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Elements of Distribution Theory

This detailed introduction to distribution theory uses no measure theory,
making it suitable for students in statistics and econometrics as well as for
researchers who use statistical methods. Good backgrounds in calculus
and linear algebra are important and a course in elementary mathematical
analysis is useful, but not required. An appendix gives a detailed summary
of the mathematical definitions and results that are used in the book.

Topics covered range from the basic distribution and density functions,
expectation, conditioning, characteristic functions, cumulants, conver-
gence in distribution, and the central limit theorem to more advanced
concepts such as exchangeability, models with a group structure, asymp-
totic approximations to integrals, orthogonal polynomials, and saddle-
point approximations. The emphasis is on topics useful in understand-
ing statistical methodology; thus, parametric statistical models and the
distribution theory associated with the normal distribution are covered
comprehensively.

Thomas A. Severini received his Ph.D. in Statistics from the University of
Chicago. He is now a Professor of Statistics at Northwestern University.
He has also written Likelihood Methods in Statistics. He has published
extensively in statistical journals such as Biometrika, Journal of the
American Statistical Association, and Journal of the Royal Statistical
Society. He is a member of the Institute of Mathematical Statistics and
the American Statistical Association.
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Preface

Distribution theory lies at the interface of probability and statistics. It is closely related
to probability theory; however, it differs in its focus on the calculation and approxima-
tion of probability distributions and associated quantities such as moments and cumulants.
Although distribution theory plays a central role in the development of statistical method-
ology, distribution theory itself does not deal with issues of statistical inference.

Many standard texts on mathematical statistics and statistical inference contain either a
few chapters or an appendix on basic distribution theory. I have found that such treatments
are generally too brief, often ignoring such important concepts as characteristic functions
or cumulants. On the other hand, the discussion in books on probability theory is often too
abstract for readers whose primary interest is in statistical methodology.

The purpose of this book is to provide a detailed introduction to the central results of
distribution theory, in particular, those results needed to understand statistical methodology,
without requiring an extensive background in mathematics. Chapters 1 to 4 cover basic topics
such as random variables, distribution and density functions, expectation, conditioning,
characteristic functions, moments, and cumulants. Chapter 5 covers parametric families of
distributions, including exponential families, hierarchical models, and models with a group
structure. Chapter 6 contains an introduction to stochastic processes.

Chapter 7 covers distribution theory for functions of random variables and Chapter 8 cov-
ers distribution theory associated with the normal distribution. Chapters 9 and 10 are more
specialized, covering asymptotic approximations to integrals and orthogonal polynomials,
respectively. Although these are classical topics in mathematics, they are often overlooked
in statistics texts, despite the fact that the results are often used in statistics. For instance,
Watson’s lemma and Laplace’s method are general, useful tools for approximating the
integrals that arise in statistics, and orthogonal polynomials are used in areas ranging from
nonparametric function estimation to experimental design.

Chapters 11 to 14 cover large-sample approximations to probability distributions. Chap-
ter 11 covers the basic ideas of convergence in distribution and Chapter 12 contains several
versions of the central limit theorem. Chapter 13 considers the problem of approximating
the distribution of statistics that are more general than sample means, such as nonlin-
ear functions of sample means and U-statistics. Higher-order asymptotic approximations
such as Edgeworth series approximations and saddlepoint approximations are presented in
Chapter 14.

I have attempted to keep each chapter as self-contained as possible, but some dependen-
cies are inevitable. Chapter 1 and Sections 2.1–2.4, 3.1–3.2, and 4.1-4.4 contain core topics
that are used throughout the book; the material covered in these sections will most likely be

xi
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xii Preface

familiar to readers who have taken a course in basic probability theory. Chapter 12 requires
Chapter 11 and Chapters 13 and 14 require Chapter 12; in addition, Sections 13.3 and 13.5
use material from Sections 7.5 and 7.6.

The mathematical prerequisites for this book are modest. Good backgrounds in calculus
and linear algebra are important and a course in elementary mathematical analysis at the
level of Rudin (1976) is useful, but not required. Appendix 3 gives a detailed summary of
the mathematical definitions and results that are used in the book.

Although many results from elementary probability theory are presented in Chapters 1
to 4, it is assumed that readers have had some previous exposure to basic probability
theory. Measure theory, however, is not needed and is not used in the book. Thus, although
measurability is briefly discussed in Chapter 1, throughout the book all subsets of a given
sample space are implictly assumed to be measurable. The main drawback of this is that it
is not possible to rigorously define an integral with respect to a distribution function and
to establish commonly used properties of this integral. Although, ideally, readers will have
had previous exposure to integration theory, it is possible to use these results without fully
understanding their proofs; to help in this regard, Appendix 1 contains a brief summary of
the integration theory needed, along with important properties of the integral.

Proofs are given for nearly every result stated. The main exceptions are results requiring
measure theory, although there are surprisingly few results of this type. In these cases,
I have tried to outline the basic ideas of the proof and to give an indication of why more
sophisticated mathematical results are needed. The other exceptions are a few cases in which
a proof is given for the case of real-valued random variables and the extension to random
vectors is omitted and a number of cases in which the proof is left as an exercise. I have
not attempted to state results under the weakest possible conditions; on the contrary, I have
often imposed relatively strong conditions if that allows a simpler and more transparent
proof.

Evanston, IL, January, 2005
Thomas A. Severini

severini@northwestern.edu
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1

Properties of Probability Distributions

1.1 Introduction

Distribution theory is concerned with probability distributions of random variables, with
the emphasis on the types of random variables frequently used in the theory and application
of statistical methods. For instance, in a statistical estimation problem we may need to
determine the probability distribution of a proposed estimator or to calculate probabilities
in order to construct a confidence interval.

Clearly, there is a close relationship between distribution theory and probability theory; in
some sense, distribution theory consists of those aspects of probability theory that are often
used in the development of statistical theory and methodology. In particular, the problem
of deriving properties of probability distributions of statistics, such as the sample mean
or sample standard deviation, based on assumptions on the distributions of the underlying
random variables, receives much emphasis in distribution theory.

In this chapter, we consider the basic properties of probability distributions. Although
these concepts most likely are familiar to anyone who has studied elementary probability
theory, they play such a central role in the subsequent chapters that they are presented here
for completeness.

1.2 Basic Framework

The starting point for probability theory and, hence, distribution theory is the concept of
an experiment. The term experiment may actually refer to a physical experiment in the
usual sense, but more generally we will refer to something as an experiment when it has
the following properties: there is a well-defined set of possible outcomes of the experiment,
each time the experiment is performed exactly one of the possible outcomes occurs, and
the outcome that occurs is governed by some chance mechanism.

Let � denote the sample space of the experiment, the set of possible outcomes of the
experiment; a subset A of � is called an event. Associated with each event A is a probability
P(A). Hence, P is a function defined on subsets of � and taking values in the interval [0, 1].
The function P is required to have certain properties:

(P1) P(�) = 1
(P2) If A and B are disjoint subsets of �, then P(A ∪ B) = P(A) + P(B).

1
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2 Properties of Probability Distributions

(P3) If A1, A2, . . . , are disjoint subsets of �, then

P

( ∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

Note that (P3) implies (P2); however, (P3), which is concerned with an infinite sequence
of events, is of a different nature than (P2) and it is useful to consider them separately.
There are a number of straightforward consequences of (P1)–(P3). For instance, P(∅) = 0,
if Ac denotes the complement of A, then P(Ac) = 1 − P(A), and, for A1, A2 not necessarily
disjoint,

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).

Example 1.1 (Sampling from a finite population). Suppose that � is a finite set and that,
for each ω ∈ �,

P({ω}) = c

for some constant c. Clearly, c = 1/|�| where |�| denotes the cardinality of �.
Let A denote a subset of �. Then

P(A) = |A|
|�| .

Thus, the problem of determining P(A) is essentially the problem of counting the number
of elements in A and �. �

Example 1.2 (Bernoulli trials). Let

� = {x ∈ Rn: x = (x1, . . . , xn), x j = 0 or 1, j = 1, . . . , n}
so that an element of � is a vector of ones and zeros. For ω = (x1, . . . , xn) ∈ �, take

P(ω) =
n∏

j=1

θ x j (1 − θ )1−x j

where 0 < θ < 1 is a given constant. �

Example 1.3 (Uniform distribution). Suppose that � = (0, 1) and suppose that the prob-
ability of any interval in � is the length of the interval. More generally, we may take the
probability of a subset A of � to be

P(A) =
∫

A
dx . �

Ideally, P is defined on the set of all subsets of �. Unfortunately, it is not generally
possible to do so and still have properties (P1)–(P3) be satisfied. Instead P is defined only
on a set F of subsets of �; if A ⊂ � is not in F , then P(A) is not defined. The sets in F
are said to be measurable. The triple (�,F, P) is called a probability space; for example,
we might refer to a random variable X defined on some probability space.

Clearly for such an approach to probability theory to be useful for applications, the set
F must contain all subsets of � of practical interest. For instance, when � is a countable
set, F may be taken to be the set of all subsets of �. When � may be taken to be a
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Euclidean space Rd , F may be taken to be the set of all subsets of Rd formed by starting
with a countable set of rectangles in Rd and then performing a countable number of set
operations such as intersections and unions. The same approach works when � is a subset
of a Euclidean space.

The study of theses issues forms the branch of mathematics known as measure theory.
In this book, we avoid such issues and implicitly assume that any event of interest is
measurable.

Note that condition (P3), which deals with an infinite number of events, is of a different
nature than conditions (P1) and (P2). This condition is often referred to as countable additiv-
ity of a probability function. However, it is best understood as a type of continuity condition
on P. It is easier to see the connection between (P3) and continuity if it is expressed in terms
of one of two equivalent conditions. Consider the following:

(P4) If A1, A2, . . . , are subsets of � satisfying A1 ⊂ A2 ⊂ · · · , then

P

( ∞⋃
n=1

An

)
= lim

n→∞ P(An)

(P5) If A1, A2, . . . , are subsets of � satisfying A1 ⊃ A2 ⊃ · · · , then

P

( ∞⋂
n=1

An

)
= lim

n→∞ P(An).

Suppose that, as in (P4), A1, A2, . . . is a sequence of increasing subsets of �. Then we
may take the limit of this sequence to be the union of the An; that is,

lim
n→∞ An =

∞⋃
n=1

An.

Condition (P4) may then be written as

P
(

lim
n→∞ An

)
= lim

n→∞ P(An).

A similar interpretation applies to (P5). Thus, (P4) and (P5) may be viewed as continuity
conditions on P.

The equivalence of (P3), (P4), and (P5) is established in the following theorem.

Theorem 1.1. Consider an experiment with sample space �. Let P denote a function defined
on subsets of � such that conditions (P1) and (P2) are satisfied. Then conditions (P3), (P4),
and (P5) are equivalent in the sense that if any one of these conditions holds, the other two
hold as well.

Proof. First note that if A1, A2, . . . is an increasing sequence of subsets of �, then
Ac

1, Ac
2, . . . is a decreasing sequence of subsets and, since, for each k = 1, 2, . . . ,(

k⋃
n=1

An

)c

=
k⋂

n=1

Ac
n,

(
lim

n→∞ An

)c
=

∞⋂
n=1

Ac
n = lim

n→∞ Ac
n.
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Suppose (P5) holds. Then

P
(

lim
n→∞ Ac

n

)
= lim

n→∞ P
(

Ac
n

)
so that

P
(

lim
n→∞ An

)
= 1 − P

{(
lim

n→∞ An

)c}
= 1 − lim

n→∞ P
(

Ac
n

) = lim
n→∞ P(An),

proving (P4). A similar argument may be used to show that (P4) implies (P5). Hence, it
suffices to show that (P3) and (P4) are equivalent.

Suppose A1, A2, . . . is an increasing sequence of events. For n = 2, 3, . . . , define

Ān = An ∩ Ac
n−1.

Then, for 1 < n < k,

Ān ∩ Āk = (An ∩ Ak) ∩ (
Ac

n−1 ∩ Ac
k−1

)
.

Note that, since the sequence A1, A2, . . . is increasing, and n < k,

An ∩ Ak = An

and

Ac
n−1 ∩ Ac

k−1 = Ac
k−1.

Hence, since An ⊂ Ak−1,

Ān ∩ Āk = An ∩ Ac
k−1 = ∅.

Suppose ω ∈ Ak . Then either ω ∈ Ak−1 or ω ∈ Ac
k−1 ∩ Ak = Āk ; similarly, if ω ∈ Ak−1

then either ω ∈ Ak−2 or ω ∈ Ac
1 ∩ Ak−1 ∩ Ac

k−2 = Āk−1. Hence, ω must be an element of
either one of Āk, Āk−1, . . . , Ā2 or of A1. That is,

Ak = A1 ∪ Ā2 ∪ Ā3 ∪ · · · ∪ Āk ;

hence, taking Ā1 = A1,

Ak =
k⋃

n=1

Ān

and

lim
k→∞

Ak =
∞⋃

n=1

Ān.

Now suppose that (P3) holds. Then

P( lim
k→∞

Ak) = P

( ∞⋃
n=1

Ān

)
=

∞∑
n=1

P( Ān) = lim
k→∞

k∑
n=1

P( Ān) = lim
k→∞

P(Ak),

proving (P4).
Now suppose that (P4) holds. Let A1, A2, . . . denote an arbitrary sequence of disjoint

subsets of � and let

A0 =
∞⋃

n=1

An.
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Define

Ãk =
k⋃

n=1

A j , k = 1, 2, . . . ;

note that Ã1, Ã2, . . . is an increasing sequence and that

A0 = lim
k→∞

Ãk .

Hence, by (P4),

P(A0) = lim
k→∞

P( Ãk) = lim
k→∞

k∑
n=1

P(An) =
∞∑

n=1

P(An),

proving (P3). It follows that (P3) and (P4) are equivalent, proving the theorem.

1.3 Random Variables

Let ω denote the outcome of an experiment; that is, let ω denote an element of �. In many
applications we are concerned primarily with certain numerical characteristics of ω, rather
than with ω itself. Let X : � → X , whereX is a subset of Rd for some d = 1, 2, . . . , denote
a random variable; the set X is called the range of X or, sometimes, the sample space of
X . For a given outcome ω ∈ �, the corresponding value of X is x = X (ω). Probabilities
regarding X may be obtained from the probability function P for the original experiment.
Let PX denote a function such that for any set A ⊂ X , PX (A) denotes the probability that
X ∈ A. Then PX is a probability function defined on subsets of X and

PX (A) = P({ω ∈ �: X (ω) ∈ A}).
We will generally use a less formal notation in which Pr(X ∈ A) denotes PX (A). For instance,
the probability that X ≤ 1 may be written as either Pr(X ≤ 1) or PX {(−∞, 1]}. In this book,
we will generally focus on probabilities associated with random variables, without explicit
reference to the underlying experiments and associated probability functions.

Note that since PX defines a probability function on the subsets of X , it must satisfy
conditions (P1)–(P3). Also, the issues regarding measurability discussed in the previous
section apply here as well.

When the range X of a random variable X is a subset of Rd for some d = 1, 2, . . . , it is
often convenient to proceed as if probability function PX is defined on the entire space Rd .
Then the probability of any subset of X c is 0 and, for any set A ⊂ Rd ,

PX (A) ≡ Pr(X ∈ A) = Pr(X ∈ A ∩ X ).

It is worth noting that some authors distinguish between random variables and random
vectors, the latter term referring to random variables X for which X is a subset of Rd for
d > 1. Here we will not make this distinction. The term random variable will refer to either
a scalar or vector; in those cases in which it is important to distinguish between real-valued
and vector random variables, the terms real-valued random variable and scalar random
variable will be used to denote a random variable with X ⊂ R and the term vector random
variable and random vector will be used to denote a random variable with X ⊂ Rd , d > 1.
Random vectors will always be taken to be column vectors so that a d-dimensional random
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vector X is of the form

X =




X1

X2
...

Xd




where X1, X2, . . . , Xd are real-valued random variables.
For convenience, when writing a d-dimensional random vector in the text, we will write

X = (X1, . . . , Xd ) rather than X = (X1, . . . , Xd )T . Also, if X and Y are both random
vectors, the random vector formed by combining X and Y will be written as (X, Y ), rather
than the more correct, but more cumbersome, (X T , Y T )T . We will often consider random
vectors of the form (X, Y ) with range X × Y; a statement of this form should be taken to
mean that X takes values in X and Y takes values in Y .

Example 1.4 (Binomial distribution). Consider the experiment considered in Example 1.2.
Recall that an element ω of � is of the form (x1, . . . , xn) where each x j is either 0 or 1. For
an element ω ∈ �, define

X (ω) =
n∑

j=1

x j .

Then

Pr(X = 0) = P((0, 0, . . . , 0)) = (1 − θ )n,

Pr(X = 1) = P((1, 0, . . . , 0)) + P((0, 1, 0, . . . , 0)) + · · · + P((0, 0, . . . , 0, 1))

= nθ (1 − θ )n−1.

It is straightforward to show that

Pr(X = x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n;

X is said to have a binomial distribution with parameters n and θ . �

Example 1.5 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with range X = (0, 1)3. For any subset of A ∈ X , let

Pr(X ∈ A) =
∫ ∫ ∫

A
dt1 dt2 dt3.

Here the properties of the random vector X are defined without reference to any underlying
experiment.

As discussed above, we may take the range of X to be R3. Then, for any subset A ∈ R3,

Pr(X ∈ A) =
∫ ∫ ∫

A∩(0,1)3
dt1 dt2 dt3. �

Let X denote random variable on Rd with a given probability distribution. A support of
the distribution, or, more simply, a support of X , is defined to be any set X0 ⊂ Rd such that

Pr(X ∈ X0) = 1.
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The minimal support of the distribution is the smallest closed set X0 ⊂ Rd such that

Pr(X ∈ X0) = 1.

That is, the minimal support of X is a closed set X0 that is a support of X , and if X1 is
another closed set that is a support of X , then X0 ⊂ X1.

The distribution of a real-valued random variable X is said to be degenerate if there
exists a constant c such that

Pr(X = c) = 1.

For a random vector X , with dimension greater than 1, the distribution of X is said to be
degenerate if there exists a vector a �= 0, with the same dimension as X , such that aT X
is equal to a constant with probability 1. For example, a two-dimensional random vector
X = (X1, X2) has a degenerate distribution if, as in the case of a real-valued random variable,
it is equal to a constant with probability 1. However, it also has a degenerate distribution if

Pr(a1 X1 + a2 X2 = c) = 1

for some constants a1, a2, c. In this case, one of the components of X is redundant, in the
sense that it can be expressed in terms of the other component (with probability 1).

Example 1.6 (Polytomous random variable). Let X denote a random variable with range

X = {x1, . . . , xm}
where x1, . . . , xn are distinct elements of R. Assume that Pr(X = x j ) > 0 for each j =
1, . . . , m. Any set containing X is a support of X ; since X is closed in R, it follows that the
minimal support of X is simply X . If m = 1 the distribution of X is degenerate; otherwise
it is nondegenerate. �

Example 1.7 (Uniform distribution on the unit cube). Let X denote the random variable
defined in Example 1.5. Recall that for any A ⊂ R3,

Pr(X ∈ A) =
∫ ∫ ∫

A∩(0,1)3
dt1 dt2 dt3.

The minimal support of X is [0, 1]3. �

Example 1.8 (Degenerate random vector). Consider the experiment considered in Exam-
ple 1.2 and used in Example 1.4 to define the binomial distribution. Recall that an element
ω of � is of the form (x1, . . . , xn) where each x j is either 0 or 1. Define Y to be the
two-dimensional random vector given by

Y (ω) =
(

n∑
j=1

x j , 2
n∑

j=1

x2
j

)
.

Then

Pr((2, −1)T Y = 0) = 1.

Hence, Y has a degenerate distribution. �
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1.4 Distribution Functions

Consider a real-valued random variable X . The properties of X are described by its proba-
bility function PX , which gives the probability that X ∈ A for any set A ⊂ R. However, it is
also possible to specify the distribution of a random variable by considering Pr(X ∈ A) for a
limited class of sets A; this approach has the advantage that the function giving such proba-
bilities may be easier to use in computations. For instance, consider sets of the form (−∞, x],
for x ∈ R, so that PX {(−∞, x]} gives Pr(X ≤ x). The distribution function of the distribu-
tion of X or, simply, the distribution function of X , is the function F ≡ FX : R → [0, 1]
given by

F(x) = Pr(X ≤ x), − ∞ < x < ∞.

Example 1.9 (Uniform distribution). Suppose that X is a real-valued random variable
such that

Pr(X ∈ A) =
∫

A∩(0,1)
dx, A ⊂ R;

X is said to have a uniform distribution on (0, 1).
The distribution function of this distribution is given by

F(x) = Pr{X ∈ (−∞, x]} =
∫

(−∞,x]∩(0,1)
dx =

{ 0 if x ≤ 0
x if 0 < x ≤ 1
1 if x > 1

.

Figure 1.1 gives a plot of F . �

x
− −

F
 (

x)

Figure 1.1. Distribution function in Example 1.9.
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x

F
 (

x)

− −

Figure 1.2. Distribution function in Example 1.10.

Note that when giving the form of a distribution function, it is convenient to only give
the value of the function in the range of x for which F(x) varies between 0 and 1. For
instance, in the previous example, we might say that F(x) = x , 0 < x < 1; in this case it
is understood that F(x) = 0 for x ≤ 0 and F(x) = 1 for x ≥ 1.

Example 1.10 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and θ , as described in Example 1.4. Then

Pr(X = x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n

and, hence, the distribution function of X is

F(x) =
∑

j=0,1,...; j≤x

(
n

j

)
θ j (1 − θ )n− j .

Thus, F is a step function, with jumps at 0, 1, 2, . . . , n; Figure 1.2 gives a plot of F for the
case n = 2, θ = 1/4. �

Clearly, there are some basic properties which any distribution function F must possess.
For instance, as noted above, F must take values in [0, 1]; also, F must be nondecreasing.
The properties of a distribution function are summarized in the following theorem.

Theorem 1.2. A distribution function F of a distribution on R has the following properties:
(DF1) limx→∞ F(x) = 1; limx→−∞ F(x) = 0
(DF2) If x1 < x2 then F(x1) ≤ F(x2)
(DF3) limh→0+ F(x + h) = F(x)
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(DF4) limh→0+ F(x − h) ≡ F(x−) = F(x) − Pr(X = x) = Pr(X < x).

Proof. Let an , n = 1, 2, . . . denote any increasing sequence diverging to ∞ and let An

denote the event that X ≤ an . Then PX (An) = F(an) and A1 ⊂ A2 ⊂ · · · with ∪∞
n=1 An equal

to the event that X < ∞. It follows from (P4) that

lim
n→∞ F(an) = Pr(X < ∞) = 1,

establishing the first part of (DF1); the second part follows in a similar manner.
To show (DF2), let A1 denote the event that X ≤ x1 and A2 denote the event that x1 <

X ≤ x2. Then A1 and A2 are disjoint with F(x1) = PX (A1) and F(x2) = PX (A1 ∪ A2) =
PX (A1) + PX (A2), which establishes (DF2).

For (DF3) and (DF4), let an , n = 1, 2, . . . , denote any decreasing sequence converging
to 0, let An denote the event that X ≤ x + an , let Bn denote the event that X ≤ x − an , and
let Cn denote the event that x − an < X ≤ x . Then A1 ⊃ A2 ⊃ · · · and ∩∞

n=1 An is the event
that X ≤ x . Hence, by (P5),

Pr(X ≤ x) ≡ F(x) = lim
n→∞ F(x + an),

which establishes (DF3).
Finally, note that F(x) = PX (Bn) + PX (Cn) and that C1 ⊃ C2 ⊃ · · · with ∩∞

n=1Cn equal
to the event that X = x . Hence,

F(x) = lim
n→∞ F(x − an) + lim

n→∞ PX (Cn) = F(x−) + Pr(X = x),

yielding (DF4).

Thus, according to (DF2), a distribution function is nondecreasing and according to
(DF3), a distribution is right-continuous.

A distribution function F gives the probability of sets of the form (−∞, x]. The following
result gives expressions for the probability of other types of intervals in terms of F ; the
proof is left as an exercise. As in Theorem 1.2, here we use the notation

F(x−) = lim
h→0+

F(x − h).

Corollary 1.1. Let X denote a real-valued random variable with distribution function F.
Then, for x1 < x2,

(i) Pr(x1 < X ≤ x2) = F(x2) − F(x1)
(ii) Pr(x1 ≤ X ≤ x2) = F(x2) − F(x1−)

(iii) Pr(x1 ≤ X < x2) = F(x2−) − F(x1−)
(iv) Pr(x1 < X < x2) = F(x2−) − F(x1)

Any distribution function possesses properties (DF1)–(DF4). Furthermore, properties
(DF1)–(DF3) characterize a distribution function in the sense that a function having those
properties must be a distribution function of some random variable.

Theorem 1.3. If a function F : R → [0, 1] has properties (DF1)–(DF3), then F is the
distribution function of some random variable.
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Proof. Consider the experiment with � = (0, 1) and, suppose that, for any set A ∈ �,
P(A) given by

P(A) =
∫

A
dx .

Given a function F satisfying (DF1)–(DF3), define a random variable X by

X (ω) = inf{x ∈ R: F(x) ≥ ω}.
Then

Pr(X ≤ x) = P({ω ∈ �: X (ω) ≤ x}) = P({ω ∈ �: ω ≤ F(x)}) = F(x).

Hence, F is the distribution function of X .

The distribution function is a useful way to describe the probability distribution of a
random variable. The following theorem states that the distribution function of a random
variable X completely characterizes the probability distribution of X.

Theorem 1.4. If two random variables X1, X2 each have distribution function F, then X1

and X2 have the same probability distribution.

A detailed proof of this result is beyond the scope of this book; see, for example, Ash
(1972, Section 1.4) or Port (1994, Section 10.3).

It is not difficult, however, to give an informal explanation of why we expect such a
result to hold. The goal is to show that, if X1 and X2 have the same distribution function,
then, for ‘any’ set A ⊂ R,

Pr(X1 ∈ A) = Pr(X2 ∈ A).

First suppose that A is an interval of the form (a0, a1]. Then

Pr(X j ∈ A) = F(a1) − F(a0), j = 1, 2

so that Pr(X1 ∈ A) = Pr(X2 ∈ A). The same is true for Ac. Now consider a second interval
B = (b0, b1]. Then

A ∩ B =




∅ if b0 > a1 or a0 > b1

B if a0 ≤ b0 < b1 ≤ a1

A if b0 ≤ a0 < a1 ≤ b1

(a0, b1] if b1 ≤ a1 and b0 ≤ a0

(b0, a1] if a1 ≤ b1 and a0 ≤ b0

.

In each case, A ∩ B is an interval and, hence, Pr(X j ∈ A ∩ B) and Pr(X j ∈ A ∪ B) do not
depend on j = 1, 2. The same approach can be used for any finite collection of intervals.
Hence, if a set is generated from a finite collection of intervals using set operations such as
union, intersection, and complementation, then Pr(X1 ∈ A) = Pr(X2 ∈ A).

However, we require that this equality holds for ‘any’ set A. Of course, we know that
probability distibutions cannot, in general, be defined for all subsets of R. Hence, to pro-
ceed, we must pay close attention to the class of sets A for which Pr(X1 ∈ A) is defined.
Essentially, the result stated above for a finite collection of intervals must be extended to
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a countable collection. Although this does hold, the proof is more complicated and it is
useful, if not essential, to use a more sophisticated method of proof.

A number of useful properties of distribution functions follow from the fact a distribution
function is nondecreasing. The following result gives one of these.

Theorem 1.5. Let F denote the distribution function of a distribution on R. Then the set of
points x at which F is not continuous is countable.

Proof. Let D denote the set of points at which F has a discontinuity. For each positive
integer m, let Dm denote the set of points x in R such that F has a jump of at least 1/m at
x and let nm denote the number of elements in Dm . Note that

D =
∞⋃

m=1

Dm

since

lim
x→∞ F(x) = 1 and lim

x→−∞ F(x) = 0,

nm ≤ m. It follows that the number of points of discontinuity is bounded by
∑∞

m=1 m. The
result follows.

Discrete distributions
Hence, although a distribution function is not necessarily continuous, the number of jumps
must be countable; in many cases it is finite, or even 0. Let X denote a real-valued random
variable with distribution function F . If F is a step function, we say that the X has a discrete
distribution or is a discrete random variable.

Example 1.11 (Integer random variable). Let X denote a random variable with range
X = {1, 2, . . . , m} for some m = 1, 2, . . . , and let

θ j = Pr(X = j), j = 1, . . . , m.

The distribution function of X is given by

F(x) =




0 if x < 1
θ1 if 1 ≤ x < 2
θ1 + θ2 if 2 ≤ x < 3
...
θ1 + · · · + θm−1 if m − 1 ≤ x < m
1 if m ≤ x

where θ1, . . . , θm are constants summing to 1. Hence, F is a step function and X has a
discrete distribution. �

Distribution functions for random vectors
For a random vector X taking values in Rd , the distribution function is defined as the
function F : Rd → [0, 1] given by

F(x) = Pr{X ∈ (−∞, x1] × (−∞, x2] × · · · (−∞, xd ]}, x = (x1, . . . , xd ).
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If X is written in terms of component random variables X1, . . . , Xd each of which is real-
valued, X = (X1, . . . , Xd ), then

F(x) = Pr(X1 ≤ x1, . . . , Xd ≤ xd ).

Example 1.12 (Two-dimensional polytomous random vector). Consider a two-
dimensional random vector X with range

X = {x ∈ R2: x = (i, j), i = 1, . . . , m; j = 1, . . . , m}
and let

θi j = Pr{X = (i, j)}.
The distribution function of X is given by

F(x) =




0 if x1 < 1 or x2 < 1
θ11 if 1 ≤ x1 < 2 and 1 ≤ x2 < 2
θ11 + θ12 if 1 ≤ x1 < 2 and 2 ≤ x2 < 3
...
θ11 + · · · + θ1m if 1 ≤ x1 < 2 and m ≤ x2
...

, x = (x1, x2).

θ11 + · · · + θm1 if m ≤ x1 and 1 ≤ x2 < 2
θ11 + · · · + θm1 + θ12 + · · · + θm2 if m ≤ x1 and 2 ≤ x2 < 3
...
1 if m ≤ x1 and m ≤ x2

This is a two-dimensional step function. �

Example 1.13 (Uniform distribution on the unit cube). Consider the random vector X
defined in Example 1.5. Recall that X has range X = (0, 1)3 and for any subset A ⊂ X ,

Pr(X ∈ A) =
∫ ∫ ∫

A
dt1 dt2 dt3.

Then X has distribution function

F(x) =
∫ x3

0

∫ x2

0

∫ x1

0
dt1 dt2 dt3 = x1x2x3, x = (x1, x2, x3), 0 ≤ x j ≤ 1, j = 1, 2, 3

with F(x) = 0 if min(x1, x2, x3) < 0. If x j > 1 for some j = 1, 2, 3, then F(x) =
x1x2x3/x j ; if xi > 1, x j > 1 for some i, j = 1, 2, 3, then F(x) = x1x2x3/(xi x j ). �

Like distribution functions on R, a distribution function on Rd is nondecreasing and
right-continuous.

Theorem 1.6. Let F denote the distribution function of a vector-valued random variable
X taking values in Rd .

(i) If x = (x1, . . . , xd ) and y = (y1, . . . , yd ) are elements of Rd such that x j ≤ y j ,
j = 1, . . . , d, then F(x) ≤ F(y).
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(ii) If xn = (xn1, . . . , xnd ), n = 1, 2, . . . is a sequence in Rd such that each sequence
xnj , n = 1, 2, . . . is a decreasing sequence with limit x j , j = 1, . . . , d, then

lim
n→∞ F(xn) = F(x).

Proof. Let x = (x1, x2, . . . , xd ) and y = (y1, y2, . . . , yd ) denote elements of Rd satisfying
the condition in part (i) of the theorem. Define

A = (−∞, x1] × · · · × (−∞, xd ]

and

B = (−∞, y1] × · · · × (−∞, yd ].

Then F(x) = PX (A), F(y) = PX (B) and part (i) of the theorem follows from the fact that
A ⊂ B.

For part (ii), define

An = (−∞, xn1] × · · · (−∞, xnd ], n = 1, 2, . . . .

Then A1 ⊃ A2 ⊃ · · · and

∩∞
n=1 An = (−∞, x1] × · · · × (−∞, xn].

The result now follows from (P5).

We saw that the probability that a real-valued random variable takes values in a set (a, b]
can be expressed in terms of its distribution, specifically,

Pr(a < X ≤ b) = F(b) − F(a).

A similar result is available for random vectors, although the complexity of the expression
increases with the dimension of the random variable. The following example illustrates the
case of a two-dimensional random vector; the general case is considered in Theorem 1.7
below.

Example 1.14 (Two-dimensional random vector). Let X = (X1, X2) denote a two-
dimensional random vector with distribution function F . Consider the probability

Pr(a1 < X1 ≤ b1, a2 < X2 ≤ b2);

our goal is to express this probability in terms of F.
Note that

Pr(a1 < X1 ≤ b1, a2 < X2 ≤ b2) = Pr(X1 ≤ b1, a2 < X2 ≤ b2)

− Pr(X1 ≤ a1, a2 < X2 ≤ b2)

= Pr(X1 ≤ b1, X2 ≤ b2) − Pr(X1 ≤ b1, X2 ≤ a2)

− Pr(X1 ≤ a1, X2 ≤ b2) + Pr(X1 ≤ a1, X2 ≤ a1)

= F(b1, b2) − F(b1, a2) − F(a1, b2) + F(a1, a2),

which yields the desired result. �
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It is clear that the approach used in Example 1.14 can be extended to a random variable
of arbitrary dimension. However, the statement of such a result becomes quite complicated.

Theorem 1.7. Let F denote the distribution function of a vector-valued random variable
X taking values in Rd .

For each j = 1, . . . , d, let −∞ < a j < b j < ∞ and define the set A by

A = (a1, b1] × · · · × (ad , bd ].

Then

PX (A) = �(b − a)F(a)

where a = (a1, . . . , ad ), b = (b1, . . . , bd ), and for any arbitrary function h on Rd ,

�(b)h(x) = �1,b1�2,b2 · · · �d,bd h(x),

� j,ch(x) = h(x + ce j ) − h(x).

Here e j is the j th coordinate vector in Rd , (0, . . . , 0, 1, 0, . . . , 0).

Proof. First note that

�1,b1−a1 F(a) = F(b1, a2, . . . , ad ) − F(a1, a2, . . . , ad )

= Pr(a1 < X1 ≤ b1, X2 ≤ a2, . . . , Xd ≤ ad ).

Each of the remaining operations based on � j,b j −a j , where j = 2, . . . , d, concerns only the
corresponding random variable X j . Hence,

�2,b2−a2�1,b1−a1 F(a) = Pr(a1 < X1 ≤ b1, a2 < X2 ≤ b2, X3 ≤ a3, . . . , Xd ≤ ad ),

and so on. The result follows.

1.5 Quantile Functions

Consider a real-valued random variable X . The distribution function of X describes its
probability distribution by giving the probability that X ≤ x for all x ∈ R. For example, if
we choose an x ∈ R, F(x) returns the probability that X is no greater than x .

Another approach to specifying the distribution of X is to give, for a specified probability
p ∈ (0, 1), the value x p such that Pr(X ≤ x p) = p. That is, instead of asking for the proba-
bility that X ≤ 1, we might ask for the point x such that Pr(X ≤ x) = .5. One complication
of this approach is that there may be many values x p ∈ R such that Pr(X ≤ x p) = p or no
such value might exist. For instance, if X is a binary random variable taking the values 0
and 1 each with probability 1/2, any value x in the interval [0, 1) satisfies Pr(X ≤ x) = 1/2
and there does not exist an x ∈ R such that Pr(X ≤ x) = 3/4.

For a given value p ∈ (0, 1) we define the pth quantile of the distribution to be

inf{z: F(z) ≥ p}.
Thus, for the binary random variable described above, the .5th quantile is 0 and the .75th
quantile is 1.
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The quantile function of the distribution or, more simply, of X , is the function Q :
(0, 1) → R given by

Q(t) = inf{z: F(z) ≥ t}.
The quantile function is essentially the inverse of the distribution function F ; however,
since F is not necessarily a one-to-one function, its inverse may not exist. The pth quantile
of the distribution, as defined above, is given by Q(p), 0 < p < 1.

Example 1.15 (Integer random variable). Let X denote a random variable with range
X = {1, 2, . . . , m} for some m = 1, 2, . . . , and let

θ j = Pr(X = j), j = 1, . . . , m.

The distribution function of X is given in Example 1.11; it is a step function with jump θ j

at x = j .
The quantile function of X may be calculated as follows. Suppose that t ≤ θ1. Then

F(x) ≥ t provided that x ≥ 1. Hence, Q(t) = 1. If θ1 < t ≤ θ1 + θ2, then F(x) ≥ t pro-
vided that x ≥ 2 so that Q(t) = 2. This procedure may be used to determine the entire
function Q. It follows that

Q(t) =




1 if 0 < t ≤ θ1

2 if θ1 < t ≤ θ1 + θ2

3 if θ1 + θ2 < t ≤ θ1 + θ2 + θ3
...
m if θ1 + · · · + θm−1 < t < 1

.

Figure 1.3 gives plots of F and Q for the case in which m = 3, θ1 = 1/4, θ2 = 1/2, and
θ3 = 1/4. �

t

x

F
 (

x)
Q

 (
t)

−

Quantile Function

Distribution Function

Figure 1.3. Quantile and distribution functions in Example 1.15.
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Figure 1.4. Quantile and distribution functions in Example 1.16.

Example 1.16 (Standard exponential distribution). Let X denote a real-valued random
variable with distribution function F(x) = 1 − exp(−x), x > 0; this distribution is known
as the standard exponential distribution. The quantile function of the distribution is given
by Q(t) = − log(1 − t), 0 < t < 1. Figure 1.4 gives plots of F and Q. �

A median of the distribution of a real-valued random variable X is any point m ∈ R
such that

Pr(X ≤ m) ≥ 1

2
and Pr(X ≥ m) ≥ 1

2
;

note that a median of a distribution is not, in general, unique. It may be shown that if X has
quantile function Q, then Q(.5) is a median of X ; this problem is given as Exercise 1.20.

Example 1.17 (Standard exponential distribution). Let X have a standard exponential
distribution as discussed in Example 1.16. Since, for any x > 0,

Pr(X ≤ x) = 1 − Pr(X ≥ x)

and

Pr(X ≥ x) = exp(−x), x > 0,

it follows that the median of the distribution is m = log(2). �

Example 1.18 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and θ , as described in Example 1.4. Then X is a discrete
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random variable with

Pr(X = x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, . . . , n

where 0 < θ < 1. Let m0 denote the largest positive integer for which

m0∑
j=0

(
n

j

)
θ j (1 − θ )n− j ≤ 1

2
.

If

m0∑
j=0

(
n

j

)
θ j (1 − θ )n− j <

1

2
,

then the median of the distribution is m0 + 1; otherwise, any value in the interval (m0,

m0 + 1) is a median of the distribution. �

There are a number of properties that any quantile function must satisfy; for convenience,
we use the convention that Q(0) = −∞.

Theorem 1.8. Consider a real-valued random variable X with distribution function F and
quantile function Q. Then

(i) Q(F(x)) ≤ x, −∞ < x < ∞
(ii) F(Q(t)) ≥ t , 0 < t < 1

(iii) Q(t) ≤ x if and only if F(x) ≥ t
(iv) If F−1 exists, then Q(t) = F−1(t)
(v) If t1 < t2, then Q(t1) ≤ Q(t2)

Proof. Define the set A(t) by

A(t) = {z: F(z) ≥ t}

so that Q(t) = inf A(t). Then A[F(x)] clearly contains x so that Q[F(x)] = inf A[F(x)]
must be no greater than x ; this proves part (i). Note that if F(x) = 0, then A(t) = (−∞, x1]
for some x1 so that the result continues to hold if Q(F(x)) is taken to be −∞ in this case.

Also, for any element x ∈ A(t), F(x) ≥ t ; clearly, this relation must hold for any
sequence in A(t) and, hence, must hold for the inf of the set, proving part (ii).

Suppose that, for a given x and t , F(x) ≥ t . Then A(t) contains x ; hence, Q(t) ≤ x .
Now suppose that Q(t) ≤ x ; since F is nondecreasing, F(Q(t)) ≤ F(x). By part (ii) of the
theorem F(Q(t)) ≥ t so that F(x) ≥ t , proving part (iii).

If F is invertible, then At = {x: x ≥ F−1(t)} so that Q(t) = F−1(t), establishing
part (iv).

Let t1 ≤ t2. Then A(t1) ⊃ A(t2). It follows that the

inf A(t1) ≤ inf A(t2);

part (v) follows.
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Example 1.19 (A piecewise-continuous distribution function). Let X denote a real-valued
random variable with distribution function given by

F(x) =



0 if x < 0
1
2 if x = 0
1 − exp(−x)/2 if 0 < x < ∞

.

Then

Q(t) =
{

0 if 0 < t ≤ 1/2
− log(2(1 − t)) if 1/2 < t < 1

.

This example can be used to illustrate the results in Theorem 1.8. Note that, for x ≥ 0,

Q(F(x)) =
{

0 if x = 0
− log(2(exp(−x)/2)) if 0 < x < ∞ = x ;

for x < 0, F(x) = 0 so that Q(F(x)) = −∞. Similarly,

F(Q(t)) =
{

1
2 if t ≤ 1/2
1 − exp(log(2(1 − t)))/2 if 1/2 < t < 1

=
{

1
2 if t ≤ 1/2
t if 1/2 < t < 1

≥ t.

This illustrates parts (i) and (ii) of the theorem.
Suppose x < 0. Then Q(t) ≤ x does not hold for any value of t > 0 and F(x) = 0 ≥ t

does not hold for any t > 0. If x = 0, then Q(t) ≤ x if and only if t ≤ 1/2, and
F(x) = F(0) = 1/2 ≥ t if and only if t ≤ 1/2. Finally, if x > 0, Q(t) ≤ x if and
only if

− log(2(1 − t)) ≤ x,

that is, if and only if t ≤ 1 − exp(−x)/2, while F(x) ≥ t if and only if

1 − exp(−x)/2 ≥ t.

This verifies part (iii) of Theorem 1.8 for this distribution.
Part (iv) of the theorem does not apply here, while it is easy to see that part (v)

holds. �

We have seen that the distribution of a random variable is characterized by its distribution
function. Similarly, two random variables with the same quantile function have the same
distribution.

Corollary 1.2. Let X1 and X2 denote real-valued random variables with quantile functions
Q1 and Q2, respectively. If Q1(t) = Q2(t), 0 < t < 1, then X1 and X2 have the same
probability distribution.

Proof. Let Fj denote the distribution function of X j , j = 1, 2, and fix a value x0. Then
either F1(x0) < F2(x0), F1(x0) > F2(x0), or F1(x0) = F2(x0).

First suppose that F1(x0) < F2(x0). By parts (i) and (v) of Theorem 1.8,

Q2(F1(x0)) ≤ Q2(F2(x0)) ≤ x0.

Hence, by part (iii) of Theorem 1.8, F2(x0) ≥ F1(x0) so that F1(x0) < F2(x0) is impossible.
The same argument shows that F2(x0) < F1(x0) is impossible. It follows that F1(x0) =

F2(x0). Since x0 is arbitrary, it follows that F1 = F2, proving the result.
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1.6 Density and Frequency Functions

Consider a real-valued random variable X with distribution function F and range X . Sup-
pose there exists a function p : R → R such that

F(x) =
∫ x

−∞
p(t) dt, − ∞ < x < ∞. (1.1)

The function p is called the density function of the distribution or, more simply, of X ; since
F is nondecreasing, p can be assumed to be nonnegative and we must have∫ ∞

−∞
p(x) dx = 1.

We also assume that any density function is continuous almost everywhere and is of
bounded variation, which ensures that the Riemann integral of the density function exists;
see Sections A3.1.8, A.3.3.3, and A3.4.9 of Appendix 3.

In this case, it is clear that the distribution function F must be a continuous function; in
fact, F is an absolutely continuous function. Absolute continuity is stronger than ordinary
continuity; see Appendix 1 for further discussion of absolutely continuous functions. Hence,
when (1.1) holds, we say that the distribution of X is an absolutely continuous distribution;
alternatively, we say that X is an absolutely continuous random variable.

Conversely, if F is an absolutely continuous function, then there exists a density func-
tion p such that (1.1) holds. In many cases, the function p can be obtained from F by the
fundamental theorem of calculus; see Theorem 1.9 below. It is important to note, however,
that the density function of a distribution is not uniquely defined. If

p1(x) = p2(x) for almost all x,

and

F(x) =
∫ x

−∞
p1(t) dt, −∞ < x < ∞,

then

F(x) =
∫ x

−∞
p2(t) dt, −∞ < x < ∞;

see Section A3.1.8 of Appendix 3 for discussion of the term “almost all.” In this case, either
p1 or p2 may be taken as the density function of the distribution. Generally, we use the
version of the density that is continuous, if one exists.

The following theorem gives further details on the relationship between density and
distribution functions.

Theorem 1.9. Let F denote the distribution function of a distribution on R.
(i) Suppose that F is absolutely continuous with density function p. If p is continuous

at x then F ′(x) exists and p(x) = F ′(x).
(ii) Suppose F ′(x) exists for all x ∈ R and∫ ∞

−∞
F ′(x) dx < ∞.

Then F is absolutely continuous with density function F ′.
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(iii) Suppose that F is absolutely continuous and there exists a function p such that

F ′(x) = p(x) for almost all x .

Then p is a density function of F.

Proof. If F is absolutely continuous with density p, then

F(x) =
∫ x

−∞
p(t) dt, −∞ < x < ∞.

Hence, part (i) follows immediately from the fundamental theorem of calculus, given in
Appendix 1 (Section A1.6). Part (ii) is simply a restatement of result (2) of Section A1.6.

To prove part (iii), note that if F is absolutely continuous, then there exists a function f
such that

F(x) =
∫ x

−∞
f (t) dt, −∞ < x < ∞

and

F ′(x) = f (x) for almost all x .

It follows that f (x) = p(x) for almost all x so that

F(x) =
∫ x

−∞
p(t) dt, −∞ < x < ∞,

as well.

Example 1.20 (Uniform distribution on (0, 1)). Let X denote a random variable with the
uniform distribution on (0, 1), as defined in Example 1.9. Then X has distribution function

F(x) =
∫ x

0
dt, 0 ≤ x ≤ 1

so that X has an absolutely continuous distribution with density function

p(x) = 1, 0 ≤ x ≤ 1.

Note that the density function of X may also be taken to be

p(x) =
{

1 if 0 < x < 1
0 otherwise

. �

Example 1.21 (Distribution function satisfying a Lipschitz condition). Consider the dis-
tribution with distribution function given by

F(x) =
{ 0 if x < 1

(x − 1)2 if 1 ≤ x ≤ 2
1 if x > 2

.

We first show that there exists a constant M such that, for all x1, x2 ∈ R,

|F(x2) − F(x1)| ≤ M |x2 − x1|.
This is called a Lipschitz condition and it implies that F is an absolutely continuous function
and, hence, that part (iii) of Theorem 1.9 can be used to find the density of the distribution;
see Section A1.5 of Appendix 1 for further details.
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x

x
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 (
x)

Density Function

Distribution Function

Figure 1.5. Distribution and density functions in Example 1.21.

First consider the case in which x1 < 1 and 1 ≤ x2 ≤ 2; then

|F(x2) − F(x1)| = (x2 − 1)2 ≤ |x2 − x1|.
If x1 and x2 are both in [1, 2], then

|F(x2) − F(x1)| = ∣∣x2
2 − x2

1 + 2(x1 − x2)
∣∣ ≤ |x1 + x2 + 2||x2 − x1| ≤ 6|x2 − x1|;

if x2 > 1 and 1 < x2 < 2, then

|F(x2) − F(x1)| = ∣∣1 − (x2 − 1)2
∣∣ = ∣∣x2

2 − 2x2

∣∣ = x2|x2 − 2| ≤ 2|x2 − x1|.
Finally, if x1 < 1 and x2 > 2,

|F(x2) − F(x1)| ≤ 1 ≤ |x2 − x1|.
Since F satisfies a Lipschitz condition, it follows that F is absolutely continuous and

that the density function of the distribution is given by

p(x) =
{

F ′(x) if 1 < x < 2
0 otherwise

=
{

2(x − 1) if 1 < x < 2
0 otherwise

.

Figure 1.5 contains plots of F and p. �

Note that, by the properties of the Riemann integral, if X has an absolutely continuous
distribution with density p, then, for small ε > 0,

Pr(x − ε/2 < X < x + ε/2) =
∫ x+ε/2

x−ε/2
p(t) dt

.= p(x)ε.
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Hence, p(x) can be viewed as being proportional to the probability that X lies in a small
interval containing x ; of course, such an interpretation only gives an intuitive meaning to
the density function and cannot be used in formal arguments. It follows that the density
function gives an indication of the relative likelihood of different possible values of X . For
instance, Figure 1.5 shows that the likelihood of X taking a value x in the interval (1, 2)
increases as x increases.

Thus, when working with absolutely continuous distributions, density functions are
often more informative than distribution functions for assessing the basic properties of
a probability distribution. Of course, mathematically speaking, this statement is nonsense
since the distribution function completely characterizes a probability distribution. However,
for understanding the basic properties of the distribution of random variable, the density
function is often more useful than the distribution function.

Example 1.22. Consider an absolutely continuous distribution with distribution function

F(x) = (5 − 2x)(x − 1)2, 1 < x < 2

and density function

p(x) =
{

6(2 − x)(x − 1) if 1 < x < 2
0 otherwise

.

Figure 1.6 gives a plot of F and p. Based on the plot of p it is clear that the most likely
value of X is 3/2 and, for z < 1/2, X = 3/2 − z and X = 3/2 + z are equally likely; these
facts are difficult to discern from the plot of, or the expression for, the distribution function.
The plots in Figure 1.6 can also be compared to those in Figure 1.5, which represent the
distribution and density functions in Example 1.21. Based on the distribution functions,

x

x

P
 (

x)
F

 (
x)

Density Function

Distribution Function

Figure 1.6. Distribution and density functions in Example 1.22.
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one might conclude that the distributions are very similar; however, the density functions
indicate important differences in the distributions. �

In giving expressions for density functions, it is often convenient to give the value of the
density function, p(x), only for those values of x for which the value is nonzero. For instance,
in the previous example, the density function might be given as p(x) = 6(2 − x)(x − 1),
1 < x < 2; this statement implies that for x ≤ 1 or x ≥ 2, p(x) = 0.

Discrete distributions
A second important special case occurs when F is a step function. Suppose that F has
jumps at x1, x2, . . . . In this case,

F(x) =
∑

j :x j ≤x

p(x j )

where p(x j ) is the size of the jump of F at x j . Hence,

p(x j ) = Pr(X = x j ), j = 1, . . . .

In this case, X is a discrete random variable and the function p will be called the frequency
function of the distribution. The set of possible values of X is given by X = {x1, x2, . . . ,}.

Example 1.23 (Binomial distribution). Let X denote the random variable defined in Exam-
ple 1.4. Then X = {0, 1, . . . , n} and

Pr(X = x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n;

here 0 < θ < 1 is a constant. Hence, the distribution function of X is given by

F(x) =
∑

j=0,1,...,n; j≤x

(
n

j

)
θ j (1 − θ )n− j

so that X is a discrete random variable with frequency function(
n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n. �

A random variable can be neither discrete nor absolutely continuous.

Example 1.24 (A distribution function with discrete and absolutely continuous compo-
nents). Let X denote a real-valued random variable such that, for any A ⊂ R,

Pr(X ∈ A) = 1

2
I{0∈A} + 1

2

∫
A∩(0,∞)

exp(−t) dt.

Thus, X is equal to 0 with probability 1/2; if X is not equal to 0 then X is distributed like
a random variable with probability function∫

A∩(0,∞)
exp(−t) dt.
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−
x

F
 (

x)

Figure 1.7. Distribution function in Example 1.24.

The distribution function of X is given by

F(x) =



0 if x < 0
1
2 if x = 0
1 − exp(−x)/2 if 0 < x < ∞

.

Recall that this distribution was considered in Example 1.19; a plot of F is given in
Figure 1.7.

Note that, although F is clearly not continuous, it is continuous aside from the jump
at x = 0 and it can be written as a weighted sum of an absolutely continuous distribution
function and a distribution function based on a discrete distribution. Let

Fd(x) =
{

0 if x < 0
1 if 0 ≤ x

and

Fac(x) =
{

0 if x < 0
1 − exp(−x) if 0 ≤ x

.

Note that Fd is a step function, Fac is absolutely continuous, and

F = 1

2
Fd + 1

2
Fac.

Hence, the distribution of X is not absolutely continuous, since F cannot be written
as an integral and, since F is not a step function, the distribution of X is not discrete. In
these cases, we say that X has a mixed distribution, with discrete and absolutely continuous
components. �
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Random vectors
The concepts of discrete and absolutely continuous distributions can be applied to a vector-
valued random variable X = (X1, . . . , Xd ) as well. If the distribution function F of X may
be written

F(x1, . . . , xd ) =
∫ xd

−∞
· · ·

∫ x1

−∞
p(t) dt

for some function p on Rd , then X is said to have an absolutely continuous distribution
with density p. If the range of X is a countable set X with

p(x) = Pr(X = x), x ∈ X ,

then X is said to have a discrete distribution with frequency function p.

Example 1.25 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with the uniform distribution on (0, 1)3, as defined in Example 1.7. Then,
for any A ∈ R3

Pr(X ∈ A) =
∫ ∫ ∫

A∩(0,1)3
dt1 dt2 dt3.

Hence, X has an absolutely continuous distribution with density function

p(x) = 1, x ∈ (0, 1)3. �

Example 1.26 (A discrete random vector). Let X = (X1, X2) denote a two-dimensional
random vector such that

Pr(X = (0, 0)) = 1

2
, Pr(X = (1, 0)) = 1

4
, and Pr(X = (0, 1)) = 1

4
.

Then X is a discrete random variable with range {(0, 0), (0, 1), (1, 0)} and frequency function

p(x1, x2) = 1

2
− (x1 + x2)

4
, x1 = 0, 1; x2 = 0, 1. �

1.7 Integration with Respect to a Distribution Function

Integrals with respect to distribution functions, that is, integrals of the form∫
Rd

g(x) d F(x),

play a central role in distribution theory. For readers familiar with the general theory of
integration with respect to a measure, the definition and properties of such an integral
follow from noting that F defines a measure on Rd . In this section, a brief description of
such integrals is given for the case in which X is a real-valued random variable; further
details and references are given in Appendix 1.

Suppose X is a real-valued random variable with distribution function F . Then we expect
that

F(x) =
∫ x

−∞
d F(t);
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more generally, for any set A ⊂ R, we should have

Pr(X ∈ A) =
∫

A
d F(x).

It is also natural to expect that any definition of an integral satisfies certain linearity and
nonnegativity conditions:∫

R
[a1g1(x) + a2g2(x)] d F(x) = a1

∫
R

g1(x) d F(x) + a2

∫
R

g2(x) d F(x)

and ∫
R

g(x) d F(x) ≥ 0 whenever g(x) ≥ 0 for all x .

These properties, together with a continuity property, can be used to give a precise definition
to integrals of the form ∫

R
g(x) d F(x);

see Appendix 1 for further details.
Although this type of integral can be computed for any distribution function F , the

computation is particularly simple if the distribution is either absolutely continuous or
discrete. Suppose X has an absolutely continuous distribution with density p. Then

F(x) =
∫ x

−∞
d F(t) =

∫ x

−∞
p(t) dt ;

this result generalizes to ∫ ∞

−∞
g(x) d F(x) =

∫ ∞

−∞
g(x)p(x) dx,

provided that the integrals exist. If X has discrete distribution with frequency function p, a
similar result holds, so that ∫ ∞

−∞
g(x) d F(x) =

∑
x∈X

g(x)p(x),

provided that the sum exists.
Thus, if attention is restricted to random variables with either an absolutely continuous

or discrete distribution, then

∫ ∞

−∞
g(x) d F(x) =




∫ ∞
−∞ g(x)p(x)dx if X is absolutely continuous

∑
x∈X g(x)p(x) if X is discrete

; (1.2)

here p represents either the density function or the frequency function of the distribution.
The case in which the distribution is neither absolutely continuous nor discrete may be
viewed as an extension of these results. If X is a random vector taking values in Rd , then
(1.2) generalizes in the obvious manner:

∫ ∞

−∞
g(x) d F(x) =




∫
Rd g(x)p(x) dx if X is absolutely continuous

∑
x∈X g(x)p(x) if X is discrete

.
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1.8 Expectation

Let X denote a real-valued random variable with distribution function F . The expected
value of X , denoted by E(X ), is given by

E(X ) =
∫ ∞

−∞
x d F(x),

provided that the integral exists. It follows from the discussion in the previous section that,
if X has a discrete distribution, taking the values x1, x2, . . . with frequency function p, then

E(X ) =
∑

j

x j p(x j ).

If X has an absolutely continuous distribution with density p, then

E(X ) =
∫ ∞

−∞
x p(x) dx .

There are three possibilities for an expected value E(X ): E(X ) < ∞, E(X ) = ±∞, or
E(X ) might not exist. In general, E(X ) fails to exist if the integral∫ ∞

−∞
x d F(x)

fails to exist; see Appendix 1. Hence, the expressions for E(X ) given above are valid only
if the corresponding sum or integral exists. If X is nonnegative, then E(X ) always exists,
although we may have E(X ) = ∞; in general, E(X ) exists and is finite provided that

E(|X |) =
∫ ∞

−∞
|x | d F(x) < ∞.

Example 1.27 (Binomial distribution). Let X denote a random variable with a binomial
distribution with parameters n and θ , as described in Example 1.4. Then X is a discrete
random variable with frequency function

p(x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, . . . , n

so that

E(X ) =
n∑

x=0

x

(
n

x

)
θ x (1 − θ )n−x = nθ. �

Example 1.28 (Pareto distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

p(x) = θx−(θ+1), x ≥ 1,

where θ is a positive constant; this is called a Pareto distribution with parameter θ . Then

E(X ) =
∫ ∞

0
xθx−(θ+1) dx = θ

∫ ∞

0
x−θ dx .

Hence, if θ ≤ 1, E(X ) = ∞; if θ > 1, then

E(X ) = θ

θ − 1
. �
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Example 1.29 (Cauchy distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

p(x) = 1

π (1 + x2)
, − ∞ < x < ∞;

this is a standard Cauchy distribution. If E(X ) exists, it must be equal to∫ ∞

−∞

x

π (1 + x2)
dx =

∫ ∞

0

x

π (1 + x2)
dx −

∫ ∞

0

x

π (1 + x2)
dx .

Since ∫ ∞

0

x

π (1 + x2)
dx = ∞,

it follows that E(X ) does not exist. �

Now suppose that X is a random vector X = (X1, . . . , Xd ), where X j , j = 1, . . . , d, is
real-valued. Then E(X ) is simply the vector (E(X1), . . . , E(Xd )).

Example 1.30 (Uniform distribution on the unit cube). Let X = (X1, X2, X3) denote a
three-dimensional random vector with the uniform distribution on (0, 1)3; see Examples 1.7
and 1.25. Then X has an absolutely continuous distribution with density function

p(x) = 1, x ∈ (0, 1)3.

It follows that

E(X1) =
∫ 1

0
x dx = 1

2
.

Similarly, E(X2) = E(X3) = 1/2. It follows that E(X ) = (1/2, 1/2, 1/2). �

Expectation of a function of a random variable
Let X denote a random variable, possibly vector-valued, and let g denote a real-valued
function defined on X , the range of X . Let Y = g(X ) and let H denote the distribution
function of Y . Then

E(Y ) =
∫ ∞

−∞
y d H (y)

provided that the integral exists. An important result is that we may also compute E(Y ) by

E(Y ) =
∫
X

g(x) d F(x) (1.3)

so that the probability distribution of Y is not needed to compute its expected value.
When X has a discrete distribution, with frequency function p, proof of this result is

straightforward. Let f denote the frequency function of Y . Then

E(Y ) =
∑

y

y f (y).

Note that

f (y) = Pr(Y = y) = Pr(X ∈ {x: g(x) = y}) =
∑

x :g(x)=y

p(x).



P1: JZP
052184472Xc01 CUNY148/Severini May 24, 2005 17:52

30 Properties of Probability Distributions

Hence,

E(Y ) =
∑

y

∑
x :g(x)=y

yp(x) =
∑

y

∑
x :g(x)=y

g(x)p(x).

Since every x value in the range of X leads to some value y in the range of Y , it follows that

E(Y ) =
∑

x

g(x)p(x).

In the general case, the result is simply the change-of-variable formula for integration, as
discussed in Appendix 1; see, for example, Billingsley (1995, Theorem 16.13) for a proof.

The result (1.3) is usually expressed without reference to the random variable Y :

E[g(X )] =
∫
X

g(x) d F(x)

provided that the integral exists. Note that it causes no problem if g(x) is undefined for x ∈ A
for some set A such that Pr(X ∈ A) = 0; this set can simply be omitted when computing
the expected value.

Example 1.31 (Standard exponential distribution). Let X denote a random variable with
a standard exponential distribution; see Example 1.16. Then X has density function

p(x) = exp(−x), 0 < x < ∞.

Consider the expected value of Xr where r > 0 is a constant. If E(Xr ) exists, it is given by∫ ∞

0
xr exp(−x) dx,

which is simply the well-known gamma function evaluated at r + 1, �(r + 1); the gamma
function is discussed in detail in Section 10.2. �

Expected values of the form E(Xr ) for r = 1, 2, . . . are called the moments of the dis-
tribution or the moments of X . Thus, the moments of the standard exponential distribution
are r !, r = 1, 2, . . . . Moments will be discussed in detail in Chapter 4.

Example 1.32 (Uniform distribution on the unit cube). Let X denote a three-dimensional
random vector with the uniform distribution on (0, 1)3; see Example 1.30. Let Y = X1 X2 X3,
where X = (X1, X2, X3). Then

E(Y ) =
∫ 1

0

∫ 1

0

∫ 1

0
x1x2x3 dx1 dx2 dx3 = 1

8
. �

Given the correspondence between E[g(X )] and integrals of the form∫
X

g(x) d F(x),

many important properties of expectation may be derived directly from the corresponding
properties of integrals, given in Appendix 1. Theorem 1.10 contains a number of these; the
proof follows immediately from the results in Appendix 1 and, hence, it is omitted.
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Theorem 1.10. Let X denote a random variable with range X .
(i) If g is a nonnegative real-valued function onX , then E[g(X )] ≥ 0 and E[g(X )] = 0

if and only if Pr[g(X ) = 0] = 1.
(ii) If g is the constant function identically equal to c then E[g(X )] = c.

(iii) If g1, g2, . . . , gm are real-valued functions on X such that E[|g j (X )|] < ∞,
j = 1, . . . , m, then

E[g1(X ) + · · · + gm(X )] = E[g1(X )] + · · · + E[gm(X )].

(iv) Let g1, g2, . . . denote an increasing sequence of nonnegative, real-valued functions
on X with limit g. Then

lim
n→∞ E[gn(X )] = E[g(X )].

(v) Let g1, g2, . . . denote a sequence of nonnegative, real-valued functions on X . Then

E[lim inf
n→∞ gn(X )] ≤ lim inf

n→∞ E[gn(X )].

(vi) Let g1, g2, . . . denote a sequence of real-valued functions on X . Suppose there exist
real-valued functions g and G, defined on X , such that, with probability 1,

|gn(X )| ≤ G(X ), n = 1, 2, . . . ,

and

lim
n→∞ gn(X ) = g(X ).

If E[G(X )] < ∞, then

lim
n→∞ E[gn(X )] = E[g(X )].

An important property of expectation is that the expectation operator E(·) completely
defines a probability distribution. A formal statement of this fact is given in the following
theorem.

Theorem 1.11. Let X and Y denote random variables.

E[g(X )] = E[g(Y )]

for all bounded, continuous, real-valued functions g, if and only if X and Y have the same
probability distribution.

Proof. If X and Y have the same distribution, then clearly E[g(X )] = E[g(Y )] for all
functions g for which the expectations exist. Since these expectations exist for bounded g,
the first part of the result follows.

Now suppose that E[g(X )] = E[g(Y )] for all bounded continuous g. We will show that
in this case X and Y have the same distribution. Note that we may assume that X and Y have
the same range, neglecting sets with probability 0, for if they do not, it is easy to construct
a function g for which the expected values differ.

The proof is based on the following idea. Note that the distribution function of a random
variable X can be written as the expected value of an indicator function:

Pr(X ≤ z) = E[I{X≤z}].
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The function g(x) = I{x≤z} is bounded, but it is not continuous; however, it can be approx-
imated by a bounded, continuous function to arbitrary accuracy.

First suppose that X and Y are real-valued random variables. Fix a real number z and,
for ε > 0, define

gε(t) ≡ gε(t ; z) =
{ 1 if t ≤ z

1 − (t − z)/ε if z < t < z + ε

0 if t ≥ z + ε

;

clearly gε is bounded and continuous and

E[gε(X )] = FX (z) +
∫ z+ε

z
[1 − (x − z)/ε] d FX (x)

where FX denotes the distribution function of X . Using integration-by-parts,

E[gε(X )] = 1

ε

∫ z+ε

z
FX (x) dx .

Hence, for all ε > 0,

1

ε

∫ z+ε

z
FX (x) dx = 1

ε

∫ z+ε

z
FY (y) dy

or, equivalently,

FX (z) − FY (z) = 1

ε

∫ z+ε

z
[FX (x) − FX (z)] dx − 1

ε

∫ z+ε

z
[FY (y) − FY (z)] dy.

Since FX and FY are non-decreasing,

|FX (z) − FY (z)| = 1

ε

∫ z+ε

z
[FX (x) − FX (z)] dx + 1

ε

∫ z+ε

z
[FY (y) − FY (z)] dy,

and, hence, for all ε > 0,

|FX (z) − FY (z)| ≤ [FX (z + ε) − FX (z)] + [FY (z + ε) − FY (z)].

Since FX and FY are right-continuous, it follows that FX (z) = FY (z); since z is arbitrary, it
follows that FX = FY and, hence, that X and Y have the same distribution.

The proof for the case in which X and Y are vectors is very similar. Suppose X and Y
take values in a subset of Rd . For a given value of z ∈ Rd , let

A = (−∞, z1] × · · · × (−∞, z p]

and ρ(t) be the Euclidean distance from t to A. For ε > 0, define

gε(t) ≡ gε(t ; z) =



1 if ρ(t) = 0
1 − ρ(t)/ε if 0 < ρ(t) < ε

0 if ρ(t) ≥ ε

;

clearly g is bounded; since ρ is a continuous function on Rp, g is continuous as well.
Let X0 = ρ(X ) and Y0 = ρ(Y ); then X0 and Y0 are real-valued random variables, with

distribution functions FX0 and FY0 , respectively. Note that

E[gε(X )] = FX (z) +
∫ ε

0
[1 − x/ε] d FX0 (x)
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so that

FX (z) − FY (z) =
∫ ε

0
[1 − x/ε] d FX0 (x) −

∫ ε

0
[1 − y/ε] d FY0 (y).

Using integration-by-parts,

FX (z) − FY (z) = 1

ε

∫ ε

0
[FX0 (x) − FX0 (0)] dx + 1

ε

∫ ε

0
[FY0 (y) − FY0 (0)] dy.

The result now follows as in the scalar random variable case.

Inequalities
The following theorems give some useful inequalities regarding expectations; the proofs of
Theorems 1.12–1.14 are left as exercises.

Theorem 1.12 (Cauchy-Schwarz inequality). Let X denote a random variable with range
X and let g1, g2 denote real-valued functions on X . Then

E[|g1(X )g2(X )|]2 ≤ E[g1(X )2]E[g2(X )2]

with equality if and only if either E[g j (X )2] = 0 for some j = 1, 2 or

Pr[g1(X ) = cg2(X )] = 1

for some real-valued nonzero constant c.

Theorem 1.13 (Jensen’s inequality). Let X denote a real-valued random variable with
range X and let g denote a real-valued convex function defined on some interval containing
X such that E(|X |) < ∞ and E[|g(X )|] < ∞. Then

g[E(X )] ≤ E[g(X )].

Theorem 1.14 (Markov’s inequality). Let X be a nonnegative, real-valued random vari-
able. Then, for all a > 0,

Pr(X ≥ a) ≤ 1

a
E(X ).

Theorem 1.15 (Hölder inequality). Let X denote a random variable with range X and let
g1, g2 denote real-valued functions on X . Let p > 1 and q > 1 denote real numbers such
that 1/p + 1/q = 1. Then

E(|g1(X )g2(X )|) ≤ E(|g1(X )|p)
1
p E(|g2(X )|q )

1
q .

The proof is based on the following lemma.

Lemma 1.1. Let a, b, α, β denote positive real numbers such that α + β = 1.
(i) aα bβ ≤ αa + βb.

(ii) If p > 1 and q > 1 satisfy 1/p + 1/q = 1, then

ab ≤ a p

p
+ bq

q
.
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Proof. Consider the function f (x) = − log(x), x > 0. Then

f ′′(x) = 1

x2
> 0, x > 0

so that f is convex. It follows that

f (αa + βb) ≤ α f (a) + β f (b);

that is,

− log(αa + βb) ≤ −[α log(a) + β log(b)].

Taking the exponential function of both sides of this inequality yields

αa + βb ≥ aαbβ,

proving part (i).
Consider part (ii). Let α = 1/p and β = 1/q. Then, by part (i) of the theorem applied

to a p and bq ,

ab = a pαbqβ ≤ αa p + βbq ,

proving part (ii).

Proof of Theorem 1.15. The result is clearly true if E(|g1(X )|p) = ∞ or E(|g2(X )|q ) = ∞
so we may assume that E(|g1(X )|p) < ∞ and E(|g2(X )|q ) < ∞.

If E(|g1(X )|p) = 0 then |g1(X )| = 0 with probability 1, so that E(|g1(X )g2(X )|) = 0
and the result holds; similarly, the result holds if E(|g1(X )|q ) = 0. Hence, assume that
E(|g1(X )|p) > 0 and E(|g1(X )|q ) > 0.

Applying part (ii) of Lemma 1.1 to

|g1(X )|
E(|g1(X )|p)

1
p

and
|g2(X )|

E(|g2(X )|q )
1
q

,

it follows that

|g1(X )||g2(X )|
E(|g1(X )|p)

1
p E(|g2(X )|q )

1
q

≤ |g1(X )|p

pE(|g1(X )|p)
+ |g2(X )|q

qE(|g2(X )q )
.

Taking expectations of both sides of this inequality shows that

E(|g1(X )g2(X )|)
E(|g1(X )|p)

1
p E(|g2(X )|q )

1
q

≤ 1

p
+ 1

q
= 1;

the result follows.

1.9 Exercises

In problems 1 through 6, let � and P denote the sample space and probability function, respectively,
of an experiment and let A1, A2, and A3 denote events.

1.1 Show that

P(A1 ∪ A2) = P(A1) + P(A2) − P(A1 ∩ A2).
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1.2 Let A1 \ A2 denote the elements of A1 that are not in A2.
(a) Suppose A2 ⊂ A1. Show that

P(A1 \ A2) = P(A1) − P(A2).

(b) Suppose that A2 is not necessarily a subset of A1. Does

P(A1 \ A2) = P(A1) − P(A2)

still hold?

1.3 Let A1�A2 denote the symmetric difference of A1 and A2, given by

A1�A2 = (A1 \ A2) ∪ (A2 \ A1).

Give an expression for P(A1�A2) in terms of P(A1), P(A2), and P(A1 ∩ A2).

1.4 Show that

P(A1) ≤ P(A1 ∩ A2) + P(Ac
2).

1.5 Show that
(a) P(A1 ∪ A2) ≤ P(A1) + P(A2)

(b) P(A1 ∩ A2) ≥ P(A1) + P(A2) − 1.

1.6 Find an expression for Pr(A1 ∪ A2 ∪ A3) in terms of the probabilities of A1, A2, and A3 and
intersections of these sets.

1.7 Show that (P3) implies (P2).

1.8 Let � and P denote the sample space and probability function, respectively, of an experiment
and let A1, A2, . . . denote events. Show that

Pr

( ∞⋃
n=1

An

)
≤

∞∑
n=1

P(An).

1.9 Consider an experiment with sample space � = [0, 1]. Let D(·) denote a function defined as
follows: for a given subset of �, A,

D(A) = sup
s,t∈A

|s − t |.

Is D a probability function on �?

1.10 Let X denote a real-valued random variable with distribution function F . Call x a support point
of the distribution if

F(x + ε) − F(x − ε) > 0 for all ε > 0.

Let X0 denote the set of all support points of the distribution. Show that X0 is identical to the
minimal support of the distribution, as defined in this chapter.

1.11 Prove Corollary 1.1.

1.12 Let X1 and X2 denote real-valued random variables with distribution functions F1 and F2,
respectively. Show that, if

F1(b) − F1(a) = F2(b) − F2(a)

for all −∞ < a < b < ∞, then X1 and X2 have the same distribution.

1.13 Let X denote a real-valued random variable with distribution function F such that F(x) = 0 for
x ≤ 0. Let

f (x) =
{ 1/x if x > 0

0 otherwise

and let Y = f (X ). Find the distribution function of Y in terms of F .
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1.14 Let F1 and F2 denote distribution functions on R. Which of the following functions is a distri-
bution function?
(a) F(x) = αF1(x) + (1 − α)F2(x), x ∈ R, where α is a given constant, 0 ≤ α ≤ 1

(b) F(x) = F1(x)F2(x), x ∈ R

(c) F(x) = 1 − F1(−x), x ∈ R.

1.15 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

p(x) = 2x

(1 + x2)2
, 0 < x < ∞.

Find the distribution function of X .

1.16 Let X denote a real-valued random variable with a discrete distribution with frequency function

p(x) = 1

2x
, x = 1, 2, . . . .

Find the distribution function of X .

1.17 Let X1, X2, . . . , Xn denote independent, identically distributed random variables and let F
denote the distribution function of X1. Define

F̂(t) = 1

n

n∑
j=1

I{X j ≤t}, − ∞ < t < ∞.

Hence, this is a random function on R. For example, if � denotes the sample space of the
underlying experiment, then, for each t ∈ R,

F̂(t)(ω) = 1

n

n∑
j=1

I{X j (ω)≤t}, ω ∈ �.

Show that F̂(·) is a genuine distribution function. That is, for each ω ∈ �, show that F̂(·)(ω)
satisfies (DF1)–(DF3).

1.18 Let X denote a nonnegative, real-valued random variable with an absolutely continuous distri-
bution. Let F denote the distribution function of X and let p denote the corresponding density
function. The hazard function of the distribution is given by

H (x) = p(x)

1 − F(x)
, x > 0.

(a) Give an expression for F in terms of H .

(b) Find the distribution function corresponding to H (x) = λ0 and H (x) = λ0 + λ1x , where
λ0 and λ1 are constants.

1.19 Let X denote a real-valued random variable with a Pareto distribution, as described in Exam-
ple 1.28. Find the quantile function of X .

1.20 Let X denote a real-valued random variable and let Q denote the quantile function of X . Show
that Q(.5) is a median of X .

1.21 Let X1 and X2 denote real-valued random variables such that, for j = 1, 2, the distribution of
X j has a unique median m j . Suppose that Pr(X1 > X2) > 1/2. Does it follow that m1 ≥ m2?

1.22 Let F1 and F2 denote distribution functions for absolutely continuous distributions on the real
line and let p1 and p2 denote the corresponding density functions. Which of the following
functions is a density function?
(a) αp1(αx) where α > 0

(b) pα
1 p1−α

2 where 0 ≤ α ≤ 1

(c) αp1 + (1 − α)p2 where 0 ≤ α ≤ 1
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1.23 Prove the Cauchy-Schwarz inequality.
Hint: E{[g1(X ) − tg2(X )]2} ≥ 0 for all t . Find the minimum of this expression.

1.24 Prove Jensen’s inequality.
Hint: For a convex function g, show that there exists a constant c such that

g(x) ≥ g(E(X )) + c(x − E(X ))

for all x ∈ R.

1.25 Prove Markov’s inequality.

1.26 Let X denote a real-valued random variable with distribution function F ; assume that E(|X |) <

∞. Show that

E(X ) =
∫ ∞

0
(1 − F(x)) dx −

∫ 0

−∞
F(x) dx

=
∫ ∞

0
[1 − F(x) − F(−x)] dx .

1.27 Let X denote a real-valued random variable with distribution function F . Find the distribution
functions of |X | and X+, where

X+ =
{

X if X > 0
0 otherwise

.

1.28 Let L2 denote the set of real-valued random variables X satisfying E(X 2) < ∞. Show that
L2 is a linear space: if X1 and X2 are elements of L2 and a and b are scalar constants, then
a X1 + bX2 ∈ L2.

1.29 Consider the space of random variables L2 described in Exercise 1.28. Let 0 denote the random
variable identically equal to 0 and, for X ∈ L2, write X = 0 if Pr(X = 0) = 1. Define a function
|| · || on L2 as follows: for X ∈ L2, ||X ||2 = E(X 2). Show that || · || defines a norm on L2: for
all X1 and X2 in L2 and all scalar constants a,
(a) ||X1|| ≥ 0 and ||X1|| = 0 if and only if X1 = 0

(b) ||X1 + X2|| ≤ ||X1|| + ||X2||
(c) ||a X || = |a| ||X ||

1.30 Let X denote a real-valued random variable and suppose that the distribution of X is symmetric
about 0; that is, suppose that X and −X have the same distribution. Show that, for r = 1, 3, . . . ,

E(Xr ) = 0 provided that E(Xr ) exists.

1.31 Let X be real-valued random variable with a discrete distribution with frequency function

p(x) = λx exp(−λ)/x!, x = 0, 1, 2, . . .

where λ > 0; this is a Poisson distribution with parameter λ. Find E(X ).

1.32 Let X denote a real-valued random variable with an absolutely continuous distribution with
density αxα−1, 0 < x < 1. Find E[Xr ].

1.33 Let X denote a real-valued random variable with quantile function Q and assume that E(|X |) <

∞. Show that

E(X ) =
∫ 1

0
Q(t) dt. (1.3)

Let g denote a function defined on the range of X such that E[|g(X )|] < ∞. Find an expression
for E[g(X )] similar to (1.4).

1.34 Let X denote a real-valued, non-negative random variable with quantile function Q; assume
that E(X ) < ∞. Fix 0 < p < 1 and let x p = Q(p) denote the pth quantile of the distribution.
Show that

x p ≤ 1

1 − p
E(X ).
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1.35 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

p(x) = 1√
(2π )

exp

(
−1

2
x2

)
, − ∞ < x < ∞.

Let g : R → R denote a differentiable function such that E[|g′(X )|] < ∞. Show that

E[g′(X )] = E[Xg(X )].

1.10 Suggestions for Further Reading

The topics covered in this chapter are standard topics in probability theory and are covered in many
books on probability and statistics. See, for example, Ash (1972), Billingsley (1995), Karr (1993),
and Port (1994) for rigorous discussion of these topics. Capinski and Kopp (2004) has a particularly
accessible, yet rigorous, treatment of measure theory. Casella and Berger (2002), Ross (1995), Snell
(1988), and Woodroofe (1975) contain good introductory treatments. Theorem 1.11 is based on
Theorem 1.2 of Billingsley (1968).
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2

Conditional Distributions and Expectation

2.1 Introduction

Consider an experiment with sample space � and let P denote a probability function on �

so that a given event A ⊂ � has a probability P(A). Now suppose we are told that a certain
event B has occurred. This information affects our probabilities for all other events since
now we should only consider those sample points ω that are in B; hence, the probability
P(A) must be updated to the conditional probability P(A|B). From elementary probability
theory, we know that

P(A|B) = P(A ∩ B)

P(B)
,

provided that P(B) > 0.
In a similar manner, we can consider conditional probabilities based on random variables.

Let (X, Y ) denote a random vector. Then the conditional probability that X ∈ A given Y ∈ B
is given by

Pr(X ∈ A|Y ∈ B) = Pr(X ∈ A ∩ Y ∈ B)

Pr(Y ∈ B)
provided that Pr(Y ∈ B) > 0.

In this chapter, we extend these ideas in order to define the conditional distribution and
conditional expectation of one random variable given another. Conditioning of this type
represents the introduction of additional information into a probability model and, thus,
plays a central role in many areas of statistics, including estimation theory, prediction, and
the analysis of models for dependent data.

2.2 Marginal Distributions and Independence

Consider a random vector of the form (X, Y ), where each of X and Y may be a vector
and suppose that the range of (X, Y ) is of the form X × Y so that X ∈ X and Y ∈ Y . The
probability distribution of X when considered alone, called the marginal distribution of X ,
is given by

Pr(X ∈ A) = Pr(X ∈ A, Y ∈ Y), A ⊂ X .

Let F denote the distribution function of (X, Y ). Then

Pr(X ∈ A) =
∫

A×Y
d F(x, y).

39
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Let FX denote the distribution function of the marginal distribution of X . Clearly, FX

and F are related. For instance, for any A ⊂ X ,

Pr(X ∈ A) =
∫

A
d FX (x).

Hence, FX must satisfy ∫
A

d FX (x) =
∫

A×Y
d F(x, y)

for all A ⊂ X .
The cases in which (X, Y ) has either an absolutely continuous or a discrete distribution

are particularly easy to handle.

Lemma 2.1. Consider a random vector (X, Y ), where X is d-dimensional and Y is q-
dimensional and let X × Y denote the range of (X, Y ).

(i) Let F(x1, . . . , xd , y1, . . . , yq ) denote the distribution function of (X, Y ). Then X
has distribution function

FX (x1, . . . , xd ) = F(x1, . . . , xd , ∞, . . . , ∞)

≡ lim
y1→∞ · · · lim

yq→∞ F(x1, . . . , xd , y1, . . . , yq ).

(ii) If (X, Y ) has an absolutely continuous distribution with density function p(x, y)
then the marginal distribution of X is absolutely continuous with density function

pX (x) =
∫

Rq
p(x, y)dy, x ∈ Rd

(iii) If (X, Y ) has a discrete distribution with frequency function p(x, y), then the
marginal distribution of X is discrete with frequency function of X given by

pX (x) =
∑
y∈Y

p(x, y), x ∈ X .

Proof. Part (i) follows from the fact that

Pr(X1 ≤ x1, . . . , Xd ≤ xd ) = Pr(X1 ≤ x1, . . . , Xd ≤ xd , Y1 < ∞, . . . , Yq < ∞).

Let A be a subset of the range of X . Then, by Fubini’s Theorem (see Appendix 1),

Pr(X ∈ A) =
∫

A

∫
Rq

p(x, y) dy dx ≡
∫

A
pX (x) dx,

proving part (ii). Part (iii) follows in a similar manner.

Example 2.1 (Bivariate distribution). Suppose that X and Y are both real-valued and that
(X, Y ) has an absolutely continuous distribution with density function

p(x, y) = 6(1 − x − y), x > 0, y > 0, x + y < 1.
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Then the marginal density function of X is given by

pX (x) = 6
∫ ∞

0
(1 − x − y)I{x+y<1} dy

= 6
∫ 1−x

0
(1 − x − y) dy = 3(1 − x)2, 0 < x < 1.

Since p(x, y) is symmetric in x and y, the marginal density of Y has the same form. �

Example 2.2 (Multinomial distribution). Let X = (X1, . . . , Xm) denote a random vector
with a discrete distribution with frequency function

p(x1, . . . , xm) =
(

n

x1, x2, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m ,

for x j = 0, 1, . . . , n, j = 1, 2, . . . , m,
∑m

j=1 x j = n; here θ1, . . . , θm are nonnegative con-
stants satisfying θ1 + · · · + θm = 1. This is called the multinomial distribution with param-
eters n and (θ1, . . . , θm). Note that(

n

x1, x2, . . . , xm

)
= n!

x1!x2! · · · xm!
.

Consider the marginal distribution of X1. This distribution has frequency function

pX1 (x1)

=
n∑

(x2,...,xm ):
∑m

j=2 x j =n−x1

p(x1, . . . , xm−1, j)

=
(

n

x1

)
θ

x1
1

n∑
(x2,...,xm ):

∑m
j=2 x j =n−x1

(
n − x1

x2, . . . , xm

)
θ

x2
2 · · · θ xm

m

=
(

n

x1

)
θ

x1
1 (1 − θ1)n−x1

n∑
(x2,...,xm ):

∑m
j=2 x j =n−x1

(
n − x1

x2, . . . , xm

) (
θ2

1 − θ1

)x2

· · ·
(

θm

1 − θ1

)xm

=
(

n

x1

)
θ

x1
1 (1 − θ1)n−x1 .

Hence, the marginal distribution of X1 is a binomial distribution with parameters
n and θ1. �

Example 2.3 (A distribution that is neither discrete nor absolutely continuous). Let
(X, Y ) denote a two-dimensional random vector with range (0, ∞) × {1, 2} such that, for
any set A ⊂ (0, ∞) and y = 1, 2,

Pr(X ∈ A, Y = y) = 1

2

∫
A

y exp(−yx) dx .

Thus, the distribution of (X, Y ) is neither discrete nor absolutely continuous.
The marginal distribution of X has distribution function

FX (x) = Pr(X ≤ x) = Pr(X ≤ x, Y = 1) + Pr(X ≤ x, Y = 2)

= 1 − 1

2
[exp(−x) + exp(−2x)], 0 < x < ∞.
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This is an absolutely continuous distribution with density function

1

2
[exp(−x) + 2 exp(−2x)].

Since, for y = 1, 2,

Pr(Y = y) = 1

2

∫ ∞

0
y exp(−yx) dx = 1

2
,

it follows that Y has a discrete distribution with frequency function 1/2, y = 1, 2. �

Independence
Consider a random vector (X, Y ) with range X × Y . We say X and Y are independent if for
any A ⊂ X and B ⊂ Y , the events X ∈ A and Y ∈ B are independent events in the usual
sense of elementary probability theory; that is, if

Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B).

Independence may easily be characterized in terms of either distribution functions or
expected values.

Theorem 2.1. Let (X, Y ) denote a random vector with range X × Y and distribution func-
tion F. Let FX and FY denote the marginal distribution functions of X and Y, respectively.

(i) X and Y are independent if and only if for all x, y

F(x, y) = FX (x)FY (y).

(ii) X and Y are independent if and only if for all bounded functions g1 : X → R and
g2 : Y → R

E[g1(X )g2(Y )] = E[g1(X )]E[g2(Y )].

Proof. Suppose X and Y are independent. Let m denote the dimension of X and let n
denote the dimension of Y . Fix x = (x1, . . . , xm) and y = (y1, . . . , yn); let

A = (−∞, x1] × · · · × (−∞, xm]

and

B = (−∞, y1] × · · · × (−∞, yn]

so that

F(x, y) = Pr(X ∈ A, Y ∈ B), FX (x) = Pr(X ∈ A), and FY (y) = Pr(Y ∈ B).

Then

F(x, y) = Pr(X ∈ A, Y ∈ B) = Pr(X ∈ A)Pr(Y ∈ B) = FX (x)FY (y).

Now suppose F(x, y) = FX (x)FY (y). Since FX (x)FY (y) is the distribution function of
a random variable (X1, Y1) such that X1 and Y1 are independent with marginal distribution
functions FX and FY , respectively, it follows that (X, Y ) has the same distribution as (X1, Y1);
that is, X and Y are independent. This proves part (i).
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If X and Y are independent,

E[g1(X )g2(Y )] =
∫
X×Y

g1(x)g2(y) d F(x, y) =
∫
X×Y

g1(x)g2(y) d FX (x) d FY (y)

= E[g1(X )]E[g2(Y )].

Conversely, suppose that E[g1(X )g2(Y )] = E[g1(X )]E[g2(Y )] for all bounded, real-valued,
g1, g2. Let d1 denote the dimension of X and let d2 denote the dimension of Y . Then, for a
given x ∈ Rd1 and a given y ∈ Rd2 , let g1 denote the indicator function for the set

(−∞, x1] × · · · × (−∞, xd1 ]

and let g2 denote the indicator function for the set

(−∞, y1] × · · · × (−∞, yd2 ];

here x = (x1, . . . , xd1 ) and y = (y1, . . . , yd2 ). Since E[g1(X )g2(Y )] = E[g1(X )]E[g2(Y )], it
follows that F(x, y) = FX (x)FY (y). Since x and y are arbitrary, X and Y are independent;
this proves part (ii).

For the case in which the distribution of (X, Y ) is either absolutely continuous or discrete,
it is straightforward to characterize independence in terms of either the density functions
or frequency functions of X and Y . The formal result is given in the following corollary to
Theorem 2.1; the proof is left as an exercise.

Corollary 2.1.
(i) Suppose (X, Y ) has an absolutely continuous distribution with density function p

and let pX and pY denote the marginal density functions of X and Y, respectively.
X and Y are independent if and only if

p(x, y) = pX (x) pY (y)

for almost all x, y.
(ii) Suppose (X, Y ) has a discrete distribution with frequency function p and let pX and

pY denote the marginal frequency functions of X and

p(x, y) = pX (x)pY (y)

for all x, y.

Example 2.4 (Bivariate distribution). Consider the distribution considered in Exam-
ple 2.1. The random vector (X, Y ) has an absolutely continuous distribution with density
function

p(x, y) = 6(1 − x − y), x > 0, y > 0, x + y < 1

and the marginal density of X is

pX (x) = 3(1 − x)2, 0 < x < 1;

the same argument used to derive pX may be used to show that the marginal density of Y
is also

pY (y) = 3(1 − y)2, 0 < y < 1.

Clearly, p �= pX pY so that X and Y are not independent. �



P1: JZP
052184472Xc02 CUNY148/Severini May 24, 2005 2:29

44 Conditional Distributions and Expectation

Independence of a sequence of random variables
Independence of a sequence of random variables may be defined in a similar manner.
Consider a sequence of random variables X1, X2, . . . , Xn any of which may be vector-
valued, with ranges X1,X2, . . . , respectively; we may view these random variables as the
components of a random vector. We say X1, X2, . . . , Xn are independent if for any sets
A1, A2, . . . , An , A j ⊂ X j , j = 1, . . . , n, the events X1 ∈ A1, . . . , Xn ∈ An are indepen-
dent so that

Pr(X1 ∈ A1, . . . , Xn ∈ An) = Pr(X1 ∈ A1) · · · Pr(Xn ∈ An).

Theorem 2.2 gives analogues of Theorem 2.1 and Corollary 2.1 in this setting; the proof
is left as an exercise.

Theorem 2.2. Let X1, . . . , Xn denote a sequence of random variables and let F denote
the distribution function of (X1, . . . , Xn). For each j = 1, . . . , n, let X j and Fj denote the
range and marginal distribution function, respectively, of X j .

(i) X1, . . . , Xn are independent if and only if for all x1, . . . , xn with x j ∈ Rd j , d j =
dim(X j ),

F(x1, . . . , xn) = F1(x1) · · · Fn(xn).

(ii) X1, X2, . . . , Xn are independent if and only if for any sequence of bounded, real-
valued functions g1, g2, . . . , gn, g j : X j → R, j = 1, . . . , n,

E[g1(X1)g2(X2) · · · gn(Xn)] = E[g1(X1)] · · · E[gn(Xn)].

(iii) Suppose (X1, . . . , Xn) has an absolutely continuous distribution with density func-
tion p. Let p j denote the marginal density function of X j , j = 1, . . . , n. Then
X1, . . . , Xn are independent if and only if

p(x1, . . . , xn) = p1(x1) · · · pn(xn)

for almost all x1, x2, . . . , xn.
(iv) Suppose (X1, . . . , Xn) has a discrete distribution with frequency function f . Let p j

denote the marginal frequency function of X j , j = 1, . . . , n. Then X1, . . . , Xn are
independent if and only if

p(x1, . . . , xn) = p1(x1) · · · pn(xn)

for all x1, x2, . . . , xn.

Example 2.5 (Uniform distribution on the unit cube). Let X = (X1, X2, X3) denote a
three-dimensional random vector with the uniform distribution on (0, 1)3; see Examples
1.7 and 1.25. Then X has an absolutely continuous distribution with density function

p(x1, x2, x3) = 1, x j ∈ (0, 1), j = 1, 2, 3.

The marginal density of X1 is given by

p1(x1) =
∫ 1

0

∫ 1

0
dx2 dx3 = 1, 0 < x1 < 1.

Clearly, X2 and X3 have the same marginal density. It follows that X1, X2, X3 are
independent. �
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Example 2.6 (Multinomial distribution). Let X = (X1, . . . , Xm) denote a random vector
with a multinomial distribution, as in Example 2.2. Then X has frequency function

p(x1, . . . , xm) =
(

n

x1, x2, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m ,

for x j = 0, 1, . . . , n, j = 1, . . . , m,
∑m

j=1 x j = n; here θ1, . . . , θm are nonnegative con-
stants satisfying θ1 + · · · + θm = 1.

According to Example 2.2, for j = 1, . . . , m, X j has a binomial distribution with param-
eters n and θ j so that X j has frequency function(

n

x j

)
θ

x j

j (1 − θ j )
n−x j , x j = 0, 1, . . . , n.

Suppose there exists a j = 1, 2, . . . , m such that 0 < θ j < 1; it then follows from part (iv)
of Theorem 2.2 that X1, X2, . . . , Xm are not independent. This is most easily seen by noting
that Pr(X j = 0) > 0 for all j = 1, 2, . . . , m, while

Pr(X1 = X2 = · · · = Xm = 0) = 0.

If all θ j are either 0 or 1 then X1, . . . , Xm are independent. To see this, suppose that
θ1 = 1 and θ2 = · · · = θm = 0. Then, with probability 1, X1 = n and X2 = · · · = Xm = 0.
Hence,

E[g1(X1) · · · gm(Xm)] = g1(n)g2(0) · · · gm(0) = E[g1(X1)] · · · E[gm(Xm)]

and independence follows from part (ii) of Theorem 2.2. �

Random variables X1, X2, . . . , Xn are said to be independent and identically distributed
if, in addition to being independent, each X j has the same marginal distribution. Thus, in
Example 2.5, X1, X2, X3 are independent and identically distributed. The assumption of
independent identically distributed random variables is often used in the specification of
the distribution of a vector (X1, X2, . . . , Xn).

Example 2.7 (Independent standard exponential random variables). Let X1, X2, . . . ,

Xn denote independent, identically distributed, real-valued random variables such that each
X j has a standard exponential distribution; see Example 1.16. Then the vector (X1, . . . , Xn)
has an absolutely continuous distribution with density function

p(x1, . . . , xn) =
n∏

j=1

exp(−x j ) = exp

(
−

n∑
j=1

x j

)
, x j > 0, j = 1, . . . , n. �

It is often necessary to refer to infinite sequences of random variables, particularly in
the development of certain large-sample approximations. An important result, beyond the
scope of this book, is that such a sequence can be defined in a logically consistent manner.
See, for example, Feller (1971, Chapter IV) or Billingsley (1995, Section 36). As might
be expected, technical issues, such as measurability of sets, become much more difficult in
this setting. An infinite sequence of random variables X1, X2, . . . is said to be independent
if each finite subset of {X1, X2, . . .} is independent.



P1: JZP
052184472Xc02 CUNY148/Severini May 24, 2005 2:29

46 Conditional Distributions and Expectation

2.3 Conditional Distributions

Consider random variables X and Y . Suppose that Y is a discrete random variable taking
the values 0 and 1 with probabilities θ and 1 − θ , respectively, where 0 < θ < 1. From
elementary probability theory we know that the conditional probability that X ∈ A given
that Y = y is given by

Pr(X ∈ A|Y = y) = Pr(X ∈ A, Y = y)

Pr(Y = y)
, (2.1)

provided that y = 0, 1 so that Pr(Y = y) > 0. Hence, for any set A, the conditional proba-
bility function Pr(X ∈ A|Y = y) satisfies the equation

Pr(X ∈ A) = Pr(X ∈ A, Y = 0) + Pr(X ∈ A, Y = 1)

= Pr(X ∈ A|Y = 0)Pr(Y = 0) + Pr(X ∈ A|Y = 1)Pr(Y = 1)

=
∫ ∞

−∞
Pr(X ∈ A|Y = y) d FY (y).

Furthermore, for any subset B of {0, 1},
Pr(X ∈ A, Y ∈ B) =

∑
y∈B

Pr(X ∈ A, Y = y) =
∑
y∈B

Pr(X ∈ A|Y = y)Pr(Y = y)

=
∫

B
Pr(X ∈ A|Y = y) d FY (y). (2.2)

Now suppose that Y has an absolutely continuous distribution and consider Pr(X ∈
A|Y = y). If the distribution of Y is absolutely continuous, then Pr(Y = y) = 0 for all y so
that (2.1) cannot be used as a definition of Pr(X ∈ A|Y = y). Instead, we use a definition
based on a generalization of (2.2).

Let (X, Y ) denote a random vector, where X and Y may each be vectors, and let X × Y
denote the range of (X, Y ). In general, the conditional distribution of X given Y = y is a
function q(A, y), defined for subsets A ⊂ X and elements y ∈ Y such that for B ⊂ Y

Pr(X ∈ A, Y ∈ B) =
∫

B
q(A, y) d FY (y) (2.3)

where FY denotes the marginal distribution function of Y and such that for each fixed
y ∈ Y , q(·, y) defines a probability distribution on X . The quantity q(A, y) will be denoted
by Pr(X ∈ A|Y = y).

Example 2.8 (Two-dimensional discrete random variable). Let (X, Y ) denote a two-
dimensional discrete random variable with range

{1, 2, . . . , m} × {1, 2, . . . , n}.
For each i = 1, 2, . . . , m let

qi (y) = Pr(X = i |Y = y).

Then, according to (2.3), q1(y), . . . , qm(y) must satisfy

Pr(X = i, Y = j) = qi ( j)Pr(Y = j)

for each i = 1, . . . , m and j = 1, . . . , n.
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Hence, if Pr(Y = j) > 0, then

Pr(X = i |Y = j) = Pr(X = i, Y = j)

Pr(Y = j)
;

if Pr(Y = j) = 0, Pr(X = i |Y = j) may be taken to have any finite value. �

Example 2.9 (Independent random variables). Consider the random vector (X, Y ) where
X and Y may each be a vector. If X and Y are independent, then, F , the distribution function
of (X, Y ), may be written

F(x, y) = FX (x)FY (y)

for all x, y, where FX denotes the distribution function of the marginal distribution of X
and FY denotes the distribution function of the marginal distribution of Y .

Hence, the conditional distribution of X given Y = y, q(·, y) must satisfy∫
B

∫
A

d FX (x) d FY (y) =
∫

B
q(A, y) d FY (y).

Clearly, this equation is satisfied by

q(A, y) =
∫

A
d FX (x)

so that

Pr(X ∈ A|Y = y) =
∫

A
d FX (x) = Pr(X ∈ A). �

Two important issues are the existence and uniqueness of conditional probability distri-
butions. Note that, for fixed A, if B satisfies Pr(Y ∈ B) = 0, then Pr(X ∈ A, Y ∈ B) = 0.
The Radon-Nikodym Theorem now guarantees the existence of a function q(A, ·) satisfying
(2.3). Furthermore, it may be shown that this function may be constructed in such a way
that q(·, y) defines a probability distribution on X for each y. Thus, a conditional proba-
bility distribution always exists. Formal proofs of these results are quite difficult and are
beyond the scope of this book; see, for example, Billingsley (1995, Chapter 6) for a detailed
discussion of the technical issues involved.

If, for a given set A, q1(A, ·) and q2(A, ·) satisfy∫
B

q1(A, y) d FY (y) =
∫

B
q2(A, y) d FY (y)

for all B ⊂ Y and q1(A, y) = Pr(X ∈ A|Y = y), then q2(A, y) = Pr(X ∈ A|Y = y) as
well. In this case, q1(A, y) and q2(A, y) are said to be two versions of the conditional
probability. The following result shows that, while conditional probabilities are not unique,
they are essentially unique.

Lemma 2.2. Let (X, Y ) denote a random vector with range X × Y and let q1(·, y) and
q2(·, y) denote two versions of the conditional probability distribution of X given Y = y.
For a given set A ⊂ X , let

Y0 = {y ∈ Y: q1(A, y) �= q2(A, y)}.
Then Pr(Y ∈ Y0) = 0.
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The conclusion of this lemma can be stated as follows: for any A ⊂ X , q1(A, y) =
q2(A, y) for almost all y (FY ). As in the statement of the lemma, this means that the set
of y for which q1(A, y) = q2(A, y) does not hold has probability 0 under the distribution
given by FY . Alternatively, we may write that q1(A, ·) = q2(A, ·) almost everywhere (FY ),
or, more simply, q1(A, ·) = q2(A, ·) a.e. (FY ).

Proof of Lemma 2.2. Fix a set A ⊂ X . For n = 1, 2, . . . , define

Yn = {y ∈ Y: |q1(A, y) − q2(A, y)| ≥ 1/n}.
Note that Y1 ⊂ Y2 · · · and

∞⋃
n=1

Yn = Y0.

For each n = 1, 2, . . . , let

Bn = {y ∈ Y: q1(A, y) − q2(A, y) ≥ 1/n}
and

Cn = {y ∈ Y: q2(A, y) − q1(A, y) ≥ 1/n}
so that Yn = Bn ∪ Cn , n = 1, 2, . . . .

Fix n. Since both q1 and q2 satisfy (2.3),

0 =
∫

Bn

q1(A, y) d FY (y) −
∫

Bn

q2(A, y) d FY (y) ≥ 1

n

∫
Bn

d FY (y) = 1

n
Pr(Y ∈ Bn)

so that Pr(Y ∈ Bn) = 0. Similarly, Pr(Y ∈ Cn) = 0. Hence, for each n = 1, 2, . . . ,

Pr(Y ∈ Yn) = 0.
By condition (P4) on probability distributions, given in Chapter 1, together with the fact

that Y0 = Y1 ∪ Y2 ∪ · · · ,
Pr(Y ∈ Y0) = lim

n→∞ Pr(Y ∈ Yn) = 0,

proving the result.

Here we will refer to the conditional probability, with the understanding that there may
be another version of the conditional probability that is equal to the first for y in a set of
probability 1.

It is important to note that, when Y has an absolutely continuous distribution, conditional
probabilities of the form Pr(X ∈ A|Y = y0) for a specific value y0 ∈ Y are not well defined,
except as a function q(A, y) satisfying (2.3) evaluated at y = y0, and this fact can sometimes
cause difficulties.

For instance, suppose we wish to determine Pr(X ∈ A|(X, Y ) ∈ B), for some sets A
and B, A ⊂ X and B ⊂ X × Y , where Pr((X, Y ) ∈ B) = 0. Suppose further that the event
(X, Y ) ∈ B can be described in terms of two different random variables W and Z , each of
which is a function of (X, Y ); that is, suppose there exist functions W and Z and values w0

and z0 in the ranges of W and Z , respectively, such that

{(x, y) ∈ X × Y: W (x, y) = w0} = {(x, y) ∈ X × Y: Z (x, y) = z0} = B.
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Let qW (A, w) = Pr(X ∈ A|W = w) and qZ (A, z) = Pr(X ∈ A|Z = z). Then Pr(X ∈
A|(X, Y ) ∈ B) is given by both qW (A, w0) and qZ (A, z0); however, there is no guaran-
tee that qW (A, w0) = qZ (A, z0) so that these two approaches could yield different results.
This possibility is illustrated in the following example.

Example 2.10. Let X and Y denote independent random variables such that

Pr(X = 1) = Pr(X = c) = 1

2
,

for some constant c > 1, and Y has an absolutely continuous distribution with density

p(y) = 1

2
, −1 < y < 1.

Let Z = XY . Note that the events Z = 0 and Y = 0 are identical; that is, Z = 0 if and
only if Y = 0. However, it will be shown that

Pr(X = 1|Z = 0) �= Pr(X = 1|Y = 0).

Using (2.3), for z ∈ R,

Pr(Z ≤ z) = 1

2
Pr(Z ≤ z|X = 1) + 1

2
Pr(Z ≤ z|X = c).

Since the events X = 1 and X = c both have nonzero probability, we know from elementary
probability theory that, for x = 1, c,

Pr(Z ≤ z|X = x) = 2Pr(XY ≤ z ∩ X = x) = 2Pr(Y ≤ z/x ∩ X = x)

= 2Pr(Y ≤ z/x)Pr(X = x) = Pr(Y ≤ z/x).

It follows that, for z > −c,

Pr(Z ≤ z) = 1

4

∫ z/c

−1
dy + 1

4

∫ z

−1
dy

so that Z has an absolutely continuous distribution with density

pZ (z) = 1

4c
I{|z|<c} + 1

4
I{|z|<1}.

Define

h(z) =
{

0 if |z| ≥ 1
c/(c + 1) if |z| < 1

. (2.4)

It will be shown that h(z) = Pr(X = 1|Z = z). To do this, first note that, for B ⊂ R,

Pr(X = 1 ∩ Z ∈ B) = Pr(X = 1 ∩ Y ∈ B) = 1

4

∫
B∩(−1,1)

dz.

Using (2.4), ∫
B

h(z) d FZ (z) =
∫

B

c

c + 1
I{|z|<1} pZ (z) dz = 1

4

∫
B∩(−1,1)

dz

so that (2.3) is satisfied and, hence, Pr(X = 1|Z = z) = h(z) as claimed.
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Consider Pr(X = 1|Y = 0). Since X and Y are independent, it follows from Example 2.9
that

Pr(X = 1|Y = 0) = Pr(X = 1) = 1

2
.

Note that the event Y = 0 is equivalent to the event Z = 0. Using (2.4),

Pr(X = 1|Z = 0) = c

c + 1
.

Thus, two different answers are obtained, even though the events Y = 0 and Z = 0 are
identical.

Some insight into this discrepency can be obtained by considering the conditioning events
|Y | < ε and |Z | < ε, for some small ε, in place of the events Y = 0 and Z = 0, respectively.
Note that the events |Y | < ε and |Z | < ε are not equivalent. Suppose that c is a large number.
Then, |Z | < ε strongly suggests that X is 1 so that we would expect Pr(X = 1| |Z | < ε) to
be close to 1. In fact, a formal calculation shows that, for any 0 < ε < 1,

Pr(X = 1| |Z | < ε) = c

c + 1
,

while, by the independence of X and Y ,

Pr(X = 1| |Y | < ε) = Pr(X = 1) = 1

2
,

results which are in agreement with the values for Pr(X = 1|Z = 0) and Pr(X = 1|Y = 0)
obtained above. �

Conditional distribution functions and densities
Since Pr(X ∈ A|Y = y) defines a probability distribution for X , for each y, there exists a
distribution function FX |Y (x |y) such that

Pr(X ∈ A|Y = y) =
∫

A
d FX |Y (x |y);

the distribution function FX |Y (·|y) is called the conditional distribution function of X given
Y = y. By (2.2), F , the distribution function of (X, Y ), FY , the marginal distribution function
of Y , and FX |Y are related by

F(x, y) = FX |Y (x |y)FY (y) for all x, y.

If the conditional distribution of X given Y = y is absolutely continuous, then

Pr(X ∈ A|Y = y) =
∫

A
pX |Y (x |y) dx

where pX |Y (·|y) denotes the conditional density of X given Y = y. If the conditional dis-
tribution of X given Y = y is discrete, then

Pr(X ∈ A|Y = y) =
∑
x∈A

pX |Y (x |y)

where pX |Y (·|y) denotes the conditional frequency function of X given Y = y.
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Theorem 2.3. Consider a random vector (X, Y ) where either or both of X and Y may be
vectors.

(i) Suppose that (X, Y ) has an absolutely continuous distribution with density p and
let pY denote the marginal density function of Y . Then the conditional distribution
of X given Y = y is absolutely continuous with density pX |Y given by

pX |Y (x |y) = p(x, y)

pY (y)

provided that pY (y) > 0; if pY (y) = 0, pX |Y (x |y) may be taken to be any finite
value.

(ii) Suppose that (X, Y ) has a discrete distribution with frequency function p and let pY

denote the marginal frequency function of Y . Then the conditional distribution of X
given Y = y is discrete with frequency function pX |Y (x |y), given by

pX |Y (x |y) = p(x, y)

pY (y)

provided that pY (y) > 0; if pY (y) = 0, pX |Y (x |y) may be taken to have any finite
value.

Proof. Consider case (i) in which the distribution of (X, Y ) is absolutely continuous. Then
Pr(X ∈ A|Y = y) must satisfy

Pr(X ∈ A, Y ∈ B) =
∫

B
Pr(X ∈ A|Y = y)pY (y) dy.

For y satisfying pY (y) > 0, let

q(A, y) =
∫

A

p(x, y)

pY (y)
dx .

Then ∫
B

q(A, y)pY (y) dy =
∫

B

∫
A

p(x, y) dx dy = Pr(X ∈ A, Y ∈ B)

so that

Pr(X ∈ A|Y = y) =
∫

A

p(x, y)

pY (y)
dx .

Note that the value of q(A, y) for those y satisfying pY (y) = 0 is irrelevant. Clearly this
distribution is absolutely continuous with density pX |Y as given in the theorem.

The result for the discrete case follows along similar lines.

Example 2.11 (Bivariate distribution). Consider the distribution considered in Exam-
ple 2.1. The random vector (X, Y ) has an absolutely continuous distribution with density
function

p(x, y) = 6(1 − x − y), x > 0, y > 0, x + y < 1

and the marginal density of Y is

pY (y) = 3(1 − y)2, 0 < y < 1.
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Hence, the conditional distribution of X given Y = y is absolutely continuous with density
function

pX |Y (x |y) = 2
1 − x − y

(1 − y)2
, 0 < x < 1 − y

where 0 < y < 1. �

Example 2.12 (Trinomial distribution). Let (X1, X2, X3) be a random vector with a
multinomial distribution with parameters n and (θ1, θ2, θ3); see Example 2.2. This is some-
times called a trinomial distribution. It was shown in Example 2.2 that the marginal distri-
bution of X1 is binomial with parameters n and θ1.

Hence, (X1, X2, X3) has frequency function

p(x1, x2) =
(

n

x1, x2, x3

)
θ

x1
1 θ

x2
2 θ

x3
3

and the marginal frequency function of X1 is given by

pX1 (x1) =
(

n

x1

)
θ

x1
1 (1 − θ1)n−x1 .

It follows that the conditional distribution of (X2, X3) given X1 = x1 is discrete with fre-
quency function

pX2,X3|X1 (x2, x3|x1) =
( n

x1,x2

)
θ

x1
1 θ

x2
2 θ

x3
3( n

x1

)
θ

x1
1 (1 − θ1)n−x1

=
(

n − x1

x2, x3

)
θ

x2
2 θ

x3)
3

(θ2 + θ3)n−x1
,

where x2, x3 = 0, . . . , n − x1 with x2 + x3 = n − x1, for x1 = 0, . . . , n; recall that θ1 +
θ2 + θ3 = 1.

That is, the conditional distribution of (X2, X3) given X1 = x1 is multinomial
with parameters n − x1 and (θ2/(θ2 + θ3), θ3/(θ2 + θ3)). Alternatively, we can say
X2 has a binomial distribution with parameters n − x1 and θ2/(θ2 + θ3) with X3 =
n − x1 − X2. �

Example 2.13 (A mixed distribution). Let (X, Y ) denote a two-dimensional random vec-
tor with the distribution described in Example 2.3. Recall that this distribution is neither
absolutely continuous nor discrete.

First consider the conditional distribution of X given Y = y. Recall that for A ⊂ R+ and
y = 1, 2,

Pr(X ∈ A, Y = y) = 1

2

∫
A

y exp(−yx) dx .

Note that

Pr(X ≤ x, Y = y) = 1

2
[1 − exp(−yx)], x > 0, y = 1, 2

so that, for y = 1, 2,

Pr(X ≤ x |Y = y) = 1 − exp(−yx), x > 0.
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Since

Pr(X ≤ x |Y = y) =
∫ x

0
y exp(−yx) dx,

it follows that, for y = 1, 2, the conditional distribution of X given Y = y is absolutely
continuous with density function y exp(−yx), x > 0.

It is worth noting that this same result may be obtained by the following informal method.
Since, for A ⊂ Y and y = 1, 2,

Pr(X ∈ A, Y = y) = 1

2

∫
A

y exp(−yx) dx,

the function

1

2
y exp(−yx)

plays the role of a density function for (X, Y ) with the understanding that we must integrate
with respect to x and sum with respect to y. Since the marginal distribution of Y is discrete
with frequency function 1/2, y = 1, 2, the conditional density function of X given Y = y
is y exp(−yx), x > 0.

Now consider the conditional distribution of Y given X = x . Recall that the marginal
distribution of X is absolutely continuous with density function

1

2
[exp(−x) + 2 exp(−2x)], x > 0.

Using the informal method described above, the conditional distribution of Y given X = x ,
x > 0, has frequency function

y exp(−yx)

exp(−x) + 2 exp(−2x)
, y = 1, 2.

It is easy to verify that this result is correct by noting that

Pr(Y = y, X ∈ A) = 1

2

∫
A

y exp(−yx) dx

=
∫

A

y exp(−yx)

exp(−x) + 2 exp(−2x)
pX (x) dx, y = 1, 2.

Hence, the conditional distribution of Y given X = x is discrete with

Pr(Y = 1|X = x) = 1 − Pr(Y = 2|X = x) = 1

1 + 2 exp(−x)

for x > 0. �

2.4 Conditional Expectation

Let (X, Y ) denote a random vector with range X × Y and let FX |Y (·|y) denote the distribu-
tion function corresponding to the conditional distribution of X given Y = y. For a function
g : X → R such that E[|g(X )|] < ∞, E[g(X )|Y = y] may be defined by

E[g(X )|Y = y] =
∫
X

g(x) d FX |Y (x |y).
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It is sometimes convenient to define E[g(X )|Y = y] directly, without reference to
FX |Y (·|y). First consider the case in which g(x) = I{x∈A} for some set A ⊂ X . Then
E[g(X )|Y = y] = Pr[X ∈ A|Y = y] so that E[g(X )|Y = y] satisfies the equation

E[g(X )I{Y∈B}] =
∫

B
E[g(X )|Y = y] d FY (y)

for all B ⊂ Y .
This definition can be extended to an arbitrary function g. Suppose that g : X → R

satisfies E[|g(X )|] < ∞. We define E[g(X )|Y = y] to be any function of y satisfying

E[g(X )I{Y∈B}] =
∫

B
E[g(X )|Y = y] d FY (y) (2.5)

for all sets B ⊂ Y . The issues regarding existence and uniqueness are essentially the same as
they are for conditional probabilities. If E[|g(X )|] < ∞, then the Radon-Nikodym Theorem
guarantees existence of the conditional expected value. Conditional expected values are not
unique, but any two versions of E[g(X )|Y = y] differ only for y in a set of probability 0.

Let FX |Y (·|y) denote the conditional distribution function of X given Y = y and consider

h(y) =
∫
X

g(x) d FX |Y (x |y).

Then∫
B

h(y) d FY (y) =
∫

B

∫
X

g(x) d FX |Y (x |y) d FY (y) =
∫
X×Y

I{y∈B}g(x) d FX,Y (x, y)

= E[g(X )I{Y∈B}].

Hence, one choice for E[g(X )|Y = y] is given

E[g(X )|Y = y] =
∫

g(x) d FX |Y (x |y);

that is, the two approaches to defining E[g(X )|Y = y] considered here are in agreement.
Generally speaking, the expression based on FX |Y (·|y) is more convenient for computing
conditional expected values for a given distribution, while the definition based on (2.5) is
more convenient for establishing general properties of conditional expected values.

Example 2.14 (Bivariate distribution). Let (X, Y ) denote a two-dimensional random vec-
tor with the distribution described in Example 2.1. This distribution is absolutely continuous
with density function

p(x, y) = 6(1 − x − y), x > 0, y > 0, x + y < 1;

it was shown in Example 2.11 that the conditional distribution of X given Y = y is absolutely
continuous with density function

pX |Y (x |y) = 2
1 − x − y

(1 − y)2
, 0 < x < 1 − y

where 0 < y < 1. It follows that

E[X |Y = y] = 2

(1 − y)2

∫ 1−y

0
x(1 − x − y) dx = 1

3
(1 − y), 0 < y < 1. �
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Example 2.15 (A mixed distribution). Let (X, Y ) denote a two-dimensional random vector
with the distribution described in Example 2.3 and considered further in Example 2.13.

Recall that the conditional distribution of X given Y = y is absolutely continuous with
density function y exp(−yx), x > 0. It follows

E(X |Y = y) = 1/y. �

The following theorem gives several properties of conditional expected values. These
follow immediately from the properties of integrals, as described in Appendix 1, and, hence,
the proof is left as an exercise. In describing these results, we write that a property holds for
“almost all y (FY )” if the set of y ∈ Y for which the property does not hold has probability
0 under FY .

Theorem 2.4. Let (X, Y ) denote a random vector with range X × Y; note that X and Y
may each be vectors. Let g1, . . . , gm denote a real-valued functions defined on X such that
E[|g j (X )|] < ∞, j = 1, . . . , m. Then

(i) If g1 is nonnegative, then

E[g1(X )|Y = y] ≥ 0 for almost all y (FY ).

(ii) If g1 is constant, g1(x) ≡ c, then

E[g1(X )|Y = y] = c for almost all y (FY ).

(iii) For almost all y (FY ),

E[g1(X ) + · · · + gm(X )|Y = y] = E[g1(X )|Y = y] + · · · + E[gm(X )|Y = y].

Note that E[g(X )|Y = y] is a function of y, which we may denote, for example, by f (y).
It is often convenient to consider the random variable f (Y ), which we denote by E[g(X )|Y ]
and call the conditional expected value of g(X ) given Y . This random variable is a function
of Y , yet it retains some of the properties of g(X ). According to (2.5), E[g(X )|Y ] is any
function of Y satisfying

E{g(X )I{Y∈B}} = E{E[g(X )|Y ]I{Y∈B}} for all B ⊂ Y. (2.6)

The following result gives a number of useful properties of conditional expected values.

Theorem 2.5. Let (X, Y ) denote a random vector with rangeX × Y , let T : Y → T denote
a function on Y , let g denote a real-valued function on X such that E[|g(X )|] < ∞, and
let h denote a real-valued function on Y such that E[|g(X )h(Y )|] < ∞. Then

(i) E{E[g(X )|Y ]} = E[g(X )]
(ii) E[g(X )h(Y )|Y ] = h(Y )E[g(X )|Y ] with probability 1

(iii) E[g(X )|Y, T (Y )] = E[g(X )|Y ] with probability 1
(iv) E[g(X )|T (Y )] = E{E[g(X )|Y ]|T (Y )} with probability 1
(v) E[g(X )|T (Y )] = E{E[g(X )|T (Y )]|Y } with probability 1
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Proof. Part (i) follows immediately from Equation (2.6) with B taken to be Y .
Let f (y) = E[g(X )|Y = y]; then, for almost all y (FY ),

f (y) =
∫
X

g(x) d FX |Y (x |y).

Hence, for any B ⊂ Y ,∫
B

h(y)E[g(X )|Y = y] d FY (y) =
∫

B
h(y)

∫
X

g(x) d FX |Y (x |y) d FY (y)

=
∫ ∫

X×Y
I{y∈B}g(x)h(y) d FX,Y (x, y)

= E[I{Y∈B}g(X )h(Y )]

,

so that (2.6) is satisfied; part (ii) follows.
By (2.6), for any B ⊂ Y ,

E{E[g(X )|Y, T (Y )]I{Y∈B T (Y )∈T }} = E[g(X )I{Y∈B, T (Y )∈T }] = E[g(X )I{Y∈B}];

part (iii) now follows from (2.6).
Let ḡ(Y ) = E[g(X )|Y ]. Then, by (2.6),

E{E[ḡ(Y )|h(Y )]I{h(Y )∈B0}} = E[ḡ(Y )I{h(Y )∈A}]

for any subset A of the range of h(y). Let B ⊂ Y denote a set satisfying

I{h(Y )∈A} = I{Y∈B} with probability 1.

Then, by (2.6),

E[ḡ(Y )I{h(Y )∈A}] = E{E[g(X )|Y ]I{Y∈B}} = E[g(X )I{Y∈B}] = E[g(X )I{h(Y )∈A}].

That is, for all subsets A of the range of h(·),
E{E[ḡ(Y )|h(Y )]I{h(Y )∈A}} = E[g(X )I{h(Y )∈A}].

It now follows from (2.6) that

E[ḡ(Y )|h(Y )] = E[g(X )|h(Y )],

proving part (iv).
Note that E[g(X )|h(Y )] is a function of Y such that

E{|E[g(X )|h(Y )]|} ≤ E{E[|g(X )| |h(Y )]} = E[|g(X )|] < ∞;

part (v) now follows from part (iii).

Example 2.16. Let Y = (Y1, Y2) where Y1, Y2 are independent, real-valued random
variables, each with a uniform distribution on (0, 1). Let X denote a real-valued random
variable such that the conditional distribution of X given Y = y has an absolutely continuous
distribution with density

pX |Y (x |y) = 1

y1 + y2
exp{−x/(y1 + y2)}, x > 0

where y = (y1, y2) and y1 > 0, y2 > 0.
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It is straightforward to show that

E(X |(Y1, Y2)) = Y1 + Y2

and, since each of Y1, Y2 has expected value 1/2, it follows from part (i) of Theorem 2.5
that E(X ) = 1.

Now consider E(X |Y1). Since E(X |(Y1, Y2)) = Y1 + Y2, it follows from part (iv) of
Theorem 2.5 that

E(X |Y1) = E(Y1 + Y2|Y1) = Y1 + E(Y2) = Y1 + 1/2. �

The following characterization of conditional expected values is often useful.

Theorem 2.6. Let (X, Y ) denote a random vector with range X × Y and let g denote a
real-valued function on X .

(i) Suppose that E[|g(X )|] < ∞ and let Z denote a real-valued function of Y such that
E(|Z |) < ∞. If

Z = E[g(X )|Y ] with probability 1

then

E[Zh(Y )] = E[g(X )h(Y )] (2.7)

for all functions h : Y → R such that

E[|h(Y )|] < ∞ and E[|g(X )h(Y )|] < ∞.

(ii) If Z is a function of Y such that (2.7) holds for all bounded functions h : Y → R
then

Z = E[g(X )|Y ] with probability 1 .

Proof. Suppose Z = E[g(X )|Y ] with probability 1. Let h be a real-valued function on Y
such that E[|h(Y )|] < ∞ and E[|g(X )h(Y )|] < ∞. Then, since

{Z − E[g(X )|Y ]}h(Y ) = 0 with probability 1,

E{(Z − E[g(X )|Y ])h(Y )} = 0.

It follows from Theorem 2.5 that

E{E[g(X )|Y ]h(Y )} = E[g(X )h(Y )] < ∞,

so that

E[Zh(Y )] = E{E[g(X )|Y ]h(Y )} = E[g(X )h(Y )],

proving the first part of the theorem.
Now suppose that (2.7) holds for all bounded functions h :Y → R. Let B ⊂ Y . Since

h(y) = I{y∈B} is a bounded, real-valued function on Y , it follows that (2.6) holds for any B.
Part (ii) follows.
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Conditional expectation as an approximation
Conditional expectation may be viewed as the solution to the following approximation
problem. Let X and Y denote random variables, which may be vectors. Let g(X ) denote
a real-valued function of X and suppose that we wish to approximate the random variable
g(X ) by a real-valued function of Y . Suppose further that we decide to measure the quality
of an approximation h(Y ) by E[(g(X ) − h(Y ))2]. Then the best approximation in this sense
is given by h(Y ) = E[g(X )|Y ]. This idea is frequently used in the context of statistical
forecasting in which X represents a random variable that is, as of yet, unobserved, while Y
represents the information currently available. A formal statement of this result is given in
the following corollary to Theorem 2.6.

Corollary 2.2. Let (X, Y ) denote a random vector with range X × Y and let g denote a
real-valued function on X such that E[g(X )2] < ∞. Let Z = E[g(X )|Y ]. Then, for any
real-valued function h on Y such that E[h(Y )2] < ∞,

E[(h(Y ) − g(X ))2] ≥ E[(Z − g(X ))2]

with equality if and only if h(Y ) = Z with probability 1 .

Proof. Note that

E[(h(Y ) − g(X ))2] = E[(h(Y ) − Z + Z − g(X ))2]

= E[(h(Y ) − Z )2] + E[(Z − g(X ))2] + 2E{(h(Y ) − Z )(Z − g(X ))}.
Since Z is a function of Y , h(Y ) − Z is a function of Y . Furthermore,

E[|h(Y ) − Z |] ≤ E[|h(Y )|] + E[|Z |] < ∞
and

E[|g(X )| |h(Y ) − Z |] ≤ E[g(X )2]
1
2 E[|h(Y ) − Z |2]

1
2

≤ E[|g(X )|2]
1
2 {2E[|h(Y )|2] + 2E[|Z |2]} 1

2 < ∞,

using the fact that

E[|Z |2] = E{E[g(X )|Y ]2} ≤ E{E[g(X )2|Y ]} = E[g(X )2] < ∞.

Hence, by Theorem 2.6,

E{(h(Y ) − Z )Z} = E{(h(Y ) − Z )g(X )}
so that

E[(h(Y ) − g(X ))2] = E[(h(Y ) − Z )2] + E[(Z − g(X ))2].

It follows that

E[(g(X ) − h(Y ))2] ≥ E[(g(X ) − Z )2]

with equality if and only if E[(h(Y ) − Z )2] = 0, which occurs if and only if h(Y ) = Z with
probability 1.

Example 2.17 (Independent random variables). Let Y denote a real-valued random vari-
able with E(Y 2) < ∞ and let X denote a random vector such that X and Y are independent.
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Note that E(Y |X ) = µ, where µ = E(Y ). Then, according to Corollary 2.2, for any real-
valued function h of Y ,

E[(h(X ) − Y )2] ≤ E[(Y − µ)2];

that is, the best approximation to Y among all functions of X is simply the constant function
h(X ) = µ. �

Example 2.18. Let X and Y denote real-valued random variables such that E(X4) < ∞
and E(Y 4) < ∞. Suppose that Y = X + Z where Z is a real-valued random variable with
E(Z ) = 0 and E(Z2) = 1; assume that X and Z are independent.

Then, according to Corollary 2.2, the best approximation to Y among functions of X is

E(Y |X ) = E(X + Z |X ) = X.

The best approximation to Y 2 among functions of X is

E(Y |X ) = E[(X + Z )2|X ) = E(X2|X ) + E(2X Z |X ) + E(Z2|X )

= X2 + 2XE(Z |X ) + E(Z2)

= X2 + 1.

Hence, although the best approximation to Y is X , the best approximation to Y 2 is
X2 + 1, not X2. This is due to the criterion used to evaluate approximations. �

2.5 Exchangeability

Recall that random variables X1, X2, . . . , Xn are independent and identically distributed if
they are independent and each X j has the same marginal distribution. An infinite sequence
of random variables X1, X2, . . . is independent and identically distributed if each finite
subset is.

Exchangeability provides a useful generalization of this concept. Recall that a permuta-
tion of (1, 2, . . . , n) is a rearrangement of the form (i1, . . . , in) such that each 1 ≤ i j ≤ n
is an integer and i j �= ik for j �= k. Real-valued random variables X1, . . . , Xn are said
to have an exchangeable distribution or, more simply, to be exchangeable if the distribu-
tion of (X1, . . . , Xn) is the same as the distribution of (Xi1 , . . . , Xin ) for any permutation
(i1, i2, . . . , in) of (1, 2, . . . , n).

As noted above, the simplest example of exchangeability is the case of independent,
identically distributed random variables. A formal statement of this is given in the following
theorem; the proof is straightforward and is left as an exercise.

Theorem 2.7. Suppose X1, . . . , Xn are independent identically distributed random vari-
ables. Then X1, . . . , Xn are exchangeable.

Example 2.19 (Bivariate distribution). Consider the distribution considered in Exam-
ples 2.1 and 2.11. The random vector (X, Y ) has an absolutely continuous distribution
with density function

p(x, y) = 6(1 − x − y), x > 0, y > 0, x + y < 1.
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Let g denote a bounded, real-valued function defined on (0, 1)2. Then

E[g(X, Y )] =
∫ 1

0

∫ 1

0
g(x, y)6(1 − x − y)I{x+y<1} dx dy

=
∫ 1

0

∫ 1

0
g(y, x)6(1 − y − x)I{y+x<1} dy dx = E[g(Y, X )].

It follows that (Y, X ) has the same distribution as (X, Y ) so that X, Y are exchan-
geable. �

Example 2.20. Let (X1, X2) denote a two-dimensional random vector with an absolutely
continuous distribution with density function

p(x, y) = 1

x1
, 0 < x2 < x1 < 1.

Note that X2 < X1 with probability 1. Let (Y1, Y2) = (X2, X1). Then

Pr(Y2 < Y1) = 0.

It follows that (Y1, Y2) does not have the same distribution as (X1, X2); that is, (X2, X1)
does not have the same distribution as (X1, X2). It follows that the distribution of (X1, X2)
is not exchangeable. �

Suppose that X1, X2, . . . , Xn are exchangeable random variables. Then the distribution
of (X1, X2, . . . , Xn) is the same as the distribution of (X2, X1, . . . , Xn). In this case,

Pr(X1 ≤ x, X2 < ∞, . . . , Xn < ∞) = Pr(X2 ≤ x, X1 < ∞, . . . , Xn < ∞).

That is, the marginal distribution of X1 is the same as the marginal distribution of X2; it
follows that each X j has the same marginal distribution. This result may be generalized as
follows.

Theorem 2.8. Suppose X1, . . . , Xn are exchangeable real-valued random variables. Let m
denote a positive integer less than or equal to n and let t1, . . . , tm denote distinct elements
of {1, 2, . . . , n}. Then the distribution of (Xt1 , . . . , Xtm ) does not depend on the choice of
t1, t2, . . . , tm.

Proof. Fix m and let t1, . . . , tm and r1, . . . , rm denote two sets of distinct elements from
{1, 2, . . . , n}. Then we may find tm+1, . . . , tn in {1, . . . , n} such that (t1, . . . , tn) is a permu-
tation of (1, 2, . . . , n); similarly, suppose that (r1, . . . , rn) is a permutation of (1, 2, . . . , n).
Then (Xt1 , . . . , Xtn ) and (Xr1 , . . . , Xrn ) have the same distribution. Hence,

Pr(Xt1 ≤ x1, . . . , Xtm ≤ xm, Xtm+1 < ∞, . . . , Xtn < ∞)

= Pr(Xr1 ≤ x1, . . . , Xrm ≤ xm, Xrm+1 < ∞, . . . , Xrn < ∞);

the result follows.

Thus, exchangeable random variables X1, . . . , Xn are identically distributed and any two
subsets of X1, . . . , Xn of the same size are also identically distributed. However, exchange-
able random variables are generally not independent.
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Let T denote a subset of the set of all permutations of (1, . . . , n). A function h :Rn → Rm

is said to be invariant with respect to T if for any permutation τ ∈ T , h(x) = h(τ x). Here τ

is of the form τ = (i1, . . . , in) and τ x = (xi1 , xi2 , . . . , xin ). If T is the set of all permutations,
h is said to be permutation invariant.

Example 2.21 (Sample mean). Let h denote the function on Rn given by

h(x) = 1

n

n∑
j=1

x j , x = (x1, . . . , xn).

Since changing the order of (x1, . . . , xn) does not change the sum, this function is permu-
tation invariant. �

Theorem 2.9. Suppose X1, . . . , Xn are exchangeable real-valued random variables and h
is invariant with respect to T for some set of permutations T . Let g denote a real-valued
function on the range of X = (X1, . . . , Xn) such that E[|g(X )|] < ∞. Then

(i) The distribution of (g(τ X ), h(X )) is the same for all τ ∈ T .
(ii) E[g(X )|h(X )] = E[g(τ X )|h(X )], with probability 1, for all τ ∈ T .

Proof. Since X1, . . . , Xn are exchangeable, the distribution of (g(τ X ), h(τ X )) is the same
for any permutation τ . Part (i) now follows from the fact that, for τ ∈ T , h(τ X ) = h(X )
with probability 1.

By Theorem 2.6, part (ii) follows provided that, for any bounded, real-valued function
f on the range of h,

E[E[g(τ X )|h(X )] f (h(X ))] = E[g(X ) f (h(X ))].

Since

E[E[g(τ X )|h(X )] f (h(X ))] = E[E[g(τ X ) f (h(X ))|h(X )]] = E[g(τ X ) f (h(X ))],

part (ii) follows provided that

E[g(τ X ) f (h(X ))] = E[g(X ) f (h(X ))];

the result now follows from part (i).

Example 2.22 (Conditioning on the sum of random variables). Let X1, X2, . . . , Xn

denote exchangeable, real-valued random variables such that

E[|X j |] < ∞, j = 1, . . . , n,

and let S = ∑n
j=1 X j . Since S is a permutation invariant function of X1, . . . , Xn , it follows

from Theorem 2.9 that E[X j |S] does not depend on j . This fact, together with the fact that

S = E(S|S) = E[
n∑

j=1

X j |S] =
n∑

j=1

E[X j |S]

shows that E(X j |S) = S/n. �
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2.6 Martingales

Consider a sequence of real-valued random variables {X1, X2, . . .}, such that E(|Xn|) <

∞ for all n = 1, 2, . . . . The sequence {X1, X2, . . .} is said to be a martingale if for any
n = 1, 2, . . . ,

E(Xn+1|X1, . . . , Xn) = Xn

with probability 1.
A martingale may be viewed as the fortunes of a gambler playing a sequence of fair

games with Xn denoting the fortune of the gambler after the nth game, n = 2, 3, . . . , and
X1 representing the initial fortune. Since the games are fair, the conditional expected value
of Xn+1, the fortune at stage n + 1, given the current fortune Xn , is Xn .

Example 2.23 (Sums of independent random variables). Let Y1, Y2, . . . denote a sequence
of independent random variables each with mean 0. Define

Xn = Y1 + · · · + Yn, n = 1, 2, . . .

Then

E(Xn+1|X1, . . . , Xn) = E(Xn|X1, . . . , Xn) + E(Yn+1|X1, . . . , Xn).

Clearly, E(Xn|X1, . . . , Xn) = Xn and, since (X1, . . . , Xn) is a function of (Y1, . . . , Yn),
E(Yn+1|X1, . . . , Xn) = 0. It follows that {X1, X2, . . .} is a martingale. �

Example 2.24 (Polya’s urn scheme). Consider an urn containing b black and r red balls.
A ball is randomly drawn from the urn and c balls of the color drawn are added to the urn.
Let Xn denote the proportion of black balls after the nth draw. Hence, X0 = b/(r + b),

Pr[X1 = (b + c)/(r + b + c)] = 1 − Pr[X1 = b/(r + b + c)] = b

r + b
,

and so on.
Let Yn = 1 if the nth draw is a black ball and 0 otherwise. Clearly,

Pr(Yn+1 = 1|X1, . . . , Xn) = Xn.

After n draws, there are r + b + nc balls in the urn and the number of black balls is given
by (r + b + nc)Xn . Hence,

Xn+1 = (r + b + nc)Xn + Yn+1c

r + b + (n + 1)c

so that

E[Xn+1|X1, . . . , Xn] = (r + b + nc)Xn + Xnc

r + b + (n + 1)c
= Xn;

it follows that {X1, X2, . . .} is a martingale. �

Using the interpretation of a martingale in terms of fair games, it is clear that if the
gambler has fortune c after n games, then the gamblers expected fortune after a number of
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additional games will still be c. A formal statement of this result for martingales is given in
the following theorem.

Theorem 2.10. Let {X1, X2, . . .} be a martingale and let n and m be positive integers. If
n < m, then

E(Xm |X1, . . . , Xn) = Xn

with probability 1.

Proof. Since {X1, X2, . . .} is a martingale,

E[Xn+1|X1, . . . , Xn] = Xn with probability 1.

Note that

E[Xn+2|X1, . . . , Xn] = E[E(Xn+2|X1, . . . , Xn, Xn+1)|X1, . . . , Xn]

= E[Xn+1|X1, . . . , Xn] = Xn

with probability 1. Similarly,

E(Xn+3|X1, . . . , Xn) = E[E(Xn+3|X1, . . . , Xn, Xn+1, Xn+2|X1, . . . , Xn]

= E(Xn+2|X1, . . . , Xn) = Xn

with probability 1. Continuing this argument yields the result.

The martingale properties of a sequence X1, X2, . . . can also be described in terms of
the differences

Dn = Xn − Xn−1, n = 1, 2, . . .

where X0 = 0. Note that, for each n = 1, 2, . . . , (X1, . . . , Xn) is a one-to-one function of
(D1, . . . , Dn) since

Xm = D1 + · · · + Dm, m = 1, 2, . . . , n.

Suppose that {X1, X2, . . .} is a martingale. Then, by Theorem 2.5,

E{Dn+1|D1, . . . , Dn} = E{E(Dn+1|X1, . . . , Xn)|D1, . . . , Dn}
= E{E(Xn+1 − Xn|X1, . . . , Xn)|D1, . . . , Dn} = 0, n = 1, 2, . . . .

A sequence of real-valued random variables D1, D2, . . . satisfying

E{Dn+1|D1, . . . , Dn} = 0, n = 1, 2, . . .

is said to be a sequence of martingale differences.
As noted above, if X1, X2, . . . is a martingale, then Xn can be interpreted as the fortune

of a gambler after a series of fair games. In the same manner, if D1, D2, . . . is a martingale
difference sequence, then Dn can be interpreted as the amount won by the gambler on the
nth game.

Example 2.25 (Gambling systems). Suppose that a gambler plays a series of fair games
with outcomes D1, D2, . . . such that, if the gambler places a bet Bn on the nth game, her
winnings are Bn Dn . For each n, the bet Bn is a function of D1, . . . , Dn−1, the outcomes of
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the first n − 1 games, but, of course, Bn cannot depend on Dn, . . . . We take B1 = 1 so that
initial fortune of the gambler is given by D1. The random variables B1, B2, . . . describe
how the gambler uses the information provided by the game to construct her series of bets
and is called a gambling system. The gambler’s fortune after n games is thus

Wn+1 = B1 D1 + · · · + Bn+1 Dn+1.

Then, using the fact that D1, D2, . . . is a martingale difference sequence, and assuming
that B2, B3, . . . are bounded,

E(Wn+1|D1, . . . , Dn) = D1 + B2 D2 + · · · + Bn Dn + E(Bn+1 Dn+1|D1, . . . , Dn)

= D1 + B2 D2 + · · · + Bn Dn + Bn+1E(Dn+1|D1, . . . , Dn)

= D1 + B2 D2 + · · · + Bn Dn ≡ Wn.

It follows that E(Wn+1) = E(Wn), n = 1, 2, . . . so that

E(W1) = E(W2) = · · · ;

that is, the expected fortune of the gambler after n games is always equal to the initial
fortune. Thus, a gambling system of the type described here cannot convert a fair game into
one that is advantageous to the gambler. �

2.7 Exercises

2.1 Let X and Y denote real-valued random variables such that the distribution of (X, Y ) is abso-
lutely continuous with density function p(x, y). Suppose that there exist real-valued nonnegative
functions g and h such that∫ ∞

−∞
g(x) dx < ∞ and

∫ ∞

−∞
h(y) dy < ∞

and

p(x, y) = g(x)h(y), − ∞ < x < ∞, − ∞ < y < ∞.

Does it follow that X and Y are independent?

2.2 Let X and Y denote independent random vectors with ranges X and Y , respectively. Consider
functions f :X → R and g :Y → R. Does it follow that f (X ) and g(Y ) are independent random
variables?

2.3 Let X1, X2, . . . , Xm denote real-valued random variables. Suppose that for each n = 1, 2, . . . , m,
(X1, . . . , Xn−1) and Xn are independent. Does it follow that X1, . . . , Xm are independent?

2.4 Let X and Y denote real-valued random variables such that the distribution of (X, Y ) is absolutely
continuous with density function

p(x, y) = 1

x3 y2
, x > 1, y > 1/x .

Find the density functions of the marginal distributions of X and Y .

2.5 Let X and Y denote real-valued random variables such that the distribution of (X, Y ) is discrete
with frequency function

p(x, y) = 1

2e

e−1 + 2−(x+y)

x!y!
, x, y = 0, 1, . . . .

Find the frequency functions of the marginal distributions of X and Y .
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2.6 Prove Corollary 2.1.

2.7 Prove Theorem 2.2.

2.8 Let (X, Y ) denote a random vector with an absolutely continuous distribution with density
function p and let pX and pY denote the marginal densities of X and Y , respectively. Let
pX |Y (·|y) denote the density of the conditional distribution of X given Y = y and let pY |X (·|x)
denote the density of the conditional distribution of Y given X = x . Show that

pX |Y (x |y) = pY |X (y|x)pX (x)

pY (y)

provided that pY (y) > 0. This is Bayes Theorem for density functions.

2.9 Consider a sequence of random variables X1, X2, . . . , Xn which each take the values 0 and 1.
Assume that

Pr(X j = 1) = 1 − Pr(X j = 0) = φ, j = 1, . . . , n

where 0 < φ < 1 and that

Pr(X j = 1|X j−1 = 1) = λ, j = 2, . . . , n.

(a) Find Pr(X j = 0|X j−1 = 1), Pr(X j = 1|X j−1 = 0), Pr(X j = 0|X j−1 = 0).

(b) Find the requirements on λ so that this describes a valid probability distribution for
X1, . . . , Xn .

2.10 Let X and Y denote real-valued random variables such that the distribution of (X, Y ) is absolutely
continuous with density function p and let pX denote the marginal density function of X . Suppose
that there exists a point x0 such that pX (x0) > 0, pX is continuous at x0, and for almost all y,
p(·, y) is continuous at x0. Let A denote a subset of R. For each ε > 0, let

d(ε) = Pr(Y ∈ A|x0 ≤ X ≤ x0 + ε].

Show that

Pr[Y ∈ A|X = x0] = lim
ε→0

d(ε).

2.11 Let (X, Y ) denote a random vector with the distribution described in Exercise 2.4. Find the den-
sity function of the conditional distribution of X given Y = y and of the conditional distribution
of Y given X = x .

2.12 Let X denote a real-valued random variable with rangeX , such that E(|X |) < ∞. Let A1, . . . , An

denote disjoint subsets of X . Show that

E(X ) =
n∑

j=1

E(X |X ∈ A j )Pr(X ∈ A j ).

2.13 Let X denote a real-valued random variable with an absolutely continuous distribution with
distribution function F and density p. For c ≥ 0, find an expression for Pr(X > 0||X | = c).

2.14 Let X , Y , and Z denote random variables, possibly vector-valued. Let X denote the range of X
and let Y denote the range of Y . X and Y are said to be conditionally independent given Z if,
for any A ⊂ X and B ⊂ Y ,

Pr(X ∈ A, Y ∈ B|Z ) = Pr(X ∈ A|Z )Pr(Y ∈ B|Z )

with probability 1.
(a) Suppose that X and Y are conditionally independent given Z and that Y and Z are inde-

pendent. Does it follow that X and Z are independent?

(b) Suppose that X and Y are conditionally independent given Z and that X and Z are condi-
tionally independent given Y . Does it follow that X and Y are independent?
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2.15 Let X and Y denote random vectors with ranges X and Y , respectively. Show that, if X and Y
are independent, then

E[g(X )|Y ] = E[g(X )]

for any function g :X → R such that E[|g(X )|] < ∞.
Does the converse to this result hold? That is, suppose that

E[g(X )|Y ] = E[g(X )]

for any function g :X → R such that E[|g(X )|] < ∞. Does it follow that X and Y are indepen-
dent?

2.16 Prove Theorem 2.4.

2.17 Let X, Y and Z denote real-valued random variables such that (X, Y ) and Z are independent.
Assume that E(|Y |) < ∞. Does it follow that

E(Y |X, Z ) = E(Y |X )?

2.18 Let X denote a nonnegative, real-valued random variable. The expected residual life function
of X is given by

R(x) = E(X − x |X ≥ x), x > 0.

Let F denote the distribution function of X .
(a) Find an expression for R in terms of the integral∫ ∞

x
F(t) dt.

(b) Find an expression for F in terms of R.

(c) Let X1 and X2 denote nonnegative, real-valued random variables with distribution functions
F1 and F2 and expected residual life functions R1 and R2. If

R1(x) = R2(x), x > 0

does it follow that

F1(x) = F2(x), −∞ < x < ∞?

2.19 Let L2 denote the linear space of random variables X such that E(X 2) < ∞, as described in
Exercises 1.28 and 1.29. Let X1, X2 denote elements ofL2; we say that X1 and X2 are orthogonal,
written X1 ⊥ X2, if E[X1 X2] = 0.

Let Z denote a given element of L2 and let L2(Z ) denote the elements of L2 that are functions
of Z . For a given random variable Y ∈ L2, let PZ Y denote the projection of Y ontoL2(Z ), defined
to be the element of L2(Z ) such that Y − PZ Y is orthogonal to all elements of L2(Z ). Show that
PZ Y = E(Y |Z ).

2.20 Let X1, X2, and Z denote independent, real-valued random variables. Assume that

Pr(Z = 0) = 1 − Pr(Z = 1) = α

for some 0 < α < 1. Define

Y =
{

X1 if Z = 0
X2 if Z = 1

.

(a) Suppose that E(X1) and E(X2) exist. Does it follow that E(Y ) exists?

(b) Assume that E(|X1|) < ∞ and E(|X2|) < ∞. Find E(Y |X1).
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2.21 Let (X, Y ) denote a two-dimensional random vector with an absolutely continuous distribution
with density function

p(x, y) = 1

y
exp(−y), 0 < x < y < ∞.

Find E(Xr |Y ) for r = 1, 2, . . . .

2.22 For some n = 1, 2, . . . , let Y1, Y2, . . . , Yn+1 denote independent, identically distributed, real-
valued random variables. Define

X j = Y j Y j+1, j = 1, . . . , n.

(a) Are X1, X2, . . . , Xn independent?

(b) Are X1, X2, . . . , Xn exchangeable?

2.23 Let X and Y denote real-valued exchangeable random variables. Find Pr(X ≤ Y ).

2.24 Prove Theorem 2.7.

2.25 Let X0, X1, . . . , Xn denote independent, identically distributed real-valued random variables.
For each definition of Y1, . . . , Yn given below, state whether or not Y1, . . . , Yn are exchangeable
and justify your answer.
(a) Y j = X j − X0, j = 1, . . . , n.

(b) Y j = X j − X j−1, j = 1, . . . , n.

(c) Y j = X j − X̄ , j = 1, . . . , n where X̄ = ∑n
j=1 X j/n.

(d) Y j = ( j/n)X j + (1 − j/n)X0, j = 1, . . . , n.

2.26 Let Y1, Y2, . . . denote independent, identically distributed nonnegative random variables with
E(Y1) = 1. For each n = 1, 2, . . . , let

Xn = Y1 · · · Yn .

Is {X1, X2, . . .} a martingale?

2.27 Let {X1, X2, . . .} denote a martingale. Show that

E(X1) = E(X2) = · · · .
Exercises 2.28 and 2.29 use the following definition. A sequence of real-valued random

variables {X1, X2, . . .} such that E[|Xn|] < ∞, n = 1, 2, . . . , is said to be a submartingale if,
for each n = 1, 2, . . . ,

E[Xn+1|X1, . . . , Xn] ≥ Xn

with probability 1.

2.28 Show that if {X1, X2, . . .} is a submartingale, then {X1, X2, . . .} is a martingale if and only if

E(X1) = E(X2) = · · · .
2.29 Let {X1, X2, . . .} denote a martingale. Show that {|X1|, |X2|, . . .} is a submartingale.

2.8 Suggestions for Further Reading

Conditional distributions and expectation are standard topics in probability theory. A mathematically
rigorous treatment of these topics requires measure-theoretic probability theory; see, for example,
Billingsley (1995, Chapter 6) and Port (1994, Chapter 14). For readers without the necessary back-
ground for these references, Parzen (1962, Chapter 2), Ross (1985, Chapter 3), Snell (1988, Chapter 4),
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and Woodroofe (1975, Chapter 10) give more elementary, but still very useful, discussions of condi-
tioning.

Exercise 2.19 briefly considers an approach to conditional expectation based on projections in
spaces of square-integrable random variables. This approach is developed more fully in Karr (1993,
Chapter 8).

Exchangeable random variables are considered in Port (1994, Chapter 15). Schervish (1995,
Chapter 1) discusses the relevance of this concept to statistical inference.

Martingales play an important role in probability and statistics. The definition of a martingale
used in this chapter is a special case of a more general, and more useful, definition. Let X1, X2, . . .

and Y1, Y2, . . . denote sequences of random variables and suppose that, for each n = 1, 2, . . . , Xn

is a function of Y1, Y2, . . . , Yn . The sequence (X1, X2, . . .) is said to be a martingale with respect to
(Y1, Y2, . . .) if

E(Xn+1|Y1, . . . , Yn) = Xn, n = 1, 2, . . . .

Thus, the definition used in this chapter is a special case in which Yn is taken to be Xn , n = 1, 2, . . . .

See, for example, Billingsley (1995, Section 35), Karr (1993, Chapter 9), Port (1994, Chapter 17),
and Woodroofe (1975, Chapter 12) for further discussion of martingales.
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Characteristic Functions

3.1 Introduction

The properties of a random variable may be described by its distribution function or, in some
cases, by its density or frequency function. In Section 1.8 it was shown that expectations of
the form E[g(X )] for all bounded, continuous, real-valued functions g completely determine
the distribution of X (Theorem 1.11). However, the entire set of all bounded, continuous
real-valued functions is not needed to characterize the distribution of a random variable in
this way.

Let X denote a real-valued random variable with distribution function F . For each t ∈ R,
let gt denote a function on the range of X such that E[|gt (X )|] < ∞. Then the function

W (t) = E[gt (X )] =
∫ ∞

−∞
gt (X ) d F(x), t ∈ R,

gives the expected values of all functions of the form gt . If the set of functions G =
{gt : t ∈ R} is chosen appropriately, then function W will completely characterize the dis-
tribution of X , and certain features of F will be reflected in W . In fact, we have already
seen one simple example of this with the distribution function, in which gt (x) = I{x≤t}.

A function such as W is called an integral transform of F ; the properties of an integral
transform will depend on the properties of the class of functions G. In this chapter, we
consider a particular integral transform, the characteristic function. Two other integral
transforms, the Laplace transform and the moment-generating function, are discussed in
Chapter 4.

The characteristic function of the distribution of a random variable X , or, more simply,
the characteristic function of X , is defined as

ϕ(t) ≡ ϕX (t) = E[exp(i t X )] ≡
∫ ∞

−∞
exp(i t x) d F(x), −∞ < t < ∞,

where exp(i t x) is a complex number; writing

exp(i t x) = cos(t x) + i sin(t x),

as described in Appendix 2, we may write ϕ(t) = u(t) + iv(t) where

u(t) =
∫ ∞

−∞
cos(t x) d F(x) and v(t) =

∫ ∞

−∞
sin(t x) d F(x). (3.1)

69
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Figure 3.1. Characteristic function in Example 3.1.

Thus, a characteristic function may be viewed as two real-valued functions, u(·) and v(·),
the real and imaginary parts of ϕ(·), respectively. Note that, since cos and sin are bounded
functions, the characteristic function of a random variable always exists.

Example 3.1 (Uniform distribution on the unit interval). Let X denote a real-valued
random variable with distribution function

F(x) = x, 0 ≤ x ≤ 1.

The characteristic function of this distribution is given by

ϕ(t) =
∫ 1

0
exp(i t x) dx = exp(i t) − 1

i t
= sin(t)

t
+ i

1 − cos(t)

t
, t ∈ R.

Plots of the real and imaginary parts of ϕ are given in Figure 3.1. �

Example 3.2 (Standard normal distribution). Let Z denote a real-valued random variable
with an absolutely continuous distribution with density function

p(z) = 1√
(2π )

exp

(
−1

2
z2

)
, −∞ < z < ∞;

this is called the standard normal distribution. The characteristic function of this distribution
is given by

ϕ(t) = 1√
(2π )

∫ ∞

−∞
exp(i t z) exp

(
−1

2
z2

)
dz = exp

(
−1

2
t2

)
, t ∈ R.
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Thus, aside from a constant, the characteristic function of the standard normal distribution
is the same as its density function. �

Example 3.3 (Binomial distribution). Let X denote a real-valued random variable with a
discrete distribution with frequency function

p(x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, . . . , n;

here θ and n are fixed constants, with θ taking values in the interval (0, 1) and n taking
values in the set {1, 2, . . .}. This is a binomial distribution with parameters n and θ . The
characteristic function of this distribution is given by

ϕ(t) =
n∑

x=0

exp(i t x)

(
n

x

)
θ x (1 − θ )n−x

= (1 − θ )n
n∑

x=0

(
n

x

) (
θ exp(i t x)

1 − θ

)x

= [1 − θ + θ exp(i t)]n.

Plots of the real and imaginary parts of ϕ for the case n = 3, θ = 1/2 are given in
Figure 3.2. �

t

t

v 
(t

)
u 

(t
)

−−
−

−
−

−

−−

Imaginary Part

Real Part

Figure 3.2. Characteristic function in Example 3.3.
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Example 3.4 (Gamma distribution). Let X denote a real-valued random variable with an
absolutely continuous distribution with density function

f (x) = βα

�(α)
xα−1 exp(−βx), x > 0

where α and β are nonnegative constants. This is called a gamma distribution with param-
eters α and β.

The characteristic function of this distribution is given by

ϕ(t) =
∫ ∞

0
exp(i t x)

βα

�(α)
xα−1 exp(−βx) dx

= βα

�(α)

∫ ∞

0
xα−1 exp(−(β − i t)x) = βα

(β − i t)α
, −∞ < t < ∞. �

The characteristic function has a number of useful properties that make it convenient
for deriving many important results. The main drawback of the characteristic function is
that it requires some results in complex analysis. However, the complex analysis required is
relatively straightforward and the advantages provided by the use of characteristic functions
far outweigh this minor inconvenience. For readers unfamiliar with complex analysis, a brief
summary is given in Appendix 2.

3.2 Basic Properties

Characteristic functions have a number of basic properties.

Theorem 3.1. Let ϕ(·) denote the characteristic function of a distribution on R. Then
(i) ϕ is a continuous function

(ii) |ϕ(t)| ≤ 1 for all t ∈ R
(iii) Let X denote a real-valued random variable with characteristic function ϕ, let

a, b denote real-valued constants, and let Y = aX + b. Then ϕY, the characteristic
function of Y , is given by

ϕY (t) = exp(ibt)ϕ(at).

(iv) u is an even function and v is an odd function, where u and v are given by (3.1).

Proof. Note that

|ϕ(t + h) − ϕ(t)| ≤
∫ ∞

−∞
| exp{i x(t + h)} − exp{i t x}| d FX (x)

≤
∫ ∞

−∞
| exp{i xh} − 1| d FX (x).

Note that | exp{i xh} − 1| is a real-valued function bounded by 2. Hence, the continuity of
ϕ follows from the Dominated Convergence Theorem (see Appendix 1), using the fact that
exp(i xh) is continuous at h = 0. This establishes part (i).

Part (ii) follows from the fact that

|ϕ(t)| ≤
∫ ∞

−∞
| exp{i t x}| d FX (x) ≤ 1.

Parts (iii) and (iv) are immediate.
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Example 3.5 (Uniform distribution on the unit interval). In Example 3.1 it is shown that
the characteristic function of this distribution is given by

ϕ(t) =
∫ 1

0
exp(i t x) dx = exp(i t) − 1

i t
.

Hence, part (ii) of Theorem 3.1 implies that for all −∞ < t < ∞,

| exp(i t) − 1| ≤ |t |.
This is a useful result in complex analysis; see Appendix 2. �

Example 3.6 (Normal distribution). Let Z denote a real-valued random variable with a
standard normal distribution and let µ and σ be real-valued constants with σ > 0. Define
a random variable X by

X = σ Z + µ.

The distribution of X is called a normal distribution with parameters µ and σ .
Recall that the characteristic function of Z is exp(−t2/2); according to part (iii) of

Theorem 3.1, the characteristic function of X is

exp(iµt) exp

(
−1

2
σ 2t2

)
= exp

(
−σ 2

2
t2 + iµt

)
. �

Uniqueness and inversion of characteristic functions
The characteristic function is essentially the Fourier transform used in mathematical anal-
ysis. Let g denote a function of bounded variation such that∫ ∞

−∞
|g(x)| dx < ∞.

The Fourier transform of g is given by

G(t) = 1√
(2π )

∫ ∞

−∞
g(x) exp{i t x} dx, ∞ < t < ∞.

The following result shows that it is possible to recover a function from its Fourier transform.

Theorem 3.2. Let G denote the Fourier transform of a function g, which is of bounded
variation.

(i) G(t) → 0 as t → ±∞.
(ii) Suppose x0 is a continuity point of g. Then

g(x0) = 1√
(2π )

lim
T →∞

∫ T

−T
G(t) exp{−i t x0} dt.

Proof. The proof of this theorem uses the Riemann-Lebesgue Lemma (Section A3.4.10)
along with the result in Section A3.4.11 of Appendix 3.

Note that part (i) follows provided that

lim
t→∞

∫ ∞

−∞
g(x) sin(t x) dx = 0
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and that

lim
t→∞

∫ ∞

−∞
g(x) cos(t x) dx = 0.

These follow immediately from the Riemann-Lebesgue Lemma.
Now consider part (ii). Note that it suffices to show that

g(x0) = 1

2π
lim

T →∞

∫ T

−T

∫ ∞

−∞
g(x) cos(t(x − x0)) dx dt (3.2)

and

lim
T →∞

∫ T

−T

∫ ∞

−∞
g(x) sin(t(x − x0)) dx dt = 0. (3.3)

Consider (3.3). Changing the order of integration,∫ T

−T

∫ ∞

−∞
g(x) sin(t(x − x0)) dx dt =

∫ ∞

−∞
g(x)

∫ T

−T
sin(t(x − x0)) dt dx .

Equation (3.3) now follows from the fact that, for T > 0,∫ T

−T
sin(t(x − x0)) dt = 0.

Now consider (3.2). Again, changing the order of integration, and using the change-of-
variable u = x − x0,∫ T

−T

∫ ∞

−∞
g(x) cos(t(x − x0)) dx dt =

∫ ∞

−∞
g(x)

∫ T

−T
cos(t(x − x0)) dt dx

=
∫ ∞

−∞
g(u + x0)

sin(T u)

u
du.

It now follows from Section A3.4.11 that

lim
T →∞

∫ ∞

−∞
g(u + x0)

sin(T u)

u
du = g(x0).

The following theorem applies this result to characteristic functions and shows that the
distribution function of a real-valued random variable may be obtained from its characteristic
function, at least at continuity points of the distribution function.

Theorem 3.3. Let X denote a real-valued random variable with distribution function F
and characteristic function ϕ. If F is continuous at x0, x1, x0 < x1, then

F(x1) − F(x0) = 1

2π
lim

T →∞

∫ T

−T

exp{−i t x0} − exp{−i t x1}
i t

ϕ(t) dt.

Proof. Fix x . Define

h(y) = F(x + y) − F(y).
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Then h is of bounded variation and for any a < b∫ b

a
|h(y)| dy =

∫ b

a
F(x + y) dy −

∫ b

a
F(y) dy

=
∫ b+x

b
F(z) dz −

∫ a+x

a
F(z) dz

≤ [F(b + x) − F(a)]x ≤ x .

Hence, ∫ ∞

−∞
|h(y)| dy < ∞.

It follows from the Theorem 3.2 that

h(y) = 1

2π
lim

T →∞

∫ T

−T
exp{−i t y}

{∫ ∞

−∞
h(z) exp(i t z)

}
dz dy

provided that h is continuous at y; note that, in this expression, the integral with respect to
dz is simply the Fourier transform of h. Consider the integral∫ ∞

−∞
h(z) exp{i t z} dz = 1

i t

∫ ∞

−∞
h(z) d exp{i t z}.

Using integration-by-parts, this integral is equal to

− 1

i t

∫ ∞

−∞
exp{i t z} dh(z) + exp{i t z}

i t
h(z)

∣∣∣∞
−∞

.

Note that exp{i t z} is bounded,

lim
z→∞ h(z) = lim

z→−∞ h(z) = 0,

and ∫ ∞

−∞
exp{i t z} dh(z) =

∫ ∞

−∞
exp{i t z} d F(x + z) −

∫ ∞

−∞
exp{i t z} d F(z)

= ϕ(t)[exp{−i t x} − 1].

Hence, ∫ ∞

−∞
h(z) exp(i t z) dz = ϕ(t)

1 − exp(−i t x)

i t
,

so that

h(y) = 1

2π
lim

T →∞

∫ T

−T

exp{−i t y} − exp{−i t(x + y)}
i t

ϕ(t) dt,

provided that h is continuous at y, which holds provided that F is continuous at x and
x + y. Choosing y = x0 and x = x1 − x0 yields the result.

Thus, given the characteristic function of a random variable X we may determine differ-
ences of F , the distribution function of X , of the form F(x1) − F(x0) for continuity points
x0, x1. However, since set of points at which FX is discontinuous is countable, and F is
right-continuous, the characteristic function determines the entire distribution of X . The
details are given in the following corollary to Theorem 3.3.



P1: JZP
052184472Xc03 CUNY148/Severini May 24, 2005 2:34

76 Characteristic Functions

Corollary 3.1. Let X and Y denote real-value random variables with characteristic func-
tions ϕX and ϕY , respectively. X and Y have the same distribution if and only if

ϕX (t) = ϕY (t), − ∞ < t < ∞. (3.4)

Proof. Clearly, if X and Y have the same distribution then they have the same characteristic
function.

Now suppose that (3.4) holds; let FX denote the distribution function of X and let FY

denote the distribution function of Y . It follows from Theorem 3.3 that if a and b are
continuity points of both FX and FY , then

FX (b) − FX (a) = FY (b) − FY (a).

Let an , n = 1, 2, . . . , denote a sequence of continuity points of both FX and FY such
that an diverges to −∞ as n → ∞. Note that, since the points at which either FX or FY is
not continuous is countable, such a sequence must exist. Then

FX (b) − FX (an) = FY (b) − FY (an), n = 1, 2, . . .

so that

FX (b) − FY (b) = lim
n→∞ FX (an) − FY (an) = 0.

Hence, FX (b) and FY (b) are equal for any point b that is a continuity point of both FX and
FY .

Now suppose at least one of FX and FY is not continuous at b. Let bn , n = 1, 2, . . . ,

denote a sequence of continuity points of FX and FY decreasing to b. Then

FX (bn) = FY (bn), n = 1, 2, . . .

and, by the right-continuity of FX and FY ,

FX (b) = FY (b),

proving the result.

Characteristic function of a sum
The following result illustrates one of the main advantages of working with characteristic
functions rather than with distribution functions or density functions. The proof is straight-
forward and is left as an exercise.

Theorem 3.4. Let X and Y denote independent, real-valued random variables with char-
acteristic functions ϕX and ϕY , respectively. Let ϕX+Y denote the characteristic function of
the random variable X + Y . Then

ϕX+Y (t) = ϕX (t)ϕY (t), t ∈ R.

The result given in Theorem 3.4 clearly extends to a sequence of n independent ran-
dom variables and, hence, gives one method for determining the distribution of a sum
X1 + · · · + Xn of random variables X1, . . . , Xn; other methods will be discussed in
Chapter 7.



P1: JZP
052184472Xc03 CUNY148/Severini May 24, 2005 2:34

3.2 Basic Properties 77

Example 3.7 (Chi-squared distribution). Let Z denote a random variable with a standard
normal distribution and consider the distribution of Z2. This distribution has characteristic
function∫ ∞

−∞
exp(i t z2)

1√
(2π )

exp

(
−1

2
z2

)
dz = 1√

(2π )

∫ ∞

−∞
exp

[
−1

2
(1 − 2i t)z2

]
dz

= 1

(1 − 2i t)
1
2

.

Now consider independent standard normal random variables Z1, Z2, · · · , Zn and let
X = Z2

1 + · · · + Z2
n . By Theorem 3.4, the characteristic function of X is

ϕ(t) = 1

(1 − 2i t)
n
2
.

Comparing this result to the characteristic function derived in Example 3.4 shows that X
has a gamma distribution with parameters α = n/2 and β = 1/2. This special case of the
gamma distribution is called the chi-squared distribution with n degrees of freedom; note
that this distribution is defined for any positive value of n, not just integer values. �

Example 3.8 (Sum of binomial random variables). Let X1 and X2 denote independent
random variables such that, for j = 1, 2, X j has a binomial distribution with parameters n j

and θ j . Recall from Example 3.3 that X j has characteristic function

ϕ j (t) = [1 − θ j + θ j exp(i t)]n j , j = 1, 2.

Let X = X1 + X2. Then X has characteristic function

ϕ(t) = [1 − θ1 + θ1 exp(i t)]n1 [1 − θ2 + θ2 exp(i t)]n2 .

Hence, if θ1 = θ2, then X also has a binomial distribution. �

An expansion for characteristic functions
It is well known that the exponential function of a real-valued argument, exp(x), can be
expanded in a power series in x :

exp(x) =
∞∑
j=0

x j

j!
.

The same result holds for complex arguments, so that

exp(i t x) =
∞∑
j=0

(i t x) j

j!
;

see Appendix 2 for further discussion. Thus, the characteristic function of a random variable
X can be expanded in power series whose coefficients involve expected values of the form
E(Xm), m = 0, 1, . . . .

This fact can be used to show that the existence of E(Xm), m = 1, 2, . . . , is related to
the smoothness of the characteristic function at 0; in particular, if E(|X |m) < ∞, then ϕX

is m-times differentiable at 0. The converse to this result is also useful, but it applies only
to moments, and derivatives, of even order. Specifically, if ϕX is 2m-times differentiable at
0 then E(X2m) < ∞. The details are given in the following theorem.
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Theorem 3.5. Let X denote a real-valued random variable with characterstic function ϕ(·).
If, for some m = 1, 2, . . . , E(Xm) exists and is finite, then

ϕ(t) = 1 +
m∑

j=1

(i t) j

j!
E(X j ) + o(tm) as t → 0

and, hence, ϕ is m-times differentiable at 0 with

ϕ( j)(0) = (i) j E(X j ), j = 1, . . . , m.

If, for some m = 1, 2, . . . , ϕ(2m)(0) exists, then E(X2m) < ∞.

Proof. Assume that E(Xm) exists and is finite for some m = 1, 2, . . . . By Lemma A2.1
in Appendix 2, we may write

exp{i t} =
m∑

j=0

(i t) j

j!
+ Rm(t)

where

|Rm(t)| ≤ min{|t |m+1/(m + 1)!, 2|t |m/m!}.
Hence,

ϕ(t) = E[exp{i t X}] = 1 +
m∑

j=1

(i t) j E(X j )

j!
+ E[Rm(t X )].

It remains to be shown that

|E[Rm(t X )]|
|t |m → 0 as t → 0.

We know that |E[Rm(t X )]| ≤ E[|Rm(t X )|] and that

m!|Rm(t X )|
|t |m ≤ min

{ |t ||X |m+1

(m + 1)
, 2|X |m

}
.

Let

Mt (x) = min

{ |t ||x |m+1

(m + 1)
, 2|x |m

}
=

{
2|x |m if |x | ≥ 2(m + 1)/|t |
|t ||x |m+1/(m + 1) if |x | ≤ 2(m + 1)/|t | .

Hence, it suffices to show that

E[Mt (X )] → 0 as t → 0.

Note that for each x , Mt (x) → 0 as t → 0. Furthermore,

|Mt (x)| ≤ 2|x |m

and, under the conditions of the theorem, E(2|X |m) < ∞. It now follows from the Dominated
Convergence Theorem (see Appendix 1) that

E[Mt (X )] → 0 as t → 0.

This proves the first part of the theorem.
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Now suppose that ϕ(2)(0) exists. Writing ϕ(2)(0) in terms of the first derivative ϕ′ and
then writing ϕ′ in terms of ϕ, we have

ϕ(2)(0) = lim
h→0

ϕ(h) − 2ϕ(0) + ϕ(−h)

h2
.

Now,

ϕ(h) − 2ϕ(0) + ϕ(−h) = E[exp(ih X ) − 2 + exp(−ih X )]

= E{[exp(ih X/2) − exp(−ih X/2)]2} = E{[2i sin(h X/2)]2}.
Hence,

ϕ(2)(0) = lim
h→0

E

{
[i sin(h X/2)]2

(h X/2)2
X2

}

and

|ϕ(2)(0)| = lim
h→0

E

{
sin(h X/2)2

(h X/2)2
X2

}
.

By Fatou’s Lemma,

lim
h→0

E

{
sin(h X/2)2

(h X/2)2
X2

}
≥ E

{
lim inf

h→0

sin(h X/2)2

(h X/2)2
X2

}

and since

lim
t→0

sin(t)

t
= 1

we have that

E(X2) ≤ |ϕ(2)(0)|
so that E(X2) < ∞.

The general case is similar, but a bit more complicated. Suppose that ϕ(2m)(0) exists for
some m = 1, 2, . . . . Since

ϕ(2m)(0) = lim
h→0

ϕ(2m−2)(h) − 2ϕ(2m−2)(0) + ϕ(2m−2)(−h)

h2
,

it may be shown by induction that

ϕ(2m)(0) = lim
h→0

1

h2m

2m∑
j=0

(−1) j

(
2m

j

)
ϕ(( j − m)h).

Furthermore,

2m∑
j=0

(−1) j

(
2m

j

)
ϕ(( j − m)h) = E

{
2m∑
j=0

(−1) j

(
2m

j

)
exp[i( j − m)h X ]

}

= E{[exp(ih X/2) − exp(−ih X/2)]2m}
= E{[2i sin(h X/2)]2m}.
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The remainder of the proof is essentially the same as the m = 1 case considered above.
Since

ϕ(2m)(0) = lim
h→0

E

{
[i sin(h X/2)]2m

(h X/2)2m
X2m

}

and

|ϕ(2m)(0)| = lim
h→0

E

{
sin(h X/2)2m

(h X/2)2m
X2m

}
,

and by Fatou’s Lemma (see Appendix 1),

lim
h→0

E

{
sin(h X/2)2m

(h X/2)2m
X2m

}
≥ E(X2m),

it follows that

E(X2m) ≤ |ϕ(2m)(0)|
so that E(X2m) < ∞.

Example 3.9 (Normal distribution). Let X denote a random variable with a normal dis-
tribution with parameters µ and σ ; see Example 3.6. This distribution has characteristic
function

ϕ(t) = exp

(
−σ 2

2
t2 + iµt

)
.

Clearly, ϕ(t) is m-times differentiable for any m = 1, 2, . . . so that E(Xr ) exists for all
r = 1, 2, . . . . It is straightforward to show that

ϕ′(0) = µ and ϕ′′(0) = −(µ2 + σ 2)

so that

E(X ) = µ and E(X2) = µ2 + σ 2. �

Example 3.10 (Gamma distribution). Consider a gamma distribution with parameters α

and β, as in Example 3.4; recall that this distribution has characteristic function

ϕ(t) = βα

(β − i t)α
, t ∈ R.

Since the density function p(x) decreases exponentially fast as x → ∞, it is straightforward
to show that E(Xm) exists for any m and, hence, the moments may be determined by
differentiating ϕ.

Note that

ϕ(m)(t) = −(−i)m[α(α + 1) · · · (α + m − 1)]
βα

(β − i t)α+m

so that

ϕ(m)(0) = −(−i)m[α(α + 1) · · · (α + m − 1)]
1

βm
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and, hence, that

E(Xm) = α(α + 1) · · · (α + m − 1)

βm
. �

Random vectors
Characteristic functions may also be defined for vector-valued random variables. Let X
denote a random vector taking values in Rd . The characteristic function of X is given by

ϕ(t) ≡ ϕX (t) = E[exp(i t T X )], t ∈ Rd .

Many of the basic results regarding characteristic functions generalize in a natural way
to the vector case. Several of these are given in the following theorem; the proof is left as
an exercise.

Theorem 3.6. Let ϕ(·) denote the characteristic function of a random variable taking values
in Rd . Then

(i) ϕ is a continuous function
(ii) |ϕ(t)| ≤ 1, t ∈ Rd

(iii) Let X denote a d-dimensional random vector with characteristic functin ϕX . Let
A denote an r × d matrix, let b denote a d-dimensional vector of constants,
and let Y = AX + b. Then ϕY , the characteristic function of Y , satisfies ϕY (t) =
exp(i t T b)ϕX (AT t).

(iv) Let X and Y denote independent random variables, each taking values in Rd , with
characteristic functions ϕX and ϕY , respectively. Then

ϕX+Y (t) = ϕX (t)ϕY (t).

As in the case of a real-valued random variable, the characteristic function of a random
vector completely determines its distribution. This result is stated without proof in the
theorem below; see, for example, Port (1994, Section 51.1) for a proof.

Theorem 3.7. Let X and Y denote random variables, taking values in Rd , with char-
acteristic functions ϕX and ϕY , respectively. X and Y have the same distribution if and
only if

ϕX (t) = ϕY (t), t ∈ Rd .

There is a very useful corollary to Theorem 3.7. It essentially reduces the problem of
determining the distribution of a random vector to the problem of determining the distri-
bution of all linear functions of the random vector, a problem that can be handled using
methods for real-valued random variables; the proof is left as an exercise.

Corollary 3.2. Let X and Y denote random vectors, each taking values in Rd . X and Y
have the same distribution if and only if aT X and aT Y have the same distribution for any
a ∈ Rd .

Another useful corollary to Theorem 3.7 is that it is possible to determine if two random
vectors are independent by considering their characteristic function; again, the proof is left
as an exercise.
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Corollary 3.3. Let X denote a random vector taking values in Rd and let X = (X1, X2)
where X1 takes values in Rd1 and X2 takes values in Rd2 . Let ϕ denote the characteris-
tic function of X, let ϕ1 denote the characteristic function of X1, and let ϕ2 denote the
characteristic function of X2. Then X1 and X2 are independent if and only if

ϕ(t) = ϕ1(t1)ϕ(t2) for all t = (t1, t2), t1 ∈ Rd1 , t2 ∈ Rd2 .

Example 3.11 (Multinomial distribution). Consider a multinomial distribution with
parameters n and (θ1, . . . , θm),

∑m
j=1 θ j = 1. Recall that this is a discrete distribution with

frequency function

p(x1, . . . , xm) =
(

n

x1, x2, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m

for x j = 0, 1, . . . , n, j = 1, . . . , m, such that
∑m

j=1 x j = n; see Example 2.2.
The characteristic function of the distribution is given by

ϕ(t) =
∑
X

exp(i t1x1 + · · · + i tm xm)p(x1, . . . , xm)

where the sum is over all

(x1, . . . , xm) ∈ X =
{

(x1, . . . , xm) ∈ {0, 1, . . .}m :
m∑

j=1

x j = n

}
.

Hence,

ϕ(t) =
∑
X

(
n

x1, x2, . . . , xm

)
[exp(i t1)θ1]x1 · · · [exp(i tm)θm]xm

=
[

m∑
j=1

exp(i t j )θ j

]n ∑
X

(
n

x1, x2, . . . , xm

)

×
[

exp(i t1)θ1∑m
j=1 exp(i t j )θ j

]x1

· · ·
[

exp(i tm)θm∑m
j=1 exp(i t j )θ j

]xm

=
[

m∑
j=1

exp(i t j )θ j

]n

where t = (t1, . . . , tm).
Using Theorems 3.6 and 3.7, it follows immediately from this result that the sum of r

independent identically distributed multinomial random variables with n = 1 has a multi-
nomial distribution with n = r . �

3.3 Further Properties of Characteristic Functions

We have seen that the characteristic function of a random variable completely determines
its distribution. Thus, it is not surprising that properties of the distribution of X are reflected
in the properties of its characteristic function. In this section, we consider several of these
properties for the case in which X is a real-valued random variable.
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In Theorem 3.5, it was shown that the existence of expected values of the form E(Xm), for
m = 1, 2, . . . , is related to the smoothness of the characteristic function of X at 0. Note that
finiteness of E(|X |m) depends on the rates at which F(x) → 1 as x → ∞ and F(x) → 0
as x → −∞; for instance, if X has an absolutely continuous distribution with density p,
then E(|X |m) < ∞ requires that |x |m p(x) → 0 as x → ±∞. That is, the behavior of the
distribution function of X at ±∞ is related to the smoothness of its characteristic function
at 0.

The following result shows that the behavior of |ϕ(t)| for large t is similarly related to
the smoothness of the distribution function of X .

Theorem 3.8. Consider a probability distribution on the real line with characteristic func-
tion ϕ. If ∫ ∞

−∞
|ϕ(t)| dt < ∞

then the distribution is absolutely continuous. Furthermore, the density function of the
distribution is given by

p(x) = 1

2π

∫ ∞

−∞
exp(−i t x)ϕ(t) dt, x ∈ R.

Proof. By Lemma A2.1, | exp(i t) − 1| ≤ |t | so that for any x0, x1,

| exp(−i t x0) − exp(−i t x1)| = | exp(−i t x0)| |1 − exp{−i t(x1 − x0)}| ≤ |t ||x1 − x0|.
(3.5)

Hence, for any T > 0,∣∣∣ lim
T →∞

∫ T

−T

exp{−i t x0} − exp{−i t x1}
i t

ϕ(t) dt
∣∣∣ ≤ |x1 − x0|

∫ ∞

−∞
|ϕ(t)| dt. (3.6)

Let F denote the distribution function of the distribution; it follows from Theorem 3.3,
along with Equation (3.6), that, for any x0 < x1 at which F is continuous,

F(x1) − F(x0) = 1

2π
lim

T →∞

∫ T

−T

exp{−i t x0} − exp{−i t x1}
i t

ϕ(t) dt

= 1

2π

∫ ∞

−∞

exp{−i t x0} − exp{−i t x1}
i t

ϕ(t) dt.

Since

| exp(−i t x0) − exp(−i t x1)| ≤ |t | |x1 − x0|,
it follows that

|F(x1) − F(x0)| ≤ 1

2π

∫ ∞

−∞
|ϕ(t)| dt |x1 − x0| ≤ M |x1 − x0|

for some constant M .
Now let x and y, y < x , be arbitrary points in R, i.e., not necessarily continuity points

of F . There exist continuity points of F , x0 and x1, such that x0 ≤ y < x ≤ x1 and

|x1 − x0| ≤ 2|x − y|.
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Then

|F(x) − F(y)| ≤ |F(x1) − F(x0)| ≤ M |x1 − x0| ≤ 2M |x − y|.
That is, F satisfies a Lipschitz condition and, hence, is absolutely continuous; see
Appendix 1.

Fix x and h. By Theorem 3.3,

F(x + h) − F(x)

h
= 1

2π

∫ ∞

−∞
Gh(t)ϕ(t) dt

where

Gh(t) = exp{−i t x} − exp{−i t(x + h)}
i th

.

It follows from (3.5) that, for all h, |Gh(t)| ≤ 1 so that, by the Dominated Convergence
Theorem (see Appendix 1),

lim
h→0

F(x + h) − F(x)

h
= 1

2π

∫ ∞

−∞
G0(t)ϕ(t) dt

where

G0(t) = lim
h→0

Gh(t) = exp{−i t x} lim
h→0

1 − exp{−i th}
i th

.

By Lemma A2.1,

1 − exp(−i th) = i th + R2(th)

where |R2(th)| ≤ (th)2/2. Hence,

lim
h→0

1 − exp(−i th)

i th
= 1

so that G0(t) = exp(−i t x) and

lim
h→0

F(x + h) − F(x)

h
= 1

2π

∫ ∞

−∞
exp(−i t x)ϕ(t) dt.

Hence, F is differentiable with derivative

F ′(x) = 1

2π

∫ ∞

−∞
exp(−i t x)ϕ(t) dt.

The result now follows from Theorem 1.9.

Hence, for those cases in which the integral of the modulus of the characteristic function
is finite, Theorem 3.8 gives an alternative to Theorem 3.3 for obtaining the distribution of a
random variable from its characteristic function. When this condition is satisfied, calculation
of the integral in Theorem 3.8 is often easier than calculation of the integral appearing in
Theorem 3.3.

Example 3.12 (Normal distribution). Let X denote a random variable with a normal
distribution with parameters µ and σ , as described in Example 3.6. The characteristic
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function of this distribution function is

ϕ(t) = exp

(
−σ 2

2
t2 + iµt

)
, ∞ < t < ∞.

Note that ∫ ∞

−∞
|ϕ(t)| ≤

∫ ∞

−∞
exp

(
−σ 2

2
t2

)
dt =

√
(2π )

σ
;

hence, by Theorem 3.8, the distribution of X has density function

p(x)

= 1

2π

∫ ∞

−∞
exp

{
−σ 2

2
t2 − i(x − µ)t

}
dt

= 1

2π

∫ ∞

−∞
exp

{
−σ 2

2
[t2 − 2i(x − µ)t/σ 2 − (x − µ)2/σ 4]

}
dt exp

{
− 1

2σ 2
(x − µ)2

}

= 1

σ
√

(2π )
exp

{
− 1

2σ 2
(x − µ)2

}
, −∞ < x < ∞.

It follows that this is the density of the normal distribution with parameters µ and σ . �

Example 3.13 (Ratio of normal random variables). Let Z1 and Z2 denote independent
scalar random variables such that each Z j , j = 1, 2, has a standard normal distribution.
Define a random variable X by X = Z1/Z2. The characteristic function of this distribution
is given by

ϕ(t) = E[exp(i t Z1/Z2)] = E{E[exp(i t Z1/Z2)|Z2]}, −∞ < t < ∞.

Since the characteristic function of Z1 is exp(−t2/2) and Z1 and Z2 are independent,

ϕ(t) = E

[
exp

(
−1

2
t2/Z2

2

)]
=

∫ ∞

−∞

1√
(2π )

exp

{
−1

2
(t2/z2 + z2)

}
dz

= exp(−|t |), −∞ < t < ∞.

The density of this distribution may be obtained using Theorem 3.8. Since∫ ∞

−∞
exp(−|t |) dt = 2,

it follows that the distribution of X has density function

p(x) = 1

2π

∫ ∞

−∞
exp(−i t x) exp(−|t |) dt

= 1

2π

∫ ∞

0
exp(−i t x) exp(−t) dt + 1

2π

∫ ∞

0
exp(i t x) exp(−t) dt

= 1

2π

[
1

1 + i x
+ 1

1 − i x

]

= 1

π

1

1 + x2
, −∞ < x < ∞.

Hence, X has a standard Cauchy distribution; see Example 1.29. �



P1: JZP
052184472Xc03 CUNY148/Severini May 24, 2005 2:34

86 Characteristic Functions

In Theorem 3.8 it was shown that if |ϕ(t)| → 0 fast enough as |t | → ∞ for∫ ∞

−∞
|ϕ(t)| dt

to be finite, then the distribution is absolutely continuous. The following theorem gives a
partial converse to this: if X has an absolutely continuous distribution, then the characteristic
function of X approaches 0 at ±∞. Furthermore, the smoothness of p is related to the rate
at which the characteristic function approaches 0.

Theorem 3.9. Let X denote a real-valued random variable with characteristic function ϕ.
If the distribution of X is absolutely continuous with density function p then

ϕ(t) → 0 as |t | → ∞. (3.7)

If p is k-times differentiable with ∫ ∞

−∞
|p(k)(x)| dx < ∞,

then

|ϕ(t)| = o(|t |−k) as |t | → ∞.

Proof. If X has an absolutely continuous distribution with density p, then the characteristic
function of X is given by

ϕX (t) =
∫ ∞

−∞
exp(i t x)p(x) dx .

Hence, (3.7) follows directly from Theorem 3.2.
Suppose p is differentiable. Then, using integration-by-parts,

ϕX (t) = 1

i t
exp(i t x)p(x)

∣∣∣∞
−∞

− 1

i t

∫ ∞

−∞
exp(i t x)p′(x) dx .

Clearly, p(x) must approach 0 at ±∞ and, since exp(i t x) is bounded,

ϕX (t) = − 1

i t

∫ ∞

−∞
exp(i t x)p′(x) dx .

If p′ satisfies ∫ ∞

−∞
|p′(x)| dx < ∞,

then Theorem 3.2 applies to p′ so that∣∣∣ ∫ ∞

−∞
exp(i t x)p′(x) dx

∣∣∣ → 0 as |t | → ∞.

Hence,

|ϕX (t)| = o(|t |−1) as |t | → ∞.

The results for the higher-order derivatives follow in a similar manner.
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Example 3.14 (Uniform distribution on the unit interval). Consider the uniform distri-
bution on the unit interval; the characteristic function of this distribution is given by

ϕ(t) =
∫ 1

0
exp(i t x) dx = exp(i t) − 1

i t
= sin(t)

t
− i

(
cos(t) − 1

t

)
, −∞ < t < ∞.

Hence,

|ϕ(t)|2 = sin(t)2 + (cos(t) − 1)2

t2
= O(|t |−2) as |t | → ∞

so that the density of this distribution is differentiable, at most, one time. Here p(x) = 1 if
0 < x < 1 and p(x) = 0 otherwise so that p is not differentiable. �

Example 3.15 (Binomial distribution). Consider a binomial distribution with parameters
n and θ . The characteristic function of this distribution is given by

ϕ(t) = [1 − θ + θ exp(i t)]n

so that

|ϕ(t)| = [(1 − θ )2 + 2θ (1 − θ ) cos(t) + θ2]
n
2 .

It is easy to see that

lim inf
|t |→∞

|ϕ(t)| = |2θ − 1|n and lim sup
|t |→∞

|ϕ(t)| = 1

so that ϕ(t) does not have a limit as |t | → 0; see Figure 3.2 for a graphical illustration of
this fact. It follows that the binomial distribution is not absolutely continuous, which, of
course, is obvious from its definition. �

Symmetric distributions
The distribution of X is said to be symmetric about a point x0 if X − x0 and −(X − x0)
have the same distribution. Note that this implies that

F(x0 + x) = 1 − F((x0 − x)−), −∞ < x < ∞,

where F denotes the distribution function of X .
The following theorem shows that the imaginary part of the characteristic function of a

distribution symmetric about 0 is 0; the proof is left as an exercise.

Theorem 3.10. Let X denote a real-valued random variable with characteristic fun-
ction ϕ. The distribution of X is symmetric about 0 if and only if ϕ(t) is real for all
−∞ < t < ∞.

Example 3.16 (Symmetrization of a distribution). Let X denote a real-valued random
variable with characteristic function ϕ. Let X1, X2 denote independent random variables,
such that X1 and X2 each have the same distribution as X , and let Y = X1 − X2. Then Y
has characteristic function

ϕY (t) = E[exp(i t X1) exp(−i t X2)] = ϕ(t)ϕ(−t)

= |ϕ(t)|2, −∞ < t < ∞ .
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Hence, the distribution of Y is symmetric about 0; the distribution of Y is called the sym-
metrization of the distribution of X .

For instance, suppose that X has a uniform distribution on the interval (0, 1). Then Y
has characteristic function

ϕY (t) = sin(t)2 + (cos(t) − 1)2

t2
, −∞ < t < ∞;

see Example 3.14. �

Lattice distributions
Let X denote a real-valued discrete random variable with range

X = {x1, x2, . . .}
where x1 < x2 < · · · and Pr(X = x j ) > 0, j = 1, 2, . . . . The distribution of X is said to
be a lattice distribution if there exists a constant b such that, for any j and k, x j − xk is a
multiple of b. This occurs if and only if X is a subset of the set

{a + bj, j = 0, ±1, ±2, . . .}
for some constant a; b is said to be a span of the distribution. A span b is said to be a
maximal span if b ≥ b1 for any span b1.

Stated another way, X has a lattice distribution if and only if there is a linear function of
X that is integer-valued.

Example 3.17 (Binomial distribution). Consider a binomial distribution with parameters
n and θ . Recall that range of this distribution is {0, 1, . . . , n} with frequency function

p(x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n.

Hence, this is a lattice distribution with maximal span 1. �

Example 3.18 (A discrete distribution that is nonlattice). Let X denote a real-valued
random variable such that the range of X is X = {0, 1,

√
2}. Suppose this is a lattice

distribution. Then there exist integers m and n and a constant b such that
√

2 = mb and 1 = nb.

It follows that
√

2 = m/n for some integers m, n. Since
√

2 is irrational, this is impossible.
It follows that the distribution of X is non-lattice.

More generally, if X has range X = {0, 1, c} for some c > 0, then X has a lattice
distribution if and only if c is rational. �

The characteristic function of a lattice distribution has some special properties.

Theorem 3.11.
(i) The distribution of X is a lattice distribution if and only if its characteristic function

ϕ satisfies |ϕ(t)| = 1 for some t 	= 0. Furthermore, if X has a lattice distribution,
then |ϕ(t)| = 1 if and only if 2π/t is a span of the distribution.
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(ii) Let X denote a random variable with a lattice distribution and let ϕ denote its
characteristic function. A constant b is a maximal span of the distribution if and
only if ϕ(2π/b) = 1 and

|ϕ(t)| < 1 for all 0 < |t | < 2π/b.

(iii) Let X denote a random variable with range X that is a subset of

{a + bj, j = 0, ±1, ±2, . . .}
and let ϕ denote the characteristic function of the distribution. Then, for all −∞ <

t < ∞,

ϕ(t) = exp
(
−2πk

a

b
i
)

ϕ

(
t + 2π

k

b

)
, k = 0, ±1, ±2, . . . .

Thus, if a = 0, the characteristic function is periodic.

Proof. Suppose X has a lattice distribution. Then the characteristic function of X is of the
form

ϕ(t) = exp{i ta}
∞∑

j=−∞
exp{i t jb}p j

where the p j are nonnegative and sum to 1. Hence,

ϕ(2π/b) = exp{i2πa/b}
∞∑

j=−∞
exp{i2π j}p j = exp{i2πa/b}

so that

|ϕ(2π/b)| = 1.

Now suppose that |ϕ(t)| = 1 for some t 	= 0. Writing

ϕ(t) = y1 + iy2,

we must have y2
1 + y2

2 = 1. Let F denote the distribution function of the distribution. Then∫
exp{i t x} d F(x) = exp{i t z}

for some real number z. It follows that∫
[exp{i t z} − exp{i t x}] d F(x) = 0

and, hence, that∫
[cos(t z) − cos(t x)] d F(x) =

∫
[1 − cos(t(x − z))] d F(x) = 0.

Note that 1 − cos(t(x − z)) is nonnegative and continuous in x . Hence, F must be discon-
tinuous with mass points at the zeros of 1 − cos(t(x − z)). It follows that the mass points
of the distribution must be of the form z + 2π j/t , for j = 0, ±1, . . . . This proves part (i)
of the theorem.
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Let

t∗ = inf{t ∈ R: t > 0 and |ϕ(t)| = 1}.
Then 2π/t∗ is the maximal span of the distribution and

|ϕ(t)| < 1 for |t | < t∗.

That is, the maximal span b = 2π/t∗ satisfies

|ϕ(2π/b)| = 1

and

|ϕ(t)| < 1 for |t | < 2π/b,

proving part (ii).
Let p j = Pr(X = a + bj), j = 0, ±1, ±2, . . . . Then

ϕ(t) =
∞∑

j=−∞
p j exp{i t(a + bj)}

and

ϕ(t + 2πk/b) =
∞∑

j=−∞
p j exp{i t(a + bj)} exp{i2πk(a + bj)/b}

= exp(i2πka/b)
∞∑

j=−∞
p j exp{i t(a + bj)} exp(i2πk j).

Part (iii) of the theorem now follows from the fact that

exp(i2πk j) = cos(k j2π ) + i sin(k j2π ) = 1.

Example 3.19 (Binomial distribution). Consider a binomial distribution with parameters
n and θ . The characteristic function of this distribution is given by

ϕ(t) = [1 − θ + θ exp(i t)]n

so that

|ϕ(t)| = [(1 − θ )2 + 2θ (1 − θ ) cos(t) + θ2]
n
2 .

Hence, |ϕ(t)| = 1 if and only if cos(t) = 1; that is, |ϕ(t)| = 1 if and only if t = 2π j for
some integer j .

Thus, according to part (1) of Theorem 3.11, the binomial distribution is a lattice distri-
bution. According to part (ii) of the theorem, the maximal span is 1. �

3.4 Exercises

3.1 Let X denote a real-valued random variable with a discrete distribution with frequency function

p(x) = θ (1 − θ )x , x = 0, 1, . . . ;

where θ is a fixed constant, 0 < θ < 1. Find the characteristic function of X .
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3.2 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

p(x) = 1

2
exp(−|x |), − ∞ < x < ∞.

This is the standard Laplace distribution. Find the characteristic function of X .

3.3 Let X denote a real-valued random variable with a uniform distribution on the interval (a, b),
b > a. That is, X has an absolutely continuous distribution with density function

p(x) = 1

b − a
, a < x < b;

here a and b are fixed constants. Find the characteristic function of X .

3.4 Let X denote a real-valued random variable with distribution function F and characteristic
function ϕ. Suppose that ϕ satisfies the following condition:

lim
T →∞

1

T

∫ T

−T
ϕ(t) dt = 2.

Based on this, what can you conclude about the distribution of X . Be as specific as possible.

3.5 Let X1 and X2 denote independent real-valued random variables with distribution functions F1,
F2, and characteristic functions ϕ1, ϕ2, respectively. Let Y denote a random variable such that
X1, X2, and Y are independent and

Pr(Y = 0) = 1 − Pr(Y = 1) = α

for some 0 < α < 1. Define

Z =
{

X1 if Y = 0
X2 if Y = 1

.

Find the characteristic function of Z in terms of ϕ1, ϕ2, and α.

3.6 Let X denote a real-valued random variable with characteristic function ϕ. Suppose that

|ϕ(1)| = ϕ(π ) = 1.

Describe the distribution of X ; be as specific as possible.

3.7 Prove Theorem 3.4.

3.8 Let X1 and X2 denote independent random variables each with a standard normal distribution
and let Y = X1 X2. Find the characteristic function and density function of Y .

3.9 Prove Theorem 3.6.

3.10 Let X1 and X2 denote independent random variables, each with the standard Laplace distribution;
see Exercise 3.2. Let Y = X1 + X2. Find the characteristic function and density function of Y .

3.11 Prove Corollary 3.2.

3.12 Let X denote a real-valued random variable with characteristic function ϕ. Suppose that g is a
real-valued function on R that has the representation

g(x) =
∫ ∞

−∞
G(t) exp(i t x) dt

for some function G satisfying ∫ ∞

−∞
|G(t)| dt < ∞.
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Show that

E[g(X )] =
∫ ∞

−∞
G(t)ϕ(t) dt.

3.13 Consider a distribution on the real line with characteristic function

ϕ(t) = (1 − t2/2) exp(−t2/4), − ∞ < t < ∞.

Show that this distribution is absolutely continuous and find the density function of the distri-
bution.

3.14 Let ϕ1, . . . , ϕn denote characteristic functions for distributions on the real line. Let a1, . . . , an

denote nonnegative constants such that a1 + · · · + an = 1. Show that

ϕ(t) =
n∑

j=1

a jϕ j (t), − ∞ < t < ∞

is also a characteristic function.

3.15 Let X and Y denote independent, real-valued random variables each with the same marginal
distribution and let ϕ denote the characteristic function of that distribution. Consider the random
vector (X + Y, X − Y ) and let ϕ0 denote its characteristic function. Show that

ϕ0((t1, t2)) = ϕ(t1 + t2)ϕ(t1 − t2), (t1, t2) ∈ R2.

3.16 Consider an absolutely continuous distribution on the real line with density function p. Suppose
that p is piece-wise continuous with a jump at x0, −∞ < x0 < ∞. Show that∫ ∞

−∞
|ϕ(t)| dt = ∞,

where ϕ denotes the characteristic function of the distribution.

3.17 Suppose that X is a real-valued random variable. Suppose that there exists a constant M > 0
such that the support of X lies entirely in the interval [−M, M]. Let ϕ denote the characteristic
function of X . Show that ϕ is infinitely differentiable at 0.

3.18 Prove Corollary 3.3.

3.19 Let X denote a real-valued random variable with characteristic function

ϕ(t) = 1

2
[cos(t) + cos(tπ )], − ∞ < t < ∞.

(a) Is the distribution of X absolutely continuous?

(b) Does there exist an r such that E(Xr ) either does not exist or is infinite?

3.20 Let ϕ denote the characteristic function of the distribution with distribution function

F(x) =
{

0 if x < 0
1 − exp(−x), if 0 ≤ x < ∞ .

Show that this distribution is absolutely continuous and that∫ ∞

−∞
|ϕ(t)| dt = ∞.

Thus, the converse to Theorem 3.8 does not hold.

3.21 Find the density function of the distribution with characteristic function

ϕ(t) =
{ 1 − |t | if |t | ≤ 1

0 otherwise
.
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3.22 Let the random variable Z be defined as in Exercise 3.5.
(a) Suppose that, for each j = 1, 2, the distribution of X j is symmetric about 0. Is the distri-

bution of Z symmetric about 0?

(b) Suppose that X1 and X2 each have a lattice distribution. Does Z have a lattice distribution?

3.23 Let X denote a real-valued random variable with an absolutely continuous distribution. Suppose
that the distribution of X is symmetric about 0. Show that there exists a density function p for
the distribution satisfying

p(x) = p(−x) for all x .

3.24 Let X denote a d-dimensional random vector with characteristic function ϕ. Show that X has a
degenerate distribution if and only if there exists an a ∈ Rd such that

|ϕ(aT t)| = 1 for all t ∈ Rd .

3.25 Prove Theorem 3.10.

3.5 Suggestions for Further Reading

A comprehensive reference for characteristic functions is Lukacs (1960); see also Billingsley (1995,
Section 26), Feller (1971, Chapter XV), Karr (1993, Chapter 6), Port (1994, Chapter 51), Stuart
and Ord (1994, Chapter 4). See Apostol (1974, Chapter 11) for further details regarding Fourier
transforms. Lattice distributions are discussed in detail in Feller (1968). Symmetrization is discussed
in Feller (1971, Section V.5).
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Moments and Cumulants

4.1 Introduction

Let X denote a real-valued random variable. As noted in Chapter 1, expected values of
the form E(Xr ), for r = 1, 2, . . . , are called the moments of X . The moments of a random
variable give one way to describe its properties and, in many cases, the sequence of moments
uniquely determines the distribution of the random variable. The most commonly used
moment is the first moment, E(X ), called the mean of the distribution or the mean of X . In
elementary statistics courses, the mean of a distribution is often described as a “measure of
central tendency.”

Let µ = E(X ). The central moments of X are the moments of X − µ. The most com-
monly used central moment is the second central moment, E[(X − µ)2], called the variance.
The variance is a measure of the dispersion of the distribution around its mean.

In this chapter, we consider properties of moments, along with associated quantities such
as moment-generating functions and cumulants, certain functions of the moments that have
many useful properties.

4.2 Moments and Central Moments

Let X denote a real-valued random variable. It is important to note that, for a given value
of r , E(Xr ) may be infinite, or may not exist. As with any function of X , if

E(|Xr |) ≡ E(|X |r ) < ∞,

then E(Xr ) exists and is finite. If, for some r , E(|X |r ) < ∞, then,

E(|X | j ) < ∞, j = 1, 2, . . . , r.

This follows from Jensen’s inequality, using the fact that the function tm , t > 0, is convex
for m ≥ 1; then,

E(|X | j )
r
j ≤ E[(|X | j )

r
j ] = E(|X |r ) < ∞.

so that E(|X | j ) < ∞.

Example 4.1 (Standard exponential distribution). In Example 1.31 it was shown that if
X has a standard exponential distribution, then

E(Xr ) = �(r + 1), r > 0.

Hence, the moments of X are r !, r = 1, 2, . . . . �

94
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Example 4.2 (Cauchy distribution). Let X denote a random variable with a standard
Cauchy distribution; see Example 1.29. The same argument used in that example to show
that E(X ) does not exist may be used to show that E(Xr ) does not exist when r is an odd
integer and E(Xr ) = ∞ when r is an even integer. �

Central moments
Let X denote a real-valued random variable such that E(|X |) < ∞ and let µ = E(X ). As
noted earlier, the central moments of X are the moments of the random variable X − µ.
Clearly, the first central moment of X , E(X − µ), is 0. The second central moment of
X , E[(X − µ)2], is called the variance of X , which we will often denote by Var(X ). The
standard deviation of X , defined to be the (positive) square root of its variance,

√
Var(x),

is also often used. Note that, if µ exists, Var(X ) always exists, but it may be infinite. The
following theorem gives some simple properties of the variance. The proof is straightforward
and left as an exercise.

Theorem 4.1. Let X denote a real-valued random variable such that E(X2) < ∞. Then
(i) Var (X ) < ∞

(ii) Var (X ) = E(X2) − µ2 where µ = E(X )
(iii) Let a, b denote real-valued constants and let Y = aX + b. Then Var (Y ) =

a2 Var (X ).
(iv) For any c ∈ R, E[(X − c)2] ≥ Var (X ) with equality if and only if c = µ.
(v) For any c ∈ R,

Pr{|X − µ| ≥ c} ≤ 1

c2
Var (X ).

Part (v) of Theorem 4.1 is known as Chebyshev’s inequality.

Example 4.3 (Standard exponential distribution). Suppose that X has a standard expo-
nential distribution. Then, according to Example 4.1, E(X ) = 1 and E(X2) = 2. Hence,
Var(X ) = 1. �

Since (X − µ)r , r = 3, 4, . . . , may be expanded in powers of X and µ, clearly the central
moments may be written as functions of the standard moments. In particular, the central
moment of order r is a function of E(X j ) for j = 1, 2, . . . , r so that if E(|X |r ) < ∞, then
the central moment of order r also exists and is finite.

Example 4.4 (Third central moment). Let X denote a random variable such that E(|X |3) <

∞. Since

(X − µ)3 = X3 − 3µX2 + 3µ2 X − µ3,

it follows that

E[(X − µ)3] = E(X3) − 3µE(X2) + 2µ3. �
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Moments of random vectors
Let X and Y denote real-valued random variables such that E(X2) < ∞ and E(Y 2) < ∞.
In addition to the individual moments of X and Y , E(X ), E(Y ), E(X2), E(Y 2), and so on, we
may also consider the moments and central moments of the random vector (X, Y ), which
are called the joint moments and joint central moments, respectively, of (X, Y ); the terms
product moments and central product moments are also used.

The joint moment of (X, Y ) of order (r, s) is defined to be E(Xr Y s), given that the
expected value exists. Similarly, if µX = E(X ) and µY = E(Y ), the joint central moment
of order (r, s) is defined to be

E[(X − µX )r (Y − µY )s].

The most commonly used joint moment or joint central moment is the central moment
of order (1, 1), generally known as the covariance of X and Y . The covariance of X and Y
will be denoted by Cov(X, Y ) and is given by

Cov(X, Y ) = E[(X − µX )(Y − µY )] = E(XY ) − µXµY .

Note that the Cov(X, Y ) = Cov(Y, X ) and that Cov(X, X ) = Var(X ). It follows from The-
orem 2.1 that if X and Y are independent, then Cov(X, Y ) = 0.

The covariance arises in a natural way in computing the variance of a sum of random
variables. The result is given in the following theorem, whose proof is left as an exercise.

Theorem 4.2. Let X and Y denote real-valued random variables such that E(X2) < ∞ and
E(Y 2) < ∞. Then

Var(X + Y ) = Var(X ) + Var(Y ) + 2 Cov(X, Y )

and, for any real-valued constants a, b,

Cov(aX + b, Y ) = a Cov(X, Y ).

The results of Theorem 4.2 are easily extended to the case of several random variables;
again, the proof is left as an exercise.

Corollary 4.1. Let Y, X1, . . . , Xn denote real-valued random variables such that

E(Y 2) < ∞, E
(
X2

j

)
< ∞, j = 1, . . . , n.

Then

Cov

(
Y,

n∑
j=1

X j

)
=

n∑
j=1

Cov(Y, X j )

and

Var

(
n∑

j=1

X j

)
=

n∑
j=1

Var(X j ) + 2
∑
i< j

Cov(Xi , X j ).
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Correlation
The correlation of X and Y , which we denote by ρ(X, Y ), is defined by

ρ(X, Y ) = Cov(X, Y )

[Var(X ) Var(Y )]
1
2

,

provided that Var(X ) > 0 and Var(Y ) > 0. The correlation is simply the covariance of
the random variables X and Y standardized to have unit variance. Hence, if a, b, c, d are
constants, then the correlation of aX + b and cY + d is the same as the correlation of X
and Y .

The covariance and correlation are measures of the strength of the linear relationship
between X and Y ; the correlation has the advantage of being easier to interpret, because of
the following result.

Theorem 4.3. Let X and Y denote real-valued random variables satisfying E(X2) < ∞
and E(Y 2) < ∞. Assume that Var(X ) > 0 and Var(Y ) > 0. Then

(i) ρ(X, Y )2 ≤ 1
(ii) ρ(X, Y )2 = 1 if and only if there exist real-valued constants a, b such that

Pr(Y = aX + b) = 1.

(iii) ρ(X, Y ) = 0 if and only if, for any real-valued constants a, b,

E{[Y − (aX + b)]2} ≥ Var(Y ).

Proof. Let Z = (X, Y ), g1(Z ) = X − µX , and g2(Z ) = Y − µY , where µX = E(X ) and
µY = E(Y ). Then, by the Cauchy-Schwarz inequality,

E[g1(Z )g2(Z )]2 ≤ E[g1(Z )2] E[g2(Z )2].

That is,

E[(X − µX )(Y − µY )]2 ≤ Var(X ) Var(Y );

part (i) follows.
The condition ρ(X, Y )2 = 1 is equivalent to equality in the Cauchy-Schwarz inequality;

under the conditions of the theorem, this occurs if and only there exists a constant c such
that

Pr(Y − µY = c(X − µX )) = 1.

This proves part (ii).
By part (iv) of Theorem 4.1, for any constants a and b,

E{[Y − (aX + b)]2} ≥ E{[Y − µY − a(X − µX )]2}
= Var(Y ) + a2 Var(X ) − 2a Cov(Y, X )

.

If ρ(X, Y ) = 0, then Cov(Y, X ) = 0 so that, by Theorem 4.1,

E{[Y − (aX + b)]2} ≥ Var(Y ) + a2 Var(X ) ≥ Var(Y ).

Now suppose that, for any constants a, b,

E{[Y − (aX + b)]2} ≥ Var(Y ).
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Let σ 2
X = Var(X ) and σ 2

Y = Var(Y ). Taking

a = σY

σX
ρ(X, Y )

and

b = µY − σY

σX
ρ(X, Y )µX ,

we have that

Var

(
Y − σY

σX
ρ(X, Y )X

)
= Var(Y ) + ρ(X, Y )2 Var(Y ) − 2

σY

σX
ρ(X, Y ) Cov(X, Y )

= (1 − ρ(X, Y )2)Var(Y ).

Therefore, we must have ρ(X, Y ) = 0, proving part (iii).

According to Theorem 4.3, 0 ≤ ρ(X, Y )2 ≤ 1 with ρ(X, Y )2 = 1 if and only if Y is,
with probability 1, a linear function of X . Part (iii) of the theorem states that ρ(X, Y )2 = 0
if and only if the linear function of X that best predicts Y in the sense of the criterion
E{[Y − (a X + b)]2} is the function with a = 0 and b = E(Y ); that is, X is of no help in
predicting Y , at least if we restrict attention to linear functions of X . The restriction to linear
functions is crucial, as the following example illustrates.

Example 4.5 (Laplace distribution). Let X denote a random variable with an absolutely
continuous distribution with density function

p(x) = 1

2
exp{−|x |}, − ∞ < x < ∞;

this distribution is called the Laplace distribution. Note that E(X ) = 0, E(X2) = 2, and
E(X3) = 0.

Let Y = X2. Then

Cov(Y, X ) = E[(Y − 2)X ] = E[X3 − 2X ] = 0

so that ρ(Y, X ) = 0. Hence, linear functions of X are not useful for predicting Y . However,
there are clearly nonlinear functions of X that are useful for predicting Y ; in particular, X2

yields Y exactly. �

Covariance matrices
Joint moments and joint central moments for sets of more than two real-valued random
variables may be defined in a similar manner. For instance, the joint moment of (X1, . . . , Xd )
of order (i1, i2, . . . , id ) is given by

E
[
Xi1

1 · · · Xid
d

]
provided that the expectation exists. Such moments involving three or more random vari-
ables arise only occasionally and we will not consider them here.

Let X denote a d-dimensional random vector and write X = (X1, X2, . . . , Xd ), where
X1, . . . , Xd are real-valued. We are often interested in the set of all covariances of pairs
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of (Xi , X j ). Let

σi j = Cov(Xi , X j ), i, j = 1, . . . , d.

It is often convenient to work with these covariances in matrix form. Hence, let � denote
the d × d matrix with (i, j)th element given by σi j ; note that this matrix is symmetric. The
matrix � is known as the covariance matrix of X . The following theorem gives some basic
properties of covariance matrices; the proof is left as an exercise.

Theorem 4.4. Let X denote a d-dimensional random vector such that E(X T X ) < ∞ and
let � denote the covariance matrix of X. Then

(i) Var(aT X ) = aT �a, a ∈ Rd

(ii) � is nonnegative definite

4.3 Laplace Transforms and Moment-Generating Functions

Let X denote a real-valued random variable. Consider the expected value E[exp{t X}] where
t is a given number, −∞ < t < ∞. Since exp{t X} is a nonnegative random variable, this
expected value always exists, although it may be infinite.

The expected value of exp{t X} is closely related to the characteristic function of X ,
the expected value of exp{i t X}. However, there is an important difference between the
functions exp{t x} and exp{i t x}. Although exp{i t x} is bounded, with | exp{i t x}| = 1, the
function exp{t x} is unbounded for any nonzero t and grows very fast as either x → ∞ or
x → −∞. Hence, for many random variables, the set of values of t for which E{exp(t X )}
is finite is quite small.

Suppose there exists number δ > 0 such that E[exp{t X}] < ∞ for |t | < δ. In this case,
we say that X , or, more precisely, the distribution of X , has moment-generating function

MX (t) = E[exp{t X}], |t | < δ.

As noted above, it is not unusual for a random variable to not have a moment-generating
function.

Laplace transforms
The situation is a little better if X is nonnegative. In that case, we know that E{exp(t X )} < ∞
for all t ≤ 0. Hence, we may define a function

L(t) = E{exp(−t X )}, t ≥ 0;

we will refer to this function as the Laplace transform of the distribution or, more simply,
the Laplace transform of X .

Example 4.6 (Gamma distribution). Consider the gamma distribution with parameters α

and β, as discussed in Example 3.4. The Laplace transform of this distribution is given by

L(t) =
∫ ∞

0
exp(−t x)

βα

�(α)
xα−1 exp(−βx) dx = βα

(β + t)α
, t ≥ 0. �
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Example 4.7 (Inverse gamma distribution). Let X denote a scalar random variable with
an absolutely continuous distribution with density function

x−3 exp(−1/x), x > 0;

this is an example of an inverse gamma distribution. The Laplace transform of this distri-
bution is given by

L(t) =
∫ ∞

0
exp(−t x)x−3 exp(−1/x) dx = 2t K2(2

√
t), t ≥ 0.

Here K2 denotes the modified Bessel function of order 2; see, for example, Temme
(1996). �

As might be expected, the properties of the Laplace transform of X are similar to those
of the characteristic function of X ; in particular, if two random variables have the same
Laplace transform, then they have the same distribution.

Theorem 4.5. Let X and Y denote real-valued, nonnegative random variables. If LX (t) =
LY (t) for all t > 0, then X and Y have the same distribution.

Proof. Let X0 = exp{−X} and Y0 = exp{−Y }. Then X0 and Y0 are random variables
taking values in the interval [0, 1]. Since LX (t) = LY (t), it follows that E[Xt

0] = E[Y t
0] for

all t > 0; in particular, this holds for t = 1, 2, . . . . Hence, for any polynomial g, E[g(X0)] =
E[g(Y0)].

From the Weierstrass Approximation Theorem (see Appendix 3), we know that any
continuous function on [0, 1] may be approximated to arbitrary accuracy by a polynomial.
More formally, let h denote a bounded, continuous function on [0, 1]. Given ε > 0, there
exists a polynomial gε such that

sup
z∈[0,1]

|h(z) − gε(z)| ≤ ε.

Then∣∣∣ E[h(X0) − h(Y0)] − E[gε(X0) − gε(Y0)]
∣∣∣ =

∣∣∣ E[h(X0) − gε(X0)] − E[h(Y0) − gε(Y0)]
∣∣∣

≤ E[|h(X0) − gε(X0)|] + E[|h(Y0) − gε(Y0)|]
≤ 2ε.

Since E[gε(X0) − gε(Y0)] = 0,∣∣∣ E[h(X0)] − E[h(Y0)]
∣∣∣≤ 2ε

and, since ε is arbitrary, it follows that E[h(X0)] = E[h(Y0)] for any bounded continuous
function h. It follows from Theorem 1.14 that X0 and Y0 have the same distribution. That
is, for any bounded continuous function f , E[ f (X0)] = E[ f (Y0)]. Let g denote a bounded,
continuous, real-valued function on the range of X and Y . Since X = − log(X0) and
Y = − log(Y0), g(X ) = f (X0) where f (t) = g(− log(t)), 0 < t < 1. Since g is bounded
and continuous, it follows that f is bounded and continuous; it follows that

E[g(X )] = E[ f (X0)] = E[ f (Y0)] = E[g(Y )]

so that X and Y have the same distribution.
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Let X denote a real-valued random variable with Laplace transform L. The Laplace
transform has the property that moments of X may be obtained from the derivatives of L(t)
at t = 0. Note that since L(t) is defined only for t ≥ 0, L′(0), L′′(0), and so on will refer to
the right-hand derivatives of L(t) at t = 0; for example,

L′(0) = lim
h→0+

L(h) − L(0)

h
.

Theorem 4.6. Let X denote a real-valued, nonnegative random variable and let L denote
its Laplace transform. Suppose that, for some m = 1, 2, . . . , E[Xm] < ∞. Then L(m)(0)
exists and

E[Xm] = (−1)mL(m)(0).

Conversely, if L(m)(0) exists, then E(Xm) < ∞.

Proof. We will consider only the case m = 1; the general case follows along similar lines.
Note that, by the mean-value theorem, for all h, x , there exists a q ≡ q(x, h), 0 ≤ q ≤ h,
such that

exp(−hx) − 1 = −x exp(−q(x, h)x)h. (4.1)

Hence,

lim
h→0

q(x, h) = 0

and, for all h > 0 and all x ,

exp{−q(x, h)h} ≤ 1.

By (4.1), the existence of L′
X (0) is related to the existence of

lim
h→0+

∫ ∞

0
−x exp{−q(x, h)x} d F(x).

Suppose that L′(0) exists. Then the limits

lim
h→0+

∫ ∞

0

exp{−hx} − 1

h
d F(x) = lim

h→0+

∫ ∞

0
−x exp{−q(x, h)x} d F(x)

exist and are finite. By Fatou’s Lemma (see Appendix 1),

lim
h→0+

∫ ∞

0
x exp{−q(x, h)x} d F(x) ≥

∫ ∞

0
x lim inf

h→0+
exp{−q(x, h)x} d F(x)

=
∫ ∞

0
x d F(x),

so that E(X ) < ∞.
Suppose E(X ) < ∞. Since, for h ≥ 0, x exp(−hx) ≤ x and, for all x ≥ 0,

x exp(−hx) → x as h → 0

by the Dominated Convergence Theorem (see Appendix 1),

lim
h→0+

∫ ∞

0
−x exp{−hx} d F(x) = −E(X ).

Hence, L′
X (0) exists and is equal to −E(X ).
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Example 4.8 (Inverse gamma distribution). Consider the inverse gamma distribution con-
sidered in Example 4.7. The Laplace transform of this distribution is given by

L(t) = 2t K2(2
√

t)

where K2 denotes a modified Bessel function. The following properties of the modified
Bessel functions are useful; see, for example, Temme (1996) for further details.

The derivative of Kν satisfies

K ′
ν(t) = −Kν−1(t) − ν

t
Kν(t).

The function Kν for ν = 0, 1, 2 has the following behavior near 0:

Kν(t) ∼



2/t2 if ν = 2
1/t if ν = 1
− log(t) if ν = 0

as t → 0.

Using these results it is easy to show that

L′(t) = −2
√

t K1(2
√

t)

and that L′(0) = −1. Hence, E(X ) = 1. Similarly,

L′′(t) = 2K0(2
√

t) ∼ log(1/t) as t → 0

so that L′′(0) does not exist. It follows that E(X2) is not finite. �

The Laplace transform of a sum of independent random variables is easily determined
from the Laplace transforms of the individual random variables. This result is stated in the
following theorem; the proof is left as an exercise.

Theorem 4.7. Let X and Y denote independent, real-valued nonnegative random variables
with Laplace tranforms LX and LY , respectively. Let LX+Y denote the Laplace transform
of the random variable X + Y . Then

LX+Y (t) = LX (t)LY (t), t ≥ 0.

Example 4.9 (Gamma distribution). Let X1 and X2 denote independent random variables
such that, for j = 1, 2, X j has a gamma distribution with parameters α j and β j . Let L j

denote the Laplace transform of X j , j = 1, 2. Then

L j (t) = β
α j

j

(β j + t)α j
, j = 1, 2.

Let X = X1 + X2. The Laplace transform of X is therefore given by

L(t) = β
α1
1 β

α2
2

(β1 + t)α1 (β2 + t)α2
;

see Example 4.6. It follows that X has a gamma distribution if and only if β1 = β2. �
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Moment-generating functions
The main drawback of Laplace transforms is that they apply only to nonnegative random
variables. The same idea used to define the Laplace transform can be applied to a random
variable with range R, yielding the moment-generating function; however, as noted earlier,
moment-generating functions do not always exist.

Let X denote a real-valued random variable and suppose there exists a number δ > 0
such that E[exp{t X}] < ∞ for |t | < δ. In this case, we say that X has moment-generating
function

M(t) ≡ MX (t) = E[exp{t X}], |t | < δ;

δ is known as the radius of convergence of MX . The moment-generating function is closely
related to the characteristic function of X and, if X is nonnegative, to the Laplace transform
of X .

Example 4.10 (Poisson distribution). Let X denote a discrete random variable taking
values in the set {0, 1, 2, . . .} and let

p(x) = λx exp(−λ)/x!, x = 0, 1, 2, . . .

denote the frequency function of the distribution, where λ > 0. This is a Poisson distribution
with parameter λ.

Note that, for any value of t ,

E[exp(t X )] =
∞∑

x=0

exp(t x)λx exp(−λ)/x!

=
∞∑

x=0

[exp(t)λ]x exp(−λ)/x! = exp{[exp(t) − 1]λ}.

Hence, the moment-generating function of this distribution exists and is given by

M(t) = exp{[exp(t) − 1]λ}, −∞ < t < ∞. �

Example 4.11 (Exponential distribution). Let X denote a random variable with a standard
exponential distribution. Recall that this distribution is absolutely continuous with density
function

p(x) = exp(−x) x > 0.

Note that

E[exp(t X )] =
∫ ∞

0
exp(t x) exp(−t x) dx ;

clearly, for any t > 1, E[exp(t X )] = ∞; hence, the moment-generating function of this
distribution is given by

M(t) = 1

1 − t
, |t | < 1.

This function can be compared with the Laplace transform of the distribution, which can
be obtained from Example 4.6 by taking α = β = 1:

L(t) = 1

1 + t
, t ≥ 0. �



P1: JZP
052184472Xc04 CUNY148/Severini May 24, 2005 2:39

104 Moments and Cumulants

Example 4.12 (Log-normal distribution). Let X denote a real-valued random variable
with an absolutely continuous distribution with density function

p(x) = 1

x
√

(2π )
exp{−1

2
[log(x)]2}, x > 0;

this is an example of a log-normal distribution. Consider the integral∫ ∞

0
exp(t x)

1

x
√

(2π )
exp

{
−1

2
[log(x)]2

}
dx

= 1√
(2π )

∫ ∞

0
exp{t x − [log(x)]2/2 − log(x)} dx .

Since for any t > 0,

t x − [log(x)]2/2 − log(x) ∼ t x as x → ∞,

it follows that E[exp(t x)] = ∞ for all t > 0 and, hence, the moment-generating function
of this distribution does not exist. �

When moment-generating functions exist, they have many of the important properties
possessed by characteristic functions and Laplace transforms. The following theorem shows
that the moment-generating function can be expanded in a power series expansion and that
moments of the distribution can be obtained by differentiation.

Theorem 4.8. Let X denote a real-valued random variable with moment-generating func-
tion MX (t), |t | < δ, for some δ > 0. Then E[Xn] exists and is finite for all n = 1, 2, . . .

and

MX (t) =
∞∑

n=0

tn E (Xn)/n!, |t | < δ.

Furthermore,

E(Xn) = M (n)
X (0), n = 1, 2, . . . .

Proof. Choose t 
= 0 in the interval (−δ, δ). Then E[exp{t X}] and E[exp{−t X}] are both
finite. Hence,

E[exp{|t X |}] = E[exp(t X )I{t X>0}] + E[exp(−t X )I{t X≤0}]

≤ E[exp{t X}] + E[exp{−t X}] < ∞.

Note that, since

exp{|t X |} =
∞∑
j=0

|t X | j

j!
,

|X |n ≤ n!

|t |n exp{|t X |}, n = 0, 1, 2, . . . .

It follows that E[|X |n] < ∞ for n = 1, 2, . . . and, hence, that E[Xn] exists and is finite for
n = 1, 2, . . . .
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For fixed t , define

fn(x) =
n∑

j=0

(t x) j/j!.

Note that for each fixed x ,

fn(x) → exp{t x} as n → ∞.

Also,

| fn(x)| ≤
∣∣∣∣∣

n∑
j=0

(t x) j/j!

∣∣∣∣∣ ≤
n∑

j=0

|t x | j/j! ≤ exp{|t x |}

and, for |t | < δ,

E[exp(|t X |)] < ∞.

Hence, by the Dominated Convergence Theorem (see Appendix 1),

lim
n→∞ E[ fn(X )] =

∞∑
j=0

t j E(X j )/j! = MX (t), |t | < δ.

That is,

MX (t) =
∞∑

n=0

tn E(Xn)/n!, |t | < δ.

The remaining part of the theorem now follows from the fact that a power series may be
differentiated term-by-term within its radius of convergence (see Appendix 3).

Example 4.13 (Poisson distribution). Let X denote a random variable with a Poisson
distribution with parameterλ; see Example 4.10. Recall that the moment-generating function
of this distribution is given by

M(t) = exp{[exp(t) − 1]λ}, −∞ < t < ∞.

Note that

M ′(t) = M(t) exp(t)λ,

M ′′(t) = M(t) exp(2t)λ2 + M(t) exp(t)λ

and

M ′′′(t) = M(t)[λ exp(t) + 3(λ exp(t))2 + (λ exp(t))3].

It follows that

E(X ) = M ′(0) = λ, E(X2) = M ′′(0) = λ2 + λ

and

E(X3) = λ + 3λ2 + λ3.

In particular, X has mean λ and variance λ. �
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Example 4.14 (Log-normal distribution). Let X denote a random variable with the log-
normal distribution considered in Example 4.12; recall that the moment-generating function
of this distribution does not exist. Note that

E(Xr ) =
∫ ∞

0
xr 1

x
√

(2π )
exp

{
−1

2
[log(x)]2

}
dx

=
∫ ∞

−∞
exp(r t)

1√
(2π )

exp

(
−1

2
t2

)
dt

= exp

(
1

2
r2

)
.

Hence, all the moments of the distribution exist and are finite, even though the moment-
generating function does not exist. That is, the converse to the first part of Theorem 4.8
does not hold. �

If two moment-generating functions agree in a neighborhood of 0, then they represent
the same distribution; a formal statement of this result is given in the following theorem.

Theorem 4.9. Let X and Y denote real-valued random variables with moment-generating
functions MX (t), |t | < δX , and MY (t), |t | < δY , respectively. X and Y have the same dis-
tribution if and only if there exists a δ > 0 such that

MX (t) = MY (t), |t | < δ.

Proof. Note that, since MX (t) and MY (t) agree in a neighborhood of 0,

E(X j ) = E(Y j ), j = 1, 2, . . . .

Since, for |t | < δ,

E(exp{t |X |}) ≤ E(exp{t X}) + E(exp{−t X}) < ∞,

it follows that moment-generating function of |X | exists and, hence, all moments of |X |
exist. Let

γ j = E(|X | j ), j = 1, 2, . . . .

Since
∞∑
j=0

γ j t
j/j! < ∞ for |t | < δ,

it follows that

lim
j→∞

γ j t j

j!
= 0, |t | < δ.

By Lemma A2.1,

∣∣∣ exp{ihx} −
n∑

j=0

(ihx) j/j!
∣∣∣≤ |hx |n+1

(n + 1)!
.
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Hence,

∣∣∣ exp{i t x}
[

exp{ihx} −
n∑

j=0

(ihx) j/j!

] ∣∣∣≤ |hx |n+1

(n + 1)!

and ∣∣∣∣∣ϕX (t + h) −
n∑

j=0

h j

j!

∫ ∞

−∞
(i x) j exp{i t x} d FX (x)

∣∣∣∣∣ ≤ |h|n+1γn+1

(n + 1)!
,

where ϕX denotes the characteristic function of X .
Note that ∫ ∞

−∞
(i x)k exp{i t x} d FX (x) = ϕ

(k)
X (t).

Hence, ∣∣∣∣∣ϕX (t + h) −
n∑

j=0

h j

j!
ϕ

( j)
X (t)

∣∣∣∣∣ ≤ |h|n+1γn+1

(n + 1)!
, n = 1, 2, . . . .

It follows that

ϕX (t + h) =
∞∑
j=0

h j

j!
ϕ

( j)
X (t), |h| < δ. (4.2)

Applying the same argument to Y shows that ϕY , the characteristic function of Y , satisfies

ϕY (t + h) =
∞∑
j=0

h j

j!
ϕ

( j)
Y (t), |h| < δ. (4.3)

Taking t = 0 and using the fact that

ϕ
(k)
X (0) = E(Xk) = E(Y k) = ϕ

(k)
Y (0),

it follows that

ϕX (t) = ϕY (t), |t | < δ

and also that

ϕ
(k)
X (t) = ϕ

(k)
Y (t), k = 1, 2, . . . , |t | < δ.

Taking t = δ/2 in (4.2) and (4.3) shows that

ϕX (δ/2 + h) =
∞∑
j=0

h j

j!
ϕ

( j)
X (δ/2), |h| < δ

and

ϕY (δ/2 + h) =
∞∑
j=0

h j

j!
ϕ

( j)
Y (δ/2), |h| < δ.

Since

ϕ
(k)
X (δ/2) = ϕ

(k)
Y (δ/2), k = 1, 2, . . . ,
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it follows that

ϕX (δ/2 + h) = ϕY (δ/2 + h), |h| < δ.

The same argument may be used with −δ/2 so that

ϕX (−δ/2 + h) = ϕY (−δ/2 + h), |h| < δ

and, hence, that

ϕX (t) = ϕY (t), |t | <
3δ

2
.

Using this same argument with δ and −δ, it can be shown that

ϕX (t) = ϕY (t), |t | < 2δ.

Continuing in this way shows that

ϕX (t) = ϕY (t), |t | <
rδ

2
for any r = 1, 2, . . . and, hence, that

ϕX (t) = ϕY (t), −∞ < t < ∞.

It now follows from Corollary 3.1 that X and Y have the same distribution.

Hence, in establishing that two random variables have the same distribution, there is a
slight difference between moment-generating function and characteristic functions. For the
distributions of X and Y to be the same, ϕX (t) and ϕY (t) must be equal for all t ∈ R, while
MX (t) and MY (t) only need to be equal for all t in some neighborhood of 0.

Theorem 4.9 is often used in conjunction with the following results to determine the
distribution of a function of random variables. The first of these results shows that there
is a simple relationship between the moment-generating function of a linear function of
a random variable and the moment-generating function of the random variable itself; the
proof is left as an exercise.

Theorem 4.10. Let X denote a real-valued random variable with moment-generating func-
tion MX (t), |t | < δ. Let a and b denote real-valued constants and let Y = a + bX. Then
the moment-generating function of Y is given by

MY (t) = exp(at)MX (bt), |t | < δ/|b|.

Like characteristic functions and Laplace transforms, the moment-generating function
of a sum of independent random variables is simply the product of the individual moment-
generating functions. This result is given in the following theorem; the proof is left as an
exercise.

Theorem 4.11. Let X and Y denote independent, real-valued random variables; let MX (t),
|t | < δX , denote the moment-generating function of X and let MY (t), |t | < δY , denote the
moment-generating function of Y . Let MX+Y (t) denote the moment-generating function of
the random variable X + Y . Then

MX+Y (t) = MX (t)MY (t), |t | < min(δX , δY )

where MX+Y (t) denotes the moment-generating function of the random variable X + Y .
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Example 4.15 (Poisson distribution). Let X1 and X2 denote independent random variables
such that, for j = 1, 2, X j has a Poisson distribution with mean λ j ; see Example 4.10. Then
X j has moment-generating function

M j (t) = exp{[exp(t) − 1]λ j }, −∞ < t < ∞.

Let X = X1 + X2. By Theorem 4.11, the moment-generating function of X is given by

M(t) = M1(t)M2(t) = exp{[exp(t) − 1](λ1 + λ2)}, −∞ < t < ∞.

Note that this is the moment-generating function of a Poisson distribution with mean
λ1 + λ2. Thus, the sum of two independent Poisson random variables also has a Poisson
distribution. �

Example 4.16 (Sample mean of normal random variables). Let Z denote a random vari-
able with standard normal distribution; then the moment-generating function of Z is given
by

M(t) =
∫ ∞

−∞
exp(t z)

1√
(2π )

exp

(
−1

2
z2

)
dx = exp(t2/2), −∞ < t < ∞.

Let µ and σ denote real-valued constants, σ > 0, and let X denote a random variable
with a normal distribution with mean µ and standard deviation σ . Recall that X has the
same distribution as µ + σ Z ; see Example 3.6. According to Theorem 4.10, the moment-
generating function of X is given by

MX (t) = exp(µt) exp(σ 2t2/2), −∞ < t < ∞.

Let X1, X2, . . . , Xn denote independent, identically distributed random variables, each
with the same distribution as X . Then, by repeated application of Theorem 4.11,

∑n
j=1 X j

has moment-generating function

exp(nµt) exp(nσ 2t2/2), −∞ < t < ∞
and, by Theorem 4.10, the sample mean X̄ = ∑n

j=1 X j/n has moment-generating function

MX̄ (t) = exp(µt) exp[(σ 2/n)t2/2], −∞ < t < ∞.

Comparing this to MX above, we see that X̄ has a normal distribution with mean µ and
standard deviation σ/

√
n. �

Moment-generating functions for random vectors
Moment-generating functions are defined for random vectors in a manner that is analo-
gous to the definition of a characteristic function for a random vector. Let X denote a
d-dimensional random vector and let t denote an element of Rd . If there exists a δ > 0 such
that

E(exp{t T X}) < ∞ for all ||t || < δ,

then the moment-generating function of X exists and is given by

MX (t) = E(exp{t T X}), t ∈ Rd , ||t || < δ;
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as in the case of a real-valued random variable, δ is known as the radius of convergence
of MX .

Many of the properties of a moment-generating function for a real-valued random vari-
able extend to the vector case. Several of these properties are given in the following theorem;
the proof is left as an exercise.

Theorem 4.12. Let X and Y denote d-dimensional random vectors with moment-generating
functions MX and MY , and radii of convergence δX and δY , respectively.

(i) Let A denote an m × d matrix of real numbers and let b denote an element of Rd .
Then MAX+b, the moment-generating function of AX + b, satisfies

MAX+b(t) = exp{t T b}MX (AT t), ||t || < δA

for some δA > 0, possibly depending on A.
(ii) If X and Y are independent then MX+Y , the moment-generating function of X + Y ,

exists and is given by

MX+Y (t) = MX (t)MY (t), ||t || < min(δX , δY ).

(iii) X and Y have the same distribution if and only if there exists a δ > 0 such that

MX (t) = MY (t) for all ||t || < δ.

As is the case with the characteristic function, the following result shows that the moment-
generating function can be used to establish the independence of two random vectors; the
proof is left as an exercise.

Corollary 4.2. Let X denote a random vector taking values in Rd and let X = (X1, X2)
where X1 takes values in Rd1 and X2 takes values in Rd2 . Let M denote the moment-
generating function of X with radius of convergence δ, let M1 denote the moment-generating
function of X1 with radius of convergence δ1, and let M2 denote the moment-generating
function of X2 with radius of convergence δ2.
X1 and X2 are independent if and only if there exists a δ0 > 0 such that for all t = (t1, t2),
t1 ∈ Rd1 , t2 ∈ Rd2 , ||t || < δ0,

M(t) = M1(t1)M(t2).

4.4 Cumulants

Although moments provide a convenient summary of the properties of a random variable,
they are not always easy to work with. For instance, let X denote a real-valued random
variable and let a, b denote constants. Then the relationship between the moments of X and
those of a X + b can be quite complicated. Similarly, if Y is a real-valued random variable
such that X and Y are independent, then the moments of X + Y do not have a simple
relationship to the moments of X and Y .

Suppose that X and Y have moment-generating functions MX and MY , respectively.
Some insight into the properties described above can be gained by viewing moments of
a random variable as derivatives of its moment-generating function at 0, rather than as
integrals with respect to a distribution function. Since the moment-generating function of
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aX + b is given by exp(bt)MX (at), it is clear that repeated differentiation of this expression
with respect to t will lead to a fairly complicated expression; specifically, by Leibnitz’s rule
for differentiation (see Appendix 3), the nth moment of aX + b is given by

n∑
j=0

(
n

j

)
bn− j a j E(X j ), n = 0, 1, . . . .

Similarly, the moment-generating of X + Y is given by MX (t)MY (t) and differentiating this
function can lead to a complicated result.

In both cases, the situation is simplified if, instead of using the moment-generating
function itself, we use the log of the moment-generating function. For instance, if MaX+b

denotes the moment-generating function of aX + b, then

log Ma X+b(t) = bt + log MX (at)

and the derivatives of log Ma X+b(t) at t = 0 have a relatively simple relationship to the
derivatives of log MX (at). Of course, these derivatives no longer represent the moments
of the distribution, although they will be functions of the moments; these functions of the
moments are called the cumulants of the distribution. In this section, the basic theory of
cumulants is presented.

Let X denote a real-valued random variable with moment-generating function MX (t),
|t | < δ. The cumulant-generating function of X is defined as

K X (t) = log MX (t), |t | < δ.

Since, by Theorem 4.8, MX has a power series expansion for t near 0, the cumulant-
generating function may be expanded

K X (t) =
∞∑
j=1

κ j

j!
t j , |t | < δ

where κ1, κ2, . . . are constants that depend on the distribution of X . These constants are
called the cumulants of the distribution or, more simply, the cumulants of X . The constant
κ j will be called the j th cumulant of X ; we may also write the j th cumulant of X as κ j (X ).

Hence, the cumulants may be obtained by differentiation of K X , in the same way that
the moments of a distribution may be obtained by differentiation of the moment-generating
function:

κ j = d j

dt j
K X (t)

∣∣∣
t=0

, j = 1, 2, . . . .

Example 4.17 (Standard normal distribution). Let Z denote a random variable with a
standard normal distribution. It is straightforward to show that the moment-generating
function of this distribution is given by

MZ (t) =
∫ ∞

−∞
exp(t z)

1√
(2π )

exp

(
−1

2
z2

)
dz = exp(t2/2), −∞ < t < ∞

and, hence, the cumulant-generating function is given by

K Z (t) = 1

2
t2, −∞ < t < ∞.

It follows that κ1 = 0, κ2 = 1, and κ j = 0, j = 3, 4, . . . .
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Now let X denote a random variable with a normal distribution with parameters µ and
σ > 0. Then X has the same distribution as σ Z + µ; see Example 3.6. It follows that X
has moment-generating function

MX (t) = exp(µt)MZ (σ t) = exp(µt) exp(σ 2t2/2), −∞ < t < ∞

and, hence, the cumulant-generating function of X is

K X (t) = µt + 1

2
σ 2t2, −∞ < t < ∞.

The cumulants of X are given by κ1(X ) = µ, κ2(X ) = σ 2, and κ j (X ) = 0, j = 3, 4, . . . ;
the distribution of X is often described as a normal distribution with mean µ and standard
deviation σ . �

Example 4.18 (Poisson distribution). Let X denote a random variable with a Poisson
distribution with parameter λ; see Example 4.10. Here

MX (t) = exp{[exp(t) − 1]λ}, −∞ < t < ∞

so that

K X (t) = [exp(t) − 1]λ, −∞ < t < ∞.

It follows that all cumulants of this distribution are equal to λ. �

Example 4.19 (Laplace distribution). Let X denote a random variable with a standard
Laplace distribution; see Example 4.5. This distribution is absolutely continuous with den-
sity function

p(x) = 1

2
exp{−|x |}, −∞ < x < ∞.

Hence, the moment-generating function of the distribution is given by

MX (t) = 1

1 − t2
, |t | < 1

and the cumulant-generating function is given by

K X (t) = − log(1 − t2), |t | < 1.

It follows that κ1 = 0, κ2 = 2, κ3 = 0, and κ4 = 12. �

Since

MX (t) =
∞∑
j=0

t j E(X j )

j!
, |t | < δ,

K X (t) = log MX (t) = log

[
1 +

∞∑
j=1

t j E(X j )/j!

]
.
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Hence, it is clear that cumulants are functions of moments. The exact relationship may be
obtained by expanding

log

[
1 +

∞∑
j=1

t j E(X j )/j!

]

in a power series in t and then equating terms with an expansion for the cumulant generating
function. For example,

log

[
1 +

∞∑
j=1

t j E(X j )/j!

]
= E(X )t + 1

2!
[E(X2) − E(X )2]t2

+ 1

3!
[E(X3) − E(X )E(X2) − 2(E(X2)

− E(X )2)E(X )]t3 + · · ·
so that

κ1 = E(X ), κ2 = E(X2) − E(X )2, κ3 = E(X3) − E(X )E(X2) − 2[E(X2) − E(X )2]E(X ).

Hence, the first cumulant is the mean of X , the second cumulant is the variance of X , and,
with a little algebra, it may be shown that the third cumulant is E[(X − E(X ))3], often called
the skewness of X .

The general form of the relationship between moments and cumulants is based on the
relationship between the coefficients of a power series and the coefficients in an expansion
of the log of that power series. Consider a function

α(t) =
∞∑
j=0

α j

j!
t j

defined for t in a neighborhood of 0. Suppose that α(t) > 0 for t near 0 and write

β(t) = log α(t) =
∞∑
j=0

β j

j!
t j .

Clearly, the coefficients β1, β2, . . . are functions of α1, α2, . . . . The following result can be
used to determine an expression for αr in terms of β1, . . . , βr ; conversely, an expression
for βr can be given in terms of α1, . . . , αr .

Lemma 4.1. Define the functions α(t) and β(t) and the coefficients α1, α2, . . . and β1, β2, . . .

as above. Then α0 = exp(β0) and

αr+1 =
r∑

j=0

(
r

j

)
β j+1αr− j , r = 0, 1, . . . .

Proof. Note that

α j = d j

dt j
α(t)

∣∣∣
t=0

and β j = d j

dt j
β(t)

∣∣∣
t=0

, j = 0, 1, . . . .

The result relating α0 and β0 follows immediately.
Since α(t) = exp{β(t)},

α′(t) = exp{β(t)}β ′(t) = α(t)β ′(t).
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Hence, by Leibnitz’s rule,

dr

dtr
α′(t) =

r∑
j=0

(
r

j

)
d j

dt j
β ′(t)

dr− j

dtr− j
α(t).

The result now follows by evaluating both sides of this expression at t = 0.

Hence, applying this result to the moment-generating and cumulant-generating functions
yields a general formula relating moments to cumulants. In this context, α1, α2, . . . are the
moments and β1, β2, . . . are the cumulants. It follows that

E(Xr+1) =
r∑

j=0

(
r

j

)
κ j+1E(Xr− j ), r = 0, 1, . . . .

An important consequence of this result is that κr is a function of E(X ), . . . , E(Xr ).
Lemma 4.1 can also be used to derive an expression for central moments in terms of

cumulants by interpreting α1, α2, . . . as the central moments and β1, β2, . . . , under the
assumption that α1 = β1 = 0. Hence,

E[(X − µ)2] = κ2, E[(X − µ)3] = κ3

and

E[(X − µ)4] = κ4 + 3κ2
2 .

The approach to cumulants taken thus far in this section requires the existence of the
moment-generating function of X . A more general approach may be based on the charac-
teristic function. Suppose that X has characteristic function ϕX (t) and that E(Xm) exists and
is finite. Then, by Theorem 3.5, ϕ

(m)
X (0) exists and, hence, the mth derivative of log ϕ

(m)
X (t)

at t = 0 exists. We may define the j th cumulant of X , 1 ≤ j ≤ m, by

κ j = 1

(i) j

d j

dt j
log ϕX (t)

∣∣∣
t=0

.

Of course, if the cumulant-generating function X exists, it is important to confirm that
the definition of cumulants based on the characteristic function agrees with the definition
based on the cumulant-generating function. This fact is established by the following lemma.

Lemma 4.2. Let X denote a random variable with moment-generating function MX and
characteristic function ϕX . Then, for any m = 1, 2, . . . ,

dm

dtm
log MX (t)

∣∣∣
t=0

= 1

(i)m

dm

dtm
log ϕX (t)

∣∣∣
t=0

.

Proof. Fix m. Since the mth moment of X exists we may write

MX (t) = 1 +
m∑

j=1

t j E(X j )/j! + o(tm) as t → 0

and

ϕX (t) = 1 +
m∑

j=1

(i t) j E(X j )/j! + o(tm) as t → 0.
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Hence, we may write

log MX (t) = h(t ; E(X ), . . . , E(Xm)) + o(tm)

for some function h. Since ϕX (t) has the same expansion as MX (t), except with i t replacing
t , we must have

log ϕX (t) = h(i t ; E(X ), . . . , E(Xm)) + o(tm).

It follows that

dm

dtm
log MX (t)

∣∣∣
t=0

= dm

d(i t)m
log ϕX (t)

∣∣∣
t=0

.

The result now follows from the fact that

dm

dtm
log ϕX (t)

∣∣∣
t=0

= im dm

d(i t)m
log ϕX (t)

∣∣∣
t=0

.

Therefore, the log of the characteristic function has an expansion in terms of the cumu-
lants that is similar to the expansion of the characterstic function itself in terms of moments.

Theorem 4.13. Let X denote a real-valued random variable and let ϕX denote the charac-
teristic function of X. If E(|X |m) < ∞, then

log(ϕX (t)) =
m∑

j=1

(i t) jκ j/j! + o(tm) as t → 0

where κ1, κ2, . . . , κm denote the cumulants of X.
If, for some m = 1, 2, . . . , ϕ(2m)(0) exists then κ1, κ2, . . . , κ2m all exist and are finite.

Proof. We have seen that if E(Xm) exists and is finite, then

ϕ(t) = 1 +
m∑

j=1

(i t) j

j!
E(X j ) + o(tm) as t → 0.

Since, for a complex number z,

log(1 + z) =
d∑

j=1

(−1) j z j/j + o(|z|d ) as |z| → 0,

for any d = 1, 2, . . . , it follows that log(ϕ(t)) may be expanded in a series of the form

log(ϕ(t)) =
m∑

j=1

(i t) j c j/j! + o(tm) as t → 0,

for some constants c1, c2, . . . , cm . Using the relationship between cumulants and moments,
it follows that these constants must be the cumulants; that is, c j = κ j , proving the first part
of the theorem.

The second part of the theorem follows from the fact that the existence of ϕ(2m)(0)
implies that all moments of order less than or equal to 2m exist and are finite. Since each
κ j , j = 1, . . . , 2m, is a function of these moments, the result follows.
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Although cumulants may be calculated directly from the characteristic function, there
are relatively few cases in which the moment-generating function of a distribution does not
exist, while the characteristic function is easily calculated and easy to differentiate. It is
often simpler to calculate the cumulants by calculating the moments of the distribution and
then using the relationship between cumulants and moments.

Example 4.20 (Log-normal distribution). Let X denote a random variable with the
log-normal distribution considered in Example 4.14. Recall that, although the moment-
generating function of this distribution does not exist, all moments do exist and are
given by

E(Xr ) = exp

(
1

2
r2

)
, r = 1, 2, . . . .

Hence,

κ1 = exp(1/2), κ2 = exp(2) − exp(1), κ3 = exp(9/2) − 3 exp(5/2) + 2 exp(3/2),

and so on. �

Earlier in this section, the relationship between the the cumulants of a linear function
of a random variable and the cumulants of the random variable itself was described. The
following theorem gives a formal statement of this relationship for the more general case
in which the moment-generating function does not necessarily exist.

Theorem 4.14. Let X denote a real-valued random variable with mth cumulant κm(X ) for
some m = 1, 2, . . . and let Y = aX + b for some constants a, b. Then the mth cumulant of
Y , denoted by κm(Y ), is given by

κm(Y ) =
{

aκ1(X ) + b if m = 1
amκm(X ) if m = 2, 3, . . .

.

Proof. Let ϕX and ϕY denote the characteristic functions of X and Y , respectively. We
have seen that ϕY (t) = exp(ibt)ϕX (at). Hence,

log(ϕY (t)) = ibt + log(ϕX (at)).

If E(|X |m) < ∞ then, by Theorem 4.13,

log(ϕX (t)) =
m∑

j=1

(i t) jκ j (X )/j! + o(tm) as t → 0;

it follows that

log(ϕY (t)) = ibt +
m∑

j=1

(i ta) jκ j (X )/j! + o(tm)

= (i t)(aκ1(X ) + b) +
m∑

j=2

(i t) j a jκ j (X )/j! + o(tm).

The result now follows from Theorem 4.13.
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Example 4.21 (Laplace distribution). Let X denote a random variable with a standard
Laplace distribution; see Example 4.19. Let µ and σ > 0 denote constants and let Y =
σ X + µ; the distribution of Y is called a Laplace distribution with location parameter µ

and scale parameter σ .
Using the results in Example 4.19, together with Theorem 4.14, the first four cumulants

of this distribution are µ, 2σ 2, 0, and 12σ 4. �

Example 4.22 (Standardized cumulants). Consider a random variable X with cumu-
lants κ1, κ2, . . . and consider the standardized variable Y = (X − κ1)/

√
κ2. The cumulants

of Y are given by 0, 1, κ j/κ
j
2

2 , j = 3, 4, . . . . The cumulants of Y of order 3 and greater are
sometimes called the standardized cumulants of X and are dimensionless quantities. They
are often denoted by ρ3, ρ4, . . . so that

ρ j (X ) = κ j (X )/κ2(X )
j
2 , j = 3, 4, . . . . �

We have seen that if X and Y are independent random variables, then the characteristic
function of X + Y satisfies

ϕX+Y (t) = ϕX (t)ϕY (t);

hence,

log ϕX+Y (t) = log ϕX (t) + log ϕY (t).

Since the cumulants are simply the coefficients in the expansion of the log of the character-
istic function, it follows that the j th cumulant of X + Y will be the sum of the j th cumulant
of X and the j th cumulant of Y .

Theorem 4.15. Let X and Y denote independent real-valued random variables with mth
cumulants κm(X ) and κm(Y ), respectively, and let κm(X + Y ) denote the mth cumulant of
X + Y . Then

κm(X + Y ) = κm(X ) + κm(Y ).

Proof. We have seen that ϕX+Y (t) = ϕX (t)ϕY (t). Hence, by Theorem 4.13,

log(ϕX+Y (t)) = log(ϕX (t)) + log(ϕY (t)) =
m∑

j=1

(i t) j (κ j (X ) + κ j (Y ))/j! + o(tm).

The result now follows from noting that

log ϕX+Y (t) =
m∑

j=1

(i t) jκ j (X + Y )/j! + o(tm)

as t → 0.

Example 4.23 (Independent identically distributed random variables). Let X1, X2, . . . ,

Xn denote independent, identically distributed scalar random variables and let κ1, κ2, . . .

denote the cumulants of X1. Let S = ∑n
j=1 X j . Then

κ j (S) = nκ j , j = 1, 2, . . . .
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The standardized cumulants satisfy

ρ j (S) = ρ j/n
( j−1)

2 , j = 3, 4, . . .

where ρ3, ρ4, . . . denote the standardized cumulants of X1. �

Cumulants of a random vector
Let X = (X1, . . . , Xd ) denote a d-dimensional random vector. Joint cumulants of elements
of X may be defined using the same approach used to define the cumulants of a real-valued
random variable. For simplicity, we consider only the case in which the moment-generating
function of X exists. However, as in the case of a real-valued random variable, the same
results may be obtained provided only that moments of a certain order exist.

Let M denote the moment-generating function of X with radius of convergence δ > 0.
Then the cumulant-generating function of X is given by K (t) = log M(t) and the joint
cumulant of order (i1, . . . , id ), where the i j are nonnegative integers, is given by

κi1··· id = ∂ i1+ ··· +id

∂t i1
1 · · · ∂t id

d

K (t)
∣∣
t=0;

here t = (t1, . . . , td ). Although this definition may be used to define joint cumulants of
arbitrary order, the most commonly used joint cumulants are those in which i1 + · · · +
id = 2, for example, κ110···0, κ1010···0, and so on.

The following result gives some basic properties of joint cumulants.

Theorem 4.16. Let X = (X1, . . . , Xd ) denote a d-dimensional random vector with
cumulant-generating function K .

(i) Fix 1 ≤ j ≤ d and assume that ∑
k 
= j

ik = 0.

Then the joint cumulant of order (i1, . . . , id ) is the i j th cumulant of X j .
(ii) Suppose that, for some 1 ≤ j < k ≤ d, i j = ik = 1 and i1 + · · · + id = 2. Then the

joint cumulant of order (i1, . . . , id ) is the covariance of Xi j and Xik .
(iii) Suppose that, for 1 ≤ j < k ≤ d, X j and Xk are independent. Then any joint cumu-

lant of order (i1, . . . , id ) where i j > 0 and ik > 0 is 0.
(iv) Let Y denote a d-dimensional random variable such that all cumulants of Y exist and

assume that X and Y are independent. Let κi1···id (X ), κi1···id (Y ), and κi1···id (X + Y )
denote the cumulant of order (i1, . . . , id ) of X, Y , and X + Y , respectively. Then

κi1···id (X + Y ) = κi1···id (X ) + κi1···id (Y ).

Proof. Consider part (i); without loss of generality we may assume that j = 1. Let K1

denote the cumulant-generating function of X1. Then

K1(t1) = K ((t1, 0, . . . , 0)).

Part (i) of the theorem now follows.
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Suppose that d = 2. Let a and b denote constants and let Z = aX1 + bX2. Then the
cumulant-generating function of Z is given by

K Z (s) = K ((as, bs)).

It follows that the second cumulant of Z , Var(Z ), is given by

Var(Z ) = ∂2

∂s2
K X ((as, bs))

∣∣
s=0

= a2 ∂2

∂t2
1

K X (t1, 0)
∣∣
t1=0 + b2 ∂2

∂t2
2

K X (0, t2)
∣∣
t2=0 + 2ab

∂2

∂t1∂t2
K X (t1, t2)

∣∣
t=0.

Hence, by part (i) of the theorem,

Var(Z ) = a2 Var(X1) + b2 Var(X2) + 2abκ11;

it follows that κ11 = Cov(X1, X2).
Now consider the case of general d; without loss of generality we may assume that

j = 1 and k = 2. Part (ii) of the theorem now follows from an argument analogous to the
one used in the proof of part (i): the cumulant-generating function of (X1, X2) is given by
K X ((t1, t2, 0, . . . , 0)) so that, from the result above, Cov(X1, X2) = κ110···0.

Consider part (iii). Without loss of generality we may take j = 1 and k = z. Let K1

denote the cumulant-generating function of X1 and let K2 denote the cumulant-generating
function of (X2, . . . , Xd ). Then

K (t) = K1(t1) + K2(t̄)

where t = (t1, . . . , td ) and t̄ = (t2, . . . , td ). It follows that

∂K

∂t1∂t2
(t) = 0,

proving the result.
The proof of part (iv) follows from the same argument used in the scalar random variable

case (Theorem 4.15).

Example 4.24 (Multinomial distribution). Let X = (X1, . . . , Xm) denote a random vector
with a multinomial distribution, as in Example 2.2. The frequency function of the distribution
is given by

p(x1, . . . , xm) =
(

n

x1, x2, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m ,

for x j = 0, 1, . . . , n, j = 1, . . . , m,
∑m

j=1 x j = n; here θ1, . . . , θm are nonnegative con-
stants satisfying θ1 + · · · + θm = 1.

For t = (t1, . . . , tm),

E

[
exp

(
m∑

j=1

t j X j

)]
=

∑
x1,...,xm+1

(
m

x1, . . . , xm

) m∏
j=1

exp(t j x j )θ
x j

j
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where the sum is over all nonnegative integers x1, x2, . . . , xm summing to n. Writing

m∏
j=1

exp(t j x j )θ
x j

j =
[

m∑
j=1

exp(t j )θ j

]n m∏
j=1

(
exp(t j )θ j∑m
j=1 exp(t j )θ j

)x j

,

it follows from the properties of the multinomial distribution that the moment-generating
function of X is

MX (t) =
[

m∑
j=1

exp(t j )θ j

]n

=
[

m∑
j=1

exp(t j )θ j

]n

, t = (t1, . . . , tm) ∈ Rm .

The cumulant-generating function is therefore given by

K X (t) = n log

[
m∑

j=1

exp(t j )θ j

]
.

It follows that, for j = 1, . . . , m,

E(X j ) = nθ j , Var(X j ) = nθ j (1 − θ j )

and, for j, k = 1, . . . , m,

Cov(X j , Xk) = −nθ jθk .

Thus, the covariance matrix of X is the m × m matrix with ( j, k)th element given by

σ jk =
{

nθ j (1 − θ j ) if j = k
−nθ jθk if j 
= k

. �

4.5 Moments and Cumulants of the Sample Mean

Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued random vari-
ables. Let

X̄ n = 1

n

n∑
j=1

X j

denote the sample mean based on X1, X2, . . . , Xn .
In this section, we consider the moments and cumulants of X̄ n . First consider the cumu-

lants. Let κ1, κ2, . . . denote the cumulants of X1 and let κ1(X̄ n), κ2(X̄ n), . . . denote the
cumulants of X̄ n . Using Theorems 4.14 and 4.15, it follows that

κ j (X̄ n) = 1

n j−1
κ j , j = 1, 2, . . . . (4.4)

For convenience, here we are assuming that all cumulants of X1 exist; however, it is clear
that the results only require existence of the cumulants up to a given order. For instance,
κ2(X̄ n) = κ2/n holds only provided that κ2 exists.

To obtain results for the moments of X̄ n , we can use the expressions relating moments
and cumulants; see Lemma 4.1. Then

E(X̄ n) = E(X1) and E
(

X̄2
n

)
= n − 1

n
E(X1)2 + 1

n
E

(
X2

1

)
.
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Another approach that is often useful is to use the fact that, for r = 2, 3, . . . ,

X̄ r
n = 1

nr

[
n∑

j=1

X j

]r

= 1

nr

n∑
j1=1

· · ·
n∑

jr =1

X j1 X j2 · · · X jr

and then take the expected value of resulting sum. For instance, consider E(X̄3
n). Since

X̄3
n = 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

Xi X j Xk,

E
(

X̄3
n

)
= 1

n3

n∑
i=1

n∑
j=1

n∑
k=1

E(Xi X j Xk).

In order to evaluate
n∑

i, j,k=1

E(Xi X j Xk),

we must keep track of the number of terms in the sum in which i, j, k are unique, the number
in which exactly two indices are equal, and so on. It is straightforward to show that of the
n3 terms in

n∑
i=1

n∑
j=1

n∑
k=1

Xi X j Xk,

n terms have all indices the same, 3n(n − 1) terms have exactly two indices the same, and
in n(n − 1)(n − 2) terms all indices are unique. Hence,

n∑
i, j,k=1

E(Xi X j Xk) = nE
(
X3

1

) + 3n(n − 1)E(X1)E
(
X2

1

) + n(n − 1)(n − 2)E(X1)3.

It follows that

E
(

X̄3
n

)
= (n − 1)(n − 2)

n2
E(X1)3 + 3(n − 1)

n2
E(X1)E

(
X2

1

) + 1

n2
E

(
X3

1

)
.

The same approach can be used for any moment of X̄ n , although the algebra becomes
tedious very quickly. The following theorem gives expressions for the first four moments;
the proof is left as an exercise.

Theorem 4.17. Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued
random variables such that E(X4

1) < ∞ and let

X̄ n = 1

n

n∑
j=1

X j .

The moments of X̄n satisfy

E(X̄ n) = E(X1), E
(

X̄2
n

)
= n − 1

n
E(X1)2 + 1

n
E

(
X2

1

) = E(X1)2 + 1

n

[
E

(
X2

1

) − E(X1)2
]
,

E
(

X̄3
n

)
= (n − 1)(n − 2)

n2
E(X1)3 + 3(n − 1)

n2
E(X1)E

(
X2

1

) + E(X3
1)

n2

= E(X1)3+ 3

n

[
E(X1)E

(
X2

1

)−E(X1)3
]+ 1

n2

[
2E(X1)3−3E(X1)E

(
X2

1

)+E
(
X3

1

)]
,
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and

E
(

X̄4
n

)
= (n − 1)(n − 2)(n − 3)

n3
E(X1)4 + 4(n − 1)

n3
E(X1)E

(
X3

1

)
+ 6(n − 1)(n − 2)

n3
E(X1)2E

(
X2

1

) + 3(n − 1)

n3
E

(
X2

1

)2 + 1

n3
E

(
X4

1

)
= E(X1)4 + 6

n

[
E(X1)2E

(
X2

1

) − E(X1)4
]

+ 1

n2

[
11E(X1)4 − 18E(X1)2E

(
X2

1

) + 4E(X1)E
(
X3

1

) + 3E
(
X2

1

)2
]

+ 1

n3

[
E

(
X4

1

) + 12E(X1)2E
(
X2

1

) − 4E(X1)E
(
X3

1

) − 3E
(
X2

1

)2 − 6E(X1)4
]
.

Example 4.25 (Standard exponential distribution). Let X1, X2, . . . , Xn denote indepen-
dent, identically distributed random variables, each with a standard exponential distribution.
The cumulant-generating function of the standard exponential distribution is − log(1 − t),
|t | < 1; see Example 4.11. Hence, the cumulants of the distribution are given by κr =
(r − 1)!, r = 1, 2, . . . . It follows from (4.4) that the cumulants of X̄ n = ∑n

j=1 X j/n are
given by

κr (X̄ n) = 1

nr−1
(r − 1)!, r = 1, 2, . . . .

The moments of the standard exponential distribution are given by

E
(
Xr

1

) =
∫ ∞

0
xr exp(−x) dx = r !, r = 1, 2, . . . .

Hence, the first four moments of X̄ n are given by E(X̄ n) = 1,

E
(

X̄2
n

)
= 1 + 1

n
, E

(
X̄3

n

)
= 1 + 3

n
+ 2

n2
,

and

E
(

X̄4
n

)
= 1 + 6

n
+ 11

n2
+ 6

n3
. �

Expressions for moments and cumulants of a sample mean can also be applied to sample
moments of the form

1

n

n∑
j=1

Xm
j , m = 1, 2, . . .

by simply redefining the cumulants and moments in the theorem as the cumulants and
moments, respectively, of Xm

1 . This is generally simpler to carry out with the moments,
since the moments of Xm

1 are given by E(Xm
1 ), E(X2m

1 ), . . . .

Example 4.26 (Standard exponential distribution). As in Example 4.25, let X1,

X2, . . . , Xn denote independent, identically distributed, standard exponential random
variables and consider the cumulants of

Tn = 1

n

n∑
j=1

X2
j .
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It follows from the results in Example 4.25 that

E
(
X2r

1

) = (2r )!, r = 1, 2, . . . .

Hence, the first four moments of Tn are given by E(Tn) = 2,

E
(
T 2

n

) = 4 + 20

n
, E

(
T 3

n

) = 8 + 120

n
+ 592

n2

and

E
(
T 4

n

) = 16 + 480

n
+ 5936

n2
+ 31584

n3
. �

Central moments of X̄n

Results analogous to those given in Theorem 4.17 for the moments can be obtained for
the central moments by taking E(X1) = 0 and then interpreting E(X2

1), E(X3
1), and E(X4

1)
in Theorem 4.17 as central moments. The resulting expressions are given in the following
corollary; the proof is left as an exercise.

Corollary 4.3. Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued
random variables and let

X̄ n = 1

n

n∑
j=1

X j .

Assume that E[X4
1] < ∞. Let µ = E(X1), and let µ2, µ3, µ4 denote the second, third, and

fourth central moments, respectively, of X1. Let µ2(X̄ n), µ3(X̄ n), and µ4(X̄ n) denote the
second, third, and fourth central moments, respectively, of X̄ n. Then E(X̄ n) = µ,

µ2(X̄ n) = 1

n
µ2, µ3(X̄ n) = 1

n2
µ3

and

µ4(X̄ n) = 3(n − 1)

n3
µ2

2 + 1

n3
µ4 = 3

n2
µ2

2 + 1

n3

(
µ4 − 3µ2

2

)
.

Example 4.27 (Standard exponential distribution). As in Examples 4.25 and 4.26, let
X1, X2, . . . , Xn denote independent, identically distributed, standard exponential random
variables. It is straightforward to show that the first four central moments of the standard
exponential distribution are 0, 1, 2, 9; these may be obtained using the expressions for
central moments in terms of cumulants, given in Section 4.4. It follows from Corollary 4.3
that the first four central moments of X̄ n are 0, 1/n, 2/n2, and

3

n2
+ 6

n3
,

respectively. �

We can see from Corollary 4.3 that, as k increases, the order of E[(X̄ n − µ)k] as n → ∞
is a nondecreasing power of 1/n:

E[(X̄ n − µ)2] = O

(
1

n

)
, E[(X̄ n − µ)3] = O

(
1

n2

)
, E[(X̄ n − µ)4] = O

(
1

n2

)
.

The following theorem gives a generalization of these results.



P1: JZP
052184472Xc04 CUNY148/Severini May 24, 2005 2:39

124 Moments and Cumulants

Theorem 4.18. Let X1, X2, . . . , Xn denote independent, identically distributed, real-
valued random variables such that all moments of X1 exist and are finite. Let µ = E(X1)
and

X̄n = 1

n

n∑
j=1

X j .

Then, for k = 1, 2, . . . ,

E[(X̄ n − µ)2k−1] = O

(
1

nk

)
and E[(X̄ n − µ)2k] = O

(
1

nk

)
as n → ∞.

Proof. The proof is by induction. For k = 1, the result follows immediately from Theorem
4.17. Assume that the result holds for k = 1, 2, . . . , m. For each j = 1, 2, . . . , let

µ̄ j = E[(X̄ n − µ) j ].

Note that, applying Lemma 4.1 to the moment- and cumulant-generating functions of X̄ n −
µ, the cumulants and central moments of X̄ n are related by

µ̄r+1 =
r∑

j=0

(
r

j

)
κ j+1(X̄ n)µ̄r− j , r = 0, 1, . . . .

Since, by (4.4), κ j+1(X̄ n) = O(1/n j ), and taking µ̄0 = 1,

µ̄r+1 =
r∑

j=0

µ̄r− j O

(
1

n j

)
.

Consider r = 2m. Then, since the theorem is assumed to hold for k = 1, 2, . . . , m,

µ̄2m− j =
{

O( 1
nm−( j−1)/2 ) if j = 1, 3, . . . , 2m − 1

O( 1
nm− j/2 ) if j = 0, 2, 4, . . . , 2m

.

Hence,

µ̄2m+1 = O

(
1

nm

)
+ O

(
1

nm+1

)
+ O

(
1

nm+1

)
+ · · · + O

(
1

n2m

)
= O

(
1

nm

)
as n → ∞.

Now consider r = 2m + 1. Then

µ̄2m+2 = O

(
1

nm

)
+ O

(
1

nm+1

)
+ · · · + O

(
1

n2m+1

)
= O

(
1

nm

)
as n → ∞.

It follows that the result holds for k = m + 1, proving the theorem.

4.6 Conditional Moments and Cumulants

Let X denote a real-valued random variable and let Y denote a random variable which
may be a vector. The conditional moments and cumulants of X given Y = y are simply
the moments and cumulants, respectively, of the conditional distribution of X given Y = y;
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substituting the random variable Y for y yields the conditional moments and cumulants of
X given Y . In this section, we consider the relationship between the conditional moments
and cumulants of X given Y and the unconditional moments and cumulants of X . As we
will see, this is one area in which it is easier to work with moments than cumulants.

Suppose that E(|X |) < ∞. We have seen (Theorem 2.5) that E(X ) = E[E(X |Y )]. The
same result holds for any moment of X , provided that it exists. Suppose that, for some r ,
E(|X |r ) < ∞; then E(Xr ) = E[E(Xr |Y )].

Now consider cumulants; for simplicity, suppose that the cumulant-generating function
of X , K , and the conditional cumulant-generating function of X given Y = y, K (·, y), both
exist. Then, for any integer m = 1, 2, . . . ,

K (t) =
m∑

j=1

t j

j!
κ j + o(tm) as t → 0

where κ1, κ2, . . . denote the (unconditional) cumulants of X . Similarly,

K (t, y) =
m∑

j=1

t j

j!
κ j (y) + o(tm) as t → 0

where κ1(y), κ2(y), . . . denote the conditional cumulants of X given Y = y. The conditional
cumulants of X given Y are then given by κ1(Y ), κ2(Y ), . . . . Given the indirect way in which
cumulants are defined, the relationship between conditional and unconditional cumulants
is not as simple as the relationship between conditional and unconditional moments.

For the low-order cumulants, the simplest approach is to rewrite the cumulants in terms
of moments and use the relationship between conditional and unconditional moments. For
instance, since the first cumulant is simply the mean of the distribution, we have already
seen that

κ1 = E[κ1(Y )].

For the second cumulant, the variance, note that

κ2 = E(X2) − E(X )2 = E[E(X2|Y )] − E[E(X |Y )]2

= E[E(X2|Y )] − E[E(X |Y )2] + E[E(X |Y )2] − E[E(X |Y )]2

= E[Var(X |Y )] + Var[E(X |Y )].

We now consider a general approach that can be used to relate conditional and uncon-
ditional cumulants. The basic idea is that the conditional and unconditional cumulant-
generating functions are related by the fact that K (t) = log E[exp{K (t, Y )}]. As t → 0,

K (t) = log E

[
exp

{
m∑

j=1

t jκ j (Y )/j!

}]
+ o(tm). (4.5)

Note that κ1(Y ), . . . , κm(Y ) are random variables; let Km(t1, . . . , tm) denote the cumulant-
generating function of the random vector (κ1(Y ), . . . , κm(Y )). Then, by (4.5),

K (t) = log Km(t, t2/2, . . . , tm/m!) + o(tm) as t → 0.
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This result can now be used to express the unconditional cumulants in terms of the con-
ditional ones. Although a general expression relating the conditional and unconditional
cumulants may be given, here we simply outline the approach that may be used.

Consider κ1. Note that

K ′(t) =
m∑

j=1

∂

∂t j
Km(t, t2/2, . . . , tm/m!)

t j−1

( j − 1)!
. (4.6)

Let κ̄i1···im denote the joint cumulant of order (i1, . . . , im) of (κ1(Y ), . . . , κm(Y )); we will
use the convention that trailing 0s in the subscript of κ̄ will be omitted so that, for example,
κ̄10···0 will be written κ̄1. Then evaluating (4.6) at t = 0 shows that

κ1 = K ′(0) = κ̄1;

that is, the first cumulant of X is the first cumulant of κ1(Y ). Of course, this is simply the
result that

E(X ) = E[E(X |Y )].

Now consider the second cumulant of X . We may use the same approach as that used
above; the calculation is simplified if we keep in mind that any term in the expansion of
K ′′(t) in terms of the derivatives of Km that includes a nonzero power of t will be 0 when
evaluated at t = 0. Hence, when differentiating the expression in (4.5), we only need to
consider

d

dt

{
∂

∂t1
Km(t, t2/2, . . . , tm/m!) + ∂

∂t2
Km(t, t2/2, . . . , tm/m!)t

}∣∣∣∣∣
t=0

= ∂2

∂t2
1

Km(t, t2/2, . . . , tm/m!)

∣∣∣∣∣
t=0

+ ∂

∂t2
Km(t, t2/2, . . . , tm/m!)

∣∣∣∣∣
t=0

.

It follows that

κ2 ≡ K ′′(0) = κ̄2 + κ̄01;

that is,

Var(X ) = Var[E(X |Y )] + Var[E(X |Y )].

The expressions for the higher-order cumulants follow in a similar manner. We may
obtain K ′′′(0) by taking the second derivative of

∂

∂t1
Km(t, t2/2, . . . , tm/m!) + ∂

∂t2
Km(t, t2/2, . . . , tm/m!)t

+ ∂

∂t3
Km(t, t2/2, . . . , tm/m!)t2/2

at t = 0. The result is

κ3 = κ̄3 + 3κ̄11 + κ̄001.

Example 4.28 (Poisson random variable with random mean). Let X denote a Poisson
random variable with mean Y and suppose that Y is a random variable with a standard
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exponential distribution. That is, the conditional distribution of X given Y is Poisson with
mean Y and the marginal distribution of Y is a standard exponential distribution.

It follows from Example 4.13 that

E(X |Y ) = Y, E(X2|Y ) = Y + Y 2, and E(X3|Y ) = Y + 3Y 2 + Y 3.

Since E(Y r ) = r !, it follows that

E(X ) = 1, E(X2) = 3, and E(X3) = 13.

From Example 4.18, we know that all conditional cumulants of X given Y are equal to
Y . Hence,

Var(X ) = E[Var(X |Y )] + Var[E(X |Y )] = 2.

To determine κ3, the third cumulant of X , we need κ̄3, the third cumulant of E(X |Y ) = Y ,
κ̄11, the covariance of E(X |Y ) and Var(X |Y ), that is, the variance of Y , and κ̄001, the expected
value of κ3(Y ) = Y .

Letting γ1, γ2, . . . denote the cumulants of the standard exponential distribution, it fol-
lows that

κ3 = γ3 + 2γ2 + γ1.

According to Example 4.11, the cumulant-generating function of the standard exponential
distribution is − log(1 − t). Hence,

γ1 = 1, γ2 = 1, and γ3 = 2.

It follows that κ3 = 6. �

4.7 Exercises

4.1 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

p(x) = βα

�(α)
xα−1 exp{−βx}, x > 0,

where α > 0 and β > 0; this is a gamma distribution. Find a general expression for the moments
of X .

4.2 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

p(x) = �(α + β)

�(α)�(β)
xα−1(1 − x)β−1, 0 < x < 1,

where α > 0 and β > 0; this is a beta distribution. Find a general expression for the moments
of X .

4.3 Prove Theorem 4.1.

4.4 Prove Theorem 4.2.

4.5 Prove Corollary 4.1.

4.6 Prove Theorem 4.4.
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4.7 Let X denote a d-dimensional random vector with covariance matrix � satisfying |�| < ∞.
Show that X has a nondegenerate distribution if and only if � is positive definite.

4.8 Let X and Y denote real-valued random variables such that X has mean µX and standard
deviation σX , Y has mean µY and standard deviation σY , and X and Y have correlation ρ.
(a) Find the value of β ∈ R that minimizes Var(Y − β X ).

(b) Find the values of β ∈ R such that Y and Y − β X are uncorrelated.

(c) Find the values of β ∈ R such that X and Y − β X are uncorrelated.

(d) Find conditions under which, for some β, Y − β X is uncorrelated with both X and Y .

(e) Suppose that E(Y |X ) = α + β X for some constants α, β. Express α and β in terms of
µX , µY , σX , σY , ρ.

4.9 Let X and Y denote real-valued random variables such that E(X 2) < ∞ and E(Y 2) < ∞. Sup-
pose that E[X |Y ] = 0. Does it follow that ρ(X, Y ) = 0?

4.10 Let X and Y denote real-valued identically distributed random variables such that E(X 2) < ∞.
Give conditions under which

ρ(X, X + Y )2 ≥ ρ(X, Y )2.

4.11 Let X and Y denote real-valued random variables such that E(X 2) < ∞ and E(Y 2) < ∞ and
let ρ denote the correlation of X and Y . Find the values of ρ for which

E[(X − Y )2] ≥ Var(X ).

4.12 Let X denote a nonnegative, real-valued random variable; let F denote the distribution function
of X and let L denote the Laplace transform of X . Show that

L(t) = t
∫ ∞

0
exp(−t x)F(x) dx, t ≥ 0.

4.13 Prove Theorem 4.7.

4.14 Let X denote a nonnegative, real-valued random variable and let L(t) denote the Laplace trans-
form of X . Show that

(−1)n dn

dtn
L(t) ≥ 0, t ≥ 0.

A function with this property is said to be completely monotone.

4.15 Let X denote a random variable with frequency function

p(x) = θ (1 − θ )x , x = 0, 1, 2, . . .

where 0 < θ < 1.

Find the moment-generating function of X and the first three moments.

4.16 Let X denote a real-valued random variable and suppose that, for some r = 1, 2, . . . , E(|X |r ) =
∞. Does it follow that E(|X |m) = ∞ for all m = r + 1, r + 2, . . .?

4.17 Prove Theorem 4.10.

4.18 Prove Theorem 4.11.

4.19 Let X denote a random variable with the distribution given in Exercise 4.15. Find the cumulant-
generating function of X and the first three cumulants.

4.20 Let X denote a random variable with a gamma distribution, as in Exercise 4.1. Find the cumulant-
generating function of X and the first three cumulants.

4.21 Let Y be a real-valued random variable with distribution function F and moment-generating
function M(t), |t | < δ, where δ > 0 is chosen to be as large as possible. Define

β = inf{M(t): 0 ≤ t < δ}.
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Suppose that there exists a unique real number τ ∈ (0, δ) such that M(τ ) = β.
(a) Show that Pr(Y ≥ 0) ≤ β.

(b) Show that M ′(τ ) = 0.

(c) Let

G(x) = 1

β

∫ x

−∞
exp(τ y) d F(y), −∞ < x < ∞.

Note that G is a distribution function on R and let X denote a random variable with
distribution function G. Find the moment-generating function of X .

(d) Find E(X ).

4.22 Let X denote a real-valued random variable with distribution function F . Let K (t), |t | < δ,
δ > 0, denote the cumulant-generating function of X ; assume that δ is chosen to be as large as
possible.
Let a ≥ 0 be a fixed, real-valued constant and define a function

Ka(t) = K (t) − at, t ≥ 0.

Define

ρa = inf{Ka(t): 0 ≤ t < δ}.
(a) Calculate ρa , as a function of a, for the standard normal distribution and for the Poisson

distribution with mean 1.

(b) Show that

Pr(X ≥ a) ≤ exp(ρa).

(c) Let X1, X2, . . . , Xn denote independent random variables, each with the same distribution
as X . Obtain a bound for

Pr

(
X1 + · · · + Xn

n
≥ a

)

that generalizes the result given in part (b).

4.23 Let X denote a real-valued random variable with moment-generating function MX (t), |t | < δ,
δ > 0. Suppose that the distribution of X is symmetric about 0; that is, suppose that X and −X
have the same distribution. Find κ j (X ), j = 1, 3, 5, . . . .

4.24 Consider a distribution on the real line with moment-generating function M(t), |t | < δ, δ > 0
and cumulants κ1, κ2, . . . . Suppose that E(Xr ) = 0, r = 1, 3, 5, . . . . Show that

κ1 = κ3 = · · · = 0.

Does the converse hold? That is, suppose that all cumulants of odd order are 0. Does it follow
that all moments of odd order are 0?

4.25 Let X and Y denote real-valued random variables and assume that the moment-generating
function of (X, Y ) exists. Write

M(t1, t2) = E[exp(t1 X + t2Y )],
(
t2
1 + t2

2

) 1
2 < δ,

K (t1, t2) = log M(t1, t2), and let κi j , i, j = 0, 1, . . . , denote the joint cumulants of (X, Y ).
Let S = X1 + X2 and let KS denote the cumulant-generating function of S.
(a) Show that

KS(t) = K (t, t), |t | ≤ δ/
√

2.
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(b) Let κ j (S), j = 1, 2, . . . , denote the cumulants of S. Show that

κ2(S) = κ20 + 2κ11 + κ02.

(c) Derive a general expression for κ j (S) in terms of κik , i, k = 1, 2, . . . .

4.26 Let X and Y denote discrete random variables, with ranges X and Y , respectively. Suppose that
X and Y each contain m distinct elements of R, for some m = 1, 2, . . . ; assume that, for each
x ∈ X and each y ∈ Y ,

Pr(X = x) > 0 and Pr(Y = y) > 0.

Suppose that

E(X j ) = E(Y j ), j = 1, 2, . . . , m.

Does it follow that X and Y have the same distribution? Why or why not?

4.27 Let (X, Y ) denote a two-dimensional random vector with joint cumulants κi j , i, j = 1, 2, . . . .

Given an expression for Var(XY ) in terms of the κi j .

4.28 Let X1, X2, . . . denote a sequence of real-valued random variables such that X1, X2, . . . are
exchangeable and (X1, X2, . . .) is a martingale. Find the correlation of Xi and X j , i, j =
1, 2, . . . .

4.29 For each n = 1, 2, . . . , let (X1, Y1), (X2, Y2), . . . , (Xn, Yn) denote independent, identically
distributed, two-dimensional random vectors with joint cumulants κi j , i, j = 1, 2, . . . . Let
X̄ = ∑n

j=1 X j/n and Ȳ = ∑n
j=1 Y j/n. Find r = 1, 2, . . . such that Var(X̄ Ȳ ) = O(n−r ) as

n → ∞.

4.30 Let (X1, Y1), . . . , (Xn, Yn) denote independent, identically distributed random vectors such that,
for each j , X j and Y j are real-valued; assume that all moments of (X1, Y1) exist and are finite.
Let

X̄ = 1

n

n∑
j=1

X j and Ȳ = 1

n

n∑
j=1

Y j .

(a) Express E(X̄ Ȳ ) and E(X̄
2
Ȳ ) in terms of the moments of (X1, Y1).

(b) Express the cumulants of (X̄ , Ȳ ) of orders (1, 1) and (2, 1) in terms of the cumulants of
(X1, Y1).

4.31 Let X and Y denote real-valued random variables. Let κ1(Y ), κ2(Y ), . . . denote the cumulants of
the conditional distribution of X given Y and let κ1, κ2, . . . denote the cumulants of the marginal
distribution of X .
(a) Show that E[κ1(Y )] ≤ κ1 and E[κ2(Y )] ≤ κ2.

(b) Does the same result hold for κ3(Y ) and κ3? That is, is it true that E[κ3(Y )] ≤ κ3?

4.32 Let X , Y , and Z denote real-valued random variables such that E(X 2), E(Y 2), and E(Z 2) are all
finite. Find an expression for Cov(X, Y ) in terms of Cov(X, Y |Z ), E(X |Z ), and E(Y |Z ).

4.33 Let X1, . . . , Xn denote real-valued, exchangeable random variables such that E(X 2
1) < ∞. Let

S = ∑
X j . For 1 ≤ i < j ≤ n, find the conditional correlation of Xi and X j given S.

4.8 Suggestions for Further Reading

Moments and central moments, particularly the mean and variance, are discussed in nearly every
book on probability. Laplace transforms are considered in detail in Feller (1971, Chapters XIII and
XIV); see also Billingsley (1995, Section 22) and Port (1994, Chapter 50). Laplace transforms are
often used in nonprobabilistic contexts; see, for example, Apostol (1974, Chapter 11) and Widder
(1971). Moment-generating functions are discussed in Port (1994, Chapter 56); see Lukacs (1960)
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for a detailed discussion of the relationship between characteristic functions and moment-generating
functions.

Stuart and Ord (1994, Chapter 3) gives a comprehensive discussion of cumulants; in particular,
this reference contains extensive tables relating cumulants to moments and central moments. Another
excellent reference on cumulants is McCullagh (1987) which emphasizes the case of vector-valued
random variables and the properties of cumulants under transformations of the random variable.

Cramér (1946, Chapter 27) gives many results on the moments, central moments, and cumulants of
the sample mean; similar results are also given for the sample variance, a topic that is not considered
here. Conditional cumulants are discussed in McCullagh (1987, Section 2.9); the approach used in
Section 4.6 to relate unconditional and conditional cumulants is based on Brillinger (1969).
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5

Parametric Families of Distributions

5.1 Introduction

Statistical inference proceeds by modeling data as the observed values of certain random
variables; these observed values are then used to draw conclusions about the process that
generated the data. Let Y denote a random variable with probability distribution P. The
function P is typically unknown and the goal is to draw conclusions about P on the basis of
observing Y = y. The starting point for such an analysis is generally the specification of a
model for the data. A model consists of a set of possible distributions P such that we are
willing to proceed as if P is an element of P .

Thus, in addition to the properties of the individual distributions in P , the properties of
the family itself are of interest; it is these properties that we consider in this chapter.

5.2 Parameters and Identifiability

Consider a family P of probability distributions. A parameterization of P is a mapping
from a parameter space � to the set P so that P may be represented

P = {P(·; θ ): θ ∈ �}.

Hence, corresponding to any statement regarding the elements P of P is an equivalent
statement regarding the elements θ of �.

Example 5.1 (Normal distributions). Let P denote the set of all normal distributions with
finite mean and nonnegative variance. For θ = (µ, σ ), let P(·; θ ) be the normal distribution
with mean µ and standard deviation σ and take � = R × R+. Then P may be written

P = {P(·; θ ): θ ∈ �}.

LetP0 denote the subset ofP consisting of those normal distributions with mean 0. Then
P0 consists of those elements of P of the form P(·; θ ) with θ = (0, σ ), σ > 0. �

Example 5.2 (Distributions with median 0). Let P denote the set of all probability distri-
butions on the real line such that 0 is a median of the distribution. An element P of P is

132
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given by

P(A; F) =
∫

A
d F(x)

where F is a distribution function on the real line satisfying F(0) ≥ 1/2 and F(0−) ≥ 1/2.
Let F denote the set of all nondecreasing, right-continuous functions on R satisfying

lim
x→−∞ F(x) = 0, lim

x→∞F(x) = 1, F(0) ≥ 1/2, and F(0−) ≥ 1/2.

Then the elements of P may be written P(·; F) where F ∈ F so that F is the parameter
space for the model. �

In parametric statistical inference, the set of possible distributions is assumed to be
parameterized by a finite-dimensional parameter so that � is a subset of finite-dimensional
Euclidean space; such a model is said to be a parametric model. Models that are not
parametric are said to be nonparametric. The model described in Example 5.1 is a parametric
model, with � a subset of R2; the model described in Example 5.2 is nonparametric. Here
we will focus on parametric models.

In a parametric model for a random variable Y with parameter θ , all quantities based on
the probability distribution of Y will depend on the value of θ under consideration. When
we wish to emphasize this we will include the parameter in the notation of these quantities;
for instance, we will write probabilities as Pr(·; θ ) and expectations as E(·; θ ).

Example 5.3 (Normal distributions). Consider a random variable Y with a normal distri-
bution with mean µ and standard deviation σ , where −∞ < µ < ∞ and σ > 0, and let
θ = (µ, σ ). Then

E(Y ; θ ) = µ, E(Y 2; θ ) = µ2 + σ 2

and the characteristic function of Y is given by

ϕ(t ; θ ) = exp

(
−σ 2

2
t2 + µi t

)
, −∞ < t < ∞. �

Although in the discussion above models have been described in terms of probabil-
ity distributions, we may equivalently describe the model in terms of distribution func-
tions, density or frequency functions when these exist, or even characteristic functions.
In many cases, either all the distributions in P are absolutely continuous or all are dis-
crete with the same minimal support. In these cases, we describe the model in terms of
either the density functions or the frequency functions; such a function is called the model
function of the model. Furthermore, we will generally describe such a model informally,
by specifying the model function and the parameter space, without explicit construction
of the set P .

Example 5.4 (Normal distributions). Consider the set of normal distributions considered
in Examples 5.1 and 5.3. A more informal way of describing this set is the following:
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consider a random variable Y with a normal distribution with mean µ and standard deviation
σ , where −∞ < µ < ∞ and σ > 0. The model function of the model is

p(y; θ ) = 1

σ
√

(2π )
exp

{
− 1

2σ 2
(y − µ)2

}
, −∞ < y < ∞,

where θ = (µ, σ ) ∈ R × R+. �

A parameterization of a model is not unique; for example, given a model with parameter
θ , the model may also be parameterized by any one-to-one function of θ . Selection of a
parameterization is arbitrary, although in certain cases a particular parameterization may
be more useful if, for example, it simplifies the interpretation of the results.

Example 5.5 (Poisson distribution). Let X denote a random variable with a Poisson dis-
tribution with mean λ > 0; the model function is therefore given by

p(x ; λ) = λx exp(−λ)/x!, x = 0, 1, . . . .

Let P denote the set of all such Poisson distributions with mean λ > 0.
If X represents the number of “arrivals” observed in a given unit of time, then λ represents

the mean arrival rate measured in arrivals per unit of time. We could also parameterize the
model in terms of θ = 1/λ, which has the interpretation as the mean time between arrivals.
The set P could be described as the set of all Poisson distributions with θ > 0. The model
function in terms of θ is given by

f (x ; θ ) = θ−x exp(−1/θ )/x!, x = 0, 1, . . . .

A statistical analysis could be based on either parameterization. �

Identifiability
One requirement of a parameterization is that it be identifiable; that is, there must be exactly
one value of θ ∈ � corresponding to each element of P . Stated another way, a parame-
terization P(·; θ ), θ ∈ �, of P is identifiable if θ1 �= θ2 implies that P(·; θ1) �= P(·; θ2). The
condition for identifiability may also be expressed in terms of the model function; however,
when doing so, it is important to keep in mind that absolutely continuous distributions
whose density functions are equal almost everywhere are, in fact, the same distribution.
For instance, if two density functions differ at only a finite number of points, the densities
represent the same distribution.

Example 5.6 (Binomial distribution with a random index). Let X denote a random vari-
able with a binomial distribution with parameters n and η, 0 < η < 1, and suppose that n is
itself a random variable with a Poisson distribution with mean λ > 0. Take θ = (η, λ) with
� = (0, 1) × R+.

Consider a model for X . Given n, X has a binomial distribution so that

Pr(X = x |n) =
(

n

x

)
ηx (1 − η)n−x , x = 0, 1, . . . , n.



P1: JZP
052184472Xc05 CUNY148/Severini May 24, 2005 17:53

5.2 Parameters and Identifiability 135

It follows that, for any x = 0, 1, . . . ,

Pr(X = x) =
(

η

1 − η

)x

exp(−λ)
∞∑

n=0

(
n

x

)
(1 − η)nλn/n!

=
(

η

1 − η

)x exp(−λ)

x!

∞∑
n=x

(1 − η)nλn/(n − x)!

=
(

η

1 − η

)x

exp(−λ)(1 − η)xλx
∞∑
j=0

(1 − η) jλ j/j!

= (ηλ)x exp(−λ)

x!
exp{(1 − η)λ}

= (ηλ)x exp(−ηλ)/x!

so that X has a Poisson distribution with mean ηλ.
Hence, the model function is given by

p(x ; θ ) = (ηλ)x exp(−ηλ)/x!, x = 0, 1, . . . .

Since the distribution of X depends on θ = (η, λ) only through ηλ, the parameterization
given by θ is not identifiable; that is, we may have (η1, λ1) �= (η2, λ2) yet η1λ1 = η2λ2.

Suppose that instead we parameterize the model in terms of ψ = ηλ with parameter
space R+. The model function in terms of this parameterization is given by

ψ x exp(−ψ)/x!, x = 0, 1, . . .

and it is straightforward to show that this parameterization is identifiable. �

Statistical models are often based on independence. For instance, we may have indepen-
dent identically distributed random variables X1, X2, . . . , Xn such that X1 has an absolutely
continuous distribution with density p1(·; θ ) where θ ∈ �. Then the model function for the
model for (X1, . . . , Xn) is given by

p(x1, . . . , xn; θ ) =
n∏

j=1

p1(x j ; θ );

a similar result holds for discrete distributions. More generally, the random variables
X1, X2, . . . , Xn may be independent, but not identically distributed.

Example 5.7 (Normal distributions). Let X1, . . . , Xn denote independent identically dis-
tributed random variables, each with a normal distribution with mean µ, −∞ < µ < ∞
and standard deviation σ > 0. The model function is therefore given by

p(x ; θ ) = 1

σ n(2π )
n
2

exp

{
− 1

2σ 2

n∑
j=1

(x j − µ)2

}
, x = (x1, . . . , xn) ∈ Rn;

here θ = (µ, σ ) and � = R × R+.
Now suppose that X1, . . . , Xn are independent, but not identically distributed; specifi-

cally, for each j = 1, 2, . . . , n, let Xj have a normal distribution with mean βt j and standard
deviation σ > 0, where t1, . . . , tn are fixed constants and β and σ are parameters. The model
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function is then given by

p(x ; θ ) = 1

σ n(2π )
n
2

exp

{
− 1

2σ 2

n∑
j=1

(x j − βt j )
2

}
, x = (x1, . . . , xn) ∈ Rn;

here θ = (β, σ ) and � = R × R+. �

Likelihood ratios
Likelihood ratios play an important role in statistical inference. Consider a parametric model
for a random variable X with model function p(·; θ ), θ ∈ �. A function of X of the form

p(X ; θ1)

p(X ; θ0)
,

where θ0, θ1 ∈ �, is called a likelihood ratio. For cases in which the true parameter value
θ is unknown, the ratio p(x ; θ1)/p(x ; θ0) may be used as a measure of the strength of the
evidence supporting θ = θ1 versus θ = θ0, based on the observation of X = x .

Note that

E

[
p(X ; θ1)

p(X ; θ0)
; θ0

]
= 1

for all θ1 ∈ �. To see this, suppose that X has an absolutely continuous distribution with
density function p(·; θ0). Then

E

[
p(X ; θ1)

p(X ; θ0)
; θ0

]
=

∫ ∞

−∞

p(x ; θ1)

p(x ; θ0)
p(x ; θ0) dx

=
∫ ∞

−∞
p(x ; θ1) dx = 1.

A similar result holds for frequency functions.
Another important property of likelihood ratios is given in the following example.

Example 5.8 (Martingale property of likelihood ratios). Consider a sequence of real-
valued random variables Y1, Y2, . . . ; in particular, we are interested in the case in which
Y1, Y2, . . . are not independent, although the following analysis also applies in the case
of independence. Suppose that, for each n = 1, 2, . . . , distribution of Y1, Y2, . . . , Yn is
absolutely continuous with density function pn(·; θ ) where θ is a parameter taking values
in a set �. We assume that for each θ ∈ � the density functions pn(·; θ ), n = 1, 2, . . . , are
consistent in the following sense. Fix n. For any m < n the marginal density of (Y1, . . . , Ym)
based on pn(·; θ ) is equal to pm(·; θ ). That is,

pm(y1, . . . , ym ; θ ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
pn(y1, . . . , ym, ym+1, . . . , yn; θ ) dym+1 · · · dyn, θ ∈ �.

Let θ0 and θ1 denote distinct elements of � and define

Xn = pn(Y1, . . . , Yn; θ1)

pn(Y1, . . . , Yn; θ0)
, n = 1, 2, . . .

where Y1, Y2, . . . are distributed according to the distribution with parameter θ0. Note that
the event pn(Y1, . . . , Yn; θ0) = 0 has probability 0 and, hence, may be ignored.
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Then

E(Xn+1|Y1, . . . , Yn; θ0) =
∫ ∞

−∞

pn+1(Y1, . . . , Yn, y; θ1)

pn+1(Y1, . . . , Yn, y; θ0)

pn+1(Y1, . . . , Yn, y; θ0)

pn(Y1, . . . , Yn; θ0)
dy

=
∫ ∞

−∞

pn+1(Y1, . . . , Yn, y; θ1)

pn(Y1, . . . , Yn; θ0)
dy

= pn(Y1, . . . , Yn; θ1)

pn(Y1, . . . , Yn; θ0)

= Xn.

Since (X1, . . . , Xn) is a function of (Y1, . . . , Yn),

E(Xn+1|X1, . . . , Xn; θ0) = E[E(Xn+1|X1, . . . , Xn, Y1, . . . , Yn; θ0)|X1, . . . , Xn; θ0]

= E[E(Xn+1|Y1, . . . , Yn; θ0)|X1, . . . , Xn; θ0]

= E[Xn|X1, . . . , Xn; θ0] = Xn.

It follows that X1, X2, . . . is a martingale. �

5.3 Exponential Family Models

Many frequently used families of distributions have a common structure. Consider a family
of disributions on Rd , {P(·; θ ): θ ∈ �}, such that each distribution in the family is either
absolutely continuous or discrete with support not depending on θ . For each θ , let p(·; θ )
denote either the density function or frequency function corresponding to P(·; θ ). The family
of distributions is said to be an m-parameter exponential family if each p(·; θ ) may be written

p(y; θ ) = exp{c(θ )T T (y) − A(θ )}h(y), y ∈ Y (5.1)

where Y ⊂ Rd , c : � → Rm , T : Y → Rm , A : � → R, and h : Y → R+. It is important
to note that the representation (5.1) is not unique; for example, we may replace c(θ ) by
c(θ )/2 and T (y) by 2T (y).

Example 5.9 (Normal distributions). Let Y denote a random variable with a normal dis-
tribution with mean µ, −∞ < µ < ∞ and standard deviation σ > 0; then Y has density
function

1

σ
√

(2π )
exp

{
− 1

2σ 2
(y − µ)2

}
, −∞ < y < ∞.

Hence, θ = (µ, σ ) and � = R × R+. This density may be written

exp

{
− 1

2σ 2
y2 + µ

σ 2
y − 1

2

µ2

σ 2
− log σ

}
1

(2π )
1
2

, y ∈ R.

This is of the form (5.1) with T (y) = (y2, y),

c(θ ) =
(

− 1

2σ 2
,

µ

σ 2

)
, θ = (µ, σ ),

A(θ ) = µ2/(2σ 2) − log σ , h(y) = (2π )−
1
2 , and Y = R. Hence, this is a two-parameter

exponential family distribution. �
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Example 5.10 (Poisson distributions). As in Example 5.5, let P denote the set of all
Poisson distributions with mean λ > 0; the model function is therefore given by

p(x ; λ) = λx exp(−λ)/x!, x = 0, 1, . . . .

This can be written

exp{x log(λ) − λ} 1

x!
, x ∈ {0, 1, 2, . . .};

hence, this is a one-parameter exponential family with c(λ) = log(λ), T (x) = x , A(λ) = λ,
h(x) = 1/x!, and X = {0, 1, 2, . . .}. �

One important consequence of the exponential family structure is that if Y1, Y2, . . . , Yn

are independent random variables such that the marginal distribution of each Y j has model
function of the form (5.1), then the model function for Y = (Y1, . . . , Yn) is also of the form
(5.1). The situation is particularly simple if Y1, . . . , Yn are identically distributed.

Example 5.11 (Exponential distributions). Let Y denote a random variable with density
function

1

θ
exp(−y/θ ), y > 0

where θ > 0; this is an exponential distribution with mean θ . This density function may be
written in the form (5.1) with T (y) = y, c(θ ) = −1/θ , A(θ ) = log θ , and h(y) = 1. Hence,
this is a one-parameter exponential family distribution.

Now suppose that Y = (Y1, . . . , Yn) where Y1, . . . , Yn are independent random variables,
each with an exponential distribution with mean θ . Then the model function for Y is given
by

1

θn
exp

(
−1

θ

n∑
j=1

y j

)
.

This is of the form (5.1) with T (y) = ∑n
j=1 y j , c(θ ) = −1/θ , A(θ ) = n log θ , and

h(y) = 1; it follows that the distribution of Y is also a one-parameter exponential family
distribution. �

Natural parameters
It is often convenient to reparameterize the models in order to simplify the structure of the
exponential family representation. For instance, consider the reparameterization η = c(θ )
so that the model function (5.1) becomes

exp{ηT T (y) − A[θ (η)]}h(y), y ∈ Y .

Writing k(η) for A[θ (η)], the model function has the form

exp{ηT T (y) − k(η)}h(y), y ∈ Y; (5.2)

the parameter space of the model is given by

H0 = {η ∈ Rm : η = c(θ ), θ ∈ �}.
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The model function (5.2) is called the canonical form of the model function and the
parameter η is called the natural parameter of the exponential family distribution. Note
that the function k can be obtained from T, h, and Y . For instance, if the distribution is
absolutely continuous, we must have∫

Y
exp{ηT T (y) − k(η)}h(y) dy = 1, η ∈ H0

so that

k(η) = log
∫
Y

exp{ηT T (y)}h(y) dy.

The set

H = {η ∈ Rm :
∫
Y

exp{ηT T (y)}h(y) dy < ∞}

is the largest set in Rm for which (5.2) defines a valid probability density function; it is
called the natural parameter space. A similar analysis, in which integrals are replaced by
sums, holds in the discrete case.

Consider an exponential family of distributions with model function of the form

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

where η ∈ H0 and H0 is a subset of the natural parameter space. In order to use this family
of distributions as a statistical model, it is important that the parameter η is identifiable. The
following result shows that this holds provided that the distribution of T (Y ) corresponding
to some η0 ∈ H is nondegenerate; in this case, we say that the rank of the exponential family
is m, the dimension of T .

Lemma 5.1. Consider an m-dimensional exponential family with model function

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

where η ∈ H0 ⊂ H. The parameter η is identifiable if and only if T (Y ) has a nondegenerate
distribution under some η0 ∈ H.

Proof. We consider the case in which the distribution is absolutely continuous; the argu-
ment for the discrete case is similar. The parameter η is not identifiable if and only if there
exist η1, η2 ∈ H0 such that∫

A
exp{ηT

1 T (y) − k(η1)}h(y) dy =
∫

A
exp

{
ηT

2 T (y) − k(η2)
}

h(y) dy

for all A ⊂ Y . That is, if and only if∫
A

exp{(η1 − η0)T T (y) − [k(η1) − k(η0)]} exp
{
ηT

0 T (y) − k(η0)
}

h(y) dy

=
∫

A
exp{(η2 − η0)T T (y) − [k(η2) − k(η0)]} exp

{
ηT

0 T (y) − k(η0)
}

h(y) dy

where η0 is an arbitrary element of H.
This is true if and only if

exp
{
ηT

1 T (Y ) − k(η1)
} = exp

{
ηT

2 T (Y ) − k(η2)
}
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with probability 1 under the distribution of Y with parameter η0. It follows that η is not
identifiable if and only if, with probability 1 under the distribution with parameter η0,

(η1 − η2)T T (Y ) = k(η2) − k(η1).

That is, η is not identifiable if and only if T (Y ) has a degenerate distribution under the
distribution with parameter η0. Since η0 is arbitrary, it follows that η is not identifiable if and
only if T (Y ) has a degenerate distribution under all η0 ∈ H. Equivalently, η is identifiable
if and only if T (Y ) has a nondegenerate distribution for some η0 ∈ H.

An important property of the natural parameter space H is that it is convex; also, the
function k is a convex function.

Theorem 5.1. Consider an m-dimensional exponential family of probability distributions

exp{ηT T (y) − k(η)}h(y), y ∈ Y .

Then the natural parameter space H is a convex set and k is a convex function.

Proof. We give the proof for the case in which the distribution is absolutely continuous.
Let η1 and η2 denote elements of H and let 0 < t < 1. By the Hölder inequality,∫

Y
exp

{[
tηT

1 + (1 − t)ηT
2

]
T (y)

}
h(y) dy

=
∫
Y

exp
{
tηT

1 T (y)
}

exp
{
(1 − t)ηT

2 T (y)
}

h(y) dy

=
∫

Y
exp

{
ηT

1 T (y)
}t

exp
{
ηT

2 T (y)
}(1−t)

h(y) dy

≤
[∫

Y
exp

{
ηT

1 T (y)
}

h(y) dy

]t [∫
Y

exp
{
ηT

2 T (y)
}

h(y) dy

](1−t)

< ∞.

It follows that tη1 + (1 − t)η2 ∈ H and, hence, that H is convex. Furthermore,

exp{k(tη1 + (1 − t)η2)} ≤ exp{tk(η1) + (1 − t)k(η2)},
proving that k is a convex function.

The function k is called the cumulant function of the family. This terminology is based
on the fact that if the natural parameter space is open set, in which case the exponential
family is said to be regular, then the cumulant-generating function of T (Y ) may be written
in terms of k.

Theorem 5.2. Let Y denote a random variable with model function of the form

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

where η ∈ H and H is an open set. Then the cumulant-generating function of T (Y ) under
the distribution with parameter η ∈ H is given by

KT (t ; η) = k(η + t) − k(η), t ∈ Rm, ‖t‖ < δ

for some δ > 0.
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Proof. The proof is given for the case in which the distribution is absolutely continuous.
Let M denote the moment-generating function of T (Y ). Then

M(t) = E[exp{t T T (Y )}]
=

∫
Y

exp{t T T (y)} exp{ηT T (y) − k(η)}h(y) dy

=
∫
Y

exp{(t + η)T T (y) − k(η)}h(y) dy.

For sufficiently small ‖t‖, t + η ∈ H. Then, by definition of the function k,

M(t) = exp{k(t + η) − k(η)},
proving the result.

Example 5.12 (Poisson distributions). Consider the family of Poisson distributions
described in Example 5.10. Recall that the model function is given by

p(x ; λ) = λx exp(−λ)/x!, x = 0, 1, . . .

which can be written

exp{x log(λ) − λ} 1

x!
, x ∈ {0, 1, 2, . . .}.

Hence, the natural parameter is η = log(λ), the natural parameter space is H = R, and
the cumulant function is k(η) = exp(η). It follows that the cumulant-generating function
of X is

exp(t + η) − exp(η), t ∈ R.

In terms of the original parameter λ, this can be written

λ[exp(t) − 1], t ∈ R. �

Example 5.13 (Exponential distributions). Consider the family of exponential distribu-
tions described in Example 5.11. Recall that the model function is given by

1

θ
exp(−y/θ ), y > 0,

where θ > 0; this may be written

exp{ηy + log(−η)}, y > 0

where −∞ < η < 0. It follows that the cumulant-generating function of Y is given by

log(t − η) − log(−η), |t | < −η.

In terms of the original parameter θ , this can be written

log(θ t + 1), |t | <
1

θ
. �
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Some distribution theory for exponential families
The importance of exponential family distributions lies in the way in which the parameter
of the model interacts with the argument of the density or frequency function in the model
function. For instance, if p(y; θ ) is of the form (5.1) and θ0 and θ1 are two elements of the
parameter space, then log[p(y; θ1)/p(y; θ0)] is a linear function of T (y) with coefficients
depending on θ0, θ1:

log
p(y; θ1)

p(y; θ0)
= A(θ0) − A(θ1) + [c(θ1) − c(θ0)]T T (y).

This type of structure simplifies certain aspects of the distribution theory of the model,
particularly those aspects concerned with how the distributions change under changes in
parameter values. The following lemma gives a relationship between expectations under
two different parameter values.

Lemma 5.2. Let Y denote a random variable with model function of the form

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

where η ∈ H.
Fix η0 ∈ H and let g : Y → R. Then

E[g(Y ); η] = exp{k(η0) − k(η)}E[g(Y ) exp{(η − η0)T T (Y )}; η0]

for any η ∈ H such that

E[|g(Y )|; η] < ∞.

Proof. The proof is given for the case in which Y has an absolutely continuous distribution.
Suppose E[|g(Y )|; η] < ∞; then the integral∫

Y
g(y)p(y; η) dy

exists and is finite. Note that∫
Y

g(y)p(y; η) dy =
∫
Y

g(y)
p(y; η)

p(y; η0)
p(y; η0) dy = E

[
g(Y )

p(Y ; η)

p(Y ; η0)
; η0

]
;

The result now follows from the fact that

p(Y ; η)

p(Y ; η0)
= exp{k(η0) − k(η)} exp{(η − η0)T T (Y )}.

Consider a random variable Y with model function of the form

exp{c(θ )T T (y) − A(θ )}h(y);

this function can be written as the product of two terms, the term given by the exponential
function and h(y). Note that only the first of these terms depends on θ and that term depends
on y only through T (y). This suggests that, in some sense, the dependence of the distribution
of Y on θ is primarily through the dependence of the distribution of T (Y ) on θ . The following
two theorems give some formal expressions of this idea.
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Theorem 5.3. Let Y denote a random variable with model function of the form

exp{c(θ )T T (y) − A(θ )}h(y), y ∈ Y,

where θ ∈ �. Then the conditional distribution of Y given T (Y ) does not depend on θ .

Proof. Let η = c(θ ), H denote the natural parameter space of the model, and

H0 = {η ∈ H: η = c(θ ), θ ∈ �}.
Then the model function for this model can be written

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

where η ∈ H0. Hence, it suffices to show that the conditional distribution of Y given T (Y ),
based on this model, with the parameter space enlarged to H, does not depend on η.

We prove this result by showing that for any bounded, real-valued function g on Y ,
E[g(Y )|T ; η] does not depend on η.

Fix η0 ∈ H. The idea of the proof is that the random variable

Z = E[g(Y )|T ; η0]

satisfies

E[Zh(T ); η] = E[g(Y )h(T ); η]

for any η ∈ H, for all bounded functions h of T . Hence, by Theorem 2.6,

Z = E[g(Y )|T ; η].

That is, for all η0, η ∈ H,

E[g(Y )|T ; η] = E[g(Y )|T ; η0],

which proves the result.
We now consider the details of the argument. Let h denote a bounded, real-valued function

on the range of T . Then, since Z and g(Y ) are bounded,

E[|Zh(T )|; η] < ∞ and E[|g(Y )h(T )|; η] < ∞;

by Lemma 5.2,

E[Zh(T ); η] = exp{k(η) − k(η0)}E[Zh(T ) exp{(η − η0)T T }; η0]

and

E[g(Y )h(T ); η] = exp{k(η) − k(η0)}E[g(Y )h(T ) exp{(η − η0)T T }; η0].

Let

h0(T ) = h(T ) exp{(η − η0)T T }.
Note that

E[|h0(T )|; η0] = exp{k(η0) − k(η)}E[|h(T )|; η] < ∞.

It follows that

E[Zh0(T ); η0] = E[g(Y )h0(T ); η0]
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so that

E[Zh(T ); η] = E[g(Y )h(T ); η]

for all bounded h. Hence, by Theorem 2.6,

Z ≡ E[g(Y )|T ; η0] = E[g(Y )|T ; η],

proving the result.

Theorem 5.4. Let Y denote a random variable with model function of the form

exp{c(θ )T T (y) − A(η)}h(y), y ∈ Y,

where θ ∈ � and c : � → Rm. Let

H0 = {η ∈ H: η = c(θ ), θ ∈ �},
where H denotes the natural parameter space of the exponential family, and let Z denote
a real-valued function on Y .

(i) If Z and T (Y ) are independent, then the distribution of Z does not depend on θ ∈ �.
(ii) If H0 contains an open subset of Rm and the distribution of Z does not depend on

θ ∈ �, then Z and T (Y ) are independent.

Proof. We begin by reparameterizing the model in terms of the natural parameter η = c(θ )
so that the model function can be written

exp{ηT T (y) − k(η)}h(y), y ∈ Y,

with parameter space H0.
Suppose that Z and T (Y ) are independent. Define

ϕ(t ; η) = E[exp(i t Z ); η], t ∈ R, η ∈ H.

Then, by Lemma 5.2, for any η0 ∈ H

ϕ(t ; η) = exp{k(η0) − k(η)}E[exp(i t Z ) exp{(η − η0)T T (Y )}; η0], t ∈ R, η ∈ H.

Since Z and T (Y ) are independent,

ϕ(t ; η) = exp{k(η0) − k(η)}E[exp(i t Z ); η0]E[exp{(η − η0)T T (Y )}; η0], t ∈ R, η ∈ H.

Since

E[exp{(η − η0)T T (Y )}; η0] = exp{k(η) − k(η0)}
and E[exp(i t Z ); η0] = ϕ(t ; η0), it follows that, for all η, η0 ∈ H,

ϕ(t ; η) = ϕ(t ; η0), t ∈ R

so that the distribution of Z does not depend on η ∈ H and, hence, it does not depend on
η ∈ H0. This proves (i).

Now suppose that the distribution of Z does not depend on η ∈ H0 and that there exists
a subset of H0, H1, such that H1 is an open subset of Rm . Fix η0 ∈ H1 and let g denote
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a bounded function on the range of Z ; then there exists a δ1 > 0 such that exp[tg(Z )] is
bounded for |t | < δ1. Hence, by Lemma 5.2, for any η ∈ H,

E{exp[tg(Z )]; η} = exp{k(η0) − k(η)}E[exp[tg(Z )] exp{(η − η0)T T (Y )}; η0].

Using the fact that

E[exp{(η − η0)T T (Y )}; η0] = exp{k(η) − k(η0)},
it follows that, for all η ∈ H and all |t | < δ1,

E{exp[tg(Z ) + (η − η0)T T (Y )]; η0} = E{exp[tg(Z )]; η}E[exp{(η − η0)T T (Y )}; η0].

For δ > 0, let

H(δ) = {η ∈ H: ||η − η0|| < δ}
and let δ2 > 0 be such that H(δ2) ⊂ H1; since H1 is an open subset of Rm and η0 ∈ H1,
such a δ2 must exist. Then, since the distribution of g(Z ) does not depend on η for η ∈ H0,
for η ∈ H(δ2) and |t | < δ1,

E{exp[tg(Z )]; η} = E{exp[tg(Z )]; η0}.
It follows that, for all η ∈ H(δ2) and all |t | < δ1,

E{exp[tg(Z ) + (η − η0)T T (Y )]; η0} = E{exp[tg(Z )]; η0}E[exp{(η − η0)T T (Y )}; η0].

That is, the joint moment-generating function of g(Z ) and T (Y ) can be factored into the
product of the two marginal moment-generating functions. Hence, by Corollary 4.2 g(Z )
and T (Y ) are independent and by part (ii) of Theorem 2.1, Z and T (Y ) are independent,
proving part (ii) of the theorem.

Example 5.14 (Bernoulli random variables). Let Y = (Y1, . . . , Yn) where Y1, . . . , Yn are
independent random variables such that

Pr(Y j = 1; θ ) = 1 − Pr(Y j = 0; θ ) = θ, j = 0, . . . , n,

where 0 < θ < 1. Then, for all y1, . . . , yn in the set {0, 1},
Pr{Y = (y1, . . . , yn); θ} = θ

∑n
j=1 y j (1 − θ )n−∑n

j=1 y j .

It follows that the model function of Y can be written

exp

{
log

(
θ

1 − θ

) n∑
j=1

y j + n log(1 − θ )

}
,

and, hence, this is a one-parameter exponential family of distributions, with natural param-
eter η = log θ − log(1 − θ ) and T (y) = ∑n

j=1 y j .
We have seen that the distribution of T (Y ) is a binomial distribution with parameters n

and θ . Hence,

Pr{Y = (y1, . . . , yn)|T (Y ) = t ; θ} = θ
∑n

j=1 y j (1 − θ )n−∑n
j=1 y j(n

t

)
θ t (1 − θ )n−t

,
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provided that t = ∑n
j=1 y j . This probability simplifies to

1(n
t

)
for all y1, . . . , yn taking values in the set {0, 1} such that

∑n
j=1 y j = t .

That is, given that
∑n

j=1 Y j = t , each possible arrangement of 1s and 0s summing to t
is equally likely. �

Example 5.15 (Exponential random variables). Let Y1, . . . , Yn denote independent, iden-
tically distributed random variables each distributed according to the absolutely continuous
distribution with density function

θ exp{−θy}, y > 0

where θ > 0. Then Y = (Y1, . . . , Yn) has model function

θn exp

{
−θ

n∑
j=1

y j

}
, y = (y1, . . . , yn) ∈ (0, ∞)n;

hence, this is a one-parameter exponential family of distributions with natural parameter
η = −θ , H = (−∞, 0), and T (y) = ∑n

j=1 y j .
Let a1, . . . , an denote real-valued, nonzero constants and let Z = ∑n

j=1 a j log Y j . Then
Z has moment-generating function

MZ (t ; θ ) = E

{
exp

[
t

n∑
j=1

a j log(Y j )

]
; θ

}
=

n∏
j=1

E
(
Y

a j t
j ; θ

)

=
n∏

j=1

�(a j t + 1)

θa j t+1 =
∏n

j=1 �(a j t + 1)

θn+t
∑n

j=1 a j
, |t | < 1/ max(|a1|, . . . , |an|).

It follows that the distribution of Z does not depend on θ if and only if
∑n

j=1 a j = 0.
Hence, since H0 = H, by Theorem 5.4,

∑n
j=1 a j log(Y j ) and

∑n
j=1 Y j are independent

if and only if
∑n

j=1 a j = 0. �

In applying the second part of Theorem 5.4 it is important that H1 contains an open
subset of Rm . Otherwise, the condition that the distribution of Z does not depend on θ ∈ �

is not strong enough to ensure that Z and T (Y ) are independent. The following example
illustrates this possibility.

Example 5.16. Let Y1 and Y2 denote independent Poisson random variables such that Y1 has
mean θ and Y2 has mean 1 − θ , where 0 < θ < 1. The model function for the distribution
of Y = (Y1, Y2) can then be written

exp{log θy1 + log(1 − θ )y2} 1

y1!y2!
, y1 = 0, 1, . . . ; y2 = 0, 1, . . . .

Hence, c(θ ) = (log θ, log(1 − θ )) and T (y) = (y1, y2).
Let Z = Y1 + Y2. Then, by Example 4.15, Z has a Poisson distribution with mean

θ + (1 − θ ) = 1 so that the distribution of Z does not depend on θ . However, Z and (Y1, Y2)
are clearly not independent; for instance, Cov(Z , Y1; θ ) = θ .
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Note that

H0 = {(η1, η2) ∈ R2: exp(η1) + exp(η2) = 1}
= {(z1, z2) ∈ (R+)2: z1 + z2 = 1}.

It follows that H0 is a one-dimensional subset of R2 and, hence, it does not contain an open
subset of R2. �

5.4 Hierarchical Models

Let X denote a random variable with a distribution depending on a parameter λ. Suppose
that λ is not a constant, but is instead itself a random variable with a distribution depending
on a parameter θ . This description yields a model for X with parameter θ .

More specifically, consider random variables X and λ, each of which may be a vector.
The random variable λ is assumed to be unobserved and we are interested in the model for
X . This model is specified by giving the conditional distribution of X given λ, along with
the marginal distribution of λ. Both of these distributions may depend on the parameter
θ , taking values in a set � ⊂ Rm , for some m. Hence, probabilities regarding X may be
calculated by first conditioning on λ and then averaging with respect to the distribution of
λ. For instance,

Pr(X ≤ x ; θ ) = E[Pr(X ≤ x |λ; θ ); θ ]

where, in this expression, the expectation is with respect to the distribution of λ. The result
is a parametric model for X .

If the conditional distribution of X given λ is an absolutely continuous distribution, then
the marginal distribution of X is also absolutely continuous. Similarly, if the conditional
distribution of X given λ is discrete, the marginal distribution of X is discrete as well.

Theorem 5.5. Let X and λ denote random variables such that the conditional distribution
of X given λ is absolutely continuous with density function p(x |λ; θ ) where θ ∈ � is a
parameter with parameter space �. Then the marginal distribution of X is absolutely
continuous with density function

pX (x ; θ ) = E[p(x |λ; θ ); θ ], θ ∈ �.

Let X and λ denote random variables such that the conditional distribution of X given
λ is discrete and that there exists a countable set X , not depending on λ, and a conditional
frequency function p(x |λ; θ ) such that∑

x∈X
p(x |λ; θ ) = 1, θ ∈ �

for all λ. Then the marginal distribution of X is discrete with frequency function

pX (x ; θ ) = E[p(x |λ; θ ); θ ], x ∈ X , θ ∈ �.

Proof. First suppose that the conditonal distribution of X given λ is absolutely continuous.
Let g denote a bounded continuous function on the range of X , which we take to be Rd ,
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and let � denote the range of λ. Then

E[g(X ); θ ] = E{E[g(x)|λ; θ ]; θ} =
∫

�

{∫
Rd

g(x)p(x |λ; θ ) dx

}
d Fλ(λ; θ ).

By Fubini’s Theorem,∫
�

{∫
Rd

g(x)p(x |λ; θ ) dx

}
d Fλ(λ; θ ) =

∫
Rd

g(x)

{∫
�

p(x |λ; θ ) d Fλ(λ; θ )

}
dx

so that X has an absolutely continuous distribution with density pX , as given above.
Now suppose that the conditional distribution of X given λ is discrete with frequency

function p(x |λ; θ ) and support X . Then

Pr(X = x ; θ ) =
{

E{p(x |λ; θ ); θ}, if x ∈ X
0 if x /∈ X ,

proving the result.

Example 5.17 (Negative binomial distribution). Let X denote a random variable with
a Poisson distribution with mean λ and suppose that λ has a gamma distribution with
parameters α and β. Then the marginal distribution of X is discrete with frequency function

p(x ; α, β) = βα

�(α)x!

∫ ∞

0
λxλα−1 exp{−λ} dλ

= βα

�(α)x!

�(x + α)

(β + 1)x+α

=
(

x + α − 1

α − 1

)
βα

(β + 1)x+α
, x = 0, 1, . . . ;

here α > 0 and β > 0. This distribution is called the negative binomial distribution with
parameters α and β.

This distribution has moment-generating function

M(t) = βα(1 + β − exp{t})−α, t < log(1 + β).

It is straightforward to show that E(X ; θ ) = α/β and

Var(X ; θ ) = α

β

β + 1

β
.

The geometric distribution is a special case of the negative binomial distribution corre-
sponding to α = 1.

The Poisson distribution may be obtained as a limiting case of the negative binomial
distribution. Suppose X has a negative binomial distribution with parameters α and β where
α = λβ, λ > 0. Then

Pr(X = x ; λ, β) =
(

x + λβ − 1

λβ − 1

)
βλβ

(β + 1)x+λβ
, x = 0, 1, . . .

and

lim
β→∞

Pr(X = x ; λ, β) = λx exp{−λ}
x!

, x = 0, 1, . . . . �
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Models for heterogeneity and dependence
The advantage of a hierarchical representation of a model is that in many applications
it is natural to construct models in this way. For instance, hierarchical models are useful
for incorporating additional heterogeniety into the model. Specifically, suppose that we
are willing to tentatively assume that random variables X1, . . . , Xn are independent and
identically distributed, each with a distribution depending on a parameter λ. However, we
may believe that there is more heterogeniety in the data than this model suggests. One
possible explanation for this is that the assumption that the same value of λ applies to each
Xj may be too strong. Hence, we might assume that the distribution on Xj depends on λ j , j =
1, . . . , n. However, taking λ1, . . . , λn as arbitrary parameter values may potentially allow
too much heterogeniety in the model. An alternative approach is to assume that λ1, . . . , λn

is a random sample from some distribution. The resulting distribution thus contains two
sources of variation in the Xj : the variation inherent in the conditional distribution of Xj

given λ, and the variation in the values in the sample λ1, . . . , λn .

Example 5.18 (Negative binomial distribution). Suppose that X has a negative binomial
distribution, as described in Example 5.17. Then

E(X ; θ ) = α

β
and Var(X ; θ ) = α

β

β + 1

β

where θ = (α, β)T ∈ R2. In Example 5.17 it was shown that the distribution of X may
be viewed as a Poisson distribution with mean λ, where λ has a gamma distribution with
parameters α and β.

If X has a Poisson distribution, then

Var(X )

E(X )
= 1;

for the negative binomial distribution considered here,

Var(X ; θ )

E(X ; θ )
= 1 + 1

β
.

Hence, β measures the overdispersion of X relative to that of the Poisson distribution. �

Hierarchical models are also useful for modeling dependence. For instance, as above,
suppose that X1, . . . , Xn are independent random variables, each with the same distribu-
tion, but with parameter values λ1, . . . , λn , respectively, where the λ j are random variables.
However, instead of assuming that λ1, . . . , λn are independent, identically distributed ran-
dom variables, we might assume that some of the λ j are equal; this might be appropriate if
there are certain conditions which affect more than one of X1, . . . , Xn . These relationships
among λ1, . . . , λn will induce dependence between X1, . . . , Xn . This idea is illustrated in
the following example.

Example 5.19 (Normal theory random effects model). Let X1 and X2 denote real-valued
random variables. Suppose that, given λ, X1 and X2 are independent, identically distributed
random variables, each with a normal distribution with mean λ and standard deviation σ .
Note that the same value of λ is assumed to hold for both X1 and X2.
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Suppose that λ is distributed according to a normal distribution with mean µ and standard
deviation τ . Note that X1 has characteristic function

E[exp(i t X1)] = E{E[exp(i t X1|λ)]} = E

[
exp

(
i tλ − 1

2
σ 2t2

)]

= exp

{
i tµ − 1

2
(τ 2 + σ 2)t2

} ;

it follows that X1 is distributed according to a normal distribution with mean µ and variance
τ 2 + σ 2. Clearly, X2 has the same marginal distribution as X1.

However, X1 and X2 are no longer independent. Since

E(X1 X2) = E[E(X1 X2|λ)] = E(λ2) = τ 2 + µ2,

it follows that

Cov(X1, X2) = τ 2

and, hence, that the correlation of X1 and X2 is τ 2/(τ 2 + σ 2). Hence, although, conditionally
on λ, X1 and X2 are independent, marginally they are dependent random variables.

The distribution of (X1, X2) is called the bivariate normal distribution; its properties
will be considered in detail in Chapter 8. �

5.5 Regression Models

Consider a parametric model on Y ⊂ Rd , P = {P(·; λ): λ ∈ �}. Suppose that Y1, . . . , Yn

are independent random variables such that, for each j = 1, . . . , n, the distribution of Y j is
the element ofP corresponding to a parameter value λ j . Hence, Y1, . . . , Yn are independent,
but are not necessarily identically distributed.

Let x1, x2, . . . , xn denote a known sequence of nonrandom vectors such that, for each
j = 1, . . . , n, there exists a function h such that

λ j = h(x j ; θ )

for some θ in a set �. Thus, the distribution of Y j depends on the value of x j , along with the
value of θ and the function h. The vectors x1, . . . , xn are known as covariates or explana-
tory variables; the random variables Y1, . . . , Yn are called the response variables. The
response variables and covariates are sometimes called dependent and independent vari-
ables, respectively; however, those terms will not be used here, in order to avoid confusion
with the concept of independence, as discussed in Section 2.2.

In a regression model, the function h is known, while θ is an unknown parameter. Interest
generally centers on the relationship between Y j and x j , j = 1, . . . , n, as expressed through
the function h. Regression models are very widely used in statistics; the goal of this section
is to present a few examples illustrating some of the regression models commonly used.

Example 5.20 (Additive error models). Suppose that each distribution in P has a finite
mean. Let

µ(x j , θ ) = E(Y j ; θ ).
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Then we may write

Y j = µ(x j , θ ) + ε j , j = 1, . . . , n

where ε j is simply Y j − µ(x j , θ ). If, for each j , the minimal support of the distribution of
ε j does not depend on the values of x j and θ , we call the model an additive error model.

By construction, ε1, . . . , εn are independent random variables each with mean 0 and with
a distribution depending on θ . Often additional assumptions are made about the distribution
of ε1, . . . , εn . For instance, it may be reasonable to assume that ε1, . . . , εn are identically
distributed with a specific distribution. �

Example 5.21 (Linear models). Let Y1, . . . , Yn denote independent scalar random vari-
ables such that each Y j follows an additive error model of the form

Y j = µ(x j , θ ) + ε j .

Suppose further that θ may be written (β, σ ), where β is a vector and σ > 0 is a scalar such
that µ(x j ; θ ) is a linear function of β,

µ(x j , θ ) = x jβ

and the distribution of ε j depends only on σ , the standard deviation of the distribution of
Y j . Thus, we may write

Y j = x jβ + σ z j , j = 1, . . . , n

where z1, . . . , zn have known distributions. A model of this type is called a linear model;
when z1, . . . , zn are assumed to be standard normal random variables, it is called a normal-
theory linear model. �

Example 5.22 (Linear exponential family regression models). Let Y1, . . . , Yn denote
independent scalar random variables such that Y j has an exponential family distribution
with model function of the form

p(y; λ j ) = exp
{
λT

j T (y) − k(λ j )
}

h(y),

as discussed in Section 5.3. Suppose that

λ j = x jβ, j = 1, . . . , n

where, as above, x1, . . . , xn are fixed covariates and β is an unknown parameter. Hence, the
density, or frequency function, of Y1, . . . , Yn is

exp

{
βT

n∑
j=1

xT
j T (y j ) −

n∑
j=1

k(x jβ)

}
n∏

j=1

h(y j ).

This is called a linear exponential family regression model; it is also a special case of a
generalized linear model.

For instance, suppose that Y1, . . . , Yn are independent Poisson random variables such
that Y j has mean λ j with log λ j = x jβ. Then Y1, . . . , Yn has frequency function

exp

{
βT

n∑
j=1

x j y j −
n∑

j=1

exp(x jβ)

}
n∏

j=1

1

y j !
, y j = 0, 1, 2, . . . ; j = 1, . . . , n. �
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In some cases, the explanatory variables are random variables as well. Let (Xj , Y j ),
j = 1, . . . , n, denote independent random vectors such that the conditional distribution of
Y j given Xj = x j is the element of P corresponding to parameter value

λ j = h(x j ; θ )

for some known function h. Then the model based on the conditional distribution of
(Y1, . . . , Yn) given (X1, . . . , Xn) = (x1, . . . , xn) is identical to the regression model con-
sidered earlier. This approach is appropriate provided that the distribution of the covariate
vector (X1, . . . , Xn) does not depend on θ , the parameter of interest. If the distribution of
(X1, . . . , Xn) is also of interest, or depends on parameters that are of interest, then a model
for the distribution of (X1, Y1), . . . , (Xn, Yn) would be appropriate.

Example 5.23. Let (X1, Y1), . . . , (Xn, Yn) denote independent, identically distributed pairs
of real-valued random variables such that the conditional distribution of Y j given Xj = x
is a binomial distribution with frequency function of the form(

x

y

)
θ

y
1 (1 − θ1)x−y, y = 0, 1, . . . , x,

where 0 < θ1 < 1, and the marginal distribution of Xj is a Poisson distribution with mean
θ2, θ2 > 0.

If only the parameter θ1 is of interest, then a statistical analysis can be based on the con-
ditional distribution of (Y1, . . . , Yn) given (X1, . . . , Xn) = (x1, . . . , xn), which has model
function

n∏
j=1

(
x j

y j

)
θ

y j

1 (1 − θ1)x j −y j .

If both parameters θ1 and θ2 are of interest, a statistical analysis can be based on the
distribution of (X1, Y1), . . . , (Xn, Yn), which has model function

n∏
j=1

θ
x j

2

y j !(x j − y j )!
exp(−θ2)θ

y j

1 (1 − θ1)x j −y j . �

5.6 Models with a Group Structure

For some models there is additional structure relating distributions with different parameter
values and it is often possible to exploit this additional structure in order to simplify the
distribution theory of the model. The following example illustrates this possibility.

Example 5.24 (Normal distribution). Let X denote a random variable with a normal distri-
bution with mean µ, −∞ < µ < ∞ and standard deviation σ , σ > 0. Using characteristic
functions it is straightforward to show that the distribution of X is identical to the dis-
tribution of µ + σ Z , where Z has a standard normal distribution. Hence, we may write
X = µ + σ Z .

Let b and c denote constants with c > 0 and let Y = b + cX . Then we may write Y =
cµ + b + (cσ )Z so that Y has the same distribution of X except that µ is modified to cµ + b
and σ is modified to cσ . Hence, many properties of the distribution of Y may be obtained
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directly from the corresponding property of the distribution of X . For example, if we know
that

E(X4) = 3σ 4 + 6µ2σ 2 + µ4,

it follows immediately that

E(Y 4) = 3c4σ 4 + 6(cµ + b)2c2σ 2 + (cµ + b)4.

Now consider n independent random variables X1, X2, . . . , Xn such that the marginal
distribution of each Xj is the same as the distribution of X above. Then we may write
Xj = µ + σ Z j , j = 1, . . . , n, where Z1, . . . , Zn are independent standard normal random
variables. Let X̄ = ∑n

j=1 Xj/n; since X̄ = µ + σ Z̄ where Z̄ = ∑n
j=1 Z j/n, it follows that

the relationship between X̄ and Z̄ is the same as the relationship between Xj and Z j . For
instance, if we know that Z̄ has a normal distribution with mean 0 and standard deviation
1/

√
n, it follows immediately that X̄ has a normal distribution with mean µ and standard

deviation σ/
√

n. The statistic X̄ is an example of an equivariant statistic.
Consider the statistic

T = X1 − X̄

X2 − X̄
.

It follows immediately from the facts that Xj = µ + σ Z j and X̄ = µ + σ Z̄ that T has the
same distribution as

Z1 − Z̄

Z2 − Z̄

so that the distribution of T does not depend on µ or σ . Hence, when studying the distri-
butional properties of T we can assume that µ = 0 and σ = 1. This is an example of an
invariant statistic. �

The goal of this section is to generalize the ideas presented in the previous example. Let
X denote a random variable with range X and probability distribution P taking values in
a set P . The key idea in Example 5.24 is that there is an algebraic operation on the space
X that corresponds to changes in the distribution of X ; we will refer to these algebraic
operations as transformations. Hence, we need to specify a set of transformations on X and
relate them to the different distributions in P . In order to do this, it is convenient to use the
language of group theory.

Consider a transformation g :X → X . We require that g is one-to-one, so that g(x1) =
g(x2) implies that x1 = x2, and onto, so that every x1 ∈ X may be written g(x2) for some
x2 ∈ X . We will be interested in a set of such transformations together with an opera-
tion that allows two transformations to be combined. There are a number of conditions
such a combination must satisfy in order for the set of transformations to be useful. For
instance, if two transformations are combined, they must form another transformation and
every transformation must have an inverse transformation such that, if the transformation
is combined with its inverse, an identity tranformation taking each x ∈ X back to x is
formed.

More formally, let G denote a group of transformations g :X → X . Recall that a group
is a nonempty set G together with a binary operation ◦ such that the following conditions
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are satisfied

(G1) If g1, g2 ∈ G then g1 ◦ g2 ∈ G
(G2) If g1, g2, g3 ∈ G then (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3)
(G3) There exists an element e ∈ G, called the identity element, such that for each g ∈ G,

e ◦ g = g ◦ e = g
(G4) For each g ∈ G, there exists an element g−1 ∈ G such that g ◦ g−1 = g−1 ◦ g = e.

We assume further that, for a suitable topology on G, the operations

(g1, g2) → g1 ◦ g2

and g → g−1 are continuous. Often, the group G can be taken to be finite-dimensional
Euclidean space with the topology on G taken to be the usual one. For simplicity, we will
suppress the symbol ◦ when writing group operations so that, for example, g1g2 = g1 ◦ g2.

So far, we have only described how the transformations in G must relate to each other.
However, it is also important to put some requirements on how the transformations in G act
on X .

Let g1, g2 ∈ G. Since g2x is an element of X , we may calculate g1(g2x). We require that
the result is the same as applying g1g2 to x ; that is,

(T1) g1(g2x) = (g1g2)x .

We also require that the identity element of the group, e, is also the identity transformation
on X :

(T2) ex = x, x ∈ X .

Example 5.25 (Location and scale groups). In statistics, the most commonly used trans-
formations are location and scale transformations. Here we take X = Rn .

First consider the group Gs of scale transformations. That is, Gs = R+ such that for any
a ∈ Gs and x ∈ X , ax represents scalar multiplication. It is easy to see that this is a group
with the group operation defined to be multiplication; that is, for a1, a2 in Gs, a1a2 denotes
the multiplication of a1 and a2. The identity element of the group is 1 and a−1 = 1/a. For
the topology on Gs we may take the usual topology on R.

We may also consider the set Gl of location transformations. Then Gl = R and for b ∈ Gl

and x ∈ X , bx = x + b1n where 1n denotes the vector of length n consisting of all 1s. The
group operation is simple addition, the identity element is 0, b−1 = −b, and the topology
on Gl may be taken to be the R-topology.

Now consider the group of location–scale transformations, Gls. The group Gls = R+ × R
such that for any (a, b) ∈ Gls and any x ∈ X ,

(a, b)x = ax + b1n.

Let (a1, b1) and (a2, b2) denote elements of Gls. Then

(a1, b1)[(a2, b2)x] = a1(a2x + b21n) + b11n = a1a2x + (a1b2 + b1)1n.

Hence, the group operation is given by

(a1, b1)(a2, b2) = (a1a2, a1b2 + b1).
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The identity element of the group is (1, 0) and since(
1

a
, −b

a

)
(a, b) = (a, b)

(
1

a
, −b

a

)
= (1, 0),

(a, b)−1 =
(

1

a
, −b

a

)
.

The topology on Gls may be taken to be the usual topology on R2. �

Transformation models
Recall that our goal is to use the group of transformationsG to relate different distributions in
P . Consider a random variable X with range X and let G denote a group of transformations
on X . The set of probability distributions P is said to be invariant with respect to G if
the following condition holds: if X has probability distribution P ∈ P , then the probability
distribution of gX , which can be denoted by P1, is also an element of P . That is, for every
P ∈ P and every g ∈ G there exists a P1 ∈ P such that, for all bounded continuous functions
h : X → R,

EP[h(gX )] = EP1
[h(X )]

where EP denotes the expectation with respect to P and EP1
denotes expectation with respect

to P1. In this case we may write P1 = gP so that we may view g as operating on P as well
as on X .

We have already considered one example of a class of distributions that is invariant with
respect to a group of transformations when considering exchangeable random variables in
Section 2.6.

Example 5.26 (Exchangeable random variables). Let X1, X2, . . . , Xn denote exchange-
able real-valued random variables and letG denote the set of all permutations of (1, 2, . . . , n).
Hence, if X = (X1, . . . , Xn) and g = (n, n − 1, . . . , 2, 1), for example, then

gX = (Xn, Xn−1, . . . , X1).

It is straightforward to show that G is a group and, by definition, the set of distributions of
X is invariant with respect to G. �

Suppose P is a parametric family of distributions, P = {P(·; θ ): θ ∈ �}. If P is invariant
with respect to G and if X is distributed according to the distribution with parameter θ ,
then gX is distributed according to the distribution with parameter gθ , so that g may be
viewed as acting on the parameter space �. In statistics, such a model is often called a
transformation model.

Example 5.27 (Exponential distribution). Let X1, X2, . . . , Xn denote independent, iden-
tically distributed random variables, each distributed according to an exponential
distribution with parameter θ > 0. Hence, the vector X = (X1, . . . , Xn) has density

p(x ; θ ) = θn exp

{
−θ

n∑
j=1

x j

}
, x j > 0, j = 1, . . . , n.
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For a function h : Rn → R,

E[h(X ); θ ] =
∫ ∞

0
· · ·

∫ ∞

0
h(x)θn exp

{
−θ

n∑
j=1

x j

}
dx1 · · · dxn.

Consider the group of scale transformations Gs. For a ∈ Gs, using a change-of-variable
for the integral,

E[h(a X ); θ ] =
∫ ∞

0
· · ·

∫ ∞

0
h(ax)θn exp

{
−θ

n∑
j=1

x j

}
dx1 · · · dxn

=
∫ ∞

0
· · ·

∫ ∞

0
h(x)

θn

an
exp

{
−(θ/a)

n∑
j=1

x j

}
dx1 · · · dxn.

It follows that if X has an exponential distribution with parameter θ , then a X has an
exponential distribution with parameter value θ/a and, hence, this model is a transformation
model with respect toGs. The elements ofGs are nonnegative constants; for a ∈ Gs, the action
of a on � is given by aθ = θ/a. �

In many cases, the parameter space of a transformation model is isomorphic to the group
of transformations G. That is, there is a one-to-one mapping from G to � and, hence, the
group of transformations may be identified with the parameter space of the model. In this
case, the group G may be taken to be the parameter space �.

To see how such an isomorphism can be constructed, suppose the distribution of X is
an element of P which is invariant with respect to a group of transformations G. Fix some
element θ0 of � and suppose X is distributed according to the distribution with parameter
θ0. Then, for g ∈ G, gX is distributed according to the distribution with parameter value
θ1 = gθ0, for some θ1 ∈ �. Hence, we can write θ1 for g so that, if X is distributed according
to the distribution with parameter θ0, θ1 X is distributed according to the distribution with
parameter θ1. If, for each θ ∈ �, there is a unique g ∈ G such that θ = gθ0 and g1θ0 = g2θ0

implies that g1 = g2, then � and G are isomorphic and we can proceed as if � = G. The
parameter value θ0 may be identified with the identity element of G.

Example 5.28 (Exponential distribution). Consider the exponential distribution model
considered in Example 5.27; for simplicity, take n = 1. Let g = a > 0 denote a scale
transformation. If X has a standard exponential distribution, then gX has an exponential
distribution with parameter θ1 = 1/a.

The group G may be identified with � using the correspondence a → 1/θ . If X has a
standard exponential distribution, then θ X has an exponential distribution with parameter θ .
Hence, θ X = X/θ ; the identity element of the group is the parameter value corresponding
to the standard exponential distribution, 1. The same approach may be used for a vector
(X1, . . . , Xn). �

Example 5.29 (Location-scale models). Let X denote a real-valued random variable with
an absolutely continuous distribution with density p0 satisfying p0(x) > 0, x ∈ R. The
location-scale model based on p0 consists of the class of distributions of gX , g ∈ G(1)

ls
where G(1)

ls denotes the group of location-scale transformations on R.
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Suppose X is distributed according to p0 and let g = (σ, µ) denote an element of G(1)
ls .

Then

E[h(gX )] =
∫ ∞

−∞
h(gx)p0(x) dx =

∫ ∞

−∞
h(σ x + µ)p0(x) dx

=
∫ ∞

−∞
h(x)p0

(
x − µ

σ

)
1

σ
dx .

Hence, the distribution of gX is absolutely continuous with density function

p(x ; θ ) = 1

σ
p0

(
x − µ

σ

)
, −∞ < x < ∞.

The model given by

{p(·; θ ): θ = (σ, µ), σ > 0, −∞ < µ < ∞}
is a transformation model with respect to G(1)

ls .
For instance, consider the case in which p0 denotes the density of the standard normal

distribution. Then the set of distributions of X is simply the set of normal distributions with
mean µ and standard deviation σ .

Now consider independent, identically distributed random variables X1, . . . , Xn , each
distributed according to an absolutely continuous distribution with density function of the
form p(·; θ ), as given above. The density for (X1, . . . , Xn) is of the form

1

σ n

∏
p0

(
xi − µ

σ

)
, −∞ < xi < ∞, i = 1, . . . , n.

Clearly, the model for (X1, . . . , Xn) is a transformation model with respect to Gls. �

Let x ∈ X . The orbit of x is that subset of X that consists of all points that are obtainable
from x using a transformation in G; that is, the orbit of x is the set

O(x) = {x1 ∈ X : x1 = gx for some g ∈ G}.

Example 5.30 (Location-scale group). Let X = Rn and consider the group of location-
scale transformations on X . Then two elements of Rn , x1 and x2, are on the same orbit if
there exists (a, b) ∈ Gls such that

x1 = ax2 + b1n,

that is, if there exists a constant a > 0 such that the elements of x1 − ax2 are all equal.
For a given element x ∈ X ,

O(x) = {x1 ∈ X : x1 = ax + b1n, a > 0, −∞ < b < ∞}. �

Invariance
Now consider a function T :X → Rk . We say that T (X ) is an invariant statistic with respect
to G if, for all g ∈ G and all x ∈ X , T (gx) = T (x). That is, T is constant on the orbits of X .
Hence, if T is invariant, then the probability distribution of T (gX ) is the same for all g ∈ G.
In particular, if the family of probability distributions of X is invariant with respect to G then
the distribution of T (X ) is the same for all P ∈ P . Thus, in order to find the distribution of
T (X ) we may choose a convenient element P ∈ P and determine the distribution of T (X )
under P.
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Example 5.31 (Location group). Let X = Rn and consider the group of location transfor-
mations on X . Consider the function

T (x) = x − [(
1T

n x
)
/n

]
1n =


 x1 − x̄

...
xn − x̄


 ,

where x̄ = ∑n
j=1 x j/n. Since bx = x + b1n for b ∈ Gl,

T (bx) = x + b1n − [
1T

n (x + b1n)/n
]

1n

= x + b1n − [(
1T

n x
)
/n

]
1n − b1n

= x − [(
1T

n x
)
/n

]
1n = T (x);

hence, T is invariant with respect to Gl. �

Example 5.32 (Cauchy distribution). Let X1, X2, X3, X4 denote independent, identically
distributed random variables, each with a normal distribution with mean µ and standard
deviation σ. As noted earlier, this model for (X1, X2, X3, X4) is a transformation model
with respect to Gls.

For x ∈ R4, x = (x1, x2, x3, x4), let

T (x) = x1 − x2

x3 − x4
.

This function is invariant with respect to G(4)
ls since, for g = (σ, µ) ∈ G(4)

ls ,

T (gx) = (σ x1 + µ) − (σ x2 + µ)

(σ x3 + µ) − (σ x4 + µ)
= x1 − x2

x3 − x4
= T (x).

Hence, the distribution of T (X ), X = (X1, X2, X3, X4), does not depend on the value of µ

and σ under consideration.
For instance, take µ = 0 and σ 2 = 1/2. Then X1 and X2 each have characteristic function

ϕ(t) = exp(−t2/4), −∞ < t < ∞.

Hence, X1 − X2 has characteristic function

ϕ(t)ϕ(−t) = exp(−t2/2), −∞ < t < ∞.

It follows that X1 − X2 has a standard normal distribution; similarly, X3 − X4 also has
a standard normal distribution. Furthermore, X1 − X2 and X3 − X4 are independent. It
follows from Example 3.13 that T (X ) has a standard Cauchy distribution. �

The statistic T is said be a maximal invariant if it is invariant and any other invariant
statistic is a function of T . That is, if T1 is invariant, then there exists a function h such that,
for each x ∈ X ,

T1(x) = h(T (x)).

Theorem 5.6. Let X denote a random variable with range X and suppose that the distri-
bution of X is an element of

P = {P(·; θ ): θ ∈ �}.
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Let G denote a group of transformations from X to X and suppose that P is invariant with
respect to G. Let T denote a function from X to Rk .

The following conditions are equivalent:
(i) T is a maximal invariant

(ii) Let x1, x2 denote elements of X such that x2 /∈ O(x1). Then T is constant on O(xi ),
i = 1, 2 and T (x1) �= T (x2).

(iii) Let x1, x2 ∈ X . T (x1) = T (x2) if and only if there exists g ∈ G such that x1 = gx2.

Proof. We first show that conditions (ii) and (iii) are equivalent. Suppose that condition
(ii) holds. If T (x1) = T (x2) for some x1, x2 ∈ X , then we must have x2 ∈ O(x1) since
otherwise condition (ii) implies that T (x1) �= T (x2). Since T is constant on O(xi ), it follows
that T (x1) = T (x2) if and only if x2 ∈ O(x1); that is, condition (iii) holds.

Now suppose condition (iii) holds. Clearly, T is constant on O(x) for any x ∈ X . Fur-
thermore, if x1, x2 are elements of X such that x2 /∈ O(x1), there does not exist a g such
that x1 = gx2 so that T (x1) �= T (x2). Hence, condition (ii) holds.

We now show that condition (iii) and condition (i) are equivalent. Suppose that condition
(iii) holds and let T1 denote an invariant statistic. T is maximal invariant provided that T1

is a function of T . Define a function h as follows. If y is in the range of T so that y = T (x)
for some x ∈ X , define h(y) = T1(x); otherwise, define h(y) arbitrarily. Suppose x1, x2 are
elements of X such that T (x1) = T (x2). Under condition (iii), x1 = gx2 for some g ∈ G
so that T1(x1) = T1(x2); hence, h is well defined. Clearly, h(T (x)) = T1(x) so that T is a
maximal invariant. It follows that (iii) implies (i).

Finally, assume that T is a maximal invariant, that is, that (i) holds. Clearly, x2 = gx1

implies that T (x1) = T (x2). Suppose that there does not exist a g ∈ G satisfying x2 = gx1.
Define a statistic T1 as follows. Let y1, y2, y3 denote distinct elements of Rk . If x ∈ O(x1),
T1(x) = y1, if x ∈ O(x2), T1(x) = y2, if x is not an element of either O(x1) or O(x2), then
T1(x) = y3. Note that T1 is invariant. It follows that there exists a function h such that
T1(x) = h(T (x)), x ∈ X , so that h(T (x1)) �= h(T (x2)); hence, T (x1) �= T (x2). Therefore
condition (iii) holds.

Theorem 5.6 gives a useful description of a maximal invariant statistic. The range X of a
random variable X can be divided into orbits. Two points x1, x2 lie on the same orbit if there
exists a g ∈ G such that x2 = gx1. An invariant statistic is constant on orbits. An invariant
statistic T is a maximal invariant if, in addition, it takes different values on different orbits.
Hence, a maximal invariant statistic completely describes the differences between the orbits
of X ; however, it does not give any information regarding the structure within each orbit.

Example 5.33 (Location group). Let X = Rn and consider the group of location transfor-
mations on X . In Example 5.31 it was shown that the function

T (x) = x − [(
1T

n x
)
/n

]
1n

is invariant.
Suppose that x1, x2 are elements of Rn . Then T (x1) = T (x2) if and only if

x1 − [(
1T

n x1
)
/n

]
1n = x2 − [(

1T
n x2

)
/n

]
1n,
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that is, if and only if

x1 = x2 + {[
1T

n (x1 − x2)
]
/n

}
1n = x2 + b∗1n

where b∗ = [1T
n (x1 − x2)]/n. It follows from part (iii) of Theorem 5.6 that T is a maximal

invariant. �

Consider an invariant statistic T . According to part (ii) of Theorem 5.6, in order to show
that T is not a maximal invariant, it is sufficient to find x1, x2 in X that lie on different orbits
such that T (x1) = T (x2).

Example 5.34 (Cauchy distribution). Consider X = R4 and for x ∈ R4, x = (x1, x2,

x3, x4), let

T (x) = x1 − x2

x3 − x4
.

In Example 5.32, it is shown that T is invariant with respect to G(4)
ls .

Consider two elements of X , x = (1, 0, 1, 0) and x̃ = (1, 0, 2, 1). Note that since for
a > 0,

(1, 0, 2, 1) − a(1, 0, 1, 0) = (1 − a, 0, 2 − a, 1)

there does not exist an a such that the elements of x − ax̃ are all equal. Hence, x and x̃ lie
on different orbits; see Example 5.30. Since T (x) = T (x̃) = 1, it follows from part (ii) of
Theorem 5.6 that T is not a maximal invariant. �

Equivariance
Consider a group G acting on a set X and let T denote a statistic, T : X → Y for some set
Y . Suppose that G also acts on Y . The statistic T is said to be equivariant if for each g ∈ G,

T (gx) = gT (x), x ∈ X .

Note that two different applications of the transformation g are being used in this expression:
gx refers to the action of g on X , while gT (x) refers to the action of g on Y .

Equivariance is an important concept in statistics. For instance, consider a transformation
model for a random variable X , with respect to a group of transformations G; let X denote
the range of X and let � denote the parameter space. Let T denote an estimator of θ , a
function T : X → �. Hence, if X = x is observed, we estimate the value of θ to be T (x).
The estimator is equivariant if the estimate corresponding to gx , g ∈ G, is gT (x).

Example 5.35 (Estimation of a location parameter). Let X denote a real-valued random
variable with an absolutely continuous distribution with density p0 satisfying p0(x) > 0,
x ∈ R. Consider the location model based on p0 consisting of the class of distributions of
gX , g ∈ G(1)

l where G(1)
l denotes the group of location transformations on R.

Suppose X is distributed according to p0 and let g = θ denote an element of G(1)
l . Then

the distribution of gX is absolutely continuous with density function

p(x ; θ ) = p0(x − θ ), −∞ < x < ∞.
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The model given by

{p(·; θ ): − ∞ < θ < ∞}
is a transformation model with respect to G(1)

l . For g ∈ G(1)
l and θ ∈ � = R, gθ = θ + g.

Now consider independent, identically distributed random variables X1, . . . , Xn , each
distributed according to an absolutely continuous distribution with density function of the
form p(·; θ ), as given above. The density for (X1, . . . , Xn) is of the form

n∏
j=1

p0(x j − θ ), −∞ < x j < ∞, i = j, . . . , n.

and the model for (X1, . . . , Xn) is a transformation model with respect toGl and gθ = θ + g.
Now consider T , an estimator of the location parameter θ . The estimator is equivariant

if, for any b ∈ R,

T (x + b1n) = T (x) + b;

that is, T is equivariant if adding a constant b to each observation shifts the estimate of θ

by b. �

Theorem 5.7. Consider a space X and let G denote a group acting on X . If a statistic T is
equivariant then for each x1, x2 ∈ X ,

T (x1) = T (x2) implies that T (gx1) = T (gx2) for all g ∈ G.

Conversely, if

T (x1) = T (x2) implies that T (gx1) = T (gx2) for all g ∈ G,

then the action of G on Y , the range of T (X ), may be defined so that T is equivariant.

Proof. Let T be an equivariant statistic and suppose T (x1) = T (x2). Let g ∈ G. Then, by
the definition of equivariance,

T (gxi ) = gT (xi ), i = 1, 2.

Hence,

T (gx1) = gT (x1) = gT (x2) = T (gx2).

Now suppose that T (gx1) = T (gx2) for all g ∈ G whenever T (x1) = T (x2). For g ∈ G
and x ∈ X , define gT (x) = T (gx). Since T (x1) = T (x2) implies T (gx1) = T (gx2), gT (x)
is well defined. It remains to verify that (T1) and (T2) are satisfied.

Note

eT (x) = T (ex) = T (x),

verifying (T1) and that

g1(g2T (x)) = g1T (g2x) = T (g1g2x) = T ((g1g2)x) = (g1g2)T (x),

verifying (T2). The result follows.
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Based on Theorem 5.7, it is tempting to conclude that T is equivariant if and only if
T (x1) = T (x2) implies that T (gx1) = T (gx2). Note, however, that this statement does not
require any specification of the action of G on T (X ). Theorem 5.7 states that there is a
definition of the action of G such that T is equivariant. The following simple example
illustrates this point.

Example 5.36. Let X = R and let G = R+. For g ∈ G define gx to be multiplication of
g and x . Let T (x) = |x |. Clearly, T (x1) = T (x2) implies that T (gx1) = T (gx2). However,
equivariance of T depends on how the action of G on T (X ) is defined. Suppose that
gT (x) = T (x)/g. Then T is not equivariant since T (gx) = |gx | while gT (x) = |x |/g.
However, we may define the action of G on T (X ) in a way that makes T equivariant. In
particular, we may use the definition gT (x) = T (gx) so that, for y ∈ T (X ), gy denotes
multiplication of g and y. �

Consider a random variable X with range X and distribution in the set

P = {P(·; θ ): θ ∈ �}.
Let G denote a group of transformations such that P is invariant with respect to G and that
G and � are isomorphic.

Let T1 denote a maximal invariant statistic. Then, as discussed above, T1(x) indicates
the orbit on which x resides. However, T1 does not completely describe the value of x
because it provides no information regarding the location of x on its orbit. Let T2 denote
an equivariant statistic with range equal to �; hence, the action of a transformation on the
range of T2 is the same as the action on G. Then T2(x) indicates the position of x on its
orbit. The following theorem shows that T1(x) and T2(x) together are equivalant to x .

Theorem 5.8. Let X denote a random variable with range X and suppose that the distri-
bution of X is an element of

P = {P(·; θ ): θ ∈ �}.
Let G denote a group of transformations from X to X and suppose that P is invariant with
respect to G. Suppose that G and � are isomorphic.

Let T : X → Rm, T = (T1, T2), denote a statistic such that T1 is a maximal invariant
and T2 is an equivariant statistic with range �. Then T is a one-to-one function on X .

Proof. The theorem holds provided that T (x1) = T (x2) if and only if x1 = x2. Clearly,
x1 = x2 implies that T (x1) = T (x2); hence, assume that T (x1) = T (x2).

Since T1(x1) = T1(x2), x1 and x2 lie on the same orbit and, hence, there exists g ∈ G
such that x2 = gx1. By the equivariance of T2,

T2(x1) = T2(x2) = T2(gx1) = gT2(x1).

Note that T (x1) may be viewed as an element of G. Let θ1 = T2(x1)−1 and let θe denote
the identity element of �. Then

θe = T2(x1)θ1 = gT2(x1)θ1
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so that

θe = gT2(x1)θ1 = g.

Hence, g = e, the identity element of G, and x1 = x2.

Therefore, under the conditions of Theorem 5.8, a random variable X may be written as
(T1(X ), T2(X )) where the distribution of T1(X ) does not depend on θ and the distribution
of T2(X ) varies with θ in an equivariant manner.

Example 5.37 (Location model). As in Example 5.35, let (X1, . . . , Xn) denote a random
vector with density function of the form

n∏
j=1

p0(x j − θ ), x = (x1, . . . , xn) ∈ Rn

where p0 is a density function on R. Consider the model corresponding to θ ∈ � = R.
This model is invariant under the group of location transformations, as described in
Example 5.25.

In Example 5.33 it is shown that the statistic

T1(x) = (x1 − x̄, . . . , xn − x̄)T , x̄ = 1

n

n∑
j=1

x j ,

is a maximal invariant; the statistic T2(x) = x̄ is equivariant, since T2(x + θ1n) = T2(x) + θ ,
and the range of T2 is �. Hence, an observation x ∈ Rn may be described by x̄ , together
with the residual vector T1(x). �

Under the conditions of Theorem 5.8, the random variable X is equivalent to a maximal
invariant statistic T1 and an equivariant statistic T2. It is important to note that these statistics
are not unique, even taking into account the equivalence of statistics. Let T2(X ) and T̃2(X )
denote two equivariant statistics and let h(x) = T2(x)−1T̃2(x). Then, for any g ∈ G,

h(gx) = T2(gx)−1T̃2(gx) = g−1T2(x)−1gT̃2(x) = gg−1T −1
2 T̃2(x) = h(x).

It follows T2(X )−1T̃2(X ) is an invariant statistic and, hence, a function of T1(x). That is,
T̃2(X ) is not a function of T2(X ) alone.

These points are illustrated in the following example.

Example 5.38 (Exponential random variables). As in Example 5.28, let X =
(X1, . . . , Xn) where X1, . . . , Xn are independent, identically distributed random variables,
each with an exponential distribution with mean θ , θ ∈ � = R+. As shown in Exam-
ple 5.28, this model is invariant under the group of scale transformations. Here X = (R+)n

and x, x̃ ∈ X are in the same orbit if x = ax̃ for some a > 0.
For x = (x1, . . . , xn) ∈ X , let T1(x) = (x2/x1, x3/x1, . . . , xn/x1). Clearly, T1 is invariant

and it is easy to see that if x = ax̃ for some a > 0, then T1(x) = T1(x̃); hence, T1(X ) is a
maximal invariant statistic.
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Let

T2(x) = 1

n

n∑
j=1

x j .

Note that T2(x) takes values in � and, for a > 0, T2(ax) = aT2(x); hence, T2(X ) is an
equivariant statistic with range �. It now follows from Theorem 5.8 that X is equivalent to
(T1(X ), T2(X )). This can be verified directly by noting that

X1 = nT2(X )

(1 + ∑n
j=2 Xj/X1)

and Xj = X1(Xj/X1), j = 2, . . . , n, so that X is a function of (T1(X ), T2(X )).
As noted above, the statistics T1(X ) and T2(X ) used here are not unique; for instance,

consider T̃2(X ) = X1. Clearly X1 is an equivariant statistic with range � so that X is
equivalent to (T1(X ), T̃2(X )). Also,

T̃2(X )−1T2(X ) = T2(X )

T̃2(X )
= 1

n

∑n
j=1 Xj

X1
= 1

n

(
1 +

n∑
j=2

Xj

X1

)

is a function of T1(X ). �

5.7 Exercises

5.1 Suppose that n computer CPU cards are tested by applying power to the cards until failure. Let
Y1, . . . , Yn denote the failure times of the cards. Suppose that, based on prior experience, it is
believed that it is reasonable to assume that each Y j has an exponential distribution with mean
λ and that the failure times of different cards are independent. Give the model for Y1, . . . , Yn

by specifying the model function, the parameter, and the parameter space. Is the parameter
identifiable?

5.2 In the scenario considered in Exercise 5.1, suppose that testing is halted at time c so that only
those failure times less than or equal to c are observed; here c is a known positive value. For card
j , j = 1, . . . , n, we record Xj , the time at which testing is stopped, and a variable D j such that
D j = 1 if a failure is observed and D j = 0 if testing is stopped because time c is reached. Hence,
if D j = 0 then Xj = c. Give the model for (X1, D1), . . . , (Xn, Dn), including the parameter and
the parameter space. Is the parameter identifiable?

5.3 Let X and Y denote independent random variables. Suppose that

Pr(X = 1) = 1 − Pr(X = 0) = λ, 0 < λ < 1;

if X = 1, then Y has a normal distribution with mean µ1 and standard deviation σ , while if X = 0,
Y has a normal distribution with mean µ0 and standard deviation σ . Here µ0 and µ1 each take
any real value, while σ > 0. Let Y1, . . . , Yn denote independent, identically distributed random
variables such that Y1 has the distribution of Y . Give the model for Y1, . . . , Yn by specifying the
model function, the parameter, and the parameter space. Is the parameter identifiable?

5.4 As in Exercise 5.1, suppose that n CPU cards are tested. Suppose that for each card, there is a
probability π that the card is defective so that it fails immediately. Assume that, if a card does
not fail immediately, then its failure time follows an exponential distribution and that the failure
times of different cards are independent. Let R denote the number of cards that are defective; let
Y1, . . . , Yn−R denote the failure times of those cards that are not defective. Give the model for
R, Y1, . . . , Yn−R , along with the parameter and the parameter space. Is the parameter identifiable?
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5.5 Consider a parametric model {Pθ : θ ∈ �} for a random variable X . Such a model is said to be
complete if, for a real-valued function g,

E[g(X ); θ ] = 0, θ ∈ �,

implies

Pr[g(X ) = 0; θ ] = 1, θ ∈ �.

For each of the models given below, determine if the model is complete.
(a) Pθ is the uniform distribution on (0, θ ) and � = (0, ∞)

(b) Pθ is the absolutely continuous distribution with density

2θθ

�(θ )
x2θ−1 exp(−θx2), x > 0,

and � = (0, ∞)

(c) Pθ is the binomial distribution with frequency function of the form

p(x ; θ ) =
(

3

x

)
θ x (1 − θ )3−x , x = 0, 1, 2

and � = (0, 1).

5.6 Consider the family of absolutely continuous distributions with density functions

p(y; θ ) = �(α + β)

�(α)�(β)
yα−1(1 − y)β−1, 0 < y < 1,

where θ = (α, β) and � = (0, ∞) × (0, ∞). This is known as the family of beta distributions.
Show that this is a two-parameter exponential family by putting p(y; θ ) in the form (5.1). Find
the functions c, T, A, h and the set Y .

5.7 Consider the family of gamma distributions described in Example 3.4 and Exercise 4.1. Show
that this is a two-parameter exponential family. Find the functions c, T, A, h and the set Y in
the representation (5.1).

5.8 Consider the family of absolutely continuous distributions with density function

p(y; θ ) = θ

yθ+1
, y > 1

where θ > 0. Show that this is a one-parameter exponential family of distributions and write p
in the form (5.1), giving explicit forms for c, T , A, and h.

5.9 Consider the family of discrete distributions with density function

p(y; θ ) =
(

θ1 + y − 1

y

)
θ

θ1
2 (1 − θ2)y, y = 0, 1, . . .

where θ = (θ1, θ2) ∈ (0, ∞) × (0, 1). Is this an exponential family of distributions? If so, write
p in the form (5.1), giving explicit forms for c, T , A, and h.

5.10 Let X denote a random variable with range X such that the set of possible distributions of
X is a one-parameter exponential family. Let A denote a subset of X and suppose that X is
only observed if X ∈ A; let Y denote the value of X given that it is observed. Is the family of
distributions of Y a one-parameter exponential family?

5.11 Consider the family of absolutely continuous distributions with density functions

p(y; θ ) =
√

λ

(2πy3)
1
2

exp

{
−φ2

2λ
y + φ − λ

2y

}
, y > 0

where θ = (φ, λ) ∈ (R+)2. Is this an exponential family of distributions? If so, write p in the
form (5.1), giving explicit forms for c, T , A, and h.
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5.12 Let Y denote a random variable with an absolutely continuous distribution with density p(y; θ ),
where p is given in Exercise 5.11. Find the cumulant-generating function of Y + 1/Y − 2.

5.13 Let Y denote a random variable with density or frequency function of the form

exp{ηT (y) − k(η)}h(y)

where η ∈ H ⊂ R. Fix η0 ∈ H and let s be such that E{exp[sT (Y )]; η0} < ∞. Find an expres-
sion for Cov(T (Y ), exp[sT (Y )]; η0) in terms of the function k.

5.14 A family of distributions that is closely related to the exponential family is the family of expo-
nential dispersion models. Suppose that a scalar random variable X has a density of the form

p(x ; η, σ 2) = exp{[ηx − k(η)]/σ 2}h(x ; σ 2), η ∈ H

where for each fixed value of σ 2 > 0 the density p satisfies the conditions of a one-parameter
exponential family distribution and H is an open set. The set of density functions {p(·; η, σ 2): η ∈
H, σ 2 > 0} is said to be an exponential dispersion model.
(a) Find the cumulant-generating function of X .

(b) Suppose that a random variable Y has the density function p(·; η, 1), that is, it has the
distribution as X except that σ 2 is known to be 1. Find the cumulants of X in terms of the
cumulants of Y .

5.15 Suppose Y is a real-valued random variable with an absolutely continuous distribution with
density function

pY (y; η) = exp{ηy − k(η)}h(y), y ∈ Y,

where η ∈ H ⊂ R, and X is a real-valued random variable with an absolutely continuous dis-
tribution with density function

pX (x ; η) = exp{ηx − k̃(η)}h̃(x), x ∈ X ,

where η ∈ H. Show that:
(a) if k = k̃, then Y and X have the same distribution, that is, for each η ∈ H , FY (·; η) = FX (·; η)

where FY and FX denote the distribution functions of Y and X , respectively

(b) if E(Y ; η) = E(X ; η) for all η ∈ H then Y and X have the same distribution

(c) if Var(Y ; η) = Var(X ; η) for all η ∈ H then Y and X do not necessarily have the same
distribution.

5.16 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function p. Suppose that the moment-generating function of X exists and is given by
M(t), |t | < t0.
Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function of the form

p(y; θ ) = c(θ ) exp(θy)p(y),

where c(·) is a function of θ .
(a) Find requirements on θ so that p(·; θ ) denotes a valid probability distribution. Call this

set �.

(b) Find an expression for c(·) in terms of M .

(c) Show that {p(·; θ ): θ ∈ �} is a one-parameter exponential family of distributions.

(d) Find the moment-generating function corresponding to p(·; θ ) in terms of M .

5.17 Let Y1, Y2, . . . , Yn denote independent, identically distributed random variables such that Y1 has
density p(y; θ ) where p is of the form

p(y; θ ) = exp{ηT (y) − k(η)}h(y), y ∈ Y
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and η takes values in the natural parameter space H . Let S = ∑n
j=1 T (Y j ).

Let A ≡ A(Y1, . . . , Yn) denote a statistic such that for each η ∈ H the moment-generating
function of A, MA(t ; η), exists for t in a neighborhood of 0 and let MS(t ; η) denote the moment-
generating function of S.
(a) Find an expression for the joint moment-generating function of (A, S),

M(t1, t2; η) = Eη(exp{t1 A + t2 S})
in terms of MA and MS .

(b) Suppose that for a given value of η, η0,

∂

∂η
E(A; η)

∣∣∣
η=η0

= 0.

Find an expression for Cov(S, A; η0).

5.18 Let Y1, . . . , Yn denote independent binomial random variables each with index m and success
probability θ . As an alternative to this model, suppose that Y j is a binomial random variable
with index m and success probability φ where φ has a beta distribution. The beta distribution is
an absolutely continuous distribution with density function

�(α + β)

�(α)�(β)
φα−1(1 − φ)β−1, 0 < φ < 1

where α > 0 and β > 0. The distribution of Y1, . . . , Yn is sometimes called the beta-binomial
distribution.
(a) Find the density function of Y j .

(b) Find the mean and variance of Y j .

(c) Find the values of the parameters of the distribution for which the distribution reduces to
the binomial distribution.

5.19 Let (Y j1, Y j2), j = 1, 2, . . . , n, denote independent pairs of independent random variables such
that, for given values of λ1, . . . , λn , Y j1 has an exponential distribution with mean ψ/λ j and
that Y j2 has an exponential distribution with mean 1/λ j . Suppose further that λ1, . . . , λn are
independent random variables, each distributed according to an exponential distribution with
mean 1/φ, φ > 0. Show that the pairs (Y j1, Y j2), j = 1, . . . , n, are identically distributed and
find their common density function.

5.20 Let λ and X1, . . . , Xn denote random variables such that, given λ, X1, . . . , Xn are independent
and identically distributed. Show that X1, . . . , Xn are exchangeable.
Suppose that, instead of being independent and identically distributed, X1, . . . , Xn are only
exchangeable given λ. Are X1, . . . , Xn exchangeable unconditionally?

5.21 Consider a linear exponential family regression model, as discussed in Example 5.22. Find an
expression for the mean and variance of T (Y j ).

5.22 Show that Gs, Gl, and Gls each satisfy (G1)–(G4) and (T1) and (T2).

5.23 Let P denote the family of normal distributions with mean θ and standard deviation θ , where
θ > 0. Is this model invariant with respect to the group of location transformations? Is it invariant
with respect to the group of scale transformations?

5.24 Let Y1, . . . , Yn denote independent, identically distributed random variables, each uniformly
distributed on the interval (θ1, θ2), θ1 < θ2.
(a) Show that this is a transformation model and identify the group of transformations. Show

the correspondence between the parameter space and the transformations.

(b) Find a maximal invariant statistic.

5.25 Let X denote an n-dimensional random vector and, for g ∈ Rn , define the transformation

gX = X + g.
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Let G denote the set of such transformations with g restricted to a set A ⊂ Rn and define g1g2

to be vector addition, g1 + g2. Find conditions on A such that G is a group and that (T1) and
(T2) are satisfied.

5.26 Consider the set of binomial distributions with frequency function of the form(
n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n

where n is fixed and 0 < θ < 1. For x ∈ X ≡ {0, 1, . . . , n}, define transformations g0 and g1

by g0x = x and g1x = n − x .
(a) Define g0g1, g1g0, g0g0, and g1g1 so that {g0, g1}, together with the binary operation defined

by these values, is a group satisfying (T1) and (T2). Call this group G.

(b) Show that the set of binomial distributions described above is invariant with respect to G.
Find g0θ and g1θ for θ ∈ (0, 1).

(c) Is the set of binomial distributions a transformation model with respect to G?

(d) Let x ∈ X . Find the orbit of x .

(e) Find a maximal invariant statistic.

5.27 Suppose that the random vector (X1, . . . , Xn) has an absolutely continuous distribution with
density function of the form

n∏
j=1

p0(x j − θ ), −∞ < x j < ∞, j = 1, . . . , n,

where θ ∈ R and p0 is a density function on the real line. Recall that this family of distributions
is invariant with respect to Gl; see Example 5.35.
Let T denote an equivariant statistic. Show that the mean and variance of T do not depend on
θ . Let S denote an invariant statistic. What can be said about the dependence of the mean and
variance of S on θ?

5.28 LetX = Rn+m , let v denote the vector inX with the first n elements equal to 1 and the remaining
elements equal to 0, and let u denote the vector in X with the first n elements equal to 0 and
the remaining elements equal to 1. Let G = R2 and for an element g = (a, b) ∈ G, define the
transformation

gx = x + av + bu, x ∈ X .

For each of the models given below, either show that the model is invariant with respect to G or
show that it is not invariant with respect to G. If a model is invariant with respect to G, describe
the action of G on the parameter space �; that is, for g ∈ G and θ ∈ �, give gθ .
(a) X1, X2, . . . , Xn+m are independent, identically distributed random variables, each with a

normal distribution with mean θ , −∞ < θ < ∞.

(b) X1, X2, . . . , Xn+m are independent random variables, such that X1, . . . , Xn each have a
normal distribution with mean µ1 and Xn+1, . . . , Xn+m each have a normal distribution
with mean µ2; here θ = (µ1, µ2) ∈ R2.

(c) X1, X2, . . . , Xn+m are independent random variables such that, for each j = 1, . . . , n + m,
Xj has a normal distribution with mean µ j ; here θ = (µ1, . . . , µn+m) ∈ Rn+m .

(d) X1, X2, . . . , Xn+m are independent random variables such that X1, . . . , Xn each have an
exponential distribution with mean µ1 and Xn+1, . . . , Xn+m each have an exponential dis-
tribution with mean µ2; here θ = (µ1, µ2) ∈ (R+)2.

5.29 Consider the model considered in Exercise 5.28. For each of the statistics given below, either
show that the statistic is invariant with respect to G or show that it is not invariant with respect
to G. If a statistic is invariant, determine if it is a maximal invariant.
(a) T (x) = ∑n

j=1 x j/n − ∑n+m
j=n+1 x j/m

(b) T (x) = x1 − ∑n
j=1 x j/n
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(c) T (x) = (x2 − x1, x3 − x1, . . . , xn − x1, xn+2 − xn+1, . . . , xn+m − xn+1)

(d) T (x) = (x1 − x̄, x2 − x̄, . . . , xn+m − x̄) where x̄ = ∑n+m
j=1 x j/(n + m).

5.30 Let F1, . . . , Fn denote absolutely continuous distribution functions on the real line, where n is
a fixed integer. Let � denote the set of all permutations of (1, . . . , n) and consider the model P
for an n-dimensional random vector X = (X1, . . . , Xn) consisting of distribution functions of
the form

F(x1, . . . , xn ; θ ) = Fθ1 (x1) · · · Fθn (xn),

θ = (θ1, . . . , θn) ∈ �. The sample space of X , X , may be taken to be the subset of Rn in which,
for x = (x1, . . . , xn) ∈ X , x1, . . . , xn are unique.

Let G denote the set of all permutations of (1, . . . , n) and, for g ∈ G and x ∈ X , define

gx = (xg1 , . . . , xgn ).

(a) Show that P is invariant with respect to G.

(b) For g ∈ G, describe the action of g on θ ∈ �. That is, by part (a), if X has parameter θ ∈ �,
then gX has parameter θ1 ∈ �; describe θ1 in terms of g and θ .

(c) Let x ∈ X . Describe the orbit of x . In particular, for the case n = 3, give the orbit of
(x1, x2, x3) ∈ X .

(d) Let T (x) = (x(1), . . . , x(n)) denote the vector of order statistics corresponding to a point
x ∈ X . Show that T is an invariant statistic with respect to G.

(e) Is the statistic T defined in part (d) a maximal invariant statistic?

(f) For x ∈ X , let R(x) denote the vector of ranks of x = (x1, . . . , xn). Note that R takes values
in �. Is R an equivariant statistic with respect to the action of g on �?

5.8 Suggestions for Further Reading

Statistical models and identifiability are discussed in many books on statistical theory; see, for example,
Bickel and Doksum (2001, Chapter 1) and Gourieroux and Monfort (1989, Chapters 1 and 3). In the
approach used here, the parameter is either identified or it is not; Manski (2003) considers the concept
of partial identification.

Exponential families are discussed in Bickel and Doksum (2001, Section 1.6), Casella and Berger
(2002, Section 3.4), and Pace and Salvan (1997, Chapter 5). Comprehensive treatments of exponential
family models are given by Barndorff-Nielsen (1978) and Brown (1988). Exponential dispersion
models, considered briefly in Exercise 5.14 are considered in Pace and Salvan (1997, Chapter 6).
Schervish (1995, Chapter 8) contains a detailed treatment of hierarchical models and the statistical
inference in these models; see also Casella and Berger (2002, Section 4.4).

Regression models play a central role in applied statistics. See, for example, Casella and Berger
(2002, Chapters 11 and 12). Rao and Toutenburg (1999) is a comprehensive reference on statistical
inference in a wide range of linear regression models. McCullagh and Nelder (1989) considers a
general class of regression models that are very useful in applications. Transformation models and
equivariance and invariance are discussed in Pace and Salvan (1997, Chapter 7) and Schervish (1995,
Chapter 6); Eaton (1988) contains a detailed treatment of these topics.
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6

Stochastic Processes

6.1 Introduction

Statistical methods are often applied to data exhibiting dependence; for instance, we may
observe random variables X1, X2, . . . describing the properties of a system as it evolves in
time. In these cases, a model is needed for the dependence structure of the observations.
In the present chapter, we consider some probability models used for dependent data. The
usual point of view is that the X j are ordered in time, although this is not always the case.

In general, we are concerned with a collection of random variables

{Xt : t ∈ T }.
For each t , Xt is a random variable; although the Xt may be vector-valued, here we only
consider the case in which the Xt are real-valued. Such a collection of random variables is
called a stochastic process. The index set T is often either a countable set, in which case
we refer to {Xt : t ∈ T } as a discrete time process, or an interval, possibly infinite, in which
case we refer to {Xt : t ∈ T } as a continuous time process.

In this chapter, we consider two cases, discrete time processes in which

T = Z ≡ {0, 1, 2, . . .}
and continuous time processes with T = [0, ∞). Note that, in both cases, the starting point
of t = 0 is arbitrary and other starting points, such as t = 1, could be used if convenient;
this is sometimes done in the examples. Also, in some cases, it is mathematically convenient
to assume that the processes have an infinite history so that

T = {. . . , −1, 0, 1, . . .}
or T = (−∞, ∞). We assume that there is a set X ⊂ R such that, for each t ∈ T , the
random variable Xt takes values in X ; X is called the state space of the process.

Associated with each process {Xt : t ∈ T } is the set of finite-dimensional distributions.
Fix a positive integer n and let t1, . . . , tn be elements of T . Then the distribution of
(Xt1 , . . . , Xtn ) is finite-dimensional and may be handled by standard methods. The distribu-
tions of all such vectors for all choices of n and t1, . . . , tn are called the finite-dimensional
distributions of the process. In general, the finite-dimensional distributions do not com-
pletely determine the distribution of the process. However, for discrete time processes it is
true that finite-dimensional distributions determine the distribution of the process. That is,
if for any n and any t1, . . . , tn in Z,

(Xt1 , . . . , Xtn ) and (Yt1 , . . . , Ytn )

170
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have the same distribution, then the two processes have the same distribution. The proofs
of these results require rather sophisticated methods of advanced probability theory; see,
for example, Port (1994, Chapter 16) and Billingsley (1995, Chapter 7).

6.2 Discrete Time Stationary Processes

Perhaps the simplest type of discrete time process is one in which X0, X1, X2, . . . are
independent, identically distributed random variables so that, for each i and j , Xi and X j

have the same distribution. A generalization of this idea is a stationary process in which,
for any n = 1, 2, . . . and any integers t1, . . . , tn ,

(Xt1 , . . . , Xtn ) and (Xt1+h, . . . , Xtn+h)

have the same distribution for any h = 1, 2, . . . .

Example 6.1 (Exchangeable random variables). Let X0, X1, . . . denote a sequence of
exchangeable random variables. Then, for any n = 0, 1, . . . , X0, X1, . . . , Xn are exchange-
able. It follows from Theorem 2.8 that any subset of X0, X1, . . . of size m has the same
marginal distribution as any other subset of X0, X1, . . . of size m. Clearly, this implies that
the condition for stationarity is satisfied so that the process {Xt : t ∈ Z} is stationary. �

The following result gives a necessary and sufficient condition for stationarity that is
often easier to use than the definition.

Theorem 6.1. Let {Xt : t ∈ Z} denote a discrete time process and define

Yt = Xt+1, t = 0, 1, 2, . . . .

Then {Xt : t ∈ Z} is stationary if and only if {Yt : t ∈ Z} has the same distribution as
{Xt : t ∈ Z}.

Proof. Clearly if {Xt : t ∈ Z} is stationary then {Xt : t ∈ Z} and {Yt : t ∈ Z} have the same
distribution. Hence, assume that {Xt : t ∈ Z} and {Yt : t ∈ Z} have the same distribution.

Fix n = 1, 2, . . . and t1, . . . tn in Z. Then, by assumption,

(Xt1 , . . . , Xtn )
D= (Xt1+1, . . . , Xtn+1).

Here the symbol
D= is used to indicate that two random variables have the same distribution.

Hence,

{Xt : t ∈ T } D= {Xt+1, t ∈ Z}.
It then follows that

{Xt+1: t ∈ Z} D= {Yt+1: t ∈ Z}.
That is,

(Xt1 , . . . , Xtn )
D= (Xt1+2, . . . , Xtn+2).
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Continuing in this way shows that, for any h = 0, 1, . . . ,

(Xt1 , . . . , Xtn )
D= (Xt1+h, . . . , Xtn+h),

proving the result.

Example 6.2 (First-order autoregressive process). Let Z0, Z1, Z2, . . . denote a sequence
of independent, identically distributed random variables, each with a normal distribution
with mean 0 and variance σ 2. Let −1 < ρ < 1 and define

Xt =
{

1√
(1−ρ2) Z0 if t = 0

ρXt−1 + Zt if t = 1, 2, 3, . . .
.

The stochastic process {Xt : t ∈ Z} is called a first-order autoregressive process.
For each t = 0, 1, 2, . . . , let Yt = Xt+1. Define

Z̃t =
{

ρZ0 + √
(1 − ρ2)Z1 if t = 0

Zt+1 if t = 1, 2, . . .
;

then

Yt =
{ 1√

(1−ρ2) Z̃0 if t = 0

ρYt−1 + Z̃t if t = 1, 2, 3, . . .
.

It follows that the process {Xt : t ∈ Z} is stationary provided that (Z̃0, Z̃1, . . .) has the same
distribution as (Z0, Z1, . . .). Clearly, Z̃0, Z̃1, . . . are independent and each of Z̃1, Z̃2, . . . is
normally distributed with mean 0 and standard deviation σ . It follows that {Xt : t ∈ Z} has
the same distribution as {Yt : t ∈ Z} and, hence, {Xt : t ∈ Z} is stationary, provided that Z̃0

has a normal distribution with mean 0 and standard deviation σ .
Since Z0 and Z1 are independent, identically distributed random variables each with

characteristic function

exp

(
−1

2
σ 2t2

)
, −∞ < t < ∞,

it follows that the characteristic function of Z̃0 is

exp

(
−1

2
σ 2ρ2t2

)
exp

(
−1

2
σ 2(1 − ρ2)t2

)
= exp

(
−1

2
σ 2t2

)
.

It follows that {Xt : t ∈ Z} is stationary.
Figure 6.1 contains plots of four randomly generated first-order autoregressive processes

based on ρ = 0, 1/2, −1/2, 9/10 and σ 2 = 1. Note that, in these plots, the processes are
presented as continuous functions, rather than as points at integer values of t . These functions
are constructed by taking the value at an integer t to be Xt and then using line segments to
connect Xt and Xt+1. �

The following theorem shows that certain functions of a stationary process yield another
stationary process.

Theorem 6.2. Suppose {Xt : t ∈ Z} is a stationary process. For each t ∈ Z define

Yt = f (Xt , Xt+1, . . .)

where f is a real-valued function on X∞. Then {Yt : t ∈ Z} is stationary.
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Figure 6.1. Randomly generated autoregressive processes.

Proof. Let h denote a nonnegative integer and consider the event

Ah = {Y1+h ≤ y1, Y2+h ≤ y2, . . .}.
We need to show that the probability of Ah does not depend on h. Note that

A0 = { f (X1, X2, . . . , ) ≤ y1, f (X2, X3, . . . , ) ≤ y2, . . .} = {(X1, X2, . . .) ∈ B}
for some set B. Similarly, for h = 1, 2, . . . ,

Ah = {(X1+h, X2+h, . . . , ) ∈ B}.
Since the distribution of (X1+h, X2+h, . . .) is the same for all h, the result follows.

Example 6.3 (Moving differences). Let Z0, Z1, . . . denote a sequence of independent,
identically distributed random variables and define

Xt = Zt+1 − Zt , t = 0, 1, 2, . . . .

It follows immediately from Theorem 6.2 that {Xt : t ∈ Z} is stationary. More generally,
{Xt : t ∈ Z} is stationary provided only that {Zt : t ∈ Z} is itself a stationary process. �

Covariance-stationary processes
Consider a process {Xt : t ∈ Z} such that, for each t ∈ Z, E(X2

t ) < ∞. The second-order
properties of this process are those that depend only on the mean function

µt = E(Xt ), t ∈ Z

and the covariance function

K (s, t) = Cov(Xt , Xs), s, t ∈ Z.
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The process is said to be second-order stationary, or covariance stationary, if µt+h and
K (s + h, t + h) do not depend on h. Hence, {Xt : t ∈ Z} is covariance stationary provided
that µt is constant, that is, does not depend on t , and K (s, t) depends on s, t only through
the difference |s − t |; in this case we write µt = µ and K (s, t) ≡ R(|s − t |) for some
function R on Z. The function R is known as the autocovariance function of the process;
the autocorrelation function of the process is also useful and is given by

ρ(t) = R(t)/R(0), t = 0, 1, . . . .

Example 6.4 (Moving differences). Let {Zt : t ∈ Z} denote a covariance-stationary pro-
cess and define

Xt = Zt+1 − Zt , t = 0, 1, . . . .

According to Example 6.3, {Xt : t ∈ Z} is stationary provided that {Zt : t ∈ Z} is stationary;
here we assume only that {Zt : t ∈ Z} is covariance stationary.

Clearly, E(Xt ) = 0 for all t . Let Cov(Zt , Zs) = RZ (|t − s|); then

Cov(Xt , Xt+h) = 2RZ (|h|) − RZ (|h − 1|) − RZ (|h + 1|).
Since |h − 1| = | − h + 1|, it follows that Cov(Xt , Xt+h) depends on h only through |h| so
that {Xt : t ∈ Z} is covariance stationary. �

Example 6.5 (Partial sums). Let Z0, Z1, Z2, . . . denote a sequence of independent, iden-
tically distributed random variables, each with mean 0 and standard deviation σ . Consider
the process defined by

Xt = Z0 + · · · + Zt , t = 0, 1, . . . .

Then E(Xt ) = 0 and Var(Xt ) = tσ 2; hence, the process is not stationary.
The variance of the process can be stabilized by considering

Yt = Z0 + · · · + Zt√
(t + 1)

, t = 1, 2, . . .

which satisfies E(Yt ) = 0 and Var(Yt ) = σ 2 for all t = 0, 1, 2, . . . . However,

Cov(Yt , Ys) = σ 2

√
[(s + 1)(t + 1)]

min(s + 1, t + 1)

so that {Yt : t ∈ Z} is not covariance stationary. �

6.3 Moving Average Processes

Let . . . , ε−1, ε0, ε1, . . . denote a doubly infinite sequence of independent random variables
such that, for each j , E(ε j ) = 0 and Var(ε j ) = 1 and let . . . , α−1, α0, α1, . . . denote a doubly
infinite sequence of constants. Consider the stochastic process {Xt : t ∈ Z} defined by

Xt =
∞∑

j=−∞
α jεt− j , t = 0, 1, . . . . (6.1)
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The process {Xt : t ∈ Z} is known as a moving average process. Two important special
cases are the finite moving average process

Xt =
q∑

j=0

α jεt− j , t = 0, 1, . . . ,

where q is a fixed nonnegative integer, and the infinite moving average process,

Xt =
∞∑
j=0

α jεt− j , t = 0, 1, . . . .

In fact, it may be shown that a wide range of stationary processes have a representation of
the form (6.1). We will not pursue this issue here; see, for example, Doob (1953).

Before proceeding we must clarify the exact meaning of (6.1). For each n = 0, 1, . . .

define

Xnt =
n∑

j=−n

α jεt− j , t = 0, 1, . . . .

Then, for each t = 0, 1, . . . , Xt is given by

Xt = lim
n→∞ Xnt . (6.2)

Hence, we need a precise statement of the limiting operation in (6.2) and we must verify
that the limit indeed exists.

The type of limit used in this context is a limit in mean square. Let Y0, Y1, . . . denote a
sequence of real-valued random variables such that E(Y 2

j ) < ∞, j = 0, 1, . . . . We say that
the sequence Yn , n = 0, 1, . . . , converges in mean square to a random variable Y if

lim
n→∞ E[(Yn − Y )2] = 0. (6.3)

The following result gives some basic properties of this type of convergence; the proof is
left as an exercise.

Theorem 6.3. Let Y0, Y1, . . . denote a sequence of real-valued random variables such that
E(Y 2

j ) < ∞ for all j = 0, 1, . . . and let Y denote a real-valued random variable such that

lim
n→∞ E[(Yn − Y )2] = 0.

(i) E(Y 2) < ∞.
(ii) Suppose Z is real-valued random variable such that

lim
n→∞ E[(Yn − Z )2] = 0.

Then

Pr(Z = Y ) = 1.

(iii) E(Y ) = limn→∞ E(Yn) and E(Y 2) = limn→∞ E(Y 2
n ).

Recall that, in establishing the convergence of a sequence of real numbers, it is often
convenient to use the Cauchy criterion, which allows convergence to be established without
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knowing the limit by showing that, roughly speaking, the terms in the sequence become
closer together as one moves down the sequence. See Section A3.2 in Appendix 3 for
further details.

The same type of approach may be used to establish convergence in mean square of a
sequence of random variables. Theorem 6.4 gives such a result; as in the case of convergence
of a sequence of real numbers, the advantage of this result is that it may be shown that a
limiting random variable exists without specifying the distribution of that random variable.

Theorem 6.4. Let Y0, Y1, . . . denote a sequence of real-valued random variables such that
E(Y 2

j ) < ∞ for all j = 0, 1, . . . . Suppose that for every ε > 0 there exists an N > 0 such
that

E[(Ym − Yn)2] < ε

for all m, n > N; in this case we say that Yn, n = 0, 1, . . . , is Cauchy in mean square.
If Yn, n = 0, 1, . . . , is Cauchy in mean square, then there exists a random variable Y

with E(Y 2) < ∞ such that

lim
n→∞ E[(Yn − Y )2] = 0.

Proof. Fix j = 1, 2, . . . . Since Y0, Y1, . . . is Cauchy in mean square, we can find m, n,

m > n, such that

E[(Ym − Yn)2] ≤ 1

4 j
.

Thus, we can identify a subsequence n1, n2, . . . such that

E[(Yn j+1 − Yn j )
2] ≤ 1

4 j
, j = 1, 2, . . . .

Define

Tm =
m∑

j=1

|Yn j +1 − Yn j |, m = 1, 2, . . . .

Let � denote the sample space of the underlying experiment so that, for each m =
1, 2, . . . , Tm ≡ Tm(ω), ω ∈ �. Note that the terms in the sum forming Tm are all nonnegative
so that, for each ω ∈ �, either limm→∞ Tm(ω) exists or the sequence diverges. Define a
random variable T by

T (ω) = lim
m→∞ Tm(ω), ω ∈ �

if the limit exists; otherwise set T (ω) = ∞.
Note that for any real-valued random variables Z1, Z2 such that E(Z2

j ) < ∞, j = 1, 2,

[
E

(
Z2

j

) 1
2 + E

(
Z2

2

) 1
2

]2
− E[(Z1 + Z2)2] = 2E

(
Z2

1

) 1
2 E

(
Z2

2

) 1
2 − 2E(Z1 Z2) ≥ 0,

by the Cauchy-Schwarz inequality. Hence,

E[(Z1 + Z2)2]
1
2 ≤ E

(
Z2

1

) 1
2 + E

(
Z2

2

) 1
2 .
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It follows that

E
(
T 2

m

) 1
2 = E




(
m∑

j=1

|Yn j +1 − Yn j |
)2




1
2

≤
m∑

j=1

E
[|Yn j +1 − Yn j |2

] 1
2

≤
m∑

j=1

1

2 j
≤ 1.

Since, by Fatou’s lemma,

E(T 2) ≤ lim inf
m→∞ E(T 2

m),

it follows that E(T 2) ≤ 1 and, hence, that Pr(T < ∞) = 1. This implies that
m∑

j=1

(
Yn j +1 − Yn j

)
converges absolutely with probability 1.

Hence, the limit of

Yn1 +
m∑

j=1

(
Yn j +1 − Yn j

)
as m → ∞ exists with probability 1 so that we may define a random variable

Y = Yn1 +
∞∑
j=1

(
Yn j+1 − Yn j

)
.

Note that

Y = lim
j→∞

Yn j with probability 1.

Consider E[(Yn − Y )2]. Since Yn j → Y as j → ∞,

Y − Yn = lim
j→∞

(Yn j − Yn)

and, by Fatou’s lemma,

E[(Yn − Y )2] = E

[
lim
j→∞

(
Yn j − Yn

)2
]

≤ lim inf
j→∞

E
[(

Yn j − Yn
)2

]
.

Fix ε > 0. Since Y0, Y1, . . . is Cauchy in mean square, for sufficiently large n, j ,

E
[(

Yn − Yn j

)2
]

≤ ε.

Hence, for sufficiently large n,

E[(Yn − Y )2] ≤ ε.

Since ε > 0 is arbitrary, it follows that

lim
n→∞ E[(Yn − Y )2] = 0.
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Furthermore, since (a + b)2 ≤ 2a2 + 2b2,

E(Y 2) = E{[Yn + (Y − Yn)]2} < ∞,

proving the result.

We now consider the existence of the stochastic process defined by (6.1).

Theorem 6.5. Let . . . , ε−1, ε0, ε0, . . . denote independent random variables such that, for
each j , E(ε j ) = 0 and Var(ε j ) = 1 and let . . . , α−1, α0, α1, . . . denote constants.

If

∞∑
j=−∞

α2
j < ∞

then, for each t = 0, 1, . . . , the limit

lim
n→∞

n∑
j=−n

α jεt− j

exists in mean square.

Proof. Fix t = 0, 1, . . . . For n = 1, 2, . . . define

Xnt =
n∑

j=−n

α jεt− j .

For m > n,

Xmt − Xnt =
−(n+1)∑
j=−m

α jεt− j +
m∑

j=n+1

α jεt− j

and

E[(Xmt − Xnt )
2] =

−(n+1)∑
j=−m

α2
j +

m∑
j=n+1

α2
j .

Let

An =
n∑

j=1

α2
j , n = 1, 2, . . . .

Since
∑∞

j=−∞ α2
j < ∞, limn→∞ An exists. It follows that An is a Cauchy sequence of real

numbers: given ε > 0 there exists an N1 such that

|An − Am | < ε, n, m > N1.

That is, given ε > 0, there exists an N1 such that

m∑
j=n+1

α2
j < ε/2, n, m > N1.
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Similarly, there exists an N2 such that

−(n+1)∑
j=−m

α2
j < ε/2, n, m > N2.

Hence, given ε > 0, there exists an N such that

E[(Xnt − Xmt )
2] < ε, n, m > N .

That is, for each t = 0, 1, . . . , Xnt , n = 1, 2, . . . , is Cauchy in mean-square. The result
now follows from Theorem 6.4.

The autocovariance function of a moving average process is given in the following
theorem.

Theorem 6.6. Let {Xt : t ∈ Z} be a moving average process of the form

Xt =
∞∑

j=−∞
α jεt− j , t = 0, 1, . . .

where . . . , ε−1, ε0, ε1, . . . is a sequence of independent random variables such that E(ε j ) =
0 and Var(ε j ) = 1, j = . . . , −1, 0, 1, . . . , and

∞∑
j=−∞

α2
j < ∞.

Then {Xt : t ∈ Z} is a second-order stationary process with mean 0 and autocovariance
function

R(h) =
∞∑

j=−∞
α jα j+h, h = 0, ±1, ±2, . . . .

If . . . , ε−1, ε0, ε0, . . . are identically distributed, then {Xt : t ∈ Z} is stationary.

Proof. Fix h = 0, 1, . . . and define Yt = Xt+h, t = 0, 1, . . . . Then

Yt =
∞∑

j=−∞
α jεt+h− j =

∞∑
j=−∞

α j+hεt− j .

Fix t and define

Xnt =
n∑

j=−n

α jεt− j

and

Ynt =
n∑

j=−n

α j+hεt− j .

Then

Xnt − Ynt =
n∑

j=−n

(α j − α j+h)εt− j ;
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since
∞∑

j=−∞
(α j − α j+h)2 ≤ 4

∞∑
j=−∞

α2
j < ∞,

it follows that Xnt − Ynt converges to Xt − Yt in mean square. Hence,

Var(Xt − Yt ) = lim
n→∞ Var(Xnt − Ynt ) =

∞∑
j=−∞

(α j − α j+h)2.

Similarly,

Var(Xt ) = Var(Yt ) =
∞∑

j=−∞
α j ;

hence,

2 Cov(Xt , Yt ) = 2 Cov(Xt , Xt+h) = 2
∞∑

j=−∞
α2

j −
∞∑

j=−∞
(α j − α j+h)2 = 2

∞∑
j=−∞

α jα j+h,

proving the first result.
To prove the second result, let Yt = Xt+1, t = 0, 1, . . . . Then

Yt =
∑

j=−∞
α jεt+1− j , t = 0, 1, . . . .

Since . . . , ε−1, ε0, ε1, . . . are identically distributed, we may write

Yt =
∑

j=−∞
α jεt− j , t = 0, 1, . . . .

It follows that the process {Yt : t ∈ Z} has the same structure as {Xt : t ∈ Z}. It now follows
from Theorem 6.1 that {Xt : t ∈ Z} is stationary.

Example 6.6 (Finite moving average process). Consider the qth-order finite moving aver-
age process,

Xt =
q∑

j=0

α jεt− j , t = 0, 1, . . . ,

where q is a fixed nonnegative integer; here ε−q , ε−q+1, . . . is a sequence of independent
random variables such that, for each j , E(ε j ) = 0 and Var(ε j ) = 1 and α0, α1, . . . , αq

are constants. This model is of the general form considered above with αi = 0, i ≤ −1,
i ≥ q + 1; hence, the condition of Theorem 6.6 is satisfied.

It follows that the covariance function of the process is given by

R(h) =
{ ∑q−h

j=0 α jα j+h if h = 0, 1, . . . , q
0 if h = q + 1, q + 2, . . .

.

Thus, observations sufficiently far apart in time are uncorrelated.
Figure 6.2 contains plots of four randomly generated moving average processes with

α j = 1, j = 1, 2, . . . , q , and with the ε j taken to be standard normal random variables, for
q = 0, 1, 2, 5. As in Figure 6.1, the processes are shown as continuous functions, rather
than as points. �
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Figure 6.2. Randomly generated moving average processes.

Example 6.7 (Moving differences of a moving average process). Let {Zt : t ∈ Z} denote
a moving average process and let

Xt = Zt+1 − Zt , t = 1, 2, . . . .

Write

Zt =
∞∑

j=−∞
α jεt− j

where
∑∞

j=−∞ α2
j < ∞. Then we may write

Xt =
∞∑

j=−∞
α jεt+1− j −

∞∑
j=−∞

α jεt− j =
∞∑

j=−∞
(α j+1 − α j )εt− j .

Note that

∞∑
j=−∞

(α j+1 − α j )
2 ≤ 4

∞∑
j=−∞

α2
j < ∞;

it follows that {Xt : t ∈ Z} is also a moving average process.
By Theorem 6.6, the autocovariance function of the process is given by

R(h) =
∞∑

j=−∞
(α j+1 − α j )(α j+h+1 − α j+h).
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Since
∞∑

j=−∞
|α j+1 − α j | |α j+h+1 − α j+h | ≤

∞∑
j=−∞

(α j+1 − α j )
2 < ∞,

we may write

R(h) =
∞∑

j=−∞
α j+1α j+h+1 −

∞∑
j=−∞

α jα j+h+1 −
∞∑

j=−∞
α j+1α j+h +

∞∑
j=−∞

α jα j+h

= 2
∞∑

j=−∞
α jα j+h −

∞∑
j=−∞

α jα j+h+1 −
∞∑

j=−∞
α j+1α j+h

= RZ (|h|) − RZ (|h + 1|) − RZ (|h − 1|)
where RZ denotes the autocovariance function of the process {Zt : t ∈ Z}. This is in agree-
ment with Example 6.4. �

6.4 Markov Processes

If X0, X1, . . . are independent, real-valued random variables, then

Pr(Xn+1 ≤ x |X1, . . . , Xn) = Pr(Xn+1 ≤ x)

with probability 1. If X0, X1, . . . is a Markov process, this property is generalized to allow
Pr(Xn+1 ≤ x |X1, . . . , Xn) to depend on Xn:

Pr(Xn+1 ≤ x |X1, . . . , Xn) = Pr(Xn+1 ≤ x |Xn).

That is, the conditional distribution of Xn+1 given X1, . . . , Xn does not depend on X1, . . . ,

Xn−1.

Example 6.8 (First-order autoregressive process). Consider the first-order autoregressive
process considered in Example 6.2:

Xt =
{

1√
(1−ρ2) Z0 if t = 0

ρXt−1 + Zt if t = 1, 2, . . .

where Z0, Z1, Z2 . . . is a sequence of independent, identically distributed random variables,
each with a normal distribution with mean 0 and variance σ 2 and −1 < ρ < 1.

Note that we may write

Xt = ρ t

√
(1 − ρ2)

Z0 + ρ t−1 Z1 + · · · + ρZt−1 + Zt ;

thus, for each t = 0, 1, 2, . . . , Zt+1 and (X0, . . . , Xt ) are independent. Using the fact that

Xt+1 = ρXt + Zt+1, t = 1, 2, . . . ,

it follows that, for each s ∈ R,

E{exp(is Xt+1)|X0, . . . , Xt } = E{exp(isρXt ) exp(is Zt+1)|X0, . . . , Xt }
= exp(isρXt )E{exp(is Zt+1)}.

Hence, the first-order autoregressive process is a Markov process. �
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Markov chains
A Markov chain is simply a Markov process in which the state space of the process is a
countable set; here we assume that the state space is finite and, without loss of generality,
we take it to be {1, . . . , J } for some nonnegative integer J . A Markov chain may be either
a discrete time or a continuous time process; here we consider only the discrete time case.

Since a Markov chain is a Markov process, the conditional distribution of Xt+1 given
X1, . . . , Xt depends only on Xt . This conditional distribution is often represented by a
matrix of transition probabilities

Pt,t+1
i j ≡ Pr(Xt+1 = j |Xt = i), i, j = 1, . . . , J.

If this matrix is the same for all t we say that the Markov chain has stationary transition
probabilities; in the brief treatment here we consider only that case.

Hence, the properties of the process are completely determined by the transition proba-
bilities Pi j along with the initial distribution, the distribution of X0. Let P denote the J × J
matrix with (i, j)th element Pi j and let p denote a 1 × J vector with j th element

p j = Pr(X0 = j), j = 1, . . . , J.

We will say that a process {X (t): t ∈ Z} has distribution M(p, P) if it is a discrete time
Markov chain with transition matrix P and initial distribution p.

Example 6.9 (Two-state chain). Consider a Markov chain model with two states. Hence,
the transition probability matrix is of the form

P =
(

α 1 − α

1 − β β

)

where α and β take values in the interval [0, 1]; for simplicity, we assume that 0 < α < 1
and 0 < β < 1. For instance,

Pr(X2 = 1|X1 = 1) = α and Pr(X2 = 1|X1 = 2) = 1 − β.

The initial distribution is given by a vector of the form (θ, 1 − θ ) so that

Pr(X0 = 1) = 1 − Pr(X0 = 2) = θ

where 0 < θ < 1. �

Example 6.10 (Simple random walk with absorbing barrier). Suppose that, at time 0, a
particle begins at position 0. At time 1, the particle remains at position 0 with probability 1/2;
otherwise the particle moves to position 1. Similarly, suppose that at time t the particle is at
position m. At time t + 1 the particle remains at position m with probability 1/2; otherwise
the particle moves to position m + 1. When the particle reaches position J , where J is some
fixed number, no further movement is possible. Hence, the transition probabilities have the
form

Pi j =
{ 1/2 if i < J and either j = i or j = i + 1

1 if i = J and j = J
0 otherwise

.
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For instance, for J = 4,

P =




1/2 1/2 0 0
0 1/2 1/2 0
0 0 1/2 1/2
0 0 0 1


 .

The initial distribution is given by a vector of the form (1, 0, . . . , 0) to reflect the fact
that the particle begins at position 0. �

The joint probability that X0 = i and X1 = j is given by pi Pi j . The marginal probability
that X1 = j may be written

Pr(X1 = j) =
J∑

i=1

Pr(X1 = j |X0 = i)Pr(X0 = i) =
J∑

i=1

Pi j pi .

Therefore, the vector of state probabilities for X1 may be obtained from the vector of initial
probabilities p and the transition matrix P by the matrix multiplication, pP . The vector
of probabilities for X2 may now be obtained from pP and P in a similar manner. These
results are generalized in the following theorem.

Theorem 6.7. Let {Xt : t ∈ Z} denote a discrete time process with distribution M(p, P).
Then

(i) Pr(X0 = j0, X1 = j1, . . . , Xn = jn) = p j0 Pj0 j1 Pj1 j2 · · · Pjn−1 jn

(ii) The vector of state probabilities for Xn, n = 1, 2, . . . , is given by pPn.
(iii) Let r = 0, 1, 2, . . . . Then the distribution of {Xr+t : t ∈ Z} is M(pPr , P).

Proof. Part (i) follows directly from the calculation

Pr(X0 = j0, X1 = j1, . . . , Xn = jn)

= Pr(X0 = j0)Pr(X1 = j1|X0 = j0) · · · Pr(Xn = jn|X0 = j0, . . . , Xn−1 = jn−1)

= Pr(X0 = j0)Pr(X1 = j1|X0 = j0)Pr(X2 = j2|X1 = j1) · · · Pr(Xn = jn|Xn−1 = jn−1).

Part (ii) may be established using induction. The result for n = 1 follows from the
argument given before the theorem. Assume the result holds for n = m. Then

Pr(Xm+1 = j) =
J∑

i=1

Pr(Xm+1 = j |Xm = i)Pr(Xm = i)

so that the vector of state probabilities is given by (pPm)P = pPm+1, proving the result.
To prove part (iii), it suffices to show that, for any r = 1, 2, . . . , and any n = 1, 2, . . . ,

the distributions of (X0, X1, . . . , Xn) and (Xr , Xr+1, . . . , Xr+n) are identical. From part (i)
of the theorem,

Pr(X0 = j0, X1 = j1, . . . , Xn = jn) = p j0 Pj0 j1 Pj1 j2 · · · Pjn−1 jn (6.4)

and

Pr(Xr = j0, Xr+1 = j1, . . . , Xr+n = jn) = q j0 Pj1 j0 · · · Pjn−1 jn (6.5)
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where q = (q1, . . . , qJ ) denotes the vector of state probabilities for Xr . Note that (6.5) is of
the same form as (6.4), except with the vector p replaced by q; from part (ii) of the theorem,
q = pPr , proving the result.

Example 6.11 (Two-state chain). Consider the two-state Markov chain considered in
Example 6.9. The vector of state probabilities for X1 is given by

( θ, 1 − θ )

(
α 1 − α

1 − β β

)
= ( θα + (1 − θ )(1 − β), θ (1 − α) + (1 − θ )β ) . (6.6)

Hence,

Pr(X1 = 1) = 1 − Pr(X1 = 2) = θα + (1 − θ )(1 − β).

The position of the chain at time 2 follows the same model, except that the vector of
initial probabilities (θ, 1 − θ ) is replaced by (6.6). Hence,

Pr(Xn+1 = 1) = αPr(Xn = 1) + (1 − β)Pr(Xn = 2)

= (α + β − 1)Pr(Xn = 1) + (1 − β).

Thus, writing rn = Pr(Xn = 1), c = α + β − 1, and d = 1 − β, we have the recursive
relationship

rn+1 = crn + d, n = 0, 1, 2, . . .

with r0 = θ . It follows that

rn+1 = c(crn−1 + d) + d = c2rn−1 + cd + d = c2[crn−2 + d] + cd + d

= c3rn−2 + (c2 + c + 1)d,

and so on. Hence,

rn+1 = cn+1r0 + d
n∑

j=0

c j = (α + β − 1)n+1θ + (1 − β)
1 − (α + β − 1)n+1

2 − (α + β)
.

For the special case in which α + β = 1,

Pr(Xn+1 = 1) = 1 − β, n = 0, 1, 2, . . . . �

The matrix P gives the conditional distribution of Xn+1 given Xn = i , for any i =
1, . . . , J ; hence, the probabilities in P are called the one-step transition probabilities. We
may also be interested in the m-step transition probabilities

P (m)
i j = Pr(Xn+m = j |Xn = i).

The following theorem shows how the m-step transition probabilities can be obtained
from P .

Theorem 6.8. Let {Xt : t ∈ Z} denote a discrete time process with distribution M(p, P).
Then, for any r ≤ m, the m-step transition probabilities are given by

P (m)
i j =

J∑
k=1

P (r )
ik P (m−r )

k j .
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Hence, the matrix P (m) with elements P (m)
i j , i = 1, . . . , J , j = 1, . . . , J , satisfies

P (m) = P (r ) P (m−r ), r = 0, . . . , m

so that P (m) = Pm = P × · · · × P.

Proof. Since the process is assumed to have stationary transition probabilities,

P (m)
i j = Pr(Xm = j |X0 = i) =

J∑
k=1

Pr(Xm = j, Xr = k|X0 = i)

=
J∑

k=1

Pr(Xm = j |Xr = k, X0 = i)Pr(Xr = k|X0 = i)

=
J∑

k=1

Pr(Xm = j |Xr = k)Pr(Xr = k|X0 = i)

=
J∑

k=1

P (m−r )
k j P (r )

ik ,

proving the result.

Example 6.12 (Simple random walk with absorbing barrier). Consider the simple random
walk considered in Example 6.10. For the case J = 4, it is straightforward to show that the
matrix of two-step transition probabilities is given by


1/4 1/2 1/4 0
0 1/4 1/2 1/4
0 0 1/2 1/2
0 0 0 1


 .

The matrix of four-step transition probabilities is given by


1/16 1/4 7/16 1/4
0 1/16 3/8 9/16
0 0 1/4 3/4
0 0 0 1


 .

�

Suppose that the distribution of X1 is identical to that of X0; that is, suppose that the
vector of state probabilities for X1 is equal to the vector of state probabilities for X0. This
occurs whenever

pP = p.

In this case p is said to be stationary with respect to P .

Theorem 6.9. Let {Xt : t ∈ Z} denote a discrete time process with an M(p, P) distribution.
If p is stationary with respect to P, then {Xt : t ∈ Z} is a stationary process.

Proof. Let Yt = Xt+1, t = 1, 2, . . . . According to Theorem 6.1, it suffices to show that
{Xt : t ∈ Z} and {Yt : t ∈ Z} have the same distribution. By Theorem 6.7, {Yt : t ∈ Z} has
distribution M(pP, P). The result now follows from the fact that pP = p.
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Example 6.13 (Two-stage chain). Consider the two-stage Markov chain considered in
Examples 6.9 and 6.11. The initial distribution p = (θ, 1 − θ ) is stationary with respect to
P whenever

θ = θα + (1 − θ )(1 − β);

that is, whenever,

θ

1 − θ
= 1 − β

1 − α

in which case

θ = 1 − β

2 − (α + β)
. �

6.5 Counting Processes

A counting process is an integer-valued, continuous time process {Xt : t ≥ 0}. Counting
processes arise when certain events, often called “arrivals,” occur randomly in time, with
Xt denoting the number of arrivals occurring in the interval [0, t]. Counting processes are
often denoted by N (t) and we will use that notation here.

It is useful to describe a counting process in terms of the interarrival times. Let T1, T2, . . .

be a sequence of nonnegative random variables and define

Sk = T1 + · · · + Tk .

Suppose that N (t) = n if and only if

Sn ≤ t and Sn+1 > t ;

Then {N (t): t ≥ 0} is a counting process. In the interpretation of the counting process in
terms of random arrivals, T1 is the time until the first arrival, T2 is the time between the first
and second arrivals, and so on. Then Sn is the time of the nth arrival.

If T1, T2, . . . are independent, identically distributed random variables, then the process
is said to be a renewal process. If T1, T2, . . . has a stationary distribution then {N (t): t ≥ 0}
is said to be a stationary point process.

Example 6.14 (Failures with replacement). Consider a certain component that is subject
to failure. Let T1 denote the failure time of the original component. Upon failure, the original
component is replaced by a component with failure time T2. Assume that the process of
failure and replacement continues indefinitely, leading to failure times T1, T2, . . . ; these
failure times are modeled as nonnegative random variables. Let {N (t): t ≥ 0} denote the
counting process corresponding to T1, T2, . . . . Then N (t) denotes the number of failures in
the interval [0, t]. If T1, T2, . . . are independent, identically distributed random variables,
then the counting process is a renewal process.

Figure 6.3 gives plots of four randomly generated counting processes of this type in which
T1, T2, . . . are taken to be independent exponential random variables with λ = 1/2, 1, 2, 5,
respectively. �
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Figure 6.3. Randomly generated counting processes.

The mean value function of a counting process is given by

µ(t) = E[N (t)], t ≥ 0.

Example 6.15 (A model for software reliability). Suppose that a particular piece of soft-
ware has M errors, or “bugs.” Let Z j denote the testing time required to discover bug j ,
j = 1, . . . , M . Assume that Z1, Z2, . . . , Z M are independent, identically distributed ran-
dom variables, each with distribution function F . Then S1, the time until an error is detected,
is the smallest value among Z1, Z2, . . . , Z M ; S2, the time needed to find the first two bugs,
is the second smallest value among Z1, Z2, . . . , Z M , and so on.

Fix a time t . Then N (t), the number of bugs discovered by time t , is a binomial random
variable with parameter M and F(t). Hence, the mean value function of the counting process
{N (t): t ≥ 0} is given by

µ(t) = M F(t), t ≥ 0. �

Let Fn(·) denote the distribution function of Sn = T1 + · · · + Tn . The following result
shows that the function µ(·) can be calculated directly from F1, F2, . . . .

Theorem 6.10. Let {N (t): t ≥ 0} denote a counting process and let Sn denote the time of
the nth arrival. Then

µ(t) =
∞∑

n=1

Fn(t)

where Fn denotes the distribution function of Sn.
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If the number of possible arrivals is bounded by M, then

µ(t) =
M∑

n=1

Fn(t).

Proof. Fix t . Let An denote the indicator of the event that the nth arrival occurs before t ,
that is, that Sn ≤ t . Then Fn(t) = E(An) and

N (t) =
∞∑

n=1

An.

Hence,

µ(t) = E[N (t)] =
∞∑

n=1

E(An) =
∞∑

n=1

Fn(t),

proving the first result.
If there are at most M arrivals, then the indicator An is identically equal to 0 for n =

M + 1, M + 2, . . . . The second result follows.

Poisson processes
The most important counting process is the Poisson process. A counting process {N (t):
t ≥ 0} is said to be a Poisson process if the following conditions are satisfied:

(PP1) N (0) = 0
(PP2) {N (t): t ≥ 0} has independent increments: if

0 ≤ t0 ≤ t1 ≤ · · · ≤ tm,

then the random variables

N (t1) − N (t0), N (t2) − N (t1), . . . , N (tm) − N (tm−1)

are independent.
(PP3) There exists a constant λ > 0 such that, for any nonnegative s, t , N (t + s) − N (s)

has a Poisson distribution with mean λt .

The condition that differences of the form N (t + s) − N (s) follow a Poisson distribution,
condition (PP3), may be replaced by a condition on the behavior of N (t) for small t , provided
that the distribution of N (t + s) − N (s) does not depend on s. Consider the following
conditions.

(PP4) For any t > 0, the distribution of N (t + s) − N (s) is the same for all s ≥ 0.
(PP5) limt→0 Pr[N (t) ≥ 2]/t = 0 and for some positive constant λ,

lim
t→0

Pr[N (t) = 1]

t
= λ.

The equivalence of condition (PP3) and conditions (PP4) and (PP5) is established in the
following theorem.

Theorem 6.11. Suppose that a given counting process {N (t): t ≥ 0} satisfies conditions
(PP1) and (PP2). The process satisfies condition (PP3) if and only if it satisfies conditions
(PP4) and (PP5).
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Proof. First suppose that conditions (PP1), (PP2), and (PP3) are satisfied so that the
process is a Poisson process. Then, for any t ≥ 0, N (t) has a Poisson process with mean
λt . Hence,

lim
t→0

Pr[N (t) = 1]/t = lim
t→0

λ exp(−λt) = λ

and

Pr[N (t) ≥ 2]/t =
∞∑
j=2

λ j t j−1 exp(−λt)/j!

≤ λ

∞∑
j=1

(λt) j exp(−λt)/j!

≤ λ[1 − exp(−λt)].

It follows that

lim sup
t→0

Pr[N (t) ≥ 2]/t ≤ lim sup
t→0

λ[1 − exp(−λt)] = 0.

Hence, (PP5) holds. Condition (PP4) follows directly from (PP3).
Now assume that (PP1), (PP2), (PP4), and (PP5) hold. Note that (PP5) implies that

lim
t→0

{Pr[N (t) = 0] − 1}/t = − lim
t→0

{Pr[N (t) = 1] + Pr[N (t) ≥ 2]}/t = −λ. (6.7)

Using (PP2) and (PP4),

Pr[N (s + t) = 0] = Pr[N (s) = 0, N (s + t) − N (s) = 0] = Pr[N (t) = 0]Pr[N (s) = 0].

Hence,

Pr[N (s + t) = 0] − Pr[N (s) = 0]

t
= Pr[N (s) = 0]

Pr[N (t) = 0] − 1

t
.

By (6.7),

d

ds
Pr[N (s) = 0] = −λPr[N (s) = 0],

that is,

d

ds
log Pr[N (s) = 0] = −λ.

Solving this differential equation yields

Pr[N (s) = 0] = exp{−λs}, s ≥ 0.

Now consider Pr[N (s + t) = 1]. Note that

Pr[N (s + t) = 1] = Pr[N (s) = 0]Pr[N (t) = 1] + Pr[N (s) = 1]Pr[N (t) = 0].

Hence,

Pr[N (s + t) = 1]

Pr[N (s + t) = 0]
= Pr[N (t) = 1]

Pr[N (t) = 0]
+ Pr[N (s) = 1]

Pr[N (s) = 0]
.
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Extending this argument shows that, for any m = 1, 2, . . . ,

Pr[N (s) = 1]

Pr[N (s) = 0]
= m

Pr[N (s/m) = 1]

Pr[N (s/m) = 0]
.

Since this holds for any m,

Pr[N (s) = 1]

Pr[N (s) = 0]
= lim

m→∞ m
Pr[N (s/m) = 1]

Pr[N (s/m) = 0]
.

Note that, from (6.7),

lim
m→0

Pr[N (s/m) = 0] = 1

and, from (PP5), writing t for s/m,

lim
m→∞ mPr[N (s/m) = 1] = s lim

t→0
Pr[N (t) = 1]/t = sλ.

It follows that

Pr[N (s) = 1] = λPr[N (s) = 0] = sλ exp{−λs}.
In a similar manner, we may write

Pr[N (s) = 2] =
(

m

2

)
Pr[N (s/m) = 1]2Pr[N (s/m) = 0]m−2

+ mPr[N (s/m) = 2]Pr[N (s/m) = 0]m−1

for any m = 1, 2, . . . . Using the expressions for Pr[N (s) = 0] and Pr[N (s) = 1] derived
above, we have that, for any m = 1, 2, . . . ,

Pr[N (s) = 2] = (1 − 1/m)(sλ)2 exp{−sλ}/2 + mPr[N (s/m) = 2] exp{−(1 − 1/m)sλ}.
Letting m → ∞ it follows that

Pr[N (s) = 2] = (sλ)2 exp{−sλ}
2!

.

The general case follows along similar lines:

Pr[N (s) = n] =
(

m

n

)
Pr[N (s/m) = 1]nPr[N (s/m) = 0]m−n + R

= m(m − 1) · · · (m − n + 1)

mn
(λs)n exp{−λs} + R

where R is a finite sum, each term of which includes a factor of the form Pr[N (s/m) = j]
for some j ≥ 2. Letting m → ∞, and using (PP5), yields the result.

Distribution of the interarrival times
Consider a Poisson process {N (t): t ≥ 0} and let T1 denote the time until the first arrival
occurs. Since, for any t > 0,

X1 > t if and only if N (t) = 0,

it follows that

Pr(X1 ≤ t) = 1 − Pr(N (t) = 0) = 1 − exp{−λt}.
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Hence, T1 has an exponential distribution with rate parameter λ. More generally, the interar-
rival times T1, T2, . . . are independent, identically distributed exponential random variables.
Conversely, if T1, T2, . . . are known to be independent exponential random variables then
the counting process is a Poisson process. Thus, a counting process is a Poisson process if
and only if the interarrival times are independent exponential random variables.

A formal proof of this result is surprisingly difficult and will not be attempted here; see,
for example, Kingman (1993, Section 4.1). It is easy, however, to give an informal argument
showing why we expect the result to hold.

We have seen that T1 has an exponential distribution. Now consider

Pr(T2 > t |T1 = t1) = Pr[N (t1 + t) − N (t1) = 0|T1 = t1].

Since a Poisson process has independent increments, we expect that

Pr[N (t1 + t) − N (t1) = 0|T1 = t1] = Pr[N (t1 + t) − N (t1) = 0] = exp(−λt). (6.8)

Hence, T1 and T2 are independent and the marginal distribution of T2 is an exponential
distribution with parameter λ. This approach may be carried out indefinitely:

Pr(Tm > t |T1 = t1, . . . , Tm−1 = tm−1)

= Pr[N (t1 + · · · + tm−1 + t) − N (t1 + · · · + tm−1) = 0]

= exp{−λt}.
The difficulty in carrying out this argument rigorously is in showing that (6.8) actually
follows from (PP2). For instance, the event that T1 = t1 is the event that N (t) jumps from
0 to 1 at t = t1 and, hence, it is not a straightforward function of differences of the form
N (t j ) − N (t j−1) for some set of t j .

6.6 Wiener Processes

A Wiener process or Brownian motion is a continuous time process {Wt : t ≥ 0} with the
following properties:

(W1) Pr(W0 = 0) = 1
(W2) The process has independent increments: if

0 ≤ t0 ≤ t1 ≤ · · · ≤ tm,

then the random variables

Wt1 − Wt0 , Wt2 − Wt1 , . . . , Wtm − Wtm−1

are independent.
(W3) For t2 > t1 ≥ 0, Wt2 − Wt1 has a normal distribution with mean 0 and variance

t2 − t1.

Processes satisfying (W1)–(W3) can always be defined in such a way so as to be con-
tinuous; hence, we assume that (W4) is satisfied as well:

(W4) For every realization of the process, Wt is a continuous function of t .

Two basic properties of Wiener processes are given in the following theorem.
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Theorem 6.12. Let {Wt : t ≥ 0} denote a Wiener process.
(i) For a given h > 0, let Yt = Wh+t − Wh. Then {Yt: t ≥ 0} is a Wiener process.

(ii) Let K (t, s) = Cov(Wt , Ws). Then

K (t, s) = min(t, s).

Proof. To verify part (i) it is enough to show that the process {Yt : t ≥ 0} satisfies conditions
(W1)–(W4). Clearly, Y0 = 0 and since

Yt1 − Yt0 = Wh+t1 − Wh+t0 ,

{Yt: t ≥ 0} has independent increments. Continuity of the sample paths of Yt follows imme-
diately from the continuity of Zt . Hence, it suffices to show that (W3) holds.

For 0 ≤ t1 < t2,

Yt2 − Yt1 = Wh+t2 − Wh+t1

has a normal distribution with mean 0 and variance (h + t2) − (h + t1) = t2 − t1, verifying
(W3). Hence, {Yt : t ≥ 0} is a Wiener process.

Suppose t < s. Then

K (t, s) = Cov(Wt , Ws) = Cov(Wt , Wt + Ws − Wt )

= Cov(Wt , Wt ) + Cov(Wt , Ws − Wt ).

By (W2), Wt and Ws − Wt are independent. Hence, K (t, s) = t ; the result follows.

Example 6.16 (A transformation of a Wiener process). Let {Wt : t ≥ 0} denote a Wiener
process and for some c > 0 define Zt = Wc2t/c, t ≥ 0. Note that Z0 = W0 so that Pr(W0 =
1). Let 0 ≤ t0 ≤ t1 ≤ · · · ≤ tm ; then

Zt j − Zt j−1 = Wc2t j
/c − Wc2t j−1/c, j = 1, . . . , m.

Hence, {Zt : t ≥ 0} has independent increments. Furthermore, Zt j − Zt j−1 has a normal
distribution with mean 0 and variance

c2t j − c2t j−1

c2
= t j − t j−1.

Finally, continuity of Zt follows from continuity of Wt ; hence, Zt is a continuous function.
It follows that {Zt : t ≥ 0} is also a Wiener process. �

Rigorous analysis of Wiener process requires advanced results of probability theory and
analysis that are beyond the scope of this book. Hence, in this section, we give an informal
description of some of the properties of Wiener processes.

Irregularity of the sample paths of a Wiener process
By definition, the paths of a Wiener process are continuous; however, they are otherwise
highly irregular. For instance, it may be shown that, with probability 1, a Wiener process
{Wt : t ≥ 0} is nowhere differentiable. Although a formal proof of this fact is quite difficult
(see, for example, Billingsley 1995, Section 37), it is not hard to see that it is unlikely that
derivatives exist.



P1: JZP
052184472Xc06 CUNY148/Severini May 24, 2005 2:41

194 Stochastic Processes

Consider

Wt+h − Wt

h
(6.9)

for small h; of course, the derivative of Wt is simply the limit of this ratio as h → 0. Since
Wt+h − Wt has variance h, the difference Wt+h − Wt tends to be of the same order as

√
h;

for instance,

E(|Wt+h − Wt |) = (2h/π )
1
2 .

Thus, (6.9) tends to be of order h− 1
2 , which diverges as h → 0.

Let f : [0, ∞) → R denote a continuous function of bounded variation and consider the
quantity

Qn( f ) =
n∑

j=1

[ f ( j/n) − f (( j − 1)/n)]2.

This is a measure of the variation of f over the interval [0, 1]. Note that

Qn( f ) ≤ max
1≤ j≤n

| f ( j/n) − f (( j − 1)/n)|
n∑

j=1

| f ( j/n) − f (( j − 1)/n)|.

Since f is continuous on [0, ∞) it is uniformly continuous on [0, 1] and, hence,

lim
n→∞ max

1≤ j≤n
| f ( j/n) − f (( j − 1)/n)| = 0.

Since f is of bounded variation,
n∑

j=1

| f ( j/n) − f (( j − 1)/n)|

is bounded in n. Hence, Qn( f ) approaches 0 as n → ∞.
Now consider Qn as applied to {Wt : t ≥ 0}. By properties (W2) and (W3), W j/n −

W( j−1)/n , j = 1, . . . , n, are independent, identically distributed random variables, each
with a normal distribution with mean 0 and variance 1/n. Hence, for all n = 1, 2, . . . ,

E

{
n∑

j=1

(W j/n − W( j−1)/n))
2

}
= 1;

that is, E[Qn(Wt )] = 1 for all n = 1, 2, . . . . This suggests that the paths of a Wiener process
are of unbounded variation, which is in fact true; see, for example, Billingsley (1968,
Section 9).

The Wiener process as a martingale
Since, for any s > t , Ws − Wt and Wt are independent, it follows that

E[Ws |Wt ] = E[Ws − Wt |Wt ] + E[Wt |Wt ] = Wt ,

a property similar to that of martingales. In fact, a Wiener process is a (continuous time)
martingale; see, for example, Freedman (1971). Although a treatment of continuous time
martingales is beyond the scope of this book, it is not difficult to construct a discrete time
martingale from a Wiener process. Let {Wt : t ≥ 0} denote a Wiener process and let 0 ≤
t1 < t2 < t3 < · · · denote an increasing sequence in [0, ∞). For each n = 1, 2, . . . , define
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Zn = Wtn . Then, since there is a one-to-one correspondence between {Z1, Z2, . . . , Zn} and
{Z1, Z2 − Z1, Z3 − Z2, . . . , Zn − Zn−1},

E[Zn+1|Z1, . . . , Zn] = E[Zn+1|Z1, Z2 − Z1, . . . , Zn − Zn−1]

= Zn + E[Zn+1 − Zn|Z1, Z2 − Z1, . . . , Zn − Zn−1].

Since

E[Zn+1 − Zn|Z1, Z2 − Z1, . . . , Zn − Zn−1]

= E[Ztn+1 − Ztn |Zt1 , Zt2 − Zt1 , . . . , Ztn − Ztn−1 ]

= 0

by properties (W2) and (W3), it follows that

E[Zn+1|Z1, . . . , Zn] = Zn;

that is, the process {Zt : t = 1, 2, . . .} is a martingale.

6.7 Exercises

6.1 For some q = 1, 2, . . . , let Y1, . . . , Yq and Z1, . . . , Zq denote real-valued random variables such
that

E(Y j ) = E(Z j ) = 0, j = 1, . . . , q,

E
(
Y 2

j

) = E
(
Z 2

j

) = σ 2
j , j = 1, . . . , q,

for some positive constants σ1, . . . , σq ,

E(Yi Y j ) = E(Zi Z j ) = 0 for i 	= j

and E(Yi Z j ) = 0 for all i, j .
Let α1, . . . , αq denote constants and define a stochastic process {Xt : t ∈ Z} by

Xt =
q∑

j=1

[Y j cos(α j t) + Z j sin(α j t)], t = 0, . . . .

Find the mean and covariance functions of this process. Is the process covariance stationary?

6.2 Let Z−1, Z0, Z1, . . . denote independent, identically distributed real-valued random variables,
each with an absolutely continuous distribution. For each t = 0, 1, . . . , define

Xt =
{

1 if Zt > Zt−1

−1 if Zt ≤ Zt−1
.

Find the mean and covariance functions of the stochastic process {Xt : t ∈ Z}. Is this process
covariance stationary? Is the process stationary?

6.3 Let {Xt : t ∈ Z} and {Yt : t ∈ Z} denote stationary stochastic processes. Is the process {Xt + Yt :
t ∈ Z} stationary?

6.4 Let Z0, Z1, . . . denote a sequence of independent, identically distributed random variables; let

Xt = max{Zt , . . . , Zt+s}, t = 0, 1, . . .

where s is a fixed positive integer and let

Yt = max{Z0, . . . , Zt }, t = 0, 1, . . . .

Is {Xt : t ∈ Z} a stationary process? Is {Yt : t ∈ Z} a stationary process?
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6.5 Let {Xt : t ∈ Z} denote a stationary stochastic process and, for s, t ∈ Z, let K (s, t) =
Cov(Xs, Xt ). Show that if

lim
s,t→∞

K (s, t) = K (0, 0)

then there exists a random variable X such that

lim
n→∞

E[(Xn − X )2] = 0.

6.6 Let Y, Y0, Y1, . . . denote real-valued random variables such that

lim
n→∞

E[(Yn − Y )2] = 0.

Let a, a0, a1, . . . and b, b0, b1, . . . denote constants such that

lim
n→∞

an = a and lim
n→∞

bn = b.

For n = 0, 1, . . . , let Xn = anYn + bn and let X = aY + b. Does it follow that

lim
n→∞

E[(Xn − X )2] = 0?

6.7 Let {Xt : t ∈ Z} denote a moving average process. Define

Yt =
m∑

j=0

c j Xt− j , t = 0, 1, . . .

for some constants c0, c1, . . . , cm . Is {Yt : t ∈ Z} a moving average process?

6.8 Let {Xt : t ∈ Z} denote a stationary stochastic process with autocovariance function R(·). The
autocovariance generating function of the process is defined as

C(z) =
∞∑

j=−∞
R( j)z j , |z| ≤ 1.

Show that the autocorrelation function of the process can be obtained by differentiating C(·).
6.9 Let {Xt: t ∈ Z} denote a finite moving average process of the form

Xt =
q∑

j=0

α jεt− j

where ε0, ε1, . . . are uncorrelated random variables each with mean 0 and finite variance σ 2. Let
C(·) denote the autocovariance generating function of the process (see Exercise 6.7) and define

D(z) =
q∑

j=0

α j z
t− j , |z| ≤ 1.

Show that

C(z) = σ 2 D(z)D(z−1), |z| ≤ 1.

6.10 Prove Theorem 6.3.

6.11 Let R(·) denote the autocovariance function of a stationary stochastic process. Show that R(·)
is positive semi-definite in the sense that for all t1 < t2 < . . . < tm , where m = 1, . . . , and all
real numbers z1, z2, . . . , zm ,

m∑
i=1

m∑
j=1

R(ti − t j )zi z j ≥ 0.
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6.12 Let {Xt : t ∈ Z} denote a finite moving average process of the form

Xt =
q∑

j=0

α jεt− j

where ε0, ε1, . . . are uncorrelated random variables each with mean 0 and finite variance σ 2.
Suppose that

α j = 1

q + 1
, j = 0, 1, . . . , q.

Find the autocorrelation function of the process.

6.13 Let ε−1, ε0, ε1, . . . denote independent random variables, each with mean 0 and standard devi-
ation 1. Define

Xt = α0εt + α1εt−1, t = 0, 1, . . .

where α0 and α1 are constants. Is the process {Xt : t ∈ Z} a Markov process?

6.14 Consider a Markov chain with state space {1, 2, . . . , J }. A state i is said to communicate with
a state j if

P (n)
i j > 0 for some n = 0, 1, . . .

and

P (n)
j i > 0 for some n = 0, 1, . . . .

Show that communication is an equivalence relation on the state space. That is, show that a
state i communicates with itself, if i communicates with j then j communicates with i , and if
i communicates with j and j communicates with k, then i communicates with k.

6.15 Let {Xt : t ∈ T } denote a Markov chain with state space {1, 2, . . . , J }. For each t = 0, 1, . . . ,

let Yt = (Xt , Xt+1) and consider the stochastic process {Yt : t ∈ Z}, which has state space

{1, . . . , J } × {1, . . . , J }.
Is {Yt : t ∈ T } a Markov chain?

6.16 Let Y1, Y2, . . . denote independent, identically distributed random variables, such that

Pr(Y1 = j) = p j , j = 1, . . . , J,

where p1 + · · · + p j = 1. For each t = 1, 2, . . . , let

Xt = max{Y1, . . . , Yt }.
Is {Xt : t ∈ Z} a Markov chain? If so, find the transition probability matrix.

6.17 Let P denote the transition probability matrix of a Markov chain and suppose that P is doubly
stochastic; that is, suppose that the rows and columns of P both sum to 1. Find the stationary
distribution of the Markov chain.

6.18 A counting process {N (t): t ≥ 0} is said to be a nonhomogeneous Poisson process with intensity
function λ(·) if the process satisfies (PP1) and (PP2) and, instead of (PP3), for any nonnegative
s, t , N (t + s) − N (s) has a Poisson distribution with mean∫ t+s

s
λ(u) du.

Assume that λ(·) is a positive, continuous function defined on [0, ∞).
Find an increasing, one-to-one function h : [0, ∞) 
→ [0, ∞) such that {Ñ (t): t ≥ 0} is a Poisson
process, where Ñ (t) = N (h(t)).
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6.19 Let {N (t): t ≥ 0} denote a nonhomogeneous Poisson process with intensity function λ(·). Let
T1 denote the time to the first arrival. Find Pr(T1 ≤ t) and Pr(T1 ≤ t |N (s) = n), s > t .

6.20 Let {N (t): t ≥ 0} denote a stationary point process with N (0) = 0. Show that there exists a
constant m ≥ 0 such that E[N (t)] = mt , t > 0.

6.21 Let {N (t)! : t ≥ 0} denote a Poisson process. Find the covariance function of the process,

K (t, s) = Cov(N (t), N (s)), t ≥ 0, s ≥ 0.

6.22 Let {Wt : t ≥ 0} denote a Wiener process and define

Xt = Zt − t Z1, 0 ≤ t ≤ 1.

The process {Xt : 0 ≤ t ≤ 1} is known as a Brownian bridge process. Does the process {Xt :
0 ≤ t ≤ 1} have independent increments?

6.23 Let {Xt : 0 ≤ t ≤ 1} denote a Brownian bridge process, as described in Exercise 6.22. Find the
covariance function of the process.

6.24 Let {Wt : t ≥ 0} denote a Wiener process and let

Xt = c(t)W f (t), t ≥ 0

where c(·) is a continuous function and f (·) is a continuous, strictly increasing function with
f (0) = 0. Show that {Xt : t ≥ 0} satisfies (W1) and (W2) and find the distribution of Xt − Xs ,
t > s.

6.8 Suggestions for Further Reading

The topic of stochastic processes is a vast one and this chapter gives just a brief introduction to this
field. General, mathematically rigorous, treatments of many topics in stochastic processes are given
by Cramér and Leadbetter (1967) and Doob (1953); a more applications-oriented approach is taken
by Parzen (1962) and Ross (1995). Karlin (1975) and Karlin and Taylor (1981) provide an in-depth
treatment of a wide range of stochastic processes. Stationary and covariance-stationary processes
are discussed in detail in Yaglom (1973); see also Ash and Gardner (1975), Cox and Miller (1965,
Chapter 7), and Parzen (1962, Chapter 3).

Moving average processes are used extensively in statistical modeling; see, for example, Anderson
(1975) and Fuller (1976). Markov processes are discussed in Cox and Miller (1965); Norris (1997)
contains a detailed discussion of Markov chains. Stationary distributions of Markov chains play a
central role in the limiting behavior of the process, a topic which is beyond the scope of this book;
see, for example, Norris (1997).

Kingman (1993) gives a detailed discussion of Poisson processes; in particular, this reference
considers in detail spatial Poisson processes. Wiener processes are discussed in Billingsley (1995,
Chapter 37) and Freedman (1971).
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7

Distribution Theory for Functions
of Random Variables

7.1 Introduction

A common problem in statistics is the following. We are given random variables X1, . . . , Xn ,
such that the joint distribution of (X1 . . . , Xn) is known, and we are interested in determining
the distribution of g(X1, . . . , Xn), where g is a known function. For instance, X1, . . . , Xn

might follow a parametric model with parameter θ and g(X1, . . . , Xn) might be an estimator
or a test statistic used for inference about θ . In order to develop procedures for inference
about θ we may need certain characteristics of the distribution of g(X1, . . . , Xn).

Example 7.1 (Estimator for a beta distribution). Let X1, . . . , Xn denote independent,
identically distributed random variables, each with an absolutely continuous distribution
with density

θxθ−1, 0 < x < 1

where θ > 0. This is a special case of a beta distribution.
Consider the statistic

1

n

n∑
j=1

log X j ;

this statistic arises as an estimator of the parameter θ . In carrying out a statistical analy-
sis of this model, we may need to know certain characteristics of the distribution of this
estimator. �

In the earlier chapters, problems of this type have been considered for specific examples;
in this chapter we consider methods that can be applied more generally.

7.2 Functions of a Real-Valued Random Variable

First consider the case in which X is a real-valued random variable with a known distribution
and we want to determine the distribution of Y = g(X ) where g is a known function. In
principle, this is a straightforward problem. Let X denote the range of X and let Y = g(X )
denote the range of Y so that g :X → Y . For any subset A of Y ,

Pr(Y ∈ A) = Pr(X ∈ {x ∈ X : g(x) ∈ A}) =
∫

{x∈X: g(x)∈A}
d FX (x), (7.1)

199
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yielding the distribution of Y . For instance, if X has a discrete distribution with frequency
function pX , then the distribution of Y is discrete with frequency function

pY (y) =
∑

x∈X: g(x)=y

pX (x).

However, in more general cases, difficulties may arise when attempting to implement this
approach. For instance, the set {x ∈ X :g(x) ∈ A} is often complicated, making computation
of the integral in (7.1) difficult. The analysis is simplified if g is a one-to-one function.

Theorem 7.1. Let X denote a real-valued random variable with range X and distribution
function FX . Suppose that Y = g(X ) where g is a one-to-one function on X . Let Y = g(X )
and let h denote the inverse of g.

(i) Let FY denote the distribution function of Y . If g is an increasing function, then

FY (y) = FX (h(y)), y ∈ Y

If g is a decreasing function, then

FY (y) = 1 − FX (h(y)−), y ∈ Y .

(ii) If X has a discrete distribution with frequency function pX , then Y has a discrete
distribution with frequency function pY , where

pY (y) = pX (h(y)), y ∈ Y .

(iii) Suppose that X has an absolutely continuous distribution with density function pX

and let g denote a continuously differentiable function. Assume that there exists
an open subset X0 ⊂ X with Pr(X ∈ X0) = 1 such that |g′(x)| > 0 for all x ∈ X0

and let Y0 = g(X0). Then Y has an absolutely continuous distribution with density
function pY , where

pY (y) = pX (h(y))|h′(y)|, y ∈ Y0.

Proof. If g is increasing on X , then, for y ∈ Y ,

FY (y) = Pr(Y ≤ y) = Pr(X ≤ h(y)) = FX (h(y)).

Similarly, if g is decreasing on X , then

Pr(Y ≤ y) = Pr(X ≥ h(y)) = 1 − Pr(X < h(y)) = 1 − F(h(y)−).

Part (ii) follows from the fact that, for a one-to-one function g,

Pr(Y = y) = Pr(X = g(y)).

Consider a bounded function f defined on Y0 = g(X0). Since Pr(X ∈ X0) = 1,

E[ f (Y )] =
∫
X0

f (g(x))pX (x) dx .

By the change-of-variable formula for integration,

E[ f (Y )] =
∫
Y0

f (y)pX (h(y))|h′(y)| dy.
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It follows that the distribution of Y is absolutely continuous with density function

pX (h(y))|h′(y)|, y ∈ Y0;

part (iii) follows.

Note that in applying part (iii) of Theorem 7.1, often the set X0 may be taken to be X .
Also note that parts (i) and (ii) of the theorem give FY (y) only for y ∈ Y; in typical cases,
values of FY (y) for y �∈ Y can be obtained by inspection.

Example 7.2 (Lognormal distribution). Let X denote a random variable with a normal
distribution with mean µ and standard deviation σ . Let Y = exp(X ) so that log Y has a
normal distribution; the distribution of Y is known as a lognormal distribution.

Recall that the distribution of X is absolutely continuous with density function

pX (x) = 1

σ
√

(2π )
exp

{
− 1

2σ 2
(x − µ)2

}
, −∞ < x < ∞.

We may write Y = g(X ) with g(x) = exp(x); then g′(x) = exp(x) > 0 for all x ∈ R and
g has inverse h(y) = log(y). Hence, X0 = X = R and Y0 = (0, ∞). It follows that the
distribution of Y is absolutely continuous with density

pY (y) = 1

y

1

σ
√

(2π )
exp

{
− 1

2σ 2
(log(y) − µ)2

}
, y > 0. �

Example 7.3 (Empirical odds ratio). Let X denote a random variable with a binomial
distribution with parameters n and θ ; then the distribution of X is discrete with frequency
function

pX (x) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, . . . , n.

Let

Y = X + 1/2

n − X + 1/2
;

hence, if X denotes the number of successes in n trials, Y denotes a form of the empirical
odds ratio based on those trials. The function g is given by g(x) = (x + 1/2)/(n − x + 1/2)
with inverse

h(y) = (n + 1/2)y − 1/2

1 + y
.

It follows that the distribution of Y is discrete with frequency function

pY (y) =
(

n

h(y)

)
θh(y)(1 − θ )h(y)

for values of y in the set

g(X ) =
{

1

2n + 1
,

3

2n − 1
,

5

2n − 3
, . . . , 2n + 1

}
. �
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Example 7.4 (Weibull distribution). Let X denote a random variable with a standard expo-
nential distribution so that X has an absolutely continuous distribution with distribution
function

FX (x) = 1 − exp(−x), x > 0

and density

pX (x) = exp(−x), x > 0.

Let Y = X
1
θ where θ > 0. The function g(x) = x

1
θ has inverse x = yθ . It follows that

Y has an absolutely continuous distribution with distribution function

FY (y) = 1 − exp(−yθ ), y > 0

and density function

pY (y) = θyθ−1 exp(−yθ ), y > 0.

The distribution of Y is called a standard Weibull distribution with index θ . �

7.3 Functions of a Random Vector

In this section, we consider the extension of Theorem 7.1 to the case of a random vector.
Let X denote a random vector with range X ; consider a function g on X and let Y =
g(X ). Because of the possible complexity of the function g, even when it is one-to-one,
an analogue of part (i) of Theorem 7.1 is not available. Part (ii) of Theorem 7.1, which
does not use the dimension of X in any meaningful way, is simply generalized to the vector
case. Part (iii) of the theorem, which is essentially the change-of-variable formula for
integration, is also easily generalized by using the change-of-variable formula for integrals
on a multidimensional space.

Recall that if g is a function from Rd to Rd , then the Jacobian matrix of g is the d × d
matrix with (i, j)th element given by ∂gi/∂x j where gi denotes the i th component of the
vector-valued function g; this matrix will be denoted by ∂g/∂x . The Jacobian of g at x is
the absolute value of the determinant of the Jacobian matrix at x , and is denoted by∣∣∣∂g(x)

∂x

∣∣∣.
Theorem 7.2. Let X denote a d-dimensional random vector with an absolutely continuous
distribution with density function pX . Suppose that Y = g(X ) where g : X → Rd denotes
a one-to-one continuously differentiable function. Let X0 denote an open subset of X such
that Pr(X ∈ X0) = 1 and such that the Jacobian of g is nonzero on X0. Then Y = g(X ) has
an absolutely continuous distribution with density function pY , given by

pY (y) = pX (h(y))
∣∣∣∂h(y)

∂y

∣∣∣, y ∈ Y0,

where Y0 = g(X0).
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Proof. This result is essentially the change-of-variable formula for integrals. Let f denote
a bounded real-valued function on Y0. Then, since f (Y ) = f (g(X )),

E[ f (Y )] = E[ f (g(X ))] =
∫
X0

f (g(x))pX (x) dx .

Using the change-of-variable y = g(x), we have that

E[ f (Y )] =
∫
Y0

f (y)pX (h(y))
∣∣∣∂h(y)

∂y

∣∣∣ dy.

The result follows.

Note that the condition that the Jacobian of g is nonzero is identical to the condition that
the Jacobian of h is finite.

Example 7.5 (Functions of standard exponential random variables). Let X1, X2 denote
independent, standard exponential random variables so that X = (X1, X2) has an absolutely
continuous distribution with density function

pX (x1, x2) = exp{−(x1 + x2)}, (x1, x2) ∈ (R+)2.

Let Y1 = √
(X1 X2) and Y2 = √

(X1/X2). Hence,

Y = (Y1, Y2) = g(X ) = (g1(X ), g2(X ))

where

g1(x) = √
(x1x2) and g2(x) = √

(x1/x2).

The inverse function is given by h = (h1, h2) where

h1(y) = y1 y2 and h2(y) = y1/y2

which has Jacobian ∣∣∣∂h(y)

∂y

∣∣∣ = 2y1

y2
.

The set X0 may be taken to be (R+)2 and g(X0) = X0.
It follows that the distribution of (Y1, Y2) is absolutely continuous with density function

pY (y1, y2) = 2y1

y2
exp{−y1(1/y2 + y2)}, y1 > 0, y2 > 0. �

Example 7.6 (Products of independent uniform random variables). Let X1, X2, . . . , Xn

denote independent, identically distributed random variables, each with a uniform distribu-
tion on the interval (0, 1). Let

Y1 = X1, Y2 = X1 X2, . . . , Yn = X1 X2 · · · Xn.

Letting X = (X1, . . . , Xn) and Y = (Y1, . . . , Yn) we have Y = g(X ) where g =
(g1, . . . , gn) with

g j (x) =
j∏

i=1

xi , x = (x1, . . . , xn).
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The inverse of this function is given by h = (h1, . . . , hn) with

h j (y) = y j/y j−1, j = 1, 2, . . . , n;

here y = (y1, . . . , yn) and y0 = 1.
The density function of X is given by

pX (x) = 1, x ∈ (0, 1)n.

We may take X0 = (0, 1)n; then

g(X0) = {y = (y1, . . . , yn) ∈ Rn: 0 < yn < yn−1 < · · · < y1 < 1}.

It is easy to see that the matrix ∂h(y)/∂y is a lower triangular matrix with diagonal elements
1, 1/y1, . . . , 1/yn−1. Hence,

∣∣∣∂h(y)

∂y

∣∣∣ = 1

y1 · · · yn−1
.

It follows that Y has an absolutely continuous distribution with density function

pY (y) = 1

y1 · · · yn−1
, 0 < yn < yn−1 < · · · < y1 < 1. �

Functions of lower dimension
Let X denote a random variable with range X ⊂ Rd , d ≥ 2. Suppose we are interested
in the distribution of g0(X ) where g0 : X → Rq , q < d. Note that, since the dimension
of g0(X ) is less than the dimension of X , Theorem 7.2 cannot be applied directly. To use
Theorem 7.2 in these cases, we can construct a function g1 such that g = (g0, g1) satisfies
the conditions of Theorem 7.2. We may then use Theorem 7.2 to find the density of g(X ) and
then marginalize to find the density of g0(X ). This approach is illustrated on the following
examples.

Example 7.7 (Ratios of exponential random variables to their sum). Let X1, X2, . . . , Xn

denote independent, identically distributed random variables, each with a standard expo-
nential distribution. Let

Y1 = X1

X1 + · · · + Xn
, Y2 = X2

X1 + · · · + Xn
, . . . , Yn−1 = Xn−1

X1 + · · · + Xn

and suppose we want to find the distribution of the random vector (Y1, . . . , Yn−1).
Clearly, the function mapping (X1, . . . , Xn) to (Y1, . . . , Yn−1) is not one-to-one. Let Yn =

X1 + · · · + Xn . Then, writing Y = (Y1, . . . , Yn) and X = (X1, . . . , Xn), we have Y = g(X )
where g = (g1, . . . , gn) is given by

gn(x) = x1 + · · · + xn, g j (x) = x j

gn(x)
, j = 1, . . . , n − 1.

The function g is one-to-one, with inverse h = (h1, . . . , hn) where

h j (y) = y j yn, j = 1, . . . , n − 1, and hn(y) = (1 − y1 − · · · − yn−1)yn.
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Then

∂h(y)

∂y
=




yn 0 · · · 0 y1

0 yn · · · 0 y2
...

...
...

...
...

0 0 · · · yn yn−1

−yn −yn · · · −yn 1 − ∑n−1
1 y j


 .

It follows that ∣∣∣∂h(y)

∂y

∣∣∣ = yn−1
n .

The distribution of X is absolutely continuous with density function

pX (x) = exp

{
−

n∑
j=1

x j

}
, x = (x1, . . . , xn) ∈ (R+)n.

Hence, we may take X0 = (R+)n and

Y0 = g(X0) =
{

(y1, . . . , yn−1) ∈ (0, 1)n−1:
n−1∑
j=1

y j ≤ 1

}
× R+.

It follows that the distribution of Y is absolutely continuous with density

pY (y) = yn−1
n exp(−yn), y = (y1, . . . , yn) ∈ Y0.

To obtain the density of (Y1, . . . , Yn−1), as desired, we need to marginalize, eliminating
Yn . This density is therefore given by∫ ∞

0
yn−1 exp(−y) dy = (n − 1)!,

(y1, . . . , yn−1) ∈
{

(y1, . . . , yn−1) ∈ (0, 1)n−1:
n−1∑
j=1

y j ≤ 1

}
.

Hence, the density of (Y1, . . . , Yn−1) is uniform on the simplex in Rn−1. �

Example 7.8 (Estimator for a beta distribution). As in Example 7.1, let X1, . . . , Xn denote
independent, identically distributed random variables, each with an absolutely continuous
distribution with density

θxθ−1, 0 < x < 1

where θ > 0 and consider the statistic

Y1 = −1

n

n∑
j=1

log X j .

In order to use Theorem 7.2 we need to supplement Y1 with functions Y2, . . . , Yn

such that the transformation from (X1, . . . , Xn) to (Y1, . . . , Yn) satisfies the conditions of
Theorem 7.2.
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Let Y j = − log X j , j = 2, . . . , n. Then Y j = g j (X1, . . . , Xn), j = 1, . . . , n, where

g1(x1, . . . , xn) = −1

n

n∑
j=1

log x j

and

g j (x1, . . . , xn) = − log x j , j = 2, . . . , n.

The function g = (g1, . . . , gn) has inverse h = (h1, . . . , hn) where

h1(y1, . . . , yn) = exp{−ny1 + (y2 + · · · + yn)}
and

h j (y1, . . . , yn) = exp(−y j ), j = 2, . . . , n.

It follows that the Jacobian of the transformation h is given by∣∣∣∂h(y)

∂y

∣∣∣ = n exp(−ny1).

Here X = (0, 1)n and since the Jacobian of h is finite for

y ∈ g(X ) = {(y1, . . . , yn) ∈ (0, ∞)n : y2 + · · · + yn < ny1},
we may take X0 = X .

The density of X = (X1, . . . , Xn) is given by

pX (x1, . . . , xn; θ ) = θn(x1 · · · xn)θ−1, 0 < x j < 1, j = 1, . . . , n;

it follows that the density of Y = (Y1, . . . , Yn) is given by

θn exp {−n(θ − 1)y1}n exp(−ny1) = nθn exp(−nθy1)

for 0 < y j , j = 2, . . . , n, and y2 + · · · + yn < ny1.
In order to obtain the density of Y1 we need to integrate out y2, . . . , yn from the joint

density. Hence, the density of Y1 is given by

nθn exp(nθy1)
∫ ny1

0
· · ·

∫ ny1−y3−···−yn

0
dy2 · · · dyn = nθn exp(−nθy1)

(ny1)n−1

(n − 1)!

where 0 < y1 < ∞. Note that this is the density of a gamma distribution. �

Example 7.9 (Cauchy distribution). Let X1, X2 denote independent random variables each
with a standard normal distribution and consider the distribution of Y1 = X1/X2. In Example
3.13 the density of Y1 was found using a method based on the characteristic function; here
we determine the density function using a method based on Theorem 7.2.

In order to use the change-of-variable formula given in Theorem 7.2 we need to con-
struct a one-to-one function. For instance, let Y2 = X2 and consider Y = (Y1, Y2) = g(X ) =
(g1(X ), g2(X )) where

g1(x) = x1/x2 and g2(x) = x2.

The inverse of this transformation is given by h = (h1, h2) with

h1(y) = y1 y2 and h2(y) = y2;
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it follows that ∣∣∣∂h(y)

∂y

∣∣∣ = |y2|.

Here we must take X0 = R × [(−∞, 0) ∪ (0, ∞)] so that Y0 = g(X0) = X0.
The density function of (X1, X2) is given by

pX (x) = 1

2π
exp

{
−1

2

(
x2

1 + x2
2

)}
, (x1, x2) ∈ R2.

Hence, the density function of (Y1, Y2) is given by

pY (y1, y2) = 1

2π
exp

{
−1

2

(
1 + y2

1

)
y2

2

}
|y2|, (y1, y2) ∈ R2

and the marginal density of Y1 is given by

1

2π

∫ ∞

−∞
|y2| exp

{
−1

2

(
1 + y2

1

)
y2

2

}
dy2 = 1

π

∫ ∞

0
exp

{ − (
1 + y2

1

)
t
}

dt

= 1

π
(
1 + y2

1

) , −∞ < y1 < ∞.

This is the density of the standard Cauchy distribution. �

The distributions considered in the following two examples occur frequently in the
statistical analysis of normally distributed data.

Example 7.10 (t-distribution). Let X1 and X2 denote independent random variables such
that X1 has a standard normal distribution and X2 has a chi-squared distribution with ν

degrees of freedom. The distribution of

Y1 = X1√
(X2/ν)

is called the t-distribution with ν degrees of freedom. The density of this distribution may
be determined using Theorem 7.2.

Let Y2 = X2. Writing X = (X1, X2) and Y = (Y1, Y2), X = h(Y ) where h = (h1, h2),

h1(y) = y1
√

y2√
ν

, h2(y) = y2.

Hence, ∣∣∣∂h(y)

∂y

∣∣∣ = √
y2/

√
ν.

The density of X is given by

pX (x) = 1√
(2π )

exp

(
−1

2
x2

1

)
1

2
ν
2 �

(
ν
2

) x
ν
2 −1

2 exp

(
−1

2
x2

)
, x ∈ R × (0, ∞).

Hence, by Theorem 7.2, Y has density

pY (y) = 1√
(2πν)

1

2
ν
2 �

(
ν
2

) y
ν−1

2
2 exp

{
−1

2

(
y2

1/ν + 1
)

y2

}
, y ∈ R × (0, ∞).



P1: JZX
052184472Xc07 CUNY148/Severini May 24, 2005 3:59

208 Distribution Theory for Functions of Random Variables

It follows that the marginal density of Y1 is given by

1√
(2πν)2

ν
2 �

(
ν
2

) ∫ ∞

0
y

ν+1
2 −1

2 exp

{
−1

2

(
y2

1/ν + 1
)
y2

}
dy2

= 1√
(πν)

�
(

ν+1
2

)
�

(
ν
2

) (
y2

1/ν + 1
)−(ν+1)/2

, y2 ∈ R.

This is the density of the t-distribution with ν degrees of freedom. �

Example 7.11 (F-distribution). Let X1 and X2 denote independent random variables such
that X1 has a chi-squared distribution with ν1 degrees of freedom and X2 has a chi-squared
distribution with ν2 degrees of freedom. Let

Y1 = X1/ν1

X2/ν2
;

the distribution of Y1 is called the F-distribution with (ν1, ν2) degrees of freedom. The
density of this distribution may be determined using Theorem 7.2.

Let Y2 = X2. Writing X = (X1, X2) and Y = (Y1, Y2), X = h(Y ) where h = (h1, h2),

h1(y) = ν1

ν2
y1 y2, h2(y) = y2.

Hence, ∣∣∣∂h(y)

∂y

∣∣∣ = ν1

ν2
y2.

The density of X is given by

pX (x) = 1

2
(ν1+ν2)

2 �( ν1
2 )�( ν2

2 )
x

ν1
2 −1

1 x
ν2
2 −1

2 exp

{
−1

2
(x1 + x2)

}
, x ∈ (0, ∞)2.

Hence, by Theorem 7.2, Y has density

pY (y) = (ν1/ν2)
ν1
2

2
(ν1+ν2)

2 �
(

ν1
2

)
�

(
ν2
2

) y
ν1
2 −1

1 y
ν1+ν2

2 −1
2 exp

{
−1

2

(
ν1

ν2
y1 + 1

)
y2

}
, y ∈ (0, ∞)2.

It follows that the marginal density of Y1 is given by

(ν1/ν2)
ν1
2

2
(ν1+ν2)

2 �
(

ν1
2

)
�

(
ν2
2

) y
ν1
2 −1

1

∫ ∞

0
y

ν1+ν2
2 −1

2 exp

{
−1

2

(
ν1

ν2
y1 + 1

)
y2

}
dy2

= �
(

ν1+ν2
2

)
�

(
ν1
2

)
�

(
ν2
2

) (
ν1

ν2

) ν1
2 y

ν1
2 −1

1(
ν1
ν2

y1 + 1
) ν1+ν2

2

, y1 ∈ (0, ∞).

This is the density of the F-distribution with (ν1, ν2) degrees of freedom. �

Functions that are not one-to-one
Even in cases in which the dimension of Y is the same as the dimension of X , it is not
possible to apply Theorem 7.2 if the function g is not one-to-one. However, if the set X
may be partitioned into subsets such that g is one-to-one on each subset, then the change-
of-variable formula may be applied on each subset. The results may then be combined to
obtain the result for g(X ).
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Theorem 7.3. Let X denote a random vector with an absolutely continuous distribution
with density function pX . Let X1, · · · ,Xm denote disjoint open subsets of Rd such that

Pr

(
X ∈

m⋃
i=1

Xi

)
= 1.

Let g denote a function on X and let g(i) denote the restriction of g to Xi . Assume that, for
each i = 1, . . . , m, g(i) is one-to-one and continuously differentiable with inverse h(i) and
the Jacobian g(i) is nonzero onXi . Then Y = g(X ) has an absolutely continuous distribution
with density function pY , given by

pY (y) =
m∑

i=1

pX
(
h(i)(y)

)∣∣∣∂h(i)(y)

∂y

∣∣∣I{y∈Yi }, y ∈ g
( ∪m

i=1 Xi
)

where Yi = g(i)(Xi ).

Proof. Let f denote a bounded function on Y . Then,

E[ f (Y )] =
∫
X

f (g(x))pX (x) dx =
m∑

i=1

∫
Xi

f
(
g(i)(x)

)
pX (x) dx .

On Xi , g(i) is one-to-one and continuously differentiable so that the change-of-variable
formula may be applied to the integral over Xi . Hence,

E[ f (Y )] =
m∑

i=1

∫
Yi

f (y)pX
(
h(i)(y)

)∣∣∣∂h(i)(y)

∂y

∣∣∣ dy.

The result follows by interchanging integration and summation, which is valid since the
sum is finite.

Example 7.12 (Product and ratio of standard normal random variables). Let X1, X2

denote independent random variables, each with a standard normal distribution. Let

Y1 = X1 X2 and Y2 = X1

X2
.

Writing X = (X1, X2) and Y = (Y1, Y2), it follows that Y = g(X ), g = (g1, g2), where

g1(x) = x1x2 and g2(x) = x1/x2.

Clearly this is not a one-to-one function on R2; for instance, (x1, x2) and (−x1, −x2) yield
the same value of g(x), as do (x1, −x2) and (−x1, x2).

The function is one-to-one on the four quadrants of R2. Hence, take X1 = R+ × R+,
X2 = R+ × R−, X3 = R− × R+, and X4 = R− × R−. The restriction of g to each Xi is
one-to-one, with inverses given by

h(1)(y) = (
√

(y1 y2),
√

(y1/y2)), h(2)(y) = (
√

(y1 y2), −√
(y1/y2)),

h(3)(y) = (−√
(y1 y2),

√
(y1/y2)), h(4)(y) = (−√

(y1 y2), −√
(y1/y2))

and Jacobians ∣∣∣∂h(i)(y)

∂y

∣∣∣ = 1

2|y2| .
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The set g(∪4
i=1Xi ) is (R+)2 ∪ (R−)2. It is worth noting that the partition (X1 ∪ X2), (X3 ∪

X4) could also be used, although this choice introduces some minor complications.
The density of X is given by

pX (x) = 1

2π
exp

{
−1

2

(
x2

1 + x2
2

)}
, x ∈ R2.

Consider the transformation on X1. Since x2
1 + x2

2 = y1 y2 + y1/y2, the contribution to the
density of Y from X1 is

1

4π |y2| exp

{
−1

2
(y1 y2 + y1/y2)

}
, y ∈ (R+)2.

It is easy to see that the same result holds for X4.
The contribution to the density from eitherX2 orX3 is the same, except that y is restricted

to (R−)2. Hence, the density function of Y is given by

1

2π |y2| exp

{
−1

2
(y1 y2 + y1/y2)

}
I{y∈(R+)2} + 1

2π |y2| exp

{
−1

2
(y1 y2 + y1/y2)

}
I{y∈(R−)2}

= 1

2π |y2| exp

{
−1

2
(y1 y2 + y1/y2)

}
, y ∈ (R+)2 ∪ (R−)2. �

Application of invariance and equivariance
When the distribution of X belongs to a parametric model, it is often convenient to take
advantage of invariance or equivariance when determining the distribution of Y .

Let X denote a random variable with range X and suppose that the distribution of X is
an element of

P = {P(·; θ ): θ ∈ �}
and that P is invariant with respect to some group of transformations. If Y is a function
of X , and is an invariant statistic, then the distribution of Y does not depend on θ ; hence,
when determining the distribution of Y , we may assume that X is distributed according to
PX (·; θ0) where θ0 is any convenient element of �. The resulting distribution for Y does not
depend on the value chosen.

Example 7.13 (Ratios of exponential random variables to their sum). Let X1, X2, . . . ,

Xn denote independent, identically distributed random variables, each with an exponential
distribution with parameter θ , θ > 0. As in Example 7.8, let

Y1 = X1

X1 + · · · + Xn
, Y2 = X2

X1 + · · · + Xn
, . . . , Yn−1 = Xn−1

X1 + · · · + Xn
.

Recall that the set of exponential distributions with parameter θ ∈ (0, ∞) forms a trans-
formation model with respect to the group of scale transformations; see Example 5.27. Note
that the statistic (Y1, . . . , Yn−1) is invariant under scale transformations: multiplying each
X j by a constant does not change the value of (Y1, . . . , Yn−1). Hence, to determine the
distribution of (Y1, . . . , Yn−1) we may assume that X1, . . . , Xn are distributed according to
a standard exponential distribution.

It follows that the distribution of (Y1, . . . , Yn−1) is the same as that given in
Example 7.7. �
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Equivariance may also be used to simplify the determination of the distribution of a
statistic. Suppose that the distribution of a random variable X is an element of

P = {P(·; θ ): θ ∈ �}
and that P is invariant with respect to some group of transformations. Suppose that we may
identify the group of transformations with � so that if X is distributed according to the
distribution with parameter value e, the identity element of the group, then θ X is distributed
according to P(·; θ ).

Suppose that the distributions in P are all absolutely continuous and that the density of
P(·; θ ) is given by pX (·; θ ). Then, by Theorem 7.2,

pX (x ; θ ) = pX (θ−1x ; e)
∣∣∣∂θ−1x

∂x

∣∣∣.
In computing the Jacobian here it is important to keep in mind that θ−1x refers to the
transformation θ−1 applied to x , not to the product of θ−1 and x .

Now let Y = g(X ) denote an equivariant statistic so that the set of distributions of Y also
forms a transformation model with respect to �. Then we may determine the distribution of
Y under parameter value θ using the following approach. First, we find the density function
of Y under the identity element e, pY (·; e), using Theorem 7.2. Then the density function
of Y under parameter value θ is given by

pY (y; θ ) = pY (θ−1 y; e)
∣∣∣∂θ−1 y

∂y

∣∣∣.
The advantage of this approach is that, in some cases, it is simpler to apply Theorem 7.2 to
pX (·; e) than to apply it to pX (·; θ ) for an arbitrary value of θ ∈ �.

Example 7.14 (Difference of uniform random variables). Let X1, X2 denote indepen-
dent, identically distributed random variables, each distributed according to the uniform
distribution on the interval (θ1, θ2), where θ2 > θ1. The uniform distribution on (θ1, θ2) is
an absolutely continuous distribution with density function

p(x ; θ ) = 1

θ2 − θ1
, θ1 < x < θ2.

Suppose we are interested in the distribution of X2 − X1.
The family of uniform distributions on (θ1, θ2) with −∞ < θ1 < θ2 < ∞ is invariant

under the group of location-scale transformations. Let Z1, Z2 denote independent random
variables each uniformly distributed on the interval (0, 1). Then the distribution of (X1, X2)
is the same as the distribution of

(θ2 − θ1)(Z1, Z2) + θ1.

It follows that the distribution of X2 − X1 is the same as the distribution of

(θ2 − θ1)(Z2 − Z1);

hence, the distribution of X2 − X1 can be obtained by first obtaining the distribution of
Z2 − Z1 and then using Theorem 7.1 to find the distribution of X2 − X1.

Let Y1 = Z2 − Z1 and Y2 = Z1. Then the joint density of Y1, Y2 is

1, 0 < y1 < 1, 0 < y1 + y2 < 1.
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Hence, the marginal density of Y1 is


∫ 1−y1

0 dy2 if 0 ≤ y1 < 1

∫ 1
−y1

dy2 if −1 < y1 < 0
=

{
1 − y1 if 0 ≤ y1 < 1
1 + y1 if −1 < y1 < 0

= 1 − |y1|, |y1| < 1.

It follows that the distribution of X2 − X1 under parameter value (θ1, θ2) has density(
1 − |t |

θ2 − θ1

)
1

θ2 − θ1
, |t | < θ2 − θ1. �

7.4 Sums of Random Variables

Let X1, . . . , Xn denote a sequence of real-valued random variables. We are often interested
in the distribution of S = ∑n

j=1 X j . Whenever the distribution of X is absolutely continuous,
the distribution of S may be determined using Theorem 7.2. However, the distribution of a
sum arises so frequently that we consider it in detail here; in addition, there are some results
that apply only to sums.

We begin by considering the characteristic function of S.

Theorem 7.4. Let X = (X1, . . . , Xn) where X1, X2, . . . , Xn denote real-valued random
variables. Let ϕX denote the characteristic function of X and let ϕS denote the characteristic
function of S = ∑n

j=1 X j . Then

ϕS(t) = ϕX (tv), t ∈ R

where v = (1, . . . , 1) ∈ Rn.

Proof. The characteristic function of X is given by

ϕX (t) = E[exp{i t T X}], t ∈ Rn.

Since S = vT X , the characteristic function of S is given by

ϕS(t) = E[exp{i tvT X}] = ϕX (tv), t ∈ R,

verifying the theorem.

Example 7.15 (Sum of exponential random variables). Let X1, . . . , Xn denote indepen-
dent, identically distributed random variables, each with density function

λ exp{−λx}, x > 0

where λ > 0; this is the density function of the exponential distribution with parameter λ.
The characteristic function of this distribution is given by

ϕ(t) =
∫ ∞

0
exp(i t x)λ exp(−λx) dx = λ

(λ − i t)
, −∞ < t < ∞.
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It follows that the characteristic function of X = (X1, . . . , Xn) is

ϕX (t1, . . . , tn) =
n∏

j=1

ϕ(ti ).

Hence, the characteristic function of S = ∑n
j=1 X j is given by

ϕS(t) = ϕ(t)n = λn

(λ − i t)n
.

This is the characteristic function of the gamma distribution with parameters n and λ; see
Example 3.4. It follows that S has a gamma distribution with parameters n and λ. �

The techniques described in the previous section can be used to find the density or
frequency function of a sum.

Theorem 7.5. Let X = (X1, . . . , Xn) where X1, . . . , Xn denotes a sequence of real-valued
random variables, let S = ∑n

j=1 X j and let S denote the range of S.
(i) Suppose X has a discrete distribution with frequency function p. Then S has a

discrete distribution with frequency function pS where

pS(s) =
∑

{(x1,...,xn ):
∑n

j=1 x j =s}
p(x1, . . . , xn), s ∈ S

(ii) Suppose X has an absolutely continuous distribution with density function p. Then
S has an absolutely continuous distribution with density function pS where

pS(s) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
p

(
s −

n∑
j=2

x j , x2, . . . , xn

)
dx2 · · · dxn, s ∈ R

Proof. Let f denote a bounded, real-valued function defined on S, the range of S. Then,
if X has discrete distribution with frequency function f ,

E[ f (S)] =
∑

(x1,...,xn )∈X
f (s)p(x1, . . . , xn) =

∑
s∈S

∑
{(x1,...,xn ):

∑n
j=1 x j =s}

f (s)p(x1, . . . , xn)

=
∑
s∈S

f (s)
∑

{(x1,...,xn ):
∑n

j=1 x j =s}
p(x1, . . . , xn);

part (i) of the theorem follows.
Now suppose that X has an absolutely continuous distribution with density function p.

To prove part (ii), we can use Theorem 7.2 with the function

g(x) = (s, x2, . . . , xn), s =
n∑

j=1

x j .

Then Y = g(X ) has density

p(y1 − (y2 + · · · + yn), y2, . . . , yn);

note that the Jacobian here is equal to 1. Hence, the marginal density of Y1 = S is∫ ∞

−∞
· · ·

∫ ∞

−∞
p(y1 − (y2 + · · · + yn)y2, . . . , yn) dy2 · · · dyn;

rewriting this in terms of s = y1 and x j = y j , j = 2, . . . , n, proves the result.
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Example 7.16 (One-parameter exponential family distribution). Consider a one-
parameter exponential family of absolutely continuous distributions with density functions
of the form

exp{c(θ )y − d(θ )}h(y), y ∈ Y

where θ ∈ �, c : � → R, d : � → R, and h : Y → R+.
Let Y1, Y2, . . . , Yn denote independent, identically distributed random variables, each

distributed according to this distribution. Then (Y1, . . . , Yn) has density

p(y; θ ) = exp

{
n∑

j=1

c(θ )y j − n d(θ )

}
n∏

j=1

h(y j ), y = (y1, . . . , yn) ∈ Yn.

It follows that S = ∑n
j=1 Y j has density∫

Y
· · ·

∫
Y

exp{c(θ)(s − y2 − . . . − yn) − d(θ )}h(s − y2 − · · · − yn)

× exp

{
n∑

j=2

c(θ )y j − (n − 1) d(θ )

}
n∏

j=2

h(y j ) dy2 · · · dyn

= exp{c(θ )s − nd(θ )}
∫
Y

· · ·
∫
Y

h(s − y2 − · · · − yn)
n∏

j=2

h(y j ) dy2 · · · dyn.

Hence, the model for S is also a one-parameter exponential family model. �

Example 7.17 (Multinomial distribution). Let X = (X1, . . . , Xm) denote a random vector
with a discrete distribution with frequency function

p(x1, . . . , xm ; θ1, . . . , θm) =
(

n

x1, x2, . . . xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m ,

for x j = 0, 1, . . . , n, j = 1, . . . , m,
∑m

j=1 x j = n; here θ1, . . . , θm are nonnegative con-
stants satisfying

∑m
j=1 θ j = 1. Recall that this is a multinomial distribution with parameters

n and (θ1, . . . , θm); see Example 2.2.
Let S = X1 + · · · + Xm−1. Then S has a discrete distribution with frequency function

pS(s) =
∑
Xs

(
n

x1, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m ;

here

Xs =
{

(x1, . . . , xm−1) ∈ Zm :
m−1∑
j=1

x j = s

}
.

Let η = ∑m−1
j=1 θ j so that θm = 1 − η. Then

pS(s) = ηs(1 − η)n−s
∑
Xs

(
n

x1, x2, . . . , xm

) (
θ1

η

)x1

· · ·
(

θm−1

η

)xm−1

= ηs(1 − η)n−s
∑
Xs

( n
x1,...,xm

)
( s

x1,...,xm

)(
s

x1, . . . , xm

) (
θ1

η

)x1

· · ·
(

θm−1

η

)xm−1

.
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Since ( n
x1,...,xm

)
( s

x1,...,xm−1

) = n!

s!xm!
=

(
n

s

)
,

it follows that

pS(s) =
(

n

s

)
ηs(1 − η)n−s

∑
Xs

(
s

x1, . . . , xm−1

) (
θ1

η

)x1
(

θ2

η

)x2

· · ·
(

θm

η

)xm

.

Note that (
s

x1, . . . , xm−1

) (
θ1

η

)x1

· · ·
(

θm−1

η

)xm−1

is the frequency function of a multinomial distribution with parameters s and

θ1/η, . . . , θm−1/η.

Hence, ∑
Xs

(
s

x1, . . . , xm−1

) (
θ1

η

)x1

· · ·
(

θm−1

η

)xm−1

= 1

and, therefore,

pS(s; θ1, . . . , θm) =
(

n

s

)
ηs(1 − η)n−s, s = 0, . . . , n

so that S has a binomial distribution with parameters n and
∑m−1

j=1 θ j . �

Example 7.18 (Sum of uniform random variables). Let X1, X2 denote independent, iden-
tically distributed random variables, each with a uniform distribution on the interval (0, 1);
hence, (X1, X2) has an absolutely continuous distribution with density function

p(x1, x2) = 1, (x1, x2) ∈ (0, 1)2.

Let S = X1 + X2. Then S has an absolutely continuous distribution with density function

pS(s) =
∫ 1

0
I{0<s−x2<1}I{0<x2<1} dx2.

Note that pS(s) is nonzero only for 0 < s < 2. Suppose 0 < s ≤ 1; then

pS(s) =
∫ s

0
dx2 = s.

Suppose 1 < s < 2, then

pS(s) =
∫ 1

s−1
dx2 = 2 − s.

It follows that S has density function

pS(s) =
{ 0 if s ≤ 0 or s ≥ 2

s if 0 < s ≤ 1
2 − s 1 < s < 2

.

The distribution of S is called a triangular distribution. �



P1: JZX
052184472Xc07 CUNY148/Severini May 24, 2005 3:59

216 Distribution Theory for Functions of Random Variables

Example 7.19 (Dirichlet distribution). Let (X, Y ) denote a two-dimensional random vec-
tor with an absolutely continuous distribution with density function

p(x, y) = �(α1 + α2 + α3)

�(α1)�(α2)�(α3)
xα1−1 yα2−1(1 − x − y)α3−1,

where x > 0, y > 0, x + y < 1; here α1, α2, α3 are positive constants. Let Z = 1 − X − Y ;
then the distribution of (X, Y, Z ) is an example of a Dirichlet distribution.

Consider the distribution of X + Y . According to Theorem 7.5, S has an absolutely
continuous distribution with density function

pS(s) = �(α1 + α2 + α3)

�(α1)�(α2)�(α3)

∫ s

0
(s − y)α1−1 yα2−1(1 − s)α3−1 dy

= �(α1 + α2 + α3)

�(α1)�(α2)�(α3)
sα1+α2−1(1 − s)α3−1

∫ 1

0
(1 − u)α1−1uα2−1 du

= �(α1 + α2 + α3)

�(α1)�(α2)�(α3)
sα1+α2−1(1 − s)α3−1 �(α1)�(α2)

�(α1 + α2)

= �(α1 + α2 + α3)

�(α1 + α2)�(α3)
sα1+α2−1(1 − s)α3−1, 0 < s < 1.

This is the density function of a beta distribution; see Exercises 4.2 and 5.6. �

7.5 Order Statistics

Let X1, . . . , Xn denote independent, identically distributed, real-valued random variables.
The order statistics based on X1, X2, . . . , Xn , denoted by X (1), X (2), . . . , X (n), are simply
the random variables X1, X2, . . . , Xn placed in ascending order. That is, let � denote the
underlying sample space of the experiment; then, for each ω ∈ �,

X (1)(ω) = min{X1(ω), . . . , Xn(ω)},

X (2)(ω) is the second smallest value from X1(ω), . . . , Xn(ω) and so on, up to X (n)(ω),
the maximum value from X1(ω), . . . , Xn(ω). Hence, the random variables X (1), . . . , X (n)

satisfy the ordering

X (1) ≤ X (2) ≤ · · · ≤ X (n).

There are at least two ways in which order statistics arise in statistics. One is that process
generating the observed data might involve the order statistics of some of underlying, but
unobserved, process. Another is that order statistics are often useful as summaries of a set
of data.

Example 7.20 (A model for software reliability). Consider the model for software reli-
ability considered in Example 6.15. In that model, it is assumed that a piece of software
has M errors or “bugs.” Let Z j denote the testing time required to discover bug j , j =
1, . . . , M . Assume that Z1, Z2, . . . , Z M are independent, identically distributed random
variables.
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Suppose that testing is continued until m bugs have been discovered. Then S1, the time
needed to find the first discovered bug, is the first order statistic Z(1); S2, the time needed
to find the first two bugs, is the second order statistic Z(2), and so on. Thus, a statistical
analysis of this model would require the distribution of (Z(1), . . . , Z(m)). �

Example 7.21 (The sample range). Let X1, . . . , Xn denote independent, identically dis-
tributed random variables. One measure of the variability in the data {X1, . . . , Xn} is the
sample range, defined as the difference between the maximum and minimum values in the
sample; in terms of the order statistics, the sample range is given by X (n) − X (1). �

The distribution theory of the order statistics is straightforward, at least in principle. Let
F denote the distribution function of X j , j = 1, . . . , n. The event that X (n) ≤ t is equivalent
to the event that X j ≤ t , j = 1, . . . , n. Hence, X (n) has distribution function F(n), given by

F(n)(t) = F(t)n.

Similarly, the event that X (n−1) ≤ t is equivalent to the event that at least n − 1 of the X j

are less than or equal to t . Hence, X (n−1) has distribution function F(n−1), given by

F(n−1)(t) = F(t)n + nF(t)n−1(1 − F(t)).

This same approach can be used for any order statistic. The result is given in the following
theorem; the proof is left as an exercise.

Theorem 7.6. Let X1, X2, . . . , Xn denote independent, identically distributed real-valued
random variables, each with distribution function F. Then the distribution function of X (m)

is given by F(m) where

F(m)(t) =
n∑

i=m

(
n

i

)
F(t)i (1 − F(t))n−i , −∞ < t < ∞.

Example 7.22 (Pareto random variables). Let X1, X2, . . . , Xn denote independent, iden-
tically distributed random variables, each with an absolutely continuous distribution with
density function

θx−(θ+1), x > 1,

where θ is a positive constant. Recall that this is a Pareto distribution; see Example 1.28.
The distribution function of this distribution is given by

F(t) =
∫ t

1
θx−(θ+1) dx = 1 − t−θ , t > 1.

Hence, the distribution function of X (m), the mth order statistic, is given by

F(m)(t) =
n∑

i=m

(
n

i

)
(1 − t−θ )i (t−θ )n−i , t > 1. �
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When the distribution given by F is either absolutely continuous or discrete, it is possible
to derive the density function or frequency function, respectively, of the distribution.

Theorem 7.7. Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued
random variables each with distribution function F and range X .

(i) If X1 has a discrete distribution with frequency function p, then X (m) has a discrete
distribution with frequency function

p(m)(t) =
m∑

k=1

(
n

m − k

)
F(t0)m−k

n+k−m∑
j=k

(
n − m + k

j

)
p(t) j [1 − F(t)]n−m+k− j ,

for t ∈ X ; here t0 is the largest element of X less than t.
(ii) If X1 has an absolutely continuous distribution with density function p, then X (m)

has an absolutely continuous distribution with density function

p(m)(t) = n

(
n − 1

m − 1

)
F(t)m−1[1 − F(t)]n−m p(t), −∞ < t < ∞.

Proof. First consider the case in which X1 has a discrete distribution. Let t denote a fixed
element of X . Each observation X1, . . . , Xn falls into one of three sets: (−∞, t0], {t}, or
[t1, ∞). Here t0 denotes the largest element of X less than t , and t1 denotes the smallest
element of X greater than t . Let N1, N2, N3 denote the number of observations falling into
these three sets, respectively. Then

Pr(X (m) = t) =
m∑

k=1

Pr(N1 = m − k, N2 ≥ k) =
m∑

k=1

n+k−m∑
j=k

Pr(N1 = m − k, N2 = j).

Note that (N1, N2) has a multinomial distribution with

Pr(N1 = n1, N2 = n2) =
(

n

n1, n2, n3

)
F(t0)n1 p(t)n2 (1 − F(t))n3 ,

n1 + n2 + n3 = n, where F and p denote the distribution function and frequency function,
respectively, of the distribution of X1. Hence,

Pr(X (m) = t)

=
m∑

k=1

n+k−m∑
j=k

(
n

m − k, j, n − m + k − j

)
F(t0)m−k p(t) j (1 − F(t))n−m+k− j

=
m∑

k=1

F(t0)m−k

(
n

m − k

) n+k−m∑
j=k

(
n − m + k

j

)
p(t) j (1 − F(t))n−m+k− j ,

the result in part (i).
Now suppose that X1 has an absolutely continuous distribution. Recall from Theorem

7.6 that X (m) has distribution function

F(m)(t) =
n∑

i=m

(
n

i

)
F(t)i (1 − F(t))n−i ,
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and, since F is an absolutely continuous function, F(m) is absolutely continuous. Let t denote
a continuity point of p; then, by Theorem 1.7, F ′(t) exists and

F ′
(m)(t) =

n∑
i=m

i

(
n

i

)
F(t)i−1(1 − F(t))n−i p(t) −

n∑
i=m

(n − i)

(
n

i

)
F(t)i (1 − F(t))n−1−i p(t).

Using the identities

(i + 1)

(
n

i + 1

)
= n

(
n − 1

i

)
= (n − i)

(
n

i

)
,

it follows that

m∑
i=m

i

(
n

i

)
F(t)i−1(1 − F(t))n−i =

n−1∑
j=m−1

( j + 1)

(
n

j + 1

)
F(t) j (1 − F(t))n−1− j

= n
n−1∑

j=m−1

(
n − 1

j

)
F(t) j (1 − F(t))n−1− j

and

n∑
i=m

(n − i)

(
n

i

)
F(t)i (1 − F(t))n−1−i = n

n−1∑
i=m

(
n − 1

i

)
F(t)i (1 − F(t))n−1−i .

Hence,

F ′
(m)(t) = n

(
n − 1

j

)
F(t) j (1 − F(t))n−1− j p(t)

∣∣∣
j=m−1

= n

(
n − 1

m − 1

)
F(t)m−1(1 − F(t))n−m p(t),

proving part (ii).
Since p is continuous almost everywhere, it follows that F ′

(m) exists almost everywhere
and, hence, part (iii) of Theorem 1.9 shows that p(m)(t) = F ′

(m)(t) is a density function of
X (m).

Example 7.23 (Geometric random variables). Let X1, X2, . . . , Xn denote independent,
identically distributed random variables, each distributed according to a discrete distribution
with frequency function

θ (1 − θ )x , x = 0, 1, . . . .

This is a geometric distribution; see Example 5.17. It is straightforward to show that the
distribution function of this distribution is given by

F(x) = 1 − (1 − θ )x+1, x = 0, 1, . . . .
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It follows that X (m), the mth order statistic, has a discrete distribution with frequency function

p(m)(t)

=
m∑

k=1

(
n

m − k

)
[1 − (1 − θ )t ]m−k

n+k−m∑
j=k

(
n − m + k

j

)
θ j (1 − θ )t j (1 − θ )(t+1)(n−m+k− j)

=
m∑

k=1

(
n

m − k

)
[1 − (1 − θ )t ]m−k(1 − θ )(t+1)(n−m+k)

n+k−m∑
j=k

(
n − m + k

j

)( θ

1 − θ

) j
. �

Example 7.24 (Uniform random variables). Let X1, X2, . . . , Xn denote independent,
identically distributed random variables, each distributed according to the uniform dis-
tribution on (0, 1). The density function of this distribution is I{0<t<1} and the distribution
function is t , 0 < t < 1. It follows that X (m), the mth order statistic, has an absolutely
continuous distribution with density function

p(m)(t) = n

(
n − 1

m − 1

)
tm−1(1 − t)n−m, 0 < t < 1.

This distribution is known as a beta distribution with parameters m and n − m + 1.
In general, a beta distribution with parameters α and β is an absolutely continuous

distribution with density function

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1, 0 < x < 1;

here α > 0 and β > 0 are not restricted to be integers.
By Theorem 7.6, X (m) has distribution function

n∑
i=m

(
n

i

)
t i (1 − t)n−i , 0 < t < 1.

Hence, we obtain the useful result

n

(
n − 1

m − 1

) ∫ t

0
um−1(1 − u)n−m du =

n∑
i=m

(
n

i

)
t i (1 − t)n−i , 0 < t < 1. �

Pairs of order statistics
An approach similiar to that used in Theorem 7.6 can be used to determine the distribution
function of a pair of order statistics.

Theorem 7.8. Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued
random variables each with distribution function F. Let X (1), X (2), . . . , X (n) denote the
order statistics of X1, . . . , Xn and let m < r .

Then

Pr(X (m) ≤ s, X (r ) ≤ t)

=



∑n
i=m

∑n−i
j=max(0,r−i)

( n
i, j,n−i− j

)
F(s)i [F(t) − F(s)]i− j [1 − F(t)]n−i− j if s < t

Pr(X (r ) ≤ t) if s ≥ t
.
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Proof. Fix s, t ; if t ≤ s, then X (r ) ≤ t implies that X (m) ≤ t ≤ s, m < r , so that

Pr(X (m) ≤ s, X (r ) ≤ t) = Pr(X (r ) ≤ t).

Now suppose that s < t ; let N1 denote the number of the observations X1, . . . , Xn falling
in the interval (−∞, s], let N2 denote the number of observations falling in the interval (s, t],
and let N3 = n − N1 − N2. Then, for m < r ,

Pr(X (m) ≤ s, X (r ) ≤ t) = Pr(N1 ≥ m, N1 + N2 ≥ r )

=
n∑

i=m

n−i∑
j=max(0,r−i)

Pr(N1 = i, N2 = j).

Since (N1, N2, N3) has a multinomial distribution, with probabilities F(s), F(t) −
F(s), 1 − F(t), respectively, it follows that

Pr(X (m) ≤ s, X (r ) ≤ t)

=
n∑

i=m

n−i∑
j=max(0,r−i)

(
n

i, j, n − i − j

)
F(s)i [F(t) − F(s)] j [1 − F(t)]n−i− j ,

as stated in part (i).

If the distribution function F in Theorem 7.8 is absolutely continuous, then the dis-
tribution of the order statistics (X (m), X (r )) is absolutely continuous and the corresponding
density function may be obtained by differentiation, as in Theorem 7.7. However, somewhat
suprisingly, it turns out to be simpler to determine the density function of the entire set of
order statistics and then marginalize to determine the density of the pair of order statistics
under consideration.

Theorem 7.9. Let X1, X2, . . . , Xn denote independent, identically distributed real-valued
random variables each with distribution function F. Suppose that the distribution function F
is absolutely continuous with density p. Then the distribution of (X (1), . . . , X (n)) is absolutely
continuous with density function

n!p(x1) · · · p(xn), x1 < x2 < · · · < xn.

Proof. Let τ denote a permutation of the integers (1, · · · , n) and let

X (τ ) = {x ∈ Xn: xτ1 < xτ2 < · · · < xτn }
where X denotes the range of X1. Let

X0 = ∪τX (τ )

where the union is over all possible permutations; note that

Pr{(X1, . . . , Xn) ∈ X0} = 1

and, hence, we may proceed as if X0 is the range of X = (X1, . . . , Xn).
Let τ X = (Xτ1 , . . . , Xτn ), let X (·) = (X (1), . . . , X (n)) denote the vector of order statistics,

and let h denote a bounded, real-valued function on the range of X (·). Then

E[h(X (·))] =
∑

τ

E{h(X (·))I{X∈X (τ )}}.
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Note that, for X ∈ X (τ ), X (·) = τ X . Hence,

E{h(X (·))I{X∈X (τ )}} = E{h(τ X )I{X∈X (τ )}}.
Let τ0 denote the identity permutation. Then the event that X ∈ X (τ ) is equivalent to the
event that τ X ∈ X (τ0). Hence,

E[h(X (·))] =
∑

τ

E{h(τ X )I{τ X∈X (τ0)}}.

Since X1, . . . , Xn are independent and identically distributed, for any permutation τ ,
τ X has the same distribution as X . It follows that

E[h(X (·))] =
∑

τ

E{h(X )I{X∈X (τ0)}} = n!E[h(X )I{X∈X (τ0)}];

the factor n! is due to the fact that there are n! possible permutations. The result follows.

As noted above, the density function of (X (1), . . . , X (n)) may be used to determine the
density function of some smaller set of order statistics. The following lemma is useful in
carrying out that approach.

Lemma 7.1. Let p denote the density function of an absolutely continuous distribution on
R and let F denote the corresponding distribution function. Then, for any n = 1, 2, . . . ,

and any a < b,

n!
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1) · · · p(xn)I{a<x1<x2<···<xn<b} dx1 · · · dxn = [F(b) − F(a)]n.

Proof. Let X1, X2, . . . , Xn denote independent, identically distributed random variables,
each distributed according to the distribution with distribution function F and density
function p. Then, according to Theorem 7.9, the density function of (X (1), . . . , X (n)) is
given by

n!p(x1) · · · p(xn), −∞ < x1 < x2 < · · · < xn < ∞.

It follows that

Pr(a < X (1) < · · · < X (n) < b)

= n!
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1) · · · p(xn)I{a<x1<x2<···<xn<b} dx1 · · · dxn.

Note that the event a < X (1) < · · · < X (n) < b is simply the event that all observations fall
in the interval (a, b). Hence,

Pr(a < X (1) < · · · < X (n) < b) = Pr(a < X1 < b, a < X2 < b, . . . , a < Xn < b)

= Pr(a < X1 < b) · · · Pr(a < Xn < b)

= [F(b) − F(a)]n,

proving the result.

Using Lemma 7.1 together with Theorem 7.9 yields the density function of any pair of
order statistics; note that the same approach may be used to determine the density function
of any subset of the set of all order statistics.
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Theorem 7.10. Let X1, X2, . . . , Xn denote independent, identically distributed, real-valued
random variables, each with an absolutely continuous distribution with density p and
distribution function F. Let X (1), X (2), . . . , X (n) denote the order statistics of X1, . . . , Xn

and let m < r .
The distribution of (X (m), X (r )) is absolutely continuous with density function

n!

(m − 1)!(r − m − 1)!(n − r )!
F(xm)m−1[F(xr ) − F(xm)]r−m−1[1 − F(xr )]n−r p(xm)p(xr ),

for xm < xr .

Proof. The density function of (X (1), X (2), . . . , X (n)) is given by

n!p(x1) · · · p(xn), −∞ < x1 < x2 < · · · < xn < ∞.

The marginal density of (X (m), X (r )), m < r , is therefore given by

n!
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1) · · · p(xn)I{x1<x2<···<xn} dx1 · · · dxm−1 dxm+1 · · · dxr−1 dxr+1 · · · dxn.

Note that

I{x1<x2<···<xn} = I{x1<···<xm }I{xm<xm+1<···<xr }I{xr <xr+1<···<xn}.

By Lemma 7.1,∫ ∞

−∞
· · ·

∫ ∞

−∞
p(x1) · · · p(xm−1)I{x1<x2<···<xm−1<xm } dx1 · · · dxm−1 = 1

(m − 1)!
F(xm)m−1,

∫ ∞

−∞
· · ·

∫ ∞

−∞
p(xm+1) · · · p(xr−1)I{xm<xm+1<···<xr−1<xr } dxm+1 · · · dxr−1

= 1

(r − m − 1)!
[F(xr ) − F(xm)]r−m−1,

and ∫ ∞

−∞
· · ·

∫ ∞

−∞
p(xr+1) · · · p(xn)I{xr <xr+1<···<xn−1<xn} dxr+1 · · · dxn

= 1

(n − r )!
[1 − F(xr )]n−r .

The result follows.

Example 7.25 (Order statistics of exponential random variables). Let X1, X2, . . . , Xn

denote independent, identically distributed random variables, each with an exponential
distribution with parameter λ > 0; this distribution has density function λ exp(−λx), x > 0,
and distribution function 1 − exp(−λx), x > 0.

According to Theorem 7.9, (X (1), . . . , X (n)) has an absolutely continuous distribution
with density function

n!λn exp

(
−λ

n∑
j=1

x j

)
, 0 < x1 < x2 < · · · < xn < ∞.
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Let

Y1 = X (1), Y2 = X (2) − X (1), . . . , Yn = X (n) − X (n−1);

note that, if X1, . . . , Xn denote event times of some random process, then X (1), . . . , X (n)

denote the ordered event times and Y1, . . . , Yn denote the inter-event times.
The density function of Y = (Y1, . . . , Yn) can be obtained from Theorem 7.2. We can

write (X (1), . . . , X (n)) = h(Y ) ≡ (h1(Y ), . . . , hn(Y )) where

h j (y) = y1 + · · · + y j , j = 1, . . . , n.

It follows that the Jacobian of h is 1 and the density of Y is given by

pY (y) = n!λn exp{−λ[y1 + (y1 + y2) + · · · + (y1 + yn)]}

= n!λn exp

{
−λ

n∑
j=1

(n − j + 1)y j

}
, y j > 0, j = 1, . . . , n.

Since n! = ∏n
j=1(n − j + 1), it follows that Y1, . . . , Yn are independent exponential ran-

dom variables such that Y j has parameter (n − j + 1)λ. �

Example 7.26 (Range of uniform random variables). Let X1, X2, . . . , Xn denote inde-
pendent, identically distributed random variables, each distributed according to a uniform
distribution on (0, 1). Consider the problem of determining the distribution of X (n) − X (1),
the difference between the maximum and minimum values in the sample.

The joint distribution of (X (1), X (n)) is absolutely continuous with density function

n(n − 1)(xn − x1)n−2, 0 < x1 < xn < 1.

Let T = X (n) − X (1) and Y = X (1). Then, using Theorem 7.2, the distribution of (T, Y ) is
absolutely continuous with density function

p(t, y) = n(n − 1)tn−2, 0 < y < t + y < 1.

Hence, the marginal density of T is

pT (t) =
∫ 1−t

0
n(n − 1)tn−2 dy = n(n − 1)tn−2(1 − t), 0 < t < 1.

Thus, the distribution of T is a beta distribution with parameters n − 1 and 2; see Example
7.24. �

7.6 Ranks

Let X1, . . . , Xn denote independent, identically distributed, real-valued random variables
and let X (1), . . . , X (n) denote the corresponding order statistics. It is easy to see that
(X1, . . . , Xn) and (X (1), . . . , X (n)) are not equivalent statistics; in particular, it is not possible
to reconstruct X1, . . . , Xn given only X (1), . . . , X (n). The missing information is the vector
of ranks of X1, . . . , Xn .

The rank of Xi among X1, . . . , Xn is its position in the order statistics and is defined to
be the integer Ri , 1 ≤ Ri ≤ n, satisfying Xi = X (Ri ), provided that X1, . . . , Xn are unique.
Here we assume that common distribution of X1, X2, . . . , Xn is absolutely continuous so



P1: JZX
052184472Xc07 CUNY148/Severini May 24, 2005 3:59

7.6 Ranks 225

that X1, . . . , Xn are unique with probability 1. Let R = (R1, . . . , Rn) denote the vector of
ranks.

The following theorem summarizes the properties of R.

Theorem 7.11. Let X1, . . . , Xn denote independent, identically distributed, real-valued
random variables, each with an absolutely continuous distribution. Then

(i) The statistic (R, X (·)) is a one-to-one function of X.
(ii) (R1, . . . , Rn) is uniformly distributed on the set of all permutations of (1, 2, . . . , n);

that is, each possible value of (R1, . . . , Rn) has the same probability.
(iii) X (·) and R are independent
(iv) For any statistic T ≡ T (X1, . . . , Xn) such that E(|T |) < ∞,

E[T |R = r ] = E[T (X (r1), X (r2), . . . , X (rn ))]

where r = (r1, r2, . . . , rn).

Proof. Clearly, (R, X (·)) is a function of (X1, . . . , Xn). Part (i) of the theorem now follows
from the fact that X j = X (R j ), j = 1, . . . , n.

Let τ denote a permutation of (1, 2, . . . , n) and let

X (τ ) = {x ∈ Xn: xτ1 < xτ2 < · · · < xτn }.
Let

X0 = ∪τX (τ )

where the union is over all possible permutations of (1, 2, . . . , n). Note that

Pr{(X1, . . . , Xn) ∈ X0} = 1

so that we may proceed as if the range of (X1, . . . , Xn) is X0.
Let h denote a real-valued function of R ≡ R(X ) such that E[h(R)] < ∞. Then

E[h(R)] =
∑

τ

E[h(R(X ))I{X∈X (τ )}].

Note that, for X ∈ X (τ ), R(X ) = τ . Hence,

E[h(R)] =
∑

τ

E[h(τ )I{X∈X (τ )}] =
∑

τ

h(τ )Pr(X ∈ X (τ )).

Let τ0 denote the identity permutation. Then

X ∈ X (τ ) if and only if τ X ∈ X (τ0)

and, since the distribution of (X1, X2, . . . , Xn) is exchangeable, τ X has the same distribution
as X . Hence,

Pr(X ∈ X (τ )) = Pr(τ X ∈ X (τ0)) = Pr(X ∈ X (τ0)).

Since there are n! possible permutations of (1, 2, . . . , n) and∑
τ

Pr(X ∈ X (τ )) = 1,
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it follows that Pr(X ∈ X (τ )) = 1/n! for each τ and, hence, that

E[h(R)] = 1

n!

∑
τ

h(τ )

proving part (ii).
Part (iii) follows along similar lines. Let g denote a bounded function of X (·) and let h

denote a bounded function of R.
Note that

E[g(X (·))h(R)] =
∑

τ

E[g(X (·))h(R(X ))I{X∈X (τ )}]

=
∑

τ

E[g(τ X )h(τ )I{X∈X (τ )}]

=
∑

τ

h(τ )E[g(τ X )I{τ X∈X (τ0)}]

=
∑

τ

h(τ )E[g(X )I{X∈X (τ0)}]

= E[g(X )I{X∈X (τ0)}]
∑

τ

h(τ )

= n!E[g(X )I{X∈X (τ0)}]
1

n!

∑
τ

h(τ )

= E[g(X (·))]E[h(R)],

proving part (iii).
Finally, part (iv) follows from the fact that any statistic T ≡ T (X ) may be written as

T̄ (R, X (·)) and, by part (iii) of the theorem,

E[T |R = r ] = E[T̄ (R, X (·))|R = r ] = E[T̄ (r, X (·))] = E[T (X (r1), · · · , X (rn ))].

Example 7.27 (Mean and variance of linear rank statistics). Let R1, R2, . . . , Rn denote
the ranks of a sequence of independent and identically distributed real-valued random
variables, each distributed according to an absolutely continuous distribution. Consider a
statistic of the form

T =
n∑

j=1

a j R j

where a1, a2, . . . , an is a sequence of constants. Here we consider determination of the
mean and variance of T .

Note that each R j has the same marginal distribution. Since

n∑
j=1

R j = n(n + 1)

2
, (7.2)

it follows that E(R j ) = (n + 1)/2, j = 1, . . . , n. Also, each pair (Ri , R j ) has the same
marginal distribution so that Cov(Ri , R j ) does not depend on the pair (i, j).

Let σ 2 = Var(R j ) and c = Cov(Ri , R j ). By (7.2),

Var

(
n∑

j=1

R j

)
= nσ 2 + n(n − 1)c = 0
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so that

c = − σ 2

n − 1
.

To find σ 2, note that R1 = j with probability 1/n. Hence,

E
(
R2

1

) = 1

n

n∑
j=1

j2 = (n + 1)(2n + 1)

6
.

Since E(R1) = (n + 1)/2, it follows that σ 2 = (n2 − 1)/12 and c = −(n + 1)/12.
Now consider the statistic T . The expected value of T is given by

E(T ) = n + 1

2

n∑
j=1

a j ;

the variance of T is given by

Var(T ) = σ 2
n∑

j=1

a2
j + 2c

∑
i< j

ai a j = n2 − 1

12

n∑
j=1

a2
j − n + 1

6

∑
i< j

ai a j .

For instance, consider a j = j ; when the data are collected in time order, the statistic∑n
j=1 j R j may be used to test the hypothesis of a time trend in the data. If the data are in

fact independent and identically distributed, this statistic has mean

n(n + 1)2

4

and variance

n2 + n

12

n∑
j=1

j2 − n + 1

12

n∑
j=1

j3 = n2(n + 1)(n2 − 1)

144
. �

Example 7.28 (Conditional expectation of a sum of uniform random variables). Let
X1, . . . , Xn denote independent, identically distributed random variables, each uniformly
distributed on (0, 1) and let a1, . . . , an denote a sequence of constants. Consider

E

{
n∑

j=1

a j X j |R1, . . . , Rn

}

where (R1, . . . , Rn) denotes the vector of ranks.
Let (r1, . . . , rn) denote a permutation of (1, . . . , n). According to Theorem 7.11, part (iv),

E

{
n∑

j=1

a j X j |R1 = r1, . . . , Rn = rn

}
= E

{
n∑

j=1

a j X (r j )

}
=

n∑
j=1

a j E{X (r j )}.

From Example 7.19, we know that X (m) has a beta distribution with parameters m and
n − m + 1; hence, it is straightforward to show that

E{X (m)} = m

n + 1
.
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It follows that

E

{
n∑

j=1

a j X j |R1 = r1, . . . , Rn = rn

}
=

n∑
j=1

a j
r j

n + 1

so that

E

{
n∑

j=1

a j X j |R1, . . . , Rn

}
= 1

n + 1

n∑
j=1

a j R j ;

that is, E{∑n
j=1 a j X j |R1, . . . , Rn} is a linear rank statistic. �

7.7 Monte Carlo Methods

Let X denote a random variable, possibly vector-valued, with distribution function FX .
Suppose we are interested in the probability Pr(g(X ) ≤ y) where g is a real-valued function
on the range of X and y is some specified value. For instance, this probability could represent
a p-value or a coverage probability. In this chapter, we have discussed several methods of
determining the distribution of Y = g(X ). However, these methods often require substantial
mathematical analysis that, in some cases, is very difficult or nearly impossible.

Consider the following alternative approach. Suppose that we may construct a process
that generates data with the same distribution as X ; let X1, . . . , X N denote independent,
identically distributed random variables, each with the same distribution as X and let

Y j = g(X j ), j = 1, . . . , N .

Let

P̂N = 1

N

N∑
j=1

I{Y j ≤y}

denote the proportion of Y1, . . . , YN that are less than or equal to y. Thus, if N is large
enough, we expect that

P̂N ≈ Pr(Y ≤ y).

Hence, we use P̂N as an estimate of Pr(Y ≤ y). In fact, any type of statistical method, such
as a confidence interval, may be used to analyze the data generated in this manner.

This approach is known as the Monte Carlo method. The Monte Carlo method is a vast
topic. In this section, we give only a brief overview of the method; for further details, see
Section 7.9.

Example 7.29 (Ratio of exponential random variables to their sum). Let X = (X1, X2)
denote a random vector such that X1, X2 are independent, identically distributed exponential
random variables with mean λ and let Y = X1/(X1 + X2); see Example 7.7. Consider the
probability Pr(Y ≤ 1/4) for λ = 1.

To estimate this probability, we can generate N pairs of independent standard exponential
random variables, (X11, X21), . . . , (X1N , X2N ), and define

Y j = X1 j

X1 j + X2 j
, j = 1, . . . , N .
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When this approach was used with N = 1,000, the estimate P̂N = 0.244 was obtained; when
N = 10,000 was used, the estimate P̂N = 0.2464 was obtained. Recall that the distribution
of Y is uniform on the interval (0, 1); thus, the exact probability Pr(Y ≤ 1/4) is 1/4. �

Of course, use of the Monte Carlo method requires that we be able to generate random
variables with a specified distribution. Standard statistical packages generally have proce-
dures for generating data from commonly used distributions. In many cases if the density
or distribution function of X is available, then it is possible to construct a method for gen-
erating data with the same distribution as X ; this is particularly true if X is real-valued or
is a random vector with independent components. These methods are generally based on
a procedure to generate variables that are uniformly distributed on (0, 1); such procedures
are well-studied and widely available. However, depending on the exact distribution of X ,
the actual method required to generate the data may be quite sophisticated. The following
two examples illustrate some simple methods that are often applicable.

Example 7.30 (Generation of standard exponential random variables). Consider genera-
tion of observations with a standard exponential distribution, required in Example 7.29. Let
U denote a random variable that is uniformly distributed on (0, 1) and let X = − log(1 − U ).
Then

Pr(X ≤ x) = Pr(U ≤ 1 − exp(−x)) = 1 − exp(−x), x > 0.

Hence, a sequence of independent uniform random variables may be easily transformed to
a sequence of independent standard exponential random variables.

This approach, sometimes called the inversion method, can be used whenever X has
distribution function F on the real line and the quantile function corresponding to F is
available; see the proof of Theorem 1.3. �

Example 7.31 (Hierarchical models). Suppose that the random variable X follows a hier-
archical model, as discussed in Section 5.4. Specifically, suppose that the distribution of X
can be described in two stages: the conditional distribution of X given a random variable
λ and the marginal distribution of λ. If algorithms for generating data from the conditional
distribution of X given λ and from the marginal distribution of λ are both available, then
random variables from the distribution of X may be generated using a two-stage process.
For each j = 1, . . . , N , suppose that λ j is drawn from the marginal distribution of λ; then
we can draw X j from the conditional distribution of X given λ = λ j .

This method can also be used in cases in which the distribution of X is not originally
described in terms of a hierarchical model, but it is possible to describe the distribution of
X in terms of a hierarchical model. �

The primary advantage of the Monte Carlo method is that it may be used in (nearly)
every problem; it is particularly useful in cases, such as the one in the following example,
in which an exact analysis is very difficult.

Example 7.32 (An implicitly defined statistic). Let X = (Z1, . . . , Zn) where the Z j are
independent and identically distributed standard exponential random variables and consider
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the statistic Y ≡ Y (Z1, . . . , Zn) defined by the following equation:

n∑
j=1

(
ZY

j − 1
)

log Z j = n.

This statistic arises in connection with estimation of the parameters of the Weibull distri-
bution.

Since an explicit expression for Y in terms of Z1, . . . , Zn is not available, an exact
expression for the distribution of Y is difficult, if not impossible, to determine. However, the
Monte Carlo method is still easily applied; all that is needed is an algorithm for determining
Y from a given value of X = (Z1, . . . , Zn). �

There are a number of disadvantages to the Monte Carlo method. One is that, if the
method is repeated, that is, if a new set of observations is generated, a new result for P̂N is
obtained. Although the variation in different values of P̂N may be decreased by choosing a
very large value of N , clearly it would be preferable if two sets of “identical” calculations
would lead to identical results. This is particularly a problem in complex settings in which
generation of each Y j is time-consuming and, hence, N must be chosen to be relatively small.
In view of this variation, it is standard practice to supplement each estimate of Pr(Y ≤ y)
with its standard error.

Example 7.33 (Ratio of exponential random variables to their sum). Consider the proba-
bility considered in Example 7.29. When the Monte Carlo analysis was repeated, the results
P̂N = 0.246 for N = 1,000 and P̂N = 0.2428 for N = 10,000 were obtained. These may
be compared to the results obtained previously. �

A second drawback of the Monte Carlo method is that, because no formula for Pr(Y ≤ y)
is available, it may be difficult to see how the probability varies as different parameters in
the problem vary.

Example 7.34 (Ratio of exponentials random variables to their sum). Recall
Example 7.29. The probability of interest was Pr(Y ≤ 1/4), calculated under the assumption
that λ = 1. Suppose that we now want the same probability calculated under the assumption
that λ = 5. Note that the distribution of the statistic

X1

X1 + X2

does not depend on the value of λ. To see this, note that we may write X j = λZ j , j = 1, 2,
where Z1, Z2 are independent standard exponential random variables; this result also follows
from the general results on invariance presented in Section 5.6.

When the Monte Carlo approach was used with λ = 5 and N = 10,000, the result was
P̂N = 0.2500. Although this is close to the result calculated under λ = 1 (0.2464), it is not
clear from these values that the two probabilities are exactly equal. �

Despite these drawbacks, the Monte Carlo method is a very useful and powerful method.
It is invaluable in cases in which an exact analysis is not available. Furthermore, the gen-
erality of the Monte Carlo method gives the statistical analyst more flexibility in choosing
a statistical model since models do not have to be chosen on the basis of their analytical
tractability. Also, even in cases in which an exact analysis is possible, results from a Monte
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Carlo analysis are very useful as a check on the theoretical calculations. When approxima-
tions to Pr(Y ≤ y) are used, as will be discussed in Chapters 11–14, the results of a Monte
Carlo study give us a method of assessing the accuracy of the approximations.

The importance of the drawbacks discussed above can be minimized by more sophis-
ticated Monte Carlo methods. For instance, many methods are available for reducing the
variation in the Monte Carlo results. Also, before carrying out the Monte Carlo study, it is
important to do a thorough theoretical analysis. For instance, in Example 7.34, even if the
distribution of X1/(X1 + X2) is difficult to determine analytically, it is easy to show that
the distribution of this ratio does not depend on the value of λ; thus, the results for λ = 1
can be assumed to hold for all λ > 0.

7.8 Exercises

7.1 Let X denote a random variable with a uniform distribution on the interval (0, 1). Find the density
function of

Y = X

1 − X
.

7.2 Let X denote a random variable with a standard normal distribution. Find the density function of
Y = 1/X .

7.3 Let X denote a random variable with a Poisson distribution with mean 1. Find the frequency
function of Y = X/(1 + X ).

7.4 Let X denote a random variable with an F-distribution with ν1 and ν2 degrees of freedom. Find
the density function of

Y = ν1

ν2

X

1 + (ν1/ν2)X
.

7.5 Let X1 and X2 denote independent, real-valued random variables with absolutely continuous
distributions with density functions p1 and p2, respectively. Let Y = X1/X2. Show that Y has
density function

pY (y) =
∫ ∞

−∞
|z|p1(zy)p2(z) dz.

7.6 Let X1, X2 denote independent random variables such that X j has an absolutely continuous
distribution with density function

λ j exp(−λ j x), x > 0,

j = 1, 2, where λ1 > 0 and λ2 > 0. Find the density of Y = X1/X2.

7.7 Let X1, X2, X3 denote independent random variables, each with an absolutely continuous distri-
bution with density function

λ exp{−λx}, x > 0

where λ > 0. Find the density function of Y = X1 + X2 − X3.

7.8 Let X and Y denote independent random variables, each with an absolutely continuous distribution
with density function

p(x) = 1

2
exp{−|x |}, −∞ < x < ∞.

Find the density function of Z = X + Y .
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7.9 Let X1 and X2 denote independent random variables, each with a uniform distribution on (0, 1).
Find the density function of Y = log(X1/X2).

7.10 Let X and Y denote independent random variables such that X has a standard normal distribution
and Y has a standard exponential distribution. Find the density function of X + Y .

7.11 Suppose X = (X1, X2) has density function

p(x1, x2) = x−2
1 x−2

2 , x1 > 1, x2 > 1.

Find the density function of X1 X2.

7.12 Let X1, . . . , Xn denote independent, identically distributed random variables, each of which is
uniformly distributed on the interval (0, 1). Find the density function of T = ∏n

j=1 X j .

7.13 Let X1, X2, . . . , Xn denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function 1/x2, x > 1, and assume that n ≥ 3.
Let

Y j = X j Xn, j = 1, . . . , n − 1.

Find the density function of (Y1, . . . , Yn−1).

7.14 Let X be a real-valued random variable with an absolutely continuous distribution with density
function p. Find the density function of Y = |X |.

7.15 Let X denote a real-valued random variable with a t-distribution with ν degrees of freedom.
Find the density function of Y = X 2.

7.16 Let X and Y denote independent discrete random variables, each with density function p(·; θ )
where 0 < θ < 1. For each of the choices of p(·; θ ) given below, find the conditional distribution
of X given S = s where S = X + Y .
(a) p( j ; θ ) = (1 − θ )θ j , j = 0, . . .

(b) p( j ; θ ) = (1 − θ )[− log(1 − θ )] j/j!, j = 0, . . .

(c) p( j ; θ ) = θ j+1/[ j(− log(1 − θ ))], j = 0, . . .

Suppose that S = 3 is observed. For each of the three distributions above, give the conditional
probabilities of the pairs (0, 3), (1, 2), (2, 1), (3, 0) for (X, Y ).

7.17 Let X and Y denote independent random variables, each with an absolutely continuous distri-
bution with density function

α

xα+1
, x > 1

where α > 1. Let S = XY and T = X/Y . Find E(X |S) and E(T |S).

7.18 Let X denote a nonnegative random variable with an absolutely continuous distribution. Let F
and p denote the distribution function and density function, respectively, of the distribution.
The hazard function of the distribution is defined as

h(x) = p(x)

1 − F(x)
, x > 0.

Let X1, . . . , Xn denote independent, identically distributed random variables, each with the
same distribution as X , and let

Y = min(X1, . . . , Xn).

Find the hazard function of Y .

7.19 Let X1, X2 denote independent random variables, each with a standard exponential distribution.
Find E(X1 + X2|X1 − X2) and E(X1 − X2|X1 + X2).

7.20 Let X1, . . . , Xn denote independent random variables such that X j has a normal distribution
with mean µ j and standard deviation σ j . Find the distribution of X̄ .
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7.21 Let X1, . . . , Xn denote independent random variables such that X j has an absolutely continuous
distribution with density function

p j (x j ) = �(α j )
−1x

α j −1
j exp{−x j }, x j > 0

where α j > 0, j = 1, . . . , n. Find the density function of Y = ∑n
j=1 X j .

7.22 Let X1, . . . , Xn denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the density function of R = X (n) − X (1).

7.23 Prove Theorem 7.6.

7.24 Let X1, X2, . . . , Xn be independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

1

x2
, x > 1.

Let X ( j) denote the j th order statistic of the sample. Find E[X ( j)]. Assume that n ≥ 2.

7.25 Let X1, X2, X3 denote independent, identically distributed random variables, each with an expo-
nential distribution with mean λ. Find an expression for the density function of X (3)/X (1).

7.26 Let X1, . . . , Xn denote independent, identically distributed random variables, each with a uni-
form distribution on (0, 1) and let X (1), . . . , X (n) denote the order statistics. Find the correlation
of X (i) and X ( j), i < j .

7.27 Let X1, . . . , Xn denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the distribution of

n∑
j=1

(X j − X (1)).

7.28 Let X = (X1, . . . , Xn) where X1, . . . , Xn are independent, identically distributed random vari-
ables, each with an absolutely continuous distribution with range X . Let X (·) = (X (1), . . . , X (n))
denote the vector of order statistics and R = (R1, . . . , Rn) denote the vector of ranks corre-
sponding to (X1, . . . , Xn).
(a) Let h denote a real-valued function on X n . Show that if h is permutation invariant, then

h(X ) = h(X (·)) with probability 1

and, hence, that h(X ) and R are independent.

(b) Does the converse hold? That is, suppose that h(X ) and R are independent. Does it follow
that h is permutation invariant?

7.29 Let U1, U2 denote independent random variables, each with a uniform distribution on the interval
(0, 1). Let

X1 = √
(−2 log U1) cos(2πU2)

and

X2 = √
(−2 log U1) sin(2πU2).

Find the density function of (X1, X2).

7.30 Consider an absolutely continuous distribution with nonconstant, continuous density function p
and distribution function F such that F(1) = 1 and F(0) = 0. Let (X1, Y1), (X2, Y2), . . . denote
independent pairs of independent random variables such that each X j is uniformly distributed
on (0, 1) and each Y j is uniformly distributed on (0, c), where

c = sup
0≤t≤1

p(t).
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Define a random variable Z as follows. If Y1 ≤ p(X1), then Z = X1. Otherwise, if Y2 ≤ p(X2),
then Z = X2. Otherwise, if Y3 ≤ p(X3), then Z = X3, and so on. That is, Z = X j where

j = min{i : Yi ≤ p(Xi )}.

(a) Show c > 1.

(b) Find the probability that the procedure has not terminated after n steps. That is, find the
probability that Z = X j for some j > n. Based on this result, show that the procedure will
eventually terminate.

(c) Find the distribution function of Z .

7.31 Let X denote a random variable with an absolutely continuous distribution with density func-
tion p and suppose that we want to estimate E[h(X )] using Monte Carlo simulation, where
E[|h(X )|] < ∞. Let Y1, Y2, . . . , Yn denote independent, identically distributed random vari-
ables, each with an absolutely continuous distribution with density g. Assume that the distribu-
tions of X and Y1 have the same support. Show that

E

{
1

n

n∑
j=1

p(Y j )

g(Y j )
h(Y j )

}
= E[h(X )].

This approach to estimating E[h(X )] is known as importance sampling; a well-chosen
density g can lead to greatly improved estimates of E[h(X )].

7.9 Suggestions for Further Reading

The problem of determining the distribution of a function of a random variable is discussed in many
books on probability and statistics. See Casella and Berger (2002, Chapter 2) and Woodroofe (1975,
Chapter 7) for elementary treatments and Hoffmann-Jorgenson (1994, Chapter 8) for a mathematically
rigorous, comprehensive treatment of this problem.

Order statistics are discussed in Stuart and Ord (1994, Chapter 14) and Port (1994, Chapter 39).
There are several books devoted to the distribution theory associated with order statistics and ranks;
see, for example, Arnold, Balakrishnan, and Nagaraja (1992) and David (1981).

Monte Carlo methods are becoming increasingly important in statistical theory and methods.
Robert and Casella (1999) gives a detailed account of the use of Monte Carlo methods in statistics;
see also Hammersley and Handscomb (1964), Ripley (1987), and Rubinstein (1981).
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8

Normal Distribution Theory

8.1 Introduction

The normal distribution plays a central role in statistical theory and practice, both as a model
for observed data and as a large-sample approximation to the distribution of wide range of
statistics, as will be discussed in Chapters 11–13. In this chapter, we consider in detail the
distribution theory associated with the normal distribution.

8.2 Multivariate Normal Distribution

A d-dimensional random vector X has a multivariate normal distribution with mean vector
µ ∈ Rd and covariance matrix � if, for any a ∈ Rd , aT X has a normal distribution with
mean aT µ and variance aT �a. Here � is a d × d nonnegative-definite, symmetric matrix.
Note that aT �a might be 0, in which case aT X = aT µ with probability 1.

The following result establishes several basic properties of the multivariate normal dis-
tribution.

Theorem 8.1. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean vector µ and covariance matrix �.

(i) The characteristic function of X is given by

ϕ(t) = exp

{
i t T µ − 1

2
t T �t

}
, t ∈ Rd .

(ii) Let B denote a p × d matrix. Then B X has a p-dimensional multivariate normal
distribution with mean vector Bµ and covariance matrix B�BT .

(iii) Suppose that the rank of � is r < d. Then there exists a (d − r )-dimensional
subspace of Rd , V , such that for any v ∈ V ,

Pr{vT (X − µ) = 0} = 1.

There exists an r × d matrix C such that Y = C X has a multivariate normal
distribution with mean Cµ and diagonal covariance matrix of full rank.

(iv) Let X = (X1, X2) where X1 is p-dimensional and X2 is (d − p)-dimensional. Write
µ = (µ1, µ2) where µ1 ∈ Rp and µ2 ∈ Rd−p, and write

� =
(

�11 �12

�21 �22

)

235
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where �11 is p × p, �12 = �T
21 is p × (d − p), and �22 is (d − p) × (d − p). Then

X1 has a multivariate normal distribution with mean vector µ1 and covariance
matrix �11.

(v) Using the notation of part (iv), X1 and X2 are independent if and only if �12 = 0.
(vi) Let Y1 = M1 X and Y2 = M2 X where M1 is an r × d matrix of constants and M2

is an s × d matrix of constants. If M1�M2 = 0 then Y1 and Y2 are independent.
(vii) Let Z1, . . . , Zd denote independent, identically distributed standard normal ran-

dom variables and let Z = (Z1, . . . , Zd ). Then Z has a multivariate normal distri-
bution with mean vector 0 and covariance matrix given by the d × d identity matrix.
A random vector X has a multivariate normal distribution with mean vector µ and
covariance matrix � if and only if X has the same distribution as µ + �

1
2 Z.

Proof. Let a ∈ Rd . Since aT X has a normal distribution with mean aT µ and variance
aT �a, it follows that

E[exp{i t(aT X )}] = exp

{
i t(aT µ) − t2

2
(aT �a)

}
.

Hence, for any t ∈ Rd ,

E[exp{i t T X}] = exp

{
i t T µ − 1

2
t T �t

}
,

proving part (i).
Let a ∈ Rp. Then BT a ∈ Rd so that aT B X has a normal distribution with mean aT Bµ

and variance aT B�BT a; that is, for all a ∈ Rp, aT (B X ) has a normal distribution with
mean aT (Bµ) and variance aT (B�BT )a. Part (ii) of the theorem now follows from the
definition of the multivariate normal distribution.

Suppose that � has rank r ; let (λ1, e1), . . . , (λr , er ) denote the eigenvalue–eigenvector
pairs of �, including multiplicities, corresponding to the nonzero eigenvalues so that

� = λ1e1eT
1 + · · · + λr er eT

r .

Consider the linear subspace of Rd spanned by {e1, . . . , er } and let V denote the orthog-
onal complement of that space. Then, for any v ∈ V , �v = 0; hence, vT X has a normal
distribution with mean vT µ and variance 0, proving the first part of (iii). For the matrix C
take the r × d matrix with j th row given by eT

j . Then C�CT is the diagonal matrix with
j th diagonal element λ j . This proves the second part of (iii).

Part (iv) of the theorem is a special case of part (ii) with the matrix B taken to be of the
form

B = ( Ip 0 )

where Ip is the p × p identity matrix and 0 is a p × (d − p) matrix of zeros.
Let ϕ1 denote the characteristic function of X1, let ϕ2 denote the characteristic function

of X2, and let ϕ denote the characteristic function of X = (X1, X2). Then, from parts (i) and
(iv) of the theorem,

ϕ1(t) = exp

{
i t T µ1 − 1

2
t T �11t

}
, t ∈ Rp,



P1: JZP
052184472Xc08 CUNY148/Severini May 24, 2005 17:54

8.2 Multivariate Normal Distribution 237

ϕ2(t) = exp

{
i t T µ2 − 1

2
t T �22t

}
, t ∈ Rd−p,

and

ϕ(t) = exp

{
i t T µ − 1

2
t T �t

}
, t ∈ Rd ;

here µ j = E(X j ), j = 1, 2.
Let t1 ∈ Rp, t2 ∈ Rd−p, and t = (t1, t2). Then

t T µ = t T
1 µ1 + t T

2 µ2

and

t T �t = t T
1 �11t1 + t T

2 �22t2 + 2t T
1 �12t2.

It follows that

ϕ(t) = ϕ1(t1)ϕ2(t2) exp
{−t T

1 �12t2
}
.

Part (v) of the theorem now follows from Corollary 3.3.
To prove part (vi), let

M =
(

M1

M2

)

and let Y = M X . Then, by part (ii) of the theorem, Y has a multivariate normal distribution
with covariance matrix (

MT
1 �M1 MT

1 �M2

MT
2 �M1 MT

2 �M2

)
;

the result now follows from part (v) of the theorem.
Let a = (a1, . . . , ad ) ∈ Rd . Then aT Z = ∑d

j=1 a j Z j has characteristic function

E

[
exp

{
i t

d∑
j=1

a j Z j

}]
=

d∏
j=1

E[exp{i ta j Z j }] =
d∏

j=1

exp

(
−1

2
a2

j t
2

)

= exp

{
−1

2

d∑
j=1

a2
j t

2

}
, t ∈ R,

which is the characteristic function of a normal distribution with mean 0 and variance∑d
j=1 a2

j . Hence, Z has a multivariate normal distribution as stated in the theorem.

Suppose X has the same distribution as µ + �
1
2 Z . Then aT X has the same distribution

as aT µ + aT �
1
2 Z , which is normal with mean aT µ and variance

aT �
1
2 �

1
2 a = aT �a;

it follows that X has a multivariate normal distribution with mean vector µ and covariance
matrix �.

Now suppose that X has a multivariate normal distribution with mean vector µ and
covariance matrix �. Then, for any a ∈ Rd , aT X has a normal distribution with mean aT µ

and variance aT �a. Note that this is the same distribution as aT (µ + �
1
2 Z ); it follows from
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Corollary 3.2 that X has the same distribution as µ + �
1
2 Z . Hence, part (vii) of the theorem

holds.

Example 8.1 (Bivariate normal distribution). Suppose that X = (X1, X2) has a two-
dimensional multivariate normal distribution. Then �, the covariance matrix of the distri-
bution, is of the form

� =
(

σ 2
1 σ12

σ21 σ 2
2

)

where σ 2
j denotes the variance of X j , j = 1, 2, and σ12 = σ21 denotes the covariance of

Xi , X j .
We may write σ12 = ρσ1σ2 so that ρ denotes the correlation of X1 and X2. Then

� =
(

σ1 0
0 σ2

) (
1 ρ

ρ 1

) (
σ1 0
0 σ2

)
.

It follows that � is nonnegative-definite provided that(
1 ρ

ρ 1

)

is nonnegative-definite. Since this matrix has eigenvalues 1 − ρ, 1 + ρ, � is nonnegative-
definite for any −1 ≤ ρ ≤ 1. If ρ = ±1, then X1/σ1 − ρX2/σ2 has variance 0. �

Example 8.2 (Exchangeable normal random variables). Consider a multivariate normal
random vector X = (X1, X2, . . . , Xn) and suppose that X1, X2, . . . , Xn are exchangeable
random variables. Let µ and � denote the mean vector and covariance matrix, respectively.
Then, according to Theorem 2.8, each X j has the same marginal distribution; hence, µ

must be a constant vector and the diagonal elements of � must be equal. Also, each pair
(Xi , X j ) must have the same distribution; it follows that the Cov(Xi , X j ) is a constant, not
depending on i, j . Hence, � must be of the form

� = σ 2




1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ
...

ρ ρ ρ · · · 1




for some constants σ ≥ 0 and ρ. Of course, � is a valid covariance matrix only for certain
values of ρ; see Exercise 8.8. �

Example 8.3 (Principal components). Let X denote a d-dimensional random vector with
a multivariate normal distribution with mean vector µ and covariance matrix �. Consider
the problem of finding the linear function aT X with the maximum variance; of course, the
variance of aT X can be made large by choosing the elements of a to be large in magnitude.
Hence, we require a to be a unit vector. Since

Var(aT X ) = aT �a,

we want to find the unit vector a that maximizes aT �a.
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Let (λ1, e1), . . . , (λd , ed ) denote the eigenvalue–eigenvector pairs of �, λ1 ≥ λ2 ≥ · · · ≥
λd , so that

� = λ1e1eT
1 + · · · + λdedeT

d .

Note we may write a = c1e1 + · · · cded for some scalar constants c1, c2, . . . , cd ; since
aT a = 1, it follows that c2

1 + · · · + c2
d = 1.

Hence,

aT �a = λ1c2
1 + · · · + λdc2

d ,

which is maximized, subject to the restriction c2
1 + · · · + c2

d = 1, by c2
1 = 1, c2

2 = · · · =
c2

d = 0. That is, the variance of aT X is maximized by taking a to be the eigenvector
corresponding to the largest eigenvalue of �; aT X is called the first principal component
of X . �

Example 8.4 (The multivariate normal distribution as a transformation model). Consider
the class of multivariate normal distributions with mean vector µ ∈ Rd and covariance
matrix �, where � is an element of the set of all d × d positive-definite matrices; we will
denote this set by Cd .

For A ∈ Cd and b ∈ Rd let

(A, b)X = AX + b.

Consider the set of transformations G of the form (A, b) with A ∈ Cd and b ∈ Rd . Since

(A1, b1)(A0, b0)X = A1(A0 X + b0) + b1 = A1 A0 X + A1b0 + b1,

define the operation

(A1, b1)(A0, b0) = (A1 A0, A1b0 + b1).

It is straightforward to show that G is a group with respect to this operation. The identity
element of the group is (Id , 0) and the inverse operation is given by

(A, b)−1 = (A−1, −A−1b).

If X has a multivariate normal distribution with mean vector µ and covariance matrix
�, then, by Theorem 8.1, (A, b)X has a multivariate normal distribution with mean vector
Aµ + b and positive definite covariance matrix A� AT . Clearly, the set of all multivariate
normal distributions with mean vector µ ∈ Rd and covariance matrix � ∈ Cd is invariant
with respect to G.

As discussed in Section 5.6, G may also be viewed as acting on the parameter space of
the model Cd × Rd ; here

(A, b)(�, µ) = (A� AT , Aµ + b). �

Density of the multivariate normal distribution
For the case in which the covariance matrix is positive-definite, it is straightforward to
derive the density function of the multivariate normal distribution.

Theorem 8.2. Let X be a d-dimensional random vector with a multivariate normal dis-
tribution with mean µ and covariance matrix �. If |�| > 0 then the distribution of X is
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absolutely continuous with density

(2π )−
d
2 |�|− 1

2 exp

{
−1

2
(x − µ)T �−1(x − µ)

}
, x ∈ Rd .

Proof. Let Z be a d-dimensional vector of independent, identically distributed standard
normal random variables. Then Z has density

d∏
i=1

1

(2π )
1
2

exp

{
−1

2
z2

i

}
= (2π )−

d
2 exp

{
−1

2
zT z

}
, z ∈ Rd .

By Theorem 8.1 part (vi), the density of X is given by the density of µ + �
1
2 Z . Let

W = µ + �
1
2 Z ; this is a one-to-one transformation since |�| > 0. Using the change-of-

variable formula, the density of W is given by

(2π )−
d
2 exp

{
−1

2
(w − µ)T �−1(w − µ)

} ∣∣∣ ∂z

∂w

∣∣∣.
The result now follows from the fact that∣∣∣ ∂z

∂w

∣∣∣ = |�|− 1
2 .

Example 8.5 (Bivariate normal distribution). Suppose X is a two-dimensional random
vector with a bivariate normal distribution, as discussed in Example 8.1. The parameters
of the distribution are the mean vector, (µ1, µ2), and the covariance matrix, which may be
written

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
.

The density of the bivariate normal distribution may be written

1

2πσ1σ2
√

(1 − ρ2)
exp

{
− 1

2(1 − ρ2)

[(
x1 − µ1

σ1

)2

− 2ρ
x1 − µ1

σ1

x2 − µ2

σ2
+

(
x2 − µ2

σ2

)2]
]}

,

for (x1, x2) ∈ R2. �

8.3 Conditional Distributions

An important property of the multivariate normal distribution is that the conditional distri-
bution of one subvector of X given another subvector of X is also a multivariate normal
distribution.

Theorem 8.3. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean µ and covariance matrix �.
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Write X = (X1, X2) where X1 is p-dimensional and X2 is (d − p)-dimensional, µ =
(µ1, µ2) where µ1 ∈ Rp and µ2 ∈ Rd−p, and

� =
(

�11 �12

�21 �22

)

where �11 is p × p, �12 = �T
21 is p × (d − p), and �22 is (d − p) × (d − p).

Suppose that |�22| > 0. Then the conditional distribution of X1 given X2 = x2 is a
multivariate normal distribution with mean vector

µ1 + �12�
−1
22 (x2 − µ2)

and covariance matrix

�11 − �12�
−1
22 �21.

Proof. Let

Z =
(

Ip −�12�
−1
22

0 Iq

)
X ;

then Z has a multivariate normal distribution with covariance matrix(
�11 − �12�

−1
22 �21 0

0 �22

)

where q = d − p. Write Z = (Z1, Z2) where Z1 has dimension p and Z2 has dimension q.
Note that Z2 = X2. Then, by part (v) of Theorem 8.1, Z1 and X2 are independent. It follows
that the conditional distribution of Z1 given X2 is the same as the marginal distribution of
Z1, multivariate normal with mean µ1 − �12�

−1
22 µ2 and covariance matrix

�11 − �12�
−1
22 �21.

Since

Z1 = X1 − �12�
−1
22 X2,

X1 = Z1 + �12�
−1
22 X2,

and the conditional distribution of X1 given X2 = x2 is multivariate normal with mean given
by

E(Z1|X2 = x2) + �12�
−1
22 x2 = µ1 − �12�

−1
22 µ2 + �12�

−1
22 x2 = µ1 + �12�

−1
22 (x2 − µ2)

and covariance matrix

�11 − �12�
−1
22 �21,

proving the theorem.

Example 8.6 (Bivariate normal). Suppose that X has a bivariate normal distribution, as
discussed in Example 8.5, and consider the conditional distribution of X1 given X2 = x2.
Then �11 = σ 2

1 , �12 = ρσ1σ2, and �22 = σ 2
2 . It follows that this conditional distribution

is normal, with mean

µ1 + ρ
σ1

σ2
(x2 − µ2)
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and variance

σ 2
1 − ρ2σ 2

1 = (1 − ρ2)σ 2
1 . �

Example 8.7 (Least squares). Let X be a d-dimensional random vector with a multivariate
normal distribution with mean µ and covariance matrix �. Write X = (X1, X2), where X1

is real-valued, and partition µ and � in a similar manner: µ = (µ1, µ2),

� =
(

�11 �12

�21 �22

)
.

For a given 1 × (d − 1) matrix A and a given scalar a ∈ R, define

S(A, a) = E[(X1 − a − AX2)2] = (µ1 − a − Aµ2)2 + �11 + A�22 AT − 2�12 A

and suppose we choose A and a to minimize S(A, a).
First note that, given A, a must satisfy

a = µ1 − Aµ2,

so that (µ1 − a − Aµ2)2 = 0. Hence, A may be chosen to minimize

A�22 AT − 2�12 AT . (8.1)

Write A = �12�
−1
22 + A1. Then

A�22 AT − 2�12 AT = A1�22 AT
1 − �12�

−1
22 �21. (8.2)

Minimizing (8.1) with respect to A is equivalent to minimizing (8.2) with respect to A1.
Since �22 is nonnegative-definite, (8.2) is minimized by A1 = 0; hence, (8.1) is minimized
by A = �12�

−1
22 . That is, the affine function of X2 that minimizes E[X1 − (a + AX2)]2 is

given by

µ1 + �12�
−1
22 (X2 − µ2),

which is simply E(X1|X2). This is to be expected given Corollary 2.2. �

Conditioning on a degenerate random variable
Theorem 8.3 may be extended to the case in which the conditioning random vector, X2, has
a singular covariance matrix.

Theorem 8.4. Let X be a d-dimensional random vector with a multivariate normal distri-
bution with mean µ and covariance matrix �.

Write X = (X1, X2) where X1 is p-dimensional and X2 is (d − p)-dimensional, µ =
(µ1, µ2) where µ1 ∈ Rp and µ2 ∈ Rd−p, and

� =
(

�11 �12

�21 �22

)

where �11 is p × p, �12 = �21 is p × (d − p), and �22 is (d − p) × (d − p). Let r =
rank(�22) and suppose that r < d − p. Then the conditional distribution of X1 given
X2 = x2 is a multivariate normal distribution with mean vector

µ1 + �12�
−
22(x2 − µ2)
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and covariance matrix

�11 − �12�
−
22�21,

provided that x2 is such that for any vector a satisfying aT �22a = 0, aT x2 = aT µ2. Here
�−

22 denotes the Moore–Penrose generalized inverse of �22.

Proof. By part (iii) of Theorem 8.1, there is a linear transformation of X2 to (Y1, Y2) such
that Y1 is constant with probability 1 and Y2 has a multivariate normal distribution with full-
rank covariance matrix. Furthermore, Y2 = C X2 where C is an r × (d − p) matrix with
rows taken to be the eigenvectors corresponding to nonzero eigenvalues of �22; see the
proof of Theorem 8.1. Hence, the conditional distribution of X1 given X2 is equivalent to
the conditional distribution of X1 given Y2. Since the covariance matrix of Y2 is of full-rank,
it follows from Theorem 8.3 that this conditional distribution is multivariate normal with
mean vector

µ1 + �13�
−1
33 (y2 − µ3)

and covariance matrix

�11 − �13�
−1
33 �31

where µ3 denotes the mean of Y2, �13 denotes the covariance of X1 and Y2, and �33 denotes
the covariance matrix of Y2.

By considering the transformation(
X1

Y2

)
=

(
Ip 0
0 C

) (
X1

X2

)
,

it follows from Theorem 8.1 that

�13 = �12CT ,

�33 = C�22CT ,

and µ3 = Cµ2. Hence, the conditional distribution of X1 given X2 = x2 is multivariate
normal with mean

µ1 + �12CT [C�22CT ]−1C(x2 − µ2)

and covariance matrix

�11 − �12CT [C�22CT ]−1C�21,

provided that x2 is such that for any vector a such that aT X2 has variance 0, aT x2 = aT µ2;
see Example 8.8 below for an illustration of this requirement.

Recall that �22 = CT DC where D is a diagonal matrix with diagonal elements taken to
be the nonzero eigenvalues of �22. Note that

�22CT [C�22CT ]−1C�22 = CT D(CCT )[(CCT )D(CCT )]−1(CCT )DC

= CT DC = �22,

since (CCT ) and D are invertible. Hence,

�
†
22 ≡ CT [C�22CT ]−1C
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is a generalized inverse of �22. Furthermore,

�
†
22�22�

†
22 = �

†
22

and both �
†
22�22 and �22�

†
22 are symmetric. It follows that �†

22 = �−
22, the Moore–Penrose

inverse of �22.

In fact, it has been shown by Rao (1973, Section 8a.2) that the result of Theorem 8.4
holds for any choice of generalized inverse.

Example 8.8 (Bivariate normal distribution). Suppose that X has a bivariate normal
distribution, as discussed in Example 8.5, and consider the conditional distribution of
X1 given X2 = x2. Suppose that the covariance matrix of X2 is singular; that is, sup-
pose that σ2 = 0. The Moore–Penrose generalized inverse of 0 is 0 so that the conditional
distribution of X1 given X2 = x2 is a normal distribution with mean µ1 and variance σ 2

1 .
This holds provided that x2 is such that for any vector a such that aT X2 has variance 0,
aT x2 = aT µ2; in this case, this means that we require that x2 = µ2. Note that X2 = µ2 with
probability 1. �

8.4 Quadratic Forms

Much of this chapter has focused on the properties of linear functions of a multivariate
normal random vector X ; however, quadratic functions of X also often occur in statistical
methodology. In this section, we consider functions of X of the form X T AX where A is a
symmetric matrix of constants; such a function is called a quadratic form. We will focus
on the case in which A is a nonnegative-definite matrix.

Example 8.9 (Sample variance). Let X1, . . . , Xn denote independent, identically dis-
tributed, real-valued random variables such that X j has a normal distribution with mean 0
and variance σ 2 and let

S2 = 1

n − 1

n∑
j=1

(X j − X̄ )2

where X̄ = ∑n
j=1 X j/n.

Let X = (X1, . . . , Xn). Then X̄ = m X where m denotes a 1 × n vector with each element
taken to be 1/n. Since, for any vector c = (c1, . . . , cn) ∈ Rn ,

n∑
j=1

c2
j = cT c,

n∑
j=1

(X j − X̄ )2 = (X − nmT m X )T (X − nmT m X ) = X T (In − nmT m)T (In − nmT m)X.

Let

A = 1

n − 1
(In − nmT m)T (In − nmT m) = 1

n − 1
(In − nmT m);

then S2 = X T AX . �
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Thus, the previous example shows that the sample variance is a quadratic form. Similarly,
the sums of squares arising in regression analysis and the analysis of variance can also
generally be expressed as quadratic forms. Quadratic forms also arise in the approximation
of the distribution of certain test statistics.

Since the term in the exponent of the multivariate normal distribution, −xT �−1x/2, is
a quadratic form in x , it is a relatively simple matter to determine the moment-generating
function and, hence, the cumulant-generating function, of a quadratic form.

Theorem 8.5. Let X denote a d-dimensional random vector with a multivariate nor-
mal distribution with mean vector 0 and covariance matrix �, |�| > 0. Let A be a
d × d nonnegative-definite, symmetric matrix and let Q = X T AX. Then Q has cumulant-
generating function

K Q(t) = −1

2

d∑
k=1

log(1 − 2tλk), |t | < δ

where λ1, . . . , λd are the eigenvalues of � A and δ > 0. The j th cumulant of Q is given by

d∑
k=1

2 j−1( j − 1)!λ j
k .

Proof. Consider E[exp{t X T AX}], which is given by∫
Rd

(2π )−
d
2 |�|− 1

2 exp

{
−1

2
xT �−1x

}
exp{t xT Ax} dx

=
∫

Rd

(2π )−
d
2 |�|− 1

2 exp

{
−1

2
xT [�−1 − 2t A]x

}
dx .

Note that |�−1 − 2t A| is a continuous function of t and is positive for t = 0; hence, there
exists a δ > 0 such that

|�−1 − 2t A| > 0 for |t | < δ.

Thus, for |t | < δ,∫
Rd

(2π )−
d
2 |�|− 1

2 exp

{
−1

2
xT [�−1 − 2t A]x

}
dx = |�|− 1

2 |�−1 − 2t A|− 1
2

= |Id − 2t�
1
2 A�

1
2 |− 1

2 .

Let B = �
1
2 A�

1
2 . Note that B is a symmetric nonnegative-definite matrix so that we may

write

B = P D PT

where P is an orthogonal matrix and D is a diagonal matrix with diagonal elements given
by the eigenvalues of B or, equivalently, the eigenvalues of � A. It follows that

|Id − 2t P D PT | = |P(Id − 2t D)PT | = |Id − 2t D| =
n∏

j=1

(1 − 2tλ j )
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where λ1, . . . , λd denote the eigenvalues of B. Hence, Q has cumulant-generating function

K Q(t) = −1

2

d∑
k=1

log(1 − 2tλk), |t | < δ;

the expression for the cumulants follows easily from differentiating K Q .

Recall that the sum of squared independent standard normal random variables has a
chi-squared distribution (Example 3.7). That is, if Z is a d-dimensional random vector with
a multivariate normal distribution with mean 0 and covariance matrix given by Id , then
the quadratic form Z T Z has a chi-squared distribution. A general quadratic form X T AX
has a chi-squared distribution if it can be rewritten as the sum of squared independent
standard normal random variables. A necessary and sufficient condition for this is given in
the following theorem.

Theorem 8.6. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix �. Let A be a d × d nonnegative-definite,
symmetric matrix and let Q = X T AX. Q has a chi-squared distribution if and only if � A
is idempotent. The degrees of freedom of the chi-squared distribution is the trace of � A.

Proof. From Theorem 8.5, the cumulant-generating function of Q is

K Q(t) = −1

2

d∑
k=1

log(1 − 2tλk), |t | < δ,

where λ1, . . . , λd are the eigenvalues of � A and δ > 0. If � A is idempotent, then each λk

is either 0 or 1. Suppose that r eigenvalues are 1. Then

K Q(t) = −1

2
r log(1 − 2t), |t | < δ,

which is the cumulant-generating function of a chi-squared random variable with r degrees
of freedom. Hence, by Theorem 4.9, Q has a chi-squared distribution with r degrees of
freedom.

Now suppose that

K Q(t) = −1

2
r log(1 − 2t)

for some r ; that is, suppose that

d∑
k=1

log(1 − 2tλk) = r log(1 − 2t), |t | < δ,

for some δ > 0. For any positive number λ,

log(1 − 2tλ) = −
∞∑
j=1

(2λ) j t j/j,

for sufficiently small |t |. Hence,

d∑
k=1

log(1 − 2tλk) = −
d∑

k=1

∞∑
j=1

(2λk) j t j/j
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for all |t | < ε, for some ε > 0. It is straightforward to show that the double series converges
absolutely and, hence, the order of summation can be changed:

d∑
k=1

log(1 − 2tλk) = −
d∑

k=1

∞∑
j=1

(2λk) j t j/j = −
∞∑
j=1

(
d∑

k=1

λ
j
k

)
2 j t j/j

for all |t | < ε. This implies that

d∑
k=1

λ
j
k = r, j = 1, 2, . . . , (8.3)

and, hence, that each λk is either 0 or 1.
To prove this last fact, consider a random variable W taking value λk , k = 1, 2, . . . , d

with probability 1/d; note that, by (8.3), all moments of W are equal to r/d. Since W is
bounded, its moment-generating function exists; by Theorem 4.8 it is given by

1 + r

d

∞∑
j=1

t j

j!
= 1 + r

d
[exp{t} − 1] = (1 − r/d) + (r/d) exp{t},

which is the moment-generating function of a random variable taking the values 0 and 1
with probabilities 1 − r/d and r/d, respectively. The result follows.

Example 8.10 (Sum of squared independent normal random variables). Let X1,

X2, . . . , Xn denote independent, real-valued random variables, each with a normal distribu-
tion with mean 0. Let σ 2

j = Var(X j ), j = 1, . . . , n, and suppose that σ 2
j > 0, j = 1, . . . , n.

Consider a quadratic form of the form

Q =
n∑

j=1

a j X2
j

where a1, a2, . . . , an are given constants.
Let X = (X1, . . . , Xn). Then X has a multivariate normal distribution with covariance

matrix �, where � is a diagonal matrix with j th diagonal element given by σ 2
j . Let A

denote the diagonal matrix with j th diagonal element a j . Then Q = X T AX .
It follows from Theorem 8.6 that Q has a chi-squared distribution if and only if � A is

idempotent. Since � A is a diagonal matrix with j th diagonal element given by a jσ
2
j , it

follows that Q has a chi-squared distribution if and only if, for each j = 1, . . . , n, either
a j = 0 or a j = 1/σ 2

j . �

The same basic approach used in part (iii) of Theorem 8.1 can be used to study the joint
distribution of two quadratic forms, or the joint distribution of a quadratic form and a linear
function of a multivariate normal random vector.

Theorem 8.7. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix �. Let A1 and A2 be d × d nonnegative-
definite, symmetric matrices and let Q j = X T A j X, j = 1, 2.

(i) If A1� A2 = 0 then Q1 and Q2 are independent.
(ii) Let Y = M X where M is an r × d matrix. If A1�MT = 0 then Y and Q1 are

independent.
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Proof. Let λ1, . . . , λr1 denote the nonzero eigenvalues of A1 and let e1, . . . , er1 denote the
corresponding eigenvectors; similarly, let γ1, . . . , γr2 denote the nonzero eigenvalues of A2

and let v1, . . . , vr2 denote the corresponding eigenvectors. Then

A1 = λ1e1eT
1 + · · · + λr1 er1 eT

r1

and

A2 = γ1v1vT
1 + · · · + γr2 vr2 vT

r2
.

Suppose A1� A2 = 0. Then

eT
k A1� A2v j = λkγ j e

T
k �v j = 0

so that eT
k �v j = 0 for all j = 1, . . . , r2 and k = 1, . . . , r1. Let P1 denote the matrix with

columns e1, . . . , er1 and let P2 denote the matrix with columns v1, . . . , vr2 . Then

PT
1 �P2 = 0.

It follows that PT
1 X and PT

2 X are independent. Since Q1 is a function of PT
1 X and Q2 is a

function of PT
2 X , it follows that Q1 and Q2 are independent, proving part (i).

The proof of part (ii) is similar. As above, Q1 is a function of P1 X . Suppose that
A1�MT = 0. Since A1 = P1 D PT

1 where D is a diagonal matrix with diagonal elements
λ1, . . . , λr1 ,

P1 D PT
1 �MT = 0.

It follows that PT
1 �MT = 0; hence, by part (vi) of Theorem 8.1, PT

1 X and M X are inde-
pendent. The result follows.

The following result gives a simple condition for showing that two quadratic forms are
independent chi-squared random variables.

Theorem 8.8. Let X denote a d-dimensional random vector with a multivariate normal
distribution with mean 0 and covariance matrix Id . Let A1 and A2 be d × d nonnegative-
definite, symmetric matrices and let Q j = X T A j X, j = 1, 2. Suppose that

X T X = Q1 + Q2.

Let r j denote the rank of A j , j = 1, 2. Q1 and Q2 are independent chi-squared random
variables with r1 and r2 degrees of freedom, respectively, if and only if r1 + r2 = d.

Proof. Suppose Q1 and Q2 are independent chi-squared random variables with r1 and r2

degrees of freedom, respectively. Since, by Theorem 8.6, X T X has a chi-squared distribution
with d degrees of freedom, clearly we must have r1 + r2 = d; for example, E(X T X ) = d,
E(Q1) = r1, E(Q2) = r2, and E(X T X ) = E(Q1) + E(Q2).

Suppose that r1 + r2 = d . Let λ1, . . . , λr1 denote the nonzero eigenvalues of A1 and
let e1, . . . , er1 denote the corresponding eigenvectors; similarly, let γ1, . . . , γr2 denote the
nonzero eigenvalues of A2 and let v1, . . . , vr2 denote the corresponding eigenvectors. Then

A1 = λ1e1eT
1 + · · · + λr1 er1 eT

r1
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and

A2 = γ1v1vT
1 + · · · + γr2 vr2 vT

r2
.

Note that

A1 + A2 = P D PT

where D is a diagonal matrix with diagonal elements λ1, . . . , λr1 , γ1, . . . , γr2 and P is a
matrix with columns e1, . . . , er1 , v1, . . . , vr2 ; recall that r1 + r2 = d. Since

A1 + A2 = P D PT = Id ,

and D has determinant

λ1 · · · λr1γ1 · · · γr2 �= 0,

it follows that |P| �= 0.
Since A1e j = λ j e j and (A1 + A2)e j = e j , it follows that

A2e j = (1 − λ j )e j , j = 1, . . . , r1.

That is, either λ j = 1 or e j is an eigenvector of A2. However, if e j is an eigenvector of
A2, then two columns of P are identical, so that |P| = 0; hence, λ j = 1, j = 1, . . . , r1;
similarly, γ j = 1, j = 1, . . . , r2. Furthermore, all the eigenvectors of A1 are orthogonal to
the eigenvectors of A2 and, hence,

A1 A2 = 0 and A2 A1 = 0.

Also, since (A1 + A2)A1 = A1, it follows that A1 is idempotent; similarly, A2 is idempotent.
It now follows from Theorem 8.6 that Q1 and Q2 have chi-squared distributions. To

prove independence of Q1 and Q2, note that

Q1 = λ1Y T
1 Y1 + · · · + λr1 Y T

r1
Yr1

where Y j = eT
j X , j = 1, . . . , r1. Similarly,

Q2 = γ1 Z T
1 Z1 + · · · + γr2 Z T

r2
Zr2

where Z j = vT
j X . Since each e j is orthogonal to each v j , it follows from Theorem 8.1

that Yi and Z j are independent, i = 1, . . . , r1, j = 1, . . . , r2. Hence, Q1 and Q2 are
independent.

In the following corollary, the result in Theorem 8.8 is extended to the case of several
quadratic forms; the proof is left as an exercise. This result is known as Cochran’s Theorem.

Corollary 8.1. Let X denote a d-dimensional random vector with a multivariate normal dis-
tribution with mean 0 and covariance matrix Id . Let A1, A2, . . . , Am be d × d nonnegative-
definite, symmetric matrices and let Q j = X T A j X, j = 1, . . . , m, such that

X T X = Q1 + Q2 + · · · + Qm .

Let r j denote the rank of A j , j = 1, . . . , m. Q1, Q2, . . . , Qm are independent chi-squared
random variables, such that the distribution of Q j has r j degrees of freedom, j = 1, . . . , m,
if and only if r1 + · · · + rm = d.
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Example 8.11 (Analysis of variance). Let X denote a d-dimensional random vector with
a multivariate normal distribution with mean vector µ and covariance matrix given by Id .
Let M denote a p-dimensional linear subspace of Rd and let PM be the matrix representing
orthogonal projection onto M; here orthogonality is with respect to the usual inner product
on Rd . Hence, for any x ∈ Rd , PMx ∈ M and

(x − PMx)T y = 0 for all y ∈ M.

Note that PM has rank r , the dimension of M. Consider the linear transformation given
by the matrix Id − PM. It is easy to show that this matrix represents orthogonal projection
onto the orthogonal complement of M; hence, the rank of Id − PM is d − r .

Since

X T X = X T (Id − PM)X + X T PMX,

it follows that the quadratic forms X T (Id − PM)X and X T PMX are independent chi-
squared random variables with d − r and r degrees of freedom, respectively.

Now suppose that Rd may be written

Rd = M1 ⊕ M2 ⊕ · · · ⊕ MJ

where M1,M2, . . . ,MJ are orthogonal linear subspaces of Rd so that if xi ∈ Mi and
x j ∈ M j , i �= j ,

xT
i x j = 0.

Let PM j denote orthogonal projection onto M j and let r j denote the dimension of M j ,
j = 1, . . . , J ; it follows that r1 + · · · + rJ = d.

Let Q j = X T PM j X , j = 1, . . . , J . Then

X T X = Q1 + · · · + Q J

and Q1, . . . , Q J are independent chi-squared random variables such that Q j has degrees
of freedom r j , j = 1, . . . , J . �

8.5 Sampling Distributions

In statistics, the results of this chapter are often applied to the case of independent real-
valued, normally distributed random variables. In this section, we present some classic
results in this area.

Theorem 8.9. Let X1, . . . , Xn denote independent, identically distributed standard normal
random variables. Let

X̄ = 1

n

n∑
j=1

X j

and let

S2 = 1

n − 1

n∑
j=1

(X j − X̄ )2.
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Then X̄ has a normal distribution with mean 0 and variance 1/n, (n − 1)S2 has a chi-
squared distribution with n − 1 degrees of freedom, and X̄ and S2 are independent.

Proof. Let m0 denote a 1 × n vector of all ones, let m = m0/n and let X = (X1, . . . , Xn).
Then X̄ = m X and

(n − 1)S2 = (X − nmT m X )T (X − nmT m X ) = X T (In − nmT m)T (In − nmT m)X.

The marginal distribution of X̄ follows from Theorem 8.1. Note that mmT = 1/n. Hence,

(I − nmT m)T (I − nmT m) = I − 2nmT m + n2mT (mmT )m = I − nmT m

so that, by Theorem 8.6, (n − 1)S2 has a chi-squared distribution with degrees of freedom
equal to the trace of I − nmT m. Note that each diagonal element of I − nmT m is 1 − 1/n =
(n − 1)/n so that the trace is n − 1.

Finally, (I − nmT m)mT = mT − nmT (mmT ) = 0 so that, by Theorem 8.7, X̄ and S are
independent.

The distribution of the ratio
√

n X̄/S now follows immediately from the definition of the
t-distribution given in Example 7.10. The distribution of n X̄2/S2 is also easily determined.

Corollary 8.2. Let X1, . . . , Xn denote independent, identically distributed standard normal
random variables. Let

X̄ = 1

n

n∑
j=1

X j

and let

S2 =
n∑

j=1

(X j − X̄ )2/(n − 1).

Then
(i)

√
n X̄/S has a t-distribution with n − 1 degrees of freedom.

(ii) n X̄2/S2 has a F-distribution with (1, n − 1) degrees of freedom.

Proof. From Theorem 8.9, X̄ and S are independent;
√

n X̄ has a standard normal dis-
tribution, n X̄2 has a chi-squared distribution with 1 degree of freedom, and (n − 1)S2 has
a chi-squared distribution with n − 1 degrees of freedom. The results now follow easily
from the definitions of the t- and F-distributions, given in Examples 7.10 and 7.11,
respectively.

The statistics X̄ and S2 considered in Theorem 8.9 may be interpreted as follows. Define
the vector m0 as in the proof of Theorem 8.9. Then the projection of a random vector X
onto the space spanned by m0 is X̄m0. The statistic

(n − 1)S2 =
n∑

j=1

(X j − X̄ )2
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may be viewed as the squared length of the residual vector, X minus its projection. Theo-
rem 8.9 states that the projection X̄m0 and the length of the residual vector are independent
random variables and that any linear function of the projection has a normal distribution.

This result holds much more generally and, in fact, this generalization follows almost
immediately from the results given above.

Theorem 8.10. Let X denote an n-dimensional random vector with a multivariate normal
distribution with mean vector 0 and covariance matrix given by σ 2 In. Let M denote a
p-dimensional linear subspace of Rn and let PM be the matrix representing orthogonal
projection onto M.

Let a ∈ Rn be such that aT PMa > 0.
(i) aT PMX has a normal distribution with mean 0 and variance (aT PMa)σ 2.

(ii) Let S2 = X T (In − PM)X/(n − p). Then (n − p)S2/σ 2 has a chi-squared distribu-
tion with n − p degrees of freedom.

(iii) S2 and PMX are independent.
(iv)

aT PMX

(aT PMa)
1
2 [X T (Id − PM)X/(n − p)]

1
2

has a t-distribution with n − p degrees of freedom.

Proof. Let Y = aT PMX and S2 = X T (In − PM)X/(n − p). Since PT
M(In − PM) = 0, it

follows from Theorem 8.7 that PMX and S2 are independent. From Theorem 8.1, aT PMX
has a normal distribution with mean 0 and variance (aT PMa)σ 2. From Theorem 8.6,
(n − p)S2/σ 2 has a chi-squared distribution with n − p degrees of freedom. Part (iv) fol-
lows from the definition of the t-distribution.

Example 8.12 (Simple linear regression). Let Y1, Y2, . . . , Yn denote independent random
variables such that, for each j = 1, 2, . . . , n, Y j has a normal distribution with mean β0 +
β1z j and variance σ 2. Here z1, z2, . . . , zn are fixed scalar constants, not all equal, and β0, β1,
and σ are parameters.

Let Y = (Y1, . . . , Yn) and let Z denote the n × 2 matrix with j th row (1 z j), j =
1, . . . , n. Let M denote the linear subspace spanned by the columns of Z . Then

PM = Z (Z T Z )−1 Z T .

Let β = (β0 β1) and let

β̂ = (Z T Z )−1 Z T Y

so that PMY = Z β̂. Consider the distribution of

T = cT (β̂ − β)

[cT Z (Z T Z )−1 Z T c]
1
2 S

where S2 = Y T (Id − PM)Y/(n − 2) and c ∈ R2.
Let X = Y − Zβ. Then X has a multivariate normal distribution with mean vector 0 and

covariance matrix σ 2 In . Note that

β̂ − β = (Z T Z )−1 Z T X
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and cT (β̂ − β) = aT PMX where a = Z (Z T Z )−1c. It now follows from Theorem 8.10 that
T has a t-distribution with n − 2 degrees of freedom. �

8.6 Exercises

8.1 Let X denote a d-dimensional random vector with a multivariate normal distribution with covari-
ance matrix � satisfying |�| > 0. Write X = (X1, . . . , Xd ), where X1, . . . , Xd are real-valued,
and let ρi j denote the correlation of Xi and X j for i �= j .

Let R denote the d × d matrix with each diagonal element equal to 1 and (i, j)th element equal
to ρi j , i �= j . Find a d × d matrix V such that

� = V RV .

8.2 Let Y denote a d-dimensional random vector with mean vector µ. Suppose that there exists
m ∈ Rd such that, for any a ∈ Rd , E(aT Y ) = aT m. Show that m = µ.

8.3 Let X = (X1, . . . , Xd ) have a multivariate normal distribution with mean vector µ and covari-
ance matrix �. For arbitrary nonnegative integers i1, . . . , id , find κi1···id , the joint cumulant of
(X1, . . . , Xd ) of order (i1, . . . , id ).

8.4 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
µ and covariance matrix �. Let (λ1, e1), . . . , (λd , ed ) denote the eigenvalue–eigenvector pairs of
�, λ1 ≥ λ2 ≥ · · · ≥ λd . For each j = 1, . . . , d, let Y j = eT

j X and let Y = (Y1, . . . , Yd ). Find the
covariance matrix of Y .

8.5 Let X = (X1, . . . , Xd ) where X1, . . . , Xd are independent random variables, each normally dis-
tributed such that X j has mean µ j and standard deviation σ > 0. Let A denote a d × d matrix
of constants. Show that

E(X T AX ) = σ 2 tr(A) + µT Aµ

where µ = (µ1, . . . , µd ).

8.6 Let X1 and X2 denote independent, d-dimensional random vectors such that X j has a multivariate
normal distribution with mean vector µ j and covariance matrix � j , j = 1, 2. Let X = X1 + X2.
Find the mean vector and covariance matrix of X . Does X have a multivariate normal distribution?

8.7 Consider a multivariate normal random vector X = (X1, X2, . . . , Xn) and suppose that
X1, X2, . . . , Xn are exchangeable random variables, each with variance 1, and let � denote
the covariance matrix of the distribution. Suppose that

∑n
j=1 Xn = 1 with probability 1;

find �.

8.8 Consider a multivariate normal random vector X = (X1, X2, . . . , Xn) and suppose that
X1, X2, . . . , Xn are exchangeable random variables, each with variance 1, and let � denote
the covariance matrix of the distribution. Then

� =

 1 ρ ρ · · · ρ

ρ 1 ρ · · · ρ

ρ ρ ρ · · · 1




for some constant ρ; see Example 8.2. Find the eigenvalues of � and, using these eigenvalues,
find restrictions on the value of ρ so that � is a valid covariance matrix.

8.9 Let X = (X1, X2, . . . , Xn) where X1, X2, . . . , Xn are independent, identically distributed ran-
dom variables, each with a normal distribution with mean 0 and standard deviation σ . Let B
denote an orthogonal n × n matrix and let Y = (Y1, . . . , Yn) = B X . Find the distribution of
Y1, . . . , Yn .
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8.10 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix Id . Let {v1, . . . , vd} be an orthonormal basis for Rd and let
Y1, . . . , Yd denote real-valued random variables such that

X = Y1v1 + · · · + Yd vd ;

then Y1, . . . , Yd are the coordinates of X with respect to {v1, . . . , vd}.
(a) Find an expression for Y j , j = 1, . . . , d.

(b) Find the distribution of (Y1, . . . , Yd ).

8.11 Let X denote a d-dimensional multivariate normal random vector with mean vector µ and
covariance matrix σ 2 Id where σ 2 > 0. Let M denote a linear subspace of Rd such that µ ∈ M.
Let c ∈ Rd be a given vector and consider Var(bT X ) where b ∈ Rd satisfies bT µ = cT µ. Show
that Var(bT X ) is minimized by b = PMc.

8.12 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector µ and covariance matrix given by Id . Suppose that Rd may be written

Rd = M1 ⊕ M2 ⊕ · · · ⊕ MJ

where M1,M2, . . . ,MJ are orthogonal linear subspaces of Rd . Let PM j denote orthogonal
projection onto M j and let Y j = PM j X , j = 1, . . . , d. Show that Y1, . . . , YJ are independent.

8.13 Let X be a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix �. Write X = (X1, X2) where X1 is p-dimensional and X2 is
(d − p)-dimensional, and

� =
(

�11 �12

�21 �22

)

where �11 is p × p, �12 = �T
21 is p × (d − p), and �22 is (d − p) × (d − p); assume that

|�22| > 0.
Find E[X T

1 X1|X2 = x2].

8.14 Let X = (X1, X2, X3) denote a three-dimensional random vector with a multivariate normal
distribution with mean vector 0 and covariance matrix �. Assume that

Var(X1) = Var(X2) = Var(X3) = 1

and let

ρi j = Cov(Xi , X j ), i �= j.

(a) Find the conditional distribution of (X1, X2) given X3 = x3.

(b) Find conditions on ρ12, ρ13, ρ23 so that X1 and X2 are conditionally independent given
X3 = x3.

(c) Suppose that any two of X1, X2, X3 are conditionally independent given the other random
variable. Find the set of possible values of (ρ12, ρ13, ρ23).

8.15 Let X denote a d-dimensional random vector and let A denote a d × d matrix that is not
symmetric. Show that there exists a symmetric matrix B such that X T AX = X T B X .

8.16 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
0 and covariance matrix Id . Let A1 and A2 be d × d nonnegative-definite, symmetric matrices
and let Q j = X T A j X , j = 1, 2, and let r j denote the rank of A j , j = 1, 2. Show that Q1 and
Q2 are independent chi-squared random variables if and only if one of the following equivalent
conditions holds:

(i) A1 A1 = A1 and A2 A2 = A2

(ii) r1 + r2 = r

(iii) A1 A2 = A2 A1 = 0.
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8.17 Let X1, X2, . . . , Xn denote independent random variables such that X j has a normal distribution
with mean 0 and variance σ 2

j > 0, j = 1, . . . , n, and let

T =
n∑

j=1

(X j − X̄ )2, X̄ = 1

n

n∑
j=1

X j .

Find conditions on σ 2
1 , . . . , σ 2

n so that there exists a constant c such that cT has a chi-squared
distribution with r degrees of freedom. Give expressions for c and r .

8.18 Let Z1, . . . , Zn denote independent random variables, each with a standard normal distribution,
and let δ1, . . . , δn denote real-valued constants.
Define a random variable X by

X =
n∑

j=1

(Z j + δ j )
2.

The distribution of X is called a noncentral chi-squared distribution with n degrees of freedom.
(a) Show that the distribution of X depends on δ1, . . . , δn only through

δ2 ≡
n∑

j=1

δ2
j ;

δ2 is called the noncentrality parameter of the distribution.

(b) Find the mean and variance of X .

8.19 Suppose that X1 and X2 are independent random variables such that, for j = 1, 2, X j has a
noncentral chi-squared distribution with n j degrees of freedom, n j = 1, 2, . . ., and noncentrality
parameter γ 2

j ≥ 0. Does X1 + X2 have a noncentral chi-squared distribution? If so, find the
degrees of freedom and the noncentrality parameter of the distribution.

8.20 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector µ and covariance matrix �, which is assumed to be positive-definite. Let A denote a
d × d symmetric matrix and consider the random variable

Q = X T AX.

Find conditions on A so that Q has a noncentral chi-squared distribution. Find the degrees of
freedom and the noncentrality parameter of the distribution.

8.21 Let X = (X1, . . . , Xn) denote a random vector such that X1, . . . , Xn are real-valued, exchange-
able random variables and suppose that X1 has a standard normal distribution. Let

S2 =
n∑

j=1

(X j − X̄ )2.

Let ρ = Cov(Xi , X j ). Find the values of ρ for which S2 has a chi-squared distribution.

8.22 Let X = (X1, . . . , Xn) denote a random vector such that X1, . . . , Xn are real-valued, exchange-
able random variables and suppose that X1 has a standard normal distribution. Let

X̄ = 1

n

n∑
j=1

X j and S2 = 1

n − 1

n∑
j=1

(X j − X̄ )2.

Find the values of ρ for which X̄ and S2 are independent.

8.23 Let X denote a d-dimensional random vector with a multivariate normal distribution with mean
vector 0 and covariance matrix given by the identity matrix. For a given linear subspace of Rd ,
M, define

D(M) = min
m∈M

||X − m||2
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where || · || denotes the Euclidean norm in Rd , that is,

||x ||2 = x T x .

(a) Find the distribution of D(M).

(b) Let M1 and M2 denote linear subspaces of Rd . Find conditions on M1 and M2 under
which D(M1) and D(M2) are independent.

8.24 Let X denote an n-dimensional random vector with a multivariate normal distribution with
mean vector 0 and covariance matrix given by σ 2 In . Let M1 and M2 denote orthogonal linear
subspaces of Rn and let Pj denote the matrix representing orthogonal projection onto M j ,
j = 1, 2. Find the distribution of

X T P1 X

X T P2 X
.

8.25 Prove Corollary 8.1.

8.7 Suggestions for Further Reading

An excellent reference for properties of the multivariate normal distribution and the associated sam-
pling distributions is Rao (1973, Chapter 3). Stuart and Ord (1994, Chapters 15 and 16) contains a
detailed discussion of the distribution theory of quadratic forms and distributions related to the normal
distribution, such as the chi-squared distribution and the F-distribution. Many books on multivariate
statistical analysis consider the multivariate normal distribution in detail; see, for example, Anderson
(1984) and Johnson and Wichern (2002).
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9

Approximation of Integrals

9.1 Introduction

Integrals play a fundamental role in distribution theory and, when exact calculation of an
integral is either difficult or impossible, it is often useful to use an approximation. In this
chapter, several methods of approximating integrals are considered. The goal here is not
the determination of the numerical value of a given integral; instead, we are concerned with
determining the properties of the integrals that commonly arise in distribution theory. These
properties are useful for understanding the properties of the statistical procedures that are
based on those integrals.

9.2 Some Useful Functions

There are a number of important functions that repeatedly appear in statistical calculations,
such as the gamma function, the incomplete gamma function, and the standard normal distri-
bution function. These functions are well-studied and their properties are well-understood;
when an integral under consideration can be expressed in terms of one of these functions,
the properties of the integral are, to a large extent, also well-understood. In this section,
we consider the basic properties of these functions; further properties are presented in the
remaining sections of this chapter.

Gamma function
The gamma function is defined by

�(x) =
∫ ∞

0
t x−1 exp(−t) dt, x > 0.

The most important property of the gamma function is its recursion property:

�(x + 1) = x�(x), x > 0.

This, together with the fact that �(1) = 1, shows that

�(n + 1) = n!, n = 0, 1, 2, . . .

so that the gamma function represents a generalization of the factorial function to non-
integer positive arguments. These properties are formally stated in the following theorem.

257
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Theorem 9.1. �(x + 1) = x�(x), x > 0, and for n = 0, 1, . . . , �(n + 1) = n!.

Proof. Using integration-by-parts,

�(x + 1) =
∫ ∞

0
t x exp(−t) dt = −t x exp(−t)

∣∣∣∞
0

+ x
∫ ∞

0
t x−1 exp(−t) dt = x�(x).

Hence, for an integer n,

�(n + 1) = n�(n) = n(n − 1)�(n − 1) = · · · = n!�(1);

the second result now follows from the easily verified fact that �(1) = 1.

A function closely related to the gamma function is the beta function. Let r and s be
nonnegative real numbers. Define

β(r, s) =
∫ 1

0
tr−1(1 − t)s−1 dt ;

this function appears in the normalizing constant of the density of the beta distribution. The
following theorem gives an expression for the beta function in terms of the gamma function.

Theorem 9.2.

β(r, s) = �(r )�(s)

�(r + s)
, r > 0, s > 0.

Proof. Note that, for r > 0 and s > 0,

�(r )�(s) =
∫ ∞

0
tr−1 exp(−t) dt

∫ ∞

0
t s−1 exp(−t) dt

=
∫ ∞

0

∫ ∞

0
tr−1
1 t s−1

2 exp{−(t1 + t2)} dt1 dt2.

Using the change-of-variable x1 = t1 + t2, x2 = t1/(t1 + t2), we may write∫ ∞

0

∫ ∞

0
tr−1
1 t s−1

2 exp{−(t1 + t2)} dt1 dt2

=
∫ 1

0

∫ ∞

0
xr+s−1

1 xr−1
2 (1 − x2)s−1 exp(−x1) dx1 dx2

=
∫ 1

0
xr−1

2 (1 − x2)s−1 dx2

∫ ∞

0
xr+s−1

1 exp(−x1) dx1

= β(r, s)�(r + s),

proving the result.

The value of the gamma function increases very rapidly as the argument of the function
increases. Hence, it is often more convenient to work with the log of the gamma function
rather than with the gamma function itself; a plot of this function is given in Figure 9.1.
Clearly, log �(x) satisfies the recursive relationship

log �(x + 1) = log x + log �(x).

In addition, the following result shows that log �(x) is a convex function.

Theorem 9.3. The function log �(x), x > 0, is convex.
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g 

Γ
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x
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Figure 9.1. Log-gamma function.

Proof. Let 0 < α < 1. Then, for x1 > 0, x2 > 0,

log �(αx1 + (1 − α)x2) = log
∫ ∞

0
(t x1 )α(t x2 )1−α 1

t
exp(−t) dt.

By the Hölder inequality,

log
∫ ∞

0
(t x1 )α(t x2 )1−α 1

t
exp(−t) dt ≤ α log

( ∫ ∞

0
t x1−1 exp(−t) dt

)

+ (1 − α) log
( ∫ ∞

0
t x2−1 exp(−t) dt

)
.

It follows that

log �(αx1 + (1 − α)x2) ≤ α log �(x1) + (1 − α) log �(x2),

proving the result.

Let

ψ(x) = d

dx
log �(x), x > 0

denote the logarithmic derivative of the gamma function. The function ψ inherits a recursion
property from the recursion property of the log-gamma function. This property is given in
the following theorem; the proof is left as an exercise.

Theorem 9.4.

ψ(x + 1) = ψ(x) + 1

x
, x > 0
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For n = 1, 2, . . . ,

ψ(x + n) = 1

x
+ 1

x + 1
+ · · · + 1

x + n − 1
+ ψ(x), x > 0.

Incomplete gamma function
The limits of the integral defining the gamma function are 0 and ∞. The incomplete gamma
function is the function obtained by restricting the region of integration to (0, y):

γ (x, y) =
∫ y

0
t x−1 exp(−t) dt, x > 0, y > 0.

Thus, considered as a function of y for fixed x , the incomplete gamma function is, aside
from a normalization factor, the distribution function of the standard gamma distribution
with index x .

The following theorem shows that, like the gamma function, the incomplete gamma
function satisfies a recursive relationship; the proof is left as an exercise.

Theorem 9.5. For x > 0 and y > 0,

γ (x + 1, y) = xγ (x, y) − yx exp(−y).

It is sometimes convenient to consider the function

�(x, y) =
∫ ∞

y
t x−1 exp(−t) dt = �(x) − γ (x, y).

When x is an integer, �(x, y)/�(x), and, hence, γ (x, y)/�(x), can be expressed as a
finite sum.

Theorem 9.6. For n = 1, 2, . . . ,

�(n, y)

�(n)
=

n−1∑
j=0

y j

j!
exp(−y), y > 0;

equivalently,

γ (n, y)

�(n)
= 1 −

n−1∑
j=0

y j

j!
exp(−y), y > 0.

Proof. Note that, using the change-of-variable s = t − y,∫ ∞

y
tn−1 exp(−t) dt = exp(−y)

∫ ∞

0
(s + y)n−1 exp(−s) ds

= exp(−y)
∫ ∞

0

n−1∑
j=0

(
n − 1

j

)
sn−1− j y j exp(−s) ds

=
n−1∑
j=0

exp(−y)y j

(
n − 1

j

)
�(n − j)

=
n−1∑
j=0

exp(−y)
y j

j!
(n − 1)!.
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That is,

�(n, y) =
n−1∑
j=0

y j

j!
exp(−y)�(n),

proving the result.

For general values of x , the following result gives two series expansions for γ (x, y).

Theorem 9.7. For x > 0 and y > 0,

γ (x, y) =
∞∑
j=0

(−1) j

j!

yx+ j

x + j
(9.1)

= exp(−y)
∞∑
j=0

�(x)

�(x + j + 1)
yx+ j . (9.2)

Proof. Recall that, for all x ,

exp(x) =
∞∑
j=0

x j/j!;

hence,

γ (x, y) =
∫ y

0
t x−1 exp(−t) dt =

∫ y

0
t x−1

∞∑
j=0

(−1) j t j/j! dt

=
∞∑
j=0

(−1) j

j!

∫ y

0
t x+ j−1 dt

=
∞∑
j=0

(−1) j

j!

yx+ j

x + j
.

Note that the interchanging of summation and integration is justified by the fact that

∞∑
j=0

1

j!

∫ y

0
t x+ j−1 dt =

∞∑
j=0

1

j!

yx+ j

x + j
≤ yx exp(y) < ∞

for all y, x . This proves (9.1).
Now consider (9.2). Using the change-of-variable u = 1 − t/y, we may write

γ (x, y) =
∫ y

0
t x−1 exp(−t) dt =

∫ 1

0
yx (1 − u)x−1 exp{−y(1 − u)} du

= yx exp(−y)
∫ 1

0
(1 − u)x−1 exp(yu) du

= yx exp(−y)
∫ 1

0
(1 − u)x−1

∞∑
j=0

(yu) j/j! du.
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Since
∞∑
j=0

∫ 1

0
(1 − u)x−1(yu) j/j! ≤

∞∑
j=0

y j/j! = exp(y),

we may interchange summation and integration. Hence, by Theorem 9.2,

γ (x, y) = yx exp(−y)
∞∑
j=0

y j

j!

∫ 1

0
(1 − u)x−1u j du

= yx exp(−y)
∞∑
j=0

y j

j!

�( j + 1)�(x)

�(x + j + 1)
,

which, after simplification, is identical to (9.2).

Standard normal distribution function
Let

φ(z) = 1√
(2π )

exp

(
−1

2
z2

)
, −∞ < z < ∞

denote the standard normal density function and let

�(z) =
∫ z

−∞
φ(t) dt, − ∞ < z < ∞

denote the standard normal distribution function.
Although �(z) is defined by an integral over the region (−∞, z), calculation of �(z),

for any value of z, only requires integration over a bounded region. Define

�0(z) =
∫ z

0
φ(t) dt, z ≥ 0.

The following result shows that �(z) can be written in terms of �0(z); also, by a change-
of-variable in the integral defining �0 it may be shown that �0 is a special case of the
incomplete gamma function γ (·, ·). The proof is left as an exercise.

Theorem 9.8.

�(z) =



1
2 − �0(−z) if z < 0

1
2 + �0(z) if z ≥ 0

and, for z > 0,

�0(z) = 1

2
√

π
γ

(
1

2
,

z2

2

)
.

Hence, using Theorem 9.8, together with the series expansions for γ (·, ·) given in The-
orem 9.7, we obtain the following series expansions for �0(·); these, in turn, may be used
to obtain a series expansion for �(·). The result is given in the following theorem, whose
proof is left as an exercise.
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Theorem 9.9. For z ≥ 0,

�0(z) = 1√
(2π )

∞∑
j=0

(−1) j

2 j j!

z2 j+1

2 j + 1
= 1

2
√

2
exp

(−z2

2

) ∞∑
j=0

z2 j+1

2 j�( j + 3/2)
.

Since φ(z) > 0 for all z, �(·) is a strictly increasing function and, since it is a distribution
function,

lim
z→∞ �(z) = 1 and lim

z→−∞ �(z) = 0.

The following result gives some information regarding the rate at which �(z) approaches
these limiting values; the proof follows from L’Hospital’s rule and is left as an exercise.

Theorem 9.10.

lim
z→∞

1 − �(z)

φ(z)/z
= 1 and lim

z→−∞
�(z)

φ(z)/z
= −1.

The following result gives precise bounds on

1 − �(z)

φ(z)/z
and

�(z)

φ(z)/z

that are sometimes useful.

Theorem 9.11. For z > 0,

z

1 + z2
φ(z) ≤ 1 − �(z) ≤ 1

z
φ(z).

For z < 0,

|z|
1 + z2

φ(z) < �(z) <
1

|z|φ(z).

Proof. Fix z > 0. Note that∫ ∞

z
exp(−x2/2) dx =

∫ ∞

z

1

x
x exp(−x2/2) dx ≤ 1

z

∫ ∞

z
x exp(−x2/2) dx .

Since

d

dx
exp(−x2/2) = −x exp(−x2/2),

∫ ∞

z
x exp(−x2/2) dx = exp(−z2/2)

so that ∫ ∞

z
exp(−x2/2) dx =≤ 1

z
exp(−z2/2)

or, equivalently,

1 − �(z) ≤ 1

z
φ(z).
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To verify the second inequality, note that

(1 + 1/z2)
∫ ∞

z
exp(−x2/2) dx ≥

∫ ∞

z
(1 + 1/x2) exp(−x2/2) dx .

Since

d

dx

1

x
exp(−x2/2) = (1 + 1/x2) exp(−x2/2),

∫ ∞

z
(1 + 1/x2) exp(−x2/2) dx = 1

z
exp(−z2/2),

which proves the result for z > 0.
The result for z < 0 follows from the fact that, for z < 0, �(z) = 1 − �(−z).

9.3 Asymptotic Expansions

In many cases, exact calculation of integrals is not possible and approximations are needed.
Here we consider aproximations as some parameter reaches a limiting value. In general
discussions that parameter is denoted by n and we consider approximations as n → ∞;
different notation for the parameter and different limiting values are often used in specific
examples. Note that, in this context, n is not necessarily an integer.

Let f denote a real-valued function of a real variable n. The series
∞∑
j=0

a j n
− j

is said to be an asymptotic expansion of f if, for any m = 1, 2, . . . ,

f (n) =
m∑

j=0

a j n
− j + Rm+1(n)

where Rm+1(x) = O(n−(m+1)) as n → ∞; that is, where nm+1 Rm+1(n) remains bounded as
n → ∞. This is often written

f (n) ∼
∞∑
j=0

a j n
− j as n → ∞.

It is important to note that this does not imply that

f (n) =
∞∑
j=0

a j n
− j ,

which would require additional conditions on the convergence of the series. An asymptotic
expansion represents a sequence of approximations to f (n) with the property that the order
of the remainder term, as a power of n−1, is higher than that of the terms included in the
approximation. It is also worth noting that, for a given value of n, the approximation based
on m terms in the expansion may be more accurate than the approximation based on m + 1
terms in the approximation.

In many cases, an entire asymptotic expansion is not needed; that is, we do not need to
be able to compute an approximation to f (n) with error of order O(n−m) for any value of
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m. It is often sufficient to be able to approximate f (n) with error O(n−m) for some given
fixed value of m, often m = 1 or 2.

Example 9.1. Consider the function defined by

f (x) =
∫ ∞

0

1

1 + t/x
exp(−t) dt, 0 < x < ∞.

Recall that, for z �= 1,

1 + z + z2 + · · · + zm−1 = 1 − zm

1 − z
.

Hence,

1

1 + t/x
= 1 − t

x
+ t2

x2
+ · · · + (−1)m−1 tm−1

xm−1
+ (−1)m tm

xm

1

1 + t/x

so that

f (x) =
m−1∑
j=0

(−1) j j!

x j
+ Rm(x)

where

|Rm(x)| =
∫ ∞

0

tm

xm

1

1 + t/x
exp(−t) dt ≤ m!

xm
.

It follows that
∞∑
j=0

(−1) j j!/x j

is a valid asymptotic expansion of f (x) as x → ∞. Thus, we may write∫ ∞

0

1

1 + t/x
exp(−t) dt = 1 − 1

x
+ O(x−2),

∫ ∞

0

1

1 + t/x
exp(−t) dt = 1 − 1

x
+ 2

x2
+ O(x−3),

and so on. For x > 0, let

f̂ 2(x) = 1 − 1

x
and f̂ 3(x) = 1 − 1

x
+ 2

x2
.

Table 9.1 gives the values of f̂ 2(x) and f̂ 3(x), together with f (x), for several values of x .
Although both approximations are inaccurate for small values of x , both are nearly exact
for x = 30.

Note, however, that

∞∑
j=0

(−1) j j!/x j �=
∫ ∞

0

1

1 + t/x
exp(−t) dt ;

in fact, the series diverges for any value of x . �
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Table 9.1. Approximations in Example 9.1.

x f (x) f̂ 2(x) f̂ 3(x)

1 0.596 0 2.000
2 0.722 0.500 1.000
5 0.852 0.800 0.880

10 0.916 0.900 0.920
20 0.954 0.950 0.955
30 0.981 0.980 0.981

Integration-by-parts
One useful technique for obtaining asymptotic approximations to integrals is to repeatedly
use integration-by-parts. This approach is illustrated in the following examples.

Example 9.2 (Incomplete beta function). Consider approximation of the integral∫ x

0
tα−1(1 − t)β−1 dt,

where α > 0 and β > 0, for small values of x > 0. This is the integral appearing in the
distribution function corresponding to the beta distribution with density

�(α + β)

�(α)�(β)
xα−1(1 − x)β−1, 0 < x < 1

and it is known as the incomplete beta function.
Using integration-by-parts,∫ x

0
tα−1(1 − t)β−1 dt = 1

α
tα(1 − t)β−1

∣∣∣x

0
+ β − 1

α

∫ x

0
tα(1 − t)β−2 dt

= 1

α
xα(1 − x)β−1 + β − 1

α

∫ x

0
tα(1 − t)β−2 dt.

For β ≥ 2, ∫ x

0
tα(1 − t)β−2 dt ≤ 1

α + 1
xα+1,

while for 0 < β < 2, ∫ x

0
tα(1 − t)β−2 dt ≤ (1 − x)β−2 1

α + 1
xα+1;

hence, we may write∫ x

0
tα−1(1 − t)β−1 dt = 1

α
xα(1 − x)β−1[1 + o(x)] as x → 0.

Alternatively, integration-by-parts may be used on the remainder term, leading to the
expansion∫ x

0
tα−1(1 − t)β−1 dt = 1

α
xα(1 − x)β−1

[
1 + β − 1

α + 1

x

1 − x
+ o(x2)

]
as x → 0.

Further terms in the expansion may be generated in the same manner.
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Table 9.2. Approximations in Example 9.2.

Relative
x Exact Approx. error (%)

0.50 0.102 0.103 1.4
0.20 0.0186 0.0186 0.12
0.10 0.00483 0.00483 0.024
0.05 0.00123 0.00123 0.0056

Table 9.2 contains values of the approximation

1

α
xα(1 − x)β−1

[
1 + β − 1

α + 1

x

1 − x

]

for the case α = 2, β = 3/2, along with the exact value of the integral and the relative
error of the approximation. Note that for these choices of α and β, exact calculation of the
integral is possible: ∫ x

0
t(1 − t)

1
2 dt = 4

15
+ 2

5
(1 − x)

5
2 − 2

3
(1 − x)

3
2 .

The results in Table 9.2 show that the approximation is extremely accurate even for relatively
large values of x . �

Example 9.3 (Normal tail probability). Consider the function

�̄(z) ≡
∫ ∞

z
φ(t) dt

where φ denotes the density function of the standard normal distribution. Then, using
integration-by-parts, we may write

�̄(z) =
∫ ∞

z
φ(t) dt =

∫ ∞

z

1

t
tφ(t) dt

= −1

t
φ(t)

∣∣∣∞
z

−
∫ ∞

z

1

t2
φ(t) dt

= 1

z
φ(z) −

∫ ∞

z

1

t3
tφ(t) dt

= 1

z
φ(z) − 1

z3
φ(z) +

∫ ∞

z

1

t4
φ(t) dt.

Hence,

�̄(z) = 1

z
φ(z) − 1

z3
φ(z) + O

(
1

z4

)
�̄(z)

as z → ∞. That is, [
1 + O

(
1

z4

)]
�̄(z) = φ(z)

[
1

z
− 1

z3

]
,
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or,

�̄(z) = φ(z)
1
z − 1

z3

1 + O
(

1
z4

) = φ(z)

[
1

z
− 1

z3
+ O

(
1

z5

)]
as z → ∞.

Note that this approach may be continued indefinitely, leading to the result that

�̄(z) = φ(z)

[
1

z
− 1

z3
+ 3

z5
+ · · · + (−1)k (2k)!

2kk!

1

z2k+1
+ O

(
1

z2k+2

)]

as z → ∞, for any k = 0, 1, 2, . . . . �

9.4 Watson’s Lemma

Note that an integral of the form ∫ ∞

0
tα exp(−nt) dt,

where α > −1 and n > 0, may be integrated exactly, yielding∫ ∞

0
tα exp(−nt) dt = �(α + 1)

nα+1
.

Now consider an integral of the form∫ ∞

0
h(t) exp(−nt) dt

where h has an series representation of the form

h(t) =
∞∑
j=0

a j t
j .

Then, assuming that summation and integration may be interchanged,∫ ∞

0
h(t) exp(−nt) dt =

∞∑
j=0

a j

∫ ∞

0
t j exp(−nt) dt =

∞∑
j=0

a j
�( j + 1)

n j+1
.

Note that the terms in this series have increasing powers of 1/n; hence, if n is large,
the value of the integral may be approximated by the first few terms in the series. Watson’s
lemma is a formal statement of this result.

Theorem 9.12 (Watson’s lemma). Let h denote a real-valued continuous function on
[0, ∞) satisfying the following conditions:

(i) h(t) = O(exp(bt)) as t → ∞ for some constant b
(ii) there exist constants c0, c1, . . . , cm+1, a0, a1, . . . , am+1,

−1 < a0 < a1 < · · · < am+1

such that

ĥm(t) =
m∑

j=0

c j t
a j
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satisfies

h(t) = ĥm(t) + O(tam+1 ) as t → 0+.

Consider the integral

In =
∫ T

0
h(t) exp{−nt} dt, 0 < T ≤ ∞.

Then

In =
m∑

j=0

c j�(a j + 1)

na j +1 + O

(
1

nam+1+1

)
as n → ∞.

Proof. Fix 0 < ε < T . There exists a constant K such that

|h(t)| ≤ K exp{bt}, t ≥ ε.

Hence, for sufficiently large n,∣∣∣ ∫ T

ε

h(t) exp{−nt}dt
∣∣∣ ≤ K

∫ ∞

ε

exp{−(n − b)} dt ≤ K

n − b
exp{−(n − b)ε}

= O

(
exp{−nε}

n

)
as n → ∞.

Consider the integral∫ ε

0
h(t) exp{−nt} dt =

∫ ε

0
ĥm(t) exp{−nt} dt +

∫ ε

0
Rm(t) exp{−nt} dt

where Rm(t) = O(tam+1 ) as t → 0+. For any α > −1,∫ ε

0
tα exp{−nt} dt =

∫ ∞

0
tα exp{−nt} dt −

∫ ∞

ε

tα exp{−nt} dt.

Note that ∫ ∞

0
tα exp{−nt} dt = �(α + 1)

nα+1

and

exp{nε}
∫ ∞

ε

tα exp{−nt} dt =
∫ ∞

ε

tα exp{−n(t − ε)} dt

=
∫ ∞

0
(t + ε)α exp{−nt} dt = O(1)

as n → ∞. It follows that∫ ε

0
tα exp{−nt} dt = �(α + 1)

nα+1
+ O(exp{−nε}).

Hence, for any ε > 0,∫ ε

0
ĥm(t) exp{−nt} dt =

m∑
j=0

c j�(a j + 1)

na j +1 + O(exp{−nε}).
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Note that, since Rm(t) = O(tam+1 ) as t → 0+, there exists a constant Km such that for
sufficiently small ε,

|Rm(t)| ≤ Kmtam+1 .

Hence,∫ ε

0
|Rm(t)| exp{−nt} dt ≤ Km

∫ ε

0
tam+1 exp{−nt} dt ≤ Km

�(am+1 + 1)

nam+1+1
.

It follows that

In =
∫ T

0
h(t) exp{−nt} dt

=
∫ ε

0
ĥm(t) exp{−nt} dt +

∫ ε

0
Rm(t) exp{−nt} dt +

∫ T

ε

h(t) exp{−nt} dt

=
m∑

j=0

c j�(a j + 1)

na j +1 + O(exp{−nε}) + O

(
1

nam+1+1

)
+ O

(
exp{−nε}

n

)
,

proving the theorem.

Example 9.4 (Exponential integral). Consider the exponential integral function defined
by

E1(z) =
∫ ∞

z

1

u
exp(−u) du;

this function arises in a number of different contexts. See, for example, Barndorff-Nielsen
and Cox (1989, Example 3.3) for a discussion of a distribution with density function given
by E1.

Consider an asymptotic expansion for E1(z) for large z. In order to use Watson’s lemma,
the integral used to define E1 must be rewritten. Note that, using the change-of-variable
t = u/z − 1, ∫ ∞

z

1

u
exp(−u) du = exp(−z)

∫ ∞

0

1

1 + t
exp(−zt) dt.

The function h(t) = 1/(1 + t) satisfies the conditions of Watson’s lemma with a j = j and
c j = (−1) j , j = 0, 1, . . . . Hence, for any m = 0, 1, . . . ,

E1(z) = exp(−z)

[
m∑

j=0

(−1) j j!

z j+1
+ O

(
1

zm+1

)]
.

Since this holds for all m we may write

E1(z) ∼ exp(−z)
∞∑
j=0

(−1) j j!

z j+1
as n → ∞. �

Example 9.5 (Ratio of gamma functions). Consider an asymptotic expansion of the ratio
of gamma functions �(z)/�(z + x) for large values of z and fixed x . By Theorem 9.2 we
can write

�(z)

�(z + x)
= 1

�(x)

∫ 1

0
uz−1(1 − u)x−1 dx .



P1: JZP
052184472Xc09 CUNY148/Severini June 2, 2005 12:8

9.4 Watson’s Lemma 271

Hence, using the change-of-variable t = − log(u),

�(z)

�(z + x)
= 1

�(x)

∫ ∞

0
(1 − exp(−t))x−1 exp(−zt) dt

and an asymptotic expansion for this integral may be derived using Watson’s lemma.
Note that we may write

[1 − exp(−t)]x−1 = t x−1

(
1 − exp(−t)

t

)x−1

and, as t → 0, (
1 − exp(−t)

t

)x−1

= 1 − 1

2
(x − 1)t + O(t2);

hence, (
1 − exp(−t)

)x−1 = t x−1 − 1

2
(x − 1)t x + O(t x+1) as t → 0.

It now follows from Watson’s lemma that∫ ∞

0
(1 − exp(−t))x−1 exp(−zt) dt = �(x)

zx
− 1

2
(x − 1)

�(x + 1)

zx+1
+ O

(
1

zx+2

)

and, hence, that

�(z)

�(z + x)
= 1

zx
− 1

2

x(x − 1)

zx+1
+ O

(
1

zx+2

)
as z → ∞. �

Watson’s lemma may be generalized to allow the function h in∫ T

0
h(t) exp{−nt} dt

to depend on n.

Theorem 9.13. Let h1, h2, . . . denote a sequence of real-valued continuous functions on
[0, ∞) satisfying the following conditions:

(i) supn hn(t) = O(exp(bt)) as t → ∞ for some constant b.
(ii) There exist constants cn0, cn1, . . . , cn(m+1), n = 1, 2, . . . ,, a0, a1, . . . , am+1,

−1 < a0 < a1 < · · · < am+1

such that

ĥnm(t) =
m∑

j=0

cnj t
a j

satisfies

hn(t) = ĥnm(t) + Rnm(t)

where

sup
n

Rnm(t) = O(tam+1 ) as t → 0+.
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Consider the integral

In =
∫ Tn

0
hn(t) exp{−nt} dt

where T1, T2, . . . are bounded away from 0. Then

In =
m∑

j=0

c j�(a j + 1)

na j +1 + O

(
1

nam+1+1

)
.

Proof. Fix ε > 0 such that ε ≤ Tn for all n. There exists a constant K such that for all
n = 1, 2, . . . ,

|hn(t)| ≤ K exp{bt}, t ≥ ε.

Hence, for sufficiently large n,∣∣∣ ∫ Tn

ε

hn(t) exp{−nt} dt
∣∣∣ ≤ K

∫ ∞

ε

exp{−(n − b)t} dt = K

n − b
exp{−(n − b)ε}

= O

(
exp{−nε}

n

)
as n → ∞.

Consider the integral∫ ε

0
hn(t) exp{−nt} dt =

∫ ε

0
ĥnm(t) exp{−nt} dt +

∫ ε

0
Rnm(t) exp{−nt} dt.

For any ε > 0,∫ ε

0
ĥnm(t) exp{−nt} dt =

m∑
j=0

cnj�(a j + 1)

na j +1 + O(exp{−nε})

and ∫ ε

0
|Rnm(t)| exp{−nt} dt ≤ Km

�(am+1 + 1)

nam+1+1
.

The theorem follows from combining these results.

Example 9.6 (Tail probability of the t-distribution). Consider the integral

∫ ∞

z

(
1 + y2

ν

)− (ν+1)
2

dy

which, aside from a normalizing constant, is the tail probability of the t-distribution with ν

degrees of freedom. We will derive an asymptotic expansion for this integral as ν → ∞.
Using the change-of-variable

t = 1

2
log

(
1 + y2

ν

)
− 1

2
log

(
1 + z2

ν

)
,

we may write∫ ∞

z
(1 + y2/ν)−

(ν+1)
2 dy =

√
ν

c
ν
2
ν

∫ ∞

0
(1 − exp(−2t)/cν)−

1
2 exp(−νt) dt
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Table 9.3. Approximations in Example 9.6.

Relative
z ν Exact Approx. error (%)

1.5 2 0.136 0.174 27.5
1.5 5 0.0970 0.113 16.8
1.5 10 0.0823 0.0932 13.4
1.5 25 0.0731 0.0814 11.4
2.0 2 0.0918 0.0989 7.8
2.0 5 0.0510 0.0524 2.7
2.0 10 0.0367 0.0372 1.3
2.0 25 0.0282 0.0284 0.6
3.0 2 0.0477 0.0484 1.4
3.0 5 0.00150 0.00150 0.3
3.0 10 0.00667 0.00663 0.6
3.0 25 0.00302 0.00300 0.7

where cν = 1 + z2/ν. To use Theorem 9.13, we may use the expansion

(1 − exp(−2t)/cν)−
1
2 =

√
cν√

(cν − 1)

[
1 − 1

cν − 1
t +

(
1

cν − 1
+ 3

2

1

(cν − 1)2

)
t2 + · · ·

]
.

Note, however, that as ν → ∞, cν → 1, so that Theorem 9.13 can only be applied if, as
ν → ∞, z2/ν remains bounded away from 0. Hence, we assume that z is such that

z2

ν
= b + o(1) as ν → ∞,

for some b > 0.
Applying Theorem 9.13 yields the result∫ ∞

z
(1 + y2/ν)

−(ν+1)
2 dy

= 1

c
( ν−1

2 )
ν

1√
(cν − 1)

[
1

ν
− 1

cν − 1

1

ν2
+

(
1

cν − 1
+ 3

2

1

(cν − 1)2

)
1

ν3
+ O

(
1

ν4

)]

as ν → ∞ and z2/ν → b > 0.
When this expansion is used to approximate the integral, we will be interested in the value

for some fixed values of ν and z. Hence, it is important to understand the relevance of the
conditions that ν → ∞ and z2/ν → b > 0 in this case. Since we are considering ν → ∞,
we expect the accuracy of the approximation to improve with larger values of ν. However,
for a fixed value of z, a larger value of ν yields a value of z2/ν closer to 0. Hence, if ν is
larger, we expect high accuracy only if z is large as well. That is, when approximating tail
probabilities, we expect the approximation to have high accuracy only when approximating
a small probability based on a moderate or large degrees of freedom.

Table 9.3 gives the approximations to the tail probability Pr(T ≥ z), where T has a
t-distribution with ν degrees of freedom, given by

�((ν + 1)/2)√
(νπ )�(ν/2)

1

c
( ν−1

2 )
ν

1√
(cν − 1)

[
1

ν
− 1

cν − 1

1

ν2
+

(
1

cν − 1
+ 3

2

1

(cν − 1)2

)
1

ν3

]
,
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along with the exact value of this probability and the relative error of the approximation,
for several choices of z and ν. Note that, for a fixed value of z, the relative error of the
approximation decreases as ν increases. However, very high accuracy is achieved only if z
is large as well. In fact, based on the results in this table, a large value of z appears to be at
least as important as a large value of ν in achieving a very accurate approximation. �

Consider an integral of the form

∫ T1

−T0

h(u) exp
{
−n

2
u2

}
du;

clearly, this integral may be transformed into one that may be handled by Watson’s lemma
by using the change-of-variable t = u2/2. This case occurs frequently enough that we give
the result as a corollary below; it is worth noting that the case in which h depends on n can
be handled in a similar manner.

Corollary 9.1. Let h denote a real-valued continuous function on [0, ∞) satisfying the
following conditions:

(i) h(t) = O(exp(bt2)) as |t | → ∞ for some constant b
(ii) there exist constants c0, c1, . . . , cm+1 such that

h(t) =
m∑

j=0

c j t
j + O(tm+1) as t → 0.

Consider the integral

In =
∫ T1

−T0

h(t) exp
{
−n

2
t2

}
dt

where T0 > 0 and T1 > 0. Then

In =
	 m

2∑
j=0

c2 j 2 j+ 1
2 �( j + 1/2)

n j+ 1
2

+ O

(
1

n
m
2 +1

)
as n → ∞.

Proof. First suppose that T1 = T0 ≡ T . Note that

∫ T

−T
h(t) exp

{
−n

2
t2

}
dt =

∫ T

0
[h(t) + h(−t)] exp

{
−n

2
t2

}
dt

=
∫ T 2

2

0

h(
√

(2u)) + h(−√
(2u))√

(2u)
exp{−nu} du

≡
∫ T 2

2

0
h̄(u) exp{−nu} du.

Since

h(t) =
m∑

j=0

c j t
j + O(tm+1) as t → 0,
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h̄(u) =
m∑

j=0

c j 2
j
2 u

j
2 +

m∑
j=0

(−1) j c j 2
j
2√

(2u)
+ O

(
u

m
2

)

=
	 m

2∑
j=0

2 j+ 1
2 c2 j u

j− 1
2 + O

(
u

m
2

)
as u → 0+

.

It follows from Watson’s lemma that∫ T

−T
h(t) exp

{
−n

2
t2

}
dt =

	 m
2∑

j=0

c j 2 j+ 1
2 �( j + 1/2)

n j+ 1
2

+ O

(
1

n
m
2 +1

)
as n → ∞.

Now suppose that T1 > T0. Then∫ T1

−T0

h(t) exp
{
−n

2
t2

}
dt =

∫ T0

−T0

h(t) exp
{
−n

2
t2

}
dt +

∫ T1

T0

h(t) exp
{
−n

2
t2

}
dt

=
∫ T0

−T0

h(t) exp
{
−n

2
t2

}
dt + O

(
exp

{
−T 2

0

2
n

})
.

The result now follows as above.
Finally, suppose that T0 > T1. Since∫ T1

−T0

h(t) exp
{
−n

2
t2

}
dt =

∫ T0

−T1

h(−t) exp
{
−n

2
t2

}
dt,

the argument given above applies here as well, with h1 in place of h, where h1(t) = h(−t).
Clearly, h1 has the same expansion as h, with coefficients c̄ j , given by

c̄ j =
{

c j if j is even
−c j if j is odd

.

The result now follows from the fact that the expansion of the integral depends only on c2 j ,
j = 0, 1, . . . .

Example 9.7 (Expected value of a function of a normal random variable). Let X denote
a random variable with a normal distribution with mean 0 and variance n−1; for instance,
X may be a sample mean based on n independent identically distributed standard normal
random variables. Let h denote a function satisfying the conditions of Corollary 9.1 for any
m = 1, 2, . . . and consider E[h(X )]. In particular, assume that

h(t) =
∞∑
j=0

h( j)(0)

j!
t j .

Note that

E[h(X )] =
√

n√
(2π )

∫ ∞

−∞
h(t) exp

(
−n

2
t2

)
dt.

Hence, it follows immediately from Corollary 9.1 that, as n → ∞,

E[h(X )] ∼
√

n√
(2π )

∞∑
j=0

h(2 j)(0)2 j+ 1
2 �( j + 1/2)

(2 j)!n j+ 1
2

=
∞∑
j=0

h(2 j)(0)2 j�( j + 1/2)

(2 j)!�(1/2)

1

n j
. �



P1: JZP
052184472Xc09 CUNY148/Severini June 2, 2005 12:8

276 Approximation of Integrals

9.5 Laplace’s Method

Laplace’s method provides a futher generalization of the results of the previous section to
the case in which the integral under consideration is not exactly of the form∫ T

0
h(t) exp(−nt) dt

or ∫ T1

−T0

h(t) exp(−nt2/2) dt.

Consider an integral of the form∫ b

a
h(y) exp{ng(y)} dy.

Then, by changing the variable of integration, we can rewrite this integral in a form in
which Corollary 9.1 may be applied. It is worth noting that Theorem 9.14 below may be
generalized to the case in which g and h both depend on n; however, we will not consider
such a generalization here.

Theorem 9.14. Consider the integral

In =
∫ b

a
h(y) exp{ng(y)} dy, −∞ ≤ a < b ≤ ∞

where
(i) g is three-times differentiable on (a, b)

(ii) h is twice-differentiable on (a, b) and h(y) = O(exp(dy2)) as |y| → ∞, for some
constant d

(iii) g is maximized at y = ŷ, where a < ŷ < b
(iv) g′(ŷ) = 0, |g′(y)| > 0 for all y �= ŷ, and g′′(ŷ) < 0.

If |h(ŷ)| > 0, then

In = exp{ng(ŷ)}
√

(2π )h(ŷ)

[−ng′′(ŷ)]
1
2

[1 + O(n−1)] as n → ∞.

If h(ŷ) = 0, then

In = exp{ng(ŷ)}O

(
1

n
3
2

)
as n → ∞.

Proof. Note that∫ b

a
h(y) exp{ng(y)} dy = exp{ng(ŷ)}

∫ b

a
h(y) exp{−n[g(ŷ) − g(y)]} dy.

Consider the change-of-variable

u = sgn(ŷ − y){2[g(ŷ) − g(y)]} 1
2



P1: JZP
052184472Xc09 CUNY148/Severini June 2, 2005 12:8

9.5 Laplace’s Method 277

so that u is a one-to-one function of y with

1

2
u2 = g(ŷ) − g(y).

Then

u du = −g′(y) dy.

Note that, since g is maximized at ŷ and |g′(y)| > 0 for all y �= ŷ, it follows that g′(y) < 0
for y > ŷ and g′(y) > 0 for y < ŷ. Hence, u and g′(y) have the same sign and∣∣∣ dy

du

∣∣∣= u

g′(y)
.

It follows that∫ b

a
h(y) exp{−n[g(ŷ) − g(y)]} dy =

∫ u(b)

u(a)
h(y(u)) exp

{
−n

2
u2

} u

g′(y(u))
du

≡
∫ u(b)

u(a)
h̄(u) exp

{
−n

2
u2

}
du.

Under the conditions on h and g,

h̄(u) = h̄(0) + h̄′(0)u + O(u2) as u → 0

and, hence, by Corollary 9.1,∫ u(b)

u(a)
h̄(u) exp

{
−n

2
u2

}
du =

√
2�

(
1
2

)
√

n
h̄(0) + O

(
1

n
3
2

)
as n → ∞.

Hence, to complete the approximation we need to find

h̄(0) ≡ lim
u→0

uh(y(u))

g′(y(u))
.

Note that u = 0 if and only if y = ŷ; hence,

h(y(0)) = h(ŷ), g′(y(0)) = 0

and

h̄(0) = h(ŷ) lim
u→0

u

g′(y(u))
≡ h(ŷ)L

where

L = lim
u→0

u

g′(y(u))
.

By L’Hospital’s rule,

L = 1

g′′(ŷ)y′(0)
.

We have seen that

y′(u) = u

−g′(y(u))
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so that

y′(0) = 1

−g′′(ŷ)y′(0)
= −L

and, hence, that

L2 = 1

−g′′(ŷ)
.

Finally, note that u and g′(y(u)) have the same sign so that L ≥ 0. It follows that

L = 1

[−g′′(ŷ)]
1
2

and

h̄(0) = h(ŷ)

[−g′′(ŷ)]
1
2

.

Hence, if |h(ŷ)| > 0, then∫ u(b)

u(a)
h̄(u) exp

{
−n

2
u2

}
du =

√
2�

(
1
2

)
√

n

h(ŷ)

[−g′′(ŷ)]
1
2

+ O

(
1

n
3
2

)

so that

In = exp{ng(ŷ)}
√

(2π )h(ŷ)

[−ng′′(ŷ)]
1
2

[1 + O(n−1)] as n → ∞.

If h(ŷ) = 0, then ∫ u(b)

u(a)
h̄(u) exp

{
−n

2
u2

}
du = O

(
1

n
3
2

)

so that

In = exp{ng(ŷ)}O

(
1

n
3
2

)
as n → ∞.

Example 9.8 (Stirlings approximation). Consider approximation of the gamma function
�(z + 1) for large values of z. Note that, using the change-of-variable y = t/z, we may
write

�(z + 1) =
∫ ∞

0
t z exp(−t) dt = zz+1

∫ ∞

0
exp{−z[y − log(y)]} dy.

Hence, we may apply Theorem 9.14 with g(y) = log(y) − y, n = z, and h(y) = 1. It is
straightforward to show that the conditions of Theorem 9.14 are satisfied with ŷ = 1,
leading to the result that

�(z + 1) = √
(2π )zz+1/2 exp(−z)[1 + O(z−1)] as z → ∞.

Since �(z) = �(z + 1)/z, Stirling’s approximation to �(z) is given by

�(z) = √
(2π )zz−1/2 exp(−z)[1 + O(z−1)] as z → ∞. �
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Example 9.9 (Ratio of two integrals). Consider approximation of the ratio∫ b
a h1(y) exp{ng(y)} dy∫ b
a h2(y) exp{ng(y)} dy

where g and both h1 and h2 satisfy the conditions of Theorem 9.14, with |h1(ŷ)| > 0 and
|h2(ŷ)| > 0. Here ŷ is the maximizer of g and must satisfy a < ŷ < b.

Since, as n → ∞,∫ b

a
h j (y) exp{ng(y)} dy = exp{ng(ŷ)}

√
(2π )h j (ŷ)

[−ng′′(ŷ)]
1
2

[1 + O(n−1)], j = 1, 2,

it follows that ∫ b
a h1(y) exp{ng(y)} dy∫ b
a h2(y) exp{ng(y)} dy

= h1(ŷ)

h2(ŷ)
[1 + O(n−1)], as n → ∞. �

Example 9.10. Let Y denote a real-valued random variable with an absolutely continuous
distribution with density function

p(y; a) = c(a) exp{−2a cosh(y)}, −∞ < y < ∞;

here a is a nonnegative constant and c(a) is a constant chosen so that the density integrates to
1. This distribution arises in the following manner. Let X1 and X2 denote independent iden-
tically distributed gamma random variables, let Y = log(X1/X2)/2 and let A = (X1 X2)

1
2 .

Then the conditional distribution of Y , given A = a, has the density p(y; a).
Consider approximation of the constant c(a) for large values of a; to do this, we need to

approximate the integral ∫ ∞

−∞
exp{−2a cosh(y)} dy.

We may apply Theorem 9.14 with g(y) = −2 cosh(y) and h(y) = 1. Hence, ŷ = 0, g′′(ŷ) =
−2, and∫ ∞

−∞
exp{−2a cosh(y)} dy = exp(−2a)

√
(2π )√
(2a)

[1 + O(a−1)] as a → ∞.

It follows that

c(a) =
√

a√
π

exp(2a)[1 + O(a−1)] as a → ∞. �

Laplace’s method, as given in Theorem 9.14, applies to integrals of the form∫ b

a
h(y) exp{ng(y)} dy

in which the maximum of g occurs at an interior point of (a, b); then, after changing the
variable of integration, the integral can be approximated by Corollary 9.1. If the maximum
of g occurs at either a or b, the same general approach may be used; however, in this case,
the approximation is based on Theorem 9.12. The following result considers the case in
which the maximum occurs at the lower endpoint a; a similar result may be derived for the
case in which the maximum occurs at the upper endpoint.
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Theorem 9.15. Consider the integral

In =
∫ b

a
h(y) exp{ng(y)} dy, −∞ < a < b ≤ ∞

where
(i) g is twice differentiable on [a, b)

(ii) h is differentiable on [a, b)
(iii) g is maximized at y = a
(iv) g′(y) < 0 for all a ≤ y < b and h(a) �= 0.

Then

In = exp{ng(a)} h(a)

−g′(a)

1

n
[1 + O(n−1)] as n → ∞.

Proof. Note that∫ b

a
h(y) exp{ng(y)} dy = exp{ng(a)}

∫ b

a
h(y) exp{−n[g(a) − g(y)]} dy.

Consider the change-of-variable u ≡ u(y) = g(a) − g(y); note that, since g is strictly
decreasing, u is a one-to-one function of y. Also note that u(a) = 0.

It follows that∫ b

a
h(y) exp{−n[g(a) − g(y)]} dy =

∫ u(b)

0

h(y(u))

g′(y(u))
exp{−nu} du

≡
∫ u(b)

0
h̄(u) exp{−nu} du.

Under the conditions on h and g,

h̄(u) = h̄(0) + O(u) as u → 0

and, hence, by Watson’s lemma,∫ u(b)

u(a)
h̄(u) exp{−nu} du = h̄(0)

1

n
+ O(n−2) as n → ∞.

The result now follows from the fact that

h̄(0) = h(a)

−g′(a)
.

Example 9.11 (Pareto distribution). Let Y denote a real-valued random variable with an
absolutely continuous distribution with density

p(y; α) = α

yα+1
, y ≥ 1;

here α > 0 is a parameter. This is a Pareto distribution. Consider an approximation to
E[log(1 + Y 2); α] for large values of α.

We may write

E[log(1 + Y 2); α] =
∫ ∞

1
log(1 + y2)

α

yα+1
dy = α

∫ ∞

1

log(1 + y2)

y
exp{−α log(y)} dy.
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α

E
[lo

g 
(1

 +
 y

2 )
; 

α
]

Figure 9.2. E[log(1 + Y 2); α] in Example 9.11.

Note that, in the interval [1, ∞), − log(y) is maximized at y = 1; hence, a Laplace approxi-
mation must be based on Theorem 9.15. Taking g(y) = − log(y) and h(y) = log(1 + y2)/y,
the conditions of Theorem 9.15 are satisfied so that∫ ∞

1

log(1 + y2)

y
exp{−α log(y)} dy = log(2)

1

α
[1 + O(α−1)]

so that

E[log(1 + Y 2); α] = log(2)[1 + O(α−1)] as α → ∞.

Figure 9.2 contains a plot of E[log(1 + Y 2); α] as a function of α, together with the
approximation log(2), which is displayed as a dotted line. Note that, although the exact
value of the expected value approaches log(2) as α increases, the convergence is relatively
slow. For instance, the relative error of the approximation is still 1.4% when α = 100. �

9.6 Uniform Asymptotic Approximations

Consider the problem of approximating an integral of the form∫ ∞

z
h(y) exp(ng(y)) dy,

as a function of z; for instance, we may be interested in approximating the tail probability
function of a given distribution. Although Laplace’s method may be used, in many cases,
it has the undesirable feature that the form of the approximation depends on whether ŷ,
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the maximizer of g, is less than or greater than z. For instance, suppose that g is strictly
decreasing on (ŷ, ∞). If z < ŷ, then the approximation is based on Theorem 9.14; if z ≥ ŷ,
so that over the interval [z, ∞) g is maximized at z, then the approximation is based on
Theorem 9.15. Furthermore, in the case z < ŷ, the approximation does not depend on the
value of z.

This is illustrated in the following example.

Example 9.12. Consider approximation of the integral∫ ∞

z
exp(x)

√
nφ(

√
nx) dx

for large n, where φ(·) denotes the standard normal density function. It is straightforward
to show that the exact value of this integral is given by

exp{1/(2n)}[1 − �(
√

nz − 1/
√

n)].

If z < 0 then, by Theorem 9.14,∫ ∞

z
exp(x) exp

(
−n

2
x2

)
dx =

√
(2π )√

n
[1 + O(n−1)]

so that ∫ ∞

z
exp(x)

√
nφ(

√
nx) dx = 1 + O(n−1) as n → ∞.

If z > 0, then Theorem 9.15 must be used, leading to the approximation∫ ∞

z
exp(x) exp

(
−n

2
x2

)
dx = exp

(− n
2 z2

)
z

exp(z)

n
[1 + O(n−1)]

so that ∫ ∞

z
exp(x)

√
nφ(

√
nx) dx = φ(

√
nz)

exp(z)√
nz

[1 + O(n−1)] as n → ∞.

Hence,∫ ∞

z
exp(x)

√
nφ(

√
nx) dx =

{
1 + O(n−1) if z < 0
[φ(

√
nz) exp(z)/(

√
nz)][1 + O(n−1)] if z > 0

. (9.3)

Since z2 has derivative 0 at z = 0, neither Theorem 9.14 nor Theorem 9.15 can be used
when z = 0.

In addition to the fact that the form of the approximation depends on the sign of z, the
approach based on Laplace’s method also has disadvantage that the approximations are not
valid uniformly in z. That is, the O(n−1) terms in (9.3) refer to asymptotic properties for
each fixed z, not to the maximum error over a range of z values.

For instance, suppose that zn = z0/
√

n, where z0 > 0 is a fixed constant. If the approx-
imation in (9.3) is valid uniformly for all z in a neighborbood of 0 then

sup
0≤z≤ε

∫ ∞
z exp(x)

√
nφ(

√
nx) dx

φ(
√

nz) exp(z)/(
√

nz)
= 1 + O(n−1)
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for some ε > 0 and, hence,∫ ∞
zn

exp(x)
√

nφ(
√

nx) dx

φ(
√

nzn) exp(zn)/(
√

nzn)
= 1 + O(n−1) as n → ∞.

However,

φ(
√

nzn) exp(zn)/(
√

nzn) = φ(z0)
exp(z0/

√
n)

z0
= φ(z0)

1

z0

[
1 + O

(
1√
n

)]
.

The exact value of the integral in this case is

exp{1/(2n)}[1 − �(z0 − 1/
√

n)] = 1 − �(z0) + φ(z0)
1√
n

+ O

(
1

n

)
.

Hence, if the approximation is valid to the order stated, then

1 − �(z0) = φ(z0)
1

z0

[
1 + O

(
n− 1

2

)]
,

that is,

1 − �(z0) = φ(z0)
1

z0
.

It follows that (9.3) is guaranteed to hold only valid for fixed values of z. �

In this section, we present a asymptotic approximation to integrals of the form∫ ∞

z
h(x)

√
nφ(

√
nx) dx (9.4)

that overcomes both of the drawbacks illustrated in the previous example. Specifically,
this approximation has the properties that the form of the approximation does not depend
on the value of z and that the approximation is valid uniformly in z. The approximation
takes advantage of the fact that the properties of the integral (9.4) when h is a constant are
well-known; in that case,∫ ∞

z
h(x)

√
nφ(

√
nx) dx = h(z)[1 − �(

√
nz)].

Note that it is generally necessary to do a preliminary transformation to put a given integral
into the form (9.4).

Theorem 9.16. Consider an integral of the form∫ ∞

z
hn(x)

√
nφ(

√
nx) dx

where h1, h2, . . . is a sequence of functions such that

sup
n

|h( j)
n (x)| ≤ c j exp

(
d j x

2
)
, j = 0, 1, 2

for some constants c0, c1, c2, d0, d1, d2.
Then, for all M < ∞,∫ ∞

z
hn(x)

√
nφ(

√
nx) dx = [1 − �(

√
nz)]

[
hn(0) + O

(
1

n

)]
+ hn(z) − hn(0)√

nz
φ(

√
nz),

as n → ∞, uniformly in z ≤ M.
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Proof. We may write∫ ∞

z
hn(x)

√
nφ(

√
nx) dx =

∫ ∞

z
hn(0)

√
nφ(

√
nx) dx

+
∫ ∞

z
x

hn(x) − hn(0)

x

√
nφ(

√
nx) dx

= hn(0)[1 − �(
√

nz)] +
∫ ∞

z
x

hn(x) − hn(0)

x

√
nφ(

√
nx) dx .

Let

gn(x) = hn(x) − hn(0)

x
.

Note that

√
nxφ(

√
nx) = − d

dx
φ(

√
nx);

hence, using integration-by-parts,∫ ∞

z
gn(x)

√
nxφ(

√
nx) dx = −1

n
gn(x)

√
nφ(

√
nx)

∣∣∣∞
z

+ 1

n

∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx

= gn(z)
φ(

√
nz)√
n

+ 1

n

∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx .

It follows that∫ ∞

z
hn(x)

√
nφ(

√
nx) dx = hn(0)[1 − �(

√
nz)] + gn(z)

φ(
√

nz)√
n

+ 1

n

∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx .

Hence, the theorem holds provided that

1

n

∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx = [1 − �(
√

nz)]O

(
1

n

)
,

where the O(1/n) term holds uniformly for z ≤ M , for any M < ∞.
Note that

g′
n(x) = h′

n(x)

x
− hn(x) − hn(0)

x2
= −hn(x) − hn(0) − xh′

n(x)

x2
.

Using Taylor’s series approximations,

hn(x) = hn(0) + h′
n(0) + 1

2
h′′

n(x1)x2

and

h′
n(x) = h′

n(0) + h′′
n(x2)x

where |x j | ≤ |x |, j = 1, 2. Hence,

g′
n(x) = 1

2
h′′

n(x1) − h′′
n(x2)
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and

sup
n

|g′
n(x)| ≤ 3

2
sup

n
|h′′

n(x)| ≤ 3

2
c2 exp

(
d2x2

)
and

sup
n

|g′
n(x) − 1| ≤ c3 exp

(
d3x2

)
for some constants c2, d2, c3, d3. It follows that∣∣∣ ∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx −
∫ ∞

z

√
nφ(

√
nx)dx

∣∣∣ ≤ c3

∫ ∞

z

√
nφ(

√
(n − 2d3)x) dx .

Note that∫ ∞

z

√
nφ(

√
(n − 2d3)x) dx = 1√

(1 − 2d3/n)
[1 − �(

√
(n − 2d3)z)].

Hence,

1

n

∫ ∞

z
g′

n(x)
√

nφ(
√

nx) dx = [1 − �(
√

nz)]
1

n
[1 + Rn(z)]

where

|Rn(z)| ≤ c3
1√

(1 − 2d3/n)

1 − �(
√

(n − 2d3)z)

1 − �(
√

nz)
.

The result follows provided that, for any M < ∞,

sup
z≤M

|Rn(z)| = O(1) as n → ∞.

First note that, for z < 1/
√

n

|Rn(z)| ≤ c3
1√

(1 − 2d3/n)

1

1 − �(1)
.

By Theorem 9.11,

1 − �((
√

(n − 2d3)z) ≤ 1√
(n − 2d3)

1

z
φ(

√
(n − 2d3)z)

and

1 − �(
√

nz) ≥
√

nz2

1 + nz2

1

z
φ(

√
nz).

Hence, for z ≥ 1/
√

n,

|Rn(z)| ≤ 2c3

1 − 2d3/n
exp

(
d3z2

)
.

It follows that

sup
z≤M

|Rn(z)| ≤ max

{
c3

1√
(1 − 2d3/n)

1

1 − �(1)
,

2c3

1 − 2d3/n
exp

(
d3 M2

)}
,

proving the result.
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Example 9.13. Consider approximation of the integral

Qn(z) ≡
∫ ∞

z
exp(x)

√
nφ(

√
nx) dx, z ∈ R,

for large n, as discussed in Example 9.12. We may use Theorem 9.16, taking h(x) = exp(x).
Then∫ ∞

z
exp(x)

√
nφ(

√
nx) dx = [1 − �(

√
nz)]

[
1 + O

(
1

n

)]
+ exp(z) − 1√

nz
φ(

√
nz)

and an approximation to Qn(z) is given by

Q̄n(z) = 1 − �(
√

nz) + exp(z) − 1√
nz

φ(
√

nz).

Suppose z = z0/
√

n. Then

Q̄n(z) = 1 − �(z0) + exp(z0/
√

n) − 1

z0
φ(z0) = 1 − �(z0) + φ(z0)

1√
n

+ O

(
1

n

)
.

Using the expansion for Qn(z) given in Example 9.12, it follows that, for z = z0/
√

n,
Q̄n(z) = Qn(z) + O(1/n) as n → ∞, as expected from Theorem 9.16. �

Example 9.14 (Probability that a gamma random variable exceeds its mean). Let X
denote a random variable with a standard gamma distribution with index z. Then

Pr(X ≥ cE(X )) = 1

�(z)

∫ ∞

cz
t z−1 exp(−t) dt

where c is a positive constant. We consider approximation of the integral in this expression
for large values of z.

Using the change-of-variable y = t/z, we may write∫ ∞

cz
t z−1 exp(−t) dt = zz

∫ ∞

c
yz−1 exp(−zy) dy

= zz
∫ ∞

c

1

y
exp{−z(y − log(y))} dy.

Hence, consider approximation of the integral∫ ∞

c

1

y
exp{−z(y − log(y))} dy.

The first step in applying Theorem 9.16 is to write the integral in the form (9.4). Note
that the function y − log(y) is decreasing for y < 1 and increasing for y > 1 with minimum
value 1 at y = 1. Hence, consider the transformation

x = sgn(y − 1){2[y − log(y) − 1]} 1
2 .

This is a one-to-one function of y with

1

2
x2 = y − log(y) − 1

and

dy = y

y − 1
x dx .
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It follows that∫ ∞

c

1

y
exp{−z(y − log(y))} dy = exp(−z)

∫ ∞

x(c)

x

y(x) − 1
exp

(
− z

2
x2

)
dx

=
√

(2π )√
z

exp(−z)
∫ ∞

x(c)

x

y(x) − 1

√
zφ(

√
zx) dx

where

x(c) = sgn(c − 1){2[c − log(c) − 1]} 1
2

and y(x) solves

y − log(y) = 1

2
x2 + 1.

By Theorem 9.16,∫ ∞

x(c)

x

y(x) − 1

√
zφ(

√
zx) dx = [1 − �(

√
zx(c))]

[
h(0) + O

(
1

z

)]

+ x(c)/(c − 1) − h(0)√
zx(c)

φ(
√

zx(c))

where

h(0) = lim
x→0

x

y(x) − 1
= lim

y→1

[2(y − log(y) − 1)]
1
2

|y − 1| = 1.

Hence, ∫ ∞

x(c)

x

y(x) − 1

√
zφ(

√
zx) dx = [1 − �(

√
zx(c))]

[
1 + O

(
1

z

)]

+ x(c)/(c − 1) − 1√
zx(c)

φ(
√

zx(c))

and

Pr(X ≥ cE(X )) = 1

�(z)

√
(2π )√

z
exp(−z)zz[1 − �(

√
zx(c))]

[
1 + O

(
1

z

)]

+ x(c)/(c − 1) − 1√
zx(c)

φ(
√

zx(c)).

Using Stirling’s approximation for �(z) in this expression yields

Pr(X ≥ cE(X )) = [1 − �(
√

zx(c))]

[
1 + O

(
1

z

)]

+ x(c)/(c − 1) − 1√
zx(c)

φ(
√

zx(c)) as z → ∞.

For comparison, we may consider approximations based on Laplace’s method. The
function g(y) = log(y) − y is maximized at y = 1 and is strictly decreasing on the interval
(1, ∞). Hence, if c < 1, we may use the approximation given in Theorem 9.14, leading to
the approximation

Pr(X ≥ cE(X )) = z
z−1

2

�(z)
exp(−z)

√
(2π )[1 + O(z−1)]. (9.6)
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Table 9.4. Approximations in Example 9.18.

z c Exact Uniform Laplace

1 1/2 0.607 0.604 0.922
1 3/4 0.472 0.471 0.922
1 4/3 0.264 0.264 1.054
1 2 0.135 0.135 0.271
2 1/2 0.736 0.735 0.960
2 3/4 0.558 0.558 0.960
2 4/3 0.255 0.255 0.741
2 2 0.0916 0.0917 0.147
5 1/2 0.891 0.891 0.983
5 3/4 0.678 0.678 0.983
5 4/3 0.206 0.206 0.419
5 2 0.0293 0.0293 0.0378

Using Stirling’s approximation to the gamma function shows that

Pr(X ≥ cE(X )) = 1 + O(z−1) as z → ∞.

For the case c > 1, g(y) is maximized at y = c and we may use the approximation given
in Theorem 9.15; this yields the approximation

Pr(X ≥ cE(X )) = exp(−cz)cz

�(z)(c − 1)

1

z
[1 + O(z−1)]. (9.7)

An approximation for the case c = 1 is not available using Theorem 9.15 since log(y) − y
has derivative 0 at y = 1.

Table 9.4 contains the uniform approximation given by (9.5), with the O(1/z) term
omitted, together with the Laplace approximation given by (9.6) and (9.7), again with the
O(1/z) terms omitted and the exact value of Pr(X ≥ cE(X )) for several values of c and z.
These results show that the uniform approximation is nearly exact for a wide range of c
and z values, while the Laplace approximation in nearly useless for the values of c and z
considered. �

9.7 Approximation of Sums

The methods discussed thus far in this chapter may be applied to integrals of the form∫ ∞

−∞
g(x) d F(x)

whenever F is absolutely continuous. In this section, we consider the approximation of
sums; these methods may be applicable when the distribution function F is a step function
so that an integral with respect to F reduces to a sum.

Consider a sum of the form
r∑

j=m

f ( j)
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where m and r are nonnegative integers m ≤ r . Here any or all of m, r , and f may depend
on a parameter n and we consider an approximation to this sum as n → ∞.

One commonly used approach to approximating this type of sum is to first approximate
the sum by an integral and then approximate the integral using one of the methods discussed
in this chapter. The basic result relating sums and integrals is known as the Euler-Maclaurin
summation formula. The following theorem gives a simple form of this result. The general
result incorporates higher derivatives of f ; see, for example, Andrews, Askey, and Roy
(1999, Appendix D) or Whittaker and Watson (1997, Chapter 13). Thus, the approximations
derived in this section tend to be rather crude; however, they illustrate the basic approach
to approximating sums.

Theorem 9.17. Let f denote a continuously differentiable function on [m, r ] where m and
r are integers, m ≤ r . Then

r∑
j=m

f ( j) =
∫ r

m
f (x) dx + 1

2
[ f (m) + f (r )] +

∫ r

m
P(x) f ′(x) dx

where

P(x) = x − 	x − 1

2
.

Proof. The result clearly holds whenever m = r so assume that m < r . Let j denote an
integer in [m, r ). Consider the integral∫ j+1

j
P(x) f ′(x) dx .

Note that, on the interval ( j, j + 1), P(x) = x − j − 1/2. By integration-by-parts,∫ j+1

j
P(x) f ′(x) dx = (x − j − 1/2) f (x)

∣∣∣ j+1

j
−

∫ j+1

j
f (x) dx

= 1

2
[ f ( j + 1) + f ( j)] −

∫ j+1

j
f (x) dx .

Hence, ∫ r

m
P(x) f ′(x) dx =

r−1∑
j=m

∫ j+1

j
P(x) f ′(x) dx

= 1

2

[
r∑

j=m+1

f ( j) +
r−1∑
j=m

f ( j)

]
−

∫ r

m
f (x) dx

=
r∑

j=m

f ( j) − 1

2
[ f (m) + f (r )] −

∫ r

m
f (x) dx,

proving the result.

The same approach may be used with infinite sums, provided that the sum and the terms
in the approximation converge appropriately.
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Corollary 9.2. Let f denote a continuously differentiable function on [m, ∞] where m is
an integer. Assume that

∞∑
j=m

| f ( j)| < ∞,

∫ ∞

m
| f (x)| dx < ∞

and ∫ ∞

m
| f ′(x)| dx < ∞.

Then
∞∑

j=m

f ( j) =
∫ ∞

m
f (x) dx + 1

2
f (m) +

∫ ∞

m
P(x) f ′(x) dx

where

P(x) = x − 	x − 1

2
.

Proof. By Theorem 9.17, for any r = m, m + 1, . . . ,

r∑
j=m

f ( j) =
∫ r

m
f (x) dx + 1

2
[ f (m) + f (r )] +

∫ r

m
P(x) f ′(x) dx . (9.8)

Note that, under the conditions of the corollary,∫ r

m
|P(x)| | f ′(x)| dx < ∞

and

lim
r→∞ f (r ) = 0.

The result now follows from taking limits in (9.8).

Using Theorem 9.17, the sum

r∑
j=m

f ( j)

may be approximated by the integral ∫ r

m
f (x) dx

with error

1

2
[ f (m) + f (r )] +

∫ r

m
P(x) f ′(x) dx

or it may be approximated by∫ r

m
f (x) dx + 1

2
[ f (m) + f (r )]
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with error ∫ r

m
P(x) f ′(x) dx . (9.9)

Example 9.15 (Discrete uniform distribution). Let X denote a discrete random variable
with a uniform distribution on the set {0, 1, . . . , m} for some positive integer m; hence,

Pr(X = j) = 1

m + 1
, j = 0, . . . , m.

Let f denote a bounded, real-valued function on [0, 1] and consider the expected value
E[ f (X/m)]. Let U denote an absolutely continuous random variable with a uniform distri-
bution on (0, 1). Here we consider the approximation of E[ f (X/m)] by E[ f (U )] for large
m. We assume that f is differentiable and that f ′ satisfies the Lipschitz condition

| f ′(s) − f ′(t)| ≤ K |s − t |, s, t ∈ [0, 1]

for some constant K .
Using Theorem 9.17,

E[ f (X/m)] = 1

m + 1

m∑
j=0

f ( j/m)

= 1

m + 1

∫ m

0
f (x/m) dx + 1

2(m + 1)
[ f (0) + f (1)]

+ 1

m(m + 1)

∫ m

0
(x − 	x − 1/2) f ′(x/m) dx .

Changing the variable of integration,

1

m + 1

∫ m

0
f (x/m) dx = m

m + 1

∫ 1

0
f (u)du = m

m + 1
E[ f (U )].

Note that, for j ≤ x < j + 1,

x − 	x − 1/2 = x − j − 1/2;

hence,

∫ m

0
(x − 	x − 1/2) f ′(x/m) dx =

m−1∑
j=0

∫ j+1

j
(x − j − 1/2) f ′(x/m) dx

=
m−1∑
j=0

∫ 1
2

− 1
2

u f ′
(

u + j + 1/2

m

)
du.

Since

∫ 1
2

− 1
2

c u du = 0
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for any constant c,∫ 1
2

− 1
2

u f ′
(

u + j + 1/2

m

)
du =

∫ 1
2

− 1
2

u

[
f ′

(
u + j + 1/2

m

)

− f ′
(

j + 1/2

m

)]
du, j = 0, . . . , m − 1.

Using the Lipschitz condition on f ′∣∣∣∣∣
∫ 1

2

− 1
2

u f ′
(

u + j + 1/2

m

)
du

∣∣∣∣∣ ≤ K

m

∫ 1
2

− 1
2

|u|2du = K

12m
, j = 0, . . . , m − 1

so that ∣∣∣∣
∫ m

0
(x − 	x − 1/2) f ′(x/m) dx

∣∣∣∣ ≤ K

12

and, hence, that

1

m(m + 1)

∫ m

0
(x − 	x − 1/2) f ′(x/m) dx = O

(
1

m2

)
as m → ∞.

It follows that

E

[
f

(
X

m

)]
= m

m + 1
E[ f (U )]

+ 1

2(m + 1)
[ f (0) + f (1)] + O

(
1

m2

)
as m → ∞. �

In order for the result in Theorem 9.17 to be useful, we need some information regarding
the magnitude of the integral (9.9), as in the previous example. A particularly simple bound
is available for the case in which f is a monotone function.

Corollary 9.3. Let f denote a continuously differentiable monotone function on [m, r ]
where m and r are integers, m ≤ r . Then∣∣∣∣∣

r∑
j=m

f ( j) −
∫ r

m
f (x) dx − 1

2
[ f (m) + f (r )]

∣∣∣∣∣ ≤ 1

2
| f (r ) − f (m)| (9.10)

and ∣∣∣∣∣
r∑

j=m

f ( j) −
∫ r

m
f (x) dx

∣∣∣∣∣ ≤ max{| f (m)|, | f (r )|}. (9.11)

Suppose that f is a decreasing function and

lim
r→∞ f (r ) = 0.

Then ∣∣∣∣∣
∞∑

j=m

f ( j) −
∫ ∞

m
f (x) dx − 1

2
f (m)

∣∣∣∣∣ ≤ 1

2
| f (m)|. (9.12)
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Proof. Equation (9.10) follows from Theorem 9.17 provided that∫ r

m
P(x) f ′(x) dx ≤ 1

2
| f (r ) − f (m)|.

Consider the case in which f is a decreasing function; the case in which f is increasing
follows from a similar argument.

Since f is decreasing, f ′(x) ≤ 0 on [m, r ] and, since |P(x)| ≤ 1/2 for all x ,∣∣∣∣
∫ r

m
P(x) f ′(x) dx

∣∣∣∣ ≤ −1

2

∫ r

m
f ′(x) dx = 1

2
[ f (m) − f (r )],

proving (9.10).
Equation (9.11) follows from (9.10) using the fact that∣∣∣∣∣

r∑
j=m

f ( j) −
∫ r

m
f (x) dx

∣∣∣∣∣ ≤
∣∣∣∣∣

r∑
j=m

f ( j) −
∫ r

m
f (x) dx − 1

2
[ f (m) + f (r )]

∣∣∣∣∣
+ 1

2
| f (r ) − f (m)|

and (9.12) follows from (9.10) by taking limits as r → ∞.

Example 9.16 (Stirling’s approximation). Consider the function log(n!), n = 0, 1, . . . .

Note that

log(n!) =
n∑

j=1

log( j).

Since log(x) is a strictly increasing function, by Corollary 9.3,

log(n!) =
∫ n

1
log(x) dx + Rn = n log(n) − n + 1 + Rn

where

|Rn| ≤ log(n)/2.

Hence,

log(n!) = n log(n) − n + O(log(n)) as n → ∞,

which is a crude form of Stirling’s approximation. By Example 9.8, we know that the
O(log(n)) term can be expanded as

1

2
log(2π ) + 1

2
log(n) + O(n−1). �

Example 9.17 (Tail probability of the logarithmic series distribution). Let X denote a
discrete random variable such that

Pr(X = j) = c(θ )θ j/j, j = 1, 2, . . . ,

where 0 < θ < 1 and

c(θ ) = − 1

log(1 − θ )
.
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This is known as a logarithmic series distribution. Consider approximation of the tail
probability

c(θ )
∞∑

j=n

θ j/j

for large n.
Note that θ x/x is a decreasing function so that by Corollary 9.3,

∞∑
j=n

θ j/j =
∫ ∞

n

1

x
θ x dx + Rn

where

|Rn| ≤ 1

2
θn/n.

We may write ∫ ∞

n
x−1θ x dx = θn

log(θ )

∫ ∞

0

1

1 + u/ log(θ )
exp{nu} du;

hence, by Watson’s lemma,∫ ∞

n
x−1θ x dx = θn

log(θ )

[
1

n
+ O

(
1

n2

)]
.

Therefore, based on this approach, the magnitude of the remainder term Rn is the same as
that of the integral itself, θn/n. Hence, all we can conclude is that

∞∑
j=n

θ j/j = θn O

(
1

n

)
as n → ∞. �

The previous example shows that the approximations given in Corollary 9.3 are not very
useful whenever the magnitude of | f (r ) − f (m)| is of the same order as the magnitude of the
sum f (m) + · · · + f (r ). This can occur whenever the terms in the sum increase or decrease
very rapidly; then f ′ tends to be large and, hence, the remainder terms in Corollary 9.3 tend
to be large. In some of these cases, summation-by-parts may be used to create an equivalent
sum whose terms vary more slowly. This result is given in the following theorem; the proof
is left as an exercise.

Theorem 9.18. Consider sequences x1, x2, . . . and y1, y2, . . . . Let m and r denote integers
such that m ≤ r . Define

Sj = xm + · · · + x j , j = m, . . . , r.

Then
r∑

j=m

x j y j =
r−1∑
j=m

Sj (y j − y j+1) + Sr yr .

If

∞∑
j=m

|x j y j | < ∞,

∞∑
j=m

|x j | < ∞
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and limr→∞ yr = 0, then

∞∑
j=m

x j y j =
∞∑

j=m

Sj (y j − y j+1).

Example 9.18 (Tail probability of the logarithmic series distribution). Consider approx-
imation of the sum

∞∑
j=n

θ j/j,

where 0 < θ < 1, as discussed in Example 9.17. We can apply Theorem 9.18, taking y j =
1/j and x j = θ j . Hence,

Sj = θn 1 − θ j−n+1

1 − θ
, j = n, . . . .

It follows that

∞∑
j=n

θ j

j
=

∞∑
j=n

θn 1 − θ j−n+1

1 − θ

1

j( j + 1)

= θn

1 − θ

[ ∞∑
j=n

1

j( j + 1)
−

∞∑
j=n

θ j−n+1

j( j + 1)

]
.

Using Corollary 9.3 it is straightforward to show that

∞∑
j=n

1

j( j + 1)
=

∫ ∞

n

1

x(x + 1)
dx + O

(
1

n2

)

= log(1 + 1/n) + O

(
1

n2

)
= 1

n
+ O

(
1

n2

)
.

Since

∞∑
j=n

θ j−n+1

j( j + 1)
=

∞∑
j=1

θ j

(n + j − 1)(n + j)
= O

(
1

n2

)
,

it follows that

∞∑
j=n

θ j

j
= θn

1 − θ

1

n

[
1 + O

(
1

n

)]
as n → ∞. �

9.8 Exercises

9.1 Prove Theorem 9.4.

9.2 Show that the beta function β(·, ·) satisfies

β(r, s) =
∫ ∞

0

tr−1

(1 + t)s+r
dt, r > 0, s > 0.
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9.3 Prove Theorem 9.5.

Exercises 9.4 and 9.5 use the following definition.
The incomplete beta function is defined as

I (r, s, x) =
∫ x

0
tr−1(1 − t)s−1 dt,

where r > 0, s > 0, and 0 ≤ x ≤ 1.

9.4 Show that, for all r > 0, s > 0, and 0 ≤ x ≤ 1,

1 − I (r, s, x) = I (s, r, 1 − x).

9.5 Show that, for all r > 1, s > 1, and 0 ≤ x ≤ 1,

I (r, s, x) = I (r, s − 1, x) − I (r + 1, s − 1, x).

9.6 Prove Theorem 9.8.

9.7 Prove Theorem 9.9.

9.8 Prove Theorem 9.10.

9.9 Suppose that, as n → ∞,

f (n) = a0 + a1

n
+ a2

n2
+ O

(
1

n3

)

and

g(n) = b0 + b1

n
+ b2

n2
+ O

(
1

n3

)

for some constants a0, a1, a2, b0, b1, b2 such that b0 �= 0.

Find constants c0, c1, c2 such that

f (n)

g(n)
= c0 + c1

n
+ c2

n2
+ O

(
1

n2

)
.

9.10 Show that

�(x + 1) = lim
z→∞

zxβ(x, z), x > 0.

9.11 Let X denote a random variable with an absolutely continuous distribution with density function

βα

�(α)
xα−1 exp(−βx), x > 0.

Let h denote a function such that

h(t) =
∞∑
j=0

h( j)(0)t j

and such that h(t) = O(exp(at2)) as |t | → ∞ for some constant a. Find an asymptotic expansion
for E[h(X )] as β → ∞, with α remaining fixed.

9.12 Let �(·, ·) denote the incomplete gamma function. Show that, for fixed x ,

�(x, y) = yx−1 exp(−y)

[
1 + x − 1

y
+ (x − 1)(x − 2)

y2
+ O

(
1

y3

)]
as y → ∞.

9.13 Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

p(y; a) = c(a) exp{−2a cosh(y)}, −∞ < y < ∞;

see Example 9.10. Find an approximation to E[cosh(Y )] that is valid for large a.
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9.14 Let ψ(·) denote the logarithmic derivative of the gamma function. Show that

ψ(z) = log z + O

(
1

z

)
as z → ∞.

9.15 Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

c(α) exp{α cos(y)}, −π < y < π,

where α > 0 and c(α) is a normalizing constant; this is a von Mises distribution. Find an
approximation to c(α) that is valid for large values of α.

9.16 Let X denote a real-valued random variable with an absolutely continuous distribution with
density function

1

α
(1 − x)α−1, 0 < x < 1.

Find an approximation to E[exp(X )] that is valid for large α.

9.17 Let Y denote a real-valued random variable with an absolutely continuous distribution with
density function

p(y) =
√

n√
(2π )

y− 3
2 exp

{
−n

2
(y + 1/y − 2)

}
, y > 0;

this is an inverse gaussian distribution. Find an approximation to Pr(Y ≥ y), y > 0, that is valid
for large n.

9.18 Let Y denote a random variable with an absolutely continuous distribution with density function

1

β(α, α)
yα−1(1 − y)α−1, 0 < y < 1,

where α > 0; this is a beta distribution that is symmetric about 1/2. Find an approximation to
Pr(Y ≥ y) that is valid for large α.

9.19 Euler’s constant, generally denoted by γ , is defined by

γ = lim
n→∞

{
n∑

j=1

1

j
− log(n)

}
.

Give an expression for γ in terms of the function P defined in Theorem 9.17.

9.20 Prove Theorem 9.18.

9.21 Consider the sum
∞∑
j=1

1

jα
where α > 1;

this is the zeta function, evaluated at α. Show that

∞∑
j=1

1

jα
= 1

α − 1
+ O(1) as α → 1+.

9.9 Suggestions for Further Reading

The functions described in Section 9.2 are often called special functions and they play an important
role in many fields of science. See Andrews et al. (1999) and Temme (1996) for detailed discussions
of special functions; in particular, Temme (1996, Chapter 11) discusses many special functions that
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are useful in statistics. Many imporant properties of special functions have been catalogued in Erdélyi
(1953a,b).

The basic theory of asymptotic expansions is outlined in de Bruijn (1956) and Erdelyi (1956).
Asymptotic expansions of integrals, including Watson’s lemma and related results, are discussed in
Andrews et al. (1999, Appendix C), Bleistein and Handelsman (1986), Temme (1996, Chapter 2),
and Wong (1989). The form of Watson’s lemma and Laplace’s method presented here is based on
Breitung (1994, Chapter 4). Evans and Swartz (2000) discuss the problem of approximating integrals
that are useful in statistics; see also Barndorff-Nielsen and Cox (1989).

The uniform asymptotic approximation presented in Section 9.6 is known as Temme’s method
(Temme 1982); see Jensen (1995, Chapter 3) for further discussion of this result and some general-
izations. The approximation of sums and the Euler-Maclaurin summation formula is discussed in de
Bruijn (1956, Chapter 3); see also Andrews et al. (1999, Appendix D). Exercise 9.15 is discussed
further in Barndorff-Nielsen and Cox (1989).
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Orthogonal Polynomials

10.1 Introduction

Let F denote a distribution function on the real line such that∫ ∞

−∞
|x |r d F(x) < ∞

for all r = 0, 1, . . . . A set of functions { f0, f1, . . .} is said to be orthogonal with respect to
F if ∫ ∞

−∞
f j (x) fk(x) d F(x) = 0 for j �= k.

Suppose that, for each n = 0, 1, . . . , fn is a polynomial of degree n which we will denote
by pn; assume that the coefficient of xn in pn(x) is nonzero. Then {p0, p1, . . .} are said to
be orthogonal polynomials with respect to F .

Orthogonal polynomials are useful in a number of different contexts in distribution
theory. For instance, they may be used to approximate functions or they may be used in
the exact or approximate calculation of certain integrals; they also play a central role in
asymptotic expansions for distribution functions, as will be discussed in Chapter 14. In this
chapter, we give the basic properties of orthgonal polynomials with respect to a distribution
function, along with some applications of these ideas.

10.2 General Systems of Orthogonal Polynomials

Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F .
Then any finite subset of {p0, p1, . . .} is linearly independent. A formal statement of this
result is given in the following lemma; the proof is left as an exercise.

Lemma 10.1. Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distri-
bution function F. Then, for any integers n1 < n2 < · · · < nm and any real numbers
α1, α2, . . . , αm,

α1 pn1 (x) + · · · + αm pnm (x) = 0 a.e. (F)

if and only if α1 = · · · = αm = 0.

299
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An important consequence of Lemma 10.1 is that, for any j = 0, 1, . . . , the function x j

has a unique representation in terms of p0, p1, . . . , p j ; that is,

x j = α0 p0(x) + α1 p1(x) + · · · + α j p j (x)

for some unique set of constants α0, . . . , α j . Hence, for each n = 0, 1, . . . ,∫ ∞

−∞
x j pn(x) d F(x) = 0, j = 0, 1, . . . , n − 1. (10.1)

Furthermore, as the following theorem shows, this property characterizes pn .

Theorem 10.1. Let {p0, p1, . . .} denote a set of orthogonal polynomials with respect to a
distribution function F. Let f denote a polynomial of degree n. Then∫ ∞

−∞
x j f (x) d F(x) = 0, j = 0, 1, . . . , n − 1 (10.2)

if and only if for some α �= 0

f (x) = αpn(x) a.e.(F).

Proof. Suppose that f = αpn for some α �= 0. Fix j = 0, . . . , n − 1. Since x j may be
written as a linear function of p0, . . . , pn−1, it follows that (10.2) holds.

Now suppose that (10.2) holds for some polynomial f of degree n. Let cn denote the
coefficient of xn in f (x) and let dn denote the coefficient of xn in pn(x). Then

f (x) − cn

dn
pn(x) = g(x)

where g is a polynomial of degree at most n − 1. Let α = cn/dn . Then∫ ∞

−∞
( f (x) − αpn(x))2 d F(x) =

∫ ∞

−∞
g(x) f (x) d F(x) − α

∫ ∞

−∞
g(x)pn(x) d F(x).

By (10.2), ∫ ∞

−∞
g(x) f (x) d F(x) = 0

and, by (10.1), ∫ ∞

−∞
g(x)pn(x) d F(x) = 0.

It follows that ∫ ∞

−∞
( f (x) − αpn(x))2 d F(x) = 0

and, hence, that

f (x) − αpn(x) = 0 a.e. (F),

proving the result.
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Construction of orthogonal polynomials
In many cases, orthogonal polynomials with respect to a given distribution may be easily
constructed from the moments of that distribution.

Theorem 10.2. Let

mn =
∫ ∞

−∞
xn d F(x), n = 0, 1, . . . .

For each n = 0, 1, . . . , let

pn(x) = det




xn xn−1 · · · 1
mn mn−1 · · · m0

mn+1 mn · · · m1
...

... · · · ...
m2n−1 m2n−2 · · · mn−1


 .

If, for some N = 0, 1, 2, . . . ,

αn ≡ det




mn−1 · · · m0

mn · · · m1
... · · · ...

m2n−2 · · · mn−1


 �= 0,

for n = 0, 1, . . . , N, then {p0, p1, . . . , pN } are orthogonal polynomials with respect to F.

Proof. Clearly, pn is a polynomial of degree n with coefficient of xn given by αn �= 0.
Hence, by Theorem 10.1, it suffices to show that∫ ∞

−∞
pn(x)x j d F(x) dx = 0, j = 0, 1, . . . , n − 1.

Note that, for j = 0, 1, . . . , n − 1,

x j pn(x) = det




xn+ j xn+ j−1 · · · x j

mn mn−1 · · · m0

mn+1 mn · · · m1
...

... · · · ...
m2n−1 m2n−2 · · · mn−1




and, since this determinant is a linear function of xn+ j , xn+ j−1, . . . , x j ,

∫ ∞

−∞
pn(x)x j d F(x) dx = det




mn+ j mn+ j−1 · · · m j

mn mn−1 · · · m0

mn+1 mn · · · m1
...

... · · · ...
m2n−1 m2n−2 · · · mn−1


 .

Since the first row of this matrix is identical to one of the subsequent rows, it follows that
the determinant is 0; the result follows.

In this section, the ideas will be illustrated using the Legendre polynomials; in the
following section, other families of orthogonal polynomials will be discussed.
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Example 10.1 (Legendre polynomials). Let F denote the distribution function of the uni-
form distribution on (−1, 1); the orthogonal polynomials with respect to this distribution
are known as the Legendre polynomials. They are traditionally denoted by P0, P1, . . . and
we will use that notation here.

Note that ∫ ∞

−∞
xn d F(x) = 1

2

∫ 1

−1
xn dx =

{
1

n+1 if n is even

0 if n is odd
.

Hence, using the procedure described in Theorem 10.2, we have that P0(x) = 1,

P1(x) = det

(
x 1
0 1

)
= x

and

P2(x) = det


 x2 x 0

1/3 0 1
0 1/3 0


 = −1

3
x2 + 1

9
.

It is easy to verify directly that these polynomials are orthogonal with respect to F . �

If p0, p1, . . . are orthogonal polynomials with respect to some distribution function
F , then so are α0 p0, α1 p1, . . . for any nonzero constants α0, α1, . . . . Hence, orthogonal
polynomials are generally standardized in some way. Typically, one of the following stan-
dardizations is used: the coefficient of xn in pn(x) is required to be 1, it is required that
pn(1) = 1, or pn must satisfy ∫ ∞

−∞
pn(x)2 d F(x) = 1. (10.3)

Example 10.2 (Legendre polynomials). Consider the Legendre polynomials described in
Example 10.1. If we require that the polynomials have lead coefficient 1, then

P0(x) = 1, P1(x) = x, and P2(x) = x2 − 1

3
.

If we require that pn(1) = 1,

P0(x) = 1, P1(x) = x, and P2(x) = 3

2
x2 − 1

2
.

If we require that (10.3) holds, then

P0(x) = 1, P1(x) = √
3x, and P2(x) = √

5
3

2
x2 −

√
5

2
.

For the Legendre polynomials, the second of these standardizations is commonly used and
that is the one we will use here. �

The following result gives another approach to finding orthogonal polynomials.

Theorem 10.3. Let F denote the distribution function of an absolutely continuous distri-
bution with support [a, b], −∞ ≤ a < b ≤ ∞, and let p denote the corresponding density
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function. Let {p0, p1, . . .} denote a system of orthogonal polynomials with respect to F.
Suppose there exists a polynomial g satisfying the following conditions:

(i) For each n = 0, 1, . . . ,

fn(x) ≡ 1

p(x)

dn

dxn
[g(x)n p(x)]

is a polynomial of degree n.
(ii) For each n = 1, 2, . . . and each j = 0, 1, . . . , n − 1,

lim
x→b

x j dm

dxm
[g(x)n p(x)] = lim

x→a
x j dm

dxm
[g(x)n p(x)] = 0, m = 1, 2, . . . , n − 1.

Then there exist constants c0, c1, . . . such that fn = cn pn, n = 0, 1, . . . .

Proof. Fix n. By Theorem 10.1, it suffices to show that, for each j = 0, 1, . . . , n − 1,∫ b

a
x j fn(x) d F(x) = 0.

Using integration-by-parts,∫ b

a
x j fn(x) d F(x) ≡

∫ b

a
x j dn

dxn
[g(x)n p(x)] dx

= x j dn−1

dxn−1
[g(x)n p(x)]

∣∣∣b

a
− j

∫ b

a
x j−1 dn−1

dxn−1
[g(x)n p(x)] dx

= − j
∫ b

a
x j−1 dn−1

dxn−1
[g(x)n p(x)] dx .

Continuing in this way,∫ b

a
x j dn

dxn
[g(x)n p(x)] dx = (−1) j j!

dn− j

dxn− j
[g(x)n p(x)]

∣∣∣b

a
= 0.

Since 0 ≤ n − j ≤ n − 1, the result follows.

Hence, when the conditions of Theorem 10.3 hold, we can take the orthogonal polyno-
mials to be

pn(x) = 1

cn p(x)

dn

dxn
[g(x)n p(x)] (10.4)

for some constants c0, c1, . . . . This is known as Rodrigue’s formula.

Example 10.3 (Legendre polynomials). In order to determine Rodrigue’s formula for the
Legendre polynomials, it suffices to find a polynomial g such that

dn

dxn
g(x)n

is a polynomial of degree n and

lim
x→1

x j dm

dxm
g(x)n = lim

x→−1
x j dm

dxm
g(x)n = 0

for j = 0, 1, . . . , n − 1 and m = 1, 2, . . . , n − 1.
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Suppose g is a polynomial of degree r . Then g(x)n is a polynomial of degree nr and

dn

dxn
g(x)n

is a polynomial of degree n(r − 1); hence, g must be a polynomial of degree 2. Since all
polynomials are bounded on [−1, 1], in order to satisfy the second condition, it suffices that

lim
x→1

g(x) = lim
x→−1

g(x) = 0.

Writing g(x) = ax2 + bx + c, we need a + c = 0 and b = 0; that is, g is of the form
c(x2 − 1). It follows that orthogonal polynomials with respect to the uniform distribution
on (−1, 1) are given by

dn

dxn
(x2 − 1)n.

Note that

dn

dxn
(x2 − 1)n = n!(2x)n + Q(x)

where Q(x) is a sum in which each term contains a factor x2 − 1. Hence, the standardized
polynomials that equal 1 at x = 1 are given by

1

n!2n

dn

dxn
(x2 − 1)n. �

Zeros of orthogonal polynomials and integration
Consider a function g : R → R. A zero of g is a number r , possibly complex, such that
g(r ) = 0. If g is a polynomial of degree n, then g can have at most n zeros. A zero r is said
to have multiplicity α if

g(r ) = g′(r ) = · · · = g(α−1)(r ) = 0

and g(α)(r ) �= 0. A zero is said to be simple if its multiplicity is 1.
Let g denote an nth degree polynomial and let r1, . . . , rm denote the zeros of g such that

r j has multiplicity α j , j = 1, . . . , m. Then
∑m

j=1 α j = n and g can be written

g(x) = a(x − r1)α1 · · · (x − rm)αm

for some constant a.
The zeros of orthogonal polynomials have some useful properties.

Theorem 10.4. Let {p0, p1, . . .} denote orthogonal polynomials with respect to F and let
[a, b], −∞ ≤ a < b ≤ ∞, denote the support of F. Then, for each n = 0, 1, . . . , pn has
n simple real zeros, each of which takes values in (a, b).

Proof. Fix n. Let k denote the number of zeros in (a, b) at which pn changes sign; hence,
0 ≤ k ≤ n.

Assume that k < n and and let x1 < x2 < · · · < xk denote the zeros in (a, b) at which
pn changes sign. Consider the polynomial

f (x) = (x − x1)(x − x2) · · · (x − xk).
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Since this is a polynomial of degree k, it follows from Theorem 10.1 that∫ b

a
f (x)pn(x) d F(x) = 0. (10.5)

Note that f (x) changes sign at each x j , j = 1, . . . , k, so that w(x) = f (x)pn(x) is always
of the same sign. Without loss of generality, we assume that w(x) > 0 for all x . Hence,∫ b

a
w(x) d F(x) =

∫ b

a
f (x)pn(x) d F(x) dx > 0.

This contradicts (10.5) so that we must have k = n. Thus, pn has n simple zeros in (a, b);
however, pn has only n zeros so that all zeros of pn lie in (a, b) and are simple.

Example 10.4 (Legendre polynomials). The Legendre polynomial P1(x) = x has one
zero, at x = 0. The second Legendre polynomial,

P2(x) = 3

2
x2 − 1

2

has zeros at x = ±1/
√

3. It may be shown that the third Legendre polynomial is given by

P3(x) = 5

2
x3 − 3

2
x,

which has zeros at x = ±√
(.6) and x = 0. �

Let p0, p1, . . . denote orthogonal polynomials with respect to a distribution function F
and let x1 denote the zero of p1. Let f (x) = ax + b, where a and b are constants. Then
f (x) = cp1(x) + d for some constants c and d; since p1(x1) = 0 we must have d = f (x1).
It follows that ∫ ∞

−∞
f (x) d F(x) = c

∫ ∞

−∞
p1(x) d F(x) + f (x1).

Since p1 is orthogonal to all constant functions,∫ ∞

−∞
p1(x) d F(x) = 0;

hence, for any linear function f ,∫ ∞

−∞
f (x) d F(x) = f (x1).

That is, the integral with respect to F of any linear function can be obtained by simply
evaluating that function at x1. The following result generalizes this method to an orthogonal
polynomial of arbitrary order.

Theorem 10.5. Let {p0, p1, . . .} denote orthogonal polynomials with respect to F. For a
given value of n = 1, 2, . . . , let x1 < x2 < . . . < xn denote the zeros of pn. Then there exist
constants λ1, λ2, . . . , λn such that, for any polynomial f of degree 2n − 1 or less,∫ ∞

−∞
f (x) d F(x) =

n∑
j=1

λ j f (x j ).
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For each k = 1, . . . , n, λk is given by

λk =
∫ ∞

−∞

pn(x)

(x − xk)p′
n(xk)

d F(x).

Proof. Fix n and consider a polynomial f of degree less than or equal to 2n − 1. Note
that, by Theorem 10.4, the zeros of pn are simple and, hence, |p′

n(x j )| > 0, j = 1, . . . , n.
Define a function h by

h(x) =
n∑

j=1

f (x j )
pn(x)

(x − x j )p′
n(x j )

.

Note that

pn(x) = α(x − x1) · · · (x − xn)

for some constant α �= 0; this may be seen by noting that the function on the right is a
polynomial of degree n with the same zeros as pn . Hence, for each j = 1, 2, . . . , n,

pn(x)

(x − x j )

is a polynomial of degree n − 1 so that h is also a polynomial of degree n − 1. It follows
that h − f is a polynomial of degree less than or equal to 2n − 1. Note that, for each
j = 1, 2, . . . , n,

lim
x→xk

h(x) =
∑
j �=k

f (x j )
pn(xk)

(xk − x j )p′
n(x j )

+ f (xk) = f (xk);

hence, h − f has zeros at x1, . . . , xn . It follows that

h(x) − f (x) = (x − x1) · · · (x − xn)q(x) ≡ pn(x)r (x) (10.6)

where q and r are polynomials each of degree at most n − 1.
Writing

f (x) = h(x) − pn(x)r (x),

and using the fact that r is a polynomial of degree at most n − 1,∫ ∞

−∞
f (x) d F(x) =

∫ ∞

−∞
h(x) d F(x) −

∫ ∞

−∞
pn(x)r (x) d F(x) =

∫ ∞

−∞
h(x) d F(x).

The result now follows from the fact that∫ ∞

−∞
h(x) d F(x) =

n∑
j=1

f (x j )
∫ ∞

−∞

pn(x)

(x − x j )p′
n(x j )

d F(x) =
n∑

j=1

λ j f (x j )

where λ1, . . . , λn are given in the statement of the theorem.

Example 10.5 (Legendre polynomials). Consider the Legendre polynomial

P2(x) = 3

2
x2 − 1

2
,
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which has zeros at ±1/
√

3. Hence, we may write

P2(x) = 3

2
(x − 1/

√
3)(x + 1/

√
3).

Then

λ1 = 1

2

∫ 1

−1

P2(x)

(x − 1/
√

3)P ′
2(−1/

√
3)

dx = 1

2

and

λ2 = 1

2

∫ 1

−1

P2(x)

(x + 1/
√

3)P ′
2(1/

√
3)

dx = 1

2
.

Hence, any polynomial f of degree 3 or less can be calculated by∫ 1

−1
f (x) d F(x) = f (1/

√
3) + f (−1/

√
3)

2
.

This may be verified directly by integrating 1, x, x2, and x3. �

The method described in Theorem 10.5 can also be used as the basis for a method of
numerical integration; this will be discussed in Section 10.4.

Completeness and approximation
Let {p0, p1, . . .} denote orthogonal polynomials with respect to F . We say that {p0, p1, . . .}
is complete if the following condition holds: suppose f is a function such that∫ ∞

−∞
f (x)2 d F(x) < ∞

and ∫ ∞

−∞
f (x)pn(x) d F(x) = 0, n = 0, 1, . . . ;

then f = 0 almost everywhere (F).

Example 10.6 (Completeness of the Legendre polynomials). Let F denote the distribution
function of the uniform distribution on (−1, 1) and let f denote a function such that∫ 1

−1
f (x)2 d F(x) < ∞

and ∫ 1

−1
f (x)Pn(x) d F(x) = 0, n = 0, 1, . . .

where Pn denotes the nth Legendre polynomial.
Let qn be an abritrary polynomial of degree n. Then∫ 1

−1
( f (x) − qn(x))2 d F(x) =

∫ 1

−1
f (x)2 d F(x) +

∫ 1

−1
qn(x)2 d F(x).
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Fix ε > 0. By the Weierstrass approximation theorem, there exists a polynomial qn such
that

sup
|x |≤1

| f (x) − qn(x)| < ε.

Hence, ∫ 1

−1
f (x)2 d F(x) ≤ ε2 −

∫ 1

−1
qn(x)2 d F(x) ≤ ε2.

Since ε is arbitrary, ∫ 1

−1
f (x)2 d F(x) = 0,

establishing completeness.
Note that this argument shows that any set of orthogonal polynomials on a bounded

interval is complete. �

Completeness plays an important role in the approximation of functions by series of
orthogonal polynomials, as shown by the following theorem.

Theorem 10.6. Let {p0, p1, . . .} denote orthogonal polynomials with respect to F and
define

p̄n(x) = pn(x)

[
∫ ∞
−∞ pn(x)2 d F(x)]

1
2

, n = 0, 1, . . . .

Let f denote a function satisfying∫ ∞

−∞
f (x)2 d F(x) < ∞

and let

αn =
∫ ∞

−∞
f (x) p̄n(x) d F(x), n = 0, 1, . . . .

For n = 0, 1, 2, . . . define

f̂ n(x) =
n∑

j=0

α j p̄ j (x).

If {p0, p1 . . .} is complete, then
(i) limn→∞

∫ ∞
−∞[ f̂ n(x) − f (x)]2 d F(x) = 0

(ii) ∫ ∞

−∞
[ f̂ n(x) − f (x)]2 d F(x) ≤

∫ ∞

−∞
f (x)2 d F(x) −

n∑
j=0

α2
j , n = 1, 2, . . .

(iii)
∑∞

j=0 α2
j = ∫ ∞

−∞ f (x)2 d F(x)
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(iv) For any constants β0, β1, . . . , βn,

∫ ∞

−∞
[ f̂ n(x) − f (x)]2 d F(x) ≤

∫ ∞

−∞

[
n∑

j=0

β j p̄ j (x) − f (x)

]2

d F(x),

that is, f̂ n is the best approximation to f among all polynomials of degree n, using
the criterion ∫ ∞

−∞
[g(x) − f (x)]2 d F(x).

Proof. We first show that the sequence f̂ 1, f̂ 2, . . . converges to some function f0 in the
sense that

lim
n→∞

∫ ∞

−∞
( f̂ n(x) − f0(x))2 d F(x) = 0.

Note that, for m > n, ∫ ∞

−∞
[ f̂ m(x) − f̂ n(x)]2 d F(x) =

m∑
j=n+1

α2
j ;

hence, under the conditions of the theorem, for any ε > 0 there exists an N such that∫ ∞

−∞
[ f̂ m(x) − f̂ n(x)]2 d F(x) ≤ ε

for n, m > N .
The construction of the function f0 now follows as in the proof of Theorem 6.4; hence,

only a brief sketch of the argument is given here.
There exists a subsequence n1, n2, . . . such that∫ ∞

−∞
[ f̂ n j+1

(x) − f̂ n j
(x)]2 d F(x) ≤ 1

4 j
, j = 1, 2, . . . .

For each m = 1, 2, . . . , define a function Tm by

Tm(x) =
m∑

j=1

| f̂ n j+1
(x) − f̂ n j

(x)|.

Then, for each x , either T1(x), T2(x), . . . has a limit or the sequence diverges to ∞. Define

T (x) = lim
m→∞ Tm(x)

if the limit exists; otherwise set T (x) = ∞. As in the proof of Theorem 6.4, it may be shown
that the set of x for which T (x) < ∞ has probability 1 under F ; for simplicity, assume that
T (x) < ∞ for all x . It follows that

∞∑
j=1

[ f̂ n j+1
(x) − f̂ n j

(x)]

converges absolutely and, hence, we may define a function

f0(x) = f̂ n1
(x) +

∞∑
j=1

[ f̂ n j+1
(x) − f̂ n j

(x)] = lim
j→∞

f̂ n j
(x).
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It now follows, as in the proof of Theorem 6.4, that

lim
n→∞

∫ ∞

−∞
( f̂ n(x) − f0(x))2 d F(x) = 0.

Now return to the proof of the theorem. Write f (x) = f0(x) + d(x). Then, for each
j = 1, 2, . . . ,∫ ∞

−∞
f (x) p̄ j (x) d F(x) =

∫ ∞

−∞
f0(x) p̄ j (x) d F(x) +

∫ ∞

−∞
d(x) p̄ j (x) d F(x).

Note that, by the Cauchy-Schwarz inequality,

∣∣∣ ∫ ∞

−∞
( f̂ n(x) − f0(x)) p̄ j (x) d F(x)

∣∣∣
≤

[∫ ∞

−∞
( f̂ n(x) − f0(x))2 d F(x)

] 1
2
[∫ ∞

−∞
p̄ j (x)2 d F(x)

] 1
2

.

Since ∫ ∞

−∞
p̄ j (x)2 d F(x) = 1, j = 1, . . . ,

and ∫ ∞

−∞
( f̂ n(x) − f0(x))2 d F(x) → 0 as n → ∞,

it follows that ∫ ∞

−∞
f0(x) p̄ j (x) d F(x) = lim

n→∞ f̂ n(x) p̄ j (x) d F(x) = α j . (10.7)

Since ∫ ∞

−∞
f (x) p̄ j (x) d F(x) = α j ,

it follows that ∫ ∞

−∞
d(x) p̄ j (x) d F(x) = 0, j = 0, 1, . . .

so that ∫ ∞

−∞
d(x)p j (x) d F(x) = 0, j = 0, 1, . . . .

By completeness of {p0, p1, . . .}, d = 0 and, hence,

lim
n→∞

∫ ∞

−∞
( f̂ n(x) − f (x))2 d F(x) = 0. (10.8)

This verifies part (i) of the theorem.
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To show parts (ii) and (iii), note that∫ ∞

−∞
( f̂ n(x) − f (x))2 d F(x) =

∫ ∞

−∞
f (x)2 d F(x) −

∫ ∞

−∞
f̂ n(x)2 d F(x)

=
∫ ∞

−∞
f (x)2 d F(x) −

n∑
j=0

α2
j .

This proves that part (ii) and part (iii) now follows from (10.8).
Finally, consider part (iv). Note that

∫ ∞

−∞

[
n∑

j=0

β j p̄ j (x) − f (x)

]2

d F(x) =
∫ ∞

−∞
f (x)2 d F(x) − 2

n∑
j=0

β jα j +
n∑

j=0

β2
j .

Hence, ∫ ∞

−∞

[
n∑

j=0

β j p̄ j (x) − f (x)

]2

d F(x) −
∫ ∞

−∞
[ f̂ n(x) − f (x)]2 d F(x)

=
n∑

j=0

β2
j − 2

n∑
j=0

β jα j +
n∑

j=0

α2
j

=
n∑

j=0

(α j − β j )
2,

proving the result.

Hence, according to Theorem 10.6, if {p0, p1, . . .} is complete and∫ ∞

−∞
f (x)2 d F(x) < ∞,

the function f may be written

f (x) =
∞∑
j=0

α j
p j (x)∫ ∞

−∞ p j (x)2 d F(x)

for constants α0, α1, . . . given by

αn =
∫ ∞
−∞ f (x)pn(x) d F(x)∫ ∞

−∞ pn(x)2 d F(x)
.

In interpreting the infinite series in this expression, it is important to keep in mind that it
means that

lim
n→∞

∫ ∞

−∞

[
f (x) −

n∑
j=0

α j
p j (x)∫ ∞

−∞ p j (x)2 d F(x)

]2

d F(x) = 0.

It is not necessarily true that for a given value of x the numerical series

n∑
j=0

α j
p j (x)∫ ∞

−∞ p j (x)2 d F(x)

converges to f (x) as n → ∞.
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Example 10.7 (Series expansion for a density). Consider a absolutely continuous distri-
bution on [−1, 1]. Suppose the moments of the distribution are available, but the form of
the density is not. We may approximate the density function by a lower-order polynomial
by using an expansion in terms of the Legendre polynomials.

Consider a quadratic approximation of the form

a + bx + cx2;

in terms of the Legendre polynomials, this approximation is(
a + 1

3
c

)
P0(x) + bP1(x) + 2

3
cP2(x).

Using the approach of Theorem 10.6, the approximation to the density based on P0, P1, and
P2 is of the form

P0(x) + µP1(x) +
[

3

2
(µ2 + σ 2) − 1

2

]
P2(x)

where µ and σ are the mean and standard deviation, respectively, of the distribution.
Hence, an approximation to the density is given by

5

4
− 1

3
(µ2 + σ 2) + µx +

(
µ2 + σ 2 − 3

4

)
x2.

Although this function must integrate to 1, it is not guaranteed to be nonnegative. If µ = 0,
it is straightforward to show that it is nonnegative. �

10.3 Classical Orthogonal Polynomials

Although orthogonal polynomials may be constructed for any distribution for which all the
moments exist, there are only a few distributions that are often used in this context. One
is the uniform distribution on (−1, 1), leading to the Legendre polynomials discussed in
the previous section. Others include the standard normal distribution, which leads to the
Hermite polynomials, and the standard exponential distribution, which leads to the Laguerre
polynomials. In this section, we consider the properties of the Hermite and Laguerre
polynomials.

Hermite polynomials
Orthogonal polynomials with respect to the standard normal distribution function are

known as the Hermite polynomials. These polynomials are often normalized by taking the
coefficient of xn in Hn(x) to be 1 and that is the standardization that we will use here.

The following result shows that the Hermite polynomials may be generated using the
procedure described in Theorem 10.3 using the function g(x) = 1. That is, we may take

Hn(x) = (−1)n

φ(x)

dn

dxn
φ(x), n = 0, 1, . . . (10.9)

where

φ(x) = 1√
(2π )

exp

(
−1

2
x2

)
, −∞ < x < ∞

denotes the standard normal density function.
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Theorem 10.7. For each n = 0, 1, . . . , the nth Hermite polynomial is given by (10.9).

Proof. According to Theorem 10.3, the polynomials given by (10.9) are orthogonal with
respect to the standard normal distribution provided that

1

φ(x)

dn

dxn
φ(x)

is a polynomial of degree n and that

lim
|x |→∞

x j dn

dxn
φ(x) = 0 (10.10)

for all n and j . Once these are established, the result follows provided that the coefficient
of xn in (10.9) is 1.

For each n = 0, 1, . . . , define a function qn by

dn

dxn
φ(x) = qn(x)φ(x).

Note that q0(x) = 1 and, hence, is a polynomial of degree 0. Assume that qm is a polynomial
of degree m; we will show that this implies that qm+1 is a polynomial of degree m + 1. It
will then follow by induction that qn is a polynomial of degree n for n = 0, 1, . . . .

Note that

dm+1

dxm+1
φ(x) = qm+1(x)φ(x) = d

dx
qm(x)φ(x)

so that

qm+1(x)φ(x) = q ′
m(x)φ(x) − xqm(x)φ(x);

hence,

qm+1(x) = q ′
m(x) − xqm(x).

Under the assumption that qm is a polynomial of degree m, it follows that qm+1 is a poly-
nomial of degree m + 1. Hence, for all n = 0, 1, . . . , qn is a polynomial of degree n.

Since

lim
|x |→∞

x jφ(x) = 0

for all j = 0, 1, . . . , (10.9) follows from the fact that

dn

dxn
φ(x) = qn(x)φ(x)

where qn is a polynomial of degree n.
Finally, note that, if the coefficient of xm in qm(x) is 1, then, since

qm+1(x) = q ′
m(x) − xqm(x),

the coefficient of xm+1 in qm+1(x) is −1. The result now follows from the facts that q0(x) = 1
and Hn(x) = (−1)nqn(x).

The following corollary gives another approach to constructing the Hermite polynomials;
the proof follows from Theorem 10.7 and is left as an exercise.
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Corollary 10.1. For each n = 0, 1, . . . , let Hn denote the function defined by (10.9). Then

Hn+1(x) = x Hn(x) − H ′
n(x), n = 0, 1, 2, . . . .

Starting with H0(x) = 1, it is straightforward to use Corollary 10.1 to determine the first
several Hermite polynomials. The results are given in the following corollary; the proof is
left as an exercise.

Corollary 10.2. Let Hn denote the nth Hermite polynomial, n = 1, 2, 3, 4. Then

H1(x) = x, H2(x) = x2 − 1,

H3(x) = x3 − 3x, H4(x) = x4 − 6x2 + 3.

Equation (10.9) can be used to find∫ ∞

−∞
Hn(x)2φ(x) dx .

The result is given in the following corollary; the proof is left as an exercise.

Corollary 10.3. For each n = 1, 2, . . . , let Hn denote the nth Hermite polynomial. Then∫ ∞

−∞
Hn(x)2φ(x) dx = n!.

Using the expression (10.9) for Hn , it is straightforward to calculate integrals of the form∫ x

−∞
Hn(t)φ(t) dt.

Theorem 10.8. Let Hn denote the nth Hermite polynomial. Then∫ x

−∞
Hn(t)φ(t) dt = −Hn−1(x)φ(x).

Proof. Note that∫ x

−∞
Hn(t)φ(t) dt =

∫ x

−∞
(−1)n dn

dtn
φ(t) dt

= (−1)n dn−1

dtn−1
φ(t)

∣∣x

−∞ = −Hn−1(t)φ(t)
∣∣x

−∞ = −Hn−1(x)φ(x),

proving the result.

Hence, any integral of the form ∫ x

−∞
f (t)φ(t) dt,

where f is a polynomial, can be integrated exactly in terms of H0, H1, . . . , φ, and the
standard normal distribution function �.
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Example 10.8 (Chi-squared distribution function). For x > 0, consider calculation of the
integral

1√
(2π )

∫ x

0
t

1
2 exp(−t/2) dt,

which is the distribution function of the chi-squared distribution with 3 degrees of freedom.
Using the change-of-variable u = √

t ,

1√
(2π )

∫ x

0
t

1
2 exp(−t/2) dt = 2

∫ √
x

0
u2φ(u) du

= 2

[∫ √
x

−∞
u2φ(u) du − 1

2

]
.

Since u2 = H2(u) − 1, using Theorem 10.8 we have that

1√
(2π )

∫ x

0
t

1
2 exp(−t/2) dt = 2

[
�(

√
x) − 1

2
− √

xφ(
√

x)

]
. �

It may be shown that the Hermite polynomials are complete; see, for example, Andrews,
Askey, and Roy (1999, Chapter 6). Hence, the approximation properties outlined in Theo-
rem 10.6 are valid for the Hermite polynomials.

Example 10.9 (Gram-Charlier expansion). Let p denote a density function on the real
line and let � and φ denote the distribution function and density function, respectively, of
the standard normal distribution. Assume that∫ ∞

−∞

p(x)2

φ(x)
dx < ∞.

Under this assumption ∫ ∞

−∞

p(x)2

φ(x)2
d�(x) < ∞

so that the function p/φ has an expansion of the form

p(x)

φ(x)
=

∞∑
j=0

α j Hj (x)

where the constants α0, α1, . . . are given by

α j =
∫ ∞

−∞
Hj (x)p(x)φ(x) dx/

√
( j!);

note that α0 = 1.
Hence, the function p has an expansion of the form

p(x) = φ(x)

[
1 +

∞∑
j=1

α j Hj (x)

]
.

This is known as a Gram-Charlier expansion of the density p. In interpreting this result it is
important to keep in mind that the limiting operation refers to mean-square, not pointwise,
convergence. �
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Laguerre polynomials
The Laguerre polynomials, which will be denoted by L0, L1, . . . , are orthogonal polyno-
mials with respect to the standard exponential distribution. Here we use the standardization
that ∫ ∞

0
Ln(x)2 exp(−x) dx = 1, n = 0, 1, . . . .

The Laguerre polynomials may be generated using the procedure described in Theo-
rem 10.3 using the function g(x) = x . That is, we may take

Ln(x) = 1

n!
exp(x)

dn

dxn
xn exp(−x), n = 0, 1, . . . . (10.11)

Theorem 10.9. The Laguerre polynomials are given by (10.11).

Proof. Using Leibnitz’s rule with (10.11) shows that

Ln(x) =
n∑

j=0

(−1) j

(
n

j

)
x j

j!

and, hence, Ln is a polynomial of degree n. Furthermore, it may be shown that∫ ∞

0
Ln(x)2 exp(−x) dx = 1;

this result is left as an exercise.
The result now follows from Theorem 10.3 provided that, for each n = 1, 2, . . . ,

lim
x→0

Qnmj (x) = lim
x→∞ Qnmj (x) = 0

for j = 0, 1, . . . , n − 1 and m = 1, 2, . . . , n − 1, where

Qnmj (x) = x j dm

dxm
[xn exp(−x)].

Note that, for m = 1, 2, . . . , n − 1, Qnmj (x) is always of the form

x (n−m+ j) R(x) exp(−x)

where R is a polynomial of degree m. The result follows from the fact that n − m + j
≥ 1.

The following corollary simply restates the expression for Ln derived in the proof of
Theorem 10.9.

Corollary 10.4. For each n = 0, 1, . . . , let Ln denote the nth Laguerre polynomial. Then

Ln(x) =
n∑

j=0

(−1) j

(
n

j

)
x j

j!
.

Hence,

L1(x) = x − 1, L2(x) = 1

2
x2 − 2x + 1, L3(x) = −1

6
x3 + 3

2
x2 − 3x + 1.
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The Laguerre polynomials, like the Hermite polynomials, are complete (Andrews et al.
1999, Chapter 6).

Example 10.10 (Series expansion of a density). In Example 10.9, a series expansion of
a density function based on the Hermite polynomials was considered. The same approach
may be used with the Laguerre polynomials.

Let p denote a density function on (0, ∞) and let F denote the distribution function of
the standard exponential distribution. Assume that∫ ∞

0
p(x)2 exp(x) dx < ∞.

Under this assumption ∫ ∞

0

p(x)2

exp(−x)2
d F(x) < ∞

so that the function p(x)/exp(−x) has an expansion of the form

p(x)

exp(−x)
=

∞∑
j=0

α j L j (x)

where the constants α0, α1, . . . are given by

α j =
∫ ∞

0
L j (x)p(x) exp(−x) dx ;

note that ∫ ∞

0
L j (x)2 exp(−x) dx = 1

and that α0 = 1.
Hence, the function p has an expansion of the form

p(x) = exp(−x)

[
1 +

∞∑
j=1

α j L j (x)

]
. �

10.4 Gaussian Quadrature

One important application of orthogonal polynomials is in the development of methods of
numerical integration. Here we give only a brief description of this area; see Section 10.6
for references to more detailed discussions.

Consider the problem of calculating the integral∫ b

a
f (x) d F(x)

where F is a distribution function on [a, b] and −∞ ≤ a < b ≤ ∞.
Let {p0, p1, . . .} denote orthogonal polynomials with respect to F . Fix n and let a < x1 <

x2 < · · · < xn < b denote the zeros of pn . Then, by Theorem 10.5, there exist constants
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λ1, λ2, . . . , λn such that if f is a polynomial of degree 2n − 1 or less,∫ b

a
f (x) d F(x) =

n∑
j=1

λ j f (x j ).

Now suppose that f is not a polynomial, but may be approximated by a polynomial.
Write

f (x) =
2n−1∑
j=0

β j x
j + R2n(x)

where β0, . . . , β2n−1 are given constants and R2n is a remainder term. Then∫ b

a
f (x) d F(x) =

∫ b

a
f̂ 2n−1(x) d F(x) +

∫ b

a
R2n(x) d F(x)

where

f̂ 2n−1(x) =
2n−1∑
j=0

β j x
j .

Since f̂ 2n−1 is a polynomial of degree 2n − 1, it may be integrated exactly:∫ b

a
f̂ 2n−1(x) d F(x) =

n∑
j=1

λ j f̂ 2n−1(x j ).

The function f̂ 2n−1 may be approximated by f so that∫ b

a
f̂ 2n−1(x) d F(x)

.=
n∑

j=1

λ j f (x j )

and, provided that ∫ b

a
R2n(x) d F(x)

is small, ∫ b

a
f (x) d F(x)

.=
n∑

j=1

λ j f (x j ).

This approach to numerical integration is known as Gaussian quadrature. Clearly, this
method will work well whenever the function f being integrated can be approximated
accurately by a polynomial over the range of integration.

In order to use Gaussian quadrature, we need to know the zeros of an orthogonal poly-
nomial pn , along with the corresponding weights λ1, . . . , λn . There are many published
sources containing this information, as well as computer programs for this purpose; see
Section 10.6 for further details.

Example 10.11. Let X denote a random variable with a standard exponential distribution
and consider computation of E[g(X )] for various functions g. Since

E[g(X )] =
∫ ∞

0
g(x) exp(−x) dx,
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we may use Gaussian quadrature based on the Laguerre polynomials. For illustration,
consider the case n = 5. The zeros of L5 and the corresponding weights λ0, . . . , λ5 are
available, for example, in Abramowitz and Stegun (1964, Table 25.9). Using these values,
an approximation to E[g(X )] is, roughly,

.5218g(.26) + .3987g(1.41) + .0759g(3.60) + .0036g(7.09) + .00002g(12.64);

for the numerical calculations described below, 10 significant figures were used.
Recall that this approximation is exact whenever g is a polynomial of degree 9 or less. In

general, the accuracy of the approximation will depend on how well g may be approximated
by a 9-degree polynomial over the interval (0, ∞). For instance, suppose g(x) = sin(x);
then E[g(X )] = 1/2 while the approximation described above is 0.49890, a relative error
of roughly 0.2%. However, if g(x) = x− 1

2 , then E[g(X ] = √
π/2 and the approximation is

1.39305, an error of roughly 21%. �

10.5 Exercises

10.1 Prove Lemma 10.1.

10.2 Let F denote the distribution function of the absolutely continuous distribution density function

2x exp{−x2}, x > 0.

Find the first three orthogonal polynomials with respect to F .

10.3 Let F denote the distribution function of the discrete distribution with frequency function

1

2x+1
, x = 0, 1, . . . .

Find the first three orthogonal polynomials with respect to F .

10.4 Let F denote a distribution function on R such that all moments of the distribution exist and the
distribution is symmetric about 0, in the sense that

F(x) + F(−x) = 1, −∞ < x < ∞.

Let p0, p1, . . . denote orthogonal polynomials with respect to F . Show that the orthogonal
polynomials of even order include only even powers of x and that the orthogonal polynomials
of odd order include only odd powers of x .

10.5 Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that∫ ∞

−∞
p j (x)2 d F(x) = 1, j = 0, 1, . . . .

Fix n = 0, 1, . . . and define a function Kn : R × R 	→ R by

Kn(x, y) =
n∑

j=0

p j (x)p j (y).

Show that, for any polynomial q of degree n or less,

q(x) =
∫ ∞

−∞
Kn(x, y)q(y) d F(y).
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10.6 Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that∫ ∞

−∞
p j (x)2 d F(x) = 1, j = 0, 1, . . . .

Fix n = 0, 1, . . . and let Kn denote the function defined in Exercise 10.5.
Show that for any polynomial g of degree n or less and any z ∈ R,

g(z)2 ≤ Kn(z, z)
∫ ∞

−∞
g(x)2 d F(x).

10.7 Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that the coefficient of xn in pn(x) is 1. Let
Gn denote the set of all polynomials of degree n with coefficient of xn equal to 1. Find the
function g ∈ Gn that minimizes ∫ ∞

−∞
g(x)2 d F(x).

10.8 Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F and
suppose that the polynomials are standardized so that the coefficient of xn in pn(x) is 1. For
each n = 1, 2, . . . let βn denote the coefficient of xn−1 in pn(x) and let

hn =
∫ ∞

−∞
pn(x)2 d F(x).

Show that p0, p1, . . . satisfy the three-term recurrence relationship

pn+1(x) = (x + βn+1 − βn)pn(x) − hn

hn−1
pn−1(x).

10.9 Let {p0, p1, . . .} denote orthogonal polynomials with respect to a distribution function F . Show
that, for all m, n = 0, 1, . . . ,

pm(x)pn(x) =
n+m∑
j=0

a( j, m, n)p j (x)

where the constants a(0, m, n), a(1, m, n), . . . are given by

a( j, m, n) =
∫ ∞

−∞ pm(x)pn(x)p j (x) d F(x)∫ ∞
−∞ p j (x)2 d F(x)

.

10.10 Prove Corollary 10.1.

10.11 Prove Corollary 10.2.

10.12 Prove Corollary 10.3.

10.13 Find the three-term recurrence relationship (see Exercise 10.8) for the Hermite polynomials.

10.14 Some authors define the Hermite polynomials to be polynomials orthogonal with respect to
the absolutely continuous distribution with density function

c exp

(
−1

2
x2

)
, −∞ < x < ∞,

where c is a constant. Let H̄ 0, H̄ 1, . . . denote orthogonal polynomials with respect to this
distribution, standardized so that the coefficient of xn in H̄ n(x) is 2n . Show that

H̄ n(x) = 2
n
2 Hn(x

√
2), n = 0, 1, . . . .
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10.15 Show that the Hermite polynomials satisfy
∞∑

n=0

Hn(x)

n!
zn = exp(xz − z2/2), x ∈ R, z ∈ R.

Using this result, give a relationship between Hn(0), n = 0, 1, . . . , and the moments of the
standard normal distribution.

10.16 Let Ln denote the nth Laguerre polynomial. Show that∫ ∞

0
Ln(x)2 exp(−x) dx = 1.

10.17 Let p0, p1, p2 denote the orthogonal polynomials found in Exercise 10.3. Find the zeros x1, x2

of p2 and the constants λ1, λ2 such that
∞∑
j=0

f ( j)
1

2 j+1
= λ1 f (x1) + λ2 f (x2)

for all polynomials f of degree 3 or less.

10.6 Suggestions for Further Reading

Orthogonal polynomials are a classical topic in mathematics. Standard references include
Freud (1971), Jackson (1941), and Szegö (1975); see also Andrews et al. (1999, Chapters 5–7)
and Temme (1996, Chapter 6). Many useful properties of the classical orthogonal polynomials are
given in Erdélyi (1953b, Chapter X).

Gaussian quadrature is discussed in many books covering numerical integration; see, for example,
Davis and Rabinowitz (1984). Evans and Swartz (2000, Chapter 5) and Thisted (1988, Chapter 5)
discuss Gaussian quadrature with particular emphasis on statistical applications. Tables listing the
constants needed to implement these methods are available in Abramowitz and Stegun (1964) and
Stroud and Secrest (1966).
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11

Approximation of Probability Distributions

11.1 Introduction

Consider a random vector Y , with a known distribution, and suppose that the distribution of
f (Y ) is needed, for some given real-valued function f (·). In Chapter 7, general approaches
to determining the distribution of f (Y ) were discussed. However, in many cases, carrying
out the methods described in Chapter 7 is impractical or impossible. In these cases, an
alternative approach is to use an asymptotic approximation to the distribution of the statistic
under consideration. This approach allows us to approximate distributional quantities, such
as probabilities or moments, in cases in which exact computation is not possible. In addition,
the approximations, in contrast to exact results, take a few basic forms and, hence, they give
insight into the structure of distribution theory. Asymptotic approximations also play a
fundamental role in statistics.

Such approximations are based on the concept of convergence in distribution. Let
X1, X2, . . . denote a sequence of real-valued random variables and let Fn denote the dis-
tribution function of Xn , n = 1, 2, . . . . Let X denote a real-valued random variable with
distribution function F . If

lim
n→∞ Fn(x) = F(x)

for each x at which F is continuous, then the sequence X1, X2, . . . is said to converge in
distribution to X as n → ∞, written

Xn
D→ X as n → ∞.

In this case, probabilities regarding Xn may be approximated using probabilities based
on X ; that is, the limiting distribution function F may then be used as an approximation

to the distribution functions in the sequence F1, F2, . . . . The property that Xn
D→ X as

n → ∞ is simply the property that the approximation error decreases to 0 as n increases to
∞. The distribution of X is sometimes called the asymptotic distribution of the sequence
X1, X2, . . . .

Example 11.1 (Sequence of Bernoulli random variables). For each n = 1, 2, . . . , let Xn

denote a random variable such that

Pr(Xn = 1) = 1 − Pr(Xn = 0) = θn;

322
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here θ1, θ2, . . . is a sequence of real numbers in the interval (0, 1). Let Fn denote the
distribution function of Xn . Then

Fn(x) =
{ 0 if x < 0

θn if 0 ≤ x < 1
1 if x ≥ 1

.

Suppose that the sequence θn , n = 1, 2, . . . , converges and let θ = limn→∞ θn . Then

lim
n→∞ Fn(x) = F(x) ≡

{ 0 if x < 0
θ if 0 ≤ x < 1
1 if x ≥ 1

.

Let X denote a random variable such that

Pr(X = 1) = 1 − Pr(X = 0) = θ.

Then Xn
D→ X as n → ∞.

If the sequence θn , n = 1, 2, . . . , does not have a limit, then Xn , n = 1, 2, . . . does not
converge in distribution. �

An important property of the definition of convergence in distribution is that we require
that the sequence Fn(x), n = 1, 2, . . . , converges to F(x) only for those x that are continuity
points of F . Hence, if F is not continuous at x0, then the behavior of the sequence Fn(x0),
n = 1, 2, . . . , plays no role in convergence in distribution. The reason for this is that requir-
ing that Fn(x), n = 1, 2, . . . , converges to F(x) at points at which F is discontinuous is too
strong of a requirement; this is illustrated in the following example.

Example 11.2 (Convergence of a sequence of degenerate random variables). Let
X1, X2, . . . denote a sequence of random variables such that

Pr(Xn = 1/n) = 1, n = 1, 2, . . . .

Hence, when viewed as a deterministic sequence, X1, X2, . . . has limit 0.
Let Fn denote the distribution function of Xn . Then

Fn(x) =
{

0 if x < 1/n
1 if x ≥ 1/n

.

Fix x . Clearly,

lim
n→∞ Fn(x) =

{ 0 if x < 0
1 if x > 0

.

Consider the behavior of the sequence Fn(0), n = 1, 2, . . . . Since 0 < 1/n for every
n = 1, 2, . . . , it follows that

lim
n→∞ Fn(0) = 0

so that

lim
n→∞ Fn(x) = G(x) ≡

{ 0 if x ≤ 0
1 if x > 0

.

Note that, since G is not right-continuous, it is not the distribution function of any random
variable.
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Of course, we expect that X1, X2, . . . converges in distribution to a random variable
identically equal to 0; such a random variable has distribution function

F(x) =
{

0 if x < 0
1 if x ≥ 0

.

Thus, limn→∞ Fn(x) = F(x) at all x �= 0, that is, at all x at which F is continuous. Hence,
Xn

D→ 0 as n → ∞, where 0 may be viewed as the random variable equal to 0 with proba-
bility 1. However, if we require convergence of Fn(x) for all x , Xn would not have a limiting
distribution. �

Often the random variables under consideration will require some type of standardization
in order to obtain a useful convergence result.

Example 11.3 (Minimum of uniform random variables). Let Y1, Y2, . . . denote a sequence
of independent, identically distributed random variables, each with a uniform distribution on
(0, 1). Suppose we are interested in approximating the distribution of Tn = min(Y1, . . . , Yn).
For each n = 1, 2, . . . , Tn has distribution function

Hn(t) = Pr(Tn ≤ t) = Pr{min(Y1, . . . , Yn) ≤ t}

=
{ 0 if t < 0

1 − (1 − t)n if 0 ≤ t < 1
1 if t ≥ 1

.

Fix t . Then

lim
n→∞ Hn(t) =

{ 0 if t ≤ 0
1 if t > 0

so that, as n → ∞, Tn converges in distribution to the random variable identically equal to
0. Hence, for any t > 0, Pr{min(Y1, . . . , Yn) ≤ t} can be approximated by 1. Clearly, this
approximation will not be very useful, or very accurate.

Now consider standardization of Tn . For each n = 1, 2, . . . , let Xn = nαTn ≡
n min(Y1, . . . , Yn) where α is a given constant. Then, for each n = 1, 2, . . . , Xn has distri-
bution function

Fn(x ; α) = Pr(Xn ≤ x) = Pr{min(Y1, . . . , Yn) ≤ x/nα}

=
{ 0 if x < 0

1 − (1 − x/nα)n if 0 ≤ x < nα

1 if x ≥ nα

.

Fix x > 0. Then

lim
n→∞ Fn(x ; α) =

{ 1 if α < 1
1 − exp(−x) if α = 1
0 if α > 1

.

Thus, if α < 1, Xn converges in distribution to the degenerate random variable 0, while
if α > 1, Xn does not converge in distribution. However, if α = 1,

lim
n→∞ Fn(x ; α) =

{
0 if x < 0
1 − exp(−x) if 0 ≤ x < ∞,
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which is the distribution function of a standard exponential distribution. Hence, if X is a

random variable with a standard exponential distribution, then n min(Y1, . . . , Yn)
D→ X as

n → ∞.
For instance, an approximation to

Pr{min(Y1, . . . , Y10) ≤ 1/10} = Pr{10 min(Y1, . . . , Y10) ≤ 1}
is given by 1 − exp(–1)

.= 0.632; the exact probability is 0.651. �

The examples given above all have an important feature; in each case the distribution
functions F1, F2, . . . are available. In this sense, the examples are not typical of those in
which convergence in distribution plays an important role. The usefulness of convergence
in distribution lies in the fact that the limiting distribution function may be determined in
cases in which the Fn , n = 1, 2, . . . , are not available. Many examples of this type are given
in Chapters 12 and 13.

11.2 Basic Properties of Convergence in Distribution

Recall that there are several different ways in order to characterize the distribution of a
random variable. For instance, if two random variables X and Y have the same characteristic
function, or if E[ f (X )] = E[ f (Y )] for all bounded, continuous, real-valued functions f ,
then X and Y have the same distribution; see Corollary 3.1 and Theorem 1.11, respectively,
for formal statements of these results.

The results below show that these characterizations of a distribution can also be used to
characterize convergence in distribution. That is, convergence in distribution is equivalent
to convergence of expected values of bounded, continuous functions and is also equivalent
to convergence of characterstic functions. We first consider expectation.

Theorem 11.1. Let X1, X2, . . . denote a sequence of real-valued random variables and
let X denote a real-valued random variable. Let X denote a set such that Pr(Xn ∈ X ) =
1, n = 1, 2, . . . and Pr(X ∈ X ) = 1.

Xn
D→ X as n → ∞

if and only if

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, continuous, real-valued functions f on X .

Proof. Suppose that Xn
D→ X as n → ∞ and let F denote the distribution function of X .

In order to show that

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, continuous, real-valued functions f , we consider two cases. In case 1, the
random variables X, X1, X2, . . . are bounded; case 2 removes this restriction.
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Case 1: Suppose that there exists a constant M such that, with probability 1,

|Xn| ≤ M, n = 1, 2, . . .

and |X | ≤ M. We may assume, without loss of generality, that M is a continuity point of F .
Consider a bounded, continuous, function f : R → R and let ε > 0. Let x1, x2, . . . , xm

denote continuity points of F such that

−M = x0 < x1 < · · · < xm−1 < xm < xm+1 = M

and

max
1≤i≤m

sup
xi ≤x≤xi+1

| f (x) − f (xi )| ≤ ε.

Define

fm(x) = f (xi ) for xi ≤ x < xi+1.

Then, as n → ∞, ∫ M

−M
fm(x) d Fn(x) =

m∑
i=1

f (xi )[Fn(xi+1) − Fn(xi )]

→
m∑

i=1

f (xi )[F(xi+1) − F(xi )]

=
∫ M

−M
fm(x) d F(x).

Hence, for sufficiently large n,∣∣∣ ∫ M

−M
fm(x)[d Fn(x) − d F(x)]

∣∣∣ ≤ ε.

It follows that∣∣∣ ∫ M

−M
f (x)[d Fn(x) − d F(x)]

∣∣∣
≤

∣∣∣ ∫ M

−M
[ f (x) − fm(x)][d Fn(x) − d F(x)]

∣∣∣ +
∣∣∣ ∫ M

−M
fm(x)[d Fn(x) − d F(x)]

∣∣∣
≤ 3ε.

Since ε is arbitrary, it follows that

lim
n→∞ E[ f (Xn)] = E[ f (X )].

Case 2: For the general case in which the X1, X2, . . . and X are not necessarily bounded,
let 0 < ε < 1 be arbitrary and let M and −M denote continuity points of F such that∫ M

−M
d F(x) = F(M) − F(−M) ≥ 1 − ε.

Since

Fn(M) − Fn(−M) → F(M) − F(−M) as n → ∞,
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it follows that ∫ M

−M
d Fn(x) = Fn(M) − Fn(−M) ≥ 1 − 2ε

for sufficiently large n. Hence,∣∣∣ ∫ ∞

−∞
f (x)[d Fn(x) − d F(x)]

∣∣∣ ≤
∣∣∣ ∫ M

−M
f (x)[d Fn(x) − d F(x)]

∣∣∣ + sup
x

| f (x)|3ε.

The same argument used in case 1 can be used to shown that∣∣∣ ∫ M

−M
f (x)[d Fn(x) − d F(x)]

∣∣∣ → 0 as n → ∞;

since ε is arbitrary, it follows that∣∣∣ ∫ ∞

−∞
f (x)[d Fn(x) − d F(x)]

∣∣∣ → 0

as n → ∞, proving the first part of the theorem.
Now suppose that E[ f (Xn)] converges to E[ f (X )] for all real-valued, bounded, contin-

uous f . Define

h(x) =
{ 1 if x < 0

1 − x if 0 ≤ x ≤ 1
0 if x > 1

and for any t > 0 define ht (x) = h(t x).
Note that, for fixed t , ht is a real-valued, bounded, continuous function. Hence, for all

t > 0,

lim
n→∞ E[ht (Xn)] = E[ht (X )].

For fixed x ,

I{u≤x} ≤ ht (u − x) ≤ I{u≤x+1/t}

for all u, t . Hence,

Fn(x) ≤
∫ ∞

−∞
ht (u − x) d Fn(u) = E[ht (Xn − x)]

and, for any value of t > 0,

lim sup
n→∞

Fn(x) ≤ lim
n→∞ E[ht (Xn − x)] = E[ht (X − x)] ≤ F(x + 1/t).

It follows that, if F is continuous at x ,

lim sup
n→∞

Fn(x) ≤ F(x). (11.1)

Similarly, for fixed x ,

I{u≤x−1/t} ≤ ht (u − x + 1/t) ≤ I{u≤x}

for all u, t > 0. Hence,

Fn(x) ≥
∫ ∞

−∞
ht (u − x + 1/t) d Fn(u) = E[ht (Xn − x + 1/t)]
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and, for any value of t > 0,

lim inf
n→∞ Fn(x) ≥ lim

n→∞ E[ht (Xn − x + 1/t)] = E[ht (Xn − x + 1/t)] ≥ F(x + 1/t).

It follows that

lim inf
n→∞ Fn(x) ≥ F(x − 1/t), t > 0

and, hence, that

lim inf
n→∞ Fn(x) ≥ F(x) (11.2)

provided that F is continuous at x .
Combining (11.1) and (11.2), it follows that

lim
n→∞ Fn(x) = F(x)

at all continuity points x of F , proving the theorem.

It can be shown that the function ht used in the proof of Theorem 11.1 is not only

continuous, it is uniformly continuous. Hence, Xn
D→ X as n → ∞ provided only that

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, uniformly continuous, real-valued functions f . Since the class of all
bounded, uniformly continuous functions is smaller than the class of all bounded, con-
tinuous functions, this gives a slightly weaker condition for convergence in distribution that
is sometimes useful. The details of the argument are given in following corollary.

Corollary 11.1. Let X1, X2, . . . denote a sequence of real-valued random variables and let
X denote a real-valued random variable. If

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, uniformly continuous, real-valued functions f , then

Xn
D→ X as n → ∞.

Proof. Suppose that E[ f (Xn)] converges to E[ f (X )] for all real-valued, bounded, uni-
formly continuous f . As in the proof of Theorem 11.1, define

h(x) =
{ 1 if x < 0

1 − x if 0 ≤ x ≤ 1
0 if x > 1

and for any t > 0 define ht (x) = h(t x).
The function ht is uniformly continuous. To see this, note that

|h(x1) − h(x2)| =




|x1 − x2| if 0 ≤ x1 ≤ 1 and 0 ≤ x2 ≤ 1
1 if min(x1, x2) < 0 and max(x1, x2) > 1
max(x1, x2) if min(x1, x2) < 0 and 0 < max(x1, x2) ≤ 1
0 otherwise

.
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Hence, for all x1, x2,

|h(x1) − h(x2)| ≤ |x1 − x2|
so that, for a given value of t and a given ε > 0,

|ht (x1) − ht (x2)| ≤ ε

whenever

|x1 − x2| ≤ ε/t.

It follows that ht is uniformly continuous and, hence, for all t > 0,

lim
n→∞ E[ht (Xn)] = E[ht (X )].

The proof of the corollary now follows as in the proof of Theorem 11.1.

The requirements in Theorem 11.1 that f is bounded and continuous are crucial for
the conclusion of the theorem. The following examples illustrate that convergence of the
expected values need not hold if these conditions are not satisfied.

Example 11.4 (Convergence of a sequence of degenerate random variables). As in
Example 11.2, let X1, X2, . . . denote a sequence of random variables such that

Pr(Xn = 1/n) = 1, n = 1, 2, . . . .

We have seen that Xn
D→ 0 as n → ∞.

Let

f (x) =
{ 0 if x ≤ 0

1 if x > 0
;

note that f is bounded, but it is discontinuous at x = 0. It is easy to see that E[ f (Xn)] = 1
for all n = 1, 2, . . . so that limn→∞ E[ f (Xn)] = 1; however, E[ f (0)] = 0. �

Example 11.5 (Pareto distribution). For each n = 1, 2, . . . , suppose that Xn is a real-
valued random variable with an absolutely continuous distribution with density function

pn(x) = 1

n(1 + n)
1
n

1

x2+ 1
n

, x >
1

n + 1
.

Let Fn denote the distribution function of Xn; then

Fn(x) =
{

0 if x < 1
1+n

1 − [(n + 1)x]−(1+ 1
n ) if 1

n+1 ≤ x < ∞.

Hence,

lim
n→∞ Fn(x) =

{ 0 if x ≤ 0
1 if x > 0

so that Xn
D→ 0 as n → ∞.
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Consider the function f (x) = x , which is continuous, but unbounded. It is straight
forward to show that

E[ f (Xn)] = 1

n(1 + n)
1
n

∫ ∞

1
n+1

1

x1+ 1
n

dx = 1, n = 1, 2, . . .

while E[ f (0)] = 0. �

A useful consequence of Theorem 11.1 is the result that convergence in distribution is
preserved under continuous transformations. This result is stated in the following corollary;
the proof is left as an exercise.

Corollary 11.2. Let X, X1, X2, . . . denote real-valued random variables such that

Xn
D→ X as n → ∞.

Let f : X → R denote a continuous function, where X ⊂ R satisfies Pr[Xn ∈ X ] = 1,
n = 1, 2, . . . and Pr(X ∈ X ) = 1. Then

f (Xn)
D→ f (X ) as n → ∞.

Example 11.6 (Minimum of uniform random variables). As in Example 11.3, let
Y1, Y2, . . . denote a sequence of independent identically distributed, each with a uniform
distribution on (0, 1) and let Xn = n min(Y1, . . . , Yn), n = 1, 2, . . . . In Example 11.3, it
was shown that that Xn

D→ X as n → ∞, where X is a random variable with a standard
exponential distribution.

Let Wn = exp(Xn), n = 1, 2, . . . . Since exp(·) is a continuous function, it follows from

Corollary 11.2 that Wn
D→ W as n → ∞, where W = exp(X ). It is straightforward to show

that W has an absolutely continuous distribution with density

1

w2
, w ≥ 1. �

An important result is that convergence in distribution may be characterized in terms of
convergence of characteristic functions. The usefulness of this result is due to the fact that
the characteristic function of a sum of independent random variables is easily determined
from the characteristic functions of the random variables making up the sum. This approach
is illustrated in detail in Chapter 12.

Theorem 11.2. Let X1, X2, . . . denote a sequence of real-valued random variables and
let X denote a real-valued random variable. For each n = 1, 2, . . . , let ϕn denote the
characteristic function of Xn and let ϕ denote the characteristic function of X. Then

Xn
D→ X as n → ∞

if and only if

lim
n→∞ ϕn(t) = ϕ(t), for all − ∞ < t < ∞.
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Proof. Applying Theorem 11.1 to the real and imaginary parts of exp{i t x} shows that

Xn
D→ X implies that ϕn(t) → ϕ(t) for all t .

Hence, suppose that

lim
n→∞ ϕn(t) = ϕ(t), for all −∞ < t < ∞.

Let g denote an arbitrary bounded uniformly continuous function such that

|g(x)| ≤ M, −∞ < x < ∞.

If it can be shown that

lim
n→∞ E[g(Xn)] = E[g(X )] as n → ∞,

then, by Corollary 11.1, Xn
D→ X as n → ∞ and the theorem follows.

Given ε > 0, choose δ so that

sup
x,y:|x−y|<δ

|g(x) − g(y)| < ε.

Let Z denote a standard normal random variable, independent of X, X1, X2, . . . , and con-
sider |g(Xn + Z/t) − g(Xn)| where t > 0. Whenever |Z |/t is less than δ,

|g(Xn + Z/t) − g(Xn)| < ε;

whenever |Z |/t ≥ ε, we still have

|g(Xn + Z/t) − g(Xn)| ≤ |g(Xn + Z/t)| + |g(Xn)| ≤ 2M.

Hence, for any t > 0,

E[|g(Xn + Z/t) − g(Xn)|] ≤ εPr(|Z | < tδ) + 2MPr(|Z | > tδ).

For sufficiently large t ,

Pr(|Z | > tδ) ≤ ε

2M

so that

E[|g(Xn + Z/t) − g(Xn)|] ≤ 2ε.

Similarly, for sufficiently large t ,

E[|g(X + Z/t) − g(X )|] ≤ 2ε

so that

E[|g(Xn) − g(X )|] ≤ E[|g(Xn) − g(Xn + Z/t)|] + E[|g(Xn + Z/t) − g(X + Z/t)|]
+ E[|g(X + Z/t) − g(X )|] ≤ 4ε + E[|g(Xn + Z/t) − g(X + Z/t)|].

Recall that, by Example 3.2,

ϕZ (t) = (2π )
1
2 φ(t),

where φ denotes the standard normal density.
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Hence,

E[g(Xn + Z/t)] =
∫ ∞

−∞

∫ ∞

−∞
g(x + z/t)φ(z) dz d Fn(x)

= 1

(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞
g(x + z/t)ϕ(z) dz d Fn(x)

= 1

(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞
g(x + z/t)E[exp{i zZ}] dz d Fn(x)

= 1

(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(x + z/t) exp{i zy}φ(y) dy dz d Fn(x).

Consider the change-of-variable u = x + z/t . Then

E[g(Xn + Z/t)] = 1

t(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
g(u) exp{iyt(u − x)}φ(y) dy du d Fn(x)

= 1

t(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞
g(u) exp{−iytu}φ(y)

∫ ∞

−∞
exp{−iyt x}d Fn(x) dy du

= 1

t(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞
g(u) exp{−i t yu}ϕ(y)ϕn(−t y) dy du.

Similarly,

E[g(Xn + Z/t)] = 1

t(2π )
1
2

∫ ∞

−∞

∫ ∞

−∞
g(u) exp{−i t yu}ϕ(y)ϕ(−t y) dy du.

By assumption,

lim
n→∞ ϕn(−t y) = ϕ(−t y) for all −∞ < y < ∞.

Since ϕn(−t y) is bounded, it follows from the dominated convergence theorem (considering
the real and imaginary parts separately) that

lim
n→∞ E[g(Xn + Z/t)] = E[g(X + Z/t)] for all t > 0.

Hence, for sufficiently large t and n,

|E[g(Xn) − g(X )]| ≤ 5ε.

Since ε is arbitrary, the result follows.

Example 11.7. Let X1, X2, . . . denote a sequence of real-valued random variables such

that Xn
D→ X as n → ∞ for some random variable X . Let Y denote a real-valued random

variable such that, for each n = 1, 2, . . . , Xn and Y are independent.
Let ϕn denote the characteristic function of Xn , n = 1, 2, . . . , let ϕX denote the char-

acteristic function of X , and let ϕY denote the characteristic function of Y . Then Xn + Y

has characteristic function ϕn(t)ϕY (t). Since Xn
D→ X as n → ∞, it follows from Theorem

11.2 that, for each t ∈ R, ϕn(t) → ϕX (t) as n → ∞. Hence,

lim
n→∞ ϕn(t)ϕY (t) = ϕX (t)ϕY (t), t ∈ R.
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It follows that from Theorem 11.2

Xn + Y
D→ X + Y0 as n → ∞,

where Y0 denotes a random variable that is independent of X and has the same marginal
distribution as Y . �

Example 11.8 (Normal approximation to the Poisson distribution). Let Y1, Y2, . . . denote
a sequence of real-valued random variables such that, for each n = 1, 2, . . . ,Yn has a Poisson
distribution with mean n and let

Xn = Yn − n√
n

, n = 1, 2, . . . .

Since the characteristic function of a Poisson distribution with mean λ is given by

exp{λ[exp(i t) − 1]}, −∞ < t < ∞,

it follows that the characteristic function of Xn is

ϕn(t) = exp{n exp(i t/
√

n) − n − √
nit}.

By Lemma A2.1 in Appendix 2,

exp{i t} =
n∑

j=0

(i t) j

j!
+ Rn(t)

where

|Rn(t)| ≤ min{|t |n+1/(n + 1)!, 2|t |n/n!}.
Hence,

exp(i t/
√

n) = 1 + i t/
√

n − 1

2
t2/n + R2(t)

where

|R2(t)| ≤ 1

6
t3/n

3
2 .

It follows that

ϕn(t) = exp{−t2/2 + n R2(t)}
and that

lim
n→∞ n R2(t) = 0, −∞ < t < ∞.

Hence,

lim
n→∞ ϕn(t) = exp(−t2/2), −∞ < t < ∞,

the characteristic function of the standard normal distribution.
Let Z denote a random variable with a standard normal distribution. Then, by Theo-

rem 11.2, Xn
D→ Z as n → ∞.

Thus, probabilities of the form Pr(Xn ≤ z) can be approximated by Pr(Z ≤ z); these
approximations have the property that the approximation error approaches 0 as n → ∞.
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Table 11.1. Exact probabilities in Example 11.8.

α

n 0.10 0.25 0.50 0.75 0.90

10 0.126 0.317 0.583 0.803 0.919
20 0.117 0.296 0.559 0.788 0.914
50 0.111 0.278 0.538 0.775 0.909

100 0.107 0.270 0.527 0.768 0.907
200 0.105 0.264 0.519 0.763 0.905
500 0.103 0.259 0.512 0.758 0.903

Let Q Z denote the quantile function of the standard normal distribution. Table 11.1 con-
tains probabilities of the form Pr(Xn ≤ Q Z (α)) for various values of n and α; note that a
probability of this form can be approximated by α. For each value of α given, it appears that
the exact probabilities are converging to the approximation, although the convergence is, in
some cases, quite slow; for instance, for α = 0.50, the relative error of the approximation
is about 2.3% even when n = 500. �

Uniformity in convergence in distribution
Convergence in distribution requires only pointwise convergence of the sequence of distri-
butions. However, because of the special properties of distribution functions, in particular,
the facts that they are nondecreasing and all have limit 1 at ∞ and limit 0 at −∞, point-
wise convergence is equivalent to uniform convergence whenever the limiting distribution
function is continuous.

Theorem 11.3. Let X, X1, X2, . . . denote real-valued random variables such that

Xn
D→ X as n → ∞.

For n = 1, 2, . . . , let Fn denote the distribution function of Xn and let F denote the distri-
bution function of X. If F is continuous, then

sup
x

|Fn(x) − F(x)| → 0 as n → ∞.

Proof. Fix ε > 0. Let x1, x2, . . . , xm denote a partition of the real line, with x0 = −∞,
xm+1 = ∞, and

F(x j ) − F(x j−1) < ε/2, j = 1, . . . , m + 1.

Let x ∈ R, x j−1 ≤ x ≤ x j for some j = 1, . . . , m + 1. Since Fn(x j ) → F(x j )
as n → ∞,

Fn(x) − F(x) ≤ Fn(x j ) − F(x j−1) < F(x j ) + ε/2 − F(x j−1)

for sufficiently large n, say n ≥ N j . Similarly,

Fn(x) − F(x) ≥ Fn(x j−1) − F(x j ) > F(x j−1) − ε/2 − F(x j )

for n ≥ N j−1; note that if j = 1, the Fn(x j−1) = F(x j−1) so that N0 = 1.
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Since F(x j ) − F(x j−1) < ε/2 and F(x j−1) − F(x j ) > −ε/2, it follows that, for n ≥
max(N j , N j−1),

Fn(x) − F(x) ≤ ε

and

Fn(x) − F(x) ≥ −ε.

It follows that, for n ≥ max(N j , N j−1),

|Fn(x) − F(x)| < ε.

Let N = max(N0, N1, N2, . . . , Nm+1). Then, for any value of x ,

|Fn(x) − F(x)| < ε

for n ≥ N ; since the right-hand side of this inequality does not depend on x , it follows that,
given ε, there exists an N such that

sup
x

|Fn(x) − F(x)| ≤ ε

for n ≥ N , proving the result.

Example 11.9 (Convergence of Fn(xn)). Suppose that a sequence of random variables
X1, X2, . . . converges in distribution to a random variable X . Let Fn denote the distribution
function of Xn , n = 1, 2, . . . , and let F denote the distribution function of X , where F is
continuous on R. Then, for each x , limn→∞ Fn(x) = F(x).

Let x1, x2, . . . denote a sequence of real numbers such that x = limn→∞ xn exists. Then

|Fn(xn) − F(x)| ≤ |Fn(xn) − F(xn)| + |F(xn) − F(x)|.
Since F is continuous,

lim
n→∞ |F(xn) − F(x)| = 0;

by Theorem 11.3,

lim
n→∞ |Fn(xn) − F(xn)| ≤ lim

n→∞ sup
x

|Fn(x) − F(x)| = 0.

Hence,

lim
n→∞ |Fn(xn) − F(x)| = 0;

that is, the sequence Fn(xn) converges to F(x) as n → ∞. �

Convergence in distribution of random vectors
We now consider convergence in distribution of random vectors. The basic definition is
a straightforward extension of the definition used for real-valued random variables. Let
X1, X2, . . . denote a sequence of random vectors, each of dimension d, and let X denote
a random vector of dimension d . For each n = 1, 2, . . . , let Fn denote the distribution
function of Xn and let F denote the distribution function of X . We say that Xn converges
in distribution to X as n → ∞, written

Xn
D→ X as n → ∞
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provided that

lim
n→∞ Fn(x) = F(x)

for all x ∈ Rd at which F is continuous.

Many of the properties of convergence in distribution, proven in this section for sequences
of real-valued random variables, extend to the case of random vectors. Several of these
extensions are presented below without proof; for further discussion and detailed proofs,
see, for example, Port (1994, Chapters 50 and 51).

The following result considers convergence in distribution of random vectors in terms
of convergence of expected values of bounded functions and generalizes Theorem 11.1 and
Corollaries 11.1 and 11.2.

Theorem 11.4. Let X1, X2, . . . denote a sequence of d-dimensional random vectors and
let X denote a d-dimensional random vector.

(i) If

Xn
D→ X as n → ∞

then

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, continuous, real-valued functions f .

(ii) If

E[ f (Xn)] → E[ f (X )] as n → ∞
for all bounded, uniformly continuous, real-valued functions f , then

Xn
D→ X as n → ∞.

(iii) If Xn
D→ X as n → ∞, and g is a continuous function, then g(Xn)

D→ g(X ).

Theorem 11.5 below generalizes Theorem 11.2 on the convergence of characteristic
functions.

Theorem 11.5. Let X1, X2, . . . denote a sequence of d-dimensional random vectors and
let X denote a d-dimensional random vector.

Let ϕn denote the characteristic function of Xn and let ϕ denote the characteristic
function of X.

Xn
D→ X as n → ∞

if and only if

lim
n→∞ ϕn(t) = ϕ(t), for all t ∈ Rd .

Recall that, when discussing the properties of characteristic functions of random vectors,
it was noted that two random vectors X and Y have the same distribution if and only if t T X
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and t T Y have the same distribution for any vector t . Similarly, a very useful consequence of
Theorem 11.5 is the result that convergence in distribution of a sequence of d-dimensional
random vectors X1, X2, . . . to a random vector X may be established by showing that, for any
vector t ∈ Rd , t T X1, t T X2, . . . converges in distribution to t T X . Thus, a multidimensional
problem may be converted to a class of one-dimensional problems. This often called the
Cramér–Wold device.

Theorem 11.6. Let X, X1, X2, . . . denote d-dimensional random vectors. Then

Xn
D→ X as n → ∞

if and only if

t T Xn
D→ t T X as n → ∞

for all t ∈ Rd .

Proof. Let ϕn denote the characteristic function of Xn and let ϕ denote the characteristic
function of X . Then t T Xn has characteristic function

ϕ̃n(s) = ϕn(st), s ∈ R

and t T X has characteristic function

ϕ̃(s) = ϕ(st), s ∈ R.

Suppose Xn
D→ X . Then

ϕn(t) → ϕ(t) for all t ∈ Rd

so that, fixing t ,

ϕn(st) → ϕ(st) for all s ∈ R,

proving that t T Xn
D→ t T X .

Now suppose that t T Xn
D→ t T X for all t ∈ Rd . Then

ϕn(st) → ϕ(st) for all s ∈ R, t ∈ Rd .

Taking s = 1 shows that

ϕn(t) → ϕ(t) for all t ∈ Rd ,

proving the result.

Thus, according to Theorem 11.6, convergence in distribution of the component random
variables of a random vector is a necessary, but not sufficient, condition for convergence in
distribution of the random vector. This is illustrated in the following example.

Example 11.10. Let Z1 and Z2 denote independent standard normal random variables
and, for n = 1, 2, . . . , let Xn = Z1 + αn Z2 and Yn = Z2, where α1, α2, . . . is a sequence

of real numbers. Clearly, Yn
D→ Z2 as n → ∞ and, if αn → α as n → ∞, for some real
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number α, then Xn
D→ N (0, 1 + α2) as n → ∞. Furthermore, since for any (t1, t2) ∈ R2,

t1 Xn + t2Yn = t1 Z1 + (t2 + αnt1)Z2 has characteristic function

exp{−[t2
1 + (t2 + αnt1)2]s2/2}, s ∈ R,

which converges to

exp{−[t2
1 + (t2 + αt1)2]s2/2}, s ∈ R,

it follows that t1 Xn + t2Yn converges in distribution to a random variable with a normal
distribution with mean 0 and variance t2

1 + (t2 + αt1)2. Hence, by Theorem 11.6,(
Xn

Yn

)
D→ W,

where W has a bivariate normal distribution with mean vector 0 and covariance matrix(
1 + α2 α

α 1

)
.

Now suppose that αn = (−1)n , n = 1, 2, . . . . Clearly, Yn
D→ Z2 as n → ∞ still holds.

Furthermore, since Xn = Z1 + (−1)n Z2, it follows that, for each n = 1, 2, . . . , Xn has a

normal distribution with mean 0 and variance 2; hence, Xn
D→ N (0, 2) as n → ∞. How-

ever, consider the distribution of Xn + Yn = Z1 + (1 + (−1)n)Z2. This distribution has
characteristic function

exp{−[1 + (1 + (−1)n)2]s2/2} =
{

exp(−s2/2) for n = 1, 3, 5, . . .

exp(−5s2/2) for n = 2, 4, 6, . . .
, s ∈ R.

Hence, by Theorem 11.2, Xn + Yn does not converge in distribution so that, by
Theorem 11.6, the random vector (Xn, Yn) does not converge in distribution. �

11.3 Convergence in Probability

A sequence of real-valued random variables X1, X2, . . . converges in distribution to a ran-
dom variable X if the distribution functions of X1, X2, . . . converge to that of X . It is
important to note that this type of convergence says nothing about the relationship between
the random variables Xn and X .

Suppose that the sequence X1, X2, . . . is such that |Xn − X | becomes small with high
probability as n → ∞; in this case, we say that Xn converges in probability to X . More
precisely, a sequence of real-valued random variables X1, X2, . . . converges in probability
to a real-valued random variable X if, for any ε > 0,

lim
n→∞ Pr(|Xn − X | ≥ ε) = 0.

We will denote this convergence by Xn
p→ X as n → ∞. Note that for this definition to

make sense, for each n, X and Xn must be defined on the same underlying sample space, a
requirement that did not arise in the definition of convergence in distribution.

Example 11.11 (Sequence of Bernoulli random variables). Let X1, X2, . . . denote a
sequence of real-valued random variables such that

Pr(Xn = 1) = 1 − Pr(Xn = 0) = θn, n = 1, 2, . . .
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where θ1, θ2, . . . denotes a sequence of constants each taking values in the interval (0, 1).
For any ε > 0,

Pr(|Xn| ≥ ε) = Pr(Xn = 1) = θn;

hence, Xn
p→ 0 provided that limn→∞ θn = 0. �

Example 11.12 (Normal random variables).
Let Z , Z1, Z2, . . . denote independent random variables, each with a standard normal

distribution, and let α1, α2, . . . denote a sequence of real numbers satisfying 0 < αn < 1
for n = 1, 2, . . . and αn → 1 as n → ∞. Let

Xn = (1 − αn)Zn + αn Z , n = 1, 2, . . .

and let X = Z . Then, for any m = 1, 2, . . . , (X1, . . . , Xm) has a multivariate normal dis-
tribution with mean vector and covariance matrix with (i, j)th element given by αiα j , if
i �= j and by (1 − α j )2 + α2

j if i = j .
Note that Xn − X = (1 − αn)(Zn − Z ) so that, for any ε > 0,

Pr{|Xn − X | ≥ ε} = Pr{|Zn − Z | ≥ ε/(1 − αn)}

so that, by Markov’s inequality, together with the fact that E[|Zn − Z |2] = 2,

Pr{|Xn − X | ≥ ε} ≤ 2(1 − αn)2

ε2
, n = 1, 2, . . . .

It follows that Xn
p→ X as n → ∞. �

As noted above, an important distinction between convergence of a sequence Xn , n =
1, 2, . . . , to X in distribution and in probability is that convegence in distribution depends
only on the marginal distribution functions of Xn and of X , while convergence in probability
is concerned with the distribution of |Xn − X |. Hence, for convergence in probability, the
joint distribution of Xn and X is relevant. This is illustrated in the following example.

Example 11.13 (Sequence of Bernoulli random variables). Let X1, X2, . . . denote a
sequence of real-valued random variables such that, for each n = 1, 2, . . . ,

Pr(Xn = 1) = 1 − Pr(Xn = 0) = 1

2

n + 1

n

and let X denote a random variable satisfying

Pr(X = 1) = Pr(X = 0) = 1/2.

Then, by Example 11.1, Xn
D→ X as n → ∞.

However, whether or not Xn converges in X in probability will depend on the joint
distributions of (X, X1), (X, X2), . . . . For instance, if, for each n, Xn and X are independent,
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then

Pr(|Xn − X | ≥ 1/2) = Pr(Xn = 1 ∩ X = 0) + Pr(Xn = 0 ∩ X = 1)

= 1

4

n + 1

n
+ 1

4

n − 1

n

= 1

2
;

it follows that Xn does not converge to X in probability.
On the other hand, suppose that

Pr(Xn = 1|X = 1) = 1 and Pr(Xn = 1|X = 0) = 1

n
.

Note that

Pr(Xn = 1) = Pr(Xn = 1|X = 1)Pr(X = 1) + Pr(Xn = 1|X = 0)Pr(X = 0)

= 1

2
+ 1

n

1

2

= 1

2

n + 1

n
,

as stated above. In this case, for any ε > 0,

Pr(|Xn − X | ≥ ε) = Pr(Xn = 1 ∩ X = 0) + Pr(Xn = 0 ∩ X = 1) = 1

2n

so that Xn
p→ X as n → ∞. �

The preceding example shows that convergence in distribution does not necessarily imply
convergence in probability. The following result shows that convergence in probability does
imply convergence in distribution. Furthermore, when the limiting random variable is a
constant with probability 1, then convergence in probability is equivalent to convergence in
distribution.

Corollary 11.3. Let X, X1, X2, . . . denote real-valued random variables.

(i) If Xn
p→ X as n → ∞ then Xn

D→ X as n → ∞.

(ii) If Xn
D→ X as n → ∞ and Pr(X = c) = 1 for some constant c, then Xn

p→ X as
n → ∞.

Proof. Suppose that Xn
p→ X . Consider the event Xn ≤ x for some real-valued x . If

Xn ≤ x , then, for every ε > 0, either X ≤ x + ε or |Xn − X | > ε. Hence,

Pr(Xn ≤ x) ≤ Pr(X ≤ x + ε) + Pr(|Xn − X | > ε).

Let Fn denote the distribution function of Xn and let F denote the distribution function of
F . Then, for all ε > 0,

lim sup
n→∞

Fn(x) ≤ F(x + ε).

Similarly, if, for some ε > 0, X ≤ x − ε, then either Xn ≤ x or |Xn − X | > ε. Hence,

F(x − ε) ≤ Fn(x) + Pr(|Xn − X | > ε)
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so that, for all ε > 0,

lim inf
n→∞ Fn(x) ≥ F(x − ε).

That is, for all ε > 0,

F(x − ε) ≤ lim inf
n→∞ Fn(x) ≤ lim sup

n→∞
Fn(x) ≤ F(x + ε).

Suppose F is continuous at x . Then F(x + ε) − F(x − ε) → 0 as ε → 0. It follows that

lim
n→∞ Fn(x)

exists and is equal to F(x) so that Xn
D→ X . This proves part (i) of the theorem.

Now suppose that Xn
D→ X and that X = c with probability 1. Then X has distribution

function

F(x) =
{

0 if x < c
1 if x ≥ c

.

Let Fn denote the distribution function of Xn . Since F is not continuous at x = c, it follows
that

lim
n→∞ Fn(x) =

{ 0 if x < c
1 if x > c

.

Fix ε > 0. Then

Pr(|Xn − c| ≥ ε) = Pr(Xn ≤ c − ε) + Pr(Xn ≥ c + ε)

≤ Fn(c − ε) + 1 − Fn(c + ε/2) → 0 as n → ∞.

Since this holds for all ε > 0, we have

lim
n→∞ Pr{|Xn − c| ≥ ε} = 0 for all ε > 0;

it follows that Xn
p→ c as n → ∞, proving part (ii) of the theorem.

Convergence in probability to a constant
We now consider convergence in probability of a sequence X1, X2, . . . to a constant. Without
loss of generality we may take this constant to be 0; convergence to a constant c may be
established by noting that Xn converges in probability to c if and only if Xn − c converges
in probability to 0.

Since convergence in probability to a constant is equivalent to convergence in distribution,

by Corollary 11.2, if Xn
p→ 0 and f is a continuous function, then f (Xn)

p→ f (0). Since,
in this case, the distribution of Xn becomes concentrated near 0 as n → ∞, convergence
of f (Xn) to f (0) holds provided only that f is continuous at 0. The details are given in the
following theorem.

Theorem 11.7. Let X1, X2, . . . denote a sequence of real-valued random variables such

that Xn
p→ 0 as n → ∞. Let f : R → R denote a function that is continuous at 0. Then

f (Xn)
p→ f (0) as n → ∞.
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Proof. Fix ε and consider Pr(| f (Xn) − f (0)| < ε). By the continuity of f , there exists a
δ such that | f (x) − f (0)| < ε whenever |x | < δ. Hence,

Pr(| f (Xn) − f (0)| < ε) = Pr(|Xn| < δ).

The result now follows from the fact that, for any δ > 0,

lim
n→∞ Pr(|Xn| < δ) = 1.

According to Theorem 11.2, a necessary and sufficient condition for convergence in
distribution is convergence of the characteristic functions. Since the characteristic function

of the random variable 0 is 1 for all t ∈ R, it follows that Xn
p→ 0 as n → ∞ if and only if

ϕ1, ϕ2, . . . , the characteristic functions of X1, X2, . . . , respectively, satisfy

lim
n→∞ ϕn(t) = 1, t ∈ R.

Example 11.14 (Gamma random variables). Let X1, X2, . . . denote a sequence of real-
valued random variables such that, for each n = 1, 2, . . . , Xn has a gamma distribution
with parameters αn and βn , where αn > 0 and βn > 0; see Example 3.4 for further details
regarding the gamma distribution. Assume that

lim
n→∞ αn = α and lim

n→∞βn = β

for some α, β.
Let ϕn denote the characteristic function of Xn . Then, according to Example 3.4,

log ϕn(t) = αn log βn − αn log(βn − i t), t ∈ R.

Hence, Xn
p→ 0 as n → ∞ provided that α = 0, β < ∞, and

lim
n→∞ αn log βn = 0. �

Example 11.15 (Weak law of large numbers). Let Yn , n = 1, 2, . . . denote a sequence of
independent, identically distributed real-valued random variables such that E(Y1) = 0. Let

Xn = 1

n
(Y1 + · · · + Yn), n = 1, 2, . . . .

The characteristic function of Xn is given by

ϕn(t) = ϕ(t/n)n

where ϕ denotes the characteristic function of Y1 and, hence

log ϕn(t) = n log ϕ(t/n).

Since E(Y1) = 0, by Theorem 3.5,

ϕ(t) = 1 + o(t) as t → 0

and, hence,

log ϕ(t) = o(t) as t → 0;
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it follows that

log ϕn(t) = n o

(
t

n

)
→ 0 as n → ∞.

Hence, by Theorem 11.2, Xn
D→ 0 as n → ∞; it now follows from Corollary 11.3 that

Xn
p→ 0 as n → ∞. This is one version of the weak law of large numbers. �

Example 11.16 (Mean of Cauchy random variables). Let Yn , n = 1, 2, . . . denote a
sequence of independent, identically distributed random variables such that each Y j has
a standard Cauchy distribution; recall that the mean of this distribution does not exist so
that the result in Example 11.15 does not apply.

Let

Xn = 1

n
(Y1 + · · · + Yn), n = 1, 2, . . . .

The characteristic function of the standard Cauchy distribution is exp(−|t |) so that the
characteristic function of Xn is given by

ϕn(t) = exp(−|t |/n)n = exp(−|t |).

Hence, Xn does not converge in probability to 0; in fact, Xn also has a standard Cauchy
distribution. �

Although convergence in probability of Xn to 0 may be established by considering char-
acteristic functions, it is often more convenient to use the connection between probabilities
and expected values provided by Markov’s inequality (Theorem 1.14). Such a result is given
in the following theorem; the proof is left as an exercise.

Theorem 11.8. Let X1, X2, . . . denote a sequence of real-valued random variables. If, for
some r > 0,

lim
n→∞ E(|Xn|r ) = 0

then Xn
p→ 0.

Example 11.17 (Weak law of large numbers). Let Yn , n = 1, 2, . . . denote a sequence of
real-valued random variables such that E(Yn) = 0, n = 1, 2, . . . , E(Y 2

n ) = σ 2
n < ∞, n =

1, 2, . . . , and Cov(Yi , Y j ) = 0 for all i �= j .
Let

Xn = 1

n
(Y1 + · · · + Yn), n = 1, 2, . . . .

Then

E(X2
n) = Var(Xn) = 1

n2

n∑
j=1

σ 2
j .
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Hence, Xn
p→ 0 as n → 0 provided that

lim
n→0

1

n2

n∑
j=1

σ 2
j = 0.

This is another version of the weak law of large numbers. �

The weak laws of large numbers given in Examples 11.15 and 11.17 give conditions under
which the sample means of a sequence of real-valued random variables, each with mean 0,
converges in probability to 0. In Example 11.15, the random variables under consideration
were taken to be independent, while in Example 11.17, they were taken to be uncorrelated.
The following example shows that a similar result holds, under some conditions, even when
the random variables are correlated.

Example 11.18 (Weak law of large numbers for correlated random variables). Let
X1, X2, . . . denote a sequence of real-valued random variables such that E(X j ) = 0,
Var(X j ) = 1, j = 1, . . . , n, and suppose that

Cov(Xi , X j ) = R(i − j), i, j = 1, . . . , n

for some function R. In the language of Chapter 6, {Xt : t ∈ Z} is a discrete-time covariance-
stationary stochastic process and R is the autocovariance function of the process; however,
the results of Chapter 6 are not needed for this example. We will show that if R( j) → 0 as
j → ∞, then

1

n

n∑
j=1

X j
p→ 0 as n → ∞.

Note that the condition that R( j) → 0 as j → ∞ is the condition that the correlation
between two random variables in the sequence X1, X2, . . . decreases to 0 as the distance
between their indices increases.

By Chebychev’s inequality, the result follows provided that

Var

(
1

n

n∑
j=1

X j

)
→ 0 as n → ∞.

Note that

Var

(
1

n

n∑
j=1

X j

)
= 1

n2

n∑
i=1

n∑
j=1

R(|i − j |) = 1

n2

[
n R(0) + 2

n−1∑
j=1

(n − j)R( j)

]

≤ 2

n2

n−1∑
j=0

(n − j)R( j).

Fix ε > 0. Under the assumption that R( j) → 0 as j → ∞, there exists an integer N
such that |R( j)| < ε for all j > N . Hence, for n ≥ N ,∣∣∣∣∣

n−1∑
j=0

(n − j)R( j)

∣∣∣∣∣ ≤
N∑

j=0

(n − j)|R( j)| + (n − N )2ε
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so that

Var

(
1

n

n∑
j=1

X j

)
≤ 2

n

N∑
j=0

(
1 − j

n

)
|R( j)| + 2

(
1 − N

n

)2

ε.

It follows that

lim sup
n→∞

Var

(
1

n

n∑
j=1

X j

)
≤ 2ε.

Since ε > 0 is arbitrary, it follows that

lim
n→∞ Var

(
1

n

n∑
j=1

X j

)
= 0,

proving the result. �

Convergence in probability of random vectors and random matrices
Convergence in probability can also be applied to random vectors. Let X1, X2, . . . be a
sequence of d-dimensional random vectors and let X denote a d-dimensional random

vector. Then Xn converges in probability to X as n → ∞, written Xn
p→ X as n → ∞,

provided that, for any ε > 0,

lim
n→∞ Pr{||Xn − X || ≥ ε} = 0;

here || · || denotes Euclidean distance on Rd .
The following result shows that convergence in probability of a sequence of random

variables is equivalent to convergence in probability of the sequences of component random
variables. Thus, convergence in probability of random vectors does not include any ideas
beyond those contained in convergence in probability of real-valued random variables.

Theorem 11.9. Let X1, X2, . . . denote a sequence of d-dimensional random vectors and,
for each n = 1, 2, . . . , let Xn( j), j = 1, . . . , d denote the components of Xn so that

Xn =

 Xn(1)

...
Xn(d)


 , n = 1, 2, . . . .

Let X denote a d-dimensional random vector with components X (1), . . . , X (d).

Then Xn
p→ X as n → ∞ if and only if for each j = 1, 2, . . . , d

Xn( j)
p→ X ( j) as n → ∞.

Proof. For simplicity, we consider the case in which d = 2; the general case follows along
similar lines. Since

||Xn − X ||2 = |Xn(1) − X (1)|2 + |Xn(2) − X (2)|2,
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for any ε > 0,

Pr{||Xn − X || ≥ ε} = Pr{||Xn − X ||2 ≥ ε2} ≤ Pr{|Xn(1) − X (1)|2 ≥ ε2/2}
+ Pr{|Xn(2) − X (2)|2 ≥ ε2/2}

= Pr{|Xn(1) − X (1)| ≥ ε/
√

2} + Pr{|Xn(2) − X (2)| ≥ ε/
√

2}.

Hence, if Xn( j)
p→ X ( j) as n → ∞ for j = 1, 2, it follows that Xn

p→ X as n → ∞.

Now suppose that Xn
p→ X as n → ∞. Note that

|Xn(1) − X (1)|2 = ||Xn − X ||2 − |Xn(2) − X (2)|2 ≤ ||Xn − X ||2.
It follows that, for any ε > 0,

Pr{|Xn(1) − X (1)| ≥ ε} ≤ Pr{||Xn − X || ≥ ε}
and, hence, that Xn(1)

p→ X as n → ∞; the same argument applies to Xn(2).

In statistics it is often useful to also consider random matrices; for instance, we may be
interested in an estimator of a covariance matrix. For the purpose of defining convergence
in probability, a d1 × d2 random matrix can be viewed as a random vector of length d1d2.
Hence, by Theorem 11.9, a sequence of random matrices Y1, Y2, . . . converges in probability
to a matrix Y , if and only if for each (i, j) the sequence formed by taking the (i, j)th element
of Y1, Y2, . . . converges in probability to the (i, j)th element of Y .

11.4 Convergence in Distribution of Functions of Random Vectors

For many statistics arising in statistical applications, it is difficult to establish convergence
in distribution directly using the results given in Sections 11.1–11.3. However, in some
of these cases, the statistic in question may be written as a function of statistics whose
convergence properties can be determined. For instance, suppose that we are interested in a
statistic Tn = f (Xn, Yn); it is often possible to establish the convergence in distribution of
T1, T2, . . . by first establishing the convergence in distribution of X1, X2, . . . and Y1, Y2, . . .

and using properties of the function f . Some basic results of this type are given in this
section; further results are discussed in Section 13.2.

The main technical result of this section is the following.

Theorem 11.10. Let X1, X2, . . . denote a sequence of d-dimensional random vectors such
that

Xn
D→ X as n → ∞.

Let Y1, Y2, . . . denote a sequence of m-dimensional random vectors such that

Yn
p→ c as n → ∞

for some constant c ∈ Rm. Then(
Xn

Yn

)
D→

(
X
c

)
as n → ∞.
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Proof. Let g denote a bounded, uniformly continuous, real-valued function on Rd × Rm .
Given ε > 0 there exists a δ such that

|g(x1, y1) − g(x2, y2)| ≤ ε

whenever

||(x1, y1) − (x2, y2)|| ≤ δ.

Note that

|E[g(Xn, Yn) − g(X, c)]| ≤ |E[g(Xn, Yn) − g(Xn, c)]| + |E[g(Xn, c) − g(X, c)]|.
First consider E[g(Xn, Yn) − g(Xn, c)]. Whenever ||y − c|| ≤ δ,

|g(x, y) − g(x, c)| ≤ ε.

Hence,

|E[g(Xn, Yn) − g(Xn, c)]|
≤ E[|g(Xn, Yn) − g(Xn, c)| I{||Yn−c||≤δ}] + E[|g(Xn, Yn) − g(Xn, c)|I{||Yn−c||>δ}]

≤ ε + 2G Pr(||Yn − c|| > δ)

where

G = sup
x,y

|g(x, y)|.

It follows that

lim sup
n→∞

|E[g(Xn, Yn) − g(Xn, c)]| ≤ ε.

Now consider E[g(Xn, c) − g(X, c)]. Define ḡ(x) = g(x, c). Then ḡ is a bounded con-
tinuous function on Rm . Hence,

lim
n→∞ |E[ḡ(Xn) − ḡ(X )]| ≡ lim

n→∞ |E[g(Xn, c) − g(X, c)]| = 0.

It follows that, for any ε > 0,

lim sup
n→∞

|E[g(Xn, Yn) − g(X, c)]| ≤ ε;

the result follows.

Theorem 11.10 may be used to establish the following result, which is known as Slutsky’s
theorem, and which is often used in statistics. The proof is straightforward and is left as an
exercise.

Corollary 11.4. Let X1, X2, . . . and Y1, Y2, . . . denote sequences of d-dimensional random
vectors such that

Xn
D→ X as n → ∞

and

Yn
p→ c as n → ∞



P1: JZP
052184472Xc11 CUNY148/Severini May 24, 2005 17:56

348 Approximation of Probability Distributions

for some constant c ∈ Rd . Then

Xn + Yn
D→ X + c as n → ∞

and

Y T
n Xn

D→ cT X as n → ∞.

Example 11.19 (Standardization by a random scale factor). Let X1, X2, . . . denote a
sequence of real-valued random variables such that Xn

D→ X as n → ∞ where X has a
normal distribution with mean 0 and variance σ 2. Let Y1, Y2, . . . denote a sequence of real-
valued, nonzero, random variables such that Yn

p→ σ as n → ∞. Then, by Corollary 11.4,
Xn/Yn converges in distribution to a standard normal random variable. �

Example 11.20 (Sequences of random variables with correlation approaching 1). Let
X1, X2, . . . and Y1, Y2, . . . denote sequences of real-valued random variables, each with
mean 0 and standard deviation 1, such that Xn

D→ X as n → ∞ for some random variable
X . For each n = 1, 2, . . . , let ρn denote the correlation of Xn and Yn and suppose that
limn→∞ ρn = 1.

Note that we may write

Yn = Xn + (Yn − Xn)

and, since

Var(Yn − Xn) = 2 − 2ρn,

it follows that Yn − Xn
p→ 0. Hence, by Corollary 11.4, Yn

D→ X as n → ∞. �

As noted previously, random matrices often arise in statistics. The following result gives
some properties of convergence in probability of random matrices.

Lemma 11.1. Let Y1, Y2, . . . , denote random m × m matrices and let C denote an m × m
matrix of constants.

(i) Yn
p→ C as n → ∞ if and only if aT Ynb

p→ aT C b as n → ∞ for all a, b ∈ Rm

(ii) Let |M | denote the determinant of a square matrix M. If Yn
p→ C as n → ∞, then

|Yn| p→ |C | as n → ∞.

(iii) Suppose each Yn is invertible and that C is invertible. Y −1
n

p→ C−1 as n → ∞ if

and only if Yn
p→ C as n → ∞.

Proof. For each n = 1, 2, and each i, j = 1, . . . , m, let Yni j denote the (i, j)th element

of Yn and let Ci j denote the (i, j)th element of C . Assume that Yn
p→ C as n → ∞. Then,

for each i, j ,

Yni j
p→ Ci j as n → ∞.
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Since

aT Ynb =
m∑

i=1

m∑
j=1

ai b j Yni j ,

it follows that

aT Ynb
p→ aT C b as n → ∞.

Now suppose that

aT Ynb
p→ aT C b as n → ∞

for any a, b ∈ Rm . It follows that

Yni j
p→ Ci j as n → ∞

for each i, j , proving part (i) of the theorem.
Part (ii) follows from the fact that the determinant of a matrix is a continuous function

of the elements of the matrix.
Part (iii) follows from part (ii), using the fact that the elements of the inverse of a matrix

may be written as ratios of determinants.

Corollary 11.4 may now be extended to random matrices.

Corollary 11.5. Let Y1, Y2, . . . denote random m × m matrices and let C denote an m × m
matrix of constants. Assume that

Yn
p→ C as n → ∞.

Let X1, X2, . . . denote a sequence of m-dimensional random vectors such that

Xn
D→ X as n → ∞.

If each Yn, n = 1, 2, . . . , is invertible and C is invertible, then

Y −1
n Xn

D→ C−1 X as n → ∞.

Proof. Let a ∈ Rm and let W T
n = aT Y −1

n and w T = aT C . From Lemma 11.1,

Wn
p→ w as n → ∞.

Since

aT Y −1
n Xn = W T

n Xn

the result then follows from Corollary 11.4.

11.5 Convergence of Expected Values

According to Theorem 11.1, if a sequence of real-valued random variables X1, X2, . . .

converges in distribution to X and there exists a constant M such that |Xn| ≤ M ,
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n = 1, 2, . . . , then

lim
n→∞ E(Xn) = E(X ).

However, if the Xn are not bounded in this manner, convergence of the expected values
does not necessarily hold. An example of this has already been given in Example 11.5.

Hence, in order for Xn
D→ X as n → ∞ to imply that E(Xn) → E(X ) as n → ∞, addi-

tional conditions are needed on the sequence X1, X2, . . . . Suppose that

sup
n

E[|Xn|I{|Xn |≥c}] = 0 for some c > 0. (11.3)

Then X1, X2, . . . are uniformly bounded by c, for if there exists an N such that Pr{|X N | ≥
c} > 0, then

E[|X N |I{|X N |≥c}] ≥ cPr{|X N | ≥ c} > 0;

hence, condition (11.3) implies that limn→∞ E(Xn) = E(X ).
The condition of uniform integrability is a weaker version of (11.3) that is still strong

enough to imply that limn→∞ E(Xn) = E(X ). A sequence of real-valued random variables
X1, X2, . . . is said to be uniformly integrable if

lim
c→∞ sup

n
E[|Xn|I{|Xn |≥c}] = 0.

Theorem 11.11. Let X, X1, X2, . . .denote real-valued random variables such that Xn
D→ X

as n → ∞. If X1, X2, . . . is uniformly integrable and E(|X |) < ∞, then

lim
n→∞ E(Xn) = E(X ).

Proof. For c > 0, define

gc(x) =
{

x if |x | < c
sgn(x)c if |x | ≥ c

.

Hence,

x − gc(x) =
{

0 if |x | < c
x − sgn(x)c if |x | ≥ c

.

It follows that, for any random variable Z ,

E(Z ) = E[gc(Z )] + E[Z I{|Z |>c}] − cE[sgn(Z )I{|Z |>c}].

Hence, ∣∣∣E(Z ) − E[gc(Z )]
∣∣∣ =

∣∣∣E[Z I{|Z |≥c}] − cE[sgn(Z ) I{|Z |≥c}]
∣∣∣

≤ E[|Z | I{|Z |≥c}] + cE[I{|Z |≥c}]

≤ 2E[|Z | I{|Z |≥c}].

It follows that

|E(Xn) − E(X )| ≤
∣∣∣E[gc(Xn)] − E[gc(X )]

∣∣∣ + 2E[|Xn|I{|Xn |≥c}] + 2E[|X |I{|X |≥c}].
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Fix ε > 0. Note that, by the dominated convergence theorem, using the fact that E[|X |] < ∞,

lim
c→∞ E[|X |I{|X |≥c}] = 0.

Hence,

lim
c→∞ sup

n
{E[|Xn| I{|Xn |≥c}] + E[|X |I{|X |≥c}]} = 0.

Therefore, given ε > 0, there exists a c > 0 such that

|E(Xn) − E(X )| ≤ |E[gc(Xn)] − E[gc(X )]| + ε

for all n = 1, 2, . . . .

Since gc is a bounded continuous function,

lim sup
n→∞

|E(Xn) − E(X )| ≤ lim
n→∞ |E[gc(Xn)] − E[gc(X )]| + ε = ε.

Since ε > 0 is arbitrary, the result follows.

In fact, the assumption that E(|X |) < ∞ is not needed in Theorem 11.11; it may be shown
that if X1, X2, . . . is uniformly integrable, then E(|X |) < ∞. See, for example, Billingsley
(1995, Section 25). However, in typical applications, it is a relatively simple matter to verify
directly that E(|X |) < ∞.

Example 11.21 (Minimum of uniform random variables). As in Example 11.3, let
Y1, Y2, . . . denote a sequence of independent identically distributed, each with a uniform

distribution on (0, 1) and let Xn = n min(Y1, . . . , Yn). Recall that Xn
D→ X as n → ∞,

where X denotes a random variable with a standard exponential distribution.
Consider

E[|Xn|I{|Xn |≥c}] = n
∫ 1

c
n

tn(1 − t)n−1 dt = n

n + 1

(
1 − c

n

)n
(1 + c).

Note that n/(n + 1) and (1 − c/n)n are both increasing functions of n; it follows that

sup
n

E[|Xn|I{|Xn |≥c}] = lim
n→∞

n

n + 1

(
1 − c

n

)n
(1 + c) = (1 + c) exp(−c)

and, hence, that

lim
c→∞ sup

n
E[|Xn|I{|Xn |≥c}] = 0

so that X1, X2, . . . is uniformly integrable.
Therefore,

lim
n→∞ E(Xn) = E(X ) = 1. �

Example 11.22 (Mixture of normal distributions). For each n = 1, 2, . . . , define a ran-
dom variable Xn as follows. With probability (n − 1)/n, Xn has a standard normal distribu-
tion; with probability 1/n, Xn has a normal distribution with mean n and standard deviation
1. Hence, Xn has distribution function

Fn(x) = n − 1

n
�(x) + 1

n
�(x − n), −∞ < x < ∞



P1: JZP
052184472Xc11 CUNY148/Severini May 24, 2005 17:56

352 Approximation of Probability Distributions

where � denotes the distribution function of the standard normal distribution.
Note that, for any −∞ < x < ∞,

0 ≤ 1

n
�(x − n) ≤ 1

n

so that

lim
n→∞ Fn(x) = �(x)

and, hence, Xn
D→ Z as n → ∞, where Z denotes a random variable with a standard normal

distribution.
Consider

E[|Xn| I{|Xn |≥c}] = n − 1

n
E[|Z | I{|Z |≥c}] + 1

n
E[|Z + n| I{|Z+n|≥c}].

Let φ denote the standard normal density function; note that

E[|Z + n| I{|Z+n|≥c}] =
∫ ∞

c−n
(z + n)φ(z) dz −

∫ −(c+n)

−∞
(z + n)φ(z) dz

= n[�(c + n) − �(c − n)] +
∫ ∞

c−n
zφ(z) dz +

∫ ∞

c+n
zφ(z) dz

≥ n[�(c + n) − �(c − n)].

Hence,

E[|Xn|I{|Xn |≥c}] ≥ 1

n
E[|Z + n|I{|Z+n|≥c}] ≥ �(c + n) − �(c − n)

and

sup
n

E[|Xn| I{|Xn |≥c}] ≥ 1

for all c > 0. It follows that X1, X2, . . . is not uniformly integrable.
In fact, here E(Xn) = 1 for all n = 1, 2, . . . , while E(Z ) = 0. �

The following result is sometimes useful in showing that a given sequence of random
variables is uniformly integrable.

Theorem 11.12. Let X1, X2, . . . denote real-valued random variables. The sequence
X1, X2, . . . is uniformly integrable provided that either of the two following conditions
holds:

(i) supn E(|Xn|1+ε) < ∞ for some ε > 0
(ii) There exists a uniformly integrable sequence Y1, Y2, . . . such that

Pr(|Xn| ≤ |Yn|) = 1, n = 1, 2, . . . .

Proof. The sufficiency of condition (i) follows from the fact that, for any ε > 0 and c > 0,

E(|Xn| I{|Xn |≥c}) ≤ 1

cε
E(|Xn|1+ε).



P1: JZP
052184472Xc11 CUNY148/Severini May 24, 2005 17:56

11.5 Convergence of Expected Values 353

The sufficiency of condition (ii) follows from the fact that, for any c > 0,

E[|Xn| I{|Xn |≥c}] ≤ E[|Xn| I{|Xn |≥c, |Xn |≤|Yn |}] + E[|Xn| I{|Xn |≥c, |Xn |>|Yn |}]

≤ E[|Yn| I{|Yn |≥c}].

Example 11.23 (Minimum of uniform random variables). Let Y1, Y2, . . . denote a
sequence of independent, identically distributed random variables, each with a uniform dis-
tribution on (0, 1) and let Xn = n min(Y1, . . . , Yn). Recall that Xn

D→ X as n → ∞, where
X denotes a random variable with a standard exponential distribution; see Example 11.3.

Since

E(X2
n) = n3

∫ 1

0
t2(1 − t)n−1 dt = 2n2

(n + 2)(n + 1)
,

it follows that condition (i) of Theorem 11.12 holds with ε = 1. Hence, X1, X2, . . . is
uniformly integrable. �

A condition for the convergence of higher-order moments follows easily from
Theorems 11.11 and 11.12 and is given in the following corollary; the proof is left as
an exercise.

Corollary 11.6. Let X1, X2, . . . denote real-valued random variables such that Xn
D→ X

as n → ∞ for some random variable X. If, for some r = 1, 2, . . . , there exists an ε > 0
such that

sup
n

E(|Xn|r+ε) < ∞

then

lim
n→∞ E(Xr

n) = E(Xr ).

Example 11.24 (Minimum of uniform random variables). Consider the framework con-
sidered in Example 11.23. Note that

E(Xr
n) = nr+1

∫ 1

0
tr (1 − t)n−1 dt

= nr+1 
(r + 1)
(n)


(n + r + 1)

= nr+1 r !

(n + r )(n + r − 1) · · · n
, r = 1, 2, . . . .

Hence,

sup
n

E(Xr
n) = r !, r = 1, 2, . . . .

It follows that

lim
n→∞ E(Xr

n) =
∫ ∞

0
xr exp(−x) dx = r !, r = 1, 2, . . . . �



P1: JZP
052184472Xc11 CUNY148/Severini May 24, 2005 17:56

354 Approximation of Probability Distributions

11.6 Op and op Notation

Consider sequences of real numbers, a1, a2, . . . and b1, b2, . . . . In describing the relationship
between these sequences, it is often convenient to use the O and o notation; see Appendix 3.
A similar notation is used for random variables. Let X1, X2, . . . denote a sequence of real-
valued random variables. If, for any ε > 0, there exists a constant M such that

Pr(|Xn| ≥ M) ≤ ε, n = 1, 2, . . .

we write Xn = Op(1); such a sequence is said to be bounded in probability. If Xn
p→ 0 as

n → ∞, we write Xn = op(1).
This notation can be extended to consider the relationship between two sequences of

random variables. Let Y1, Y2, . . . denote a sequence of real-valued random variables, Yn > 0,
n = 1, 2, . . . . If

Xn

Yn
= Op(1) as n → ∞

we write Xn = Op(Yn). This notation is often used when the sequence Y1, Y2, . . . is deter-
ministic; for example, Xn = Op(n) means

Xn

n
= Op(1).

If

Xn

Yn
= op(1) as n → ∞

we write Xn = op(Yn); again, this notation is often used when Y1, Y2, . . . is deterministic.
Finally, the Op and op notation can be applied when X1, X2, . . . is a sequence of random

vectors or random matrices. Let X be a set such that Pr(Xn ∈ X ) = 1, n = 1, 2, . . . , and
let || · || denote a norm on X . We write Xn = Op(Yn) if ||Xn|| = Op(Yn) and Xn = op(Yn)
if ||Xn|| = op(Yn).

There are a number of simple rules for working with these symbols that makes their use
particularly convenient. Several of these are given in the following theorem; other results
along these lines can be established using the same general approach.

Theorem 11.13. Let W1, W2, . . . , X1, X2, . . . , Y1, Y2, . . . , and Z1, Z2, . . . denote
sequences real-valued random variables such that Yn > 0 and Zn > 0, n = 1, 2, . . . .

(i) If Xn = op(1) as n → ∞, then Xn = Op(1) as n → ∞.

(ii) If Wn = Op(1) and Xn = Op(1) as n → ∞, then Wn + Xn = Op(1) and Xn Wn =
Op(1) as n → ∞; that is, Op(1) + Op(1) = Op(1) and Op(1)Op(1) = Op(1).

(iii) If Wn = Op(1) and Xn = op(1) as n → ∞, then Wn Xn = op(1) and Wn + Xn =
Op(1) as n → ∞; that is, Op(1)op(1) = op(1) and Op(1) + op(1) = Op(1).

(iv) If Xn = Op(Yn) and Wn = Op(Zn) as n → ∞, then

Wn Xn = Op(Yn Zn) and Wn + Xn = Op(max(Zn, Yn)) as n → ∞;

that is,

Op(Yn)Op(Zn) = Op(Yn Zn) and Op(Yn) + Op(Zn) = Op(max(Yn, Zn)).
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Proof. Suppose that Xn = op(1). Fix ε > 0 and M0 > 0; there exists an N such that

Pr(|Xn| ≥ M0) ≤ ε for all n ≥ N .

For each n = 1, 2, . . . , N − 1 let Mn denote a constant such that

Pr(|Xn| ≥ Mn) ≤ ε;

since

lim
M→∞

Pr(|Xn| ≥ M) = 0

such a constant must exist. Let

M = max{M0, M1, . . . , MN−1}.
Then

Pr(|Xn| ≥ M) ≤ ε, n = 1, 2, . . . .

This proves part (i).
Suppose Wn = Op(1) and Xn = Op(1). Fix ε > 0. Choose M1 and M2 so that

Pr(|Wn| ≥ M1) ≤ ε/2, n = 1, 2, . . .

and

Pr(|Xn| ≥ M2) ≤ ε/2, n = 1, 2, . . . .

Take M = 2 max(M1, M2). Then

Pr(|Wn + Xn| ≥ M) ≤ Pr(|Wn| + |Xn| ≥ M)

≤ Pr(|Wn| ≥ M/2 ∪ |Xn| ≥ M/2)

≤ Pr(|Wn| ≥ M1) + Pr(|Xn| ≥ M2) ≤ ε;

hence, Xn + Wn = Op(1). Similarly,

Pr{|Xn Wn| ≥ M1 M2} ≤ Pr{|Xn| ≥ M1 ∪ |Wn| ≥ M2}
≤ Pr{|Xn| ≥ M1} + Pr{|Wn| ≥ M2} ≤ ε.

It follows that Xn Wn = Op(1), proving part (ii).
Suppose that Wn = Op(1) and Xn = op(1). For any t > 0 and any M > 0,

Pr(|Wn Xn| ≥ t) = Pr(|Wn Xn| ≥ t ∩ |Wn| ≥ M) + Pr(|Wn Xn| ≥ t ∩ |Wn| < M)

≤ Pr(|Wn| ≥ M) + Pr(|Xn| ≥ t/M).

Fix ε > 0 and δ > 0. Choose M so that

Pr(|Wn| ≥ M) ≤ ε, n = 1, 2, . . . .

Then, for any t > 0,

Pr(|Wn Xn| ≥ t) ≤ ε + Pr(|Xn| ≥ t/M)

and, since Xn
p→ 0 as n → ∞,

lim sup
n→∞

Pr(|Wn Xn| ≥ t) ≤ ε.



P1: JZP
052184472Xc11 CUNY148/Severini May 24, 2005 17:56

356 Approximation of Probability Distributions

Since ε is arbitrary,

lim
n→∞ Pr(|Wn Xn| ≥ t) = 0,

proving the first part of part (iii). The second part of part (iii) follows immediately from
parts (i) and (ii).

Suppose Xn = Op(Yn) and Wn = Op(Zn). Then Xn/Yn = Op(1) and Wn/Zn = Op(1);
it follows from part (ii) of the theorem that

Xn

Yn

Wn

Zn
= XnYn

Yn Zn
= Op(1),

so that Wn Xn = Op(Yn Zn).
By part (ii) of the theorem,

|Xn|
Yn

+ |Wn|
Zn

= Op(1).

Since

|Xn + Wn|
max(Yn, Zn)

≤ |Xn| + |Wn|
max(Yn, Zn)

≤ |Xn|
Yn

+ |Wn|
Zn

,

it follows that

|Xn + Wn|
max(Yn, Zn)

= Op(1)

and, hence, that Xn + Wn = Op(max(Yn, Zn)). This proves part (iv).

The important thing to keep in mind when working with the Op, op symbols is that each
occurrence of these symbols in a given expression refers to a different sequence of random
variables. For instance, we cannot conclude that Op(1) − Op(1) = 0; instead, all we can
say is that Op(1) − Op(1) = Op(1).

The following result gives some conditions that can be used to show that a sequence
X1, X2, . . . is Op(1).

Theorem 11.14. Let X1, X2, . . . denote a sequence of real-valued random variables.
Assume that one of the following conditions is satisfied:

(i) Xn
D→ X as n → ∞ for some random variable X.

(ii) There exists an increasing function g : [0, ∞) → R such that

sup
n

E[g(|Xn|)] < ∞.

Then Xn = Op(1) as n → ∞.

Proof. Suppose that Xn
D→ X as n → ∞ and let F denote the distribution function of X .

Fix ε > 0. Choose M0 > 0 such M0 and −M0 are continuity points of F , such that

F(M0) − F(−M0) < ε/2.

Then

lim sup
n→∞

Pr(|Xn| ≥ M0) ≤ ε
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so that there exists N > 0 such that

Pr(|Xn| ≥ M0) ≤ ε for all n ≥ N .

For each n = 1, 2, . . . , N − 1, let Mn denote a constant such that

Pr(|Xn| ≥ Mn) ≤ ε.

Let

M = max{M0, M1, . . . , MN−1}.
Then

Pr(|Xn| ≥ M) ≤ ε, n = 1, 2, . . .

so that Xn = Op(1).
Now suppose that condition (ii) of the theorem is satisfied. Given ε > 0, choose M0 so

that

M0 >
supn E[g(|Xn|)]

ε
.

Then, by Markov’s inequality,

Pr{g(|Xn|) ≥ M0} ≤ E[g(|Xn|)]
M0

< ε, n = 1, 2, . . . .

Note that, since g is an increasing function, it is invertible. Let M = g−1(M0). Then

Pr{|Xn| ≥ M} = Pr{g(|Xn|) ≥ g(M)} = Pr{g(|Xn|) ≥ M0} < ε, n = 1, 2, . . . .

It follows that Xn = Op(1).

The advantage of the Op, op notation is that these symbols can be used in algebraic
expressions; this is illustrated in the following examples.

Example 11.25 (Sample mean). Let X1, X2, . . . denote independent, identically distribu-
tion random variables such that E(|X1|) < ∞ and let µ = E(X1). Using the weak law of
large numbers given in Example 11.15,

1

n

n∑
j=1

X j
p→ µ as n → ∞.

Hence,

1

n

n∑
j=1

X j = µ + op(1) as n → ∞.

Now suppose that σ 2 ≡ E[(X1 − µ)2] < ∞. By Markov’s inequality, for any M > 0,

Pr

{∣∣∣∣∣ 1√
n

n∑
j=1

X j − µ

∣∣∣∣∣ ≥ M

}
≤ 1

M2
E


1

n

∣∣∣∣∣
n∑

j=1

(X j − µ)

∣∣∣∣∣
2

 .
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Since
∑n

j=1(X j − µ) has mean 0 and variance nσ 2,

E




∣∣∣∣∣
n∑

j=1

(X j − µ)

∣∣∣∣∣
2

 = nσ 2

and

Pr

{∣∣∣∣∣ 1√
n

n∑
j=1

X j − µ

∣∣∣∣∣ ≥ M

}
≤ σ 2

M
.

It follows that, given ε > 0, we can always find M > 0 such that

Pr

{∣∣∣∣∣ 1√
n

n∑
j=1

X j − µ

∣∣∣∣∣ ≥ M

}
≤ ε;

that is,

1√
n

[
n∑

j=1

X j − µ

]
= Op(1).

Written another way, we have that

1

n

n∑
j=1

X j = µ + Op

(
1√
n

)
as n → ∞. �

Example 11.26 (Approximation of a function of a random variable). Let X1, X2, . . .

denote a sequence of real-valued random variables such that

√
nXn

D→ Z as n → ∞
for some real-valued random variable Z . Note that Xn = op (1) as n → ∞.

Let Xn denote the range of Xn , n = 1, 2, . . . , and let X = ∪∞
n=1 Xn . Let f : X → R

denote a twice-continuously-differentiable function such that | f ′(0)| > 0. Let Yn = f (Xn),
n = 1, 2, . . . . Then, using a Taylor’s series expansion,

Yn = f (Xn) = f (0) + f ′(0)Xn +
∫ Xn

0
(Xn − t) f ′′(t) dt.

Note that ∣∣∣ ∫ Xn

0
(Xn − t) f ′′(t) dt

∣∣∣ ≤ |Xn|
∣∣∣ ∫ Xn

0
f ′′(t) dt

∣∣∣
and, since ∫ x

0
f ′′(t) dt

is a continuous function of x ,∫ Xn

0
f ′′(t) dt

p→ 0 as n → ∞.

It follows that

Yn = f (0) + f ′(0)Xn + op(1).
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However, a stronger statement is possible. Since
√

n|Xn| = Op(1),

it follows that

√
n|Xn|

∣∣∣ ∫ Xn

0
f ′′(t) dt

∣∣∣ p→ 0 as n → ∞

and, hence, that

Yn = f (0) + f ′(0)Xn + Op(n− 1
2 ).

In fact, by the mean-value theorem for integrals, there exists X∗
n , |X∗

n | ≤ |Xn|, such that∫ Xn

0
(Xn − t) f ′′(t) dt = 1

2
X2

n f ′′(X∗
n).

Since |X∗
n | ≤ |Xn| and Xn = op(1), it follows that X∗

n = op(1) and, hence, that f ′′(X∗
n) =

f ′′(0) + op(1). We may therefore write

Yn = f (0) + f ′(0)Xn + 1

2
X2

n[ f ′′(0) + op(1)].

Since X2
n = Op(n−1), it follows that

Yn = f (0) + f ′(0)Xn + 1

2
f ′′(0)X2

n + op(n−1) as n → ∞. �

11.7 Exercises

11.1 For each n, let Xn denote a discrete random variable taking values in the set {1, 2, . . .} and
let X denote a discrete random variable also taking values in {1, 2, . . .}. Let pn(x) denote the
frequency function of Xn and let p(x) denote the frequency function of X . Show that

Xn
D→ X as n → ∞

if and only if

lim
n→∞

pn(x) = p(x) for each x = 1, 2, . . . .

11.2 Let X1, X2, . . . denote independent, identically distributed random variables such that X1 is
continuously distributed with density p(x) and distribution function F(x) where F(0) = 0,
F(x) > 0 for all x > 0, and p(0) > 0. Let

Yn = n min{X1, . . . , Xn}.
Then there exists a random variable Y such that

Yn
D→ Y as n → ∞.

Find the distribution function of Y .

11.3 Let Y1, Y2, . . . denote a sequence of Poisson random variables such that Yn has mean λn > 0 for
all n = 1, 2, . . . .

Give conditions on the sequence λn so that there exist sequences an and bn such that

anYn + bn
D→ Z as n → ∞

where Z denotes a standard normal random variable. Give expressions for an and bn .
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11.4 Let Xn denote a random variable with a 
 distribution with parameters αn, βn so that Xn has
density function


(αn)

β
αn
n

xαn−1 exp{−βn x}, x > 0

where αn > 0 and βn > 0. Find conditions on αn and βn such that there exist sequences of
constants cn, dn satisfying

Xn − dn

cn

D→ N (0, 1).

Express cn and dn in terms of αn and βn .

11.5 For each n = 1, 2, . . . , suppose that Xn is a discrete random variable with range
{1/n, 2/n, . . . , 1} and

Pr(Xn = j/n) = 2 j

n(n + 1)
, j = 1, . . . , n.

Does X1, X2, . . . converge in distribution to some random variable X? If so, find the distribution
of X .

11.6 Let X1, X2, . . . denote independent random variables such that X j has a Poisson distribution
with mean λt j where λ > 0 and t1, t2, . . . are known positive constants.
(a) Find conditions on t1, t2, . . . so that

Yn =
∑n

j=1 X j/
∑n

j=1 t j − λ

Var(
∑n

j=1 X j/
∑n

j=1 t j )

converges in distribution to a standard normal random variable.

(b) Suppose that, for each j = 1, . . . , t j lies in the interval (a, b) where 0 < a < b < ∞. Does
it follow that Yn converges in distribution to a standard normal random variable?

(c) Suppose that t j = j , j = 1, . . . . Does it follow that Yn converges in distribution to a standard
normal random variable?

11.7 Consider a discrete distribution with frequency function p(x ; n, θ ), x = 0, 1, . . . , where n is a
nonnegative integer and θ ∈ � for some set � ⊂ R. Let θ1, θ2, . . . denote a sequence in � and
let Xn denote a random variable with frequency function p(x ; n, θn), n = 1, 2, . . . . For the two
choices of p given below, find conditions on the sequence θ1, θ2, . . . so that

Xn
D→ X as n → ∞,

where X has a Poisson distribution.
(a)

p(x ; n, θ ) =
(

n

x

)
θ x (1 − θ )n−x , x = 0, 1, . . . , n; � = (0, 1)

(b)

p(x ; n, θ ) =
(

n + x − 1

n

)
θn(1 − θ )x , x = 0, 1, . . . , ; � = (0, 1).

In each case give examples of sequences satisfying your condition.

11.8 Let X1, X2, . . . denote a sequence of real-valued random variables such that

Xn
D→ X as n → ∞
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for some real-valued random variable X and suppose that, for some set B ⊂ R,

Pr(Xn ∈ B) = 1 for all n = 1, 2, . . . .

Does it follow that Pr(X ∈ B) = 1?

11.9 Let X1, X2, . . . denote a sequence of real-valued random variables such that, for each n =
1, 2, . . . , Xn has a discrete distribution with frequency function pn . Let X denote a discrete
random variable with frequency function p such that

Xn
D→ X as n → ∞.

Does it follow that

lim
n→∞

pn(x) = p(x), x ∈ R?

11.10 For each n = 1, 2, . . . , define real-valued random variables Xn and Yn as follows. Let
T1, T2, . . . , Tn denote independent, identically distributed random variables, each uniformly
distributed on (0, 1) and let T(1), . . . , T(n) denote the order statistics. Define

Xn = T(n) − T(n−1) and Yn = T(n) − T(n−2).

Find sequences of constants a1, a2, . . . and b1, b2, . . . such that, as n → ∞,

an Xn
D→ X and bnYn

D→ Y

for some non-degenerate random variables X and Y . Find the distributions of X and Y .

11.11 Let X1, X2, . . . and Y1, Y2, . . . denote sequences of real-valued random variables such that

Xn
D→ X as n → ∞

for some real-valued random variable X and that

lim
n→∞

E[(Xn − Yn)2] = 0.

Show that

Yn
D→ X as n → ∞.

Consider the following converse to this result. Suppose that(
Xn

Yn

)
D→

(
X
X

)
as n → ∞

and that E(X 2
n) < ∞ and E(Y 2

n ) < ∞ for all n. Does it follow that

lim
n→∞

E[(Xn − Yn)2] = 0?

11.12 Let Xn and Yn , n = 1, 2, . . . , denote sequences of real-valued random variables such
that E(Yn) = E(Xn) = 0 and Var(Yn) = Var(Xn) = 1. Let ρn = Cov(Xn, Yn). Suppose that,
as n → ∞,

(a) Xn
D→ N (0, 1)

(b) ρn → 1

(c) Yn
D→ Y for some random variable Y .

Find the distribution of Y or show that the distribution cannot be determined from the infor-
mation given.

11.13 Let X1, X2, . . . denote a sequence of real-valued random variables such that, for each n =
1, 2, . . . , Xn has an absolutely continuous distribution. Let X denote a real-valued random
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variable with a non-degenerate distribution such that

Xn
D→ X as n → ∞.

Does it follow that X has an absolutely continuous distribution?

11.14 For each n = 1, 2, . . . , let Xn denote a random variable with a noncentral chi-squared distri-
bution with m degrees of freedom and noncentrality parameter �n , where �n → 0 as n → ∞.
Let X denote a random variable with a (central) chi-squared distribution with m degrees of

freedom. Does it follow that Xn
D→ X as n → ∞? Are any conditions needed on the sequence

�1, �2, . . .?

11.15 Let X, X1, X2, . . . denote real-valued random variables such that, for each n = 1, 2, . . . , Xn

has an absolutely continuous distribution with density pn and X has an absolutely continuous
distribution with density p. Suppose that

lim
n→∞

pn(x) = p(x), x ∈ R.

Show that

Xn
D→ X as n → ∞.

11.16 Let X denote a random variable such that

Pr(X = x j ) = θ j , j = 1, 2, . . . ,

where x1, x2, . . . is an increasing sequence of real numbers and θ1, θ2, . . . is a sequence of
nonnegative real numbers such that

∞∑
j=1

θ j = 1.

Let X1, X2, . . . denote a sequence of real-valued random variables, each with an absolutely

continuous distribution, such that Xn
D→ X as n → ∞. For each n = 1, 2, . . . , let Fn denote

the distribution function of Xn and let F denote the distribution function of X .
(a) Find α > 0 such that

sup
x

|Fn(x) − F(x)| ≥ α, n = 1, 2, . . . .

(b) Let a, b be real numbers such that

x j−1 < a < b < x j

for some j = 1, 2, . . . , where x0 = −∞. Does it follow that

lim
n→∞

sup
a≤x≤b

|Fn(x) − F(x)| = 0?

11.17 Let X, X1, X2, . . . denote real-valued random variables such that

Xn
p→ c as n → ∞

for some constant c. For each n = 1, 2, . . . , let Fn denote the distribution function of Xn and
let a1, a2, . . . denote a sequence such that an → a as n → ∞ for some a ∈ R. Does it follow
that

lim
n→∞

Fn(an) =
{ 0 if a < c

1 if a > c
?

11.18 Let Xn, n = 1, . . . denote a sequence of real-valued random variables; Xn is said to converge
in mean to a random variable X if

lim
n→∞

E[|Xn − X |] = 0.
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(a) Show that if Xn converges to X in mean then Xn converges to X in probability.

(b) Show that if Xn converges to X in mean and E[|X |] < ∞ then

lim
n→∞

E[Xn] = E[X ].

(c) Give a counter example to show that if Xn converges to X in probability then Xn does not
necessarily converge to X in mean.

11.19 Prove Corollary 11.2.

11.20 Let X1, X2, . . . denote a sequence of real-valued random variables such that

Xn
D→ X as n → ∞

for some real-valued random variable X and let Y denote a real-valued random variable. Does
it follow that (

Xn

Y

)
D→

(
X
Y

)
as n → ∞?

11.21 Let Xn , n = 1, 2, . . . , and Yn , n = 1, 2, . . . , denote sequences of real-valued random vari-
ables such that, for each n = 1, 2, . . ., Xn and Yn are independent. Suppose that there exist
independent random variables X and Y such that, as n → ∞,

Xn
D→ X and Yn

D→ Y.

Does it follow that (
Xn

Yn

)
D→

(
X
Y

)
as n → ∞?

11.22 Prove Corollary 11.4.

11.23 Let X1, X2, . . . and Y1, Y2, . . . denote sequences of real-valued random variables, each of which
is uniformly integrable. Does it follow that X1 + Y1, X2 + Y2, . . . is uniformly integrable?

11.24 Let X1, X2, . . . denote a uniformly integrable sequence of real-valued random variables. Show
that

sup
n

E(|Xn|) < ∞.

11.25 Find a sequence of random variables X1, X2, . . . that is uniformly integrable, but

sup
n

E(|Xn|1+ε) = ∞ for all ε > 0.

Thus, the condition given in part (i) of Theorem 11.12 is sufficient, but not necessary.

11.26 Let X1, X2, . . . and Y1, Y2, . . . denote sequences of real-valued random variables such that
Y1, Y2, . . . is uniformly integrable and

Pr(|Xn| ≤ |Yn|) ≥ αn, n = 1, 2, . . .

where 0 < αn < 1, n = 1, 2, . . . and αn → 1 as n → ∞.
Give conditions on the sequence α1, α2, . . . so that X1, X2, . . . is uniformly integrable or
show that such conditions do not exist. Does your answer change if it is also assumed that
supn E[|Xn|] < ∞?

11.27 Prove Theorem 11.8.

11.28 Let X1, X2, . . . denote a sequence of real-valued random variables such that

lim
n→∞

Var(Xn) = 0.
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Does it follow that

Xn = E(Xn) + op(1) as n → ∞?

11.29 Let X1, X2, . . . denote a sequence of real-valued random variables such that Xn = Op(1) as
n → ∞. Let f : R → R denote a function and suppose that there exists a set B such that f is
continuous on B and

Pr(Xn ∈ B) = 1, n = 1, 2, . . . .

Does it follow that f (Xn) = Op(1) as n → ∞?

11.30 Let X1, X2, . . . denote a sequence of real-valued random variables. Suppose that Xn = Op(1)
as n → ∞. Does it follow that E(Xn) = O(1) as n → ∞? Suppose that E(Xn) = O(1) as
n → ∞. Does it follow that Xn = Op(1) as n → ∞?

11.31 Suppose that X1, X2, . . . is a sequence of real-valued random variable such that X1, X2, . . . is
uniformly integrable. Does it follow that Xn = Op(1) as n → ∞?

11.32 Let X1, X2, . . . denote a sequence of real-valued random variables. Suppose that, given ε > 0,
there exists an M and a positive integer N such that

Pr(|Xn| ≥ M) ≤ ε, n = N + 1, N + 2, . . . .

Does it follow that Xn = Op(1) as n → ∞?

11.8 Suggestions for Further Reading

Convergence in distribution is covered in many books on probability theory; see, for example, Billings-
ley (1995, Chapter 5) and Port (1994, Chapter 50). Billingsley (1968) gives a general treatment of
convergence in distribution in metric spaces. Useful books on the theory and application of large-
sample methods in statistics include Ferguson (1996), Lehmann (1999), Sen and Singer (1993), and
van der Vaart (1998).
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12

Central Limit Theorems

12.1 Introduction

In this chapter, we consider the asymptotic distribution of the sample mean. For instance,
let X̄ n denote the sample mean based on random variables X1, . . . , Xn . In this chapter, it
is shown that, under a wide variety of conditions, a suitably scaled and shifted version of
X̄ n converges in distribution to a standard normal random variable. Such a result is called a
central limit theorem. The simplest case is when X1, . . . , Xn are independent and identically
distributed; this is discussed in Section 12.2. The remaining sections of this chapter consider
more general settings, including cases in which the random variables under consideration
are not identically distributed or are not independent.

12.2 Independent, Identically Distributed Random Variables

We begin by considering the asymptotic behavior of sample means of independent, identi-
cally distributed random variables. These results rely heavily on the fact that convergence
in distribution may be established by showing convergence of characteristic functions. This
fact is particularly useful in the present context since the characteristic function of a sum
of independent random variables is simply the product of the characteristic functions of the
component random variables.

When discussing limiting distributions of this type, it is convenient to use the symbol
N (0, 1) to denote a standard normal random variable.

Theorem 12.1. Let X1, X2, . . . denote independent, identically distributed real-valued
random variables with each mean µ and variance σ 2 < ∞ and let

X̄ n = X1 + X2 + · · · + Xn

n
, n = 1, 2, . . . .

Then
√

n(X̄ n − µ)

σ

D→ N (0, 1) as n → ∞.

Proof. Let ϕ denote the common characteristic function of the X j and let ϕn denote the
characteristic function of

√
n(X̄ n − µ)

σ
= X1 + X2 + · · · + Xn − nµ

σ
√

n
.

365
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Then, for each t ∈ R,

ϕn(t) = exp{−i tµ/(σ/
√

n)}ϕ(t/(σ
√

n))n.

Recall that, by Theorem 4.13,

log ϕ(t) = i tµ − t2

2
σ 2 + o

(
t2

)
as t → 0.

Hence, for each t ,

log ϕn(t) = n

(
i t

µ

σ
√

n
− t2

2n
+ o

(
n−1

)) − iµ
√

n

σ
√

n
= − t2

2
+ o(1)

as n → ∞. The result now follows from Theorem 11.2.

The conclusion of Theorem 12.1 is often stated “X̄ n is asymptotically distributed accord-
ing to a normal distribution with mean µ and variance σ 2/n.” This statement should not be
taken to mean that X̄ n converges in distribution to a normally distributed random variable
with mean µ and variance σ 2/n, which would make no sense since the limiting distribution
would then depend on n. Instead this statement should be viewed as an informal expression
of the result that

√
n(X̄ n − µ)

σ

D→ N (0, 1) as n → ∞.

In spite of the lack of precision, the informal statement is still useful and will be used here
in the examples; however, in the theorems, results will be stated in terms of convergence in
distribution.

Example 12.1 (Sample mean of Bernoulli random variables). Let X1, X2, . . . denote
independent, identically distributed random variables such that, for each j = 1, 2, . . . ,

Pr(X j = 1) = 1 − Pr(X j = 0) = θ

where 0 < θ < 1. It is straightforward to show that

µ = E(X1) = θ and Var(X1) = θ (1 − θ ).

It follows that X̄ n = (X1 + · · · + Xn)/n is asymptotically distributed according to a normal
distribution with mean θ and variance θ (1 − θ )/n.

Since X1 + · · · + Xn has a binomial distribution with parameters n and θ , this result
also shows that the binomial distribution may be approximated by the normal distribution
when the index n is large. �

Example 12.2 (Normal approximation to the chi-squared distribution). Let Z1, Z2, . . .

denote independent, identically distributed standard normal random variables and let
X j = Z2

j , j = 1, 2, . . . . Consider the distribution of

Sn =
n∑

j=1

X j =
n∑

j=1

Z2
j .

Recall that it was shown in Chapter 8 that the exact distribution of Sn is a chi-squared dis-
tribution with n degrees of freedom. Here we consider an approximation to the distribution
of Sn , and hence, to the chi-squared distribution, based on the central limit theorem.
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Table 12.1. Normal approximation to the
chi-squared distribution.

n

α 5 10 20

0.01 0.0799 0.0481 0.0317
0.05 0.111 0.0877 0.0740
0.10 0.142 0.125 0.116
0.20 0.200 0.196 0.196
0.80 0.765 0.779 0.787
0.90 0.910 0.910 0.908
0.95 0.973 0.968 0.964
0.99 0.999 0.998 0.997

Since the X j are independent and identically distributed, each with mean 1 and
variance 2, it follows that

√
n(Sn/n − 1)√

2
D→ N (0, 1) as n → ∞.

Thus, Sn is approximately normally distributed with mean n and variance 2n when n, the
degrees of freedom of the chi-squared distribution, is large; that is, for large n, Pr(Sn ≤ s)
can be approximated by �((s − n)/

√
(2n)), where � denotes the distribution function of

the standard normal distribution.
Table 12.1 contains approximations of the form �((snα − n)/

√
(2n)), where snα satisfies

Pr(Sn ≤ snα) = α,

for several choices of n and α. These results show that the normal approximation is generally
quite accurate, except when n and α are both small.

Using an argument based on the central limit theorem, the normal approximation to
the chi-squared distribution holds only when n, the degrees of freedom, is an integer. A
more direct proof based on an expansion of the characteristic function of the chi-squared
distribution shows that the normal approximation holds in general for large degrees-of-
freedom. �

12.3 Triangular Arrays

Theorem 12.1, which applies only to independent, identically distributed random variables,
is too limited for many applications. A more general version of the central limit theorem
applies to triangular arrays. Consider a collection of random variables of the form {Xnk,

k = 1, . . . , n, n = 1, . . .}. Hence, when written as a two-dimensional array, this collection
has the representation

X11

X21 X22

X31 X32 X33
...

...
...

...
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which leads to the term “triangular array.” In such a triangular array the random variables in
any row are taken to be independent; however, they do not need to be identically distributed.
Furthermore, the distributions may change from row to row.

More generally, instead of having n elements in the nth row of the triangular array, we
can consider a triangular array with rn elements in the nth row, where r1, r2, . . . is a given
deterministic sequence. The following result considers the asymptotic distribution of the
sample mean in such a setting.

Theorem 12.2. Let r1, r2, . . . be a given sequence such that rn → ∞ as n → ∞. For each
n = 1, 2, . . . , let Xn1, . . . , Xnrn denote independent random variables and let

µnk = E(Xnk), σ 2
nk = Var(Xnk), k = 1, . . . , rn

For α > 0, define

γnk(α) = E
[|Xnk − µnk |2+α

]
, k = 1, . . . , rn; n = 1, 2, . . . .

Assume that, for some α > 0,

lim
n→∞

∑rn
k=1 γnk(α)[∑rn
k=1 σ 2

nk

]1+ α
2

= 0. (12.1)

Let

X̄n = 1

rn

rn∑
k=1

Xnk and µ̄n = 1

rn

rn∑
k=1

µnk .

Then
√

rn(X̄ n − µ̄n)[∑rn
k=1 σ 2

nk/rn
] 1

2

D→ N (0, 1) as n → ∞.

The proof uses the following lemma.

Lemma 12.1. Let Y denote a real-valued random variable with distribution function F.
Suppose that, for some α > 0,

E(|Y |2+α) < ∞.

Then, for all ε > 0,

E[min{|tY |2, |tY |3}] ≤ ε|t |3E(Y 2) + t2

εα
E[|Y |2+α].

Proof. Note that, for all ε > 0,

E[min{|tY |2, |tY |3}] ≤ |t |3
∫

{|y|<ε}
|y|3 d F(y) + t2

∫
{|y|≥ε}

|y|2 d F(y).

Using the facts that∫
{|y|<ε}

|y|3 d F(y) ≤ ε

∫
{|y|<ε}

|y|2 d F(y) ≤ εE(|Y |2)
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and ∫
{|y|≥ε}

|y|2 d F(y) ≤ 1

εα

∫
{|y|≥ε}

|y|2+α d F(y) ≤ 1

εα
E(|Y |2+α),

the result follows.

Proof of Theorem 12.2. Without loss of generality we may take µnk = 0 for all n and k.
For n = 1, 2, . . . and k = 1, 2, . . . , rn , let ϕnk denote the characteristic function of Xnk and
let ϕn denote the characteristic function of

√
rn X̄n[∑rn

k=1 σ 2
nk/rn

] 1
2

= Xn1 + · · · + Xnrn[∑rn
k=1 σ 2

nk

] 1
2

.

Then, for each t ∈ R,

ϕn(t) =
rn∏

k=1

ϕnk(t/Sn),

where

S2
n =

rn∑
k=1

σ 2
nk .

To prove the result, we show that, for each t ∈ R,

lim
n→∞ ϕn(t) = exp{−t2/2}.

Recall that, by Lemma A2.1,

exp{i t} =
2∑

j=0

(i t) j/j! + R(t)

where

|R(t)| ≤ min

{
1

2
|t |2, 1

6
|t |3

}
.

Hence, ∣∣∣∣ϕnk(t) −
(

1 − t2

2
σ 2

nk

)∣∣∣∣ ≤ E
[
min

{|t |2 X2
nk, |t |3|Xnk |3

]
.

It follows from Lemma 12.1 that, for all ε > 0,∣∣∣∣ϕnk(t/Sn) −
(

1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣ ≤ ε|t |3 σ 2
nk

S2
n

+ t2

εα

γnk(α)

S1+α/2
n

.

Note that, for any complex numbers a1, . . . , an; b1, . . . , bn with modulus at most 1,

|a1 · · · an − b1 · · · bn| ≤
n∑

j=1

|a j − b j |.

Hence, for all ε > 0,∣∣∣∣∣ϕn(t) −
rn∏

k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ =
∣∣∣∣∣

rn∏
k=1

ϕnk
t

Sn
−

rn∏
k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ ≤ ε|t |3 + t2

εα

rn∑
k=1

γnk(α)

S2+α
n

.
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It follows from (12.1) that, for each t ∈ R,

lim sup
n→∞

∣∣∣∣∣ϕn(t) −
rn∏

k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ ≤ ε|t |3.

Since ε > 0 is arbitrary,

lim
n→∞

∣∣∣∣∣ϕn(t) −
rn∏

k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ = 0

for each t ∈ R.
The result now holds provided that

lim
n→∞

rn∏
k=1

(
1 − t2

2

σ 2
nk

S2
n

)
= exp

{−t2

2

}
.

By Taylor’s theorem, for x > 0,

exp(−x) = 1 − x + 1

2
exp(−x∗)x2

for some x∗, 0 ≤ x∗ ≤ x . Hence,∣∣∣∣exp

{
− t2

2

σ 2
nk

S2
n

}
−

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣ ≤ 1

8
t4 σ 4

nk

S4
n

.

Fix t . Note that, since

E
[|Xnk |2

]1+ α
2 ≤ E

[|Xnk |2+α
]
,

σ 2+α
nk ≤ γnk(α). Hence,

( sup1≤k≤rn
σnk

Sn

)2+α

= sup1≤k≤rn
σ 2+α

nk

S2+α
n

≤
∑rn

k=1 σ 2+α
nk

S2+α
n

≤
∑rn

k=1 γnk(α)

S2+α
n

.

It follows that

lim
n→∞

sup1≤k≤rn
σ 2

nk

S2
n

= 0.

Hence, for sufficiently large n,

sup
1≤k≤rn

∣∣∣∣1 − t2

2

σ 2
nk

S2
n

∣∣∣∣ ≤ 1.

It follows that∣∣∣∣∣
rn∏

k=1

exp

{
− t2

2

σ 2
nk

S2
n

}
−

rn∏
k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ ≤
rn∑

k=1

∣∣∣∣exp

{
− t2

2

σ 2
nk

S2
n

}
−

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣
≤

rn∑
k=1

t4

8

σ 4
nk

S4
n

≤ sup
1≤k≤rn

σ 2
nk

S2
n

t4

8

so that, for each t ∈ R,

lim
n→∞

∣∣∣∣∣
rn∏

k=1

exp

{
− t2

2

σ 2
nk

S2
n

}
−

rn∏
k=1

(
1 − t2

2

σ 2
nk

S2
n

)∣∣∣∣∣ = 0.
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The result now follows from the fact that
rn∏

k=1

exp

{
− t2

2

σ 2
nk

S2
n

}
= exp

{−t2

2

}

so that

lim
n→∞

rn∏
k=1

(
1 − t2

2

σ 2
nk

S2
n

)
= exp

{−t2

2

}
,

as required.

Condition (12.1) of the theorem, known as Lyapounov’s condition, may be weakened to
the Lindeberg condition: for each ε > 0,

lim
n→∞

n∑
k=1

1

S2
n

E[X2
nkI{|Xnk≥εSn}] = 0.

See, for example, Billingsley (1995, Section 27).

Example 12.3 (Sum of Bernoulli random variables). Let X1, X2, . . . denote independent
random variables such that, for each n = 1, 2, . . . ,

Pr(Xn = 1) = 1 − Pr(Xn = 0) = θn,

where θ1, θ2, . . . is a sequence in (0, 1), and consider the asymptotic distribution of
X̄ n = ∑n

j=1 X j/n. Thus, X1, X2, . . . are independent, but not identically distributed.
Note that X1, X2, . . . can be viewed as a triangular array by taking rn = n and Xnk = Xk ,

k = 1, . . . , n, n = 1, 2, . . . . Using this representation,

µnk = θk and σ 2
nk = θk(1 − θk), k = 1, 2, . . . , n; n = 1, 2, . . . .

Since, for k = 1, 2, . . . , n and n = 1, 2, . . . ,

γnk(α) = θk(1 − θk)
[
θ1+α

k + (1 − θk)1+α
]
,

it follows that (12.1) is satisfied if

n∑
k=1

θk(1 − θk) → ∞ as n → ∞.

Under this condition,
√

n(X̄ n − ∑n
k=1 θk/n)[∑n

k=1 θk(1 − θk)/n
] 1

2

D→ N (0, 1) as n → ∞.

That is, X̄ n follows the central limit theorem provided that

n∑
k=1

θk(1 − θk) → ∞ as n → ∞.

Although this type of analysis is useful for establishing formal limit theorems, it is not
very useful for determining when a normal distribution will be a useful approximation
to the distribution of X̄ n for a given value of n. For instance, suppose that we wish to
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approximate the distribution of X̄ n for n = 50, for given values of θ1, . . . , θ50. Note that
the terms θ1, . . . , θ50 can be embedded both in a sequence satisfying

n∑
k=1

θk(1 − θk) → ∞ as n → ∞

and in a sequence not satisfying this condition. Furthermore, the magnitude of the sum of
the first 50 terms in a sequence may be a poor guide as to the behavior of the infinite sum.
Thus, the formal limit theorem cannot be used directly to assess the usefulness of the normal
approximation. However, Theorem 12.2, as applied in this setting, suggests that the larger

50∑
k=1

θk(1 − θk)

is, the more accuracy we can expect from the normal approximation to the distribution
of X̄ n . �

Example 12.4 (Linear regression model). For each n = 1, 2, . . . , let Y1, . . . , Yn denote
independent random variables such that

Y j = θ z j + ε j , j = 1, . . . , n

where ε1, ε2, . . . are independent identically distributed random variables with mean 0,
variance σ 2 and

γ ≡ E
[|ε1|3

]
< ∞.

Here z1, z2, . . . are fixed constants.
For n = 1, 2, . . . define

Tn =
∑n

j=1 z j Y j∑n
j=1 z2

j

;

Tn is the least-squares estimator of θ in the model for Y1, . . . , Yn . Our goal is to determine
the asymptotic distribution of Tn . Note that

Tn = 1

n

n∑
j=1

z j∑n
j=1 z2

j/n
Y j

so that Tn is the sample mean of the random variables

z j∑n
j=1 z2

j/n
Y j , j = 1, . . . , n.

Since the distribution of
z j∑n

j=1 z2
j/n

Y j

depends on n, we need to use the central limit theorem for a triangular array.
For n = 1, 2, . . . and j = 1, 2, . . . , n, define

Xnj = z j∑n
j=1 z2

j/n
Y j ;
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then Tn = ∑n
j=1 Xnj/n. Note that Xnj has mean

µnj = θ
z2

j∑n
j=1 z2

j/n
,

variance

σ 2
nj = z2

j[∑n
j=1 z2

j/n
]2 σ 2,

and

γnj ≡ γnj (1) = E
[|Xnj − µnj |3

] = |z j |3[∑n
j=1 z2

j/n
]3 γ,

where γ = E
[|ε1|3

]
.

Then ∑n
j=1 γnj[∑n

k=1 σ 2
nk

] 3
2

=
∑n

j=1 |z j |3[∑n
j=1 z2

j

] 3
2

γ

σ 3
.

Hence, condition (12.1) of Theorem 12.2 is satisfied provided that the sequence z1, z2, . . .

satisfies

lim
n→∞

∑n
j=1 |z j |3[∑n
j=1 z2

j

] 3
2

= 0. (12.2)

This holds, for instance, if for all j, |z j | ≤ M for some M and
∑n

j=1 z2
j diverges to ∞ as

n → ∞. Then ∑n
j=1 |z j |3[∑n
j=1 z2

j

] 3
2

≤ M

∑n
j=1 |z j |2[∑n
j=1 z2

j

] 3
2

= M[∑n
j=1 z2

j

] 1
2

which approaches 0 as n → ∞.
When (12.2) holds, Tn is asymptotically normally distributed with mean

1

n

n∑
j=1

µnj = θ

and variance

1

n2

n∑
j=1

σ 2
nj = σ 2∑n

j=1 z2
j

. �

Example 12.5 (Normal approximation to the binomial distribution). Let r1, r2, . . . be
a given sequence of nonnegative integers such that rn → ∞ as n → ∞ and, for each
n = 1, 2, . . . , let Yn have a binomial distribution with parameters rn and θn , where θ1, θ2, . . .

is a sequence in (0, 1). We will consider the conditions under which

Yn − rnθn√
[rnθn(1 − θn)]
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converges in distribution to a standard normal random variable. That is, we will consider the
conditions under which a binomial distribution with parameters rn and θn can be approxi-
mated by a normal distribution when n is large.

For each n = 1, 2, . . . , let Xn1, . . . , Xnrn denote independent, identically distributed
Bernoulli random variables such that

Pr(Xnj = 1) = θn, j = 1, . . . , rn.

Then Yn has the same distribution as

rn∑
j=1

Xnj .

Thus, Theorem 12.2 can be used to study the asymptotic distribution of the standardized
version of Yn .

Consider condition (12.1). Clearly, Xnj has mean µnj = θn and variance σ 2
nj = θn

(1 − θn). Since

E
[|Xn1 − θn|2+α

] = θn (1 − θn)
[
θ1+α

n + (1 − θn)1+α
]
,

rnE
[|Xn1 − θn|2+α

]
[rnθn(1 − θn)]1+α/2 = 1

r
α
2

n

θ1+α
n + (1 − θn)1+α[

θn(1 − θn)]
α
2
]

= θ
1+α/2
n

[rn(1 − θn)]
α
2

+ (1 − θn)1+α/2

[rnθn]
α
2

.

It follows that a sufficient condition for condition (12.1) is that

rn(1 − θn) → ∞ and rnθn → ∞

as n → ∞.
Thus, we expect that a normal approximation to the distribution of Yn will be accurate

whenever rn(1 − θn) and rnθn are both large, a criterion that is often given in elementary
statistics textbooks. �

Example 12.6 (First-order autoregressive process). Let Z1, Z2, . . . denote independent,
identically distributed random variables each with mean 0, variance σ 2, and γ = E[|Z1|3] <

∞. For j = 1, 2, . . . let

Y j =



1√
(1−ρ2) Z1 if j = 1

ρY j−1 + Z j if j = 2, 3, . . .

where |ρ| < 1. This is a first-order autoregressive process; such a process was consid-
ered in Example 6.2 under the additional assumption that Z1, Z2, . . . each have a normal
distribution.
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Consider the asymptotic distribution of
∑n

j=1 Y j/n. Note that we may write

Y j =
j−2∑
i=0

ρi Z j−i + ρ j−1

√
(1 − ρ2)

Z1.

Hence,

n∑
j=1

Y j =
n−1∑
i=0

ρi

√
(1 − ρ2)

Z1 +
n−2∑
i=0

ρi Z2 +
n−3∑
i=0

ρi Z3 + · · · + Zn.

Let

anj =



1−ρn

(1−ρ)
√

(1−ρ2) if j = 1

1−ρn+1− j

1−ρ
if j = 2, 3, . . . , n

.

Then
n∑

j=1

Y j =
n∑

j=1

anj Z j .

Define Xnj = anj Z j . Then

1

n

n∑
j=1

Y j = 1

n

n∑
j=1

Xnj

where Xnj , j = 1, . . . , n, n = 1, 2, . . . forms a triangular array.
Note that each Xnj has mean 0, variance

σ 2
nj = a2

njσ
2,

and

γnj ≡ γnj (1) = E
[|Xnj |3

] = |anj |3γ.

Hence,
∑n

j=1 Y j/n is asymptotically normally distributed provided that

lim
n→∞

∑n
j=1 |anj |3[∑n
j=1 a2

nj

] 3
2

= 0. (12.3)

Using the expression for the sum of a geometric series, it is straightforward to show that

n∑
j=1

a2
nj =

(n − 1) − 2 ρ−ρn

1−ρ
+ ρ2−ρ2n

1−ρ2

(1 − ρ)2
+ (1 − ρn)2

(1 − ρ)2(1 − ρ2)
.

Hence,

n∑
j=1

a2
nj = O(n) as n → ∞.

Clearly, there exists an M , depending on ρ, such that

sup
n

sup
j=1,...,n

|anj | ≤ M.
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It follows that (12.3) holds and, hence,
∑n

j=1 Y j/n is asymptotically normally distributed
with mean 0 and variance

1

n2

n∑
j=1

a2
njσ

2.

Since

lim
n→∞

1

n

n∑
j=1

a2
nj = 1

(1 − ρ)2
,

by Corollary 11.4,
∑n

j=1 Y j/n is asymptotically normally distributed with mean 0 and
variance

1

n

1

(1 − ρ)2
. �

12.4 Random Vectors

Both versions of the central limit theorem considered thus far in this chapter may be extended
to the case of random vectors. Here we consider only the independent, identically distributed
case; see, for example, van der Vaart (1998, Chapter 2) for the case of a triangular array.

Theorem 12.3. Let X1, X2, . . . denote independent, identically distributed d-dimensional
random vectors each with mean vector µ and covariance matrix 	, where 	 is nonnegative
definite and |	| < ∞. Let

X̄ n = 1

n

n∑
j=1

X j , n = 1, 2, . . . .

Then
√

n(X̄ n − µ)
D→ Z as n → ∞,

where Z has a d-dimensional multivariate normal distribution with mean vector 0 and
covariance matrix 	.

Proof. Let a denote an arbitrary element of Rd such that aT 	a > 0. Then aT X1, aT X2, . . .

are independent, identically distributed real-valued random variables each with mean aT µ

and variance 0 < aT 	a < ∞. It follows from Theorem 12.1 that

aT X1 + aT X2 + · · · + aT Xn − naT µ

[aT 	a]
1
2
√

n

D→ Z0 as n → ∞,

where Z0 has a standard normal distribution. That is,

aT X1 + aT X2 + · · · + aT Xn − naT µ√
n

D→ Z1 as n → ∞,

where Z1 has a normal distribution with mean 0 and variance aT 	a. The result now follows
from Theorem 11.6.
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Now suppose that a ∈ Rd satisfies aT 	a = 0. Then aT X1, aT X2, . . . are independent,
identically distributed real-valued random variables each with mean aT µ and variance 0.
Hence,

aT X1 + aT X2 + · · · + aT Xn − naT µ

[aT 	a]
1
2
√

n

D→ aT µ as n → ∞.

The result now follows from the fact that aT µ may be viewed as a random variable with a
normal distribution with mean aT µ and variance 0.

Example 12.7 (Multinomial distribution). Let Y = (Y1, . . . , Ym) denote a random vec-
tor with a multinomial distribution with parameters n and (θ1, . . . , θm+1). Recall that this
distribution has frequency function

p(x1, . . . , xm) =
(

n

x1, x2, . . . , xm

)
θ

x1
1 θ

x2
2 · · · θ xm

m θ
(n−x1−···−xm )
m+1 ,

for x j = 0, 1, . . . , n, j = 1, . . . , m, such that
∑m

j=1 x j ≤ n; here θm+1 = 1 − ∑m
j=1 θ j . We

will consider an approximation to the distribution of Y that is valid for large n.
For j = 1, . . . , m let e j ∈ Rm denote the vector with a 1 in the j th position and zeros in

all other positions, so that {e1, . . . , em} is the usual set of basis vectors for Rm , and let em+1

be a vector of all zeros. Define a random variable X as follows. Let T denote a random
variable such that

Pr(T = j) = θ j , j = 1, . . . , m + 1

and let X ≡ X (T ) = eT . For instance, if T = 1, then

X =




1
0
...
0


 .

Then, for any x1, . . . , xm , each taking the values 0 or 1 such that
∑m

j=1 x j ≤ 1,

Pr(X = (x1, . . . , xm)) = θ
x1
1 · · · θ xm

m θ
1−(x1+···+xm )
m+1 ;

it follows that X has a multinomial distribution with parameters (θ1, . . . , θm+1) and n = 1.
It is straightforward to show that the mean vector of X is

µ =

 θ1

...
θm




and, since at most one component of X is nonzero, it follows that X has covariance matrix
	 with (i, j)th element

	i j =
{

θ j (1 − θ j ) if i = j
−θiθ j if i 	= j

,

i, j = 1, . . . , m.
Let X1, . . . , Xn denote independent, identically distributed random vectors such that

each X j has the same distribution as X . Then
∑n

j=1 X j has a multinomial distribution
with parameters (θ1, . . . , θm) and n. It follows from Theorem 12.3 that

∑n
j=1 X j/n is
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asymptotically distributed according to a multivariate normal distribution with mean µ

and covariance matrix 	/n. That is, the multinomial distribution can be approximated by a
multivariate normal distribution in the same way that a binomial distribution is approximated
by a univariate normal distribution. �

12.5 Random Variables with a Parametric Distribution

In statistical applications, the random variables of interest are often distributed accord-
ing to a distribution depending on a parameter whose value is unknown. Let X1, X2, . . .

denote independent, identically distributed random variables each distributed according
to a distribution depending on a parameter θ ∈ 
 and consider an approximation to the
distribution of

X̄ n = X1 + · · · + Xn

n
.

Let

µ(θ ) = E(X1; θ ) and σ 2(θ ) = Var(X1; θ ), θ ∈ 
.

Under the assumption that σ 2(θ ) < ∞ for θ ∈ 
, Theorem 12.1 may be used to show that

lim
n→∞ Pr

{√
n(X̄ n − µ(θ ))

σ (θ )
≤ t ; θ

}
= �(t), −∞ < t < ∞

and, hence, the distribution of X̄ n may be approximated by the normal distribution with
mean µ(θ ) and standard deviation σ (θ )/

√
n.

When the random variables are distributed according to the distribution with parameter θ ,
the approximation error decrease to 0 as n → ∞ for any value of θ . However, the accuracy
of the approximation may depend heavily on the value of θ under consideration. In some
cases, for any value of n, it may be possible to find a value of θ , θn , such that the normal
approximation to the distribution of X̄ n , when the data are distributed according to the
distribution with parameter value θn , is inaccurate. The following example illustrates this
possibility.

Example 12.8 (Normal approximation to the binomial distribution). Let Y1, Y2, . . .

denote independent, identically distributed random variables such that

Pr(Y1 = 1; θ ) = 1 − Pr(Y1 = 0) = θ

where 0 < θ < 1. Since Y1 has mean θ and variance θ (1 − θ ), we know that for any
0 < θ < 1,

lim
n→∞ Pr

{√
n(Ȳ n − θ )

[θ (1 − θ )]
1
2

≤ t ; θ

}
= �(t), −∞ < t < ∞.

Suppose t < −1 and, for n = 1, 2, . . . , let θn = 1/(n + 1). Then,

Pr

{√
n(Ȳ n − θn)

[θn(1 − θn)]
1
2

≤ t ; θn

}
= Pr

{
nȲ n ≤ n

n + 1
(t + 1); θn

}
.
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Since nȲ n has a binomial distribution and t + 1 < 0, it follows that

Pr

{
nȲ n ≤ n

n + 1
(t + 1)

}
= 0.

Hence, although the error in the normal approximation to the distribution of Ȳ n decreases
to 0 as n → ∞, for any value of θ , for any given value of n, there is a value of θ for which
the error in the normal approximation is at least �(t) for t < −1. �

Thus, it may be the case that even though

lim
n→∞ Pr

{√
n(X̄ n − µ(θ ))

σ (θ )
≤ t ; θ

}
= �(t), −∞ < t < ∞,

for each θ ∈ 
, the maximum error in the normal approximation over all θ does not converge
to 0 as n → ∞. In order to be aware of this type of situation, we can consider the maximum
error in the normal approximation for θ ∈ 
. For instance, we might require that

lim
n→∞ sup

θ∈


∣∣∣∣Pr

{√
n(X̄ n − µ(θ ))

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣ = 0, −∞ < t < ∞.

In this case, we say that
√

n(X̄ n − µ(θ ))

σ (θ )

converges in distribution to a standard normal distribution uniformly in θ for θ ∈ 
. If this
type of uniform convergence holds, then, given ε > 0 there is an n0 such that

sup
θ∈


∣∣∣∣Pr

{√
n(X̄ n − µ(θ ))

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣ < ε, for n ≥ n0;

that is, for sufficiently large n, the approximation error is less than ε for all values of θ .
Theorem 12.4 gives a version of the central limit theorem that can be used to establish

this type of uniform convergence. Note that, in this result, we allow the random variables
X1, X2, . . . to also depend on the parameter θ .

Theorem 12.4. For each θ ∈ 
, let X1(θ ), X2(θ ), . . . denote independent, identically dis-
tributed real-valued random variables such that

E[X1(θ ); θ ] = 0

and let

σ 2(θ ) ≡ Var[X1(θ ); θ ], θ ∈ 
.

Suppose there exists δ > 0 such that

sup
θ∈


E

[∣∣∣∣ X1(θ )

σ (θ )

∣∣∣∣
2+δ

; θ

]
< ∞.

Then

lim
n→∞ sup

θ∈


∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

for each t ∈ R.
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The proof of the theorem relies on the following lemma.

Lemma 12.2. Define X1(θ ), X2(θ ), . . . as in Theorem 12.4. If

lim
n→∞ sup

θ∈


∣∣∣∣∣E
[

f

(∑n
j=1 X j (θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣∣ = 0

for all bounded, continuous functions f having bounded derivatives of each order, then

lim
n→∞ sup

θ∈


∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

for each t ∈ R.

Proof. Let Sn(θ ) = ∑n
j=1 X j (θ ), let Z be a random variable with a standard normal dis-

tribution that is independent of X1(θ ), X2(θ ), . . . , and let f denote a function satisfying
the conditions of the lemma. Then∣∣∣∣sup

θ∈


E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ ≤ sup
θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣
and ∣∣∣∣ inf

θ∈

E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ ≤ sup
θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ .
Hence,

lim
n→∞ sup

θ∈


E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
= lim

n→∞ inf
θ∈


E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
= E[ f (Z )]. (12.4)

Define

q(z) =
{ 1 if z ≤ 0∫ 1

z exp{−1/(t(1 − t))} dt/
∫ 1

0 exp{−1/(t(1 − t))} dt if 0 < z < 1
0 if z ≥ 1

and, for each u > 0, let

qu(z) = q(uz), z ∈ R.

Note that, for all u > 0, qu is a bounded, continuous function having bounded derivatives
of each order and

I{z≤0} ≤ qu(z) ≤ I{z≤1/u}, z ∈ R;

hence, for any random variable Y and any u > 0,

Pr(Y ≤ y) ≤ E[qu(Y − y)] ≤ Pr(Y ≤ y + 1/u), −∞ < y < ∞. (12.5)

Let

Fn(t ; θ ) = Pr

{
Sn(θ )

σ (θ )
√

n
≤ t ; θ

}
.

Then, by (12.5) for each u > 0,

Fn(t ; θ ) ≤ E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t

)
; θ

]
.
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Since qu satisfies the conditions of the lemma, by (12.4) and (12.5),

lim
n→∞ inf

θ∈

E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t

)
; θ

]
= lim

n→∞ sup
θ∈


E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t

)
; θ

]
= E[qu(Z − t)] ≤ �(t + 1/u).

It follows that, for all u > 0,

lim sup
n→∞

sup
θ∈


Fn(t ; θ ) ≤ �(t + 1/u)

and

lim sup
n→∞

inf
θ∈


Fn(t ; θ ) ≤ �(t + 1/u);

hence,

lim sup
n→∞

sup
θ∈


Fn(t ; θ ) ≤ �(t)

and

lim sup
n→∞

inf
θ∈


Fn(t ; θ ) ≤ �(t).

Similarly,

Fn(t ; θ ) ≥ E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t − 1/u

)
; θ

]

so that

lim inf
n→∞ sup

θ∈


Fn(t ; θ ) ≥ lim
n→∞ sup

θ∈


E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t − 1/u

)
; θ

]
= E[qu(Z − t − 1/u)] ≥ �(t − 1/u)

and

lim inf
n→∞ inf

θ∈

Fn(t ; θ ) ≥ lim

n→∞ inf
θ∈


E

[
qu

(
Sn(θ )

σ (θ )
√

n
− t − 1/u

)
; θ

]
= E[qu(Z − t − 1/u)] ≥ �(t − 1/u).

Since this holds for all u > 0,

lim inf
n→∞ sup

θ∈


Fn(t ; θ ) ≥ �(t)

and

lim inf
n→∞ inf

θ∈

Fn(t ; θ ) ≥ �(t).

It follows that

lim
n→∞ sup

θ∈


Fn(t ; θ ) = �(t)
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and

lim
n→∞ inf

θ∈

Fn(t ; θ ) = �(t).

The result now follows from the fact that

sup
θ∈


|Fn(t ; θ ) − �(t)| ≤ | sup
θ∈


Fn(t ; θ ) − �(t)| + | inf
θ∈


Fn(t ; θ ) − �(t)|.

Proof of Theorem 12.4. Let Sn(θ ) = ∑n
j=1 X j (θ ). Using Lemma 12.2, the result follows

provided that, for every bounded continuous function f having bounded derivatives of each
order,

sup
θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z ); θ ]

∣∣∣∣ → 0

as n → ∞, where Z denotes a random variable with a standard normal distribution that is
independent of X1(θ ), X2(θ ), . . . .

Fix f (·) and θ ∈ 
. For h ∈ R, define

g(h) = sup
x

∣∣∣∣ f (x + h) − f (x) − f ′(x)h − 1

2
f ′′(x)h2

∣∣∣∣ .
Then

|g(h)| ≤ 1

6
sup

x
| f ′′′(x)| |h|3 ≤ K1 |h|3,

for some constant K1, and

|g(h)| ≤ sup
x

| f ′′(x)| |h|2 ≤ K2 |h|2,

for some constant K2. Also note that for h1, h2 ∈ R,∣∣∣∣ f (x + h1) − f (x + h2) − f ′(x)(h1 − h2) − 1

2
f ′′(x)

(
h2

1 − h2
2

)∣∣∣∣ ≤ g(h1) + g(h2).

Let Z j ≡ Z j (θ ), j = 1, 2, . . . , denote independent random variables, each normally
distributed according to a normal distribution with mean 0 and standard deviation σ (θ ), that
are independent of X j ≡ X j (θ ), j = 1, 2, . . . . For k = 1, . . . , n, let

Wk ≡ Wk(θ ) =
k−1∑
j=1

X j (θ ) +
n∑

j=k+1

Z j (θ )

so that

Wk + Xk =
k∑

j=1

X j +
n∑

j=k+1

Z j ,
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Wk + Zk = Wk−1 + Xk+1, Wn + Xn = Sn , and W1 + Z1 has a normal distribution with
mean 0 and variance nσ (θ )2. Then∣∣∣∣E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z ); θ ]

∣∣∣∣ =
∣∣∣∣E

[
f

(
Wn + Xn

σ (θ )
√

n

)
; θ

]
− E

[
f

(
W1 + Z1

σ (θ )
√

n

)
; θ

]∣∣∣∣
=

∣∣∣∣∣E
{

n∑
j=2

[
f

(
W j + X j

σ (θ )
√

n

)
− f

(
W j−1 + X j−1

σ (θ )
√

n

)]

+ f

(
W1 + X1

σ (θ )
√

n

)
− f

(
W1 + Z1

σ (θ )
√

n

)
; θ

}∣∣∣∣
=

∣∣∣∣∣E
{

n∑
j=1

[
f

(
W j + X j

σ (θ )
√

n

)
− f

(
W j + Z j

σ (θ )
√

n

)]
; θ

}∣∣∣∣∣
≤

n∑
j=1

∣∣∣∣E
{[

f

(
W j + X j

σ (θ )
√

n

)
− f

(
W j + Z j

σ (θ )
√

n

)]
; θ

}∣∣∣∣
≤

n∑
j=1

E

[
g

(
X j

σ (θ )
√

n

)
+ g

(
Z j

σ (θ )
√

n

)
; θ

]

since

E

[
f ′

(
W j

σ (θ )
√

n

)
X j − Z j

σ (θ )
√

n
; θ

]
= E

[
f ′′

(
W j

σ (θ )
√

n

)
X2

j − Z2
j

σ (θ )
√

n
; θ

]
= 0

by the independence of W j , X j , Z j .
Hence, for each θ ,∣∣∣∣E

[
f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E [ f (Z ); θ ]

∣∣∣∣ ≤ nE

[
g

(
X1

σ (θ )
√

n

)
+ g

(
Z1

σ (θ )
√

n

)
; θ

]

where g depends only on the function f .
Consider

E

[
g

(
X1

σ (θ )
√

n

)
; θ

]
.

Let Fθ denote the distribution function of X1(θ ) for a particular value of θ ∈ 
. For ε > 0
and n = 1, 2, . . . , let An,ε(θ ) denote the event that

|X1(θ )| ≤ εσ (θ )
√

n.

Then

E

[
g

(
X1

σ (θ )
√

n

)
; θ

]
=

∫
An,ε (θ )

g

(
x

σ (θ )
√

n

)
d Fθ (x) +

∫
An,ε (θ )c

g

(
x

σ (θ )
√

n

)
d Fθ (x)

≤ K1

∫
An,ε (θ )

|x |3
σ (θ )3n

3
2

d Fθ (x) + K2

∫
An,ε (θ )c

|x |2
σ (θ )2n

d Fθ (x)

≤ K1ε

n
+ K2

n

∫
An,ε (θ )c

∣∣∣∣ x

σ (θ )

∣∣∣∣
2+δ ∣∣∣∣σ (θ )

x

∣∣∣∣
δ

d Fθ (x)

≤ K1ε

n
+ K2

n

1

(ε
√

n)δ
E

[∣∣∣∣ X1(θ )

σ (θ )

∣∣∣∣
2+δ

; θ

]
.
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Note that this holds for all θ ∈ 
 and K1, K2 depend only on f . Also,

E

[
g

(
Z1

σ (θ )
√

n

)
; θ

]
≤ K1E

[∣∣∣∣ Z1

σ (θ )
√

n

∣∣∣∣
3

; θ

]
= 3K1

n
3
2

.

Hence, for every ε > 0 and every θ ∈ 
,∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ ≤ K1ε + K2

εδn
δ
2

E

[∣∣∣∣ X1(θ )

σ (θ )

∣∣∣∣
2+δ

; θ

]
+ 3K1√

n
.

It follows that

sup
θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ ≤ K1ε + K2

εδn
δ
2

sup
θ∈


E

[∣∣∣∣ X1(θ )

σ (θ )

∣∣∣∣
2+δ

; θ

]
+ 3K1√

n

for every ε > 0. Hence, for all ε > 0,

lim sup
n→∞

sup
θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ ≤ K1ε

so that

lim
n→∞ sup

θ∈


∣∣∣∣E
[

f

(
Sn(θ )

σ (θ )
√

n

)
; θ

]
− E[ f (Z )]

∣∣∣∣ = 0,

proving the result.

Example 12.9 (t-distribution). Let X1, X2, . . . denote independent, identically distri-
buted random variables, each distributed according to the absolutely continuous distribution
with density function

c(θ )

(
1 + x2

θ

) −(θ+1)
2

, −∞ < x < ∞

where c(θ ) is a constant and θ ≥ 3. This is a standard t-distribution with θ degrees of
freedom; recall that the variance of this distribution is finite only when θ > 2.

Here

E(Y1; θ ) = 0 and σ 2(θ ) ≡ Var(X1; θ ) = θ

θ − 2
;

it is straightforward to show that, for 0 < δ < 1,

E[|X1|2+δ] = �
(

3+δ
2

)
�

(
1
2

) θ
2+δ

2
�(θ/2 − 1 − δ/2)

�(θ/2)
, θ ≥ 3.

Hence,

sup
θ≥3

E

[∣∣∣∣ X1

σ (θ )

∣∣∣∣
2+δ

]
= �

(
3+δ

2

)
�

(
1
2

) sup
θ≥3

(θ − 2)
δ
2
�(θ/2 − 1 − δ/2)

�(θ/2 − 1)
.

Let

H (θ ) = (θ − 2)
δ
2
�(θ/2 − 1 − δ/2)

�(θ/2 − 1)
.



P1: GFZ
052184472Xc12 CUNY148/Severini May 24, 2005 17:57

12.5 Random Variables with a Parametric Distribution 385

Note that H (·) is continuous on [3, ∞) and

H (3) = �(1/2 − δ/2)

�(1/2)

which is finite for δ < 1. Consider the properties of H (θ ) as θ → ∞. According to the
asymptotic expansion for the ratio of gamma functions given in Example 9.5,

H (θ ) = (θ − 2)
δ
2

{
1

(θ/2 − 1)
δ
2

+ O

(
1

(θ/2 − 1)1+δ/2

)}
as θ → ∞.

It follows that

lim
θ→∞

H (θ )

exists and, hence,

sup
θ≥3

H (θ ) < ∞.

According to Theorem 12.4,

lim
n→∞ sup

θ≥3

∣∣∣∣∣Pr

{∑n
j=1 X j/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

for each t ∈ R. �

In many cases in which

lim
n→∞ sup

θ∈


∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

does not hold for the entire parameter space 
, the convergence is uniform in a subset of

0; it follows from Theorem 12.4 that if there exists a subset 
0 ⊂ 
 such that

sup
θ∈
0

E

[∣∣∣∣ X1(θ )

σ (θ )

∣∣∣∣
2+δ

]
< ∞

for some δ > 0, then

lim
n→∞ sup

θ∈
0

∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0.

Example 12.10 (Normal approximation to the binomial distribution). As in Example
12.8, let Y1, Y2, . . . denote independent, identically distributed random variables such that

Pr(Y1 = 1; θ ) = 1 − Pr(Y1 = 0) = θ,

where 0 < θ < 1, and take X j (θ ) = Y j − θ , j = 1, 2, . . . , n. For δ > 0,

E
[|X1(θ )|2+δ; θ

] = θ2+δ(1 − θ ) + (1 − θ )2+δθ

and

E

[ |X1(θ )|2+δ

σ (θ )2+δ
; θ

]
= θ1+δ/2

(1 − θ )
δ
2

+ (1 − θ )1+δ/2

θ
δ
2

.



P1: GFZ
052184472Xc12 CUNY148/Severini May 24, 2005 17:57

386 Central Limit Theorems

Hence,

sup
0<θ<1

E

[ |X1(θ )|2+δ

σ (θ )2+δ
; θ

]
= ∞.

However, let 
0 denote any compact subset of (0, 1); such a subset must have a minimum
value a > 0 and a maximum value b < 1. It follows that

sup
θ∈
0

E

[ |X1(θ )|2+δ

σ (θ )2+δ
; θ

]
< ∞

and, hence, that

lim
n→∞ sup

θ∈
0

∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

for all −∞ < t < ∞. �

12.6 Dependent Random Variables

In this section, we consider the asymptotic distribution of a sample mean
∑n

j=1 X j/n
for cases in which X1, X2, . . . are dependent random variables. In many cases, sample
means based on dependent random variables follow the central limit theorem. However,
the conditions required depend on the exact nature of the dependence and, hence, there
are many versions of the central limit theorem for dependent random variables. Here we
present two examples of these results. In order to keep the proofs as simple as possible,
the regularity conditions required are relatively strong; in both cases, similar results are
available under weaker conditions.

The first result applies to a sequence of real-valued random variables X1, X2, . . . such
that Xi and X j are independent if |i − j | is sufficiently large. Specifically, the stochastic
process {Xt : t ∈ Z} is said to be m-dependent if there exists a positive integer m such that,
for positive integers r and s, s > r , and any n = 1, 2, . . . ,

(X1, X2, . . . , Xr ) and (Xs, Xs+1, . . . , Xs+n)

are independent whenever s − r > m.
Recall that the autocovariance function of a stationary process is given by

R( j) = Cov(X1, X1+ j ), j = 0, 1, . . .

and the autocorrelation function is given by

ρ( j) = R( j)/R(0), j = 0, 1, . . . .

Hence, if the process is m-dependent, R( j) = ρ( j) = 0 for j = m + 1, m + 2, . . . .

Example 12.11. Let Y1, Y2, . . . be independent, identically distributed random variables
each with range Y . Let m denote an integer, let f : Ym+1 → R denote a function and let

X j = f (Y j , Y j+1, . . . , Y j+m), j = 1, 2, . . . .

The process {Xt : t ∈ Z} is clearly m-dependent. �
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The following result gives a central limit theorem for an m-dependent process.

Theorem 12.5. Let {Xt : t ∈ Z} denote an m-dependent stationary stochastic process such
that E(X1) = 0 and E(|X1|3) < ∞. Then

1

τ

1√
n

n∑
j=1

X j
D→ N (0, 1),

τ 2 =
{

1 + 2
m∑

j=1

ρ( j)

}
σ 2

where σ 2 = Var(X1) and ρ(·) is the autocorrelation function of the process.

Proof. The basic idea of the proof is that we can divide the sequence X1, X2, . . . , Xn

into large and small blocks such that large blocks are separated by m + 1 units of time
and, hence, are independent. The sample mean (X1 + · · · + Xn)/n can be written as the
mean of the large-block means together with a remainder term based on the small blocks.
The large-block means are independent and, hence, their average follows the central limit
theorem. Provided that the small blocks are small enough, their contribution to the sum is
negligible and does not affect the limiting distribution. We now consider the details of the
argument.

Let kn , n = 1, 2, . . . , denote an increasing sequence of integers such that kn > m for all
n and kn = o(n

1
3 ) as n → ∞. For each n = 1, 2, . . . , let dn denote the largest integer such

that dn ≤ n/kn; hence

n = kndn + rn, n = 1, 2, . . . ,

where 0 ≤ rn ≤ kn .
Let Sn = X1 + · · · + Xn . For each j = 1, . . . , dn , define

Snj = (X jkn−kn+1 + · · · + X jkn−m)/
√

kn.

Hence,

Sn1 = (X1 + · · · + Xkn−m)/
√

kn,

Sn2 = (Xkn+1 + · · · + X2kn−m)/
√

kn,

and so on.
Define

Tnj = X jkn−m+1 + · · · + X jkn , j = 1, . . . , dn − 1

and

Tndn = Xkndn−m+1 + · · · + Xn.

Hence,

Sn = √
kn(Sn1 + · · · + Sndn ) + (Tn1 + · · · + Tndn )

where Sn1, . . . , Sndn are independent and Tn1, . . . , Tndn are also independent.
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It is straightforward to show that, for j = 1, . . . , dn ,

E(Snj ) = 0 and Var(Snj ) = τ 2
n

where

knτ
2
n = (kn − m)Var(X1) + 2

∑
1≤i< j≤kn−m

Cov(Xi , X j )

=
{

(kn − m) + 2
kn−m−1∑

j=1

(kn − m − j)ρ( j)

}
σ 2.

Since the process is m-dependent,

ρ( j) = 0 for j ≥ m + 1

so that, for kn ≥ 2m + 1,

τ 2
n =

{
kn − m

kn
+ 2

m∑
j=1

kn − m − j

kn
ρ( j)

}
σ 2.

Note that

lim
n→∞ τ 2

n = τ 2,

where τ 2 is given in the statement of the theorem.
We may write

1√
n

Sn =
(

dnkn

n

) 1
2 1√

dn

dn∑
j=1

Snj + 1√
n

dn∑
j=1

Tnj .

Recall that dnkn = n − rn , where rn ≤ kn = o(n
1
3 ); hence,

lim
n→∞

dnkn

n
= 1.

It follows from Corollary 11.4 that the theorem holds if it can be shown that

1√
dn

dn∑
j=1

Snj

τn

D→ N (0, 1) as n → ∞ (12.6)

and

1√
n

dn∑
j=1

Tnj
p→ 0 as n → ∞. (12.7)

Equation (12.7) can be established by showing that

lim
n→∞

∑dn
j=1 Var(Tnj )

n
= 0. (12.8)
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Note that, for j = 1, . . . , dn − 1,

Var(Tnj ) =
{

(m − 1) + 2
m−2∑
j=1

(m − 1 − j)ρ( j)

}
σ 2

≤
{

(m − 1) + 2
m−2∑
j=1

(m − 1 − j)

}
σ 2

≤ (m − 1)2σ 2

and

Var(Tndn ) ≤ (n + m − kndn)2σ 2.

Hence,∑dn
j=1 Var(Tnj )

n
≤

{
(m − 1)2 + (n − kndn + m)2

n

}
σ 2 = (m − 1)2 + (rn + m)2

n
;

(12.8) now follows from the fact that rn ≤ kn = o(n
1
3 ). Hence, (12.7) holds.

To show (12.6), we use Theorem 12.2. The random variables Snj , j = 1, . . . , dn ,
n = 1, 2, . . . form a triangular array such that, for each n = 1, 2, . . . , Sn1, . . . , Sndn are
independent with mean 0, standard deviation τn . Using the Hölder inequality for sums (see
Appendix 3)

E




∣∣∣∣∣
n∑

j=1

X j

∣∣∣∣∣
3

 ≤ E


(

n∑
j=1

|X j |
)3


 ≤ n

2
3 E

[
n∑

j=1

|X j |3
]

= n
5
3 E[|X1|3]

so that

E{|Snj |3} ≤ (kn − m)
5
3

k
3
2
n

E{|X1|3}. (12.9)

Using Theorem 12.2 with α = 1, the result follows provided that condition (12.1) is satisfied,
that is, provided that

lim
n→∞

∑dn
j=1 E{|Snj |3}
[dnτ 2

n ]
1
2

= 0.

Using (12.9),

∑dn
j=1 E{|Snj |3}
[dnτ 2

n ]
1
2

≤
(kn−m)

5
3

k
3
2

n

E[|X1|3]

d
3
2

n τ 3
n

.

Since τn → τ as n → ∞, the result holds provided that

lim
n→∞

k
1
6
n

d
3
2

n

= 0

which follows from the facts that kn = o(n
1
3 ) and dnkn = O(n).
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Example 12.12 (Sample autocovariances under independence). Let Y1, Y2, . . . denote
independent, identically distributed random variables each with mean 0, standard deviation
1 and assume that E{|Y1|3} < ∞. Consider the statistic

1

n

n∑
j=1

Y j Y j+m

for some fixed integer m > 0. This may be viewed a sample version of the autocovariance
of order m of the process Y1, Y2, . . . based on the observation of Y1, . . . , Yn+m .

Let

X j = Y j Y j+m, j = 1, . . . .

Clearly, the process X1, X2, . . . is m-dependent and, since

E{|X j |3} = E{|Y1|3}2 < ∞,

the conditions of Theorem 12.5 are satisfied. Note that E(X1) = 0, σ 2 = Var(X1) = 1, and
the autocorrelation function of the process X1, X2, . . . is given by

ρ( j) = Cov(X1, X1+ j )

= Cov(Y1Ym, Y1+ j Ym+ j ) = E(Y1YmY1+ j Ym+ j )

= 0, j = 1, 2, . . . .

Hence,

1√
n

n∑
j=1

Y j Y j+m

converges in distribution to a standard normal random variable. �

Example 12.13 (Finite moving-average process). Let . . . , Z−1, Z0, Z1, . . . denote a
sequence of independent, identically distributed random variables with

E(Z0) = 0 and Var(Z0) = σ 2 < ∞
and E(|Z0|3) < ∞. Let α0, α1, . . . , αm denote constants and let

X j =
m∑

i=0

αi Z j−i , j = 1, 2, . . . .

Clearly, the process X1, X2, . . . is m-dependent with autocovariance function R(·) given by

R( j) = Cov(X1, X1+ j ) = Cov

(
m∑

i=0

αi Z−i ,

m∑
i=0

αi Z j−i

)

= Cov

(
m∑

i=0

αi Z j−i ,

m− j∑
i=− j

α j+i Z−i

)

=
m− j∑
i=0

αiα j+iσ
2, j = 0, . . . , m;

for j > m, R( j) = 0.
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It is straightforward to show that E[|Z0|3] < ∞ implies that E[|X1|3] < ∞ so that the
conditions of Theorem 12.5 are satisfied and, hence,

1

τ

1√
n

n∑
j=1

X j
D→ N (0, 1) as n → ∞

where

τ 2 =
{

1 + 2
m∑

j=1

ρ( j)

}
R(0) = R(0) + 2

m∑
j=1

R( j)

=
[

m∑
i=0

α2
i + 2

m∑
j=1

m− j∑
i=0

αiα j+i

]
σ 2.

Note that

m∑
j=1

m− j∑
i=0

αiα j+i =
∑
i< j

αiα j

so that

τ 2 =
[

m∑
i=0

α2
i + 2

∑
i< j

αiα j

]
σ 2 =

(
m∑

i=0

αi

)2

σ 2. �

Theorem 12.5 applies to stationary stochastic processes in which X j and X j+r are
independent for sufficiently large r . The following result considers a different scenario in
which nothing is assumed regarding the dependence between X j and X j+r . Instead we
impose conditions upon the extent to which the conditional mean and variance of Xn given
X0, X1, . . . , Xn−1 depend on X0, X1, . . . , Xn−1.

Theorem 12.6. Let X0, X1, . . . denote a sequence of real-valued random variables such
that, for each n = 1, 2, . . . ,

E(Xn | X0, X1, . . . , Xn−1) = 0

and

E
(
X4

n

)
< ∞.

Let

σ 2
n = Var(Xn), n = 1, 2, . . .

and

s2
n = Var(Xn | X0, X1, . . . , Xn−1), n = 1, 2, . . . .

Assume that

lim
n→∞

∑n
j=1 E(|X j |4)( ∑n

1 σ 2
j

)2 = 0 (12.10)
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and

lim
n→∞

∑n
j=1 Var(s2

j )
1
2∑n

1 σ 2
j

= 0. (12.11)

Let

X̄n = 1

n

n∑
j=1

X j , n = 1, 2, . . . .

Then
√

n X̄n[ ∑n
1 σ 2

j /n
] 1

2

D→ N (0, 1) as n → ∞.

Proof. For n = 1, 2, . . . , let

V 2
n =

n∑
j=1

σ 2
j , V0 = 0,

Znj = 1

Vn

j∑
i=1

Xi , j = 1, . . . , n, and Zn0 = 0.

Define

ϕn(t) = E{exp(i t Znn)}, t ∈ R, n = 1, 2, . . . .

The result follows provided that, for each t ∈ R,

lim
n→∞ ϕn(t) = exp(−t2/2).

For each n = 1, 2, . . . , let

hnk(t) = exp

{
− V 2

n − V 2
k

V 2
n

t2/2

}
, k = 1, . . . , n, hn0(t) = 1, t ∈ R

and

gnk(t) = hnk(t)E{exp(i t Znk)}, k = 0, . . . , n, t ∈ R.

Note that

ϕn(t) − exp

(−t2

2

)
= gnn(t) − gn0(t) =

n∑
k=1

[gnk(t) − gn,k−1(t)].

It is straightforward to show that

hn,k−1(t) = exp

(
− σ 2

k

2V 2
n

t2

)
hnk(t)

and, using a Taylor’s series expansion for the exponential function,∣∣∣∣exp

(
− σ 2

k

2V 2
n

t2

)
−

(
1 − σ 2

k

2V 2
n

t2

)∣∣∣∣ ≤ σ 4
k

8V 4
n

t4.
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Using the expansion (A2.1) for exp(i x), together with the fact that

E(Xk | X0, . . . , Xk−1) = 0

for all k = 1, 2, . . . , it follows that

E[exp(i t Znk)] = E[exp(i t Zn,k−1) exp(i t Xk/Vn)]

= E
[

exp(i t Zn,k−1)
{
1 + i t Xk/Vn − t2 X2

k

/(
2V 2

n

) + u(t Xk/Vn)
}]

= E

[
exp(i t Zn,k−1)

{
1 − 1

2

t2

V 2
n

s2
k + u

(
t Xk

Vn

)}]

where |u(t)| ≤ t3/6.
Hence,

gnk(t) − gn,k−1(t) = hnk(t)

{
E

[
exp(i t Zn,k−1)

(
1 − 1

2

s2
k

V 2
n

t2 + u

(
t Xk

Vn

)]

−
(

1 − 1

2

σ 2
k

V 2
n

t2 + rn
σ 4

k t4

8V 4
n

)
E[exp(i t Zn,k−1)]

}

where |rn| ≤ 1. It follows that

|gnk(t) − gn,k−1(t)| ≤ |hnk(t)| ∣∣E[
exp(i t Zn,k−1)

(
s2

k − σ 2
k

)]∣∣ t2

2V 2
n

+
∣∣∣∣E

[
exp(i t Zn,k−1)u

(
t Xk

Vn

)∣∣∣∣ + σ 4
k t4

8V 4
n

so that

|ϕn(t) − exp(−t2/2)| ≤ t2

2V 2
n

n∑
k=1

∣∣E[
exp(i t Zn,k−1)

(
s2

k − V 2
k

)]∣∣
+

n∑
k=1

E

[∣∣∣∣u
(

t Xk

Vn

)∣∣∣∣
]

+
∑n

k=1 σ 4
k

8V 4
n

t4 ≡ Mn1 + Mn2 + Mn3.

The result follows provided that Mn1, Mn2, and Mn3 all approach 0 as n → ∞.
By the Cauchy-Schwarz inequality,∣∣E[

exp(i t Zn,k−1)
(
s2

k − V 2
k

)]∣∣ ≤ [E{exp(2i t Zn,k−1)}] 1
2
[
E
{(

s2
k − V 2

k

)2}] 1
2 ≤ Var

(
s2

k

) 1
2 .

Hence, it follows from (12.11) that

lim
n→∞ Mn1 = 0.

Again using the Cauchy-Schwarz inequality,

E

[∣∣∣∣ Xk

Vn

∣∣∣∣
3
]

≤ E(X4
k )

1
2

V 2
n

σk

Vn

and

n∑
k=1

[
E

(
X4

k

)] 1
2 σk ≤ Vn

[
n∑

k=1

E
(
X4

k

)] 1
2

.



P1: GFZ
052184472Xc12 CUNY148/Severini May 24, 2005 17:57

394 Central Limit Theorems

Hence,

Mn2 =
n∑

k=1

E

[∣∣∣∣u
(

t Xk

Vn

)∣∣∣∣
]

≤ |t |3
6V 3

n

n∑
k=1

E[|Xnk |3] ≤ |t |3
6

[ ∑n
k=1 E(X4

k )
] 1

2

V 2
n

and, by condition (12.10) of the theorem, Mn2 → 0 as n → ∞.
Finally, since

∑n
k=1 σ 4

k = ∑n
k=1 E

(
X2

k

)2 ≤ ∑n
k=1 E

(
X4

k

)
, it follows from (12.10) that

lim
n→∞ Mn3 = lim

n→∞
t4

8

∑n
k=1 σ 4

k

V 4
n

= 0.

The result follows.

Example 12.14 (A generalization of the central limit theorem for independent random
variables). Let X0, X1, X2, . . . denote a sequence of real-valued random variables such
that

E(Xn | X0, X1, . . . , Xn−1) = 0, n = 1, 2, . . .

sup
n

E
(
X4

n

)
< ∞

and

Var(Xn | X0, X1, . . . , Xn−1) = σ 2

for some constant σ 2 > 0. Hence, using the notation of Theorem 12.6, σ 2
n = σ 2, n =

1, 2, . . . and Var(s2
n ) = 0 so that

lim
n→∞

∑n
j=1 Var(s2

j )
1
2∑n

1 σ 2
j

= 0.

It follows that

lim
n→∞

∑n
j=1 E(|X j |4)( ∑n

1 σ 2
j

)2 ≤ M

nσ 2
,

for some constant M , so that (12.10) holds. Hence,∑n
j=1 X j

σ
√

n
D→ N (0, 1) as n → ∞.

That is, if E(Xn | X0, . . . , Xn−1) = 0, Var(Xn | X0, . . . , Xn−1) is constant and the Xn have
bounded fourth moments, then X̄ n is asymptotically normally distributed without any other
conditions on the dependence structure of X1, X2, . . . . �

Example 12.15 (Martingale differences). Let Y0, Y1, . . . be a martingale; then

E[Yn+1 | Y0, . . . , Yn] = Yn

with probability 1. Let X0 = Y0 and

Xn = Yn − Yn−1, n = 1, 2, . . . ;
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X0, X1, . . . are sometimes called martingale differences. Note that, for each n = 1, 2, . . . ,

(X0, . . . , Xn) is a one-to-one function of (Y0, . . . , Yn):

Yn = X0 + · · · + Xn, n = 1, 2, . . . .

Hence,

E[Xn | X0, . . . , Xn−1] = E[Yn − Yn−1 | Y0, . . . , Yn−1] = 0

by the martingale property.
Let σ 2

n = Var(Xn), n = 1, 2, . . . . Note that, for m < n,

E(Xm Xn) = E[E(Xm Xn | X0, . . . , Xn−1)] = E[XmE(Xn | X0, . . . , Xn−1)] = 0,

n∑
j=1

σ 2
j = Var(Yn − Y0).

It follows that, under the conditions of Theorem 12.6,

Yn − Y0√
Var(Yn − Y0)

D→ N (0, 1) as n → ∞.

In particular, this result holds if

sup
n

E(X4
n) < ∞, lim

n→∞ Var(Yn − Y0) = 0

and

Var(Yn | Y0, . . . , Yn−1) = Var(Yn), n = 1, 2, . . . . �

12.7 Exercises

12.1 Let Xn denote the sample mean of n independent, identically distributed random variables,
each with an exponential distribution with rate parameter λ, i.e., with mean λ−1. Note that the
exact distribution of Xn is available using properties of the gamma distribution. Let F(x ; λ) =
Pr(Xn ≤ x ; λ).
(a) Give an approximation to F(x ; λ) based on the central limit theorem.

(b) Consider the case λ = 1/2 and n = 9. For this choice of λ, nXn has a chi-square distribution
with 2n degrees of freedom. For x = 2.5289, 2.8877, 3.2077, and 3.8672 approximate
F(x ; λ) using the approximation derived in part (a) and compare the results to the exact
values.

12.2 Let X1, X2, . . . , Xn denote independent, identically distributed random variables, each dis-
tributed according to the discrete distribution with frequency function

(1 − θ )θ x , x = 0, 1, . . .

where 0 < θ < 1. Find a normal approximation to the distribution of X̄ . For the case θ = 1/3
and n = 9, approximate Pr(X̄ ≤ 5/12).

12.3 Let (X j , Y j ), j = 1, 2, . . . , n, denote independent, identically distributed pairs of random vari-
ables such that X1 is uniformly distributed in the interval [0, 1] and that the conditional dis-
tribution of Y1 given X1 is an exponential distribution with mean β X1, where β > 0. Find the
asymptotic distribution of T = ∑n

j=1 X j Y j/
∑n

j=1 X 2
j .



P1: GFZ
052184472Xc12 CUNY148/Severini May 24, 2005 17:57

396 Central Limit Theorems

12.4 Let X1, X2, . . . denote independent, identically distributed random variables each with mean µ

and standard deviation σ . Let

X̄ n = 1

n

n∑
j=1

X j and S2
n = 1

n

n∑
j=1

(X j − X̄ n)2.

Find the asymptotic distribution of

√
n(X̄ n − µ)

Sn
.

12.5 Let X1, X2, . . . denote independent, identically distributed random variables each with mean µ

and standard deviation σ and let

X̄ n = 1

n

n∑
j=1

X j .

Let tn , n = 1, 2, . . . , denote a sequence of real numbers and consider approximation of the
probability Pr(X̄ n ≤ tn) using the approximation to the distribution of X̄ n given by the central
limit theorem.
(a) Suppose tn → t as n → ∞, where t 	= µ. Find

lim
n→∞

Pr(X̄ n ≤ tn).

(b) Suppose that t = µ + c/
√

n + o(1/
√

n), as n → ∞. Find

lim
n→∞

Pr(X̄ n ≤ tn).

12.6 Let X1, X2, . . . denote independent, identically distributed random variables each with mean µ

and standard deviation σ and suppose that each X j takes values in the set {0, 1, . . .}. Let

Sn =
n∑

j=1

X j

and consider approximation of Pr(Sn ≤ s), where s is a nonnegative integer, using an approxi-
mation based on the central limit theorem.
(a) Let F(s) denote the central-limit-theorem-based approximation to Pr(Sn ≤ s) and let G(s)

denote the central-limit-theorem-based approximation to Pr(Sn ≥ s + 1). Show that

F(s) + G(s) < 1.

Note that

Pr(Sn ≤ s) + Pr(Sn ≥ s + 1) = 1.

(b) Note that Pr(Sn ≤ s) = Pr(Sn ≤ s + δ), for all 0 ≤ δ < 1. Hence, Pr(Sn ≤ s) can be approx-
imated by F(s + δ); similarly, Pr(Sn ≥ s + 1) can be approximated by G(s + 1 − δ) for
0 ≤ δ < 1. Find conditions on δ∗ so that

F(s + δ∗) + G(s + 1 − δ∗) = 1.

The approximations F(s + δ∗) and G(s + 1 − δ∗) are known as the continuity-corrected
approximations.
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12.7 Let X1, X2, . . . denote independent random variables and let µ1, µ2, . . . denote a sequence
of real-valued, positive constants. Let p denote a density function on the real line such that
p(x) = 0, for x < 0, ∫ ∞

0
x p(x) dx = 1,

∫ ∞

0
x2 p(x) dx = 2,

and ∫ ∞

0
x3 p(x) dx < ∞.

Assume that, for each j = 1, 2, . . . , X j has an absolutely continuous distribution with density
function

1

µ j
p(x/µ j ).

(a) Find conditions on µ1, µ2, . . . such that∑n
j=1(X j − µ j )( ∑n

j=1 µ2
j

) 1
2

D→ N (0, 1) as n → ∞.

(b) Suppose that µ j = jβ , j = 1, 2, . . . , for some constant β, −∞ < β < ∞. Find conditions
on β so that your conditions in part (a) are satisfied.

12.8 For each n = 1, 2, . . . , let Xn1, . . . , Xnn denote independent, identically distributed random
variables such that

Pr(Xnj = −cn) = Pr(Xnj = cn) = 1

2
.

Find conditions on c1, c2, . . . so that∑n
j=1 Xnj[ ∑n

j=1 Var(Xnj )
] 1

2

D→ N (0, 1) as n → ∞.

12.9 Let Y1, Y2, . . . denote independent random variables and for j = 1, 2, . . . , let µ j , σ j denote
the mean and standard deviation of Y j . Thus, the random variables are independent, but not
identically distributed. Find conditions on the distribution of Y1, Y2, . . . such that∑n

j=1(Y j − µ j )[ ∑n
j=1 σ 2

j

] 1
2

D→ N (0, 1) as n → ∞.

12.10 Let r1, r2, . . . denote a given sequence such that rn → ∞ as n → ∞ and for each n = 1, 2, . . . ,

let Xn1, . . . , Xnrn denote independent random variables. Suppose that all Xnj are bounded by
a constant M . Give conditions under which condition (12.1) of Theorem 12.2 is satisfied.

12.11 Let X1, X2, . . . denote independent, identically distributed random variables, each with a stan-
dard exponential distribution. Find the asymptotic distribution of

1

n

( ∑n
j=1 X j∑n

j=1 log X j

)
.

12.12 Let X1, X2, . . . denote independent, identically distributed random variables such that X1

takes values in the set {0, 1, . . .}. Let σ denote the standard deviation of X1 and let p denote
Pr(X1 = 0); assume that σ > 0 and p > 0. Find the asymptotic distribution of (X̄ n, p̂n), where

X̄ n = 1

n

n∑
j=1

X j and p̂n = 1

n

n∑
j=1

I{X j =0}.
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12.13 Let (X1, Y1), (X2, Y2), . . . denote independent, identically distributed random vectors, taking
values in R2, and each with mean vector (0, 0) and covariance matrix 	. Find

lim
n→∞

Pr(X̄ n ≤ Ȳ n)

where

X̄ n = 1

n

n∑
j=1

X j and Ȳ n = 1

n

n∑
j=1

Y j .

12.14 Let X1, X2, . . . denote independent, identically distributed, real-valued random variables such
that E(X1) = 0 and E(X 2

1) < ∞. Show that Lindeberg’s condition holds (with rn = n), but that
Lyapounov’s condition does not hold without further conditions.

12.15 Let Y1, Y2, . . . denote independent, identically distributed random variables, each with a Pois-
son distribution with mean θ , θ > 0. Is the convergence of∑n

j=1(Y j − θ )√
(nθ )

to a standard normal distribution uniform in θ ∈ (0, ∞)?

12.16 Let Y1, Y2, . . . denote independent, identically distributed real-valued random variables such
that each Y j has an absolutely continuous distribution with density p(y; θ ), θ ∈ 
. Suppose
that p(y; θ ) is of the form

p(y; θ ) = 1

σ
f

(
y − µ

σ

)
, θ = (µ, σ ) ∈ R × (0, ∞).

Hence, µ is a location parameter and σ is a scale parameter.
Show that, if

lim
n→∞

Pr

{∑n
j=1(Y j − µ0)/

√
n

σ0
≤ t ; (µ0, σ0)

}
= �(t), t ∈ R

for some µ0 ∈ R and σ0 > 0, then

lim
n→∞

sup
µ∈R,σ>0

∣∣∣∣∣Pr

{∑n
j=1(Y j − µ)/

√
n

σ
≤ t ; (µ, σ )

}
− �(t)

∣∣∣∣∣ = 0, t ∈ R.

12.17 For each θ ∈ 
, let X1(θ ), X2(θ ), . . . denote independent, identically distributed real-valued
random variables such that

E[X1(θ ); θ ] = 0

and let

σ 2(θ ) ≡ Var[X1(θ )], θ ∈ 
.

Suppose that

lim
n→∞

sup
θ∈


∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t ; θ

}
− �(t)

∣∣∣∣∣ = 0

for each t ∈ R.
Let θ1, θ2, . . . denote a sequence in 
 such that θn → θ as n → ∞ for some θ ∈ 
. Show

that

lim
n→∞

Pr

{∑n
j=1 X j (θn)/

√
n

σ (θn)
≤ t ; θn

}
= �(t).
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12.18 For each θ ∈ 
, let X1(θ ), X2(θ ), . . . denote independent, identically distributed real-valued
random variables such that

E[X1(θ ); θ ] = 0

and let

σ 2(θ ) ≡ Var[X1(θ )], θ ∈ 
.

Suppose that there exists constants M and m such that

sup
θ∈


|X1(θ )| ≤ M

with probability one and suppose that

inf
θ∈


σ (θ ) > m.

Does it follow that

lim
n→∞

sup
θ∈


∣∣∣∣∣Pr

{∑n
j=1 X j (θ )/

√
n

σ (θ )
≤ t

}
− �(t)

∣∣∣∣∣ = 0

for each t ∈ R? Why or why not?

12.19 Let Y1, Y2, . . . denote independent, identically distributed, random variables, each uniformly
distributed on the interval (0, 1) and let

Xn = max(Yn, Yn+1), n = 1, 2, . . . .

Find the asymptotic distribution of ∑n
j=1 Xn

n
.

12.8 Suggestions for Further Reading

The references given in the previous chapter all contain various versions of the central limit theorem.
Although Theorem 12.4 is new, the technique used in its proof is based on the proof of Theorem 7.2
of Billingsley (1968). Theorem 12.5 is based on Hoeffding and Robbins (1948); see also Ferguson
(1996, Chapter 7). Theorem 12.6 is based on Ibragimov (1963).

There are many different versions of the central limit theorem for dependent random variables; the
results given in this chapter give just two examples of these. Central limit theorems for martingales
are given by Billingsley (1961), Brown (1971), Doob (1953, p. 382), and McLeish (1974), among
others. Chernoff and Teicher (1958) give a central limit for exchangeable random variables. Central
limit theorems for random variables with a moving average structure are given in Anderson (1975)
and Fuller (1976). Port (1994, Chapter 61) gives a central limit theorem for Markov chains.
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13

Approximations to the Distributions of
More General Statistics

13.1 Introduction

In Chapter 12, the focus was on the asymptotic distribution of the sample mean and several
versions of the central limit theorem were presented. However, in statistical applications,
we often encounter a wider range of statistics. The purpose of this chapter is to consider the
asymptotic distributions for several other types of statistics.

For instance, the statistic of interest may not be a sample mean, but it may be written
as a function of a sample mean, or of several sample means. In many of these cases, the
asymptotic distribution of the statistic may be determined from the asymptotic distribution
of the sample means involved. Other possibilities are statistics that are functions of the order
statistics or ranks.

13.2 Nonlinear Functions of Sample Means

Suppose that X1, X2, . . . are independent, identically distributed random variables each with
mean µ and variance σ 2. Then X̄ n = ∑n

j=1 X j/n is asymptotically normally distributed
with mean µ and variance σ 2/n. Suppose the statistic of interest may be written as g(X̄ n)
where g is a smooth function. If g(·) is of the form g(x) = ax + b for some constants a and
b, then clearly g(X̄ n) will be asymptotically normally distributed with mean aµ + b and
variance a2σ 2/n.

Of course, this function is a very special case. However, we know that, for large n, X̄ n

will be very close to µ with high probability. Given that g is a smooth function, if g′(µ) �= 0,
then we expect that g may be well-approximated by a function of the form ax + b for x near
µ. Hence, using this approach, we may be able to determine the asymptotic distribution of√

n(g(X̄ n) − g(µ)).
Theorem 13.1 gives a formal result of this type; this result is sometimes called the

δ-method. Here we use the symbol Nd (0, �) to denote a d-dimensional random vector with
a multivariate normal distribution with mean vector 0 and covariance matrix �.

Theorem 13.1. Let X1, X2, . . . denote a sequence of d-dimensional random vectors such
that, for some vector µ,

√
n(Xn − µ)

D→ Nd (0, �) as n → ∞,

where � is a positive definite matrix with |�| < ∞.

400
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Let g :Rd → Rk denote a continuously differentiable function and let g′(x) = ∂g(x)/∂x
denote the k × d matrix of partial derivatives of g with respect to x. Then

√
n(g(Xn) − g(µ))

D→ Nk(0, g′(µ)�g′(µ)T ) as n → ∞.

Proof. Let a denote an arbitrary vector in Rk and let h :Rd → R denote the function given
by h = aT g. By Taylor’s theorem, for any x ∈ Rd ,

h(x) − h(µ) = h′(t x + (1 − t)µ)(x − µ)

for some 0 ≤ t ≤ 1; here h′ = aT g′ is a 1 × d vector of derivatives. It follows that, for
n = 1, 2, . . . ,

√
n(h(Xn) − h(µ)) = h′(tn Xn + (1 − tn)µ)

√
n(Xn − µ)

= h′(µ)
√

n(Xn − µ) + [h′(tn Xn + (1 − tn)µ) − h′(µ)]
√

n(Xn − µ),

where 0 ≤ tn ≤ 1; note that tn generally depends on Xn .

Since Xn
p→ µ as n → ∞,

tn Xn + (1 − tn)µ
p→ µ as n → ∞.

Since

√
n(Xn − µ)

D→ Nd (0, �) as n → ∞,

it follows that
√

n(Xn − µ) = Op(1) and, hence, by the continuity of h′,

h′(tn Xn + (1 − tn)µ) − h′(µ)
p→ 0 as n → ∞,

and

h′(µ)
√

n(Xn − µ)
D→ N (0, h′(µ)�h′(µ)T ) as n → ∞.

That is, for any a ∈ Rk , aT √
n(g(Xn) − g(µ)) converges in the distribution to a normal

random variable with mean 0 and variance

h′(µ)�h′(µ)T = aT g′(µ)�g′(µ)T a.

It now follows from Theorem 11.6 that

√
n(g(Xn) − g(µ))

D→ Nk(0, g′(µ)�g′(µ)T ) as n → ∞,

proving the result.

Example 13.1 (Variance-stabilizing transformations). Suppose that, for each n = 1,

2, . . . , Xn is the sample mean of n independent, identically distributed real-valued ran-
dom variables, each with mean θ and variance σ 2. Suppose further that σ 2 is a function of
θ , σ 2(θ ). Then

√
n(Xn − θ )

σ (θ )
D→ N (0, 1) as n → ∞.
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Let g denote a real-valued, continuously differentiable function defined on the range of
X1, X2, . . . . Then, according to Theorem 13.1,

√
n[g(Xn) − g(θ )]

|g′(θ )|σ (θ )
D→ N (0, 1) as n → ∞.

provided that g′(θ ) �= 0.

Suppose that g is chosen so that |g′(θ )|σ (θ ) is a constant not depending on θ ; then the
asymptotic variance of Xn does not depend on the parameter θ . Such a function g is said to
be a variance-stabilizing transformation.

For instance, suppose that the underlying random variables have a Poisson distribu-
tion with mean θ so that σ 2(θ ) = θ . A variance-stabilizing transformation g then satisfies
g′(θ )

√
θ = c for some constant c; that is, g′(θ ) = cθ− 1

2 . Hence, we may take g(θ ) = √
θ

so that √
n(

√
Xn − √

θ )

1/2
D→ N (0, 1) as n → ∞.

That is,
√

Xn is asymptotically distributed according to a normal distribution with mean√
θ and variance 1/(4n). �

Example 13.2 (Ratio of correlated sample means). Let Y1, Y2, . . . denote independent,
identically distributed two-dimensional random vectors each with mean vectorµ = (µ1, µ2)
and covariance matrix

� =
(

σ 2
1 ρσ1σ2

ρσ1σ2 σ 2
2

)
.

Let Xn = ∑n
j=1 Y j/n and consider the function

g(Xn) = aT Xn

bT Xn
,

where a and b are given elements of R2 such that

a

||a|| �= b

||b||
and bT µ �= 0.

Then

g′(x) = 1

bT x

(
aT − aT x

bT x
bT

)
= 1

bT x
[a − g(x)b]T .

Let c = a − g(µ)b. Then

√
n(g(Xn) − g(µ))

D→ Z1 as n → ∞,

where Z1 has a normal distribution with mean 0 and variance

σ 2 = cT �c

(bT µ)2
.

For instance, suppose that a = (1, 0) and b = (0, 1) and write Xn = (Xn1, Xn2). Then

√
n

(
Xn1

Xn2
− µ1

µ2

)
D→ Z as n → ∞,
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where Z has a normal distribution with mean 0 and variance

σ 2 = σ 2
1 − 2ρσ1σ2µ1/µ2 + (µ1/µ2)2σ 2

2

µ2
2

. �

Example 13.3 (Joint asymptotic distribution of the sample mean and variance). Let
Y1, Y2, . . . denote independent, identically distributed real-valued random variables such
that E(Y 4

1 ) < ∞. Suppose we wish to determine the asymptotic distribution of the vector
(Ȳ , S2), suitably normalized, where Ȳ = ∑n

j=1 Y j/n and S2 = ∑n
j=1(Y j − Ȳ )2/n.

For each n = 1, 2, . . . let

Xn =
( 1

n

∑n
j=1 Y j

1
n

∑n
j=1 Y 2

j

)
.

For x ∈ R2, define

g(x) =
(

x1

x2 − x2
1

)
;

then (
Ȳ
S2

)
= g(Xn).

Let µ = E(Y1), σ 2 = Var(Y1) and

µr = E[(Y1 − µ)r ], r = 3, 4.

Then, according to Theorem 12.3,

√
n

(
Xn −

(
µ

µ2 + σ 2

))
D→ N2(0, �)

where

� =
(

σ 2 Cov(Y1, Y 2
1 )

Cov(Y1, Y 2
1 ) Var(Y 2

1 )

)
.

Since

g′(µ, µ2 + σ 2) =
(

1 0
−2µ 1

)
,

it follows from Theorem 13.1 that

√
n

(
Ȳ − µ

S2 − σ 2

)

is asymptotically normally distributed with mean vector zero and covariance matrix given by(
1 0

−2µ 1

)
�

(
1 −2µ

0 1

)
=

(
σ 2 µ3

µ3 µ4 − σ 4

)
.

Thus, Ȳ and S2 are asymptotically independent if and only if µ3 = 0. �

Note that Theorem 13.1 holds even if g′(0) = 0; however, in that case, the limiting
distribution of

√
n(g(Xn) − g(µ)) is degenerate. A formal statement of this result is given

in the following corollary; the proof is left as an exercise.
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Corollary 13.1. Let X1, X2, . . . denote a sequence of d-dimensional random vectors satis-
fying the conditions of Theorem 13.1.

Let g :Rd → Rk , k ≤ d, denote a continuously differentiable function. If g′(µ) = 0, then

√
n(g(Xn) − g(µ))

p→ 0 as n → ∞.

13.3 Order Statistics

In this section, we consider approximations to the distributions of order statistics. When
studying the asymptotic theory of order statistics, there are essentially two cases to
consider. The first is the case of central order statistics. These are order statistics, such
as the sample median, that converge to a quantile of the underlying distribution as the sam-
ple size increases. The asymptotic properties of the central order statistics are similar in
many respects to those of a sample mean; for instance, a suitably normalized central order
statistic is asymptotically normally distributed.

The second case is that of the extreme order statistics, such as the minimum or maximum.
The asymptotic properties of the extreme order statistics differ considerably from those
of the sample mean; for instance, the extreme order statistics have non-normal limiting
distributions.

Central order statistics
First consider the properties of central order statistics based on independent, identi-
cally distributed random variables X1, X2, . . . , Xn each with distribution function F . Let
Xn1, . . . , Xnn denote the order statistics based on X1, . . . , Xn . The central order statistics
are of the form Xn(kn ) where kn/n converges to a constant in (0, 1). That is, the relative
position of Xn(kn ) in the set of order statistics Xn1, . . . , Xnn stays, roughly, constant.

When studying the properties of order statistics, the following approach is often useful.
First, the properties may be established for the case in which the random variables have a
uniform distribution on (0, 1). The corresponding result for the general case can then be
established by noting that the random variables F(X1), . . . , F(Xn) are uniformly distributed
on (0, 1) and then using the δ-method, as described in the previous section.

Theorem 13.2. Let X1, X2, . . . , Xn denote independent, identically distributed random
variables, each distributed according to a uniform distribution on (0, 1). Let kn, n = 1, 2, . . .

denote a sequence of integers such that kn ≤ n for all n and

√
n

(
kn

n
− q

)
→ 0 as n → ∞

where 0 < q < 1. Let Xn(kn ) denote the knth order statistic of X1, . . . , Xn. Then

√
n(Xn(kn ) − q)

D→ N (0, q(1 − q)) as n → ∞.

Proof. Fix 0 < t < 1. Define

Z j (t) =
{

0 if X j > t
1 if X j ≤ t ,

j = 1, 2, . . . .
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Note that, for each n = 1, 2, . . . , Z1(t), . . . , Zn(t) are independent identically distributed
Bernoulli random variables with

Pr(Z1(t) = 1) = t.

Then

Pr(Xn(kn ) ≤ t) = Pr

(
n∑

j=1

Z j (t) ≥ kn

)

and

Pr(
√

n(Xn(kn ) − q) ≤ t) = Pr

(
1√
n

[
n∑

j=1

Z j (q + t/
√

n) − n(q + t/
√

n)

]

≥ kn − nq − t
√

n√
n

)
.

Define

Znj = Z j (q + t/
√

n) − (q + t/
√

n), j = 1, . . . , n, n = 1, 2, . . . .

This is a triangular array.
Let

γnj = E[|Znj |3] and σ 2
nj = Var(Znj ), j = 1, . . . , n, n = 1, 2, . . . .

It is straightforward to show that γnj are uniformly bounded in n and j and that

σ 2
nj =

(
q + t√

n

) (
1 − q − t√

n

)
, j = 1, . . . , n

so that
n∑

j=1

σ 2
nj = nq(1 − q) + √

nt(1 − 2q) − t2.

Hence, ∑n
j=1 γnj[∑n

j=1 σ 2
nj

] 3
2

→ 0 as n → ∞.

It follows from Theorem 12.2 that∑n
j=1 Z j (q + t/

√
n) − n(q + t/

√
n)[

nq(1 − q) + √
nt(1 − 2q) − t2

] 1
2

D→ N (0, 1) as n → ∞

so that, by Corollary 11.4,

1√
n

∑n
j=1 Z j (q + t/

√
n) − n(q + t/

√
n)

[q(1 − q)]
1
2

D→ N (0, 1) as n → ∞.

Hence,

lim
n→∞ Pr[

√
n(Xn(kn ) − q) ≤ t] = 1 − �

(
lim

n→∞
kn − nq − t

√
n

[nq(1 − q)]
1
2

)
.
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It is straightforward to show that

lim
n→∞

kn − nq − t
√

n

[nq(1 − q)]
1
2

= − t

[q(1 − q)]
1
2

,

proving the result.

The result in Theorem 13.2 can now be extended to random variables with a wider range
of absolutely continuous distributions.

Corollary 13.2. Let X1, X2, . . . , Xn denote independent, identically distributed random
variables, each with an absolutely continuous distribution with distribution function F and
density function p. Let kn, n = 1, 2, . . . denote a sequence of integers such that kn ≤ n for
all n and

√
n

(
kn

n
− q

)
→ 0 as n → ∞

where 0 < q < 1. Assume that there exists a unique xq ∈ R such that F(xq ) = q and that
p is strictly positive in a neighborhood of xq .

Then
√

n(Xn(kn ) − xq )
D→ N (0, σ 2),

where

σ 2 = q(1 − q)

p(xq )2
.

Proof. Let Z j = F(X j ). Then Z1, Z2, . . . , Zn are independent, uniformly distributed ran-
dom variables on (0, 1) and

Zn( j) = F(Xn( j)), j = 1, . . . , n, n = 1, 2, . . .

By Theorem 13.2,

√
n(Zn(kn ) − q)

D→ N (0, q(1 − q)) as n → ∞.

Consider

Pr{√n(Xn(kn ) − xq ) ≤ t} = Pr{Xn(kn ) ≤ xq + t/
√

n}.
Since p is strictly positive in a neighborhood of xq , F is strictly increasing in a neighborhood
of xq . Hence, there exists an integer N such that

Pr{Xn(kn ) ≤ xq + t/
√

n} = Pr{F(Xn(kn )) ≤ F(xq + t/
√

n)}
= Pr{√n(Zn(kn ) − q) ≤ √

n(F(xq + t/
√

n) − q)}.
As n → ∞,

√
n(F(xq + t/

√
n) − q) → p(xq )t.

Hence, by Theorem 11.3 and Example 11.9, together with the asymptotic normality of
Zn(kn ),

lim
n→∞ Pr{√n(Xn(kn ) − xq ) ≤ t} = Pr{Z ≤ p(xq )t/

√
[q(1 − q)]},

where Z has a standard normal distribution. The result follows.
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Example 13.4 (Order statistics from an exponential distribution). Let X1, X2, . . . , Xn

denote independent, identically distributed random variables each distributed according to
the distribution with density

p(x ; λ) = λ−1 exp(−x/λ), x > 0,

where λ > 0 is an unknown constant. Let kn , n = 1, 2, . . . denote a sequence of integers
such that

√
n

(
kn

n
− q

)
→ 0 as n → ∞,

where 0 < q < 1.
Note that F(x) = 1 − exp(−x/λ), x > 0 so that xq = − log(1 − q)λ. Hence,

√
n(Xn(kn ) + log(1 − q)λ)

D→ N (0, σ 2),

where

σ 2 = λ2 q

1 − q
. �

Example 13.5 (Sample median). Let X1, X2, . . . , Xn denote independent, identically dis-
tributed random variables each with an absolutely continuous distribution with common
density p. Assume that Pr(X1 ≤ 0) = 1/2 and that, for some ε > 0,

p(x) > 0 for all |x | < ε.

For n = 1, 2, . . . , let m̂n denote the sample median, given by

m̂n =
{

Xn( n+1
2 ) if n is odd

X
n( n

2 )+X
n( n

2 +1)
2 if n is even

.

Fix t and consider Pr(
√

nm̂n ≤ t). If n is odd,

Pr(
√

nm̂n ≤ t) = Pr
(√

nXn( n+1
2 ) ≤ t

)
;

if n is even,

Pr
(√

nXn( n
2 +1) ≤ t

) ≤ Pr(
√

nm̂n ≤ t) ≤ Pr
(√

nXn( n
2 ) ≤ t

)
.

Let kn denote the smallest integer greater than or equal to n/2. Then, for all n,

Pr(
√

nXn(kn+1) ≤ t) ≤ Pr(
√

nm̂n ≤ t) ≤ Pr(
√

nXn(kn ) ≤ t).

Note that

1

2
≤ kn

n
≤ 1

2
+ 1

2n
, n = 1, 2, . . .

so that, as n → ∞,

√
n

(
kn

n
− 1

2

)
→ 0 and

√
n

(
kn + 1

n
− 1

2

)
→ 0.

It now follows from Corollary 13.2 that

lim
n→∞ Pr(

√
nXn(kn+1) ≤ t) = lim

n→∞ Pr(
√

nXn(kn ) ≤ t) = Pr(Z ≤ t),
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where Z has a normal distribution with mean 0 and variance 1/4p(0)2; hence,

√
nm̂n

D→ N

(
0,

1

4p(0)2

)
as n → ∞. �

Let X1, X2, . . . , Xn denote independent, identically distributed random variables and let
F denote the distribution function of X1. Define

F̂(t) = 1

n

n∑
j=1

I{X j ≤t}, −∞ < t < ∞.

Hence, this is a random function on R; if � denotes the sample space of the underlying
experiment, then, for each t ∈ R,

F̂(t)(ω) = 1

n

n∑
j=1

I{X j (ω)≤t}, ω ∈ �.

Note that, for each ω ∈ �, F̂(·)(ω) is a distribution function on R, called the empirical
distribution function based on X1, . . . , Xn .

Define the qth sample quantile by

X̂nq = inf{x: F̂n(x) ≥ q}.
Clearly, the sample quantiles are closely related to the order statistics and it is straightforward
to use Corollary 13.2 to determine the asymptotic distribution of a sample quantile. The
result is given in the following corollary; the proof is left as an exercise.

Corollary 13.3. Let X1, X2, . . . , Xn denote independent, identically distributed random
variables, each with an absolutely continuous distribution with density p. Fix 0 < q < 1.
Assume that there is a unique xq ∈ R such that F(xq ) = q and that p is strictly positive in
a neighborhood of xq .

For each n = 1, 2, . . . , define X̂nq as above. Then

√
n(X̂nq − xq )

D→ N (0, σ 2),

where

σ 2 = q(1 − q)

p(xq )2
.

Pairs of central order statistics
The same approach used in Theorem 13.2 for a single order statistic can be applied to the
joint asymptotic distribution of several order statistics; in Theorem 13.3, we consider the
case of two order statistics.

Theorem 13.3. Let X1, X2, . . . , Xn denote independent, identically distributed random
variables, each distributed according to a uniform distribution on (0, 1). Let kn, and mn,
n = 1, 2, . . . denote sequences of integers such that kn ≤ n and mn ≤ n for all n and

√
n

(
kn

n
− q1

)
→ 0 as n → ∞,
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and
√

n
(mn

n
− q2

)
→ 0 as n → ∞,

where 0 < q1 < 1 and 0 < q2 < 1. Assume that q1 < q2.
Let Xn(kn ) and Xn(mn ) denote the knth and mnth order statistic, respectively, of X1, . . . , Xn.

Then

√
n

(
Xn(kn ) − q1

Xn(mn ) − q2

)
D→ N2(0, �), as n → ∞,

where

� =
(

q1(1 − q1) q1(1 − q2)
q1(1 − q2) q2(1 − q2)

)
.

Proof. The proof is very similar to that of Theorem 13.2; however, since the multivariate
version of the central limit theorem for triangular arrays is not given in Chapter 12, some
additional details are needed.

Fix 0 < t < 1 and 0 < s < 1. Define

Z j (t) =
{

0 if X j > t
1 if X j ≤ t

and

W j (s) =
{

0 if X j > s
1 if X j ≤ s

.

Then

Pr(Xn(kn ) ≤ t, Xn(mn ) ≤ s) = Pr

[
n∑

j=1

Z j (t) ≥ kn,

n∑
j=1

W j (s) ≥ mn

]

and

Pr(
√

n(Xn(kn ) − q1) ≤ t,
√

n(Xn(mn ) − q2) ≤ s)

= Pr

(
1√
n

[
n∑

j=1

Z j (q1 + t/
√

n) − n(q1 + t/
√

n)

]
≥ kn − nq1 − t

√
n√

n
,

1√
n

[
n∑

j=1

W j (q2 + s/
√

n) − n(q2 + s/
√

n)

]
≥ mn − nq2 − s

√
n√

n

)
.

Define

Znj = Z j (q1 + t/
√

n) − (q1 + t/
√

n), j = 1, . . . , n

and

Wnj = W j (q2 + s/
√

n) − (q2 + s/
√

n), j = 1, . . . , n.

Let a and b denote arbitrary real-valued constants and let

Vnj = aZnj + bWnj , j = 1, 2, . . . , n, n = 1, 2, . . . ;
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this is a triangular array with E(Vnj ) = 0,

σ 2
n ≡ Var(Vnj )

= a2(q1 + t/
√

n)(1 − q1 − t/
√

n) + b2(q2 + s/
√

n)(1 − q2 − s/
√

n)

+ 2ab(q1 + t/
√

n)(q2 + s/
√

n),

and E(|Vnj |3) ≤ |a + b|3, for all j, n.
Since

n∑
j=1

Var(Vnj ) = nσ 2
n = O(n) as n → ∞

and E(|Vnj |3) is bounded, it follows that the conditions of Theorem 12.2 are satisfied and∑n
j=1 Vnj

σn
√

n
D→ N (0, 1) as n → ∞.

Note that

lim
n→∞ σ 2

n = a2q1(1 − q1) + b2q2(1 − q2) + 2abq1(1 − q2);

since this holds for any a, b, by Theorem 11.6,

1√
n

( ∑n
j=1 Znj∑n
j=1 Wnj

)
D→ N2(0, �)

where � is given in the statement of the theorem.
It follows that

Pr{√n(Xn(kn ) − q1) ≤ t,
√

n(Xn(mn ) − q2) ≤ s}

= Pr

{
1√
n

n∑
j=1

Znj − (kn − nq1)/
√

n ≥ −t,
1√
n

n∑
j=1

Wnj − (mn − nq2)/
√

n ≥ −s

}

and, hence, by Corollary 11.4, that

lim
n→∞ Pr[

√
n(Xn(kn ) − q1) ≤ t,

√
n(Xn(mn ) − q2) ≤ s]

= lim
n→∞ Pr

{
1√
n

n∑
j=1

Znj ≥ −t,
1√
n

n∑
j=1

Wnj ≥ −s

}
= Pr(Z ≥ −t, W ≥ −s)

where (Z , W ) has a bivariate normal distribution with mean 0 and covariance matrix �.
Note that

Pr(Z ≥ −t, W ≥ −s) = Pr(−Z ≤ t, −W ≤ s)

and that (−Z , −W ) has the same distribution as (Z , W ); the result follows.

As was done in the case of a single central order statistic, the result in Theorem 13.3 for
the uniform distribution can now be extended to a wider class of distributions. The result is
given in the following corollary; the proof is left as an exercise.

Corollary 13.4. Let X1, X2, . . . , Xn denote independent, identically distributed ran-
dom variables, each distributed according to an absolutely continuous distribution with
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distribution function F and density p. Let kn, and mn, n = 1, 2, . . . denote sequences of
integers such that kn ≤ n and mn ≤ n for all n and

√
n

(
kn

n
− q1

)
→ 0 as n → ∞

and
√

n
(mn

n
− q2

)
→ 0 as n → ∞,

where 0 < q1 < q2 < 1.
Assume that there exist unique xq1 , xq2 ∈ R such that F(xq1 ) = q1 and F(xq2 ) = q2 and

that p is strictly positive in neighborhoods of q1 and q2.
Let Xn(kn ) and Xn(mn ) denote the knth and mnth order statistic, respectively, of X1, . . . , Xn.

Then

√
n

(
Xn(kn ) − xq1

Xn(mn ) − xq2

)
D→ N2(0, �), as n → ∞,

where

� =




q1(1 − q1)
p(xq1 )2

q1(1 − q2)
p(xq1 )p(xq2 )

q1(1 − q2)
p(xq1 )p(xq2 )

q2(1 − q2)
p(xq2 )2


 .

Example 13.6 (Interquartile range). Let X1, X2, . . . , Xn denote independent, identically
distributed random variables, each distributed according to a distribution with density p
that is positive on R and symmetric about 0. Let kn denote the smallest integer greater than
or equal to n/4 and let mn denote the smallest integer greater than or equal to 3n/4. Then

√
n

(
kn

n
− 1

4

)
→ 0 and

√
n

(
mn

n
− 3

4

)
→ 0

as n → ∞. The order statistic Xn(kn ) is sometimes called the lower quartile of the sample
and Xn(mn ) is sometimes called the upper quartile of the sample; the interquartile range is
given by

Q̂n = Xn(mn ) − Xn(kn )

and is a measure of the dispersion in the data.
Let c denote the constant satisfying

Pr(X1 ≤ −c) = 1

4
;

note that, since the distribution of X1 is symmetric about 0,

Pr(X1 ≤ c) = 3

4
.

Hence,

√
n

(
Xn(kn ) + c
Xn(mn ) − c

)
D→ N2(0, �),
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where

� = 1

16p(c)2

(
3 1
1 3

)
.

It follows that
√

n(Q̂n − 2c)
D→ N (0, σ 2),

where

σ 2 = 1

4p(c)2
. �

Sample extremes
We now consider the asymptotic properties of the sample mean and sample minimum. As
noted earlier, the asymptotic theory of these extreme order statistics is quite different from
the asymptotic theory of the central order statistics described above.

Let X1, X2, . . . , Xn denote independent, identically distributed scalar random variables
each with distribution function F , which is assumed to be absolutely continuous. Let

Yn = max
1≤ j≤n

X j

and

Zn = min
1≤ j≤n

X j .

The asymptotic properties of Yn and Zn follow from the following general result.

Theorem 13.4. For each n = 1, 2, . . . , let Yn and Zn be defined as above and let W denote
a random variable with a standard exponential distribution. Then

n(1 − F(Yn))
D→ W as n → ∞,

nF(Zn))
D→ W as n → ∞,

and n(1 − F(Yn)) and nF(Zn) are asymptotically independent.

Proof. Consider the probability

Pr{n(1 − F(Yn)) ≤ y, nF(Zn) ≤ x} = Pr{F(Yn) ≥ 1 − y/n, F(Zn) ≤ x/n}
= 1 − Pr{F(Yn) ≤ 1 − y/n ∪ F(Zn) ≥ x/n}
= 1 − Pr{F(Yn) ≤ 1 − y/n} − Pr{F(Zn) ≥ x/n}

+ Pr{F(Yn) ≤ 1 − y/n, F(Zn) ≥ x/n}.
It is straightforward to show that if x or y is negative, then this probability converges to 0
as n → ∞; hence, assume that x ≥ 0 and y ≥ 0.

Note that F(Zn) and F(Yn) may be viewed as the first and nth order statistic, respectively,
based on n independent, identically distributed random variables each uniformly distributed
on the interval (0, 1). Hence,

Pr{F(Yn) ≤ 1 − y/n} = (1 − y/n)n, 0 ≤ y ≤ n,

Pr{F(Zn) ≥ x/n} = (1 − x/n)n, 0 ≤ x ≤ n,
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and

Pr{F(Yn) ≤ 1 − y/n, F(Zn) ≥ x/n} = (1 − y/n − x/n)n, 0 ≤ x + y ≤ n.

It follows that

lim
n→∞ Pr{n[1 − F(Yn)] ≤ y, nF(Zn) ≤ x} = 1 − exp(−y) − exp(−x) + exp(−(x + y))

= [1 − exp(−y)] [1 − exp(−x)],

proving the result.

The asymptotic behavior of the minimum and maximum of n independent identically
distributed random variables will therefore depend on the properties of the distribution
function F . Some of the possibilities are illustrated by the following examples; in each case,

Yn = max
1≤ j≤n

X j

and

Zn = min
1≤ j≤n

X j ,

as in Theorem 13.4.

Example 13.7 (Beta distribution). Let X1, X2, . . . , Xn denote independent, identically
distributed random variables each distributed according to the distribution with density
function

p(x ; α) = αxα−1, 0 < x < 1

where α > 0 is a constant. The corresponding distribution function is given by

F(x ; α) = xα, 0 < x < 1.

Then, according to Theorem 13.4,

lim
n→∞ Pr

(
n

(
1 − Y α

n

) ≤ t
) = 1 − exp(−t), t > 0

and

lim
n→∞ Pr

(
nZα

n ≤ t
) = 1 − exp(−t), t > 0.

First consider the asymptotic distribution of Yn . Since

Pr
[
n

(
1 − Y α

n

) ≤ t
] = Pr

[
Yn ≥ (1 − t/n)

1
α

]
,

lim
n→∞ Pr{n(Yn − 1)/α ≤ n[(1 − t/n)

1
α − 1]/α} = exp(−t), t > 0.

Since

lim
n→∞ n[(1 − t/n)

1
α − 1]/α = −t,

it follows that

lim
n→∞ Pr{n(Yn − 1)/α ≤ −t} = exp(−t), t > 0
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or, equivalently,

lim
n→∞ Pr{n(Yn − 1)/α ≤ t} = exp(t), t < 0.

Now consider Zn . Since

Pr
(
nZα

n ≤ t
) = Pr

(
Zn ≤ (t/n)

1
α

)
,

it follows that

lim
n→∞ Pr

[
Zn ≤ (t/n)

1
α

] = 1 − exp(−t), t > 0.

Hence,

lim
n→∞ Pr

[
n

1
α Zn ≤ t

1
α

] = 1 − exp(−t), t > 0,

or, equivalently,

lim
n→∞ Pr

(
n

1
α Zn ≤ t

) = 1 − exp(−tα), t > 0. �

Example 13.8 (Exponential distribution). Let X1, X2, . . . , Xn denote independent, iden-
tically distributed random variables each distributed according to a standard exponential
distribution. Then, according to Theorem 13.4,

lim
n→∞ Pr[n exp(−Yn) ≤ t] = 1 − exp(−t), t > 0

and

lim
n→∞ Pr{n[1 − exp(−Zn)] ≤ t} = 1 − exp(−t), t > 0.

First consider the distribution of Yn . Note that

lim
n→∞ Pr{Yn ≤ − log(t/n)} = exp(−t), t > 0.

It follows that

lim
n→∞ Pr[Yn − log(n) ≤ − log(t)] = exp(−t), t > 0,

or, equivalently,

lim
n→∞ Pr[Yn − log(n) ≤ t)] = exp{− exp(−t)}, −∞ < t < ∞.

Now consider Zn . Note that

lim
n→∞ Pr[Zn ≤ − log(1 − t/n)] = 1 − exp(−t), t > 0

so that

lim
n→∞ Pr[nZn ≤ −n log(1 − t/n)] = 1 − exp(−t), t > 0.

Since

lim
n→∞ −n log(1 − t/n) = t,
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it follows that

lim
n→∞ Pr(nZn ≤ t) = 1 − exp(−t), t > 0. �

Example 13.9 (Pareto distribution). Let X1, X2, . . . , Xn denote independent, identically
distributed random variables each distributed according to the distribution with density
function

p(x) = 1

x2
, x > 1;

the corresponding distribution function is given by

F(x) = 1 − 1

x
, x > 1.

It follows from Theorem 13.4 that

lim
n→∞ Pr(n/Yn ≤ t) = 1 − exp(−t), t > 0

and

lim
n→∞ Pr[n(1 − 1/Zn) ≤ t] = 1 − exp(−t), t > 0.

Hence,

lim
n→∞ Pr(Yn/n ≤ t) = exp(−1/t), t > 0

and

lim
n→∞ Pr{n(Zn − 1) ≤ t/(1 − t/n)} = 1 − exp(−t), t > 0

so that

lim
n→∞ Pr{n(Zn − 1) ≤ t} = 1 − exp(−t), t > 0. �

13.4 U-Statistics

Let X1, X2, . . . , Xn denote independent, identically distributed real-valued random vari-
ables, each with range X . Let h denote a real-valued function defined on X such that
E[h(X1)2] < ∞. Then the sample mean

∑n
j=1 h(X j )/n follows the central limit theorem;

that is, a suitably normalized form of the statistic is asymptotically distributed according to
a normal distribution.

As a generalization of this type of statistic, suppose the function h is defined on X 2 and
suppose that h is symmetric in its arguments. Consider the statistic

U = 1(n
2

) ∑
β

h(Xβ1 , Xβ2 ),

where the sum is over all unordered pairs of integers β = (β1, β2) chosen from {1, 2, . . . , n}.
A statistic of this form is called a U-statistic of order 2; the function h is called the kernel
of the statistic.
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Example 13.10 (Sample variance). Consider the kernel

h(x1, x2) = 1

2
(x1 − x2)2.

The corresponding U -statistic is given by

S2 = 1

2
(n

2

) ∑
β

(Xβ1 − Xβ2 )2.

Note that

∑
β

(Xβ1 − Xβ2 )2 = (n − 1)
n∑

j=1

X2
j − 2

∑
j<k

X j Xk .

Since (
n∑

j=1

X j

)2

=
n∑

j=1

X2
j + 2

∑
j<k

X j Xk,

∑
β

(Xβ1 − Xβ2 )2 = n
n∑

j=1

X2
j −

(
n∑

j=1

X j

)2

.

Hence,

S2 = 1

n − 1

n∑
j=1

X2
j − n

(n − 1)

(
n∑

j=1

X j/n

)2

= 1

n − 1

n∑
j=1

(X j − X̄ )2,

where X̄ = ∑n
j=1 X j/n; that is, S2 is the sample variance with divisor n − 1. �

This type of statistic may be generalized to allow h to be a real-valued function on X r

for some r = 1, 2, . . . . Again, we assume that h is symmetric in its arguments. Then a
U-statistic with kernel h is a statistic of the form

U = 1(n
r

) ∑
h(Xβ1 , . . . , Xβr ),

where the sum is over all unordered sets of r integers chosen from {1, 2, . . . , n}. Note
that, since the random variables appearing in h(Xβ1 , . . . , Xβr ) are always independent and
identically distributed,

E(U ) = E[h(X1, . . . , Xr )];

hence, in statistical terminology, U is an unbiased estimator of E[h(X1, . . . , Xr )]. That
is, if we are interested in estimating E[h(X1, . . . , Xr )] based on X1, . . . , Xn , the statistic
U has the property that its expected value is exactly the quantity we are attempting to
estimate.

Example 13.11 (Integer power of a mean). For a given positive integer r , consider the
kernel

h(x1, . . . , xr ) = x1x2 · · · xr .
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This leads to the U -statistic

U = 1(n
r

) ∑
β

Xβ1 Xβ2 · · · Xβr .

Hence, U has expected value µr where µ = E(X1).
For instance, for r = 2,

U = 2

n(n − 1)

∑
j<k

X j Xk = 1

n(n − 1)




(
n∑

j=1

X j

)2

−
n∑

j=1

X2
j




= 1

n − 1

[
n X̄2 − 1

n

n∑
j=1

X2
j

]
. �

Clearly, a U -statistic of order r is an average of the values h(Xβ1 , . . . , Xβr ). Further-
more, since X1, . . . , Xn have an exchangeable distribution and h is a symmetric function,
the variables h(Xβ1 , . . . , Xβr ) as β varies are identically distributed. However, they are
not independent so that it does not follow immediately that U follows the central limit
theorem.

The asymptotic normality of a U -statistic may be established by a general technique
known as the projection method. Consider a real-valued random variable T and consider a
collection of real-valued random variables V . The projection of T onto V is that element of
V̂ of V that minimizes E[(T − V )2] over V ∈ V . Hence, T − V̂ is as small as possible, in
a certain sense. Writing T = V̂ + T − V̂ , the asymptotic properties of T may be obtained
from those of V̂ , provided that T − V̂ is negligible. Clearly, for this approach to be effective,
the class of random variables V must be chosen so that the asymptotic properties of V̂ are
available. For instance, a commonly used class of random variables are those that are sums
of independent identically distributed random variables; the resulting projection is known
as the Hájek projection. See, for example, van der Vaart (1998, Chapter 11) for further
details on projections.

Let U denote a U-statistic of order r based on a kernel h and let

θ = E[h(X1, . . . , Xr )].

Let

Û =
n∑

j=1

E(U | X j );

note that

Û − nθ =
n∑

j=1

[E(U | X j ) − θ ]

is of the form
∑n

j=1 g(X j ) with g taken to be g(x) = E(U | X1 = x) − θ .

The following argument shows that Û − nθ is the projection of U − θ onto the space of
random variables of the form

∑n
j=1 g(X j ) for some function g such that E[g(X1)2] <

∞. First note that (U − θ ) − (Û − nθ ) is uncorrelated with any statistic of the form
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∑n
j=1 g0(X j ), where g0 is a function on X such that E[g0(X1)2] < ∞:

Cov

[
(U − θ ) − (Û − nθ ),

n∑
j=1

g0(X j )

]

=
n∑

j=1

E[(U − θ )g0(X j )] −
n∑

j=1

E{[E(U | X j ) − θ ]g0(X j )}

=
n∑

j=1

{E[Ug0(X j )] − E[E(U | X j )g0(X j )]}

=
n∑

j=1

{E[Ug0(X j )] − E[Ug0(X j )]} = 0.

It follows that, for any random variable W of the form
∑n

j=1 g0(X j ), where g0 satisfies
E[g0(X j )2] < ∞,

E{[(U − θ ) − W ]2} = E{[(U − θ ) − (Û − nθ ) + (Û − nθ ) − W ]2}
= E{[(U − θ ) − (Û − nθ )]2} + E{[(Û − nθ ) − W ]2}.

Hence,

E{[(U − θ ) − (Û − nθ )]2} ≤ E{[(U − θ ) − W ]2

so that, in terms of expected squared distance, Û − nθ is closer to U − θ than is W .

Example 13.12 (Sample mean). Consider a U -statistic based on the kernel

h(x1, x2) = 1

2
(x1 + x2).

Then U = X̄ and θ = E(X1). Clearly, the U -statistic approach is not needed here and this
example is included for illustration only.

Writing

U = 1

n(n − 1)

∑
j<k

(X j + Xk),

we see that

E(X j + Xk |Xi ) =
{

Xi + θ if i = j or i = k
2θ otherwise

.

Hence,

E(U | Xi ) = 1

n(n − 1)
[(n − 1)(Xi + θ ) + (n − 1)22θ ] = 1

n
Xi + (n − 1)θ

and

Û =
n∑

j=1

E(U | X j ) = X̄ + (n − 1)θ.

It follows that

Û − nθ = X̄ − θ = U − θ ;

this is not surprising since U − θ itself is of the form
∑n

j=1 g(X j ). �
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Since E(U | X j ) is a function of X j , Û is a sum of independent identically distributed
random variables; hence, under standard conditions, Û follows the central limit theorem.
The asymptotic normality of U follows provided that U − Û is sufficiently small in an
appropriate sense. The following theorem gives the details of this approach.

Theorem 13.5. Let X1, X2, . . . , Xn denote independent, identically distributed real-valued
random variables and let

U = 1(n
r

) ∑
h(Xβ1 , . . . , Xβr )

denote a U-statistic with kernel h, where

E[h(X1, X2, . . . , Xr )2] < ∞.

Then
√

n(U − θ )
D→ N (0, σ 2) as n → ∞;

here

θ = E[h(X1, X2, . . . , Xr )]

and

σ 2 = r2 Cov[h(X1, X2, . . . , Xr ), h(X1, X̃2, . . . , X̃r )],

where X1, X2, . . . , Xr , X̃2, . . . , X̃r are independent and identically distributed.

Proof. Let

ĥ(x) = E[h(x, X2, . . . , Xr )].

Then, since h is symmetric in its arguments,

E[h(Xβ1 , . . . , Xβr )|Xi = x] =
{

ĥ(x) if i ∈ {β1, . . . , βr }
θ otherwise

.

There are
(n

r

)
terms in the sum defining U and, for any i = 1, . . . , n,

(n−1
r−1

)
of them include

Xi . Hence,

E[U |Xi = x] =
(n−1

r−1

)
(n

r

) ĥ(x) +
(n

r

) − (n−1
r−1

)
(n

r

) θ

= r

n
ĥ(x) + n − r

n
θ.

It follows that

Û = r

n

n∑
i=1

ĥ(Xi ) + (n − r )θ,

or,

Û − nθ = r

n

n∑
i=1

[ĥ(Xi ) − θ ].



P1: JZP
052184472Xc13 CUNY148/Severini May 24, 2005 2:54

420 Approximations to the Distributions of More General Statistics

Note that

ĥ(X1) − θ, . . . , ĥ(Xn) − θ

are independent, indentically distributed random variables each with mean 0 and variance

σ 2
1 = E{[ĥ(X1) − θ ]2}.

Note that

E{[ĥ(X1) − θ ]2} = E[(E[h(X1, X2, . . . , Xr )|X1] − θ )2]

= E{E[h(X1, X2, . . . , Xr ) − θ |X1]E[h(X1, X̃2, . . . , X̃r ) − θ |X1]}
= Cov[h(X1, X2, . . . , Xr ), h(X1, X̃2, . . . , X̃r )] ≡ σ 2/r2.

Hence,

√
n(Û − nθ )

D→ N (0, σ 2) as n → ∞.

The result now follows provided that

√
n[(Û − nθ ) − (U − θ )]

p→ 0 as n → ∞. (13.1)

Note that

E[(Û − nθ ) − (U − θ )] = 0;

hence, (13.1) holds, provided that

nVar(U − Û ) → 0 as n → ∞.

Now,

Cov(U, Û ) = Cov

(
U,

n∑
i=1

E(U |Xi )

)
=

n∑
i=1

Cov(U, E(U |Xi ))

and

Cov(U, E(U |Xi )) = E[UE(U |Xi )] − E(U )2 = E{E[UE(U |Xi )|Xi ]} − E[E(U |Xi )]
2

= E[E(U |Xi )
2] − E[E(U |Xi )]

2

= Var[E(U |Xi )]

so that

Cov(U, Û ) = Var(Û ).

It follows that

Var(U − Û ) = Var(U ) − Var(Û ).

Since

U = 1(n
r

) ∑
β

h(Xβ1 , . . . , Xβr ),

Var(U ) = 1(n
r

)2

∑
β

∑
β̃

Cov[h(X β̃1
, . . . , X β̃r

), h(Xβ1 , . . . , Xβr )].
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Note that Cov[h(X β̃1
, . . . , X β̃r

), h(Xβ1 , . . . , Xβr )] depends on how many indices appear in
both

{β̃1, . . . , β̃r } and {β1, . . . , βr }.

Of the
(n

r

)2
total subsets of {β̃1, . . . , β̃r } and {β1, . . . , βr } under consideration, the number

with m indices in common is (
n

r

)(
r

m

)(
n − r

r − m

)
.

This result may be obtained by noting that there are
(n

r

)
ways to choose the first subset and,

given the first subset, the second must be chosen in such a way that m indices are selected
from the r indices in the first subset.

Let σm = Cov[h(X β̃1
, . . . , X β̃r

), h(Xβ1 , . . . , Xβr )] when there are m indices in common.
Then

Var(U ) =
r∑

m=1

( r
m

)(n−r
r−m

)
(n

r

) σm ≡
r∑

m=1

Qmσm .

For m = 1,

Q1 =
( r

m

)(n−r
r−m

)
(n

r

) = r2[(n − r )!]2

n!(n − 2r + 1)!
= r2 (n − r ) · · · (n − r − (r − 2))

n · · · (n − (r − 1))
.

Since there are r − 1 terms in the numerator of this ratio and r terms in the denominator,
Q1 = O(1/n). For m = 2,

Q2 =
(r

2

)(n−r
r−2

)
(n

r

) =
(r

2

)(n−r
r−2

)
(r

1

)(n−r
r−1

) =
[(r

1

)(n−r
r−1

)
(n

r

)
]

= (r − 1)2

2

1

n − 2r + 2
Q1 = O(n−2).

In general, it is straightforward to show that

Qm+1

Qm
= (r − m)2

(m + 1)

1

n − 2r + m + 1

so that Qm = O(n−m), m = 1, . . . , r . It follows that

Var(U ) = r
(n−r

r−1

)
(n

r

) σ1 + O(n−2) = r2 [(n − r )!]2

n!(n − 2r + 1)!
σ1 + O(n−2).

Note that

[(n − r )!]2

n!(n − 2r + 1)!
= (n − r )(n − r − 1) · · · (n − 2r + 2)

n(n − 1) · · · (n − r + 1)

= 1

n

n − r

n − 1

n − r − 1

n − 2

n − r − (r − 2)

n − (r − 1)
.

Hence,

lim
n→∞ nVar(U ) = r2σ1 ≡ Var(Û ).
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It follows that

nVar(U − Û ) = n[Var(U ) − Var(Û )] → 0 as n → ∞,

proving (13.1). The result follows.

Example 13.13 (Sample variance). Consider the second-order kernel

h(x1, x2) = 1

2
(x1 − x2)2.

Recall that the corresponding U -statistic is the sample variance,

S2 = 1

n − 1

n∑
j=1

(X j − X̄ )2

and θ = Var(X1); see Example 13.10. Assume that E(X4
1) < ∞; it follows that

E[h(X1, X2)2] < ∞.

Then
√

n(S2 − θ ) converges in distribution to a random variable with a normal distribu-
tion with mean 0 and variance

σ 2 = Cov[(X1 − X2)2, (X1 − X3)2]

= Cov[(X1 − µ − X2 + µ)2 + (X1 − µ − X3 + µ)2]

= Cov[(X1 − µ)2, (X1 − µ)2]

= E[(X1 − µ)4] − τ 4,

where µ = E(X1) and τ 2 = Var(X1). �

Example 13.14 (Integer power of a mean). For some r = 1, 2, . . . , consider the kernel
of order r given by

h(x1, . . . , xr ) = x1x2 · · · xr .

Then θ = µr where µ = E(X1). Assume that E(X2
1) < ∞; it follows that

E[h(X1, . . . , Xr )2] < ∞.

It follows from Theorem 13.5 that the corresponding U -statistic is such that
√

n(U − θ )
converges in distribution to a random variable with a normal distribution with mean 0 and
variance

σ 2 = r2 Cov(X1 X2 · · · Xr , X1 X̃2 · · · X̃r ) = r2
[
E

(
X2

1

)
µ2(r−1) − µ2r

] = r2τ 2µ2(r−1),

where τ 2 = Var(X1). �

13.5 Rank Statistics

Let X1, X2, . . . , Xn denote independent, real-valued random variables and denote the ranks
of the sample by R1, R2, . . . , Rn . Recall that, under the assumption that the X j are identi-
cally distributed with an absolutely continuous distribution, the vector of ranks is uniformly
distributed over the set of all permutations of {1, 2, . . . , n}. Since this is true for any abso-
lutely continuous distribution of X1, statistical procedures based on R1, R2, . . . , Rn are
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distribution-free in the sense that the properties of the procedures do not require additional
assumptions regarding the distribution of X1.

Example 13.15 (Rank correlation statistic). Let X1, X2, . . . , Xn denote independent, ran-
dom variables and let t1, . . . , tn denote a sequence of unique constants; without loss of gen-
erality we may assume that t1 < t2 < · · · < tn . In order to investigate the possibility of a
relationship between the sequence X1, X2, . . . , Xn and the sequence t1, t2, . . . , tn we might
consider the statistic

∑n
j=1 j R j where R1, R2, . . . , Rn denote the ranks of X1, . . . , Xn .

Note that the vector (1, 2, . . . , n) is the vector of ranks corresponding to t1, t2, . . . , tn .
Note that since

∑n
j=1 j ,

∑n
j=1 j2,

∑n
j=1 R j , and

∑n
j=1 R2

j are all deterministic functions
of n,

∑n
j=1 j R j is a deterministic function of the correlation between the vector of ranks

(R1, . . . , Rn) and the vector (1, . . . , n). �

In this section, we consider the asymptotic distribution of linear functions of the ranks
based on independent identically distributed random variables. For each fixed n, these
ranks constitute a random permutation of the integers from 1 to n; hence, in studying the
asymptotic properties of such statistics, we need to use a triangular array in order to express
the ranks. Here we will use Yn1, . . . , Ynn to denote the ranks based on a sample of size n.

We are often interested in statistics of the form
∑n

j=1 anj Ynj where, for each n = 1, 2, . . . ,

an1, . . . , ann are known constants. More generally, we consider a statistic of the form

Sn =
n∑

j=1

anj g

(
Ynj

n

)
,

where g is a known function on [0, 1]. The following theorem gives a central limit theorem
for this type of statistic.

Theorem 13.6. Let (Yn1, Yn2, . . . , Ynn) denote a random permutation of (1, 2, . . . , n). For
each n = 1, 2, . . . , let anj , j = 1, 2, . . . , n denote a sequence of constants satisfying

lim
n→∞

1

n

n∑
j=1

|anj − ān|2 = c2,

for some constant c, and

lim
n→∞

∑ |anj − ān|3[ ∑
(anj − ān)2

] 3
2

= 0, (13.2)

where

ān = 1

n

n∑
j=1

anj .

Let g denote a bounded function on [0, 1] such that g is continuous almost everywhere.
Define

Sn =
n∑

j=1

anj g

(
Ynj

n

)
.
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Then

Sn − E(Sn)

[Var(Sn)]
1
2

→ N (0, 1) as n → ∞.

We will prove this theorem through a series of lemmas. The first lemma considers a
statistic of the form Sn , except that Ynj/n is replaced by a random variable uniformly
distributed on (0, 1). Note that Ynj/n is uniformly distributed on the set {1/n, 2/n, . . . , 1}.

Lemma 13.1. Let U1, U2, . . . , Un denote independent, random variables each uniformly
distributed on [0, 1] and let

Tn =
n∑

j=1

(anj − ān)g(U j ) + nγnān,

where

γn = 1

n

n∑
j=1

g( j/n).

Then, under the conditions of Theorem 13.6,

Tn − E(Tn)

[Var(Tn)]
1
2

D→ N (0, 1) as n → ∞.

Proof. Let σ 2 denote the variance of g(U1). Then

Var(Tn) = σ 2
∑

(anj − ān)2.

Define

Znj = (anj − ān)(g(U j ) − E[g(U j )]), j = 1, . . . , n.

Then

Tn − E(Tn) =
n∑

j=1

Znj .

Since g is bounded,

|Znj | ≤ 2M |anj − ān|,
where M = sup0≤t≤1 |g(t)|, and

E[|Znj |3] ≤ 8M3|anj − ā|3.
Hence, ∑n

j=1 E[|Znj |3][ ∑n
j=1 Var(Znj )

] 3
2

≤ 8M3

σ 3

∑n
j=1 |anj − ān|3[ ∑n
j=1 |anj − ā|2] 3

2

→ 0

by condition (13.2). The result now follows from the central limit theorem for triangular
arrays (Theorem 12.2).
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The second lemma shows that, as n → ∞, the random variable g(R1/n), where R1 is
uniformly distributed on {1, . . . , n}, is well-approximated by g(U1), where U1 is uniformly
distributed on (0, 1).

Lemma 13.2. Let U1, U2, . . . , Un denote independent, random variables, each uniformly
distributed on (0, 1), and let R1 denote the rank of U1. Then, under the conditions of
Theorem 13.6,

E

[∣∣∣∣g(U1) − g

(
R1

n

)∣∣∣∣
2
]

→ 0 as n → ∞.

Proof. Note that

E

[∣∣∣∣g(U1) − g

(
R1

n

)∣∣∣∣
2
]

= E[g(U1)2] + E

[
g

(
R1

n

)2
]

− 2E

[
g(U1)g

(
R1

n

)]
,

E[g(U1)2] =
∫ 1

0
g(x)2 dx

and

E

[
g

(
R1

n

)2
]

= 1

n

n∑
j=1

g( j/n)2.

Under the conditions of Theorem 13.6, g is Riemann-integrable so that

lim
n→∞ E

[
g

(
R1

n

)2
]

= lim
n→∞

1

n

n∑
j=1

g( j/n)2 =
∫ 1

0
g(x)2 dx .

Hence, the result follows provided that

lim
n→∞ E[g(U1)g(R1/n)] =

∫ 1

0
g(x)2 dx .

Note that

E

[
g(U1)g

(
R1

n

)]
= E

{
E

[
g(U1)g

(
R1

n

)
|R1

]}
= E

{
g

(
R1

n

)
E[g(U1)|R1]

}
.

Given that R1 = r , U1 is the r th-order statistic from U1, . . . , Un . Hence,

E[g(U1)|R1 = r ] = E[g(U(r ))|R1 = r ].

By Theorem 7.11, the order statistics and ranks are independent. Hence,

E[g(U(r ))|R1 = r ] = E[g(U(r ))] =
∫ 1

0

n!

(r − 1)!(n − r )!
xr−1(1 − x)n−r g(x) dx

so that E[g(U(r ))] = E[g(Br,n−r+1)], where Br,s denotes a random variable with a beta
distribution with parameters r and s; see, Example 7.24. It follows that

E

[
g(U1)g

(
R1

n

)]
= E

[
g(BR1,n−R1+1)g

(
R1

n

)]
.
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Since R1 is uniformly distributed on {1, . . . , n},

E

[
g(U1)g

(
R1

n

)]
= 1

n

n∑
j=1

g

(
j

n

)
E[g(B j,n− j+1)]

= 1

n

n∑
j=1

g

(
j

n

) ∫ 1

0

n!

( j − 1)!(n − j)!
x j−1(1 − x)n− j g(x) dx

=
∫ 1

0

{
n∑

j=1

1

n

n!

( j − 1)!(n − j)!
x j−1(1 − x)n− j g

(
j

n

)}
g(x) dx

≡
∫ 1

0
gn(x)g(x) dx,

where

gn(x) =
n∑

j=1

1

n

n!

( j − 1)!(n − j)!
x j−1(1 − x)n− j g

(
j

n

)
.

Note that

gn(x) =
n−1∑
j=0

(
n − 1

j

)
x j (1 − x)n−1− j g

(
j + 1

n

)
= E

[
g

(
Yn(x) + 1

n

)]
,

where Yn(x) has a binomial distribution with parameters n − 1 and x . It is straightforward
to show that

Yn(x) + 1

n
p→ x as n → ∞

for all 0 ≤ x ≤ 1. Let x0 denote a point in [0, 1] at which g is continuous. Then, by Theo-
rem 11.7,

g

(
Yn(x0) + 1

n

)
p→ g(x0) as n → ∞,

which, since g(x0) is a constant, is equivalent to

g

(
Yn(x0) + 1

n

)
D→ g(x0) as n → ∞.

Since g is a bounded function, it follows that

lim
n→∞ E

[
g

(
Yn(x0) + 1

n

)]
= g(x0).

That is,

lim
n→∞ gn(x) = g(x)

for all x at which g is continuous.
Recall that g is continuous almost everywhere so that gn(x) → g(x) as n → ∞, for

almost all x . Furthermore,

sup
x∈[0,1]

|gn(x)| ≤ sup
x∈[0,1]

|g(x)| < ∞.
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It now follows from the dominated convergence theorem (see Appendix 1) that

lim
n→∞

∫ 1

0
gn(x)g(x) dx =

∫ 1

0
g(x)2 dx .

The result follows.

Lemma 13.2 can now be used to show that a function of (R1/n, . . . , Rn/n), where
(R1, . . . , Rn) is a random permutation of (1, . . . , n), can be approximated by an analogous
statistic with (R1/n, . . . , Rn/n) replaced by (U1, . . . , Un), where U1, . . . , Un are indepen-
dent, identically distributed random variables, each uniformly distributed on (0, 1).

Lemma 13.3. Define U1, U2, . . . , Un as in Lemma 13.2 and let the ranks of U1, U2, . . . , Un

be denoted by R1, . . . , Rn. Let γn be defined as in Lemma 13.1, let

S̃n =
n∑

j=1

(anj − ān)g

(
R j

n

)
+ nγnān

and define Tn as in the statement of Lemma 13.1. Then, under the conditions of Theorem 13.6,

lim
n→∞

E[(Tn − S̃n)2]

Var(Tn)
= 0.

Proof. Since

Tn − S̃n =
n∑

j=1

(anj − ān)

[
g(U j ) − g

(
R j

n

)]
,

|Tn − S̃n|2 ≤
[

n∑
j=1

|anj − ān|2
] 1

2
[

n∑
j=1

∣∣∣∣g(U j ) − g

(
R j

n

)∣∣∣∣
2
] 1

2

and, using the fact that E(|X | 1
2 ) ≤ E(|X |) 1

2 ,

E[|Tn − S̃n|2] ≤
[

n∑
j=1

|anj − ā j |2
] 1

2

E




[
n∑

j=1

∣∣∣∣g(U j ) − g

(
R j

n

)∣∣∣∣
2
] 1

2




≤
[

n∑
j=1

|anj − ā j |2
] 1

2

E




[
n∑

j=1

∣∣∣∣g(U j ) − g

(
R j

n

)∣∣∣∣
2
] 1

2


 .

Note that

E

[
n∑

j=1

∣∣∣∣g(U j ) − g

(
R j

n

)∣∣∣∣
2
]

= nE

[
|g(U1) − g

(
R1

n

)
|2

]
≡ nεn

where, by Lemma 13.2, εn → 0 as n → ∞. Hence,

E[(Tn − S̃n)2]

Var(Tn)
≤

√
n
√

εn

σ 2
[ ∑

(anj − ān)2
] 1

2

.
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The result now follows from the assumption that

lim
n→∞

1

n

n∑
j=1

|anj − ān|2 = c2.

Lemma 13.4 is a technical result on convergence in distribution. It shows that if a
sequence Z1, . . . , Zn , appropriately standardized, converges in distribution to a standard
normal random variable, and Yn approximates Zn in the sense of Lemma 13.3, then Yn is
also asymptotically distributed according to a standard normal distribution.

Lemma 13.4. Let Z1, Z2, . . . and Y1, Y2, . . . denote sequences of real-valued random vari-
ables such that, for all n = 1, 2, . . . , E(Z2

n) < ∞ and E(Y 2
n ) < ∞.

If

Zn − E(Zn)

[Var(Zn)]
1
2

D→ N (0, 1) as n → ∞

and

lim
n→∞

E[(Zn − Yn)2]

Var(Zn)
= 0,

then

Yn − E(Yn)

[Var(Yn)]
1
2

D→ N (0, 1) as n → ∞.

Proof. For each n = 1, 2, . . . , let Dn = Yn − Zn so that Yn = Zn + Dn . Under the con-
ditions of the lemma,

lim
n→∞

Var(Dn)

Var(Zn)
= 0

and, hence, by the Cauchy–Schwarz inequality,

lim sup
n→∞

Cov(Zn, Dn)2

Var(Zn)2
≤ lim

n→∞
Var(Dn)

Var(Zn)
= 0.

Since

Var(Yn)

Var(Zn)
= Var(Zn + Dn)

Var(Zn)
= 1 + Var(Dn)

Var(Zn)
+ 2Cov(Zn, Dn)

Var(Zn)
,

it follows that

lim
n→∞

Var(Yn)

Var(Zn)
= 1.

Hence, by Corollary 11.4, it suffices to show that

Yn − E(Yn)

[Var(Zn)]
1
2

D→ N (0, 1) as n → ∞

and, since

Yn − E(Yn)

[Var(Zn)]
1
2

= Zn − E(Zn)

[Var(Zn)]
1
2

+ Dn − E(Dn)

[Var(Zn)]
1
2

,
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it suffices to show that

Dn − E(Dn)

[Var(Zn)]
1
2

p→ 0 as n → ∞.

The result now follows from Chebychev’s inequality, together with the fact that

lim
n→∞

Var(Dn)

Var(Zn)
= 0.

Lemmas 13.1–13.4 can now be used to prove Theorem 13.6. The argument proceeds as
follows. Let Sn be defined as in Theorem 13.6. Then Sn − E(Sn) is simply S̃n , as defined
in Lemma 13.3. By Lemma 13.3, S̃n is well-approximated by Tn , as defined in Lemma
13.1. By Lemma 13.1, Tn is asymptotically normally distributed and, by Lemma 13.4, this
implies asymptotic normality for S̃n and, hence, for Sn . The details are given in the following
proof.

Proof of Theorem 13.6. Note that

E(Sn) =
n∑

j=1

anj E

[
g

(
Ynj

n

)]
=

n∑
j=1

anj E

[
g

(
Yn1

n

)]
= nān

1

n

n∑
j=1

g

(
j

n

)
= nānγn.

Hence,

Sn − E(Sn) = S̃n

and

Var(Sn) = Var(S̃n),

where S̃n is given in the statement of Lemma 13.3. Hence, it suffices to show that

S̃n

[Var(S̃n)]
1
2

→ N (0, 1) as n → ∞.

Define Tn as the statement of Lemma 13.1; by Lemmas 13.1 and 13.3,

Tn − E(Tn)

[Var(Tn)]
1
2

D→ N (0, 1), n → ∞, and lim
n→∞

E[(Tn − S̃n)2]

Var(Tn)
= 0.

The result now follows from Lemma 13.4.

In the course of proving Theorem 13.6 we have derived an expression for E(Sn), as well
as approximations to Var(Sn). These are given in Corollary 13.5; the proof is left as an
exercise.

Corollary 13.5. Under the condtions of Theorem 13.6,
√

12(Sn − nānγn)

c
√

n
D→ N (0, 1) as n → ∞
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and
√

12(Sn − nānγn)[ ∑n
j=1(anj − ān)2

] 1
2

D→ N (0, 1) as n → ∞,

where

γn = 1

n

n∑
j=1

γ

(
j

n

)
.

Example 13.16 (Rank correlation statistic). Let R1, . . . , Rn denote the ranks of a set of
independent, identically distributed random variables, each with an absolutely continuous
distribution. Consider the statistic

n∑
j=1

j R j ,

which is a determinstic function of the rank correlation statistic; see Example 13.15. In
order to use Theorem 13.6 above, we will consider the equivalent statistic

Sn = 1

n2

n∑
j=1

j R j ,

which is of the form
n∑

j=1

anj g

(
Ynj

n

)

with g(u) = u, anj = j/n, and where, for each n, Yn1, . . . , Ynn is a random permutation of
{1, . . . , n}.

It is straightforward to show that

ān = 1

2

n + 1

n

and that
n∑

j=1

|anj − ān|2 = n2 − 1

12n
;

hence, c2 = 1/12. Since |anj − ān| ≤ 1/2, it follows that condition (13.2) is satisfied.
Note that

γn = 1

n

n∑
j=1

j

n
= n + 1

2n
.

It follows from Corollary 13.5 that

Sn − (n + 1)/2√
n/12

D→ N (0, 1) as n → ∞. �

Example 13.17 (Two-sample rank statistic). Let R1, R2, . . . , Rn denote the ranks
of n independent, identically distributed random variables, where n = n1 + n2, and
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consider the statistic

Sn =
∑n1

j=1 R j

n1
−

∑n2
j=1 Rn1+ j

n2
.

This statistic may be written in the form

n∑
j=1

anj R j/n,

where

anj =
{

n/n1 if j = 1, . . . , n1

−n/n2 if j = n1 + 1, . . . , n1 + n2
.

Then

n∑
j=1

anj = 0

and

n∑
j=1

a2
nj = n2

n1
+ n2

n2
.

Suppose that

lim
n→∞

n1

n
= q,

where 0 < q < 1. Then the constant c2, defined in Theorem 13.6, is given by

c2 = 1

q(1 − q)
.

Note that ∑n
j=1 |anj |3[∑n
j=1 a2

nj

] 3
2

= n2/n2
1 + n2/n2

2

[n/n1 + n/n2]
3
2

1√
n

so that condition (13.2) of Theorem 13.6 holds. It follows that

Sn

Var(Sn)
1
2

D→ N (0, 1) as n → ∞.

Using Corollary 13.5, we also have that

[12q(1 − q)]
1
2 Sn/

√
n

D→ N (0, 1) as n → ∞
and that [

12n1n2

n3

] 1
2

Sn
D→ N (0, 1) as n → ∞. �



P1: JZP
052184472Xc13 CUNY148/Severini May 24, 2005 2:54

432 Approximations to the Distributions of More General Statistics

13.6 Exercises

13.1 Let Y1, Y2, . . . denote independent, identically distributed random variables such that

Pr(Y1 = 1) = 1 − Pr(Y1 = 0) = θ

for some 0 < θ < 1. Find the asymptotic distribution of

log

(
Ȳn

1 − Ȳn

)
,

where Ȳn = ∑n
j=1 Y j/n.

13.2 Let Y1, Y2, . . . denote independent, identically distributed random variables each normally
distributed with mean µ and standard deviation σ , µ ∈ R, σ > 0. Let Ȳn = ∑n

j=1 Y j , S2
n =∑n

j=1(Y j − Ȳ )2/n and let z be a fixed real number. Find the asymptotic distribution of

�

(
z − Ȳn

Sn

)
.

13.3 Prove Corollary 13.1.

13.4 Find the variance-stabilizing transformation for the binomial distribution.

13.5 Find the variance-stabilizing transformation for the exponential distribution.

13.6 Let Y1, Y2, . . . denote independent, identically distributed random variables, each distributed
according to a Poisson distribution with mean θ , θ > 0. Let k, j , k �= j denote nonnegative
integers and let Ȳn = ∑n

j=1 Y j . Find the asymptotic distribution of(
Ȳ j

n exp(−Ȳn)/j!
Ȳ k

n exp(−Ȳn)/k!

)
.

13.7 Let Y1, Y2, . . . denote independent, identically distributed random variables each normally
distributed with mean µ and standard deviation σ , µ > 0, σ > 0. Let Ȳn = ∑n

j=1 Y j ,
S2

n = ∑n
j=1(Y j − Ȳ )2/n. Find the asymptotic distribution of Sn/Ȳn .

13.8 Let X1, X2, . . . denote a sequence of d-dimensional random vectors such that, for some vec-
tor µ,

√
n(Xn − µ)

D→ Nd (0, �),

where � is a positive definite matrix with |�| < ∞.
Let g :Rd → Rk , k ≤ d, denote a continuously differentiable function. Let A denote a nonran-
dom k × k matrix. Find conditions on A and g′(µ) such that

n(g(Xn) − g(µ))T A(g(Xn) − g(µ)
D→ W,

where W has a chi-squared distribution with ν degrees of freedom. Find ν in terms of g′(µ)
and A.

13.9 Let X1, . . . , Xn denote independent, identically distributed random variables such that all
moments of X j exist. Let g denote a real-valued, twice-differentiable function defined on the
real line. Let µ = E(X j ). Find a large-sample approximation to the distribution of h(X̄ ) for the
case in which h′(µ) = 0 and h′′(µ) �= 0. Make whatever (reasonable) assumptions are required
regarding h.

13.10 Let X1, X2, . . . denote independent, standard normal random variables. Find the asymptotic
distribution of cosh(X̄ n), X̄ n = ∑n

j=1 X j/n.

13.11 Prove Corollary 13.3.

13.12 Let X1, X2, . . . , Xn denote independent, identically distributed random variables such that X1

has a standard exponential distribution and let Xn(1), . . . , Xn(n) denote the order statistics of
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X1, . . . , Xn . Let kn and mn , n = 1, 2, . . . , denote sequences of nonnegative integers such that
kn ≤ n and mn ≤ n for all n,

√
n

(
kn

n
− q1

)
→ 0 as n → ∞

and

√
n

(mn

n
− q2

)
→ 0 as n → ∞

for some q1, q2 in (0, 1), q1 �= q2. Find the asymptotic distribution of Xn(kn )/Xn(mn ).

13.13 Let X1, X2, . . . , Xn denote independent, identically distributed standard normal random vari-
ables and let Xn(1), . . . , Xn(n) denote the order statistics of X1, . . . , Xn . Let kn , n = 1, 2, . . . ,

denote a sequence of nonnegative integers such that kn ≤ n/2 for all n and

√
n

(
kn

n
− q

)
→ 0 as n → ∞

for some 0 < q < 1. Find the asymptotic distribution of

Xn(kn ) + Xn(mn )

2
,

where mn = n − kn , n = 1, 2, . . ..

13.14 Prove Corollary 13.4.

13.15 Let X1, X2, . . . , Xn denote independent, identically distributed random variables each uni-
formly distributed on (0, 1) and let Xn(1), . . . , Xn(n) denote the order statistics of X1, . . . , Xn .
Let kn , n = 1, 2, . . . , denote a sequence of nonnegative integers such that kn ≤ n for all n and

√
n

(
kn

n
− q

)
→ 0 as n → ∞

for some 0 < q < 1. Let g : (0, 1) → R denote a differentiable, strictly increasing function.
Find the asymptotic distribution of g(Xn(kn )) first by finding the asymptotic distribution of
Xn(kn ) and using the δ-method and then by finding the asymptotic distribution of Yn(kn ) where
Y j = g(X j ), j = 1, . . . , n.

13.16 Let X1, . . . , Xn denote independent, identically distributed random variables such that X1 has
an absolutely continuous distribution with density function

exp(−x)

[1 + exp(−x)]2
, −∞ < x < ∞.

Let

Yn = max
1≤ j≤n

X j .

Find a constant α and a sequence of constants β1, β2, . . . such that nα(Yn − β) has a nonde-
generate limiting distribution.

13.17 Let X1, X2, . . . denote independent, identically distributed real-valued random variables such
that X1 has a standard exponential distribution. Let

U = 2

n(n − 1)

∑
1≤i< j≤n

|Xi − X j |;

this statistic is known as Gini’s mean difference and is a measure of dispersion. Find the
asymptotic distribution of U .
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13.18 Let X1, X2, . . . denote independent, identically distributed real-valued random variables such
that the distribution of X1 is absolutely continuous and symmetric about 0. Let

U = 1

n(n − 1)

∑
1≤i< j≤n

I{Xi +X j ≤0}.

Find the asymptotic distribution of U .

13.19 Let X1, X2, . . . denote independent, identically distributed real-valued random variables such
that E(X 4

1) < ∞ and let σ 2 denote the variance of X1. Construct a U -statistic with expected
value equal to σ 4; find the asymptotic distribution of this statistic.

13.20 Let

U1 = 1(n
r

) ∑
β

h1(Xβ1 , . . . , Xβ2 )

and

U2 = 1(n
r

) ∑
β

h2(Xβ1 , . . . , Xβ2 )

denote two U -statistics, of the same order, based on the same set of observations. Find the
asymptotic distribution of (U1, U2).

13.21 Prove Corollary 13.5.

13.22 For each n = 1, 2, . . . , let Yn1, . . . , Ynn denote the ranks of n independent, identically dis-
tributed real-valued random variables, each with an absolutely continuous distribution. Find
the asymptotic distribution of

∑n
j=1 jY 2

nj .

13.7 Suggestions for Further Reading

The δ-method, presented in Section 13.2, is used often in statistics; see, for example, Lehmann (1999,
Chapters 2 and 5), Rao (1973, Chapter 6), and Serfling (1980, Chapter 3) for further discussion.
The asymptotic properties of order statistics are considered in Ferguson (1996, Chapters 13–15), Sen
and Singer (1993, Chapter 4), and Serfling (1980, Chapters 2 and 8); a comprehensive treatment of
extreme order statistics is given in Galambos (1978).

The discussion of U -statistics in Section 13.4 is based on van der Vaart (1998, Chapters 11 and 12);
see also Lehmann (1999, Chapter 6) Sen and Singer (1993, Chapter 5), and Serfling (1980, Chapter
5). Section 13.5 on rank statistics is based on Port (1994, Section 61.1); see also Ferguson (1996,
Chapter 12) and Serfling (1980, Chapter 9).
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14

Higher-Order Asymptotic Approximations

14.1 Introduction

In Chapter 12, approximations to the distributions of sample means were derived; the normal
approximation F̂(x) to the distribution function Fn(x) of the normalized sample mean has
the property that, for each x ,

lim
n→∞ Fn(x) = F̂(x);

alternatively, we may write this as

Fn(x) = F̂(x) + o(1) as n → ∞.

That is, the error in the approximation tends to 0 as n → ∞. This approximation is known
as a first-order asymptotic approximation.

In this chapter, we consider higher-order asymptotic approximations to distribution func-
tions and density functions. For instance, in Section 14.2, an Edgeworth series approxima-
tion to the distribution function of a sample mean is derived that has the property that

Fn(x) = F̂n(x) + o

(
1√
n

)
as n → ∞.

In this case, not only does the error in the approximation tend to 0 as n → ∞,
√

n times the
error approaches 0 as n → ∞. The approximation F̂n is known as a second-order asymptotic
approximation. Asymptotic approximations of this type are the subject of this chapter.

14.2 Edgeworth Series Approximations

Let X1, . . . , Xn denote independent, identically distributed, real-valued random vari-
ables with mean µ, standard deviation σ , and characteristic function ϕ(t). Let
Yn = √

n(X̄ n − µ)/σ . Then ϕn(t), the characteristic function of Yn , may be expanded

log ϕn(t) = −1

2
t2 + κ3

6

(i t)3

√
n

+ · · · (14.1)

where κ3 denotes the third cumulant of X1. A first-order approximation to the log ϕn(t) is
given by −t2/2, which corresponds to the log of the characteristic function of the normal
distribution. Hence, to first order, the distribution of Yn may be approximated by the standard
normal distribution.

435
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A higher-order approximation to the distribution of Yn may be obtained by retaining
more terms in the approximation to log ϕn(t). For instance, including the next term in the
expansion (14.1) yields the approximation

−1

2
t2 + κ3

6

(i t)3

√
n

.

We may obtain an approximation to the distribution function of Yn by finding the distribution
function that corresponds to this expansion; the same approach may be used to approximate
the density function of Yn . This is the idea behind the Edgeworth series approximations.

The following theorem gives a formal proof of this result.

Theorem 14.1. For each n = 1, 2, . . . , let Xn denote a real-valued random variable with
characteristic function ϕn satisfying

log ϕn(t) = −1

2
t2 + κn3

6
√

n
(i t)3 + Rn(t)

where, for each t ∈ R,

lim
n→∞

Rn(t)√
n

= 0

and

lim
n→∞ κn3 = κ3

for some finite constant κ3.
Assume that the following conditions hold:

(i) Given ε > 0 there exists a δ > 0 and a positive integer N such that

|Rn(t)| ≤ ε
|t |3√

n
for |t | ≤ δ

√
n and n ≥ N .

(ii) For any δ > 0, ∫
|t |>δ

√
n
|ϕn(t)| dt = o

(
1√
n

)
as n → ∞.

Let pn denote the density function of Xn and let

p̂n(x) = φ(x) + κ3

6
√

n
H3(x)φ(x).

Then

sup
x

|pn(x) − p̂n(x)| = o

(
1√
n

)
.

Let Fn denote the distribution function of Xn and let

F̂n(x) = �(x) − κ3

6
H2(x)φ(x)

1√
n
.

Then

sup
x

|Fn(x) − F̂n(x)| = o

(
1√
n

)
.
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Proof. Consider the first part of the theorem. Note that the Fourier transform of p̂n is
ϕ̂n(t)/

√
(2π ), where

ϕ̂n(t) = exp

{
−1

2
t2

} [
1 + κ3

6
√

n
(i t)3

]
.

Let dn = pn − p̂n . Then dn has Fourier transform (ϕn − ϕ̂n)/
√

(2π ). Under the conditions
of the theorem ∫ ∞

−∞
|ϕ̂n(t)| dt < ∞ and

∫ ∞

−∞
|ϕn(t)| dt < ∞

for sufficiently large n. It follows that, using the argument used in Theorem 3.8,

dn(x) = 1

2π

∫ ∞

−∞
[ϕn(t) − ϕ̂n(t)] exp(−i t x) dt

so that

|dn(x)| ≤ 1

2π

∫ ∞

−∞
|ϕn(t) − ϕ̂n(t)| dt.

By assumption, for any δ > 0,∫
|t |>δ

√
n
|ϕn(t)| dt = o

(
1√
n

)

and since clearly ∫
|t |>δ

√
n
|ϕ̂n(t)| dt = o

(
1√
n

)
,

it follows that, for any δ > 0,∫
|t |>δ

√
n
|ϕn(t) − ϕ̂n(t)| dt = o

(
1√
n

)
as n → ∞.

Hence, it suffices to show that, for some δ > 0,∫
|t |≤δ

√
n
|ϕn(t) − ϕ̂n(t)| dt = o

(
1√
n

)
as n → ∞.

Note that

ϕn(t) − ϕ̂n(t) = exp

{
−1

2
t2

} [
exp

{
κn3

6
√

n
(i t)3 + Rn(t)

}
− 1 − κ3

6
√

n
(i t)3

]

and, using Lemma A2.2,

|ϕn(t) − ϕ̂n(t)| ≤ exp

{
−1

2
t2

} [ |κn3 − κ3|
6
√

n
|t |3 + κ2

n3

72n
|t |6

]
exp

{ |κn3|
6
√

n
|t |3 + |Rn(t)|

}
.

Since κn3 → κ3 as n → ∞, |κn3| ≤ 2|κ3| for sufficiently large n so that, for |t | ≤ δ
√

n,

exp

{
|κn3| |t |

6
√

n
t2

}
≤ exp

{ |κ3|
3

δt2

}
.
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Also, by condition (i), for sufficiently small δ and sufficiently large n,

|Rn(t)| ≤ 1

8

|t |3√
n
, |t | ≤ δ

√
n

≤ 1

8
t2.

Hence, there exists a δ > 0 and a positive integer N such that

exp

{
−1

2
t2 + |κn3|

6
√

n
|t |3 + |Rn(t)|

}
≤ exp

{
−1

4
t2

}
, |t | ≤ δ

√
n.

It follows that∫
|t |≤δ

√
n
|ϕn(t) − ϕ̂n(t)| dt ≤

∫
|t |≤δ

√
n

|κn3 − κ3|
6
√

n
|t |3 exp

{
−1

4
t2

}
dt

+ 1

n

∫
|t |≤δ

√
n

κ2
n3

72
|t |6 exp

{
−1

4
t2

}
dt.

Since κn3 − κ3 → 0 as n → ∞, clearly∫
|t |≤δ

√
n

|κn3 − κ3|
6
√

n
21|t |3 exp

{
−1

4
t2

}
dt = o

(
1√
n

)
;

also, it follows immediately that

1

n

∫
|t |≤δ

√
n

κ2
n3

72
|t |6 exp

{
−1

4
t2

}
dt = O

(
1

n

)
= o

(
1√
n

)
.

Hence, for all sufficiently small δ > 0 and sufficiently large n,

sup
x

|pn(x) − p̂n(x)| = o

(
1√
n

)
, (14.2)

proving the first part of the theorem.
Now consider the distribution functions. Let x and x0 denote continuity points of Fn;

note that F̂n is continuous everywhere. By Theorem 3.3,

Fn(x) − Fn(x0) = 1

2π
lim

T →∞

∫ T

−T

exp(−i t x0) − exp(−i t x)

i t
ϕn(t) dt.

Note that, since F̂n is not necessarily nondecreasing and nonnegative, it is not necessarily
a distribution function. However, the proof of Theorem 3.3 still applies to F̂n provided that
it is bounded, a fact which is easily verified. Hence,

F̂n(x) − F̂n(x0) = 1

2π
lim

T →∞

∫ T

−T

exp(−i t x0) − exp(−i t x)

i t
ϕ̂n(t) dt.

It follows that∣∣[Fn(x) − F̂n(x)] − [Fn(x0) − F̂n(x0)]
∣∣

≤ 1

2π

∣∣∣ lim
T →∞

∫ T

−T

exp(−i t x0) − exp(−i t x)

i t
[ϕn(t) − ϕ̂n(t)] dt

∣∣∣
≤ 1

π
lim

T →∞

∫ T

−T

|ϕn(t) − ϕ̂n(t)|
|t | dt.
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Letting x0 approach −∞, it follows that

|Fn(x) − F̂n(x)| ≤ 1

π
lim

T →∞

∫ T

−T

|ϕn(t) − ϕ̂n(t)|
|t | dt.

Note that, for any δ > 0,∫ T

−T

|ϕn(t) − ϕ̂n(t)|
|t | dt

≤
∫

|t |≤δ
√

n

|ϕn(t) − ϕ̂n(t)|
|t | dt +

∫
|t |>δ

√
n

|ϕn(t)|
|t | dt +

∫
|t |>δ

√
n

|ϕ̂n(t)|
|t | dt

≤
∫

|t |≤δ
√

n

|ϕn(t) − ϕ̂n(t)|
|t | dt + 1

δ
√

n

∫
|t |>δ

√
n
|ϕn(t)| dt + 1

δ
√

n

∫
|t |>δ

√
n
|ϕ̂n(t)| dt

=
∫

|t |≤δ
√

n

|ϕn(t) − ϕ̂n(t)|
|t | dt + o

(
1

n

)
.

Hence,

|Fn(x) − F̂n(x)| ≤
∫

|t |≤δ
√

n

|ϕn(t) − ϕ̂n(t)|
|t | dt + o

(
1

n

)
.

The proof now closely parallels the proof for the densities. Note that, for sufficiently
small δ and sufficiently large n,∫

|t |≤δ
√

n

|ϕn(t) − ϕ̂n(t)|
|t | dt ≤

∫
|t |≤δ

√
n

|κn3 − κ3|
6
√

n
|t |2 exp

{
−1

4
t2

}
dt

+ 1

n

∫
|t |≤δ

√
n

κ2
n3

72
|t |5 exp

{
−1

4
t2

}
dt = o

(
1√
n

)
.

It follows that

lim
n→∞

√
n sup

x
|Fn(x) − F̂n(x)| = 0,

proving the second part of the theorem.

Note that the conditions of Theorem 14.1 are not satisfied when Xn , n = 1, 2, . . . , has a
lattice distribution. For instance, suppose that the range of Xn is {bn j, j = 0, ±1, ±2, . . .}.
Then, according to Theorem 3.11,

ϕn(t) = ϕn(t + 2πk/bn), k = 0, ±1, ±2, . . . .

Hence, for any k = 0, ±1, ±2, . . . ,∫
t>δ

√
n
|ϕn(t)| dt =

∫
t>δ

√
n
|ϕn(t − 2πk/bn)| dt

=
∫

t>δ
√

n−2πk/bn

|ϕn(t)| dt.

By choosing k sufficiently large, it follows that∫
t>δ

√
n
|ϕn(t)| dt ≥

∫
t>0

|ϕn(t)| dt.



P1: JZP
052184472Xc14 CUNY148/Severini May 24, 2005 17:58

440 Higher-Order Asymptotic Approximations

Since a similar result holds for the integral over the region t <δ
√

n, condition (ii) of
Theorem 14.1 implies that ∫ ∞

−∞
|ϕn(t)| dt → 0 as n → ∞.

However, under Theorem 3.8, this implies that the distribution of Xn is absolutely continu-
ous, a contradiction of the assumption that Xn has a lattice distribution. Hence, application
of Theorem 14.1 is restricted to random variables with a nonlattice distribution.

Theorem 14.2 below applies Theorem 14.1 to the case of a normalized sample mean
based on independent, identically distributed random variables, each with an absolutely
continuous distribution.

Theorem 14.2. Let X1, X2, . . . denote independent, identically distributed, real-valued ran-
dom variables such that X1 has an absolutely continuous distribution with characteristic
function ϕ. Assume that

(i) E(X1) = 0, Var(X1) = 1, and E(|X1|3) < ∞
(ii) for some α ≥ 1, ∫ ∞

−∞
|ϕ(t)|α dt < ∞.

Let fn and Fn denote the density and distribution function, respectively, of

n∑
j=1

X j/
√

n.

Then

sup
x

∣∣∣∣ fn(x) −
[
φ(x) + κ3

6
H3(x)φ(x)

1√
n

]∣∣∣∣ = o

(
1√
n

)

and

sup
x

∣∣∣∣Fn(x) −
[
�(x) − κ3

6
H2(x)φ(x)

1√
n

]∣∣∣∣ = o

(
1√
n

)
as n → ∞.

Proof. The characteristic function of
∑n

j=1 X j/
√

n is given by ϕ(t/
√

n)n . Hence, the
result follows from Theorem 14.1 provided that∫

|t |>δ
√

n
|ϕ(t/

√
n)|n dt = o

(
1√
n

)
as n → ∞

and

n log ϕ(t/
√

n) = −1

2
t2 + κ3

6
√

n
(i t)3 + Rn(t) (14.3)

where

Rn(t)√
n

→ 0 as n → ∞
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for each t and given ε > 0 there exist δ > 0 and N such that

|Rn(t)| ≤ ε
|t |3√

n
for |t | ≤ δ

√
n, n ≥ N .

Note that, since the distribution of X1 is absolutely continuous, by Theorem 3.11,

|ϕ(t)| < 1 for |t | �= 0

and, by Theorem 3.9,

ϕ(t) → 0 as |t | → ∞.

Hence, for each fixed δ there exists a constant C < 1 such that

|ϕ(t)| < C for |t | ≥ δ.

It follows that∫
|t |>δ

√
n
|ϕ(t/

√
n)|n dt = √

n
∫

|t |>δ

|ϕ(t)|n dt ≤ √
nCn−α|ϕ(t)|α dt = o

(
1

n

)
.

Let γ (t) = log ϕ(t), ≡ γ1(t) + iγ2(t), where γ1 and γ2 are real-valued. Using Taylor’s
series expansions,

γ1(t) = −1

2
t2 + γ ′′′

1 (t∗
1 )t3/6

and

γ2(t) = γ ′′′
2 (t∗

2 )t3/6

where |t∗
j | ≤ |t | and γ ′′′

j is continuous, j = 1, 2. Hence,

n log ϕ(t/
√

n) = nγ (t/
√

n) = −1

2
t2 + κ3

6

(i t)3

√
n

+ {γ ′′′
1 (t∗

1 ) − i[γ ′′′
2 (t∗

2 ) − γ ′′′
2 (0)]} t3

6
√

n

where |t∗
j | ≤ t/

√
n.

Note that γ ′′′
1 (0) = 0. It follows that in the expansion (14.3) we may take

Rn(t) = {[γ ′′′
1 (t∗

1 ) − γ ′′′
1 (0)] − i[γ ′′′

2 (t∗
2 ) − γ ′′′

2 (0)]} t3

6
√

n
.

Clearly,

lim
n→∞

Rn(t)√
n

= 0.

By the continuity of γ ′′′
1 and γ ′′′

2 , for any given ε > 0, we may choose δ sufficiently small
so that

|γ ′′′
j (t∗

j ) − γ ′′′
j (0)| ≤ ε, j = 1, 2

for |t∗
j | ≤ δ, j = 1, 2. Then, there exists an N and a δ > 0 such that for each |t | ≤ δ

√
n,

|Rn(t)| ≤ 2ε
|t |3

6
√

n
for n ≥ N .

Hence, (14.3) holds. The result now follows from Theorem 14.1.
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A sufficient condition for condition (ii) of Theorem 14.2 may be given in terms of the
density function of X1.

Lemma 14.1. Let X denote a real-valued random variable with an absolutely continuous
distribution; let p denote the density of this distribution and let ϕ denote the characteristic
function. If there exists a constant M < ∞ such that p(x) ≤ M for all x, then∫ ∞

−∞
|ϕ(t)|2 dt < ∞.

Proof. Let X1 and X2 denote independent random variables, each with the same distribu-
tion as X , and let Y = X1 + X2. Then Y has density function

pY (y) =
∫ ∞

−∞
p(y − x)p(x) dx

and characteristic function

ϕY (t) = ϕ(t)2.

Note that

pY (y) =
∫ ∞

−∞
p(y − x)p(x) dx ≤ M

∫ ∞

−∞
p(x) dx = M.

Let φ(·) denote the standard normal density function. For λ > 0∫ ∞

−∞
ϕY (t)φ(t/λ) dt = λ

∫ ∞

−∞

∫ ∞

−∞
exp(i t y)pY (y) dy

1

λ
φ(t/λ) dt

= λ

∫ ∞

−∞

∫ ∞

−∞
exp(i t y)

1

λ
φ(t/λ) dt pY (y) dy.

Note that the inner integral is simply the characteristic function of the normal distribution
with mean 0 and standard deviation λ, evaluated at y. Hence,∫ ∞

−∞
ϕY (t)φ(t/λ) dt = λ

∫ ∞

−∞
exp

(
−λ2

2
y2

)
pY (y) dy

≤ Mλ

∫ ∞

−∞
exp

(
−λ2

2
y2

)
dy = M

√
(2π ).

Therefore, we have shown that for all λ > 0,∫ ∞

−∞
ϕY (t)φ(t/λ) dt ≤ M

√
(2π ).

Hence,

lim sup
λ→∞

∫ ∞

−∞
ϕY (t)φ(t/λ) dt ≤

∫ ∞

−∞
ϕY (t) lim sup

λ→∞
φ(t/λ) dt =

∫ ∞

−∞
ϕY (t) dt ≤ M

√
(2π ).

That is, ∫ ∞

−∞
|ϕ(t)|2 dt ≤ M

√
(2π ),

proving the lemma.
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Example 14.1 (Sample mean of random variables with a symmetric distribution). Let
Y1, . . . , Yn denote independent random variables each distributed according to a distribution
with mean 0, standard deviation 1, and E(|Y1|3) < ∞. Assume that the density of Y1 is
bounded and symmetric about 0. It follows that κ3 = 0 and, hence, using a Edgeworth
series approximation

Pr(
√

nȲ ≤ t) = �(t) + o

(
1√
n

)
;

that is, the usual first-order normal approximation has error of order o(1/
√

n) rather than
the usual o(1). �

Example 14.2 (Chi-squared distribution). Let Z1, . . . , Zn denote independent standard
normal random variables and let Sn = ∑n

j=1 Z2
j . Then Sn has a chi-squared distribution

with n degrees of freedom. We will consider approximations to the chi-squared distribution
function based on an Edgeworth expansion.

It is straightforward to show that the first three cumulants of Z2
j are 1, 2, and 8, respec-

tively. Let

Yn = √
n

Sn/n − 1√
2

.

Then Pr(Yn ≤ y) may be approximated by

�(y) − 2

3
√

2
H2(y)φ(y)

1√
n
.

Table 14.1 contains approximations to Pr(Sn ≤ snα), based on the Edgeworth series
approximation described above, where snα satisfies

Pr(Sn ≤ snα) = α,

for several choices of n and α. Recall that corresponding approximations based on the
central limit theorem are given in Table 12.1. These results show that the Edgeworth series
approximation is generally, but not always, an improvement over the approximation based
on the central limit theorem. �

Example 14.3 (Normal approximation evaluated at the mean). Let X1, X2, . . . , Xn

denote independent, identically distributed random variables satisfying the conditions
of Theorem 14.2. Then, according to Theorem 14.2, fn , the density of

∑n
j=1 X j/

√
n,

satisfies

sup
x

∣∣∣∣ fn(x) −
[
φ(x) + κ3

6
H3(x)φ(x)

1√
n

]∣∣∣∣ = o

(
1√
n

)
.

Hence,

fn(x) = φ(x) + O

(
1√
n

)
.
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Table 14.1. Edgeworth series approximation to the
chi-squared distribution.

n

α 5 10 20

0.01 0.0493 0.0217 0.0133
0.05 0.0920 0.0679 0.0579
0.10 0.135 0.116 0.107
0.20 0.218 0.208 0.203
0.80 0.796 0.797 0.798
0.90 0.883 0.890 0.895
0.95 0.937 0.942 0.946
0.99 0.995 0.993 0.991

Consider fn(0), the density of
∑n

j=1 X j/
√

n evaluated at the mean of the distribution.
Since H3(0) = 0,

fn(0) = φ(0) + o

(
1√
n

)
= 1√

(2π )
+ o

(
1√
n

)
;

that is, the normal approximation to the density, evaluated at 0, has error o(1/
√

n). In
general, if the normal approximation to the density is evaluated at xn , where xn = o(1/

√
n),

the error of the approximation is o(1/
√

n). �

Third- and higher-order approximations
More refined approximations may be obtained by retaining more terms in the expansion
of log ϕn(t). Here we briefly describe the more general results; for further discussion and
references see Section 14.7.

In general, an approximation to the density function of Yn is given by

φ(y)

[
1 + κ3

6
H3(y)

1√
n

+
(

κ4

24
H4(y) + κ2

3

72
H6(y)

)
1

n
+ · · ·

]
.

Here the functions Hj (y) are the Hermite polynomials, defined by

Hr (y)φ(y) = (−1)r drφ(y)

dyr
;

see, Section 10.3 for further details of the Hermite polynomials. An approximation to the
distribution function of Yn may then be obtained by integrating the approximation to the
density. This procedure is simplified by recalling that∫ y

−∞
Hr (t)φ(t) dt = (−1)r

∫ y

−∞

drφ(t)

dtr
dt = (−1)r dr−1φ(t)

dtr−1

∣∣∣y

−∞

= −Hr−1(y)φ(y);

see Theorem 10.8. Hence, an approximation to the distribution function Fn of Yn is given
by

�(y) − φ(y)

[
κ3

6
H2(y)

1√
n

+
(

κ4

24
H3(y) + κ2

3

72
H5(y)

)
1

n
+ · · ·

]
.
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Typically, either the n− 1
2 term or the n− 1

2 term together with the n−1 term are used when
approximating the distribution function of Yn . The error of the approximation is one power
of n− 1

2 greater than the last included term. For instance, if the approximation includes only
the n− 1

2 term, then the error is of order n−1; this is the case considered in Theorem 14.2.

Example 14.4 (Chi-squared distribution). Consider approximations to the chi-squared
distribution function based on an Edgeworth expansion, as in Example 14.2. The fourth
cumulant of Z2

j is 48. Hence, the distribution function of

Yn = √
n

Xn/n − 1√
2

may be approximated by

�(y) −
√

2

3
H2(y)φ(y)

1√
n

−
(

2H3(y) + 8

9
H5(y)

)
φ(y)

1

n
.

The error of this approximation is o(1/n). �

Expansions for quantiles
An Edgeworth expansion may be used to approximate the quantiles of the distribution of
a sample mean. That is, suppose X1, X2, . . . , Xn are independent, identically distributed
random variables each with mean 0 and standard deviation 1 and suppose we wish to
approximate the value xα satisfying

Pr(
√

n X̄n ≤ xα) = α,

where α is a given number, 0 < α < 1. Using the central limit theorem to approximate the
distribution of X̄ n , a first-order approximation to xα is given by the corresponding quantile
of the standard normal distribution, zα ≡ �−1(α).

If an Edgeworth series approximation is used to approximate the distribution of
√

n X̄n ,
we obtain a series approximation for xα; such an approximation is known as a Cornish–
Fisher inversion of the Edgeworth series approximation. The following result gives the
Cornish–Fisher inversion corresponding to an Edgeworth series approximation of the form
given in Theorem 14.1.

Theorem 14.3. Let Xn, n = 1, 2, . . . , denote a sequence real-valued random variables
such that each Xn has an absolutely continuous distribution function Fn and let x (n)

α satisfy
Fn(x (n)

α ) = α, where 0 < α < 1 is given.
Suppose that there exists a constant β such that

Fn(x) = �(x) − β√
n

H2(x)φ(x) + o

(
1√
n

)

uniformly in x. Then

x (n)
α = zα + β√

n
H2(zα) + o

(
1√
n

)

where zα satisfies �(zα) = α.
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Proof. Consider an expansion for x (n)
α of the form

x (n)
α = an + bn/

√
n + o

(
1√
n

)

where an and bn are O(1). Using the expression for Fn given in the statement of the theorem
together with the fact that �, H2, and φ are all differentiable,

Fn(x (n)
α ) = Fn

(
an + bn/

√
n + o

(
1√
n

))

= �(an + bn/
√

n) − β√
n

H2(an)φ(an) + o

(
1√
n

)

= �(an) + bn√
n
φ(an) − β√

n
H2(an)φ(an) + o

(
1√
n

)
.

Hence, to achieve

Fn
(
x (n)

α

) = α,

we need �(an) = α + o(1/
√

n) and[
bn√

n
− β√

n
H2(an)

]
φ(an) = o

(
1√
n

)
.

This implies that an = zα + o(1/
√

n) and

bn = β H2(zα) + o

(
1√
n

)

so that

x (n)
α = zα + β√

n
H2(zα) + o

(
1√
n

)

as stated in the theorem.

Example 14.5 (Chi-squared distribution). Let χ2
n (α) denote the α-quantile of the chi-

squared distribution with n degrees of freedom, and let Xn denote a chi-squared random
variable with n degrees of freedom. Then, using the results of Example 14.2, the distribution
of

√
n

Xn/n − 1√
2

has α-quantile of the form

zα +
√

2

3
√

n

(
z2
α − 1

) + o

(
1√
n

)
.

That is,

χ2
n (α) = n + √

(2n)zα + 2

3

(
z2
α − 1

) + o(1).
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Table 14.2. Exact and approximate quantiles of the chi-squared
distribution.

Quantile

n = 10 n = 20

α Exact Approx. Exact Approx.

0.01 2.56 2.54 8.26 8.23
0.05 3.94 3.78 10.85 10.73
0.10 4.87 4.70 12.44 12.44
0.20 6.18 6.04 14.58 14.58
0.80 13.44 13.57 25.04 25.13
0.90 15.99 16.16 28.41 28.53
0.95 18.31 18.49 31.41 31.54
0.99 23.21 23.35 37.57 37.65

Table 14.2 contains the exact quantiles of the chi-squared distribution with n degrees of
freedom, together with the approximation

n + √
(2n)zα + 2

3

(
z2
α − 1

)
,

for n = 10 and n = 20. These results indicate that approximation is generally quite
accurate. �

14.3 Saddlepoint Approximations

Let X1, . . . , Xn denote independent, identically distributed random variables, each an abso-
lutely continuous distribution with density p. Let K (t) denote the cumulant-generating
function of X1, which is assumed to be finite for t0 < t < t1 for some t0, t1, t0 < 0 < t1 For
t0 < λ < t1 define

p(x ; λ) = exp{xλ − K (λ)}p(x);

assume that the distribution of X under p(x ; λ) is non-degenerate for λ ∈ (t0, t1). Note
that ∫ ∞

−∞
p(x ; λ) dx =

∫ ∞

−∞
exp{xλ}p(x) dx exp{−K (λ)} = 1

so that, for each λ, p(x ; λ) defines a density function. The cumulant generating function
of the density p(x ; λ) is K (λ + s) − K (λ) and, hence, the cumulants are given by K ′(λ),
K ′′(λ), and so on.

Let Sn = X1 + · · · + Xn , and let pn(s; λ) denote the density function of Sn under the
density p(x ; λ) for the X j ; then the actual density of Sn is given by pn(s) ≡ pn(s; 0).
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Note that

pn(s; λ) =
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(s − x2 − · · · − xn; λ)p(x2; λ) · · · p(xn; λ) dx2 · · · dxn

= exp(sλ − nK (λ))
∫ ∞

−∞
· · ·

∫ ∞

−∞
p(s − x2 − · · · − xn)p(x2) · · · p(xn) dx2 · · · dxn

= exp(sλ − nK (λ))pn(s);

this holds for any λ, t0 < λ < t1. Let p̂n(s; λ) denote an approximation to pn(s; λ). Then an
approximation to pn(s) is given by

exp{nK (λ) − sλ} p̂n(s; λ).

The idea behind the saddlepoint approximation is to choose λ so that p̂n(s; λ) is an accu-
rate approximation to pn(s; λ); the value of λ chosen will depend on s. Since we are not
directly approximating the density of interest, pn(s; 0), the saddlepoint approximation is
often referred to as an indirect approximation, in contrast to the Edgeworth series approxi-
mation which is referred to as a direct approximation.

In Example 14.3 we have seen that the normal approximation to a density function is
very accurate when it is evaluated at the mean. Hence, the value of λ is chosen so that the
point s at which the density of S is to be evaluated corresponds to the mean of p(·; λ). That
is, given s, choose λ = λ̂s so that

s = E(Sn; λ) = nE(Y1; λ) = nK ′(λ).

It follows that λ̂s satisfies nK ′(λ̂s) = s. Note that, since K ′′(λ) is the variance of X j under
p(x ; λ), K ′′(λ) > 0 for all λ so that K (λ) is a convex function, which implies that the
equation nK ′(λ̂s) = s has at most one solution. We assume that s is such that a solution
exists.

For the approximation p̂n(s; λ) we use the normal approximation given by the central
limit theorem; since the evaluation of the density is at the mean of Sn and the variance of
the X j under p(x ; λ) is K ′′(λ), the approximation is given by

[2πnK ′′(λ̂s)]−
1
2 .

It follows that an approximation to pn(s) is given by

p̂n(s) = exp{nK (λ̂s) − sλ̂s}[2πnK ′′(λ̂s)]−
1
2 .

Let X̄ = Sn/n. Then an approximation to the density of X̄ is given by

exp{n[K (λ̂x ) − x λ̂x ]}[2π K ′′(λ̂x )/n]−
1
2

where λ̂x satisfies K ′(λ̂x ) = x . Since the normal approximation is evaluated at the mean of
the distribution, the error of this approximation is of order o(n− 1

2 ); see Example 14.3.
The saddlepoint approximation is known to be extremely accurate, even more accurate

than is suggested by the error term of order o(1/
√

n). This is due, at least in part, to the
fact that the normal approximation is always evaluated at the mean, a region in which the
approximation is generally very accurate.

Theorem 14.4 gives a formal statement of the saddlepoint method.
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Theorem 14.4. Let X1, X2, . . . denote independent, identically distributed random vari-
ables. Assume that the distribution of X1 is absolutely continuous with bounded density p
and that the moment-generating function of the distribution, M(t), exists for t0 < t < t1 for
some t0, t1, t0 < 0 < t1, and let K (t) = log M(t).

Let pX̄n
denote the density of X̄n = ∑n

j=1 X j/n. Then, for each x such that K ′(λ) = x
has a solution in λ, λx ,

pX̄n
(x) = exp(nK (λx ) − nλx )

√
n

[2π K ′′(λx )]
1
2

[
1 + o

(
1√
n

)]
.

Proof. Let p denote the density of X1. For t0 < λ < t1, define

p(x ; λ) = exp{λx − K (λ)}p(x)

where K (λ) = log M(λ). Note that∫ ∞

−∞
p(x ; λ) dx = 1

so that p(·; λ) represents a valid probability density function for each |λ| < t0.
The moment-generating function corresponding to p(·; λ) is given by

M(t ; λ) =
∫ ∞

−∞
exp{t x}p(x ; λ) dx = exp{K (t + λ) − K (λ)},

for all t such that |t + λ| < t0. Hence, the cumulants of X1 under p(·; λ) are given by
K ′(λ), K ′′(λ), and so on.

Let Sn = ∑n
1 X j , X̄ n = Sn/n, and let pn denote the density of Sn . When X1, X2, . . .

have density p(·; λ), then Sn has density

pn(s; λ) = exp{λs − nK (λ)}pn(s).

For a given value of λ, define

Zλ = √
n

X̄n − K ′(λ)

[K ′′(λ)]
1
2

and let fn(·; λ) denote the density of Zλ when X1, X2, . . . have density p(·; λ). Note that,
since the moment-generating function of X1 exists,

lim
x→±∞ exp(t x)p(x) = 0

for all |t | < t0, since otherwise the integral defining M(t) would not be finite. Hence, given
ε, there exists a B > 0 such that

exp(t x)p(x) ≤ ε for all |x | > B.

Since p is bounded, and exp(t x) is bounded for |x | ≤ B for any value of t , it follows that
p(x ; λ) is bounded for any λ, |λ| < t0. Hence, by Lemma 14.1, condition (ii) of Theorem 14.2
holds.

It is straightforward to show that, under the conditions of the theorem, the remaining
conditions of Theorem 14.2 are satisfied so that

fn(z; λ) = φ(z) + K ′′′(λ)

6
√

n
(z3 − 3z)φ(z) + o

(
1√
n

)
,

uniformly in z.
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It follows that pn(s; λ) is of the form

1

[nK ′′(λ)]
1
2

[φ(z(s)) + K ′′′(λ)

6
√

n
(z(s)3 − 3z(s))φ(z(s)) + o

(
1√
n

)
,

where z(s) = [s/
√

n − √
nK ′(λ)]/[K ′′(λ)]

1
2 . Since

pn(s; λ) = exp{sλ − nK (λ)}pn(s),

it follows that

pn(s) = exp{nK (λ) − sλ}
[

1

[nK ′′(λ)]
1
2

[φ(z(s))

+ K ′′′(λ)

6
√

n
(z(s)3 − 3z(s))φ(z(s)) + o

(
1√
n

)]
.

This result holds for any value of λ. Hence, take λ ≡ λs such that K ′(λs) = s/n. Then

pn(s) = exp{nK (λs) − sλs} 1

[nK ′′(λs)]
1
2

[
φ(0) + o

(
1√
n

)]

= exp{nK (λs) − sλs} 1

[2πnK ′′(λs)]
1
2

[
1 + o

(
1√
n

)]
.

Now consider the pX̄n
, the density of X̄ n . Since

pX̄n
(x) = npn(nx),

it follows that

pX̄n
(x) = exp{nK (λx ) − nxλx }

√
n

[2π K ′′(λx )]
1
2

[
1 + o

(
1√
n

)]

where λx solves K ′(λx ) = x .

Example 14.6 (Sample mean of Laplace random variables). Let Y1, . . . , Yn denote inde-
pendent random variables, each with a standard Laplace distribution. Since the cumulant-
generating function is given by K (t) = −log(1 − t2), |t | < 1,

K ′(t) = 2t

1 − t2

and the equation K ′(λ) = y may be reduced to a quadratic equation. This quadratic has two
solutions, but only one in the interval (−1, 1),

λ̂y = (1 + y2)
1
2 − 1

y
.

The saddlepoint approximation to the density of Ȳ is therefore given by

√
n exp{n}

2n(2π )
1
2

|y|2n−1[
(1 + y2)

1
2 − 1

]n− 1
2

exp
{
−n(1 + y2)

1
2

}
(1 + y2)

1
4

. �

Example 14.7 (Chi-squared distribution). Let Z1, Z2, . . . denote independent, identi-
cally distributed standard normal random variables and consider approximation of the
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distribution of Yn = ∑n
j=1 Z2

j which, of course, has a chi-squared distribution with n degrees
of freedom.

The cumulant-generating function of Z2
1 is − log(1 − 2t)/2, t < 1/2 so that the solution

to K ′(λ) = y is given by λy = (1 − 1/x)/2; it follows that K (λy) = log(y)/2 and K ′′(λy) =
2y2. It follows that the saddlepoint approximation to the density of Yn = ∑n

j=1 Z2
j is given

by

exp

{
n

2
log(y) − 1

2
s

(
1 − 1

s

)}
1

[4πns2]
1
2

= exp(1/2)

2
√

(πn)
y

n
2 −1 exp

(
−1

2
y

)
.

Comparing this approximation to the density function of the chi-squared distribution with
n degrees of freedom, we see that the saddlepoint approximation is exact, aside from a
normalization factor. �

Renormalization of saddlepoint approximations
It is important to note that saddlepoint approximations to densities do not necessarily inte-
grate to 1. Furthermore, unlike Edgeworth series expansions, saddlepoint approximations
cannot generally be integrated analytically. Let p̂X̄n

(x) denote a saddlepoint approximation
to the density of the sample mean and let

1

c
=

∫ ∞

−∞
p̂X̄n

(x) dx ;

note that it is often necessary to perform this integration numerically. Then the renormalized
saddlepoint approximation is given by c p̂X̄n

(x).

Example 14.8 (Sample mean of Laplace random variables). Consider the saddlepoint
approximation to the density of the sample mean of Laplace random variables, derived
in Example 14.6, for the case n = 5. The integral of the density function, determined
by numerical integration, is approximately 1/1.056. Hence, the renormalized saddlepoint
approximation is given by

1.056
√

5 exp{5}
25(2π )

1
2

|y|9[
(1 + y2)

1
2 − 1

] 9
2

exp
{
−9(1 + y2)

1
2

}
(1 + y2)

1
4

. �

Integration of saddlepoint approximations
Saddlepoint approximations can be used as the basis for approximations to the distribution
function of the sample mean; equivalently, we can consider approximations to tail prob-
abilities, which we do here. As noted above, analytical integration of saddlepoint density
approximations is not generally possible; hence, to approximate tail probabilities, approx-
imation of the resulting integral is needed. Several such approximations were given in
Chapter 9. Here we consider the application of the method described in Section 9.6. Only
a brief description is given; for further details on this method see Section 14.7.

Consider the problem of approximating Pr(X̄ ≥ t). Using the renormalized saddlepoint
approximation for the density of X̄ , this probability can be approximated by

c
∫ ∞

t
exp{n[K (λ̂x ) − x λ̂x ]}[2π K ′′(λ̂x )/n]−

1
2 dx . (14.4)
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To approximate this integral using the approximation derived in Section 9.6, we first need
to write (14.4) in the form ∫ ∞

z
hn(t)

√
nφ(

√
nt) dt. (14.5)

Let

r (x) = sgn(λ̂x ){2[x λ̂x − K (λ̂x )]} 1
2 .

Note that, for fixed x , the function xλ − K (λ) is uniquely maximized at λ = λ̂x and since
this function is 0 at λ = 0, it follows that

x λ̂x − K (λ̂x ) ≥ 0.

It follows from the fact that r (x)2 = 2[x λ̂x − K (λ̂x )] that

r ′(x)r (x) = λ̂x + [x − K ′(λ̂x )]
dλ̂x

dx
= λ̂x .

Hence, r (x) is a strictly increasing function of x . Note that, since K (0) = 0, this implies
that r (x) = 0 if and only if λ̂x = 0.

The integral in (14.4) may be written

c
∫ ∞

t

( n

2π

) 1
2

exp
{
−n

2
r (x)2

}
eK ′′(λ̂x )−

1
2 dx . (14.6)

Let z = r (x); note that dx/dz = z/λ̂x . Then (14.6) may be written

c̄
∫ ∞

r (t)

( n

2π

) 1
2

exp
{
−n

2
z2

}
K ′′(λ̂x )−

1
2

z

λ̂x
dz

where x = r−1(z). This is of the form (14.5) with

h(z) = z

λ̂x [K ′′(λ̂x )]
1
2

, x = r−1(z).

Note that

h(0) = 1

K ′′(0)
1
2

lim
z→0

z

λ̂x
= 1

K ′′(0)
1
2

lim
z→0

1

dλ̂x/dz

where

dλ̂x

dz
= dλ̂x

dx

dx

dz
= 1

K ′′(λ̂x )

z

λ̂x
(14.7)

since K ′(λ̂x ) = x implies that dλ̂x/dx = 1/K ′′(λ̂x ). It follows that from the last part of
(14.7) that

h(0) = K ′′(0)
1
2 lim

z→0

λ̂x

z
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so that h(0) = 1/h(0). Hence, h(0) = ±1; however, z and λ̂x have the same sign so that
h(0) > 0. It follows that h(0) = 1. Also,

h(r (t)) = r (t)

λ̂x K ′′(λ̂x )
1
2

, x = r−1(r (t)) = t

= r (t)

λ̂t K ′′(λ̂t )
1
2

.

An approximation to the integral (14.4) is given by Theorem 9.16 with

h(r (t)) − h(0)

r (t)
= 1

λ̂t K ′′(λ̂t )
1
2

− 1

r (t)
.

Hence, Pr(X̄ n ≥ t) may be approximated by

1 − �(
√

nr ) + 1

n

[
1

λ̂t K ′′(λ̂t )
1
2

− 1

r

] √
nφ(

√
nr ), r = r (t).

This approximation has relative error O(n− 3
2 ) for fixed r , corresponding to t of the form

t = E(X̄ ) + O(n− 1
2 ), and relative error O(n−1) for r = O(

√
n), corresponding to fixed

values of t .

Example 14.9 (Chi-squared distribution). As in Example 14.7, let Yn denote a chi-squared
random variable with n degrees of freedom and consider approximation of Pr(Yn ≥ y); an
Edgeworth series approximation to this probability was given in Example 14.2.

Let X̄ n = Yn/n. Then X̄ n is the sample mean of n independent, identically distributed
random variables each with a distribution with cumulant-generating function

K (t) = −1

2
log(1 − 2t), t < 1/2.

The solution to K ′(t) = x is given by λ̂x = −(x − 1)/(2x) so that

r (x) = sgn(x − 1){x − 1 − log(x)} 1
2

and K ′′(λ̂x ) = 2x2. It follows that Pr(Xn ≥ x) may be approximated by

1 − �[
√

nr (x)] + 1

n

[ √
2

x − 1
− 1

r (x)

] √
nφ[

√
nr (x)].

Now consider approximation of Pr(Yn ≥ y) = Pr(X̄ n ≥ y/n). Let

rn = √
nr (y/n) = sgn(y − n){y − n − n log(y/n)} 1

2 .

It follows that Pr(Yn ≥ y) may be approximated by

[1 − �(rn)] +
[ √

2n

n − y
− 1

rn

]
φ(rn);

equivalently, Pr(Yn ≤ y) may be approximated by

�(rn) −
[ √

2n

y − n
− 1

rn

]
φ(rn).
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Table 14.3. Saddlepoint approximation to the
chi-squared distribution.

n

α 1 2 5

0.01 0.0114 0.0105 0.0101
0.05 0.0557 0.0516 0.0502
0.10 0.109 0.102 0.100
0.20 0.213 0.203 0.200
0.80 0.802 0.800 0.800
0.90 0.900 0.900 0.900
0.95 0.950 0.950 0.950
0.99 0.990 0.990 0.990

Table 14.3 contains approximations to Pr(Sn ≤ snα) based on the saddlepoint method
described above, where snα satisfies

Pr(Sn ≤ snα) = α,

for several choices of n and α. Recall that corresponding approximations based on the central
limit theorem and on an Edgeworth series approximation are given in Tables 12.1 and 14.1,
respectively. These results show that the saddlepoint approximation is very accurate, even
when n = 1; for n = 5, the error in the approximation is essentially 0. �

14.4 Stochastic Asymptotic Expansions

Let Y1, Y2, . . . , Yn denote a sequence of random variables. Thus far, when considering
approximations to Yn we have focused on approximations for the distribution function or
density function of Yn . Another approach is to approximate the random variable Yn directly
by other random variables, the properties of which are well-understood. For instance, we
might be able to write

Yn = Ŷ0 + Ŷ1
1

n
+ Op

(
1

n2

)

for some random variables Ŷ0, Ŷ1. This type of approximation is known as a stochastic
asymptotic expansion.

A stochastic asymptotic expansion for Yn can often be used to derive an approximation
to the distribution of Yn by approximating the distribution of the terms in the expansion. For
instance, suppose that Yn = Ŷn + op(1), where Ŷn is asymptotically distributed according
to a standard normal distribution. It follows from Slutsky’s theorem that Yn is also asymp-
totically distributed according to a standard normal distribution. We have already seen one
application of this idea, the δ-method described in Section 13.2.

Now suppose that

Yn = Ŷn + Op(n−1)
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where the distribution of Ŷn has an Edgeworth series expansion of the form

φ(x)

[
1 + ρ3

6
√

n
H3(x) + o

(
1√
n

)]
.

It is tempting to conclude that the distribution of Yn has an Edgeworth series expansion
with error of order o(1/

√
n). This conclusion is valid provided that Yn = Ŷn + op(1/

√
n)

implies that

Pr(Yn ≤ t) = Pr(Ŷn ≤ t) + o(1/
√

n).

Unfortunately, this result does not hold in general. The following example illustrates the
type of problem that may be encountered.

Example 14.10. Let X denote a standard normal random variable and, for each n = 1,

2, . . . , let Zn denote a random variable such that

Pr(Zn = 1) = 1 − Pr(Zn = 0) = δn

where δn , n = 1, 2, . . . , is a sequence in [0, 1] such that limn→∞ δn = 0. Note that, for any
ε > 0,

Pr(
√

n|Zn| > ε) = Pr(Zn = 1) = δn

so that Zn = op(1/
√

n).
Assume that X and Zn are independent for any n = 1, 2, . . . and let Yn = X + Zn ,

n = 1, 2, . . . . Then Yn = X + op(1/
√

n); however,

Pr(Yn ≤ t) = Pr(X + Zn ≤ t)

= Pr(X + Zn ≤ t |Zn = 0)(1 − δn) + Pr(X + Zn ≤ t |Zn = 1)δn

= �(t)(1 − δn) + �(t − 1)δn.

Hence,

Pr(Yn ≤ t) = Pr(X ≤ t) + O(δn)

and if δn → 0 slowly, Pr(X ≤ t) is a poor approximation to Pr(Yn ≤ t).
The problem is that the condition that Zn = op(1/

√
n) holds provided only that

Pr(
√

n|Zn| > ε) → 0 for any ε, while an approximation to the distribution of Yn depends
on the rate at which this probability approaches 0. This issue does not arise in the
first-order approximation since Zn = op(1) implies that Pr(|Zn| > ε) = o(1); however,
Zn = op(1/

√
n) does not imply that Pr(

√
n|Zn| > ε) = o(1/

√
n). �

In spite of this negative result, in many cases in which a random variable Yn has an
expansion of the form Yn = Ŷn + op(1/

√
n) the distribution functions of Yn and Ŷn do agree

to order o(1/
√

n). However, some additional structure for the op(1/
√

n) term is required
for this to hold.

Here we consider the case in which Xn is a sample mean based on n independent,
identically distributed random variables and Yn = f (Xn) where f is a smooth function.
Then, using a Taylor’s series approximation,

Yn = f (µ) + f ′(µ)(Xn − µ) + 1

2
f ′′(µ)(Xn − µ)2 + · · ·
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where µ = E(Xn). In this case, the approximating random variable Ŷn may be taken to be
a polynomial in Xn − µ. Hence, before considering the distribution of Yn in this scenario,
we give a preliminary result on the distribution of a quadratic function of a random variable
whose distribution follows an Edgeworth series expansion.

Lemma 14.2. Let Z1, Z2, . . . denote independent, identically distributed random variables,
each with mean 0 and standard deviation 1. Assume that the distribution of Z1 is absolutely
continuous and satisfies the conditions of Theorem 14.2.

Let Xn = ∑n
1 Z j/

√
n and, for a given constant c, let

Yn = Xn + c√
n

X2
n.

Then Fn, the distribution function of Yn, satisfies the following: for any sequence y1, y2, . . .

such that yn = y + a/
√

n + o(1/
√

n) for some a, y ∈ R,

Fn(yn) = �(y + (a − c)/
√

n) − κ3 + 6c

6
√

n
H2(y + (a − c)/

√
n)

× φ(y + (a − c)/
√

n) + o

(
1√
n

)

where κ3 denotes the third cumulant of Z1.

Proof. Let Hn denote the distribution function of Xn . Then, by Theorem 14.2,

Hn(x) = �(x) − κ3

6
√

n
H2(x)φ(x) + o

(
1√
n

)

uniformly in x .
Suppose c > 0. Then the event that Yn ≤ yn is equivalent to the event that

c√
n

X2
n + Xn − yn ≤ 0,

which is equivalent to the event that an ≤ Xn ≤ bn , where

an = −1 − [1 + 4cyn/
√

n]
1
2

2c/
√

n
and bn = −1 + [1 + 4cyn/

√
n]

1
2

2c/
√

n
;

note that, for sufficiently large n, an and bn are both real.
Hence,

Pr(Yn ≤ yn) = �(bn) − κ3

6
√

n
H2(bn)φ(bn) − �(an) + κ3

6
√

n
H2(an)φ(an) + o

(
1√
n

)
.

It is straightforward to show that

bn = y + a/
√

n − cy2/
√

n + O

(
1

n

)

and

an = −√
n/(2c) + O(1).
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Hence, �(an) and φ(an) are both o
(
1/

√
n
)

and

Pr(Yn ≤ yn) = �(y) + a√
n
φ(y) − cy2

√
n
φ(y) − κ3

6
√

n
H2(y)φ(y) + o

(
1√
n

)
;

rearranging this expression yields

Pr(Yn ≤ yn) = �(y) − κ3 + 6c

6
√

n
H2(y)φ(y)

a − c√
n

φ(y) + o

(
1√
n

)
.

The result now follows by noting that

�(y + (a − c)/
√

n) = �(y)
a − c√

n
φ(y) + o

(
1√
n

)
,

φ(y + (a − c)/
√

n) = φ(y) + o

(
1√
n

)

and

H2(y + (a − c)/
√

n) = H2(y) + o

(
1√
n

)
.

The following theorem shows that if a function f has a Taylor’s series expansion, and
the distribution of Z̄n has an Edgeworth series expansion, then an approximation to the
distribution of f (Z̄n) can be obtained by approximation of f by a quadratic and then
applying the result in Lemma 14.2.

Theorem 14.5. Let Z1, Z2, . . . denote independent, identically distributed random vari-
ables, each with mean 0 and standard deviation 1. Assume that the distribution of Z1 is
absolutely continuous and satisfies the conditions of Theorem 14.2; in addition, assume
E(Z4

1) < ∞. Let Z̄n = ∑n
j=1 Z j/n and let Xn = f (Z̄n), where f is a three-times differen-

tiable function satisfying the following conditions:
(i) | f ′(0)| > 0

(ii) There exists a δ > 0 such that

M ≡ sup
|x |<δ

| f ′′′(x)| < ∞.

Let

Yn = √
n(Xn − f (0))/ f ′(0)

and let Fn denote the distribution function of Yn. Then

Fn(y) = �(y − c/
√

n) − κ3 + 6c

6
√

n
H2(y − c/

√
n)φ(y − c/

√
n) + o

(
1√
n

)

where c = f ′′(0)/[2 f ′(0)] and κ3 denotes the third cumulant of Z1.

Proof. We begin by showing that, for any α < 1/8, and any random sequence mn such
that |mn| ≤ |Z̄n|,

Pr

(
|1

n

f ′′′(mn)

f ′(0)
(
√

n Z̄n)2| >
1

n
1
2 +α

)
= o

(
1√
n

)
as n → ∞. (14.8)
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Let δ denote the constant in condition (ii) of the theorem. Then

Pr

(
|1

n

f ′′′(mn)

f ′(0)
(
√

n Z̄n)2| >
1

n
1
2 +α

)

≤ Pr

(
|1

n

f ′′′(mn)

f ′(0)
(
√

n Z̄n)2| >
1

n
1
2 +α

∩ |Z̄n| < δ

)
+ Pr(|Z̄n| ≥ δ).

By Chebychev’s inequality,

Pr(|Z̄n| ≥ δ) ≤ 1

nδ2
= O

(
1

n

)
.

Note that when |Z̄n| < δ, then |mn| < δ, so that | f ′′′(mn)| < M . Hence,

Pr

(
|1

n

f ′′′(mn)

f ′(0)
(
√

n Z̄n)2| >
1

n
1
2 +α

∩ |Z̄n| < δ

)
≤ Pr

(
M

n f ′(0) |
√

n Z̄n|3 > 1

n
1
2 +α

)

≤ E[n2 Z̄4
n]

(n
1
2 −α)

4
3 ( f ′(0)/M)

4
3

.

Using the facts that E(Z̄4
n) = O(1/n2) and α < 1/8, it follows that

E
[
n2 Z̄4

n

]
(
n

1
2 −α

) 4
3 ( f ′(0)/M)

4
3

= o

(
1√
n

)
,

proving (14.8).
Now consider the proof of the theorem. Using a Taylor’s series expansion, we can write

Xn = f (Z̄n) = f (0) + f ′(0)Z̄n + 1

2
f ′′(0)Z̄2

n + 1

6
f ′′′(mn)Z̄3

n

where mn lies on the line segment connecting Xn and 0; hence, |mn| ≤ |Z̄n|. Then

Yn = √
Z̄n + 1

2

f ′′(0)

f ′(0)
(
√

n Z̄n)2 1√
n

+ 1

6

f ′′′(mn)

f ′(0)
(
√

n Z̄n)3.

Let

Ŷn = √
Z̄n + 1

2

f ′′(0)

f ′(0)
(
√

n Z̄n)2 1√
n

and

Rn = 1

6

f ′′′(mn)

f ′(0)
(
√

n Z̄n)3.

Then, for 0 < α < 1/8,

Pr(Yn ≤ y) = Pr

(
Yn ≤ y ∩ |Rn| ≤ 1

n
1
2 +α

)
+ Pr

(
Yn ≤ y ∩ |Rn| ≥ 1

n
1
2 +α

)

= Pr

(
Ŷn + Rn ≤ y ∩ |Rn| ≤ 1

n
1
2 +α

)
+ o

(
1√
n

)

≤ Pr

(
Ŷn > y + 1

n
1
2 +α

)
+ o

(
1√
n

)
.
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Let yn = y − 1/n
1
2 +α . Then

Pr(Ŷn ≤ yn) = Pr

(
Ŷn ≤ yn ∩ |Rn| ≤ 1

n
1
2 +α

)
+ o

(
1√
n

)

= Pr

(
Yn − Rn ≤ yn ∩ |Rn| ≤ 1

n
1
2 +α

)
+ o

(
1√
n

)

≤ Pr

(
Yn ≤ yn + 1

n
1
2 +α

)
+ o

(
1√
n

)

≤ Pr(Yn ≤ y) + o

(
1√
n

)
.

Hence,

Pr

(
Ŷn ≤ y − 1

n
1
2 +α

)
+ o

(
1√
n

)
≤ Pr(Yn ≤ y) ≤ Pr

(
Ŷn ≤ y + 1

n
1
2 +α

)
+ o

(
1√
n

)
.

The result now follows from Lemma 14.2.

The following corollary extends the result given in Theorem 14.5 to the case in which
the underlying random variables do not have mean 0 and standard deviation 1. The proof is
straightforward and, hence, is left as an exercise.

Corollary 14.1. Let W1, W2, . . . denote independent identically distributed random vari-
ables, each with mean µ and standard deviation σ . Assume that the distribution of
(W1 − µ)/σ is absolutely continuous and satisfies the conditions of Theorem 14.2; in
addition, assume E(W 4

1 ) < ∞. Let W̄n = ∑n
j=1 W j/n and let Xn = f (W̄n), where f is

a three-times differentiable function satisfying the following conditions:
(i) | f ′(µ)| > 0

(ii) There exists a δ > 0 such that

M ≡ sup
|x−µ|<δ

| f ′′′(x)| < ∞.

Let

Yn =
√

n(Xn − f (µ))

σ f ′(µ)

and let Fn denote the distribution function of Yn. Then

Fn(y) = �(y − c/
√

n) − κ3/σ
3 + 6c

6
√

n
H2(y − c/

√
n)φ(y − c/

√
n) + o

(
1√
n

)

where c = σ f ′′(0)/[2 f ′(0)] and κ3 denotes the third cumulant of W1.

It is useful to note that the approximation given in Corollary 14.1 is identical to the one
obtained by the following informal method. Using a Taylor’s series expansion,

Xn − f (µ) = f ′(µ)(W̄n − µ) + 1

2
f ′′(µ)(W̄n − µ)2 + · · · .
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Hence,

Yn =
√

n(Xn − f (0))

σ f ′(0)
= √

n(W̄n − µ)/σ + σ

2

f ′′(0)

f ′(0)
[
√

n(W̄n − µ)/σ ]2 1√
n

+ · · · .

Consider the truncated expansion

√
n(W̄n − µ)/σ + σ

2

f ′′(0)

f ′(0)
[
√

n(W̄n − µ)/σ ]2 1√
n
.

Neglecting terms of order O(n−1), the first three cumulants of this random variable are

σ
f ′′(0)

2 f ′(0)

1√
n
, 1, and

κ3/σ
3 + 3σ f ′′(0)/ f ′(0)√

n
,

respectively. Using these cumulants in an Edgeworth expansion leads directly to the result
given in Corollary 14.1.

Hence, this approach yields the correct approximation, even though the cumulants of the
truncated expansion are not necessarily approximations to the cumulants of the distribution
of Yn; in fact, the cumulants of the distribution of Yn may not exist.

Example 14.11 (Estimator of the rate parameter of an exponential distribution). Let
W1, . . . , Wn denote independent random variables each with a standard exponential distri-
bution. This distribution has cumulant-generating function − log(1 − t) for |t | < 1; the first
three cumulants are therefore 1, 1, and 2, respectively. Let W̄n denote the sample mean of
the W j and let Xn = 1/W̄n; this statistic may be viewed as an estimator of the rate parameter
of the underlying exponential distribution.

Here Xn = f (W̄n), where f (t) = 1/t . Hence, f ′(µ) = −1

c = σ
f ′′(µ)

2 f ′(µ)
= − 1

µ
= −1.

Since κ3 = 2, it follows that the distribution function of Yn = √
n(1 − 1/Wn) may be

expanded

�(y + 1/
√

n) + 2

3
√

n
H2(y + 1/

√
n)φ(y + 1/

√
n) + o

(
1√
n

)
. �

14.5 Approximation of Moments

Stochastic asymptotic expansions can also be used to approximate the moments of a random
variable. Suppose that Y1, Y2, . . . and Ŷ1, Ŷ2, . . . are two sequences of real-valued random
variables such that

Yn = Ŷn + Rn/nα, n = 1, 2, . . .

for some random variables R1, R2, . . . . Then, under some conditions, we can approximate
the expected value of Yn by the expected value of Ŷn . The following lemma gives a basic
result of this type that is often used in this context; the proof is left as an exercise.

Lemma 14.3. Suppose that Yn = Ŷn + Rn/nα , where Ŷn and Rn are Op(1), such that
E(|Rn|) < ∞, and α > 0.
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If either E(|Yn|) < ∞ or E(|Ŷn|) < ∞, then

E(Yn) = E(Ŷn) + E(Rn)/nα.

One commonly used application of this idea is in a variation of the δ-method. Suppose
that Ȳn is a sample mean based on n observations and f is a smooth function. Then, using
a Taylor’s series expansion,

f (Ȳn) = f (µ) + f ′(µ)(Ȳn − µ) + 1

2
f ′′(µ)(Ȳn − µ)2 + · · · ,

where µ = E(Ȳn). Then E[ f (Ȳn)] can be approximated by the expected value of the leading
terms in the expansion of f (Ȳn).

The difficulty in applying this idea is in controlling the order of the remainder term in
the expansion. Here we give two results of this type. The first puts strong conditions on the
function f , specifically that the fourth derivative of f is bounded, but weak conditions on
the distribution of the underlying random variables. The second puts weak conditions on
the function, but strong conditions on the distribution of the random variables.

Theorem 14.6. Let Y1, Y2, . . . denote independent, identically distributed, real-valued ran-
dom variables, each with range Y . Assume that the distribution of Y1 has mean µ, variance
σ 2, third cumulant κ3, and fourth cumulant κ4. Let Ȳn = ∑n

j=1 Y j/n and consider f (Ȳn),
where f is a real-valued four-times differentiable function on Y0, a convex subset of R
containing Y such that

sup
y∈Y0

| f (4)(y)| < ∞.

Then

E[ f (Ȳn)] = f (µ) + 1

2
f ′′(µ)

σ 2

n
+ O

(
1

n2

)
as n → ∞.

Proof. By Taylor’s theorem,

f (Ȳn) = f (µ) + f ′(µ)(Ȳn − µ) + 1

2
f ′′(µ)(Ȳ − µ)2

+ 1

6
f ′′′(µ)(Ȳ − µ)3 + 1

24
f (4)(mn)(Ȳ − µ)4

where |mn − µ| ≤ |Ȳn − µ|, n = 1, 2, . . . . Note that E(Ȳn − µ) = 0,

E[(Ȳn − µ)2] = σ 2

n
and E[(Ȳn − µ)3] = κ3

n2
.

Using the fact that f (4) is bounded,

E{| f (4)(mn)|(Ȳ − µ)4} ≤ M E{(Ȳ − µ)4}
for some constant M , so that

E{| f (4)(mn)|(Ȳ − µ)4} = O

(
1

n2

)
as n → ∞.

The result now follows from Lemma 14.3.
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Example 14.12 (Function of a Poisson mean). Let X1, X2, . . . denote independent, identi-
cally distributed random variables, each with a Poisson distribution with mean λ. Consider
the function exp(−X̄ n), where X̄ n = ∑n

j=1 X j/n; this function can be interpreted as an
estimator of Pr(X1 = 0).

Let f (t) = exp(−t); clearly, f is four-times differentiable and f (4)(t) = exp(−t) is
bounded for t ≥ 0. It follows from Theorem 14.6 that

E[exp(−X̄ n)] = exp(−λ) + 1

2
exp(−λ)

λ

n
+ O

(
1

n2

)
as n → ∞. �

Example 14.13 (Function of a normal mean). Let Y1, Y2, . . . denote independent, iden-
tically distributed random variables, each with a standard normal distribution. Consider
approximation of E[�(Ȳn)], where Ȳn = ∑n

j=1 Y j/n and �(·) denotes the standard normal
distribution function.

Let f (t) = �(t). Then f ′′(t) = −tφ(t) and f (4)(t) = (t3 − 3t)φ(t); here φ denotes the
standard normal density function. It is straightforward to show that | f (4)(t)| is bounded for
t ∈ R. Hence, it follows from Theorem 14.6 that

E[�(Ȳn)] = 1

2
+ O

(
1

n2

)
. �

As noted above, the conditions required in Theorem 14.6 are very strong; for instance,
they are much stronger than the conditions required by the higher-order version of the
δ-method. The main reason for this is that approximating an expected value, which can be
greatly influenced by the tails of the distribution, is a much more difficult problem than
approximating a probability.

The conditions on the function f can be weakened, provided that stronger conditions
are placed on the distribution of the underlying random variables. The following theorem
gives one example of this type of result.

Theorem 14.7. Let Y1, Y2, . . . denote independent, identically distributed, real-valued ran-
dom variables, each with range Y . Assume that moment-generating function of the distri-
bution of Y1 exists.

Let Ȳn = ∑n
1 Y j/n and consider f (Ȳn), where f is a real-valued four-times differenti-

able function on Y0, a convex subset of R containing Y such that

| f (4)(y)| < α exp(β|y|), y ∈ Y0

for some constants α and β.
Then

E[ f (Ȳn)] = f (µ) + 1

2
f ′′(µ)

σ 2

n
+ O

(
1

n2

)
as n → ∞,

where µ = E(Y1) and σ 2 = Var(Y1).

Proof. The proof follows the same general argument used in the proof of Theorem 14.6;
hence, the result holds provided that

E{ f (4)(mn)[
√

n(Ȳn − µ)]4}
is O(1) as n → ∞, where mn is a random point on the line segment connecting µ and Ȳn .
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Note that, using the Cauchy-Schwarz inequality,∣∣∣E{
f (4)(mn)[

√
n(Ȳn − µ)]4

}∣∣∣ ≤ E
{∣∣ f (4)(mn)

∣∣[√n(Ȳn − µ)]4
}

≤ E
{| f (4)(mn)|2} 1

2 E{[√n(Ȳn − µ)]8} 1
2 .

By the condition in the theorem,

| f (4)(mn)| ≤ α exp{β|mn|}, n = 1, 2, . . . .

Note that |mn| ≤ |µ| + |Ȳn|. Hence,

E
[| f (4)(mn)|2] ≤ α2 exp{2β|µ|}E[exp{2β|Ȳn|}]

and, since

|Ȳn| ≤ 1

n

n∑
j=1

|Y j |,

E
[| f (4)(mn)|2] ≤ α2 exp{2β|µ|}E[exp{2β|Y1|/n}]n = α2 exp{2β|µ|}M|Y1|(2β/n)n,

where M|Y1| denotes the moment-generating function of |Y1|. Since

n log M|Y1|(2β/n) = n

[
E(|X1|)2β

n
+ o

(
1

n

)]
,

lim
n→∞ M|Y1|(2β/n)n = exp{2βE(|X1|)}.

By Theorem 4.18,

E{[√n(Ȳn − µ)]8} = O

(
1

n4

)
as n → ∞.

It follows that ∣∣∣E{
f (4)(mn)[

√
n(Ȳn − µ)]4

}∣∣∣ = O

(
1

n2

)

proving the result.

Example 14.14 (Function of a geometric mean). Let X1, X2, . . . denote independent,
identically distributed random variables, each with the discrete distribution with frequency
function

p(x) =
(

1

2

)x

, x = 1, 2, . . . ;

this is a geometric distribution. This distribution has mean 2 and variance 2. Consider the
function exp(

√
X̄ n), where X̄ n = ∑n

j=1 X j/n.
Let f (t) = exp(

√
t); f is four-times differentiable with

f ′′(t) = 1

4
(t−1 − t− 1

2 ) exp(
√

t);
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the fourth derivative of f is of the form g(t) exp(
√

t), where g is a polynomial in 1/
√

t .
Hence, the conditions of Theorem 14.7 are satisfied and

E[exp(
√

X̄ n)] = exp(
√

2) − 1

8
(
√

2 − 1) exp(
√

2)
1

n
+ O

(
1

n2

)
as n → ∞. �

Example 14.15 (Power of the mean of exponential random variables). Let Y1, Y2, . . . ,

Yn denote independent, identically distributed, standard exponential random variables; it fol-
lows that E(Y1) = Var(Y1) = 1. Consider E[Ȳ r

n ] for some r > 0. To obtain an approximation
to this quantity, we can apply Theorem 14.7 with f (t) = tr . Note that f ′′(t) = r (r − 1)tr−2

and

f (4)(t) = r (r − 1)(r − 2)(r − 3)tr−4.

Hence, in order for the conditions of Theorem 14.7 to be satisfied, we must assume that
r ≥ 4. It follows that, for r ≥ 4,

E
[
Ȳ r

n

] = 1
1

2
r (r − 1)

1

n
+ O

(
1

n2

)
as n → ∞.

In this example, exact computation of E(Ȳ r
n ) is possible. Recall that

∑n
j=1 Y j has a

standard gamma distribution with index n; see Example 7.15. Hence,

E
(
Ȳ r

n

) = 1

nr
E

[(
n∑

j=1

Y j

)r]
= 1

nr

∫ ∞

0
tr 1

�(n)
tn−1 exp(−t) dt = 1

nr

�(n + r )

�(n)
.

Hence,

�(n)

�(n + r )
= 1

nr

[
1 + 1

2
r (r − 1)

1

n
+ O

(
1

n2

)]−1

= 1

nr

[
1 − 1

2
r (r − 1)

1

n
+ O

(
1

n2

)]
,

as n → ∞, which is in agreement with the result in Example 9.5. �

Note that, by Example 9.5, the expansion for E[Ȳ r
n ] given in Example 14.15 continues

to hold for 0 < r < 4. The reason that Theorem 14.7 does not apply in this case is that the
theorem is designed to handle the case in which | f (4)(x)| is large for large |x |, while for
0 < r < 4, | f (4)(x)| is large for x near 0. It would not be difficult to give a result analogous
to that given in Theorem 14.7 that is designed to handle this situation.

Functions of a random vector
We now consider the case in which Y1, Y2, . . . are d-dimensional random vectors and f is a
real-valued function defined on a subset of Rd . In order to generalize the results presented
for the case in which the Y j are real-valued, we must consider derivatives of f (y) with
respect to y. For simplicity, we will denote these derivatives by f ′(y), f ′′(y), and so on,
as in the case in which y is a scalar. Hence, f ′(y) is a vector, f ′′(y) is a matrix, f ′′′(y) is
a three-dimensional array, and so forth. We will use subscripts to denote the elements of
these arrays, so that, for example, f ′′′(y) has elements f ′′′

i jk(y) for i, j, k = 1, . . . , d. For a
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q-dimensional array C define

C[t, . . . , t] =
∑

i1,...,iq

Ci1···iq ti1 · · · tiq .

Here we present a generalization of Theorem 14.6, which provides an expansion for
E[ f (Ȳn)] under the assumption that the fourth derivative of f is bounded.

Theorem 14.8. Let Y1, Y2, . . . denote independent, identically distributed random vectors.
Assume that the first four cumulants of the distribution of Y1 exist and are finite; let µ =
E(Y1) and � = Cov(Y1). Let Ȳn = ∑n

j=1 Y j/n and consider f (Ȳn), where f :Y0 → R is a
four-times differentiable function, where Y0 is a convex subset of Rd for some d = 1, 2 . . .

such that Pr(Y1 ∈ Y0) = 1. Assume that

sup
i, j,k,�=1,...,d

sup
y∈Y0

| f (4)
i jk�(y)| < ∞.

Then

E[ f (Ȳn)] = f (µ) + 1

2
tr{� f ′′(µ)}1

n
+ O

(
1

n2

)
as n → ∞.

Proof. By Taylor’s theorem,

f (Ȳn) = f (µ) + f ′(µ)[Ȳn − µ] + 1

2
f ′′(µ)[Ȳn − µ, Ȳn − µ]

+ 1

6
f ′′′(µ)[Ȳn − µ, Ȳn − µ, Ȳn − µ]

+ 1

24
f (4)(mn)[Ȳn − µ, Ȳn − µ, Ȳn − µ, Ȳn − µ]

where, for each n = 1, 2, . . . , there exists a t ≡ tn such that mn = tµ + (1 − t)Ȳn .
The proof now follows along the same lines as the proof of Theorem 14.6, using the

facts that E{ f ′(µ)[Ȳn − µ]} = 0,

E{ f ′′(µ)[Ȳn − µ, Ȳn − µ]} = 1

n
tr{� f ′′(µ)}.

Example 14.16 (Product of squared means). Let (X1, W1), (X2, W2), . . . denote a
sequence of independent, identically distributed two-dimensional random vectors such that
X1 has mean µX and variance σ 2

X , W1 has mean µW and variance σ 2
W , and let ρ denote

the correlation of X1 and W1. Assume that the first four cumulants of the distribution of
(X1, W1) exist.

Consider E(X̄2
n W̄ 2

n ), where X̄ n = ∑n
j=1 X j/n and W̄n = ∑n

j=1 W j/n. Let Y j =
(X j , W j ), j = 1, 2, . . .; then E(X̄2

n W̄ 2
n ) is of the form E[ f (Ȳn)], Ȳn = ∑n

j=1 Y j/n, where
f (t) = t2

1 t2
2 , t = (t1, t2) ∈ R2.

Note that

f ′′(t) =
(

2t2
2 4t1t2

4t1t2 2t2
1

)
.
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It is straightforward to show that the fourth derivative of f is bounded. Hence, by
Theorem 14.8,

E
(
X̄2

n W̄ 2
n

) = µ2
Xµ2

W + 1

2
tr

[(
σ 2

X ρσXσW

ρσXσW σ 2
W

) (
2µ2

W 4µXµW

4µXµW 2µ2
X

)]
1

n
+ O

(
1

n2

)

= µ2
Xµ2

W + (
µ2

W σ 2
X + µ2

Xσ 2
W + 4ρµXµW σXσW

)1

n
+ O

(
1

n2

)
.

Since

E
(
X̄2

n

) = µ2
X + σ 2

X

n

and

E
(
W̄ 2

n

) = µ2
W + σ 2

W

n
,

it follows that

Cov
(
X̄2

n, W̄ 2
n

) = 4ρµXµW σXσW
1

n
+ O

(
1

n2

)
. �

14.6 Exercises

14.1 Let X1, X2, . . . denote independent, identically distributed random variables, each with an abso-
lutely continuous distribution with density function

√
θ1√

(2π )
exp[

√
(θ1θ2)]x− 3

2 exp

{
−1

2
(θ1x + θ2/x)

}
, x > 0

where θ1 > 0 and θ2 > 0. This is an inverse Gaussian distribution with parameters θ1 and θ2. Find
the Edgeworth series approximations with error o(1/

√
n) to the density function and distribution

function of
∑n

j=1 X j/n for the case θ1 = θ2 = 1.

14.2 Let X1, X2, . . . denote independent, identically distributed random variables, each uniformly
distributed on the interval (0, 1). Find the Edgeworth series approximations with error o(1/n)
to the density function and distribution function of

∑n
j=1 X j/n.

14.3 Let X1, X2, . . . denote independent, identically distributed random variables, each with an abso-
lutely continuous distribution, and assume that E(|X1|3) < ∞. Let F̂n denote the Edgeworth
series approximations with error o(1/

√
n) to the distribution function of X̄ n = ∑n

j=1 X j/n.
For each n = 1, 2, . . . , let Y j = a + bX j , for some constants a, b, b > 0, and consider two

approaches to approximating the distribution function of Ȳn = ∑n
j=1 Y j/n. One approach is to

use Edgeworth series approximations with error o(1/
√

n), as described in Theorem 14.2. Another
approach is to approximate the distribution function of X̄ n by F̂n and then use the relationship
between the distribution function of Ȳn and the distribution function of X̄ n resulting from the
fact that Ȳn = a + bX̄n . Are these two approximations the same? If not, which approximation
would you expect to be more accurate?

14.4 The Edgeworth expansion of the density of a random variable has the undesirable feature that,
for some values of the argument, the approximation given by the Edgeworth expansion may
be negative. To avoid this problem, it is sometimes useful to approximate a density function
by expanding the log of the density and then exponentiating the result to obtain an approxi-
mation for the density itself. Determine an Edgeworth expansion for the log-density with error
o(1/

√
n).
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14.5 Consider a random variable with mean 0 and standard deviation 1. Suppose the density of this
random variable is approximated by an Edgeworth expansion with error o(1/

√
n). Using this

approximation as a genuine density function, find approximations for the median and mode of
the distribution.

14.6 Let X1, X2, . . . denote independent, identically distriubuted random variables with mean 0 and
standard deviation 1. Let Fn denote the distribution function of

∑n
j=1 X j/

√
n and assume that

there is a Edgeworth series approximation to Fn . Show that

Pr

{
−a <

n∑
j=1

X j/
√

n < a

}
= Fn(a) − Fn(−a)

= �(a) − �(−a) + o

(
1√
n

)
as n → ∞.

That is, for approximating the probability that
∑n

j=1 X j/
√

n lies in an interval that is symmetric
about 0, the normal approximation given by the central limit theorem has error o(1/

√
n).

14.7 Let Yn denote a statistic with a density function that has an Edgeworth series approximation
of the form

φ(y)

[
1 + κ3

6
H3(y)

1√
n

+
(

κ4

24
H4(y) + κ2

3

72
H6(y)

)
1

n
+ · · ·

]
.

Let Xn = Y 2
n . Find an Edgeworth series approximation to the density function of Xn by using

the approximation to the density function of Yn , together with the change-of-variable formula
given in Chapter 7. Relate the terms in the approximation to the chi-squared distribution.

14.8 Let X1, X2, . . . denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

1√
(2π )

exp(1)x− 3
2 exp

{
−1

2
(x + 1/x)

}
, x > 0;

see Exercise 14.1. Find approximations with error o(1/
√

n) to the quantiles of the distribution
of

∑n
j=1 X j/n.

14.9 In the proof of Theorem 14.1, it is stated that the Fourier transform of

p̂n(x) = φ(x) + κ3

6
√

n
H3(x)φ(x)

is

exp

{
−1

2
t2

} [
1 + κ3

6
√

n
(i t)3

]
.

Prove this fact.

14.10 Let X1, X2, . . . denote independent, identically distributed random variables, each normally
distributed with mean µ and standard deviation σ . Find the saddlepoint approximation to the
density function of

∑n
j=1 X j/n.

14.11 Let X1, X2, . . . denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

1√
(2π )

exp(1)x− 3
2 exp

{
−1

2
(x + 1/x)

}
, x > 0;

see Exercise 14.1.

Find the saddlepoint approximation to the density function of
∑n

j=1 X j/n.
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14.12 Let Y1, Y2, . . . denote independent, identically distributed random variables, each with an
absolutely continuous distribution with density function

1

2
exp{−|y|}, −∞ < y < ∞.

Find an approximation to Pr{∑5
j=1 Y j ≥ 4} based on the saddlepoint approximation. Compare

the result to the approximation based on the central limit theorem.

14.13 Let X1, X2, . . . denote independent, identically distributed random variables, each with a distri-
bution satisfying the conditions of Theorem 14.2. Let X̄ n = ∑n

j=1 X j/n. For a given constant
b let

Yn = X̄ n + bX̄
2
n .

Find b so that the distribution of
√

nYn is standard normal, with error o(1/
√

n).

14.14 Prove Corollary 14.1.

14.15 Let Y1, Y2, . . . denote independent, identically distributed random variables, each with a chi-
squared distribution with 1 degree of freedom. Using Theorem 14.5, find an approximation
to the distribution function of [

∑n
j=1 Y j/n]

1
3 , suitably normalized. Based on this result, give

an approximation to Pr(χ2
n ≤ t), where χ2

n denotes a random variable with a chi-squared
distribution with n degrees of freedom.

14.16 Prove Lemma 14.3.

14.17 Let Y1, Y2, . . . denote independent, identically distributed random variables, each with density

αyα−1, 0 < y < 1

where α > 0. Find an approximation to E[(1 + Ȳn)−1], where Ȳn = ∑n
j=1 Y j/n.

14.18 Let Y1, Y2, . . . denote independent, identically distributed, real-valued random variables, each
with range Y . Assume that the distribution of Y1 has mean µ, variance σ 2, third cumulant κ3,
and fourth cumulant κ4. Let Ȳn = ∑n

j=1 Y j/n. Find expansions for

E
{

f
(
Ȳn − µ

)}
and

E{ f (
Ȳn − µ

σ
)}

where f is a real-valued four-times differentiable function on Y0, a convex subset of R con-
taining Y , such that

sup
y∈Y0

| f (4)(y)| < ∞.

14.19 Let Y1, Y2, . . . denote independent, identically distributed, real-valued random variables.
Assume that the distribution of Y1 has mean µ, variance σ 2, third cumulant κ3. Let Ȳn =∑n

j=1 Y j/n and let

f (y) = ay3 + by2 + cy + d

for some constants a, b, c, d. Find an exact expression for E{ f (Ȳn)} and compare it to the
approximation given in Theorem 14.6.

14.20 Let Y1, Y2, . . . denote independent, identically distributed, real-valued random variables, each
with range Y . Assume that moment-generating function of the distribution of Y1 exists. Let
Ȳn = ∑n

1 Y j/n and consider f (Ȳn), where f is a real-valued four-times differentiable function
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on Y0, a convex subset of R containing Y . Assume that

| f (4)(y)| < α exp(β|y|), y ∈ Y0

for some constants α and β. Find an expansion for Var{ f (Ȳn)}.

14.7 Suggestions for Further Reading

Wallace (1958) gives a concise overview of asymptotic approximations to probability distributions
and Ghosh (1994) discusses the use of higher-order asymptotic theory in statistical inference.

Edgeworth series approximations are discussed in Feller (1971, Chapter XVI) and Kolassa (1997,
Chapter 3); a comprehensive treatment is given by Bhattacharya and Rao (1976). Edgeworth series
approximations also apply to vector-valued random variables. The derivation is essentially the same
as in the univariate case. The cumulant-generating function of the normalized sample mean can be
expanded up to a specified power of n− 1

2 . The truncated expansion may then be inverted to yield
an approximation to the density function of the standardized sample mean. The leading term in
the approximation is the multivariate normal density and the later terms are based on higher-order
cumulant arrays. See Kolassa (1997, Chapter 6) and McCullagh (1987, Chapter 5) for further details.

Saddlepoint approximations are considered in detail in Jensen (1995) and Kolassa (1997, Chapters
3 and 4); see also Barndorff-Nielsen and Cox (1989) and Daniels (1954). Reid (1988) surveys the use
of saddlepoint methods in statistical inference and Field and Ronchetti (1990) consider the application
of saddlepoint methods to the problem of approximating the distribution of statistics more general
than sample means. The material in Section 14.4 on stochastic asymptotic expansions is based on
Hall (1992, Chapter 2); see also Barndorff-Nielsen and Cox (1989, Chapter 3) and Skovgaard (1981).
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Appendix 1

Integration with Respect to a
Distribution Function

A1.1 Introduction

In this appendix we consider integration with respect to a distribution function, a concept
which plays a central role in distribution theory. Let F denote a distribution function on
Rd ; the integral of a function g with respect to F is denoted by∫

Rd

g(x) dF(x). (A1.1)

Our goal is to define and describe the properties of integrals of the form (A1.1).
One approach is to use results from measure theory and the general theory of integration

with respect to a measure. The distribution function F defines a measure µ on Rd . The
integral (A1.1) may then be written as∫

g(x)µ(dx) or
∫

g dµ

and the properties of these integrals follow from standard results in the theory of measure
and integration. See, for example, Ash (1972) or Billingsley (1995).

The purpose of this appendix is to present a brief summary of this theory for those readers
who have not studied measure theory.

Consider a distribution function F : Rd → [0, 1] and let g, g1, g2, . . . denote real-valued
functions on Rd . Let X denote a random variable with distribution function F . There are
several properties that any definition of integration with respect to a distribution function
should satisfy:

I1. Integration of indicator functions
Let A denote a subset of Rd and let I{x∈A} denote the indicator function of A. Then∫

Rd

I{x∈A} d F(x) ≡
∫

A
d F(x) = Pr(X ∈ A).

I2. Linearity
Let a1, a2 denote constants. Then∫

Rd

[a1g1(x) + a2g2(x)] d F(x) = a1

∫
Rd

g1(x) d F(x) + a2

∫
Rd

g2(x) d F(x).

471
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I3. Nonnegativity
If g ≥ 0, then ∫

Rd

g(x) d F(x) ≥ 0.

I4. Continuity
Suppose that, for each x ∈ Rd , the sequence g1(x), g2(x), . . . is an increasing
sequence with limit g(x). Then∫

Rd

g(x) d F(x) = lim
n→∞

∫
Rd

gn(x) d F(x),

if the limit of the integrals exists and∫
Rd

g(x) d F(x) = ∞

otherwise.
These requirements may be used to construct a general definition of integration.

A1.2 A General Definition of Integration

Define a simple function to be a function of the form

g(x) =
m∑

i=1

α(g)i I{x∈Ai }

where α(g)1, α(g)2, . . . , α(g)m are given real numbers, A1, A2, . . . , Am are disjoint subsets
of Rd , and m is a given positive integer.

By (I1) and (I2), if g is a simple function then∫
Rd

g(x) d F(x) =
m∑

i=1

α(g)i Pr(X ∈ Ai ).

Furthermore, if g1, g2, . . . is an increasing sequence of simple functions such that, for each
x , g1(x), g2(x), . . . converges to g(x), then, by (I4), the integral of g is given by∫

Rd

g(x) d F(x) = lim
n→∞

∫
Rd

gn(x) d F(x),

provided that the limit exists.
Hence, if a nonnegative function g may be written as a limit of simple functions in this

manner then the value of the integral ∫
Rd

g(x) d F(x)

may be determined, although that value may be ∞. It may be shown that the value of such
an integral is unique: if g may be written as the limit of two different sequences of simple
functions, then those two sequences must lead to the same value for the integral. Call a
nonnegative function integrable if it may be written as the limit of simple functions in this
manner and the value of its integral is finite. Thus, the integral of any nonnegative integrable
function is well-defined and finite.
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If g is a general function, not necessarily nonnegative, we may write g = g+ − g−

where g+ and g− are nonnegative functions, called the positive and negative parts of g,
respectively. By the linearity condition on the integral,∫

Rd

g(x) d F(x) =
∫

Rd

g+(x) d F(x) −
∫

Rd

g−(x) d F(x).

We will say that g is integrable if its positive and negative parts are integrable. The integral
of a integrable function g is given by∫

Rd

g(x) d F(x) =
∫

Rd

g+(x) d F(x) −
∫

Rd

g−(x) d F(x).

It is important to note that if a function g is not integrable, it does not mean that its integral
does not exist. The integral of g exists provided that either g+ or g− is integrable. The
function g is integrable provided that both g+ and g− are integrable; since |g| = g+ + g−, g
is integrable provided that |g| is integrable.

Consider the class of functions whose positive and negative parts can be written as
the limits of increasing sequences of simple functions; call such a function an extended
simple function. The integral of an extended simple function, given that it exists, can be
determined using the method described above. Clearly for this approach to be useful the
class of extended simple functions must be sufficiently broad.

There is a close connection between extended simple functions and the measurable
sets discussed in Section 1.2. In particular, a function g : Rd → R is an extended simple
function provided that, for each measurable subset of R, A, the set given by

{x ∈ Rd : g(x) ∈ A}
is measurable; such a function is said to be measurable. As in the case of measurable
sets, nearly every function of practical interest is measurable and we will proceed as if all
functions are measurable.

The general integral described above has a number of useful properties. Several of these
are given below without proof; for further details, see, for example, Ash (1972), Billingsley
(1995), or Port (1994). In these properties, the term almost everywhere (F), written a.e. (F),
is used to denote a property that holds for all x ∈ A where A is some set such that the
probability of A, under the distribution with distribution function F , is 1.

Some basic properties
Let g1, g2 denote functions on Rd .

(i) If g1 = 0 a.e. (F) then ∫
Rd

g(x) d F(x) = 0.

(ii) If g1 = g2 a.e. (F) and ∫
Rd

g1(x) d F(x)

exists, then ∫
Rd

g2(x) d F (x)
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exists and ∫
Rd

g1(x) d F(x) =
∫

Rd

g2(x) d F(x).

(iii) If g1 ≥ 0 and ∫
Rd

g1(x) d F(x) = 0

then g1 = 0 a.e. (F).

Change-of-variable
Consider a random variable X taking values inX ⊂ Rd and let FX denote the distribution

function of the distribution of X . Let g be a function defined in Let g : X → Rq and let
Y = g(X ). Let FY denote the distribution function of the distribution of Y . Then∫

Rd

y d FY (y) =
∫

Rd

g(x)d FX (x).

A1.3 Convergence Properties

The properties described in this section are all concerned with the following question.
Suppose g1, g2, . . . is a sequence of functions defined on Rd . How is the convergence of
the sequence of integrals ∫

Rd

gn(x) d F(x), n = 1, 2, . . .

related to the convergence of the sequence of functions gn , n = 1, 2, . . .?

Fatou’s lemma
If there exists a function g such that g j ≥ g, j = 1, 2, . . ., and∫

Rd

g(x) d F(x) > −∞,

then

lim inf
n→∞

∫
Rd

gn(x) d F(x) ≥
∫

Rd

lim inf
n→∞ gn(x) d F(x).

If there exists a function g such that gn ≤ g, n = 1, 2, . . ., and∫
Rd

g(x) d F(x) < ∞,

then

lim sup
n→∞

∫
Rd

gn(x) d F(x) ≤
∫

Rd

lim sup
n→∞

gn(x) d F(x).
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Dominated convergence theorem
If there exists a function h such that |gn| ≤ h, n = 1, 2, . . . ,∫

Rd

h(x) d F(x) < ∞,

and

lim
n→∞ gn(x) = g(x) a.e. (F),

then

lim
n→∞

∫
Rd

gn(x) d F(x) =
∫

Rd

g(x) d F(x).

Beppo Levi’s theorem
Suppose that g1, g2, . . . is an increasing sequence of functions with limit g such that

sup
n

∫
Rd

gn(x) d F(x) < ∞.

Then ∫
Rd

g(x) d F(x) < ∞

and

lim
n→∞

∫
Rd

gn(x) d F(x) =
∫

Rd

g(x) d F(x).

A1.4 Multiple Integrals

Consider two random variables, X and Y , with ranges X ⊂ Rd and Y ⊂ Rp, respectively.
Let F denote the distribution function of the distribution function of (X, Y ) and let g denote
a function defined on X × Y . Suppose we are interested in the integral∫

Rp+d

g(x, y) d F(x, y).

The following results state that this integral may be computed by first integrating with
respect to x and then with respect to y, leading to an iterated integral.

Fubini’s theorem
Suppose F = FX FY where FX is the distribution function of the distribution of X and

FY is the distribution function of the distribution of Y . Then∫
Rp+d

g(x, y) d F(x, y) =
∫

Rp

[ ∫
Rd

g(x, y) d FX (x)
]

d FY (y).

Note that the condition that F = FX FY implies that X and Y are independent. The
following result is an extension of Fubini’s Theorem to the case in which independence
does not hold.
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Suppose F may be written F(x, y) = FX (x ; y)FY (y) for all x, y, where for each y ∈ Y ,
FX (·; y) defines a distribution function on Rp and FY denotes a distribution function on Rq .
Then ∫

Rp+d

g(x, y) d F(x, y) =
∫

Rp

[ ∫
Rd

g(x, y) d FX (x ; y)
]

d FY (y).

A1.5 Calculation of the Integral

Although the properties of the integral with respect to a distribution function have been
discussed in detail, we have not discussed the actual calculation of the integral∫

Rd

g(x) d F(x)

for given choices of g and F . Although, in principle, the integral may be calculated based on
the definition given above, that is generally a difficult approach. Fortunately, there are some
basic results that make this calculation routine in many cases of practical interest. Here we
consider only the case in which F is a distribution function on the real line; integrals with
respect to distribution functions on Rd , d > 1, can be calculated as iterated integrals.

Two types of distribution function F arise often in statistical applications. One is a
step function; the other is an absolutely continuous function. The integral of an integrable
function g with respect to either type of function is easy to calculate using results from
basic calculus.

A distribution function F defined on R is a step function if there is a partition of R,

x0 < x1 < x2 < · · ·
such that F is constant on each interval [x j−1, x j ). Suppose F is a step function and define

α j =



limd→0+ F(x1 + d) − F(x1) for j = 1
limd→0+ F(x j + d) − limd→0+ F(x j − d) for j = 2, . . . , n − 1
F(xn) − limd→0+ F(xn − d) for j = n

.

Then α j represents the size of the jump at x j so that

F(x) − F(x̃) = α j for x j ≥ x < x j+1 and x j−1 ≤ x̃ < x j .

If g is integrable with respect to F then∫
R

g(x) d F(x) =
∞∑
j=1

g(x j )α j .

Now suppose that F is absolutely continuous. Recall that a real-valued function h defined
on [a, b] is said to be absolutely continuous if for every ε > 0 there exists a δ > 0 such that
for all positive integers n and all disjoint subintervals of [a, b], (a1, b1), . . . , (an, bn) such
that

n∑
j=1

|b j − a j | ≤ δ
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implies that

n∑
j=1

|h(b j ) − h(a j )| ≤ ε.

A function h : R → R is absolutely continuous if the restriction of h to [a, b] is absolutely
continuous for any a < b. A sufficient condition for h to be absolutely continuous is that
there exists a constant M such that

|h(x1) − h(x2)| ≤ M |x1 − x2|
for all x1, x2 in [a, b]. This is called a Lipschitz condition. Under this condition,

n∑
j=1

|h(b j ) − h(a j )| ≤ M
n∑

j=1

|b j − a j | ≤ Mδ

so that δ may be taken to be ε/M .
There is a close connection between absolutely continuous functions and functions

defined by integrals. If h : [a, b] → R is given by

h(x) − h(a) =
∫ x

a
g(t) dt

for some function g, then h is absolutely continuous. Conversely, if h : [a, b] → R is an
absolutely continuous function then there exists a function g such that

h(x) − h(a) =
∫ x

a
g(t) dt.

Hence, if F is absolutely continuous then there exists a nonnegative function f such that

F(t) =
∫

R
I{−∞<x≤t} f (x) dx, −∞ < t < ∞.

In this case, ∫
R

g(x) d F(x) =
∫

R
g(x) f (x) dx ;

the integral ∫
R

g(x) f (x) dx

may be taken to be the usual Riemann integral studied in elementary calculus, provided that
the Riemann integral of g f exists. For instance, the Riemann integral of a bounded function
h over an interval [a, b] exists if the set of discontinuities of h in [a, b] is countable.

A1.6 Fundamental Theorem of Calculus

Let F denote a distribution function on the real line.

(i) Suppose there exists a function f such that

F(x) =
∫ x

−∞
f (t) dt, −∞ < x < ∞.

If f is continuous at x , then F ′(x) exists and is equal to f (x).
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(ii) Suppose F ′(x) exists for all −∞ < x < ∞ and∫ ∞

−∞
F ′(x) < ∞.

Then

F(x) =
∫ x

−∞
F ′(t) dt, −∞ < x < ∞.

(iii) Suppose that

F(x) =
∫ x

−∞
f (t) dt, −∞ < x < ∞,

for some nonnegative, integrable function f . Then F ′(x) = f (x) for almost all x .

For proofs of these results, and much further discussion, see, for example, Billingsley
(1995, Section 31).

A1.7 Interchanging Integration and Differentiation

Let A be an open subset of R, and let f denote a continuous, real-valued function on
Rd × A. Assume that

(i) for each t ∈ A, ∫
Rd

| f (x, t)| d F(x) < ∞

(ii) for each t ∈ A,

∂

∂t
f (x, t)

exists and ∫
Rd

| ∂

∂t
f (x, t)| d F(x) < ∞

(iii) there exists a function h on Rd such that

| f (x, t)| ≤ h(x), t ∈ A

and ∫
Rd

|h(x)| d F(x) < ∞.

Define

g(t) =
∫ b

a
f (x, t) d F(x), t ∈ A.

Then g is differentiable on A and

g′(t) =
∫ b

a

∂ f

∂t
(x, t) d F(x), t ∈ A.

See Lang (1983, Chapter 13) for a proof of this result.
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Basic Properties of Complex Numbers

This appendix contains a brief review of the properties of complex numbers; in distribution
theory, these are used in connection with characteristic functions.

A2.1 Definition

A complex number x is an ordered pair (x1, x2) where x1 and x2 are real numbers. The first
component, x1, is called the real part of the complex number; the second component, x2, is
called the imaginary part. Complex numbers of the form (x1, 0) are said to be real and are
written simply as x1. Two complex numbers x = (x1, x2) and y = (y1, y2) are considered
equal if x1 = y1 and x2 = y2.

Addition of complex numbers is defined by

x + y = (x1 + y1, x2 + y2)

and multiplication is defined by

xy = (x1 y1 − x2 y2, x1 y2 + x2 y1).

The absolute value or modulus of a complex number x is the nonnegative number, denoted
by |x |, given by

|x |2 = x2
1 + x2

2 .

The complex number (0, 1) is called the imaginary unit and is denoted by i . Hence,
the complex number x = (x1, x2) may be written x = x1 + i x2. Using the definition of
multiplication,

i2 ≡ i i = (0, 1)(0, 1) = (−1, 0) = −1.

A2.2 Complex Exponentials

For a complex number x = x1 + i x2, the exponential exp(x) is defined as

exp(x) = exp(x1 + i x2) = exp(x1)[cos(x2) + i sin(x2)].

It may be shown that, if x and y are complex numbers,

exp(x) exp(y) = exp(x + y).

479
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Also, if x is purely imaginary, that is, is of the form (0, x2), then

| exp(x)| = 1.

Let z denote a real number. Then the cosine, sine, and exponential functions have the
following power series representations:

cos(z) =
∞∑
j=0

(−1) j z2 j

(2 j)!
, sin(z) =

∞∑
j=0

(−1) j z2 j+1

(2 j + 1)!
,

and

exp(z) =
∞∑
j=0

z j

j!
.

Since i2 j = (−1) j , we may write

cos(z) =
∞∑
j=0

(i z)2 j

(2 j)!
and sin(z) = −i

∞∑
j=0

(i z)2 j+1

(2 j + 1)!
.

It follows that

exp(i z) = cos(z) + i sin(z) =
∞∑
j=0

(i z)2 j

(2 j)!
− i2

∞∑
j=0

(i z)2 j+1

(2 j + 1)!

=
∞∑
j=0

(i z) j

j!
.

Hence, for any complex number x ,

exp(x) =
∞∑
j=0

x j

j!
.

Lemma A2.1. We may write

exp{i t} =
n∑

j=0

(i t) j

j!
+ Rn(t)

where

|Rn(t)| ≤ min{|t |n+1/(n + 1)!, 2|t |n/n!}.

Proof. First note that, using integration-by-parts,∫ t

0
(t − s)n+1 cos(s) ds = (n + 1)

∫ t

0
(t − s)n sin(s) ds

and ∫ t

0
(t − s)n+1 sin(s) ds = −(n + 1)

∫ t

0
(t − s)n cos(s) ds + tn+1.
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Hence, ∫ t

0
(t − s)n exp{is} ds = tn+1

n + 1
+ i

n + 1

∫ t

0
(t − s)n+1 exp{is} ds. (A2.1)

It follows that∫ t

0
exp{is} ds = t + i

∫ t

0
(t − s) exp{is} ds

= t + i

[
t2

2
+ i

2

∫ t

0
(t − s)2 exp{is} ds

]
.

Continuing in this way shows that

i
∫ t

0
exp{is} ds =

n∑
j=1

(i t) j

j!
+ i n+1

∫ t

0
(t − s)n exp{is} ds

and, hence, that

exp{i t} =
n∑

j=0

(i t) j

j!
+ i n+1

n!

∫ t

0
(t − s)n exp{is} ds.

Consider the remainder term

i n+1

n!

∫ t

0
(t − s)n exp{is} ds.

Since, by (A2.1),

i

n

∫ t

0
(t − s)n exp{is} ds =

∫ t

0
(t − s)n−1 exp{is} ds −

∫ t

0
(t − s)n−1 ds,

it follows that

i n+1

n!

∫ t

0
(t − s)n exp{is} ds = i n

(n − 1)!

∫ t

0
(t − s)n−1[exp{is} − 1] ds

and, hence, that

∣∣∣ i n+1

n!

∫ t

0
(t − s)n exp{is} ds

∣∣∣ ≤ 2

n!
tn.

Also,

∣∣∣ i n+1

n!

∫ t

0
(t − s)n exp{is} ds

∣∣∣ ≤ 1

n!
sgn(t)

∫ t

0
|t − s|n ds ≤ |t |n+1

(n + 1)!
.

The result follows.

Lemma A2.2. Let u and v denote complex numbers. Then

| exp(u) − (1 + v)| ≤ [|u − v| + |u|2/2] exp(|u|).
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Proof. The proof is based on the following result. Let t denote a complex number. Using
the power series representation for exp(t),

| exp(t) − (1 + t)| =
∣∣∣∣∣

∞∑
j=2

t j

j!

∣∣∣∣∣ ≤ |t |2
2

∞∑
j=0

|t | j 2

( j + 2)!

∣∣∣∣∣
≤ |t |2

2

∣∣∣∣∣
∞∑
j=0

|t | j

j!

∣∣∣∣∣ = |t |2
2

exp(|t |). (A2.2)

Now consider the proof of the lemma. Note that

| exp(u) − (1 + v)| = | exp(u) − (1 + u) + (u − v)| ≤ | exp(u) − (1 + u)| + |u − v|.
The result now follows from (A2.2) along with the fact that exp(|u|) ≥ 1.

A2.3 Logarithms of Complex Numbers

If x is a real number, then log(x) is defined by

exp{log(x)} = x .

First note that this same approach will not work for complex numbers. Let x = x1 + i x2

denote a complex number and suppose that y = y1 + iy2 denotes log(x). Then

exp(y) = exp(y1)[cos(y2) + i sin(y2)]

so that we must have

cos(y2) exp(y1) = x1 and sin(y2) exp(y1) = x2;

that is,

y1 = log(|x |) and tan(y2) = x2/x1.

Since if y2 satisfies tan(y2) = x2/x1 so does y2 + 2nπ for any integer n, the requirement
exp(log(x)) = x does not uniquely define log(x).

The principal logarithm of a complex number x is taken to be

log |x | + i arg(x)

where arg(x) denotes the principal argument of x . The principal argument of x = x1 + i x2

is defined to be the real number θ , −π < θ ≤ π , satisfying

x1 = |x | cos(θ ), x2 = |x | sin(θ ).

Whenever the notation log(x) is used for a complex number x , we mean the principal
logarithm of x .

Let x denote a complex number. If |x − 1| < 1, then log(x) may also be defined by

log(x) =
∞∑
j=1

(−1) j+1(x − 1) j/j.
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Some Useful Mathematical Facts

This appendix contains a review of some basic mathematical facts that are used throughout
this book. For further details, the reader should consult a book on mathematical analysis,
such as Apostal (1974), Rudin (1976), or Wade (2004).

A3.1 Sets

A3.1.1 Basic definitions. A set is a collection of objects that itself is viewed as a single
entity. We write x ∈ A to indicate that x is an element of a set A; we write x /∈ A to indicate
that x is not an element of A. The set that contains no elements is known as the empty set
and is denoted by ∅.

Let A and B denote sets. If every element of B is also an element of A we say that B
is a subset of A; this is denoted by B ⊂ A. If there also exists an element of A that is not
in B we say that B is a proper subset of A. If A and B have exactly the same elements we
write A = B. The difference between A and B, written A \ B, is that set consisting of all
elements of A that are not elements of B.

A3.1.2 Set algebra. Let S denote a fixed set such that all sets under consideration are
subsets of S and let A and B denote subsets of S. The union of A and B is the set C
whose elements are either elements of A or elements of B or are elements of both; we write
C = A ∪ B. The intersection of A and B is the set D whose elements are in both A and B;
we write D = A ∩ B. Sets A and B are said to be disjoint if A ∩ B = ∅. The complement
of A, denoted by Ac, consists of those elements of S that are not elements of A.

LetF denote an arbitrary collection of sets. The union of all sets inF is that set consisting
of those elements that belong to at least one of the sets in F ; this set is written⋃

A∈F
A.

The intersection of all sets in F is that set consisting of those elements that belong to every
set in F ; this set is written ⋂

A∈F
A.

DeMorgan’s Laws state: (⋃
A∈F

A

)c

=
⋂
A∈F

Ac

483
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and (⋂
A∈F

A

)c

=
⋃
A∈F

Ac.

A3.1.3 Ordered sets. Let S denote a set and let < denote a relation on S with the following
properties:

(O1) If x, y ∈ S then exactly one of the following statements is true: x < y, y < x ,
x = y.

(O2) If x, y, z ∈ S and x < y, y < z, then x < z.

The relation < is known as an order on S; a set S together with an order < is known as an
ordered set. We write x ≤ y to mean either x < y or x = y.

Let S denote an ordered set and let A ⊂ S. We say that A is bounded above if there exists
an element b ∈ S such that x ≤ b for all x ∈ A; b is said to be an upper bound of A. We
say that A is bounded below if there exists an element a ∈ S such that a ≤ x for all x ∈ A;
a is said to be a lower bound of A.

Let b be an upper bound of A with the following property: if c is another upper bound
of A then b < c. Then b is called the least upper bound or supremum of A; supremum is
generally denoted by sup and we write

b = sup A.

Similarly, if a is lower bound of A with the property that any other lower bound c satisfies
c < a, then a is known as the greatest lower bound or infimum of A and we write

a = inf A.

A3.1.4 Open and closed sets. Let S denote a set such that, for any two elements x, y ∈ S,
there is associated a real number d(x, y) called the distance between x and y. The function
d is said to be a metric on S provided that it satisfies the following properties:

(M1) d(x, x) = 0 and d(x, y) > 0 if x �= y
(M2) d(x, y) = d(y, x)
(M3) for any z ∈ S, d(x, z) ≤ d(x, y) + d(y, z).

The set S together with a metric d is known as a metric space. The most commonly used
metric space is the set of real numbers R, together with the metric d(x, y) = |x − y|.

Let S denote a metric space with metric d. A neighborhood of x ∈ S is the set consisting
of all points y ∈ S such that d(x, y) < ε for some ε > 0; ε is known as the radius of
the neighborhood. Let A ⊂ S; a point x ∈ S is called a limit point of the set A if every
neighborhood of x contains a point y ∈ A such that y �= x . The set A is said to be closed if
every limit point of A is an element of A. The point x is said to be an interior point of A if
there exists a neighborhood of x that is a subset of A. The set A is said to be open if every
point of A is an interior point of A. Let B ⊂ S and let C denote the set of all limit points of
B; the closure of B is the set B ∪ C .

A3.1.5 Cartesian products. Consider two sets, A and B. The cartesian product of A
and B, denoted by A × B, is the set of all ordered pairs (a, b) with a ∈ A and b ∈ B. The
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cartesian product of sets A1, . . . , Ak , denoted by A1 × · · · × Ak , is the set of all ordered
k-tuples (a1, . . . , ak) such that a1 ∈ A1, a2 ∈ A2, . . . , ak ∈ Ak .

For instance, for any positive integer k, k-dimensional Euclidean space, denoted by Rk ,
is the cartesian product R × · · · × R of k copies of the set of real numbers R. This is a
metric space with metric

d(x, y) =
[

k∑
j=1

(x j − y j )
2

] 1
2

,

where x = (x1, . . . , xk) and y = (y1, . . . , yk).
Let A and B denote sets. A subset C of A × B is called a relation. The set of all elements

x ∈ A that occur as first members of pairs in C is called the domain of C ; the set of all
elements y ∈ B that occur as second members of pairs in C is called the range of C . A
function is a relation C such that no two elements of C have the same first member. That
is, if C is a function with domain A and range that is a subset of B, then associated with
any element x ∈ A is a unique element y ∈ B; this association is given by the ordered pair
(x, y). A function C is said to be one-to-one if, for any two pairs (x1, y1), (x2, y2) ∈ C ,
y1 = y2 if and only if x1 = x2.

Two sets A and B are said to be similar, written A ∼ B, if there exists a one-to-one
function with domain A and range B. Similar sets have the same number of elements, in a
certain sense.

A3.1.6 Finite, countable, and uncountable sets. A set S is said to be finite if it contains
a finite number of elements. If S is finite then S ∼ {1, 2, . . . , n} for some n = 0, 1, 2, . . .;
in this case, n is the number of elements in S. A set that is not finite is said to be an
infinite set.

A set S is said to be countably infinite if it can be put into a one-to-one correspondence
with the set of positive integers; that is, if

S ∼ {1, 2, . . .}.
A countable set is one that is either finite or countably infinite. A set which is not countable
is said to be uncountable.

A3.1.7 Compact sets. Let S denote a metric space with metric d and let A ⊂ S. The set
A is said to be compact if the following condition holds. Let F denote a collection of open
subsets of S such that

A ⊂
⋃
B∈F

B;

such a collection is said to be an open covering of A. Then there exists a finite collection
of sets B1, B2, . . . , Bm , B j ∈ F , j = 1, 2, . . . , m, such that

A ⊂
m⋃

j=1

B j .

That is, A is compact if, for any open covering F of A, there exists a finite number of sets
in F that also cover A.
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Suppose that S = Rn for some n = 1, 2, . . . . A set B ⊂ Rn is said to be bounded if there
exists a real number c such that

B ⊂
{

x ∈ Rn :
n∑

j=1

x2
j ≤ c2

}
.

A subset A of Rn is compact if and only if it is closed and bounded.

A3.1.8 Sets of measure 0. Let S denote a subset of R. We say that S has measure
0 provided that the following condition holds. For any ε > 0 there exist real numbers
a1, b1, a2, b2, . . . , a j ≤ b j , j = 1, 2, . . . , such that

S ⊂
∞⋃

n=1

(an, bn) and
N∑

n=1

(bn − an) < ε, N = 1, 2, . . . .

Note that these conditions are given for the case in which there is a countably infinite number
of pairs an, bn; if there is a finite number, the conditions can be modified in the obvious
manner. For a < b, the set (a, b) consists of all x , a < x < b.

If S is a countable set, or is the union of a countable number of sets each of measure 0,
then S has measure 0.

If a particular condition holds except for those x in a set S which has measure 0, we say
that the condition holds almost everywhere or for almost all x .

A3.2 Sequences and Series

A3.2.1 Convergent sequences. Let S denote a metric space with metric d. A sequence
in S is a function with domain {1, 2, . . .} and with the range of the function a subset of S.
Such a sequence will be denoted by x1, x2, . . . , where x j ∈ S, j = 1, 2, . . . .

A sequence in S is said to converge if there exists an element x ∈ S such that for every
ε > 0 there exists a positive integer N with the property that n ≥ N implies that d(xn, x) < ε

for all n ≥ N . In this case, we say that x1, x2, . . . converges to x or that x is the limit of x
as n → ∞; this is written as

x = lim
n→∞ xn

or xn → x as n → ∞.
If x1, x2, . . .does not converge then it is said to diverge. It is important to note that there are

two ways in which a given sequence may diverge: it may fail to approach a limiting value or
it may approach a limiting value that is not an element of the set S. For instance, suppose
that S = (0, 1). The sequence 1/4, 1/2, 1/4, 1/2, . . . does not approach a limiting value;
the sequence 1/2, 1/3, 1/4, . . . approaches the limiting value 0, but 0 /∈ S. Both sequences
diverge.

A sequence x1, x2, . . . is called a Cauchy sequence if for every ε > 0 there is an integer
N such that d(xn, xm) < ε whenever n ≥ N and m ≥ N . Every convergent sequence is
a Cauchy sequence; however, not all Cauchy sequences are convergent. If every Cauchy
sequence in a metric space S converges, S is said to be complete. The Euclidean spaces Rk ,
k = 1, 2, . . . , are complete.
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Let x1, x2, . . . denote a sequence of real numbers. Suppose that, for every M ∈ R, there
exists a positive integer N such that

xn ≥ M for n ≥ N .

Then xn grows indefinitely large as n → ∞; in this case, we write xn → ∞ as n → ∞. If
for every M ∈ R there exists a positive integer N such that

xn ≤ M for n ≥ N ,

we write xn → −∞ as n → ∞.

A3.2.2 Subsequences. Let x1, x2, . . .denote a sequence of real numbers and let n1, n2, . . .

denote an increasing sequence of positive integers. Then the sequence y1, y2, . . . , where
yk = xnk , is called a subsequence of x1, x2, . . . . The sequence x1, x2, . . . converges to x if
and only if every subsequence of x1, x2, . . . also converges to x . A sequence x1, x2, . . . is
said to be bounded if there exists a real number M such that |xn| ≤ M for all n = 1, 2, . . . .

Every bounded sequence of real numbers contains a convergent subsequence.
Let x1, x2, . . . denote a sequence of real numbers and let S denote the subset of R ∪

{−∞, ∞} such that for each x ∈ S there exists a subsequence xn1 , xn2 , . . . such that

xn j → x as j → ∞.

Then sup S is called the upper limit or lim sup of x1, x2, . . .; this is written

lim sup
n→∞

xn.

Similarly, inf S is called the lower limit or lim inf of x1, x2, . . . and is written

lim inf
n→∞ xn.

Note that

lim inf
n→∞ xn ≤ lim sup

n→∞
xn.

The sequence x1, x2, . . . converges to x ∈ R if and only if

lim inf
n→∞ xn = lim sup

n→∞
xn = x .

If x1, x2, . . . and y1, y2, . . . are two sequences such that xn ≤ yn for all n ≥ N for some
positive integer N , then

lim inf
n→∞ xn ≤ lim inf

n→∞ yn

and

lim sup
n→∞

xn ≤ lim sup
n→∞

yn.

A3.2.3 O and o notation. Let a1, a2, . . . and b1, b2, . . . denote sequences of real numbers
such that bn > 0 for all n = 1, 2, . . . . We write an = O(bn) as n → ∞ if there exists a
constant M such that |an| ≤ Mbn for all n = 1, 2, . . . . We write an = o(bn) as n → ∞ if

lim
n→∞

an

bn
= 0.
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A3.2.4 Series. Let a1, a2, . . . denote a sequence of real numbers. Define a new sequence
s1, s2, . . . by

sn =
n∑

j=1

a j , n = 1, 2, . . . .

The sequence s1, s2, . . . is called a series and sn is called the nth partial sum of the series.
The sum

∞∑
j=1

a j

is called an infinite series.
The series converges or diverges depending on whether the sequence s1, s2, . . . converges

or diverges. If

lim
n→∞ sn = s

for some real number s, we write

s =
∞∑
j=1

a j ;

however, it is important to keep in mind that s is actually defined as

s = lim
n→∞

n∑
j=1

a j .

We say that the series converges absolutely if the series

∞∑
j=1

|a j |

converges. If the series converges absolutely and

∞∑
j=1

a j = s

then any rearrangement of a1, a2, . . . also has sum s.

A3.2.5 Double series. Let a jk , j = 1, 2, . . . , k = 1, 2, . . . , denote real numbers and let

smn =
m∑

j=1

n∑
k=1

a jk, m = 1, 2, . . . , n = 1, 2, . . . .

The double sequence given by smn is called a double series. If

lim
m→∞,n→∞ smn = s

the double series is said to converge to s.
Let

s̄mn =
m∑

j=1

n∑
k=1

|a jk |, m = 1, 2, . . . , n = 1, 2, . . . .
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If

lim
m→∞,n→∞ s̄mn

exists, then the double series converges absolutely and

∞∑
j=1

∞∑
k=1

a jk =
∞∑

k=1

∞∑
j=1

a jk .

Suppose that a jk ≥ 0 for all j, k. If

∞∑
k=1

a jk

converges for each j = 1, 2, . . . and

∞∑
j=1

∞∑
k=1

a jk

converges, then

∞∑
j=1

∞∑
k=1

a jk =
∞∑

k=1

∞∑
j=1

a jk .

A3.3 Functions

A3.3.1 Continuity. Let A and B be metric spaces. Recall that a function C is a subset of
the cartesian product A × B; elements of this subset are of the form (x, f (x)) where x ∈ A
and f (x) ∈ B. The domain of the function is the set of x ∈ A for which f is defined; denote
this set by D. The range of the function is the set of f (x) ∈ B corresponding to x ∈ D. We
may describe the function by giving f , together with the set D and, hence, we will refer
to f as the function, writing f : D → B to indicate the domain of the function. A function
f : D → B where B is a subset of the real line R is said to be a real-valued function.

Let dA denote the metric on A and let dB denote the metric on B. We say that f : D → B
is continuous at a point x ∈ D if for every ε > 0 there exists a δ > 0 such that

dB( f (x), f (z)) < ε

for all z ∈ D such that dA(x, z) < δ. If f is continuous at x for all x ∈ D we say that f is
continuous on D.

The function f is said to be uniformly continuous on D if for every ε > 0 there exists a
δ > 0 such that

dB( f (x), f (z)) < ε

for all x and z for which dA(x, z) < δ.
Suppose that x is a limit point of D and that f is continuous at x . Then, for any sequence

x1, x2, . . . such that xn → x as n → ∞,

lim
n→∞ f (xn) = f (x).
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We write this property as

lim
y→x

f (y) = f (x).

For the case in which A and B are subsets of R, a function f : D → B is continuous on
D if and only if for each x ∈ D and ε > 0 there exists a δ > 0 such that

| f (x) − f (z)| < ε

for all z ∈ D such that |x − z| < δ. The function f is uniformly continuous on D if for
every ε > 0 there exists a δ > 0 such that

| f (x) − f (z)| < ε

for all x and z in D for which |x − z| < δ.
Let D = (a, b) be a subset of R and consider a function f : D → R. Let x satisfy

a ≤ x < b. We write

lim
y→x+

f (y) = c or f (x+) = c

if for any sequence h1, h2, . . . such that hn > 0 for all n = 1, 2, . . . , hn → 0 as n → 0,

lim
n→∞ f (x + hn) = c.

If f (x+) = f (x) we say that f is right continuous at x . Similarly, if a < x ≤ b, we write

lim
y→x−

f (x) = d or f (x−) = d

if for any sequence h1, h2, . . . such that hn > 0 for all n = 1, 2, . . . and hn → 0 as n → 0,

lim
n→∞ f (x − hn) = d.

If f (x−) = f (x) we say that f is left continuous at x .
If f (x+) and f (x−) both exist and

f (x+) = f (x−) = f (x)

then f is continuous at x . Suppose that f is not continuous at x ; that is, suppose that x
is a discontinuity point of f . If f (x+) and f (x−) both exist, f is said to have a simple
discontinuity at x . If f (x+) = f (x−) �= f (x) the discontinuity is said to be removable
since the discontinuity disappears if we redefine the value of f (x) to be the common value
of f (x+) and f (x−).

A3.3.2 Continuous functions on a compact set. Let A and B be metric spaces and let
f : D → B denote a continuous function, where D is a subset of A. If D is compact then
the range of f is a compact subset of B and f is uniformly continuous on D.

Suppose that f is real-valued so that B may be taken to be R. If D is compact, then
there exists a constant c such that | f (x)| ≤ c for all x ∈ D; in this case, we say that f is
bounded. Let

M = sup
x∈D

f (x) and m = inf
x∈D

f (x).
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Then there exist points x0, x1 ∈ D such that

M = f (x0) and m = f (x1).

A3.3.3 Functions of bounded variation. Let f denote a real-valued function defined on
the real interval [a, b] consisting of all x , a ≤ x ≤ b, and let

{x0, x1, . . . , xn}
denote elements of [a, b] such that

a = x0 < x1 < · · · < xn−1 < xn = b.

If there exists a number M such that
n∑

j=1

| f (x j ) − f (x j−1)| ≤ M

for all such sets {x0, x1, . . . , xn} for all n = 1, 2, . . . , then f is said to be of bounded
variation.

A function f is of bounded variation if and only if it can be written as the difference of
two nondecreasing functions.

A3.3.4 Convex functions. Let f denote a real-valued function defined on a real interval
(a, b). The function f is said to be convex if for any x, y ∈ (a, b) and any α, 0 ≤ α ≤ 1,

f (αx + (1 − α)y) ≤ α f (x) + (1 − α) f (y).

Every convex function is continuous.

A3.3.5 Composition of functions. Let A, B, C denote metric spaces. Let f denote a
function from A0 to B where A0 ⊂ A; let B0 ⊂ B denote the range of f and let g : B0 → C
denote a function on B0. The function h : A0 → C defined by

h(x) = g( f (x)), x ∈ A0,

is known as the composition of f and g. If f and g are both continuous, then h is continuous.

A3.3.6 Inverses. Let A and B be metric spaces and let f : D → B denote a function,
where D is a subset of A. Recall that f is said to be a one-to-one function if, for all
x, y ∈ D, f (x) = f (y) if and only if x = y. If f is one-to-one we may define the inverse of
f as the function g : B0 → D, where B0 is the range of f , satisfying g( f (x)) = x , x ∈ B0.
The notation g = f −1 is often used. If g is the inverse of f , then g is also one-to-one and
f is the inverse of g.

Let D0 denote a subset of D. The restriction of f to D0 is the function f0 : D0 → B such
that f0(x) = f (x), x ∈ D0. The restriction of f to D0 may be invertible even if f itself is
not.

A3.3.7 Convergence of functions. Let A and B be metric spaces and let D be a subset of
A. Consider a sequence of functions f1, f2, . . . where, for each n = 1, 2, . . . , fn : D → B.
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We say that the sequence f1, f2, . . . converges pointwise to a function f if for each x ∈ D,

lim
n→∞ fn(x) = f (x).

This means that, for each x ∈ D and each ε > 0, there exists a positive integer N such that

dB( fn(x), f (x)) < ε whenever n ≥ N ;

here dB denotes the metric on B. Note that N may depend on both x and ε.
We say the sequence f1, f2, . . . converges uniformly to f if N does not depend on the x

under consideration. That is, f1, f2, . . . converges uniformly to f if, for each ε > 0, there
exists a positive integer N such that n ≥ N implies that

dB( fn(x), f (x)) < ε for all x ∈ D.

For each n = 1, 2, . . . , let

Mn = sup
x∈D

dB( fn(x), f (x)).

Then f1, f2, . . . converges uniformly to f if and only if

lim
n→∞ Mn = 0,

that is, if and only if

lim
n→∞ sup

x∈D
dB( fn(x), f (x)) = 0.

In some cases, we may have uniform convergence only on a subset of D. Let D0 be a
subset of D such that

lim
n→∞ sup

x∈D0

dB( fn(x), f (x)) = 0;

in this case, we say that f1, f2, . . . converges uniformly to f on D0. Suppose that f1, f2, . . .

converges uniformly to f on a set D0 and let x ∈ D0. If fn is continuous at x for each
n = 1, 2, . . . , then f is continuous at x .

A3.3.8 Weierstrass approximation theorem. Let f denote a real-valued function
defined on a subset [a, b] of the real line, where −∞ < a < b < ∞. There exists a sequence
of polynomials p0, p1, . . . , where for each n = 1, 2, . . . , pn is a polynomial of degree n,
such that p0, p1, . . . converges uniformly to f on [a, b].

One such sequence of polynomials is given by the Bernstein polynomials. Suppose that
a = 0 and b = 1; it is straightforward to modify the Bernstein polynomials to apply in the
general case. For each n = 0, 1, . . . , let

Bn(x) =
n∑

k=0

f

(
k

n

) (
n

k

)
xk(1 − x)n−k, 0 ≤ x ≤ 1.

Note that Bn is a polynomial of degree n. Then

lim
n→∞ sup

0≤x≤1
|Bn(x) − f (x)| = 0.
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A3.3.9 Power series. Consider a function f of the form

f (x) =
∞∑

n=0

an(x − x0)n (A3.1)

where x is a real number and a0, a1, . . . and x0 are constants. Series of this type are called
power series and the series in (A3.1) is said to be a power series expansion of f ; the function
f is said to be an analytic function.

Let

λ = lim sup
n→∞

|an| 1
n

and let r = 1/λ. Then the series

∞∑
n=0

an(x − x0)n

converges absolutely for all x such that |x − x0| < r and the series diverges for all x such
that |x − x0| > r . The quantity r is known as the radius of convergence of the series and
the interval (x0 − r, x0 + r ) is known as the interval of convergence of the series.

Let

f (x) =
∞∑

n=0

an(x − x0)n

with radius of convergence r f > 0 and let

g(x) =
∞∑

n=0

bn(x − x0)n

with radius of convergence rg > 0. Let r = min(r f , rg) and let x1, x2, . . . be a sequence
such that |xn − x0| < r for all n = 1, 2, . . . and xn → x0 as n → ∞. If f (xn) = g(xn),
n = 1, 2, . . . , then f (x) = g(x) for all x such that |x − x0| < r .

Consider a function f with power series expansion

f (x)
∞∑

n=0

an(x − x0)n

and let r denote the radius of convergence of the series, where r > 0. Then f is continuous
at x for any x ∈ (x0 − r, x0 + r ).

A3.4 Differentiation and Integration

A3.4.1 Definition of a derivative. Let f denote a real-valued function defined on a
real interval (a, b) and let x0 satisfy a < x0 < b. Then f is said to be differentiable at x0

whenever the limit

lim
x→x0

f (x) − f (x0)

x − x0
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exists. The value of limit is called the derivative of f at x0 and is denoted by f ′(x0); thus,

f ′(x0) = lim
x→x0

f (x) − f (x0)

x − x0
,

provided that the limit exists. If f is differentiable at x0 then f is continuous at x0.
We say that f is differentiable on (a, b) if f is differentiable at x0 for each x0 ∈ (a, b).

Suppose that f is differentiable on (a, b). If f ′(x) ≥ 0 for all x ∈ (a, b) then f (x1) ≥ f (x0)
for all x1 ≥ x0; if f ′(x) ≤ 0 for all x ∈ (a, b) then f (x1) ≤ f (x0) for all x1 ≥ x0; if f ′(x) = 0
for all x ∈ (a, b) then f is constant on (a, b).

A3.4.2 Chain rule. Let f denote a real-valued function defined on (a, b) and let g denote
a function defined on the range of f . Consider the composite function h(x) = g( f (x)).
Suppose that f is differentiable at x0 ∈ (a, b) and that g is differentiable at f (x0). Then h
is differentiable at x0 and

h′(x0) = g′( f (x0)) f ′(x0).

A3.4.3 Mean-value theorem. Let f denote a real-valued function defined on an interval
[a, b]. Suppose that f is continuous on [a, b] and is differentiable on (a, b). Then there
exists a point x0 ∈ (a, b) such that

f (b) − f (a) = f ′(x0)(b − a).

A3.4.4 L’Hospital’s rule. Let f and g denote real-valued functions defined for all x ,
a ≤ x ≤ b, −∞ ≤ a < b ≤ ∞. Suppose that

lim
x→b−

f (x) = c and lim
x→b−

g(x) = d.

If d �= 0, then

lim
x→b−

f (x)

g(x)
= c

d
.

If d = 0 and c �= 0, then

f (x)

g(x)
→ ∞ as x → b−.

If d = 0 and c = 0, then

f (x)

g(x)
→ 0

0
as x → b−.

The ratio 0/0 is said to be an indeterminate form and there is no value associated with 0/0.
Suppose that

f (x)

g(x)
→ 0

0
as x → b−.

Assume that f and g are differentiable on (a, b), g′(x) �= 0 for each x ∈ (a, b), and

lim
x→b−

f ′(x)

g′(x)
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exists. Then

lim
x→b−

f (x)

g(x)
= lim

x→b−

f ′(x)

g′(x)
.

This result is known as L’Hospital’s rule. It also holds, with obvious modifications, for
limits as x → a or for limits as x approaches an interior point of (a, b).

Another indeterminate form is ∞/∞. Suppose that

f (x) → ∞ and g(x) → ∞ as x → b−.

Then

f (x)

g(x)
→ ∞

∞ as x → b−

and this ratio has no value. If f and g are differentiable on (a, b), g′(x) �= 0 for each
x ∈ (a, b), and

lim
x→b−

f ′(x)

g′(x)

exists, then

lim
x→b−

f (x)

g(x)
= lim

x→b−

f ′(x)

g′(x)
.

A3.4.5 Derivative of a power series. Let

f (x) =
∞∑

n=0

an(x − x0)n

with radius of convergence r > 0. Then, for any x in the interval (x0 − r, x0 + r ), the
derivative f ′(x) exists and is given by

f ′(x) =
∞∑

n=1

nan(x − x0)n−1;

the radius of convergence of this series is also r .

A3.4.6 Higher-order derivatives. Let f denote a real-valued function defined on an
interval (a, b); suppose that f is differentiable on (a, b) and let f ′ denote the derivative.
If f ′ is differentiable on (a, b) then the derivative of f ′, denoted by f ′′, is known as the
second derivative of f . In the same manner, we can define the nth derivative of f , denoted
by f (n), n = 1, 2, . . . .

A3.4.7 Leibnitz’s rule. Let f and g denote real-valued functions defined on a real inter-
val (a, b) and assume that, for some n = 1, 2, . . . and some x ∈ (a, b), f (n)(x) and g(n)(x)
both exist. Let h = f g. Then h(n)(x) exists and

h(n)(x) =
n∑

j=0

(
n

j

)
f ( j)(x)g(n− j)(x).
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A3.4.8 Taylor’s theorem. Let f denote a real-valued function defined on an interval
(a, b). Suppose that the nth derivative of f , f (n), exists on (a, b) and that f (n−1) is continuous
on [a, b]. Let x0 ∈ [a, b]. Then, for every x ∈ [a, b],

f (x) = f (x0) +
n−1∑
j=1

f ( j)(x0)

j!
(x − x0) j + Rn(x)

where

Rn(x) = f (n)(x1)

n!
(x − x0)n

and x1 = t x0 + (1 − t)x for some 0 ≤ t ≤ 1. It is often stated that x1 “lies between” x0

and x .
An alternative form of Taylor’s Theorem expresses the remainder term Rn(x) in terms

of an integral. Suppose that f (n) is continuous almost everywhere on (a, b). Then

Rn(x) = 1

(n − 1)!

∫ x

a
(x − t)n−1 f (n)(t) dt.

A3.4.9 Riemann integral. Let −∞ < a < b < ∞ and let f be a bounded, real-valued
function on [a, b]. Consider a partition P = {x0, x1, . . . , xn},

a = x0 < x1 < · · · < xn−1 < xn = b

of [a, b] and let

||P|| = max
i=1,...,n

|xi − xi−1|.

The Riemann integral of f over [a, b] is given by the number A satisfying the following
condition: for every ε > 0 there exists a δ > 0 such that, for every partition P with ||P|| < δ

and for every choice of points t1, . . . , tn such that xi−1 ≤ ti ≤ xi , i = 1, . . . , n,∣∣∣∣∣
n∑

j=1

f (t j )|x j − x j−1| − A

∣∣∣∣∣ < ε.

If such a number A does not exist, then f is not Riemann-integrable.
The Riemann integral of f over [a, b] exists if either f is bounded and continuous almost

everywhere on [a, b] or if f is of bounded variation.

A3.4.10 Riemann–Lebesgue lemma. Consider a real-valued function f defined on the
set (a, b), where −∞ ≤ a < b ≤ ∞ and assume that the integral∫ b

a
f (t) dt

exists. Then, for any c ∈ R,

lim
α→∞

∫ b

a
f (t) sin(αt + c) dt = 0.
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A3.4.11 A useful integral result. Let f denote a function of bounded variation such that∫ ∞

−∞
f (t) dt

exists and is finite. If f is continuous at x0 then

lim
α→∞

1

π

∫ ∞

−∞
f (x0 + t)

sin(αt)

t
dt = f (x0).

A3.4.12 Mean-value theorem for integrals. Let f and g denote continuous, real-valued
functions on a real interval (a, b) and assume that g is nonnegative. Then there exists
x0, a < x0 < b, such that

∫ b

a
f (x)g(x) dx = f (x0)

∫ b

a
g(x) dx .

A3.5 Vector Spaces

A3.5.1 Basic definitions. Let V denote a set and let f : V × V → V denote a function.
Thus, for each x, y ∈ V , f (x, y) is an element of V ; this element will be denoted by
x + y. Assume that the following conditions hold for all x, y, z ∈ V : x + y = y + x and
(x + y) + z = x + (y + z). Furthermore, assume that V contains a null element, which we
will denote by 0, such that x + 0 = x for all x ∈ V .

Let g : R × V → V denote a function. Thus, for each α ∈ R and x ∈ V , g(α, x) is an
element of V ; this element will be denoted by αx . For all α, β ∈ R and all x, y ∈ V we
assume that the following conditions hold: α(x + y) = αx + αy, (α + β)x = αx + βx ,
and α(βx) = (αβ)x . Furthermore, we assume that, for all x ∈ V , 1x = x and 0x = 0; note
that in the latter equation 0 is used as both a real number and the null element of V .

When these conditions are satisfied, V , together with the functions f and g, is called a
vector space and the elements of V are called vectors. The operation given by + is known
as vector addition. The elements of R are known as scalars and the operation given by αx
for α ∈ R and x ∈ V is known as scalar multiplication. Vector subtraction may be defined
by x − y = x + (−1)y.

The most commonly used vector space is Rn . Elements of Rn are n-tuples of the
form (x1, . . . , xn) where x j ∈ R, j = 1, 2, . . . , n. In this case, vector addition is simply
component-wise addition of real numbers and scalar multiplication is the component-
wise multiplication of real numbers. The null element of Rn is the vector in which each
element is 0.

A3.5.2 Subspaces. Let V denote a vector space and let M denote a subset of V . We say
that M is a subspace of V if for each x, y ∈ M and all α, β ∈ R, αx + βy ∈ M . If M1 and
M2 are both subspaces of V then their intersection M1 ∩ M2 is also a subspace of V .

The sum of two subspaces M1 and M2, denoted by M1 + M2, is the set of all vectors of
the form x + y where x ∈ M1 and y ∈ M2. The set M = M1 + M2 is also a subspace of
V . If each element of M has a unique representation of the form x + y, where x ∈ M1 and
y ∈ M2, then M is said to be the direct sum of M1 and M2 and we write M = M1 ⊕ M2.
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Let x1, x2, . . . , xn denote elements of a vector space V . The set of all vectors of the form

α1x1 + α2x2 + · · · + αn xn,

where α j ∈ R, j = 1, 2, . . . , n, is a subspace of V , known as the subspace generated by
{x1, . . . , xn} and the vectors x1, . . . , xn are said to span the subspace.

A3.5.3 Bases and dimension. A set of vectors x1, x2, . . . , xn in a vector space V is said
to be linearly independent if for any elements of R, α1, . . . , αn ,

n∑
j=1

α j x j = 0

implies that α1 = · · · = αn = 0.
Let S = {x1, . . . , xn} where x1, . . . , xn are linearly independent. If the subspace gener-

ated by S is equal to V , then x1, x2, . . . , xn is said to be a basis for V . In this case, every
element of x ∈ V may be written

x = α1x1 + α2x2 + · · · + αn xn

for some scalars α1, α2, . . . , αn , which are known as the coordinates of x with respect to
x1, . . . , xn . If such a basis exists, the vector space is said to be finite dimensional. A finite-
dimensional vector space V has many different bases. However, each basis has the same
number of elements; this number is known as the dimension of V .

For the vector space Rn the dimension is n. The canonical basis for Rn is the vectors
(1, 0, . . . , 0), (0, 1, 0, . . . , 0), . . . , (0, 0, . . . , 0, 1). Thus, the coordinates of a vector x =
(a1, . . . , an) with respect to the canonical basis are simply a1, a2, . . . , an .

A3.5.4 Norms. Let V denote a vector space. A norm on V is a function, denoted by || · ||,
with the following properties: ||x || ≥ 0 for all x ∈ V and ||x || = 0 if and only if x = 0; for
x, y ∈ V ,

||x + y|| ≤ ||x || + ||y||;
for each scalar α and each x ∈ V , ||αx || = |α| ||x ||. A norm represents a measure of the
“length” of a vector. A vector space together with a norm is known as a normed vector
space.

For x, y ∈ V , let d(x, y) = ||x − y||. Then d is a metric on V and V together with this
metric forms a metric space. If this metric space is complete, then V , together with the norm
|| · ||, is known as a Banach space.

For the vector space Rn , the most commonly used norm is

||x || =
[

n∑
j=1

a2
j

] 1
2

, x = (a1, . . . , an).

A3.5.5 Linear transformations. Let V and W denote vector spaces and let T : V → W
denote a function; such a function is often called a transformation. Suppose that the domain
of T is the entire space V and for any x1, x2 ∈ V and any scalars α1, α2,

T (α1x1 + α2x2) = α1T (x1) + α2T (x2);
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in this case, T is said to be a linear transformation. When T is linear, we often denote T (x)
by T x . The transformation T is said to be affine if the transformation T0 given by

T0(x) = T (x) − T (0)

is linear.
Let T : V → W denote a linear transformation. The range of T is the set

R(T ) = {y ∈ W : y = T x for some x ∈ V };

R(T ) is a subspace of W . The nullspace of T , denoted by N (T ), is the set of x ∈ V for
which T x = 0; N (T ) is a subspace of V .

A linear transformation T : V → V is said to be idempotent if T 2x ≡ T (T x) = T x for
all x ∈ V . The linear transformation such that T x = x for all x ∈ V is known as the identity
transformation and will be denoted by I .

Suppose that V is finite-dimensional. A linear transformation T : V → W is invertible
if and only if either N (T ) consists only of the null vector or R(T ) = W . The rank of T is
the dimension of R(T ).

Consider a linear transformation T from Rn to Rn . Let S = {x1, . . . , xn} denote a basis
for Rn . Then, since for any j = 1, 2, . . . , n, T x j ∈ Rn ,

T x j =
n∑

i=1

βi j xi , j = 1, 2, . . . , n

for some constants βi j , i, j = 1, 2, . . . , n. Thus, if a vector x has coordinates α1, . . . , αn

with repect to S, the coordinates of T x with respect to S, γ1, . . . , γn , may be obtained using
matrix multiplication: 


γ1

γ2
...

γn


 =




β11 β12 · · · β1n

β21 β22 · · · β2n
...

...
...

βn1 βn2 · · · βnn







α1

α2
...

αn


 .

It follows that, for a given basis, the linear transformation T may be represented by an
n × n matrix m(T ). The same ideas may be applied to linear transformations from Rm to
Rn; in this case m(T ) is an n × m matrix. It is important to note that the matrix associated
with a linear transformation depends not only on the transformation, but on the basis under
consideration.

Let T1 and T2 denote linear transformations from Rn → Rn and let T = T2(T1) = T2T1

denote the composition of T1 and T2. Then m(T ) may be obtained from m(T1) and m(T2)
by matrix multiplication:

m(T ) = m(T2)m(T1).

A3.5.6 Inner products. Let V denote a vector space. Let 〈·, ·〉 denote a real-
valued function defined on V × V with the following properties: for all x, y, z ∈ V ,
〈x, y〉 = 〈y, x〉,

〈x + y, z〉 = 〈x, z〉 + 〈y, z〉,
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for all scalars α, 〈αx, y〉 = α〈x, y〉, and 〈x, x〉 ≥ 0 with 〈x, x〉 = 0 if and only if x = 0.
Such a function is known as an inner product and the vector space V together with an inner
product is known as an inner product space.

An inner product can be used to define a norm || · || by

||x ||2 = 〈x, x〉
and, hence, an inner product space is a metric space. If this metric space is complete, it is
known as a Hilbert space.

Let V denote a Hilbert space with inner product 〈·, ·〉. Vectors x, y ∈ V are said to be
orthogonal if

〈x, y〉 = 0;

this is often written x ⊥ y. Let M1 and M2 denote subspaces of V . A vector x ∈ V is said
to be orthogonal to M1, written x ⊥ M1, if x is orthogonal to every vector in M1. Subspaces
M1 and M2 are said to be orthogonal, written M1 ⊥ M2, if every vector in M1 is orthogonal
to every vector in M2.

Let M be a given subspace of V . The set of all vectors in V that are orthogonal to M is
called the orthogonal complement of M and is denoted by M⊥. If M is finite-dimensional,
then V = M ⊕ M⊥.

The Cauchy-Schwarz inequality states that, for x, y ∈ V ,

|〈x, y〉| ≤ ||x || ||y||
with equality if and only if either x = αy for some α ∈ R or y = 0.

Let x1, x2, . . . , xn denote a basis for V . This basis is said to be orthonormal if

〈xi , x j 〉 =
{

0 if i �= j
1 if i = j

.

Let T denote a linear transformation from Rn to Rn . The adjoint of T is the linear
transformation T ′ : Rn → Rn such that, for all x, y ∈ Rn ,

〈x, T y〉 = 〈T ′x, y〉.
The matrix corresponding to T ′ is given by m(T ′) = m(T )T , the matrix transpose of m(T ).
Let T1 and T2 denote linear transformations from Rn to Rn . Then (T1 + T2)′ = T ′

1 + T ′
2,

(T1T2)′ = T ′
2T ′

1, and (T ′
1)′ = T1. Analogous results hold for m(T1) and m(T2).

A linear transformation T is said to be self-adjoint if T ′ = T ; in this case, the matrix
m(T ) is a symmetric matrix.

A3.5.7 Projections. Let V denote a finite-dimensional Hilbert space with inner product
〈·, ·〉 and let M denote a subspace of V . Then any vector x ∈ V may be uniquely written
x = m + e where m ∈ M and e ⊥ M . The vector m is known as the orthogonal projection of
x onto M or, simply, the projection of x onto M . Note that, since the projection of x depends
on the definition of orthogonality, it depends on the inner product under consideration.

There exists a linear transformation P : V → M such that for each x ∈ V , Px is the
orthogonal projection of x onto M . Clearly, for x ∈ M , Px = x so that P2 = P; that is, P
is idempotent. Also, P is self-adjoint. Conversely, any linear transformation on V that is
idempotent and self-adjoint represents orthogonal projection onto some subspace of V .



P1: JZP
052184472Xapx3 CUNY148/Severini May 22, 2005 15:48

Some Useful Mathematical Facts 501

A3.5.8 Orthogonal transformations. Let V denote a finite-dimensional Hilbert space
with inner product 〈·, ·〉. A linear transformation T : V → V is said to be orthogonal if either
T ′T = I or T T ′ = I ; either of these two conditions implies the other. If T is orthogonal
then, for all x, y ∈ V ,

〈T x, T y〉 = 〈x, y〉

and ||T x || = ||x ||.
Let x1, x2, . . . , xn and y1, y2, . . . , yn denote two sets of orthonormal basis vectors.

Suppose there exists a linear transformation T such that, for each j = 1, 2, . . . , n, maps
T x j = y j . Then T is an orthogonal transformation.

Conversely, if x1, x2, . . . , xn is an orthonormal basis for V and T is an orthogonal
transformation, then T x1, . . . , T xn is also an orthonormal basis for V .

Clearly, if T is an orthonormal transformation then the matrix corresponding to T satisfies
m(T )m(T )T = m(T )T m(T ) = m(I ).

A3.5.9 Eigenvalues and eigenvectors. Let V denote a finite-dimensional vector space
and let T : V → V denote a self-adjoint linear transformation. A scalar λ is called an
eigenvalue of T if there exists v ∈ V such that T v = λv; a nonzero vector v ∈ V is called
an eigenvector of T if there exists a scalar λ such that T v = λv . Note that if v is an
eigenvector of T then αv is an eigenvector of T for any α �= 0. When V is a normed linear
space, it is convenient to standardize the eigenvectors so that they have norm equal to 1.

Let v1 and v2 denote eigenvectors of T such that T v j = λ j v j , j = 1, 2. If λ1 �= λ2, then
v1 and v2 are orthogonal.

Let λ denote an eigenvalue of T and let M(λ) denote the set of vectors x ∈ V such that
T x = λx ; then M(λ) is a subspace of V . The dimension of M(λ) is known as the multiplicity
of λ.

Suppose that V is a Hilbert space. Let T denote a self-adjoint linear transformation and let
λ1, . . . , λm denote the eigenvalues of T , including multiplicities; that is, if the multiplicity
of a particular eigenvalue is r , then the sequence λ1, . . . , λm contains r occurrences of that
eigenvalue. Then there exist orthonormal vectors e1, e2, . . . , em such that, for any x ∈ V ,

T x = λ1〈e1, x〉 e1 + · · · + λm〈em, x〉 em . (A3.2)

If λ j is unique, that is, if it has multiplicity 1, then e j is a vector of norm 1 satisfying
T e j = λ j e j . If λ j = λ j+1 = · · · = λ j+r , then e j , e j+1, . . . , e j+r are orthonormal vectors
spanning the subspace M(λ j ).

A3.5.10 Quadratic forms. Let V denote a finite-dimensional vector space and let
T : V → V denote a self-adjoint linear transformation. A quadratic form on V is a func-
tion x �→ 〈x, T x〉. The transformation T is said to be positive-definite if the corresponding
quadratic form is always positive for nonzero x : 〈x, T x〉 > 0 for all x ∈ V , x �= 0. Simi-
larly, T is said to be nonnegative-definite if 〈x, T x〉 ≥ 0 for all x ∈ V , x �= 0. The terms
negative-definite and nonpositive-definite are defined in an analogous manner.

Using (A3.2), it follows that

〈x, T x〉 = λ1〈e1, x〉2 + · · · + λm〈em, x〉2.
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Suppose λ1 ≥ λ2 ≥ · · · ≥ λm . Then

inf
x∈V :||x ||=1

〈x, T x〉 = λm

and

sup
x∈V :||x ||=1

〈x, T x〉 = λ1.

It follows that T is positive-definite if and only if all eigenvalues are positive and T is
nonnegative-definite if and only if all eigenvalues are nonnegative.

A3.5.11 Determinants. Let V denote a finite-dimensional vector space and let T : V →
V denote a linear transformation. The determinant of T , denoted by det(T ), is a real number
associated with T ; that is, det(·) is a function that associates a real number with each linear
transformation from V to V .

Here we give the basic properties of the function det(·). Let T, T1, and T2 denote lin-
ear transformations from V to V . Then det(T1T2) = det(T1) det(T2). Let α be a scalar.
Then det(αT ) = αn det(T ), where n is the dimension of V . The identity transformation
I has determinant 1. The transformation T and its adjoint, T ′, have the same determi-
nant: det(T ′) = det(T ). The transformation T is invertible if and only if det(T ) �= 0; when
det(T ) = 0 the transformation is said to be singular, otherwise it is nonsingular. The eigen-
values of T are those values of λ ∈ R for which T − λI is singular, that is, for which
det(T − λI ) = 0.
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Hall, P., 469
Hammersley, J. M., 234
Handelsman, R. A., 298
Handscomb, D. C., 234
Hoeffding, H., 399
Hoffmann-Jorgenson, J., 234

Ibragimov, I. A., 399

Jackson, D., 321
Jensen, J. L., 298, 469
Johnson, R. A., 256

Karlin, S., 198
Karr, A. F., 38, 63, 93
Kingman, J. F. C., 192, 198
Kolassa, J. E., 469
Kopp, E., 38

Lang, S., 478
Leadbetter, M. R., 198
Lehmann, E. L., 364, 434
Lukacs, E., 93, 130

Manski, C. F., 169
McCullagh, P., 131, 169, 469
McLeish, D. L., 399
Miller, H. D., 198
Monfort, A., 169

Nagaraja, H. N., 234
Nelder, J., 169
Norris, J. R., 198

Ord, J. K., 93, 131, 234, 256
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Pace, L., 169
Parzen, E., 67, 198
Port, S. C., 11, 38, 67, 68, 81, 93, 130, 171, 234, 336,

364, 399, 434, 473

Rabinowitz, P., 321
Rao, C. R., 169, 244, 256, 434
Rao, R. R., 469
Reid, N., 469
Ripley, B. D., 234
Robert, C. P., 234
Robbins, H., 399
Ronchetti, E., 469
Ross, S. M., 38, 67, 198
Roy, R., 289, 297, 298, 315, 317, 321
Rubinstein, R. Y., 234
Rudin, W., 483

Salvan, A., 169
Schervish, M. J., 68, 169
Secrest, D. H., 321
Sen, P. K., 364, 434
Serfling, R. J., 434
Singer, J. M., 364, 434
Skovgaard, I. M., 469

Snell, J. L., 38, 67
Stegun, I., 319, 321
Stroud, A. H., 321
Stuart, A., 93, 131, 234, 256
Swartz, T., 298, 321
Szegö, G., 321

Taylor, H. M., 198
Teicher, H., 399
Temme, N. M., 100, 102, 297, 298, 321
Thisted, R. A., 321
Toutenburg, H., 169

van der Vaart, A. W., 364, 376, 417, 434

Wade, W. R., 483
Wallace, D. L., 469
Watson, G. N., 289
Whittacker, E. T. T., 289
Wichern, D. W., 256
Widder, D. V., 130
Wong, R., 298
Woodroofe, M., 38, 68, 234

Yaglom, A. M., 198
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almost everywhere, 486
analysis of variance, 245, 250
approximation of sums, 288
asymptotic approximation, 435
asymptotic distribution, 322
asymptotic expansions, 264, 298

stochastic, 454
for sums, 288
uniform, 281
using integration-by-parts, 266

autocorrelation function, 174
autocovariance function, 174

of a moving-average process, 179
autocovariance generating function, 196
autoregressive process, 172, 182, 374

Bayes’ theorem, 65
Beppo Levi’s theorem, 475
Bernoulli trials, 2
Bernstein polynomials, 492
Bessel function, 102
beta-binomial distribution, 167
beta distribution 127, 266, 413
beta function, 258, 295

incomplete, 266, 296
binomial distribution

characteristic function of, 71
distribution function of, 9
frequency function of, 6
mean of, 28
normal approximation to, 366, 373, 378, 385
with a random index, 134, 152

bivariate normal distribution, 150, 238
conditional distributions, 241, 244
density of, 240

boundedness in probability, 354
Brownian bridge, 198
Brownian motion. See Wiener process.

cartesian product, 484
Cauchy distribution

characteristic function of, 85
density function of, 29

mean of, 29
moments of, 95
relationship to normal distribution, 85, 206
sample mean of, 343

Cauchy in mean-square, 176
Cauchy-Schwarz inequality, 33, 37, 500
central limit theorem

and parametric distributions, 378
continuity correction in, 396
for dependent random variables, 386
for independent, identically distributed random

variables, 365, 376
for martingale differences, 394
for m-dependent random variables, 387
for random vectors, 365
for rank statistics, 423
for triangular arrays, 368
uniformity with respect to a parameter in,

379
for U-statistics, 41

central moment
of random vectors, 96
of real-valued random variables, 94, 95
of the sample mean, 123
in terms of cumulants, 114

chain rule, 494
characteristic function

basic properties of, 72, 81
characterization of probability distributions by,

76, 81
and convergence in distribution, 330, 336
and convergence in probability, 342
and cumulants, 115
definition of, 69
differentiability of, 78
expansion of, 78
expansion of the logarithm of, 115
and independence, 82
inversion of, 74, 83
of a lattice distribution, 88
of a random vector, 81
of a sum, 76, 81, 212
of a symmetric distribution, 87
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chi-squared distribution
approximation of quantiles of, 446
characteristic function of, 77
distribution function of, 315
Edgeworth series approximation to, 443, 445
non-central, 255, 362
normal approximation to, 366
and quadratic forms, 246
relationship to the F-distribution, 208
relationship to the gamma distribution, 77
relationship to the t-distribution, 207
saddlepoint approximation of, 450, 453

Chebychev’s inequality, 95
completeness

of a model, 165
of orthogonal polynomials, 307
of a metric space, 486

complex number, 479
exponential of, 479
logarithm of, 482
modulus of, 479

conditional cumulant, 125
conditional density, 51
conditional distribution, 46
conditional distribution function, 50
conditional expectation, 53

as an approximation, 58
as a projection, 66

conditional frequency function, 51
conditional independence, 65
conditional moment, 125
convergence in distribution

and convergence of characteristic functions, 330,
336

and convergence of density functions, 359
and convergence of expected values, 325, 328, 336,

350
and continuous transformations, 330
of functions of a random vector, 346
of random vectors, 335
of real-valued random variables, 322
relationship to convergence in probability, 340
standardization in, 324
uniformity in, 334

convergence in mean, 362
convergence in mean square, 175
convergence in probability

to a constant, 341
of random matrices, 346, 348
of random vectors, 345
of real-valued random variables 338
relationship to convergence in distribution, 340
of a sample mean, 342, 343, 344

convergence of expected values, 175, 325, 336, 349
continuity correction, 396
coordinates, 498
Cornish-Fisher inversion, 445
correlation, 97

countable additivity, 3
counting process, 187
covariance, 96, 118

function, 173
matrix, 99

covariates, 150
Cramér-Wold device, 337
cumulants

conditional, 125
joint, 118
and independence, 118
of a quadratic form, 245
of a random vector, 118
of real-valued random variables, 111
relationship to moments, 114
of the sample mean, 120
standardized, 117

cumulant function, 140
cumulant-generating function

conditional, 125
in exponential family models, 140
of a quadratic form, 245
of a random vector, 118
of a real-valued random vector, 118
use in saddlepoint approximations, 447

delta method, 400, 461
DeMorgan’s laws, 483
density function

change-of-variable formula for, 200, 202, 209
conditional, 51
definition of, 20
and expectation, 28
and independence, 43
and integration with respect to a distribution

function, 27
intuitive meaning of, 23
marginal, 40
non-uniqueness of, 20
of a random vector, 26
relationship to the distribution function, 20
of a sum, 213

dependent data, 170
determinant, 502
direct approximation, 448
Dirichlet distribution, 216
discrete distribution, 12, 24, 26
distribution

absolutely continuous, 20
conditional, 46
discrete, 12, 24, 26
marginal. See marginal distribution.
mixed, 25

distribution function
absolutely continuous, 20
characterization of a probability

distribution by, 11
discontinuity points of, 12
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expansion of, 436
of a random vector, 12
of a real-valued random variable, 8
step function, 24

dominated convergence theorem, 31, 475

Edgeworth series approximation, 435
third- and higher-order, 444

eigenvalue, 501
eigenvector, 501
empirical distribution function, 408
empirical odds ratio, 201
equivariant statistic, 153, 160, 211
estimator

equivariant, 160
least-squares, 372
unbiased, 416

Euclidean space, 485
Euler’s constant, 297
Euler-MacLauren summation formula, 289,

298
event, 1
exchangeability, 59, 155, 171, 225, 238,

417
expectation

characterization of a distribution by, 31
conditional, 53
of a function of a random variable, 29
existence of, 28
and independence, 42
inequalities for, 33
properties of, 31

expected residual life, 66
experiment, 1
explanatory variable, 150
exponential distribution

cumulant-generating function of, 141
cumulants of, 122
density function of, 30
distribution function of, 17
distribution of order statistics from, 223, 407, 414
distribution of sum, 212
as an exponential family distribution, 138
Laplace transform of, 103
maximal invariant statistic for, 163
median of, 17
moment-generating function of, 103
moments of, 94
orthogonal polynomials with respect to, 312, 316
quantile function of, 17
relationship to Poisson process, 192
relationship to Weibull distribution, 202
standard, 17
as a transformation model, 155

exponential family
canonical form, 139
cumulant function of, 140
definition of, 137

distribution of sum, 214
distribution theory for, 142
identifiability of, 139
natural parameter of, 138
natural parameter space of, 139, 140
regression model, 151
regular, 140

exponential integral, 270

Fatou’s lemma, 31, 474
F-distribution, 208
finite population, 2
for almost all, 55, 486
Fourier transform, 73
frequency function

change-of-variable formula for, 200
conditional, 51
definition of, 24
and expectation, 28
and independence, 43
and integration, 27
marginal, 40
of a random vector, 26

Fubini’s theorem, 475
function

absolutely continuous, 476
analytic, 493
of bounded variation, 491
completely monotone, 128
continuous, 489
convex, 491
differentiable, 494
integrable, 473
inverse of, 491
left continuous, 490
restriction of, 491
right continuous, 490
simple, 472
uniformly continuous, 489

fundamental theorem of calculus, 20, 477

gambling system, 63
gamma distribution

characteristic function of, 72
density function of, 72
distribution function of, 260
distribution of sum, 102
Laplace transform of, 99
moments of, 80

gamma function
approximation of, 270, 278
definition of, 257
incomplete, 260, 262
logarithmic derivative of, 259
log of, 258
relationship to beta function, 258
relationship to factorial, 257

Gaussian quadrature, 317
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geometric distribution
distribution function of, 219
frequency function of, 148
mean and variance of, 148

Gini’s mean difference, 433
Gram-Charlier expansion, 315
group

definition of, 153
location, 154
location-scale, 154
scale, 154

Hájek projection, 417
hazard function, 36, 232
Hermite polynomials, 312, 444
Hölder inequality, 33, 389

identifiability, 134, 139
imaginary unit, 479
importance sampling, 234
independent

events, 42
and identically distributed random

variables, 45
random variables, 42, 44

indirect approximation, 448
inf, 484
infinite series, 488
integral transform, 69
integration with respect to a distribution

function
calculation of the integral, 476
change-of-variable formula for, 474
convergence properties of, 474
definition of, 26, 472
interchanging integration and differentiation in,

478
multiple integrals, 475

interarrival times, 187, 191
interior point, 484
interquartile range, 411
invariance, 157, 210
invariant statistic, 153, 157, 210

maximal, 159
with respect to a set of permutations,

61
inverse gamma distribution, 100, 102
inversion method, 229

Jacobian, 202
Jacobian matrix, 202
Jensen’s inequality, 33

kernel, 415, 416

L2, 37, 66
Laguerre polynomials, 316
Laplace distribution, 91, 112

Laplace’s method, 276
for the ratio of two integrals, 279

Laplace transform
characterization of probability distributions by,

100
definition of, 99
relationship to moments, 101
of a sum, 102

lattice distribution, 88, 439
Legendre polynomials, 302
Leibnitz’s rule, 495
L’Hospital’s rule, 494
likelihood ratio, 136
lim inf, 487
limit in mean square, 175
limit point, 484
lim sup, 487
Lindeberg condition, 371
linear independence, 498
Lipschitz condition, 21, 477
logarithmic series distribution, 293, 295
log normal distribution, 104, 106, 116
Lyapounov’s condition, 371

marginal distribution, 39
density function of, 40
distribution function of, 40
frequency function of, 40

Markov chain
definition of, 183
initial distribution of, 183, 186
m-step transition probabilities of, 185
transition probabilities of, 183

Markov process, 182
Markov’s inequality, 33
martingale, 62, 136, 194, 394
martingale differences, 63, 395
m-dependence, 386
mean, 94

sample. See sample mean.
mean-value theorem, 494

for integrals, 497
measurability, 2, 5, 473
measure theory, 3, 471
median, 17, 407, 467
metric, 484
metric space, 484
model, 132

additive error, 150
complete, 165
for dependence, 149
exponential dispersion, 166
exponential family, 137
function, 133
generalized linear, 151
with group structure, 152
for heterogeneity, 149
hierarchical, 147, 229
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linear, 151
location-scale, 156
nonparametric, 133
parametric, 133
parameterization of, 132
random effects, 149
regression, 150, 252, 372
for software reliability, 188, 216
transformation, 155

moment-generating function
characterization of probability distributions by,

106
expansion of, 104
and independence, 110
under linear transformations of the random

variables, 108, 110
radius of convergence of, 103, 110
of a random vector, 109
of a real-valued random variable, 103
of a sum, 108, 110

moments
approximation of, 460
central, 95
conditional, 124
joint, 96
product, 96
of a random vector, 96
of a real-valued random variable, 30, 94
of the sample mean, 120
relationship to cumulants, 113

Monte Carlo methods, 228
moving average process

autocovariance function of, 179
definition of, 174
existence of, 178
finite, 175, 180, 390
stationarity of, 179

moving differences, 173, 174, 181
multinomial distribution

approximation of, 377
characteristic function of, 82
cumulant-generating function of, 120
cumulants of, 120
distribution of sum, 214
frequency function of, 41
marginal distributions of, 41
moment-generating function of, 120

multivariate normal distribution
basic properties of, 235
conditional distributions, 240
definition of, 235
density function of, 239
and quadratic forms, 244
as a transformation model, 239

negative binomial distribution, 148
neighborhood, 484
norm, 37, 498

normal distribution
characteristic function of, 73
cumulants of, 112
density function of, 85
distribution of the sample mean, 109, 250
distribution of the sample variance, 250
as an exponential family model, 137
multivariate. See multivariate normal

distribution.
as a transformation model, 157

O, o notation, 487
Op , op notation, 354
orbit, 157
order statistics

asymptotic distribution of, 404, 406, 408, 410, 412
definition of, 216
density function of entire set of, 221
distribution of single, 217, 218
distribution of pairs of, 220, 223

orthogonal polynomials
and approximation of functions, 308
completeness of, 307
construction of, 301, 302
definition of, 299
and integration, 305
linear independence of, 299
Rodrigue’s formula formula, 303
standardization of, 302
zeros of, 304

parameter, 132
Pareto distribution, 28
permutation invariance, 61
pointwise convergence, 492
power series expansion, 493
principal argument, 482
point process, 187
Poisson distribution

cumulants of, 112
distribution of sum, 109
as an exponential family distribution, 138,

141
frequency function of, 37, 103
moment-generating function of, 103
moments of, 105
normal approximation to, 333
variance-stabilizing transformation for, 402

Poisson process
definition of, 189
distribution of interarrival times of, 191
nonhomogeneous, 197

Polya’s urn scheme, 62
power series, 493

differentiation of, 495
radius of convergence of, 49

principal components, 238
principal logarithm, 482
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probability function, 1
continuity of, 2

probability space, 2
projection, 66, 68, 250, 251, 500
projection method, 417

quadratic form(s)
definition of, 244, 501
Cochran’s theorem for, 249
condition for having a chi-squared distribution,

246
condition for independence of linear function

and, 247
condition for independence of two, 247
cumulants of, 245

quantile
definition of, 15
expansion of, 445
sample, 408

quantile function
characterization of probability distribution

by, 19
definition of, 16
and generation of random variables, 229
properties of, 18

Radon-Nikodym theorem, 47, 54
random variable

absolutely continuous, 20
degenerate, 7
discrete, 12
range of, 5
real-valued, 5

random vector, 5
degenerate, 7

random walk, 183, 186
ranks, 224
rank correlation statistic, 423, 430
rank statistic, 226, 422, 430
regression model, 150, 252, 372
renewal process, 187
response variable, 150
Riemann integral, 496
Riemann-Lebesgue lemma, 496

saddlepoint approximation, 447
integration of, 451
renormalization of, 451

sample extremes, 412
sample mean

approximation to the distribution of. See central
limit theorem.

central moments of, 123
cumulants of, 120
moments of, 121

sample median, 407
sample quartiles, 411
sample range, 217

sample space, 1
sample variance 244, 403, 416, 422
sequence

bounded, 487
Cauchy, 486
convergent, 486
divergent, 486
lim inf of, 487
lim sup of, 487
O, o notation for, 487

set(s), 483
bounded, 486
closed, 484
closure of, 484
compact, 485
countable, 485
disjoint, 483
finite, 485
of measure 0, 485
open, 484
ordered, 484
similar, 485
uncountable, 485

set algebra, 483
skewness, 113
Slutsky’s theorem, 347
standard deviation, 95
standard normal distribution

characteristic function of, 70
cumulants of, 111
cumulant-generating function of, 111
density function of, 70
distribution function of, 262
distribution of the sample mean, 109
moment-generating function of, 111
orthogonal polynomials with respect to,

312
relationship to Cauchy distribution, 85,

206
relationship to t-distribution, 207

Stirling’s approximation, 278, 293
stochastic asymptotic expansion, 454, 460
stochastic process

continuous time, 170
covariance stationary, 174
discrete time, 170
finite-dimensional distributions of, 170
Markov, 182
second-order properties of, 173
state space of, 170
stationary, 171

submartingale, 67
summation-by-parts, 294
sup, 484
support, 6

minimal, 7
support point, 35
symmetric difference, 35
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symmetric distribution, 87, 443
symmetrization, 87

Taylor’s theorem, 496
Temme’s method, 298
transformation

affine, 499
idempotent, 499
linear, 498
orthogonal, 501

transformation model, 155
triangular array, 367
triangular distribution, 215
trinomial distribution, 52
t-distribution

density function of, 208
derivation of, 207
expansion for tail probability of, 272

uniform asymptotic approximation, 281
uniform convergence, 492
uniform distribution on the unit interval

characteristic function of, 70
density function of, 21
distribution function of, 8
distribution of order statistics from, 220, 404,

408

uniform distribution on the unit cube
density function of, 26
distribution function of, 13

uniform integrability, 350
U -statistic

asymptotic distribution of, 419
definition of, 416
kernel of, 416
projection of, 417

variance, 94, 95
variance-stablizing transformation, 401
vector space, 497
von Mises distribution, 297

Watson’s lemma, 268
weak law of large numbers

for dependent random variables, 344
for independent random variables, 342, 343

Weibull distribution, 202
Weierstrass approximation theorem, 492
Wiener process

definition of, 192
irregularity of, 193
as a martingale, 194

zeta function, 297
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