 2

Under the conditions on 4 and g,
h(u) = h(0) + ' O)u + Ow?) as u — 0
and, hence, by Corollary 9.1,
ud) _ 2r
/ hi(u) exp [—Euz} du = ‘/7()/1(0” 0( 3) as n — oo.
u(@) 2 vn

Hence, to complete the approximation we need to find

uh(y(u))
LHO g W)’

m

h(0) =

Note that # = 0 if and only if y = J; hence,
h(y(0)) = h(3), g'(y(0) =0
and

h(0) = h($) lim ——— L
0 = (y)lm ,(()) h($)

where

= lim ——.
u=0 g'(y(u))
By L’Hospital’s rule,
_ 1
(3O
We have seen that

W= ———
Y= Ty
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so that
'(0) 1
YW= —Zvo -
—g"(3)y'(0)
and, hence, that
2 _ 1
—8"(9)
Finally, note that u and g’(y(«)) have the same sign so that L > 0. It follows that
1
L=—"-7
[—g"()]?
and
_ h(y
o= MO
[—g"(M]>

Hence, if |h(9)| > 0, then

ub) _ n \/21" (l) h() 1
) exp | ~u ) du = Y22 +o (o)
/u@ e |-y s T

so that
VQm)h($)

Ayt

[—ng"(M)]>

by _ n 1
h(u) exp ——u*l du = 0(—)
[, Fwew{-5) p.

I, = exp{ng(&)}O(%) as n—oo. N

n2

I, = exp{ng(9)} [14+0nm™H] as n— oo.

If h(9) = 0, then

so that

Example 9.8 (Stirlings approximation). Consider approximation of the gamma function
I'(z + 1) for large values of z. Note that, using the change-of-variable y = ¢/z, we may

write

'z+1) = / t* exp(—t)dt = Pk / exp{—z[y — log(y)]} dy.
0 0

Hence, we may apply Theorem 9.14 with g(y) = log(y) — y, n = z, and h(y) = 1. It is
straightforward to show that the conditions of Theorem 9.14 are satisfied with y =1,

leading to the result that
M+ 1) =/Cm)z % exp(—2)[1 + 0z H] as z — oc.
Since I'(z) = I'(z + 1)/z, Stirling’s approximation to I'(z) is given by

I'(z) = \/(27T)ZZ_1/2 exp(—2)[1 + 0z hH] as z— oo.
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Example 9.9 (Ratio of two integrals). Consider approximation of the ratio

[P m(y) explng(y)y dy
17 ha(y) exping(y)} dy

where g and both /| and A, satisfy the conditions of Theorem 9.14, with |h()| > 0 and
|h2(3)] > 0. Here ¥ is the maximizer of g and must satisfya < y < b.
Since, as n — o0,

b 2m)h i (P
/ i) explngldy = explng () LD oy, j=1,2,
g [—ng"($)]:
it follows that
, A
Jo ) explngWdy M@)o o 0

12 ha(y) explngnydy — h2(9)

Example 9.10. Let Y denote a real-valued random variable with an absolutely continuous
distribution with density function

p(y;a) = c(a) exp{—2acosh(y)}, —oo <y < o0;

here a is anonnegative constant and c(a) is a constant chosen so that the density integrates to
1. This distribution arises in the following manner. Let X and X, denote independent iden-
tically distributed gamma random variables, let Y = log(X;/X5,)/2 and let A = (X 1X2)%.
Then the conditional distribution of Y, given A = a, has the density p(y;a).

Consider approximation of the constant c(a) for large values of a; to do this, we need to
approximate the integral

oo
/ exp{—2a cosh(y)}dy.
—00

We may apply Theorem 9.14 with g(y) = —2 cosh(y) and 2(y) = 1. Hence, = 0, g"(J) =
—2, and

/°° V@)

exp{—2a cosh(y)} dy = exp(—2a) [1+0@™H] as a— oco.

i~ VQ2a)
It follows that

cla) = ﬁ ex -
= pRa)[l + O(a™ )] as a — oo. O

T

Laplace’s method, as given in Theorem 9.14, applies to integrals of the form

b
/ h(y) explng(y)} dy

in which the maximum of g occurs at an interior point of (a, b); then, after changing the
variable of integration, the integral can be approximated by Corollary 9.1. If the maximum
of g occurs at either a or b, the same general approach may be used; however, in this case,
the approximation is based on Theorem 9.12. The following result considers the case in
which the maximum occurs at the lower endpoint a; a similar result may be derived for the
case in which the maximum occurs at the upper endpoint.
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Theorem 9.15. Consider the integral

b
I, = / h(y) exp{ng(y)}dy, —oo<a<b<o0

where
(i) g is twice differentiable on [a, b)
(ii) h is differentiable on [a, b)
(iii) g is maximizedaty = a
(iv) g'(y) <Oforalla <y < bandh(a) % 0.

Then

h(a) l[1 +0mn™H] as n— oo.

I, =
explng@)) o

Proof. Note that

b b
/ h(y) exping()} dy = exping(a)) f h(y) expl—nlg(@) — g1} dy.

Consider the change-of-variable u = u(y) = g(a) — g(y); note that, since g is strictly
decreasing, u is a one-to-one function of y. Also note that u(a) = 0.
It follows that

“®) h(y(u))
g (y(u))

ub)
E/ h(u) exp{—nu}du.
0

b
/ h(y) exp{—nlg(a) — g1} dy =/0 exp{—nu} du

Under the conditions on % and g,
h(w) =h)+ Ow) as u—0

and, hence, by Watson’s lemma,

u(b) B B 1
/ h(u) exp{—nu}du = h(0)— + O(n™2) as n — oo.
u(a) n

The result now follows from the fact that

Example 9.11 (Pareto distribution). Let Y denote a real-valued random variable with an
absolutely continuous distribution with density

o
p(y;a) = Wy y=1

here o > 0 is a parameter. This is a Pareto distribution. Consider an approximation to
E[log(1 + Y?); «] for large values of «.
We may write

0 o ® Jog(1 + y?
Ellog(l + Y?);a] = / log(1 + yz)ym+1 dy = a/ % exp{—a log(y)} dy.
1 1
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Ellog (1 +y2); a]
0.9 1.0 1.1 1.2 1.3

0.8

Figure 9.2. E[log(l + Y?); @] in Example 9.11.

Note that, in the interval [1, 00), — log(y) is maximized at y = 1; hence, a Laplace approxi-
mation must be based on Theorem 9.15. Taking g(y) = — log(y) and A(y) = log(1 + y?)/y,
the conditions of Theorem 9.15 are satisfied so that

00 2
f @ exp{—a log(y)}dy = log(Z)é[l +0@™h]
1

so that
Eflog(1 + Y?);a] = log2)[1 + O(@™ )] as a — oo.

Figure 9.2 contains a plot of E[log(1 + Y?);«] as a function of «, together with the
approximation log(2), which is displayed as a dotted line. Note that, although the exact
value of the expected value approaches log(2) as « increases, the convergence is relatively
slow. For instance, the relative error of the approximation is still 1.4% when o = 100. O

9.6 Uniform Asymptotic Approximations

Consider the problem of approximating an integral of the form

/ h(y) exp(ng(y))dy,

as a function of z; for instance, we may be interested in approximating the tail probability
function of a given distribution. Although Laplace’s method may be used, in many cases,
it has the undesirable feature that the form of the approximation depends on whether ¥,
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the maximizer of g, is less than or greater than z. For instance, suppose that g is strictly
decreasing on (9, 00). If z < §, then the approximation is based on Theorem 9.14; if 7 > §,
so that over the interval [z, 00) g is maximized at z, then the approximation is based on
Theorem 9.15. Furthermore, in the case z < J, the approximation does not depend on the
value of z.

This is illustrated in the following example.

Example 9.12. Consider approximation of the integral

/00 exp(x)/ne(/nx)dx

for large n, where ¢(-) denotes the standard normal density function. It is straightforward
to show that the exact value of this integral is given by

exp(1/2m)[1 — d(J/nz — 1//n)].
If z < O then, by Theorem 9.14,

/oo exp(x) exp (—%xz) dx = Jf/ [14+ 0@m™]

so that

/Ooexp(x)\/nqﬁ(\/nx)dx =14+0n") asn— oo.

If z > 0, then Theorem 9.15 must be used, leading to the approximation

00 _n2
/ exp(x) exp (—gxz) dx = exp(z ) exp(z)[l +0(m ]

so that

exp(z)
Vnz

/wexp(x)dn¢(Jnx)dx = ¢(/nz) [1+0mr™H] asn— oo.

Hence,

1+0m™ if 7 < 0
[¢(/nz) exp(z)/(V/n)[1 + O] ifz >

Since z2 has derivative 0 at z = 0, neither Theorem 9.14 nor Theorem 9.15 can be used
when z = 0.

In addition to the fact that the form of the approximation depends on the sign of z, the
approach based on Laplace’s method also has disadvantage that the approximations are not
valid uniformly in z. That is, the O(n~") terms in (9.3) refer to asymptotic properties for
each fixed z, not to the maximum error over a range of z values.

For instance, suppose that z,, = zo/+/n, where zo > 0 is a fixed constant. If the approx-
imation in (9.3) is valid uniformly for all z in a neighborbood of 0 then

“ [ exp(x)y/ng(/nx) dx
ozze $(/n2) exp(D)/(n2)

/Ooexp(x)\/nqb(\/nx)dx = { - 9.3)

=1+0@m™")
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for some € > 0 and, hence,

fzoo exp(x)/ng(/nx)dx B
B(/nzn) exp(zn)/(/nzn)

l+0mn™" asn— oo.

However,

1 1
B(Jnz) explen)/(Jnzn) = $zo) SPEVD _ oy L [1 + 0(—)} .
20 20 \/n

The exact value of the integral in this case is

1 1
exp{1/@2m}[1 — (z0 — 1//m)] =1 — P(z9) +¢(Zo)% + 0<;> .

Hence, if the approximation is valid to the order stated, then
1
L= @G0 = oG [1+0(n)].
0
that is,
1
1 — ®(z0) = P(z0)—-
Z0

It follows that (9.3) is guaranteed to hold only valid for fixed values of z. O

In this section, we present a asymptotic approximation to integrals of the form

/OO h(x)/ng(/nx)dx 9.4)

Z
that overcomes both of the drawbacks illustrated in the previous example. Specifically,
this approximation has the properties that the form of the approximation does not depend
on the value of z and that the approximation is valid uniformly in z. The approximation
takes advantage of the fact that the properties of the integral (9.4) when 4 is a constant are
well-known; in that case,

/ h(x)/ne(/nx)dx = h()[1 — ®(/nz2)].

Note that it is generally necessary to do a preliminary transformation to put a given integral
into the form (9.4).

Theorem 9.16. Consider an integral of the form

/ hy(xX)/nep(/nx)dx
z
where hy, ha, ... is a sequence of functions such that

sup [hY(x)| < c;j exp (d;x?), j=0,1,2

for some constants cy, c1, 2, dy, dy, d>.
Then, for all M < oo,

/ () Jn(nx) dx = [1 — B(n2)] [hn<0> + 0(%)] + Wﬂdnz),

as n — oo, uniformly inz < M.
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Proof. We may write

/‘00 hy(X)/nd(/nx)dx = /mhn(O)\/n¢(Jnx)dx

Z Z

+/wxMJn¢(Jnx)dx
Z /OO hn(x) — hy(0)
o) T Pt
x

Z

= h,(O[1 — @(/n2)] + Jne(/nx)dx.

Let

hy(x) — h,(0
gu(x) = M
X

Note that
d
Vnxe(/nx) = —d—¢(JHX);
X

hence, using integration-by-parts,

o0 1 o 1 [
/ gn(X)/nxep(/nx)dx = —;g,,(x)\/nq)(«/nx)" + —/ 8, (X)/nep(/nx)dx

n
1 o
= g”(z)(]ﬁ(\/nz) + —/ g (x)/nep(/nx)dx.
Jn n

Z

It follows that

¢(/nz)
Jn

/ hp(X)/nep(/nx)dx = h,(0)[1 — ®(/nz)] + g.(2)

1 o0
+ ;/ g, (xX)\/ne(/nx)dx.

Hence, the theorem holds provided that

1 [ 1
;f g, () /np(Ynxydx = [1 — <I>(\/nz)]0(;> ,

where the O(1/n) term holds uniformly for z < M, for any M < oo.
Note that

, h,(x)  hy(x) — hy(0) hy(x) — hy(0) — xh; (x)
8, (x) = - = - :

x2 x2

Using Taylor’s series approximations,

1
By (x) = hu(0) + k., (0) + 5h:;<x1>x2
and
Rl (x) = hy(0) + hl(x2)x

where |x;| < [x], j = 1, 2. Hence,

1 " ”
g, (x) = Ehn(xl) — h,(x2)
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and
’ 3 " 3 2
sup|g, ()| = 3 sup ()] <S¢ exp (dox”)
and
sup |g,(x) — 1] < ¢3 exp (d3x2)
for some constants ¢;, d», c3, dz. It follows that
[e¢] o0 (o]
/ g, (xX)/ne(/nx)dx —/ \/nqb(\/nx)dx‘ <c / Jnp(/(n —2d3)x) dx.
z Z z
Note that

/ Vne(/(n — 2d3)x)dx =

! 1—-® 2d
m[ - (\/(”— 3)2)].

Hence,

1 [ 1
;/ 8, () /np(Ynx)dx = [1 — 43(\/%)];[1 + R, (2)]

where

1 1 — ®(J/(n — 2d3)2)
J(A=2d3/n) 1 — ®(Jnz)

The result follows provided that, for any M < oo,

|R:(2)]| < ¢35

sup |R,(z)| = O(1) as n — oo.
<M

First note that, for z < 1//n

1

1
|Ru(2)| < 3 V(A =2d3/n) 1 — d(1)

By Theorem 9.11,

1
1= @((/(n = 2d3)2) < Jin—2d) ¢(\/(” 2d3)z)

and
NS
1 — ®(/nz) > —qb(an)
1+n
Hence, for z > 1/4/n,
26‘3
R _ d
IRu(@)] = 1= 2/ exp (dsz%).
It follows that
1 1 263

sup |R,(z)| < max {c3 7 exp (d3M2)} ’

=M

(1 =2d5/n) 1 — d(1)’ 1 —2d5/n

proving the result. MW
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Example 9.13. Consider approximation of the integral

0,2 E/ exp(x)/ng(/nx)dx, z€R,

for large n, as discussed in Example 9.12. We may use Theorem 9.16, taking h(x) = exp(x).
Then

0 1 -1
[ ewtvnsnas = 1 - awnan |1+ 0(+) |+ D=L gna
and an approximation to Q,(z) is given by

exp(z) — 1

0,2)=1-d(/nz)+ Jnz

¢(/n2).

Suppose z = z¢/+/n. Then

exp(zo//n) — 1
20

_ 1 1
On(2) =1 —P(z0) + $z0) =1 = @(20) + $(z0) —~ + 0(;) .

v

Using the expansion for Q,(z) given in Example 9.12, it follows that, for z = zo/+/n,
0,(2) = Q.(2) + O(1/n) as n — 00, as expected from Theorem 9.16. [

Example 9.14 (Probability that a gamma random variable exceeds its mean). Let X
denote a random variable with a standard gamma distribution with index z. Then

Pr(X > cE(X)) = % / oot“ exp(—t) dt

where c is a positive constant. We consider approximation of the integral in this expression
for large values of z.
Using the change-of-variable y = /z, we may write

o0 o0
/ 17! exp(—t)dt = zzf vyl exp(—zy)dy

© 1
=z / 5 exp{—z(y — log(y))} dy.

Hence, consider approximation of the integral

|
/ ;eXp{—z(y —log(y))} dy.

The first step in applying Theorem 9.16 is to write the integral in the form (9.4). Note
that the function y — log(y) is decreasing for y < 1 and increasing for y > 1 with minimum
value 1 at y = 1. Hence, consider the transformation

1
x = sgn(y — D{2[y — log(y) — 11}>.
This is a one-to-one function of y with
1,
7¥ =y —log(y) -1

and
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It follows that

o0 1 o0
fc  expl=2(y —loglihdy = exp(=2) | W oxp (—37) dx
2w
- “(JZ  exp(—2) e SV
where
x(c) = sgn(c — D{2[c — log(c) — 1]}%
and y(x) solves
—log(y) = lx + 1.
By Theorem 9.16,
/ \/z¢(\/zx)dx = [1 — ®(/zx(c))] [h(O) +0 ( ! )}
x(c) Y(X)
x(c)/(c — 1) — h(0)
N #(/zx(c))
where
B o [2(y —log(y) = DI:
MO = o1 T y—1i =1
Hence,
o 1
/ \/Z¢(\/zx)dx =[1 — ®&(Jzx(c))] |: (—>:|
x(c) y(x) Z
x(c)/(c—1) =
Wd’(\/zx(c))
and
Pr(X = cE(X)) = % J 3:) exp(—2)7° 11 — B(y/2x(C)] [1 +0 (%)}
x(c)/(c —

Jax(e ) ¢(«/ZX(C))

Using Stirling’s approximation for I'(z) in this expression yields
1

Pr(X > cE(X)) = [1 — ®(/zx(c))] |:1 + 0(—>i|
Z

x(@)/(c—1)—1
N x(C as z — oQ.
NETD) P(V/2x(c))

For comparison, we may consider approximations based on Laplace’s method. The
function g(y) = log(y) — y is maximized at y = 1 and is strictly decreasing on the interval
(1, 00). Hence, if ¢ < 1, we may use the approximation given in Theorem 9.14, leading to
the approximation

i
2

Pr(X > cE(X)) = F( )

exp(—2)/Qm)[1 + 0z H1. (9.6)
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Table 9.4. Approximations in Example 9.18.

Z c Exact Uniform Laplace
1 1/2 0.607 0.604 0.922
1 3/4 0.472 0.471 0.922
1 4/3 0.264 0.264 1.054
1 2 0.135 0.135 0.271
2 1/2 0.736 0.735 0.960
2 3/4 0.558 0.558 0.960
2 4/3 0.255 0.255 0.741
2 2 0.0916 0.0917 0.147
5 1/2 0.891 0.891 0.983
5 3/4 0.678 0.678 0.983
5 4/3 0.206 0.206 0.419
5 2 0.0293 0.0293 0.0378

Using Stirling’s approximation to the gamma function shows that
Pr(X > cE(X)) =1+ 0(z"") as z > oo.

For the case ¢ > 1, g(y) is maximized at y = ¢ and we may use the approximation given
in Theorem 9.15; this yields the approximation
exp(—cz)c* 1 -1
Pr(X > cE(X)) = ————-[1 4+ O(z7 ). 9.7
'@)(c—1)z
An approximation for the case ¢ = 1 is not available using Theorem 9.15 since log(y) — y
has derivative O at y = 1.

Table 9.4 contains the uniform approximation given by (9.5), with the O(1/z) term
omitted, together with the Laplace approximation given by (9.6) and (9.7), again with the
O(1/z) terms omitted and the exact value of Pr(X > cE(X)) for several values of ¢ and z.
These results show that the uniform approximation is nearly exact for a wide range of ¢
and z values, while the Laplace approximation in nearly useless for the values of ¢ and z
considered. O

9.7 Approximation of Sums

The methods discussed thus far in this chapter may be applied to integrals of the form

/ g(x)dF(x)

[o.¢]
whenever F' is absolutely continuous. In this section, we consider the approximation of
sums; these methods may be applicable when the distribution function F is a step function
so that an integral with respect to F reduces to a sum.
Consider a sum of the form

YU
j=m
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where m and r are nonnegative integers m < r. Here any or all of m, r, and f may depend
on a parameter n and we consider an approximation to this sum as n — oo.

One commonly used approach to approximating this type of sum is to first approximate
the sum by an integral and then approximate the integral using one of the methods discussed
in this chapter. The basic result relating sums and integrals is known as the Euler-Maclaurin
summation formula. The following theorem gives a simple form of this result. The general
result incorporates higher derivatives of f; see, for example, Andrews, Askey, and Roy
(1999, Appendix D) or Whittaker and Watson (1997, Chapter 13). Thus, the approximations
derived in this section tend to be rather crude; however, they illustrate the basic approach
to approximating sums.

Theorem 9.17. Let f denote a continuously differentiable function on [m, r] where m and
r are integers, m < r. Then

me— f FOdx -+ 5L + £+ | Porswa

m

where

P(x):x—Lx—%.

Proof. The result clearly holds whenever m = r so assume that m < r. Let j denote an
integer in [m, r). Consider the integral

J+l1
/ P(x)f'(x)dx.
J

Note that, on the interval (j, j + 1), P(x) = x — j — 1/2. By integration-by-parts,

i+l j+1 j+1
/ Px)f'(x)dx = (x — j — 1/2) f(x) ’,- —/ fx)dx
! 1 j+;
= E[f(j +D+fDI= [ fo)dx.
J
Hence,

Jj+1

r r—1
/ P(x) f'(x)dx = Z/ P(x)f'(x)dx
1 r
=2[Z f<n+2fm} / F()dx

=m+1 J
1 r
= £~ AL+ £ - [ e
j=m m
proving the result. MW

The same approach may be used with infinite sums, provided that the sum and the terms
in the approximation converge appropriately.
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Corollary 9.2. Let f denote a continuously differentiable function on [m, oo] where m is

an integer. Assume that

S < o0, / ()l dx < 00

m

=
and
/oo F()ldx < oo,
Then '
UE / T pds L fom + [ " P f () dx
2 g s
where

P(x):x—Lx—%.

Proof. By Theorem 9.17, foranyr =m,m+1, ...,

r r 1 r
> fG)= / @ dx + SLfm) + f)) + / P()f'(x)dx.
j=m m m

Note that, under the conditions of the corollary,

[ I[P | f'(x)|dx < o0
and
lim f(r) =0.

The result now follows from taking limits in (9.8). MW

Using Theorem 9.17, the sum

PFA))
j=m

/ " fdx

1 r
SLFOm + £+ / PO f/(x)dx

m

may be approximated by the integral

with error

or it may be approximated by

g 1
/ f)ydx + S1fm) + f(r)]

9.8)
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with error

/-r P(x)f'(x)dx. 9.9)

Example 9.15 (Discrete uniform distribution). Let X denote a discrete random variable
with a uniform distribution on the set {0, 1, ..., m} for some positive integer m; hence,

1
Pr(X=j)=——, j=0,...,
r( ) 1 J m

Let f denote a bounded, real-valued function on [0, 1] and consider the expected value
E[f(X/m)]. Let U denote an absolutely continuous random variable with a uniform distri-
bution on (0, 1). Here we consider the approximation of E[ f(X/m)] by E[ f (U)] for large
m. We assume that f is differentiable and that f” satisfies the Lipschitz condition

If'(s) = f'®O < Kls —t], s.t€[0,1]

for some constant K.
Using Theorem 9.17,

1 m
ELFOX/m)] = - Z fGi/m)

=m+1/ f(x/m)dX+2( +1)[f(0)+f(1)]

D m(m +1) / (x =[x = 1/2) f'(x/m)dx.

Changing the variable of integration,

d m_ [ du = —" _E[f(U
me Fle/mydx = +1f0.f(u)u—m—+l LFUL.

Note that, for j <x < j + 1,
x—|lx—=12=x—-j—-1/2

hence,

m m—1 Jj+1
/0 (= Lt — 1/2)f'(c/m)dx = Z / (x = j — 1/2)f (x/m)dx

_ 2/ <w> de.

Since

2
/ cudu=0

[SIE
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for any constant c,

/j Mf/<u+jm+ 1/2) du:/i]u[f/(u—i-jm—i— 1/2)

i1 1/2
—f<”+/)}m,j=anqm—L

Using the Lipschitz condition on f”

‘/‘ u+j+1ﬂ>

2

so that

m(x — lx—=1/2)f'(x/m)dx
0

K
2
and, hence, that

m(m+1)/ (x — Lx—1/2)f(x/m)dx— (#) as m — 0Q.

It follows that

Elr (X)) = " grw
|:f<;):|_m—+l [FW)]

1 1
+ 0O+ f(DHl+0 as m — oo. g
3 _H)[f() f] ( )

In order for the result in Theorem 9.17 to be useful, we need some information regarding
the magnitude of the integral (9.9), as in the previous example. A particularly simple bound
is available for the case in which f is a monotone function.

Corollary 9.3. Let f denote a continuously differentiable monotone function on [m, r)]
where m and r are integers, m < r. Then

Z 0 - / Jdr = 3L+ fO] < 31O~ fml 910

and
[ reodx| < maxti . 7o, ©.11)

Suppose that f is a decreasing function and
tim 1) =0

Then

> s~ [ redx =30 < 315 ©0.12)
2 .
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Proof. Equation (9.10) follows from Theorem 9.17 provided that

r 1
/ P(f')dx = 517(0) ~ fm.

Consider the case in which f is a decreasing function; the case in which f is increasing
follows from a similar argument.
Since f is decreasing, f'(x) < 0 on [m, r] and, since | P(x)| < 1/2 for all x,

/ " P f(x)dx

Lo
< _E/m Fedx = S m ~ )

proving (9.10).
Equation (9.11) follows from (9.10) using the fact that

IO / f(@)dx
j=m mn

=

r r 1
IOE / f@)dx = SLfm) + ()]
j=m m

1
+ 1) = fm)

and (9.12) follows from (9.10) by taking limits as r — co. W

Example 9.16 (Stirling’s approximation). Consider the function log(n!), n =0, 1,....
Note that

log(n!) = > log(j).
j=1
Since log(x) is a strictly increasing function, by Corollary 9.3,
log(n!) = / log(x)dx + R, =n log(n) —n+ 1+ R,
1
where
|R,| < log(n)/2.
Hence,

log(n!) = n log(n) — n + O(log(n)) as n — oo,

which is a crude form of Stirling’s approximation. By Example 9.8, we know that the
O(log(n)) term can be expanded as

1 1
3 log(27) + 3 log(n) + O(n™"). O
Example 9.17 (Tail probability of the logarithmic series distribution). Let X denote a
discrete random variable such that
Pr(X = j)=c(0)0//j, j=1,2, ...,

where 0 < 6 < 1 and
1

O =1 gi =)



294 Approximation of Integrals

This is known as a logarithmic series distribution. Consider approximation of the tail
probability

c0)y 07/j

J=n

for large n.
Note that 8* /x is a decreasing function so that by Corollary 9.3,

Y 0/ =/ —0"dx + R,
j=n no
where
[R,| < 19"/
L < =0"/n.
2

We may write

o0 97[ oo l
f x 0¥ dx = / exp{nu}du;
n log(®) Jo 1+ u/log®)

hence, by Watson’s lemma,

0 1 on 1 1
x 0%dx = -+0l—=)].
n log(®) | n n2

Therefore, based on this approach, the magnitude of the remainder term R, is the same as
that of the integral itself, 6" /n. Hence, all we can conclude is that

ZG’/]:H"O -] as n— oc. O
- n
j=n

The previous example shows that the approximations given in Corollary 9.3 are not very
useful whenever the magnitude of | f(r) — f(m)] is of the same order as the magnitude of the
sum f(m) + - - -+ f(r). This can occur whenever the terms in the sum increase or decrease
very rapidly; then f’ tends to be large and, hence, the remainder terms in Corollary 9.3 tend
to be large. In some of these cases, summation-by-parts may be used to create an equivalent
sum whose terms vary more slowly. This result is given in the following theorem; the proof
is left as an exercise.

Theorem 9.18. Consider sequences x1, Xa, ... and yy, ya, .. .. Let m and r denote integers
such that m < r. Define
Si=xp+--+x;, j=m,...,r.

Then
r—1

ijyj = Zsj(yj = Yj+1) + Sy
j=m

Jj=m

If

o0 o0
2 eyl < oo 3 Il <o
j=m j=m
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and lim,_, o y, = 0, then
o0 [e.¢]
ij)’j = Z Si(yj = yj+1)-
j=m Jj=m

Example 9.18 (Tail probability of the logarithmic series distribution). Consider approx-
imation of the sum

0 .
> 0/i,
j=n

where 0 < 6 < 1, as discussed in Example 9.17. We can apply Theorem 9.18, taking y; =
1/j and x; = 6/. Hence,

1_9j7n+1 ]
szenﬁ, J=n,....
It follows that
& -6 G+

x 9j—11+l

0" 1 >
1—9[;j<j+1>_;j(j+1>]‘

J

Using Corollary 9.3 it is straightforward to show that

> o 1 1
Z (J+1) /,, x(x+1)dx+0<n_2)

j=n
1 1 1
= log(1 + 1/n) + 0(—2) =+ 0(—2>.
n n n

Since

X gimtl X 6J (1)
VN . . =0 Y b
jG+n — (n+j—Dn+j) n?

j=n Jj=

it follows that

9.8 Exercises

9.1 Prove Theorem 9.4.
9.2 Show that the beta function B(-, -) satisfies

,B(r,s):/ ————dt, r>0,s5>0.
o (L4o)ytr
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9.3

94

9.5

9.6
9.7
9.8
9.9

9.10

9.11

9.12

9.13

Approximation of Integrals

Prove Theorem 9.5.

Exercises 9.4 and 9.5 use the following definition.
The incomplete beta function is defined as

I(r,s,x) = /0 11— 1) d,

wherer > 0,s > 0,and0 <x < 1.

Show that, forallr > 0,s > 0,and0 < x < 1,

1—1I(r,s,x)=1I(s,r,1 —x).
Show that, forallr > 1,s > l,and0 <x < 1,
I(r,s,x)=I(r,s —1,x)—I(r+1,s —1,x).

Prove Theorem 9.8.

Prove Theorem 9.9.

Prove Theorem 9.10.
Suppose that, as n — oo,

n3

a as 1
fw=%+—+7+0<>
n n
and

by b 1

gm)=by+—+ =+ 0|
n o n n’

for some constants ay, a,, az, by, by, b, such that by # 0.

Find constants ¢y, ¢y, ¢, such that

Sy _ e e (1
g(n)—00+n+n2+0<n2).

Show that
C(x+1) = lim z*B(x,z), x> 0.
7—>00

Let X denote a random variable with an absolutely continuous distribution with density function

T(a)

Let h denote a function such that

x* L exp(—Bx), x>0.

o0

h(t) = Z D0y

j=0
and such that h(t) = O(exp(at?))as |t| — oo for some constant a. Find an asymptotic expansion
for E[A(X)] as B — o0, with « remaining fixed.

Let I'(-, -) denote the incomplete gamma function. Show that, for fixed x,

o x=1 (x=Da-2) 1
Flx,y)=y"" exp(=y) | 1 + + - + 0(7>
y y Y

as y —> 00.

Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

p(y;a) = c(a) exp{—2acosh(y)}, —oo0 <y < 00;

see Example 9.10. Find an approximation to E[cosh(Y)] that is valid for large a.
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Let ¥ (-) denote the logarithmic derivative of the gamma function. Show that

Y(z) =logz + 0(%) as 7 — oo.

Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

c(a) expf{acos(y)}, —m <y<m,
where o > 0 and c(«) is a normalizing constant; this is a von Mises distribution. Find an

approximation to c(«) that is valid for large values of «.

Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

1
—1-x)*" 0<x<l.
o

Find an approximation to E[exp(X)] that is valid for large o.
Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

N/
Jen”

this is an inverse gaussian distribution. Find an approximation to Pr(Y > y), y > 0, that is valid
for large n.

[

PO = op{-S0+1y-2f. y>0

Let Y denote a random variable with an absolutely continuous distribution with density function
1
Bla, )

where « > 0; this is a beta distribution that is symmetric about 1/2. Find an approximation to
Pr(Y > y) that is valid for large o.

y ol =y, 0<y<1,

Euler’s constant, generally denoted by y, is defined by

) n 1

y = '}Lngo {Z ; - lOg(n)} .
Jj=1

Give an expression for y in terms of the function P defined in Theorem 9.17.

Prove Theorem 9.18.

Consider the sum

=1
Z,— where o > 1;
j(l

j=1
this is the zeta function, evaluated at «. Show that

1 1 N
Z_—=—+0(1) as o — 1T,
Jj¢  a-—1

j=1

9.9 Suggestions for Further Reading

The functions described in Section 9.2 are often called special functions and they play an important
role in many fields of science. See Andrews et al. (1999) and Temme (1996) for detailed discussions
of special functions; in particular, Temme (1996, Chapter 11) discusses many special functions that
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are useful in statistics. Many imporant properties of special functions have been catalogued in Erdélyi
(1953a,b).

The basic theory of asymptotic expansions is outlined in de Bruijn (1956) and Erdelyi (1956).
Asymptotic expansions of integrals, including Watson’s lemma and related results, are discussed in
Andrews et al. (1999, Appendix C), Bleistein and Handelsman (1986), Temme (1996, Chapter 2),
and Wong (1989). The form of Watson’s lemma and Laplace’s method presented here is based on
Breitung (1994, Chapter 4). Evans and Swartz (2000) discuss the problem of approximating integrals
that are useful in statistics; see also Barndorff-Nielsen and Cox (1989).

The uniform asymptotic approximation presented in Section 9.6 is known as Temme’s method
(Temme 1982); see Jensen (1995, Chapter 3) for further discussion of this result and some general-
izations. The approximation of sums and the Euler-Maclaurin summation formula is discussed in de
Bruijn (1956, Chapter 3); see also Andrews et al. (1999, Appendix D). Exercise 9.15 is discussed
further in Barndorff-Nielsen and Cox (1989).
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Orthogonal Polynomials

10.1 Introduction

Let F denote a distribution function on the real line such that

o0
/ |x]"dF(x) < o0
—0oQ

forallr =0, 1,.... A setof functions { fy, f1, ...} is said to be orthogonal with respect to
F if

/ i) fitx)dF(x)=0 for j # k.

Suppose that, foreachn =0, 1, ..., f, is a polynomial of degree n which we will denote
by p,; assume that the coefficient of x” in p,(x) is nonzero. Then {py, pi, ...} are said to
be orthogonal polynomials with respect to F .

Orthogonal polynomials are useful in a number of different contexts in distribution
theory. For instance, they may be used to approximate functions or they may be used in
the exact or approximate calculation of certain integrals; they also play a central role in
asymptotic expansions for distribution functions, as will be discussed in Chapter 14. In this
chapter, we give the basic properties of orthgonal polynomials with respect to a distribution
function, along with some applications of these ideas.

10.2 General Systems of Orthogonal Polynomials

Let {po, p1, ...} denote orthogonal polynomials with respect to a distribution function F.
Then any finite subset of {py, pi, ...} is linearly independent. A formal statement of this
result is given in the following lemma; the proof is left as an exercise.

Lemma 10.1. Let {po, p1, ...} denote orthogonal polynomials with respect to a distri-
bution function F. Then, for any integers ny < ny < --- < ny, and any real numbers
o1, 0, ..., Oy,

alpnl(x)+"'+ampﬂm(x):O ae. (F)

ifandonly ify = - - =«a, =0.

299



300 Orthogonal Polynomials

An important consequence of Lemma 10.1 is that, forany j = 0, 1, ..., the function xJ
has a unique representation in terms of pg, p1, ..., p;; that s,

x = agpo(x) + o pi(x) + -+ +a;p;(x)

for some unique set of constants o, ..., ;. Hence, foreachn = 0,1, ...,
00 .
/ x'p,(x)dF(x)=0, j=0,1,...,n—1. (10.1)
—00

Furthermore, as the following theorem shows, this property characterizes p,,.

Theorem 10.1. Let {py, p1, ...} denote a set of orthogonal polynomials with respect to a
distribution function F. Let f denote a polynomial of degree n. Then

/ X f(X)dF(x)=0, j=0,1,...,n—1 (10.2)

o0

if and only if for some a0 # 0

FX) = apu(x) a.e(F).

Proof. Suppose that f = ap, for some o # 0. Fix j =0, ...,n — 1. Since x/ may be
written as a linear function of py, ..., p,_1, it follows that (10.2) holds.

Now suppose that (10.2) holds for some polynomial f of degree n. Let ¢, denote the
coefficient of x” in f(x) and let d, denote the coefficient of x” in p,(x). Then

Fl) - fi—"pnm = g(v)

where g is a polynomial of degree at mostn — 1. Let @ = ¢,,/d,. Then

/:(f(X) — apy(x))* dF (x) = /Z g f(x)dF(x) — a/: 8(xX)pn(x) dF (x).
By (10.2),
/_Z g f(x)dF(x)=0
and, by (10.1),

/ g)p,(x)dF(x)=0.

o0

It follows that
/ (f(x)_apn(x))zdF(x)ZO

and, hence, that

f&) —ap,(x) =0 a.e. (F),

proving the result. H
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Construction of orthogonal polynomials
In many cases, orthogonal polynomials with respect to a given distribution may be easily
constructed from the moments of that distribution.

Theorem 10.2. Let

mn=/ x"dF(x), n=0,1,....

o0

Foreachn=0,1, ..., let

X" xn—l .. 1
My,  Muy_y -+ Mo
pn(x) = det My4q ny e my
Map—1 Map—2 -+ Mp—|
If, for some N =0, 1,2, ...,
My e my
mn e ml
o, = det . . #0,
Moyp—3 -+ Ny
forn=0,1,...,N,then{pog, p1, ..., pN} are orthogonal polynomials with respect to F .

Proof. Clearly, p, is a polynomial of degree n with coefficient of x" given by «, # 0.
Hence, by Theorem 10.1, it suffices to show that

o0
f (X' dF(x)dx =0, j=0,1,....,n—1.

oo

Note that, for j =0,1,...,n—1,

AR S B
my ny—1 e mo
X! pp(x) =det | Ma+l my oMy
Mop—1 Map—2 -+ Mp—|

and, since this determinant is a linear function of x"*+/, x"+i=1 xJ,

Mytj Mpyj—1 -+ Mj

0 . nmy my—1 e mo

/ Pn(X)x! dF (x)dx = det | Mn+1 Ny e my

o : . .
mMap—1 map—2 e My

Since the first row of this matrix is identical to one of the subsequent rows, it follows that
the determinant is O; the result follows. M

In this section, the ideas will be illustrated using the Legendre polynomials; in the
following section, other families of orthogonal polynomials will be discussed.
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Example 10.1 (Legendre polynomials). Let F denote the distribution function of the uni-
form distribution on (—1, 1); the orthogonal polynomials with respect to this distribution
are known as the Legendre polynomials. They are traditionally denoted by Py, Py, ... and
we will use that notation here.

Note that
/ .xndF(,x)z —f xtdx = { n+l if n is even .
- 2 ) 0 if n is odd

Hence, using the procedure described in Theorem 10.2, we have that Py(x) = 1,

Pi(x) =det<g i) —x

and
x2 x 0 1 1
Py(x)=det| 1/3 0 1 =——x2~|—§.
0 1/3 0

It is easy to verify directly that these polynomials are orthogonal with respect to . O

If po, p1, ... are orthogonal polynomials with respect to some distribution function
F, then so are agpy, @) p1, - - . for any nonzero constants oy, ¢, . ... Hence, orthogonal
polynomials are generally standardized in some way. Typically, one of the following stan-
dardizations is used: the coefficient of x" in p,(x) is required to be 1, it is required that
pn(1) =1, or p, must satisfy

foo pu(X)*dF(x) = 1. (10.3)

o]

Example 10.2 (Legendre polynomials). Consider the Legendre polynomials described in
Example 10.1. If we require that the polynomials have lead coefficient 1, then

1
Pox)=1, Pi(x)=x, and Pr(x)=x>— 3
If we require that p, (1) = 1,

3 1
Po(x) =1, Pi(x)=x, and Pz(x)=§x2—§.

If we require that (10.3) holds, then

Py(x) =1, Pi(x)=./3x, and Pz(x)=\/5§x2_§,

For the Legendre polynomials, the second of these standardizations is commonly used and
that is the one we will use here. O

The following result gives another approach to finding orthogonal polynomials.

Theorem 10.3. Let F denote the distribution function of an absolutely continuous distri-
bution with support [a, b], —00 < a < b < o0, and let p denote the corresponding density
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function. Let {py, p1, ...} denote a system of orthogonal polynomials with respect to F.
Suppose there exists a polynomial g satisfying the following conditions:

(i) For eachn =0,1, ...,

falx) =

(0 dx x)" p(x)]

is a polynomial of degree n.
(ii) Foreachn =1,2,...andeach j =0,1,...,n—1,

m m

d [g(x)"p(x)] = lim x/
dxm x—a  dx"

lin})xj px)] =0, m=1,2,...,n—1.
x—
Then there exist constants cy, c1, ... such that f, = c,p,,n =0,1,....
Proof. Fix n. By Theorem 10.1, it suffices to show that, foreach j =0,1,...,n — 1,
b .
f x! f(x)dF(x) =0

Using integration-by-parts,

b ) b o dr
[+ fwrdre = / W[5 P dx

n—1 n—1

;d b d
i n _ j 1 n d.x
W lgo) p(x)]\ j / T g (o)
b ) dnfl
=—j / A e 18 (0] dx.
a X

Continuing in this way,

b d" . dn—j b
f o gy p(oldx = (—1) 1 gy peoy| = 0.
a dx" dxn=1I a
Since 0 < n — j < n — 1, the result follows. W

Hence, when the conditions of Theorem 10.3 hold, we can take the orthogonal polyno-
mials to be

Pa(X) = [g(X)"P(X)] (10.4)

cpp(x) dx"

for some constants cp, ¢, . ... This is known as Rodrigue’s formula.

Example 10.3 (Legendre polynomials). In order to determine Rodrigue’s formula for the
Legendre polynomials, it suffices to find a polynomial g such that

n

T8
is a polynomial of degree n and
m . dn'l
J = 1 j no_
fim G 800" = Jim, 7 9" =0

forj=0,1,...,.n—1landm=1,2,...,n— 1.
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Suppose g is a polynomial of degree r. Then g(x)" is a polynomial of degree nr and
n
dx"

is a polynomial of degree n(r — 1); hence, g must be a polynomial of degree 2. Since all
polynomials are bounded on [—1, 1], in order to satisfy the second condition, it suffices that

g(x)"

l_im1 gx) = _liml gx)=0.

Writing g(x) = ax? + bx + ¢, we need a +c =0 and b = 0; that is, g is of the form
c(x? — 1). It follows that orthogonal polynomials with respect to the uniform distribution
on (—1, 1) are given by
dl‘l
dxll

2 =1

Note that

n

dx"

@2 =1D" =n!2x)" + 0(x)

where Q(x) is a sum in which each term contains a factor x> — 1. Hence, the standardized
polynomials that equal 1 at x = 1 are given by
1 d"

2 n
— 1y
I TR H

Zeros of orthogonal polynomials and integration

Consider a function g : R — R. A zero of g is a number r, possibly complex, such that
g(r) = 0.If g is a polynomial of degree n, then g can have at most n zeros. A zero r is said
to have multiplicity o if

) =g = =g () =0

and g®(r) # 0. A zero is said to be simple if its multiplicity is 1.
Let g denote an nth degree polynomial and letry, ..., r,, denote the zeros of g such that
r; has multiplicity «;, j = 1,...,m. Then " a; = n and g can be written

§) = alr =) o (x =)

for some constant a.
The zeros of orthogonal polynomials have some useful properties.

Theorem 10.4. Let {py, p1, ...} denote orthogonal polynomials with respect to F and let
[a, b], —o0 < a < b < 00, denote the support of F. Then, for eachn =0, 1, ..., p, has
n simple real zeros, each of which takes values in (a, b).

Proof. Fix n. Let k denote the number of zeros in (a, b) at which p,, changes sign; hence,
0<k<n.

Assume that £k < n and and let x; < x, < --- < x; denote the zeros in (a, b) at which
pn changes sign. Consider the polynomial

J) = —x)x —x2) - (x —xp).
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Since this is a polynomial of degree £, it follows from Theorem 10.1 that

b
/ J@)pa(x)dF(x) = 0. (10.5)

Note that f(x)changessignateachx;,j =1, ..., k,sothatw(x) = f(x)p,(x)is always
of the same sign. Without loss of generality, we assume that w(x) > 0 for all x. Hence,

b b
/ w(x)dF(x):/ f@X)pu(x)dF(x)dx > 0.

This contradicts (10.5) so that we must have k = n. Thus, p, has n simple zeros in (a, b);
however, p, has only n zeros so that all zeros of p, lie in (a, b) and are simple. W

Example 10.4 (Legendre polynomials). The Legendre polynomial P;(x) = x has one
zero, at x = 0. The second Legendre polynomial,

3 1
Pz(X)Z E.Xz— 5

has zeros at x = +1/,/3. It may be shown that the third Legendre polynomial is given by
5
P3(x) = §x3 — Ex,
which has zeros at x = £,/(.6)andx = 0. O

Let po, p1, - . . denote orthogonal polynomials with respect to a distribution function F
and let x; denote the zero of p;. Let f(x) = ax + b, where a and b are constants. Then
f(x) = cp1(x) + d for some constants ¢ and d; since pi(x;) = 0 we must have d = f(xy).
It follows that

/ f(x)dF(x) =C/ p1(x)dF (x) + f(x1).
—00 —0o0
Since p; is orthogonal to all constant functions,
o0
f p1(x)dF(x) =0;

hence, for any linear function f,

/ F)dF(x) = f(x).

That is, the integral with respect to F of any linear function can be obtained by simply
evaluating that function at x;. The following result generalizes this method to an orthogonal
polynomial of arbitrary order.

Theorem 10.5. Let {po, p1, ...} denote orthogonal polynomials with respect to F. For a

givenvalueofn = 1,2,...,letx; < xp < ... < x, denote the zeros of p,. Then there exist
constants Ay, A, ..., Ay Such that, for any polynomial f of degree 2n — 1 or less,

/ FOVdF () =) xjf(x)).
oo ~
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Foreachk = 1,...,n, A is given by

A = /oo P e,

—oo (X = Xxp) P (xk)

Proof. Fix n and consider a polynomial f of degree less than or equal to 2n — 1. Note
that, by Theorem 10.4, the zeros of p, are simple and, hence, |p,(x;)| >0, j=1,...,n
Define a function 4 by

Pu(x)

h(x) = Zf( D )

Note that

Pn(X) =a(x —x1)- - (x — x,)

for some constant o # 0; this may be seen by noting that the function on the right is a
polynomial of degree n with the same zeros as p,. Hence, foreach j = 1,2,...,n,

Pn(X)
(x —xj)

is a polynomial of degree n — 1 so that / is also a polynomial of degree n — 1. It follows
that 7 — f is a polynomial of degree less than or equal to 2n — 1. Note that, for each
j=12,...,n

. pn(xk)
lim h S + = fO0);
Jim (x) = - fx ;) ) fGa) = flx)

hence, i — f has zeros at xy, . .., x,. It follows that

h(x) = f(x) = (x = x1) - (x = X)q (x) = pu()r(x) (10.6)

where ¢ and r are polynomials each of degree at most n — 1.
Writing

fx) =hx) — p.(x0)r(x),

and using the fact that r is a polynomial of degree at most n — 1,

oo

/OO fX)dF(x) = /00 h(x)dF(x) — /00 Pn(r(x)dF (x) =/ h(x)dF(x).

o0 o0 o0
The result now follows from the fact that

\)
[ W) dF(x) = Zf(x,) / R - Zx G

xj)prz(xj

where A1, ..., A, are given in the statement of the theorem. M

Example 10.5 (Legendre polynomials). Consider the Legendre polynomial

3, 1
PZ(X)ZEX —57
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which has zeros at +1/,/3. Hence, we may write

3
Pa(x) = S(x = 1/¥3)x + 1/3/3).

Then
IR P>(x) 1
=3 /,l TSN SN R
and
. 1/1 Ps(x) .
R AR R VN VXN

Hence, any polynomial f of degree 3 or less can be calculated by

FA/y3)+ f(=1/4/3)
3 .

I
[ rearw =

-1
This may be verified directly by integrating 1, x, x2, and x3. O

The method described in Theorem 10.5 can also be used as the basis for a method of
numerical integration; this will be discussed in Section 10.4.

Completeness and approximation
Let {po, p1, ...} denote orthogonal polynomials with respect to F. We say that {pg, p1, ...}
is complete if the following condition holds: suppose f is a function such that

/Do Ff(xX)?dF(x) < 0o
and
/00 fOp.x)dF(x)=0, n=0,1,...;

then f = 0 almost everywhere (F).

Example 10.6 (Completeness of the Legendre polynomials). Let F' denote the distribution
function of the uniform distribution on (—1, 1) and let f denote a function such that

1
/ f(x)?dF(x) < o0
-1
and
1
/ fXOP,(x)dF(x)=0, n=0,1,...
—1

where P, denotes the nth Legendre polynomial.
Let g, be an abritrary polynomial of degree n. Then

1 1 1
/ 1(f(X)—qn(X))2dF(X)= / If(X)zdF(X)Jr / 1qnoc)zdF(x).



308 Orthogonal Polynomials

Fix € > 0. By the Weierstrass approximation theorem, there exists a polynomial ¢, such
that

sup | f(x) — ga.(x)| < €.

lx|<1

Hence,

1 1
/ f(xX)?dF(x) < €* — / gn(x)? dF (x) < €.
-1 -1

Since € is arbitrary,

1
/ f(x)*dF(x) =0,
-1

establishing completeness.
Note that this argument shows that any set of orthogonal polynomials on a bounded
interval is complete. O

Completeness plays an important role in the approximation of functions by series of
orthogonal polynomials, as shown by the following theorem.

Theorem 10.6. Let {po, p1, ...} denote orthogonal polynomials with respect to F and
define

Dn(x)
[ pu(x? dF ()]

pp(x) = , n=0,1,....

Let f denote a function satisfying
o0
f F)?dF(x) < oo
and let

an _ /OO f(x)p_n(_x)dF(x)9 n = 07 1, e

(o]

Forn=0,1,2,...define
Fa)=>"a;p,x).
—

If{po, p1...}is complfzte, then
(i) limy oo [ [f,(X) = fFOIPdF(x) =0
(ii)
/ L) — fOP ARG < / T FORAF@ - Y@ =12,
—00 —00 j:O

(iii) Y 2ga; =[5, fFx)? dF(x)
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(iv) For any constants By, Bi, - ., Bn,

o0

. 2
| thw-fwraro < [ [Zﬁjmx)—f(x)} dF (),
n 3

oo

thatis, f . i the best approximation to f among all polynomials of degree n, using
the criterion

/ [g(x) — f()* dF (x).

Proof. 'We first show that the sequence f 1> f 2, - - . converges to some function fy in the
sense that

lim / (fax) = fo(x))*dF (x) = 0.

Note that, for m > n,

[t = frarw = Y o

Jj=n+1

hence, under the conditions of the theorem, for any € > 0 there exists an N such that

/ L) — FrPdF () < e

forn,m > N.

The construction of the function f, now follows as in the proof of Theorem 6.4; hence,
only a brief sketch of the argument is given here.

There exists a subsequence 71, n, ... such that

o0
A A 1 .
/ [fn.H(X)—fn,(X)]zdF(X)S—,, .]:1725
oo ! / 47
Foreachm = 1,2, ..., define a function 7,, by
Tu() =Y 1 f,,, )= f,, @)L,
=1
Then, for each x, either T;(x), T>(x), ... has a limit or the sequence diverges to co. Define
T(x)= lim T,(x)
if the limit exists; otherwise set T (x) = oo. As in the proof of Theorem 6.4, it may be shown

that the set of x for which T (x) < oo has probability 1 under F'; for simplicity, assume that
T (x) < oo for all x. It follows that

o8}
1 f, @ = f (0]
=1

converges absolutely and, hence, we may define a function

Jo@) = Fu @)+ 3 _1f 0, () = £, 01 = lim £, ).
j=1
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It now follows, as in the proof of Theorem 6.4, that
o0 A
tim [ (7,00 = futo) dF ) =0,
—00

Now return to the proof of the theorem. Write f(x) = fo(x) 4+ d(x). Then, for each
j=12,...,

o0

/ FOP () dF (x) = / Fol0)B ;00 dF (x) + / d(x)p;(x) dF (x).

Note that, by the Cauchy-Schwarz inequality,

[ 0= futonp )|

2

< [ /_ Z(fn()o - fo(X))ZdF(X)T [ /_ Z 5 ,»(x)ZdF(x)}
Since
/ooﬁj(x)zdF(x)=1, ji=1,...,
and
/ T (Fal) = foPdF@) > 0 as 1 oo,
it follows that
f_ : Jo0)B ;0 dF () = lim f, (00, () dF () = a. (10.7)
Since
/_Z FOOP, 0 dF) =aj,
it follows that
/oo d)p () dF () =0, j=0,1,...
so that
foo d()p;(x)dF(x) =0, j=0,1,....
By completeness of {po, p1, ...}, d = 0 and, hence,
Tim f () = FQOPdF ) =0, (10.8)

This verifies part (i) of the theorem.
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To show parts (ii) and (iii), note that
[o¢] N o0 o0 N
| G- rrarw= [ gurarw - [ farar
—0oQ0 —0oQ -0
o0 n
- / F()?dF(x) — Zaf..
oo =

This proves that part (ii) and part (iii) now follows from (10.8).
Finally, consider part (iv). Note that

n 2 00 n n
f [Zﬂjﬁj(x)—f(x)} dF (x) = / QP AF(x) =2 Bje;+ Y B
—o0 | j=0 —0 Jj=0 Jj=0

Hence,
o0 n 2 o0
/ [Zﬁ,ﬁjm —f(X)} dF (x) — / [f.(x) = fF)I? dF (x)
—0o0 =0 —0o0

n n
=) B 2D B+ ) o
j j=0 j=0

j=0
= (o — B
j=0

proving the result. MW

s -
|

N

~

Hence, according to Theorem 10.6, if {po, p1, ...} is complete and

/ N f)?*dF(x) < oo,

the function f may be written

p;j(x)
1= Za’ I p iR dF(x)

for constants o, «y, ... given by
[ooe @) pa(x)dF (x)
= .
S Pa(x)? dF (x)

In interpreting the infinite series in this expression, it is important to keep in mind that it
means that

ay =

2
. o0 - P;(X) _
A [f(x) Z T pj(x)ZdF(x):| aF) =

It is not necessarily true that for a given value of x the numerical series

Z pi(x)
Ty (R dF (x)

converges to f(x) as n — oo.
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Example 10.7 (Series expansion for a density). Consider a absolutely continuous distri-
bution on [—1, 1]. Suppose the moments of the distribution are available, but the form of
the density is not. We may approximate the density function by a lower-order polynomial
by using an expansion in terms of the Legendre polynomials.

Consider a quadratic approximation of the form

a + bx + cx?%;

in terms of the Legendre polynomials, this approximation is

2
<a n %C) Po(x) + bPi(x) + SCPa(x).

Using the approach of Theorem 10.6, the approximation to the density based on Py, P}, and
P> is of the form

3, L1
Po(x) + pwPi(x) + [E(M +o0°) - 5} Py (x)

where i and o are the mean and standard deviation, respectively, of the distribution.
Hence, an approximation to the density is given by
5 1 3
7 W Fux+ (u2+02 - Z)xz.

Although this function must integrate to 1, it is not guaranteed to be nonnegative. If u = 0,
it is straightforward to show that it is nonnegative. O

10.3 Classical Orthogonal Polynomials

Although orthogonal polynomials may be constructed for any distribution for which all the
moments exist, there are only a few distributions that are often used in this context. One
is the uniform distribution on (—1, 1), leading to the Legendre polynomials discussed in
the previous section. Others include the standard normal distribution, which leads to the
Hermite polynomials, and the standard exponential distribution, which leads to the Laguerre
polynomials. In this section, we consider the properties of the Hermite and Laguerre
polynomials.

Hermite polynomials

Orthogonal polynomials with respect to the standard normal distribution function are
known as the Hermite polynomials. These polynomials are often normalized by taking the
coefficient of x" in H,(x) to be 1 and that is the standardization that we will use here.

The following result shows that the Hermite polynomials may be generated using the
procedure described in Theorem 10.3 using the function g(x) = 1. That is, we may take

(_1)n di’l

H,(x) = 500) dxntb(x), n=0,1,... (10.9)
where
1 1,
Po(x) = J) exp (—Ex ) , —00 <X <00

denotes the standard normal density function.
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Theorem 10.7. For eachn =0, 1, ..., the nth Hermite polynomial is given by (10.9).

Proof. According to Theorem 10.3, the polynomials given by (10.9) are orthogonal with
respect to the standard normal distribution provided that

1
$(x) dx”

¢()

is a polynomial of degree n and that

o d"
lim x’ (10.10)
Ix|=oo  dx

for all n and j. Once these are established, the result follows provided that the coefficient
of x"in (10.9) is 1.

Foreachn =0, 1, ..., define a function ¢, by

= L p(0) = gn()p().

Note that go(x) = 1 and, hence, is a polynomial of degree 0. Assume that g, is a polynomial
of degree m; we will show that this implies that g,,+; is a polynomial of degree m + 1. It
will then follow by induction that ¢, is a polynomial of degree n forn =0, 1, ....
Note that
m+1

T () = i (DP() = d T ()P)
so that

1 (NP = (P — X (PR):
hence,

Gm1(X) = @y (X) — X (X).

Under the assumption that ¢, is a polynomial of degree m, it follows that g, is a poly-

nomial of degree m + 1. Hence, foralln =0, 1, ..., g, is a polynomial of degree .
Since
hm x/p(x) =
[x]—>o00

forall j =0,1,..., (10.9) follows from the fact that

e " p(x) = 4 (0P0)

where g, is a polynomial of degree n.
Finally, note that, if the coefficient of x” in g,,(x) is 1, then, since
gm+1(x) = CI,L(X) — Xqm(x),

the coefficient of x+! in g1 (x) is — 1. The result now follows from the facts that go(x) = 1
and H,(x) = (—=1)"g,(x). N

The following corollary gives another approach to constructing the Hermite polynomials;
the proof follows from Theorem 10.7 and is left as an exercise.
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Corollary 10.1. For eachn =0, 1, ..., let H, denote the function defined by (10.9). Then

Hyyi(x) =xH,(x)— H)(x), n=0,1,2,....
Starting with Hy(x) = 1, it is straightforward to use Corollary 10.1 to determine the first
several Hermite polynomials. The results are given in the following corollary; the proof is

left as an exercise.

Corollary 10.2. Let H, denote the nth Hermite polynomial,n = 1,2, 3, 4. Then
Hi(x) =x, Hy(x)=x*—1,
Hi(x) = X3 = 3x, Hy(x) = x*—6x2+3.

Equation (10.9) can be used to find

/ N H,(x)*¢(x)dx.

The result is given in the following corollary; the proof is left as an exercise.
Corollary 10.3. For eachn = 1,2, ..., let H, denote the nth Hermite polynomial. Then

/OO H,(x)’¢(x)dx = n!.

Using the expression (10.9) for H,, it is straightforward to calculate integrals of the form

f " H e dr.

Theorem 10.8. Let H, denote the nth Hermite polynomial. Then

f H(O$() dt = —H,_1 (X))

Proof. Note that

X X dn
/ H,()¢((t)dt = / (—D”Wqﬁ(t)dt

n—1

= (=1)"
D' o

p0)|" = —Ha 1P| = —Hy1(x)(x),

proving the result. MW

Hence, any integral of the form

/ fOe)dt,

where f is a polynomial, can be integrated exactly in terms of Hy, Hy, ..., ¢, and the
standard normal distribution function ®.
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Example 10.8 (Chi-squared distribution function). For x > 0, consider calculation of the
integral

1 Y
m/o t2 exp(—t/Z)dt,

which is the distribution function of the chi-squared distribution with 3 degrees of freedom.
Using the change-of-variable u = /1,
1
V(@)

X Jx
/ 12 exp(—t/2)dt =2 / W o) du
0 0

Vx 1
=2 [/ W o) du — E} .

Since u? = H,(u) — 1, using Theorem 10.8 we have that
1

Je

It may be shown that the Hermite polynomials are complete; see, for example, Andrews,

Askey, and Roy (1999, Chapter 6). Hence, the approximation properties outlined in Theo-
rem 10.6 are valid for the Hermite polynomials.

[t ewt-trar =2 o - § = ron) 0
) Jo 2

Example 10.9 (Gram-Charlier expansion). Let p denote a density function on the real
line and let ® and ¢ denote the distribution function and density function, respectively, of
the standard normal distribution. Assume that

o) 2
/ PL) dx < oo.
—oo P(X)

Under this assumption

* px)’
/_oo gy 1P =%

so that the function p/¢ has an expansion of the form
p(x) i
— = O[jHj (X)
o) =

where the constants o, ¢, . . . are given by

o = /_ H () pog() dx /(1

note that g = 1.
Hence, the function p has an expansion of the form

px) = $(x) [1 + ZajHj(x)] .

J=1

This is known as a Gram-Charlier expansion of the density p. In interpreting this result it is
important to keep in mind that the limiting operation refers to mean-square, not pointwise,
convergence. [
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Laguerre polynomials

The Laguerre polynomials, which will be denoted by L, Ly, ..., are orthogonal polyno-
mials with respect to the standard exponential distribution. Here we use the standardization
that

o0
/ L,(x)? exp(—x)dx =1, n=0,1,....
0

The Laguerre polynomials may be generated using the procedure described in Theo-
rem 10.3 using the function g(x) = x. That is, we may take

n

dxn

1
L,(x)= o exp(x) x" exp(—x), n=0,1,.... (10.11)

Theorem 10.9. The Laguerre polynomials are given by (10.11).

Proof. Using Leibnitz’s rule with (10.11) shows that

n n Xj
L, = -1y )=
(x) ;0( )<,>,1

and, hence, L, is a polynomial of degree n. Furthermore, it may be shown that

(o]
/ L,z()c)2 exp(—x)dx = 1;
0

this result is left as an exercise.
The result now follows from Theorem 10.3 provided that, foreachn = 1,2, ...,

il_rf(l) Qnmj(x) = vlggo Qnmj(x) =0

forj=0,1,...,n—1landm =1,2,...,n — 1, where

- d
Qumj(x) = x! 2 [x" exp(=x)].
X
Note that, form = 1,2, ..., n — 1, Q,,j(x) is always of the form
xMHEDR(x) exp(—x)

where R is a polynomial of degree m. The result follows from the fact that n — m + j
>1 n

The following corollary simply restates the expression for L, derived in the proof of
Theorem 10.9.

Corollary 10.4. For eachn =0, 1, ..., let L, denote the nth Laguerre polynomial. Then
z (n\ x/
Lyx) =) (-1 ( ) —
= i)
Hence,

1, 15 3,
Lix)y=x—1, Lz(x)=§x —2x +1, L3(x)=—gx +§X —3x + 1.
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The Laguerre polynomials, like the Hermite polynomials, are complete (Andrews et al.
1999, Chapter 6).

Example 10.10 (Series expansion of a density). In Example 10.9, a series expansion of
a density function based on the Hermite polynomials was considered. The same approach
may be used with the Laguerre polynomials.

Let p denote a density function on (0, oo) and let F denote the distribution function of
the standard exponential distribution. Assume that

/ p(x)2 exp(x)dx < oo.
0

Under this assumption

> py

so that the function p(x)/exp(—x) has an expansion of the form

) >
rp(—x) = ;aij(x)

where the constants «g, «y, . . . are given by
o =/ L;(x)p(x) exp(—x)dx;
0
note that
o0
/ L,-(x)2 exp(—x)dx =1
0

and that op = 1.
Hence, the function p has an expansion of the form

p(x) = exp(—x) [1 + Za,L,—(x)] . O

j=1

10.4 Gaussian Quadrature

One important application of orthogonal polynomials is in the development of methods of
numerical integration. Here we give only a brief description of this area; see Section 10.6
for references to more detailed discussions.

Consider the problem of calculating the integral

b
/ f(x)dF(x)

where F is a distribution function on [a, b] and —00 < a < b < 0.
Let{po, p1, - - .} denote orthogonal polynomials with respectto F. Fixn andleta < x| <
X < --+ < x, < b denote the zeros of p,. Then, by Theorem 10.5, there exist constants
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M, A2, ..., Ay such that if f is a polynomial of degree 2n — 1 or less,
b n
/ fEYAF(x) =Y 2 f(x)).
a j:l

Now suppose that f is not a polynomial, but may be approximated by a polynomial.
Write

2n—1

F) =Y Bix) + Ry(x)
j=0
where By, ..., Br,—1 are given constants and R;, is a remainder term. Then

b b b
/f(x)dF(x):/ on—l(x)dF(x)'i_/ Ry (x)dF (x)

a
where
2n—1

foni(0) = Z Bjx’.
j=0
Since f,,_, is a polynomial of degree 21 — 1, it may be integrated exactly:
b n
[ Fartdr@ =30 fars .
a j=1
The function f »n—1 may be approximated by f so that
b n
/ Fou i) dF(x) = "1 f(x))
a j=I1
and, provided that
b
| Ratmarco
is small,
b n
/ FOAF) =32 £(x).
a j=1
This approach to numerical integration is known as Gaussian quadrature. Clearly, this
method will work well whenever the function f being integrated can be approximated
accurately by a polynomial over the range of integration.
In order to use Gaussian quadrature, we need to know the zeros of an orthogonal poly-
nomial p,, along with the corresponding weights Ay, ..., A,. There are many published
sources containing this information, as well as computer programs for this purpose; see

Section 10.6 for further details.

Example 10.11. Let X denote a random variable with a standard exponential distribution
and consider computation of E[g(X)] for various functions g. Since

E[g(X)] =/O g(x) exp(—x)dx,
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we may use Gaussian quadrature based on the Laguerre polynomials. For illustration,
consider the case n = 5. The zeros of Ls and the corresponding weights X, ..., A5 are
available, for example, in Abramowitz and Stegun (1964, Table 25.9). Using these values,
an approximation to E[g(X)] is, roughly,

5218g(.26) + .3987g(1.41) + .07594(3.60) + .00364(7.09) + .00002g(12.64);

for the numerical calculations described below, 10 significant figures were used.

Recall that this approximation is exact whenever g is a polynomial of degree 9 or less. In
general, the accuracy of the approximation will depend on how well g may be approximated
by a 9-degree polynomial over the interval (0, oo). For instance, suppose g(x) = sin(x);
then E[g(X)] = 1/2 while the approximation described above is 0.49890, a relative error
of roughly 0.2%. However, if g(x) = x‘%, then E[g(X] = /7 /2 and the approximation is
1.39305, an error of roughly 21%. O

10.5 Exercises

10.1 Prove Lemma 10.1.

10.2 Let F denote the distribution function of the absolutely continuous distribution density function
2xexp{—x?}, x> 0.
Find the first three orthogonal polynomials with respect to F'.
10.3 Let F denote the distribution function of the discrete distribution with frequency function

1

—) x=0,1,....
2x+1

Find the first three orthogonal polynomials with respect to F.

10.4 Let F denote a distribution function on R such that all moments of the distribution exist and the
distribution is symmetric about 0, in the sense that

F(x)+ F(—x)=1, —o0<x <o00.

Let po, pi1, ... denote orthogonal polynomials with respect to F. Show that the orthogonal
polynomials of even order include only even powers of x and that the orthogonal polynomials
of odd order include only odd powers of x.

10.5 Let {po, pi1, ...} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that

/ pj()PdF(x) =1, j=0,1,....

Fixn =0, 1, ... and define a function K, : R x R+ R by

Ko (x, ) =Y pi0)p;(y).

=0

Show that, for any polynomial g of degree n or less,

Q(X)=/ K, (x, y)q(y)dF(y).

oo
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10.6

10.7

10.8

10.9

10.10
10.11
10.12
10.13
10.14

Orthogonal Polynomials

Let {po, p1, ...} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that

oo
/ p,x*dF(x)=1, j=0,1,....
—00
Fixn =0, 1, ... and let K,, denote the function defined in Exercise 10.5.
Show that for any polynomial g of degree n or less and any z € R,

8(2)* < K,(z,2) f N g(x)* dF (x).

Let {po, p1, ...} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that the coefficient of x” in p,(x) is 1. Let
G, denote the set of all polynomials of degree n with coefficient of x” equal to 1. Find the
function g € G, that minimizes

/ " e dF ().

Let {po, p1, ...} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that the coefficient of x” in p,(x) is 1. For
eachn = 1,2, ...let B, denote the coefficient of x"~! in p,(x) and let

hy = /-oo Pa(x)? dF (x).

o0
Show that pg, p1, ... satisfy the three-term recurrence relationship
N
pn+l(-x) = (x+:3n+l _ﬁn)pn(x)_ A pnfl(x)~
n—1
Let {po, p1, ...} denote orthogonal polynomials with respect to a distribution function F'. Show

that, forall m,n =0,1, ...,

n+m

Pn()pax) =Y alj, m, n)p;(x)
j=0

where the constants a(0, m, n), a(l, m, n), ... are given by
. [ Pn@)pa()p;(x) dF (x)
a(j,m,n) = =
oo pi(xX)?dF (x)

Prove Corollary 10.1.
Prove Corollary 10.2.
Prove Corollary 10.3.
Find the three-term recurrence relationship (see Exercise 10.8) for the Hermite polynomials.

Some authors define the Hermite polynomials to be polynomials orthogonal with respect to
the absolutely continuous distribution with density function

1
¢ exp <—§x2> , —00 <X <00,

where ¢ is a constant. Let H, H, ... denote orthogonal polynomials with respect to this
distribution, standardized so that the coefficient of x” in H ,(x) is 2. Show that

H,(x)=27H,(x\/2), n=0,1,....
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10.15 Show that the Hermite polynomials satisfy

[o¢]
HI'I
Z ('x) " =exp(xz —z%/2), x€R, zeR.
~ n!
Using this result, give a relationship between H,(0), n =0, 1, ..., and the moments of the
standard normal distribution.

10.16 Let L, denote the nth Laguerre polynomial. Show that

/ ” L,(x)* exp(—x)dx = 1.
0

10.17 Let po, pi1, p» denote the orthogonal polynomials found in Exercise 10.3. Find the zeros xy, x,
of p, and the constants A, A, such that

> 1
D FD gy = f )+ haf )
j=0

for all polynomials f of degree 3 or less.

10.6 Suggestions for Further Reading

Orthogonal polynomials are a classical topic in mathematics. Standard references include
Freud (1971), Jackson (1941), and Szegd (1975); see also Andrews et al. (1999, Chapters 5-7)
and Temme (1996, Chapter 6). Many useful properties of the classical orthogonal polynomials are
given in Erdélyi (1953b, Chapter X).

Gaussian quadrature is discussed in many books covering numerical integration; see, for example,
Davis and Rabinowitz (1984). Evans and Swartz (2000, Chapter 5) and Thisted (1988, Chapter 5)
discuss Gaussian quadrature with particular emphasis on statistical applications. Tables listing the
constants needed to implement these methods are available in Abramowitz and Stegun (1964) and
Stroud and Secrest (1966).
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Approximation of Probability Distributions

11.1 Introduction

Consider a random vector Y, with a known distribution, and suppose that the distribution of
f(Y) is needed, for some given real-valued function f(-). In Chapter 7, general approaches
to determining the distribution of f(Y) were discussed. However, in many cases, carrying
out the methods described in Chapter 7 is impractical or impossible. In these cases, an
alternative approach is to use an asymptotic approximation to the distribution of the statistic
under consideration. This approach allows us to approximate distributional quantities, such
as probabilities or moments, in cases in which exact computation is not possible. In addition,
the approximations, in contrast to exact results, take a few basic forms and, hence, they give
insight into the structure of distribution theory. Asymptotic approximations also play a
fundamental role in statistics.

Such approximations are based on the concept of convergence in distribution. Let
X1, X», ... denote a sequence of real-valued random variables and let F,, denote the dis-
tribution function of X,, n = 1,2, .... Let X denote a real-valued random variable with
distribution function F. If

lim F,(x) = F(x)

for each x at which F is continuous, then the sequence X, X», ... is said to converge in
distribution to X as n — 00, written

D
X,—> X as n— oo.

In this case, probabilities regarding X,, may be approximated using probabilities based
on X; that is, the limiting distribution function F may then be used as an approximation
e . . D
to the distribution functions in the sequence Fj, F,, .... The property that X, — X as
n — oo is simply the property that the approximation error decreases to 0 as n increases to
oo. The distribution of X is sometimes called the asymptotic distribution of the sequence
X1, Xo, ...

Example 11.1 (Sequence of Bernoulli random variables). Foreachn = 1,2, ..., let X,
denote a random variable such that

Pr(X, = 1) = 1 — Pr(X, = 0) = 6,;

322
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here 6y, 0,, ... is a sequence of real numbers in the interval (0, 1). Let F, denote the
distribution function of X,,. Then

0 ifx<O
Fn(x)z{en if0<x <1
1 ifx>1
Suppose that the sequence 6,,, n = 1,2, ..., converges and let 8 = lim,,_, o 6,,. Then
0 ifx<O
lim F,(x) = F(x) = {0 if0<x <1
e 1 ifx>1

Let X denote a random variable such that
Pr(X=1)=1-Pr(X =0)=06.

D
Then X, —> X asn — oo.

If the sequence 6,, n = 1, 2, ..., does not have a limit, then X,,n = 1,2, ... does not
converge in distribution. O

An important property of the definition of convergence in distribution is that we require
that the sequence F,(x),n = 1, 2, ..., converges to F(x) only for those x that are continuity
points of F. Hence, if F' is not continuous at x(, then the behavior of the sequence F,(x),
n=1,2,...,playsnorole in convergence in distribution. The reason for this is that requir-
ing that F,,(x),n = 1,2, ..., converges to F'(x) at points at which F is discontinuous is too
strong of a requirement; this is illustrated in the following example.

Example 11.2 (Convergence of a sequence of degenerate random variables). Let
X1, X», ... denote a sequence of random variables such that
Pr(X,=1/n)=1,n=1,2,....

Hence, when viewed as a deterministic sequence, X, X5, ... has limit 0.
Let F, denote the distribution function of X,,. Then

0 ifx<1/n
F”(x)_{l ifx>1/n "
Fix x. Clearly,
lim F,(x) = {0 %fx <0 .
n—o00 1 1fx > O
Consider the behavior of the sequence F,(0), n =1,2,.... Since 0 < 1/n for every
n=1,2,...,itfollows that
lim F,(0)=0
n—oo
so that
. 0 ifx<O
lim F,(x) = G(x) = [ fx =9
ng{}o ) ) 1 ifx>0

Note that, since G is not right-continuous, it is not the distribution function of any random
variable.
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Of course, we expect that X, X», ... converges in distribution to a random variable
identically equal to 0; such a random variable has distribution function

0 ifx<O

H”Z{l ifx >0

Thus, lim,—, » F,(x) = F(x) at all x # 0, that is, at all x at which F is continuous. Hence,
X, — 0asn — oo, where 0 may be viewed as the random variable equal to 0 with proba-
bility 1. However, if we require convergence of F,,(x) for all x, X,, would not have a limiting
distribution. O

Often the random variables under consideration will require some type of standardization
in order to obtain a useful convergence result.

Example 11.3 (Minimum of uniform random variables). LetY,, Y,, . ..denote asequence
of independent, identically distributed random variables, each with a uniform distribution on

(0, 1). Suppose we are interested in approximating the distribution of 7, = min(Y1, ..., ¥,).
Foreachn =1, 2, ..., T, has distribution function
H,(t) = Pr(T, <t)=Pr{min(Y,, ..., Y,) <1}
0 ift <0
={1—(1—t)” if0<r<l1
1 ift>1
Fix t. Then
1mfmn={0?“50
n—00 1 iftr>0
so that, as n — oo, T, converges in distribution to the random variable identically equal to
0. Hence, for any ¢t > 0, Pr{min(Y7, ..., Y,) <t} can be approximated by 1. Clearly, this
approximation will not be very useful, or very accurate.
Now consider standardization of 7,,. For each n=1,2,..., let X, =n*T, =
nmin(Yy, ..., Y,) where « is a given constant. Then, foreachn = 1, 2, ..., X}, has distri-

bution function

F,(x;a) =Pr(X, < x)="Pr{min(Yy,...,Y,) < x/n"%}

0 ifx <0
={1—(1—x/n°‘)" if 0 < x < n”
1 if x > n®
Fix x > 0. Then
1 ifa <1
15101Q F,(x;a) = { 1 —exp(—x) ifa=1
0 ifa>1

Thus, if ¢ < 1, X,, converges in distribution to the degenerate random variable 0, while
if @ > 1, X, does not converge in distribution. However, if « = 1,

. o ifx <0
nlggo Fa(x;0) = { 1 —exp(—x) if0<x < oo,
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which is the distribution function of a standard exponential distribution. Hence, if X is a

. . e . D
random variable with a standard exponential distribution, then n min(Yy,...,Y,) - X as
n— oo.

For instance, an approximation to

Pr{min(Y1, ..., Yi9) < 1/10} = Pr{10 min(Yy, ..., Yy9) < 1}

is given by 1 — exp(-1) = 0.632; the exact probability is 0.651. O

The examples given above all have an important feature; in each case the distribution
functions Fy, F», ... are available. In this sense, the examples are not typical of those in
which convergence in distribution plays an important role. The usefulness of convergence
in distribution lies in the fact that the limiting distribution function may be determined in
casesin whichthe F,,n =1, 2, ..., are not available. Many examples of this type are given
in Chapters 12 and 13.

11.2 Basic Properties of Convergence in Distribution

Recall that there are several different ways in order to characterize the distribution of a
random variable. For instance, if two random variables X and Y have the same characteristic
function, or if E[ f(X)] = E[ f(Y)] for all bounded, continuous, real-valued functions f,
then X and Y have the same distribution; see Corollary 3.1 and Theorem 1.11, respectively,
for formal statements of these results.

The results below show that these characterizations of a distribution can also be used to
characterize convergence in distribution. That is, convergence in distribution is equivalent
to convergence of expected values of bounded, continuous functions and is also equivalent
to convergence of characterstic functions. We first consider expectation.

Theorem 11.1. Let X, X», ... denote a sequence of real-valued random variables and
let X denote a real-valued random variable. Let X denote a set such that Pr(X, € X) =
I,n=1,2,...andPr(X € X) = 1.

X, 2) X as n— o0
if and only if
E[f(X)] = E[f(X)] as n— o0
for all bounded, continuous, real-valued functions f on X.
Proof. Suppose that X, B X asn — oo and let F denote the distribution function of X.
In order to show that
E[f(Xu)] — E[f(X)] as n — o0

for all bounded, continuous, real-valued functions f, we consider two cases. In case 1, the
random variables X, X, X», ... are bounded; case 2 removes this restriction.
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Case 1: Suppose that there exists a constant M such that, with probability 1,
| Xul <M, n=1,2,...

and | X| < M. We may assume, without loss of generality, that M is a continuity point of F.
Consider a bounded, continuous, function f : R — Randlete > 0. Let x;, x5, ..., X,
denote continuity points of F such that

M =xpg<X] < <Xpo] <Xy < Xpp1 =M
and
max Xissxusrjm |f(x) — flx)l <e.
Define

Sm(x) = f(x;) for x; <x < xi41.

Then, as n — oo,

M m
/ ) dF ) = D FEDFu(xi) = Fo(x)]
- i=1
= Y FEDIF(xipn) — F(x)]
i=1

M
=/ Sm(x)dF(x).
-M
Hence, for sufficiently large n,
M
[ mwianw - drwi| <e.
-M

It follows that

M
[ rwianw - drw)
-M

M M
<| [ L0 = FuCOlld ) = dF | + | / InE () = dF )
< 3e.

Since € is arbitrary, it follows that
lim E[f(X,)] = ELf(X)].

Case 2: For the general case in which the X, X», ... and X are not necessarily bounded,
let 0 < € < 1 be arbitrary and let M and —M denote continuity points of F' such that

M
f dF(x) = F(M) — F(—M) > 1 —e.
-M

Since

Fo(M) — Fy(—M) — F(M)— F(—M) as n — oo,
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it follows that
M
/ dF,(x) = F,(M) — F,(—M) > 1 — 2¢
-M

for sufficiently large n. Hence,

[e's) M
|| swiarw - arwl| < | [ rein,e - dre| + s ee.
—00 -M x

The same argument used in case 1 can be used to shown that

M
’/ FOOIdFy(x) —dF(x)]’ 50 as n— oo;
-M
since € is arbitrary, it follows that

|| swianw - drwi| - o

as n — 0o, proving the first part of the theorem.
Now suppose that E[ f(X,,)] converges to E[ f(X)] for all real-valued, bounded, contin-
uous f. Define

1 ifx <0
h(X)={1—x ifo0<x <1
0 ifx >1

and for any ¢ > 0 define h,(x) = h(tx).
Note that, for fixed ¢, h, is a real-valued, bounded, continuous function. Hence, for all
t >0,

nli)fgo E[h,(X,)] = E[h:(X)].
For fixed x,
Lu<yy < i — x) < Tu<itiy
for all u, t. Hence,
o0
Fox) < / ot — x) dFy(u) = Elhy (X, — )]
—0oQ

and, for any value of > 0,

limsup F,(x) < lim E[h(X,, —x)] = E[h(X —x)] < F(x + 1/1).

n—o0o

It follows that, if F is continuous at x,

limsup F,(x) < F(x). (11.1)

n—oo

Similarly, for fixed x,
I{ugx—l/t} <h(u-—x+ 1/t) < I{ufx]

for all u, r > 0. Hence,

Fu(x) = /OO hi(u — x + 1/t) dFy(u) = E[h,(X, — x + 1/1)]

[ee]
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and, for any value of t > 0,
linrgicgf Fu(x) > nhl{}o E[h, (X, —x +1/0)] =E[h(X, —x + 1/1)] > F(x + 1/1).
It follows that
linrgng,,(x) >Fx—1/t), t>0
and, hence, that

liminf F,(x) > F(x) (11.2)
n—0oQ

provided that F is continuous at x.
Combining (11.1) and (11.2), it follows that

lim F,(x) = F(x)
n—oo
at all continuity points x of F, proving the theorem. W
It can be shown that the function /, used in the proof of Theorem 11.1 is not only
. L . D .
continuous, it is uniformly continuous. Hence, X,, — X as n — oo provided only that
E[f(X.)] — E[f(X)] as n — o0

for all bounded, uniformly continuous, real-valued functions f. Since the class of all
bounded, uniformly continuous functions is smaller than the class of all bounded, con-
tinuous functions, this gives a slightly weaker condition for convergence in distribution that
is sometimes useful. The details of the argument are given in following corollary.

Corollary 11.1. Let X1, X», ... denote a sequence of real-valued random variables and let
X denote a real-valued random variable. If

E[f(X;)] = E[f(X)] as n— o0

for all bounded, uniformly continuous, real-valued functions f, then

D
X,—> X as n— oo.

Proof. Suppose that E[ f(X,)] converges to E[ f(X)] for all real-valued, bounded, uni-
formly continuous f. As in the proof of Theorem 11.1, define

1 ifx <0
hx)=11—x if0<x<1
0 ifx >1

and for any ¢ > 0 define 4,(x) = h(tx).
The function 4, is uniformly continuous. To see this, note that

|x1 — x3| f0<x;<land0<x, <1

1 if min(x, x) < 0 and max(x, x) > 1
max(x;, xp) if min(x;, x;) < 0and 0 < max(x, xp) <1
0 otherwise

|h(x1) — h(x2)| =
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Hence, for all x1, x»,

|h(x1) — h(x2)| < |x1 — X2
so that, for a given value of # and a given € > 0,

lhi(x1) = hi(x2)] < €
whenever
lx1 —x2| <€/t

It follows that 4, is uniformly continuous and, hence, for all ¢ > 0,

lim B[ (X,)] = Bl (X)].

The proof of the corollary now follows as in the proof of Theorem 11.1. W

The requirements in Theorem 11.1 that f is bounded and continuous are crucial for
the conclusion of the theorem. The following examples illustrate that convergence of the
expected values need not hold if these conditions are not satisfied.

Example 11.4 (Convergence of a sequence of degenerate random variables). As in
Example 11.2, let X, X», ... denote a sequence of random variables such that

Pr(X,=1/n)=1, n=1,2,....

We have seen that X, —D> Oasn — oo.
Let
0 ifx<0
f(x)_{l ifx>0"
note that f is bounded, but it is discontinuous at x = 0. It is easy to see that E[ f(X,,)] = 1
foralln =1,2,...sothatlim,_ . E[f(X,)] = 1; however, E[f(0)] =0. O

Example 11.5 (Pareto distribution). For each n = 1,2, ..., suppose that X, is a real-
valued random variable with an absolutely continuous distribution with density function
1 1 1
pu(x) =

_— x> .
n(l +n)» 2t n+1

Let F,, denote the distribution function of X,,; then

0 ifx < 14%1
Fn(-x) = —(+YH 1
1—1[(n+ 1x] n 1fn—+1§x<oo.
Hence,
lim F,(x) = {O %fx =0
n—o00 1 ifx>0

D
so that X,, —> Oasn — oo.
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Consider the function f(x) = x, which is continuous, but unbounded. It is straight
forward to show that

1 S|
E[f(X»)] = 1 —rdx=1, n=12...
n(1+n)n J 4 x'ts

while E[ f(0)] = 0. O

A useful consequence of Theorem 11.1 is the result that convergence in distribution is
preserved under continuous transformations. This result is stated in the following corollary;
the proof is left as an exercise.

Corollary 11.2. Let X, X1, X», ... denote real-valued random variables such that

D
X,—> X as n— oo.

Let f: X — R denote a continuous function, where X C R satisfies Pr[X, € X] =1,
n=1,2,...and Pr(X € X) = 1. Then

FX) 2 F(X) as n— oo

Example 11.6 (Minimum of uniform random variables). As in Example 11.3, let
Y, Y, ... denote a sequence of independent identically distributed, each with a uniform
distribution on (0, 1) and let X, = nmin(Yy,...,Y,), n =1,2,.... In Example 11.3, it
was shown that that X,, — X as n — oo, where X is a random variable with a standard
exponential distribution.

Let W, = exp(X,,),n = 1,2, .... Since exp(-) is a continuous function, it follows from

Corollary 11.2 that W, B Wasn — 00, where W = exp(X). It is straightforward to show
that W has an absolutely continuous distribution with density

—, w>1 O

An important result is that convergence in distribution may be characterized in terms of
convergence of characteristic functions. The usefulness of this result is due to the fact that
the characteristic function of a sum of independent random variables is easily determined
from the characteristic functions of the random variables making up the sum. This approach
is illustrated in detail in Chapter 12.

Theorem 11.2. Let X1, X», ... denote a sequence of real-valued random variables and
let X denote a real-valued random variable. For each n = 1,2, ..., let ¢, denote the
characteristic function of X, and let ¢ denote the characteristic function of X. Then

X, —D> X as n— o0
if and only if

lim ¢,() = @), forall —oo <t < o0.
n—00
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Proof. Applying Theorem 11.1 to the real and imaginary parts of exp{izx} shows that
X, Bx implies that ¢, (r) — ¢(t) for all z.
Hence, suppose that

nlingo on(t) = p(t), forall —oo <t < oo.
Let g denote an arbitrary bounded uniformly continuous function such that
lgx)| <M, —oo<x < o0.
If it can be shown that
nlirgo E[g(X,)] = E[g(X)] as n — oo,

then, by Corollary 11.1, X, 2) X as n — oo and the theorem follows.
Given € > 0, choose § so that

sup  [g(x) — g < e.
x,y:ilx—y|<é

Let Z denote a standard normal random variable, independent of X, X, X5, ..., and con-
sider |g(X,, + Z/t) — g(X,,)| where t > 0. Whenever | Z|/ is less than §,

18X +Z/1) — g(Xp)| < €
whenever | Z|/t > €, we still have
18(Xn + Z/1) — g(Xn)| < 18(Xn + Z/D)] +18(Xn)| < 2M.
Hence, for any ¢ > 0,
Ellg(X, + Z/t) — g(Xn)|] < €Pr(|Z]| < t8) + 2MPr(|Z| > 15).
For sufficiently large ¢,
€
Pr(|Z| > t5) < M
so that
E[lg(X, + Z/1) — g(X)I] < 2e.

Similarly, for sufficiently large 7,

E[lg(X + Z/1) — g(X)]] < 2¢
so that

E[lg(X,) — g(X)|] = Ellg(Xy) — (X + Z/D)] + E[|g(X,, + Z/1) — (X + Z/1)]]
+E[lg(X + Z/1) — g(X)Il = 4e +EBllg(X, + Z/1) — g(X + Z/1)]].

Recall that, by Example 3.2,
1
@z(1) = (2m)2¢(1),

where ¢ denotes the standard normal density.



332 Approximation of Probability Distributions
Hence,

Hmn+2ﬁn=/ / g(x + 2/0$(2) dz dFy(x)

1
Qn):
1
(2n)?
1
(2n)?

f / g(x + z/)p(z)dz d Fy(x)

f / g(x + z/t)E[explizZ}]1dz d F,(x)

ff/g(x+Z/t)eXp{izy}¢(y)dydzan(X)-

Consider the change-of-variable u = x 4 z/t. Then

l o0 o0 o0
Elg(Xn, + Z/D)] = l/ / / g(u)expliyt(u — x)}p(y)dy du d F,(x)
t2m)? J-oo J =0 J -0
1 o0 o0 o0
= I / / g(u) exp{—iytu}p(y) / exp{—iytx}d Fy(x)dy du
t(2m)2 J-oo J—0 —00
1 o0 o0
= 1/ / g)exp{—ityu}p(y)p,(—ty)dy du.
t(2m)2 J—oo J—0
Similarly,
1 o0 o0
Elg(X, + Z/1)] = lf / Q) expl—ityulp(»)p(~ty) dy du.
t2m)2 J-oo J—oc0

By assumption,
lim ¢,(—ty) = ¢(—ty) forall —oco <y < 0.
n—oo

Since ¢, (—ty) is bounded, it follows from the dominated convergence theorem (considering
the real and imaginary parts separately) that

lim E[g(X, 4+ Z/t)] = E[g(X + Z/t)] forall ¢t > 0.
n—oo
Hence, for sufficiently large ¢ and n,

|E[g(Xs) — g(X)]| < Se.

Since € is arbitrary, the result follows. B

Example 11.7. Let X, X,, ... denote a sequence of real-valued random variables such

that X, 2) X as n — oo for some random variable X. Let Y denote a real-valued random
variable such that, foreachn = 1,2, ..., X,, and Y are independent.

Let ¢, denote the characteristic function of X,,, n = 1,2, ..., let ¢x denote the char-
acteristic function of X, and let gy denote the characteristic function of Y. Then X,, + Y

has characteristic function ¢, (¢)¢y (¢). Since X, 2) X asn — 00, it follows from Theorem
11.2 that, for each t € R, ¢, (t) — ¢x(¢) asn — oo. Hence,

Jim @, (Dey (1) = ex ey (@), 1 €R.
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It follows that from Theorem 11.2
X, +Y 2 X+Y, as n— oo,

where Y, denotes a random variable that is independent of X and has the same marginal
distribution as Y. O

Example 11.8 (Normal approximation to the Poisson distribution). LetY,, Y,, ...denote
asequence of real-valued random variables such that, foreachn = 1, 2, .. ., ¥,, hasaPoisson
distribution with mean »n and let

Y,—n
Xn: }1:1,2,..,_

Vno

Since the characteristic function of a Poisson distribution with mean A is given by

exp{rlexp(it) — 1]}, —oo <t < 00,
it follows that the characteristic function of X, is
on(t) = exp{nexp(it//n) —n — /nit}.
By Lemma A2.1 in Appendix 2,

explit) = ) (1]%)] + Ry(1)

j=0
where

IR, (1) < min{|¢|"™' /(n + 1), 2|z"/n!}.
Hence,

exp(it//n) =1 +it//n — %tz/n + Ry(1)
where

1, 3
|Ry(1)] < gt‘/nz-
It follows that

@n(t) = exp{—17/2 + nRy (1)}

and that
nlLrgOnRz(t) =0, —o0o<t<o0.
Hence,
nler;o on(t) = exp(—t2/2), —00 <t < 00,

the characteristic function of the standard normal distribution.
Let Z denote a random variable with a standard normal distribution. Then, by Theo-
D
rem11.2, X,, > Z asn — oo.

Thus, probabilities of the form Pr(X, < z) can be approximated by Pr(Z < z); these
approximations have the property that the approximation error approaches 0 as n — oo.
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Table 11.1. Exact probabilities in Example 11.8.

o

n 0.10 0.25 0.50 0.75 0.90

10 0.126 0.317 0.583 0.803 0.919
20 0.117 0.296 0.559 0.788 0914
50 0.111 0.278 0.538 0.775 0.909
100 0.107 0.270 0.527 0.768 0.907
200 0.105 0.264 0.519 0.763 0.905
500 0.103 0.259 0.512 0.758 0.903

Let Q7 denote the quantile function of the standard normal distribution. Table 11.1 con-
tains probabilities of the form Pr(X, < Qz(«)) for various values of n and «; note that a
probability of this form can be approximated by «. For each value of « given, it appears that
the exact probabilities are converging to the approximation, although the convergence is, in
some cases, quite slow; for instance, for « = 0.50, the relative error of the approximation
is about 2.3% even when n = 500. O

Uniformity in convergence in distribution

Convergence in distribution requires only pointwise convergence of the sequence of distri-
butions. However, because of the special properties of distribution functions, in particular,
the facts that they are nondecreasing and all have limit 1 at oo and limit 0 at —oo, point-
wise convergence is equivalent to uniform convergence whenever the limiting distribution
function is continuous.

Theorem 11.3. Let X, X, X,, ... denote real-valued random variables such that

D
X, —> X as n— oo.

Forn=1,2,..., let F, denote the distribution function of X, and let F denote the distri-
bution function of X. If F is continuous, then

sup |F,(x) — F(x)] > 0 as n— oo.
X

Proof. Fix € > 0. Let xy, x2, ..., X, denote a partition of the real line, with xy = —o0,
Xma1 = 00, and

Fxj))—F(xj—1) <€/2, j=1,...,m+1

Let xR, x;_1 <x =<x; for some j=1,...,m+1. Since F,(x;)—> F(x;)
asn — oo,

Fo(x) = F(x) < Fy(xj) — F(xj—1) < F(xj) +€/2 = F(xj_1)
for sufficiently large n, say n > N;. Similarly,
Fu(x) — F(x) = Fy(xj—1) — F(x;) > F(xj_1) — €/2 — F(x;)

forn > N;_;; note thatif j = 1, the F,,(x;_1) = F(x;_1) so that Ny = 1.
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Since F(x;) — F(xj—1) < €/2 and F(x;_1) — F(x;) > —e€/2, it follows that, for n >
max(N;, N;_y),
Fy(x) — F(x) <€
and
Fy(x) — F(x) = —e.
It follows that, for n > max(N;, N;_1),
|Fu(x) — F(x)| <e.
Let N = max(Ny, Ny, Na, ..., Ny+1). Then, for any value of x,
|Fp(x) — F(x)| <€

for n > N; since the right-hand side of this inequality does not depend on x, it follows that,
given €, there exists an N such that

sup [ F(x) — F(x)| < €
forn > N, proving the result. MW

Example 11.9 (Convergence of F,(x,)). Suppose that a sequence of random variables
X1, X», ... converges in distribution to a random variable X. Let F;, denote the distribution

function of X,,, n = 1,2, ..., and let F denote the distribution function of X, where F is
continuous on R. Then, for each x, lim,_, o, F,(x) = F(x).
Let x1, x5, ... denote a sequence of real numbers such that x = lim,,_, », x,, exists. Then

| Fu(xn) — FO)| < [Fp(xn) — FQxp)| + [ F(xn) — F(x)I.
Since F' is continuous,
lim | F(x,) — F(ol = 0;
by Theorem 11.3,
Lim | F, (x) = F(x) = lim sup |F,(x) — F(x)] = 0.

Hence,
lim |F,(x,) — F(x)| = 0;
n—0o0

that is, the sequence F,(x,) converges to F(x)asn — oo. O

Convergence in distribution of random vectors

We now consider convergence in distribution of random vectors. The basic definition is
a straightforward extension of the definition used for real-valued random variables. Let
X1, X, ... denote a sequence of random vectors, each of dimension d, and let X denote
a random vector of dimension d. For each n = 1,2, ..., let F, denote the distribution
function of X, and let F' denote the distribution function of X. We say that X,, converges
in distribution to X as n — oo, written

D
X,—> X as n—> o0



336 Approximation of Probability Distributions

provided that
lim F,(x) = F(x)
n—oo

for all x € R at which F is continuous.

Many of the properties of convergence in distribution, proven in this section for sequences
of real-valued random variables, extend to the case of random vectors. Several of these
extensions are presented below without proof; for further discussion and detailed proofs,
see, for example, Port (1994, Chapters 50 and 51).

The following result considers convergence in distribution of random vectors in terms
of convergence of expected values of bounded functions and generalizes Theorem 11.1 and
Corollaries 11.1 and 11.2.

Theorem 11.4. Let X1, X5, ... denote a sequence of d-dimensional random vectors and
let X denote a d-dimensional random vector.
(i) If

X, 2) X as n— o0
then
E[f(X»)] — E[f(X)] as n— oo

for all bounded, continuous, real-valued functions f.
(ii) If
E[f(X,)] — E[f(X)] as n— oo

for all bounded, uniformly continuous, real-valued functions f, then

X, —D> X as n— oo.
(iii) If X,, 2) X asn — 00, and g is a continuous function, then g(X,) 2) g(X).

Theorem 11.5 below generalizes Theorem 11.2 on the convergence of characteristic
functions.

Theorem 11.5. Let X1, X», ... denote a sequence of d-dimensional random vectors and
let X denote a d-dimensional random vector.

Let ¢, denote the characteristic function of X, and let ¢ denote the characteristic
function of X.

Xn 2> X as n— o©
if and only if
lim @,(1) = (1), forall teR?.
n—0oQ

Recall that, when discussing the properties of characteristic functions of random vectors,
it was noted that two random vectors X and Y have the same distribution if and only if t7 X
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and ¢7'Y have the same distribution for any vector ¢. Similarly, a very useful consequence of
Theorem 11.5 is the result that convergence in distribution of a sequence of d-dimensional
random vectors X, X, .. .toarandom vector X may be established by showing that, for any
vector t € R?, tT X, 1T X,, ... converges in distribution to t7 X. Thus, a multidimensional
problem may be converted to a class of one-dimensional problems. This often called the
Cramér—Wold device.

Theorem 11.6. Let X, X1, X», ... denote d-dimensional random vectors. Then
D
X,—> X as n—>
if and only if
TX, —D> tTX as n— oo

forallt € RY.

Proof. Let ¢, denote the characteristic function of X,, and let ¢ denote the characteristic
function of X. Then ¢” X, has characteristic function

@n(s) = @u(st), s €R
and 7 X has characteristic function
@(s) = p(st), s e€R.
Suppose X, Z X.Then
@u(t) > @(t) forall r € R?
so that, fixing ¢,
On(st) — @(st) forall s € R,
proving that t7 X, By,
Now suppose that t7 X, B 47X forall r € R%. Then
@u(st) — @(st) forall s € R, r e R
Taking s = 1 shows that
@u(t) = @(t) forall r € R?,
proving the result. MW
Thus, according to Theorem 11.6, convergence in distribution of the component random

variables of a random vector is a necessary, but not sufficient, condition for convergence in
distribution of the random vector. This is illustrated in the following example.

Example 11.10. Let Z, and Z, denote independent standard normal random variables
and, forn =1,2,...,let X, = Z; + o, Z, and Y,, = Z,, where «1, a3, ... is a sequence

D .
of real numbers. Clearly, Y, — Z, as n — oo and, if o, — « as n — oo, for some real
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D .
number «, then X, — N(0, 1 + «?) as n — oo. Furthermore, since for any (t1, ) € R2?,
nhX,+6Y, =172 + (t, + a,t1)Z;, has characteristic function

exp{—[t] + (o + a,1)"1s%/2}, s €R,
which converges to
exp{—[t} + (t, + at))*1s*/2}, s €R,

it follows that #; X,, + .Y, converges in distribution to a random variable with a normal
distribution with mean 0 and variance 112 + (t, + at;)?. Hence, by Theorem 11.6,

(3) =

where W has a bivariate normal distribution with mean vector 0 and covariance matrix

1+a? «
o 1)

Now suppose that o, = (—1)*,n =1,2,.... Clearly, Y, —D> Z» as n — oo still holds.
Furthermore, since X, = Z; 4+ (—1)"Z,, it follows that, foreachn = 1,2, ..., X, has a
normal distribution with mean O and variance 2; hence, X, —D> N(0,2) as n — 00. How-
ever, consider the distribution of X, + Y, = Z; + (1 + (—1)")Z,. This distribution has
characteristic function

exp(—s2/2) forn=1,3,5,...
exp(—5s2/2) forn=2,4,6,..."°

Hence, by Theorem 11.2, X, + Y, does not converge in distribution so that, by
Theorem 11.6, the random vector (X,, ¥,) does not converge in distribution. O

exp{—[1 + (1 + (—=1)")*1s%/2} = { s e R.

11.3 Convergence in Probability

A sequence of real-valued random variables X, X», ... converges in distribution to a ran-
dom variable X if the distribution functions of X;, X5, ... converge to that of X. It is
important to note that this type of convergence says nothing about the relationship between
the random variables X,, and X.

Suppose that the sequence X, X5, ... is such that | X,, — X| becomes small with high
probability as n — oo; in this case, we say that X,, converges in probability to X. More
precisely, a sequence of real-valued random variables X, X», ... converges in probability
to a real-valued random variable X if, for any € > 0,

lim Pr(|X, — X| > ¢€)=0.
n—oQ
We will denote this convergence by X, & X as n — oo. Note that for this definition to

make sense, for each n, X and X,, must be defined on the same underlying sample space, a
requirement that did not arise in the definition of convergence in distribution.

Example 11.11 (Sequence of Bernoulli random variables). Let X1, X,, ... denote a
sequence of real-valued random variables such that

Pr(X, = )=1-Pr(X, =0) =6, n=12,...
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where 60, 6,, . .. denotes a sequence of constants each taking values in the interval (0, 1).
For any € > 0,

Pr(|X,| =€) =Pr(X, =1) =06,;

hence, X, 2o provided that lim,,,,, 6, = 0. O

Example 11.12 (Normal random variables).

Let Z, Z,, Z,, . .. denote independent random variables, each with a standard normal
distribution, and let o, a3, ... denote a sequence of real numbers satisfying 0 < «,, < 1
forn=1,2,...and o, —> 1asn — oo. Let

Xpn=0—-a)Z,+a,Z, n=1,2,...

and let X = Z. Then, foranym = 1,2, ..., (X1, ..., X,,) has a multivariate normal dis-
tribution with mean vector and covariance matrix with (i, j)th element given by «;«;, if
i #jandby (1 —a;)* +afifi =j.

Note that X,, — X = (1 — «,)(Z,, — Z) so that, for any € > 0,

Pr{|X, — X| = €} =Pr{|Z, — Z| = €/(1 — )}
so that, by Markov’s inequality, together with the fact that E[|Z, — Z|*] = 2,

201 -,
PHIX, — X| > ) < 2@ g
€

It follows that X, L Xasn— 00, O

As noted above, an important distinction between convergence of a sequence X,,, n =
1,2, ..., to X in distribution and in probability is that convegence in distribution depends
only on the marginal distribution functions of X, and of X, while convergence in probability
is concerned with the distribution of | X, — X|. Hence, for convergence in probability, the
joint distribution of X, and X is relevant. This is illustrated in the following example.

Example 11.13 (Sequence of Bernoulli random variables). Let X, X,, ... denote a
sequence of real-valued random variables such that, foreachn = 1,2, ...,

1ln+1

Pr(X, = 1)=1-Pr(X, =0)=

and let X denote a random variable satisfying
Pr(X=1)=Pr(X =0)=1/2.

Then, by Example 11.1, X, 2> X asn — oo.
However, whether or not X,, converges in X in probability will depend on the joint
distributions of (X, X;), (X, X»), ....Forinstance, if, for each n, X, and X are independent,
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then
Pr(|X, — X|>1/2)=Pr(X, =1 N X=0+Pr(X,=0N X=1)
_1n+1 1n—1

T4 n 4 n
1

=3
it follows that X, does not converge to X in probability.
On the other hand, suppose that

1
Pr(X,=1X=1)=1 and Pr(X,=1/X=0)= .
n

Note that
Pr(X, =D =Pr(X, = 1|1X=1DPr(X = 1)+ Pr(X,, = 1| X = 0)Pr(X =0)
1 11
2702
1n+1
2 a0
as stated above. In this case, for any € > 0,

1
Pr(|X, — X| = ) =Pr(X, =1 N X=0)+Pr(X, =0 N X =)=
n

so that X, 2 Xasn— oo, O

The preceding example shows that convergence in distribution does not necessarily imply
convergence in probability. The following result shows that convergence in probability does
imply convergence in distribution. Furthermore, when the limiting random variable is a
constant with probability 1, then convergence in probability is equivalent to convergence in
distribution.

Corollary 11.3. Let X, X1, X», ... denote real-valued random variables.
(i) If X,, L Xasn— oo then X, 3 X asn — oo.

(ii) If X, 2) X as n — oo and Pr(X = ¢) = 1 for some constant c, then X, 2 X as
n — oo.

Proof. Suppose that X, & X. Consider the event X, < x for some real-valued x. If
X, < x, then, for every € > 0, either X < x + € or |X,, — X| > €. Hence,
Pr(X, <x) < Pr(X <x +¢€)+Pr(|X, — X| > ).

Let F,, denote the distribution function of X,, and let F denote the distribution function of
F. Then, for all ¢ > 0,

limsup F,(x) < F(x + €).

n—oo

Similarly, if, for some € > 0, X < x — ¢, then either X,, < x or |X,, — X| > €. Hence,

F(x —€) < F,(x) + Pr(|X,, — X[ > ¢€)
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so that, for all € > 0,

liminf F,(x) > F(x — ).

n—0oo

That is, for all ¢ > 0,

F(x —¢) <liminf F,(x) < limsup F,(x) < F(x + €).

n—>00 n—00

Suppose F is continuous at x. Then F(x +¢€¢) — F(x —€) — 0 as € — 0. It follows that

lim F,(x)

n—00

exists and is equal to F(x) so that X, 3 X. This proves part (i) of the theorem.

Now suppose that X, B X and that X = ¢ with probability 1. Then X has distribution
function

0 ifx<c
1 ifx>c "’

F(x):{

Let F, denote the distribution function of X,,. Since F' is not continuous at x = c, it follows
that
lim F,(x) =

n—oo

{O ifx <c
1 ifx>c

Fix € > 0. Then
Pr(|X, —c| =€) =Pr(X, <c—¢€)+Pr(X, > c+¢)
<F,c—€)+1—F,(c+€/2) >0 as n— oo.

Since this holds for all € > 0, we have

lim Pr{|X,, —c| > €} =0 forall € > 0;

n—00

it follows that X,, = ¢ as n — o0, proving part (ii) of the theorem. M

Convergence in probability to a constant

We now consider convergence in probability of a sequence X, X5, . .. to a constant. Without
loss of generality we may take this constant to be 0; convergence to a constant ¢ may be
established by noting that X,, converges in probability to c if and only if X,, — ¢ converges
in probability to 0.

Since convergence in probability to a constant is equivalent to convergence in distribution,
by Corollary 11.2, if X, £ 0and f is a continuous function, then f(X,) S f(0). Since,
in this case, the distribution of X, becomes concentrated near 0 as n — o0, convergence
of f(X,)to £(0) holds provided only that f is continuous at 0. The details are given in the
following theorem.

Theorem 11.7. Let X, X», ... denote a sequence of real-valued random variables such
that X, L 0asn — oco. Let f : R — Rdenote a function that is continuous at 0. Then

F(X) 5 FO) as n— .
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Proof. Fix € and consider Pr(| f(X,) — f(0)| < €). By the continuity of f, there exists a
6 such that | f(x) — f(0)] < € whenever |x| < 8. Hence,

Pr(| f(Xn) — f(0)] < €) = Pr(|X,,| < 9).
The result now follows from the fact that, for any § > 0,
lim Pr(|X,| <§)=1. |
n—oQ

According to Theorem 11.2, a necessary and sufficient condition for convergence in
distribution is convergence of the characteristic functions. Since the characteristic function

of the random variable O is 1 for all ¢+ € R, it follows that X, £ 0asn — ocoifand only if
¢1, ¢2, ..., the characteristic functions of X, X, ..., respectively, satisfy

lim ¢,(t) =1, teR.

n—oo
Example 11.14 (Gamma random variables). Let X, X», ... denote a sequence of real-
valued random variables such that, for each n = 1,2, ..., X, has a gamma distribution

with parameters «, and $,, where «, > 0 and B, > 0; see Example 3.4 for further details
regarding the gamma distribution. Assume that
lim «, = and Ilim B, =p

for some «, B.
Let ¢, denote the characteristic function of X,,. Then, according to Example 3.4,

log ¢, (t) = a, log B, — oy log(B, —it), t €R.
Hence, X, L 0asn— provided that « = 0, 8 < o0, and
lim «,log B, = 0. |
n—oo

Example 11.15 (Weak law of large numbers). Let Y,,n = 1,2, ... denote a sequence of
independent, identically distributed real-valued random variables such that E(Y;) = 0. Let

X, = %(Yl—l—-n—i-Yn), n=12,....
The characteristic function of X,, is given by
on(t) = (t/n)"
where ¢ denotes the characteristic function of ¥; and, hence
log (1) = n log ¢(t/n).
Since E(Y;) = 0, by Theorem 3.5,
pt)=14+0() as t—>0
and, hence,

logp(t) =o(t) as t— 0;
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it follows that

t
loggon(t):no(—) — 0 as n— oo.
n

Hence, by Theorem 11.2, X, —D> 0 as n — o0; it now follows from Corollary 11.3 that
X, X 0asn — oo. This is one version of the weak law of large numbers. O

Example 11.16 (Mean of Cauchy random variables). Let Y,, n =1,2,... denote a
sequence of independent, identically distributed random variables such that each Y; has
a standard Cauchy distribution; recall that the mean of this distribution does not exist so
that the result in Example 11.15 does not apply.

Let

1
X, =-Y1+---+Y), n=1,2,....
n

The characteristic function of the standard Cauchy distribution is exp(—|¢|) so that the
characteristic function of X, is given by

on(1) = exp(—|t|/n)" = exp(—|z]).
Hence, X, does not converge in probability to 0; in fact, X,, also has a standard Cauchy

distribution. O

Although convergence in probability of X,, to 0 may be established by considering char-
acteristic functions, it is often more convenient to use the connection between probabilities
and expected values provided by Markov’s inequality (Theorem 1.14). Such a result is given
in the following theorem; the proof is left as an exercise.

Theorem 11.8. Let X, X5, ... denote a sequence of real-valued random variables. If, for
somer > 0,

lim E(|X,]") =0
n—o0
then X, 0.

Example 11.17 (Weak law of large numbers). Let Y,,n = 1,2, ... denote a sequence of

real-valued random variables such that E(Y,) =0,n =1,2, ..., E(Ynz) = anz <00, n=
1,2,...,and Cov(Y;, Y;) =0 foralli # j.
Let

1
X, =-Y,+---+Y,), n=1,2,....
n

Then

1 n
2y _ _ 2
E(X;) = Var(X,) = ) jEZI o;.
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Hence, X, L 0asn—0 provided that

lim —

n—0 n2 Z
This is another version of the weak law of large numbers. O

The weak laws of large numbers given in Examples 11.15 and 11.17 give conditions under
which the sample means of a sequence of real-valued random variables, each with mean O,
converges in probability to 0. In Example 11.15, the random variables under consideration
were taken to be independent, while in Example 11.17, they were taken to be uncorrelated.
The following example shows that a similar result holds, under some conditions, even when
the random variables are correlated.

Example 11.18 (Weak law of large numbers for correlated random variables). Let
X1, X2, ... denote a sequence of real-valued random variables such that E(X;) =0,
Var(X;) =1, j =1,...,n, and suppose that

COV(X[,Xj)IR(i_j)s i,jzl,...,}’l

for some function R. In the language of Chapter 6, { X, : t € Z}is adiscrete-time covariance-
stationary stochastic process and R is the autocovariance function of the process; however,
the results of Chapter 6 are not needed for this example. We will show that if R(j) — 0 as
Jj — oo, then

1 n

—ZXj—p>0 as n — oo.

n 4

j=1
Note that the condition that R(j) — 0 as j — oo is the condition that the correlation
between two random variables in the sequence X, X5, ... decreases to O as the distance
between their indices increases.
By Chebychev’s inequality, the result follows provided that

Note that

:l»—

(i

Fix € > 0. Under the assumption that R(j) — 0 as j — oo, there exists an integer N
such that |R(j)| < € forall j > N. Hence, forn > N,

Z ):n—IZZZR(Iz—JI)— ! |:nR(O)+ZZ(n—J)R(])]
—1
< 22(n—1)R(1)

n—1

Z(n — DRG)| < Z(n — DIR()I + (n — N’e
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so that

:|,_

|

i ) %ﬁ:(l——>lR(1)|+2< —%)26.

j=0
It follows that

lll
li Vi — X | <2e.
1m sup ar(nz j)_ €

n—o00

Since € > 0 is arbitrary, it follows that

. 1
Jim, Var (; 2. X )
proving the result. O

Convergence in probability of random vectors and random matrices
Convergence in probability can also be applied to random vectors. Let X, X»,... be a
sequence of d-dimensional random vectors and let X denote a d-dimensional random

vector. Then X, converges in probability to X as n — oo, written X, 2 Xasn— 00,
provided that, for any € > 0,

lim Pr{|[X, — X|| = €} = 0;
n—00

here || - || denotes Euclidean distance on R?.

The following result shows that convergence in probability of a sequence of random
variables is equivalent to convergence in probability of the sequences of component random
variables. Thus, convergence in probability of random vectors does not include any ideas
beyond those contained in convergence in probability of real-valued random variables.

Theorem 11.9. Let X, X», ... denote a sequence of d-dimensional random vectors and,
foreachn =1,2,...,let X,,(j), j = 1,...,d denote the components of X,, so that

Xn(1)
X, = , n=1,2,....
Xn(d)

Let X denote a d-dimensional random vector with components X(1), ..., X(d).
Then X, L Xasn— oo if and only if for each j = 1,2,...,d

X,(j) 2 X(j) as n — oo.

Proof. For simplicity, we consider the case in which d = 2; the general case follows along
similar lines. Since

11X, — XII* = [X,(1) = X(D* +1X,(2) — XQ2)I?,
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for any € > 0,
Pr{||X, — X|| = €} = Pr{||X, — X||* = €*} < Pr{|X,,(1) — X(D)|* = €/2}
+Pr{|X,(2) — X)I > €*/2}
= Pr{|X,(1) — X(D)| > €//2} + Pr{|X,(2) — X2)| > €//2}.

Hence, if X,(j) L X(j)asn — oo for j =1, 2, it follows that X, L Xasn — oo.
Now suppose that X, £ X asn — oo. Note that

1X,(1) = X(DI* = [1X, — XII* = 1X,(2) = X)I* < 11X, — X[
It follows that, for any € > 0,
Pr{| X, (1) — X(1)| > €} < Pr{||X, — X|| > €}

and, hence, that X,,(1) L Xasn— oo; the same argument applies to X,(2). W

In statistics it is often useful to also consider random matrices; for instance, we may be
interested in an estimator of a covariance matrix. For the purpose of defining convergence
in probability, a d; x d, random matrix can be viewed as a random vector of length d;d>.
Hence, by Theorem 11.9, a sequence of random matrices Yi, Y», . .. converges in probability
to amatrix Y, if and only if for each (i, j) the sequence formed by taking the (i, j)th element
of Y1, Y», ... converges in probability to the (i, j)th element of Y.

11.4 Convergence in Distribution of Functions of Random Vectors

For many statistics arising in statistical applications, it is difficult to establish convergence
in distribution directly using the results given in Sections 11.1-11.3. However, in some
of these cases, the statistic in question may be written as a function of statistics whose
convergence properties can be determined. For instance, suppose that we are interested in a
statistic 7, = f(X,,, Y,); it is often possible to establish the convergence in distribution of
Ty, T,, ... by first establishing the convergence in distribution of X1, X,,...and Yy, 1>, ...
and using properties of the function f. Some basic results of this type are given in this
section; further results are discussed in Section 13.2.
The main technical result of this section is the following.

Theorem 11.10. Let X1, X, ... denote a sequence of d-dimensional random vectors such
that

D
X,—> X as n— .
Let Y, Y,, ... denote a sequence of m-dimensional random vectors such that
P
Y, —>c as n—

for some constant c € R™. Then

—> as n — Q.
Y, c
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Proof. Let g denote a bounded, uniformly continuous, real-valued function on R? x R”.
Given € > 0 there exists a § such that

1g(x1, y1) — g(x2, ;)| < €
whenever
(xr, y1) = (2, y2)I| < 6.
Note that
|E[g(Xy, Yu) — &(X, O)]| < [E[g(Xn, Yn) — g(Xyn, Ol + [E[8(Xn, ©) — (X, O)]I.
First consider E[g(X,,, Y,,) — g(X,,, ¢)]. Whenever ||y — c|| <,
lg(x, y) — glx, o) < e.
Hence,

|E[g(X,, Y¥,) — g(Xy, ©)]]
< E[lg(Xn, Yu) — g(Xs, Ol Iyjy,—cii<sy] + Ellg(X,r, o) — g(Xo, O {1y, —cl1>83]
<€ +2GPH(|Y, —c|| > 8)

where
G =sup|g(x, ).
X,y

It follows that

limsup |E[g(X,, Y,) — 8(X,, 0)]] < €.

n—00

Now consider E[g(X,,, ¢) — g(X, ¢)]. Define g(x) = g(x, ¢). Then g is a bounded con-
tinuous function on R™. Hence,

lim [E[3(X,) — g(X)]| = lim [E[g(X,, ©) = g(X, )| =0.
It follows that, for any € > 0,

limsup [E[g(X,, Yn) — (X, O]l < ¢€;

n—00o

the result follows. M

Theorem 11.10 may be used to establish the following result, which is known as Slutsky’s
theorem, and which is often used in statistics. The proof is straightforward and is left as an
exercise.

Corollary11.4. Let X1, X5, ...and Yy, Y,, ... denote sequences of d-dimensional random
vectors such that

X, 2) X as n— o0
and

p
Y,—>c as n— o0
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for some constant ¢ € R?. Then

X,1+Y,1—D>X+c as n— 00
and
T D T
Y X, —>c X as n— oo.
Example 11.19 (Standardization by a random scale factor). Let X, X,, ... denote a
sequence of real-valued random variables such that X, — X as n — oo where X has a
normal distribution with mean 0 and variance 2. Let Y, Y, ... denote a sequence of real-

valued, nonzero, random variables such that Y, L oasn — oo. Then, by Corollary 11.4,
X,/ Y, converges in distribution to a standard normal random variable. O

Example 11.20 (Sequences of random variables with correlation approaching 1). Let

X1, Xo,...and Y, Y>, ... denote sequences of real-valued random variables, each with
mean 0 and standard deviation 1, such that X,, — X as n — oo for some random variable
X.Foreachn=1,2,..., let p, denote the correlation of X, and Y, and suppose that

lim,_, oo pr = 1.
Note that we may write

Yn = Xn +(Yn - Xn)
and, since
Var(y, — X,) =2 — 2/On7

it follows that Y, — X, 2o. Hence, by Corollary 11.4, Y, 2) Xasn— oo. O

As noted previously, random matrices often arise in statistics. The following result gives
some properties of convergence in probability of random matrices.

Lemma 11.1. Let Yy, Y,, ..., denote random m x m matrices and let C denote an m X m
matrix of constants.

(i) Y, L Casn— if and only if a” Y,,b L alChasn — oo foralla,b € R
(ii) Let |M| denote the determinant of a square matrix M. If Y, L Ccasn— 00, then

1Y, > |Cl as n— .

(iii) Suppose each Y, is invertible and that C is invertible. Y, ! L clasn— oo if

andonlyifY,,—p> Casn— oo.

Proof. Foreachn =1,2, andeachi, j =1,...,m,letY,;; denote the (i, j)th element

of Y, and let C;; denote the (7, j)th element of C. Assume that Y, L Casn— . Then,
for each i, j,

P
Yij— Cij as n— oo.



Since

it follows that

Now suppose that
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alY,b = Zzaibjynija

i=1 j=I1

m m
P
a’Y,b5a"Cbhb as n— oo.

p
alY,b > a'Cbh as n— o0

for any a, b € R™. It follows that

P
Yij— Cij as n— o0

for each i, j, proving part (i) of the theorem.
Part (ii) follows from the fact that the determinant of a matrix is a continuous function
of the elements of the matrix.
Part (iii) follows from part (ii), using the fact that the elements of the inverse of a matrix
may be written as ratios of determinants. M

Corollary 11.4 may now be extended to random matrices.

Corollary 11.5. Let Y, 7Y, .

matrix of constants. Assume that

Let X1, X3, ... denote a sequence of m-dimensional random vectors such that

Ifeach Y,,n =1,2,..., is invertible and C is invertible, then

Proof. Leta € R"andlet W =a’Y ' andw” = a” C. From Lemma 11.1,

Since

P
Y, > C as n— oo.

D
X,—> X as n— oo.

Ynle,, 2> C'X as n— oo.

P
W,—w as n— oo.

a"vy'x, = wr'x,

the result then follows from Corollary 11.4. W
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.. denote random m x m matrices and let C denote an m x m

According to Theorem 11.1, if a sequence of real-valued random variables X, X», ...
converges in distribution to X and there exists a constant M such that |X,| < M,
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n=1,2,...,then
lim E(X,) = E(X).
n—oo

However, if the X,, are not bounded in this manner, convergence of the expected values
does not necessarily hold. An example of this has already been given in Example 11.5.

Hence, in order for X, 2) X as n — oo to imply that E(X,,) — E(X) as n — oo, addi-
tional conditions are needed on the sequence X, X», . ... Suppose that

supE[1 X, [I;x,|>¢;]] =0 for some ¢ > 0. (11.3)
Then X, X5, ... are uniformly bounded by c, for if there exists an N such that Pr{| X y| >
c} > 0, then
E[|Xnjxy 2] = cPr{|Xn| = c} > 0;

hence, condition (11.3) implies that lim,_, ., E(X,,) = E(X).

The condition of uniform integrability is a weaker version of (11.3) that is still strong
enough to imply that lim,,_, . E(X},,) = E(X). A sequence of real-valued random variables
X1, X, ...1s said to be uniformly integrable if

lim sup E[| X, |Ijjx,>¢}] = O.

cC—> 0 n

Theorem11.11. Let X, Xy, X», .. .denote real-valued random variables such that X, 2) X
asn — oo. If X1, X», ... is uniformly integrable and E(|X|) < oo, then

lim E(X,) = E(X).

Proof. For ¢ > 0, define

X if |x] <c¢
sgn(x)c if x| >c °

gc(-x) = {
Hence,

—e(x) = 0 if |x| <c¢
YTEN T x —sen(x)e if x| = ¢

It follows that, for any random variable Z,
E(Z) = E[g.(2)] + E[Z]}12)>¢}] — cE[sgn(Z)jz|>¢].
Hence,
E(Z) - Elg(D)]| = [EIZ L7120 = cBlsen(2) Iz

< E[lZ]| Ijjz;>¢] + cElljjz>1]
< 2E[|Z] Ijjz/2¢}]-

It follows that

|E(X,) — E(X)| < |E[gc(Xy)] — E[gc(X)]]| + 2E[| X, I x,, 1=} ] + 2E[I X [T x )23 ]-
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Fix e > 0. Note that, by the dominated convergence theorem, using the fact that E[| X |] < oo,
lim E[| X |I{\X|zc}] =0.
c—>00
Hence,

CILHolO sup{E[|X,| Ijix,;=c}] + E[IX|Ijjx|>¢ 1} = 0.

Therefore, given € > 0, there exists a ¢ > 0 such that
|[E(X,) — E(X)| < |E[gc(X)] — E[ge(X)]| + €
foralln=1,2,....
Since g, is a bounded continuous function,

lim sup [E(X,)) — EX)| < Tim [E[g.(X,)] — E[g.(X)]| + € = e.

n—0oo

Since € > 0 is arbitrary, the result follows. MW

In fact, the assumption that E(| X|) < ocoisnotneeded in Theorem 11.11; it may be shown
that if X, X», ... is uniformly integrable, then E(| X|) < oo. See, for example, Billingsley
(1995, Section 25). However, in typical applications, it is a relatively simple matter to verify
directly that E(| X]) < oo.

Example 11.21 (Minimum of uniform random variables). As in Example 11.3, let
Y1, Ya, ... denote a sequence of independent identically distributed, each with a uniform
distribution on (0, 1) and let X,, = nmin(Yy, ..., Y,). Recall that X, g X as n — oo,
where X denotes a random variable with a standard exponential distribution.

Consider

1 n Cc\"
B[ X, [Tix =] = tl—t""dl:—(l——) 14 o).
(X x, =01 n[ n( ) P . (1+0¢)

n

Note that n/(n + 1) and (1 — ¢/n)" are both increasing functions of 7; it follows that

sup E[|Xn |I{\X,l|zc}] = lim
n

cA\"
n—oon 4+ 1 (1_;) (1+C)=(1+C)6Xp(—c)

and, hence, that

lim sup E[| X, |Ijjx,|=c)] = 0

Cc—> 00 n
so that X, X», ... is uniformly integrable.
Therefore,
lim E(X,) =E(X) = 1. O
n—00
Example 11.22 (Mixture of normal distributions). For eachn = 1,2, ..., define a ran-

dom variable X, as follows. With probability (n — 1)/n, X, has a standard normal distribu-
tion; with probability 1/n, X, has a normal distribution with mean » and standard deviation
1. Hence, X, has distribution function

_1 1
F(x) = "ch(x)+ —®(x —n). =00 <x <00
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where @ denotes the distribution function of the standard normal distribution.
Note that, for any —oco < x < 00,

1 1
0<-P(x—n)< -
n

S

so that
lim F,(x) = ®(x)
n—oQ
D . .
and, hence, X,, — Z asn — 00, where Z denotes a random variable with a standard normal

distribution.
Consider

n—1 1
E[1 X0 ix,120)] = TE[|Z| Lziza] + ;EHZ + 1| Ijzinzal

Let ¢ denote the standard normal density function; note that

00 —(c+n)
ENZ + 1l Tyzimpoa] = / (z + M) dz — / (e + n)p(2) dz
=n[®(c+n)— d&(c —n)]+ / z¢(z2)dz + / z¢(z)dz
c—n c+n

> n[®(c +n) — &(c —n)].

Hence,

E[1 X, [Iix, 2] =

E[|Z + nlljz4nzc)] = ®(c +n) — P(c —n)

S| =

and

sup E[| X, | Ijjx, 2] = 1

for all ¢ > 0. It follows that X, X, ... is not uniformly integrable.
In fact, here E(X,,)) = 1 foralln =1,2,..., while E(Z) =0. O

The following result is sometimes useful in showing that a given sequence of random
variables is uniformly integrable.

Theorem 11.12. Let X, X5, ... denote real-valued random variables. The sequence
X1, Xo, ... is uniformly integrable provided that either of the two following conditions
holds:

(i) sup, E(|X,|17¢) < oo for some € > 0

(ii) There exists a uniformly integrable sequence Y1, Y,, . .. such that

PI’(|X,,|§|Y,,|)=1, n:1,2,....
Proof. The sufficiency of condition (i) follows from the fact that, for any ¢ > Oand ¢ > 0,

1
E(1X,| Ljix,2¢) < C—GE(|X,¢|I+€).
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The sufficiency of condition (ii) follows from the fact that, for any ¢ > 0,

El1Xnl Ljx, =] < EUXal Ljx, ¢, X020 + ENXal Lix,12c, 1x,0> v,
=< E[|Yn| I{\Yn\Zc}]~ u

Example 11.23 (Minimum of uniform random variables). Let Y|, Y,,... denote a

sequence of independent, identically distributed random variables, each with a uniform dis-

tribution on (0, 1) and let X,, = n min(Yy, ..., Y,). Recall that X, —D> X as n — oo, where

X denotes a random variable with a standard exponential distribution; see Example 11.3.
Since

E(X?) = n3/1 21 —0)"""dt = 27”2
" 0 n+2)n+1)

it follows that condition (i) of Theorem 11.12 holds with € = 1. Hence, X, X5, ... is
uniformly integrable. O

A condition for the convergence of higher-order moments follows easily from
Theorems 11.11 and 11.12 and is given in the following corollary; the proof is left as
an exercise.

Corollary 11.6. Let X1, X», ... denote real-valued random variables such that X, 2) X
as n — oo for some random variable X. If, for some r = 1,2, ..., there exists an € > (
such that

sup E(|X, ") < oo
n

then

lim E(X") = E(X").
n—0oQ

Example 11.24 (Minimum of uniform random variables). Consider the framework con-
sidered in Example 11.23. Note that

1
E(X") = n’“/ (1 —0)"'dt
0

1 T+ Dl ()
=n -
'n+r+1)

r!

(m+r)n+r—1--n

r+1

r=1,2,....
Hence,

supE(X;)=r!, r=1,2,....
It follows that

lim E(X;):/ x"exp(—x)dx =r!, r=1,2,.... O
0

n—oo
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11.6 O, and o, Notation

Consider sequences of real numbers, ay, as, ...and by, by, . ... Indescribing the relationship
between these sequences, it is often convenient to use the O and o notation; see Appendix 3.
A similar notation is used for random variables. Let X, X, ... denote a sequence of real-
valued random variables. If, for any € > 0, there exists a constant M such that

Pr(|X,| > M)<e, n=12,...

we write X,, = O,(1); such a sequence is said to be bounded in probability. If X, A 0as
n — oo, we write X,, = 0,(1).

This notation can be extended to consider the relationship between two sequences of
random variables. Let Y}, Y5, . . . denote a sequence of real-valued random variables, Y,, > 0,
n=12....1If

—”:O,,(l) as n— oo

Y,
we write X,, = O,(Y,). This notation is often used when the sequence Y1, Y>, ... is deter-
ministic; for example, X, = O,(n) means

Xl‘l
~2 = 0,0).
n

If

Xﬂ
— =o0p(1) as n—
Yn
we write X,, = 0,(Y,); again, this notation is often used when Y1, Y>, ... is deterministic.
Finally, the O, and o0, notation can be applied when X, X», ... is a sequence of random
vectors or random matrices. Let X’ be a set such that Pr(X,, e X) =1,n=1,2,..., and
let || - || denote a norm on X'. We write X, = O,(Y,) if || X, || = O,(Y,) and X,, = 0,(Y,)
if [|X,]] = 0p(Yy).
There are a number of simple rules for working with these symbols that makes their use
particularly convenient. Several of these are given in the following theorem; other results
along these lines can be established using the same general approach.

Theorem 11.13. Let Wi, W,, ..., X1, Xo,..., Y1, Yo,..., and Z,, Z,,... denote
sequences real-valued random variables such that Y, > 0and Z, > 0,n = 1,2, ....
(i) If X, = 0p,(1) asn — oo, then X,, = O,(1) asn — 0.
(i) If W,, = O,(1)and X, = O,(1) asn — oo, then W, + X, = O,(1) and X, W, =
O0,(1) as n — oo; that is, O,(1) + 0,(1) = O,(1) and 0,(1)0,(1) = O,(1).
(iii) If W, = O,(1) and X,, = 0,(1) as n — oo, then W, X,, = 0,(1) and W, + X,, =
O,(1)as n — oo; thatis, Op(1)o,(1) = 0,(1) and O,(1) + 0,(1) = O,(1).
(iv) If X, = O0,(Y,) and W,, = O,(Z,) as n — oo, then

W, X, =0,(Y,Z,) and W,+ X, = O,(max(Z,,Y,)) as n— oo;
that is,

0p(Yn)Op(Zy) = Op(YnZy) and  O,(Yy) + Op(Zy) = Op(max(¥y, Zy)).
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Proof. Suppose that X,, = 0,(1). Fix € > 0 and M, > 0; there exists an N such that

Pr(|X,| > My) <e forall n> N.
Foreachn =1,2,..., N — 1 let M, denote a constant such that

Pr(1X,| = M,) < €;
since
Jm Pr(lX,| = M)=0
such a constant must exist. Let
M = max{My, My, ..., My_1}.

Then

Pr(|X,| > M)<e, n=1,2,....

This proves part (i).
Suppose W, = O,(1) and X,, = O,(1). Fix € > 0. Choose M| and M, so that

Pr(|W,| > M) <e€/2, n=1,2,...
and

Pr(|X,| > My) <€/2, n=1,2,....
Take M = 2max(M,, M,). Then

Pr(|W, + X, | = M) < Pr(|W, | + | X, | = M)
=P(IWu| = M/2 U [X,| = M/2)
< Pr(|Wy| = M) +Pr(1X,,| = M>) < €;

hence, X,, + W,, = O,(1). Similarly,

Pr{|Xan| = MIMZ} = Pr{|Xn| = Ml U |Wn| > MZ}
= Pr{|X,| = M1} + Pr{|W,| = Mz} < e.

It follows that X, W, = O, (1), proving part (ii).
Suppose that W, = O,(1) and X,, = 0,(1). For any ¢t > 0 and any M > O,

PI'(|W,,X”| = t):Pr(lwnxnl >t N |Wn| > M)+Pr(|Wan| >t N |Wn| < M)
< Pr(|W,| = M) + Pr(|X,| > t/M).

Fix € > 0 and 6 > 0. Choose M so that
Pr(|W,| > M) <e, n=1,2,....
Then, for any ¢ > 0,
Pr(|W, X, | > 1) < € + Pr(|X,| > /M)
and, since X, L 0asn — 00,

limsupPr(|W, X, | > t) <e.

n—o0o
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Since € is arbitrary,
lim Pr(|W,X,| >1t) =0,
n—oo

proving the first part of part (iii). The second part of part (iii) follows immediately from
parts (i) and (ii).

Suppose X, = O,(Y,) and W,, = O,(Z,). Then X,,/ Y, = O,(1)and W,/ Z, = O,(1);
it follows from part (ii) of the theorem that

XV! Wl’l _ XI'LYI'L

—— = = 0,(1),
Y. 7, Yz, O
so that W, X,, = 0,(Y,Z,).
By part (ii) of the theorem,
[Xnl | Wl
= 0,(1).
Y, + Z, r)

Since
Xo + Wal _ 1 Xal 4 1Wal _ X0l | Wl
max(Y,, Z,) — max(Y,,Z,) ~— Y, Z,

)

it follows that
| Xn + Wyl
max(Y,, Z,)
and, hence, that X,, + W, = O,(max(Y,, Z,)). This proves part (iv). H

=0,(1)

The important thing to keep in mind when working with the O, 0, symbols is that each
occurrence of these symbols in a given expression refers to a different sequence of random
variables. For instance, we cannot conclude that O,(1) — O,(1) = 0; instead, all we can
say is that O,(1) — 0,(1) = O,(1).

The following result gives some conditions that can be used to show that a sequence
X], Xz, ... 18 Op(l)

Theorem 11.14. Let X, X», ... denote a sequence of real-valued random variables.
Assume that one of the following conditions is satisfied:

(i) X, 2x as n — oo for some random variable X.
(ii) There exists an increasing function g : [0, 00) — R such that

sup E[g(| X, )] < oo.

Then X, = O,(1) as n — oo.

Proof. Suppose that X, B X asn — oo and let F denote the distribution function of X.
Fix € > 0. Choose M > 0 such M, and —M, are continuity points of F', such that

F(My) — F(—My) < €/2.
Then

limsup Pr(| X,,| > M) <€

n—oo



11.6 0O, and o, Notation 357

so that there exists N > 0 such that

Pr(|X,| > My) <e forall n > N.
Foreachn =1,2,..., N — 1, let M,, denote a constant such that

Pr(|X,| = M,) <e.
Let
M = max{My, My, ..., My_1}.
Then
Pr(|X,| > M) <e, n=1,2,...

so that X, = O,(1).
Now suppose that condition (ii) of the theorem is satisfied. Given € > 0, choose M so
that

Elg(|X,
My > sup, E[g(| I)].
€

Then, by Markov’s inequality,

Elg(IXaD] _

P Xnl) = My} <
r{g(|Xyn|) = Mo} < Mo

e, n=1,2,....

Note that, since g is an increasing function, it is invertible. Let M = g’l(Mo). Then
Pr{|X,| > M} = Pr{g(|1X,|) > g(M)} = Pr{g(|X,]) > Mo} <€, n=1,2,....

It follows that X, = O,(1). W

The advantage of the O, o, notation is that these symbols can be used in algebraic
expressions; this is illustrated in the following examples.

Example 11.25 (Sample mean). Let X, X,, ... denote independent, identically distribu-
tion random variables such that E(|X;|) < oo and let © = E(X). Using the weak law of
large numbers given in Example 11.15,

1< p
—EXj—>p, as n — oo.
n i

Hence,

1 n
;fo =u+o,(1) as n— oo.
=
Now suppose that 0> = E[(X; — u)?] < oo. By Markov’s inequality, for any M > 0,

Pr{ > (X =
j=1

2

1 1
> My < —E!{ —
- - M? n

1 n
N
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Since ZL](XJ — ) has mean 0 and variance no?2,

2
E Z(Xj—u) = no?
=1
and
1 <& o?
Pry|— S X, —ul>m! < —.

It follows that, given € > 0, we can always find M > 0 such that

y

1 n
— X, —u|=0,0).
J[Z } ”

Written another way, we have that

1 n
%E Xj—n ZM]SG;
i=1

that is,

1< 1
— Xi=u+0 (—) as n — oQ. O
n; I P\ n

Example 11.26 (Approximation of a function of a random variable). Let X, X», ...
denote a sequence of real-valued random variables such that

D
JnX, > Z as n— oo

for some real-valued random variable Z. Note that X,, = 0, (1) asn — oo.

Let X, denote the range of X,, n =1,2,..., and let ¥ = U2 X,. Let f: X - R
denote a twice-continuously-differentiable function such that | f(0)| > 0. Let Y, = f(X,),
n=1,2,.... Then, using a Taylor’s series expansion,

X,

Y= S0 = O+ fOX, + | (X — 0 ") dr.

X,
/ 20 d;‘
0

Note that

Xn
[T —nroa] < .

f ’ (6 dt
0

F't)dt 50 as n— .

and, since

is a continuous function of x,

X

0
It follows that

Y, = f(0) + f(0)X, + 0,(1).
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However, a stronger statement is possible. Since

«/n|Xn| = Op(l)’

it follows that

Xn
Sl X ‘/ f”(z)dr( 20 as n— o
0
and, hence, that
Yy = £0)+ f(O)X, + 0,(n"2).

In fact, by the mean-value theorem for integrals, there exists X, | X*| < |X,|, such that

Xn
/(L—nﬂmm=%ﬁﬂan
0

Since |X}| < |X,| and X,, = 0,(1), it follows that X = 0,(1) and, hence, that f”(X}) =
f7(0) + 0,(1). We may therefore write

1
Vo= O)+ [O)Xy + S XLf"0) +0,(D].
Since X2 = 0,(n™"), it follows that

Y, = f(0)+ f'(0)X, + % f'OX2+o0,(n"") as n— oo. O

11.7 Exercises

11.1 For each n, let X, denote a discrete random variable taking values in the set {1,2,...} and
let X denote a discrete random variable also taking values in {1, 2, ...}. Let p,(x) denote the
frequency function of X, and let p(x) denote the frequency function of X. Show that

X, —D> X as n—> o0
if and only if
lim p,(x) = p(x) foreachx =1,2,....
n—o0

11.2 Let X, X», ... denote independent, identically distributed random variables such that X, is
continuously distributed with density p(x) and distribution function F(x) where F(0) =0,
F(x) > Oforall x > 0, and p(0) > 0. Let

Y, = nmin{X,, ..., X, }.
Then there exists a random variable Y such that
D
Y,—>Y as n— oo.

Find the distribution function of Y.

11.3 Let Y}, Y5, ... denote a sequence of Poisson random variables such that ¥, has mean A,, > 0 for
alln=1,2,....
Give conditions on the sequence A, so that there exist sequences a, and b, such that

anYn—}—bngZ as n—> o

where Z denotes a standard normal random variable. Give expressions for a, and b,,.
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Let X, denote a random variable with a I distribution with parameters «,,, 8, so that X, has
density function

I'(a,)

on
n

an—1

X exp{—B.x}, x>0

where «, > 0 and B, > 0. Find conditions on «, and B, such that there exist sequences of
constants ¢,, d, satisfying

X, —d
7% BN, 1).
Cn
Express ¢, and d, in terms of «,, and B,.
For each n=1,2,..., suppose that X, is a discrete random variable with range
{1/n,2/n,..., 1} and
Pr(X j/n) 2j =1
r(X, = j/n)= ———, =1,...,n.
J nnt+ 1 7

Does X, X5, ... converge in distribution to some random variable X ? If so, find the distribution
of X.
Let X;, X;, ... denote independent random variables such that X; has a Poisson distribution

with mean A¢; where A > 0 and ¢y, ,, . .. are known positive constants.
(a) Find conditions on ty, 5, . .. so that

B ST ) YRR
! Var(3T_, X/ 375 t)

converges in distribution to a standard normal random variable.

(b) Suppose that, foreach j =1, ..., ¢; lies in the interval (a, b) where 0 < a < b < oo. Does
it follow that ¥, converges in distribution to a standard normal random variable?

(c) Supposethatt; = j, j =1,....Doesitfollow that Y, converges in distribution to a standard
normal random variable?

Consider a discrete distribution with frequency function p(x;n,0),x =0, 1, ..., wheren is a

nonnegative integer and 6 € ® for some set ® C R. Let 6y, 65, ... denote a sequence in ® and

let X, denote a random variable with frequency function p(x;n, 6,),n = 1, 2, .. .. For the two

choices of p given below, find conditions on the sequence 6, 6, . .. so that

D
X,— X as n— oo,

where X has a Poisson distribution.

(@)
plx;n, 0) = (Z)@”(l -0, x=0,1,....n; ®=(0,1)
(b)
px:n, ) = <” +z - 1)9"(1 —6), x=01,..... ®=(0,1).
In each case give examples of sequences satisfying your condition.
Let X1, X, ... denote a sequence of real-valued random variables such that

D
X,—> X asn—>
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for some real-valued random variable X and suppose that, for some set B C R,
Pr(X, e B)=1 forall n=1,2,....

Does it follow that Pr(X € B) = 1?

Let X, X,, ... denote a sequence of real-valued random variables such that, for each n =
1,2, ..., X, has a discrete distribution with frequency function p,. Let X denote a discrete
random variable with frequency function p such that

X, —D> X as n— oo.
Does it follow that
lim p,(x) = p(x), x €R?
n—oo

For each n =1, 2, ..., define real-valued random variables X, and Y, as follows. Let
T\, T, . .., T, denote independent, identically distributed random variables, each uniformly
distributed on (0, 1) and let T(yy, . .., T}, denote the order statistics. Define

X, = T(n) - T(n—l) and Y, = T(n) - T(n—2)~
Find sequences of constants ay, a,, ... and by, by, . .. such that, as n — oo,
D D
a,X,— X and b,Y,—>Y
for some non-degenerate random variables X and Y. Find the distributions of X and Y.
Let Xy, X,,...and Yy, Y5, ... denote sequences of real-valued random variables such that
D

X,—> X asn— o

for some real-valued random variable X and that

lim E[(X, — ¥,)?] = 0.

n—oo

Show that
Y, 2) X as n— oo.

Consider the following converse to this result. Suppose that

Xn 2 X as n— oo
Y, X
and that E(X?) < oo and E(Y?) < oo for all n. Does it follow that
lim E[(X, — ¥,)*] = 0?

Let X, and Y,, n=1,2,..., denote sequences of real-valued random variables such
that E(Y,) = E(X,) = 0 and Var(Y,) = Var(X,) = 1. Let p, = Cov(X,, ¥,). Suppose that,
asn — 00,

@ X, > NQ©,1)

(b) o, — 1

(¢) Y, —D> Y for some random variable Y.

Find the distribution of Y or show that the distribution cannot be determined from the infor-
mation given.

Let X, X,, ... denote a sequence of real-valued random variables such that, for each n =
1,2,..., X, has an absolutely continuous distribution. Let X denote a real-valued random
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variable with a non-degenerate distribution such that

D
X, —> X as n— oo.

Does it follow that X has an absolutely continuous distribution?

Foreachn =1,2,..., let X,, denote a random variable with a noncentral chi-squared distri-
bution with m degrees of freedom and noncentrality parameter A,, where A, — 0asn — 00.
Let X denote a random variable with a (central) chi-squared distribution with m degrees of

freedom. Does it follow that X, B Xasn — 0o?Are any conditions needed on the sequence
Ay, Ay, .7

Let X, X, X», ... denote real-valued random variables such that, foreachn =1,2, ..., X,
has an absolutely continuous distribution with density p, and X has an absolutely continuous
distribution with density p. Suppose that

Jim p,(x) = p(x), xeR.
Show that
X, —D> X as n— oo.
Let X denote a random variable such that
Pr(X=x,))=6;,, j=12,...,

where xi, x5, ... is an increasing sequence of real numbers and 6y, 6, ... is a sequence of
nonnegative real numbers such that

> o=1

j=1
Let X, X5, ... denote a sequence of real-valued random variables, each with an absolutely

. . D
continuous distribution, such that X,, — X asn — oo. Foreachn =1, 2, ..., let F,, denote
the distribution function of X,, and let F' denote the distribution function of X.

(a) Find o > 0 such that

sup |[F,(x) — F(x)| > a, n=1,2,....

(b) Let a, b be real numbers such that
Xj_1<a<b<x;
for some j = 1,2, ..., where xo = —o0. Does it follow that

lim sup |F,(x) — F(x)| =0?

n—00 4y <p

Let X, Xy, X», ... denote real-valued random variables such that
X, L as n—> oo

for some constant ¢. Foreachn =1, 2, ..., let F,, denote the distribution function of X, and
let aj, as, . .. denote a sequence such that a, — a as n — oo for some a € R. Does it follow
that

lim Fya)={ 1=
n—o00 1 ifa>c
Let X,,,n =1, ... denote a sequence of real-valued random variables; X, is said to converge

in mean to a random variable X if

lim E[|X, — X|] = 0.
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(a) Show that if X,, converges to X in mean then X, converges to X in probability.
(b) Show that if X,, converges to X in mean and E[|X|] < oo then

lim E[X,] = E[X].

(c) Give a counter example to show that if X,, converges to X in probability then X,, does not
necessarily converge to X in mean.

Prove Corollary 11.2.
Let Xy, X5, ... denote a sequence of real-valued random variables such that

D
X, —> X asn—> o0

for some real-valued random variable X and let Y denote a real-valued random variable. Does

it follow that
X, g X = oo?
Y v as n 00

Let X,,n=1,2,...,and Y,, n = 1,2, ..., denote sequences of real-valued random vari-
ables such that, for each n = 1,2, ..., X,, and Y,, are independent. Suppose that there exist
independent random variables X and Y such that, as n — oo,

X, 32X and Y, 2 V.

X 2 X s n— o0o?
Y, Y as n 7

Let X, X,,...and Y}, Y, ... denote sequences of real-valued random variables, each of which
is uniformly integrable. Does it follow that X; + Y}, X, + Y3, ... is uniformly integrable?

Does it follow that

Prove Corollary 11.4.

Let Xy, X5, ... denote a uniformly integrable sequence of real-valued random variables. Show
that

supE(| X,|) < oo.

Find a sequence of random variables X, X5, ... that is uniformly integrable, but

supE(|X,|'¢) =00 forall € > 0.

Thus, the condition given in part (i) of Theorem 11.12 is sufficient, but not necessary.

Let Xy, X5,... and Y3, Y>, ... denote sequences of real-valued random variables such that
Y1, Y,, ... is uniformly integrable and

Pr(X,| =YD >a,, n=1,2,...

where 0 <, <1,n=1,2,...and @, —> 1 asn — oo.
Give conditions on the sequence oy, «y, ... so that Xy, X,, ... is uniformly integrable or
show that such conditions do not exist. Does your answer change if it is also assumed that
sup, E[1X,|] < 00?
Prove Theorem 11.8.
Let X, X», ... denote a sequence of real-valued random variables such that

lim Var(X,) =0.

n—oo
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Does it follow that
X, =E(X,)+o0,(1) as n— o0?

Let Xy, X5, ... denote a sequence of real-valued random variables such that X, = O,(1) as
n — oo. Let f : R — R denote a function and suppose that there exists a set B such that f is
continuous on B and

Pr(X, e B)=1, n=1,2,....

Does it follow that f(X,) = O,(1) asn — oco?

Let X, X», ... denote a sequence of real-valued random variables. Suppose that X, = O,(1)
as n — 0o. Does it follow that E(X,) = O(1) as n — 00? Suppose that E(X,) = O(1) as
n — 00. Does it follow that X, = O,(1) asn — 00?

Suppose that X, X5, ... is a sequence of real-valued random variable such that X, X, ... is
uniformly integrable. Does it follow that X, = O,(1) asn — o0?

Let X, X», ... denote a sequence of real-valued random variables. Suppose that, given € > 0,
there exists an M and a positive integer N such that

Pr(|X,| > M)<e, n=N+1,N+2,....

Does it follow that X, = O,(1) asn — o0?

11.8 Suggestions for Further Reading

Convergence in distribution is covered in many books on probability theory; see, for example, Billings-
ley (1995, Chapter 5) and Port (1994, Chapter 50). Billingsley (1968) gives a general treatment of
convergence in distribution in metric spaces. Useful books on the theory and application of large-
sample methods in statistics include Ferguson (1996), Lehmann (1999), Sen and Singer (1993), and
van der Vaart (1998).
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Central Limit Theorems

12.1 Introduction

In this chapter, we consider the asymptotic distribution of the sample mean. For instance,
let X, denote the sample mean based on random variables X1, ..., X,. In this chapter, it
is shown that, under a wide variety of conditions, a suitably scaled and shifted version of
X, converges in distribution to a standard normal random variable. Such a result is called a
central limit theorem. The simplest case is when X1, . .., X, are independent and identically
distributed; this is discussed in Section 12.2. The remaining sections of this chapter consider
more general settings, including cases in which the random variables under consideration
are not identically distributed or are not independent.

12.2 Independent, Identically Distributed Random Variables

We begin by considering the asymptotic behavior of sample means of independent, identi-
cally distributed random variables. These results rely heavily on the fact that convergence
in distribution may be established by showing convergence of characteristic functions. This
fact is particularly useful in the present context since the characteristic function of a sum
of independent random variables is simply the product of the characteristic functions of the
component random variables.

When discussing limiting distributions of this type, it is convenient to use the symbol
N(O0, 1) to denote a standard normal random variable.

Theorem 12.1. Let X1, X», ... denote independent, identically distributed real-valued
random variables with each mean w and variance o> < oo and let
- X1+ X0+ + X,

X, , n=1,2,....
n

Then
\/n(Xn - /‘L)

o

B NO, 1) as n— 0.

Proof. Let ¢ denote the common characteristic function of the X; and let ¢, denote the
characteristic function of

Xy —p)  Xi+Xo+- 4+ X, —np
o N o\/n '

365
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Then, for each r € R,

on(1) = exp{—itu/(o//m}e(t/(o/n))".

Recall that, by Theorem 4.13,

2
log o(t) =ity — 502 +o0(?) as t—0.

Hence, for each ¢,

I O _i -1 _il/«\/”__f
logwn(t)—n(ztaJn 2n+0(n )) odn = 5 +o)

as n — 00. The result now follows from Theorem 11.2. W

The conclusion of Theorem 12.1 is often stated “X , is asymptotically distributed accord-
ing to a normal distribution with mean y and variance o-2/n.” This statement should not be
taken to mean that X, converges in distribution to a normally distributed random variable
with mean p and variance ¢ /n, which would make no sense since the limiting distribution
would then depend on n. Instead this statement should be viewed as an informal expression
of the result that

@gN(O,I) as n — oo.
In spite of the lack of precision, the informal statement is still useful and will be used here
in the examples; however, in the theorems, results will be stated in terms of convergence in
distribution.

Example 12.1 (Sample mean of Bernoulli random variables). Let X, X», ... denote
independent, identically distributed random variables such that, foreach j = 1,2, ...,

Pr(X;=1)=1—-Pr(X; =0)=06
where 0 < 6 < 1. It is straightforward to show that
n=EX;)=6 and Var(X;)=6(1—0).

It follows that X,, = (X + - - - + X,,)/n is asymptotically distributed according to a normal
distribution with mean 6 and variance 6(1 — 0)/n.

Since X| + --- + X,, has a binomial distribution with parameters n and 6, this result
also shows that the binomial distribution may be approximated by the normal distribution
when the index n is large. O

Example 12.2 (Normal approximation to the chi-squared distribution). Let Z,, Z,, . ..
denote independent, identically distributed standard normal random variables and let
X; = ij., j =1,2,.... Consider the distribution of

n n
Si=Y X;=)Y 7%
j=1 j=I

Recall that it was shown in Chapter 8 that the exact distribution of S, is a chi-squared dis-
tribution with n degrees of freedom. Here we consider an approximation to the distribution
of S,,, and hence, to the chi-squared distribution, based on the central limit theorem.
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Table 12.1. Normal approximation to the
chi-squared distribution.

n
o 5 10 20
0.01 0.0799 0.0481 0.0317
0.05 0.111 0.0877 0.0740
0.10 0.142 0.125 0.116
0.20 0.200 0.196 0.196
0.80 0.765 0.779 0.787
0.90 0.910 0.910 0.908
0.95 0.973 0.968 0.964
0.99 0.999 0.998 0.997

Since the X; are independent and identically distributed, each with mean 1 and
variance 2, it follows that

(S, /n—1)
V2
Thus, S, is approximately normally distributed with mean n and variance 2n when n, the
degrees of freedom of the chi-squared distribution, is large; that is, for large n, Pr(S, < s)
can be approximated by ®((s — n)/+/(2n)), where ® denotes the distribution function of
the standard normal distribution.
Table 12.1 contains approximations of the form ®((s,, — n)/+/(2n)), where s, satisfies

B NO, 1) as n— .

PI'(S,, = sna) =a,

for several choices of n and . These results show that the normal approximation is generally
quite accurate, except when n and « are both small.

Using an argument based on the central limit theorem, the normal approximation to
the chi-squared distribution holds only when 7, the degrees of freedom, is an integer. A
more direct proof based on an expansion of the characteristic function of the chi-squared
distribution shows that the normal approximation holds in general for large degrees-of-
freedom. O

12.3 Triangular Arrays

Theorem 12.1, which applies only to independent, identically distributed random variables,
is too limited for many applications. A more general version of the central limit theorem
applies to triangular arrays. Consider a collection of random variables of the form { X,
k=1,...,n,n=1,...}. Hence, when written as a two-dimensional array, this collection
has the representation

X1

Xy X2
X311 X3 X33
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which leads to the term “triangular array.” In such a triangular array the random variables in
any row are taken to be independent; however, they do not need to be identically distributed.
Furthermore, the distributions may change from row to row.

More generally, instead of having n elements in the nth row of the triangular array, we
can consider a triangular array with r,, elements in the nth row, where ry, r,, ... is a given
deterministic sequence. The following result considers the asymptotic distribution of the
sample mean in such a setting.

Theorem 12.2. Letry, rs, ... be a given sequence such that r, — 0o as n — 00. For each
n=172,...,let Xy, ..., Xp, denote independent random variables and let

tnk = EXw), 0k = Var(Xu), k=1,...,r,
For o > 0, define
Yak(@) = E[| X — wukP], k=1,...,r; n=1,2,....
Assume that, for some o« > 0,

ZZ”:] Vnk(a)

lim - =0. (12.1)
— n 143
" oo[ i on2k] ’
Let
_ 1 "n _ 1 I'n
Xy =— ank and ji, = — Z,u/nk'
= =
Then

n)_(n__n
MEN(O,l) as n— oo.

[Z;’lzl ‘Tnzk/”n]E

The proof uses the following lemma.

Lemma 12.1. Let Y denote a real-valued random variable with distribution function F.
Suppose that, for some a > 0,

E(Y*™) < oo.

Then, for all € > 0,

. t?
E[min{[tY|*, [tY|*}] < €|t PE(Y?) + E—aE[IYI2+“].

Proof. Note that, for all € > 0,

E[min{|zY|*, [tY|*}] < |t|3/

|y|3dF(y>+r2/ P dF).
{lyl<e}

{Iyl=€}

Using the facts that

/ WP dF(y) < e / WP AF() < cB(Y )
{lyl<e} {lyl<e}
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and

1 1
/ mwnwsqf IYP*dF(y) < —E(Y[**),
(Y € Hiylzel €

the result follows. M

Proof of Theorem 12.2. Without loss of generality we may take p,x = O for all n and k.

Forn=1,2,...andk =1, 2, ..., r,, let ¢, denote the characteristic function of X,; and
let ¢, denote the characteristic function of
\/rn)_(n . an + +Xn

[Zk 1 ank/r”]i [Z"n 2 ]
Then, for each ¢ € R,

on(0) = [ [ omett/S0),
k=1

where

To prove the result, we show that, for each ¢ € R,
lim @,(1) = exp{—1>/2}.
n—o0
Recall that, by Lemma A2.1,
2
explit} = Y (it)!/j! + R(1)
j=0

where

|R(1)| < mi HMIW
min | — , =1t ¢
- 2 6

o,
Ouk(t) — <1 - 5(@)

It follows from Lemma 12.1 that, for all € > 0,

t? o} ome 17 Yu(a)
Ok (/Sn) — (1 - ——k>‘ <elt)? Szk + _S1+a/2

Hence,

< E[mm {|t| Xnk’ |t|3|Xnk|3] .

Note that, for any complex numbers ay, ..., a,; by, . .., b, with modulus at most 1,

n
- an = by byl <) laj = byl.
j=1

_”1__&)
Sn /l:[1< n

Hence, for all € > 0,

n 2 2
%@—HQ—%%M=

k=1

< E|t|3 + L Z ynk(a).

S2+O(
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It follows from (12.1) that, for each r € R,

I'n t2 0_2
on) =[] (1 - 3?’5‘)

k=1 n

lim sup < et

n—o0

Since € > 0 is arbitrary,

lim
n—oo

I'n l2 02
gon(t)—l_[<1 - 55_;)‘ =0

k=1

foreach t € R.
The result now holds provided that

I 252 2
i J1(-55) =)
By Taylor’s theorem, for x > 0,
exp(—x)=1—x+ %exp(—x*)x2
for some x*, 0 < x™ < x. Hence,

exp Lok ()P
2 82 2 82

Fix t. Note that, since

E[1Xx?]"F < E[1Xul>™].

24a
o =< Vur(ar). Hence,

2+« T 24« In
(SuplSkSrn U”k>2+°‘ _ SUPi<ksr, Onk  _ 2uk=1%k _ _ 2k Yar()

Sn Sr%Jra — Sl%Jra —
It follows that

2
SUPy <k<r, Onk

lim =0.
n—00 Sz%
Hence, for sufficiently large n,
)
t“o
sup |1 — —sz <
1<k<r, 2 Sn

It follows that

24«
Sl‘l
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The result now follows from the fact that

so that

r,, 2 52 2
lim l— — %) —exp{—1,
p[1(1-55) o0l 5]
as required. W

Condition (12.1) of the theorem, known as Lyapounov’s condition, may be weakened to
the Lindeberg condition: for each € > 0,

n
. Z 1 2
nlln;o k=1 ?E[XnkI{IXnkzeSn}] =0.

n

See, for example, Billingsley (1995, Section 27).

Example 12.3 (Sum of Bernoulli random variables). Let X, X, ... denote independent
random variables such that, foreachn =1, 2, ...,

Pr(X, =1)=1-Pr(X, =0) =6,

where 0, 6,,... is a sequence in (0, 1), and consider the asymptotic distribution of
X, = Z'}Zl Xj/n.Thus, X, X, ... are independent, but not identically distributed.

Note that X, X5, . ..canbe viewed as a triangular array by taking r, = n and X,;; = Xj,
k=1,...,n,n=1,2,.... Using this representation,

tak =6 and o2 = 6 (1 —6)), k=1,2,....,n;n=1,2,....
Since, fork =1,2,...,nandn=1,2,...,
Yok (@) = 6,1 = 6) [0, + (1 — 6],
it follows that (12.1) is satisfied if
i@k(l —6y) > 00 as n — oo.
k=1
Under this condition,
Vn(Re = i, 6/m) 7
[0, 61— 6)/n)’

That is, X, follows the central limit theorem provided that

N(0,1) as n — oo.

n
ZQk(l —6) > 00 as n— oo.
k=1
Although this type of analysis is useful for establishing formal limit theorems, it is not
very useful for determining when a normal distribution will be a useful approximation
to the distribution of X, for a given value of n. For instance, suppose that we wish to
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approximate the distribution of X,, for n = 50, for given values of 6, ..., 6sy. Note that
the terms 6, . . ., O5o can be embedded both in a sequence satisfying

29;((1—0,()% 00O as n— o0
k=1

and in a sequence not satisfying this condition. Furthermore, the magnitude of the sum of
the first 50 terms in a sequence may be a poor guide as to the behavior of the infinite sum.
Thus, the formal limit theorem cannot be used directly to assess the usefulness of the normal
approximation. However, Theorem 12.2, as applied in this setting, suggests that the larger

50
D 61— 60
k=1

is, the more accuracy we can expect from the normal approximation to the distribution
of X,. O

Example 12.4 (Linear regression model). For eachn =1,2,..., let Y1, ..., Y, denote
independent random variables such that
Yj:9zj+€js j=1,...,n

where €1, €;, ... are independent identically distributed random variables with mean 0,
variance o2 and

y =E[lal’] < co.

Here z1, z», . .. are fixed constants.
Forn =1,2, ... define

n
_ pEEH IS
n= TS
> j=1%j
T, is the least-squares estimator of 6 in the model for Yy, ..., Y,. Our goal is to determine

the asymptotic distribution of 7;,. Note that

ZZ

so that 7}, is the sample mean of the random variables

j= lzz/n

Zj

=Y, j=1,...,n
Z?:ﬂ?/”] ’

Since the distribution of
Zj
j
Y ii23/n
depends on n, we need to use the central limit theorem for a triangular array.
Forn=1,2,...and j = 1,2, ..., n, define
Zj

Xnj=— =Y
T X!
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then 7,, = Zl;':l X,j/n. Note that X,,; has mean

% Z§
H’l’lj = 2
Z;=1 zi/n
variance
2
o2 = Zj 2
nj — [Zn Zz/i’l]
J=1%]

and

Vai = 7ai(1) = B [1Xa) = ] =

where y = E[le]%].
Then

Z’;=1 Ynj 23;1 |Zj|3 v

n % - n 3 3 ’
[Zk:l Urtzk]_ [Zj:l 13]2 ?
Hence, condition (12.1) of Theorem 12.2 is satisfied provided that the sequence z;, z2, . . .
satisfies

. Z?=1 I2;1°
lim —————
n—oQ 5

[Z;l':l Z?]z

This holds, for instance, if for all j, |z;| < M for some M and Z;Zl z? diverges to oo as
n — o0. Then

—0. (12.2)

n 3 n 2
> 1z <MZj:l|Zj| _ M

3 = B 3 I
DOEEAL DR L PO
which approaches 0 as n — oo.
When (12.2) holds, 7, is asymptotically normally distributed with mean

1 &

and variance
o2

1
_22:: _Z,1Z -

Example 12.5 (Normal approximation to the binomial distribution). Let ry,r,, ... be
a given sequence of nonnegative integers such that r, — 0o as n — oo and, for each
n=1,2,...,letY, have abinomial distribution with parameters r, and 6,,, where 6, 0, . . .
is a sequence in (0, 1). We will consider the conditions under which

Yn - rngn
\/[rnen(l - 9,,)]
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converges in distribution to a standard normal random variable. That is, we will consider the
conditions under which a binomial distribution with parameters r,, and 8, can be approxi-
mated by a normal distribution when 7 is large.

For eachn =1,2,..., let X,;,..., X,,, denote independent, identically distributed
Bernoulli random variables such that

Pr(X,;=1) =6, j=1,....r.

Then Y, has the same distribution as

Thus, Theorem 12.2 can be used to study the asymptotic distribution of the standardized
version of Y,,.

Consider condition (12.1). Clearly, X,; has mean pu,; =6, and variance onzj =60,
(1 —6,). Since

E[1Xu — 6,7 =6, (1 =6 [0,7 + 1 —6,)""],

rE[1 X1 — 6,177 1 g} 4+ (1 -6,

[ra0n(1 = )12 15 [6,(1 — 6,)1% ]

9,,1+a/2 (1 - 9}1)1+a/2
[r.(1 —6,)]° AL

It follows that a sufficient condition for condition (12.1) is that
rn(1—6,) > o0 and r,0, > c©

asn — o0o.

Thus, we expect that a normal approximation to the distribution of Y,, will be accurate
whenever r,(1 — 6,,) and r,,6, are both large, a criterion that is often given in elementary
statistics textbooks. [

Example 12.6 (First-order autoregressive process). Let Z,, Z,, ... denote independent,
identically distributed random variables each with mean 0, variance o, and y = E[|Z;|*] <
oo.For j =1,2,...let

1 e
J-m4 iy =1

ij,1+Zj lf]:2,3,
where |p| < 1. This is a first-order autoregressive process; such a process was consid-

ered in Example 6.2 under the additional assumption that Z;, Z,, ... each have a normal
distribution.
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375
Consider the asymptotic distribution of Z;’z 1 Y;/n. Note that we may write
=2 j—1
i 1Y
Y, = 0Zi_i+———--7
NN (e
Hence,
n n—3
YIUED BT IED WD L
j=1 i= J(l
Let
1—p" i
Tova Hi=1
anj = 1—pn+l—j
lpp ifj=2,3,...,n
Then
n n
2 Y= iz
j=1 j=1
Define X,,; = a,;Z;. Then
n 1 n
w2
j=1 j=I
where X,,;, j=1,...,n,n=1,2,... forms a triangular array.
Note that each X,,; has mean 0, variance
2 2 2
O, = a,;0°,
and
Yaj = Yaj(D) = E[1X,; '] = lay;I’y.
Hence, Z’;=1 Y;/n is asymptotically normally distributed provided that
n 3
i—1 lan;]
lim 2z lanl” =0. (12.3)

n—00 [Z;, laz ]é

nj

Using the expression for the sum of a geometric series, it is straightforward to show that

o, (=D =262 +p p (1= p")?
2 = i=pr (= pP(T = p2)’

Hence,

n

2 _
Zanj =0(n) as n— oo.
j=1

Clearly, there exists an M, depending on p, such that

sup sup |a,| < M.

n j=1,..,n
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It follows that (12.3) holds and, hence, Z;’z 1 Y;/n is asymptotically normally distributed
with mean 0 and variance

1l & oo
;Zanﬂ :
j=1
Since
1 & 1
lim — a = —)

by Corollary 11.4, 21/1':1 Y;/n is asymptotically normally distributed with mean 0 and
variance

11
n(l-p)?*

12.4 Random Vectors

Both versions of the central limit theorem considered thus far in this chapter may be extended
to the case of random vectors. Here we consider only the independent, identically distributed
case; see, for example, van der Vaart (1998, Chapter 2) for the case of a triangular array.

Theorem 12.3. Let X1, X», ... denote independent, identically distributed d-dimensional
random vectors each with mean vector u and covariance matrix X, where X is nonnegative
definite and || < oo. Let

_ 1 &
X, =— Xi, n=1,2,....
n n; J

Then
Jn(Xn—u)gZ as n — 0o,

where Z has a d-dimensional multivariate normal distribution with mean vector 0 and
covariance matrix .

Proof. Leta denote an arbitrary element of R? suchthata” a > 0. Thena” X, a” X», ...
are independent, identically distributed real-valued random variables each with mean a’ 11
and variance 0 < a” ¥a < oo. It follows from Theorem 12.1 that
a’Xi+a"Xo+---+a"X, —na"p p
N
[aT Za] > Jn

Zy as n — 00,

where Z; has a standard normal distribution. That is,
a’Xi+a"Xo+---+a"X, —na"p o
— 71 as n — 090,
Jn

where Z; has a normal distribution with mean 0 and variance a” Xa. The result now follows
from Theorem 11.6.
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Now suppose that a € R? satisfies a’ a = 0. Then a” X, a’ X,, . .. are independent,
identically distributed real-valued random variables each with mean a” . and variance 0.
Hence,

a’Xy+a"Xo+--+a"X,—na'p o
1 Sa'n as n— oo
[aTXalz./n

The result now follows from the fact that a” u may be viewed as a random variable with a
normal distribution with mean a” 1 and variance 0. W

Example 12.7 (Multinomial distribution). Let Y = (Yy, ..., Y,,) denote a random vec-
tor with a multinomial distribution with parameters n and (6, ..., 6,,+1). Recall that this
distribution has frequency function

n X1 X2 X g (M—X1 ="+ —Xp)
p(xl,...,xm):( >91 052 0,0, ,
x17~x27 "xm

forx; =0,1,...,n,j =1,...,m,suchthat Z'J'.’zl xj <nshere @y =1— Z;’zl 6;. We
will consider an approximation to the distribution of Y that is valid for large n.
Forj=1,...,mlete; € R™ denote the vector with a 1 in the jth position and zeros in
all other positions, so that {e, ..., e,} is the usual set of basis vectors for R”, and let ¢,,1|
be a vector of all zeros. Define a random variable X as follows. Let T denote a random

variable such that
P(T=j)=0;, j=1,....m+1

and let X = X(T) = er. For instance, if T = 1, then

1
0
X=1.
0
Then, for any xy, ..., x,,, €each taking the values O or 1 such that Z;"Zl xj <1,

Pr(X — (xh e xm)) — 9?1 .. 9’:11119721(?'+"'+XM);

it follows that X has a multinomial distribution with parameters (6, ..., 6,+;) and n = 1.
It is straightforward to show that the mean vector of X is
01
w=1 :
Om
and, since at most one component of X is nonzero, it follows that X has covariance matrix
% with (7, j)th element

s _ [0 -0 ifi=
A Y ifisj

i,j=1,...,m.

Let Xy, ..., X,, denote independent, identically distributed random vectors such that
each X; has the same distribution as X. Then Z’;:I X has a multinomial distribution
with parameters (0, ..., #6,,) and n. It follows from Theorem 12.3 that Z?:I Xj/n is
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asymptotically distributed according to a multivariate normal distribution with mean u
and covariance matrix X /n. That is, the multinomial distribution can be approximated by a
multivariate normal distribution in the same way that a binomial distribution is approximated
by a univariate normal distribution. [

12.5 Random Variables with a Parametric Distribution

In statistical applications, the random variables of interest are often distributed accord-
ing to a distribution depending on a parameter whose value is unknown. Let X, X», ...
denote independent, identically distributed random variables each distributed according
to a distribution depending on a parameter 6§ € ® and consider an approximation to the
distribution of

_ X S+ X,
g, =ttt A

Let
n(@) = E(X;60) and 02(9) = Var(Xy;0), 0e®.
Under the assumption that o2(9) < oo for § € ®, Theorem 12.1 may be used to show that

V(X — 11(0))
a(6)

n—o00

lim Pr{ §t;9}=<1>(t), —00 <t <00
and, hence, the distribution of X, may be approximated by the normal distribution with
mean w(0) and standard deviation o (0)//n.

When the random variables are distributed according to the distribution with parameter 6,
the approximation error decrease to 0 as n — oo for any value of 6. However, the accuracy
of the approximation may depend heavily on the value of # under consideration. In some
cases, for any value of n, it may be possible to find a value of 8, 6,, such that the normal
approximation to the distribution of X,, when the data are distributed according to the
distribution with parameter value 6,,, is inaccurate. The following example illustrates this
possibility.

Example 12.8 (Normal approximation to the binomial distribution). Let Y|, Y,, ...
denote independent, identically distributed random variables such that

Pr(Y,=1;0)=1—-Pr(Y, =0)=16

where 0 < 6 < 1. Since Y; has mean 6 and variance 6(1 — #), we know that for any
0<6 <1,

V¥, —6)

lim Pr{ -
61 —0)]z

n—o00

< t‘@} =®d(t), —o00 <t < o0.
Suppose t < —1 and, forn =1,2,...,let6, = 1/(n + 1). Then,

Pr{w < ;;9”} :Pr{nf/n < L(t—l— 1);9,,}.
[6,(1 — 6,1 ntl
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Since nY, has a binomial distribution and ¢ + 1 < 0, it follows that
Prin?, < ——@+ 1 =0
rinY, < =0.
n+1

Hence, although the error in the normal approximation to the distribution of ¥, decreases
to 0 as n — oo, for any value of 6, for any given value of n, there is a value of 8 for which
the error in the normal approximation is at least ®(¢) fort < —1. O

Thus, it may be the case that even though

(X, — u(9))
o(®)

foreach € ®, the maximum error in the normal approximation over all 6 does not converge

to 0 as n — oo. In order to be aware of this type of situation, we can consider the maximum
error in the normal approximation for 6 € ®. For instance, we might require that

Pr { (X, — n())
o(6)

lim Pr
n—0oQ

gt;e} =d(r), —oo <t <00,

lim sup =0, —o0<t<o0.

n—oo 0ec®

< t;e} — d(1)

In this case, we say that

(X, — )
o)

converges in distribution to a standard normal distribution uniformly in 6 for 6 € ®. If this
type of uniform convergence holds, then, given € > 0 there is an n( such that

Pr { VX, — 1(9))

sup <¢€, for n>ng,

0e® o(0)

that is, for sufficiently large n, the approximation error is less than € for all values of 6.
Theorem 12.4 gives a version of the central limit theorem that can be used to establish

this type of uniform convergence. Note that, in this result, we allow the random variables

X1, X», ... to also depend on the parameter 6.

5;;9}—@(;)

Theorem 12.4. For each 6 € ©, let X1(0), X»(0), ... denote independent, identically dis-
tributed real-valued random variables such that

and let
o2(®) = Var[X,(0);0], 0 € O.

Suppose there exists 6 > 0 such that

X,(0) 7
supE ;0| < oo.
90 o(0)
Then
. SV
lim sup |Pr 2= X0 <10} — @) =0
190 ge@ o ()

foreacht € R.
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The proof of the theorem relies on the following lemma.

Lemma 12.2. Define X,(0), X2(0), ... as in Theorem 12.4. If

"X (6
lim sup E[f (ZFI i )) ;9} —E[f(2)]| =0

"= geo o (0)y/n
for all bounded, continuous functions f having bounded derivatives of each order; then

. { 21 Xj(O)/v/n
lim sup [Pr{ ———
=0 ge@

o(0)

< t;G} —d@)| =0
foreacht € R.
Proof. Let S,(0) = Z?:l X ;(0), let Z be a random variable with a standard normal dis-

tribution that is independent of X(0), X»(@), ..., and let f denote a function satisfying
the conditions of the lemma. Then

supE[f( 5:(0) >;9} —ELf2)]] < sup E[f( 5:(0) >;9] —E[f(Z)]‘
PEC) o(0)/n ) a(0)y/n
and
infE [f <6f9§63n) ;9} ~ELf(2)]] < sup |E [f <af9§?}n) ;9} - E[f(Z)]’ :
Hence,
lim supE _f( 5,(6) );9] = lim infE[f( 51(6) );9} =E[f(Z2)]. 12.4)
n—>oogee | \0(0)y/n n—00 6O o (0)/n
Define
1 ifz<0
q(z) = le exp(—1/(t(1 — )} dt/ [l exp{=1/(t(1 — )}dt if0 <z <1
0 ifz>1

and, for each u > 0, let
q.(z) =quz), ze€R.

Note that, for all u > 0, g, is a bounded, continuous function having bounded derivatives
of each order and

Iiz<0) < qu(2) < I<ijuy, z €R;

hence, for any random variable Y and any u > 0,

Pr(Y <y) <Elg,(Y =] <Pr(Y <y+1/u), —00o<y<o0. (12.5)
Let
o Sq(0) )
Fn(t,e)_Pr{a(Q)\/n 51‘,6}.

Then, by (12.5) for each u > 0,

Fo(r: S, (9) ,
2(:0) <E|qu 0(9)\/”—1 0.
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Since g, satisfies the conditions of the lemma, by (12.4) and (12.5),
Sq(0 . S, (6
lim inf E | g, # —t);6| = lim supE|gq, # —t];0
0000 o (6)/n 1% et o (6)/n
=E[q,(Z — D] = O + 1/u).
It follows that, for all u > O,

limsup sup F,(¢;0) < ®(t + 1/u)

n—o0o 0e®

and
lim sup 1nf F,(t;0) < ®(t + 1/u);
hence,
limsup sup F,(¢;0) < ®(¢)
n—o0o 0e®
and
lim sup 1an W(t;0) < D(1).
Similarly,
$q(0)
F,(t;0) > E|q, —tr—1 ;0
0 [q <o(e>¢n / ”) }
so that
S, (0
liminfsup F,(¢;60) > hm supE|:qu ( 0 —t— 1/u> ;€:|
n—00 gcg 9o o(0)/n
=Elgu(Z —t = 1/u)] = & — 1/u)
and

M\
hmmflan(t 0) > lim 1nfE[ ( ©® —t— 1/u);9:|

n— 00 n—o00 fe® O’(Q)Jﬂ

=Elgu(Z — 1t = 1/u)] = &1 — 1/u).
Since this holds for all u > 0,

liminf sup F,(¢;0) > ®(¢)

=00 pe®
and

lim inf 1nf F,(t;0) > ©(1).

n—0oo

It follows that

lim sup F,(t;0) = &(r)

n—oo 0ec®
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and

lim inf F,(t;0) = ®(¢).

n—00 He®

The result now follows from the fact that

sup | F(¢;0) — ®(1)| < |sup Fy(t;0) — ®(¢)| + | inf F,(¢;0) — P(z)]. W
6cO 0O =)

Proof of Theorem 12.4. Let S,(0) = Z'}:, X ;(0). Using Lemma 12.2, the result follows
provided that, for every bounded continuous function f having bounded derivatives of each

order,
Sa(0) '\ .
- [f <0(9)\/n> ’91| - E[f(Z),G]' -0

as n — 00, where Z denotes a random variable with a standard normal distribution that is
independent of X(0), X,(0), ....
Fix f(-)and 6 € ®. For h € R, define

sup
6e®

1
fx+h) — f(x)— f'oh - Ef”(x)hz :

g(h) = sup
Then
1 " 3 3
lg(h)] < gsuplf @) 1h]” < Ky |RI7,
for some constant K, and
lg()| < sup | f"(x)| |h]* < Ky |hI?,

for some constant K,. Also note that for &, h, € R,

FO+h) = fx+ho) = f')h — ha) — —f”( ) (h} = 13)| < g(h1) + g(ha).

Let Z; = Z;(®), j =1,2,..., denote independent random variables, each normally
distributed according to a normal distribution with mean 0 and standard deviation o (6), that
are independentof X; = X;(0), j =1,2,... . Fork=1,...,n,let

n

= Wi (0) = ZX O+ > Z;0)

Jj=k+1

so that

n

Wi + Xy = ZX Z s

j=k+1
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Wi+ Zi = Wiy + Xiy1, W, + X,y = S, and W) + Z; has a normal distribution with
mean 0 and variance no (6)%. Then

el (G ) 7] ol = e (e o |- [ (G )7

=Sl ()~ ()]

7 (Zvéej;j;) (ZVEGLZ:; ) ”

B E{, 1[ (21(9?\;;) <Zv(9;r¢zn>} 9}
=l Ca) - Gl

; [ (o(ewn) e (a(9)¢n> ]
since
(Wi \Xi—Z; (Wi \Xi- Z2
Eff ;0| =E| f =0
o(0)/n) a(0)/n o(0)/n G(G)Jn
by the independence of W;, X;, Z;.
Hence, for each 9,
Bl /(22D N 0| —grrzy01 <nB|e(—2 ) 4o (—2):0
;0| — ;01 <n ;
o(@)/n E\o)/n) TE\G@)Un
where g depends only on the function f.
Consider
E X1 ).
E\oordn) "
Let Fjy denote the distribution function of X () for a particular value of 6 € ®. Fore > 0
andn=1,2,..., let A, ((0) denote the event that

1X1(0)] < eo(0)y/n.

Then
sle(cam) @)= | < gm0+ [, (crgm ) 25
ACTONZY A I A T WY anoy S \a@)yn)
[x|3 / |x|?
K, dF, + K dF,
= /A (0 0(9)3n° o) 2 An (9) 0(9)2 o)
248
§E+& x o) dFG(x)
n n An,s(e)p 0'(9)

X1(9)
o)

K16 K2 1
<20, 72
~ n n (ey/n)

2+8
;9:| .
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Note that this holds for all @ € ® and K, K, depend only on f. Also,

E[( 5 >'9}<KE‘ 2|23
& a@)/n)’ |~ ! c@n| | a3

Hence, for every € > 0 and every 6 € O,

NMORY K _||Xxi0" 3K,
e[ (o) o) -muen SK‘”@E[ 0@ | ]*%'
It follows that
WORY K> X0 3K,
P E[f (a(ewn)’g]_E[f(Z” 5K1€+@73§8E[ o (0) ’9} Jn
for every € > 0. Hence, for all ¢ > 0,
S, (6
e e (gm0 -] = i
so that
. NORWAE _
e (S ) o] -] =

proving the result. W

Example 12.9 (t-distribution). Let X, X», ... denote independent, identically distri-
buted random variables, each distributed according to the absolutely continuous distribution
with density function

—(0+1)

X 2
c(9)<1+§> , —00 <X <O

where c(0) is a constant and 8 > 3. This is a standard ¢-distribution with 6 degrees of
freedom; recall that the variance of this distribution is finite only when 6 > 2.
Here

0
E(Y1;0) =0 and o?(9) = Var(X,;0) = s
it is straightforward to show that, for0 < § < 1,
r(32) L, T®O/2-1-245/2
r'(3) r'©/2)
Hence,
X, P e T(0/2—1-65/2
supE | |— = ( 2 )sup(e_z)%—( / 2
0>3 o(0) F(E) 0>3 re/p2-1
Let
s T@/2—1-68/2
H@©)=® _2)%u

r©e/2—1)
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Note that H(-) is continuous on [3, c0) and
ra/2-:5/2)
rday/2)

which is finite for § < 1. Consider the properties of H(8) as 8 — oo. According to the
asymptotic expansion for the ratio of gamma functions given in Example 9.5,

s 1 1
H@O)=(©-2) {(9/2—_1)3+0<W>} as 0 — oo.

It follows that

HQ3) =

lim H(6)
6—o00
exists and, hence,

sup H(9) < oo.
0>3

According to Theorem 12.4,

Pr{z K/ .9}_%) _

lim sup @
o

n—o0 0>3

foreachtr e R. O

In many cases in which

lim sup |P
=0

o(9)

r{M_ : ] O(1)| =

does not hold for the entire parameter space ®, the convergence is uniform in a subset of
®y; it follows from Theorem 12.4 that if there exists a subset ®, C © such that

248
sup E < 00
0eBg

" i(0
PI‘:M Et;O} _(I)(t) —

X1(0)
o(6)

for some § > 0, then

lim sup
1= ge@,

o(0)

Example 12.10 (Normal approximation to the binomial distribution). As in Example
12.8, let Yy, Y, ... denote independent, identically distributed random variables such that

Pr(Y, = 1;6) =1 — Pr(Y; = 0) = 0,
where 0 < 0 < 1, and take X;(0) =Y; — 6, j=1,2,...,n.Foré > 0,
E[|X1(9)|2+8;9] =021 —0)+ (1 —0)*"p

and

. |:|X1(0)|2+6. :| _ g1+8/2 a- 9)1+8/2
o (@) (1-6)2 6:
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Hence,

X (0 246
sup E[&;g} = 0o

0<6<I o (9)*+

However, let ®, denote any compact subset of (0, 1); such a subset must have a minimum
value a > 0 and a maximum value » < 1. It follows that

. [|x1(9>|2+<S 9} .
su _ <
beor | 0@

and, hence, that

lim sup =0

=0 ge@,

Pr {—Zj:l X/ t;@} — (1)
(0)

forall —oo <t <o00. O

12.6 Dependent Random Variables

In this section, we consider the asymptotic distribution of a sample mean Z?Zl X;j/n
for cases in which X, X, ... are dependent random variables. In many cases, sample
means based on dependent random variables follow the central limit theorem. However,
the conditions required depend on the exact nature of the dependence and, hence, there
are many versions of the central limit theorem for dependent random variables. Here we
present two examples of these results. In order to keep the proofs as simple as possible,
the regularity conditions required are relatively strong; in both cases, similar results are
available under weaker conditions.

The first result applies to a sequence of real-valued random variables X, X5, ... such
that X; and X; are independent if |i — j| is sufficiently large. Specifically, the stochastic
process {X; : t € Z} is said to be m-dependent if there exists a positive integer m such that,
for positive integers r and s, s > r,andanyn = 1,2, ...,

(X15X27"'7Xr) and (X_S‘?XS-I—]’""XS-HI)

are independent whenever s — r > m.
Recall that the autocovariance function of a stationary process is given by

R(j) =Cov(Xy, X14j), j=0,1,...
and the autocorrelation function is given by
p(j)=R(j)/R©O), j=0,1,....
Hence, if the process is m-dependent, R(j) = p(j)=0for j=m+1,m+2,....
Example 12.11. Let Y, Y,, ... be independent, identically distributed random variables
each with range ). Let m denote an integer, let f : ym+l 5 R denote a function and let
Xi=fT;,Yie, ... Y ), j=1,2,....

The process {X; : t € Z} is clearly m-dependent. O
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The following result gives a central limit theorem for an m-dependent process.

Theorem 12.5. Let {X, : t € 1} denote an m-dependent stationary stochastic process such
that E(X;) = 0 and E(|X, %) < oo. Then

tJnZX E N, 1),

2 = {1+22,o(j)}a2

j=1

where 0> = Var(X) and p(-) is the autocorrelation function of the process.

Proof. The basic idea of the proof is that we can divide the sequence X, X», ..., X,
into large and small blocks such that large blocks are separated by m + 1 units of time
and, hence, are independent. The sample mean (X; + - - - + X,)/n can be written as the
mean of the large-block means together with a remainder term based on the small blocks.
The large-block means are independent and, hence, their average follows the central limit
theorem. Provided that the small blocks are small enough, their contribution to the sum is
negligible and does not affect the limiting distribution. We now consider the details of the

argument.
Letk,,n =1, 2, ..., denote an increasing sequence of integers such that k,, > m for all
1 .
nand k, = o(n3)asn — oo.Foreachn =1, 2, ..., let d, denote the largest integer such

that d,, < n/k,; hence
n=k,d,+r,, n=12,...,

where 0 < r, <k,.
LetS,=X;+---+ X,,. Foreach j =1, ...,d,, define

Snj = Xjry—tpr1 + -+ Xji,—m)/ k.

Hence,
Sm = X1+ 4 Xiyom)/Vn,
Sz = X1+ -+ + Xoky—m)/Vkn,
and so on.
Define
Thj=Xjky—mt1 + -+ Xji,, j=1,...,d,—1
and
Tha, = Xkudy—m+1 + -+ + X
Hence,

Sn = \/kn(Snl R Snd,,) +(Tnl +---+ Tnd,,)

where S,1, ..., Snq, are independent and 7,1, . .., T,4, are also independent.
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It is straightforward to show that, for j =1, ..., d,,
E(S,)) =0 and Var(S,) = t?
where

= (ky —m)Var(X;)+2 Y Cov(X;, X))

I<i<j<k,—m

k,—m—1
=hm—mnﬁ ij—m—ﬂMﬁ}ﬁ

j=1
Since the process is m-dependent,
p()=0 for j>m+]1

so that, for k,, > 2m + 1,

+2§: pud

Note that

lim rnz = r2,
n—0oQ

where 72 is given in the statement of the theorem.
We may write

ﬁSF( ) Z ¢i

Recall that d,k, = n — r,, where r,, < k, = o(n%); hence,

dpkn

n—»oo n

=1

It follows from Corollary 11.4 that the theorem holds if it can be shown that

1 & s,
dn;%n]—%N(O,l) as n — oo
and

In ZT,,,—)O as n — oo.

Equation (12.7) can be established by showing that

lmlzﬁﬂwmnﬂ_

n—o0 n

(12.6)

(12.7)

(12.8)
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Note that, for j = 1,...,d, — 1,

m—2
Var(7,,;) = {(m — D42 m—1- j)p(j)} o2

j=1

m—2
< {(m—1)+22<m—1—j>}02
j=1

J
< (m— 1)y

and
Var(Tnd,,) =< (l’l +m — krldn)zaz-

Hence,

n n

Z?Ilzl Var(T”]) < {(m - 1)2 + (l’l B kndn + m)2 } 02 — (m B 1)2 + (rn + m)2 .
n 9

(12.8) now follows from the fact that r, < k, = o(n%). Hence, (12.7) holds.

To show (12.6), we use Theorem 12.2. The random variables S,;, j =1,...,d,,
n=1,2,... form a triangular array such that, for each n =1,2,..., S,1, ..., Sy4, are
independent with mean 0, standard deviation t,,. Using the Holder inequality for sums (see
Appendix 3)

n

2%

j=1

E

j=1

j=1

3 n 3 n
<E (Zlle) SniE[EXjP}:n?EnXlP]

so that

(kn — m)3
E{ISyI°) < ———E(X1I’}. (12.9)
ki
Using Theorem 12.2 with = 1, the result follows provided that condition (12.1) is satisfied,
that is, provided that
d/l 3
im1 E{1Su;17)
lim 20 BUS, T A
neo dy T

Using (12.9),

5
(ku*m)jE X3
S EUS P _ g il

214 - 3
[d,,fn]~ dn2 Tn3

Since 1, — T as n — 00, the result holds provided that

1

6
. n
lim —

n—oQ 2
dn

=0

which follows from the facts that k, = o(n%) and d,k, = O(n). A
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Example 12.12 (Sample autocovariances under independence). Let Y|, Y,, ... denote
independent, identically distributed random variables each with mean 0, standard deviation
1 and assume that E{|Y;|?} < oco. Consider the statistic

1 Xn:
- Y.i Y.i+n1
n =

for some fixed integer m > 0. This may be viewed a sample version of the autocovariance
of order m of the process Y, Y», ... based on the observation of Yy, ..., Y,4.
Let

X;j=YYjiin, j=1,....
Clearly, the process X1, X», ... is m-dependent and, since
E{1X,’} = E{1\’}* < oo,

the conditions of Theorem 12.5 are satisfied. Note that E(X;) = 0, 6> = Var(X;) = 1, and
the autocorrelation function of the process X, X5, ... is given by

o(j) =Cov(Xy, X14))
= Cov(¥1Yu, Y14;Yuyj)) = BN YY1y ;Y0 ))
—0, j=12 ..

Hence,
1 n
- E Y.Y:
\/I’l ‘ JAj+m
Jj=1
converges in distribution to a standard normal random variable. O

Example 12.13 (Finite moving-average process). Let ..., Z_,Zy, Z;,... denote a
sequence of independent, identically distributed random variables with

E(Zy) =0 and Var(Z)) =02 < o0
and E(|Zo|?) < oo. Letag, «y, .. ., o, denote constants and let

ijza,-Zj,i, ]=1,2,
i=0

Clearly, the process X1, X, ... is m-dependent with autocovariance function R(-) given by

R(j) = Cov(Xy, X4;) = Cov (Z a;Z_;, Z%‘Zj—z)

i=0 i=0

m m—j
= Cov (Z OliZj_i, Z Olj+iZ_i)
i=0

i==j
m—j

§ : 2 : .

= Qi i07, ]:0,...,m,
P

for j > m, R(j) = 0.
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It is straightforward to show that E[| Zo|*] < oo implies that E[|X|*] < oo so that the
conditions of Theorem 12.5 are satisfied and, hence,

1 1 n
——ZXj 2) N@0,1) as n— o0
T./n =
where
% = {1 +2)_p()) [ RO) = RO)+2 R())
j=1 j=1
m m m—j
= aiz +2 Z ooy o’
i=0 j=1 i=0
Note that
m m—j
Z oildji = Z(X,‘Olj
j=1 i=0 i<j
so that

2
2= |:Zoci2+22a,~aj:|02= (Z(xi) o2 0
i=0 i=0

i<j

Theorem 12.5 applies to stationary stochastic processes in which X; and X, are
independent for sufficiently large r. The following result considers a different scenario in
which nothing is assumed regarding the dependence between X; and X ;,. Instead we
impose conditions upon the extent to which the conditional mean and variance of X, given
X(), Xl, ey Xn—l depend on X(), X], ey Xn—1~

Theorem 12.6. Let X, X1, ... denote a sequence of real-valued random variables such
that, for eachn = 1,2, ...,

E(X, | X0, X1, ..., X,21) =0
and
E(X}) < oo.
Let
of = Var(X,), n=1,2,...
and

s> = Var(X, | Xo, X1, ..., X,_1), n=1,2,....

Assume that

YL E(X Y
lgn " N
n—oo ( | O_j)

(12.10)
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and
" Var(s?)>
lim 2,_1—2, —0. (12.11)
n— 00 Zl
Let
SR
n — 7
Then
X,
v - B NO, D) as n— .
[Zl sz/n]2

Proof. Forn=1,2,...,let

~

1 .
anzvn;Xi, ]:1,...,1/1, and Zn():O.

Define
ou(t) = E{exp(itZ,,)}, teR, n=1,2,....
The result follows provided that, for each t € R,
lim ¢, (1) = exp(—12/2).

Foreachn =1,2,..., let

Vnz_vk2 2
hai(0) = exp | ==K 2/2 0 k= 1o.on hao() =1, 1€R

n

and
k() = hnk(t)E{eXp(ithk)}y k=0,...,n, teR.

Note that
—t2 n
@n(t) — exp (T) = gun(t) = &n0() = Y _[gu(t) = gnx—1(1)].
k=1
It is straightforward to show that

hpk—1(t) = exp <_ﬁt ) hax(t)

and, using a Taylor’s series expansion for the exponential function,

2 2 4
Ok 2 9% 2 O
xp <_2v2t ) - (1 ~ v )‘ = 8V4t
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Using the expansion (A2.1) for exp(ix), together with the fact that
E(Xy | Xo,---, X4—1) =0
forallk =1, 2, ..., it follows that
Elexp(it Zuk)] = E[exp(itZy k—1) exp(it Xi/ V,)]
= E[ exp(it Zy k-1 +itXy/V, — 2 X3 [ (2V,]) + u(tXi/ Vi) }]

—E|expitZ, )1 Lo 2 4y (X
= eXpll Ly k-1 ) V2 Sk Vn

where |u(2)| < £3/6.

Hence,
. 1 S,% 2 t Xy
8nk () — gni—1(t) = hu (1) (B | exp(it Zy 1) | 1 — EV—HZI +u m
P/ S L ORI
— - —— n— exp(itZ, j—
2v2h Tingya Plfn i
where |r,| < 1. It follows that
2 T
18k(®) = gn i1 (O] = VO] [E[exp(it Z -5 = 0¢)] |55
| exptitzo e (24| 4 %2
ex nk—1)U —_—
A7 gV4

so that

2
|@a(1) — exp(—1>/2)| < 2V22|E exp(it Zx—1)(s? — V)]

+ZE[

The result follows provided that M,,;, M,;», and M,,5 all approach 0 as n — oo.
By the Cauchy-Schwarz inequality,

§Va

tX 1ot
( k>‘i|+Mt4EMnl+MnZ+Mn3-

393

IE[ explit Zux—)(s2 — V2)]| < [BlexpQit Zui D} [E{(s2 — V2)*}]* < Var(s?)".

Hence, it follows from (12.11) that

lim M,,] =0.

n—0o0

Again using the Cauchy-Schwarz inequality,

3 1
e[ |%ef] Eanta
Vol | = v,

and
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Hence,

[N

d 1Xy 1 ¢ N D :0.69)

and, by condition (12.10) of the theorem, M, — 0 asn — 0.
Finally, since Y ;_, o} = > /_, E(X,%)2 < > i1 E(X}), it follows from (12.10) that

4\ 4

. . t 0

lim M,; = lim —@
n— 00 n—oo 8 Vri‘

=0.
The result follows. M

Example 12.14 (A generalization of the central limit theorem for independent random
variables). Let Xy, X1, X», ... denote a sequence of real-valued random variables such
that

E(X, | Xo. X1, . Xy ) =0, n=12,...
supE(X;) < oo

and

Var(X,, | Xo, X1, ..., Xp_1) =02
for some constant o2 > 0. Hence, using the notation of Theorem 12.6, crnz =02 n=

1,2, ...and Var(s2) = 0 so that

" Var(s2)?

lim Zl—lnizf =0
n—00 Zl o;

It follows that

S E(XG1 M
2 = 2
(i)

for some constant M, so that (12.10) holds. Hence,
Z.];':l X,

o /n
That is, if E(X,, | Xo, ..., X,—1) =0, Var(X,, | Xo, ..., X,,_1) is constant and the X,, have

bounded fourth moments, then X, is asymptotically normally distributed without any other
conditions on the dependence structure of X, X,,.... O

B N0, 1) as n— oo

Example 12.15 (Martingale differences). Let Yy, Y1, ... be a martingale; then
ElY, 11 | Yo,.... Y, ] =Y,
with probability 1. Let X¢ = Y and

X, =Y, —Y,_1, n=1,2,...;
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Xo, X1, ... are sometimes called martingale differences. Note that, foreachn = 1,2, ...,
(Xo, ..., X,) is a one-to-one function of (Y, ..., Y,):

Y, =Xo+---+X,, n=1,2,....
Hence,
E[X, | Xg,..., Xy—1]=E[Y, =Y, _1|Yy,...,Y,1] =0

by the martingale property.
Let onz = Var(X,),n = 1,2, .... Note that, form < n,

E(Xn Xy) = E[E(Xn X, | Xo, ..., Xp—1)] = E[XnE(X, | Xo, ..., X,-)] =0,

n
o7 = Var(Y, — Yp).
j=1

It follows that, under the conditions of Theorem 12.6,
Y, - Y,

D
_ N, 1 .
Nar(Y, — Yo) — N@,1) as n— o©

In particular, this result holds if

supE(X}) < oo, lim Var(¥, — Y5) =0
n n—oo

and

Var(Y, | Yo,...,Y,—1) =Var(Y,,), n=1,2,.... g

12.7 Exercises

12.1 Let X, denote the sample mean of n independent, identically distributed random variables,
each with an exponential distribution with rate parameter A, i.e., with mean A~'. Note that the
exact distribution of X, is available using properties of the gamma distribution. Let F(x; 1) =
Pr(X, < x;)).

(a) Give an approximation to F(x; 1) based on the central limit theorem.

(b) Consider the case A = 1/2 and n = 9. For this choice of A, nX,, has a chi-square distribution
with 2n degrees of freedom. For x = 2.5289, 2.8877, 3.2077, and 3.8672 approximate
F(x;A) using the approximation derived in part (a) and compare the results to the exact
values.

12.2 Let Xy, X5, ..., X, denote independent, identically distributed random variables, each dis-
tributed according to the discrete distribution with frequency function

(1-6)*, x=0,1,...

where 0 < @ < 1. Find a normal approximation to the distribution of X. For the case # = 1/3
and n = 9, approximate Pr(X < 5/12).

12.3 Let (X;,Y;), j = 1,2, ..., n, denote independent, identically distributed pairs of random vari-
ables such that X, is uniformly distributed in the interval [0, 1] and that the conditional dis-
tribution of Y, given X, is an exponential distribution with mean X, where 8 > 0. Find the
asymptotic distribution of 7 = Y"_, X;¥;/>>}_, X3.
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124

12.5

12.6

Central Limit Theorems

Let X1, X5, ... denote independent, identically distributed random variables each with mean
and standard deviation o . Let

_ 1 n 1 n _
Xn=7§ X, and 53=f§ X, — X%
n < n <
Jj=1 j=1

Find the asymptotic distribution of

«/ I’l()_( n I‘L)
S, '
Let X, X5, ... denote independent, identically distributed random variables each with mean p

and standard deviation o and let
_ 1 <&
X, = > X,
=1

Lett,,n=1,2,..., denote a sequence of real numbers and consider approximation of the
probability Pr(X, < t,) using the approximation to the distribution of X, given by the central
limit theorem.

(a) Suppose f, — t as n — 00, where ¢ # . Find

lim Pr(X, <t,).
n—o0
(b) Suppose that r = u + ¢//n + o(1/4/n), as n — oo. Find

lim Pr(X, <t,).

n—o00
Let X, X, ... denote independent, identically distributed random variables each with mean p
and standard deviation o and suppose that each X ; takes values in the set {0, 1, ...}. Let

S,, = XH:X]
j=1

and consider approximation of Pr(S, < s), where s is a nonnegative integer, using an approxi-
mation based on the central limit theorem.
(a) Let F(s) denote the central-limit-theorem-based approximation to Pr(S, < s) and let G(s)

denote the central-limit-theorem-based approximation to Pr(S, > s + 1). Show that
F(s)+ G(s) < 1.

Note that

Pr(S, <s)+Pr(S, >s+1)=1.

(b) NotethatPr(S, <s)=Pr(S, <s+§),forall0 < § < 1.Hence, Pr(S, < s)canbe approx-

imated by F(s + §); similarly, Pr(S, > s + 1) can be approximated by G(s + 1 — §) for
0 < § < 1. Find conditions on §* so that

F(s+8)+Gs+1—-68=1.

The approximations F(s + 6*) and G(s + 1 — §*) are known as the continuity-corrected
approximations.
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12.8

12.9

12.10

12.11

12.12
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Let X, X, ... denote independent random variables and let w;, u,, ... denote a sequence
of real-valued, positive constants. Let p denote a density function on the real line such that
px)=0,forx <0,

/xp(x)dx:l, / x2 p(x)dx =2,
0 0

and
/ x3 p(x)dx < 0.
0
Assume that, foreach j =1, 2, ..., X, has an absolutely continuous distribution with density
function

1
—P(X/Mj)-
M

(a) Find conditions on 1, i7, ... such that

X = )
2_1_171112)1\](0’1) as n — 00.
(Z?:l /*3)2
(b) Supposethaty; = j#, j =1,2,..., forsomeconstant 8, —o00 < B < co.Find conditions

on f so that your conditions in part (a) are satisfied.

Foreachn =1,2,..., let X,,1, ..., X,,, denote independent, identically distributed random
variables such that

1
Pr(an = _Cn) = Pr(an = Cn) = 5

Find conditions on ¢y, ¢;, . .. so that
n‘— Xn'
Z’;JL—RN(O,I) as n — o0o.
[ Z?:] Var(X,, )] :
Let Y,, Y,, ... denote independent random variables and for j = 1,2, ..., let u;, o; denote

the mean and standard deviation of Y;. Thus, the random variables are independent, but not
identically distributed. Find conditions on the distribution of Yy, Y5, ... such that

" (Y — 1))
Mﬂmo,l) as n — 0o.

n 272
[25-107]
Letry, r, ... denote a given sequence such thatr, — coasn — ooandforeachn = 1,2, ...,

let X,,, ..., X, denote independent random variables. Suppose that all X,,; are bounded by
a constant M. Give conditions under which condition (12.1) of Theorem 12.2 is satisfied.

Let X, X5, ... denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the asymptotic distribution of

l( i X, )
n\ > - logX;

Let X, X», ... denote independent, identically distributed random variables such that X,
takes values in the set {0, 1, ...}. Let o denote the standard deviation of X and let p denote
Pr(X, = 0); assume thatc > 0 and p > 0. Find the asymptotic distribution of (X,, pn), where

- 1< 1<
X, =- X; and p,=— Iix.—o.
n; J P n;(x, 0}
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12.13

12.14

12.15

12.16

12.17

Central Limit Theorems

Let (X4, Y)), (X5, Y,), ... denote independent, identically distributed random vectors, taking
values in R?, and each with mean vector (0, 0) and covariance matrix . Find

lim Pr(X, <Y,)

n—o0o

where
_ 1 - 1<
X,,:;ZX/ and Yn:;ZY,

Let X, X5, ... denote independent, identically distributed, real-valued random variables such
that E(X;) = O and E(X f) < 00. Show that Lindeberg’s condition holds (with r, = n), but that
Lyapounov’s condition does not hold without further conditions.

Let Yy, Y», ... denote independent, identically distributed random variables, each with a Pois-
son distribution with mean 6, 6 > 0. Is the convergence of

¥ —0)
V(o)
to a standard normal distribution uniform in 6 € (0, c0)?
Let Y, Y,, ... denote independent, identically distributed real-valued random variables such

that each Y; has an absolutely continuous distribution with density p(y;#), 6 € ©. Suppose
that p(y; @) is of the form

1 _
p(y;9)=—f(—y “>, 6 = (11, 0) € R x (0, 00).
o o

Hence, w is a location parameter and o is a scale parameter.
Show that, if

lim Pr

n—o0

{ Z;":l(YI — 1)/ /1

0o

< t;(Mo,U())} = (D(l), teR

for some o € R and oy > 0, then

lim sup |Pr —Z;ZI(Yj — W/
=0 | eR,0>0

=0, teR.
o

< t;(u,a)} — &1

For each 0 € ©, let X,(0), X,(0), ... denote independent, identically distributed real-valued
random variables such that

E[X,(0);61=0
and let
o2(0) = Var[X,(0)], 0 € O.
Suppose that
”lirgoslelg Pr{W < t;9} - =0

foreach t € R.
Let 6y, 6,, ... denote a sequence in ® such that 6, — 6 as n — oo for some 6 € ®. Show
that

n—00

. { > X600/ /n
o (0,)

< t;@,,} = o).
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12.18 For each 6 € ©, let X,(0), X,(0), ... denote independent, identically distributed real-valued
random variables such that
E[X:1(6);0]1=0
and let
o2(0) = Var[X,(0)], 6 € O.
Suppose that there exists constants M and m such that

sup |[X1(0)] = M
0cO

with probability one and suppose that
;gg o(f) > m.

Does it follow that

" Xi(0)Jn
lim sup |Pr M <t;—o@®)| =0
=00 ge@ o(9)
for each t € R? Why or why not?
12.19 Let Yy, Y,, ... denote independent, identically distributed, random variables, each uniformly

distributed on the interval (0, 1) and let
anmaX(Yn,YnH), n=12,....
Find the asymptotic distribution of

S X,

n

12.8 Suggestions for Further Reading

The references given in the previous chapter all contain various versions of the central limit theorem.
Although Theorem 12.4 is new, the technique used in its proof is based on the proof of Theorem 7.2
of Billingsley (1968). Theorem 12.5 is based on Hoeffding and Robbins (1948); see also Ferguson
(1996, Chapter 7). Theorem 12.6 is based on Ibragimov (1963).

There are many different versions of the central limit theorem for dependent random variables; the
results given in this chapter give just two examples of these. Central limit theorems for martingales
are given by Billingsley (1961), Brown (1971), Doob (1953, p. 382), and McLeish (1974), among
others. Chernoff and Teicher (1958) give a central limit for exchangeable random variables. Central
limit theorems for random variables with a moving average structure are given in Anderson (1975)
and Fuller (1976). Port (1994, Chapter 61) gives a central limit theorem for Markov chains.
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Approximations to the Distributions of
More General Statistics

13.1 Introduction

In Chapter 12, the focus was on the asymptotic distribution of the sample mean and several
versions of the central limit theorem were presented. However, in statistical applications,
we often encounter a wider range of statistics. The purpose of this chapter is to consider the
asymptotic distributions for several other types of statistics.

For instance, the statistic of interest may not be a sample mean, but it may be written
as a function of a sample mean, or of several sample means. In many of these cases, the
asymptotic distribution of the statistic may be determined from the asymptotic distribution
of the sample means involved. Other possibilities are statistics that are functions of the order
statistics or ranks.

13.2 Nonlinear Functions of Sample Means

Suppose that X1, X», . .. are independent, identically distributed random variables each with
mean g and variance o2, Then X, = Z?:l X ;j/n is asymptotically normally distributed
with mean p and variance o2/ n. Suppose the statistic of interest may be written as g(X,)
where g is a smooth function. If g(-) is of the form g(x) = ax + b for some constants @ and
b, then clearly g(X,) will be asymptotically normally distributed with mean ap + b and
variance a’c?/n.

Of course, this function is a very special case. However, we know that, for large n, X,
will be very close to p with high probability. Given that g is a smooth function, if g’(t) # 0,
then we expect that g may be well-approximated by a function of the form ax + b for x near
. Hence, using this approach, we may be able to determine the asymptotic distribution of
Jn(g(X,) — g(n)).

Theorem 13.1 gives a formal result of this type; this result is sometimes called the
8-method. Here we use the symbol N;(0, X) to denote a d-dimensional random vector with
a multivariate normal distribution with mean vector 0 and covariance matrix X.

Theorem 13.1. Let X, X», ... denote a sequence of d-dimensional random vectors such
that, for some vector |,

VX, — w) 3 N¢(0,%) as n— oo,

where X is a positive definite matrix with || < oo.

400
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Let g:RY — R¥ denote a continuously differentiable function and let g'(x) = dg(x)/dx
denote the k x d matrix of partial derivatives of g with respect to x. Then

Jn(g(X,) — g(w) > N0, g Tg' (W) as n— oco.

Proof. Leta denote an arbitrary vector in R* and let 2: R — R denote the function given
by h = a’ g. By Taylor’s theorem, for any x € R?,

h(x) — h(p) = h'(tx + (1 = H)(x — p)

for some 0 <t < 1; here ¥’ =a’ g’ is a 1 x d vector of derivatives. It follows that, for
n=1,2,...,

Vn(h(X,) — h(u)) = h'(t, X, + (1 = t)uw)/n(X, — p)
= h/(:u)«/n(xn -+ [h/(tan + A =t)p) — h,(ﬂ)]\/n(xn - W,

where 0 < ¢, < 1; note that ¢, generally depends on X,,.
Since X, L [Lasn — oo,

X, + (0 —t)u S A as n — oo.
Since
(X, — w) 2 Ny(0,%) as n— oo,
it follows that /n(X, — u) = O,(1) and, hence, by the continuity of n,
Bt Xn+ (1 —t)) —h'(w) >0 as n— oo,
and
W (/n(X, — 1) > NO, KGOSH (w)T) as n — co.

That is, for any a € R¥, aT\/n(g(X ») — g()) converges in the distribution to a normal
random variable with mean 0 and variance

KW= W' =a"g'WTg' W' a.
It now follows from Theorem 11.6 that
V(X)) = N0, g W (w') as n— oo,
proving the result. MW
Example 13.1 (Variance-stabilizing transformations). Suppose that, for each n = 1,
2, ..., X, is the sample mean of »n independent, identically distributed real-valued ran-

dom variables, each with mean @ and variance o'>. Suppose further that o2 is a function of
0, 02(0). Then

VX, —0)

B NO, 1) as n— oco.
o)
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Let g denote a real-valued, continuously differentiable function defined on the range of
X1, X2, .... Then, according to Theorem 13.1,

Vnlg(X,) — g(0)] B NO,1) as n— .
FRCHIEAC)

provided that g'(0) # 0.

Suppose that g is chosen so that |g'(8)|o () is a constant not depending on 6; then the
asymptotic variance of X, does not depend on the parameter 6. Such a function g is said to
be a variance-stabilizing transformation.

For instance, suppose that the underlying random variables have a Poisson distribu-
tion with mean @ so that 6%(6) = 6. A variance-stabilizing transformation g then satisfies
g'(0)/0 = ¢ for some constant c; that is, g'(0) = o3, Hence, we may take g(0) = /0
so that

\/n(«/Xn_\/e) D

— N@0,1) as n— oo.
1/2

That is, /X, is asymptotically distributed according to a normal distribution with mean
/0 and variance 1/(4n). O

Example 13.2 (Ratio of correlated sample means). Let Y,,Y,, ... denote independent,
identically distributed two-dimensional random vectors each with mean vector © = (1, i2)

and covariance matrix
o? o0
Y — 1 P 12 2
felegYep) o5

Let X, = Y__, ¥;/n and consider the function

atx,
g(Xy) = ﬁ,
where a and b are given elements of R? such that
a b
flall 7 761
and b #£ 0.
Then

¢ = (o = ) = L o
bT x bT x bT x

Letc = a — g(u)b. Then

D
Vn(g(X,) —g(uw) — Z as n— oo,
where Z| has a normal distribution with mean O and variance
, 'Ze
0" = ——.
(bT )2
For instance, suppose that ¢ = (1, 0) and b = (0, 1) and write X, = (X1, X,2). Then

X
\/n(an —&)EZ as n — 00,
n2 M2
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where Z has a normal distribution with mean 0 and variance

e of —2poioap/1ma + (U1 /p2)*05 0

%

Example 13.3 (Joint asymptotic distribution of the sample mean and variance). Let
Yy, Y,, ... denote independent, identically distributed real-valued random variables such
that E(Y}) < oo. Suppose we wish to determine the asymptotic distribution of the vector
(Y, $?), suitably normalized, where ¥ = Z'}zl Y;/nand §? = Z;'-:l(Yj —Y)*/n.

Foreachn =1,2,...let
X, = <%Z§=‘Y£).
0w 2= Y

— X1 .
(é) = g(Xy).

Let 4 = E(Y;), 62 = Var(Y;) and
w =E[Yy — )], r=3,4

Then, according to Theorem 12.3,
D
i (x,l _ (MQﬁgz)) 2 N0, %)

_ o2 Cov(Y1,Y})
“ \ Cov(Yy, Y3  Var(Y}) )°

For x € R2, define

then

where

Since
1 0
1 2 2\
g, u”+o0%) = <—2u 1>,
it follows from Theorem 13.1 that
Y —p
Jn ( S2 02)
is asymptotically normally distributed with mean vector zero and covariance matrix given by
1 0 1 —2u o? u3
) = 4 -
—2pn 1 0 1 U3 U4 —0
Thus, ¥ and S? are asymptotically independent if and only if 43 = 0. O

Note that Theorem 13.1 holds even if g’(0) = 0; however, in that case, the limiting
distribution of \/n(g(X,) — g(i)) is degenerate. A formal statement of this result is given
in the following corollary; the proof is left as an exercise.
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Corollary 13.1. Let X1, X, ... denote a sequence of d-dimensional random vectors satis-
fying the conditions of Theorem 13.1.
Let g:R?Y — R* k < d, denote a continuously differentiable function. If g'(n) = 0, then

V(X)) —g(w) >0 as n— oo.

13.3 Order Statistics

In this section, we consider approximations to the distributions of order statistics. When
studying the asymptotic theory of order statistics, there are essentially two cases to
consider. The first is the case of central order statistics. These are order statistics, such
as the sample median, that converge to a quantile of the underlying distribution as the sam-
ple size increases. The asymptotic properties of the central order statistics are similar in
many respects to those of a sample mean; for instance, a suitably normalized central order
statistic is asymptotically normally distributed.

The second case is that of the extreme order statistics, such as the minimum or maximum.
The asymptotic properties of the extreme order statistics differ considerably from those
of the sample mean; for instance, the extreme order statistics have non-normal limiting
distributions.

Central order statistics
First consider the properties of central order statistics based on independent, identi-
cally distributed random variables X, X, ..., X,, each with distribution function F. Let
X1, ..., X, denote the order statistics based on X1, ..., X,,. The central order statistics
are of the form X,,) where k,/n converges to a constant in (0, 1). That is, the relative
position of X,,) in the set of order statistics X, ..., X,, stays, roughly, constant.
When studying the properties of order statistics, the following approach is often useful.
First, the properties may be established for the case in which the random variables have a
uniform distribution on (0, 1). The corresponding result for the general case can then be
established by noting that the random variables F (X ), .. ., F(X,) are uniformly distributed
on (0, 1) and then using the §-method, as described in the previous section.

Theorem 13.2. Let X, X», ..., X, denote independent, identically distributed random
variables, each distributed according to a uniform distribution on (0, 1). Letk,,n = 1,2, ...
denote a sequence of integers such that k, < n for all n and

ky
Jn(——q)—)O as n— oo
n
where 0 < g < 1. Let X, denote the k,th order statistic of X1, ..., X,. Then
D
X,y —q) = N©,q(1 —q)) as n— oo.

Proof. Fix 0 <t < 1. Define

0 ifX; >t
z,-(r)z{l X <1, i=1,2,....
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Note that, foreachn = 1,2, ..., Zi(t), ..., Z,(¢t) are independent identically distributed
Bernoulli random variables with

Pr(Z,(t) =1) =t.
Then

j=1

Pr(X () < 1) =Pr (Z Zi(t) = kn)

and

1 n
Pr(y/n(Xua,) —q) < 1) = Pr (% [Z Zj(q +1t/y/m)—ng + wn)}
j=1

- ky —ng —t/n .
> —\/n
Define

Z,j=Zi(g+t/yn)—(q+t/yn), j=1,....,n, n=1,2,....

This is a triangular array.
Let

vaj =EllZy’l and o =Var(Z,)), j=1,....n,n=12,....

It is straightforward to show that y,; are uniformly bounded in # and j and that

63j=<q+ﬁ)(l— —ﬁ) j=1,....n

n
> on =ng(l —q)+ /nt(1 = 2q) — 1*.
j=1

so that

Hence,
Do Vaj
u 3
I:ijl Ullzj:l
It follows from Theorem 12.2 that
" Zi(g+t/Sn)—n(qg+t/Jn)
L1 Zi v \/1 —D>N(0,1) as n — 00
[ng(1 — q) + /nt(1 = 2q) — 12]?
so that, by Corollary 11.4,

" Z -
LZJZI (g +1/n) ln(q—i—t/x/n)_D)Nm’l) as 71— co.
Jn [¢(1 —q)]-

Hence,

— 0 as n— oo.

k, — —t
lim Pr[\/n(X,4,) —q) <tl=1—@ [ lim L‘{” .
n—o00 n— 00 [nq(l _ q)]§
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It is straightforward to show that
k, — —t t
lim fn =14V -
"o [ng(1 —q))2 lg(1 =]

proving the result. W

The result in Theorem 13.2 can now be extended to random variables with a wider range
of absolutely continuous distributions.

Corollary 13.2. Let Xy, X», ..., X, denote independent, identically distributed random
variables, each with an absolutely continuous distribution with distribution function F and
density function p. Let k,, n = 1,2, ... denote a sequence of integers such that k,, < n for
all n and

ky,
\/n<——q>—>0 as n— oo
n

where 0 < g < 1. Assume that there exists a unique x, € R such that F(x,) = q and that
p is strictly positive in a neighborhood of x,.

Then
Xy — Xg) = N(O, 02,
where
» q(l—q)
o = 72
p(xg)

Proof. LetZ; = F(X;).ThenZ,, Z,, ..., Z, are independent, uniformly distributed ran-
dom variables on (0, 1) and

Z,,(j):F(Xn(j)), j=1,...,l’l, I’l=1,2,...
By Theorem 13.2,

D
N Zui,y —q) > N(©0,q(1 —¢q)) as n — oo.
Consider
Pr{/n(Xnu,) — x4) <t} = Pr{X,,) < x4 +1//n}.

Since p is strictly positive in aneighborhood of x,, F is strictly increasing in a neighborhood
of x,. Hence, there exists an integer N such that

Pr{X,w,) < xg +1t//n} =Pr{F (Xua,) < Fxg +1t/y/n)}
= Pr{y/n(Zuw, — q) = /n(F(xg +1//n) = q)}.
Asn — oo,
Vn(F(xg +1/yn) —q) = plxgt.
Hence, by Theorem 11.3 and Example 11.9, together with the asymptotic normality of
Zkyys

Tim Pr{y/n(X,a,) — %) < 1} = Pr{Z < p()r/v/lg(1 — I},

where Z has a standard normal distribution. The result follows. B
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Example 13.4 (Order statistics from an exponential distribution). Let X, X», ..., X,
denote independent, identically distributed random variables each distributed according to
the distribution with density

px;A) = A lexp(—=x/A), x>0,

where A > 0 is an unknown constant. Let k,, n = 1,2, ... denote a sequence of integers
such that

ky
\/n<——q)—>0 as n — 0o,
n

where 0 < ¢ < 1.
Note that F'(x) =1 —exp(—x/A), x > 0so that x, = —log(1 — ¢g)A. Hence,

D
X,y + log(l — g)1) = N(0, 0?),

where

azzkz—q . O
l—ygq

Example 13.5 (Sample median). Let X, X,, ..., X, denote independent, identically dis-
tributed random variables each with an absolutely continuous distribution with common
density p. Assume that Pr(X| < 0) = 1/2 and that, for some € > 0,

px) >0 forall |x] <e.

Forn =1,2,..., let i, denote the sample median, given by
R Xn(%) if n is odd
mn = Xn n JrX” [ . . :

M if n is even

Fix ¢ and consider Pr(y/n1, < t).If n is odd,
Pr(y/ni, <t)= Pr(\/an(n_erl) < t);
if n is even,
Pr(\/an(%H) <t) <Pr(y/ni, <t) < Pr(Jan(%) <1).
Let &, denote the smallest integer greater than or equal to n/2. Then, for all n,
Pr(/nX i, +1) < t) < Pr(/ni, <t) < Pr(y/nXpnw,) < 1)

Note that

so that, as n — o0,

It now follows from Corollary 13.2 that

lim Pr(\/nX,,(kn_H) <t)= lim PI'(\/}’ZXV,(/{”) <t)=Pr(Z <1t),
n—00

n—o0
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where Z has a normal distribution with mean 0 and variance 1/4p(0)?; hence,
. D 1
J/ni, > N[0, —— as n — 0o. O
4p(0)

Let X1, X», ..., X, denote independent, identically distributed random variables and let
F denote the distribution function of X . Define

A 1<
F@)= ; ;I{ngt}» —00 <t < O0.

Hence, this is a random function on R; if Q2 denotes the sample space of the underlying
experiment, then, for each ¢ € R,

. 1<
F(t)(w) = p ;I{X,-(ansr}» w € Q.

Note that, for each w € Q, F (-)(w) is a distribution function on R, called the empirical
distribution function based on X1, ..., X,,.
Define the gth sample quantile by

X,y = inf{x: F,(x) > q}.

Clearly, the sample quantiles are closely related to the order statistics and it is straightforward
to use Corollary 13.2 to determine the asymptotic distribution of a sample quantile. The
result is given in the following corollary; the proof is left as an exercise.

Corollary 13.3. Let X1, X3, ..., X, denote independent, identically distributed random
variables, each with an absolutely continuous distribution with density p. Fix 0 < g < 1.
Assume that there is a unique x, € R such that F(x,) = q and that p is strictly positive in
a neighborhood of x,.

Foreachn =1,2,..., define )A(,,q as above. Then

Jn(Kug — Xg) 2 N, 02,
where

> q(1—¢q)
O = —F.
p(xg)?

Pairs of central order statistics

The same approach used in Theorem 13.2 for a single order statistic can be applied to the
joint asymptotic distribution of several order statistics; in Theorem 13.3, we consider the
case of two order statistics.

Theorem 13.3. Let X, X», ..., X, denote independent, identically distributed random
variables, each distributed according to a uniform distribution on (0, 1). Let k,,, and m,,
n=1,2,...denote sequences of integers such that k, < n and m, < n for all n and

kn
\/n<——q1>—>0 as n— oo,
n
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and

m
\/n(f—q2)—>0 as n— oo,

where 0 < q; < 1 and 0 < gy < 1. Assume that q; < q>.
Let X,y and X 4,y denote the k, thand mth order statistic, respectively, of X1, ..., X,,.

Then

Jn <§"(<"")):‘;12> B Ny 0,%), as n— oo,

where

5 (611(1 —q1) qi(l— Q2)>
gl —=q) ¢(—-q) )

Proof. The proof is very similar to that of Theorem 13.2; however, since the multivariate
version of the central limit theorem for triangular arrays is not given in Chapter 12, some
additional details are needed.

FixO0 <t <1landO < s < 1. Define

0 ifX;>1
Zj0) = { 1 ifX; <t
and
0 ifX;>s
Wj(s)={1 ifX; <s
Then
Pr(Xn(k,,) <t, Xn(m,,) <s)= PI'|: Zj(t) > ky, W‘,'(S) = mn]
=1 =1
and
Pr(\/n(Xn(k,,) - 6]1) <t, \/n(Xn(m,,) - 612) < S)
1 i kn —ngy — ti/n
=pPr(— | Yz + 1/ —nigi +1/ym) | = LIV
(5[5 i
1 & m, — ngy — s\/n
— Wilga+s//n) —n(ga+s/yn) | 2 —————|.
a|Zv z
Define
Zy=Zi(q+t/Jn)—(q+t/yn), j=1,....n
and

Wuj=Wi(g2+s/y/n)—(q2+s/yn), j=1....n
Let a and b denote arbitrary real-valued constants and let

Vwj=aZ,; +bW,;, j=12,...,n, n=1,2,...;
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this is a triangular array with E(V,,;) = 0,
o2 = Var(V,)
=a*(q1 + 1/ — g1 —t//n) + b*(qz + /)1 — gz — 5//n)
+ 2ab(q1 +t//n)(q2 + s//1),

and E(|an|3) < la + b)?, forall j, n.
Since

ZVar(V,,j) = nan2 =0(Mm) as n—>
=1
and E(|V,; 1) is bounded, it follows that the conditions of Theorem 12.2 are satisfied and

Z?:l Vij
Ona/1

B NO, 1) as n— oo.

Note that

lim o2 = a*qi(1 — q1) + B*qx(1 — q2) + 2abqi(1 — q2);

n—oo
since this holds for any a, b, by Theorem 11.6,
L ( Z?:l Znj
\/n Z’;:l Wﬂj
where X is given in the statement of the theorem.
It follows that

Pr{y/n(Xnw,) —q1) < t, /nXpom,) —q2) < s}

) Z N0, %)

n

1 < 1
=Pry— Zan — (ky —nq))//n = —t, — Z Wyj — (my — ngo)//n = —s
V/n =1 Vn j=1
and, hence, by Corollary 11.4, that

nlglolo Prl/n(Xuw,) — q1) <t, V/nXpm, — q2) < s]

1 < 1 <
= li N > N > = > — > —
nlggoPr{\/n ZZ"’ >~ ZW,,‘, > s} Pr(Z > —t, W > —s)
j=1 j=1
where (Z, W) has a bivariate normal distribution with mean 0 and covariance matrix X.
Note that
Pr(Z>—t, W>—-s5)=Pr(—Z <t, —W <y)
and that (—Z, —W) has the same distribution as (Z, W); the result follows. W
As was done in the case of a single central order statistic, the result in Theorem 13.3 for

the uniform distribution can now be extended to a wider class of distributions. The result is
given in the following corollary; the proof is left as an exercise.

Corollary 13.4. Let X, X», ..., X, denote independent, identically distributed ran-
dom variables, each distributed according to an absolutely continuous distribution with
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distribution function F and density p. Let k,, and m,, n = 1,2, ... denote sequences of
integers such that k, < n and m, < n for all n and

kn
\/n<——q1>—>0 as n— oo
n

and

Jn(%—qz)eo as n— oo,

where 0 < q; < q» < 1.

Assume that there exist unique x,,, x4, € R such that F(x,) = q; and F(x,,) = q, and
that p is strictly positive in neighborhoods of qi and q,.

Let X,y and X () denote the k,th and m, th order statistic, respectively, of X1, ..., X,,.
Then

X —
s [ e Y0 ) BONy0, %), as n— oo,
Xnm,) = Xq

where

q1(1 —q1) q1(1 —¢q2)
[J(qu )2 P(qu )P(qu)

7l =4)  g(1-q)

p(qu )P(qu) P(qu )2

Example 13.6 (Interquartile range). Let X, X», ..., X, denote independent, identically
distributed random variables, each distributed according to a distribution with density p
that is positive on R and symmetric about 0. Let k,, denote the smallest integer greater than
or equal to n/4 and let m,, denote the smallest integer greater than or equal to 3n/4. Then

kn 1 w3
Jil——-)—>0 and /n M _2) Lo
n 4 n 4
as n — oo. The order statistic X, is sometimes called the lower quartile of the sample

and X,,(,,) is sometimes called the upper quartile of the sample; the interquartile range is
given by

Qn - Xn(m,,) - Xn(k,,)

and is a measure of the dispersion in the data.
Let ¢ denote the constant satisfying

1
Pr(X, = —¢) = 7
note that, since the distribution of X is symmetric about 0,
Pr(X, <c¢) = é
4
Hence,

Jn ( f"(“"’)fi) 2 N0, %),
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1 3 1
E_lép@z(l 3)'

Jn(0, —2¢) 3 N0, o),

where

It follows that

where
1
0= ——.
4p(c)?

Sample extremes
We now consider the asymptotic properties of the sample mean and sample minimum. As
noted earlier, the asymptotic theory of these extreme order statistics is quite different from
the asymptotic theory of the central order statistics described above.

Let X1, X5, ..., X, denote independent, identically distributed scalar random variables
each with distribution function F', which is assumed to be absolutely continuous. Let

Y, = max X;

and

Z,= min X;.
The asymptotic properties of Y, and Z, follow from the following general result.

Theorem 13.4. For eachn = 1,2, ..., letY, and Z, be defined as above and let W denote
a random variable with a standard exponential distribution. Then

n(1—FX,) 2> W as n— oo,

nF(Z) 3 W as n— oo,

and n(1 — F(Y,)) and nF (Z,) are asymptotically independent.

Proof. Consider the probability
Pr{n(l — F(Yy) <y, nF(Z,) <x} =P{F(Y,) = 1—y/n, F(Z,) <x/n}
=1-Pr{FX,) <1—y/n U F(Z,) = x/n}
=1-Pr{F(Y,) <1—y/n} —P{F(Z,) = x/n}
+Pr{F(Y,) <1—y/n, F(Z,)=x/n}.
It is straightforward to show that if x or y is negative, then this probability converges to 0
as n — 00; hence, assume that x > O and y > 0.
Note that F(Z,) and F (Y,,) may be viewed as the first and nth order statistic, respectively,

based on n independent, identically distributed random variables each uniformly distributed
on the interval (0, 1). Hence,

PT{F(Yn)E1—)’/n}=(1—)’/’7)"7 0§y§n9
Pr{F(Z,) >x/n}=0—x/n)", 0<x <n,
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and
Pre{FY,)<1—y/n, F(Z,)>=x/n}=1—y/n—x/n)", 0<x+y<n.

It follows that

lim Pr{n[1 — F(Y,)] <y, nF(Z,) <x}=1—exp(—y) —exp(—x) + exp(—(x + y))

n—o0

= [1 —exp(=y)] [1 — exp(—x)],
proving the result. MW
The asymptotic behavior of the minimum and maximum of » independent identically

distributed random variables will therefore depend on the properties of the distribution
function F. Some of the possibilities are illustrated by the following examples; in each case,

Y, = max X;

and

as in Theorem 13.4.

Example 13.7 (Beta distribution). Let X, X», ..., X, denote independent, identically
distributed random variables each distributed according to the distribution with density
function

px;a) = ax® !l 0<x<1
where o > 0 is a constant. The corresponding distribution function is given by
Fx;ao)=x% 0<x<l.
Then, according to Theorem 13.4,
lim Pr (n(1=YY)<t)=1—exp(-t), >0
and
’TlirgloPr (nZg < t) =1—exp(—t), t>0.

First consider the asymptotic distribution of Y,,. Since

Prln(1-¥g) =] =Pr[¥y = (1 = t/myi],

n

lim Pr{n(Y, — 1)/a < n[(1 —t/n)+ — 1]/a} = exp(—t), t > 0.
n—0o0
Since
lim n[(1 —t/n)e — 1]/a = —t,
n—0oQ
it follows that

lim Pr{n(Y, — )/a < —t} =exp(—t), t>0
n— 00
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or, equivalently,
’TlirgloPr{n(Yn —D/a <t} =exp(), t<O0.
Now consider Z,. Since
Pr(nZ% <t) = Pr(Z, < (t/n)<),
it follows that
lim Pr[Z, < (t/m)e] =1—exp(—1), t>0.
Hence,
nlirgopr[nézn <te]=1—exp(~1), >0,
or, equivalently,
lim Pr(néZ,, < t) =1—exp(—t*), t>0. O

n—o0

Example 13.8 (Exponential distribution). Let X, X», ..., X, denote independent, iden-
tically distributed random variables each distributed according to a standard exponential
distribution. Then, according to Theorem 13.4,

nli)ngoPr[n exp(—Y,) <t]l=1—exp(—t), t>0
and
nlggo Pr{n[l —exp(—Z,)] <t} =1—exp(—t), t>0.
First consider the distribution of Y,,. Note that
nlgrolo Pr{Y, < —log(t/n)} = exp(—t), t > 0.
It follows that

lim Pr[Y, — log(n) < —log(?)] = exp(—t), ¢t >0,

n—00
or, equivalently,
lim Pr[Y, —log(n) < t)] = exp{—exp(—t)}, —o0 <t < 0.
n—0oQ

Now consider Z,,. Note that

lim Pr(Z, < — log(1 —¢t/n)] =1 —exp(—t), t>0

n—oo
so that
lim Pr[nZ, < —n log(1 —t/n)] =1 —exp(—t), t>0.
n—0o0
Since

lim —nlog(l —t/n) =1¢,
n—oQ
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it follows that

lim Pr(nZ, <t)=1—exp(—t), t>0. O

n—o00

Example 13.9 (Pareto distribution). Let X, X,, ..., X, denote independent, identically
distributed random variables each distributed according to the distribution with density
function

1
X

the corresponding distribution function is given by
1
Fx)=1-——-, x>1.
by
It follows from Theorem 13.4 that

lim Pr(n/Y, <t)=1—exp(—t), t>0

and
nli)rglo Pr[n(1 —1/Z,) <t]=1—exp(—t), t>0.
Hence,
nli)rglo Pr(Y,/n <t)=-exp(—1/t), t>0
and
nlLrI;oPr{n(Zn —D<t/Q0—-t/n)}=1—exp(—t), t>0

so that

nli)ngo Pr{in(Z, — 1) <t} =1—exp(—t), t>0. O

13.4 U-Statistics

Let X1, X», ..., X, denote independent, identically distributed real-valued random vari-

ables, each with range X'. Let & denote a real-valued function defined on X such that
E[A(X1)?] < o0o. Then the sample mean 22:1 h(X;)/n follows the central limit theorem;
that is, a suitably normalized form of the statistic is asymptotically distributed according to
a normal distribution.

As a generalization of this type of statistic, suppose the function / is defined on X'? and
suppose that / is symmetric in its arguments. Consider the statistic

1
U= =Y h(Xp. Xp)
() 5
where the sum is over all unordered pairs of integers 8 = (B, B2) chosen from {1, 2, ..., n}.

A statistic of this form is called a U-statistic of order 2; the function / is called the kernel
of the statistic.
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Example 13.10 (Sample variance). Consider the kernel

1 2
h(xi, x2) = E(M —x2)°.

The corresponding U -statistic is given by

Xﬂz
Note that
n
Y Xp = Xp) = =D X;=2) XX
B j=1 <k
Since
(ZX,) ZX2+ZZX X,
j=1 Jj<k
n n 2
S — X = 3K (2 x,) .
B Jj=1 j=1
Hence,

2
1 n - 1 & _
§? = X:— X; =——) X, - X7,
n—I; J (n—l)(; f/”) n—1;(’ )
where X = }"_, X;/n; that is, $? is the sample variance with divisorn — 1. 0

This type of statistic may be generalized to allow 4 to be a real-valued function on A"
for some r = 1,2, .... Again, we assume that /4 is symmetric in its arguments. Then a
U-statistic with kernel h is a statistic of the form

= ) D h(Xp,. ... Xp).

where the sum is over all unordered sets of r integers chosen from {1, 2, ..., n}. Note
that, since the random variables appearing in 2(Xpg,, ..., Xp,) are always independent and
identically distributed,

EWU) =Eh(Xy, ..., X)];

hence, in statistical terminology, U is an unbiased estimator of E[h(X1, ..., X,)]. That
is, if we are interested in estimating E[A(X, ..., X,)] based on Xy, ..., X,,, the statistic
U has the property that its expected value is exactly the quantity we are attempting to
estimate.

Example 13.11 (Integer power of a mean). For a given positive integer r, consider the
kernel

h(xy, ..., %) = X1X2- - - X,
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This leads to the U -statistic
1
=0 > XpXp, o Xp.
r) B

Hence, U has expected value u” where u© = E(X ).
For instance, forr = 2,

2

2
1
U= o= X% = e (2}(,) -2.X

Jj<k

:ni1[_2_%z } O

Clearly, a U -statistic of order r is an average of the values 4(Xg,, ..., Xg ). Further-
more, since X1, ..., X, have an exchangeable distribution and % is a symmetric function,
the variables h(Xg,, ..., Xg ) as B varies are identically distributed. However, they are
not independent so that it does not follow immediately that U follows the central limit
theorem.

The asymptotic normality of a U -statistic may be established by a general technique
known as the projection method. Consider a real-valued random variable T and consider a
collection of real-valued random variables V. The projection of T onto V is that element of
V of V that minimizes E[(T —V)*]over V € V. Hence, T — V is as small as possible, in
a certain sense. Writing T = V + T — V, the asymptotic properties of 7 may be obtained
from those of V, provided that T — V is negligible. Clearly, for this approach to be effective,
the class of random variables 1 must be chosen so that the asymptotic properties of V are
available. For instance, a commonly used class of random variables are those that are sums
of independent identically distributed random variables; the resulting projection is known
as the Hajek projection. See, for example, van der Vaart (1998, Chapter 11) for further
details on projections.

Let U denote a U-statistic of order r based on a kernel 4 and let

0 = E[h(X1,..., X))

Let

U =) EU|X)):

j=1

note that

U —nb=> [EU|X;)—0]
j=1
is of the form 23;1 g(X ;) with g taken to be g(x) = E(U| X1 =x) -0
The following argument shows that /' — 16 is the projection of U — 6 onto the space of
random variables of the form Zr;zl g(X ;) for some function g such that E[g(X D <
oo. First note that (U — 6) — (U — n6) is uncorrelated with any statistic of the form
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31 g0(X ), where g is a function on X’ such that E[go(X1)?] < oo:

Cov |:(U —0) — (U —no), Zgo(Xj)}

J=1

= Y ElWU —6)go(X )] - Y E([EWU| X ;) — 01go(X )}
j=1 =1

J J

= Z{E[Ugo(X;)] —E[EU] X j)go(X )]}
=1

= i{E[Ugo(Xj)] —E[Ugo(X )]} = 0.
j=1
It follows that, for any random variable W of the form Z?=1 go(X;), where gq satisfies
E[g0(X })*] < o0,
E{[(U - 6) = W} = E(I(U = 0) = (U = n0) + (U — nh) — WT)
=E(l(U = 0) = (U = n®)P’} + E{(U —no) — WP}
Hence,
E{[(U —0) — (U — n0)’} <E{[(U —0) - WT

so that, in terms of expected squared distance, U — n6 is closer to U — @ than is W.

Example 13.12 (Sample mean). Consider a U -statistic based on the kernel
1
h(x1, x2) = E(Xl + x2).

Then U = X and 6 = E(X,). Clearly, the U -statistic approach is not needed here and this
example is included for illustration only.

Writing
1
= X+ X,
n(n_l);;( j+ X0
we see that
X;+6 ifi=jori=k
E(X; + X/ |X;) = g .
(X + XilX0) 20 otherwise
Hence,
1
EU|X)= ——[(n— DX, +0)+ 1 —1)*20] = -X; + (n — 1)0
nn—1) n
and

U=) EU|X))=X+(n—10.
j=1

It follows that

U-n=X-0=U—-6;

this is not surprising since U — @ itself is of the form Z:le gX;. O
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Since E(U| X ;) is a function of X ;, U is a sum of independent identically distributed
random variables; hence, under standard conditions, U follows the central limit theorem.
The asymptotic normality of U follows provided that U — U is sufficiently small in an
appropriate sense. The following theorem gives the details of this approach.

Theorem 13.5. Let X1, X, ..., X, denote independent, identically distributed real-valued
random variables and let

1
U= mZh(xﬁ,,...,xﬁ,_)

denote a U-statistic with kernel h, where

E[h(X1, X2, ..., X,)*] < o0.

Then
/U —0) 2 N@©,6%) as n— oo;
here
0 = E[h(X1, X2, ..., X;)]
and

o =r? Cov[h(X1, X2, ..., X,), h(X1, X2, ..., X)),

where X1, X2, ..., Xr, X2, ..., X, are independent and identically distributed.

Proof. Let
h(x) = E[h(x, X2, ..., X))

Then, since /4 is symmetric in its arguments,

E[h(Xg,, ..., Xp)|X; = x] = {h(x) ifi € {Br,.... B}
0 otherwise

There are (:’) terms in the sum defining U and, foranyi =1, ..., n, (7:]1) of them include
X;. Hence,
n—1 n _ (n—1
Uiy, =1 = Ui+ WUy
(") 0
r ~ n J— ’/'
= —h(x) + ——0.
n n
It follows that
0 =53 kX + o=,

or,
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Note that
hX)—0,....,h(X,)—6
are independent, indentically distributed random variables each with mean 0 and variance
of = E{[h(X,) — 61%}.
Note that
E{[A(X1) — 61} = E[E[h(X1, X2, ..., X,)|X1] = 6)’]
= E{E[h(X1, X2, ..., X,) — 0| X1 JE[h(X1, X0, ... X)) — 01X 1}
= Cov[i(X1, X2, ..., X)), h(X1, X>, ..., X )] = o?/r%
Hence,
(0 —nd) B N©, 0% as n— oo
The result now follows provided that
[0 —nf)—U —0)] 50 as n— oo (13.1)
Note that
E[({U —n6) — (U —6)] = 0;
hence, (13.1) holds, provided that
nVar(U —(7) — 0 as n— oo.

Now,

Cov(U, U) = Cov (U, ZE(UlX,-)) = Z Cov(U, E(U|X;))
i=l1 i=l1

and
Cov(U,E(U|X,)) = E[UE(U |X,)] — E(U)* = E{E[UE(U |X,)|X;1} — E[E(U |X/)]’
= E[E(U|X,)’] — E[EU |X)))?
= Var[E(U| X))]
so that
Cov(U, U) = Var(0).
It follows that
Var(U — U) = Var(U) — Var(D).

Since
1
U= 8] Zh(xﬂl,...,xﬂ,_),
r/) B

1

()’

Var(U) =

DO Covl(Xp,..... Xp) h(Xp,. ... Xp).
.
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Note that Cov[h(X/;I, e, XB/~)’ h(Xg,, ..., Xp )] depends on how many indices appear in
both

{Bi..... B} and (Bi,.... B}

Ofthe (;1)2 total subsets of {Bl, el B,.} and {81, ..., B, } under consideration, the number

with m indices in common is
n\/[r n—r
r)\m)\r —=m)’

This result may be obtained by noting that there are (7) ways to choose the first subset and,
given the first subset, the second must be chosen in such a way that m indices are selected
from the r indices in the first subset.

Leto,, = COV[/’!(XBI s Xﬁ]_), h(Xg,, ..., Xg )] when there are m indices in common.
Then

Var(U) = Z %O}n = Z Omon.
m=1 r m=1

Form =1,

G5 _ Ple=nP =) = (= 2)
¢  nm-2r+D! nen—@—1)

T

0=

Since there are r — 1 terms in the numerator of this ratio and » terms in the denominator,
Q1 =0(/n). Form =2,

0, 00D _ 06D _[OCD]_e-v' 1o
00 L0 2 n-2” '
In general, it is straightforward to show that
Oui1 _ (r —m)? 1
Qm N (m+1) n—2r+m+1
sothat Q,, = O(n™™),m =1, ..., r. It follows that
_ (o) o =P s
Var(U)— (:’t) U]+0(}’l )—I m(f[+0(ﬂ )
Note that

[(n=P)  (=r)n—r—1--(n—2r+2)

nln—2r + 1! nn—1)---(n—r+1)
_ln—rn—r—1ln—r—@-2)
T an—1 n—-2 an—-@-1

Hence,

lim nVar(U) = r?oy = Var(U).

n—o00o



422 Approximations to the Distributions of More General Statistics

It follows that
nVar(U — U) =n[Var(U) — Var(U)] — 0 as n— oo,

proving (13.1). The result follows. H
Example 13.13 (Sample variance). Consider the second-order kernel

1
h(xy, x2) = S = x)°.
Recall that the corresponding U -statistic is the sample variance,

1 n B
§? = 7 Z(Xj - X)?
n—14

and 6 = Var(X); see Example 13.10. Assume that E(X ‘11) < 00; it follows that

E[h(X1, X2)*] < oo.

Then /n(S 2_0) converges in distribution to a random variable with a normal distribu-
tion with mean 0 and variance

o? = Cov[(X; — X2)*, (X1 — X3)’]

= Cov[(X1 —pu = Xo + W’ + (X1 — b — X3+ p)’]

= Cov[(X1 — W’ (X1 — )]

= E[(X; —w' - %,
where i = E(X) and %2 = Var(X;). O
Example 13.14 (Integer power of a mean). For some r = 1,2, ..., consider the kernel
of order r given by

h(xy, ..., X)) =X1X2- - X,.
Then 8 = u” where u© = E(X). Assume that E(X f) < o0; it follows that
E[h(X1, ..., X,)] < cc.

It follows from Theorem 13.5 that the corresponding U -statistic is such that ./n(U — 0)
converges in distribution to a random variable with a normal distribution with mean 0 and
variance

o> =r’Cov(X Xy X, X1 X5 - X,) =17 [E (Xf) 2= — M2’4] =222,

where 72 = Var(X,). O

13.5 Rank Statistics

Let X1, X», ..., X, denote independent, real-valued random variables and denote the ranks
of the sample by Ry, R», ..., R,. Recall that, under the assumption that the X ; are identi-
cally distributed with an absolutely continuous distribution, the vector of ranks is uniformly
distributed over the set of all permutations of {1, 2, ..., n}. Since this is true for any abso-
lutely continuous distribution of X, statistical procedures based on R, R;, ..., R, are
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distribution-free in the sense that the properties of the procedures do not require additional
assumptions regarding the distribution of X.

Example 13.15 (Rank correlation statistic). Let X, X», ..., X, denote independent, ran-
dom variables and let 7, . . ., t, denote a sequence of unique constants; without loss of gen-
erality we may assume that 1| <, < --- < t,. In order to investigate the possibility of a
relationship between the sequence X |, X, ..., X, and the sequence t, 5, . . . , #, we might
consider the statistic 23:1 JR; where Ry, Ry, ..., R, denote the ranks of X1, ..., X,.
Note that the vector (1, 2, ..., n) is the vector of ranks corresponding to ¢, t, . . ., t,.

Note that since Y, j, 31—, j%, > _j_ Rj,and Y"1 R? are all deterministic functions
of n, Z'}z | JR is a deterministic function of the correlation between the vector of ranks
(Ry,...,R,) and the vector (1, ...,n). O

In this section, we consider the asymptotic distribution of linear functions of the ranks
based on independent identically distributed random variables. For each fixed n, these
ranks constitute a random permutation of the integers from 1 to #; hence, in studying the
asymptotic properties of such statistics, we need to use a triangular array in order to express
the ranks. Here we will use Yy, . .., Y, to denote the ranks based on a sample of size n.

We are often interested in statistics of the form 22:1 an;jY,; where,foreachn =1,2, ...,
aui, - - ., Ay, are known constants. More generally, we consider a statistic of the form

n Y X
S, = Zanjg (71) ,
j=1

where g is a known function on [0, 1]. The following theorem gives a central limit theorem
for this type of statistic.

Theorem 13.6. Let (Y1, Y,2, ..., Yu,) denote a random permutation of (1,2, ..., n). For
eachn=1,2,...,leta,;, j =1,2,...,ndenote a sequence of constants satisfying

1 n
. ~ 2 2
lim — E lap; — a,|” = c*,
n—oo n 4
j=1
for some constant c, and

lim Z |anj _dn|3

- =0, (13.2)
T X — an)?)?

where
1 n
a, = — E ayi.
n 4 J
J=1

Let g denote a bounded function on [0, 1] such that g is continuous almost everywhere.
Define

n Y.
[
Sn = Zdnjg (%) .
j=1



424 Approximations to the Distributions of More General Statistics

Then
Sn — E(Sn)

- — N(@,1) as n— oo.
[Var(S,)]?

We will prove this theorem through a series of lemmas. The first lemma considers a
statistic of the form S,, except that Y,;/n is replaced by a random variable uniformly
distributed on (0, 1). Note that Y,;/n is uniformly distributed on the set {1/n,2/n, ..., 1}.

Lemma 13.1. Let Uy, Uy, ..., U, denote independent, random variables each uniformly
distributed on [0, 1] and let

n

T, = Z(anj - C_Zn)g(U]) + nYndy,

j=1

where
1< .
vn = _gU/m.
=

Then, under the conditions of Theorem 13.6,

T, —ET,) o
— > N©,1) as n— oc.
[Var(T,)]>

Proof. Let o denote the variance of g(U,;). Then
Var(T,) = o? Z(a,,_,- — El,,)z.
Define

an = (anj - C_ln)(g(Uj) - E[g(Uj)])a Jj=1...,n

Then

T, — E(T,) = ijznj.
j=1

Since g is bounded,

|Z,j| <2Mla,; — ayl,
where M = sup,_,.; |g(+)|, and

E[1Z,; '] < 8M°|a,; —al’.
Hence,
Yo BUZuPT M Y law — @l
[Z;l‘:l Var(Z,,j)]% S [Z?’:l lan;j — 0_’|2]%

by condition (13.2). The result now follows from the central limit theorem for triangular
arrays (Theorem 12.2). ®

— 0
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The second lemma shows that, as n — oo, the random variable g(R;/n), where R; is
uniformly distributed on {1, ..., n}, is well-approximated by g(U,), where U, is uniformly
distributed on (0, 1).

Lemma 13.2. Let U, U,, ..., U, denote independent, random variables, each uniformly
distributed on (0, 1), and let R| denote the rank of U,. Then, under the conditions of

Theorem 13.6,
R,
EllgU)—g|—
n
Proof. Note that

R\ [ 2 R\’ Ry
E||gU)—g — =E[gWU)]+E|¢ — —2E | gWU)g —

1
E[g(U))*] = / g(x)* dx

0

R \? 1<~
E [g <71> } =- ;gu/n)z-

Under the conditions of Theorem 13.6, g is Riemann-integrable so that

R 2 1 n 1
lim E |:g (—l> j| = lim —X:g(j/n)2 =/ g(x)dx.
n—oo n n—-oon j=1 0

Hence, the result follows provided that

2
:|—>O as n— oo.

and

1
lim E[g(U1)g(R:/n)] = / g(x)*dx.
n—oo 0

Note that
Ry Ry Ry
E|gWUig . =EE|gUg ’. IRy |t =Eqg . E[lg(UDIR 17 -
Given that Ry = r, U, is the rth-order statistic from Uy, ..., U,. Hence,

E[g(UDIR) =r] =ElgU)IRy =r].

By Theorem 7.11, the order statistics and ranks are independent. Hence,

! n!

o r—Dln—r)!
so that E[g(U)] = E[g(B;,n—++1)], where B, denotes a random variable with a beta
distribution with parameters » and s; see, Example 7.24. It follows that

Rl Rl
E |:g(U1)g (7)i| =E |:g(BR|,n—R|+l)g (7)i| .

ElgU¢)IR1 =] = E[gU)] = AN = x)" T g(x)dx



426 Approximations to the Distributions of More General Statistics

Since R; is uniformly distributed on {1, ..., n},

R
E[g(Ul)g (%)}——Zg( ) [g(Bjn—j+1)]
n' j—1 n—j
—Z ( )A mxl (1—)(,‘) Jg(x)dx
B L2 n! . . i
_/o {;Zmﬂ (1—-x) fg(;)}g(x)dx

1
= /O gn(X)g(x)dx,

where
"1 n! - (]
- - =l —xy—Jig( L),
@O =) G Y g(n)
Note that

“in—1\ v (J+1 Y,(x)+ 1
= £ oo (1) - (221

where Y, (x) has a binomial distribution with parameters n — 1 and x. It is straightforward
to show that

Y,1(X)+1 P
— > X as n —> X
n

for all 0 < x < 1. Let x¢ denote a point in [0, 1] at which g is continuous. Then, by Theo-

rem 11.7,
Yn (XO) + 1 4
g|l——— ) — glxg) as n— oo,
n
which, since g(xo) is a constant, is equivalent to

Y,(xo)+1\ »p
g|l——— ) > glxg) as n— oo.
n

Since g is a bounded function, it follows that

nli)n;OE |:g <W)] = g(xo).

lim g,(x) = g(x)
n—oo

That is,

for all x at which g is continuous.
Recall that g is continuous almost everywhere so that g,(x) — g(x) as n — oo, for
almost all x. Furthermore,

sup [g,(x)| < sup |g(x)| < oo.
x€[0,1] x€[0,1]
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It now follows from the dominated convergence theorem (see Appendix 1) that

1 1
lim/ gn(x)g(x)dxzf () dx.
n—00 Jo 0

The result follows. M

Lemma 13.2 can now be used to show that a function of (R/n, ..., R,/n), where
(Ry, ..., R,)is arandom permutation of (1, ..., n), can be approximated by an analogous
statistic with (Ry/n, ..., R,/n) replaced by (Uy, ..., U,), where Uy, ..., U, are indepen-
dent, identically distributed random variables, each uniformly distributed on (0, 1).

Lemma 13.3. Define Uy, U,, ..., U, asin Lemma 13.2 and let the ranks of Uy, Us, ..., U,
be denoted by Ry, ..., R,. Let y, be defined as in Lemma 13.1, let

- 1 R;
Sy = Z(anj —dn)g (#) + nynay
=1

and define T, as in the statement of Lemma 13.1. Then, under the conditions of Theorem 13.6,

E[(Tn - S"11)2]
m ———— =
n—00 Var(T,,)

Proof. Since
T, -5, = f (@ —an | s —g (X
n n y= nj n j n B

1 1

n R/
gWU;)—¢g <—>
n

|Tn - Snlz = |:i |anj - dn|2:| 2 |:Z
j=1

j=1

and, using the fact that E(|X|2) < E(|X|)z,

E[|Tn - Sn|2] < |:Z |anj — a1|2:| E |:Z

Jj=1

[SIE

-

R\ |? r R\ ,
gU;)—g <—> =nE||gU1)—¢g (—) | } = ne,
n L n

where, by Lemma 13.2, ¢, — 0 as n — oo. Hence,

EI(T, — 5,71 _ Ve
Var(Tn) N 02[ Z(Cl”j - 6_ln)z]%

Note that

J=1
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The result now follows from the assumption that
lim l En lap —ay> =c*. |
0o 71 4 1 nj n .
J=

Lemma 13.4 is a technical result on convergence in distribution. It shows that if a
sequence Zi, ..., Z,, appropriately standardized, converges in distribution to a standard
normal random variable, and Y,, approximates Z, in the sense of Lemma 13.3, then Y, is
also asymptotically distributed according to a standard normal distribution.

Lemma134. Let Z,,7Z,,...andY,Y>, ...denote sequences of real-valued random vari-
ables such that, foralln = 1,2, ..., E(Zﬁ) < o0 and E(Ynz) < Q.

If
Z,—E(Z,
7(1)—D>N(O,l) as n— 0o
[Var(Z,)]2
and
E(Z, — Y)*]
im ——— =0,
n—oo  Var(Z,)
then

Y, —EY,) »
— —> N(@O,1) as n— oo.
[Var(Y,)]2

Proof. Foreachn=1,2,...,let D, =Y, —Z,sothatY, = Z, 4+ D,. Under the con-
ditions of the lemma,

Var(D,)
im =0
n—oo Var(Z,)

and, hence, by the Cauchy—Schwarz inequality,
Cov(Zy, DY _ . Var(D,) _

limsup ——————— < lim =
nooo  Var(Z,)? n—oo Var(Z,)
Since
Var(Y,) Var(Z, + D,) Var(D,) 2Cov(Z,, D,)
Var(Z,) _ Var(Z,) | Var(Z,) Var(Z,)

it follows that
Var(Y,)
im =1
n—oo Var(Z,)

Hence, by Corollary 11.4, it suffices to show that

Y, — E(,
17(11)£>N(0,1) as n — oo
[Var(Z,)]2

and, since

Yy —EB(Y,) _ Zy —E(Zy) | Dy —EDy)
[Var(Z,)]z  [Var(Z)]:  [Var(Z,)]z
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it suffices to show that
D, —ED,) »
— >0 as n— oo
[Var(Z,)]>

The result now follows from Chebychev’s inequality, together with the fact that

Var(D,,)
m =
n—oo Var(Z,)

Lemmas 13.1-13.4 can now be used to prove Theorem 13.6. The argument proceeds as
follows. Let S, be defined as in Theorem 13.6. Then S,, — E(S,,) is simply S,, as defined
in Lemma 13.3. By Lemma 13.3, S, is well-approximated by T}, as defined in Lemma
13.1. By Lemma 13.1, T, is asymptotically normally distributed and, by Lemma 13.4, this
implies asymptotic normality for S, and, hence, for S,,. The details are given in the following
proof.

Proof of Theorem 13.6. Note that
E(S,) = ;anjE |:g (%)] = ;an‘fE |:g <%)] = nd,,% j;g (%) = na,yy,.
Hence,
S, —E(S,) =S,
and
Var($,) = Var($,),

where S, is given in the statement of Lemma 13.3. Hence, it suffices to show that

S—fl—>N(0,1) as n — oo.
[Var(S,)]2

Define T,, as the statement of Lemma 13.1; by Lemmas 13.1 and 13.3,

T, — E(T, E[(T, — 5,)°
7(,) B NO.D). n— oo, and Tim e =S
[Var(T,)]>2 n—oco  Var(T,)

The result now follows from Lemma 13.4. W

In the course of proving Theorem 13.6 we have derived an expression for E(S,,), as well
as approximations to Var(S,). These are given in Corollary 13.5; the proof is left as an
exercise.
Corollary 13.5. Under the condtions of Theorem 13.6,

12 Sn - _n n
V120 =1an¥) B w0 1) as n o oo
c/n
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and
J12(S, — na,y,)

1

[ Z?Zl(an_/ - L_ln)z] 2

—D>N(0,1) as n— oo,

where

Example 13.16 (Rank correlation statistic). Let Ry, ..., R, denote the ranks of a set of
independent, identically distributed random variables, each with an absolutely continuous
distribution. Consider the statistic

n
> JR;.
j=1

which is a determinstic function of the rank correlation statistic; see Example 13.15. In
order to use Theorem 13.6 above, we will consider the equivalent statistic

1 G
Sn — ﬁ Z]Rj,
j=1
which is of the form

n Yn'

anjg ( : )
‘ n
j=1

with g(u) = u, a,j = j/n, and where, for each n, Y, ..., Y,, is arandom permutation of
{1,...,n}.
It is straightforward to show that
B In+1
a, = —
2 n

and that

3 iy —anft = St
ani — ay|” = ;
2t = T

hence, ¢ = 1/12. Since |a,;j — a,| < 1/2, it follows that condition (13.2) is satisfied.

Note that

IA

1) n+l
mE L=
j=1
It follows from Corollary 13.5 that

S, — 1)/2
L)/KN(O,I) as n — oQ. |
Jn/12

Example 13.17 (Two-sample rank statistic). Let R;, R,,..., R, denote the ranks
of n independent, identically distributed random variables, where n = n; + n,, and
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consider the statistic

n ny

Zj:l R; Zj:l Ry

S, = - .
ni ny

This statistic may be written in the form

n
E a,U-RJ-/n,
J=1

where
- fn/m ifj=1,...,m
W= =nfny i j=m+ 1y
Then
n
D =0
j=1
and
n . I12 I12
a,; = —+ —
= ni np
Suppose that
..om
lim — =g¢,
n—oo n

where 0 < ¢ < 1. Then the constant ¢?, defined in Theorem 13.6, is given by

S
q(1—q)
Note that
Z’}=1 |an;|? _ n*/n?+n*/n3 1
3 3
n 2 [n/n; +n/ny]2 Jn
[ijla’%j] /ni+n/ny

so that condition (13.2) of Theorem 13.6 holds. It follows that

Sn

— 2" B N@O, 1) as n— oo
Var(S,,)2

Using Corollary 13.5, we also have that

[12¢(1 — )12 S0/ /n = N(0,1) as n — oo

and that

|:12n1n2

1

2
. ] S, 3> NO,1) as n— oo. O
pE
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13.6 Exercises

Let Yy, Y,, ... denote independent, identically distributed random variables such that
PI‘(YI = 1) =1- PI'(YI = 0) =0

for some 0 < 6 < 1. Find the asymptotic distribution of
1 %
Y = |-
g 1- Yn
where ¥, = 3_, Y, /n.

Let Yy, Y,, ... denote independent, identically distributed random variables each normally
distributed with mean  and standard deviation o, u € R, 0 > 0. Let ¥, = 3, ¥;, S; =
Z';.:l ¥; - Y)?/n and let z be a fixed real number. Find the asymptotic distribution of

(z—)_’n>
[ .
S

Find the variance-stabilizing transformation for the binomial distribution.

Prove Corollary 13.1.

Find the variance-stabilizing transformation for the exponential distribution.

Let Yy, Y,, ... denote independent, identically distributed random variables, each distributed
according to a Poisson distribution with mean 6, 6 > 0. Let k, j, k # j denote nonnegative
integers and let ¥, = Z;":l Y;. Find the asymptotic distribution of

YJexp(—=Y,)/)!
(Y,{‘ exp(—Y,)/ k! ) ’

Let Yy, Y5, ... denote independent, identically distributed random variables each normally

distributed with mean u and standard deviation o, © >0, ¢ > 0. Let ¥, = Z'j’: Y,

Sy =3}_,(Y; = ¥)*/n. Find the asymptotic distribution of S,, /Y.

Let Xy, X5, ... denote a sequence of d-dimensional random vectors such that, for some vec-

tor u,

Jn(X, — 1) 3 N4, %),

where X is a positive definite matrix with |X| < co.
Let g:RY — R¥, k < d, denote a continuously differentiable function. Let A denote a nonran-
dom k x k matrix. Find conditions on A and g’(u) such that

n(g(X,) — ) A(g(X,) — g() > W,

where W has a chi-squared distribution with v degrees of freedom. Find v in terms of g'(u)
and A.

Let Xy, ..., X, denote independent, identically distributed random variables such that all
moments of X ; exist. Let g denote a real-valued, twice-differentiable function defined on the
real line. Let 4 = E(X ;). Find a large-sample approximation to the distribution of /#(X) for the
case in which 4'(u) = O and 4”() # 0. Make whatever (reasonable) assumptions are required
regarding h.

Let Xy, X5, ... denote independent, standard normal random variables. Find the asymptotic
distribution of cosh(X,), X, = ZL, X;/n.

Prove Corollary 13.3.

Let X, X5, ..., X, denote independent, identically distributed random variables such that X
has a standard exponential distribution and let X, ..., X, denote the order statistics of
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Xy, ..., X,. Letk, andm,,n = 1,2, ..., denote sequences of nonnegative integers such that
k, <nand m, < nforall n,

ki
Jn(——q1>—>0 as n — oo
n

and
mn
Jn(——qz)—>0 as n — oo
n
for some ¢, g, in (0, 1), ¢; # ¢>. Find the asymptotic distribution of X )/ X nm,)-

Let X, X5, ..., X, denote independent, identically distributed standard normal random vari-
ables and let X,,), ..., X, denote the order statistics of Xy, ..., X,.Letk,,n=1,2,...,
denote a sequence of nonnegative integers such that k£, < n/2 for all n and

ky
Jn(——q)—)O as n— oo
n

for some 0 < ¢ < 1. Find the asymptotic distribution of

Xntkw) T Xngna)

- 5
wherem, =n—k,,n=1,2,....
Prove Corollary 13.4.
Let X, X5, ..., X, denote independent, identically distributed random variables each uni-
formly distributed on (0, 1) and let Xy, ..., X, denote the order statistics of X, ..., X,.
Letk,,n = 1,2, ..., denote a sequence of nonnegative integers such that k,, < n for all n and

Jn(i—"—q)—>0 as n — 0o
for some 0 < g < 1. Let g:(0, 1) — R denote a differentiable, strictly increasing function.
Find the asymptotic distribution of g(X,,)) first by finding the asymptotic distribution of
X, and using the §-method and then by finding the asymptotic distribution of Y, where
Y, =gX;),j=1,...,n
Let X, ..., X, denote independent, identically distributed random variables such that X; has
an absolutely continuous distribution with density function

exp(—x)
— - —00 <X < 00.
[1 4 exp(—x)]?
Let
Y, = max X;.
<jsn
Find a constant o and a sequence of constants S, 5, . .. such that n“(Y,, — B) has a nonde-

generate limiting distribution.

Let X, X, ... denote independent, identically distributed real-valued random variables such
that X; has a standard exponential distribution. Let

2
U=——— X —X;l;
nn—1) Z | i

1<i<j<n

this statistic is known as Gini's mean difference and is a measure of dispersion. Find the
asymptotic distribution of U.
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13.18 Let X, X», ... denote independent, identically distributed real-valued random variables such
that the distribution of X is absolutely continuous and symmetric about 0. Let

1
U=—— Lix.ox. <ot
n(n—1) 15;9 W=
Find the asymptotic distribution of U.
13.19 Let X4, X», ... denote independent, identically distributed real-valued random variables such

that E(X i‘) < oo and let o2 denote the variance of X . Construct a U -statistic with expected
value equal to o*; find the asymptotic distribution of this statistic.

13.20 Let
1
U= Y hi(Xp, ..., Xp)
(r) B
and

1
U2= TZhZ(Xﬁl""’Xﬂz)
(1‘) B

denote two U -statistics, of the same order, based on the same set of observations. Find the
asymptotic distribution of (U, U,).
13.21 Prove Corollary 13.5.

13.22 For each n =1,2,..., let ¥, ..., Y,, denote the ranks of n independent, identically dis-
tributed real-valued random variables, each with an absolutely continuous distribution. Find
the asymptotic distribution of >~7_, j¥,’..

13.7 Suggestions for Further Reading

The §-method, presented in Section 13.2, is used often in statistics; see, for example, Lehmann (1999,
Chapters 2 and 5), Rao (1973, Chapter 6), and Serfling (1980, Chapter 3) for further discussion.
The asymptotic properties of order statistics are considered in Ferguson (1996, Chapters 13-15), Sen
and Singer (1993, Chapter 4), and Serfling (1980, Chapters 2 and 8); a comprehensive treatment of
extreme order statistics is given in Galambos (1978).

The discussion of U -statistics in Section 13.4 is based on van der Vaart (1998, Chapters 11 and 12);
see also Lehmann (1999, Chapter 6) Sen and Singer (1993, Chapter 5), and Serfling (1980, Chapter
5). Section 13.5 on rank statistics is based on Port (1994, Section 61.1); see also Ferguson (1996,
Chapter 12) and Serfling (1980, Chapter 9).
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Higher-Order Asymptotic Approximations

14.1 Introduction

In Chapter 12, approximations to the distributions of sample means were derived; the normal
approximation F'(x) to the distribution function F),(x) of the normalized sample mean has
the property that, for each x,

lim F,(x) = F(x);
n—00
alternatively, we may write this as
Fo(x) = F(x)+o(1) as n— oo.

That is, the error in the approximation tends to 0 as n — oo. This approximation is known
as a first-order asymptotic approximation.

In this chapter, we consider higher-order asymptotic approximations to distribution func-
tions and density functions. For instance, in Section 14.2, an Edgeworth series approxima-
tion to the distribution function of a sample mean is derived that has the property that

. 1
F,(x)=F,x)+o <7> as n — oo.
n
In this case, not only does the error in the approximation tend to 0 as n — 00, /n times the
error approaches 0 asn — co. The approximation F,, is known as a second-order asymptotic
approximation. Asymptotic approximations of this type are the subject of this chapter.

14.2 Edgeworth Series Approximations

Let Xi,..., X, denote independent, identically distributed, real-valued random vari-
ables with mean pu, standard deviation o, and characteristic function ¢(z). Let
Y, = \/n()_( » — )/o. Then ¢, (), the characteristic function of Y,, may be expanded
1 K3 (it)?
lo N=—=2+ 2" +...
g ¢n(t) 3 6 Jn
where «3 denotes the third cumulant of X . A first-order approximation to the log ¢, () is
given by —¢2/2, which corresponds to the log of the characteristic function of the normal
distribution. Hence, to first order, the distribution of ¥,, may be approximated by the standard
normal distribution.

(14.1)

435
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A higher-order approximation to the distribution of Y, may be obtained by retaining
more terms in the approximation to log ¢,(¢). For instance, including the next term in the
expansion (14.1) yields the approximation

1, ks (it)
2 6 Jn'
We may obtain an approximation to the distribution function of Y, by finding the distribution
function that corresponds to this expansion; the same approach may be used to approximate
the density function of Y,,. This is the idea behind the Edgeworth series approximations.

The following theorem gives a formal proof of this result.

Theorem 14.1. For eachn = 1,2, ..., let X,, denote a real-valued random variable with
characteristic function @, satisfying

10g<pn(t) = ——ll +—K 3 (it) +Rn([)
2 6\/1’1
where, for eacht € R,

. R,
lim

n—o00 \/n

=0

and

lim k.3 = k3

n—oo

for some finite constant k.
Assume that the following conditions hold:

(i) Given € > 0 there exists a § > 0 and a positive integer N such that
LN
IR, (1) < 6«/ for |t| <8/n and n> N.
n

(ii) Forany § > 0,

1
/ ()| dt = 0<—> as n — oo.
|t|>8/n \/”

Let p, denote the density function of X,, and let

Pn(x) = ¢(x) + H3(x)p(x).

K3
64/n

Then
1
sup |Pn(x) = Pu(X)| = 0<%> :
Let F,, denote the distribution function of X,, and let
Fu) = 000 — 2 Hy(0)p)
6 Jn
Then

sup |F(x) — Fo(x)] = o(%) :
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Proof. Consider the first part of the theorem. Note that the Fourier transform of p, is
@u(t)//(27), where

@n(t) = exXp {_%tz} |:1 + W(”) :|

Letd, = p, — pn. Then d, has Fourier transform (¢, — ¢,)/+/(27). Under the conditions
of the theorem

/ |@n(t)|dt < 0o and f l@n(2)| dt < o0

o0 o]

for sufficiently large n. It follows that, using the argument used in Theorem 3.8,

1 [e¢]
dn(x) = > / [@n(t) — @u(1)] exp(—itx)dt
T J

o0

so that
1 o0
|d,(x)] < 2—/ . () — @u(D)] dr.

By assumption, for any 6 > 0,

1
(O dt =o| —
\/t>6\/n a2 0<\/I’l>
[ e _0<L>
[t]|>8/n on B x/” '

it follows that, for any 6 > 0,

/ [0n(2) — @u()| dt = 0(L> as n — oo.
[t|>8/n Jn

Hence, it suffices to show that, for some § > 0,

/ lon(t) — %(t)ldl—()( > as n — oo.
[t|<8./n \/n

and since clearly

Note that

(1) — Pu(t) = ex {—lﬂ} |:ex {ﬂ(muR (r)} —1—£(n)3}
Pty el =P 73 Plevn " N

and, using Lemma A2.2,

l@a(t) — @u(?)] < eXp{—ltz} [l s — k| } Xp{l "3||t| + IR (t)I}
n n — 2 6\/ 72 6\/ n

Since k,3 — K3 asn — 00, |k,3| < 2|ks| for sufficiently large n so that, for |t| < 8§./n,

|13

t
exp {lx,ﬂ%ﬁ} < exp {T(St }
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Also, by condition (i), for sufficiently small § and sufficiently large n,
Rl = M5 < sy
— < 8. /n
T8 n

1
< 1%

~ 8
Hence, there exists a § > 0 and a positive integer N such that

1, Ik 1
exp{—§t2+ %Itﬁ + |Rn(r>|} < exp{—zﬂ}, N

It follows that

/ |wn(r>—¢n(r>|drs/ Mz — K31 13 exp{—lﬂ}dt
l]<8y/n t<syn  O/N 4

1 2 1
+—/ Bu3 10 exp{——tz} dt.
n |t]<8/n 72 4

Since k,3 — k3 = 0 as n — oo, clearly

lkns — k3l 13 { 1 2} < 1 )
——21)t]" expy —=t"dt = ol — ] ;
/‘t<8«/n 6\/11 4 \/I’l

also, it follows immediately that

1 2 1 1 1
—/ B3 1116 exp {——tz}dl‘ = 0(—) = 0(—).
n MSS«/H 72 4 n \/}’l

Hence, for all sufficiently small § > 0 and sufficiently large n,

5 ool = of ——
SUp [P () — pu (0| _0(¢n>’ (14.2)

proving the first part of the theorem.
Now consider the distribution functions. Let x and x¢ denote continuity points of F,;;
note that F',, is continuous everywhere. By Theorem 3.3,

/T exp(—itxp) — exp(—itx)
-T it

1
Fu(x) — Fu(xo) = 5~ lim

2w T—oo

pn(r)dr.

Note that, since F, is not necessarily nondecreasing and nonnegative, it is not necessarily
a distribution function. However, the proof of Theorem 3.3 still applies to £, provided that
it is bounded, a fact which is easily verified. Hence,

1 r exp(—itxp) —exp(—itx) .

Fo(x) — Fu(xo) = 5 Aim - Pu(t)dt.
- -T

It follows that
[[Fu(x) — Fp(x)] — [Fy(x0) — Fp(x0)]]

T _. _ _.
< tim / eXp(TitX0) — EXPOTIIN) ) 1y — pu(e)] di
27 | T—o0o J_7 it
1 T n - An
1 hm/ ) =01
T ToooJ_r It



14.2  Edgeworth Series Approximations 439
Letting xo approach —oo, it follows that

N 1 T 100(8) — Gt
Eyo) — By <~ tim [ 2O =8@F
T T—o0 -T |t|
Note that, for any § > 0,
’ n(t) — @t
/ len® = @1

T |7

(1) — @, (t (1 0, (t
ff [ (2) w()ldtJr/' Iw()ldt+/ |¢()|d;
lt|<8/n |7] =syn |l =syn Il

|(pn(t) - @n(ﬂ' 1 / 1 A
< dt + |(pn(t)| dt + — |(pn(t)| dt
/|;|<5¢n |7 8/ Jy1ssyn 8/ Jy1=syn

:/ |§0n(t)_¢n(t)|dt+o<l>.
lt1<8./n |7] n

Hence,

|Fy(x) — Fo(0)] 5/ Mdl‘—i—o(l).
It]<8/n |7 n

The proof now closely parallels the proof for the densities. Note that, for sufficiently
small § and sufficiently large n,

n(1) — Gult n3 — 1
f Mdtﬁ/ |K3 K3||t|2 CXP{——IZ} dt
lt]<8y/n || tl<sgn  ON/N 4

+ 1/ K’%|t|5 { ltz} dt ( ! )
— - eXpy—— =0\ — ).
n t]<8/n 72 4 Jn

lim /nsup |F,(x) — F,(x)| =0,
n—oo x

It follows that

proving the second part of the theorem. W

Note that the conditions of Theorem 14.1 are not satisfied when X,,,n = 1,2, ..., hasa
lattice distribution. For instance, suppose that the range of X, is {b,j, j =0, £1, £2,...}.
Then, according to Theorem 3.11,

(pl’l(t):wl’l(t—i_znk/bn)g k:O, :i:l, :|:2,....
Hence, forany k = 0, =1, £2, ...,

/ loa(0)] dit = / \onlt — 2k /by dt
t>8./n t>8/n

= / lon ()] dr.
t>8/n—2mk/b,

By choosing k sufficiently large, it follows that

f lon(D)]di = f on(0l d.
t>8/n >0
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Since a similar result holds for the integral over the region ¢ <§&./n, condition (ii) of
Theorem 14.1 implies that

oo
/ lpn(®)|dt — 0 as n — oo.
—00
However, under Theorem 3.8, this implies that the distribution of X, is absolutely continu-
ous, a contradiction of the assumption that X, has a lattice distribution. Hence, application
of Theorem 14.1 is restricted to random variables with a nonlattice distribution.

Theorem 14.2 below applies Theorem 14.1 to the case of a normalized sample mean
based on independent, identically distributed random variables, each with an absolutely
continuous distribution.

Theorem14.2. Let X, X», . ..denote independent, identically distributed, real-valued ran-
dom variables such that X has an absolutely continuous distribution with characteristic
function ¢. Assume that

(i) E(X,) =0, Var(X,) = 1, and E(|1X;|?) < 00

(ii) for some a > 1,

/00 lp(®)|* dt < oo.

o0

Let f, and F, denote the density and distribution function, respectively, of

Jj=1

Then
K3H 1 _ 1
Sgp Ja(x) — |:¢(x) + g 3(x)¢(x)%i|’ = 0(%>
and
K3 1 1
sup | F(x) — [d>(x) - EHz(x)qﬁ(x)%N = 0<%)
asn — oo.

Proof. The characteristic function of Zj’:l X;/«/n is given by ¢(t//n)". Hence, the
result follows from Theorem 14.1 provided that

/ ot/ /)" di = 0 (i) as n — 00
lt]>8./n Jn

and
_ 1o, K
nlog(p(t/\/n)— 2t +6Jn(lt) + R, (1) (14.3)
where
R, (1)
Jn

-0 as n—> o
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for each ¢ and given € > O there exist § > 0 and N such that
o)

IR.(0)] < e% for [t| <8/n, n > N.
Note that, since the distribution of X is absolutely continuous, by Theorem 3.11,
lp()] <1 for |r] #0
and, by Theorem 3.9,
o) — 0 as |t| > oo.
Hence, for each fixed § there exists a constant C < 1 such that
lp(t)] < C for [t] > 4.

It follows that
1
/ lp(t//m)|" dt = Jn/ lp®)[" dt < /nC"*|p(®)|* dt = o(—) .
[t]>8/n t]>8 n

Let y(t) = logo(t), = y1(t) + iya(t), where y; and y; are real-valued. Using Taylor’s
series expansions,

1 /)
yi) = _Et + 1)’ 16
and

OESZUCIIG
where [¢7| < |7| and y’” is continuous, j = 1, 2. Hence,

K (l t)3 n n n 3

nloge(t//n) =ny(t//n) = ——t + g\/— +{n ) — iy, @3) — v, (0)] bun
where 17| < t//n.

Note that y;”(0) = 0. It follows that in the expansion (14.3) we may take

3
Ry() = {ly{"(t]) — v/" (O] — i[y,"(#5) — ;" (0)] }—

6./n
Clearly,
R, (¢
lim Ru®) =0.
n—00 \/ n
By the continuity of y;” and y;”, for any given € > 0, we may choose § sufficiently small
so that

Y~y Ol <€ j=12
for |t;‘| <34, j =1, 2. Then, there exists an N and a § > 0 such that for each |¢| < §./n,

t3
Ru(0)] < 26& for n > N.

Hence, (14.3) holds. The result now follows from Theorem 14.1. H
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A sufficient condition for condition (ii) of Theorem 14.2 may be given in terms of the
density function of X;.

Lemma 14.1. Let X denote a real-valued random variable with an absolutely continuous
distribution; let p denote the density of this distribution and let ¢ denote the characteristic
function. If there exists a constant M < oo such that p(x) < M for all x, then

/Oo lp()|*>dt < .

o0

Proof. Let X and X, denote independent random variables, each with the same distribu-
tion as X, and let Y = X; 4+ X,. Then Y has density function

py(y)=/ p(y —x)p(x)dx

[e.¢]

and characteristic function
ey (1) = p(t)*.
Note that

py(y) = / p(y —x)p(x)dx < M/ p(x)dx = M.

o0

Let ¢(-) denote the standard normal density function. For A > 0
o0 o0 o0 1

/ y (Pt /1)dt = K/ / exp(ity)py (y)dy—¢(t /1) dt
—00 —00 J —00 A

o0 o0 1
= )\/ / exp(ity)xqﬁ(l/)»)df pr(y)dy.

Note that the inner integral is simply the characteristic function of the normal distribution
with mean 0 and standard deviation A, evaluated at y. Hence,

0 [e%s) )\2
/ oy(OP(t/A)dt = 1 f exp (——y2) pr(y)dy

00 —o0 2

oo )\’2
< MA/ exp (—7y2> dy = M /(27).

Therefore, we have shown that for all A > 0,
o0
_/ ey(O@(t/r)dt < M/(2m).
—00
Hence,

lim sup/m ey ()P(t/r)dt < /Do @y (1) limsup ¢(1/2)dt = /m py()dt < M/Q2r).

L—o00 00 —00 L—o00 00

That is,

f h lp()*dt < M/(27),

[0}

proving the lemma. M
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Example 14.1 (Sample mean of random variables with a symmetric distribution). Let
Y1, ..., Y, denote independent random variables each distributed according to a distribution
with mean 0, standard deviation 1, and E(|Y;]?) < co. Assume that the density of Y is
bounded and symmetric about 0. It follows that 3 = 0 and, hence, using a Edgeworth
series approximation

Pr(/nY <t)= &)+ o<%);

that is, the usual first-order normal approximation has error of order o(1/+/n) rather than
the usual o(1). O

Example 14.2 (Chi-squared distribution). Let Z,, ..., Z, denote independent standard
normal random variables and let S, = Z'}zl ZJZ.. Then S, has a chi-squared distribution
with n degrees of freedom. We will consider approximations to the chi-squared distribution
function based on an Edgeworth expansion.

It is straightforward to show that the first three cumulants of Z? are 1, 2, and 8, respec-

tively. Let
S,/n—1

Y, =.n NE

Then Pr(Y,, < y) may be approximated by

2 1
P(y) - mHz(y)aﬁ(y)%-

Table 14.1 contains approximations to Pr(S, < s,q), based on the Edgeworth series

approximation described above, where s, satisfies
Pr(Sn < Sna) = a,

for several choices of n and «. Recall that corresponding approximations based on the
central limit theorem are given in Table 12.1. These results show that the Edgeworth series
approximation is generally, but not always, an improvement over the approximation based
on the central limit theorem. O

Example 14.3 (Normal approximation evaluated at the mean). Let X, X,,..., X,
denote independent, identically distributed random variables satisfying the conditions
of Theorem 14.2. Then, according to Theorem 14.2, f,, the density of Z'}zl X; /1,
satisfies

K3H 1 B 1
Ja(x) — [‘P(X) + I3 3(x)¢(x)%” =0 <%> )

sup
X
Hence,

fa(x)=¢x)+ 0 <%> .
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Table 14.1. Edgeworth series approximation to the
chi-squared distribution.

n
o 5 10 20
0.01 0.0493 0.0217 0.0133
0.05 0.0920 0.0679 0.0579
0.10 0.135 0.116 0.107
0.20 0.218 0.208 0.203
0.80 0.796 0.797 0.798
0.90 0.883 0.890 0.895
0.95 0.937 0.942 0.946
0.99 0.995 0.993 0.991

Consider f;,(0), the density of Z?:l X j/+/n evaluated at the mean of the distribution.

Since H3(0) =0,
1 1 1
50 =00 +0( )= s +o(75):

that is, the normal approximation to the density, evaluated at 0, has error o(1/4/n). In
general, if the normal approximation to the density is evaluated at x,,, where x,, = o(1/4/n),

the error of the approximation is o(1/4/n). O

Third- and higher-order approximations
More refined approximations may be obtained by retaining more terms in the expansion
of log ¢,(¢). Here we briefly describe the more general results; for further discussion and
references see Section 14.7.

In general, an approximation to the density function of Y, is given by

1 2 1
o(y) |:1 + %Hﬂy)% + (241‘14()’) + = Hé()’)) :| .

Here the functions H;(y) are the Hermite polynomials, defined by
’¢(y)

H.(y)p(y) = (=1)

see, Section 10.3 for further details of the Hermite polynomials. An approximation to the
distribution function of Y, may then be obtained by integrating the approximation to the
density. This procedure is simplified by recalling that

Y Yo dr dr-!
/ H o) dt = (—1) / d";f’) _ 1y dtrqbft) -
= —H, 1(y)¢(»);

see Theorem 10.8. Hence, an approximation to the distribution function F, of Y, is given
by

2 1
H3(y) + == Hs()’)) ‘ ] .

<I>(y)—¢(y)[ Hz()’)\/ <24
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Typically, either the n~2 term or the n™2 term together with the n~! term are used when
approximating the distribution function of Y,,. The error of the approximation is one power
of n=z greater than the last included term. For instance, if the approximation includes only
the n~z term, then the error is of order n~!; this is the case considered in Theorem 14.2.

Example 14.4 (Chi-squared distribution). Consider approximations to the chi-squared
distribution function based on an Edgeworth expansion, as in Example 14.2. The fourth
cumulant of ij is 48. Hence, the distribution function of

X”/i’l -1

Y, =.n 7

may be approximated by

V2 1 8 1
O(y) — 3 z(y)¢(y)% - (2H3(y) + §Hs(y)> ¢(y);~

The error of this approximation is o(1/n). O

Expansions for quantiles

An Edgeworth expansion may be used to approximate the quantiles of the distribution of
a sample mean. That is, suppose X, X5, ..., X,, are independent, identically distributed
random variables each with mean O and standard deviation 1 and suppose we wish to
approximate the value x,, satisfying

Pr(\/n)_(n =< xa) =,

where « is a given number, 0 < o < 1. Using the central limit theorem to approximate the
distribution of X, a first-order approximation to x, is given by the corresponding quantile
of the standard normal distribution, z, = ® ().

If an Edgeworth series approximation is used to approximate the distribution of \/nX,,
we obtain a series approximation for x,; such an approximation is known as a Cornish—
Fisher inversion of the Edgeworth series approximation. The following result gives the
Cornish-Fisher inversion corresponding to an Edgeworth series approximation of the form
given in Theorem 14.1.

Theorem 14.3. Let X,, n = 1,2, ..., denote a sequence real-valued random variables
such that each X, has an absolutely continuous distribution function F, and let x{ satisfy
Fn(xl(x")) = o, where 0 < o < 1 is given.

Suppose that there exists a constant B such that

1
Fy(x) = &(x) — %Hz(X)cﬁ(x) + 0<%)

uniformly in x. Then

B 1
(n) _
Yo Lo Jn Hy(za) 0(\/n>

where z, satisfies ®(z,) = «.
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Proof. Consider an expansion for x of the form

1
s =atonfyn+o( )

where a, and b, are O(1). Using the expression for F,, given in the statement of the theorem
together with the fact that &, H,, and ¢ are all differentiable,

e fenin el )
Fu(x)) = <an+b/\/n+o<\/n

1
= ®(a, + by //n) — %HZ(an)¢(an) + 0<%>

= ®(a,) + (]5(61,1)

B By 1
\/ 2(an)Pla,) + o %)

Jn

Hence, to achieve
P () = a.

we need ®(a,) = o + o(1/4/n) and

[t o= 5)

This implies that a, = z, + o(1/4/n) and

1
bn = ﬁHZ(Za) + 0(%)

so that

X =z + %HZ(Za) + 0(%)

as stated in the theorem. W

Example 14.5 (Chi-squared distribution). Let X,%(oz) denote the a-quantile of the chi-
squared distribution with n degrees of freedom, and let X,, denote a chi-squared random
variable with n degrees of freedom. Then, using the results of Example 14.2, the distribution
of
Jn X,/n—1
2

has «-quantile of the form

Zo + % (z - 1) +0<\}n>
That is,

2
X2(@) = n+ /Qn)ze + % (22 — 1) + o(1).

3
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Table 14.2. Exact and approximate quantiles of the chi-squared

distribution.
Quantile
n=10 n=20
o Exact Approx. Exact Approx.
0.01 2.56 2.54 8.26 8.23
0.05 3.94 3.78 10.85 10.73
0.10 4.87 4.70 12.44 12.44
0.20 6.18 6.04 14.58 14.58
0.80 13.44 13.57 25.04 25.13
0.90 15.99 16.16 28.41 28.53
0.95 18.31 18.49 31.41 31.54
0.99 23.21 23.35 37.57 37.65

Table 14.2 contains the exact quantiles of the chi-squared distribution with n degrees of
freedom, together with the approximation

2
n+ @)z + 3 (z2-1),

for n =10 and n = 20. These results indicate that approximation is generally quite
accurate. [

14.3 Saddlepoint Approximations

Let Xy, ..., X, denote independent, identically distributed random variables, each an abso-
lutely continuous distribution with density p. Let K(¢) denote the cumulant-generating
function of X, which is assumed to be finite for ¢y < ¢t < t; for some 1y, t1, ty < 0 < #; For
to < A < t; define

p(x;A) = exp{xA — K(W)}p(x);

assume that the distribution of X under p(x;A) is non-degenerate for A € (#, t;). Note
that

[o¢] o
/ p(x;A)dx :/ exp{xA}p(x)dx exp{—K(A)} =1
—0o0 —0oQ0
so that, for each A, p(x;A) defines a density function. The cumulant generating function
of the density p(x;A) is K(A +s) — K(A) and, hence, the cumulants are given by K'(%),
K" (1), and so on.

Let S, = X +---+ X, and let p,(s; 1) denote the density function of S, under the
density p(x;A) for the X ;; then the actual density of S, is given by p,(s) = pa(s;0).
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Note that
00 00
pn(s’)")Z/ / P(S—xz—"'—XnQ)»)P(xz;)»)"'P(Xn;}»)dXZ"'dxn
—00 —00 . o
= exp(si — nK(/\))/ / pls —x2— -+ —xp)p(x2) - plxn)dxs -+ - dxy

= exp(si — nK (X)) pn(s);

this holds for any A, fp < A < ;. Let p,(s; A) denote an approximation to p,(s; A). Then an
approximation to p,(s) is given by

exp{n K (L) — sA}pn(s; A).

The idea behind the saddlepoint approximation is to choose A so that p,(s; A) is an accu-
rate approximation to p,(s; A); the value of A chosen will depend on s. Since we are not
directly approximating the density of interest, p,(s;0), the saddlepoint approximation is
often referred to as an indirect approximation, in contrast to the Edgeworth series approxi-
mation which is referred to as a direct approximation.

In Example 14.3 we have seen that the normal approximation to a density function is
very accurate when it is evaluated at the mean. Hence, the value of X is chosen so that the
point s at which the density of S is to be evaluated corresponds to the mean of p(-; 1). That
is, given s, choose A = 3»3 so that

s = B(S,; 1) = nE(Y1; 1) = nK'(0).

It follows that A, satisfies nK’(%,) = s. Note that, since K”()) is the variance of X ; under
p(x;A), K”(A) > 0 for all A so that K(A) is a convex function, which implies that the
equation nK '(As) = s has at most one solution. We assume that s is such that a solution
exists.

For the approximation p,(s;A) we use the normal approximation given by the central
limit theorem; since the evaluation of the density is at the mean of S,, and the variance of
the X; under p(x;A) is K” (1), the approximation is given by

RrnK" ()] 2.
It follows that an approximation to p,(s) is given by
Pa(s) = expinK () — sk} 2mnK"(y)] 2.
Let X = S, /n. Then an approximation to the density of X is given by
exp{n[K (o) = xh Y27 K" (h)/n] 72

where A, satisfies K’(A,) = x. Since the normal approximation is evaluated at the mean of
the distribution, the error of this approximation is of order o(n‘% ); see Example 14.3.

The saddlepoint approximation is known to be extremely accurate, even more accurate
than is suggested by the error term of order o(1/4/n). This is due, at least in part, to the
fact that the normal approximation is always evaluated at the mean, a region in which the
approximation is generally very accurate.

Theorem 14.4 gives a formal statement of the saddlepoint method.
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Theorem 14.4. Let X, X5, ... denote independent, identically distributed random vari-
ables. Assume that the distribution of X, is absolutely continuous with bounded density p
and that the moment-generating function of the distribution, M(t), exists forty <t < t; for
some ty, t1, ty < 0 < 11, and let K(t) = log M(t).

Let px denote the density of X, = Z’;:I X j/n. Then, for each x such that K'(L) = x
has a solution in A, A,

S ()]
pX,,(x) = exp(nK(}‘x) - n)\x)il 1 + o\ — .
[27 K" (A1)]2 Vn

Proof. Let p denote the density of X;. For fy < A < 11, define
p(x;A) = exp{ix — K(A)}p(x)
where K (1) = log M()). Note that

/OO px;A)dx =1

o0
so that p(-; 1) represents a valid probability density function for each |A| < 7.
The moment-generating function corresponding to p(-; A) is given by

M(t;\) = /00 exp{tx}p(x; L) dx = exp{K({ + 1) — KAL)},

oo

for all ¢ such that |r + A| < ty. Hence, the cumulants of X under p(-; ) are given by
K'(A), K”(L), and so on.

Let S, = Z’,’ X, X, = S,/n, and let p, denote the density of S,. When X, X, ...
have density p(-; A), then S, has density

Pu(s; 1) = exp{hs — nK (1)} pu(s).

For a given value of A, define

Xn - K,()")
[K"(1)]2

and let f,(-; 1) denote the density of Z; when X, X5, ... have density p(-; 1). Note that,
since the moment-generating function of X exists,

Z)\Z\/i’l

lim exp(tx)p(x) =0
x— 00

for all |#| < to, since otherwise the integral defining M(¢) would not be finite. Hence, given
€, there exists a B > 0 such that

exp(tx)p(x) <e forall |x| > B.

Since p is bounded, and exp(zx) is bounded for |x| < B for any value of ¢, it follows that
p(x; A)isbounded forany A, |A| < #y. Hence, by Lemma 14.1, condition (ii) of Theorem 14.2
holds.

It is straightforward to show that, under the conditions of the theorem, the remaining
conditions of Theorem 14.2 are satisfied so that

K ()L)(z3 —32)¢(z) + 0<L> ,

fa(ZA) = ¢(2) + 6un n

uniformly in z.
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It follows that p,(s; A) is of the form

b)) + D)
e
(nK"(A)]? 6y/n

1
(2(s)® — 32(5))(z(s)) + 0(—) ,
Jn

where z(s) = [s/+/n — /nK'(O)]/[K"(A)]2. Since
Pn(s;A) = exp{sd — nK (A1)} pu(s),

it follows that

1
Pu(s) = exp{”K()») —sA} [71[¢(Z(S))
[nK"(M)]2

+

K///()\.) 3_3 + L ]
o w0 =3 +o )]

This result holds for any value of A. Hence, take A = A, such that K'(A;) = s/n. Then

Pals) = exp{nK (rs) — sm% [¢(0> + o(i)}
[(nK"(A)]2 N

1 1
— exp(nK () — shy)———— [ 1+of — ) |
exp{nK (h) — 5 }[mmmi[ 0< W)]

Now consider the py, , the density of X,,. Since

px,(x) = np,(nx),
it follows that
px,(x) = exp{nK (i) — nxkx}L] [1 + 0<L>]
" (27 K"(A)]2 Jn
where A, solves K'(A,) =x. H

Example 14.6 (Sample mean of Laplace random variables). LetY,, ..., Y, denote inde-
pendent random variables, each with a standard Laplace distribution. Since the cumulant-
generating function is given by K (t) = —log(1 — ¢?), |t| < 1,

2t

K,([) = ?}‘2

and the equation K’(1) = y may be reduced to a quadratic equation. This quadratic has two
solutions, but only one in the interval (—1, 1),

_ 4y -1
—

The saddlepoint approximation to the density of ¥ is therefore given by

A,

\/n exp{n} |y|2n—l exp {—n(] + yZ)%}
2"(27{)% |:(1 n yz)% _ l:ln—% 1+ y2)% .

Example 14.7 (Chi-squared distribution). Let Z,, Z,, ... denote independent, identi-
cally distributed standard normal random variables and consider approximation of the
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distributionof ¥,, = 23:1 Z? which, of course, has a chi-squared distribution with n degrees
of freedom.

The cumulant-generating function of le is —log(1 — 2¢)/2,t < 1/2 so that the solution
to K'(A) = yisgivenby A, = (1 — 1/x)/2;itfollows that K (A,) = log(y)/2and K"(A,) =
2y2. It follows that the saddlepoint approximation to the density of ¥, = Z;zl Z? is given
by

w0 ) = 2 ()
D s) amnsey ~ 2d@my . SPA\T2Y)

Comparing this approximation to the density function of the chi-squared distribution with
n degrees of freedom, we see that the saddlepoint approximation is exact, aside from a
normalization factor. O

Renormalization of saddlepoint approximations

It is important to note that saddlepoint approximations to densities do not necessarily inte-
grate to 1. Furthermore, unlike Edgeworth series expansions, saddlepoint approximations
cannot generally be integrated analytically. Let px (x) denote a saddlepoint approximation
to the density of the sample mean and let

1 o0
- = / Px,(x)dx;
¢ —0o0
note that it is often necessary to perform this integration numerically. Then the renormalized
saddlepoint approximation is given by c¢pg, (x).

Example 14.8 (Sample mean of Laplace random variables). Consider the saddlepoint
approximation to the density of the sample mean of Laplace random variables, derived
in Example 14.6, for the case n = 5. The integral of the density function, determined

by numerical integration, is approximately 1/1.056. Hence, the renormalized saddlepoint
approximation is given by

1.056,/5 exp(5) Iyl exp {—9(1 + yz)%] -
25(2)> [(1+y2)%_1]% A+y)i

Integration of saddlepoint approximations
Saddlepoint approximations can be used as the basis for approximations to the distribution
function of the sample mean; equivalently, we can consider approximations to tail prob-
abilities, which we do here. As noted above, analytical integration of saddlepoint density
approximations is not generally possible; hence, to approximate tail probabilities, approx-
imation of the resulting integral is needed. Several such approximations were given in
Chapter 9. Here we consider the application of the method described in Section 9.6. Only
a brief description is given; for further details on this method see Section 14.7.

Consider the problem of approximating Pr(X > t). Using the renormalized saddlepoint
approximation for the density of X, this probability can be approximated by

c/ expin[K () — xa 27 K" () /n] "2 dx. (14.4)
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To approximate this integral using the approximation derived in Section 9.6, we first need
to write (14.4) in the form

/Oo ha(t)/ne(/nt)dt.

Z

(14.5)
Let

r(x) = sgn(A){2[xA — KGo)1)

=

Note that, for fixed x, the function xA — K (1) is uniquely maximized at A = Xx and since
this function is 0 at A = 0, it follows that

xhy — K(Ghy) > 0.
It follows from the fact that r(x)? = 2[xA, — K (%,)] that

’ kY 75 dA)‘X
rrx) =i +[x — K'(A;)] i

Hence, r(x) is a strictly increasing function of x. Note that, since K(0) = 0, this implies

A

X

that 7(x) = 0 if and only if A, = 0.
The integral in (14.4) may be written

c/too (%)% exp {—gr(x)z} eK”(XX)_% dx.

(14.6)
Let z = r(x); note that dx /dz = z/A,. Then (14.6) may be written
®nN\: n A1 2
¢ (—) exp {——22} K'Go) "t = dz
/r(z) 21 2 Ax
where x = r~!(2). This is of the form (14.5) with
Z
h(z) = ——, x=r""(2)
A [K"(A)]2
Note that
1 1 1
h(0) im = = lim —
K"(0)2 =0 A, K7(0)2 z—0 dkx/dz
where
di,  dh,dx 1z
= —_— = 14.7)
dz dx dz. K"(Ay) Ay

since K'(A,) = x implies that di/dx = 1/K"(),). It follows that from the last part of
(14.7) that

A~

Ax
h(0) = K"(0)? lim ==
z—0 7
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so that #(0) = 1/h(0). Hence, h(0) = %1; however, z and , have the same sign so that
h(0) > 0. It follows that 2(0) = 1. Also,

h(r(t)) = Lt)l x=r"'r@) =t
A K" (Ay)?
r(t)

T LK
An approximation to the integral (14.4) is given by Theorem 9.16 with
h(r (1)) — h(0) 1 1
r0 LKG)E @)

Hence, Pr(X,, > t) may be approximated by
L= o 4 | = L g, =0
- nr NN — - n nr), r =r().
nK"Gor T

This approximation has relative error O(n’%) for fixed r, corresponding to ¢ of the form
t =EX) + O(n’%), and relative error O(n~"!) for r = O(4/n), corresponding to fixed
values of ¢.

Example 14.9 (Chi-squared distribution). Asin Example 14.7,let Y, denote a chi-squared
random variable with n degrees of freedom and consider approximation of Pr(Y,, > y); an
Edgeworth series approximation to this probability was given in Example 14.2.

Let X, = Y, /n. Then X, is the sample mean of n independent, identically distributed
random variables each with a distribution with cumulant-generating function

1
K@) =~7log(l =20, 1<1/2.

The solution to K'(t) = x is given by dy = —(x — 1)/(2x) so that
r(x) = sgn(x — Dix — 1 — log(x)}?
and K”(\,) = 2x2. It follows that Pr(X,, > x) may be approximated by

V2 - L] Jnol/nr(x)].

1 — [ /nr(x)] + :
— r —
i nlx—1 rkx)
Now consider approximation of Pr(¥, > y) = Pr(X,, > y/n). Let
ra = J/nr(y/n) = sgn(y — n){y —n — n log(y/m)}>.

It follows that Pr(Y,, > y) may be approximated by

V2 1
[l — o)) + [—” = —] B(r):
n—y 1,

equivalently, Pr(Y, < y) may be approximated by

V2 1
O(r,) —[ ~ - —} d(r).
y —n

Fn
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Table 14.3. Saddlepoint approximation to the
chi-squared distribution.

n
o 1 2 5
0.01 0.0114 0.0105 0.0101
0.05 0.0557 0.0516 0.0502
0.10 0.109 0.102 0.100
0.20 0.213 0.203 0.200
0.80 0.802 0.800 0.800
0.90 0.900 0.900 0.900
0.95 0.950 0.950 0.950
0.99 0.990 0.990 0.990

Table 14.3 contains approximations to Pr(S, < s,) based on the saddlepoint method
described above, where s,,, satisfies

Pr(S, < sp0) = «,

for several choices of n and . Recall that corresponding approximations based on the central
limit theorem and on an Edgeworth series approximation are given in Tables 12.1 and 14.1,
respectively. These results show that the saddlepoint approximation is very accurate, even
when n = 1; for n = 5, the error in the approximation is essentially 0. O

14.4 Stochastic Asymptotic Expansions

Let Yy, Y5, ..., Y, denote a sequence of random variables. Thus far, when considering
approximations to Y,, we have focused on approximations for the distribution function or
density function of Y;,. Another approach is to approximate the random variable Y,, directly
by other random variables, the properties of which are well-understood. For instance, we
might be able to write

N ~ 1 1
Y, =Y YI-+0,| —
o+ 1n+ p<n2>

for some random variables ¥y, ¥;. This type of approximation is known as a stochastic
asymptotic expansion.

A stochastic asymptotic expansion for Y, can often be used to derive an approximation
to the distribution of Y,, by approximating the distribution of the terms in the expansion. For
instance, suppose that ¥, = ¥, + 0,(1), where ¥, is asymptotically distributed according
to a standard normal distribution. It follows from Slutsky’s theorem that Y, is also asymp-
totically distributed according to a standard normal distribution. We have already seen one
application of this idea, the §-method described in Section 13.2.

Now suppose that

Y, =Y, +0,n™"
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where the distribution of ¥, has an Edgeworth series expansion of the form

¢(x) [1 + ﬁH x)+o (L)i|
6yn > NZYAR

It is tempting to conclude that the distribution of Y, has an Edgeworth series expansion
with error of order o(1/./n). This conclusion is valid provided that ¥, = Y, +o »(1//n)
implies that

Pr(Y, < t) =Pr(¥, <1)+o(1//n).

Unfortunately, this result does not hold in general. The following example illustrates the
type of problem that may be encountered.

Example 14.10. Let X denote a standard normal random variable and, for each n = 1,
2,...,let Z, denote a random variable such that

Pr(Z,=1)=1-Pr(Z, =0)=3,

where §,,n = 1,2, ..., is a sequence in [0, 1] such that lim,,_, o, 6, = 0. Note that, for any
€ >0,

Pr(J/n|Z,| > €) =Pr(Z, = 1) =6,

so that Z, = 0,(1/4/n).
Assume that X and Z, are independent for any n = 1,2,... and let ¥,, = X + Z,,
n=12,....ThenY, = X + 0,(1//n); however,

Pr(Y, <) =Pr(X +Z, <1)
= &)1 —38,) + Pt — 1)4,.

Hence,
Pr(Y, <t) =Pr(X <1) + O(,)

and if §,, — 0 slowly, Pr(X < t) is a poor approximation to Pr(Y,, < t).

The problem is that the condition that Z, = 0,(1/4/n) holds provided only that
Pr(y/n|Z,| > €) — 0 for any €, while an approximation to the distribution of ¥,, depends
on the rate at which this probability approaches 0. This issue does not arise in the
first-order approximation since Z, = o,(1) implies that Pr(|Z,| > €) = o(1); however,
Z, = 0,(1//n) does not imply that Pr(\/n|Z,| > €) = o(1//n). O

In spite of this negative result, in many cases in which a random variable Y, has an
expansion of the form ¥,, = Y, +o »(1/4/n) the distribution functions of ¥, and ¥, do agree
to order o(1/./n). However, some additional structure for the 0,(1/,/n) term is required
for this to hold.

Here we consider the case in which X, is a sample mean based on n independent,
identically distributed random variables and Y, = f(X,) where f is a smooth function.
Then, using a Taylor’s series approximation,

1
Y, = f(w) + f)(Xy — ) + Ef”(ljv)(Xn -t



456 Higher-Order Asymptotic Approximations

where i = E(X,,). In this case, the approximating random variable ¥, may be taken to be
a polynomial in X,, — . Hence, before considering the distribution of Y, in this scenario,
we give a preliminary result on the distribution of a quadratic function of a random variable
whose distribution follows an Edgeworth series expansion.

Lemma14.2. Let Z,, Z,, . . .denote independent, identically distributed random variables,
each with mean 0 and standard deviation 1. Assume that the distribution of Z is absolutely
continuous and satisfies the conditions of Theorem 14.2.

Let X, = Y| Z;/+/n and, for a given constant c, let

C 2
Yo = Xo+ —- X

v

Then F,, the distribution function of Y, satisfies the following: for any sequence y1, ya, . ..
such that y, = y + a//n + o(1//n) for some a,y € R,

6
Fo() = B(y + (a — ¢)//n) — sz/ncHz(y +(a—o)yn)
1
x ¢(y+(a—c)//n)+o (%)

where k3 denotes the third cumulant of Z,.

Proof. Let H, denote the distribution function of X,,. Then, by Theorem 14.2,

K3 1
H,(x) = ®(x) — —— H,(x)p(x) + o| —
(x) (x) 6Jn2()¢() (Jn)
uniformly in x.
Suppose ¢ > 0. Then the event that Y,, < y, is equivalent to the event that

Cc

Jn

which is equivalent to the event that a,, < X,, < b,,, where

X,%'f‘Xn_ynSOa

=1 —[1+4cy,//n]2 =1+ [1+4cy,//n]2

n — d bn - 5
a 2¢//n . 2¢/\/n
note that, for sufficiently large n, a, and b,, are both real.
Hence,
PI(Y, < ) = Blby) — — Halb)p(by) — Dlan) + — Hola)blan) + 0 —
Iy = Yn) = n) — n n) — an e ap an o\ —1-
Y 6./n : 64/n : Jn

It is straightforward to show that

o= et ot of )

n
and

a, = —/n/Q2e) + O(1).
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Hence, ®(a,) and ¢(a,) are both o (1/\/n) and

1
Pr(Y, < y») = ®(y) + —o(y) — ¢(y) ——H()¢(y) +0<¢n) ;

Jn

rearranging this expression yields

«/ «/

k3 46
64/n

The result now follows by noting that

1
Pr(Y, < y) = D) — 2% (i) EE v “6(») +o< Jn)

a—c 1
D(y + (@ — c)//n) = ®(y)——¢(y) + 0(—) ,
Jn n

1
B+ (a — )//n) = p(y) + 0(—)
Jn
and
1
Hy(y + (a — ¢)//n) = Hy(y) + 0(—) ) ]
Jn

The following theorem shows that if a function f has a Taylor’s series expansion, and
the distribution of Z, has an Edgeworth series expansion, then an approximation to the
distribution of f(Z,) can be obtained by approximation of f by a quadratic and then
applying the result in Lemma 14.2.

Theorem 14.5. Let Z,, Z,, ... denote independent, identically distributed random vari-
ables, each with mean 0 and standard deviation 1. Assume that the distribution of Z, is
absolutely continuous and satisfies the conditions of Theorem 14.2; in addition, assume

E(Zf) <oo. Let Z, = Z?=1 Z;/nandlet X, = f(Z,), where f is a three-times differen-

tiable function satisfying the following conditions:
(i) 1 @] >0

(ii) There exists a & > 0 such that

M = sup | f"(x)| < oo.

x| <8
Let
Y, = /n(X, — £(0)/f'(0)
and let F, denote the distribution function of Y,. Then

K3 + 6¢C
6/n
where ¢ = f"(0)/[2f/(0)] and k3 denotes the third cumulant of Z.

1
Fa(y) = ®(y —¢//n) — Hy(y —¢//mp(y —c//n) + 0<%>

Proof. We begin by showing that, for any o < 1/8, and any random sequence m,, such
that |m,| < |Z,],

Pr <|1 f;(mn) JnZ,)?| > %) =0 (%) as n — oo. (14.8)
n2
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Let & denote the constant in condition (ii) of the theorem. Then

lfm(mn) 5 \2 1
Pr <|n f/(o) ('\/nZH) n%+a>
§Pr< f (m")(\/ ,,)|>,Lm|z |<8>+Pr(|2n|28).
1) nat

By Chebychev’s inequality,

n

_ 1 1
Pr(|Z,|=86) < —=0(-]).
azazoz L =of!)
Note that when |Z,| < 8, then |m,| < 8, so that | f”/(m,)| < M. Hence,
Lf"my), , - 1 i, sz, > 1
pr (1L uz s o n 1z <6) < pe (2O ‘/,
n f(0) nite nate
E[n%Z*
=, i[ ,n] T
(n27*)3(f'(0)/M)3
Using the facts that E(Z;‘) = 0(1/n2) and @ < 1/8, it follows that

E[ 2Z1] < 1 )
=0\ — |,
() (fro/ms W
proving (14.8).
Now consider the proof of the theorem. Using a Taylor’s series expansion, we can write
- - 1 - 1 -
Xy = f(Z) = fO + [ OZ, + 5 [ OZ; + = f"(m)Z,

where m,, lies on the line segment connecting X,, and 0; hence, |m,| < |Z,|. Then

1 f7(0) 1 1 f"(my,)
Yn: - -
JZ, +2f(0)(d )¢ + 2 #0) (VnZ
Let
1 £7(0)
Y J—
=Vt e W
and
_ 1 f"my) = .3
n — 6 f,(o) (\/nzn)

Then, for0 < o < 1/8,

1 1
Pr(YnSy):Pr<YnSyn|Rn|§_>+Pr<Yn5yn|Rn|Z 1 )

n%-ﬁ-a

:Pr(f/ + R, <yﬂ|R|<n%1 ) <¢n>
ofime o) eo(h)

IA
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Let y, = y — 1/n2+%. Then

A A 1 1
Pr(Y, <y,)=Pr(Y, <y, N|R)| = ——— ) +o|—
( Yn) ( Yn N Ry né“x) <\/n>

1 1
=Pr|(Y,— R, <y,N|R,| < -
( o (VIR >+<¢)

1 1
SPI' Ynf n+1— +0_
(=t ) ()

<Pr(Y, <y)+ 0(%) .

1 1 N 1 1
— ) <Py, <y) <Pr(¥, < — ).
n%+a)+0<¢n>— " =) = ( ”n%w)*”(wl)

The result now follows from Lemma 14.2. H

Hence,

Pr(f/nfy—

The following corollary extends the result given in Theorem 14.5 to the case in which
the underlying random variables do not have mean 0 and standard deviation 1. The proof is
straightforward and, hence, is left as an exercise.

Corollary 14.1. Let Wy, W, ... denote independent identically distributed random vari-
ables, each with mean u and standard deviation o. Assume that the distribution of
(Wy — w)/o is absolutely continuous and satisfies the conditions of Theorem 14.2; in
addition, assume E(Wl4) < o00. Let W, = Z;zl W;/n and let X, = f(W,), where f is
a three-times differentiable function satisfying the following conditions:

(i) 1f' (Wl >0
(ii) There exists a & > 0 such that

M= sup |f"(x)| < oc.
[x—p| <8

Let
_ Xy = ()
of'(u)

and let F, denote the distribution function of Y,,. Then

Yil

K3/03 4 6¢
6./n
where ¢ = o f"(0)/[2f'(0)] and k3 denotes the third cumulant of W.

1
Fu(y) = ®(y —c//n) — Hy(y — ¢/ /n)p(y —c//n) + 0<—>

Jn

It is useful to note that the approximation given in Corollary 14.1 is identical to the one
obtained by the following informal method. Using a Taylor’s series expansion,

- 1 -
Xo = f(w) = f')W, — ) + Ef”(/t)(Wn —
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Hence,

_ /(X = f(O)
of'(0)

Consider the truncated expansion

_w o 'O 2 L
= VW, = 0o + 5 LW = fo ot e

n

i o f10) )1
(W, — /o + P 71(0) [Vn(W, —w)/o] %

Neglecting terms of order O(n~"), the first three cumulants of this random variable are

/') 1 K3/0° +30f"(0)/£'(0)
o —, 1, and )

21(0) /n Jn
respectively. Using these cumulants in an Edgeworth expansion leads directly to the result
given in Corollary 14.1.

Hence, this approach yields the correct approximation, even though the cumulants of the

truncated expansion are not necessarily approximations to the cumulants of the distribution
of Y,; in fact, the cumulants of the distribution of ¥,, may not exist.

Example 14.11 (Estimator of the rate parameter of an exponential distribution). Let
Wi, ..., W, denote independent random variables each with a standard exponential distri-
bution. This distribution has cumulant-generating function — log(1 — ¢) for |t| < 1; the first
three cumulants are therefore 1, 1, and 2, respectively. Let W, denote the sample mean of
the W; and let X,, = 1/W,,; this statistic may be viewed as an estimator of the rate parameter
of the underlying exponential distribution.
Here X,, = f(W,), where f(¢) = 1/t. Hence, f'(1) = —1

AN N

2f"(w) Iz
Since k3 = 2, it follows that the distribution function of Y, = i/n(1 — 1/W,) may be
expanded

2 1
<I>(y+1/«/n)+3—Hz(y+1/\/n)¢(y+1/\/n)+o<—>. O
Vn Vn

14.5 Approximation of Moments

Stochastic asymptotic expansions can also be used to approximate the moments of a random
variable. Suppose that Y, Y,, ... and Y|, Y», ... are two sequences of real-valued random
variables such that

Y, =Y, +R,/n% n=1.2,...

for some random variables R;, R, .... Then, under some conditions, we can approximate
the expected value of Y, by the expected value of Y,,. The following lemma gives a basic
result of this type that is often used in this context; the proof is left as an exercise.

Lemma 14.3. Suppose that Y, = ¥, + R, /n%, where Y, and R, are O,(1), such that
E(|R,|) < oo, and o > O.
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If either E(|Y,|) < oo or E(|Y,|) < oo, then
E(Y,) = E(¥,) + E(R,)/n".

One commonly used application of this idea is in a variation of the §-method. Suppose
that Y, is a sample mean based on n observations and f is a smooth function. Then, using
a Taylor’s series expansion,

_ _ 1 _
fE) = fw+ f'w¥, — )+ Ef"(lt)(Yn -t

where i = E(Y,). Then E[ f(¥,,)] can be approximated by the expected value of the leading
terms in the expansion of f(¥,,).

The difficulty in applying this idea is in controlling the order of the remainder term in
the expansion. Here we give two results of this type. The first puts strong conditions on the
function f, specifically that the fourth derivative of f is bounded, but weak conditions on
the distribution of the underlying random variables. The second puts weak conditions on
the function, but strong conditions on the distribution of the random variables.

Theorem 14.6. Let Y, Y,, ... denote independent, identically distributed, real-valued ran-
dom variables, each with range ). Assume that the distribution of Y| has mean (., variance
o2, third cumulant k3, and fourth cumulant ky. Let Y, = Z?=1 Y;/n and consider f(Yy),
where f is a real-valued four-times differentiable function on )y, a convex subset of R
containing Y such that

sup [ fP ()] < 0.
yedo

Then
_ L, o? 1
E[f(Y)] = f(w) + Ef (u); +0 3] as n—> oo

Proof. By Taylor’s theorem,

O / s 1 " U

FE) = fw)+ f1) Ty = 1) + 5 f (T = >
+ lf’”(u)(fv —uy’ + if“”(m ¥ — w?
6 24 "
where |m, — | <|¥, —ul,n=1,2,.... Note that E(Y,, — ) =0,
2 i
5

_ ) o - 3
E[(Y, — )] = — and E[(Y, —n)']=—
n n

Using the fact that f® is bounded,
E{lfPm)I(Y — ') < M E((Y — w)')
for some constant M, so that

E(fOml(F — ) = o(n—lz) a5 1= 50,

The result now follows from Lemma 14.3. H
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Example 14.12 (Function of a Poisson mean). Let X, X, . .. denote independent, identi-
cally distributed random variables, each with a Poisson distribution with mean A. Consider
the function exp(—X,), where X, = Z'}zl X ;/n; this function can be interpreted as an
estimator of Pr(X; = 0).

Let f(t) = exp(—1); clearly, f is four-times differentiable and f®(r) = exp(—t) is
bounded for ¢ > 0. It follows from Theorem 14.6 that

E[exp(—X,)] = exp(—21) + %exp(—)»)% + 0<n_12) as n — 00. O
Example 14.13 (Function of a normal mean). Let Y}, Y>, ... denote independent, iden-
tically distributed random variables, each with a standard normal distribution. Consider
approximation of E[®(Y,)], where ¥, = Z;': 1 Y;j/n and ®(-) denotes the standard normal
distribution function.
Let f(t) = ®(¢). Then f"(t) = —t¢(¢) and f@ () = (t3 — 31)¢(t); here ¢ denotes the
standard normal density function. It is straightforward to show that | f®(¢)| is bounded for
t € R. Hence, it follows from Theorem 14.6 that

_ 1 1
E[®(Y,)] = 3 + 0(;) . O

As noted above, the conditions required in Theorem 14.6 are very strong; for instance,
they are much stronger than the conditions required by the higher-order version of the
§-method. The main reason for this is that approximating an expected value, which can be
greatly influenced by the tails of the distribution, is a much more difficult problem than
approximating a probability.

The conditions on the function f can be weakened, provided that stronger conditions
are placed on the distribution of the underlying random variables. The following theorem
gives one example of this type of result.

Theorem 14.7. LetY,,Y,, ... denote independent, identically distributed, real-valued ran-
dom variables, each with range ). Assume that moment-generating function of the distri-
bution of Y1 exists.

Let YV, =YY i/n and consider f (Y,), where f is a real-valued four-times differenti-
able function on Y, a convex subset of R containing ) such that

IfP0)I < a expBlyD), vy e

for some constants a and B.
Then

_ 1 2 1
E[f(Y)]l = f(u) + Ef”(pb)g— + O(—2> as n — oo,
n n
where p = E(Y)) and 6% = Var(Y}).

Proof. The proof follows the same general argument used in the proof of Theorem 14.6;
hence, the result holds provided that

E{fP(m,)[/n(¥, — )"}

is O(1) as n — oo, where m,, is a random point on the line segment connecting 1 and ¥,.
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Note that, using the Cauchy-Schwarz inequality,
[E{ 0oy, — w1*}| < B FOom|ync, — w1}
< E{l /9P Elln(, — w*).
By the condition in the theorem,
[Pl < o exp{Blmal}, n=12....
Note that |m,| < |u| + |¥,]. Hence,
E[1fYmn)I’] < o exp{2B|ul}Elexp(26|7,1}]

and, since

n

_ 1
T <=3 1l

J=1

E[|f@(m,)*] < o® exp{2B|n}E[exp{2B|Y1|/n}]" = o exp{2B|ul}M )y, /(28/n)",

where M|y,| denotes the moment-generating function of |Y;]|. Since

28 1
nlog My, (28/n) =n [E(|Xl |)7 + o(;)] ,
Tim My, (28/n)" = exp(2BE(IX1])}.
By Theorem 4.18,
E(Lyn(T, — w1} = o(%) 4 1 — oo,

It follows that

= 1
‘E{f(4)(mi1)[\/n(yn - I»L)]4}‘ = 0<—>

n2

proving the result. MW

Example 14.14 (Function of a geometric mean). Let X, X», ... denote independent,
identically distributed random variables, each with the discrete distribution with frequency

function
1 X
=|=1, =1,2,...;
p(x) (2> x

this is a geometric distribution. This distribution has mean 2 and variance 2. Consider the
function exp(y/X,), where X, = >, X;/n.
Let f(¢) = exp(y/1); f is four-times differentiable with

1 1
fl = Z(’_l —172) exp(4/1);
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the fourth derivative of f is of the form g(¢) exp(s/t), where g is a polynomial in 1/,/f.
Hence, the conditions of Theorem 14.7 are satisfied and

_ 1 1 1
Elexp(y/X )] = exp(y/2) — §(\/2 — 1) exp(/2)— + O (—2> as n — oo. O

n n
Example 14.15 (Power of the mean of exponential random variables). Let Y|, Y, ...,
Y, denote independent, identically distributed, standard exponential random variables; it fol-
lows that E(Y;) = Var(Y;) = 1. Consider E[I—’n’ ] for some r > 0. To obtain an approximation
to this quantity, we can apply Theorem 14.7 with f(¢) = t". Note that f"(t) = r(r — 1)’ ~2

and

Y0 =rer—Dr —2)r = 3"

Hence, in order for the conditions of Theorem 14.7 to be satisfied, we must assume that
r > 4. It follows that, for r > 4,

. 1 1 1
E[ n]:lir(r—l);—i—o —) as n— oo

In this example, exact computation of E(Y!) is possible. Recall that Z';:l Y; has a
standard gamma distribution with index n; see Example 7.15. Hence,

_r_i - ,r _L ooan—l _ _LM
E( ,,)—an[(;Y,> } _nf/O tF(n)t exp( l)dt_nr o

Hence,
T'(n) 1 1+1( 1)1+0 1\1"
—_— = — —r\r — - -y
Frn+r) n 2 n n?

_1 ! 1 11 0 1
= [ty eo ()]

as n — 0o, which is in agreement with the result in Example 9.5. O

Note that, by Example 9.5, the expansion for E[¥] given in Example 14.15 continues
to hold for 0 < r < 4. The reason that Theorem 14.7 does not apply in this case is that the
theorem is designed to handle the case in which | f®(x)| is large for large |x|, while for
0 <r <4, |fP®(x)) is large for x near 0. It would not be difficult to give a result analogous
to that given in Theorem 14.7 that is designed to handle this situation.

Functions of a random vector

We now consider the case in which Y, Y, ... are d-dimensional random vectors and f is a
real-valued function defined on a subset of R?. In order to generalize the results presented
for the case in which the Y; are real-valued, we must consider derivatives of f(y) with
respect to y. For simplicity, we will denote these derivatives by f'(y), f”(y), and so on,
as in the case in which y is a scalar. Hence, f’(y) is a vector, f”(y) is a matrix, f”'(y) is
a three-dimensional array, and so forth. We will use subscripts to denote the elements of
these arrays, so that, for example, f"’(y) has elements fl/]fjc(y) fori, j,k=1,...,d.Fora
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q-dimensional array C define

t]— Z Cu zqtzl‘" ig*

Here we present a generalization of Theorem 14.6, which provides an expansion for
E[ f(¥,)] under the assumption that the fourth derivative of f is bounded.

Theorem 14.8. Let Yy, Y,, ... denote independent, identically distributed random vectors.
Assume that the first four cumulants of the distribution of Y exist and are finite; let 1 =
E(Y)) and © = Cov(Y)). Let Y, = Z’}zl Y;/n and consider f(¥,), where f:Yy — Risa
four-times differentiable function, where Yy is a convex subset of R? for somed = 1,2 ...
such that Pr(Y, € V) = 1. Assume that

()
sup  sup | f;, (V)| < oo.
i,j.kAl=1,...d yedo

Then
_ 1 L1 1
ELF(T) = £G0) + H0(2f o)+ O(,Tz) as n - oo
Proof. By Taylor’s theorem,
_ _ 1 _ _
f) = f(uw)+ f(WlYy — nl + Ef”(u)[Yn -, Y, —ul
1 _ _ _
+ gf”’(u)[Yn — Yy =, Yy — ]
1w o _ _ _
+ ﬂf m)Yny =, Yy — 0, Yy — 0, Yy — ]

where, for eachn = 1,2, ..., there exists a t = ¢, such that m,, =t + (1 — 1)¥,,.
The proof now follows along the same lines as the proof of Theorem 14.6, using the
facts that E{ f'(w)[Y,, — u]} =0,

_ _ 1
E{f//(ﬂ)[Yn -, Y, — /’L]} = ;tr{Zf//(/,L)}. n

Example 14.16 (Product of squared means). Let (X, W), (X, W), ... denote a
sequence of independent, identically distributed two-dimensional random vectors such that
X has mean py and variance 0’)2(, W, has mean puy and variance a%,, and let p denote
the correlation of X; and W;. Assume that the first four cumulants of the distribution of
(X1, W) exist.

Consider E(X.W2), where X =>"_X;/n and W, =3"_| W, /n Let Y;
(XJ,W) j=12,. thenE(X W2) is oftheformE[f(Y ), Y, _Z Yi/n, where
f)y =113t = (1, t2) e R

Note that

212 411ty
” _ 2
S = <4t1t2 22 )"
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It is straightforward to show that the fourth derivative of f is bounded. Hence, by
Theorem 14.8,

] 1 2 2 1 1
Xian):MiM%MEtr[( X pGXUW>( 2Hiv 4’”‘“‘”)}—+0<—)

poxow oy duxpw  2u% n n?

1 1
= 15y + (W of + kol + Appxiworow) -+ o(_) .

Since

and

o, ok
E(Xn)_l‘LX—‘rn

2\ — ,,2 ﬁ
E(Wn)_MW+ n *

it follows that

14.1

14.2

14.3

14.4

5 - 1 1
Cov(Xi, W?) =4dpuxpwoxow——+ O = ). O
n n?

14.6 Exercises

Let X, X», ... denote independent, identically distributed random variables, each with an abso-
lutely continuous distribution with density function

V01
J@2m)

where 8, > 0and#, > 0. This s an inverse Gaussian distribution with parameters 6, and 6,. Find
the Edgeworth series approximations with error o(1//n) to the density function and distribution
function of Z:f:l X;/n for the case 6, = 6, = 1.

Let X, X», ... denote independent, identically distributed random variables, each uniformly
distributed on the interval (0, 1). Find the Edgeworth series approximations with error o(1/n)
to the density function and distribution function of Z;;l X;/n.

3 1
exply/(6162)1x™2 exp {_5(9” + 92/?5)} , x>0

Let X, X5, ... denote independent, identically distributed random variables, each with an abso-
lutely continuous distribution, and assume that E(| X, 1*) < co. Let F ,» denote the Edgeworth
series approximations with error o(1/./n) to the distribution function of X, = Z;’.Zl X;/n.

Foreachn =1,2,...,letY; = a + bX;, for some constants a, b, b > 0, and consider two
approaches to approximating the distribution function of ¥, = Z;le Y;/n. One approach is to
use Edgeworth series approximations with error o(1/4/n), as described in Theorem 14.2. Another
approach is to approximate the distribution function of X, by F, and then use the relationship
between the distribution function of ¥, and the distribution function of X, resulting from the
fact that ¥, = a + bX,,. Are these two approximations the same? If not, which approximation
would you expect to be more accurate?

The Edgeworth expansion of the density of a random variable has the undesirable feature that,
for some values of the argument, the approximation given by the Edgeworth expansion may
be negative. To avoid this problem, it is sometimes useful to approximate a density function
by expanding the log of the density and then exponentiating the result to obtain an approxi-
mation for the density itself. Determine an Edgeworth expansion for the log-density with error

o(1/4/n).
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Consider a random variable with mean 0 and standard deviation 1. Suppose the density of this
random variable is approximated by an Edgeworth expansion with error o(1/,/n). Using this
approximation as a genuine density function, find approximations for the median and mode of
the distribution.

Let X1, X, ... denote independent, identically distriubuted random variables with mean 0 and
standard deviation 1. Let F, denote the distribution function of Z?:l X ;/+/n and assume that
there is a Edgeworth series approximation to F,. Show that

Pri—a < ZX/'/\/H <ap = Fy(a) — F,(—a)
=1

=®(a) — P(—a)+o (%) as n — oo.

That is, for approximating the probability that 3 _, X;//n lies inan interval that is symmetric
about 0, the normal approximation given by the central limit theorem has error o(1/./n).

Let Y, denote a statistic with a density function that has an Edgeworth series approximation
of the form

K3 1 Ky K32 1

Let X, = Y. Find an Edgeworth series approximation to the density function of X,, by using
the approximation to the density function of Y,, together with the change-of-variable formula
given in Chapter 7. Relate the terms in the approximation to the chi-squared distribution.

Let X, X5, ... denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

\/(2 )exp(l)x 2exp{——(x—i—l/x)} x > 0;

see Exercise 14.1. Find approximations with error o(1//n) to the quantiles of the distribution
of ZI;‘:l X j / n.

In the proof of Theorem 14.1, it is stated that the Fourier transform of

Pu(x) = ¢(x) + —— H3(x)o(x)

\/

exp {—%zz} [1 + U(lt) ]

Let X, X», ... denote independent, identically distributed random variables, each normally
distributed with mean p and standard deviation o. Find the saddlepoint approximation to the
density function of 3, X;/n.

Prove this fact.

Let X, X5, ... denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

\/(2 )exp(l)x exp{—%(x—i—l/x)}, x > 0;

see Exercise 14.1.
Find the saddlepoint approximation to the density function of Z'}Zl X;/n.
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14.12

14.13

14.14
14.15

14.16
14.17

14.18

14.19

14.20
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Let Yy, Y, ... denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

1
EeXp{—lyl}, —00 <y < 00.

Find an approximation to Pr{Zi=1 Y; > 4} based on the saddlepoint approximation. Compare
the result to the approximation based on the central limit theorem.

Let X, X», ... denote independent, identically distributed random variables, each with a distri-
bution satisfying the conditions of Theorem 14.2. Let X, = Z';:l X /n. For a given constant
b let

Y, =X, +bX..

Find b so that the distribution of /nY, is standard normal, with error o(1/./n).
Prove Corollary 14.1.

Let Y1, Y5, ... denote independent, identically distributed random variables, each with a chi-
squared distribution with 1 degree of freedom. Using Theorem 14.5, find an approximation
to the distribution function of [Z;f:l Y;/n] %, suitably normalized. Based on this result, give
an approximation to Pr(x’ <), where x? denotes a random variable with a chi-squared
distribution with n degrees of freedom.

Prove Lemma 14.3.

Let Yy, Y,, ... denote independent, identically distributed random variables, each with density

a—1

ay*”, O<y<l

where o > 0. Find an approximation to E[(1 + ¥,)™'], where ¥, = }~"_, Y;/n.

Let Yy, Y», ... denote independent, identically distributed, real-valued random variables, each
with range ). Assume that the distribution of Y, has mean p, variance o2, third cumulant &5,

and fourth cumulant 4. Let ¥, = Z'}Zl Y;/n. Find expansions for

E{f (7 - )
and
Yn — K
o

E{/f( )

where f is a real-valued four-times differentiable function on )}, a convex subset of R con-
taining )/, such that

sup | fF@(y)| < oo.

yelo
Let Yy, Y,,... denote independent, identically distributed, real-valued random variables.

Assume that the distribution of ¥; has mean ju, variance o2, third cumulant «5. Let ¥, =
>y Y;/n and let

fO)=ay’ +by*+cy+d

for some constants a, b, ¢, d. Find an exact expression for E{ f(¥,)} and compare it to the
approximation given in Theorem 14.6.

Let Yy, Y2, ... denote independent, identically distributed, real-valued random variables, each
with range ). Assume that moment-generating function of the distribution of Y, exists. Let
¥, = Y\ Y;/n and consider f(¥,), where f is a real-valued four-times differentiable function
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on ), a convex subset of R containing ). Assume that

|FYDI <« exp(Blyh, vy €

for some constants o and 8. Find an expansion for Var{ f (¥,)}.

14.7 Suggestions for Further Reading

Wallace (1958) gives a concise overview of asymptotic approximations to probability distributions
and Ghosh (1994) discusses the use of higher-order asymptotic theory in statistical inference.
Edgeworth series approximations are discussed in Feller (1971, Chapter XVI) and Kolassa (1997,
Chapter 3); a comprehensive treatment is given by Bhattacharya and Rao (1976). Edgeworth series
approximations also apply to vector-valued random variables. The derivation is essentially the same
as in the univariate case. The cumulant-generating function of the normalized sample mean can be
expanded up to a specified power of n~2. The truncated expansion may then be inverted to yield
an approximation to the density function of the standardized sample mean. The leading term in
the approximation is the multivariate normal density and the later terms are based on higher-order
cumulant arrays. See Kolassa (1997, Chapter 6) and McCullagh (1987, Chapter 5) for further details.
Saddlepoint approximations are considered in detail in Jensen (1995) and Kolassa (1997, Chapters
3 and 4); see also Barndorff-Nielsen and Cox (1989) and Daniels (1954). Reid (1988) surveys the use
of saddlepoint methods in statistical inference and Field and Ronchetti (1990) consider the application
of saddlepoint methods to the problem of approximating the distribution of statistics more general
than sample means. The material in Section 14.4 on stochastic asymptotic expansions is based on
Hall (1992, Chapter 2); see also Barndorff-Nielsen and Cox (1989, Chapter 3) and Skovgaard (1981).






Appendix 1

Integration with Respect to a
Distribution Function

Al.1 Introduction

In this appendix we consider integration with respect to a distribution function, a concept
which plays a central role in distribution theory. Let F denote a distribution function on
RY; the integral of a function g with respect to F is denoted by

/ g(x) dF(x). (Al.1)
Rd

Our goal is to define and describe the properties of integrals of the form (A1.1).

One approach is to use results from measure theory and the general theory of integration
with respect to a measure. The distribution function F defines a measure 1 on R?. The
integral (A1.1) may then be written as

/g(X)M(dX) or /gdu

and the properties of these integrals follow from standard results in the theory of measure
and integration. See, for example, Ash (1972) or Billingsley (1995).

The purpose of this appendix is to present a brief summary of this theory for those readers
who have not studied measure theory.

Consider a distribution function F : R? — [0, 1]and let g, 81, &, - ..denotereal-valued
functions on R¢. Let X denote a random variable with distribution function F. There are
several properties that any definition of integration with respect to a distribution function
should satisfy:

I1. Integration of indicator functions
Let A denote a subset of R and let Icc 4y denote the indicator function of A. Then

/ Tjen) dF (x) = / dF(x) = Pr(X € A).
R4 A

12. Linearity
Let a;, a, denote constants. Then

/[algl(x)+a282(x)]dF(x)=al/ gl(x)dF(x)—i—az/ &2(x)dF(x).
R4 R4 R

471
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13. Nonnegativity
If g > 0, then

/ g(x)dF(x) = 0.
R4

14. Continuity
Suppose that, for each x € RY, the sequence g(x), g2(x), ... is an increasing
sequence with limit g(x). Then

/g(x)dF(x): lim/ gn(x)dF (x),
Rd n— 00 Rd

if the limit of the integrals exists and

f gx)dF(x) =00
R4

otherwise.
These requirements may be used to construct a general definition of integration.

Al1.2 A General Definition of Integration

Define a simple function to be a function of the form
m
g0 =Y a(@)iljven,
i=1

where a(g)1, ®(g)2, . .., ®(g), are given real numbers, A;, A,, ..., A,, are disjoint subsets
of R?, and m is a given positive integer.
By (I1) and (I2), if g is a simple function then

/ S dF() =) a(@)Pr(X € A)).

R i=1

Furthermore, if g, g, . .. is an increasing sequence of simple functions such that, for each
X, g1(x), g2(x), ... converges to g(x), then, by (I4), the integral of g is given by

/g(x)dF(X)= lim/ gn(x) dF(x),
R4 n—oo R?

provided that the limit exists.
Hence, if a nonnegative function g may be written as a limit of simple functions in this
manner then the value of the integral

f g§(x)dF(x)
R¢

may be determined, although that value may be co. It may be shown that the value of such
an integral is unique: if g may be written as the limit of two different sequences of simple
functions, then those two sequences must lead to the same value for the integral. Call a
nonnegative function integrable if it may be written as the limit of simple functions in this
manner and the value of its integral is finite. Thus, the integral of any nonnegative integrable
function is well-defined and finite.
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If g is a general function, not necessarily nonnegative, we may write g = g* — g~
where g™ and g~ are nonnegative functions, called the positive and negative parts of g,
respectively. By the linearity condition on the integral,

/g(X)dF(X)=/ g+(X)dF(X)—/ g~ (X)dF(x).
R4 R4 R4

We will say that g is integrable if its positive and negative parts are integrable. The integral
of a integrable function g is given by

f g dF(x) = f g0 dF () — / ¢ () dF ().
R R R

It is important to note that if a function g is not integrable, it does not mean that its integral
does not exist. The integral of g exists provided that either g™ or g~ is integrable. The
function g is integrable provided that both g™ and g~ are integrable; since |g| = gT + ¢, g
is integrable provided that |g| is integrable.

Consider the class of functions whose positive and negative parts can be written as
the limits of increasing sequences of simple functions; call such a function an extended
simple function. The integral of an extended simple function, given that it exists, can be
determined using the method described above. Clearly for this approach to be useful the
class of extended simple functions must be sufficiently broad.

There is a close connection between extended simple functions and the measurable
sets discussed in Section 1.2. In particular, a function g : RY — R is an extended simple
function provided that, for each measurable subset of R, A, the set given by

{x € RY: gx) e A}

is measurable; such a function is said to be measurable. As in the case of measurable
sets, nearly every function of practical interest is measurable and we will proceed as if all
functions are measurable.

The general integral described above has a number of useful properties. Several of these
are given below without proof; for further details, see, for example, Ash (1972), Billingsley
(1995), or Port (1994). In these properties, the term almost everywhere (F'), written a.e. (F),
is used to denote a property that holds for all x € A where A is some set such that the
probability of A, under the distribution with distribution function F, is 1.

Some basic properties
Let g1, g» denote functions on RY.

(1) If g = 0a.e. (F) then
/ gx)dF(x) =0.
R
(i) If gy = g a.e.(F) and
| aware
R

exists, then

/ &) dF (x)
R4
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exists and
/ g1(x)dF(x) =f &(x)dF(x).
R4 R4
(iii) If gy > O and
/ g1(x)dF(x) =0
Rd

then g; = 0 a.e. (F).

Change-of-variable

Consider a random variable X taking valuesin X C R? and let Fy denote the distribution
function of the distribution of X. Let g be a function defined in Let g : X — R? and let
Y = g(X). Let Fy denote the distribution function of the distribution of Y. Then

/dey(y)=/ g(x)d Fx(x).
R¢ R4

A1.3 Convergence Properties

The properties described in this section are all concerned with the following question.
Suppose g1, g2, . . . is a sequence of functions defined on R?. How is the convergence of
the sequence of integrals

f gn(x)dF(x), n=12,...
R¢

related to the convergence of the sequence of functions g,,n = 1,2,...?

Fatou’s lemma
If there exists a function g such that g; > ¢, j = 1,2, ..., and

f gx)dF(x) > —o0,
R4

then
lim inf/ gn(x)dF(x) > / liminf g,(x) dF (x).
n—oo R¢ Rd N0
If there exists a function g such that g, < g,n=1,2,...,and
/ gx)dF(x) < oo,
R4
then

limsup/ gn(x)dF(x) 5/ limsup g,(x)dF (x).
1 R

n—o00 d n—o0
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Dominated convergence theorem
If there exists a function % such that |g,| < h,n=1,2,...,

/Rd h(x)dF(x) < oo,
and
nlipgo gn(x) = gx) a.e.(F),
then

lim g,,(x)dF(x):/ gx)dF(x).
R R

n—oo

Beppo Levi’s theorem
Suppose that g;, g2, . .. is an increasing sequence of functions with limit g such that

sup/ gn(x)dF(x) < o0.
n R4
Then
/ gx)dF(x) < 00
R4

and

n—o00

lim | g.(x)dF(x) = / g(x)dF(x).
R R

Al.4 Multiple Integrals

Consider two random variables, X and Y, with ranges X € R? and )V C R”, respectively.
Let F denote the distribution function of the distribution function of (X, Y') and let g denote
a function defined on X x ). Suppose we are interested in the integral

/ glx, y)dF(x,y).
Rp+d

The following results state that this integral may be computed by first integrating with
respect to x and then with respect to y, leading to an iterated integral.

Fubini’s theorem
Suppose F' = Fx Fy where Fy is the distribution function of the distribution of X and
FYy is the distribution function of the distribution of Y. Then

| sy = [ [ [ senarm]dro.
R+l re L JRa

Note that the condition that ' = Fx Fy implies that X and Y are independent. The
following result is an extension of Fubini’s Theorem to the case in which independence
does not hold.
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Suppose F' may be written F(x, y) = Fx(x; y)Fy(y) for all x, y, where foreachy € ),
Fx(-; y) defines a distribution function on R” and Fy denotes a distribution function on RY.
Then

| stndran = [ [ [ sorondrxn]drno,
Rr+d R? R

Al1.5 Calculation of the Integral

Although the properties of the integral with respect to a distribution function have been
discussed in detail, we have not discussed the actual calculation of the integral

/ g(x)dF(x)
R4

for given choices of g and F. Although, in principle, the integral may be calculated based on
the definition given above, that is generally a difficult approach. Fortunately, there are some
basic results that make this calculation routine in many cases of practical interest. Here we
consider only the case in which F is a distribution function on the real line; integrals with
respect to distribution functions on R?, d > 1, can be calculated as iterated integrals.

Two types of distribution function F arise often in statistical applications. One is a
step function; the other is an absolutely continuous function. The integral of an integrable
function g with respect to either type of function is easy to calculate using results from
basic calculus.

A distribution function F defined on R is a step function if there is a partition of R,

Xo < X1 <Xp < -

such that F' is constant on each interval [x;_;, x;). Suppose F is a step function and define

limd%0+ F(_X1 + d) — F()Cl) forj =1
o = limd_>0+F(xj+d)—limd_>0+F(xj—d) forj:Z,...,n—l .
F(xp) —limg_ o+ F(x, — d) forj=n

Then o represents the size of the jump at x; so that
Fx)— F(X) = o for XjZ X < Xjyg and Xj—1 = X< Xj.

If g is integrable with respect to F' then

/R g dF(x) =Y g(x)e;.
j=1

Now suppose that F is absolutely continuous. Recall that a real-valued function 4 defined
on [a, b] is said to be absolutely continuous if for every € > 0 there exists a § > 0 such that
for all positive integers n and all disjoint subintervals of [a, b], (a;, b1), ..., (a,, b,) such
that

D lbi—ajl <3
j=1
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implies that

|h(b;) — h(a;)| < €.
=1

J

A function 4 : R — R is absolutely continuous if the restriction of % to [a, b] is absolutely
continuous for any a < b. A sufficient condition for 4 to be absolutely continuous is that
there exists a constant M such that

|h(x1) — h(x2)| = Mx) — x2

for all xy, x, in [a, b]. This is called a Lipschitz condition. Under this condition,

n n
> lhb)) —hap| <MY |b; —a;| < M3
Jj=1

J=1

so that § may be taken to be € /M.
There is a close connection between absolutely continuous functions and functions
defined by integrals. If / : [a, b] — R is given by

h(x) — h(a) = /x g(t)dt

for some function g, then /4 is absolutely continuous. Conversely, if % : [a, b)] — R is an
absolutely continuous function then there exists a function g such that

X

h(x) — h(a) = / (1) di.

a

Hence, if F is absolutely continuous then there exists a nonnegative function f such that

F(t) = / I—oocx<n f(X)dx, —00 <t < 00.

R

In this case,
/g(x)dF(x) = / gx) f(x)dx;

R R

the integral
/ gx) f(x)dx
R

may be taken to be the usual Riemann integral studied in elementary calculus, provided that
the Riemann integral of g f exists. For instance, the Riemann integral of a bounded function
h over an interval [a, b] exists if the set of discontinuities of % in [a, b] is countable.

Al1.6 Fundamental Theorem of Calculus
Let F denote a distribution function on the real line.

(i) Suppose there exists a function f such that
F(x):/ f@)ydt, —oo <x < o0.
—00

If f is continuous at x, then F’(x) exists and is equal to f(x).
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(i1) Suppose F’(x) exists for all —oo < x < 0o and

/-oo F'(x) < o00.

oo
Then
F(x) =/ F'(t)dt, —oo < x < oo.
—0o0

(iii) Suppose that
X
F(x) =/ f@)dt, —oo <x < o0,
—00

for some nonnegative, integrable function f. Then F'(x) = f(x) for almost all x.

For proofs of these results, and much further discussion, see, for example, Billingsley
(1995, Section 31).

Al1.7 Interchanging Integration and Differentiation

Let A be an open subset of R, and let f denote a continuous, real-valued function on
R? x A. Assume that

(i) foreacht € A,
/ [f(x, D)l dF(x) < oo
R?
(i1) foreacht € A,
a
R 1
8tf(x )
exists and

a
/Rd Iaf(x,t)ldF(X) <00

(i) there exists a function /# on R¢ such that
lf(x, ) <h(x), teA

and

|h(x)|dF(x) < oo.
Rd

Define
b
gt) = / fx,ndF(x), te€A.
Then g is differentiable on A and
b
a
g =/ 8—{()6, NdF(x), teA.

See Lang (1983, Chapter 13) for a proof of this result.
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Basic Properties of Complex Numbers

This appendix contains a brief review of the properties of complex numbers; in distribution
theory, these are used in connection with characteristic functions.

A2.1 Definition

A complex number x is an ordered pair (x;, x) where x; and x; are real numbers. The first
component, x1, is called the real part of the complex number; the second component, x5, is
called the imaginary part. Complex numbers of the form (x;, 0) are said to be real and are
written simply as x;. Two complex numbers x = (x1, x) and y = (y;, y,) are considered
equal if x; = y; and x; = y,.

Addition of complex numbers is defined by

X+y=x+y,x+y)
and multiplication is defined by
xy = (X1y1 — X2y2, X1y2 + X2)1)

The absolute value or modulus of a complex number x is the nonnegative number, denoted
by |x|, given by

|x|* = x? + x2.

The complex number (0, 1) is called the imaginary unit and is denoted by i. Hence,
the complex number x = (x;, x;) may be written x = x; 4 ix;. Using the definition of
multiplication,

i?=ii =(0,1)0,1)=(—1,0) = —1.

A2.2 Complex Exponentials
For a complex number x = x; + ix,, the exponential exp(x) is defined as
exp(x) = exp(x; + ixp) = exp(xi)[cos(xz) + i sin(xy)].
It may be shown that, if x and y are complex numbers,

exp(x) exp(y) = exp(x + y).

479
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Also, if x is purely imaginary, that is, is of the form (0, x,), then

| exp(x)] = 1.

Let z denote a real number. Then the cosine, sine, and exponential functions have the
following power series representations:

oy 2j+1

%) ) j ) 0 P Z
cos(z) = ;(_1)1 i sin(z) = ;(—I)Jm,

and
o) Zj
exp(z) = Z F
j=0

Since i%/ = (—1)/, we may write

= (2 . o (2!
cos(z) ]2:(:) ) and sin(z) I ]Z(; 2+ 1!

It follows that

00+ N2 0 i N\2j+1
. .. @, (iz)”
exp(iz) = cos(z) + i sin(z) = — —_—
p(iz) = cos(2) ) §__Oj P YeTEaT
Jj= j=
_Z°° (iz))
Jj=0

jt

Hence, for any complex number x,

00
exp(x) = —.

=k

Lemma A2.1. We may write

explit} = Z (ij% + R, (1)

=0
where

|Ry(0)| < min{[t|"*!/(n + 1), 2Je]"/nt}.
Proof. First note that, using integration-by-parts,
t t
/ (t — )" cos(s)ds = (n + 1)/ (t — )" sin(s)ds
0 0
and

/ (t — s)"™ sin(s)ds = —(n + 1)/ (t —s)" cos(s)ds + "+,
0 0
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Hence,

n+1 i

+
n+1 n+1

f (t —s)" explis}ds = / (t —5)"T explis}ds. (A2.1)
0 0

It follows that
t t
/ explis}ds =t + i/ (t —s) exp{is}ds
0 0

N A 5
=t+i I:E + 5/(; (t—y) exp{is}dsi| .
Continuing in this way shows that
. ! . . (lt)j -n+1 ! n :
i explis}ds = Z — 41 (t —s)" explis}ds
0 j=1 .]' 0
and, hence, that

in+1

expfit} = Z g + :
j=0 /-

t

/ (t —s)" exp{is}ds.
n! 0

Consider the remainder term

I

n+1 t
/ (t — s)" explis}ds.
n! 0

i

Since, by (A2.1),

l—/ (t —s)" explis}ds = / (t — )" explis}ds —/ (t —s)""'ds,
nJo 0 0

it follows that

l'n+1

n!

/ (t —s)" expfistds = L/ (t — s)" '[explis} — 11ds
0 (n—D!Jo

and, hence, that

in+l t 2
/ @t —s) exp{is}ds‘ < —t".
n! Jo n!
Also,
l-n+1 t ) 1 t |t|n+1
n! /O(I_S) explis}ds| < Esgn(l)/o R R

The result follows. M

Lemma A2.2. Let u and v denote complex numbers. Then

lexp(u) — (1 +v)| < [Ju —v| + |ul*/2] exp(|ul).
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Proof. The proof is based on the following result. Let ¢ denote a complex number. Using
the power series representation for exp(t),

|t|2 N
lexp(t) — (1 +1)| = Ez E ||’(j+2),
|~ el | e
= |2 5| = 5 exedltD). (A2.2)
2 |& ! 2
=

Now consider the proof of the lemma. Note that
lexp(u) — (1 +v)| = |exp(u) — (1 +u) + (u — v)| < |exp(u) — (1 +u)| + [u —v].
The result now follows from (A2.2) along with the fact that exp(ju|) > 1. ®

A2.3 Logarithms of Complex Numbers
If x is a real number, then log(x) is defined by
exp{log(x)} = x.

First note that this same approach will not work for complex numbers. Let x = x; +ix,
denote a complex number and suppose that y = y; + iy, denotes log(x). Then

exp(y) = exp(ylcos(y2) + i sin(y,)]
so that we must have
cos(y2) exp(y1) = x; and sin(y;) exp(y1) = x2;
that is,
y1 =log(|x|) and tan(y:) = xa2/x;.

Since if y, satisfies tan(y,) = x,/x; so does y, + 2nmw for any integer 7, the requirement
exp(log(x)) = x does not uniquely define log(x).
The principal logarithm of a complex number x is taken to be

log [x| + i arg(x)

where arg(x) denotes the principal argument of x. The principal argument of x = x| + ix;
is defined to be the real number 6, —7 < 8 < =, satisfying

X1 = |x| cos(8), xp = |x| sin(0).

Whenever the notation log(x) is used for a complex number x, we mean the principal
logarithm of x.
Let x denote a complex number. If [x — 1| < 1, then log(x) may also be defined by

log(x) = ) (=D"'(x = D//j.
j=1
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Some Useful Mathematical Facts

This appendix contains a review of some basic mathematical facts that are used throughout
this book. For further details, the reader should consult a book on mathematical analysis,
such as Apostal (1974), Rudin (1976), or Wade (2004).

A3.1 Sets

A3.1.1 Basic definitions. A set is a collection of objects that itself is viewed as a single
entity. We write x € A to indicate that x is an element of a set A; we write x ¢ A to indicate
that x is not an element of A. The set that contains no elements is known as the empty set
and is denoted by #.

Let A and B denote sets. If every element of B is also an element of A we say that B
is a subset of A; this is denoted by B C A. If there also exists an element of A that is not
in B we say that B is a proper subset of A. If A and B have exactly the same elements we
write A = B. The difference between A and B, written A \ B, is that set consisting of all
elements of A that are not elements of B.

A3.1.2 Set algebra. Let S denote a fixed set such that all sets under consideration are
subsets of § and let A and B denote subsets of S. The union of A and B is the set C
whose elements are either elements of A or elements of B or are elements of both; we write
C = A U B. The intersection of A and B is the set D whose elements are in both A and B;
we write D = AN B. Sets A and B are said to be disjoint if AN B = (. The complement
of A, denoted by A, consists of those elements of S that are not elements of A.

Let F denote an arbitrary collection of sets. The union of all sets in  is that set consisting
of those elements that belong to at least one of the sets in F; this set is written

U 4.
AeF

The intersection of all sets in F is that set consisting of those elements that belong to every
set in JF; this set is written
M A

AeF

DeMorgan’s Laws state:

AeF AeF

(-0

483
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and

(ﬂ A)ﬂ =Ja~

AeF AeF

A3.1.3 Orderedsets. Let S denote aset and let < denote arelation on S with the following
properties:

(01) If x, y € S then exactly one of the following statements is true: x < y, y < x,
X =y.
(02) Ifx,y,zeSandx < y,y < z,thenx < z.

The relation < is known as an order on S; a set S together with an order < is known as an
ordered set. We write x < y to mean either x < y or x = y.

Let S denote an ordered set and let A C S. We say that A is bounded above if there exists
an element b € S such that x < b for all x € A; b is said to be an upper bound of A. We
say that A is bounded below if there exists an element a € S such thata < x forall x € A;
a is said to be a lower bound of A.

Let b be an upper bound of A with the following property: if ¢ is another upper bound
of A then b < c. Then b is called the least upper bound or supremum of A; supremum is
generally denoted by sup and we write

b=supA.

Similarly, if a is lower bound of A with the property that any other lower bound c satisfies
¢ < a, then a is known as the greatest lower bound or infimum of A and we write

a =inf A.

A3.1.4 Open and closed sets. Let S denote a set such that, for any twoelements x, y € S,
there is associated a real number d(x, y) called the distance between x and y. The function
d is said to be a metric on S provided that it satisfies the following properties:

M1) d(x,x)=0andd(x,y) >0ifx # y
(M2) d(x, y) =d(y, x)
M3) forany z € S,d(x,z) <d(x,y)+d(y, 2).

The set S together with a metric d is known as a metric space. The most commonly used
metric space is the set of real numbers R, together with the metric d(x, y) = |x — y|.

Let S denote a metric space with metric d. A neighborhood of x € S is the set consisting
of all points y € S such that d(x, y) < € for some € > 0; € is known as the radius of
the neighborhood. Let A C S; a point x € S is called a limit point of the set A if every
neighborhood of x contains a point y € A such that y # x. The set A is said to be closed if
every limit point of A is an element of A. The point x is said to be an interior point of A if
there exists a neighborhood of x that is a subset of A. The set A is said to be open if every
point of A is an interior point of A. Let B C § and let C denote the set of all limit points of
B; the closure of B is the set B U C.

A3.1.5 Cartesian products. Consider two sets, A and B. The cartesian product of A
and B, denoted by A x B, is the set of all ordered pairs (a, b) witha € A and b € B. The
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cartesian product of sets Ay, ..., A, denoted by A; x --- x Ay, is the set of all ordered
k-tuples (aj, ...,a;)suchthata, € Aj,a; € Ay, ..., a; € Ag.

For instance, for any positive integer k, k-dimensional Euclidean space, denoted by R¥,
is the cartesian product R x - -- x R of k copies of the set of real numbers R. This is a
metric space with metric

k 3
d(x,y) = [Z(x_,» - y»z} :
j=1

where x = (x1,...,xp)and y = (y1, ..., Yk)-

Let A and B denote sets. A subset C of A x B is called a relation. The set of all elements
x € A that occur as first members of pairs in C is called the domain of C; the set of all
elements y € B that occur as second members of pairs in C is called the range of C. A
function is a relation C such that no two elements of C have the same first member. That
is, if C is a function with domain A and range that is a subset of B, then associated with
any element x € A is a unique element y € B; this association is given by the ordered pair
(x,y). A function C is said to be one-to-one if, for any two pairs (x1, y), (x2, y2) € C,
y1 = y; if and only if x| = x,.

Two sets A and B are said to be similar, written A ~ B, if there exists a one-to-one
function with domain A and range B. Similar sets have the same number of elements, in a
certain sense.

A3.1.6 Finite, countable, and uncountable sets. A set S is said to be finite if it contains
a finite number of elements. If § is finite then S ~ {1,2,...,n} forsomen =0, 1,2, ...;
in this case, n is the number of elements in S. A set that is not finite is said to be an
infinite set.

A set S is said to be countably infinite if it can be put into a one-to-one correspondence
with the set of positive integers; that is, if

S~{1,2,...}.

A countable set is one that is either finite or countably infinite. A set which is not countable
is said to be uncountable.

A3.1.7 Compact sets. Let S denote a metric space with metric d and let A C S. The set
A is said to be compact if the following condition holds. Let F denote a collection of open
subsets of S such that

Ac|JB:

BeF

such a collection is said to be an open covering of A. Then there exists a finite collection
of sets By, B, ..., B, B; € F, j=1,2,...,m,such that

AC LmJBj
j=1

That is, A is compact if, for any open covering F of A, there exists a finite number of sets
in F that also cover A.
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Suppose that S = R” forsomen = 1,2, .... Aset B C R” is said to be bounded if there
exists a real number ¢ such that
n

B C {XGR”: xlz»fcz}.
=1
A subset A of R” is compact if and only if it is closed and bounded.

A3.1.8 Sets of measure 0. Let S denote a subset of R. We say that S has measure
0 provided that the following condition holds. For any € > O there exist real numbers
ai,bi,ar,by,...,a; <bj, j=1,2,..., such that

[e%e) N
S| J@nby) and Y (by—a)<e, N=1.2....

n=1 n=1

Note that these conditions are given for the case in which there is a countably infinite number
of pairs a,, b,; if there is a finite number, the conditions can be modified in the obvious
manner. For a < b, the set (a, b) consists of all x,a < x < b.

If S is a countable set, or is the union of a countable number of sets each of measure 0,
then S has measure 0.

If a particular condition holds except for those x in a set S which has measure 0, we say
that the condition holds almost everywhere or for almost all x.

A3.2 Sequences and Series

A3.2.1 Convergent sequences. Let S denote a metric space with metric d. A sequence
in S is a function with domain {1, 2, ...} and with the range of the function a subset of S.
Such a sequence will be denoted by xy, xo, ..., wherex; € §, j =1,2,....

A sequence in S is said to converge if there exists an element x € S such that for every
€ > Othere exists a positive integer N with the property thatn > N implies thatd(x,, x) < €
for all n > N. In this case, we say that x|, x,, ... converges to x or that x is the limit of x
as n — oo; this is written as

x = lim x,
n—oQ

or x, — x asn — 00.

Ifx1, x2, .. . does not converge then it is said to diverge. It is important to note that there are
two ways in which a given sequence may diverge: it may fail to approach a limiting value or
it may approach a limiting value that is not an element of the set S. For instance, suppose
that S = (0, 1). The sequence 1/4,1/2,1/4,1/2, ... does not approach a limiting value;
the sequence 1/2, 1/3, 1/4, ... approaches the limiting value 0, but O ¢ S. Both sequences
diverge.

A sequence x1, x3, ... is called a Cauchy sequence if for every € > 0 there is an integer
N such that d(x,, x,) < € whenever n > N and m > N. Every convergent sequence is
a Cauchy sequence; however, not all Cauchy sequences are convergent. If every Cauchy
sequence in a metric space S converges, S is said to be complete. The Euclidean spaces R¥,
k=1,2,..., are complete.
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Let x1, x5, ... denote a sequence of real numbers. Suppose that, for every M € R, there
exists a positive integer N such that
Xp > M for n>N.

Then x,, grows indefinitely large as n — oo; in this case, we write x,, — 0o as n — oo. If
for every M € R there exists a positive integer N such that

X, <M for n>N,

we write x,, — —o0 as n — 00.

A3.2.2 Subsequences. Letxy, x,, ...denote asequence of realnumbers andletny, ns, . ..

denote an increasing sequence of positive integers. Then the sequence y;, y», ..., where
Yk = Xy, is called a subsequence of xi, x», .. .. The sequence xi, x,, ... converges to x if
and only if every subsequence of x|, x;, ... also converges to x. A sequence xi, X2, ... is

said to be bounded if there exists a real number M such that |x,,| < M foralln =1,2,....
Every bounded sequence of real numbers contains a convergent subsequence.

Let xq, x7, ... denote a sequence of real numbers and let S denote the subset of R U
{—00, oo} such that for each x € § there exists a subsequence x,,, x,,, . . . such that

Xp; = X as j — oo.

Then sup S is called the upper limit or lim sup of x, x5, .. .; this is written
lim sup x;,.
n—oo
Similarly, inf S is called the lower limit or lim inf of xy, x,, ... and is written
liminf x,,.
n—oo
Note that
liminfx, < limsupux,.
=00 n—00
The sequence xy, X7, ... converges to x € R if and only if

liminfx, = limsupx, = x.
n—oo n—00

If x1, xp, ... and yy, y», . .. are two sequences such that x,, < y, for all » > N for some
positive integer N, then
liminfx, < liminfy,
n—oo n—0o0

and

limsupx, < limsup y,.
n—oo n—o0

A3.2.3 O andonotation. Leta;, ay, ...and by, by, .. . denote sequences of real numbers

such that b, > 0 foralln =1,2,.... We write a, = O(b,) as n — o0 if there exists a
constant M such that |a,| < Mb, foralln =1, 2, .... We write a, = o(b,) asn — o0 if
lim — =0
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A3.2.4 Series. Letay, ay, ... denote a sequence of real numbers. Define a new sequence
S1,82, ... by

n
Sy, = E aj’ n:l,Z,....
=1

The sequence s, sz, ... is called a series and s,, is called the nth partial sum of the series.
The sum

o0
D4
j=1

is called an infinite series.
The series converges or diverges depending on whether the sequence sy, 57, . . . converges
or diverges. If

lim s, =s
n—oQ

for some real number s, we write

o0

=1
however, it is important to keep in mind that s is actually defined as

n
s = lim a;.
Jim 4
j=1
We say that the series converges absolutely if the series

o0
> lajl

J=1

converges. If the series converges absolutely and

00
E aj =S
Jj=1

then any rearrangement of ay, a3, . . . also has sum s.
A3.2.5 Double series. Letaj;, j =1,2,...,k=1,2,..., denote real numbers and let
m n
Smn ZZZa-/"’ m=12,..., n=1,2,....
j=1 k=1

The double sequence given by s,,, is called a double series. If

Iim s, =5
m—00,n— 00

the double series is said to converge to s.
Let

fmn=ii|ajk|, m=1,2,..., n=1,2,....

i=1 k=1
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If

lim  §,,
m—00,n— 00

exists, then the double series converges absolutely and

converges, then

A3.3 Functions

A3.3.1 Continuity. Let A and B be metric spaces. Recall that a function C is a subset of
the cartesian product A x B; elements of this subset are of the form (x, f(x)) where x € A
and f(x) € B. The domain of the function is the set of x € A for which f is defined; denote
this set by D. The range of the function is the set of f(x) € B correspondingtox € D. We
may describe the function by giving f, together with the set D and, hence, we will refer
to f as the function, writing f: D — B to indicate the domain of the function. A function
f:D — B where B is a subset of the real line R is said to be a real-valued function.

Let d4 denote the metric on A and let dg denote the metric on B. We say that f : D — B
is continuous at a point x € D if for every € > 0 there exists a § > 0 such that

dg(f(x), f(2)) <€

for all z € D such that d4(x, z) < §. If f is continuous at x for all x € D we say that f is
continuous on D.

The function f is said to be uniformly continuous on D if for every € > 0 there exists a
& > 0 such that

dp(f(x), f(2)) <€

for all x and z for which d4(x, z) < 4.
Suppose that x is a limit point of D and that f is continuous at x. Then, for any sequence
X1, X2, ...such that x, — x asn — o0,

Jlim f () = f(0).
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We write this property as
lim £(y) = f(0),

For the case in which A and B are subsets of R, a function f: D — B is continuous on
D if and only if for each x € D and € > 0 there exists a § > 0 such that

lf(0) = f2)] <€

for all z € D such that |[x — z| < §. The function f is uniformly continuous on D if for
every € > 0 there exists a § > 0 such that

lf() = f(2)] <€

for all x and z in D for which |x — z| < 6.
Let D = (a, b) be a subset of R and consider a function f:D — R. Let x satisfy
a < x < b. We write

lim+ f)=c or fx+)=c
y—>Xx
if for any sequence Ay, hy, ...suchthat h, > Oforalln =1,2,..., h, - Oasn — 0,
lim f(x+h,) =c.
n—oo
If f(x+) = f(x) we say that f is right continuous at x. Similarly, if a < x < b, we write

lim f(x)=d or f(x—)=d

y—xT

if for any sequence %y, h, ...suchthath, > Oforalln =1,2,...and h, — Oasn — O,
lim f(x —h,) =d.
n—0o0

If f(x—) = f(x) we say that f is left continuous at x.
If f(x+) and f(x—) both exist and

faH=fx—)=fx)

then f is continuous at x. Suppose that f is not continuous at x; that is, suppose that x
is a discontinuity point of f. If f(x+) and f(x—) both exist, f is said to have a simple
discontinuity at x. If f(x+) = f(x—) # f(x) the discontinuity is said to be removable
since the discontinuity disappears if we redefine the value of f(x) to be the common value
of f(x+)and f(x—).

A3.3.2 Continuous functions on a compact set. Let A and B be metric spaces and let
f:D — B denote a continuous function, where D is a subset of A. If D is compact then
the range of f is a compact subset of B and f is uniformly continuous on D.

Suppose that f is real-valued so that B may be taken to be R. If D is compact, then
there exists a constant ¢ such that | f(x)| < ¢ for all x € D; in this case, we say that f is
bounded. Let

M =sup f(x) and m = inf f(x).
xeD xeD
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Then there exist points xg, x; € D such that

M = f(xo) and m = f(x).

A3.3.3 Functions of bounded variation. Let f denote a real-valued function defined on
the real interval [a, b] consisting of all x,a < x < b, and let

{x09-x17 .. 5-xn}
denote elements of [a, b] such that
a=Xx9g<X| <-+-<Xp_1<xXx,=>b.

If there exists a number M such that
n
DI = flaiol =M
=1

for all such sets {xg, xq,...,x,} forall n =1,2,..., then f is said to be of bounded
variation.

A function f is of bounded variation if and only if it can be written as the difference of
two nondecreasing functions.

A3.3.4 Convex functions. Let f denote a real-valued function defined on a real interval
(a, b). The function f is said to be convex if for any x, y € (a,b) andany o, 0 < o < 1,

flax+ A —a)y) =af(x)+ 1A —a)f(y).

Every convex function is continuous.

A3.3.5 Composition of functions. Let A, B, C denote metric spaces. Let f denote a
function from Ay to B where Ay C A; let By C B denote the range of f andlet g: By — C
denote a function on By. The function /#: Ay — C defined by

h(x) = g(f(x)), x € Ao,

is known as the composition of f and g.If f and g are both continuous, then /4 is continuous.

A3.3.6 Inverses. Let A and B be metric spaces and let f:D — B denote a function,
where D is a subset of A. Recall that f is said to be a one-to-one function if, for all
x,y €D, f(x) = f(y)ifand only if x = y.If f is one-to-one we may define the inverse of
f as the function g: By — D, where By is the range of f, satisfying g(f(x)) = x, x € By.
The notation g = f~! is often used. If g is the inverse of f, then g is also one-to-one and
f is the inverse of g.

Let Dy denote a subset of D. The restriction of f to Dy is the function fy: Dy — B such
that fo(x) = f(x), x € Dy. The restriction of f to Dy may be invertible even if f itself is
not.

A3.3.7 Convergence of functions. Let A and B be metric spaces and let D be a subset of
A. Consider a sequence of functions f, f>, ... where, foreachn =1,2,..., f,:D — B.
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We say that the sequence fi, f», ... converges pointwise to a function f if for each x € D,
lim f,(x) = f(x).
n—o0o
This means that, for each x € D and each € > 0, there exists a positive integer N such that
dp(fn(x), f(x)) <€ whenever n > N;

here dp denotes the metric on B. Note that N may depend on both x and €.

We say the sequence fi, f>, ... converges uniformly to f if N does not depend on the x
under consideration. That is, fi, f>, ... converges uniformly to f if, for each € > 0, there
exists a positive integer N such that n > N implies that

dp(fu(x), f(x)) <€ forall x € D.

Foreachn =1,2,..., let
M, = supdp(fu(x), f(x)).
xeD

Then fi, f>, ... converges uniformly to f if and only if

lim M, =0,

n—oQ0

that is, if and only if
lim supdp(f,(x), f(x)) =0.
n—)OOXGD

In some cases, we may have uniform convergence only on a subset of D. Let Dy be a
subset of D such that

lim sup dp(f,(x), f(x)) =0;

n—o0 repo
in this case, we say that f1, f», ... converges uniformly to f on Dy. Suppose that fi, fa, ...
converges uniformly to f on a set Dy and let x € Dy. If f, is continuous at x for each
n=1,2,...,then f is continuous at x.

A3.3.8 Weierstrass approximation theorem. Let f denote a real-valued function
defined on a subset [a, b] of the real line, where —oo < a < b < oo. There exists a sequence
of polynomials pg, p1, ..., where foreachn = 1,2, ..., p, is a polynomial of degree n,
such that pg, p1, ... converges uniformly to f on [a, b].

One such sequence of polynomials is given by the Bernstein polynomials. Suppose that
a = 0and b = 1; it is straightforward to modify the Bernstein polynomials to apply in the
general case. Foreachn =0, 1, ..., let

B =Y f (S) (Z)xk(l —x"k 0<x <l
k=0

Note that B, is a polynomial of degree n. Then

lim sup |B,(x)— f(x)| =0.

n—>00 <y <]
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A3.3.9 Power series. Consider a function f of the form

o0
FO) =) anx —x)" (A3.1)
n=0
where x is a real number and ag, a1, . . . and x( are constants. Series of this type are called

power series and the series in (A3.1) is said to be a power series expansion of f; the function
f is said to be an analytic function.
Let

. 1
A = limsup|a,|*
n—oo

and let » = 1/A. Then the series

00
Z ay (.Xf - xO)n
n=0

converges absolutely for all x such that |x — xo| < r and the series diverges for all x such
that |[x — xo| > r. The quantity r is known as the radius of convergence of the series and
the interval (xo — r, xo + r) is known as the interval of convergence of the series.

Let

@)=Y anx —xo)"
n=0

with radius of convergence s > 0 and let

g =) bu(x = xo)"
n=0

with radius of convergence r, > 0. Let r = min(rf, r,) and let x;, x2, ... be a sequence
such that |x, —xo| <r foralln =1,2,... and x, — x9 as n — oo. If f(x,) = g(x,),
n=1,2,...,then f(x) = g(x) for all x such that |x — xo| < r.

Consider a function f with power series expansion

FE)Y " anx = xp)"

n=0

and let r denote the radius of convergence of the series, where r > 0. Then f is continuous
atx forany x € (xo —r, xo + 7).

A3.4 Differentiation and Integration

A3.4.1 Definition of a derivative. Let f denote a real-valued function defined on a
real interval (a, b) and let xq satisfy a < xo < b. Then f is said to be differentiable at x
whenever the limit

lim L&) = f(x0)
m ———

X—Xo X — Xp
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exists. The value of limit is called the derivative of f at xy and is denoted by f'(x¢); thus,
) = tim L= G0,
xX—> X0 X — Xo
provided that the limit exists. If f is differentiable at x( then f is continuous at x.

We say that f is differentiable on (a, b) if f is differentiable at x( for each x¢ € (a, b).
Suppose that f is differentiable on (a, b). If f'(x) > Oforall x € (a, b) then f(x1) > f(xp)
forall x; > xg;if f'(x) < Oforallx € (a, b)then f(x;) < f(xo)forallx; > xq;if f'(x) =0
for all x € (a, b) then f is constant on (a, b).

A3.4.2 Chainrule. Let f denote areal-valued function defined on (a, b) and let g denote
a function defined on the range of f. Consider the composite function A(x) = g(f(x)).
Suppose that f is differentiable at xy € (a, b) and that g is differentiable at f(xo). Then &
is differentiable at x, and

h'(x0) = g'(f (x0)) f'(x0).

A3.4.3 Mean-value theorem. Let f denote a real-valued function defined on an interval
[a, b]. Suppose that f is continuous on [a, b] and is differentiable on (a, b). Then there
exists a point xo € (a, b) such that

fb) = f(a@) = f'(xo)b — a).
A3.4.4 [I’Hospital’s rule. Let f and g denote real-valued functions defined for all x,
a <x <b,—00 <a < b < oo. Suppose that
lim f(x)=c and lim g(x)=d.
x—b~ x—>b~
If d # 0, then

i &) _ €
im — = —.

x—>b~ g(x) d
If d =0and ¢ # 0, then

Fx) _
—— —>o00 as x > b".
g(x)

If d =0and ¢ = 0, then
fx) 0 _
—— —> — as x> b".
glx)y 0

The ratio 0/0 is said to be an indeterminate form and there is no value associated with 0/0.
Suppose that

fx)y 0 _
— > — as x—>b".
gx) 0
Assume that f and g are differentiable on (a, b), g’(x) # 0 for each x € (a, b), and
1)

lim
x—>b~ g/(x)
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exists. Then

R CO B ()
im —— = lim .
x—b= g(x)  x—b- g'(x)

This result is known as L'Hospital’s rule. It also holds, with obvious modifications, for
limits as x — a or for limits as x approaches an interior point of (a, b).
Another indeterminate form is co/oo. Suppose that

f(x) > 00 and g(x) —>o00 as x —> b".

Then
f) oo -
— —> — as x—b
gx) o0
and this ratio has no value. If f and g are differentiable on (a, b), g’(x) # 0 for each
x € (a, b), and

J'0)

im
x—b- g'(x)

exists, then

im T _ J'(x)
im — = lim

x—b~ g(x) x—b~ g’(x)'

A3.4.5 Derivative of a power series. Let

o)=Y anx = x)"
n=0

with radius of convergence r > 0. Then, for any x in the interval (xo —r, xo + ), the
derivative f’(x) exists and is given by

o0
’ n—1.
)= E na,(x — xo)"";
n=1
the radius of convergence of this series is also r.

A3.4.6 Higher-order derivatives. Let f denote a real-valued function defined on an
interval (a, b); suppose that f is differentiable on (a, b) and let f’ denote the derivative.
If f’ is differentiable on (a, b) then the derivative of f’, denoted by f”, is known as the
second derivative of f.In the same manner, we can define the nth derivative of f, denoted
byf(”),n =1,2,....

A3.4.7 Leibnitz’s rule. Let f and g denote real-valued functions defined on a real inter-
val (a, b) and assume that, for some n = 1,2, ... and some x € (a, b), f®(x) and g™ (x)
both exist. Let # = fg. Then h(x) exists and

n

RIS <’;) FD)g" ().

j=0
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A3.4.8 Taylor’s theorem. Let f denote a real-valued function defined on an interval
(a, b). Suppose that the nth derivative of f, £, exists on (a, b) and that £"~1 is continuous
on [a, b]. Let xo € [a, b]. Then, for every x € [a, b],

f(j)( 0)

f) = flxo) + Z — x0)! + Ru(x)

where

(n)
R,(x) = f (Xl)

(x — xg)"

and x; = txo + (1 — t)x for some 0 < r < 1. It is often stated that x; “lies between” x,
and x.

An alternative form of Taylor’s Theorem expresses the remainder term R, (x) in terms
of an integral. Suppose that £ is continuous almost everywhere on (a, b). Then

Ry (x) = o /X(x A OY
T =1, ’

A3.4.9 Riemann integral. Let —0o < a < b < oo and let f be a bounded, real-valued
function on [a, b]. Consider a partition P = {xg, x1, ..., X,},

aAa=Xg<X| < -+ <Xy_1<X,=b
of [a, b] and let

IP[l = max |x; —x;_q].

.....

The Riemann integral of f over [a, b] is given by the number A satisfying the following
condition: for every € > 0 there exists ad > 0 such that, for every partition P with ||P|| < §
and for every choice of points 71, ..., #, suchthat x;_| <, < x;,i =1,...,n,

D Fuplx; —xjal— Al <e.

j=1

If such a number A does not exist, then f is not Riemann-integrable.
The Riemann integral of f over [a, b] exists if either f is bounded and continuous almost
everywhere on [a, b] or if f is of bounded variation.

A3.4.10 Riemann-Lebesgue lemma. Consider a real-valued function f defined on the
set (a, b), where —oo < a < b < 0o and assume that the integral

b
/ f@)de

exists. Then, for any ¢ € R,

b
lim / f(@)sin(at + c¢)dt = 0.
o—> 00 a
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A3.4.11 A useful integral result. Let f denote a function of bounded variation such that

/ f@)dt

exists and is finite. If f is continuous at x( then

1 sin(at)

lim —/ fxo+1) ;

a—>00 T

dt = f(xo).

A3.4.12 Mean-value theorem for integrals. Let f and g denote continuous, real-valued
functions on a real interval (a, b) and assume that g is nonnegative. Then there exists
Xg,a < xo < b, such that

b b
/ Jx)gx)dx = f(xO)/ gx)dx.

A3.5 Vector Spaces

A3.5.1 Basic definitions. Let V denote aset and let f:V x V — V denote a function.
Thus, for each x,y € V, f(x,y) is an element of V; this element will be denoted by
X + y. Assume that the following conditions hold for all x, y,z € V:x +y =y + x and
(x +y) 4+ z = x + (¥ + z). Furthermore, assume that V contains a null element, which we
will denote by 0, such thatx +0 = x forallx € V.

Let g:R x V — V denote a function. Thus, for each « € R and x € V, g(«¢, x) is an
element of V; this element will be denoted by ax. For all «, 8 e Rand all x,y € V we
assume that the following conditions hold: a(x 4+ y) = ax + ay, (o + f)x = ax + Bx,
and a(Bx) = (aB)x. Furthermore, we assume that, forall x € V, 1x = x and Ox = 0; note
that in the latter equation O is used as both a real number and the null element of V.

When these conditions are satisfied, V, together with the functions f and g, is called a
vector space and the elements of V are called vectors. The operation given by + is known
as vector addition. The elements of R are known as scalars and the operation given by ax
foro € R and x € V is known as scalar multiplication. Vector subtraction may be defined
by x —y =x 4+ (—1)y.

The most commonly used vector space is R”. Elements of R” are n-tuples of the
form (xq,...,x,) where x; € R, j =1,2,...,n. In this case, vector addition is simply
component-wise addition of real numbers and scalar multiplication is the component-
wise multiplication of real numbers. The null element of R” is the vector in which each
element is 0.

A3.5.2 Subspaces. Let V denote a vector space and let M denote a subset of V. We say
that M is a subspace of V if foreachx,y e M andall o, 8 € R, ax + By € M. If M, and
M, are both subspaces of V' then their intersection M; N M, is also a subspace of V.

The sum of two subspaces M| and M,, denoted by M| + M5, is the set of all vectors of
the form x + y where x € M; and y € M,. The set M = M; 4+ M, is also a subspace of
V. If each element of M has a unique representation of the form x + y, where x € M; and
y € M,, then M is said to be the direct sum of M| and M, and we write M = M| & M,.
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Let x, x2, ..., x, denote elements of a vector space V. The set of all vectors of the form
Qx|+ Xy 40 A Oy Xy,

where o; € R, j =1,2,...,n,is a subspace of V, known as the subspace generated by
{x1, ..., x,} and the vectors xy, ..., x, are said to span the subspace.

A3.5.3 Bases and dimension. A set of vectors x1, x5, ..., X, in a vector space V is said
to be linearly independent if for any elements of R, «, ..., a,,

Xn:ajxj =0

Jj=1

implies that oy = --- = o, = 0.
Let S = {xi, ..., x,} where xy, ..., x, are linearly independent. If the subspace gener-
ated by S is equal to V/, then xq, x5, ..., x, is said to be a basis for V. In this case, every

element of x € V may be written
X =X +oxp + -+ opXy

for some scalars «y, o, ..., ®,, which are known as the coordinates of x with respect to
X1, ..., Xp. If such a basis exists, the vector space is said to be finite dimensional. A finite-
dimensional vector space V has many different bases. However, each basis has the same
number of elements; this number is known as the dimension of V.

For the vector space R” the dimension is #. The canonical basis for R” is the vectors
(1,0,...,0),(0,1,0,...,0),...,(0,0,...,0,1). Thus, the coordinates of a vector x =
(ay, ..., a,) with respect to the canonical basis are simply ay, az, ..., a,.

A3.5.4 Norms. LetV denote a vector space. A normon V is a function, denoted by || - ||,
with the following properties: ||x|| > 0 for all x € V and ||x|| = 0 if and only if x = 0; for
x,yeV,

o £+ Il < [lx[1 + 1yl

for each scalar o and each x € V, ||ax]|| = || ||x||. A norm represents a measure of the
“length” of a vector. A vector space together with a norm is known as a normed vector
space.

For x,y € V,letd(x, y) = ||x — y||. Then d is a metric on V' and V together with this
metric forms a metric space. If this metric space is complete, then V', together with the norm
[| - 1], is known as a Banach space.

For the vector space R”, the most commonly used norm is

n %
2
IIXII=[Za,} s X =(ai, ..., an).
j=1

A3.5.5 Linear transformations. Let V and W denote vector spaces andlet T :V — W
denote a function; such a function is often called a transformation. Suppose that the domain
of T is the entire space V and for any x|, x, € V and any scalars o, o3,

T(apxy +oxp) = o T (x1) + ax T (x2);
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in this case, T is said to be a linear transformation. When T is linear, we often denote T (x)
by T x. The transformation T is said to be affine if the transformation Ty given by

To(x) =T(x)—T(0)

is linear.
Let T :V — W denote a linear transformation. The range of T is the set

R(T)={yeW:y=Tx forsome x € V};

R(T) is a subspace of W. The nullspace of T, denoted by N(T), is the set of x € V for
which Tx = 0; V(T) is a subspace of V.

A linear transformation 7 : V — V is said to be idempotent if T?x = T (T x) = T x for
all x € V. The linear transformation such that T x = x forall x € V is known as the identity
transformation and will be denoted by 1.

Suppose that V is finite-dimensional. A linear transformation 7 : V — W is invertible
if and only if either N'(T') consists only of the null vector or R(T) = W. The rank of T is
the dimension of R(T).

Consider a linear transformation T from R” to R”. Let § = {x1, ..., x,,} denote a basis
for R”. Then, since forany j =1,2,...,n,Tx; € R",

n
ijzzﬂijxi’ j=1,2,...,n
i=1

for some constants B;;, i, j = 1,2, ..., n. Thus, if a vector x has coordinates ay, ..., o,
with repect to S, the coordinates of T x with respectto S, y1, . .., ¥, may be obtained using
matrix multiplication:

Y1 B Bz -+ Bu o
V2 B Bn - Poa (o5

Vn Bt Bz o+ B oy

It follows that, for a given basis, the linear transformation 7 may be represented by an
n x n matrix m(T). The same ideas may be applied to linear transformations from R™ to
R”; in this case m(T') is an n x m matrix. It is important to note that the matrix associated
with a linear transformation depends not only on the transformation, but on the basis under
consideration.

Let T and T5 denote linear transformations from R” — R" and let T = T»(T}) = T>T;
denote the composition of 77 and T,. Then m(T) may be obtained from m(7T;) and m(T>)
by matrix multiplication:

m(T) = m(Ty)m(T).

A3.5.6 Inner products. Let V denote a vector space. Let (-,-) denote a real-
valued function defined on V x V with the following properties: for all x,y,z eV,

{x, y) =y, x),

(x+y.2) =(x,2) + (. 2),
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for all scalars o, (@x, y) = a(x, y), and (x, x) > 0 with (x, x) = 0 if and only if x = 0.
Such a function is known as an inner product and the vector space V' together with an inner
product is known as an inner product space.

An inner product can be used to define a norm || - || by

l1x]* = (x, x)

and, hence, an inner product space is a metric space. If this metric space is complete, it is
known as a Hilbert space.

Let V denote a Hilbert space with inner product (-, -). Vectors x, y € V are said to be
orthogonal if

(x,9)=0;

this is often written x L y. Let M; and M, denote subspaces of V. A vector x € V is said
to be orthogonal to M, written x L M, if x is orthogonal to every vector in M. Subspaces
M and M, are said to be orthogonal, written M; L M,, if every vector in M, is orthogonal
to every vector in M.

Let M be a given subspace of V. The set of all vectors in V that are orthogonal to M is
called the orthogonal complement of M and is denoted by M. If M is finite-dimensional,
thenV =M @ M*.

The Cauchy-Schwarz inequality states that, for x, y € V,

[Ce, )< {IxI vl

with equality if and only if either x = ay for some @ € Rory = 0.

Let xq, x5, ..., x, denote a basis for V. This basis is said to be orthonormal if
O ifi#
b, xj) = { 1 ifi=j

Let T denote a linear transformation from R” to R". The adjoint of T is the linear
transformation 7’ : R” — R” such that, for all x, y € R”,

(x, Ty) =(T'x,y).

The matrix corresponding to 7" is given by m(T’) = m(T)T, the matrix transpose of m(T).
Let T} and T, denote linear transformations from R” to R”. Then (T + T») =T, + T,
(T'Tp) = T,T/, and (T])" = T,. Analogous results hold for m(T}) and m(T>).

A linear transformation T is said to be self-adjoint if T’ = T in this case, the matrix
m(T) is a symmetric matrix.

A3.5.7 Projections. Let V denote a finite-dimensional Hilbert space with inner product
(-, -) and let M denote a subspace of V. Then any vector x € V may be uniquely written
x =m + ewherem € M ande L M. The vector m is known as the orthogonal projection of
x onto M or, simply, the projection of x onto M . Note that, since the projection of x depends
on the definition of orthogonality, it depends on the inner product under consideration.
There exists a linear transformation P : V — M such that for each x € V, Px is the
orthogonal projection of x onto M. Clearly, for x € M, Px = x so that P> = P; that is, P
is idempotent. Also, P is self-adjoint. Conversely, any linear transformation on V that is
idempotent and self-adjoint represents orthogonal projection onto some subspace of V.
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A3.5.8 Orthogonal transformations. Let V denote a finite-dimensional Hilbert space
with inner product (-, -). A linear transformation 7 : V' — V is said to be orthogonal if either
T'T =1 or TT' = I; either of these two conditions implies the other. If T is orthogonal
then, forall x, y € V,

(Tx,Ty) = (x,y)

and [|Tx|| = [|x]].

Let x1,x2,...,x, and y1, y5,...,y, denote two sets of orthonormal basis vectors.
Suppose there exists a linear transformation 7' such that, for each j =1, 2, ..., n, maps
Tx;=y;.ThenT is an orthogonal transformation.

Conversely, if xq, x, ..., x, is an orthonormal basis for V and T is an orthogonal
transformation, then T xy, ..., T x,, is also an orthonormal basis for V.

Clearly, if T is an orthonormal transformation then the matrix corresponding to T satisfies
m(T)m(T)! = m(T)' m(T) = m(I).

A3.5.9 Eigenvalues and eigenvectors. Let V denote a finite-dimensional vector space
and let T:V — V denote a self-adjoint linear transformation. A scalar A is called an
eigenvalue of T if there exists v € V such that Tv = Av; a nonzero vector v € V is called
an eigenvector of T if there exists a scalar A such that Tv = Av. Note that if v is an
eigenvector of T then av is an eigenvector of T for any o # 0. When V is a normed linear
space, it is convenient to standardize the eigenvectors so that they have norm equal to 1.

Let v; and v, denote eigenvectors of T such that Tv; = A;v;, j =1, 2. If A # A2, then
vy and v, are orthogonal.

Let 1 denote an eigenvalue of T and let M (A) denote the set of vectors x € V such that
T x = Ax;then M (A)is asubspace of V. The dimension of M () is known as the multiplicity
of A.

Suppose that V' is a Hilbert space. Let T denote a self-adjoint linear transformation and let
A1, ..., Ay denote the eigenvalues of 7', including multiplicities; that is, if the multiplicity
of a particular eigenvalue is r, then the sequence A4, ..., A, contains r occurrences of that
eigenvalue. Then there exist orthonormal vectors ey, ey, . . ., e, such that, for any x € V,

Tx =Xxile,x)er+ -+ Aplen, x) en. (A3.2)

If &; is unique, that is, if it has multiplicity 1, then e; is a vector of norm 1 satisfying
Tej=MXje;. If A\;j=rj 1 =--=Xjg,thenej,ejq,...,ejy are orthonormal vectors
spanning the subspace M (2 ).

A3.5.10 Quadratic forms. Let V denote a finite-dimensional vector space and let
T :V — V denote a self-adjoint linear transformation. A quadratic form on V is a func-
tion x — (x, Tx). The transformation T is said to be positive-definite if the corresponding
quadratic form is always positive for nonzero x: (x, Tx) > O for all x € V, x # 0. Simi-
larly, T is said to be nonnegative-definite if (x, Tx) > 0 for all x € V, x # 0. The terms
negative-definite and nonpositive-definite are defined in an analogous manner.

Using (A3.2), it follows that

(6, Tx) = Afer, X)* + -+ - + Ap{em, X)7.
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Suppose Ay > Ay > --- > Ap. Then
inf  (x,Tx) =X\,
xeVi|x||=1
and
sup  (x,Tx)=Ap.
xeVi|x||=1
It follows that T is positive-definite if and only if all eigenvalues are positive and T is
nonnegative-definite if and only if all eigenvalues are nonnegative.

A3.5.11 Determinants. Let V denote a finite-dimensional vector space andlet T : V —
V denote a linear transformation. The determinant of T, denoted by det(T'), is a real number
associated with T; that is, det(-) is a function that associates a real number with each linear
transformation from V to V.

Here we give the basic properties of the function det(-). Let T, T, and T, denote lin-
ear transformations from V to V. Then det(T;7T,) = det(T;) det(T,). Let o be a scalar.
Then det(aT) = " det(T), where n is the dimension of V. The identity transformation
I has determinant 1. The transformation T and its adjoint, 7', have the same determi-
nant: det(T") = det(T'). The transformation T is invertible if and only if det(T") # 0; when
det(T') = 0 the transformation is said to be singular, otherwise it is nonsingular. The eigen-
values of T are those values of L € R for which T — A[ is singular, that is, for which
det(T — Al) = 0.
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