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Preface

Some thirty years ago it was still possible, as Loeve so ably demonstrated,
to write a single book in probability theory containing practically everything
worth knowing in the subject. The subsequent development has been ex-
plosive, and today a corresponding comprehensive coverage would require a
whole library. Researchers and graduate students alike seem compelled to a
rather extreme degree of specialization. As a result, the subject is threatened
by disintegration into dozens or hundreds of subfields.

At the same time the interaction between the areas is livelier than ever,
and there is a steadily growing core of key results and techniques that every
probabilist needs to know, if only to read the literature in his or her own
field. Thus, it seems essential that we all have at least a general overview of
the whole area, and we should do what we can to keep the subject together.
The present volume is an earnest attempt in that direction.

My original aim was to write a book about “everything.” Various space
and time constraints forced me to accept more modest and realistic goals
for the project. Thus, “foundations” had to be understood in the narrower
sense of the early 1970s, and there was no room for some of the more recent
developments. 1 especially regret the omission of topics such as large de-
viations, Gibbs and Palm measures, interacting particle systems, stochastic
differential geometry, Malliavin calculus, SPDEs, measure-valued diffusions,
and branching and superprocesses. Clearly plenty of fundamental and in-
triguing material remains for a possible second volume.

Even with my more limited, revised ambitions, I had to be extremely
selective in the choice of material. More importantly, it was necessary to look
for the most economical approach to every result I did decide to include. In
the latter respect, I was surprised to see how much could actually be done
to simplify and streamline proofs, often handed down through generations of
textbook writers. My general preference has been for results conveying some
new idea or relationship, whereas many propositions of a more technical
nature have been omitted. In the same vein, I have avoided technical or
computational proofs that give little insight into the proven results. This
conforms with my conviction that the logical structure is what matters most
in mathematics, even when applications is the ultimate goal.

Though the book is primarily intended as a general reference, it should
also be useful for graduate and seminar courses on different levels, ranging
from elementary to advanced. Thus, a first-year graduate course in measure-
theoretic probability could be based on the first ten or so chapters, while
the rest of the book will readily provide material for more advanced courses
on various topics. Though the treatment is formally self-contained, as far
as measure theory and probability are concerned, the text is intended for
a rather sophisticated reader with at least some rudimentary knowledge of
subjects like topology, functional analysis, and complex variables.



vi Preface

My exposition is based on experiences from the numerous graduate and
seminar courses I have been privileged to teach in Sweden and in the United
States, ever since I was a graduate student myself. Over the years I have
developed a personal approach to almost every topic, and even experts might
find something of interest. Thus, many proofs may be new, and every chapter
contains results that are not available in the standard textbook literature. It
is my sincere hope that the book will convey some of the excitement I still
feel for the subject, which is without a doubt (even apart from its utter use-
fulness) one of the richest and most beautiful areas of modern mathematics.

Notes and Acknowledgments: My first thanks are due to my numerous
Swedish teachers, and especially to Peter Jagers, whose 1971 seminar opened
my eyes to modern probability. The idea of this book was raised a few years
later when the analysts at Gothenburg asked me to give a short lecture course
on “probability for mathematicians.” Although I objected to the title, the
lectures were promptly delivered, and I became convinced of the project’s fea-
sibility. For many years afterward I had a faithful and enthusiastic audience
in numerous courses on stochastic calculus, SDEs, and Markov processes. |
am grateful for that learning opportunity and for the feedback and encour-
agement I received from colleagues and graduate students.

Inevitably I have benefited immensely from the heritage of countless au-
thors, many of whom are not even listed in the bibliography. I have further
been fortunate to know many prominent probabilists of our time, who have
often inspired me through their scholarship and personal example. Two peo-
ple, Klaus Matthes and Gopi Kallianpur, stand out as particularly important
influences in connection with my numerous visits to Berlin and Chapel Hill,
respectively.

The great Kai Lai Chung, my mentor and friend from recent years, offered
penetrating comments on all aspects of the work: linguistic, historical, and
mathematical. My colleague Ming Liao, always a stimulating partner for
discussions, was kind enough to check my material on potential theory. Early
versions of the manuscript were tested on several groups of graduate students,
and Kamesh Casukhela, Davorin Dujmovic, and Hussain Talibi in particular
were helpful in spotting misprints. Ulrich Albrecht and Ed Slaminka offered
generous help with software problems. I am further grateful to John Kimmel,
Karina Mikhli, and the Springer production team for their patience with my
last-minute revisions and their truly professional handling of the project.

My greatest thanks go to my family, who is my constant source of happi-
ness and inspiration. Without their love, encouragement, and understanding,
this work would not have been possible.

Olav Kallenberg
May 1997
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Chapter 1
Elements of Measure Theory

o-fields and monotone classes; measurable functions; measures
and integration; monotone and dominated convergence; transfor-
mation of integrals; product measures and Fubini’s theorem; LP-
spaces and projection; measure spaces and kernels

Modern probability theory is technically a branch of measure theory, and any
systematic exposition of the subject must begin with some basic measure-
theoretic facts. In this chapter we have collected some elementary ideas
and results from measure theory that will be needed throughout this book.
Though most of the quoted propositions may be found in any textbook in
real analysis, our emphasis is often somewhat different and has been chosen
to suit our special needs. Many readers may prefer to omit this chapter on
their first encounter and return for reference when the need arises.

To fix our notation, we begin with some elementary notions from set the-
ory. For subsets A, Ay, B, ... of some abstract space €2, recall the definitions
of union AU B or U, Ag, intersection AN B or N, A, complement A°, and
difference A\ B = AN B°. The latter is said to be proper if A D B. The
symmetric difference of A and B is given by AAB = (A\ B) U (B \ A).
Among basic set relations, we note in particular the distributive laws

AmUkBk :Uk(AmBk)., AuﬂkBk :ﬂk(AuBk),

and de Morgan’s laws

{UkAk'}c - mkAz’ {mkAk}c = Uksz

valid for arbitrary (not necessarily countable) unions and intersections. The
latter formulas allow us to convert any relation involving unions (intersec-
tions) into the dual formula for intersections (unions).

A o-algebra or o-field in € is defined as a nonempty collection A of subsets
of Q such that A is closed under countable unions and intersections as well
as under complementation. Thus, if A, Ay, Ay, ... € A, then also A€, U, Ay,
and N, A lie in A. In particular, the whole space Q and the empty set 0
belong to every o-field. In any space Q there is a smallest o-field {0, 2} and a
largest one 2%, the class of all subsets of 2. Note that any o-field A is closed
under monotone limits. Thus, if A;, As,... € Awith A, T Aor A, | A, then
also A € A. A measurable space is a pair (€2, A), where € is a space and A
is a o-field in €.
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For any class of o-fields in 2, the intersection (but usually not the union)
is again a o-field. If C is an arbitrary class of subsets of {2, there is a smallest
o-field in Q containing C, denoted by o(C) and called the o-field generated
or induced by C. Note that o(C) can be obtained as the intersection of all
o-fields in ) that contain C. A metric or topological space S will always be
endowed with its Borel o-field B(S) generated by the topology (class of open
subsets) in S unless a o-field is otherwise specified. The elements of B(.S)
are called Borel sets. In the case of the real line R, we shall often write B
instead of B(R).

More primitive classes than o-fields often arise in applications. A class
C of subsets of some space () is called a w-system if it is closed under finite
intersections, so that A, B € C implies AN B € C. Furthermore, a class
D is a A-system if it contains 2 and is closed under proper differences and
increasing limits. Thus, we require that Q0 € D, that A, B € D with A D B
implies A\ B € D, and that Ay, Ay, ... € D with A, 1T A implies A € D.

The following monotone class theorem is often useful to extend an estab-
lished property or relation from a class C to the generated o-field o(C). An
application of this result is referred to as a monotone class argument.

Theorem 1.1 (monotone class theorem, Sierpinski) Let C be a mw-system
and D a \-system in some space 0 such that C C D. Then o(C) C D.

Proof: We may clearly assume that D = A(C), the smallest A-system
containing C. It suffices to show that D is a w-system, since it is then a o-
field containing C and therefore must contain the smallest o-field o(C) with
this property. Thus, we need to show that AN B € D whenever A, B € D.

The relation A N B € D is certainly true when A, B € C, since C is a 7-
system contained in D. The result may now be extended in two steps. First
we fix an arbitrary set B € C and define Ap = {A C ; AN B € D}. Then
Ap is a A-system containing C, and so it contains the smallest \-system D
with this property. This shows that AN B € D for any A € D and B € C.
Next fix an arbitrary set A € D, and define By = {B C Q; AN B € D}. As
before, we note that even B4 contains D, which yields the desired property. O

For any family of spaces €2, t € T, we define the Cartesian product Xier§
as the class of all collections (wy; ¢ € T), where wy € ; for all ¢. When
T=A{l,...,n}or T=N={1,2,...}, we shall often write the product space
as 0y X -+ x €, or Q7 Xy X - -+, respectively, and if ; = € for all ¢, we shall
use the notation Q7, Q" or Q°°. In case of topological spaces €, we endow
X with the product topology unless a topology is otherwise specified.

Now assume that each space €, is equipped with a o-field A;. In X,
we may then introduce the product o-field &, A;, generated by all one-
dimensional cylinder sets Ay x Xsz8s, where t € T and A; € A;. (Note
the analogy with the definition of product topologies.) As before, we shall
write A, @ @ Ap, A1 @Ay @ -+, AT, A" or A in the appropriate special
cases.
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Lemma 1.2 (product and Borel o-fields) Let Sy,Ss,... be separable metric
spaces. Then

B(Sy x Sy x ) =B(S1) @ B(Sa) @ - - .

Thus, for countable products of separable metric spaces, the product and
Borel o-fields agree. In particular, B(R?) = (B(R))? = B¢, the o-field gener-
ated by all rectangular boxes Iy X --- x Iy, where I, ..., I; are arbitrary real
intervals.

Proof: The assertion may be written as o(C;) = 0(Cy), and it suffices to
show that C; C ¢(C2) and Cs C o(Cy). For C3 we may choose the class of
all cylinder sets Gy x X,2,S, with & € N and Gy open in Sy. Those sets
generate the product topology in S = X,,S,, and so they belong to B(S).

Conversely, we note that S = X,S5, is again separable. Thus, for any
topological base C in S, the open subsets of S are countable unions of sets
in C. In particular, we may choose C to consist of all finite intersections of
cylinder sets G x XS, as above. It remains to note that the latter sets
lie in ®,, B(S,). 0

Every point mapping f between two spaces S and T induces a set mapping
f~1 in the opposite direction, that is, from 27 to 2, given by

f'B={seS; f(s)e B}, BcCT.

Note that f~! preserves the basic set operations in the sense that for any
subsets B and By of T,

'B=("'B)e UB=Uf"Be, fOBe=(f"Br. (1)
k k k

k

The next result shows that f~! also preserves o-fields, in both directions.
For convenience we write

flc={f"'B;BecC}, cc2.

Lemma 1.3 (induced o-fields) Let [ be a mapping between two measurable
spaces (S,S) and (T, T). Then f~'T is a o-field in S, whereas {B C T;
['BeS}isao-fieldinT.

Proof: Use (1). O

Given two measurable spaces (S,S) and (T,7T), a mapping f: S = T
is said to be S/T-measurable or simply measurable if f~'T C S, that is,
if f7'B € S for every B € T. (Note the analogy with the definition of
continuity in terms of topologies on S and T.) By the next result, it is
enough to verify the defining condition for a generating subclass.
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Lemma 1.4 (measurable functions) Consider two measurable spaces (S,S)
and (T, T), a class C C 2T with o(C) = T, and a mapping f: S — T. Then
f is 8/T -measurable iff f7'C C S.

Proof: Use the second assertion in Lemma 1.3. m|

Lemma 1.5 (continuity and measurability) Any continuous mapping be-
tween two topological spaces S and T is measurable with respect to the Borel

o-fields B(S) and B(T).
Proof: Use Lemma 1.4, with C equal to the topology in T'. O

Here we insert a result about subspace topologies and o-fields, which will
be needed in Chapter 14. Given a class C of subsets of S and a set A C S,
we define ANC={ANC,; CeC}.

Lemma 1.6 (subspaces) Fix a metric space (S, p) with topology T and Borel
o-field S, and let A C S. Then (A, p) has topology TA = ANT and Borel
o-field Sy = ANS.

Proof: The natural embedding I4 : A — S is continuous and hence
measurable, and so ANT = I;'T C Taand ANS = I;'S C S4. Conversely,
given any B € T4, we may define G = (B U A°)°, where the complement and
interior are with respect to S, and it is easy to verify that B = ANG. Hence,
T4 C ANT, and therefore

Sa=0(Ta) Ca(ANT)Co(ANS)=ANS,

where the operation o(-) refers to the subspace A. m

Next we note that measurability (like continuity) is preserved by compo-
sition. The proof is immediate from the definitions.

Lemma 1.7 (composition) For any measurable spaces (S,S), (T,7T), and
(U, U), and measurable mappings f: S — T and g: T — U, the composition
go f: S — U is again measurable.

To state the next result, we note that any collection of functions f;: Q —
Si, t € T, defines a mapping f = (f;) from Q to X;S; given by

fw)=(filw); teT), we 2)
It is often useful to relate the measurability of f to that of the coordinate
mappings fi.

Lemma 1.8 (families of functions) For any measurable spaces (2, A) and
(S, S1), t € T, and for arbitrary mappings fi: Q@ — Sy, t € T, the function
f=1(f1): Q= X;S; is measurable with respect to the product o-field ®, S;
iff fi is S;-measurable for every t.
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Proof: Use Lemma 1.4, with C equal to the class of cylinder sets A; x
Xs;,étSt with ¢ cT and At € St. O

Changing our perspective, assume the f; in (2) to be mappings into some
measurable spaces (S;,S;). In Q we may then introduce the generated or
induced o-field o(f) = o{f;; t € T}, defined as the smallest o-field in 2 that
makes all the f, measurable. In other words, o(f) is the intersection of all
o-fields A in Q such that f; is A/Si-measurable for every ¢ € T. In this
notation, the functions f; are clearly measurable with respect to a o-field
Ain Qiff o(f) C A. Tt is further useful to note that o(f) agrees with the
o-field in © generated by the collection {f,'S;; t € T}.

For real-valued functions, measurability is always understood to be with
respect to the Borel o-field B = B(R). Thus, a function f from a measurable
space (£2,.A) into a real interval I is measurable iff {w; f(w) < z} € A
for all x € I. The same convention applies to functions into the extended
real line R = [—00, 0] or the extended half-line Ry = [0, 00|, regarded as
compactifications of R and Ry = [0, 00), respectively. Note that B(R) =
o{B,+oo} and B(R,) = o{B(R,), 00}

For any set A C 2, we define the associated indicator function14: 2 — R
to be equal to 1 on A and to 0 on A°. (The term characteristic function has
a different meaning in probability theory.) For sets A = {w; f(w) € B}, it is
often convenient to write 1{-} instead of 1;. Assuming A to be a o-field in
Q, we note that 1, is A-measurable iff A € A.

Linear combinations of indicator functions are called simple functions.
Thus, a general simple function f: {2 — R is of the form

f=calgy +---+cula,,

where n € Z, = {0,1,...}, ¢1,...,¢, € R, and Ay,..., A, C Q. Here we
may clearly take cq,..., ¢, to be the distinct nonzero values attained by f
and define Ay, = f~'{cx}, k = 1,...,n. With this choice of representation,
we note that f is measurable with respect to a given o-field A in Q iff
A, . A, €A

We proceed to show that the class of measurable functions is closed under
the basic finite or countable operations occurring in analysis.

Lemma 1.9 (bounds and limits) Let f1, f2, ... be measurable functions from
some measurable space (2, A) into R. Then sup,, f,, inf, f,, limsup, f., and
liminf, f, are again measurable.

Proof: To see that sup,, f,, is measurable, write

{w; sup,, fu(w) <t} = {w; fulw) <t} = fi ' [-00,1] € A,

and use Lemma 1.4. The measurability of the other three functions follows
easily if we write inf,, f,, = —sup,,(—f,) and note that

lim su = inf su liminf f,, = sup inf f;. O
msup f, = in Sup Jr; minf f, = sup inf fi
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From the last lemma we may easily deduce the measurability of limits
and sets of convergence.

Lemma 1.10 (convergence and limits) Let fi, fa,... be measurable func-
tions from a measurable space (Q, A) into some metric space (S, p). Then
(1) {w; fu(w) converges} € A if S is complete;
(il) fo — f on Q implies that f is measurable.

Proof: (i) Since S is complete, the convergence of f,, is equivalent to the
Cauchy convergence

T}Lm sup p(fm, fn) = 0.

© m>n
Here the left-hand side is measurable by Lemmas 1.5 and 1.9.
(i) If f, — f, we have gof,, — go f for any continuous function g: S — R,
and so go f is measurable by Lemmas 1.5 and 1.9. Fixing any open set G C 5,

we may choose some continuous functions gq,¢s,...: S — Ry with g, T 1¢
and conclude from Lemma 1.9 that 1g o f is measurable. Thus, f~'G € A
for all G, and so f is measurable by Lemma 1.4. |

Many results in measure theory are proved by a simple approximation,
based on the following observation.

Lemma 1.11 (approzimation) For any measurable function f: (2, A) —
R, there exist some simple measurable functions fi, fo,...: Q — Ry with

0<fut/f.
Proof: We may define

falw)=2""12"f(W)]An, weQ, neN. O

To illustrate the method, we may use the last lemma to prove the mea-
surability of the basic arithmetic operations.

Lemma 1.12 (elementary operations) Fiz any measurable functions f,g:
(Q, A) = R and constants a,b € R. Then af +bg and fg are again measur-
able, and so is f/g when g # 0 on Q.

Proof: By Lemma 1.11 applied to fo = (£f) V0 and g+ = (£g) vV 0, we
may approximate by simple measurable functions f,, — f and g, — ¢. Here
afn,+bg, and f,g, are again simple measurable functions; since they converge
to af 4+ bg and fg, respectively, even the latter functions are measurable by
Lemma 1.9. The same argument applies to the ratio f/g, provided we choose
gn # 0.

An alternative argument is to write af + bg, fg, or f/g as a composition
o, where o = (f,g): @ — R% and ¥(x,y) is defined as ax + by, xy,
or z/y, repectively. The desired measurability then follows by Lemmas 1.2,
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1.5, and 1.8. In case of ratios, we are using the continuity of the mapping
(z,y) = z/y on R x (R {0}). =

For statements in measure theory and probability, it is often convenient
first to give a proof for the real line and then to extend the result to more
general spaces. In this context, it is useful to identify pairs of measurable
spaces S and T that are Borel isomorphic, in the sense that there exists a
bijection f: S — T such that both f and f~! are measurable. A space S
that is Borel isomorphic to a Borel subset of [0,1] is called a Borel space. In
particular, any Polish space endowed with its Borel o-field is known to be a
Borel space (cf. Theorem A1.6). (A topological space is said to be Polish if
it admits a separable and complete metrization.)

The next result gives a useful functional representation of measurable
functions. Given any two functions f and g on the same space €1, we say
that f is g-measurable if the induced o-fields are related by o(f) C o(g).

Lemma 1.13 (functional representation, Doob) Fix two measurable func-
tions [ and g from a space S into some measurable spaces (S,S) and (T, T),
where the former is Borel. Then f is g-measurable iff there exists some mea-
surable mapping h: T — S with f = hog.

Proof: Since S is Borel, we may assume that S € B([0, 1]). By a suitable
modification of h, we may further reduce to the case when S = [0,1]. If
f = 14 with a g-measurable A C €, then by Lemma 1.3 there exists some
set B € T with A = ¢ !'B. In this case f = 14 = 1z 0g, and we may choose
h = 1. The result extends by linearity to any simple g-measurable function
f. In the general case, there exist by Lemma 1.11 some simple g-measurable
functions fi, fa,... with 0 < f, 1T f, and we may choose associated T-
measurable functions hq, he,...: T — [0,1] with f, = h, o g. Then h =
sup,, h,, is again T-measurable by Lemma 1.9, and we note that

hog = (sup,h,) o g = sup,(h, o g) = sup, f, = f. o

Given any measurable space (©,.4), a function pu: A — R is said to be
countably additive if

’uUkZIAk = ZkZI’UAk’ Ay, Ay, ... € A disjoint. (3)

A measure on (2, A) is defined as a function p: A — R, with uf) = 0 and
satisfying (3). A triple (Q, A, 1) as above, where u is a measure, is called a
measure space. From (3) we note that any measure is finitely additive and
nondecreasing. This implies in turn the countable subadditivity

MUk21Ak < Zk21“Akv A, Ay, .. € A

We note the following basic continuity properties.
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Lemma 1.14 (continuity) Let p be a measure on (Q, A), and assume that
A17 A27 ... € A Then

(i) A, T A implies pA, 1 pA;
(ii)) A, | A with pAy < oo implies pA, | pA.

Proof: For (i) we may apply (3) to the differences D,, = A, \ A,_1 with
Ag = 0. To get (ii), apply (i) to the sets B, = A; \ A,. 0

The class of measures on (2,.4) is clearly closed under positive linear
combinations. More generally, we note that for any measures puq, 2, ... on
(©, A) and constants ¢y, ¢z, ... > 0, the sum pu = Y, ¢, 1, is again a measure.
(For the proof, recall that we may change the order of summation in any
double series with positive terms. An abstract version of this fact will appear
as Theorem 1.27.) The quoted result may be restated in terms of monotone
sequences.

Lemma 1.15 (monotone limits) Let py, pto, ... be measures on some mea-
surable space (2, A) such that either w, T u or else p, | p with py bounded.
Then p is again a measure on (§2, A).

Proof: In the increasing case, we may use the elementary fact that, for
series with positive terms, the summation commutes with increasing limits.
(A general version of this result appears as Theorem 1.19.) For decreas-
ing sequences, the previous case may be applied to the increasing measures

M1 — M- d

For any measure ;2 on (€2, A) and set B € A, the function v: A — u(ANDB)
is again a measure on (£, A), called the restriction of 1 to B. Given any
countable partition of € into disjoint sets A, As,... € A, we note that
= >, ltn, where u, denotes the restriction of u to A,. The measure y is
said to be o-finite if the partition can be chosen such that pA, < oo for all
n. In that case the restrictions pu, are clearly bounded.

We proceed to establish a simple approximation property.

Lemma 1.16 (reqularity) Let p be a o-finite measure on some metric space
S with Borel o-field S. Then

uB:?Cl%qugerlfBuG, BeS,

with F and G restricted to the classes of closed and open subsets of S, re-
spectively.

Proof: We may clearly assume that p is bounded. For any open set G
there exist some closed sets F,, T G, and by Lemma 1.14 we get puF, T uG.
This proves the statement for B belonging to the w-system G of all open sets.
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Letting D denote the class of all sets B with the stated property, we further
note that D is a A-system. Hence, Theorem 1.1 shows that D D ¢(G) =S. O

A measure p on some topological space S with Borel o-field S is said to
be locally finite if every point s € S has a neighborhood where p is finite.
A locally finite measure on a og-compact space is clearly o-finite. It is often
useful to identify simple measure-determining classes C C S such that a
locally finite measure on S is uniquely determined by its values on C. For
measures on a Euclidean space R?, we may take C = ¢ the class of all
bounded rectangles.

Lemma 1.17 (uniqueness) A locally finite measure on R? is determined by
its values on I°.

Proof: Let p and v be two measures on R? with ul = vI < oo for all
I € T¢. To see that p = v, we may fix any J € Z% put C = Z¢N.J, and let D
denote the class of Borel sets B C J with uB = vB. Then C is a w-system,
D is a A-system, and C C D by hypothesis. By Theorem 1.1 and Lemma
1.2, we get B(J) = o(C) C D, which means that uB = vB for all B € B(J).
The last equality extends by the countable additivity of p and v to arbitrary
Borel sets B. O

The simplest measures that can be defined on a measurable space (5, S)
are the Dirac measures 05, s € S, given by d;A = 14(s), A € §. More
generally, for any subset M C S we may introduce the associated counting
measure fy = Yogen 0s With values uyyA = |[M N A|, A € S, where |A]
denotes the cardinality of the set A.

For any measure i on a topological space .S, the support supp p is defined
as the smallest closed set F' C S with puF° = 0. If |[supp p| < 1, then p is
said to be degenerate, and we note that u = c¢d, for some s € S and ¢ > 0.
More generally, a measure p is said to have an atom at s € S if {s} € S and
u{s} > 0. For any locally finite measure p on some o-compact metric space
S, the set A = {s € S; u{s} > 0} is clearly measurable, and we may define
the atomic and diffuse components p, and pq of p as the restrictions of p to
A and its complement. We further say that p is diffuse if u, = 0 and purely
atomic if pg = 0.

In the important special case when p is locally finite and integer valued,
the set A above is clearly locally finite and hence closed. By Lemma 1.14
we further have suppp C A, and so g must be purely atomic. Hence, in
this case p = Y ,c4 ¢s0s for some integers c¢,. In particular, p is said to be
simple if ¢, = 1 for all s € A. In that case clearly p agrees with the counting
measure on its support A.

Any measurable mapping f between two measurable spaces (5,S) and
(T, T) induces a mapping of measures on S into measures on 7. More pre-
cisely, given any measure u on (S,S), we may define a measure po f~! on
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(T,T) by
(no f)B=p(f'B)=pu{s€S; f(s)e B}, BeT.

Here the countable additivity of o f~1 follows from that for u together with
the fact that f~! preserves unions and intersections.
Our next aim is to define the integral

uf = [ fan= [ fw)utd)

of a real-valued, measurable function f on some measure space (£2, A4, u).
First assume that f is simple and nonnegative, hence of the form ¢;14, +
cooFepla, forsomen € Zy, Ay, ... Ay € Ajand ¢, ..., ¢, € Ry, and define

Hf = Cl,uAl +oF Cn,uAn-

(Throughout measure theory we are following the convention 0 - co = 0.)
Using the finite additivity of y, it is easy to verify that pf is independent of
the choice of representation of f. It is further clear that the mapping f — uf
is linear and nondecreasing, in the sense that

wlaf +bg) = apf+bug, ab>0,
f<g = pf<upg
To extend the integral to any nonnegative measurable function f, we may
choose as in Lemma 1.11 some simple measurable functions fi, fa,... with

0< f. 1 f, and define puf = lim, uf,,. The following result shows that the
limit is independent of the choice of approximating sequence (f,,).

Lemma 1.18 (consistency) Fiz any measurable function f > 0 on some
measure space (0, A, 1), and let fi, fa,... and g be simple measurable func-
tions satisfying 0 < f, T f and 0 < g < f. Then lim, uf, > ug.

Proof: By the linearity of p, it is enough to consider the case when g = 14
for some A € A. Fix any € > 0, and define

Ap={we A fulw)>1—¢}, nelN
Then A, T A, and so
ffn = (1 =g)pAn T (1—e)pA = (1 —e)ug.

It remains to let ¢ — 0. O

The linearity and monotonicity properties extend immediately to arbi-
trary f > 0, since if f,, T f and g, 1 g, then af, +bg, T af +bg, and if f < g,
then f, < (fu Vgn) T g. We are now ready to prove the basic continuity
property of the integral.
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Theorem 1.19 (monotone convergence, Levi) Let f, fi1, fa ... be measurable
functions on (Q, A, u) with 0 < f, + f. Then uf, T uf.

Proof: For each n we may choose some simple measurable functions g,
with 0 < gux T fn as kK — oco. The functions h,r = g1x V - -+ V gnir have the
same properties and are further nondecreasing in both indices. Hence,

f> lm by > lim by = f T f,
k—o0 k—ro0

and so 0 < hyg, T f. Using the definition and monotonicity of the integral,
we obtain

wf = lim phy < lim pfy < pf. O
k—o0 k—o0
The last result leads to the following key inequality.

Lemma 1.20 (Fatou) For any measurable functions fi, fa,... > 0 on (£,
A, 1), we have

liminf/ufy, > pliminf f,.
Proof: Since f,, > infy>, fi for all m > n, we have
. >
inf pfi = pnof fi, neN.
Letting n — oo, we get by Theorem 1.19

liminf pufy > lim g inf f, = pliminf f. o
iminf o fy > lim Nignfk pliming fi

A measurable function f on (€2,.A4, p1) is said to be integrable if u|f| < oc.
In that case f may be written as the difference of two nonnegative, integrable
functions g and h (e.g., as fy — f_, where fo = (£f)V0), and we may define
uf as pg—ph. Tt is easy to check that the extended integral is independent of
the choice of representation f = g—h and that uf satisfies the basic linearity
and monotonicity properties (the former with arbitrary real coeflicients).

We are now ready to state the basic condition that allows us to take
limits under the integral sign. For g, = ¢ the result reduces to Lebesgue’s
dominated convergence theorem, a key result in analysis.

Theorem 1.21 (dominated convergence, Lebesgue) Let f, f1, fa,... and g,
g1, 92, - .. be measurable functions on (2, A, ) with |fn| < gn for all n, and
such that f, = f, go — g, and pg, — g < oco. Then pf, — puf.
Proof: Applying Fatou’s lemma to the functions g, + f, > 0, we get
pg 4 liminf (0 fy) = Iminf (g, £ fo) = plg £ f) = pg + pf.

Subtracting pug < oo from each side, we obtain
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pf < liminf pf, <limsuppf, < pf. 0
n—oo n—00

The next result shows how integrals are transformed by measurable map-
pings.

Lemma 1.22 (substitution) Fiz a measure space (A, 1), a measurable
space (S, S), and two measurable mappings f: 2 — S and g: S — R. Then

p(go f)=(uof g (4)

whenever either side exists. (Thus, if one side exists, then so does the other
and the two are equal.)

Proof: If g is an indicator function, then (4) reduces to the definition
of wo f~!. From here on we may extend by linearity and monotone con-
vergence to any measurable function g > 0. For general g it follows that
plgo f| = (o f71)]gl, and so the integrals in (4) exist at the same time.
When they do, we get (4) by taking differences on both sides. O

Turning to the other basic transformation of measures and integrals, fix
any measurable function f > 0 on some measure space (€2, .4, i), and define
a function f - u on A by

(/- wA=p(af) = [ fdu, Aea

where the last relation defines the integral over a set A. It is easy to check
that v = f - u is again a measure on (€, A). Here f is referred to as the
u-density of v. The corresponding transformation rule is as follows.

Lemma 1.23 (chain rule) Fix a measure space (2, A, n) and some mea-
surable functions f: Q — Ry and g: Q@ — R. Then

w(fg) = (f-nyg

whenever either side exists.

Proof: As in the last proof, we may begin with the case when g is an
indicator function and then extend in steps to the general case. a

Given a measure space (2,4, 1), a set A € A is said to be p-null or
simply null if uA = 0. A relation between functions on € is said to hold
almost everywhere with respect to p (abbreviated as a.e. p or p-a.e.) if it
holds for all w € Q2 outside some p-null set. The following frequently used
result explains the relevance of null sets.

Lemma 1.24 (null functions) For any measurable function f > 0 on some
measure space (Q, A, ), we have uf =0 iff f =0 a.e. pu.
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Proof: The statement is obvious when f is simple. In the general case, we
may choose some simple measurable functions f, with 0 < f,, T f, and note
that f =0 a.e. iff f, =0 a.e. for every n, that is, iff uf,, = 0 for all n. Here
the latter integrals converge to pf, and so the last condition is equivalent to

uf=0. O

The last result shows that two integrals agree when the integrands are
a.e. equal. We may then allow integrands that are undefined on some p-null
set. It is also clear that the basic convergence Theorems 1.19 and 1.21 remain
valid if the hypotheses are only fulfilled outside some null set.

In the other direction, we note that if two o-finite measures p and v are
related by v = f-u for some density f, then the latter is y-a.e. unique, which
justifies the notation f = dv/du. It is further clear that any p-null set is
also a null set for v. For measures p and v with the latter property, we say
that v is absolutely continuous with respect to u and write v < . The other
extreme case is when p and v are mutually singular or orthogonal (written
as L v), in the sense that pA = 0 and vA° = 0 for some set A € A.

Given any measure space (€, A, 1), we define the p-completion of A as
the o-field A* = o(A, N,,), where N, denotes the class of all subsets of y-null
sets in A. The description of A* can be made more explicit, as follows.

Lemma 1.25 (completion) Consider a measure space (2, A, 1) and a Borel
space (S,8). Then a function f: Q — S is A*-measurable iff there exists
some A-measurable function g satisfying f = g a.e. p.

Proof: With N, as before, let A’ denote the class of all sets AU N with
Aec Aand N € N,. Tt is easily verified that A’ is a o-field contained in
A#. Since moreover AU N, C A’, we conclude that A" = A*. Thus, for
any A € A" there exists some B € A with AAB € N, which proves the
statement for indicator functions f.

In the general case, we may clearly assume that S = [0,1]. For any
AF-measurable function f, we may then choose some simple A*-measurable
functions f, such that 0 < f,, 1 f. By the result for indicator functions, we
may next choose some simple A-measurable functions g, such that f,, = g,
a.e. for each n. Since a countable union of null sets is again a null set, the
function g = limsup,, g, has the desired property. O

Any measure ;1 on (2, .4) has a unique extension to the o-field A*. Indeed,
for any A € A* there exist by Lemma 1.25 some sets AL € A with A_ C
A C Ay and p(Ay \ A-) = 0, and any extension must satisfy pA = pAy.
With this choice, it is easy to check that p remains a measure on A*.

Our next aims are to construct product measures and to establish the
basic condition for changing the order of integration. This requires a prelim-
inary technical lemma.
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Lemma 1.26 (sections) Fix two measurable spaces (S,S) and (T,T), a
measurable function f: S xT — R, and a o-finite measure p on S. Then
f(s,t) is S-measurable in s € S for each t € T, and the function t — uf(-,t)
is T -measurable.

Proof: We may assume that p is bounded. Both statements are obvious
when f =14 with A= B x C for some B € § and C € T, and they extend
by a monotone class argument to any indicator functions of sets in S ® T.
The general case follows by linearity and monotone convergence. |

We are now ready to state the main result involving product measures,
commonly referred to as Fubini’s theorem.

Theorem 1.27 (product measures and iterated integrals, Lebesgue, Fubini,
Tonelli) For any o-finite measure spaces (S, S, 1) and (T, T ,v), there exists
a unique measure p @ v on (S X T, S®T) satisfying

(V) (BxC)=puB-vC, BeS, CeT. (5)

Furthermore, for any measurable function f: S xT — Ry,

(wev)f = [ ulds) [ (s, tdt) = [vidt) [ f(s.tutds).  (6)

The last relation remains valid for any measurable function f: S xT — R
with (p @ v)|f| < oo.

Note that the iterated integrals in (6) are well defined by Lemma 1.26,
although the inner integrals vf(s,-) and pf(-,t) may fail to exist on some
null sets in S and T, respectively.

Proof: By Lemma 1.26 we may define
(L@ v)A = / 1(ds) / La(s,tw(dt), AeS®T, (7)

which is clearly a measure on S x T satisfying (5). By a monotone class
argument there can be at most one such measure. In particular, (7) remains
true with the order of integration reversed, which proves (6) for indicator
functions f. The formula extends by linearity and monotone convergence to
arbitrary measurable functions f > 0.

In the general case, we note that (6) holds with f replaced by |f|. If
(k@ v)|f] < o0, it follows that Ng = {s € S; v|f(s,-)| = oo} is a p-null set
in S whereas Np = {t € T; p|f(-,t)] = oo} is a v-null set in 7. By Lemma
1.24 we may redefine f(s,t) to be zero when s € Ng or t € Ny. Then (6)
follows for f by subtraction of the formulas for f, and f_. |



1. Elements of Measure Theory 15

The measure p ® v in Theorem 1.27 is called the product measure of p
and v. Iterating the construction in finitely many steps, we obtain product
measures [ ® ... Q® i, = @ iy satisfying higher-dimensional versions of (6).
If . = p for all k, we shall often write the product as u®* or u™.

By a measurable group we mean a group G endowed with a o-field G
such that the group operations in G are G-measurable. If uq,..., u, are
o-finite measures on G, we may define the convolution py * - - * p, as the
image of the product measure py ® - - - ® p,, on G™ under the iterated group
operation (x1,...,%,) — @1+ -x,. The convolution is said to be associative
if (p1q % o) * pug = p * (po * pg) whenever both g % o and g * 3 are o-finite
and commutative if py * po = o * i1.

A measure p on G is said to be right or left invariant if p o Tg’1 = p for
all g € G, where T, denotes the right or left shift z — xg or x — gxz. When
G is Abelian, the shift is called a translation. We may also consider spaces
of the form G x S, in which case translations are defined to be mappings of
the form Tj: (z,s) — (z + g, s).

Lemma 1.28 (convolution) The convolution of measures on a measurable
group (G, G) is associative, and it is also commutative when G is Abelian. In
the latter case,

(pxv)B /M —s)v(ds) = /( —s)u(ds), Beg.

Ifu=f-Xandv =g- X\ for some invariant measure X\, then j * v has the
A-density

(f * g)(s /fb—t A(dt) /f (s — )A(dt), seq.
Proof: Use Fubini’s theorem. |

On the real line there exists a unique measure A, called the Lebesgue
measure, such that A[a,b] = b—a for any numbers a < b (cf. Corollary Al.2).
The d-dimensional Lebesgue measure is defined as the product measure A%
on R? The following result characterizes A\? up to a normalization by the
property of translation invariance.

Lemma 1.29 (invariance and Lebesque measure) Fix any measurable space
(S,8), and let u be a measure on R x S such that v = p([0,1]4x ) is o-finite.
Then i is translation invariant iff p = A\ @ v.

Proof: The invariance of A\ is obvious from Lemma 1.17, and it extends to
M @ v by Theorem 1.27. Conversely, assume that p is translation invariant.
The stated relation then holds for all product sets I; x - -+ X I; X B, where
I, ..., 1; are dyadic intervals and B € §, and it extends to the general case
by a monotone class argument. a
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Given a measure space (2,4, 1) and some p > 0, we write LP = LP(Q, A, i)
for the class of all measurable functions f: 2 — R with

1£llp = (ul fIP)/? < 0.

Lemma 1.30 (norm inequalities, Holder, Minkowski) For any measurable
functions f and g on §,

1 fall- < NIfllpllglles prayr >0 withp™ + ¢ =17, (8)

and
I+ gl <A1 + g™, p > 0. 9)

Proof: To prove (8) it is clearly enough to take r = 1 and || f||, = ||¢gll; = 1.
The relation p~' 4+ ¢~ = 1 implies (p — 1)(¢ — 1) = 1, and so the equations
y = aP"! and 2 = y7! are equivalent for z,y > 0. By calculus,

LI ol e L 1t
Fol < [ et [Ty tay = p g+ g7 gl

and so . ) ) .
1ol < w7t [IfPdp+a7 [lgldp =p +q7 = 1.

Relation (9) holds for p < 1 by the concavity of 2? on R,. For p > 1, we
get by (8) with ¢ =p/(1 —p) and r =1

1F gl < [1A1F+ gl du+ [1gl1f +glrdp
10+ glls™ + llgholf + gl 0

IN

In particular, ||- ||, becomes a norm for p > 1 if we identify functions that
agree a.e. For any p > 0 and f, f1, fo,... € LP, we say that f, — f in LP if
Il fn— fll, = 0 and that (f,,) is Cauchy in L* if || f,, — full, — 0 as m,n — oo.

Lemma 1.31 (completeness) Let (f,) be a Cauchy sequence in LP, where
p>0. Then || f, — fll, = O for some f € LP.

Proof: First choose a subsequence (ng) C N with 3 || fr,, — fu I <
co. By Lemma 1.30 and monotone convergence we get || 3 | fnpy — foi | 5
< 00, and 80 X | fus, — fu,| < 00 ae. Hence, (fy,) is a.e. Cauchy in R, so
Lemma 1.10 yields f,, — f a.e. for some measurable function f. By Fatou’s
lemma,

19 = Sully < ninf L, = full < s0p [ = fuly 0. 1= o

which shows that f,, — f in LP. |

The next result gives a useful criterion for convergence in LP.
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Lemma 1.32 (LP-convergence) For any p > 0, let f, fi, f2,... € LP with
fo— f ae Then f, — f in LP iff || full, = I fllp-

Proof: If f, — fin L?, we get by Lemma 1.30

£l = I < WL = FIEM = 0,

and so || f,|l, = || fll,- Now assume instead the latter condition, and define

gn = 2(fal? +1117), g =2""1|fP,

Then g, — ¢ a.e. and pg, — pg < oo by hypotheses. Since also |g,| >
|fo — fIP = 0 a.e., Theorem 1.21 yields ||f,, — f|} = p[fn — fIP — 0. O

We proceed with a simple approximation property.

Lemma 1.33 (approzimation) Given a metric space S with Borel o-field
S, a bounded measure p on (S,S), and a constant p > 0, the set of bounded,
continuous functions on S is dense in LP(S, S, ). Thus, for any f € LP there
exist some bounded, continuous functions fi, fo,...: S — R with ||f, — f|l,
— 0.

Proof: If f =14 with A C S open, we may choose some continuous func-
tions f, with 0 < f,, 1 f, and then || f,, — f||, — 0 by dominated convergence.
By Lemma 1.16 the result remains true for arbitrary A € §. The further
extension to simple measurable functions is immediate. For general f € LP
we may choose some simple measurable functions f, — f with |f,| < |f].
Since | f,— f|P < 207 f|P, we get || f,— f|l, — 0 by dominated convergence. O

Taking p=¢=2 and r=1 in Holder’s inequality (8), we get the Cauchy-
Buniakouvsky inequality (often called Schwarz’s inequality)

1Fglle < N1 fllzllgll2-

In particular, we note that, for any f, g € L?, the inner product (f, g) = u(fg)
exists and satisfies |(f, g)| < || fll2llg|l2- From the obvious bilinearity of the
inner product, we get the parallelogram identity

1f + gl + 11 = gll* = 201" + 2llgl*,  f,9 € L*. (10)

Two functions f,g € L? are said to be orthogonal (written as f L g)
if (f,g) = 0. Orthogonality between two subsets A, B C L? means that
fLgforall fe Aand g € B. A subspace M C L? is said to be linear if
af +bg € M for any f,g € M and a,b € R, and closed if f € M whenever f
is the L2-limit of a sequence in M.

Theorem 1.34 (orthogonal projection) Let M be a closed linear subspace
of L?. Then any function f € L* has an a.e. unique decomposition f = g+h
with g € M and h L. M.
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Proof: Fix any f € L?, and define d = inf{||f — g||; g € M}. Choose
91,92, .. € M with || f — gn|| = d. Using the linearity of M, the definition of
d, and (10), we get as m,n — oo,

AP + [|gm — gall* < N2f = g — gull® + lgm — gull?
= 2|f = gmll* +2[If — gal* — 4d>.

Thus, ||gm — gull — 0, and so the sequence (g,) is Cauchy in L?. By Lemma
1.31 it converges toward some g € L2, and since M is closed we have g € M.
Noting that h = f — ¢ has norm d, we get for any [ € M,

d? < ||h+t))? = d* +2t(h, 1) + 2|1]*, teR,

which implies (h,l) = 0. Hence, h L M, as required.

To prove the uniqueness, let ¢’ + k' be another decomposition with the
stated properties. Then g — ¢’ € M and also g —¢ = K —h L M, so
g—¢ L g— g, which implies ||g — ¢||> = (¢ — ¢, 9 — ¢’) = 0, and hence
g=4 ae. O

For any measurable space (5, S), we may introduce the class M(S) of o-
finite measures on S. The set M(S) becomes a measurable space in its own
right when endowed with the o-field induced by the mappings mg: u — uB,
B € S§. Note in particular that the class P(S) of probability measures on
S is a measurable subset of M(S). In the next two lemmas we state some
less obvious measurability properties, which will be needed in subsequent
chapters.

Lemma 1.35 (measurability of products) For any measurable spaces (S,S)
and (T,T), the mapping (u,v) — p @ v is measurable from P(S) x P(T) to
P(SxT).

Proof: Note that (u®v)A is measurable whenever A = Bx C with B € S
and C' € T, and extend by a monotone class argument. o

In the context of separable metric spaces S, we shall assume the measures
w € M(S) to be locally finite, in the sense that uB < oo for any bounded
Borel set B.

Lemma 1.36 (diffuse and atomic parts) For any separable metric space S,
(i) the set D C M(S) of degenerate measures on S is measurable;
(i) the diffuse and purely atomic components pg and p, are measurable

functions of up € M(S).

Proof: (i) Choose a countable topological base By, Bs, ... in S, and define
J ={(i,7); B; N Bj = 0}. Then, clearly,

D= {ieMS): X, ., nB)wuB) = 0}.
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(i) Choose a nested sequence of countable partitions B, of S into Borel
sets of diameter less than n~!. Introduce for ¢ > 0 and n € N the sets U =
U{BeB,;uB>c}h, U ={seS;pu{s} >c},and U = {s € S; u{s} > 0}.
It is easily seen that U; | U® as n — oo and further that U® T U as ¢ — 0.
By dominated convergence, the restrictions u, = p(UzN-) and pf = p(UN-)
satisfy locally uf, | p® and p® 1 p,. Since g, is clearly a measurable function
of p, the asserted measurability of 1, and p,; now follows by Lemma 1.10. O

Given two measurable spaces (S,S) and (T, T), a mapping p: SxT — R,
is called a (probability) kernel from S to T if the function u,B = (s, B) is
S-measurable in s € S for fixed B € T and a (probability) measure in B € T
for fixed s € S. Any kernel p determines an associated operator that maps
suitable functions f: T — R into their integrals uf(s) = [ u(s, dt) f(t). Ker-
nels play an important role in probability theory, where they may appear in
the guises of random measures, conditional distributions, Markov transition
functions, and potentials.

The following characterizations of the kernel property are often useful.
For simplicity we are restricting our attention to probability kernels.

Lemma 1.37 (kernels) Fiz two measurable spaces (S,S) and (T,T), a -
system C with o(C) = T, and a family u = {ps; s € S} of probability mea-
sures on T'. Then these conditions are equivalent:

(i) w is a probability kernel from S to T';
(ii) p is a measurable mapping from S to P(T);
(iii) s+ psB is a measurable mapping from S to [0, 1] for every B € C.

Proof: Since 7p : u — pB is measurable on P(T) for every B € T,
condition (ii) implies (iii) by Lemma 1.7. Furthermore, (iii) implies (i) by
a straightforward application of Theorem 1.1. Finally, under (i) we have
plngt[0,7] € S for all B € T and & > 0, and (ii) follows by Lemma 1.4. O

Let us now introduce a third measurable space (U,U), and consider two
kernels 1 and v, one from S to T" and the other from S x T to U. Imitating
the construction of product measures, we may attempt to combine p and v
into a kernel ;4 ® v from S to T' x U given by

(L®v)(s,B) = /,u(s,dt) /l/(s,t,du)lB(t,u), BeT®U.

The following lemma justifies the formula and provides some further useful
information.

Lemma 1.38 (kernels and functions) Fiz three measurable spaces (S,S),
(T,T), and (U, U). Let u and v be probability kernels from S to T and from
S x T to U, respectively, and consider two measurable functions f: S xT —
Ry and g: S xT — U. Then
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(i) wsf(s,-) is a measurable function of s € S;
(ii) pso (g(s,-))~" is a kernel from S to U;
(ili) p@v is a kernel from S to T x U.

Proof: Assertion (i) is obvious when f is the indicator function of a set
A= BxC with B e S and C € 7. From here on, we may extend to
general A € § ® T by a monotone class argument and then to arbitrary f
by linearity and monotone convergence. The statements in (ii) and (iii) are
easy consequences. O

For any measurable function f > 0 on T x U, we get as in Theorem 1.27

/usdt/ (s,t,du)f(t,u), se€S,

or simply (u® v)f = pu(vf). By iteration we may combine any kernels gy
from Sg X -+ X Sp_1to Sy, k=1,...,n, into a kernel y; ® - - - ® u,, from S
to S1 x -+ x S, given by

(1 @ @ pn) f = pa(paal- -+ (pnf) )

for any measurable function f > 0 on S; X -+ X S,.

In applications we may often encounter kernels py from S;_1 to Sy, k =
1,...,n, in which case the composition i --- u, is defined as a kernel from
Sp to S, given for measurable B C S, by

®//Ln s(Sl : XS’I’L 1XB)

= //,Ll S, d$1 /[LQ él,dSQ

"//’Lnfl 5n727d5n71)/v’/n(8n717B>-

(Nl e Un)sB

Exercises

1. Prove the triangle inequality u(AAC) < u(AAB) + u(BAC). (Hint:
Note that 1AAB = |1A — 13‘)

2. Show that Lemma 1.9 is false for uncountable index sets. (Hint: Show
that every measurable set depends on countably many coordinates.)

3. For any space S, let A denote the cardinality of the set A C S. Show
that p is a measure on (S, 2%).

4. Let K be the class of compact subsets of some metric space S, and let
1 be a bounded measure such that inf e pK¢ = 0. Show for any B € B(S)
that uB = supgecxnp K.
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5. Show that any absolutely convergent series can be written as an inte-
gral with respect to counting measure on N. State series versions of Fatou’s
lemma and the dominated convergence theorem, and give direct elementary
proofs.

6. Give an example of integrable functions f, f1, f,... on some proba-
bility space (92, A, ) such that f,, — f but puf, 4 uf.

7. Fix two o-finite measures p and v on some measurable space (§2, F)
with sub-o-field G. Show that if 4 < v holds on F, it is also true on G.
Further show by an example that the converse may fail.

8. Fix two measurable spaces (S,8) and (T,T), a measurable function
f: S — T, and a measure y on S with image v = po f~'. Show that f
remains measurable w.r.t. the completions S* and 7.

9. Fix a measure space (5,8, u) and a o-field T C S, let S* denote the
p-completion of S, and let T# be the o-field generated by 7 and the p-null
sets of S*. Show that A € T* iff there exist some B € 7 and N € §" with
AAB C N and puN = 0. Also, show by an example that 7# may be strictly
greater than the p-completion of T

10. State Fubini’s theorem for the case where y is any o-finite measure
and v is the counting measure on N. Give a direct proof of this result.

11. Let fi, fo,... be p-integrable functions on some measurable space S
such that g = Y, fx exists a.e., and put g, = > ;.<,, fx- Restate the dominated
convergence theorem for the integrals g, in terms of the functions fi, and
compare with the result of the preceding exercise.

12. Extend Theorem 1.27 to the product of n measures.

13. Show that Lebesgue measure on R? is invariant under rotations. (Hint:
Apply Lemma 1.29 in both directions.)

14. Fix a measurable Abelian group G such that every o-finite, invariant
measure on G is proportional to some measure A. Extend Lemma 1.29 to
this case.

15. Let A denote Lebesgue measure on R, and fix any p > 0. Show that
the class of step functions with bounded support and finitely many jumps is
dense in LP(\). Generalize to R%.

16. Let M D N be closed linear subspaces of L?. Show that if f € L? has
projections g onto M and h onto N, then g has projection h onto V.

17. Let M be a closed linear subspace of L?, and let f,g € L? with
M-projections f and §. Show that (f, g9)=(f,9) = (f, g).

18. Let pq,fo,... be kernels between two measurable spaces S and T.
Show that the function =Y, i, is again a kernel.

19. Fix a function f between two measurable spaces S and T, and define
(s, B) =1po f(s). Show that u is a kernel iff f is measurable.



Chapter 2

Processes, Distributions,
and Independence

Random elements and processes; distributions and expectation;
independence; zero—one laws; Borel-Cantelli lemma; Bernoulli
sequences and existence; moments and continuity of paths

Armed with the basic notions and results of measure theory from the previ-
ous chapter, we may now embark on our study of probability theory itself.
The dual purpose of this chapter is to introduce the basic terminology and
notation and to prove some fundamental results, many of which are used
throughout the remainder of this book.

In modern probability theory it is customary to relate all objects of study
to a basic probability space (2, .4, P), which is nothing more than a normal-
ized measure space. Random variables may then be defined as measurable
functions £ on €2, and their expected values as the integrals E{ = [£&dP.
Furthermore, independence between random quantities reduces to a kind of
orthogonality between the induced sub-o-fields. It should be noted, how-
ever, that the reference space (2 is introduced only for technical convenience,
to provide a consistent mathematical framework. Indeed, the actual choice
of Q plays no role, and the interest focuses instead on the various induced
distributions P o £71.

The notion of independence is fundamental for all areas of probability
theory. Despite its simplicity, it has some truly remarkable consequences. A
particularly striking result is Kolmogorov’s zero—one law, which states that
every tail event associated with a sequence of independent random elements
has probability zero or one. As a consequence, any random variable that
depends only on the “tail” of the sequence must be a.s. constant. This result
and the related Hewitt—Savage zero—one law convey much of the flavor of
modern probability: Although the individual elements of a random sequence
are erratic and unpredictable, the long-term behavior may often conform to
deterministic laws and patterns. Our main objective is to uncover the latter.
Here the classical Borel-Cantelli lemma is a useful tool, among others.

To justify our study, we need to ensure the existence of the random ob-
jects under discussion. For most purposes, it suffices to use the Lebesgue unit
interval ([0, 1], B, \) as the basic probability space. In this chapter the exis-
tence will be proved only for independent random variables with prescribed

22



2. Processes, Distributions, and Independence 23

distributions; we postpone the more general discussion until Chapter 5. As
a key step, we use the binary expansion of real numbers to construct a so-
called Bernoulli sequence, consisting of independent random digits 0 or 1
with probabilities 1 — p and p, respectively. Such sequences may be regarded
as discrete-time counterparts of the fundamental Poisson process, to be in-
troduced and studied in Chapter 10.

The distribution of a random process X is determined by the finite-
dimensional distributions, and those are not affected if we change each value
X; on a null set. It is then natural to look for versions of X with suitable
regularity properties. As another striking result, we shall provide a moment
condition that ensures the existence of a continuous modification of the pro-
cess. Regularizations of various kinds are important throughout modern
probability theory, as they may enable us to deal with events depending on
the values of a process at uncountably many times.

To begin our systematic exposition of the theory, we may fix an arbi-
trary probability space (2, A, P), where P, the probability measure, has total
mass 1. In the probabilistic context the sets A € A are called events, and
PA = P(A) is called the probability of A. In addition to results valid for all
measures, there are properties that depend on the boundedness or normal-
ization of P, such as the relation PA¢ =1 — PA and the fact that A, | A
implies PA,, — PA.

Some infinite set operations have special probabilistic significance. Thus,
given any sequence of events A;, Ay, ... € A, we may be interested in the
sets {4, i.0.}, where A, happens infinitely often, and {A, ult.}, where A,
happens ultimately (i.e., for all but finitely many n). Those occurrences are
events in their own right, expressible in terms of the A,, as

{Anio} = {3 14, =00} =, Uy, A (1)
{Anult} = {3 1ae < oo} =U, Mo, A (2)

From here on, we are omitting the argument w from our notation when there

is no risk for confusion. For example, the expression {3, 14, = oo} is used

as a convenient shorthand form of the unwieldy {w € ©; 3, 14, (w) = o0}
The indicator functions of the events in (1) and (2) may be expressed as

1{A, i.0.} =limsuplga,, 1{A, ult.} = liminfly,,
n—oo n—oo

where, for typographical convenience, we write 1{-} instead of 1y.y. Applying
Fatou’s lemma to the functions 1,4, and 14¢, we get

P{A, i.0.} > limsup PA,, P{A, ult.} < lirginf PA,.
n—o0 n—0o

Using the continuity and subadditivity of P, we further see from (1) that

P{A,io} = nlLI&PUanAk < lim ZanPAk'
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If 3, PA, < 0o, we get zero on the right, and it follows that P{A, i.0.} =
0. The resulting implication constitutes the easy part of the Borel-Cantelli
lemma, to be reconsidered in Theorem 2.18.

Any measurable mapping £ of {2 into some measurable space (5,8) is
called a random element in S. If B € S, then {¢ € B} = (7'B € A, and we
may consider the associated probabilities

P{¢€B}=P('B)=(Pot™)B, BEeS.

The set function Po ¢~ is again a probability measure, defined on the range
space S and called the (probability) distribution of . We shall also use
the term distribution as synonomous to probability measure, even when no
generating random element has been introduced.

Random elements are of interest in a wide variety of spaces. A random
element in S is called a random wvariable when S = R, a random wvector
when S = R? a random sequence when S = R*, a random or stochastic
process when S is a function space, and a random measure or set when S
is a class of measures or sets, respectively. A metric or topological space
S will be endowed with its Borel o-field B(S) unless a o-field is otherwise
specified. For any separable metric space S, it is clear from Lemma 1.2 that
&= (&,&,...) is arandom element in S iff &, &5, ... are random elements
in S.

If (S,8) is a measurable space, then any subset A C S becomes a mea-
surable space in its own right when endowed with the o-field ANS = {ANB;
B € S8}. By Lemma 1.6 we note in particular that if S is a metric space with
Borel o-field S, then AN S is the Borel o-field in A. Any random element in
(A, ANS) may clearly be regarded, alternatively, as a random element in S.
Conversely, if £ is a random element in S such that £ € A a.s. (almost surely
or with probability 1) for some A € S, then £ = 7 a.s. for some random
element 7 in A.

Fixing a measurable space (S,S) and an abstract index set T, we shall
write ST for the class of functions f: T'— S, and let ST denote the o-field in
ST generated by all evaluation maps 7;: ST — S, t € T, given by 7, f = f(t).
If X:Q— U c ST, then clearly X, = m, 0 X maps  into S. Thus, X may
also be regarded as a function X (t,w) = X;(w) from T x Q to S.

Lemma 2.1 (measurability) Fiz a measurable space (S,S), an index set T,
and a subset U C ST. Then a function X : Q — U is U N ST -measurable iff
X, : Q — S is S-measurable for everyt € T.

Proof: Since X is U-valued, the U N ST-measurability is equivalent to
measurability with respect to ST. The result now follows by Lemma 1.4
from the fact that S” is generated by the mappings ;. o

A mapping X with the properties in Lemma 2.1 is called an S-valued
(random) process on T with paths in U. By the lemma it is equivalent to
regard X as a collection of random elements X; in the state space S.
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For any random elements & and 7 in a common measurable space, the
equality & < n means that ¢ and n have the same distribution, or Po ¢~ =
Pon™l. If X is a random process on some index set 7', the associated
finite-dimensional distributions are given by

,U'tl 11111 tn:PO(Xt17--~7th)7la tl,...,tn€T7 TLGN

The following result shows that the distribution of a process is determined
by the set of finite-dimensional distributions.

Proposition 2.2 (finite-dimensional distributions) Fiz any S, T, and U as
i Lemma 2.1, and let X and Y be processes on T with paths in U. Then

XLy i
(Xp o X)L (Y., V), t,....t,eT, neN. (3)

Proof: Assume (3). Let D denote the class of sets A € ST with P{X € A}
= P{Y € A}, and let C consist of all sets

A={fesS" (fi,....f,)E€B}, t,...,t, €T, B€S", neN.

Then C is a m-system and D a A-system, and furthermore C C D by hypoth-
esis. Hence, ST = ¢(C) C D by Theorem 1.1, which means that X £Y. O

For any random vector £ = (&,...,&;) in RY we define the associated
distribution function F by

F(zy,...,x2q) = Pﬂkgd{fk <}, x1,...,2q4 €R.
The next result shows that F' determines the distribution of &.

Lemma 2.3 (distribution functions) Let & and 1 be random vectors in R?
with distribution functions F' and G. Then & & niff F=G.

Proof: Use Theorem 1.1. O

The expected value, expectation, or mean of a random variable £ is defined
as

E&zLﬁMEiAMPo{UMm (4)

whenever either integral exists. The last equality then holds by Lemma
1.22. By the same result we note that, for any random element £ in some
measurable space S and for an arbitrary measurable function f: S — R,

| f©ar= [ fs)(Pogds)
LatPo(fo8) ) d), 5)

Ef(§)
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provided that at least one of the three integrals exists. Integrals over a
measurable subset A C Q are often denoted by

Bl Al = B(§la) = [ €aP. Ac A

For any random variable £ and constant p > 0, the integral E[¢[? = [[£][?
is called the pth absolute moment of £&. By Holder’s inequality (or by Jensen’s
inequality in Lemma 2.5) we have ||£]|, < [|€]|, for p < ¢, so the corresponding
LP-spaces are nonincreasing in p. If £ € LP and either p € N or ¢ > 0, we
may further define the pth moment of £ as E&P.

The following result gives a useful relationship between moments and tail
probabilities.

Lemma 2.4 (moments and tails) For any random variable £ > 0,
B — p/ P{¢> 7 tdt — p/ P{e> )" dt, p>0.
0 0

Proof: By elementary calculus and Fubini’s theorem,

Ber = E/ 1{e? > s}ds = E/ 1{e > s1/7}ds
0 0
= pE /OO e >t tdt = p/w P{¢ >t} dt.
0 0
The proof of the second expression is similar. ]

A random vector £ = (&,...,&4) or process X = (X;) is said to be
integrable if integrability holds for every component & or value X, in which
case we may write B{ = (F&,...,E&) or EX = (EX;). Recall that a
function f:R? — R is said to be convez if

flpz+ (1 =p)y) <pf(x)+(1-p)f(y), z.yeR) pel0,1]. (6)

The relation may be written as f(E€) < Ef(£), where £ is a random vector
in R with P{¢ = 2} = 1 — P{¢ = y} = p. The following extension to
arbitrary integrable random vectors is known as Jensen’s inequality.

Lemma 2.5 (convex maps, Héolder, Jensen) Let & be an integrable random
vector in R?, and fix any convex function f:R? — R. Then

Ef(§) = f(EY).

Proof: By a version of the Hahn—Banach theorem, the convexity condition

(6) is equivalent to the existence for every s € R? of a supporting affine

function hy(z) = ax + b with f > hy and f(s) = hy(s). In particular, we get
for s = F¥¢,

Ef(§) = Ehy(§) = hs(EE) = f(EE). =
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The covariance of two random variables &, € L? is given by

cov(§,n) = E(§ — E§)(n — En) = E¢n — E¢ - En.

It is clearly bilinear, in the sense that

cov {ngm%{j, Zkgnbkﬁk} = ngmzkgajbkco"(ﬁw Mk)-

We may further define the variance of a random variable ¢ € L? by

var(€) = cov(§,§) = B(§ — B¢)* = B¢ — (E§)?,

and we note that, by the Cauchy-Buniakovsky inequality,

[cov(€,m)] < {var(¢) var(n)}/*.

Two random variables £ and 7 are said to be uncorrelated if cov(§,n) = 0.

For any collection of random variables & € L2, t € T, we note that
the associated covariance function ps; = cov(&s, &), s,t € T, is nonnegative
definite, in the sense that 3°;; a;a;py, ¢, > 0 for any n € N, t4,...¢, € T, and
ai,...,a, € R. This is clear if we write

Ziyjaiajpti,tj = Zivjaiajcov(&i, &,) = var {Zﬂi@i} > 0.

The events A, € A, t € T, are said to be (mutually) independent if, for
any distinct indices t1,...,t, € T,

The families C; C A, t € T, are said to be independent if independence holds
between the events A; for arbitrary A; € C;, t € T. Finally, the random
elements &, t € T, are said to be independent if independence holds between
the generated o-fields o(&), t € T. Pairwise independence between two
objects A and B, £ and 7, or B and C is often denoted by ALLB, £1ln, or
B1LC, respectively.

The following result is often useful to prove extensions of the indepen-
dence property.

Lemma 2.6 (extension) If the w-systems Cy, t € T, are independent, then
so are the o-fields Fy = o(Cy), t € T.

Proof: We may clearly assume that C, # () for all . Fix any distinct
indices ti,...,t, € T, and note that (7) holds for arbitrary A;, € C;,, k =
1,...,n. Keeping A,,, ..., A, fixed, we define D as the class of sets 4;, € A
satisfying (7). Then D is a A-system containing C;,, and so D D o(Cy,) = F,
by Theorem 1.1. Thus, (7) holds for arbitrary A;, € Fy, and Ay, € Gy, k =
2,...,n. Proceeding recursively in n steps, we obtain the desired extension
to arbitrary A4, € F,, k=1,...,n. a
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As an immediate consequence, we obtain the following basic grouping
property. Here and in the sequel we shall often write F V G = o{F,G} and
Fs =Vies Fe = o{ Fi; t € S}

Corollary 2.7 (grouping) Let F;, t € T, be independent o-fields, and con-
sider a disjoint partition T of T'. Then the o-fields Fs = Vyes Fi, S € T,
are again independent.

Proof: For each S € T, let Cs denote the class of all finite intersections
of sets in U;cg Fi. Then the classes Cg are independent m-systems, and by
Lemma 2.6 the independence extends to the generated o-fields Fg. O

Though independence between more than two o-fields is clearly stronger
than pairwise independence, we shall see how the full independence may be
reduced to the pairwise notion in various ways. Given any set T, a class
T c 27 is said to be separating if, for any s # ¢ in T, there exists some
S € T such that exactly one of the elements s and ¢ lies in S.

Lemma 2.8 (pairwise independence)
(i) The o-fields Fy, Fs, ... are independent iff \/y<,, Fi 1L Fryr for all n.

(ii) The o-fields Fy, t € T, are independent iff Fs L Fse for all sets S in
some separating class T C 27.

Proof: The necessity of the two conditions follows from Corollary 2.7. As
for the sufficiency, we shall consider only part (ii), the proof for (i) being
similar. Under the stated condition, we need to show for any finite subset
S C T that the o-fields F;, s € S, are independent. Let |S| denote the
cardinality of S, and assume the statement to be true for |S| < n. Proceeding
to the case when |S| = n+ 1, we may choose U € T such that S’ = SNU
and S” = S\ U are nonempty. Since Fg Ll Fgr, we get for any sets A, € F,

s€S,
PﬂseSAs = (P r-LGS’AS> (P mseS”As) = HSESPAS’

where the last relation follows from the induction hypothesis. O

A o-field F is said to be P-trivial if PA =0 or 1 for every A € F. We
further say that a random element is a.s. degenerate if its distribution is a
degenerate probability measure.

Lemma 2.9 (triviality and degeneracy) A o-field F is P-trivial iff F LLF.
In that case, any F-measurable random element & taking values in a separable
metric space is a.s. degenerate.

Proof: 1f F1LF, then for any A € F we have PA = P(AN A) = (PA)?,
and so PA = 0 or 1. Conversely, assume that F is P-trivial. Then for any
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two sets A, B € F we have P(ANB) = PAAPB = PA - PB, which means
that FLULF.

Now assume that F is P-trivial, and let ¢ be as stated. For each n we may
partition S into countably many disjoint Borel sets B,,; of diameter < n™!.
Since P{¢ € B,;} = 0 or 1, we have £ € B,; a.s. for exactly one j, say for
J = jn. Hence, £ € N, B, ;, a.s. The latter set has diameter 0, so it consists

of exactly one point s, and we get £ = s a.s. ]

The next result gives the basic relation between independence and prod-
uct measures.

Lemma 2.10 (product measures) Let &,...,&, be random elements with
distributions fiy, . .., [t in some measurable spaces Sy, ...,S,. Then the &
are independent iff € = (&1,...,&,) has distribution pn ® -+ ® py.

Proof: Assuming the independence, we get for any measurable product
set B= By x---x B,

Pe e BY = [] P{& € Bi} = [1 By = @ i B.

k<n k<n k<n

This extends by Theorem 1.1 to arbitrary sets in the product o-field. O

In conjunction with Fubini’s theorem, the last result leads to a useful
method of computing expected values.

Lemma 2.11 (conditioning) Let & and n be independent random elements
in some measurable spaces S and T, and let the function f: S xT — R be
measurable with E(E|f(s,1)|)s=e < 00. Then Ef(&,n) = E(Ef(s,1))s=-

Proof: Let p and v denote the distributions of £ and 7, respectively.
Assuming that f > 0 and writing g(s) = Ef(s,n), we get, by Lemma 1.22
and Fubini’s theorem,

Bf€n) = [ fs0)(n®v)(dsdr
= [utas) [ fis.tpwiat) = [ gls)u(ds) = Eg(e).

For general f, this applies to the function |f|, and so E|f(£,n)| < co. The
desired relation then follows as before. a

In particular, for any independent random variables &1, ..., &,,

EHkﬁk = HkEflm var Zkfk = Zkvarfk,

whenever the expressions on the right exist.

If £ and n are random elements in a measurable group G, then the product
&n is again a random element in G. The following result gives the connection
between independence and the convolutions in Lemma 1.28.
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Corollary 2.12 (convolution) Let & and n be independent random elements
with distributions p and v, respectively, in some measurable group G. Then
the product £n has distribution p* v.

Proof: For any measurable set B C G, we get by Lemma 2.10 and the
definition of convolution,

P{éne By = (nev){(zr,y) € G* xy € By = (u*v)B. 0

Given any sequence of o-fields Fj, Fs, ..., we may introduce the associ-
ated tail o-field

T= ﬂn \/k>nfk = ﬂno{fk; k> n}.

The following remarkable result shows that 7T is trivial whenever the F,, are
independent. An extension appears in Corollary 6.25.

Theorem 2.13 (zero—one law, Kolmogorov) Let Fi,Fs,... be independent
o-fields. Then the tail o-field T = N, Visn Fr is P-trivial.

Proof: For each n € N, define 7, = V>, Fk, and note that Fy,..., F,, Tn
are independent by Corollary 2.7. Hence, so are the o-fields F, ..., Fn, T,
and then also Fy, Fa, ..., 7. By the same theorem we obtain 7oL 7, and so
T1LT. Thus, T is P-trivial by Lemma 2.9. O

We shall consider some simple illustrations of the last theorem.

Corollary 2.14 (sums and averages) Let &1,&s, ... be independent random
variables, and put S, = & + -+ + &,. Then each of the sequences (S,) and
(Sp/n) is either a.s. convergent or a.s. divergent. For the latter sequence,
the possible limit is a.s. degenerate.

Proof: Define F,, = o{&,}, n € N, and note that the associated tail o-
field 7 is P-trivial by Theorem 2.13. Since the sets of convergence of (.S,)
and (S, /n) are T-measurable by Lemma 1.9, the first assertion follows. The
second assertion is obtained from Lemma 2.9. m|

By a finite permutation of N we mean a bijective map p: N — N such
that p, = n for all but finitely many n. For any space S, a finite permutation
p of N induces a permutation 7}, on S* given by

Tp(s) =s0p=(Sp,Spps-.-); &=(51,82,...) € 5.
A set I C 5% is said to be symmetric (under finite permutations) if

—17 — 00, —
T,' I={s€ S sopecl}=1
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for every finite permutation p of N. If (S, S) is a measurable space, then the
symmetric sets I € §™ form a sub-o-field Z C 8%, called the permutation
invariant o-field in 5.

We may now state the other basic zero—one law, which refers to sequences
of random elements that are independent and identically distributed (abbre-
viated as i.i.d.).

Theorem 2.15 (zero—one law, Hewitt and Savage) Let & be an infinite se-
quence of i.i.d. random elements in some measurable space (S,S), and let
T denote the permutation invariant o-field in S®. Then the o-field E71T is
P-trivial.

Our proof is based on a simple approximation. Write

AAB = (A\ B)U(B\ A),
and note that

P(AAB) = P(A°AB®) = B|14 — 15, A,B€ A 8)

Lemma 2.16 (approzimation) Given any o-fields F; C Fo C --- and a set
A eV, F,, there exist some Ay, As, ... € U, Fn with P(AAA,) — 0.

Proof: Define C = U,, Fp, and let D denote the class of sets A € \V,, F,
with the stated property. Then C is a m-system and D a A-system containing
C. By Theorem 1.1 we get \,, F,, = o(C) C D. O

Proof of Theorem 2.15: Define i = Po &', put F, = 8" x S, and
note that Z € &* =V, F,. For any I € 7 there exist by Lemma 2.16
some sets B, € 8" such that the corresponding sets I, = B,, X S satisfy
w(IAL) — 0. Writing I,, = S x B, x 5%, it is clear from the symmetry of
pand I that pl, = pl, — pl and p(IAIL,) = p(IAIL,) — 0. Hence, by (8),

pUIA(L, N 1)) < p(IAL) + p(IATL) = 0.
Since moreover I,, 1.1, under W, we get
pl — (L, 0 1) = (ul) (pl,) — (ul)?
Thus, ul = (uI)?, and so Po & = pul =0or 1. O
The next result lists some typical applications. Say that a random vari-
able £ is symmetric if £ LA —£.

Corollary 2.17 (random walk) Let &1,&s, ... be i.i.d., nondegenerate ran-
dom wvariables, and put S, =& + ...+ &, Then

(i) P{S, € B io.} =0 orl for any B € B;

(ii) limsup, S, = 00 a.s. or —0 a.s.;

(iii) limsup,, (£S,) = oo a.s. if the &, are symmetric.
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Proof: Statement (i) is immediate from Theorem 2.15, since for any finite
permutation p of N we have x,, +---+x,, = 1+ -+ x, for all but finitely
many n. To prove (ii), conclude from Theorem 2.15 and Lemma 2.9 that
limsup,, S, = ¢ a.s. for some constant ¢ € R = [—o00, cc]. Hence, a.s.,

¢ = limsup,Sp+1 = limsup,(Sp41 — &) + & =c+ &.

If |c] < oo, we get & = 0 a.s., which contradicts the nondegeneracy of &;.
Thus, |¢| = oo. In case (iii), we have

¢ = limsup,S, > liminf,S, = —limsup,,(—S,) = —c,
and so —c¢ < ¢ € {00}, which implies ¢ = cc. O

Using a suitable zero—one law, one can often rather easily see that a
given event has probability zero or one. Determining which alternative ac-
tually occurs is often harder. The following classical result, known as the
Borel-Cantelli lemma, may then be helpful, especially when the events are
independent. An extension to the general case appears in Corollary 6.20.

Theorem 2.18 (Borel, Cantelli) Let Ay, Ay, ... € A. Then y, PA, < o
implies P{A,, i.0.} =0, and the two conditions are equivalent when the A,
are independent.

Here the first assertion was proved earlier as an application of Fatou’s
lemma. The use of expected values allows a more transparent argument.

Proof: If >, PA,, < oo, we get by monotone convergence

EznlAn = ZnEIAn = ZnPA” < 00.

Thus, 3, 14, < 0o a.s., which means that P{A, i.0.} = 0.
Next assume that the A, are independent and satisfy >, PA, = oo.
Noting that 1 — x < e~ for all z, we get

PUanAk = 1- PﬂanAz =1- HanPAz
= 1—- Han(l - PAk) Z 1-— Han exp(—PAk)
= 1—exp {—EanPAk} =1.

Hence, as n — oo,

1= PUkznAk 1P, UanAk = P{A, 10},

and so the probability on the right equals 1. O
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For many purposes it is sufficient to use the Lebesgque unit interval ([0, 1],
B[0,1],\) as the basic probability space. In particular, the following re-
sult ensures the existence on [0,1] of some independent random variables
&1,&, ... with arbitrarily prescribed distributions. The present statement is
only preliminary. Thus, we shall remove the independence assumption in
Theorem 5.14, prove an extension to arbitrary index sets in Theorem 5.16,
and eliminate the restriction on the spaces in Theorem 5.17.

Theorem 2.19 (existence, Borel) For any probability measures piy, fia, . . .
on some Borel spaces S1,Ss, ..., there exist some independent random ele-
ments &1,&a, ... on ([0,1], \) with distributions py, s, . . . .

In particular, there exists some probability measure g on S; X So X - - -
with
Mo(ﬂ'l,...,ﬂ'n)_l =1 -, nelN

For the proof we shall first consider two special cases of independent interest.

The random variables &;,&,, ... are said to form a Bernoulli sequence
with rate p if they are i.i.d. with P{§, = 1} = 1 — P{§, = 0} = p. We
shall further say that a random variable ¥ is uniformly distributed on [0, 1]
(written as U(0,1)) if P o 9! equals Lebesgue measure A on [0,1]. By
the binary expansion of a number x € [0,1], we mean the unique sequence
71,72, ... € {0,1} with sum 0 or oo such that z = 3, 7,27". The following
result provides a simple construction of a Bernoulli sequence on the Lebesgue
unit interval.

Lemma 2.20 (Bernoulli sequence) Let d be a random variable in [0, 1] with
binary expansion &1,&s,.... Then ¥ is U(0,1) iff the &, form a Bernoulli
sequence with rate 3.

Proof: If ¥ is U(0,1), then P;,{§ = k;} = 27" for all ky, ... k, €
{0,1}. Summing over ky, ..., k,—1, we get P{{, =k} =1 for k =0 and 1.
A similar calculation yields the asserted independence.

Now assume instead that the &, form a Bernoulli sequence with rate 1

L
Letting ¢ be U(0,1) with binary expansion £,&, ..., we get (&) 4 (fn)

Thus,
=3 &2 LY g2 =1 O

The next result shows how a single U(0, 1) random variable can be used
to generate a whole sequence.

Lemma 2.21 (duplication) There exist some measurable functions fi, fa,
. on [0,1] such that wheneverd is U(0,1), the random variables ¥, = fn(9)
are i.i.d. U(0,1).
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Proof: Introduce for every x € [0,1] the associated binary expansion
g1(x), g2(x), ..., and note that the g; are measurable. Rearrange the g into
a two-dimensional array h,;, n,j € N, and define

falx) =30 27 hyy(z), @ €[0,1], n€N.

By Lemma 2.20 the random variables gi(¢) form a Bernoulli sequence with
rate 1, and the same result shows that the variables 9,, = f,,(J) are U(0, 1).
The latter are further independent by Corollary 2.7. |

Finally, we need to construct a random element with arbitrary distribu-
tion from a given randomization variable. The required lemma will be stated
in a version for kernels, in view of our needs in Chapters 5, 7, and 12.

Lemma 2.22 (kernels and randomization) Let u be a probability kernel
from a measurable space S to a Borel space T. Then there exists some mea-
surable function f: S x [0,1] = T such that if ¥ is U(0,1), then f(s,9) has
distribution u(s,-) for every s € S.

Proof: We may assume that T is a Borel subset of [0, 1], in which case we
may easily reduce to the case when T' = [0, 1]. Define

f(s,t) =sup{x € [0,1]; u(s,[0,2]) <t}, s€S, tel0,1], (9)

and note that f is product measurable on S x [0, 1], since the set {(s,t);
w(s, [0,x]) <t} is measurable for each = by Lemma 1.12, and the supremum
in (9) can be restricted to rational x. If 9 is U(0, 1), we get

P{f(s’ﬁ) < {E} = P{ﬁ < /~L(57 [va])} = N(Sv [Ov‘r])v T € [07 1]7

and so f(s,¥) has distribution p(s,-) by Lemma 2.3. |

Proof of Theorem 2.19: By Lemma 2.22 there exist some measurable
functions f,: [0,1] — S, such that Ao f, ! = yu,. Letting ¥ be the identity
mapping on [0, 1] and choosing ¥, ¥, . .. as in Lemma 2.21, we note that the
functions &, = f,(¢,), n € N, have the desired joint distribution. |

Next we shall discuss the regularization and sample path properties of
random processes. Two processes X and Y on a common index set T are
said to be versions of each other if X; =Y, a.s. for each ¢ € T'. In the special
case when 7' = R? or R, we note that two continuous or right-continuous
versions X and Y of the same process are indistinguishable, in the sense that
X =Y as. In general, the latter notion is clearly stronger.

For any function f between two metric spaces (5, p) and (S5, p'), the
associated modulus of continuity w; = w(f,-) is given by

we(r) = sup{p'(fs, f1); s,t €S, p(s,t) <7}, 7 >0.
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Note that f is uniformly continuous iff w¢(r) — 0 as r — 0. Say that f is
Hélder continuous with exponent ¢ if wy(r) < r° as v — 0. The property
is said to hold locally if it is true on every bounded set. Here and in the
sequel, we are using the relation f < g between positive functions to mean
that f < cg for some constant ¢ < co.

A simple moment condition ensures the existence of a Hélder-continuous
version of a given process on R¢. Important applications are given in Theo-
rems 11.5, 18.3, and 19.4, and a related tightness criterion appears in Corol-
lary 14.9.

Theorem 2.23 (moments and continuity, Kolmogorov, Loéve, Chentsov)
Let X be a process on R with values in a complete metric space (S, p),
and assume for some a,b > 0 that

E{p(Xs, X))} <|s —t|"" st e R (10)

Then X has a continuous version, and for any c¢ € (0,b/a) the latter is a.s.
locally Holder continuous with exponent c.

Proof: Tt is clearly enough to consider the restriction of X to [0,1]%
Define

Dy ={(k1,..., kg)27"; ky,..., ko, €{1,...,2"}}, neN,
and let
& = max{p(Xs, Xy); s,t € Dy, |[s—t|=2""}, neN.

Since
H(s,t) € D2 |s—t|=2""} < a2, neN,

n’

we get by (10), for any ¢ € (0,b/a),

EZ(anén)a _ Z 2aan£Z < Z 2acn2dn(27n)d+b _ Z 2(acfb)n < o0.
n n n n
The sum on the left is then a.s. convergent, and therefore §, < 27" as.
Now any two points s,t € U,, D,, with |s — ¢| < 27™ can be connected by a
piecewise linear path involving, for each n > m, at most 2d steps between
nearest neighbors in D,,. Thus, for r € [27™71 27™],

sup {p(Xs,Xt); s,t € UnDn, |s —t] < 7”}

—Cn —Ccm C
S ol S0, 2T <2 <

which shows that X is a.s. Holder continuous on {J,, D,, with exponent c.

In particular, there exists a continuous process Y on [0,1]¢ that agrees
with X a.s. on U,, Dy, and it is easily seen that the Holder continuity of ¥ on
U, D, extends with the same exponent c to the entire cube [0, 1]¢. To show
that Y is a version of X, fix any ¢ € [0,1]¢, and choose t,ts,... € U, D,
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with ¢, — t. Then X; =Y, a.s. for each n. Furthermore, X, EiY X; by
(10) and Y;, — Y; a.s. by continuity, so X; = Y; a.s. m]

The next result shows how regularity of the paths may sometimes be
established by comparison with a regular process.

Lemma 2.24 (transfer of regularity) Let X LY be random processes on
some index set T, taking values in a separable metric space S, and assume
that Y has paths in some set U C ST that is Borel for the o-field U =
(B(S)TNU. Then even X has a version with paths in U.

Proof: For clarity we may write Y for the path of Y, regarded as a random
element in U. Then Y is Y-measurable, and by Lemma 1.13 there exists a
measurable mapping f: ST — U such that Y = f(Y) a.s. Define X = f(X),

and note that (X, X) = (Y,Y). Since the diagonal in S? is measurable, we
get in particular

P{X,=X,}=P{Y,=Y,} =1, teT. O

We conclude this chapter with a characterization of distribution functions
in RY, required in Chapter 4. For any vectors x = (x1,...,74) and y =
(y1,--,vaq), write z < gy for the componentwise inequality =), < yi, k =
1,...,d, and similarly for x < y. In particular, the distribution function F’
of a probability measure ; on R? is given by F(z) = pu{y; y < x}. Similarly,
let © V y denote the componentwise maximum. Put 1 = (1,...,1) and
00 = (00,...,00).

For any rectangular box (z,y] = {u; 2z < v < y} = (2, 1] X -+ X
(%4, ya)] we note that u(x,y] = X, s(u)F(u), where s(u) = (—1)? with p =
>k H{ur = yx}, and the summation extends over all corners u of (z,y]. Let
F(z,y] denote the stated sum and say that F' has nonnegative increments if
F(z,y] > 0 for all pairs 2 < y. Let us further say that F' is right-continuous
if F(z,) = F(z) as x, | « and proper if F(z) — 1 or 0 as ming xx — +o00,
respectively.

The following result characterizes distribution functions in terms of the
mentioned properties.

Theorem 2.25 (distribution functions) A function F: R? — [0,1] is the
distribution function of some probability measure r on R? iff it is right con-
tinuous and proper with nonnegative increments.

Proof: The set function F(x,y] is clearly finitely additive. Since F is
proper, we further have F(x,y] — 1 as ¢ — —oo and y — oo, that is, as
(z,y] T (—00,00) = R Hence, for every n € N there exists a probability
measure f,, on (27"Z)? with Z = {...,—1,0,1,...} such that

{27k = F(2"(k—1),27"k], ke€Z' neN.
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From the finite additivity of F'(z,y] we obtain
pn (27 (k — 1,K]) = pn(27™(k — 1,k]), k€Z' m<mninN. (11)

By successive division of the Lebesgue unit interval ([0, 1], B[0, 1], A), we
may construct some random vectors &1, &, ... with distributions pq, po, . ..
such that &, — 2™ < &, < &, for all m < n, which is possible because of
(11). In particular, & > & > --- > & — 1, and so &, converges pointwise to
some random vector £. Define gy = Ao &L,

To see that p has distribution function F', we note that since F' is proper

ME, <27k} = pp(—00,27"k] = F(27"k), keZ' neN
Since, moreover, &, | ¢ a.s., Fatou’s lemma yields for dyadic z € R?

Mé, <z ult.} <liminf, A{¢, < x}
F(z) = limsup,\{&, < x}
M& < zio} < Me <z},

ME <z}

IAINA

and so
Fl)<Me¢<z}<F(z+27"1), neN

Letting n — oo and using the right-continuity of F', we get AM{¢ < 2} = F(x),
which extends to any x € R? by the right-continuity of both sides. O

The last result has the following version for unbounded measures.

Corollary 2.26 (unbounded measures) Let the function F on R? be right-
continuous with nonnegative increments. Then there exists some measure [
on R? such that pu(x,y] = F(z,y] for all x <y in R9.

Proof: For each a € R? we may apply Theorem 2.25 to suitably normal-
ized versions of the function F,(z) = F(a,a V z], to obtain a measure y,

on [a,00) with p,(a,z] = F(a,z] for all x > a. In particular, u, = p, on

(a V b,00) for all a and b, and we note that y = sup, y, is a measure with

the desired property. O
Exercises

1. Give an example of two processes X and Y with different distributions
such that X; £ V; for all t.

2. Let X and Y be {0, 1}-valued processes on some index set 7. Show
that X £ Y iff P{X,, +---+X;, >0} = P{Y;, +---+Y, >0} foralln € N
and tq1,...,t, € T.
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3. Let F be a right-continuous function of bounded variation and with
F(—00) = 0. Show for any random variable £ that EF(§) = [ P{{ > t}
F(dt). (Hint: First take F' to be the distribution function of some random
variable n1L.¢, and use Lemma 2.11.)

4. Consider a random variable £ € L' and a strictly convex function f
on R. Show that Ef(§) = f(E¢) iff £ = F€ as.

5. Assume that § = 3°; a;&; and n = 32, bjn;, where the sums converge
in L. Show that cov({,n) = X, ; a;bjcov(&;, m;), where the double series on
the right is absolutely convergent.

6. Let the o-fields F;,, t € T, n € N, be nondecreasing in n for each ¢
and independent in ¢ for each n. Show that the independence extends to the
o-fields F, = V,, Fin-

7. For each t € T, let &,&L, €L, ... be random elements in some metric
space S; with & — &' a.s., and assume for each n € N that the random ele-
ments & are independent. Show that the independence extends to the limits
&'. (Hint: First show that El,cq fi(§) = [les Ffi(§) for any bounded,
continuous functions f; on Sy and for finite subsets S C T.)

8. Give an example of three events that are pairwise independent but
not independent.

9. Give an example of two random variables that are uncorrelated but
not independent.

10. Let &1,&, ... be i.i.d. random elements with distribution p in some
measurable space (5,S). Fix a set A € § with uA > 0, and put 7 =
inf{k; & € A}. Show that & has distribution u[-|A] = u(- N A)/uA.

11. Let &,&,, ... be independent random variables taking values in [0, 1].
Show that E'T], &, = I, E&.. In particular, show that P, A, = [I, PAx
for any independent events Ay, A, .. ..

12. Let &1,&, ... be arbitrary random variables. Show that there exist
some constants cy, co, ... > 0 such that the series Y, ¢,&, converges a.s.

13. Let &1,&, ... be random variables with £, — 0 a.s. Show that there
exists some measurable function f > 0 with -, f(&,) < oo a.s. Also show
that the conclusion fails if we only assume L'-convergence.

14. Give an example of events Aj, Ay, ... such that P{4, i.0.} = 0 but
>, PA, = .

15. Extend Lemma 2.20 to a correspondence between U(0,1) random
variables ¥ and Bernoulli sequences i, &, . .. with rate p € (0,1).

16. Give an elementary proof of Theorem 2.25 for d = 1. (Hint: Define
& = F71(¥9), where 9 is U(0, 1), and note that & has distribution function F'.)



Chapter 3

Random Sequences, Series,
and Averages

Convergence in probability and in LP; uniform integrability and
tightness; convergence in distribution; convergence of random se-
ries; strong laws of large numbers; Portmanteau theorem; contin-
uous mapping and approximation; coupling and measurability

The first goal of this chapter is to introduce and compare the basic modes of
convergence of random quantities. For random elements £ and &, &, ... in a
metric or topological space S, the most commonly used notions are those of
almost sure convergence, &, — £ a.s., and convergence in probability, &, 5 &,
corresponding to the general notions of convergence a.e. and in measure,
respectively. When S = R, we have the additional concept of LP-convergence,
familiar from Chapter 1. Those three notions are used throughout this book.
For a special purpose in Chapter 22, we shall also need the notion of weak
L'-convergence.

For our second main topic, we shall study the very different concept
of convergence in distribution, &, LN &, defined by the condition Ef(&,) —
Ef (&) for all bounded, continuous functions f on S. This is clearly equivalent
to weak convergence of the associated distributions p, = Po ¢! and u =
Po&™t written as p,, — g and defined by the condition p, f — pf for every
f as above. In this chapter we shall only establish the most basic results of
weak convergence theory, such as the “Portmanteau” theorem, the continuous
mapping and approximation theorems, and the Skorohod coupling. Our
development of the general theory continues in Chapters 4 and 14, and further
distributional limit theorems appear in Chapters 7, 8, 10, 12, 13, 17, and 20.

Our third main theme is to characterize the convergence of series > &
and averages n”°> <, §k, Where £, &, ... are independent random variables
and c is a positive constant. The two problems are related by the elementary
Kronecker lemma, and the main results are the basic three-series criterion
and the strong law of large numbers. The former result is extended in Chap-
ter 6 to the powerful martingale convergence theorem, whereas extensions
and refinements of the latter result are proved in Chapters 9 and 12. The
mentioned theorems are further related to certain weak convergence results
presented in Chapters 4 and 13.

Before beginning our systematic study of the various notions of conver-
gence, we shall establish a couple of elementary but useful inequalities.

39
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Lemma 3.1 (moments and tails, Bienaymé, Chebyshev, Paley and Zyg-
mund) Let & be an Ry -valued random variable with 0 < E€ < co. Then

2 (EE)?
+ E€2

=S |

(1—r) < P{>rEE < r>0. (1)

The second relation in (1) is often referred to as Chebyshev’s or Markov’s
inequality. Assuming that E¢? < oo, we get in particular the well-known
estimate

P{|¢ — E¢| > e} < e var(€), &> 0.

Proof of Lemma 3.1: We may clearly assume that £ = 1. The upper
bound then follows as we take expectations in the inequality r1{¢ > r} < €.
To get the lower bound, we note that for any r,t > 0

PUHES T > (E—r) 2t +r—&) =26(r +t) —r(2t +7) — £
Taking expected values, we get for 7 € (0,1)

P{E>r}>2(r+t) —r(2t+71) — EE > 2t(1 — 1) — EE.
Now choose t = E€2/(1 — 7). O

For random elements £ and &, o, . .. in a metric space (5, p), we say that
&n converges in probability to £ (written as &, =i ¢) if

Jim P{p(&n. &) > e} =0, €>0.

By Chebyshev’s inequality it is equivalent that E[p(&,,&) A 1] — 0. This
notion of convergence is related to the a.s. version as follows.

Lemma 3.2 (subsequence criterion) Let &, &1,&, ... be random elements in

a metric space (S,p). Then &, Eit & iff every subsequence N' C N has a
further subsequence N" C N’ such that &, — £ a.s. along N". In particular,

& — € a.s. implies &, Eil .

In particular, the notion of convergence in probability depends only on
the topology and is independent of the choice of metric p.

Proof: Assume that &, EiY ¢, and fix an arbitrary subsequence N’ C N.
We may then choose a further subsequence N” C N’ such that

E Y A{p(En ) A1} = 3 Elp(&a,€) Al < o0,

neN" nenN”

where the equality holds by monotone convergence. The series on the left
then converges a.s., which implies &, — £ a.s. along N”.
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Now assume instead the stated condition. If &, 54 &, there exists some
e > 0 such that E[p(&,, &) A 1] > € along a subsequence N’ C N. By hypoth-
esis, &, — £ a.s. along a further subsequence N” C N’, and by dominated
convergence we get E[p(&,,&) A 1] — 0 along N”, a contradiction. O

For a first application, we shall see how convergence in probability is
preserved by continuous mappings.

Lemma 3.3 (continuous mappings) Fix two metric spaces S and T. Let
£,€1,&, ... be random elements in S with &, 5 &, and consider a measurable
mapping f: S — T such that f is a.s. continuous at §. Then f(&,) Ei8 f(&).

Proof: Fix any subsequence N’ C N. By Lemma 3.2 we have §, — &
a.s. along some further subsequence N” C N’, and by continuity we get

f(&) — f(&) a.s. along N”. Hence, f(&,) EiY f(&) by Lemma 3.2. O

Now consider for each k € N a metric space (S, px), and introduce the
product space S = XS, = S X Sy X - - - endowed with the product topology,
a convenient metrization of which is given by

p(l’,y) = Zk2ik{pk(xk>yk) A 1}> T,y € XkSk- (2)

If each Sy is separable, then B(S) = ®;, B(Sr) by Lemma 1.2, and so a
random element in S is simply a sequence of random elements in S, k € N.

Lemma 3.4 (random sequences) Fix any separable metric spaces Sy, Ss, .. .,
and let & = (&1,&,...) and & = (§1,&Y,...), n € N, be random elements in

X3Sy, Then ¢ 5 ¢ iff & B ¢ in Sy, for each k.
Proof: With p as in (2), we get for each n € N
Elp(€",€) A1) = Bple", &) = 3, 2 *Elpg(ef, &) A 1],

Thus, by dominated convergence E[p(§", &) A1] — 0 iff E[pr(&f, &) A1} — 0
for all k. O

Combining the last two lemmas, it is easily seen how convergence in
probability is preserved by the basic arithmetic operations.

Corollary 3.5 (elementary operations) Let &,&1,&a, ... and n,m,m9, ... be
random variables with &, Eit & and ny, Rt n. Then a&, + bn, Eil a& + bn for

all a,b € R, and &mn = €. Furthermore, &n/Mn EiY &/n whenever a.s. n # 0
and 1, # 0 for all n.
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Proof: By Lemma 3.4 we have (&,,n,) Eis (&,m) in R?, so the results for
linear combinations and products follow by Lemma 3.3. To prove the last as-
sertion, we may apply Lemma 3.3 to the function f: (z,y) — (z/y)1{y # 0},
which is clearly a.s. continuous at (£,7). |

Let us next examine the associated completeness properties. For any
random elements 1, &, . .. in a metric space (S, p), we say that (&,) is Cauchy

(convergent) in probability if p(&,,, &) £ 0 as m,n — 00, in the sense that
E[p(&m, &) AN 1] — 0.

Lemma 3.6 (completeness) Let &y, &, ... be random elements in some com-

plete metric space (S, p). Then (&) is Cauchy in probability or a.s. iff &, RS
or &, — & a.s., respectively, for some random element £ in S.

Proof: The a.s. case is immediate from Lemma 1.10. Assuming &, EiY &,
we get

Elp(&m, &) A1) < Elp(&m, §) A] + E[p(&n, §) A 1] =0,

which means that (&,) is Cauchy in probability.
Now assume instead the latter condition. Define

ny = inf {n > k; sup,s, Blp(§m, §n) A1) < 2"“} , keN.
The ny, are finite and satisfy

EY {p(Gnr&np ) A1 <D0 278 < o0,

and s0 Y25 p(&ny Enpyy) < 00 a.s. The sequence(§,, ) is then a.s. Cauchy and

converges a.s. toward some measurable limit £&. To see that &, =i &, write

Elp(&m, &) A1) < E[p(§m, &n) N1 4 Elp(&ny,, ) A1,

and note that the right-hand side tends to zero as m, k — oo, by the Cauchy
convergence of (§,) and dominated convergence. ]

Next consider any probability measures p and gy, o, . .. on some metric
space (S,p) with Borel o-field S, and say that u, converges weakly to p
(written as g, — p) if pnf — pf for every f € Cy(S), the class of bounded,
continuous functions f: .S — R. If £ and &,&,, ... are random elements in
S, we further say that &, converges in distribution to & (written as &, LN €) if
Po&; 1 B Pot™! that is, if Ef(&,) — Ef(€) for all f € Cy(S). Note that the
latter mode of convergence depends only on the distributions and that & and
the &, need not even be defined on the same probability space. To motivate
the definition, note that z,, — « in a metric space S iff f(z,) — f(z) for all
continuous functions f: S — R, and also that P o ¢! is determined by the
integrals Ff(€) for all f € Cy(S).

The following result gives a connection between convergence in probability
and in distribution.
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Lemma 3.7 (convergence in probability and in distribution) Let &, &1, &, ...

be random elements in some metric space (S, p). Then &, Eis & implies &, KN
&, and the two conditions are equivalent when & is a.s. constant.

Proof: Assume &, = ¢. For any f € Cy(S) we need to show that
Ef(&) — Ef(&). If the convergence fails, we may choose some subsequence
N’ C N such that inf,cn [Ef(&,) — Ef(€)] > 0. By Lemma 3.2 there ex-
ists a further subsequence N” C N’ such that &, — £ a.s. along N”. By
continuity and dominated convergence we get Ef(&,) — Ef(£) along N”, a
contradiction.

Conversely, assume that &, % s € S. Since p(z,s) A1 is a bounded and
continuous function of x, we get E[p(&,,s) A 1] = E[p(s,s) A 1] =0, and so
&n 5. O

A family of random vectors &, t € T, in R? is said to be tight if
lim sup P{|&| > r} = 0.
r—=00 4cp
For sequences (&,,) the condition is clearly equivalent to
lim limsup P{|{,| > r} =0, (3)
T pooo

which is often easier to verify. Tightness plays an important role for the
compactness methods developed in Chapters 4 and 14. For the moment we
shall note only the following simple connection with weak convergence.

Lemma 3.8 (weak convergence and tightness) Let & &1,&,... be random
vectors in R¢ satisfying &, N &. Then (&,) is tight.

Proof: Fix any r > 0, and define f(z) = (1 — (r — |#])+)+. Then
limsup P{I&,| > r} < lim Ef(&,) = EF(€) < P{¢l >~ 1).
Here the right-hand side tends to 0 as r — oo, and (3) follows. O

We may further note the following simple relationship between tightness
and convergence in probability.

Lemma 3.9 (tightness and convergence in probability) Let &,&o, . .. be ran-
dom wvectors in R, Then (&,) is tight iff c.&, L0 for any constants
c1,Co,... >0 with ¢, — 0.

Proof: Assume (&,) to be tight, and let ¢,, — 0. Fixing any r,¢ > 0, and
noting that c¢,r < ¢ for all but finitely many n € N, we get

limsup P{|c,&,| > ¢} < limsup P{|¢,| > r}.
n—oo n—oo
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Here the right-hand side tends to 0 as r — oo, so P{|c,&,| > ¢} — 0.

Since ¢ was arbitrary, we get ¢,&, £ 0. If instead (&) is not tight, we may
choose a subsequence (ng) C N such that inf, P{|¢,, | > k} > 0. Letting
¢, = sup{k™%; ny > n}, we note that ¢, — 0 and yet P{|c,,&n,| > 1} # 0.
Thus, the stated condition fails. O

We turn to a related notion for expected values. A family of random
variables &, t € T', is said to be uniformly integrable if

lim sup E[|&]; [&] > 7] = 0. 4)
teT
For sequences (&,) in L', this is clearly equivalent to
lim limsup F[|&,]; &, > 7] = 0. (5)
T—=00  n—co

Condition (4) holds in particular if the & are LP-bounded for some p > 1, in
the sense that sup, E|&|P < co. To see this, it suffices to write

E[&l]; |&] > ] < r PHE|GP, rp > 0.

The next result gives a useful characterization of uniform integrability.
For motivation we note that if £ is an integrable random variable, then
EJl¢]; A] — 0 as PA — 0, by Lemma 3.2 and dominated convergence. The
latter condition means that sup e 4 pac. E[|¢]; A] = 0 as e — 0.

Lemma 3.10 (uniform integrability) The random variables &, t € T, are
uniformly integrable iff sup, F|&| < oo and

Aim jlelgEH&l; Al =0. (6)
Proof: Assume the & to be uniformly integrable, and write

E[|&]; Al < rPA+ E[|&); |&) > ], r>0.

Here (6) follows as we let PA — 0 and then r — oco. To get the boundedness
in L', it suffices to take A = Q and choose r > 0 large enough.

Conversely, let the & be L'-bounded and satisfy (6). By Chebyshev’s
inequality we get as r — oo

sup, P{|&| > r} < r~'sup, E|&] — 0,

and so (4) follows from (6) with A = {|&] > r}. O

The relevance of uniform integrability for the convergence of moments
is clear from the following result, which also contains a weak convergence
version of Fatou’s lemma.
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Lemma 3.11 (convergence of means) Let &,&1,&s, ... be Ry -valued random

variables with &, N &, Then EE < liminf, EE,, and furthermore EE, —
E¢ < oo iff (5) holds.

Proof: For any r > 0 the function z — = A r is bounded and continuous
on R,;. Thus,

liminf £¢, > lim E(§, A1) = E(§ Ar),

and the first assertion follows as we let 7 — co. Next assume (5), and note
in particular that F¢ < liminf, F¢, < co. For any r > 0 we get

‘Efn - Ef‘ S |Efn - E(gn /\7")| + |E(En /\T) - E(f/\?")|
+|E(EAT) — E¥|.

Letting n — oo and then r — oo, we obtain E¢, — F£. Now assume instead
that F¢, — EF£ < co. Keeping r > 0 fixed, we get as n — oo

E[fm fn > T] S E[fn _fn/\(r_gn)Jr] — E[§—§A(r—§)+].

Since z A (r — x)4 T @ as r — o0, the right-hand side tends to zero by domi-
nated convergence, and (5) follows. O

We may now examine the relationship between convergence in LP and in
probability.

Proposition 3.12 (LP-convergence) Fiz any p > 0, and let £,&1,&s,... €
L? with &, EiY &. Then these conditions are equivalent:

(i) & — & in LP;
(1) (1&nlly = 1€l

(iil) the variables |£,|P, n € N, are uniformly integrable.

Conversely, (1) implies &, EiY £.

Proof: First assume that &, — & in LP. Then ||&,|l, — ||€]l, by Lemma
1.30, and by Lemma 3.1 we have, for any ¢ > 0,

P{lgn =&l > e} = P{[&n — &P > e <76 — €I} — 0.

Thus, &, Rl £. For the remainder of the proof we may assume that &, Eil (o In
particular, |£,[? % |¢|P by Lemmas 3.3 and 3.7, so (ii) and (iii) are equivalent
by Lemma 3.11. Next assume (ii). If (i) fails, there exists some subsequence
N’ C N with inf,enr [|&, — €|, > 0. By Lemma 3.2 we may choose a further
subsequence N” C N’ such that &, — £ a.s. along N”. But then Lemma 1.32
yields ||&, — &||, — 0 along N”, a contradiction. Thus, (ii) implies (i), so all
three conditions are equivalent. O
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We shall briefly consider yet another notion of convergence of random
variables. Assuming &,&,... € L? for some p € [1,00), we say that &, — ¢
weakly in LP if EE,n — E&n for every nn € L4, where p~! 4+ ¢! = 1. Taking
n = |E[P"sgn &, we get [nll, = I€]57", so by Hélder’s inequality

€l = Eén = lim E€n < [|¢]7~" lim inf [|€,]],.

n—oo n—oo

which shows that [|£]|, < liminf, ||&,]|,-

Now recall the well-known fact that any L?-bounded sequence has a sub-
sequence that converges weakly in L?. The following related criterion for
weak compactness in L' will be needed in Chapter 22.

Lemma 3.13 (weak L'-compactness, Dunford) Every uniformly integrable
sequence of random variables has a subsequence that converges weakly in L'.

Proof: Let (£,) be uniformly integrable. Define ¢¢ = ¢,1{|¢,| < k}, and
note that (¢%) is L?-bounded in n for each k. By the compactness in L? and
a diagonal argument, there exist a subsequence N’ C N and some random
variables 71, 7s, ... such that ¥ — n, holds weakly in L? and then also in
L', as n — oo along N’ for fixed k.

Now ||ne — ]|y < liminf, ||€F — &)1, and by uniform integrability the
right-hand side tends to zero as k,l — oco. Thus, the sequence (n;) is Cauchy
in L', so it converges in L' toward some ¢. By approximation it follows easily
that &, — & weakly in L! along N'. O

We shall now derive criteria for the convergence of random series, begin-
ning with an important special case.

Proposition 3.14 (series with positive terms) Let &,&s, ... be independent
R, -valued random variables. Then Y, &, < 00 a.s. iff >, Elén N 1] < 0.

Proof: Assuming the stated condition, we get EY,(§, A1) < oo by
Fubini’s theorem, so Y, (&, A1) < oo a.s. In particular, >, 1{&, > 1} < o0
a.s., so the series 3, (&, A1) and X, &, differ by at most finitely many terms,
and we get >, &, < 00 a.s.

Conversely, assume that Y, &, < 0o a.s. Then also 3°,,(§, A 1) < 00 a.s.,
so we may assume that &, < 1 for all n. Noting that 1 —z <e™* <1 —azx
for z € [0,1] where a =1 — ¢!, we get

0 < Bexp{-Y &}=][ Ee*
< Hn(l —aFE¢,) < Hne_“Eg” = exp {—aZnEEn} ,
and so Y., F&, < oc. a
To handle more general series, we need the following strengthened ver-

sion of the Bienaymé-Chebyshev inequality. A further extension appears as
Proposition 6.15.
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Lemma 3.15 (maximum inequality, Kolmogorov) Let&y,&s, ... be indepen-
dent random variables with mean zero, and put S, =& + -+ &,. Then

P{sup,,|Su| > r} < r_QZnngw r>0.

Proof: We may assume that 3, E€2 < oo. Writing 7 = inf{n; |S,| > r}
and noting that Sp1{r = k}1L(S, — Sk) for k < n, we get

Zlcgn'Egl3

ES? > ZK"E[S?I; T =k

e LE[SE ™ = K]+ 2B[Sk(Sn — Sk); 7 = K}
> EISE T =k 2 P{r <n},

Y

As n — oo, we obtain

ZkEf,f > 7’2P{7' < oo} = TQP{supk|Sk| >} O

The last result leads easily to the following sufficient condition for the
a.s. convergence of random series with independent terms. Conditions that
are both necessary and sufficient are given in Theorem 3.18.

Lemma 3.16 (variance criterion for series, Khinchin and Kolmogorov) Let
&1,&, ... be independent random wvariables with mean 0 and Y, FE2 < oo.
Then >, &, converges a.s.

Proof: Write S,, =& + -+ + &,. By Lemma 3.15 we get for any £ > 0,

P{supys, Sy — Skl > £} < eY o EG

Hence, supy,.,, [Sn—Sk| £ 0asn — oo, and by Lemma 3.2 we get SUDj>p, | Sn—
Skl =0 a.s. along a subsequence. Since the last supremum is nonincreasing
in n, the a.s. convergence extends to the entire sequence, which means that
(S,) is a.s. Cauchy convergent. Thus, S,, converges a.s. by Lemma 3.6. O

The next result gives the basic connection between series with positive
and symmetric terms. By &, £ o we mean that P{&, > r} — 1 for every
r > 0.

Theorem 3.17 (positive and symmetric terms) Let &1,&s, ... be indepen-
dent, symmetric random variables. Then these conditions are equivalent:

(i) X, & converges a.s.;
(i) ¥, & < 0 a.s.;
(iii) Z,LE(@% A1) < oo.

If the conditions fail, then | Yy, &l £ .
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Proof: Conditions (ii) and (iii) are equivalent by Proposition 3.14. Next
assume (iii), and conclude from Lemma 3.16 that >, £,1{|&,| < 1} converges
a.s. From (iii) and Fubini’s theorem we further note that 3, 1{|&,| > 1} < o0
a.s., so the series 3, £,1{|&,| < 1} and 3, &, differ by at most finitely many
terms, and even the latter series must converge a.s. Thus, (iil) implies (i).

We shall complete the proof by showing that if (ii) fails, so that 3>, &2 =
oo a.s. by Kolmogorov’s zero—one law, then |S,,]| = oo, where S, = Y.<, &k
Since the latter condition implies |S,| — oo a.s. along some subsequence,
even (i) will fail, and so conditions (i) to (iii) are equivalent.

For this part of the proof, it is convenient to introduce an independent
sequence of i.i.d. random variables ¥, with P{¢,, = £1} = 1, and note that
the sequences (&,) and (¢,/€,|) have the same distribution. Letting 1 denote
the distribution of the sequence (|&,|), we get by Lemma 2.11

P{|S,| >r}= /P{’Zkgnﬁkxk‘ > r} p(dx), >0,

and by dominated convergence it is enough to show that the integrand on
the right tends to 0 for y-almost every x = (x1,29,...). Since 3, 22 = 00
a.e., this reduces the argument to the case of nonrandom |, = ¢,, n € N.

First assume that (¢,) is unbounded. For any r > 0 we may recursively
construct a subsequence (n;) C N such that ¢,, >r and ¢,, > 43, ¢y, for
each k. Then clearly P{> ;<) &, € I} < 27F for every interval I of length
2r. By convolution we get P{|S,| < r} < 27F for all n > ny, which shows
that P{|S,| <r} — 0.

Next assume that ¢, < ¢ < oo for all n. Choosing a > 0 so small that
cosz < e for |z < 1, we get for 0 < [t| < ¢

0 < EeitSn — H cos(teg) < H exp(—at2ci) = exp {—atQZkSnCi} — 0.

k<n k<n

Anticipating the elementary Lemma 4.1 of the next chapter, we again get
P{|S.] <r} — 0 for each r > 0. O

The problem of characterizing the convergence, a.s. or in distribution, of a
series of independent random variables is solved completely by the following
result. Here we write var[; A] = var(£14).

Theorem 3.18 (three-series criterion, Kolmogorov, Lévy) Let &,&,,... be
independent random variables. Then ", &, converges a.s. iff it converges in
distribution and also iff these conditions are fulfilled:

(i) $, P{l&] > 1} < o0;
(i) Yn Elén; €] < 1] converges;
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For the proof we need the following simple symmetrization inequalities.
Say that m is a median of the random variable £ if P{& > m} VvV P{{ < m}
< 1. A symmetrization of £ is defined as a random variable of the form
€=¢— ¢ with ¢1L¢ and ¢ £ ¢ For symmetrized versions of the random
variables &1, &, ..., we require the same properties for the whole sequences

(&) and (&)-

Lemma 3.19 (symmetrization) Let € be a symmetrization of a random
variable & with median m. Then

1P{lE —m| > r} < P{lg] > r} < 2P{l¢] > r/2}, r>0.
Proof: Assume & = & — £ as above, and write

{E—m>r, gigm}u{g—m< —r, & >m}
C{IEl >} C{lEl > r/2 U{[E| > r/2}. 0

We also need a simple centering lemma.

Lemma 3.20 (centering) Let the random variables &1, &, ... and constants
1, Co, . .. be such that both &, and &, + ¢, converge in distribution. Then even
Cn converges.

Proof: Assume that &, LN £ If ¢, — +oo along some subsequence
N’ C N, then clearly &, + ¢, 5 +eo along N’, which contradicts the tight-
ness of &, + ¢,. Thus, (¢,) must be bounded. Now assume that ¢, — a and
¢n — b along two subsequences Ny, No C N. Then &, + ¢, N &+ a along Ny
and &, + ¢, LN &+ balong Ny, s0 & +a LA &+ b. Tterating this relation, we
get £+ n(b — a) £ ¢ for arbitrary n € Z, which is impossible unless a = b.
Thus, all limit points of (c,) agree, and ¢, converges. O

Proof of Theorem 3.18: Assume conditions (i) through (iii), and define
& = &1{|&| < 1}. By (iil) and Lemma 3.16 the series 3, (&, — EE),) con-
verges a.s., 8o by (ii) the same thing is true for -, &,. Finally, P{¢, # &, i.0.}
= 0 by (i) and the Borel-Cantelli lemma, so 3, (&, —¢/,) has a.s. finitely many
nonzero terms. Hence, even Y, &, converges a.s.

Conversely, assume that -, &, converges in distribution. Then Lemma
3.19 shows that the sequence of symmetrized partial sums <, §~k is tight,
and so ), én converges a.s. by Theorem 3.17. In particular, én — 0 a.s. For
any £ > 0 we obtain ¥, P{|€,] > €} < oo by the Borel Cantelli lemma.
Hence, Y, P{|¢, — my,| > €} < oo by Lemma 3.19, where my,ma, ... are
medians of &,&,.... Using the Borel-Cantelli lemma again, we get &, —
m, — 0 a.s.

Now let ¢y, o, ... be arbitrary with m,, — ¢, — 0. Then even ¢, — ¢, — 0
a.s. Putting n, = &,1{|&, — cu| < 1}, we get a.s. &, = n, for all but finitely
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many n, and similarly for the symmetrized variables é,L and 7,. Thus, even
> . e converges a.s. Since the 7, are bounded and symmetric, Theorem 3.17
yields ¥, var(n,) = 3>, var(7,) < co. Thus, >, (n, — En,) converges a.s.
by Lemma 3.16, as does the series >, (&, — En,). Comparing with the distri-
butional convergence of ¥, &,, we conclude from Lemma 3.20 that Y, En,
converges. In particular, En, — 0 and 1, — En, — 0 a.s., so n, — 0 a.s.,
and then also ¢, — 0 a.s. Hence, m,, — 0, so we may take ¢, = 0 in the
previous argument, and conditions (i) to (iii) follow. O

A sequence of random variables 1, &, ... with partial sums 5, is said to
obey the strong law of large numbers if S, /n converges a.s. to a constant.
If a similar convergence holds in probability, one says that the weak law is
fulfilled. The following elementary proposition enables us to convert conver-
gence results for random series into laws of large numbers.

Lemma 3.21 (series and averages, Kronecker) If 3, n ‘a, converges for
some ay, as, ... € R and ¢ >0, then n™¢3 ., ar, — 0.

Proof: Put b, = n~‘a,, and assume that >, b, = b. By dominated
convergence as n — oo,

Zbk—n_”Zak = Z(l— (k/n)° bk—(‘Zbk/ ¢ dx

k<n k<n k<n k<n
1
- c/ g 3 bk%bc/ 2 Ly = b,
0 k<nzx
and the assertion follows since the first term on the left tends to b. O

The following simple result illustrates the method.

Corollary 3.22 (variance criterion for averages, Kolmogorov) Let&y, &, ...
be independent random variables with mean 0, such that 3, n"*FE&2 < oo
for some ¢ > 0. Then n™°Y <, & — 0 a.s.

Proof: The series Y., n=¢¢, converges a.s. by Lemma 3.16, and the asser-
tion follows by Lemma 3.21. m]

In particular, we note that if £, &, &, ... areii.d. with B¢ = 0 and F¢? <
00, then n7¢Y <, & — 0 a.s. for any ¢ > 1. The statement fails for ¢ = 1,
as may be seen By taking £ to be N(0,1). The best possible normalization is
given in Corollary 12.8. The next result characterizes the stated convergence
for arbitrary ¢ > 1. For ¢ = 1 we recognize the strong law of large numbers.

Corresponding criteria for the weak law are given in Theorem 4.16.
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Theorem 3.23 (strong laws of large numbers, Kolmogorov, Marcinkiewicz
and Zygmund) Let £ &1,&, ... be i.i.d. random variables, and fix any p €
(0,2). Then n= VP Y1, & converges a.s. iff E|¢[P < oo and either p < 1 or
EE=0. In that case the limit equals EE for p =1 and is otherwise 0.

Proof: Assume that E|£|P < oo and for p > 1 that even E{ = 0. Define
¢ = &,1{|¢€,| < n'/P}, and note that by Lemma 2.4

SPIE # 6} = S PP > n} < [T PLIEl > that = Ble < oo.

By the Borel-Cantelli lemma we get P{¢/, # &, i.0.} = 0, and so &, = &,
for all but finitely many n € N a.s. It is then equivalent to show that
n-l/p Yk<n &, — 0 as. By Lemma 3.21 it suffices to prove instead that
S.n YPE converges a.s.

For p < 1, this is clear if we write

EY o Pl = 3 nTVPE[E]; €] < ']
el 1e] < ¢

el /‘;t‘l/pdt] < El¢]? < .

N

If instead p > 1, it suffices by Theorem 3.18 to prove that ¥, n~'/PE¢/,
converges and 3, n~%Pvar(¢!) < co. Since B¢/, = —E[¢; |¢] > n'/P], we have
for the former series

S o PEG] < Y nTYPELE; (€] > 0t
< [TeeElE: el > 1 ar

El¢] / t7rdt) < E|¢P < oo.

As for the latter series, we get

> var(e) <3 nTPE(E)?
>2 B[ 1e) < n'7)
| rEL 6] < £rar
0

IN

52/H 2/ dt] < B¢ < oo.
51’

If p=1, then E¢, = E[¢; || < n] — 0 by dominated convergence. Thus,
n Y < B, — 0, and we may prove instead that n=' >, ., & — 0 a.s.,
where £” = ¢ — E¢.. By Lemma 3.21 and Theorem 3.18 it is then enough
to show that 3>, n™?var(¢],) < oo, which may be seen as before.
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Conversely, assume that n='/7S, = n=1/? > k<n &k converges a.s. Then

&n Sh (TL — 1)1/p Sn_1

nl/e — plp N g (n—1)1/»

— 0 a.s.,

and in particular P{|¢,|’? > n i.0.} = 0. Hence, by Lemma 2.4 and the
Borel-Cantelli lemma,

Bl = /OOO P{lel > thdt < 1+ 3 P{Ie]” > n} < .

n>1

For p > 1, the direct assertion yields n='/?(S, — nE¢) — 0 a.s., and so
n'~YPE¢ converges, which implies F¢ = 0. 0

For a simple application of the law of large numbers, consider an arbitrary
sequence of random variables &, &, ..., and define the associated empirical
distributions as the random probability measures fi, = n~' Y <, d,. The

corresponding empirical distribution functions F), are given by

Fo(z) = fin(—o00,2] = nflzkgnl{ﬁk <z}, zeR, neN

Proposition 3.24 (empirical distribution functions, Glivenko, Cantelli) Let

§1,&2, - .. be i.i.d. random variables with distribution function F and empirical
distribution functions Fy, Fy,.... Then
Jim sup |Fy(z) — F(z)| =0 a.s. (7)

Proof: By the law of large numbers we have F,(z) — F(z) a.s. for every
r € R. Now fix a finite partition —co = z1 <@y < -+ < T, = 00. By the
monotonicity of F' and F,

sup £, («) — F(2)] < max|F () — F(an)| + max | F(zgg) — F(a)|-
Letting n — oo and refining the partition indefinitely, we get in the limit

lim sup sup | E,(z) — F(z)] < sup AF(z) as.,
n—oo x xT
which proves (7) when F' is continuous.

For general F, let ¥, ... be i.i.d. U(0,1), and define 7, = ¢(,) for
each n, where ¢(t) = sup{z; F(z) < t}. Then n, < z iff 9, < F(z), and
5o (M,) 2 (£&,). We may then assume that &, = 7,. Writing Gy, G, ...
for the empirical distribution functions of 1, s, ..., it is further seen that
F, = G, o F. Writing A = F(R), we get a.s. from the result for continuous
F,

sup | F,(x) — F(z)| = sup |G, (t) — t| < sup |Gn(t) —t| — 0. O
T teA te[0,1]
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We turn to a systematic study of convergence in distribution. Although
we are currently mostly interested in distributions on Euclidean spaces, it is
crucial for future applications that we consider the more general setting of
an abstract metric space. In particular, the theory is applied in Chapter 14
to random elements in various function spaces.

Theorem 3.25 (Portmanteau theorem, Alexandrov) For any random ele-
ments £,£1,&, ... in a metric space S, these conditions are equivalent:

(i) & % &

(ii) liminf, P{&, € G} > P{{ € G} for any open set G C S;
(iii) limsup,, P{¢, € F} < P{¢ € F} for any closed set F C S;
(iv) P{¢, € B} — P{{ € B} for any B € B(S) with ¢ ¢ 0B a.s.

A set B € B(S) with £ € OB a.s. is often called a &-continuity set.

Proof: Assume (i), and fix any open set G C S. Letting f be continuous
with 0 < f < 1g, we get Ef(&,) < P{&, € G}, and (ii) follows as we let
n — oo and then f 1 1. The equivalence between (ii) and (iii) is clear from
taking complements. Now assume (ii) and (iii). For any B € B(S),

P{{e B} < lirgian{fn € B} <limsup P{¢, € B} < P{¢ € B}.
n—00 n—o00

Here the extreme members agree when ¢ ¢ 0B a.s., and (iv) follows.
Conversely, assume (iv) and fix any closed set F C S. Write F* = {s € S;
p(s,F) < e}. Then the sets 0F¢ C {s; p(s,F') = e} are disjoint, and so
& ¢ OF¢ for almost every € > 0. For such an ¢ we may write P{{, € F} <
P{¢ € F¢}, and (iii) follows as we let n — oo and then ¢ — 0. Finally,
assume (ii) and let f > 0 be continuous. By Lemma 2.4 and Fatou’s lemma,

EfE) = [T PU© > i< [Tlimint P& > )t

< liminf [T P{/(€) > t}dt = liminf EF(&,) (8)

N

Now let f be continuous with |f] < ¢ < oo. Applying (8) to ¢ + f yields
Ef(&,) — Ef(€), which proves (i). O

For an easy application, we insert a simple lemma that is needed in Chap-
ter 14.

Lemma 3.26 (subspaces) Fiz a metric space (S, p) with subspace A C S,

and let £,&1, &, ... be random elements in (A, p). Then &, ¢ in (A, p) iff
the same convergence holds in (S, p).
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Proof: Since &,&1,&, ... € A, condition (ii) of Theorem 3.25 is equivalent
to
li7£gior01fP{§n €EANG}>P{€ec ANG}, GCS open.

By Lemma 1.6, this is precisely condition (ii) of Theorem 3.25 for the sub-
space A. a

It is clear directly from the definitions that convergence in distribution is
preserved by continuous mappings. The following more general statement is
a key result of weak convergence theory.

Theorem 3.27 (continuous mappings, Mann and Wald, Prohorov, Rubin)
Fix two metric spaces S and T, and let £,&1,&, ... be random elements in

S with &, KN &. Consider some measurable mappings f, f1, fay...: S = T
and a measurable set C C S with £ € C a.s. such that f,(s,) — f(s) as

sp — s € C. Then f,(&) 4 f().

In particular, we note that if &, N &in S and if f: S — T is a.s. contin-

uous at &, then f(&,) N f(€). The latter frequently used result is commonly
referred to as the continuous mapping theorem.

Proof: Fix any openset G C T, and let s € f"'GNC. By hypothesis there
exist an integer m € N and some neighborhood N of s such that fy(s') € G
for all K > m and s’ € N. Thus, N C (>, f+'G, and so

'anccly {ﬂkme,;la}" .

Now let g, pi1, fi2, . .. denote the distributions of £,&,&,,.... By Theorem
3.25 we get
u(176) < wU{N,., /') =swu |, /G
<

< sup liminfp,, () fi'G < liminf , (f;'G).
m ) k>m

Using the same theorem again gives j1, o ;% =5 g o f~1, which means that

Fal&a) 2 £(6). O

We will now prove an equally useful approximation theorem. Here the
idea is to prove &, LN ¢ by choosing approximations 7, of &, and n of £ such
that n, KN 7. The desired convergence will follow if we can ensure that the
approximation errors are uniformly small.

Theorem 3.28 (approzimation) Let &, &, 0k, and n® be random elements in
a metric space (S, p) such that nk KN n* as n — oo for fived k, and moreover
nk N & Then &, LN & holds under the further condition

lim lim sup E[p(n¥, £,) A 1] = 0. (9)

k—o0 n—
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Proof: For any closed set F' C S and constant € > 0 we have
P{&, € F} < P{n, € F7} + P{p(n,. &) > e},
where F© = {s € 5; p(s, F) < e}. By Theorem 3.25 we get as n — 0o
limsup P{¢, € F} < P{n" € F*} + limsup P{p(ny;, &) > <}
Now let & — oo, and conclude from Theorem 3.25 together with (9) that
ligis;gp P{¢, € F} < P{¢ e F°}.

As e — 0, the right-hand side tends to P{¢ € F'}. Since F was arbitrary, we
get &, LN & by Theorem 3.25. O

Next we consider convergence in distribution on product spaces.

Theorem 3.29 (random sequences) Fix any separable metric spaces S, Sa,
cyandlet &= (4,62, .. ) and &, = (€},€2,...), n € N, be random elements

in XyS. Then &, % & iff
€, S ) in Sy x xSk, keN. (10)

If € and the &, have independent components, it is further equivalent that
&k A &F in Sy for each k.

Proof: The necessity of the conditions is clear from the continuity of the

projections s — (s1,...,8;) and s — s;. Now assume instead that (10)
holds. Fix any a € Sk, £ € N, and conclude from the continuity of the
mappings (s1,...,8k) — (S1,..., Sk, Qgr1, - - ) that
q
€ g, ) S (€ R ap,. ), keN. (11)

Writing 1 and n* for the sequences in (11), and letting p be the metric in
(2), we further note that p(&,n¥) < 27% and p(&,,n*) < 27* for all n and k.
Hence, &, LN & by Theorem 3.28.

To prove the last assertion, it is clearly enough to consider the product of
two separable metric spaces S and T. We need to show that if &, KN &in S
and 1, % n in T with &, 1Ln, and 117, then (&ns M) LN (&,n)in S x T. To
see this, we note that 0B, = 0 a.s. for each s € S and almost every € > 0,
where B, . denotes the e-ball around s. Thus, S has a topological basis Bg
consisting of {-continuity sets, and similarly T has a basis By consisting of
n-continuity sets. Since (B U C) C 9B U JC, even the generated fields Ag
and Agr consist of continuity sets.

Now fix any open set G in S x T. Since S x T is separable with basis
Bs x Br, we have G = U;(B; x () for suitable B; € Bs and C; € Br.
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Here each set Uy = U;<x(B; x C;) may be written as a finite disjoint union
of product sets A € Ag x Ar. By the assumed independence and Theorem
3.25, we obtain

h%gg.}fp{(fnann) € G} > nh_>nclo P{(én;nn) € Uk} = P{(&n) € Uk}

As k — oo, the right-hand side tends to P{({,n) € G}, and the desired
convergence follows by Theorem 3.25. O

In connection with convergence in distribution of a random sequence
&1,&, ..., it is often irrelevant how the elements &, are related. The next
result may enable us to change to a more convenient representation, which
sometimes leads to very simple and transparent proofs.

Theorem 3.30 (coupling, Skorohod, Dudley) Let &, &1,&s, ... be random el-
ements in a separable metric space (S, p) such that &, KN &, Then, on a suit-

able probability space, there exist some random elements 7 2 & and n, 2 &,
n € N, with n, = n a.s.

In the course of the proof, we shall need to introduce families of inde-
pendent random elements with given distributions. The existence of such
families is ensured, in general, by Corollary 5.18. When S is complete, we
may instead rely on the more elementary Theorem 2.19.

Proof: First assume that S = {1,...,m}, and put p = P{¢ = k} and
pp = P{&, = k}. Assuming ¢ to be U(0,1) and independent of &, we may
easily construct some random elements En 4 &, such that fn = k whenever
¢ =k and ¥ < p}/py. Since pi — py for each k, we get £ — € as.

For general S, fix any p € N, and choose a partition of S into &-continuity
sets By, Ba,... € B(S) of diameter < 277. Next choose m so large that
P{& & Uk B} < 277, and put By = (i<, Bi. For k = 0,...,m, define
k = k when ¢ € By and kK, = k when &, € By, n € N. Thcn/iniwi7 and
by the result for finite S we may choose some &, 4 Kn, With &, — k a.s.
Let us further introduce some independent random elements ¢¥ in S with
distributions P[&, € -|&, € By and define & = 3, ¢51{%, = k}, so that
5{; 2 &, for each n.

From the construction it is clear that
{p(@, 9 >27} c{R. #r}U{ € B}, mpeN
Since &, — & a.s. and P{€ € By} < 277, there exists for every p some n, € N
with
PU,., 0@ >27 <27 peN,

and we may further assume Ehat ny < ng < ---. By the Borel-Cantelli
lemma we get a.s. sup,,>,, p(€2 &) < 277 for all but finitely many p. Now

define 7, = ég for n, < n < nyi1, and note that &, 4 N — & a.s. O
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We conclude this chapter with a result on functional representations of
limits, needed in Chapters 15 and 18. To motivate the problem, recall from
Lemma 3.6 that if &, =i 71 for some random elements in a complete metric
space S, then n = f(§) a.s. for some measurable function f: S*° — S,
where £ = (&,). Here f depends on the distribution p of &, so a universal
representation must be of the form n = f(&, ). For certain purposes, it is
crucial to choose a measurable version even of the latter function. To allow
constructions by repeated approximation in probability, we need to consider
the more general case when 7, LY 7 for some random elements 1, = f,(&, p).

For a precise statement of the result, let P(S) denote the space of prob-
ability measures 1 on S, endowed with the o-field induced by all evaluation
maps u— uB, B € B(S).

Proposition 3.31 (representation of limits) Fix a complete metric space
(S,p), a measurable space U, and some measurable functions fi, fa,... :
Ux PU) = S. Then there exist a measurable set A C P(U) and some
measurable function f: U x A — S such that for any random element £ in
U with distribution u, the sequence n, = fn(&, 1) converges in probability iff

€ A, in which case 1, > f& ).

Proof: For sequences s = (si,5,...) in S, define I(s) = limy sy when
the limit exists and otherwise put [(s) = s, where s, € S is arbitrary.
By Lemma 1.10 we note that [ is a measurable mapping from S to S.
Next consider a sequence n = (11,7, . ..) of random elements in S, and put
v = Pon~l. Define ni,ny,... as in the proof of Lemma 3.6, and note that
each ny = ng(v) is a measurable function of v. Let C be the set of measures
v such that ng(v) < oo for all k, and note that 7, converges in probability
iff v € C. Introduce the measurable function

(s, ) = USp () Snaw)s - - ), S = (81,82,...) € S, v e P(S%).

If v € C, it is seen from the proof of Lemma 3.6 that 7,, () converges a.s.,

and so 7, Eil g(n,v).

Now assume that n, = f,(£, 1) for some random element ¢ in U with
distribution p and some measurable functions f,,. It remains to show that v
is a measurable function of . But this is clear from Lemma 1.38 (ii) applied
to the kernel K(u,-) = p from P(U) to U and the function F = (fi, f2,...):
UxPU)— S=. O

As a simple consequence, we may consider limits in probability of mea-
surable processes. The resulting statement will be useful in Chapter 15.

Corollary 3.32 (measurability of limits, Stricker and Yor) For any mea-
surable space T and complete metric space S, let X', X2, ... be S-valued
measurable processes on T. Then there exist a measurable set A C T and
some measurable process X on A such that X' converges in probability iff

t € A, in which case X}' £ X,
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Proof: Define & = (X}, X?,...) and py = P o & '. By Proposition 3.31
there exist a measurable set C' C P(5%) and some measurable function
f:5% x C — S such that X]* converges in probability iff y; € C, in which

case X/ EiR f(&, pe). Tt remains to note that the mapping ¢ — p; is measur-

able, which is clear by Lemmas 1.4 and 1.26. O
Exercises
1. Let &,...,&, be independent symmetric random variables. Show that

P{(p&)? > r>i & > (1 —1r)?/3 for any r € (0,1). (Hint: Reduce by
means of Lemma 2.11 to the case of nonrandom |¢|, and use Lemma 3.1.)

2. Let &,...,&, be independent symmetric random variables. Show
that P{maxy [&] > r} < 2P{|S| > r} for all » > 0, where S = Y, &.
(Hint: Let 1) be the first term &, where maxy, |£| is attained, and check that
(n,S =) = (nn—5).)

3. Let &,&, ... be ii.d. random variables with P{|¢,| > t} > 0 for all
t > 0. Show that there exist some constants ¢, ¢y, ... such that ¢,&, — 0 in
probability but not a.s.

4. Show that a family of random variables &, is tight iff sup, Ef(|&]) < oo
for some increasing function f: R, — Ry with f(oc0) = co.

5. Consider some random variables &, and 7, such that (¢,) is tight and
Mn 5 0. Show that even Ealn £o.

6. Show that the random variables & are uniformly integrable iff sup,

Ef(|&]) < oo for some increasing function f: Ry — Ry with f(x)/x — oo
as r — oo.

7. Show that the condition sup, F|&;| < oo in Lemma 3.10 can be omitted
if A is nonatomic.

8. Let &,&,... € L'. Show that the &, are uniformly integrable iff the
condition in Lemma 3.10 holds with sup,, replaced by lim sup,,.

9. Deduce the dominated convergence theorem from Lemma 3.11.

10. Show that if {|&|?} and {|m|"} are uniformly integrable for some p > 0,
then so is {|a& + bn|P} for any a,b € R. (Hint: Use Lemma 3.10.) Use this
fact to deduce Proposition 3.12 from Lemma 3.11.

11. Give examples of random variables &, &1, s, ... € L? such that &, — &
holds a.s. but not in L?, in L? but not a.s., or in L' but not in L2.

12. Let &, &, ... be independent random variables in L2. Show that 3°,, &,
converges in L? iff ¥, F¢, and 3, var(&,) both converge.

13. Give an example of independent symmetric random variables &, &,
... such that Y, &, is a.s. conditionally (nonabsolutely) convergent.

14. Let &, and 7, be symmetric random variables with |&,| < |n,| such
that the pairs (,,7,) are independent. Show that >, £, converges whenever
> on N does.
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15. Let &,&,, ... be independent symmetric random variables. Show that
E[(X,&)* A1) <3, E[€2 A 1] whenever the latter series converges. (Hint:
Integrate over the sets where sup,, |&,| < 1 or > 1, respectively.)

16. Consider some independent sequences of symmetric random variables
Eeomb, 2, ... with || < | such that 3, & converges, and assume 7" =5 7
for each k. Show that >, n} =i > k- (Hint: Use a truncation based on the
preceding exercise.)

17. Let Y, &, be a convergent series of independent random variables.
Show that the sum is a.s. independent of the order of terms iff 3=, |E[&,; |&n]
<1]| < 0.

18. Let the random variables &,; be symmetric and independent for each
n. Show that 3, &,; = 0 iff 2, B[€2, A 1] — 0.

19. Let &, N ¢ and a,é&, N ¢ for some nondegenerate random variable
¢ and some constants a, > 0. Show that a, — 1. (Hint: Turning to
subsequences, we may assume that a,, — a.)

20. Let &, N ¢ and a,&,+0b, LN ¢ for some nondegenerate random variable
&, where a, > 0. Show that a,, — 1 and b, — 0. (Hint: Symmetrize.)

21. Let &, &, ... be independent random variables such that a, > <, &k
converges in probability for some constants a, — 0. Show that the limit is
degenerate.

22. Show that Theorem 3.23 is false for p = 2 by taking the &, to be
independent and N(0,1).

23. Let &,&, ... be i.id. and such that n='/? > k<n &k i a.s. bounded for
some p € (0,2). Show that F|&|P < co. (Hint: Argue as in the proof of
Theorem 3.23.)

24. Show for p < 1 that the a.s. convergence in Theorem 3.23 remains
valid in LP. (Hint: Truncate the &.)

25. Give an elementary proof of the strong law of large numbers when
El¢]* < co. (Hint: Assuming E¢ = 0, show that EY,(S,/n)* < 00.)

26. Show by examples that Theorem 3.25 is false without the stated
restrictions on the sets G, F, and B.

27. Use Theorem 3.30 to give a simple proof of Theorem 3.27 when S
is separable. Generalize to random elements £ and &, in Borel sets C' and
C,,, respectively, assuming only f,(z,) — f(z) for z, € C,, and z € C with
x, — x. Extend the original proof to that case.

28. Give a short proof of Theorem 3.30 when S = R. (Hint: Note that
the distribution functions F),, and F satisfy F;* — F~! a.e. on [0, 1].)



Chapter 4

Characteristic Functions
and Classical Limit Theorems

Uniqueness and continuity theorem; Poisson convergence; posi-
tive and symmetric terms; Lindeberg’s condition; general Gaus-
sian convergence; weak laws of large numbers; domain of Gaus-
sian attraction; vague and weak compactness

In this chapter we continue the treatment of weak convergence from Chapter
3 with a detailed discussion of probability measures on Euclidean spaces.
Our first aim is to develop the theory of characteristic functions and Laplace
transforms. In particular, the basic uniqueness and continuity theorem will
be established by simple equicontinuity and approximation arguments. The
traditional compactness approach—in higher dimensions a highly nontrivial
route—is required only for the case when the limiting function is not known in
advance to be a characteristic function. The compactness theory also serves
as a crucial bridge to the general theory of weak convergence presented in
Chapter 14.

Our second aim is to establish the basic distributional limit theorems in
the case of Poisson or Gaussian limits. We shall then consider triangular
arrays of random variables &,;, assumed to be independent for each n and

such that &,; L oasn— o uniformly in j. In this setting, general criteria
will be obtained for the convergence of 3°; &,; toward a Poisson or Gaussian
distribution. Specializing to the case of suitably centered and normalized
partial sums from a single i.i.d. sequence &1, &,, ..., we may deduce the ulti-
mate versions of the weak law of large numbers and the central limit theorem,
including a complete description of the domain of attraction of the Gaussian
law.

The mentioned limit theorems lead in Chapters 10 and 11 to some basic
characterizations of Poisson and Gaussian processes, which in turn are needed
to describe the general independent increment processes in Chapter 13. Even
the limit theorems themselves are generalized in various ways in subsequent
chapters. Thus, the Gaussian convergence is extended in Chapter 12 to
suitable martingales, and the result is strengthened to uniform approximation
of the summation process by the path of a Brownian motion. Similarly, the
Poisson convergence is extended in Chapter 14 to a general limit theorem
for point processes. A complete solution to the general limit problem for

60
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triangular arrays is given in Chapter 13, in connection with our treatment of
Lévy processes.

In view of the crucial role of the independence assumption for the meth-
ods in this chapter, it may come as a surprise that the scope of the method
of characteristic functions and Laplace transforms extends far beyond the
present context. Thus, exponential martingales based on characteristic func-
tions play a crucial role in Chapters 13 and 16, whereas Laplace functionals
of random measures are used extensively in Chapters 10 and 14. Even more
importantly, Laplace transforms play a key role in Chapters 17 and 19, in
the guises of resolvents and potentials for general Markov processes and their
additive functionals.

To begin with the basic definitions, consider a random vector ¢ in R? with
distribution p. The associated characteristic function fi is given by

a(t) = /emu(dﬂc) = FEe™ teRY,

where tx denotes the inner product tyx1 + - - - + t424. For distributions p on
R? | it is often more convenient to consider the Laplace transform fi, given
by

~ —uzr — U d
f(u) :/e p(dr) = Be ™, ueRL.

Finally, for distributions p on Z, it is often preferable to use the (probability)
generating function 1, given by

U(s) =Y s"P{¢{=n}=FEs", s€l0,1].

n>0

Formally, ji(u) = fi(iv) and i(t) = fi(—it), and so the functions fi and
are essentially the same, apart from domain. Furthermore, the generating
function ¢ is related to the Laplace transform f by fi(u) = ¢(e™™) or ¢(s) =
fi(—log s). Though the characteristic function always exists, it may not be
extendable to an analytic function in the complex plane.

For any distribution z on R?, we note that the characteristic function
¢ = [i is uniformly continuous with |p(¢)| < ¢(0) = 1. It is further seen to
be Hermitian in the sense that ¢(—t) = @(t), where the bar denotes complex
conjugation. If £ has characteristic function ¢, then the linear combination
a& = a1&1 +- - - + aq€y has characteristic function ¢ — ¢(ta). Also note that if
& and 7 are independent random vectors with characteristic functions ¢ and
1, then the characteristic function of the pair (£, 7) is given by the tensor
product ¢ ® 1 : (s,t) — @(s)1(t). Thus, £ + 1 has characteristic function
Y. In particular, the characteristic function of the symmetrization £ — &’
equals |¢]?.

Whenever applicable, the mentioned results carry over to Laplace trans-
forms and generating functions. The latter functions have the further ad-
vantage of being positive, monotone, convex, and analytic—properties that
simplify many arguments.
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The following result contains some elementary but useful estimates in-
volving characteristic functions. The second inequality was used in the proof
of Theorem 3.17, and the remaining relations will be useful in the sequel to
establish tightness.

Lemma 4.1 (tail estimates) For any probability measure p on R, we have

2/r

plaslzl =0} < [ a r>0, &)
2 2/7‘

ul=r,r] < 2r/ \fldt, 7> 0. 2)
1

If v is supported by R, , then also
ulr,00) < 201 — i(1/r), > 0. (3)

Proof: Using Fubini’s theorem and noting that sinz < /2 for x > 2, we
get for any ¢ > 0

[ a=pdr = [ulds) [ 0= ear

= 20/ {1 - Smcx}u(dm) > cu{z; |ex| > 2},
cx

and (1) follows as we take ¢ = 2/r. To prove (2), we may write

werl < 2 [ =S

r/u (dx) / (1 —r|t|) e dt

/ﬂ*rMhmﬁ<r/ el dt.

To obtain (3), we note that e < § for > 1. Thus, for ¢t > 0,
1—jy = /(1 — e " u(dr) > tp{z; te > 1} a

Recall that a family of probability measures p, on R? is said to be tight
if
lim sup pio{z; [z > r} = 0.

The following lemma describes tightness in terms of characteristic functions.

Lemma 4.2 (equicontinuity and tightness) A family {u.} of probability
measures on R® is tight iff {fia} is equicontinuous at 0, and then {fi,} is
uniformly equicontinuous on R:. A similar statement holds for the Laplace
transforms of distributions on Ri.


Administrator
ferret
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Proof: The sufficiency is immediate from Lemma 4.1, applied separately
in each coordinate. To prove the necessity, let &, denote a random vector
with distribution jio, and write for any s,t € R?

lfia(s) = fia(t)] < Ele®t —¢ita] = B|1 — ¢(t9)a]
< 2B[|(t - s)| A1),

If {&,} is tight, then by Lemma 3.9 the right-hand side tends to 0 ast—s — 0,
uniformly in «, and the asserted uniform equicontinuity follows. The proof
for Laplace transforms is similar. a

For any probability measures p, jy, fi2, . .. on R%, we recall that the weak
convergence [, — u holds by definition iff u,f — puf for any bounded,
continuous function f on R?, where pf denotes the integral [ fdu. The
usefulness of characteristic functions is mainly due to the following basic
result.

Theorem 4.3 (uniqueness and continuity, Lévy) For any probability mea-
SUTeS [, iy, fl2, - - . on R we have p, > p iff fin(t) — j(t) for every t € RY,
and then fi, — [ uniformly on every bounded set. A corresponding statement
holds for the Laplace transforms of distributions on R%.

In particular, we may take p, = v and conclude that a probability mea-
sure 1 on R? is uniquely determined by its characteristic function . Simi-
larly, a probability measure p on R‘fr is seen to be determined by its Laplace
transform fi.

For the proof of Theorem 4.3, we need the following simple cases or con-
sequences of the Stone-Weierstrass approximation theorem. Here [0, co] de-
notes the compactification of R.

Lemma 4.4 (approximation) Every continuous function f: R — R with
period 2w in each coordinate admits a uniform approximation by linear com-
binations of cos kx and sinkzx, k € Zi. Similarly, every continuous function
g: (0,00 = R, can be approzimated uniformly by linear combinations of
the functions e %%, k € Zi.

Proof of Theorem 4.3: We shall consider only the case of characteristic
functions, the proof for Laplace transforms being similar. If p, > u, then
i (t) — fu(t) for every t, by the definition of weak convergence. By Lemmas
3.8 and 4.2, the latter convergence is uniform on every bounded set.

Conversely, assume that fi,(t) — fi(t) for every t. By Lemma 4.1 and
dominated convergence we get, for any a € R? and r > 0,

2/r
limsup pp{z; lax| >r} < lim 2/ (1 — fn(ta))dt
n—oo

n—oo 2/7“

. / 702 ata))dt.
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Since {1 is continuous at 0, the right-hand side tends to 0 as r — oo, which
shows that the sequence (u,) is tight. Given any € > 0, we may then choose
r > 0 so large that u,{|z| > r} <e for all n, and u{|z| > r} <e.

Now fix any bounded, continuous function f: RY — R, say with |f| <
m < co. Let f, denote the restriction of f to the ball {|z| < r}, and extend
fr to a continuous function f on R? with | f | < m and period 277 in each
coordinate. By Lemma 4.4 there exists some linear combination g of the
functions cos(kx/r) and sin(kz/r), k € Z%, such that |f — g| < . Writing
| - || for the supremum norm, we get for any n € N

ltnf = tng] < padlz] > rHIF = FIl +11f = gl < @m + 1)e,

and similarly for . Thus,

\nf — pf| < |png — pgl +2(2m + 1)e, n € N.

Letting n — oo and then ¢ — 0, we obtain u, f — uf. Since f was arbitrary,
this proves that j, — . O

The next result provides a way of reducing the d-dimensional case to that
of one dimension.

Corollary 4.5 (one-dimensional projections, Cramér and Wold) Let § and
£1,&, ... be random vectors in RY. Then &, LN & aff t&, KN t& for all t € RY.
For random wvectors in Ri, it suffices that u&, N u€ for all u € R‘i.

Proof: If t&, % t¢, then Eeié — Eei by the definition of weak conver-

gence, so &, LN & by Theorem 4.3. The proof for random vectors in R‘i is
similar. a

The last result contains in particular a basic uniqueness result, the fact
that & 4 n iff t& 4 tn for all t € R? or R‘fr, respectively. In other words,
a probability measure on R? is uniquely determined by its one-dimensional
projections.

We shall now apply the continuity theorem to prove some classical limit
theorems, and we begin with the case of Poisson convergence. For an in-
troduction, consider for each n € N some i.i.d. random variables &1, ..., &
with distribution

and assume that nc, — ¢ < oo. Then the sums S, = &,; + ... + &, have
generating functions

cs”

Yu(s) = (1— (1= 8)c,)" —» e ) =y 0 S€ [0,1].

n>0
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The limit 1(s) = e~*179) is the generating function of the Poisson distribu-
tion with parameter ¢, possessing the probabilities p, = e °c"/nl, n € Z,.
Note that the corresponding expected value equals ¢'(1) = ¢. Since ¥, — ¥,
it is clear from Theorem 4.3 that S, -5 n, where P{n =n} = p, for all n.

Before turning to more general cases of Poisson convergence, we need to
introduce the notion of a null array. By this we mean a triangular array of
random variables or vectors &,;, 1 < j < m,, n € N, such that the ¢,; are
independent for each n and satisfy

suij[|£nj\ A1] = 0. (4)

The latter condition may be thought of as the convergence &,; L oasn — 0,
uniformly in j. When &,; > 0 for all n and j, we may allow the m, to be
infinite.

The following lemma characterizes null arrays in terms of the associated
characteristic functions or Laplace transforms.

Lemma 4.6 (null arrays) Consider a triangular array of random vectors
&y with characteristic functions p,; or Laplace transforms 1,;. Then (4)

holds i
olds iff sup,|1 — ni(t)] = 0, R, (5)

respectively, )
Y infji,;(u) -1, ueRL,

Proof: Relation (4) holds iff &, , £ 0 for all sequences (Jn). By Theo-
rem 4.3 this is equivalent to ¢, ; (t) — 1 for all ¢ and (j,), which in turn is
equivalent to (5). The proof for Laplace transforms is similar. O

We shall now give a general criterion for Poisson convergence of the row-
sums in a null array of integer-valued random variables. The result will be
extended in Lemmas 13.15 and 13.24 to more general limiting distributions
and in Theorem 14.18 to the context of point processes.

Theorem 4.7 (Poisson convergence) Let (£,;) be a null array of Z.-valued
random variables, and let § be Poisson distributed with mean c. Then 37; &n;

N & iff these conditions hold:
(i) X, P{&; > 1} = 0;
(ii) > P{&,; =1} —c.

Moreover, (i) is equivalent to sup; &5 V 1 51 If 32, &y converges in distri-
bution, then (i) holds iff the limit is Poisson.

We need the following frequently used lemma.

Lemma 4.8 (sums and products) Consider a null array of constants ¢,; > 0,
and fiz any c € [0,00]. Then [T;(1 — cnj) — e iff X cnj — C.
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Proof: Since sup; c,; < 1 for large n, the first relation is equivalent to
> jlog(1—cpj) — —c, and the assertion follows from the fact that log(1—z) =
—z+o(z) as v — 0. |

Proof of Theorem 4.7: Denote the generating function of &,; by ¥n;. By
Theorem 4.3 the convergence Y-, &, KN ¢ is equivalent to [T; 1n;(s) — e—c(1=)
for arbitrary s € [0, 1], which holds by Lemmas 4.6 and 4.8 iff

Zj(l —1y(s)) = c(1—s), sel0,1]. (6)
By an easy computation, the sum on the left equals

(1—S)ZP{§TLJ'>0}+Z(S—Sk)zp{§nj:k}:T1+T2a (7)

k>1 J

and we further note that

Assuming (i) and (ii), it is clear from (7) and (8) that (6) is fulfilled. Now
assume instead that (6) holds. For s = 0 we get >°; P{&,; > 0} — ¢, so in
general 71 — ¢(1 — s). But then 75 — 0 because of (6), and (i) follows by
(8). Finally, (ii) is obtained by subtraction.

To prove that (i) is equivalent to sup; &,; vV 1 £ 1, we note that

P{sup&n; < 1} = [ P{&; <1} =][ (1 - P{&, > 1}).

By Lemma 4.8 the right-hand side tends to 1 iff 3>, P{£,; > 1} — 0, which
is the stated equivalence.
To prove the last assertion, put c,; = P{§,; > 0} and write

Eexp {—ijnj} — P{sup;&,; > 1} < Eexp {*Zj(énj A 1)}
= [LEexp{—(6; A1)} = T[ {1~ (1= ¢ e}
<TL el - e e} = e {1 = e HT e}

If (i) holds and X=; &y; LN 7, then the left-hand side tends to Fe™" > 0, so
the sums ¢, = 3_, c¢,; are bounded. Hence, ¢, converges along a subsequence
N’ C N toward some constant ¢. But then (i) and (ii) hold along N’, and
the first assertion shows that 7 is Poisson with mean c. a

Next consider some i.i.d. random variables &, &y, ... with P{&, = +1} =
1 and write S, = & + -+ + &,. Then n=1/2S, has characteristic function

2

©n(t) = cos™(n~V?t) = {1 — ;TL + O(n2)}n S e = ().
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—z2/2

By a classical computation, the function e has Fourier transform

/OO e Ry — (2m)2e P2 teR.
—0Q

Hence, ¢ is the characteristic function of a probability measure on R with
density (27)~'/2¢=**/2, This is the standard normal or Gaussian distribution
N(0,1), and Theorem 4.3 shows that n=/2S, <5 ¢, where ¢ is N(0,1). The
general Gaussian law N (m, 0?) is defined as the distribution of the random
variable = m + o¢(, and we note that n has mean m and variance o?.
From the form of the characteristic functions together with the uniqueness
property, it is clear that any linear combination of independent Gaussian
random variables is again Gaussian.

The convergence to a Gaussian limit generalizes easily to a more general
setting, as in the following classical result. The present statement is only
preliminary, and a more general version is obtained by different methods in
Theorem 4.17.

Proposition 4.9 (central limit theorem, Lindeberg, Lévy) Let & &1,&, ...
be i.i.d. random wvariables with E€ = 0 and EE* = 1, and let ¢ be N(0,1).

Then n~ /2 > k<n Sk 4 C.
The proof may be based on a simple Taylor expansion.

Lemma 4.10 (Taylor expansion) Let ¢ be the characteristic function of a
random variable & with E|€|" < co. Then

ﬂﬂ=§?@%?;+dﬂx t = 0.

Proof: Noting that |e® — 1| < ¢ for all t € R, we get recursively by
dominated convergence

oW (t) = BGi&)ke™, teR, 0<k<n.

In particular, ¥ (0) = E(i€)* for k < n, and the result follows from Taylor’s
formula. O

Proof of Proposition 4.9: Let the & have characteristic function ¢. By
Lemma 4.10, the characteristic function of n='/23,, equals

2

onlt) = (¢(”71/2t)>n - {1 - ;71 + o(nl)}n et

where the convergence holds as n — oo for fixed t. O

Our next aim is to examine the relationship between null arrays of sym-
metric and positive random variables. In this context, we may further obtain
criteria for convergence toward Gaussian and degenerate limits, respectively.
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Theorem 4.11 (positive and symmetric terms) Let (&,;) be a null array
of symmetric random variables, and let & be N(0,c) for some ¢ > 0. Then

> &nj LN §iff X 572”» £ ¢, and also iff these conditions hold:
(1) X, P{lénjl > €} = 0 for alle > 0;
(i) 5, B(€; A1) = c.

Moreover, (i) is equivalent to sup; |l Bo. 11 3 Eng 0 ;&0 converges in

distribution, then (1) holds iff the limit is Gaussian or degenerate, respectively.

Here the necessity of condition (i) is a remarkable fact that plays a crucial
role in our proof of the more general Theorem 4.15. It is instructive to com-
pare the present statement with the corresponding result for random series
in Theorem 3.17. Note also the extended version appearing in Proposition
13.23.

Proof: First assume that 3=, &,; LN ¢. By Theorem 4.3 and Lemmas 4.6
and 4.8 it is equivalent that

Z]E(l —costéy;) — Let’, tER, (9)

where the convergence is uniform on every bounded interval. Comparing the
integrals of (9) over [0, 1] and [0, 2], we get 3=; E'f(&,;) — 0, where f(0) =0

and ) )
4sinx  sin2z

fla)=3- "2 B g eR\ (o).

Now f is continuous with f(z) — 3 as |z] — oo, and furthermore f(z) > 0
for x # 0. Indeed, the last relation is equivalent to 8sinz — sin 2x < 6z for
x > 0, which is obvious when = > /2 and follows by differentiation twice
when = € (0,7/2). Writing g(z) = inf,~, f(y) and letting £ > 0 be arbitrary,
we get

ijﬂfnﬂ >e} < ij{f(fnj) >g(e)} < ZjEf(fnj)/g(s) -0,

which proves (i).

If instead >=; f,%j EiY ¢, the corresponding symmetrized variables n,,; satisfy
> My 50, and we get > P{|mj| > €} — 0 as before. By Lemma 3.19 it
follows that 3; P{|¢?; — mn;| > e} — 0, where the m,,; are medians of &2},

and since sup; m,; — 0, condition (i) follows again. Using Lemma 4.8, we

further note that (i) is equivalent to sup; |£,;] £ 0. Thus, we may henceforth
assume that (i) is fulfilled.
Next we note that, for any t € R and € > 0,

> ElL = costéns [€n] < e] = 327 (1-o0(e) > Bl €nl <cel.
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Assuming (i), the equivalence between (9) and (ii) now follows as we let
n — oo and then € — 0. To get the corresponding result for the variables
»j» we may instead write

2 _ 2
ZjE[l m,g <¢el=t(1 - Ofte)) ZEW, b <el, te>0,

and proceed as before. This completes the proof of the first assertion.
Finally, assume that (i) holds and Y7, &,; N 1. Then the same relation
holds for the truncated variables &,;1{|¢,;] < 1}, and so we may assume that
|€nj| < 1 for all j and k. Define ¢, = 37, Eg;ij. If ¢, — oo along some sub-
sequence, then the distribution of ¢;'/2 3, &,; tends to N(0,1) by the first
assertion, which is impossible by Lemmas 3.8 and 3.9. Thus, (¢,) is bounded
and converges along some subsequence. By the first assertion, 3, &,; then
tends to some Gaussian limit, so even 7 is Gaussian. O

The following result gives the basic criterion for Gaussian convergence,
under a normalization by second moments.

Theorem 4.12 (Gaussian convergence under classical normalization, Lin-
deberg, Feller) Let (&,;) be a triangular array of rowwise independent random
variables with mean 0 and ; EE); — 1, and let & be N(0,1). Then these
conditions are equivalent:

(1) ;& $§ and sup; E€2; — 0;
(ll) Z] [nj7 |§nJ|>5]_>0f07" all e > 0.

Here (ii) is the celebrated Lindeberg condition. Our proof is based on two
elementary lemmas.

Lemma 4.13 (comparison of products) For any complex numbers zy, ..., z,
and 21, ...,z of modulus < 1, we have

1=
k

§Z|zkfz,'€.
&

Proof: For n = 2 we get
|z122 — 2125] <[22 — 2120| + [2122 — 2125] < o1 — 21| + |22 — 2],
and the general result follows by induction. a

Lemma 4.14 (Taylor expansion) For anyt € R and n € Z,, we have

w - (it)F
=2

k=0

< 2|t|n A |t|n+1
— ol (n+ 1)
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Proof: Letting h,(t) denote the difference on the left, we get

t
hat) = z/ ho_1(s)ds, t>0, n € Z,.
JO

Starting from the obvious relations |h_;| = 1 and |hg| < 2, it follows by
induction that |h,_1(t)] < [t]*/n! and |h,(¢)| < 2|¢"/n!. O

We return to the proof of Theorem 4.12. At this point we shall prove
only the sufficiency of the Lindeberg condition (ii), which is needed for the
proof of the main Theorem 4.15. To avoid repetition, we postpone the proof
of the necessity part until after the proof of that theorem.

Proof of Theorem 4.12, (ii) = (i): Write ¢,; = E&2; and ¢, = X ¢y
First we note that for any ¢ > 0

SUpP;Cnj < e+ StuE[erzﬁ |€nj| > €] < e + ZJE[ 733‘; |€nsl > €],

which tends to 0 under (ii), as n — oo and then € — 0.

Now introduce some independent random variables (,,; with distributions
N(0, ¢nj), and note that ¢, = >°; (n; is N(0,¢,). Hence, ¢, 2 ¢ Letting
¢n; and 1),,; denote the characteristic functions of &,; and (,;, respectively, it
remains by Theorem 4.3 to show that []; ¢n; — I1;%n; — 0. Then conclude
from Lemmas 4.13 and 4.14 that, for fixed t € R,

L) ~ L s (8)] < 3, lus(®) = vy (0)
D loni(8) = 1k 3t + 37 U () = 1+ 3t
< BN wl) + X0 EC (L AIG).

IN

For any € > 0, we have
Zngij(l A €nsl) < stcnj + ZJ-E[ 255 |€nsl > €],
which tends to 0 by (ii), as n — oo and then ¢ — 0. Further note that
: 3/2 : 1/2
by the first part of the proof. ]

The problem of characterizing the convergence to a Gaussian limit is
solved completely by the following result. The reader should notice the strik-
ing resemblance between the present conditions and those of the three-series
criterion in Theorem 3.18. A far-reaching extension of the present result is
obtained by different methods in Chapter 13. As before var[¢; A] = var(£14).
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Theorem 4.15 (Gaussian convergence, Feller, Lévy) Let (&,;) be a null
array of random variables, and let & be N(b,c) for some constants b and c.

Then 3 &nj N & iff these conditions hold:
(1) X, P{lénj| > €} = 0 for alle > 0;
(i) X; Elénss [€ns] < 1] = b;

(ii) 325 var(€n s [&ns] < 1] = c.

Moreover, (i) is equivalent to sup; €] £o. If 32, &y converges in distribu-
tion, then (i) holds iff the limit is Gaussian.

Proof: To see that (i) is equivalent to sup; |&,] 4 0, we note that

P{sup;|&n;] > e} =1— Hj(l — P{|&;] > €}), e>0.

Since sup; P{|{,;| > €} — 0 under both conditions, the assertion follows by
Lemma 4.8.
Now assume 3°,,; &y LN . Introduce medians m,; and symmetrizations

£n; Of the variables &,;, and note that m,, = sup; [my;| — 0 and 32; €nj w3

where §~ is N(0,2¢). By Lemma 3.19 and Theorem 4.11, we get for any € > 0
ij{lgnj‘ >e} < ijﬂfnj — Myj| > € —my}

QZJ_P{KM\ >¢e—my} — 0.

IN

Thus, we may henceforth assume condition (i) and hence that sup; [, £o.
But then Y5, &, N 1 is equivalent to 32, &, LN n, where & = &,;1{|€,5] < 1},
and so we may further assume that |§,;] < 1 a.s. for all n» and j. In this
case (ii) and (iii) reduce to b, = >3; E,; — b and ¢, = > ; var(§,;) — ¢,
respectively.

Write b, = E&,;, and note that sup; |b,;| — 0 because of (i). Assuming
(i) and (iii), we get >=; £nj — bn 4 & —0b by Theorem 4.12, and so 3=, &,; LN €.
Conversely, >, & LN § implies 3, énj KN £, and (iii) follows by Theorem
4.11. But then 37, &, — by N & — b, so Lemma 3.20 shows that b, converges
toward some 0'. Hence, >; &, N £+ —b,s0l = b, which means that even
(ii) is fulfilled.

It remains to prove that, under condition (i), any limiting distribution
is Gaussian. Then assume >, &, KN n, and note that 3, énj LN 7, where
denotes a symmetrization of 1. If ¢, — oo along some subsequence, then
¢, /232, &, tends to N(0,2) by the first assertion, which is impossible by
Lemma 3.9. Thus, (¢,) is bounded, and we have convergence ¢, — ¢ along
some subsequence. But then }°,.&,; — b, tends to N(0,c), again by the

first assertion, and Lemma 3.20 shows that even b, converges toward some
limit b. Hence, }°,,; &n; tends to N (b, ¢), which is then the distribution of 5. O
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Proof of Theorem 4.12, (i) = (ii): The second condition in (i) implies
that (£,;) is a null array. Furthermore, we have for any € > 0

S varlns; 16l < € < 30 BIEL: J6uil <€) < 3 BEL 1
By Theorem 4.15 even the left-hand side tends to 1, and (ii) follows. O

As a first application of Theorem 4.15, we shall prove the following ulti-
mate version of the weak law of large numbers. The result should be com-
pared with the corresponding strong law established in Theorem 3.23.

Theorem 4.16 (weak laws of large numbers) Let £,&1,&s, ... be i.i.d. ran-

dom variables, and fix any p € (0,2) and ¢ € R. Then n='? Y. & B ciff
the following conditions hold as r — oo, depending on the value of p:

p<l: rPP{l¢{|>r} =0 andc=0;
p=1: rP{{|>r} =0 and E[&; || <] —¢;
p>1: rPP{|{|>r} =0 and EE=c=0.

Proof: Applying Theorem 4.15 to the null array of random variables
Enj = n’l/pfj, j < n, we note that the stated convergence is equivalent to
the three conditions

(i) nP{|¢| > n'/Pe} — 0 for all € > 0,
(i) n'VPElE €] < n'/P] > ¢,
(iil) n'=¥Pvar(¢; €] < n'/P] — 0.

By the monotonicity of P{|¢| > r!/?}, condition (i) is equivalent to 7* P{|¢| >
r} — 0. Furthermore, Lemma 2.4 yields for any r > 0

1
g 6 <] < B[P AL = [ P{IEl 2 Vi,
0
1
Bl Il <1l < B/ A1) =7 [ P{IE| 2 rtdt.
0
Since t~* is integrable on [0, 1] for any a < 1, it follows by dominated con-
vergence that (i) implies (iii) and also that (i) implies (ii) with ¢ = 0 when

p <1l
If instead p > 1, it is seen from (i) and Lemma 2.4 that

Ble| = /w P{l€| > r}dr < /°°(1 ArP)dr < 0.
0 0
Thus, E[¢; |¢] < r] — E¢, and (ii) implies E{ = 0. Moreover, we get from (i)
PUB(El €] > 1) = PS> 1kt [T P{IEl > et — 0.

Under the further assumption that E€ = 0, we obtain (ii) with ¢ = 0.



4. Characteristic Functions and Classical Limit Theorems 73

Finally, let p = 1, and conclude from (i) that
Ell¢; n < €] <n+1] <nP{[{]>n} = 0.

Hence, under (i), condition (ii) is equivalent to E[¢; || < r] — ¢ O

We shall next extend the central limit theorem in Proposition 4.9 by
characterizing convergence of suitably normalized partial sums from a single
i.i.d. sequence toward a Gaussian limit. Here a nondecreasing function L > 0
is said to vary slowly at oo if sup, L(xz) > 0 and moreover L(cz) ~ L(z) as
x — oo for each ¢ > 0. This holds in particular when L is bounded, but it is
also true for many unbounded functions, such as log(z V 1).

Theorem 4.17 (domain of Gaussian attraction, Lévy, Feller, Khinchin)
Let €,&1,&, ... be i.i.d. nondegenerate random variables, and let ¢ be N(0,1).

Then an Y g<n(§p — mn) A ¢ for some constants a,, and m, iff the function
L(z) = E[¢%; |€] < ] varies slowly at oo, in which case we may take m,, =
E¢. In particular, the stated convergence holds with a, = n~'? and m,, =0
iff E€ =0 and BE€% = 1.

Even other so-called stable distributions may occur as limits, but the
conditions for convergence are too restrictive to be of much interest for ap-
plications. Our proof of Theorem 4.17 is based on the following result.

Lemma 4.18 (slow variation, Karamata) Let £ be a nondegenerate random
variable such that L(z) = E[€?; |€| < x| varies slowly at oo. Then so does the
function L, (x) = E[(§ —m)?% |€ —m| < 2] for every m € R, and moreover

lim 2 PE[€]; |¢] > 2)/L(x) =0, pe[0,2). (10)

Proof: Fix any constant 7 € (1,227?), and choose 7o > 0 so large that
L(2x) < rL(x) for all x > xy. For such an z, we get

STEEls 16> 0] = Y Bllel l6l/z € (21,2
ZnZOQ(p_mnE[Sz; |£‘/I c (271/ 2n+1]]

27202(”’2”(7’ —1)r"L(x)
(r—1)L(z)/(1 — 2P~ %r).

IA

IA

Now (10) follows, as we divide by L(z) and let x — oo and then r — 1.

In particular, we note that F|{|P < oo for all p < 2. If even F&* < oo,
then E(£ —m)? < oo, and the first assertion is obvious. If instead F&2 = oo,
we may write

Lin(z) = El¢* € —m| < 2] + mE[m — 2¢; [§ —m| < a.



74 Foundations of Modern Probability

Here the last term is bounded, and the first term lies between the bounds
L(z£+m) ~ L(z). Thus, L,,(z) ~ L(x), and the slow variation of L,, follows
from that of L. o

Proof of Theorem 4.17: Assume that L varies slowly at co. By Lemma
4.18 this is also true for the function L,,(z) = E[(£ — m)% | — m| > z],
where m = E¢, and so we may assume that £{ = 0. Now define

cn = 1Vsup{z > 0; nL(z) > 2*}, n €N,

and note that ¢, T co. From the slow variation of L it is further clear that
¢, < oo for all n and that, moreover, nL(c,) ~ c2. In particular, ¢, ~ nt/2
iff L(c,) ~ 1, that is, iff var(f) 1.

We shall verify the conditions of Theorem 4.15 with b = 0, ¢ = 1, and
&nj =&/, 7 < n. Beginning with (i), let ¢ > 0 be arbitrary, and conclude
from Lemma 4.18 that

Fip{lf\ > caf} - CiP{|§| > cpe}

nP{|¢/cn| >} ~ L(e) L(ce) — 0.
Recalling that E¢ = 0, we get by the same lemma
Sk n
nlBlE e /e <111 < " Eel 16 > e ~ PP L= AL g gy

L(cn)

which proves (ii). To obtain (iii), we note that in view of (11)

nvar(§/cn; [£/cal < 1] = 2 L(Cn) —n(E[/cn; €] < Cn])2 — 1

n

By Theorem 4.15 the required convergence follows with a,, = ¢;* and m,, = 0.

Now assume instead that the stated convergence holds for suitable con-
stants a, and m,. Then a corresponding result holds for the symmetrized
variables f 51,52, ... with constants a,/v/2 and 0, so we may assume that
c, Zkgn §k LN (. Here, clearly, ¢,, — oo and, moreover, ¢,11 ~ ¢,, since even

oty Yhen & 4 ¢ by Theorem 3.28. Now define for z > 0

T(z) = P{I¢| >z}, L(x)=EE;|{] <a], Ulx)=EE A2

By Theorem 4.15 we have nT(cae) — 0 for all € > 0, and also nc;2L(c,)
— 1. Thus, 2T (c,e)/L(c,) — 0, which extends by monotonicity to

Next define for any = > 0

T(x) = P{lg| > o}, Ule) = E(E* A a?).
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By Lemma 3.19 we have T'(z + |m|) < 27 (x) for any median m of £&. Fur-
thermore, by Lemmas 2.4 and 3.19 we get

0(x) = /0 T pLE st < 9 /O " PLAE = b = SU(x)2).

Hence, as x — o0,

L(2z) — L(z) < 42°T (z) < _ 82T (x — |~m|)
L(x) T U(x) —2*T(x) — 8-1U(2z) — 222T (x — |m])

— 0,

which shows that L is slowly varying.

Finally, assume that n="/237, ., & < ¢. By the previous argument with
¢n = n'/?, we get L(n'/?) — 2, which implies €2 = 2 and hence var(¢) = 1.
But then n=1/2 Y, (& — E€) < ¢, and by comparison E¢ = 0. O

We return to the general problem of characterizing the weak convergence
of a sequence of probability measures p, on R? in terms of the associated
characteristic functions fi,, or Laplace transforms fi,. Suppose that fi, or
[, converges toward some continuous limit ¢, which is not recognized as a
characteristic function or Laplace transform. To conclude that u, converges
weakly toward some measure p, we need an extended version of Theorem
4.3, which in turn requires a compactness argument for its proof.

As a preparation, consider the space M = M(R?) of locally finite mea-
sures on R%. On M we may introduce the vague topology, generated by the
mappings p — uf = [ fdu for all f € C}, the class of continuous functions
f: R4 - R, with compact support. In particular, y, converges vaguely to
w (written as p, — p) iff p, f — pf for all f € Cf. If the p, are probability
measures, then clearly pR? < 1. The following version of Helly’s selection
theorem shows that the set of probability measures on R? is vaguely relatively
sequentially compact.

Theorem 4.19 (vague sequential compactness, Helly) Any sequence of prob-
ability measures on RY has a vaguely convergent subsequence.

Proof: Fix any probability measures ji1, o, ... on R%, and let Fy, Fy,. ..
denote the corresponding distribution functions. Write Q for the set of ra-
tional numbers. By a diagonal argument, the functions F, converge on Q%
toward some limit G, along a suitable subsequence N’ C N, and we may
define

F(z) =inf{G(r); r € Q% r >z}, zeR% (12)

Since each F, has nonnegative increments, the same thing is true for G and
hence also for F'. From (12) and the monotonicity of G, it is further clear that
F is right-continuous. Hence, by Corollary 2.26 there exists some measure
on R? with u(z,y] = F(z,y] for any bounded rectangular box (z,y] C RY,
and it remains to show that u, — p along N'.
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Then note that F,(z) — F(z) at every continuity point = of F. By the
monotonicity of F' there exist some countable sets Dy, ..., Dy C R such that
Fis continuous on C' = D{ x - - - x D5. Then u,,U — pU for every finite union
U of rectangular boxes with corners in C', and by a simple approximation we
get for any bounded Borel set B C R?

pB° < liminf 1, B < limsup p, B < ub. (13)
n—00 n—00

For any bounded p-continuity set B, we may consider functions f € Cj
supported by B, and proceed as in the proof of Theorem 3.25 to show that
pinf = pf . Thus, pi, = p. m

If p, % p for some probability measures p,, on R? we may still have
puR? < 1, due to an escape of mass to infinity. To exclude this possibility, we
need to assume that (u,) be tight.

Lemma 4.20 (vague and weak convergence) For any probability measures
s f, - - on RE with p, — p for some measure p, we have uR? = 1 iff (u,,)
is tight, and then p, — p.

Proof: By a simple approximation, the vague convergence implies (13)
for every bounded Borel set B, and in particular for the balls B, = {z € R%
lz| <7}, 7> 0. If uR? = 1, then uB? — 1 as r — 0o, and the first inequality
shows that (f,,) is tight. Conversely, if (u,,) is tight, then limsup,, i, B, — 1,
and the last inequality yields yR? = 1.

Now assume that () is tight, and fix any bounded continuous function
f: R4 — R. For any r > 0, we may choose some g, € Cit with 15 < g, <1
and note that

ltinf — 1f| |t f = tinfgel + i for — nfge| + |10fgr — 1f|

lnfgr — pfgel + | f 1kt + 12) By

[VANVA

Here the right-hand side tends to zero as n — oo and then r — 00, so
tnf — pof. Hence, in this case p, — L. |

Combining the last two results, we may easily show that the notions
of tightness and weak sequential compactness are equivalent. The result is
extended in Theorem 14.3, which forms a starting point for the theory of
weak convergence on function spaces.

Proposition 4.21 (tightness and weak sequential compactness) A sequence
of probability measures on R? is tight iff every subsequence has a weakly
convergent further subsequence.

Proof: Fix any probability measures pq, to, ... on R?. By Theorem 4.19
every subsequence has a vaguely convergent further subsequence. If () is
tight, then by Lemma 4.20 the convergence holds even in the weak sense.
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Now assume instead that (u,) has the stated property. If it fails to be
tight, we may choose a sequence ny — co and some constant £ > 0 such that
tn, B > € for all k£ € N. By hypothesis there exists some probability mea-
sure p on R? such that ju,, — p along a subsequence N’ C N. The sequence
(ttn,; k € N') is then tight by Lemma 3.8, and in particular there exists some
r > 0 with p,, B < ¢ for all k € N'. For k > r this is a contradiction, and

the asserted tightness follows. O
We may now prove the desired extension of Theorem 4.3.

Theorem 4.22 (extended continuity theorem, Lévy, Bochner) Let p, s,
... be probability measures on R with f1,,(t) — p(t) for every t € R, where
the limit ¢ is continuous at 0. Then pu, — p for some probability mea-
sure u on R with i = ¢. A corresponding statement holds for the Laplace
transforms of measures on R%.

Proof: Assume that [, — ¢, where the limit is continuous at 0. As in
the proof of Theorem 4.3, we may conclude that (u,) is tight. Hence, by
Proposition 4.21 there exists some probability measure x on R? such that
i — p along a subsequence N’ C N. By continuity we get [, — fi along
N, so ¢ = [1, and by Theorem 4.3 the convergence u, — 4 extends to N.
The proof for Laplace transforms is similar. a

Exercises

1. Show that if £ and n are independent Poisson random variables, then
& 4+ n is again Poisson. Also show that the Poisson property is preserved
under convergence in distribution.

2. Show that any linear combination of independent Gaussian random
variables is again Gaussian. Also show that the class of Gaussian distribu-
tions is preserved under weak convergence.

3. Show that ¢,.(t) = (1 — t/r); is a characteristic functions for every
r > 0. (Hint: Compute the Fourier transform }/;T of the function ¢,.(t) =
1{|t| < r}, and note that the Fourier transform v? of ¢? is integrable. Now
use Fourier inversion.)

4. Let ¢ be a real, even function that is convex on R and satisfies p(0) =
1 and ¢(o0) € [0,1]. Show that ¢ is the characteristic function of some
symmetric distribution on R. In particular, o(t) = e~ is a characteristic
function for every ¢ € [0,1]. (Hint: Approximate by convex combinations of
functions ¢, as above, and use Theorem 4.22.)

5. Show that if i is integrable, then p has a bounded and continuous

density. (Hint: Let ¢, be the triangular density above. Then (,) = 27w p,,
and so [ e ™[, (t)dt = 27 [ o, (x — u)p(dx). Now let r — 0.)
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6. Show that a distribution p is supported by some set aZ + b iff || = 1
for some t # 0.

7. Give an elementary proof of the continuity theorem for generating
functions of distributions on Z,. (Hint: Note that if p, > u for some
distributions on R, then f, — & on (0,00).)

8. The moment-generating function of a distribution p on R is given by
fy = [e“u(dz). Assuming fi; < oo for all ¢ in some nondegenerate interval
I, show that [ is analytic in the strip {z € C; Rz € I°}. (Hint: Approximate
by measures with bounded support.)

9. Let w, p1, fto, . .. be distributions on R with moment-generating func-
tions fi, fi1, fi2, . .. such that i, — & < oo on some nondegenerate interval
I. Show that p, — p. (Hint: If ju, — v along some subsequence N, then
fin, — v on I° along N’, and so 7 = ji on I. By the preceding exercise we get
vR=1and &= . Thus, v =pu.)

10. Let g and v be distributions on R with finite moments [ z"u(dz) =
[ a"v(dx) = m,, where 3, t"|m,|/n! < co for some t > 0. Show that p = v.
(Hint: The absolute moments satisfy the same relation for any smaller value
of t, so the moment-generating functions exist and agree on (—t,t).)

11. For each n € N, let p,, be a distribution on R with finite moments m#,

k € N, such that lim,, m* = a;, for some constants a;, with 3, t*|a.|/k! < oo
for some t > 0. Show that p,, — p for some distribution g with moments a.
(Hint: Each function z* is uniformly integrable with respect to the measures
fn. In particular, (u,) is tight. If 4, — v along some subsequence, then v

has moments ay,.)

12. Given a distribution g on R x R, introduce the mixed transform
o(s,t) = [e"* Wyu(dr dy), where s € R and ¢ > 0. Prove versions for ¢ of
the continuity Theorems 4.3 and 4.22.

13. Consider a null array of random vectors &,,; = ( }lj, e ,fffj) in Zi, let

€1 ..., &% be independent Poisson variables with means ¢, ...,cq, and put
£ = (€...,¢%. Show that 3;&,; % € iff ¥, P{e}; = 1} — ¢; for all k
and >; P{>"; fﬁj > 1} — 0. (Hint: Introduce independent random variables

TIij 4 £F .. and note that i &nj N § it 325 7 N )

njs
14. Consider some random variables £ Ll n with finite variance such that
the distribution of (£,7) is rotationally invariant. Show that £ is centered
Gaussian. (Hint: Let &1, &, ... be i.i.d. and distributed as &, and note that
n=Y2 Y <, & has the same distribution for all n. Now use Proposition 4.9.)

15. Prove a multivariate version of the Taylor expansion in Lemma 4.10.

16. Let p have a finite nth moment m,,. Show that i is n times contin-

uously differentiable and satisfies ﬂ(()") = i"m,. (Hint: Differentiate n times

under the integral sign.)
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17. For p and m,, as above, show that ;1(()2") exists iff mo, < co. Also,

characterize the distributions such that ﬂanil) exists. (Hint: For fij proceed
as in the proof of Proposition 4.9, and use Theorem 4.17. For /i use Theorem
4.16. Extend by induction to n > 1.)

18. Let p be a distribution on R, with moments m,. Show that (" =

(=1)"m,, whenever either side exists and is finite. (Hint: Prove the statement
for n =1, and extend by induction.)

19. Deduce Proposition 4.9 from Theorem 4.12.
20. Let the random variables £ and &,,; be such as in Theorem 4.12, and
assume that Y, E|¢,;|° = 0 for some ¢ > 2. Show that >, &,; e,

21. Extend Theorem 4.12 to random vectors in R?, with the condition
¥, E&2; — 1 replaced by 32 cov(&n;) — a, with € as N(0,a), and with &2
replaced by [&,;]?. (Hint: Use Corollary 4.5 to reduce to one dimension.)

22. Show that Theorem 4.15 remains true for random vectors in R?, with
var[€,;; |€n;] < 1] replaced by the corresponding covariance matrix. (Hint:
If a,aq, a9, ... are symmetric, nonnegative definite matrices, then a,, — a iff
w'a,u — v'au for all u € R%. To see this, use a compactness argument. )

23. Show that Theorems 4.7 and 4.15 remain valid for possibly infinite
row-sums 3 ; &,;. (Hint: Use Theorem 3.17 or 3.18 together with Theorem
3.28.)

24. Let £,&,&, ... be iid. random variables. Show that n='/2%,_, &
converges in probability iff £ = 0 a.s. (Hint: Use condition (iii) in Theorem
4.15.)

25. Let &1,&, ... be i.id. u, and fix any p € (0,2). Find a g such that
n~YP S & — 0 in probability but not a.s.

26. Let &, &, ... beii.d., and let p > 0 be such that n= /7?3, .. & — 01in
probability but not a.s. Show that limsup, n="?| <, &| = 0o a.s. (Hint:
Note that E|&|P = o0.)

27. Give an example of a distribution with infinite second moment in
the domain of attraction of the Gaussian law, and find the corresponding
normalization.



Chapter 5
Conditioning and Disintegration

Conditional expectations and probabilities; reqular conditional dis-
tributions; disintegration theorem; conditional independence;
transfer and coupling; Daniell-Kolmogorov theorem; extension by
conditioning

Modern probability theory can be said to begin with the notions of condi-
tioning and disintegration. In particular, conditional expectations and dis-
tributions are needed already for the definitions of martingales and Markov
processes, the two basic dependence structures beyond independence and
stationarity. Even in other areas and throughout probability theory, condi-
tioning is constantly used as a basic tool to describe and analyze systems
involving randomness. The notion may be thought of in terms of averaging,
projection, and disintegration—viewpoints that are all essential for a proper
understanding.

In all but the most elementary contexts, one defines conditioning with
respect to a o-field rather than a single event. In general, the result of the
operation is not a constant but a random variable, measurable with respect
to the given o-field. The idea is familiar from elementary constructions of
the conditional expectation E[|n], in cases where (£,7n) is a random vector
with a nice density, and the result is obtained as a suitable function of 7.
This corresponds to conditioning on the o-field F = a(n).

The simplest and most intuitive general approach to conditioning is via
projection. Here E[¢|F] is defined for any € € L? as the orthogonal Hilbert
space projection of £ onto the linear subspace of F-measurable random
variables. The L2?-version extends immediately, by continuity, to arbitrary
¢ € L'. From the orthogonality of the projection one gets the relation
E( — E[|F])¢ = 0 for any bounded, F-measurable random variable (.
This leads in particular to the familiar averaging characterization of E[¢|F]
as a version of the density d(£ - P)/dP on the o-field F, the existence of
which can also be inferred from the Radon-Nikodym theorem.

The conditional expectation is defined only up to a null set, in the sense
that any two versions agree a.s. It is then natural to look for versions of
the conditional probabilities P[A|F] = E[14]F] that combine into a random
probability measure on 2. In general, such regular versions exist only for
A restricted to suitable sub-o-fields. The basic case is when ¢ is a random
element in some Borel space S, and the conditional distribution P[¢ € -|F]

80
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may be constructed as an F-measurable random measure on S. If we further
assume that F = o(n) for a random element 7 in some space T', we may write
P[¢ € B|n] = p(n, B) for some probability kernel u from T to S. This leads
to a decomposition of the distribution of (£,n) according to the values of 7.
The result is formalized in the disintegration theorem—a powerful extension
of Fubini’s theorem that is often used in subsequent chapters, especially in
combination with the (strong) Markov property.

Using conditional distributions, we shall further establish the basic trans-
fer theorem, which may be used to convert any distributional equivalence
& 4 f(n) into a corresponding a.s. representation £ = f(7) with a suitable
N 4 7. From the latter result, one easily obtains the fundamental Daniell-
Kolmogorov theorem, which ensures the existence of random sequences and
processes with specified finite-dimensional distributions. A different ap-
proach is required for the more general Tonescu Tulcea extension, where the
measure is specified by a sequence of conditional distributions.

Further topics treated in this chapter include the notion of conditional in-
dependence, which is fundamental for both Markov processes and exchange-
ability and also plays an important role in Chapter 18, in connection with
SDEs. Especially useful in those contexts is the elementary but powerful
chain rule. Let us finally call attention to the local property of conditional
expectations, which in particular leads to simple and transparent proofs of
the strong Markov and optional sampling theorems.

Returning to our construction of conditional expectations, let us fix a
probability space ({2, .4, P) and consider an arbitrary sub-o-field F C A. In
L* = L?(A) we may introduce the closed linear subspace M, consisting of all
random variables 7 € L? that agree a.s. with some element of L?(F). By the
Hilbert space projection Theorem 1.34, there exists for every ¢ € L? an a.s.
unique random variable n € M with ¢ —n 1 M, and we define E¥¢ = E[¢|F]
as an arbitrary F-measurable version of 7.

The L2-projection E7 is easily extended to L', as follows.

Theorem 5.1 (conditional expectation, Kolmogorov) For any o-field F C
A there exists an a.s. unique linear operator EZ: L' — LY(F) such that

(i) BE7¢ Al =BG Al ¢e L, Ae F.

The following additional properties hold whenever the corresponding expres-
stons exist for the absolute values:

(i) &€ > 0 implies B¢ >0 a.s.;

(iif) B|E7¢| < El¢l;

(iv) 0 <&, 1 & implies EFE, 1 E7€ a.s.;

(v) ET¢n = EE7n a.s. when & is F-measurable;
(vi) E(§E"n) = E(nE7¢) = E(E7¢- E7n);
(vii) BXE9¢ = B¥¢ a.s. for all F CG.



82 Foundations of Modern Probability

In particular, we note that £¥¢ = € a.s. iff € has an F-measurable version
and that E7¢ = E¢ as. when E1LF. We shall often refer to (i) as the
averaging property, to (ii) as the positivity, to (iii) as the L-contractivity, to
(iv) as the monotone convergence property, to (v) as the pull-out property, to
(vi) as the self-adjointness, and to (vii) as the chain rule. Since the operator
E7 is both self-adjoint by (vi) and idempotent by (vii), it may be thought
of as a generalized projection on L.

The existence of E¥ is an immediate consequence of the Radon—Nikodym
Theorem A1.3. However, we prefer the following elementary construction
from the L2-version.

Proof of Theorem 5.1: First assume that ¢ € L?, and define E7¢ by
projection as above. For any A € F we get £ — EZ¢ 1 14, and (i) follows.
Taking A = {EF¢ > 0}, we get in particular

E|ET¢| = B[ET¢ Al — E[E7¢ A7) = B[ Al — E[§ A7 < B¢,

which proves (iii). Thus, the mapping E¥ is uniformly L'-continuous on L.
Also note that L? is dense in L' by Lemma 1.11 and that L' is complete
by Lemma 1.31. Hence, EZ extends a.s. uniquely to a linear and continuous
mapping on L'.

Properties (i) and (iii) extend by continuity to L', and from Lemma 1.24
we note that £¥¢ is a.s. determined by (i). If € > 0, it is clear from (i) with
A = {E7¢ <0} together with Lemma 1.24 that E¥¢ > 0, which proves (ii).
If0 <&, 1& then &, — € in L by dominated convergence, so by (iii) we get
E7¢, — E7¢ in LY. Now the sequence (E7¢,) is a.s. nondecreasing by (ii),
so by Lemma 3.2 the convergence remains true in the a.s. sense. This proves
(iv).

Property (vi) is obvious when £,1 € L% and it extends to the general
case by means of (iv). To prove (v), we note from the characterization in (i)
that E7¢ = ¢ a.s. when ¢ is F-measurable. In the general case we need to
show that

El¢n; Al = EETn; A], A€ F,

which follows immediately from (vi). Finally, property (vii) is obvious for
¢ € L? since L*(F) C L*(G), and it extends to the general case by means of
(iv). |

The next result shows that the conditional expectation E¥¢ is local in
both ¢ and F, an observation that simplifies many proofs. Given two o-
fields F and G, we say that F =G on Aif Ac FNGand ANF=ANG.

Lemma 5.2 (local property) Let the o-fields F,G C A and functions £,n €
L' be such that F = G and € = 1 a.s. on some set A € FNG. Then
E7¢ = E9% a.s. on A.
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Proof: Since 1,E¥¢ and 1,E9n are F N G-measurable, we get B = AN
{E7¢ > E9) € FN G, and the averaging property yields

E[E”¢; B] = El&; B] = Eli: B] = E[E“n; B).

Hence, E7¢ < EY) a.s. on A by Lemma 1.24. Similarly, 9y < E¥¢ as.
on A. O

The conditional probability of an event A € A, given a o-field F, is defined
as
PFA=FE"1, or P[A|F]=E[14F], AcA

Thus, P7A is the a.s. unique random variable in L'(F) satisfying
E[P”A;B]= P(ANB), B¢cF.

Note that P7A = PA a.s. iff AILF and that P7A = 1, a.s. iff A agrees a.s.
with a set in F. From the positivity of EZ we get 0 < P¥A < 1 a.s., and by
the monotone convergence property it is further seen that

PFUnAn = ZnPfAn a.s., A, Ay, ...€ A disjoint. (1)

Here the exceptional null set may depend on the sequence (A,,), so P¥ is not
a measure in general.

If  is a random element in some measurable space (S,S), then condi-
tioning on 7 is defined as conditioning with respect to the induced o-field
o(n). Thus,

En¢ = E”(mf, P1A = Pr 4
or

Elgln] = Elglo(n)l,  PlAIn] = P[Alo(n)].

By Lemma 1.13, the n-measurable function E"7¢ may be represented in the
form f(n), where f is a measurable function on S, determined P o n~l-a.e.
by the averaging property

E[f(n)ineBl=E[§;neB], BeS.

In particular, we note that f depends only on the distribution of (&,n).
The situation for P"7A is similar. Conditioning with respect to a o-field F is
clearly the special case when 7 is the identity mapping from (€2, A4) to (Q, F).
Motivated by (1), we proceed to examine the existence of measure-valued
versions of the functions P” and P7. Then recall from Chapter 1 that a kernel
between two measurable spaces (T, T) and (S, S) is a function p: TxS — R
such that u(t, B) is T-measurable in ¢ € T for each B € S and a measure in
B € S for each t € T. Say that p is a probability kernel if u(t,S) = 1 for all
t. Kernels on the basic probability space €2 are called random measures.
Now fix a o-field F C A and a random element £ in some measurable
space (S,8). By a regular conditional distribution of &, given F, we mean
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a version of the function P[§ € - |F] on Q x S which is a probability kernel
from (2, F) to (S,S), hence an F-measurable random probability measure
on S. More generally, if n is another random element in some measurable
space (T, T), a regular conditional distribution of &, given 7, is defined as a
random measure of the form

u(n, B) = P[¢ € B|n] as., BE€S, (2)

where p is a probability kernel from 7" to S. In the extreme cases when ¢ is
F-measurable or independent of F, we note that P[{ € B|F] has the regular
version 1{{ € B} or P{{ € B}, respectively. The general case requires some
regularity conditions on the space S.

Theorem 5.3 (conditional distribution) Fiz a Borel space S and a measur-
able space T, and let £ and n be random elements in S and T, respectively.
Then there ezists a probability kernel v from T to S satisfying Pl € - |n] =
w(n,-) a.s., and p is unique a.e. Pon=t.

Proof: We may assume that S € B(R). For every r € Q we may choose
some measurable function f. = f(-,r): T — [0, 1] such that

f(n,r) =PlE<rh] as., reQ. 3)

Let A be the set of elements ¢ € T such that f(¢,r) is nondecreasing in
r € Q with limits 1 and 0 at +0c0. Since A is specified by countably many
measurable conditions, each of which holds a.s. at 7, we have A € T and
n € A a.s. Now define

F(t,z) =140)inf,o, f(t,7) + 1ac(t)1{z > 0}, z€R, teT,

and note that F(¢,-) is a distribution function on R for every ¢ € T'. Hence,
there exists some probability measures m(t,-) on R with

m(t, (—o0,z]) = F(t,z), ze€R, teT.

The function F(¢,z) is clearly measurable in ¢ for each x, and by a monotone
class argument it follows that m is a kernel from T to R.
By (3) and the monotone convergence property of E", we have

m(n, (—oo,x]) = F(n,z) = P[{ < z|n] as., z€R.

Using a monotone class argument based on the a.s. monotone convergence
property, we may extend the last relation to

m(n, B) = Pl¢ € Bln] as., B e B(R). (4)

In particular, we get m(n, S¢) = 0 a.s., and so (4) remains true on S = BN S
with m replaced by the kernel

pt, ) =m(t, )1 {m(t,S) =1} + 6, 1{m(t,5) < 1}, teT,
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where s € S is arbitrary. If p/ is another kernel with the stated property,
then

/~L(777 (—OO,TD = P[f < 7n|77] = /1‘/(777 (—OO/I“]) as., reQ,

and a monotone class argument yields u(n,-) = ¢/(n, ) a.s. ad

We shall next extend Fubini’s theorem, by showing how ordinary and con-
ditional expectations can be computed by integration with respect to suitable
conditional distributions. The result may be regarded as a disintegration of
measures on a product space into their one-dimensional components.

Theorem 5.4 (disintegration) Fiz two measurable spaces S and T, a o-field
F C A, and a random element & in S such that P[{ € -|F] has a regular
version v. Further consider an F-measurable random element n in T and a
measurable function f on S x T with E|f(£,n)| < co. Then

EIf(En)|F] = [vids)f(s.m) as. 5)

The a.s. existence and F-measurability of the integral on the right should
be regarded as part of the assertion. In the special case when F = o(n) and
P[¢ € -|n] = p(n, ) for some probability kernel u from T to S, (5) becomes

B (€l = [ uln.ds)f(s,n) as (6)

Integrating (5) and (6), we get the commonly used formulas

Ef(&.n) = E [ v(ds)f(s.) = B [ p(n.ds)f (s.n). ™

If £1ln, we may take pu(n,-) = Po &1 and (7) reduces to the relation in
Lemma 2.11.

Proof of Theorem 5.4: If B € § and C € T, we may use the averaging
property of conditional expectations to get

P{¢eB,neC}

E[P[§ € B|F);ne C] = E[vB;n € C]
= E/Z/(ds)l{s € B, neC},

which proves the first relation in (7) for f = 1pxc. The formula extends,
along with the measurability of the inner integral on the right, first by a
monotone class argument to all measurable indicator functions, and then by
linearity and monotone convergence to any measurable function f > 0.

Now fix a measurable function f: S x T — R, with Ef(§,n) < oo,
and let A € F be arbitrary. Regarding (1, 14) as an F-measurable random
element in T x {0,1}, we may conclude from (7) that

ELf(€ )i Al = B [v(ds)f(s,m)1a, A€ F,
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This proves (5) for f > 0, and the general result follows by taking differ-
ences. a

Applying (7) to functions of the form f(£), we may extend many prop-
erties of ordinary expectations to a conditional setting. In particular, such
extensions hold for the inequalities of Jensen, Holder, and Minkowski. The
first of those implies the LP-contractivity

IB7Ell, < llEll,, €€ L, p>1.

Considering conditional distributions of entire sequences (£,&1,&,...), we
may further derive conditional versions of the basic continuity properties of
ordinary integrals.

The following result plays an important role in Chapter 6.

Lemma 5.5 (uniform integrability, Doob) For any & € L', the conditional
expectations E[¢|F], F C A, are uniformly integrable.

Proof: By Jensen’s inequality and the self-adjointness property,
B[|E7¢|; A] < E[ET[¢]; A] = B[[¢|P7A], A€ A,

and by Lemma 3.10 we need to show that this tends to zero as PA — 0,
uniformly in F. By dominated convergence along subsequences, it is then
enough to show that P*» A, B0 for any o-fields F,, C A and sets A, € A
with PA,, — 0. But this is clear, since EP"r A, = PA, — 0. O

Turning to the topic of conditional independence, consider any sub-o-
fields Fi,...,F,, G C A. Imitating the definition of ordinary independence,
we say that Fi,...,F, are conditionally independent, given G, if

PgﬂkSan:HkSnPgBk a.s., _BkG_?'—k7 k:17""n'

For infinite collections of o-fields F;, t € T, the same property is required
for every finite subcollection Fy,, ..., F, with distinct indices t4,...,t, € T.
The relation 1Lg will be used to denote pairwise conditional independence,
given some o-field G. Conditional independence involving events A; or ran-
dom elements &, t € T, is defined as before in terms of the induced o-fields
a(Ay) or o(&;), respectively, and the notation involving L carries over to this
case.

In particular, we note that any F-measurable random elements &; are
conditionally independent, given F. If the £ are instead independent of F,
then their conditional independence, given F, is equivalent to the ordinary
independence between the &. The regularization theorem shows that any
general statement or formula involving conditional independencies between
countably many random elements in some Borel space remains true in a
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conditional setting. For example, as in Lemma 2.8, the o-fields F, Fs, ...
are conditionally independent, given G, iff

(Fi,... . F) |l Fuyr, neN.
g

Much more can be said in the conditional case, and we begin with a fun-
damental characterization. If nothing else is said, F, G, ... with or without
subscripts denote sub-o-fields of A.

Proposition 5.6 (conditional independence, Doob) For any o-fields F, G,
and ‘H, we have F 1 gH iff

P[H|F,G] = P[H|G] a.s., HeH. (8)
Proof: Assuming (8) and using the chain and pull-out properties of con-
ditional expectations, we get for any F' € F and H € ‘H
PY(FNH) = EYP™Y9(FNH)=EP"IH;F)
E9[POH: F| = (POF) (POH),

which shows that F1LgH. Conversely, assuming F_ll g and using the chain

and pull-out properties, we get for any F € F, G € G, and H € H
E[P'H; FNG] E[(PF)(PYH); G|

E[P(FNH);G]=P(FNGNH).

By a monotone class argument, this extends to
E[PH;A]=PHNA), AcFVG,

and (8) follows by the averaging characterization of P79 H. m|

From the last result we may easily deduce some further useful proper-
ties. Let G denote the completion of G with respect to the basic o-field A,
generated by G and the family N ={N C A; A€ A, PA = 0}.

Corollary 5.7 For any o-fields F, G, and H, we have
(i) FUgH iff FUG(G,H);
(i) FlgF iff FCgG.
Proof: (i) By Proposition 5.6, both relations are equivalent to
P[F|G,H] = P[F|G] as., F€F.
(i) If F U gF, then by Proposition 5.6
1p = P[F|F,G] = P[F|G] as., F€F,
which implies F C G. Conversely, the latter relation yields
P[F|G] = P[F|G] = 1p = P|F|F,G] as., FeF,
and so F 1L gF by Proposition 5.6. a

The following result is often applied in both directions.
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Proposition 5.8 (chain rule) For any o-fields G, H, and F1, Fa, ..., these
conditions are equivalent:

(i) HJEL(]-'I,]-'Q,...);

@U?%f , Fu 20,
[ P n

Proof: Assuming (i), we get by Proposition 5.6 for any H € H and n > 0
PlH|G, F,...,F,) = P[H|G) = PIH|G, F1, ..., Fni1l,

and (ii) follows by another application of Proposition 5.6.
Now assume (ii) instead, and conclude by Proposition 5.6 that for any
HeH
P[H|g7.7:17‘..,.7:n]:P[H|g.,.7:1,...7.7:n+1}, TZZO

Summing over n < m gives
P[H|G] = P[H|G, Fr, ..., Ful, m>1,

so by Proposition 5.6
HJ_L(fl,...,]:m), le,
g

which extends to (i) by a monotone class argument. O

The last result is even useful for establishing ordinary independence. In
fact, taking G = {0, Q} in Proposition 5.8, we note that H_1L(Fy, Fo,...) iff

Our next aim is to show how regular conditional distributions can be used
to construct random elements with desired properties. This may require
an extension of the basic probability space. By an extension of (2,4, P)
we mean a product space (€, 4) = (2 x S, A® S), equipped with some
probability measure P satisfying ]5( x §) = P. Any random element £ on
Q may be regarded as defined on Q). Thus, we may formally replace £ by the
random element &(w, s) = &(w), which clearly has the same distribution. For
extensions of this type, we may retain our original notation and write P and
¢ instead of P and é

We begin with an elementary extension suggested by Theorem 5.4. The
result is needed for various constructions in Chapter 10.

Lemma 5.9 (extension) Fiz a probability kernel yn between two measurable
spaces S and T, and let & be a random element in S. Then there exists a
random element n in T, defined on some extension of the original probability
space Q, such that P[n € -|&] = p(€,-) a.s. and, moreover, nll¢:C for any
random element ¢ on 2.
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Proof: Letting T be the o-field in 7', we may put (Q,A) = (OxT, A2 T),
and define a probability measure P on {2 by

PA= E/ La( (e, dt), Ae A

Then clearly P(-xT) = P, and the random element 7(w, t) = t on { satisfies
Pln € -|A] = u(§,-) a.s. In particular, we get nll¢A by Proposition 5.6, and
so nll¢C. O

For most constructions we need only a single randomization variable.
By this we mean a U(0,1) random variable ¢ that is independent of all
previously introduced random elements and o-fields. The basic probability
space is henceforth assumed to be rich enough to support any randomization
variables we may need. This involves no serious loss of generality, since we
can always get the condition fulfilled by a simple extension of the space. In
fact, it suffices to take

Q=0x[0,1, A=A®B[0,1], P=Px),

where A denotes Lebesgue measure on [0, 1]. Then d(w,t) = ¢ is U(0,1) on
Q) and ¥ 1L A. By Lemma 2.21 we may use ¥ to produce a whole sequence of
independent randomization variables 1, ¥, . .. if required.

The following basic result shows how a probabilistic structure can be car-
ried over from one context to another by means of a suitable randomization.
Constructions of this type are frequently employed in the sequel.

Theorem 5.10 (transfer) Fiz any measurable space S and Borel space T,
and let & 4 é and n be random elements in S and T, respectively. Then

there exists a random element 7 in T with (£,7) 2 (&,m). More precisely,
there exists a measurable function f: S x [0,1] — T such that we may take
7= f(&,9) whenever 91L.€ is U(0,1).

Proof: By Theorem 5.3 there exists a probability kernel x4 from S to T
satisfying

u(& B) = Pln e Blg], BeB0,1],

and by Lemma 2.22 we may further choose a measurable function f: S x
[0,1] = T such that f(s,9) has distribution u(s,-) for every s € S. Define

7= f(£,9). Using Lemmas 1.22 and 2.11 together with Theorem 5.4, we get
for any measurable function ¢g: S x [0,1] — R,

By(€ JE9) = E [ g(&. f(&.w)du
E [ (& tulc.dt) = Bg(c.m),

Eg(&. 1)

which shows that (€,7) < (& n). O
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The following version of the last result is often useful to transfer repre-
sentations of random objects.

Corollary 5.11 (stochastic equations) Fix two Borel spaces S and T, a
measurable mapping f: T — S, and some random elements £ in S and n

i T with & 4 f(n). Then there exists a random element 1) 2 n in T with
§=f(n) as

Proof: By Theorem 5.10 there exists some random element 7 in 7" with

(&:77) = (f(n),m). In particular, i £ y and, moreover, (&, f()) < (f(n), f(n))-
Since the diagonal in S? is measurable, we get P{¢ = f(7)} = P{f(n) =

Fm)} =1, and so € = f(7]) ass. 0
The last result leads in particular to a useful extension of Theorem 3.30.

Corollary 5.12 (extended Skorohod coupling) Let f, fi1, fa,... be measur-
able functions from a Borel space S to a Polish space T, and let £,£1,&, . ..

be random elements in S with f,(&,) KA f(&). Then there exist some random

elements € £ ¢ and &, 2 &, with ful&n) = F(E) aus

Proof: By Theorem 3.30 there exist some 7 = (&) and nn fn(fn) Wlth
n. — 1 a.s. By Corollary 5.11 we may further choose some f § and §n §"
such that a.s. f(€) = 5 and f,(&,) = nn for all n. But then f,(&,) — f(£)
a.s. O

The next result clarifies the relationship between randomizations and
conditional independence. Important applications appear in Chapters 7, 10,
and 18.

Proposition 5.13 (conditional independence and randomization) Let &, n,
and ¢ be random elements in some measurable spaces S, T, and U, respec-
tively, where S is Borel. Then §1L,¢ iff £ = f(n,9) a.s. for some measurable
function f: T x [0,1] = S and some U(0,1) random variable ¥ 1L (n, ().

Proof: First assume that £ = f(n,9) a.s., where f is measurable and
91 (n, (). Then Proposition 5.8 yields ¥1L,¢, and so (n, ¥)1L,¢ by Corollary
5.7, which implies £ 1L,,C.

Conversely, assume that £11,(, and let 9_1L(n, ¢) be U(0,1). By Theorem
5.10 there exists some measurable function f:T x[0,1] —> S such that the
random element & = f(n,9) satisfies ¢ L f and (f 77) (&,m). By the
sufficiency part, we further note that §J_Ln( Hence, by Proposition 5.6,

PlEe-In¢ =P |n=PEe-|n=PEe-|n,

and so (é,n,g) 4 (&,m,¢). By Theorem 5.10 we may choose some 9L
with (&,7.¢,0) £ (£7,¢,9). In particular, J1L(5,¢) and (&, f(n,7))

> <
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(€, f(n,0)). Since € = f(n,9) and the diagonal in S2 is measurable, we
get € = f(n,V) a.s., and so the stated condition holds with ¢ in place of ¥. O

We shall now use the transfer theorem to construct random sequences or
processes with given finite-dimensional distributions. Given any measurable
spaces S1, 59, ..., a sequence of probability measures p, on S; X «-- X S,
n € N, is said to be projective if

:un+1(' X SnJrl) = lp, N E N. (9)

Theorem 5.14 (ezistence of random sequences, Daniell) Given any Borel
spaces S1, S, ... and a projective sequence of probability measures i, on Sy X

- X Sp, n € N, there exist some random elements &, in S,, n € N, such
that (&1, .. .,&,) has distribution u, for each n.

Proof By Lemma 2.21 there exist on the Lebesgue unit interval some
iid. U(0,1) random variables ¥;,3s,..., and we may construct &;,&s,. ..
recursively from the ,,. Then assume for some n > 0 that &;,...,&, have
already been constructed as measurable functions of ¥4,...,d, with joint
distribution p,. Let ny,...,n,+1 be arbitrary with joint distribution pu,.
The projective property yields (&1,...,&) = (11, ...,m.), so by Theorem
5.10 we may form &, as a measurable function of &, ..., &,, 9,41 such that
&1y oy &nt1) < (M1, -+, Mas1). This completes the recursion. O

The last theorem may be used to extend a process from bounded to
unbounded domains. We state the result in an abstract form, designed to
fulfill our needs in Chapters 16 and 21. Let I denote the identity mapping
on any space.

Corollary 5.15 (extension of domain) Fiz any Borel spaces S,S1,Ss, ...
and some measurable mappings 7,: S — S, and 7 : S, — Sk, k < n, such
that

Ty =mpom,, k<m<n. (10)
Let S denote the set of sequences (s, Sg,...) € Sy xSy X+ -+ with s, = s, for
all k < n, and assume that there exists some measurable mapping h: S — S
with (my,m,...)oh =1 on S. Then for any probability measures p, on S,
with pi, o (7)~1 = pg for all k < n, there exists some probability measure
on S with pom, ' = p, for alln.

Proof: Introduce the measures
fin = fino (77, ...,7") 7, neN, (11)
and conclude from (10) and the relation between the p, that

fin1(- X Sng1) = pgro (apth o a7

n n\—1
7T-17"'777-71)

=
3
T+
=
o
—
N
33
F
_
~—
L
o -
—~
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By Theorem 5.14 there exists some measure fi on S; X Sg X - -+ with
fo(Ty, ..., ®n) b =fin, nEN, (12)

where 71,79, ... denote the coordinate projections in S} x Sy X ---. From
(10) through (12) it is clear that i is restricted to S, which allows us to define
i = jio h™!. It remains to note that

pomt =jo(mh)t =pomt =i om,t = ppo(my) T = . O

We shall often need an extension of Theorem 5.14 to processes on arbi-
trary index sets T'. For any collection of spaces S;, t € T, define S; = X175,
I C T. Similarly, if each S; is endowed with a o-field Sy, let S; denote the
product o-field ®,¢; S;. Finally, if each & is a random element in S;, write
&; for the restriction of the process (&) to the index set 1.

Now let 7' and T denote the classes of finite and countable subsets of T,
respectively. A family of probability measures uy, I € T or T, is said to be
projective if

p(-x Spg) =pr, I CJ in7T orT. (13)

Theorem 5.16 (existence of processes, Kolmogorov) For any collection of
Borel spaces Sy, t € T, consider a projective family of probability measures
ur on Sy, I € T. Then there exist some random elements & in Sy, t €T,
such that & has distribution py for every I € T.

Proof: Recall that the product o-field St in St is generated by all coor-
dinate projections 7y, t € T, and hence consists of all countable cylinder sets
B x Spy, B € Sy, U €T. For each U € T, there exists by Theorem 5.14
some probability measure py on Sy satisfying

po (- x Sone) = pr, I € U,
and by Proposition 2.2 the family py, U € T, is again projective. We may
then define a function p: Sy — [0, 1] by

u(- x Sr) = po, U ET.

To check the countable additivity of u, consider any disjoint sets Ay, Ag, ... €
Sr. For each n we have A, = B, x Sp\p, for some U, € T and B, € Sy,.
Writing U = U, U, and C,, = B,, x Siny,,, we get

MUnAn = pu Uncn = ZHMUC" = ZnﬂAn«

The process £ = (&) may now be defined as identity mapping on the proba-
bility space (St,Sr, ). m]

If the projective sequence in Theorem 5.14 is defined recursively in terms
of a sequence of conditional distributions, then no regularity condition is
needed on the state spaces. For a precise statement, define the product p® v
of two kernels 4 and v as in Chapter 1.
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Theorem 5.17 (extension by conditioning, Tonescu Tulcea) For any mea-
surable spaces (Sn,S,) and probability kernels p, from Sy x +-+ x S,_1 to
Sn, n € N, there exist some random elements &, in S,, n € N, such that
(&1, ..., &) has distribution py ® - -+ & py, for each n.

Proof: Put F,, =S ®---®8,, and T,, = Sy, 11 X Spyo X -+ -, and note that
the class C = U, (F, x T),) is a field in Ty generating the o-field F,,. We may
define an additive function p on C by

M(A XTn) = (M1®®MH)A7 Aej:na n EN, (14)

which is clearly independent of the representation C' = A x T,,. We need
to extend p to a probability measure on F,. By Carathéodory’s extension
Theorem Al.1, it is then enough to show that x is continuous at (.

For any sequence Cp,Cs,... € C with C,, | §), we need to show that
nC, — 0. Renumbering if necessary, we may assume for each n that C, =
A, x T, with A, € F,,. Now define

o=t ® - @ pn)la,, k<n, (15)

with the understanding that f = 14, for k = n. By Lemma 1.38 (i) and
(i), each fJ' is an Fp-measurable function on Sy x -+ x Sk, and from (15)
we note that

e =menfin, 0<k<n. (16)

Since C), | @, the functions f}* are nonincreasing in n for fixed k, say with
limits g;. By (16) and dominated convergence,

Ok = Mk+19k+1, Kk =>0. (17)

Combining (14) and (15), we get uC, = f§ | go. If go > 0, then by (17)
there exists some s; € S; with g;(s;) > 0. Continuing recursively, we may
construct a sequence § = (s, Sg,...) € Ty such that g,(s1,...,s,) > 0 for
each n. Then

1e, (3) =1a,(81,--8n) = fr (81, -, 80) = gn(S1, ..., 8n) >0,

and so 5 € N, C,, which contradicts the hypothesis C,, | #. Thus, gy = 0,
which means that uC,, — 0. a

As a simple application, we may deduce the existence of independent ran-
dom elements with arbitrary distributions. The result extends the elementary
Theorem 2.19.

Corollary 5.18 (infinite product measures, Lomnicki and Ulam) For any
collection of probability spaces (S, St, i), t € T, there exist some independent
random elements & in S; with distributions p,, t € T'.



94 Foundations of Modern Probability

Proof: For any countable subset I C T, the associated product measure
1 = Quer i exists by Theorem 5.17. Now proceed as in the proof of Theo-
rem 5.16. O

Exercises

1. Show that (€,7) £ (¢',n) iff P[¢ € Bly] = P[¢’ € By] ass. for any
measurable set B.

2. Show that E7¢ = E9¢ as. forall € € L' iff F =G.

3. Show that the averaging property implies the other properties of con-
ditional expectations listed in Theorem 5.1.

4. Let 0< &, 1 €and 0 < < & where &, &y, ...,n € LY, and fix a o-field
F. Show that EXn < sup, E7¢,. (Hint: Apply the monotone convergence
property to B (&, An).)

5. For any [0, oo]-valued random variable £, define E7¢ = sup,, EZ (£An).
Show that this extension of E¥ satisfies the monotone convergence property.
(Hint: Use the preceding result.)

6. Show that the above extension of E¥ remains characterized by the
averaging property and that E7¢ < oo a.s. iff the measure £ - P = E[¢; ] is
o-finite on F. Extend E”¢ to any random variable ¢ such that the measure
|€] - P is o-finite on F.

7. Let &1, &, . .. be [0, o0]-valued random variables, and fix any o-field F.
Show that liminf, EF¢, > E7 liminf, &, a.s.

8. Fix any o-field F, and let £, &1, &o, . .. be random variables with &, — ¢
and E7 sup,, |£,| < oo a.s. Show that E7¢, — E7¢ as.

9. Let F be the o-field generated by some partition Ay, Ao, ... € A of Q.
Show for any ¢ € L' that E[{|F] = E[¢|Ay] = E[¢; Ay]/PAg on Ay whenever
PAk > 0.

10. For any o-field F, event A, and random variable ¢ € L', show that
E[§|F,14] = E[§; A|F]/P[A|F] a.s. on A.

11. Let the random variables &1,&,... > 0 and o-fields Fi, Fs,... be
such that E[¢,|F,] 5 0. Show that &, 2> 0. (Hint: Consider the random
variables &, A 1.)

12. Let (&,1) £ (€, 77), where £ € L'. Show that E[¢|n] L E[€|7). (Hint:
If El¢|n] = f(n), then E[¢|7n] = f(7) a.s.)

13. Let (£,m) be a random vector in R? with probability density f, put
F(y) = [ f(z,y)dz, and let g(z,y) = f(z,y)/F(y). Show that P[¢ € B|n] =
[z 9(x,n)dz as.

14. Use conditional distributions to deduce the monotone and dominated
convergence theorems for conditional expectations from the corresponding
unconditional results.
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15. Assume that E7¢ 4 ¢ for some ¢ € L'. Show that ¢ is a.s. F-
measurable. (Hint: Choose a strictly convex function f with Ef(§) < oo,
and apply the strict Jensen inequality to the conditional distributions.)

16. Assume that (£,n) 4 (&,¢), where n is (-measurable. Show that
&1L,¢. (Hint: Show as above that P[¢ € B|n] L Pl¢ € B|¢], and deduce the
corresponding a.s. equality.)

17. Let £ be a random element in some separable metric space S. Show
that P[¢ € -|F] is a.s. degenerate iff £ is a.s. F-measurable. (Hint: Reduce
to the case when P[¢ € -|F] is degenerate everywhere and hence equal to 6,
for some F-measurable random element 7 in S. Then show that £ =7 a.s.)

18. Assuming &11,¢ and vy (&, 0, ¢), show that {11, ¢ and £11,((, 7).
19. Extend Lemma 2.6 to the context of conditional independence. Also

show that Corollary 2.7 and Lemma 2.8 remain valid for the conditional
independence, given some o-field H.

20. Fix any o-field F and random element ¢ in some Borel space, and
define n = P[¢ € -|F]. Show that { 1L, F.

21. Let & and 1 be random elements in some Borel space S. Prove
the existence of a measurable function f: S x [0,1] — S and some U(0, 1)
random variable v1ln such that £ = f(n,7) a.s. (Hint: Choose f with

(f(n,9),m) & (&,m) for any U(0, 1) random variable ¢l (£, n), and then let
(v.7) £ (9. 9) with (€,1) = (f(7.7),7) as.)

22. Let £ and 7 be random elements in some Borel space S. Show that
we may choose a random element 7 in .S with (£,7) 4 (¢,7) and nllen.



Chapter 6
Martingales and Optional Times

Filtrations and optional times; random time-change; martingale
property; optional stopping and sampling; maximum and upcross-
g inequalities; martingale convergence, regularity, and closure;
limits of conditional expectations; reqularization of submartin-
gales

The importance of martingale methods can hardly be exaggerated. Indeed,
martingales and the associated notions of filtrations and optional times are
constantly used in all areas of modern probability and appear frequently
throughout the remainder of this book.

In discrete time a martingale is simply a sequence of integrable random
variables centered at the successive conditional means, a centering that can
always be achieved by the elementary Doob decomposition. More precisely,
given any discrete filtration F = (F,), that is, an increasing sequence of
o-fields in 2, one says that a sequence M = (M,,) forms a martingale with
respect to F if E[M,|F,_1] = M,_1 a.s. for all n. A special role is played
by the class of uniformly integrable martingales, which can be represented in
the form M, = E[¢|F,] for some integrable random variables &.

Martingale theory owes its usefulness to a number of powerful general
results, such as the optional sampling theorem, the submartingale conver-
gence theorem, and a variety of maximum inequalities. The applications
discussed in this chapter include extensions of the Borel-Cantelli lemma and
Kolmogorov’s zero—one law. Martingales are also used to establish the ex-
istence of measurable densities and to give a short proof of the law of large
numbers.

Much of the discrete-time theory extends immediately to continuous time
thanks to the fundamental regularization theorem, which ensures that every
continuous-time martingale with respect to a right-continuous filtration has a
right-continuous version with left-hand limits. The implications of this result
extend far beyond martingale theory. In particular, it enables us in Chapters
13 and 17 to obtain right-continuous versions of independent-increment and
Feller processes.

The theory of continuous-time martingales is continued in Chapters 15,
16, 22, and 23 with studies of quadratic variation, random time-change, inte-
gral representations, removal of drift, additional maximum inequalities, and
various decomposition theorems. Martingales further play a basic role for es-
pecially the Skorohod embedding in Chapter 12, the stochastic integration in
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Chapters 15 and 23, and the theories of Feller processes, SDEs, and diffusions
in Chapters 17, 18, and 20.

As for the closely related notion of optional times, our present treatment
is continued with a more detailed study in Chapter 22. Optional times are
fundamental not only for martingale theory but also for a variety of models
involving Markov processes. In the latter context they appear frequently in
the sequel, especially in Chapters 7, 8, 10, 11, 12, 17, and 19 through 22.

To begin our systematic exposition of the theory, we may fix an arbitrary
index set T C R. A filtration on T is defined as a nondecreasing family
of o-fields F; C A, t € T. One says that a process X on T is adapted to
F = (F) if X, is Fi-measurable for every ¢t € T. The smallest filtration with
this property is the induced or generated filtration F;, = o{X,; s <t},t € T.
Here “smallest” should be understood in the sense of set inclusion for every
fixed t.

By a random time we shall mean a random element in 7 =T U {sup T'}.
Such a time is said to be F-optional or an F-stopping time if {T < t} € F,
for every ¢t € T, that is, if the process X; = 1{r < t} is adapted. (Here
and in similar cases, the prefix F is often omitted when there is no risk for
confusion.) If T' is countable, it is clearly equivalent that {r = ¢} € F; for
every t € T. For any optional times o and 7 we note that even o V 7 and
o A T are optional.

With any optional time 7 we may associate the o-field

F.={Ae A An{r<tteF, teT}

Some basic properties of optional times and the associated o-fields are listed
below.

Lemma 6.1 (optional times) For any optional times o and T, we have
(i) 7 is Fr-measurable;
(i) Fr=F on{r =t} forallt € T;

(i) FoN{o <7} C Forr = Fo N Fr.

In particular, it is seen from (iii) that {o < 7} € F, N F;, that F, = F,
on {0 = 7}, and that F, C F, whenever o < 7.
Proof: (iii) For any A € F, and t € T we have
An{o<tin{r<t}=An{oc<th)n{r<t}n{oAt <7t At}
which belongs to F; since 0 At and 7 At are both F;-measurable. Hence
Fon{o <71} CF.

The first relation now follows as we replace 7 by o A 7. Replacing o and 7
by the pairs (o A7,0) and (o A 7,7), it is further seen that F,,. C F, N Fr.
To prove the reverse relation, we note that for any A € F,NF, andt € T

An{font<ty=(An{o <thU(An{r <t}) e F,
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whence A € Fynr.

(i) Applying (iii) to the pair (7,t) gives {7 < ¢} € F, for all t € T, which
extends immediately to any ¢t € R. Now use Lemma 1.4.

(ii) First assume that 7 =t. Then F, = F,. N {r <t} C F,. Conversely,
assume that A€ Frand seT. If s>tweget AN{r<s}=A€F CF,,
and if s <t then AN{r < s} =0 € F,. Thus, A € F,. This shows that
Fr = F; when 7 = t. The general case now follows by part (iii). O

Given an arbitrary filtration F on R, we may define a new filtration F*
by Fit = Must Fu, t > 0, and we say that F is right-continuous if F+ = F.
In particular, F7 is right-continuous for any filtration F. We say that a
random time 7 is weakly F-optional if {7 < t} € F; for every t > 0. In
that case 7 + h is clearly F-optional for every h > 0, and we may define
Frt = Niso Frin- When the index set is Z,, we write F* = F and make
no difference between strictly and weakly optional times.

The following result shows that the notions of optional and weakly op-
tional times agree when F is right-continuous.

Lemma 6.2 (weakly optional times) A random time T is weakly F-optional
iff it is F+-optional, in which case

Fro=Fr={Ae AL An{r <t} e F, t >0} (1)
Proof: For any t > 0, we note that

{r <t} = ﬂr>t{7' <r}, {r<t}= Ur<t{7' <r}, (2)

where r may be restricted to the rationals. If AN{r <t} € Fy for all ¢, we
get by (2) for any t > 0

Aﬂ{7<t}:UT<t(Aﬂ{T§r}) e F.

Conversely, if AN {7 < t} € F, for all ¢, then (2) yields for any ¢ > 0 and
h>0
An{r<t}= () (An{r<r}) € Fip,
re(t,i+h)

and so AN{r <t} € F,. For A= this proves the first assertion, and for
general A € A it proves the second relation in (1).

To prove the first relation, we note that A € F,, iff A € F,,,, for each
h > 0, that is, if AnN{r+h <t} € Fforallt >0 and h > 0. But
this is equivalent to AN {r < ¢} € Fp for all £ > 0 and = > 0, hence to
An{r <t} € F; for every ¢t > 0, which means that A € F. O

We have already seen that the maximum and minimum of two optional
times are again optional. The result extends to countable collections as
follows.
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Lemma 6.3 (closure properties) For any random times 1, Ta, ... and fil-
tration F on Ry or Z,, we have the following:
(i) if the 7, are F-optional, then so is 0 = sup,, T,;

(ii) if the 7, are weakly F-optional, then so is T = inf, 7,, and moreover
Fr=nN.Ft.

Proof: To prove (i) and the first assertion in (ii), we note that

fo<tt=NAm<tt, {r<ty=U {m <t} (3)

where the strict inequalities may be replaced by < for the index set T' = Z, .
To prove the second assertion in (ii), we note that 7} C N, F, by Lemma
6.1. Conversely, assuming A € (N, F,, we get by (3) for any t > 0

An{r <t} :AﬂUn{Tn < t} :Un(Aﬂ{Tn <t}) e F,
with the indicated modification for 7' = Z,. Thus, A € F. O

Part (ii) of the last result is often useful in connection with the following
approximation of optional times from the right.

Lemma 6.4 (discrete approximation) For any weakly optional time T in
R, there exist some countably valued optional times 7, | T.

Proof: We may define
T, =2""[2"r+1], neN.

Then 7, € 27"N for each n, and 7, | 7. Also note that each T, is optional,
since {7, < k27"} = {1 < k27"} € Fyo-n. O

We shall now relate the optional times to random processes. Say that
a process X on R, is progressively measurable or simply progressive if its
restriction to Q x [0,t] is F; ® B0, t]-measurable for every ¢ > 0. Note that
any progressive process is adapted by Lemma 1.26. Conversely, a simple
approximation from the left or right shows that any adapted and left- or
right-continuous process is progressive. A set A C Q x R, is said to be
progressive if the corresponding indicator function 1,4 has this property, and
we note that the progressive sets form a o-field.

Lemma 6.5 (optional evaluation) Fiz o filtration F on some index set T,
let X be a process on T with values in some measurable space (S,S), and
let T be a T-valued optional time. Then X, is F,-measurable under each of
these conditions:

(i) T is countable and X is adapted;
(ii) T =Ry and X is progressive.
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Proof: In both cases, we need to show that
{X,eB,7<t}eF, t>0, BeS.
This is clear in case (i) if we write

{(X,eB}=U, _{X;eB, 7=steF, BeS.

In case (ii) it is enough to show that X, ,; is F;-measurable for every t > 0.
We may then assume 7 < t and prove instead that X, is F;-measurable.
Then write X, = X o1 where ¢(w) = (w,7(w)), and note that 1 is mea-
surable from F; to F; ® B0, t] whereas X is measurable on 2 x [0, ¢] from
F; ® B[0,t] to S. The required measurability of X, now follows by Lemma
1.7. O

Given a process X on R, or Z; and a set B in the range space of X, we
may introduce the hitting time

7 = inf{t > 0; X, € B}.

It is often important to decide whether the time 75 is optional. The following
elementary result covers most cases arising in applications.

Lemma 6.6 (hitting times) Fiz a filtration F on T =Ry or Z,, let X be
an F-adapted process on T with values in some measurable space (S,S), and
let Be S. Then 1 is weakly optional under each of these conditions:

(1) T = Z+ ;

(ii) T =Ry, S is a metric space, B is closed, and X is continuous;

iii) T =Ry, S is a topological space, B is open, and X is right-continuous.
+

Proof: In case (i) it is enough to write

{78 <n}= U {XxeB}eF,, neN.

ke[l,n]

In case (ii) we get for t > 0

{m<t}=U N U {X.B)<n}er,

h>0 neN reQnlh,t]
where p denotes the metric in S. Finally, in case (iii) we get

{me<tt= | {X,eB}eF, t>0,
reQN(0,t)

which suffices by Lemma 6.2. a

For special purposes we may need the following more general but much
deeper result, known as the debut theorem. Here and below a filtration F is
said to be complete if the basic o-field A is complete and each F; contains
all P-null sets in A.
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Theorem 6.7 (first entry, Doob, Hunt) Let the set A C Ry x 2 be progres-
siwe with respect to some right-continuous and complete filtration F. Then
the time 7(w) = inf{t > 0; (t,w) € A} is F-optional.

Proof: Since A is progressive, we have AN [0,t) € F; @ B([0,¢]) for every
t > 0. Noting that {r < ¢} is the projection of A N [0,t) onto 2, we get
{r <t} € F; by Theorem A1.8, and so 7 is optional by Lemma 6.2. O

In applications of the last result and for other purposes, we may need
to extend a given filtration F on R, to make it both right-continuous and
complete. Then let A be the completion of A, put N' = {A € A; PA = 0},
and define F;, = o{F;, N'}. Then F = (F,) is the smallest complete extension
of F. Similarly, F* = (F,;) is the smallest right-continuous extension of
F. The following result shows that the two extensions commute and can be
combined into a smallest right-continuous and complete extension, commonly
referred to as the (usual) augmentation of F.

Lemma 6.8 (augmented filtration) Any filtration F on R, has a smallest
right-continuous and complete extension G, given by

gt :K:?P‘ra tZ 0. (4)
Proof: First we note that
Fi CF CFepy t>0.

Conversely, assume that A € F,.. Then A € F,,, for every h > 0, and
so, as in Lemma 1.25, there exist some sets A;, € F,y;, with P(AAA,) = 0.
Now choose h, — 0, and define A" = {A;, i.0.}. Then A’ = F,; and
P(AAA") =0, so A € Fy. Thus, F;y C Fiy, which proves the second
relation in (4).

In particular, the filtration G in (4) contains F and is both right-contin-
uous and complete. For any filtration H with those properties, we have

G =Fuy Cﬁtq— =Hiyy =Hy, 20,
which proves the required minimality of G. a
The next result shows how the o-fields F. arise naturally in the context
of a random time-change.

Proposition 6.9 (random time-change) Let X > 0 be a nondecreasing,
right-continuous process adapted to some right-continuous filtration F. Then

7, =inf{t >0; X; > s}, s>0,

18 a right-continuous process of optional times, generating a right-continuous
filtration Gg = F.., s > 0. If X is continuous and the time 7 is F-optional,
then X, is G-optional and F. C Gx,. If X is further strictly increasing, then
f‘r - gXT .
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In the latter case, we have in particular F; = Gy, for all £, so the processes
(75) and (X;) play symmetric roles.

Proof: The times 75 are optional by Lemmas 6.2 and 6.6, and since (75)
is right-continuous, so is (G;) by Lemma 6.3. If X is continuous, then by
Lemma 6.1 we get for any F-optional time 7 > 0 and set A € F,

An{X, <s}=An{r<r}eF, =G, s>0.

For A = Q it follows that X, is G-optional, and for general A we get A € Gx. .
Thus, F, C Gx,. Both statements extend by Lemma 6.3 to arbitrary 7.

Now assume that X is also strictly increasing. For any A € Gx, with
t > 0 we have

Am{tSTe}:Am{XfSS}GQGZJT‘TN 5207

SO
An{t<rs<u}eF,, s>0, u>t

Taking the union over all s € Q,—the set of nonnegative rationals—gives
A€ F,, and as u | t we get A € F;y = F;. Hence, F; = Gx,, which extends
as before to t = 0. By Lemma 6.1 we now obtain for any A € Gx_

An{r <t} =An{X, <X} eGx,=F, t>0,

and so A € F.. Thus, Gx. C F,, so the two o-fields agree. m|

To motivate the introduction of martingales, we may fix a random variable
¢ € L' and a filtration F on some index set T, and put

The process M is clearly integrable (for each t) and adapted, and by the
chain rule for conditional expectations we note that

M, = E[M,|F] as., s<t. (5)

Any integrable and adapted process M satisfying (5) is called a martingale
with respect to F, or an F-martingale. When T' = Z | it suffices to require
(5) for t = s+ 1, so in that case the condition becomes

E[AM,|F,-1] =0 as.,, neN, (6)

where AM,, = M, — M,_,. A process M = (M*,..., M%) in R? is said to be
a martingale if M, ..., M? are one-dimensional martingales.

Replacing the equality in (5) or (6) by an inequality, we arrive at the
notions of sub- and supermartingales. Thus, a submartingale is defined as an
integrable and adapted process X with

X, < E[Xy|F] as., s<t; (7)
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reversing the inequality sign yields the notion of a supermartingale. In par-
ticular, the mean is nondecreasing for submartingales and nonincreasing for
supermartingales. (The sign convention is suggested by analogy with sub-
and superharmonic functions.)

Given a filtration F on Z,, we say that a random sequence A = (A4,)
with Ag = 0 is predictable with respect to F, or F-predictable, if A,, is F,_1-
measurable for every n € N, that is, if the shifted sequence 04 = (A1) is
adapted. The following elementary result, often called the Doob decomposi-
tion, is useful to deduce results for submartingales from the corresponding
martingale versions. An extension to continuous time is proved in Chap-
ter 22.

Lemma 6.10 (centering) Given a filtration F on Z., any integrable and
adapted process X on Zy has an a.s. unique decomposition M + A, where M
is a martingale and A is a predictable process with Aq = 0. In particular, X
is a submartingale iff A is a.s. nondecreasing.

Proof: If X = M + A for some processes M and A as stated, then clearly
AA, = E[AX,|F,1] a.s. for all n € N, and so

A, = ZkSnE[AXﬂfk_ﬂ a.s., neEly, (8)

which proves the required uniqueness. In general, we may define a predictable
process A by (8). Then M = X — A is a martingale, since

E[AM,|Foy] = E[AXo|Fot] — AA, =0 as., neN. 0

We proceed to show how the martingale and submartingale properties
are preserved under various transformations.

Lemma 6.11 (conver maps) Let M be a martingale in R, and consider
a conver function f: R — R such that X = f(M) is integrable. Then X
18 a submartingale. The statement remains true for real submartingales M,
provided that f is also nondecreasing.

Proof: In the martingale case, the conditional version of Jensen’s inequal-
ity yields

F(M,) = f(EIM|F]) < E[f(M)|FS] as., s <t, (9)
which shows that f(M) is a submartingale. If instead M is a submartin-

gale and f is nondecreasing, the first relation in (9) becomes f(M,) <
f(E[M;|Fs]), and the conclusion remains valid. O

The last result is often applied with f(z) = |z|? for some p > 1 or, for
d=1, with f(z) =2, =2z V0.
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Say that an optional time 7 is bounded if 7 < w a.s. for some u € T.
This is always true when 7T has a last element. The following result is an
elementary version of the basic optional sampling theorem. An extension to
continuous-time submartingales appears as Theorem 6.29.

Theorem 6.12 (optional sampling, Doob) Let M be a martingale on some
countable index set T with filtration F, and consider two optional times o
and T, where T is bounded. Then M. is integrable, and

Mopr = E[M:|F,] a.s.
Proof: By Lemmas 5.2 and 6.1 we get for any t <u in T
E[Mu|.7:-,—] = E[Mu|]:t] = Mt — MT a.s. on {T — t}7

and so E[M,|F,;] = M, a.s. whenever 7 < w a.s. If 0 <7 <, then F, C F,
by Lemma 6.1, and we get

E[M,|F,] = E[E[M,|F,)|F,] = E[M,|F,] = M, a.s.

On the other hand, clearly E[M.|F,] = M, a.s. when 7 < o A u. In the
general case, the previous results combine by means of Lemmas 5.2 and 6.1
into

E[MT‘f(r] E[M7|f(r/\-r] = Ma’/\T a.s. on {O’ S 7‘},
E[M.|F,] = E[Mon:|Fo] = Mop, as.on {c > T} O

In particular, we note that if M is a martingale on an arbitrary time scale
T with filtration F and (7;) is a nondecreasing family of bounded, optional
times that take countably many values, then the process (M., ) is a martingale
with respect to the filtration (F,,). In this sense, the martingale property is
preserved by a random time-change.

From the last theorem we note that every martingale M satisfies EM, =
E M., for any bounded optional times o and 7 that take only countably many

values. An even weaker property characterizes the class of martingales.

Lemma 6.13 (martingale criterion) Let M be an integrable, adapted pro-
cess on some index set T. Then M is a martingale iff EM, = EM, for any
T-valued optional times o and T that take at most two values.

Proof: If s <tinT and A € F;, then 7 = sl4 + t1 4. is optional, and so
0=EM, — EM, = EM, — E[M,; A] — E[M;; A°] = E[M, — Mj; A].
Since A is arbitrary, it follows that E[M; — M,|F,] = 0 a.s. O

The following predictable transformations of martingales are basic for
stochastic integration theory.
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Corollary 6.14 (martingale transforms) Let M be a martingale on some
index set T with filtration F, fix an optional time 7 that takes countably
many values, and let ) be a bounded, F,-measurable random variable. Then
the process Ny = n(M; — Mya;) is again a martingale.

Proof: The integrability follows from Theorem 6.12, and the adaptedness
is clear if we replace n by n1{r < t} in the expression for N,. Now fix any
bounded, optional time o taking countably many values. By Theorem 6.12
and the pull-out property of conditional expectations, we get a.s.

E[N0'|fT} = nE[MO' - Ma/\'r|~7:7'] = 77(-1\40/\‘1' - Ma/\'r) = 07
and so EN, = 0. Thus, N is a martingale by Lemma 6.13. O

In particular, we note that optional stopping preserves the martingale
property, in the sense that the stopped process M = M, is a martingale
whenever M is a martingale and 7 is an optional time that takes countably
many values.

More generally, we may consider predictable step processes of the form

Vi = Zkﬁnnkl{t > Tk}7 te 717

where 4 < --- < 7, are optional times, and each 7 is a bounded, F, -
measurable random variable. For any process X, we may introduce the
associated elementary stochastic integral

t
(VX)tE/O ‘/SdX‘s:ZkSnnk(Xt_Xt/\Tk)’ teT.

From Corollary 6.14 we note that V' - X is a martingale whenever X is a
martingale and each 7, takes countably many values. In discrete time we
may clearly allow V' to be any bounded, predictable sequence, in which case

(V . X)n = Zk<ndAXk’ n e Z+.

The result for martingales extends in an obvious way to submartingales X
and nonnegative, predictable sequences V.

Our next aim is to derive some basic martingale inequalities. We begin
with an extension of Kolmogorov’s maximum inequality in Lemma 3.15.

Proposition 6.15 (mazimum inequalities, Bernstein, Lévy) Let X be a
submartingale on some countable index set T. Then for any v > 0 and
uel,
rP{sup;.,X; > r}
rP{sup,| X;| > r}

E[X,; sup,c, X; > 1] < EX, (10)

<
< 3sup,B|X,. (11)
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Proof: By dominated convergence it is enough to consider finite index
sets, so we may assume that T = Z,. Define 7 = u A inf{t; X; > r} and
B = {max;<, X; > r}. Then 7 is an optional time bounded by u, and we
note that B € F, and X, > r on B. Hence, by Lemma 6.10 and Theorem
6.12,

rPB < E[X,;B] < E[X,: B| < EX",
which proves (10). Letting M + A be the Doob decomposition of X and
applying (10) to —M, we further get

rP{mini,X; < —r} < rP{mine,M; < —-r} < EM,
— EM'— EM,<EX! — EX,
2 max<, F| Xy|.

IN

Combining this with (10) yields (11). O
We proceed to derive a basic norm inequality. For processes X on some
index set 1", we define
X7 = sup,,| Xy, X" = supyep| Xyf.

Proposition 6.16 (norm inequality, Doob) Let M be a martingale on some
countable index set T, and fix any p,q > 1 with p~t + ¢t = 1. Then

M/, < ql|Mllp, teT.

Proof: By monotone convergence we may assume that T = Z.. If
[|M:ll, < oo, then ||[M]l, < oo for all s < ¢ by Jensen’s inequality, and
so we may assume that 0 < || M}, < co. Applying Proposition 6.15 to the
submartingale |M|, we get

rP{M} > r} < E[|M]; M} >r], r>0.
Hence, by Lemma 2.4, Fubini’s theorem, and Hélder’s inequality,

I = » [ PAME > e
0

< p/ E[|M,|; M} > r]rP~2dr
Jo
ME o *(p—1)
= pEIM| [ 2dr = g B 0]
0
*(p—1 * || p—
< qlMil, [MEETV| = gl 1
It remains to divide by the last factor on the right. O

The next inequality is needed to prove the basic Theorem 6.18. For any
function f on T and constants a < b, the number of [a, b]-crossings of f up to
time ¢ is defined as the supremum of all n € Z, such that there exist times
§1 <t < Sg <ty <.+ <s, <t,<tinT with f(sy) <aand f(ty) > b for
all k. The supremum may clearly be infinite.
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Lemma 6.17 (upcrossing inequality, Doob, Snell) Let X be a submartingale
on a countable index set T, and let N2(t) denote the number of [a, b]-crossings
of X up to time t. Then

EX;—a)"

ENb(t) <
§H < =

teT, a<binR.

Proof: As before, we may assume that 7= Z,. Since Y = (X —a)" is
again a submartingale by Lemma 6.11 and the [a, b]-crossings of X correspond
to [0, b—al-crossings of Y, we may assume that X > 0 and a = 0. Now define
recursively the optional times 0 =19 < 01 <71 < 09 < -+ by

o =inf{n > 7_1; X,, =0}, 7 =inf{n >oy; X,, >0}, k€N,
and introduce the predictable process
V., = Zk211{0k <n<m}, nmneN.

Then (1 — V) - X is again a submartingale by Corollary 6.14, and so E((1 —
V)-X); > E((1-V)-X)y=0. Also note that (V - X); > bN}(t). Hence,

bENL(t) < E(V - X), < E(1-X), = EX, — EX, < EX,. O

We may now state the fundamental regularity and convergence theorem
for submartingales.

Theorem 6.18 (regularity and convergence, Doob) Let X be an L'-bounded
submartingale on some countable index set T'. Then X; converges along every
increasing or decreasing sequence in T, outside some fixed P-null set A.

Proof: By Proposition 6.15 we have X* < 0o a.s., and Lemma 6.17 shows
that X has a.s. finitely many upcrossings of every interval [a, b] with rational
a < b. Outside the null set A where any of these conditions fails, it is clear
that X has the stated property. O

The following is an interesting and useful application.

Proposition 6.19 (one-sided bounds) Let M be a martingale on Z, with
AM < ¢ a.s. for some constant ¢ < co. Then a.s.

{M,, converges} = {sup, M,, < cco}.

Proof: Since M — M, is again a martingale, we may assume that M, = 0.
Introduce the optional times

T = inf{n; M, >m}, meN.
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The processes M ™ are again martingales by Corollary 6.14. Since M™ <
m + ¢ a.s., we have E|M™| < 2(m + ¢) < oo, and so M™ converges a.s. by
Theorem 6.18. Hence, M converges a.s. on

{sup, M,, < oo} = Um{M =M},

The reverse implication is obvious, since every convergent sequence in R is
bounded. a

From the last result we may easily derive the following useful extension
of the Borel-Cantelli lemma in Theorem 2.18.

Corollary 6.20 (extended Borel-Cantelli lemma, Lévy) Fix any filtration
F onZy, and let A, € F, n € N. Then a.s.

{An i0} = {3 PlA,|F, ] = oo}
Proof: The sequence
M, =3, (Lo, — PIAF]), nels,
is a martingale with [AM,| < 1, and so by Proposition 6.19

P{M,, = oo} = P{M,, = —c0} = 0.
Hence, a.s.

{A, 10} = {anAn = oo} - {ZHP[AnU-"n,l] - oo} . 0

A martingale M or submartingale X is said to be closed if u = sup T
belongs to T In the former case, clearly M; = E[M,|F;] a.s. for allt € T. If
instead u € T, we say that M is closable if it can be extended to a martingale
on T =T U{u}. If M, = E[{|F] for some £ € L', we may clearly choose
M, = £. The next result gives general criteria for closability. An extension
to continuous-time submartingales appears as part of Theorem 6.29.

Theorem 6.21 (uniform integrability and closure, Doob) For martingales
M on an unbounded index set T, these conditions are equivalent:

(i) M is uniformly integrable;
(ii) M is closable at supT';
(iii) M is L'-convergent at sup T.
Under those conditions, M is closable by the limit in (iii).

Proof: First note that (ii) implies (i) by Lemma 5.5. Next (i) implies (iii)
by Theorem 6.18 and Proposition 3.12. Finally, assume that M, — £ in L!
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ast — u = supT. Using the L!-contractivity of conditional expectations,
we get, as ¢t — u for fixed s

M, = E[M,|F.] — E[¢|F,] in L.

Thus, M, = E[¢|F,] a.s., and we may take M, = £. This shows that (iii)
implies (ii). 0

For comparison, we may examine the case of LP-convergence for p > 1.

Corollary 6.22 (LP-convergence) Let M be a martingale on some unboun-
ded index set T, and fix any p > 1. Then M converges in LP iff it is LP-
bounded.

Proof: We may clearly assume that 7" is countable. If M is LP-bounded, it
converges in L' by Theorem 6.18. Since |M|? is also uniformly integrable by
Proposition 6.16, the convergence extends to LP by Proposition 3.12. Con-
versely, if M converges in LP it is LP-bounded by Lemma 6.11. O

We shall now consider the convergence of martingales of the special form
M, = E[¢|F,] as t increases or decreases along some sequence. Without loss
of generality, we may assume that the index set T is unbounded above or
below, and define respectively

Foo = \/teT}—t’ F oo = ﬁteT]:t'

Theorem 6.23 (limits in conditioning, Jessen, Lévy) Fiz a filtration F on
some countable index set T C R that is unbounded above or below. Then for
any € € LY,

E[¢|F) — El¢|Fine] ast — +oo, a.s. and in L'

Proof: By Theorems 6.18 and 6.21, the martingale M; = E[¢|F;] con-
verges a.s. and in L' as t — o0, and the limit M., may clearly be taken
to be Fi-measurable. To see that Myo, = E[¢|Fie] a.s., we need to verify
the relations

E[Miw; Al = E[§; 4], A€ Fio. (12)

Then note that, by the definition of M,
E[My; Al = E[§ 4], AeF, s<t. (13)
This clearly remains true for s = —oo, and as t — —oo we get the “minus”

version of (12). To get the “plus” version, let ¢ — oo in (13) for fixed s, and
extend by a monotone class argument to arbitrary A € F.. O

In particular, we note the following useful special case.
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Corollary 6.24 (Lévy) For any filtration F on Z,, we have
PIA|F,] — 14 as., A€ Fy.

For a simple application, we shall consider an extension of Kolmogorov’s
zero—one law in Theorem 2.13. Say that two o-fields agree a.s. if they have
the same completion with respect to the basic o-field.

Corollary 6.25 (tail o-field) If F1,Fs, ... and G are independent o-fields,
then

ﬂna{fnvfn-k—la . ’g} = g a.s.

Proof: Let T denote the o-field on the left, and note that T L g(F V-V
F,.) by Proposition 5.8. Using Proposition 5.6 and Corollary 6.24, we get for
any AeT

P[A|G]) = P[A|G, F1,..., Fu] = 14 as.,

which shows that 7 C G a.s. The converse relation is obvious. d

The last theorem can be used to give a short proof of the law of large
numbers. Then let &,&,,... be ii.d. random variables in L', put S, =
& 4 ...+ &, and define F_,, = o{S,, Sny1,...}. Here F_ is trivial by
Theorem 2.15, and for any k < n we have E[{|F_,] = E[&1|F-n] a.s., since

(&, Sny Sty - -) 4 (&1, Sny Spat, - - -). Hence, by Theorem 6.23,

n7'S, = EnTSuFoa) =070 Bl Fo]
= BlalFa] = Bla|F o] = EG.

As a further application of Theorem 6.23, we shall prove a kernel version
of the regularization Theorem 5.3. The result is needed in Chapter 18.

Proposition 6.26 (kernel densities) Fiz a measurable space (S,S) and two
Borel spaces (T, T) and (U,U), and let p be a probability kernel from S to
T x U. Then the densities

w(s,dt x B)

t,B) =220 "2
V(S7 ) ) M(S’ dt X U)7

seS, teT, Bel, (14)

have versions that form a probability kernel from S x T to U.

Proof: We may assume T" and U to be Borel subsets of R, in which case
it can be regarded as a probability kernel from S to R% Letting D,, denote
the o-field in R generated by the intervals I, = [(k — 1)27",k27"), k € Z,
we define

Sy In X B
M,(s,t, B) = ZM

H{t € L}, €S, teT, Beb,
k U(SylnchU) { k} ’
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under the convention 0/0 = 0. Then M, (s,-, B) is a version of the density
in (14) with respect to D, and for fixed s and B it is also a martingale with
respect to u(s,- x U). By Theorem 6.23 we get M, (s, , B) — v(s,-, B) a.e.
w(s, - x U). Thus, a product-measurable version of v is given by
v(s,t, B) = limsup M,,(s,t,B), s€S, teT, BeU.
n—oo
It remains to find a version of v that is a probability measure on U for
each s and t. Then proceed as in the proof of Theorem 5.3, noting that
in each step the exceptional (s,t)-set A lies in S ® T and is such that the
sections A, = {t € T; (s,t) € A} satisty u(s, A, x U)=0forallseS. O

In order to extend the previous theory to martingales on R, we need
to choose suitably regular versions of the studied processes. The next result
provides two closely related regularizations of a given submartingale. Say
that a process X on R, is right-continuous with left-hand limits (abbreviated
as rcll) if X; = Xy for all t > 0 and the left-hand limits X,_ exist and are
finite for all ¢ > 0. For any process Y on Q. , we write Yt for the process of
right-hand limits Y;, t > 0, provided that the latter exist.

Theorem 6.27 (reqularization, Doob) For any F-submartingale X on R,
with restriction Y to Qy, we have the following:

(i) Y+ exists and is rcll outside some fired P-null set A, and Z = 1Y+
is a submartingale with respect to the augmented filtration F;

(i) of F is right-continuous, then X has an rcll version iff EX is right-
continuous; this holds in particular when X is a martingale.

The proof requires an extension of Theorem 6.21 to suitable submartin-
gales.

Lemma 6.28 (uniform integrability) A submartingale X on Z_ is uni-
formly integrable iff EX is bounded.

Proof: Let EX be bounded. Introduce the predictable sequence
Ay = E[AXTL|-7:7L—1] Z 07 n S 07

and note that
Ezn<0an = EXO - infngoEXn < 0.

Hence, Y, a,, < o0 a.s., so for n € Z_ we may define
An == Zkﬁnak’ Mn = Xn - An

Here FA* < oo and M is a martingale closed at 0, so both A and M are
uniformly integrable. a
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Proof of Theorem 6.27: (i) By Lemma 6.11 the process Y V0 is L'-bounded
on bounded intervals, so the same thing is true for Y. Thus, by Theorem
6.18, the right- and left-hand limits Y;. exist outside some fixed P-null set
A, 50 Z =14Y" is rell. Also note that Z is adapted to F+.

To prove that Z is an Ft-submartingale, fix any times s < ¢, and choose
sp 4 sand t, |t in Qp with s, < t. Then Y < E[Y; |Fs,.] a.s. for all m
and n, and as m — oo we get Z; < E[Y;,|Fs+] a.s. by Theorem 6.23. Since
Y,, — Z; in L' by Lemma 6.28, it follows that Z, < E[Z;|F..| = E[Z|F 4]
a.s.

(ii) For any ¢t < t,, € Q.

(EX), = E(Y1,), Xy < EY,

F] as.,
and as t, | t we get, by Lemma 6.28 and the right-continuity of F,
(EX>t+ = EZt, Xt S E[Zt|]:t] = Zt a.s. (15)

If X has a right-continuous version, then clearly Z; = X; a.s., so (15) yields
(EX);y = EX,, which shows that FX is right-continuous. If instead EX
is right-continuous, then (15) gives FE|Z; — X;| = EZ; — EX; = 0, and so
Z; = X; a.s., which means that Z is a version of X. O

Justified by the last theorem, we shall henceforth assume that all sub-
martingales are rcll unless otherwise specified and also that the underlying
filtration is right-continuous and complete. Most of the previously quoted
results for submartingales on a countable index set extend immediately to
such a context. In particular, this is true for the convergence Theorem 6.18
and the inequalities in Proposition 6.15 and Lemma 6.17. We proceed to
show how Theorems 6.12 and 6.21 extend to submartingales in continuous
time.

Theorem 6.29 (optional sampling and closure, Doob) Let X be an F-
submartingale on Ry, where X and F are right-continuous, and consider
two optional times o and T, where T is bounded. Then X, is integrable, and

Xonr < E[X|F,] as. (16)
The statement extends to unbounded T iff X T is uniformly integrable.

Proof: Introduce the optional times o, = 27"[2"0+1] and 7, = 27" [2"7+
1], and conclude from Lemma 6.10 and Theorem 6.12 that

Xomnmm < E[ X, |Fo,] as., m,neN.
As m — oo, we get by Lemma 6.3 and Theorem 6.23

Xorr, < E[X,,|F,] as., neN. (17)
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By the result for the index sets 27"Z,, the random variables Xo;. .., X,,, X5,
form a submartingale with bounded mean and are therefore uniformly inte-
grable by Lemma 6.28. Thus, (16) follows as we let n — oo in (17).

If X* is uniformly integrable, then X is L!-bounded and hence converges
a.s. toward some X, € L'. By Proposition 3.12 we get X;" — X in L',
and so E[X; |F,] — E[XL|F] in L' for each s. Letting ¢ — oo along a
sequence, we get by Fatou’s lemma

X, < limyE[X;"|F] - liminf, E[X, | F,]
< E[X:o‘]:s} - E[Xo_olj:s] = E[Xoow:s]
We may now approximate as before to obtain (16) for arbitrary o and 7.

Conversely, the stated condition implies that there exists some X, € L!
with Xy < E[Xw|Fs] as. for all s > 0, and so X < E[XT|F] as. by
Lemma 6.11. Hence, X is uniformly integrable by Lemma 5.5. O

For a simple application, we shall consider the hitting probabilities of a
continuous martingale. The result is useful in Chapters 12 and 20.

Corollary 6.30 (first hit) Let M be a continuous martingale with My = 0,
and define T, = inf{t > 0; My = x}. Then for any a <0< b

b
P{r, <m} < " < P{r, <7}

Proof: Since 7 = 7, A 1, is optional by Lemma 6.6, Theorem 6.29 yields
EM,p; =0 for all ¢t > 0, so by dominated convergence EM, = 0. Hence,

0 aP{r, <} +b0P{m < 7,} + E[My; T = 9]
aP{r, < n}+bP{n, <7,}

b—(b—a)P{1, <71},

IN

which proves the first inequality. The proof of the second relation is simi-
lar. O

The next result plays a crucial role in Chapter 17.

Lemma 6.31 (absorption) Let X > 0 be a right-continuous supermartin-
gale, and put 7 = inf{t > 0; X; A X;_ =0}. Then X =0 a.s. on [1,00).

Proof: By Theorem 6.27 the process X remains a supermartingale with
respect to the right-continuous filtration F*. The times 7,, = inf{t > 0; X; <
n~'} are Ft-optional by Lemma 6.6, and by the right-continuity of X we
have X, <n~'on {1, < co}. Hence, by Theorem 6.29

E[Xy;m <t]<E[X,;m<t]<n™', t>0,neN.
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Noting that 7, T 7, we get by dominated convergence E[X;; 7 < t] = 0, so
X: =0a.s. on {7 <t}. The assertion now follows, as we apply this result to
all t € Q4 and use the right-continuity of X. o

We proceed to show how the right-continuity of an increasing sequence of
supermartingales extends to the limit. The result is needed in Chapter 22.

Theorem 6.32 (increasing limits of supermartingales, Meyer) Let X' <
X2 < .-+ be right-continuous supermartingales with sup, EX? < oo. Then
Xy =sup, X7, t >0, is again an a.s. right-continuous supermartingale.

Proof (Doob): By Theorem 6.27 we may assume the filtration to be right-
continuous. The supermartingale property carries over to X by monotone
convergence. To prove the asserted right-continuity, we may assume that X!
is bounded below by an integrable random variable; otherwise consider the
processes obtained by optional stopping at the times m A inf{t; X} < —m}
for arbitrary m > 0.

Now fix any € > 0, let T denote the class of optional times 7 with

limsup, | Xy — Xi| <2, t <7,

and put p = inf 7 Fe™ 7. Choose 01,09,... € T with Ee™" — p, and note
that ¢ = sup,, 0, € T with Fe™® = p. We need to show that ¢ = oo a.s.
Then introduce the optional times

T, = inf{t > 0; | X — X,| > ¢}, neN,
and put 7 = limsup,, 7,. Noting that
|Xt—Xa|:li£gi£f|Xt”—Xa| <eg te€l]oT),

we obtain 7 € T.
By the right-continuity of X", we note that |X? — X,| > ¢ on {7, < oo}
for every n. Furthermore, we have on the set A = {o =7 < 0}

h,{gi;}f Xr > stlipnlggo an = Sl;ip Xk =x,,

and so liminf, X' > X, 4 ¢ on A. Since A € F, by Lemma 6.1, we get by
Fatou’s lemma, optional sampling, and monotone convergence,

E[X, +¢; A] Elliminf, X ; A] <liminf, E[X] ; A]

<
< lim,E[X"; A] = E[X,; Al

Thus, PA = 0, and so 7 > o as. on {0 < oco}. If p > 0, we get the
contradiction Fe™™ < p, so p = 0. Hence, 0 = o a.s. O
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Exercises

1. Show for any optional times o and 7 that {o = 7} € F, N F, and
F, = F, on {o = 7}. However, F, and F., may differ on {7 = oo}.

2. Show that if o and 7 are optional times on the time scale Ry or Z,
then so is o + 7.

3. Give an example of a random time that is weakly optional but not
optional. (Hint: Let F be the filtration induced by the process X; = J¢ with
P{9 = £1} =1, and take 7 = inf{¢; X; > 0}.)

4. Fix a random time 7 and a random variable £ in R\ {0}. Show
that the process X; = £ 1{7 < t} is adapted to a given filtration F iff 7 is
F-optional and ¢ is F,-measurable. Give corresponding conditions for the
process Y; = £ 1{r < t}.

5. Let P denote the class of sets A € R, x Q2 such that the process 14 is
progressive. Show that P is a o-field and that a process X is progressive iff
it is P-measurable.

6. Let X be a progressive process with induced filtration F, and fix any
optional time 7 < oco. Show that o{r, X7} C F, C Ff C o{r, X"*"} for
every h > 0. (Hint: The first relation becomes an equality when 7 takes only
countably many values.) Note that the result may fail when P{r = oo} > 0.

7. Let M be an F-martingale on some countable index set, and fix an
optional time 7. Show that M — M7 remains a martingale conditionally
on F,. (Hint: Use Theorem 6.12 and Lemma 6.13.) Extend the result to
continuous time.

8. Show that any submartingale remains a submartingale with respect
to the induced filtration.

9. Let X!, X2 ... be submartingales such that the process X = sup,, X"
is integrable. Show that X is again a submartingale. Also show that
lim sup,, X™ is a submartingale when even sup,, | X™| is integrable.

10. Show that the Doob decomposition of an integrable random sequence
X = (X,) depends on the filtration unless X is a.s. Xy-measurable. (Hint:
Compare the filtrations induced by X and by the sequence Y,, = (Xo, X;41).)

11. Fix a random time 7 and a random variable ¢ € L', and define
M; = £1{r < t}. Show that M is a martingale with respect to the induced
filtration F iff E[§; 7 < t|7 > s] = 0 for any s < ¢. (Hint: The set {T > s}
is an atom of F.)

12. Let F and G be filtrations on a common probability space. Show that
every F-martingale is a G-martingale iff F; C G, L 5, F,, for every ¢t > 0.
(Hint: For the necessity, consider F-martingales of the form M, = E[§|F]
with & € LY(F).)

13. Show for any rcll supermartingale X > 0 and constant » > 0 that
rP{sup, X; > r} < EXj.
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14. Let M be an L2-bounded martingale on Z,. Imitate the proof of
Lemma 3.16 to show that M, converges a.s. and in L.

15. Give an example of a martingale that is L'-bounded but not uniformly
integrable. (Hint: Every positive martingale is L'-bounded.)

16. Show that if Gl x H for some increasing o-fields F,,, then G 1L x H.

17. Let &, — & in L'. Show for any increasing o-fields F,, that E[&,|F,]
— E[¢|Fo] in LY

18. Let £,&,&,... € L' with &, 1T ¢ a.s. Show for any increasing o-
fields F, that E[&,|F,] — E[¢|Fx) a.s. (Hint: By Proposition 6.15 we have
sup,, B[¢ — &, Fn] 5 0. Now use the monotonicity. )

19. Show that any right-continuous submartingale is a.s. rcll.

20. Let ¢ and 7 be optional times with respect to some right-continuous
filtration F. Show that the operators E7° and E/* commute on L' with
product E¥eA7. (Hint: For any & € L', apply the optional sampling theorem
to a right-continuous version of the martingale M, = E[{|F].)

21. Let X > 0 be a supermartingale on Z,, and let 79 < 73 < --- be
optional times. Show that the sequence (X, ) is again a supermartingale.
(Hint: Truncate the times 7,, and use the conditional Fatou lemma.) Show
by an example that the result fails for submartingales.



Chapter 7

Markov Processes
and Discrete-Time Chains

Markov property and transition kernels; finite-dimensional dis-
tributions and existence; space homogeneity and independence of
increments; strong Markov property and excursions; invariant
distributions and stationarity; recurrence and transience; ergodic
behavior of irreducible chains; mean recurrence times

A Markov process may be described informally as a randomized dynamical
system, a description that explains the fundamental role that Markov pro-
cesses play both in theory and in a wide range of applications. Processes
of this type appear more or less explicitly throughout the remainder of this
book.

To make the above description precise, let us fix any Borel space S and
filtration F. An adapted process X in S is said to be Markov if for any times
s < t we have X; = fs+(X,,¥s,) a.s. for some measurable function fs; and
some U(0, 1) random variable 0, 1L F;. The stated condition is equivalent to
the less transparent conditional independence X, 1l x F;. The process is said
to be time-homogeneous if we can take f;; = fy:—s and space-homogeneous
(when S = RY) if f,(x,-) = f.4+(0,-) + x. A more convenient description of
the evolution is in terms of the transition kernels p; (x, ) = P{fs+(z,9) € -},
which are easily seen to satisfy an a.s. version of the Chapman—Kolmogorov
relation fisfte = [sq- In the usual axiomatic treatment, the latter equation
is assumed to hold identically.

This chapter is devoted to some of the most basic and elementary por-
tions of Markov process theory. Thus, the space homogeneity will be shown
to be equivalent to the independence of the increments, which motivates our
discussion of random walks and Lévy processes in Chapters 8 and 13. In
the time-homogeneous case we shall establish a primitive form of the strong
Markov property and see how the result simplifies when the process is also
space-homogeneous. Next we shall see how invariance of the initial distri-
bution implies stationarity of the process, which motivates our treatment of
stationary processes in Chapter 9. Finally, we shall discuss the classification
of states and examine the ergodic behavior of discrete-time Markov chains
on a countable state space. The analogous but less elementary theory for
continuous-time chains is postponed until Chapter 10.

117
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The general theory of Markov processes is more advanced and is not con-
tinued until Chapter 17, which develops the basic theory of Feller processes.
In the meantime we shall consider several important subclasses, such as the
pure jump-type processes in Chapter 10, Brownian motion and related pro-
cesses in Chapters 11 and 16, and the above-mentioned random walks and
Lévy processes in Chapters 8 and 13. A detailed discussion of diffusion pro-
cesses appears in Chapters 18 and 20, and additional aspects of Brownian
motion are considered in Chapters 19, 21, and 22.

To begin our systematic study of Markov processes, consider an arbitrary
time scale T C R, equipped with a filtration F = (F;), and fix a measurable
space (S,8). An S-valued process X on T is said to be a Markov process if
it is adapted to F and such that

Foll X,, t<wuin T (1)
Xt

Just as for the martingale property, we note that even the Markov property
depends on the choice of filtration, with the weakest version obtained for the
filtration induced by X. The simple property in (1) may be strengthened as
follows.

Lemma 7.1 (extended Markov property) If X satisfies (1), then

Fll {Xyu>t}, teT. (2)

Xt

Proof: Fix any t =ty < t; < ---in T. By (1) we have 7, Il x, X;,.,, for
every n > 0, and so by Proposition 5.8

By the same proposition, this is equivalent to

ﬂJ_l_(XtUXth . ')7

Xt

and (2) follows by a monotone class argument. O

For any times s <t in T, we assume the existence of some regular condi-
tional distributions

p1s4(Xs, B) = P[X; € B|X,| = P[X, € B|F,] as, BeS. (3)

In particular, we note that the transition kernels us; exist by Theorem 5.3
when S is Borel. We may further introduce the one-dimensional distributions
v, = PoX; ' t € T. When T begins at 0, we shall prove that the distribution
of X is uniquely determined by the kernels p; together with the initial
distribution vy.
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For a precise statement, it is convenient to use the kernel operations
introduced in Chapter 1. Note in particular that if g and v are kernels on
S, then 1 ® v and pv are kernels from S to S? and S, respectively, given for
s €S by

(n@v)(s,B) = /u(s,dt)/l/(t,du)lg(t,u), B e 8%
(w)(5,B) = (u®v)(s,Sx B) = / u(s,di)(t,B), BES.

Proposition 7.2 (finite-dimensional distributions) Let X be a Markov pro-
cess on T with one-dimensional distributions v, and transition kernels pis;.
Then for any to < --- <t, inT,

Po (Xtm s 7th)71 = Vi @ ity @ 0 @ [ty tns (4)
P[(th s 7th) € |'7:to] = (/uto,tl K lLLtn—lstn)<Xt0’ ) (5)

Proof: Formula (4) is clearly true for n = 0. Proceeding by induction,
assume (4) to be true with n replaced by n — 1, and fix any bounded measur-
able function f on S"*'. Noting that X;,,...,X;, , are F, ,-measurable,
we get by Theorem 5.4 and the induction hypothesis

Ef(Xtm cee Jth,) = EE[f(Xtov cee 7th,)“7:tn—1]
= E/f(Xtm s 7th717 xn)utnflytn (thfu dx’ﬂ)
= (Uto ® Hto bty - ® p’tn—lytn>f7

as desired. This completes the proof of (4).
In particular, for any B € S and C' € §™ we get

P{(Xto,. ..7th) € B x C}
= [ o) ® -+ @ a1 0,)(@.C)
= E[(Mtoytl ®---® Mtnﬂ,tn)(Xim C)’ Xto € B]>
and (5) follows by Theorem 5.1 and Lemma 7.1. a
An obvious consistency requirement leads to the following basic so-called

Chapman—Kolmogorov relation between the transition kernels. Here we say
that two kernels p and p' agree a.s. if p(x, ) = p/(x,-) for almost every z.

Corollary 7.3 (Chapman, Smoluchovsky) For any Markov process in a
Borel space S, we have

Psu = Us it @.S. Vs, S<t<u.
Proof: By Proposition 7.2 we have a.s. for any B € S
wsu(Xs, B) = P[X, € B|F;] = P[(Xy, X,) € S x B|F]
(Hst @ pru)(Xs, S % B) = (psppeu) (X, B).

Since S is Borel, we may choose a common null set for all B. O
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We shall henceforth assume the Chapman—Kolmogorov relation to hold

identically, so that
Wsu = Msitlin, S<t<u. (6)

Thus, we define a Markov process by condition (3), in terms of some tran-
sition kernels p; satisfying (6). In discrete time, when T' = Z, the latter
relation is no restriction, since we may then start from any versions of the
kernels pt, = pin—1,, and define fip, , = flmy1 - - - pin, for arbitrary m < n.

Given such a family of transition kernels jp,, and an arbitrary initial
distribution v, we need to show that an associated Markov process exists.
This is ensured, under weak restrictions, by the following result.

Theorem 7.4 (existence, Kolmogorov) Fiz a time scale T starting at 0, a
Borel space (S,S), a probability measure v on S, and a family of probability
kernels pis on S, s <t in T, satisfying (6). Then there exists an S-valued
Markov process X on T with initial distribution v and transition kernels s ;.

Proof: Introduce the probability measures
Uity = Vhtot; @ - @ g4y 0=t <t <---<t,, n€N.

To see that the family (14, ) is projective, let B € S"~! be arbitrary, and
define for any k € {1,...,n} the set

B, ={(z1,...,2,) € 5" (1,..., k-1, Tp41,---,%n) € B}.
Then by (6)

Vi, tan = (V:utmh Q- lutk_l,tk_u Q- Ntnfl.,tn)B
= Vy tn B,

,,,,, th—15lk41,tn

as desired. By Theorem 5.16 there exists an S-valued process X on T with
Po(Xy, ... Xp) " =viy gy <o <ty meEN, (7)

and, in particular, Po X;' =1y = v.
To see that X is Markov with transition kernels j,,, fix any times s; <
<< s, =s<tandsets Be€ S"and C € S, and conclude from (7) that

P{(Xs,....X;,, X)) € BxC} = vy  s.1(BxC)
= Elps(Xs,C); (Xsy--.,Xs,) € Bl

Writing F for the filtration induced by X, we get by a monotone class argu-
ment
P[X: € C; Al = Elus+(X,,C); Al, A€ Fs,

and so P[X; € C|F;] = pus (X5, C) as. O
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Now assume that S is a measurable Abelian group. A kernel g on S is
then said to be homogeneous if

w(z,B)=p(0,B—2x), z€8, BES.

An S-valued Markov process with homogeneous transition kernels fi,; is said
to be space-homogeneous. Furthermore, we say that a process X in S has
independent increments if, for any times ¢, < --- <t,, the increments X;, —
Xy, are mutually independent and independent of X,. More generally,
given any filtration F on T, we say that X has F-independent increments
if X is adapted to F and such that X; — X, ILF, for all s < ¢ in T. Note
that the elementary notion of independence corresponds to the case when F
is induced by X.

Proposition 7.5 (independent increments and homogeneity) Consider a
measurable Abelian group S, a filtration F on some time scale T, and an
S-valued and F-adapted process X on T. Then X is space-homogeneous
F-Markov iff it has F-independent increments, in which case the transition
kernels are given by

pst(z,B) =P{X;—X;€B—x}, z€8 BeS, s<tinT. (8
Proof: First assume that X is Markov with transition kernels
psi(z,B) =ps(B—x), z€8, BeS, s<tinT. 9)
By Theorem 5.4, for any s <t in T and B € S we get
P[X, — X, € B|F,| = P[X; € B+ X |F| = ps (X5, B+ X,) = s, B,

so X; — X, is independent of F; with distribution ps., and (8) follows by
means of (9).

Conversely, assume that X; — X is independent of F; with distribution
ts¢. Defining the associated kernel p,, by (9), we get by Theorem 5.4 for
any s, t, and B as before

P[X; € B|Fs] = P[X: — X5 € B — X,|Fs] = psi(B — Xs) = pst(Xs, B).

Thus, X is Markov with the homogeneous transition kernels in (9). O

We may now specialize to the time-homogeneous case—when T'= R, or
Z4 and the transition kernels are of the form f,;, = p;_s, so that

P[X; € B|F,| = u—s(Xs,B) as., BeS, s<t in T.

Introducing the initial distribution v = P o X!, we may write the formulas
of Proposition 7.2 as

Po (Xtm s vth,)71 = Vit @ Py~ @ - @ fhty—t,_q,
P[(thv s 7th> € |~7:t0} = (/J‘tl—to Q- ® /’l’tn_tnfl)(XtO’ ')v
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and the Chapman—Kolmogorov relation becomes

Hs+t = Hsfit, Sat € Ta

which is again assumed to hold identically. We often refer to the family (u;)
as a semigroup of transition kernels.

The following result justifies the interpretation of a discrete-time Markov
process as a randomized dynamical system.

Proposition 7.6 (recursion) Let X be a process on Z, with values in a
Borel space S. Then X is Markov iff there exist some measurable functions
fi, f2, .18 %x[0,1] = S and i.i.d. U(0,1) random variables ¥, s, ... 1L Xy
such that X,, = f(Xy-1,9,) a.s. for all n € N. Here we may choose f; =
fo=---= fiff X is time-homogeneous.

Proof: Let X have the stated representation and introduce the kernels
tn (2, ) = P{fn(x,9) € -}, where 9 is U(0,1). Writing F for the filtration
induced by X, we get by Theorem 5.4 for any B € S

P[X, € B|F,.1] = Plfu(Xn1,9,) € B|F,_1]
= )‘{t; fn(anlvt) € B} = Nn(anlvB)v

which shows that X is Markov with transition kernels .

Now assume instead the latter condition. By Lemma 2.22 we may choose
some associated functions f,, as above. Let V1, 1527 ... be i id. U(O7 1) and in-
dependent of X’o Xo, and define recursively X, fn( e 1, n) for n € N.
As before, X is Markov with transition kernels - Hence, X4x by Propo-
sition 7.2, so by Theorem 5.10 there exist some random variables 1,, with
(X, (9,)) £ (X, (Dy)). Since the diagonal in S? is measurable, the desired
representation follows. The last assertion is obvious from the construction. O

Now fix a transition semigroup (u;) on some Borel space S. For any proba-
bility measure v on .S, there exists by Theorem 7.4 an associated Markov pro-
cess X, and by Proposition 2.2 the corresponding distribution P, is uniquely
determined by v. Note that P, is a probability measure on the path space
(ST, 8T). For degenerate initial distributions §,, we may write P, instead of
Ps,. Integration with respect to P, or P, is denoted by E, or E,, respectively.

Lemma 7.7 (mixtures) The measures P, form a probability kernel from S
to ST, and for any initial distribution v we have

PA= /S'(PIA)y(dx), Ae s (10)

Proof: Both the measurability of P,A and formula (10) are obvious for
cylinder sets of the form A = (m,,...,m, ) 'B. The general case follows
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easily by a monotone class argument. O

Rather than considering one Markov process X, for each initial distribu-
tion v, it is more convenient to introduce the canonical process X, defined
as the identity mapping on the path space (ST,S8T), and equip the latter
space with the different probability measures P,. Note that X; agrees with
the evaluation map m;: w — w; on ST, which is measurable by the definition
of ST. For our present purposes, it is sufficient to endow the path space ST
with the canonical filtration induced by X.

On ST we may further introduce the shift operators 0,: ST — ST, te T,
given by

(Ow)s = weyy, s, t€T, we ST,

and we note that the 6, are measurable with respect to S”. In the canonical
case it is further clear that 6,X =0, = X o 6,.

Optional times with respect to a Markov process are often constructed
recursively in terms of shifts on the underlying path space. Thus, for any
pair of optional times o and 7 on the canonical space, we may introduce
the random time v = o + 7 0 6,, with the understanding that v = oo when
o = oo. Under weak restrictions on space and filtration, we may show that
~ is again optional. Here C(S) and D(S) denote the spaces of continuous or
rcll functions, respectively, from Ry to S.

Proposition 7.8 (shifted optional times) For any metric space S, let o and
T be optional times on the canonical space S, C(S), or D(S), endowed with
the right-continuous, induced filtration. Then even v = o+ 708, is optional.

Proof: Since 0 An + 70 0,r, T 7, we may assume by Lemma 6.3 that ¢
is bounded. Let X denote the canonical process with induced filtration F.
Since X is F-progressive, X, ., = X 00, is F, ,-measurable for every s > 0
by Lemma 6.5. Fixing any ¢ > 0, it follows that all sets A = {X; € B} with
s <tand B € S satisfy 0;'A € F},,. The sets A with the latter property
form a o-field, and therefore

0,'F C Ff,, t>0. (11)
Now fix any ¢ > 0, and note that

{v<t}= U {o<rtob,<t—r} (12)

reQn(0,t)

For every r € (0,t) we have {T <t—r} € F,,s0 0, {r<t—r}eF .,
by (11), and Lemma 6.2 yields

{o<r,tob,<t—r}={o+t—r<t}ng{r<t—r}eF.

Thus, {y <t} € F; by (12), and so v is F+-optional by Lemma 6.2. O
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We proceed to show how the elementary Markov property may be ex-
tended to suitable optional times. The present statement is only preliminary,
and stronger versions are obtained under further conditions in Theorems
10.16, 11.11, and 17.17.

Proposition 7.9 (strong Markov property) Fix a time-homogeneous Mar-
kov process X on T = Ry or Z., and let T be an optional time taking
countably many values. Then

Pl0.X € A|F,] = Px,A as. on{r <o}, AecS’. (13)

If X is canonical, it is equivalent that
E,[£00.|F.] = Ex, &, P,-a.s. on {1 < o0}, (14)
for any distribution v on S and bounded or nonnegative random variable €.

Since {7 < oo} € F,, we note that (13) and (14) make sense by Lemma
5.2, although 0. X and Py, are defined only for 7 < oc.

Proof: By Lemmas 5.2 and 6.1 we may assume that 7 = ¢ is finite and
nonrandom. For sets A of the form

A:(ﬂ'tl,...,ﬂ'tn)ilB, tlggtn, BGSTL,TLGN, (15)
Proposition 7.2 yields

P[QtX E A|./’Tt] = P[(Xt+t13 e 7Xt+tn) 6 B|.E]
= (ft, ® sty @+ @ i, -1, ) (X, B) = Py, A,

which extends by a monotone class argument to arbitrary A € S7.

In the canonical case we note that (13) is equivalent to (14) with £ = 14,
since in that case £ 00, = 1{6,X € A}. The result extends by linearity and
monotone convergence to general £. |

When X is both space- and time-homogeneous, the strong Markov prop-
erty can be stated without reference to the family (P,).

Theorem 7.10 (space and time homogeneity) Let X be a space- and time-
homogeneous Markov process in some measurable Abelian group S. Then

PA=P(A—1x), z€85, AeST. (16)

Furthermore, (13) holds for a given optional time 7 < oo iff X, is a.s. F,-
measurable and

X—Xo £ 0.X-X, 1LF. (17)
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Proof: By Proposition 7.2 we get for any set A as in (15)

P,A = P,o(my,...,m,) 'B
= (s @ flty—ty @+ @ g1, ,) (2, B)
= (e, @ pty—ty @ -+ @ phe—1,,)(0, B — )
= Pyo(my,..,m,) "(B—1z)=Py(A—uz).

This extends to (16) by a monotone class argument.
Next assume (13). Letting A = 75 ' B with B € S, we get

1B(X-r) = PXT{WO € B} = P[XT € B|./,T7-] a.s.,
so X, is a.s. Fr-measurable. By (16) and Theorem 5.4, we further note that
Pl0,X — X, € A|F,] = Px.(A+X,) = P,A, AecST, (18)

and so 0, X — X, is independent of F, with distribution Fy. In particular,
this holds for 7 = 0, so X — X has distribution Fy, and (17) follows.

Next assume (17). To deduce (13), fix any A € ST, and conclude from
(16) and Theorem 5.4 that

PO, X € A|F,] = Pl6,X —X, € A— X, |F]
Py(A— X,) = Px A O

If a time-homogeneous Markov process X has initial distribution v, then
the distribution at time ¢t € T equals v, = vy, or

B = /V(d:v)ut(x,B), BeS, teTl.

A distribution v is said to be invariant for the semigroup (p) if v, is inde-
pendent of ¢, that is, if vy, = v for all t € T. We further say that a process
X on T is stationary if 6,X £ X for all t € T. The two notions are related
as follows.

Lemma 7.11 (stationarity and invariance) Let X be a time-homogeneous
Markov process on T with transition kernels u; and initial distribution v.
Then X is stationary iff v is invariant for (u).

Proof: Assuming v to be invariant, we get by Proposition 7.2
d .
(Xt+t17 . 7Xt+tn) = (Xt“ . ,th)7 t, tl S e S tn m T7
and the stationarity of X follows by Proposition 2.2. O

For processes X in discrete time, we may consider the sequence of suc-
cessive visits to a fixed state y € S. Assuming the process to be canonical,
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we may introduce the hitting time 7, = inf{n € N; X, = y} and then define
recursively

T;H = T;+Ty097.§, keZ,,

starting from T; = 0. Let us further introduce the occupation times

ry = sup{k; 7)) < oo} = anll{Xn =y}, yes.
The next result expresses the distribution of x, in terms of the hitting prob-
abilities

Tacy:Px{Ty<Oo}:P${/{y>0}’ x’ygs'

Proposition 7.12 (occupation times) For any x,y € S and k € N,

PAk, >k} = PQD{T;C < oo} = rwyr];y_l, (19)
r

E, = - 20

Ky 1— Tyy ( )

Proof: By the strong Markov property, we get for any k € N

PArt' <0} = P, {Tf <00, Ty 0l < oo}

PQE{T;c < oo}P{m, < oo} = T‘ny;C{T; < 00},

and the second relation in (19) follows by induction on k. The first relation
is clear from the fact that s, > k iff 77 < co. To deduce (20), conclude from
(19) and Lemma 2.4 that

Eyky = Z Pk, > k} = Z rrydjy_l fow o

E>1 k>1 1=y,
For x = y the last result yields

Pk, >k} =PirF <oo}=rF, keN

Tx)

Thus, under P,, the number of visits to x is either a.s. infinite or geometri-
cally distributed with mean E,x, +1 = (1 — r,,)~! < co. This leads to a
corresponding classification of the states into recurrent and transient ones.

Recurrence can often be deduced from the existence of an invariant dis-
tribution. Here and below we write p}, = p, (7, {y}).

Proposition 7.13 (invariant distributions and recurrence) If an invariant
distribution v exists, then any state x with v{x} > 0 is recurrent.

Proof: By the invariance of v,

0<v{z}= /V(dy)p;’m, n € N. (21)
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Thus, by Proposition 7.12 and Fubini’s theorem,

T 1
00 = Z/V(dy)p’y‘z = /V(dy) Y Py = /V(dy)1 ot :
n>1 n>1 — Taa — Tz
Hence, 7., = 1, and so z is recurrent. O

The period d, of a state x is defined as the greatest common divisor of
the set {n € N; p?, > 0}, and we say that z is aperiodic if d, = 1.

Proposition 7.14 (positivity) If v € S has period d < oo, then p™? > 0 for
all but finitely many n.

Proof: Define S = {n € N; p*¢ > 0}, and conclude from the Chapman—
Kolmogorov relation that S is closed under addition. Since S has greatest
common divisor 1, the generated additive group equals Z. In particular,
there exist some ny,...,np € S and z1,..., 2, € Z with 35; zyn; = 1. Writing
m = ny Y, |2;|n;, we note that any number n > m can be represented, for
suitable h € Z; and r € {0,...,n; — 1}, as

n:m+hn1+r:hn1+2j§k(n1|zj|+rzj)nj €S. O
For each z € S, the successive excursions of X from x are given by
Y,=X"00m, neZg,

as long as 7)) < oo. To allow for infinite excursions, we may introduce

an extraneous element 9 ¢ S%Z+ and define Y, = 9 whenever 7" = oc.
Conversely, X may be recovered from the Y,, through the formulas
Tp = Zk<n inf{t > 0; Y;.(¢t) =z}, (22)
Xy = Yn(t - Tn)7 Tn << Tyy1, NE Ly, (23)

where 0y is arbitrary.

The distribution v, = P, o Y5 ! is called the excursion law at x. When
2 is recurrent and ry, = 1, Proposition 7.9 shows that Y7, Y5, ... are i.i.d. v,
under P,. The result extends to the general case, as follows.

Proposition 7.15 (excursions) Consider a discrete-time Markov process
X in a Borel space S, and fixr any x € S. Then there exist some independent
processes Yo, Y1, ... in S, all but Yy with distribution v,, such that X is a.s.
given by (22) and (23).

Proof: Put Y, 2 Yy, and let Y3, Ys, ... be independent of Yy and ii.d. v,.
Construct associated random times 7y, 71, . .. as in (22), and define a process

X as in (23). By Corollary 5.11, it is enough to show that X £ X. Writing

Kk =sup{n > 0; 1, < oo}, Rk =sup{n >0; 7, < oo},
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it is equivalent to show that
(Yo, ..., Y0, 0,0,..) L (Yy,...,Y%,0,0,...). (24)

Using the strong Markov property on the left and the independence of the
Y, on the right, it is easy to check that both sides are Markov processes in
SZ+ U {0} with the same initial distribution and transition kernel. Hence,
(24) holds by Proposition 7.2. O

By a discrete-time Markov chain we mean a Markov process on the time
scale Z ., taking values in a countable state space I. In this case the transition
kernels of X are determined by the n-step transition probabilities pj; =
wn(4,{5}), 1,5 € I, and the Chapman—Kolmogorov relation becomes

ptt = ij{-?p?k, i,kel, m,neN, (25)

or in matrix notation, p™*" = p™p"™. Thus, p" is the nth power of the matrix
p = p', which justifies our notation. Regarding the initial distribution v as
a row vector (v;), we may write the distribution at time n as vp".

As before, we define r;; = P;{7; < oo}, where 7; = inf{n > 0; X,, = j}.
A Markov chain in I is said to be irreducible if r;; > 0 for all ¢, j € I, so that
every state can be reached from any other state. For irreducible chains, all
states have the same recurrence and periodicity properties.

Proposition 7.16 (irreducible chains) For an irreducible Markov chain,

(i) the states are either all recurrent or all transient;
(i) all states have the same period;
(ili) if v is invariant, then v; > 0 for all i.

For the proof of (i) we need the following lemma.

Lemma 7.17 (recurrence classes) Let i € I be recurrent, and define C; =
{j € Iy rij > 0}. Then rjx = 1 for all j,k € C;, and all states in C; are
recurrent.

Proof: By the recurrence of i and the strong Markov property, we get for
any j € C;

0 = P{rj<o0, 100, =00}
Pi{rj < 0o} P{7i = oo} = ri;(1 —rj).

Since r;; > 0 by hypothesis, we obtain r; = 1. Fixing any m,n € N with
Py}, > 0, we get by (25)

m+n-+s 7,8 M

E "{J — >()p > p]zpupz] = pJZp”E R; = OO
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and so j is recurrent by Proposition 7.12. Reversing the roles of ¢ and j gives
r;; = 1. Finally, we get for any j,k € C;

rjkzpj{Ti<OO7 Tk097—1<00}:7"ji7‘ik:1. O

Proof of Proposition 7.16: (i) This is clear from Lemma 7.17.
(ii) Fix any i,j € I, and choose m,n € N with pi%, p}; > 0. By (25),

h /
P;-H "> Pjipupiy, h=0.

For h = 0 we get pj;™™ > 0, and so d;|(m +n) (d; divides m+n). In general,
plt > 0 then implies d;|h, so d; < d;. Reversing the roles of ¢ and j yields
di S dj, SO dz = dj.

(iii) Fix any ¢ € I. Choosing j € I with v; > 0 and then n € N with
pj; > 0, we may conclude from (21) that even v; > 0. O

We may now state the basic ergodic theorem for irreducible Markov
chains. For any signed measure p we define ||u|| = sup 4 |1A].

Theorem 7.18 (ergodic behavior, Markov, Kolmogorov) For an irreducible,
aperiodic Markov chain, exactly one of these conditions holds:

(i) There ezists a unique invariant distribution v; furthermore, v; > 0 for
all i € I, and for any distribution u on I,

lim [P, 06, = B[ =0. (26)

(i) No invariant distribution exists, and

lim pit =0, 4,j€l. (27)

n—oo

A Markov chain satisfying (i) is clearly recurrent, whereas one that sat-
isfies (ii) may be either recurrent or transient. This leads to the further
classification of the irreducible, aperiodic, and recurrent Markov chains into
positive recurrent and null recurrent ones, depending on whether (i) or (ii)
applies.

We shall prove Theorem 7.18 by the method of coupling. Here the general
idea is to compare the distributions of two processes X and Y, by construct-
ing copies X2 XandY 2V on acommon probability space. By a suitable
choice of joint distribution, it is sometimes possible to reduce the original
problem to a pathwise comparison. Coupling often leads to simple intuitive
proofs, and we shall see further applications of the method in Chapters 8§,
12, 13, 14, and 20. For our present needs, an elementary coupling by inde-
pendence is sufficient.



130 Foundations of Modern Probability

Lemma 7.19 (coupling) Let X and Y be independent Markov chains on
some countable state spaces I and J, with transition matrices (p;v) and (g;;),
respectively. Then the pair (X,Y) is again Markov with transition matriz
Ty = D@y If X and Y are irreducible and aperiodic, then so is (X,Y),
and in that case (X,Y) is recurrent whenever invariant distributions ezist
for both X and Y.

Proof: The first assertion is easily proved by computation of the finite-
dimensional distributions of (X,Y") for an arbitrary initial distribution p® v
on I x J, using Proposition 7.2. Now assume that X and Y are irreducible
and aperiodic. Fixing any 4,7 € I and j,j' € J, it is seen from Proposition
7.14 that 77}, = piq;y > 0 for all but finitely many n € N, and so even
(X,Y) has the stated properties. Finally, if g and v are invariant distribu-
tions for X and Y, respectively, then u ® v is invariant for (X,Y), and the

last assertion follows by Proposition 7.13. |

The point of the construction is that if the coupled processes eventually
meet, their distributions must agree asymptotically.

Lemma 7.20 (strong ergodicity) Let the Markov chain in I* with transition
matriz p;yp;;e be irreducible and recurrent. Then for any distributions ji and
vonl,

lim ([P, 06, = P, 00, =0. (28)

Proof (Doeblin): Let X and Y be independent with distributions P, and
P,. By Lemma 7.19 the pair (X,Y) is again Markov with respect to the
induced filtration F, and by Proposition 7.9 the strong Markov property
holds for (X,Y) at every finite optional time 7. Taking 7 = inf{n > 0; X,, =
Y.}, we get for any measurable set A C I

Pl0.X € A|F,] = Py A= Py A= P[0,Y € A|F,].

In particular, (7, X7, 0,X) 4 (1, X7,0.Y). Defining X, =X, forn <7 and
X,, =Y, otherwise, we obtain X L x , so for any A as above

|P{0,X € A} — P{6,Y € A}|

|P{6,X € A} — P{6,Y € A}

|P{6,X € A, 7 >n} — P{6,Y € A, 7 > n}|

P{r >n} —0. O

IA

The next result ensures the existence of an invariant distribution. Here a
coupling argument is again useful.

Lemma 7.21 (existence) If (27) fails, then an invariant distribution exists.
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Proof: Assume that (27) fails, so that limsup,, Piy, o > 0 for some i, jo €
I. By a diagonal argument we may choose a subsequence N’ C N and some
constants ¢; with ¢;, > 0 such that p; ; — ¢; along N' for every j € I. Note
that 0 < > <1 by Fatou’s lemma.

To extend the convergence to arbitrary ¢, let X and Y be independent
processes with the given transition matrix (p;;), and conclude from Lemma
7.19 that (X,Y) is an irreducible Markov chain on I? with transition prob-
abilities gy = puwpjy. If (X,Y) is transient, then by Proposition 7.12

Yo W)= dh <00, ijel

and (27) follows. The pair (X,Y") is then recurrent and Lemma 7.20 yields
pi; — piy ; — 0 for all 4, j € I. Hence, p}; — ¢; along N’ for all 7 and j.
Next conclude from the Chapman—Kolmogorov relation that

it =30 pipie = 3 b, ik € L.

Using Fatou’s lemma on the left and dominated convergence on the right, we
get as n — oo along N’

chjpjk < ijijck =c¢, kel (29)

Summing over k gives 3-; ¢; < 1 on both sides, and so (29) holds with equal-
ity. Thus, (¢;) is invariant and we get an invariant distribution v by taking

ViZCi/ZjCj. O

Proof of Theorem 7.18: If no invariant distribution exists, then (27) holds
by Lemma 7.21. Now let v be an invariant distribution, and note that v; > 0
for all ¢ by Proposition 7.16. By Lemma 7.19, the coupled chain in Lemma
7.20 is irreducible and recurrent, so (28) holds for any initial distribution g,
and (26) follows since P, o ;! = P, by Lemma 7.11. If even ¢/ is invariant,
then (26) yields P, = P, and so ' = v. O

The limits in Theorem 7.18 may be expressed in terms of the mean re-
currence times I;7;, as follows.

Theorem 7.22 (mean recurrence times, Kolmogorov) For a Markov chain

in I and for states i,j € I with j aperiodic, we have
bi{r; < oo}

Jim pi = T B (30)

Proof: First take ¢ = j. If j is transient, then p7, — 0 and E;7; = oo,
and so (30) is trivially true. If instead j is recurrent, then the restriction of
X to the set C; = {i; r;; > 0} is irreducible recurrent by Lemma 7.17 and
aperiodic by Proposition 7.16. Hence, pj; converges by Theorem 7.18.
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To identify the limit, define
L,=sup{k € Zy; 7f <n} =) 1{X,=j}, nel
k=1

The 7}' form a random walk under P, so by the law of large numbers

L(t} 1
<n ) z%%i Pj-a.s.
7! 7] E;T;

By the monotonicity of Lj and 77" it follows that L,/n — (E;7;)"" as. P;.
Noting that L, < n, we get by dominated convergence

EL 1

1 n
n 2P B

and (30) follows.
Now let @ # j. Using the strong Markov property, the disintegration
theorem, and dominated convergence, we get

pz = R{X = .]} = B{Tj S n, (QT]X)nij = ]}
= E [p;l] T7, 1 S TL] — R{TJ < OO}/EJTJ O
We return to continuous time and a general state space, to clarify the
nature of the strong Markov property of a process X at finite optional times
7. The condition is clearly a combination of the conditional independence
0. X U x F, and the strong homogeneity

P0.X € -|X;] = Px, as. (31)

Though (31) appears to be weaker than (13), the two properties are in fact
equivalent, under suitable regularity conditions on X and F.

Theorem 7.23 (strong homogeneity) Fix a separable metric space (S, p),
a probability kernel (P,) from S to D(S), and a right-continuous filtration
F on Ry. Let X be an F-adapted rcll process in S satisfying (31) for all
bounded optional times 7. Then the strong Markov property holds at any
such time T.

Our proof is based on a zero—one law for absorption probabilities, involv-
ing the sets

I ={w € D; wy = wp}, A={xeS; P,I=1}. (32)

Lemma 7.24 (absorption) For X asin Theorem 7.23 and for any optional
time T < 00, we have

PXT] = II(BTX) = IA(XT) a.s. (33)
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Proof: We may clearly assume that 7 is bounded, say by n € N. Fix any
h > 0, and divide S into disjoint Borel sets By, Bs, ... of diameter < h. For
each k € N, define

Ty = n Ainf{t > 7; p(X;, X;) > h} on {X, € By}, (34)

and put 7, = 7 otherwise. The times 7, are again bounded and optional, and
we note that

{X,, € By} C{X, € By, supte[T’n]p(XT,Xt) < h}. (35)
Using (31) and (35), we get as n — oo and h — 0
E[Px. I 6,X € | =Y E[Px. I 6,X € I, X, € By
S E[Px, I% X, € By]
S P, X ¢1, X, € By}

< Y P{6,X ¢ 1, X, € By, supyeppyn(Xs, Xo) < 1}
— P{0;X ¢ I, sup;>, p(X7, X;) =0} =0,

and so Px, I =1 as. on {6,X € I}. Since also EPx, I = P{6,X € I} by
(31), we obtain the first relation in (33). The second relation follows by the
definition of A. O

Proof of Theorem 7.23: Define I and A as in (32). To prove (13) on
{X, € A}, fix any times t; < --- < t, and Borel sets By, ..., B,, write
B =, By, and conclude from (31) and Lemma 7.24 that

PN Xy € B 7] = PIX, € B|IF]=1{X, € B}
— P[X, € B|X,] = Py {wo € B}
= PX*ﬂk{wik € Bk}'
This extends to (13) by a monotone class argument.
To prove (13) on {X, ¢ A}, we may assume that 7 < n a.s., and divide
A€ into disjoint Borel sets By of diameter < h. Fix any F' € F, with F' C
{X, ¢ A}. For each k € N, define 7, as in (34) on the set F*N{X, € By},

and let 7, = 7 otherwise. Note that (35) remains true on F°. Using (31),
(35), and Lemma 7.24, we get as n — oo and h — 0

|P[0;X € - F] — E[Px,; F|

= |3 Bl{6-X €} - Px,; X, € By, F|
S EN{0,X €} - Py, X, € By, F
\ZkE[l{eTkX €} —Px,; Xy, € By, F|
> PIX., € By F9|

IA
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< Y P{X: € By, supiepp( Xy, Xi) < 1}
— P{XT ¢ A: Suptz-rp(X‘raXt) = 0} =0.

Hence, the left-hand side is zero. O
Exercises

1. Let X be a process with X Ul v, {X,, u >t} for all s < ¢. Show that
X is Markov with respect to the induced filtration.

2. Let X be a Markov process in some space S, and fix a measurable
function f on S. Show by an example that the process Y; = f(X;) need not
be Markov. (Hint: Let X be a simple symmetric random walk on Z, and
take f(zr) = [z/2].)

3. Let X be a Markov process in R with transition functions p, satisfying
wi(z, B) = u(—x, —B). Show that the process Y; = | X;| is again Markov.

4. Fix any process X on R, and define ¥; = X! = {X,,;; s > 0}. Show
that Y is Markov with respect to the induced filtration.

5. Consider a random element £ in some Borel space and a filtration F
with Foo C 0{&}. Show that the measure-valued process X; = P[¢ € -|F] is
Markov. (Hint: Note that {1l x, F; for all ¢.)

6. For any Markov process X on R, and time u > 0, show that the
reversed process Y; = X, 4, t € [0,u], is Markov with respect to the induced
filtration. Also show by an example that a possible time homogeneity of X
need not carry over to Y.

7. Let X be a time-homogeneous Markov process in some Borel space
S. Show that there exist some measurable functions f; : S x [0,1] — S,
h >0, and U(0,1) random variables ¥, , L X", t,h > 0, such that X, =
n( Xy, Vep) as. for all ¢, h > 0.

8. Let X be a time-homogeneous and rcll Markov process in some Pol-
ish space S. Show that there exist a measurable function f: .S x [0,1] —
D(R4,S) and some U(0,1) random variables 9,1l X* such that 6,X =
f(X;,9) a.s. Extend the result to optional times taking countably many
values.

9. Let X be a process on R, with state space S, and define Y; = (X, ),
t > 0. Show that X and Y are simultanously Markov, and that Y is then
time-homogeneous. Give a relation between the transition kernels for X and
Y. Express the strong Markov property of Y at a random time 7 in terms
of the process X.

10. Let X be a discrete-time Markov process in S with invariant distri-
bution v. Show for any measurable set B C S that P,{X,, € B io.} > vB.
Use the result to give an alternative proof of Proposition 7.13. (Hint: Use
Fatou’s lemma.)
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11. Fix an irreducible Markov chain in S with period d. Show that S has
a unique partition into subsets S, ..., Sq such that p;; = 0 unless i € Sy and
J € Sky1 for some k € {1,...,d}, where the addition is defined modulo d.

12. Let X be an irreducible Markov chain with period d, and define
Si1,...,Sq as above. Show that the restrictions of (X,4) to Si,..., Sy are
irreducible, aperiodic and either all positive recurrent or all null recurrent.
In the former case, show that the original chain has a unique invariant dis-
tribution v. Further show that (26) holds iff uS, = 1/d for all k. (Hint: If
(X,q) has an invariant distribution v* in Sy, then 1/]“1 = Y, vFp;; form an
invariant distribution in Sk;.)

13. Given a Markov chain X on S, define the classes C; as in Lemma 7.17.
Show that if j € C; but ¢ ¢ C; for some ¢, j € S, then 7 is transient. If instead
i € C; for every j € C;, show that C; is irreducible (i.e., the restriction of X
to C; is an irreducible Markov chain). Further show that the irreducible sets
are disjoint and that every state outside all irreducible sets is transient.

14. For an arbitrary Markov chain, show that (26) holds iff 3=; [p}; —v;| —
0 for all 4.

15. Let X be an irreducible, aperiodic Markov chain in N. Show that X is
transient iff X,, — oo a.s. under any initial distribution and is null recurrent
iff the same divergence holds in probability but not a.s.

16. For every irreducible, positive recurrent subset Sy C S, there ex-
ists a unique invariant distribution vy, restricted to S, and every invariant
distribution is a convex combination Y cxvg.

17. Show that a Markov chain on a finite state space S has at least
one irreducible set and one invariant distribution. (Hint: Starting from any
ip € S, choose i; € Cyy, is € Cy,, ete. Then N, C;, is irreducible.)

18. Let X and Y be independent Markov processes with transition ker-
nels p;; and vg,. Show that (X,Y) is again Markov with transition kernels
tst(x,)@s4(y, ). (Hint: Compute the finite-dimensional distributions from
Proposition 7.2, or use Proposition 5.8 with no computations.)

19. Let X and Y be independent, irreducible Markov chains with periods
dy and dy. Show that Z = (X,Y) is irreducible iff d; and dy have greatest
common divisor 1 and that Z then has period d;d,.

n

20. State and prove a discrete-time version of Theorem 7.23. Further
simplify the continuous-time proof when S is countable.



Chapter 8
Random Walks and Renewal Theory

Recurrence and transience; dependence on dimension; general re-
currence criteria; symmetry and duality; Wiener—Hopf factoriza-
tion; ladder time and height distribution; stationary renewal pro-
cess; renewal theorem

A random walk in R? is defined as a discrete-time random process (S,,) evolv-
ing by i.i.d. steps &, = AS,, = S, — S,_1. For most purposes we may take
So =0, so that S,, =& + ...+ &, for all n. Random walks may be regarded
as the simplest of all Markov processes. Indeed, we recall from Chapter 7
that random walks are precisely the discrete-time Markov processes in R?
that are both space- and time-homogeneous. (In continuous time, a similar
role is played by the so-called Lévy processes, to be studied in Chapter 13.)
Despite their simplicity, random walks exhibit many basic features of Markov
processes in discrete time and hence may serve as a good introduction to the
general subject. We shall further see how random walks enter naturally into
the discussion of certain continuous-time phenomena.

Some basic facts about random walks were obtained in previous chapters.
Thus, some simple zero—one laws were established in Chapter 2, and in Chap-
ters 3 and 4 we proved the ultimate versions of the laws of large numbers and
the central limit theorem, both of which deal with the asymptotic behavior
of n=¢S,, for suitable constants ¢ > 0. More sophisticated limit theorems of
this type are derived in Chapters 12, 13, and 14 through approximation by
Brownian motion and other Lévy processes.

Random walks in R? are either recurrent or transient, and our first major
task in this chapter is to derive a recurrence criterion in terms of the tran-
sition distribution . Next we consider some striking connections between
maximum and return times, anticipating the arcsine laws of Chapters 11,
12, and 13. This is followed by a detailed study of ladder times and heights
for one-dimensional random walks, culminating with the Wiener—Hopf fac-
torization and Baxter’s formula. Finally, we prove a two-sided version of the
renewal theorem, which describes the asymptotic behavior of the occupation
measure and associated intensity for a transient random walk.

In addition to the already mentioned connections to other chapters, we
note the relevance of renewal theory for the study of continuous-time Markov
chains, as considered in Chapter 10. Renewal processes may further be re-
garded as constituting an elementary subclass of the regenerative sets, to be

136
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studied in full generality in Chapter 19 in connection with local time and
excursion theory.

To begin our systematic discussion of random walks, assume as before
that S, = & + - + &, for all n € Z,, where the &, are i.i.d. random
vectors in R%. The distribution of (S,) is then determined by the common
distribution g = P o &, ! of the increments. By the effective dimension of
(S,) we mean the dimension of the linear subspace spanned by the support
of pu. For most purposes, we may assume that the effective dimension agrees
with the dimension of the underlying space, since we may otherwise restrict
our attention to a suitable subspace.

The occupation measure of (S,) is defined as the random measure

nB=>% _1{S.eB}, BeB"
We also need to consider the corresponding intensity measure
(En)B=E(mB) =Y. _ P{S,€B}, Beh"

Writing BE = {y; |t — y| < €}, we may introduce the accessible set A, the
mean recurrence set M, and the recurrence set R, respectively given by

A = () {z eR% BnB; > 0},
M = (_,{z €RY EnB; = o0},
R = ﬂ5>0{x €RY nB: =0 as.}.

The following result gives the basic dichotomy for random walks in R

Theorem 8.1 (recurrence dichotomy) Let (S,) be a random walk in R?,
and define A, M, and R as above. Then ezxactly one of these conditions
holds:

(i) R= M = A, which is then a closed additive subgroup of R?;

(i) R=M =0, and |S,| — oo a.s.

A random walk is said to be recurrent if (i) holds and to be transient
otherwise.

Proof: Since trivially R € M C A, the relations in (i) and (ii) are
equivalent to A € R and M = (), respectively. Further note that A is a
closed additive semigroup.

First assume P{|S,| — oo} < 1, so that P{|S,| < r i.0.} > 0 for some
r > 0. Fix any € > 0, cover the r-ball around 0 by finitely many open balls
By, ..., B, of radius /2, and note that P{S, € By i.0.} > 0 for at least one
k. By the Hewitt—Savage 0—1 law, the latter probability equals 1. Thus, the
optional time 7 = inf{n > 0; S,, € By} is a.s. finite, and the strong Markov
property at 7 yields

1= P{S, € B, 1.0.} < P{|Sr4n — S;| <e 1.0.} = P{|S,] <¢e io.}.



138 Foundations of Modern Pobability

Hence, 0 € R in this case
To extend the latter relation to A C R, fix any x € A and € > 0. By the
strong Markov property at o = inf{n > 0; |S,, — z| < ¢/2},

P{|S,—z|<e 1.0} > P{o<oo, |Soin— S, <e/2 i0.}
= P{o < oo}P{|S.] <¢/2 i.0.} >0,
and by the Hewitt—Savage 01 law the probability on the left equals 1. Thus,

x € R. The asserted group property will follow if we can prove that even
—x € A. This is clear if we write

P{|S,+z| <e 10} = P{|Sein—S5,+z|<e i0}
P{|S,] <¢/2 i0.} =1

V

Next assume that |S,| — oo a.s. Fix any m, k € N, and conclude from
the Markov property at m that

P{|Sm| <r, infn2k|5m+n| > T}
> P{|Sn| <7, inf,>k|Smin — Sm| > 21}
P{|Sn| < r} P{inf,>¢|S,| > 2r}.

Here the event on the left can occur for at most k different values of m, and
therefore

Plinf,sg[Sn| > 2r} Y P{|Sn]| <7} < oo, keN.

As k — oo the probability on the left tends to one. Hence, the sum converges,
and we get EnB < oo for any bounded set B. This shows that M =§. O

The next result gives some easily verified recurrence criteria.

Theorem 8.2 (recurrence for d = 1,2) A random walk (S,) in R is re-
current under each of these conditions:

(i) d=1 and n18, 5 0;

(ii) d=2, E& =0, and E|&]? < .

In (i) we recognize the weak law of large numbers, which is characterized
in Theorem 4.16. In particular, the condition is fulfilled when E¢; = 0.
By contrast, F¢; € (0,00] implies S,, — oo a.s. by the strong law of large
numbers, so in that case (S,,) is transient.

Our proof of Theorem 8.2 is based on the following scaling relation. As
before, a < b means that a < cb for some constant ¢ > 0.

Lemma 8.3 (scaling) For any random walk (S,) in R?,

Yoo PUSH < el <30 P{ISu <€}, r>1 >0
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Proof: Cover the ball {z; || < re} by balls By, ..., B, of radius £/2, and
note that we can make m < r¢. Introduce the optional times 7, = inf{n; S, €
B}, k=1,...,m, and conclude from the strong Markov property that

S PUSI <vel < 3030 P{S. € By}
< ZanPﬂS‘FkJﬂL - STk' <g < OO}
= ZkP{Tk < oo} ZnP{|Sn\ <e}
< 7t ZnP{|Sn| <e}. O

Proof of Theorem 8.2 (Chung and Ornstein): (i) Fix any € > 0 and r > 1,
and conclude from Lemma 8.3 that

S P{S. <} = S P{IS,| < re} = /O°° P{|Spq| < re}dt.

Here the integrand on the right tends to 1 as r — oo, so the integral tends
to oo by Fatou’s lemma, and the recurrence of (S,) follows by Theorem 8.1.

(ii) We may assume that (S,) is two-dimensional, since the one-dimen-
sional case is already covered by part (i). By the central limit theorem we
have n~1/283, KN ¢, where the random vector ¢ has a nondegenerate normal
distribution. In particular, P{|¢| < ¢} > ¢? for bounded ¢ > 0. Now fix any
e >0and r > 1, and conclude from Lemma 8.3 that

S P8 < b 2t S P{ISul < veh = [T P{ISpayl < re}at.
As r — oo, we get by Fatou’s lemma
S P{IS <<} 2 [P et By = & [T = o,
and the recurrence follows again by Theorem 8.1. O

We shall next derive a general recurrence criterion, stated in terms of the
characteristic function i of u. Write B. = {x € R%; |z| < €}.

Theorem 8.4 (recurrence criterion, Chung and Fuchs) Let (S,) be a ran-
dom walk in RY based on some distribution p, and fix any & > 0. Then (S,)
18 recurrent iff

1
sup R4

— dt = oo. 1
0<r<1JBe 1*7"/% ( )

The proof is based on an elementary identity.

Lemma 8.5 (Parseval) Let ji and v be probability measures on R with
characteristic functions i and v. Then [ jdv = [ Ddpu.
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Proof: Use Fubini’s theorem. O

Proof of Theorem 8.4: The function f(s) = (1 — |s|)+ has Fourier trans-
form f(t) = 2¢7%(1— cost), so the tensor product f®4(s) = [[y<y f(sx) on R
has Fourier transform f®d(t) = Tli<a f(z‘k) Writing u** = P o S, !, we get
by Lemma 8.5 for any a > 0 and n E Zy

[ @/ de) = a® [ 7> (atyiyat.

By Fubini’s theorem, it follows that, for any r € (0,1),

/f®d xfa) Y =q¢ f®d(at>dt (2)

n>0 L=y
Now assume that (1) is false. Taking § = e~'d"/2, we get by (2)

S PUSI <8y = 3 By < [ fao) Zw(dw)

®d (5t dt
= 0dsup D )dt <e “sup n
r<l — 7l r<1JB. 1 — 1l

and so (S,) is transient by Theorem 8.1.

To prove the converse, we note that f®¢ has Fourier transform (27)4 &4,
Hence, (2) remains true with f and f interchanged, apart from a factor (2m)%
on the left. If (S,,) is transient, then for any € > 0 with § = e~ 'd"/? we get

dt Fod (¢
sup/ - <  sup L/f)dt
r<1 /B 1 — riy T r<i 1-— Tt
o ot f P S
< ey wT(Bs) < oo O

In particular, we note that if y is symmetric in the sense that & 2 =&,
then i is real valued and the last criterion reduces to

/ dt
= OQ.
B 1-— ﬂt

By a symmetrization of (S,) we mean a random walk S, =8, — SHon >0,
where (5}) is an independent copy of (S,). The following result relates the
recurrence behavior of (S,,) and (S,).

Corollary 8.6 (symmetrization) If a random walk (S,) is recurrent, then
so0 is the symmetrized version (S,).
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Proof: Noting that (Rz)(Rz7!) < 1 for any complex number z # 0, we

get
1 1 1

R < < .
1—rp?2 = 1—rRa2 — 1—r|a)?

Thus, if (S,,) is transient, then so is the random walk (Ss,) by Theorem 8.4.
But then |Ss,| — oo a.s. by Theorem 8.1, and so |Sa,11] — oo a.s. By com-
bination, |S,| — oo a.s., which means that (S,) is transient. O

The following sufficient conditions for recurrence or transience are often
more convenient for applications.

Corollary 8.7 (sufficient conditions) Fiz anye > 0. Then (S,) is recurrent

if
g 1
dt =
. 3‘%1 -y 00 (3)

and transient if
dt
—_— . 4
Jo T < W

Proof: First assume (3). By Fatou’s lemma, we get for any sequence
r, T 1

1 1
lim inf xr — > lim R — = x — = 00.
n—ooo Jp. 1 —r,f B. 20 1 —1r.ji B. 1—p

Thus, (1) holds, and (S,,) is recurrent.
Now assume (4) instead. Decreasing ¢ if necessary, we may further assume
that R > 0 on B.. As before, we get

P 1 </ 1 </ 1 -
00
B. 1l—rig = Je.1—1mRa ~ /. 1—-Ri ’

and so (1) fails. Thus, (S,) is transient. O

The last result enables us to supplement Theorem 8.2 with some conclu-
sive information for d > 3.

Theorem 8.8 (transience for d > 3) Any random walk of effective dimen-
ston d > 3 is transient.

Proof: We may assume that the symmetrized distribution is again d-
dimensional, since u is otherwise supported by some hyperplane outside the
origin, and the transience follows by the strong law of large numbers. By
Corollary 8.6, it is enough to prove that the symmetrized random walk (S'n)
is transient, and so we may assume that p is symmetric. Considering the
conditional distributions on B, and B¢ for large enough r > 0, we may

write u as a convex combination cpy + (1 — ¢)ug, where py is symmetric and
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d-dimensional with bounded support. Letting (r;;) denote the covariance
matrix of uq, we get as in Lemma 4.10

fia(t) =1— %Zi’jrijtitj +o(|t]?), t—0.

Since the matrix (r;;) is positive definite, it follows that 1 — jy(¢) > |¢]? for
small enough |¢|, say for t € B,. A similar relation then holds for fi, so

dt dt : .
/ — < / — < / ri3dr < oo.
B 1=y = JB |t]2 ~ Jo

Thus, (S,) is transient by Theorem 8.4. O

We turn to a more detailed study of the one-dimensional random walk
Sp =& + -+ &, n € Zy. Say that (S,) is simple if || = 1 a.s. For a
simple, symmetric random walk (S,,) we note that

n

Up = P{Syy = 0} = 272" (2”> neZ,. (5)

The following result gives a surprising connection between the probabilities
u, and the distribution of last return to the origin.

Proposition 8.9 (last return, Feller) Let (S,) be a simple, symmetric ran-
dom walk in Z, put o, = max{k < n; S, = 0}, and define u,, by (5). Then

Plo, =k} =wupg, 0<k<n.

Our proof will be based on a simple symmetry property, which will also
appear in a continuous-time version as Lemma 11.14.

Lemma 8.10 (reflection principle, André) For any symmetric random walk

(S,) and optional time 7, we have (S,) % (S,), where
g’n = Sn/\'r - (Sn - Sn/\T)a n 2 0

Proof: We may clearly assume that 7 < oo a.s. Writing S/, = S,4, — S-,
n € Z,, we get by the strong Markov property S < S'1(S7,7), and by
symmetry —S L3, Hence, by combination (—S’, S, 1) 4 (8,87, 7), and
the assertion follows by suitable assembly. O

Proof of Proposition 8.9: By the Markov property at time 2k, we get
P{o, =k} = P{Sox =0}P{0,,_, =0}, 0<Ek<mn,

which reduces the proof to the case when k£ = 0. Thus, it remains to show
that
P{S27£07"'752n#O}:P{SQ’IL:O}a n € N.
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By the Markov property at time 1, the left-hand side equals
%P{minkgnsk = 0} + %P{maxkdnsk = 0} = P{Mzn_l = 0},
where M,, = maxg<, Sg. Using Lemma 8.10 with 7 = inf{k; Sy = 1}, we get

1 — P{My, 1 =0} = P{My, 1 > 1}
= P{Ms,—1 > 1, Syp_1 > 1} + P{M3,—1 > 1, Sz, < 0}
= P{Sn_1>1}+ P{Ss—1 > 2}
1—P{Sy,_1 =1} =1— P{Sy, =0}. O

We shall now prove an even more striking connection between the maxi-
mum of a symmetric random walk and the last return probabilities in Propo-
sition 8.9. Related results for Brownian motion and more general random
walks will appear in Theorems 11.16 and 12.11.

Theorem 8.11 (first mazimum, Sparre-Andersen) Let (S,) be a random
walk based on a symmetric, diffuse distribution, put M, = maxy<, Si, and
write T, = min{k > 0; S, = M, }. Define o, as in Proposition 8.9 in terms

of a simple, symmetric random walk. Then T, 4 on for every n > 0.
Here and below, we shall use the relation
(Sty- 1 S0) £ (Sn = Spts.os Su—Sp), neN, (6)

valid for any random walk (S,,). The formula is obvious from the fact that

Erreeerbn) L (Eny o )

Proof of Theorem 8.11: By the symmetry of (S,) together with (6), we
have

v =P{n.=0}=P{rn =k}, k>0 (7)

Using the Markov property at time k£, we hence obtain
P{r, =k} =P{r =k}P{1,x =0} =vpv,t, 0<k<n. (8)

Clearly 09 = 19 = 0. Proceeding by induction, assume that oy 2 T and
hence uy = vy, for all k < n. Comparing (8) with Proposition 8.9, we obtain
P{o, =k} = P{r, = k} for 0 < k < n, and by (7) the equality extends to
k =0 and n. Thus, o, 4 Tn- |

For a general one-dimensional random walk (.5,,), we may introduce the
ascending ladder times T, Ty, . . ., given recursively by

T, =inf{k >7,_1; Sp > S, _,}, neEN, 9)
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starting with 79 = 0. The associated ascending ladder heights are defined as
the random variables S;, , n € N, where S, may be interpreted as co. In a
similar way, we may define the descending ladder times 7, and heights S, -,
n € N. The times 7,, and 7, are clearly optional, so the strong Markov prop-
erty implies that the pairs (7, 55,) and (7,7, S,-) form possibly terminating
random walks in R".

Replacing the relation Sy, > S, _, in (9) by S, > S, _,, we obtain the weak
ascending ladder times o, and heights S, . Similarly, we may introduce the
weak descending ladder times o, and heights S_-. The mentioned sequences
are connected by a pair of simple but powerful duality relations.

Lemma 8.12 (duality) Letn, ', (, and {’ denote the occupation measures
of the sequences (Ss,), (So,), (Sn; n <71 ), and (Sy; n < o7), respectively.
Then En = EC and Eq' = EC.

Proof: By (6) we have for any B € B(0,00) and n € N

P{Sl/\"'/\sn,1>O,SnEB} = P{Sl\/"'\/Sn,1<Sn€B}
= > Pln=n, S, €B}. (10)

Summing over n > 1 gives E('B = EnB, and the first assertion follows. The
proof of the second assertion is similar. O

The last lemma yields some interesting information. For example, in a
simple symmetric random walk, the expected number of visits to an arbitrary
state k # 0 before the first return to 0 is constant and equal to 1. In
particular, the mean recurrence time is infinite, and so (5,,) is a null recurrent
Markov chain.

The following result shows how the asymptotic behavior of a random walk
is related to the expected values of the ladder times.

Proposition 8.13 (fluctuations and mean ladder times) For any nonde-
generate random walk (S,) in R, exactly one of these cases occurs:

(i) Sp — o0 a.s. and E1y < 00;

(i) Sp = —o0 a.s. and BT < 005

(iii) limsup, (£5,) = 0o a.s. and Eo; = Eo] = 0.

Proof: By Corollary 2.17 there are only three possibilities: .S,, — oo a.s.,
Sy — —o0 a.s., and limsup,, (£S5,) = oo a.s. In the first case o, < oo for
finitely many n, say for n < k < oo. Here k is geometrically distributed,
and so ETy = Fx < oo by Lemma 8.12. The proof in case (ii) is similar.
In case (iii) the variables 7, and 7, are all finite, and Lemma 8.12 yields
Eoy = Eo; = o0. |

Next we shall see how the asymptotic behavior of a random walk is related
to the expected values of & and S,,. Here we define B¢ = E¢t — E&™
whenever EET A EFE™ < oo.
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Proposition 8.14 (fluctuations and mean ladder heights) If (S,) is a non-
degenerate random walk in R, then

(i) E& =0 implies limsup,, (+S,) = oo a.s.;
(i) E& € (0,00] implies S, — oo a.s. and ES,, = ET1E&;;
(iii) B¢ = EE = oo implies ES,, = —ES, - =oc.

The first assertion is an immediate consequence of Theorem 8.2 (i). It
can also be obtained more directly, as follows.

Proof: (i) By symmetry, we may assume that limsup, S, = oo a.s. If
ETm < oo, then the law of large numbers applies to each of the three ratios

in the equation
ST n S‘r
7"7_7 — 7"’ n e N7
Tn M n
and we get 0 = E& By = ES;, > 0. The contradiction shows that £ = oo,
and so liminf, S,, = —oco by Proposition 8.13.
(ii) In this case S,, = o0 a.s. by the law of large numbers, and the formula
ES,; = En E& follows as before.

(iii) This is clear from the relations S,, > & and S < =& O

We shall now derive a celebrated factorization, which can be used to ob-
tain more detailed information about the distributions of ladder times and
heights. Here we shall write y* for the possibly defective distributions of
the pairs (7,.5;,) and (77, ST;), respectively, and let 1)* denote the corre-
). Put xf = xF({n} x-) and
E =F({n} x ). Let us further introduce the measure x° on N, given by

sponding distributions of (01, S,,) and (o7, S,

91

X?L = P{Sl/\/\Sn,1>O:Sn}
= P{Sl\/~--\/Sn,1<O:Sn}, TLEN,

where the second equality holds by (6).

Theorem 8.15 (Wiener—Hopf factorization) For random walks in R based
on a distribution p, we have

do—0®@p = (do—x")*(do—47)=(do—¢")* (G —x"), (11)
So— 1T = (6 —xF)* (6 — X°). (12)

Note that the convolutions in (11) are defined on the space Z, x R,
whereas those in (12) can be regarded as defined on Z,. Alternatively, we
may consider x° as a measure on N x {0}, and interpret all convolutions as
defined on Z, x R.
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Proof: Define the measures pq, pa, ... on (0,00) by

pnB = P{Sl/\"'/\Sn,1>O, SnEB}
= Ezkl{Tk =n, S, € B}, neN, BeB(0,00), (13)

where the second equality holds by (10). Put py = ¢, and regard the sequence
p = (pn) as a measure on Z; x (0,00). Noting that the corresponding
measures on R equal p, + 1, and using the Markov property at time n — 1,
we get

Pnt Uy =poorxp=(p* (1 ®p))n, neN (14)

Applying the strong Markov property at 71 to the second expression in (13),
it is further seen that

Pn = ZX]-: * Pn—k = (X+ * p)m n €N (15)
k=1

Recalling the values at zero, we get from (14) and (15)
pHYT =00 +px (1 @p),  p=2d+x"*p

Eliminating p between the two equations, we obtain the first relation in (11),
and the second one follows by symmetry.

To prove (12), we note that the restriction of 1) to (0, 00) equals 1, —x2.
Thus, for B € B(0, c0),

(= +xY)B = P{max;,S, =0, S, € B}.

Decomposing the event on the right according to the time of first return to
0, we get

n—1
X = =Y 0 = (X x ), nEN,
k=1

and so T — ¢+ + x® = ¥ * x*, which is equivalent to the “plus” version of
(12). The “minus” version follows by symmetry. o

The preceding factorization yields in particular an explicit formula for
the joint distribution of the first ladder time and height.

Theorem 8.16 (ladder distributions, Sparre-Andersen, Baxter) If (S,) is
a random walk in R, then for |s| <1 and u >0,

E s™exp(—uS;,) =1—exp {— > S—E[e’“S"; Sy > O]} . (16)

n=1 n

For (01,S4,) a similar relation holds with S, > 0 replaced by S,, > 0.
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Proof: Introduce the mixed generating and characteristic functions
X, = Es™exp(itS,,), 1/3; =Es1 exp(itS,-),
and note that the first relation in (11) is equivalent to
1—spy=1-x5)1—4,,), |s|<L teR

Taking logarithms and expanding in Taylor series, we obtain

2o (s)" =30 nT )"+ X

For fixed s € (—1,1), this equation is of the form 7 = o™ 4+ 7™, where v and
v* are bounded signed measures on R, (0, 00), and (—o0, 0], respectively. By
the uniqueness theorem for characteristic functions we get v = v™ +v~. In
particular, v equals the restriction of v to (0,00). Thus, the corresponding
Laplace transforms agree, and (16) follows by summation of a Taylor series

for the logarithm. A similar argument yields the formula for (o4, S5, ). O

From the last result we may easily obtain expressions for the probability
that a random walk stays negative or nonpositive and deduce criteria for its
divergence to —oo

Corollary 8.17 (negativity and divergence to —oo) For any random walk
(Sp) in R, we have

P{r =00} = (Eoy)™! = exp {_anln_IP{S" > 0}}, (17)
P{oy =00} = (Ery)™ = exp{-Y_ _ n'P{S, 20}}.  (18)

Furthermore, the following conditions are both equivalent to S, — —o0 a.s.:

anln_IP{Sn > 0} < oo, Zn21n_1P{Sn >0} < 0.

Proof: The last expression for P{m; = oo} follows from (16) with u =0
as we let s — 1. Similarly, the formula for P{o; = oo} is obtained from the
version of (16) for the pair (01,S,,). In particular, P{r = oo} > 0 iff the
series in (17) converges, and similarly for the condition P{oy = oo} > 0 in
terms of the series in (18). Since both conditions are equivalent to S,, — —oo
a.s., the last assertion follows. Finally, the first equalities in (17) and (18) are
obtained most easily from Lemma 8.12 if we note that the number of strict
or weak ladder times 7, < 0o or g, < oo is geometrically distributed. O

We turn to a detailed study of the occupation measure n = 3,5 dg, of
a transient random walk on R, based on transition and initial distributions
1 and v. Recall from Theorem 8.1 that the associated intensity measure
En = v« 1*" is locally finite. By the strong Markov property, the sequence
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(Sr1n —S;) has the same distribution for every finite optional time 7. Thus,
a similar invariance holds for the occupation measure, and the associated
intensities must agree. A renewal is then said to occur at time 7, and the
whole subject is known as renewal theory. In the special case when p and v
are supported by R, we shall refer to n as a renewal process based on p and
v, and to En as the associated renewal measure. One usually assumes that
v = dy; if not, we say that 7 is delayed.

The occupation measure 7 is clearly a random measure on R, in the sense
that nB is a random variable for every bounded Borel set B. From Lemma
10.1 we anticipate the simple fact that the distribution of a random measure
on R, is determined by the distributions of the integrals nf = [ fdn for all
f € Cf(R,), the space of continuous functions f: R, — R, with bounded
support. For any measure pu on R and constant ¢ > 0, we may introduce
the shifted measure O, on R, given by (6;u)B = u(B + t) for arbitrary
B € B(R;). A random measure 1 on R is said to be stationary on R, if
0m = Bon.

Given a renewal process 1 based on some distribution p, the delayed
process 7] = J, * 1 is said to be a stationary version of n if v = Poa™!
is chosen such that the random measure 77 becomes stationary on R, . The
following result shows that such a version exists iff ;4 has finite mean, in
which case v is uniquely determined by p. Write A\ for Lebesgue measure on
R, and recall that §, denotes a unit mass at x.

Proposition 8.18 (stationary renewal process) Let n be a renewal process
based on some distribution p on Ry with mean c. Then n has a stationary
version 1 iff ¢ € (0,00). In that case Efj = ¢~ '\, and the initial distribution
of 7 is uniquely given by v = ¢~ 1(8g — p) * A, or

v[0,t] =c* /Ot,u(s, oo)ds, t>0. (19)

Proof: By Fubini’s theorem,

En = Eznésn :z:nPoS;1 :Zny*u*n
V+u>k27Ll/*/L*n:V+/j,*E17,

and so v = (dy — p) * En. If n is stationary, then En is shift invariant, and
Lemma 1.29 yields En = a\ for some constant a > 0. Thus, v = a(dy—p) * A,
and (19) holds with ¢! replaced by a. As t — co, we get 1 = ac by Lemma
2.4. Hence, ¢ € (0,00) and a = ¢ .

Conversely, assume that ¢ € (0,00), and let v be given by (19). Then

En = vx Znﬂ*” =c (6 —p) x A% Znu*”

Cil)\ * {anou*n - ZnZlu*n} = CilA.
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By the strong Markov property, the shifted random measure 6,7 is again a
renewal process based on p, say with initial distribution v;. As before,

vy = (00 — p) * (0:En) = (6 — p) x En = v,

which implies the asserted stationarity of 7. a

From the last result we may deduce a corresponding statement for the
occupation measure of a general random walk.

Proposition 8.19 (stationary occupation measure) Letn be the occupation
measure of a random walk in R based on distributions p and v, where p has
mean ¢ € (0,00), and v is defined as in (19) in terms of the ladder height
distribution i and its mean ¢. Then 1 is stationary on R, with intensity 1.

Proof: Since S,, — oo a.s., Propositions 8.13 and 8.14 show that the
ladder times 7, and heights H,, = 5., have finite mean, and by Proposition
8.18 the renewal process ( = Y, 6y, is stationary for the prescribed choice
of v. Fixing t > 0 and putting oy = inf{n € Z;; S, > t}, we note in
particular that S,, — ¢ has distribution v. By the strong Markov property at
oy, the sequence Sy, 1n — ¢, n € Z,, has then the same distribution as (S,,).
Since S, < t for k < oy, we get 6;n & n on Ry, which proves the asserted
stationarity.

To identify the intensity, let 7, denote the occupation measure of the
sequence Sy — Hp, 7, < k < 7,41, and note that H, 1l n, 4 1o for each n, by
the strong Markov property. Hence, by Fubini’s theorem,

En=EY n,*6u, =Y E(0m, * En,) = Engx B 6, = Eng = EC.
Noting that E¢ = ¢ '\ by Proposition 8.18, that Eny(0,00) = 0, and that
¢ = cE'm; by Proposition 8.14, we get on R
E?]()R_

A BTy O
C

En=

The next result describes the asymptotic behavior of the occupation mea-
sure i and its intensity E7n. Under weak restrictions on u, we shall see how
0,n approaches the corresponding stationary version 7, whereas E7 is asymp-
totically proportional to Lebesgue measure. For simplicity, we assume that
the mean of p exists in R. Thus, if £ is a random variable with distribution
i, we assume that E(§ A E7) < oo and define E€ = FEY — EE.

It is natural to state the result in terms of vague convergence for measures
on R, and the corresponding notion of distributional convergence for ran-
dom measures. Recall that, for locally finite measures v, vy, v, ... on Ry, the
vague convergence v, — v means that v, f — vf for all f € C}z(R,). Simi-
larly, if , 11,19, . . . are random measures on R, we define the distributional
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convergence 1), N 1 by the condition 7, f N nf for every f € C(R,). (The
latter notion of convergence will be studied in detail in Chapter 14.) A mea-
sure 1 on R is said to be nonarithmetic if the additive subgroup generated
by supp p is dense in R.

Theorem 8.20 (two-sided renewal theorem, Blackwell, Feller and Orey)
Let n be the occupation measure of a random walk in R based on distributions
w and v, where p is nonarithmetic with mean ¢ € R\ {0}. If ¢ € (0,00),
let i be the stationary version in Proposition 8.19, and otherwise put 7 = 0.
Then as t — o0,

(i) 6;En = Ei= (¢ VO)A.

Our proof is based on two lemmas. First we consider the distribution
v, of the first nonnegative ladder height for the shifted process (S, — t).
The key step for ¢ € (0,00) is to show that v, converges weakly toward
the corresponding distribution o for the stationary version. This will be
accomplished by a coupling argument.

Lemma 8.21 (asymptotic delay) If ¢ € (0,00), then vy — U as t — 0.

Proof: Let a and o’ be independent random variables with distributions
v and 7. Choose some i.i.d. sequences (&)1 (Y)) independent of o and o/
such that Po &' =y and P{d, = +1} = 1. Then

Sn :o/_a—zkgnﬁkfk, nely,

is a random walk based on a nonarithmetic distribution with mean 0, and so
by Theorems 8.1 and 8.2 the set {Sn} is a.s. dense in R. For any € > 0, the
optional time o = inf{n > 0; S, € [0,¢]} is then a.s. finite.

Now define ¢, = (—1)"*=<e}9, k € N, and note as in Lemma 8.10 that
{o, (&, 9)} L {d, (&, 0)}. Let 5y < Ky < --- be the values of k with
Jr = 1, and define k] < k5 < --- similarly in terms of (¢}). By a simple
conditioning argument, the sequences

’ /
Sh :a+Zan£HJ" Sn:a +Z]«Sn£n;’ neZ-‘r?

are random walks based on g and the initial distributions v and 7, respec-
tively. Writing 04 = >p<, 1{¥y, = 1}, we note that

!
Saern

~Syiin=25,€[0,¢e], nezZ,.

Putting v = S5, VS, , and considering the first entry of (S,) and (S},) into
the interval [t, 00), we obtain

Ule,x] — P{y >t} < 14[0,2] < 0[0,z + ] + P{y > t}.
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Letting ¢ — oo and then ¢ — 0, and noting that 7{0} = 0 by stationarity,
we get 4]0, z] — P[0, x]. O

The following simple statement will be needed to deduce (ii) from (i) in
the main theorem.

Lemma 8.22 (uniform integrability) Let n be the occupation measure of a
transient random walk (S,) in RY with arbitrary initial distribution, and fix
any bounded set B € BY. Then the random variables n(B + x), * € RY, are
uniformly integrable.

Proof: Fix any x € RY, and put 7 = inf{t > 0; S, € B + z}. Letting ng
denote the occupation measure of an independent random walk starting at
0, we get by the strong Markov property

n(B+z) L no(B+x—5.)1{r < oo} < ny(B - B).

In remains to note that Eng(B — B) < oo by Theorem 8.1, since (S,) is
transient. O

Proof of Theorem 8.20 (¢ < c0): By Lemma 8.22 it is enough to prove
(i). If ¢ < 0, then S,, — —oo a.s. by the law of large numbers, so 6;n = 0
for sufficiently large ¢, and (i) follows. If instead ¢ € (0,00), then v, = ¥
by Lemma 8.21, and we may choose some random variables «; and a with
distributions v; and v, respectively, such that ay — « a.s. We may further
introduce the occupation measure 7, of an independent random walk starting
at 0.

Now fix any f € C(R,), and extend f to R by putting f(z) = 0 for
x < 0. Since 7 < A\ we have no{—a} = 0 a.s., and so by the strong Markov
property and dominated convergence

Om)f £ [ Flaw+@)mlde) [ fla+2)m(dz) L if.

(¢ = 00): In this case it is clearly enough to prove (ii). Then note that
En =vx* Ex * EC, where x is the occupation measure of the ladder height
sequence of (S, — Sp), and ¢ is the occupation measure of the same process
prior to the first ladder time. Here E(R_ < oo by Proposition 8.13, so by
dominated convergence it suffices to show that 8, Ey - 0. Since the mean of
the ladder height distribution is again infinite by Proposition 8.14, we may
henceforth take v = §y and let u be an arbitrary distribution on R, with
infinite mean.

Put I = [0,1], and note that En(l + t) is bounded by Lemma 8.22.
Define b = limsup, En(I + t), and choose a sequence t;, — oo with En(I +
tr) — b. Here we may subtract the finite measures u* for j < m to get
(™« En)(I 4+ tx) — b for all m € Z,. By the reverse Fatou lemma, we
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obtain for any B € B(R;)

liminf En(I — B+ t;)u™™ B
k—o0

> lim inf/ En(I —x + tp) ™™ (dx)
k—o0 B
= b—limsup | En(I—x+tx)p""(dz)
k—oo /B¢
> b— | limsup En(I —x +tg)p™™(dzx) > bu™™B. (20)
B¢ koo

Now fix any h > 0 with p(0, 2] > 0. Noting that En[r,r+h] > 0 for allr > 0
and writing J = [0, a] with a = h + 1, we get by (20)

lilzn inf En(J +t,—r) >b, r>a. (21)
c—00

Next conclude from the identity dy = (09 — ) * En that

1= /Otk (e — x,00)En(dz) > > p(na,00)En(J + t; — na).

n>1

As k — oo we get by (21) and Fatou’s lemma 1 > b7, p1(na, 00), and since
the sum diverges by Lemma 2.4, it follows that b = 0. O

We shall use the preceding theory to study the renewal equation F =
f + F % u, which often arises in applications. Here the convolution F * p is
defined by

(Fxpy = [ Fle=s)ulds), t20,

whenever the integrals on the right exist. Under suitable regularity condi-
tions, the renewal equation has the unique solution F' = fx*ji, where i denotes
the renewal measure 3o ¢#*". Additional conditions ensure the solution F’
to converge at oo.

A precise statement requires some further terminology. By a regular step
function we shall mean a function on R, of the form

fr=2_ 051510 (t/h), =0, (22)

where h > 0 and ag,as,... € R. A measurable function f on R, is said to
be directly Riemann integrable if \|f| < oo and there exist some regular step
functions f with f,; < f < fF and A(f;f — f,;) — 0.

Corollary 8.23 (renewal equation) Fix a distribution p # dy on Ry with
associated renewal measure i, and let f be a locally bounded and measurable
function on Ry. Then the equation F' = f + F %y has the unique, locally
bounded solution F' = fxp. If f is also directly Riemann integrable and if
is monarithmetic with mean c, then F, — ¢ '\f ast — oo.
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Proof: Tterating the renewal equation, we get
F=Y, [xp*+Fxp", neN (23)

The law of large numbers yields **[0,¢] — 0 as n — oo for fixed ¢ > 0, so
for locally bounded F' we get F'* p*™ — 0. If even f is locally bounded, then
by (23) and Fubini’s theorem

F=3 o fruwt=f«3 pw*=[*p

Conversely, f+ f* fixpu = f*p, which shows that F' = f * i solves the given
equation.

Now let g be nonarithmetic. If f is a regular step function as in (22),
then by Theorem 8.20 and dominated convergence we get as t — co

Ro— /O’f f(t = s)i(ds) = 3. a;fi((0,h] + ¢ = jh)
= TRy 0 = TS

In the general case, we may introduce some regular step functions f with
fo < f<fland A(f;f = f7) — 0, and note that

(foxme < B <(fox )y, 20, neN

Letting t — oo and then n — oo, we obtain F, — ¢ ' \f. O

Exercises

1. Show that if (.S,) is recurrent, then so is the random walk (S,;) for
each k € N. (Hint: If (S,) is transient, then so is (Sy4;) for any j > 0.)

2. For any nondegenerate random walk (5,) in R%, show that |5,| % occ.
(Hint: Use Lemma 4.1.)

3. Let (S,) be a random walk in R based on a symmetric, nondegenerate
distribution with bounded support. Show that (S,) is recurrent, using the
fact that lim sup,,(£S,) = co a.s.

4. Show that the accessible set A equals the closed semigroup generated
by supp p. Also show by examples that A may or may not be a group.

5. Let v be an invariant measure on the accessible set of a recurrent
random walk in RY. Show by examples that En may or may not be of the
form oo - v.

6. Show that a nondegenerate random walk in R? has no invariant dis-
tribution. (Hint: If v is invariant, then p* v = v.)

7. Show by examples that the conditions in Theorem 8.2 are not neces-
sary. (Hint: For d = 2, consider mixtures of N(0,0?) and use Lemma 4.18.)
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8. Consider a random walk (.S,,) based on the symmetric p-stable distri-
bution on R with characteristic function e~1". Show that (S,,) is recurrent
for p > 1 and transient for p < 1.

9. Let (S,) be a random walk in R? based on the distribution u?, where
i is symmetric p-stable. Show that (S,,) is recurrent for p = 2 and transient
for p < 2.

10. Let g = cug + (1 — ¢)po, where pq and pp are symmetric distributions
on R? and ¢ is a constant in (0,1). Show that a random walk based on p is
recurrent iff recurrence holds for the random walks based on p; and ps.

11. Let p = puq * jip, where g, and py are symmetric distributions on R?.
Show that if a random walk based on  is recurrent, then so are the random
walks based on p; and ps. Also show by an example that the converse is
false. (Hint: For the latter part, let p; and ps be supported by orthogonal
subspaces.)

12. For any symmetric, recurrent random walk on Z¢, show that the
expected number of visits to an accessible state k # 0 before return to the
origin equals 1. (Hint: Compute the distribution, assuming probability p for
return before visit to k.)

13. Use Proposition 8.13 to show that any nondegenerate random walk in
Z¢ has infinite mean recurrence time. Compare with the preceding problem.

14. Show how part (i) of Proposition 8.14 can be strengthened by means
of Theorems 4.16 and 8.2.

15. For a nondegenerate random walk in R, show that limsup,, S, = o
a.s. iff oy < oo a.s. and that S, — oo a.s. iff Fo; < co. In both conditions,
note that oy can be replaced by 7.

16. Let n be a renewal process based on some nonarithmetic distribution
on R,. Show for any € > 0 that sup{¢t > 0; En[t, ¢t +¢] = 0} < co. (Hint:
Imitate the proof of Proposition 7.14.)

17. Let p be a distribution on Z, such that the group generated by supp p
equals Z. Show that Proposition 8.18 remains true with v{n} = ¢~!u(n, co),
n > 0, and prove a corresponding version of Proposition 8.19.

18. Let n be the occupation measure of a random walk on Z based on
some distribution p with mean ¢ € R\ {0} such that the group generated by
supp i equals Z. Show as in Theorem 8.20 that En{n} — ¢=1 Vv 0.

19. Derive the renewal theorem for random walks on Z, from the ergodic
theorem for discrete-time Markov chains, and conversely. (Hint: Given a
distribution p on N, construct a Markov chain X on Z, with X1 = X, +1
or 0, and such that the recurrence times at 0 are i.i.d. p. Note that X is
aperiodic iff Z is the smallest group containing supp p.)

20. Fix a distribution g on R with symmetrization . Note that if g is
nonarithmetic, then so is u. Show by an example that the converse is false.
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21. Simplify the proof of Lemma 8.21, in the case when even the sym-
metrization fi is nonarithmetic. (Hint: Let &, &, ... and &,&,, ... be ii.d.
11, and define S, =a —a-+ Seen(&e — &k)-)

22. Show that any monotone and Lebesgue integrable function on R, is
directly Riemann integrable.

23. State and prove the counterpart of Corollary 8.23 for arithmetic
distributions.

24. Let (&,) and (17,) be independent i.i.d. sequences with distributions p
and v, put S, = > <, (& + M), and define U = U,;5¢[Sn, Sn + &n41). Show
that F, = P{t € U} satisfies the renewal equation F' = f 4+ F * y * v with
fi = p(t,00). Assuming p and v to have finite means, show also that F;
converges as t — oo, and identify the limit.

25. Consider a renewal process ) based on some nonarithmetic distribution
p with mean ¢ < oo, fix an h > 0, and define F; = P{n[t,t + h] = 0}. Show
that F' = f 4+ F * pu, where f; = u(t + h, 00). Also show that F; converges as
t — oo, and identify the limit. (Hint: Consider the first point of 7 in (0, t),
if any.)

26. For 7 as above, let 7 = inf{¢t > 0; n[t,t + h] = 0}, and put F; =
P{r < t}. Show that F; = u(h,00) + o™ u(ds)F,_s, or F = f + F x py,
where pi, = 1o - o and f = p(h, 00).



Chapter 9

Stationary Processes and
Ergodic Theory

Stationarity, invariance, and ergodicity; mean and a.s. ergodic
theorem; continuous time and higher dimensions; ergodic decom-
position; subadditive ergodic theorem, products of random matri-
ces; exchangeable sequences and processes; predictable sampling

A random process in discrete or continuous time is said to be stationary if its
distribution is invariant under shifts. Stationary processes are important in
their own right; they may also arise under broad conditions as steady-state
limits of various Markov and renewal-type processes, as we already saw in
Chapters 7 and 8 and will see again in Chapters 10 and 20. The aim of this
chapter is to present some of the most useful general results for stationary
and related processes.

The most fundamental result for stationary random sequences is the mean
and a.s. ergodic theorem, a powerful extension of the law of large numbers.
Here the limit is generally a random variable, measurable with respect to the
so-called invariant o-field. Of special interest is the ergodic case, when the
invariant o-field is trivial and the time average reduces to a constant. For
more general sequences, the distribution admits a decomposition into ergodic
components, obtainable through conditioning with respect to the invariant
o-field.

We will consider several extensions of the basic ergodic theorem, including
versions in continuous time and in higher dimensions. Additionally, we shall
prove a version of the powerful subadditive ergodic theorem and discuss an
important application to random matrices.

Just as the elementary Markov property may be extended to a strong
version, it is useful to strengthen the condition of stationarity by requiring
invariance in distribution under arbitrary optional shifts. This leads to the
notions of exchangeable sequences and to processes with exchangeable incre-
ments. The fairly elementary mean ergodic theorem yields an easy proof of
de Finetti’s theorem, the fact that exchangeable sequences are conditionally
i.i.d. In the other direction, we shall establish the striking and useful pre-
dictable sampling theorem, which in turn will lead to simple proofs of the
arcsine laws in Chapters 11, 12, and 13.

The material in this chapter is related in many ways to other parts of
the book. Apart from the already mentioned connections, there are also

156
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links to the ratio ergodic theorem for diffusions in Chapter 20 as well as
to various applications and extensions in Chapters 10, 11, and 14 of results
for exchangeable sequences and processes. Furthermore, there is a relation
between the predictable sampling theorem here and some results on random
time-change appearing in Chapters 16 and 22.

We now return to the basic notions of stationarity and invariance. A
measurable transformation T on some measure space (S, S, 1) is said to be
measure-preserving or p-preserving if 4o T—' = p. Thus, if € is a random
element of S with distribution g, then 7' is measure-preserving iff T¢ =
To& 4 ¢. In particular, consider a random sequence & = (&, &1, ...) in some
measurable space (5’ S’), and let § denote the shift on S = (S")*° given by
O(zo,z1,...) = (z1,22,...). Then ¢ is said to be stationary if 6 L ¢ The
following result shows that the general situation is equivalent to this special
case.

Lemma 9.1 (stationarity and invariance) Let & be a random element in
some measurable space S, and let T be a measurable transformation on
S. Then T¢ 4 & iff the sequence (T"E) is stationary, in which case even
(f oT™E) is stationary for any measurable function f. Conversely, any sta-
tionary sequence of random elements admits such a representation.

Proof: Assuming T 2 £, we get

O(f o T"¢) = (f o T"1€) = (f o T"TE) £ (f 0 T™€),

and so (f o T"¢) is stationary. Conversely, assume that n = (19, n1,...) is
stationary. Then 7, = m(0™n), where my(zo, z1,...) = o, and we note that

0n 2 7 by the stationarity of 7. a

In particular, we note that if &y, &y, . .. is a stationary sequence of random
elements in some measurable space S, and if f is a measurable mapping of
S°° into some measurable space S’, then the random sequence

7]n:f(§n,€n+1,~--), TLGZ+,

is again stationary.

The definition of stationarity extends in the obvious way to random se-
quences indexed by Z. The two-sided case is often more convenient because
of the group structure of the associated family of shifts. The next result
shows that the two cases are essentially equivalent. Recall our convention
from Chapter 5 about the existence of randomization variables.

Lemma 9.2 (two-sided extension) Let &y,&1,... be a stationary sequence
of random elements in some Borel space S. Then there exist some random
elements £€_1,&_o,... in S such that the extended sequence ...,&_1,&p, &1, . ..
18 stationary.
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Proof: Using some i.i.d. U(0,1) random variables ¢1,%s,... indepen-
dent of & = (&,&1,...), we may construct the {_, recursively such that
(€ n&ntt, ) L ¢ for all n. In fact, assume that the required elements
&.1,...,&_, have already been constructed as functions of £, 94, ...,%,. Then
(Eny&ngty--2) £ ¢, so even &_,,_; exists by Theorem 5.10. Finally, note
that the extended sequence is stationary by Proposition 2.2. O

Now fix a measurable transformation 7" on some measure space (S, S, 1),
and let S* denote the pu-completion of S. A set I C S is said to be invariant
if 7' = I and almost invariant if T-'I = I a.e. u, in the sense that
w(T~'IAT) = 0. Since inverse mappings preserve the basic set operations, it
is clear that the classes Z and 7’ of invariant sets in S and almost invariant
sets in the completion S* form o-fields in S, the so-called invariant and
almost invariant o-fields, respectively.

A measurable function f on S is said to be invariant if f oT = f and
almost invariant if f ol = f a.e. u. The following result gives the basic
relationship between invariant or almost invariant sets and functions.

Lemma 9.3 (invariant sets and functions) Fix a measurable transforma-
tion T on some measure space (S,S, 1), and let f be a measurable mapping
of S into some Borel space S'. Then f is invariant or almost invariant iff it
is T-measurable or T'-measurable, respectively.

Proof: First apply a Borel isomorphism to reduce to the case when S’ = R.
If f is invariant or almost invariant, then so is the set I, = f~(—o0, ) for
any ¢ € R, and so I, € T or 7', respectively. Conversely, if f is measurable
w.r.t. Z or Z', then I, € T or 7', respectively, for every z € R. Hence, the
function f,,(s) = 27"[2"f(s)], s € S, is invariant or almost invariant for ev-
ery n € N, and the invariance or almost invariance clearly carries over to the
limit f. |

The next result shows how the invariant and almost invariant o-fields
are related. Here we write Z" for the p-completion of Z in S&*, the o-field
generated by Z and the p-null sets in S*.

Lemma 9.4 (almost invariance) Let T and I' be the invariant and almost
invariant o-fields associated with a measure-preserving mapping T on some
probability space (S, S, ). Then T' = TH.

Proof: If J € T*, there exists some I € Z with u(IAJ) = 0. Since T is
p-preserving, we get
w(THIAT) < (T JAT ) + (T HIATL) + p(IAJ)
po T HJAI) = u(JAI) =0,
which shows that J € Z'. Conversely, given any J € Z’, we may choose some

J' € § with u(JAJ') = 0 and put I = N, Uy, T7"J". Then, clearly, I € T
and pu(IAJ) =0, and so J € I*. O
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A measure-preserving mapping 7' on some probability space (5,8, p) is
said to be ergodic w.r.t. i, or u-ergodic if the invariant o-field Z is p-trivial, in
the sense that uI = 0 or 1 for every I € Z. Depending on our viewpoint, we
may prefer to say that p is ergodic w.r.t. T, or T-ergodic. The terminology
carries over to any random element ¢ with distribution w, which is said to be
ergodic whenever this is true for T or pu. Thus, £ is ergodic iff P{{ €I} =0
or 1 for any I € Z, that is, if the o-field Zy = £7'7 in Q is P-trivial. In
particular, a stationary sequence £ = (§,) is ergodic if the shift-invariant
o-field is trivial w.r.t. the distribution of .

The next result shows how the ergodicity of a random element ¢ is related
to the ergodicity of the generated stationary sequence.

Lemma 9.5 (ergodicity) Consider a random element & in S and a mea-
surable transformation T on S with T& 2 & Then & is T-ergodic iff the
sequence (T"€) is 0-ergodic, in which case even n = (f oT") is O-ergodic for
any measurable mapping f on S.

Proof: Fix any measurable mapping f: S — S', and define F' = (f o T™;
n > 0). Then FoT = 0o F, so if the set I C (5)* is #-invariant, we have
T-'F~1] = F~19~'] = F~']. Thus, F~'] is T-invariant in S. Assuming &
to be ergodic, we hence obtain P{n € I} = P{¢ € F~'I} = 0 or 1, which
shows that even 7 is ergodic.

Conversely, let the sequence (7"¢) be ergodic, and fix any T-invariant set
I'in S. Put F = (T™; n > 0), and define A = {s € S; s, € I 1.0.}. Then
I =F1'A and A is f-invariant, so we get P{¢ € I} = P{(T"¢) € A} =0 or
1, which shows that even £ is ergodic. a

We proceed to state the fundamental a.s. and mean ergodic theorem for
stationary sequences of random variables. The result may be regarded as an
extension of the law of large numbers.

Theorem 9.6 (ergodic theorem, von Neumann, Birkhoff) Fiz a measurable
space S, a measurable transformation T on S with associated invariant o-

field Z, and a random element & in S with T¢E < &. Consider a measurable
function f: S — R with (&) € LP for some p > 1. Then

n' > F(TR) — E[f(€)|¢7'T] a.s. and in LP.

k<n

The proof is based on a simple, but clever, estimate.

Lemma 9.7 (mazimal ergodic lemma, Hopf) Consider a stationary sequence
of integrable random variables &1,&,, ..., and define S, = & +---+&,. Then
E[&y; sup,, S, > 0] > 0.
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Proof (Garsia): Write S/, = & + -+ - + &,41, and define

n € N.

n’

M, =5SyV--VS,, M, =SV---VS
Fixing n € N, we get on the set {M,, > 0}
M,=5V---VS, =G+M, <&+ M.

On the other hand, M, < M! on {M, = 0}. Noting that M, 4 M) by the
assumed stationarity, we obtain

E[¢1; M, > 0] > E[M,, — M'; M, > 0] > E[M, — M'] = 0.

n’

Since M, 1 sup,, S, as n € N, the assertion now follows by dominated con-
vergence. u

Proof of Theorem 9.6 (Yosida and Kakutani): Write n = f(£), npx =
F(TF1E), Sp=m + -+ +np, and Zg = £71Z. First assume that E[n|Z¢] = 0
a.s. Fix any ¢ > 0, and define

A = {limsup,(S,/n) > e}, = (N, —€)la.
Writing S;, = 1} + - - 4+ 7n},, we note that
{sup,, S, > 0} = {sup,,(S,,/n) > 0} = {sup,(S,/n) >c}NA=A.
Now A € I, so the sequence (1)) is stationary, and Lemma 9.7 yields
0 < E[ny; sup, S, > 0] = E[n — e; A] = E[E[n|Z¢]; A] — ePA = —cPA,

which implies PA = 0. Thus, limsup,(S,/n) < e a.s. Since ¢ is arbi-
trary, we get limsup,, (S,/n) < 0 a.s. Applying this result to (—=S,,) yields
liminf,(S,/n) > 0 a.s., and by combination S, /n — 0 a.s.

If E[n|Z¢] # 0, we may apply the previous result to the sequence ¢, =
N, — En|Z¢], which is again stationary, since the second term is an invariant
function of &, because of Lemma 9.3.

To prove the LP-convergence, introduce for fixed 7 > 0 the random vari-
ables ' = nl{|n| < r} and ' = n — 7/, and define 1/, and n! similarly in
terms of 7,. Let S/ and S! denote the corresponding partial sums. Then
|S;,/n] < r, and so the convergence S),/n — E[n|Z¢] remains valid in L?.
From Minkowski’s and Jensen’s inequalities it is further seen that

IS = Eln"|Zellp < n7" 32 Ikl + 11 Zellly < 200”1,
k<n

ThUS, . -1 "

timsup 1715, — Bl < 20
Here the right-hand side tends to zero as r — oo, and the desired conver-
gence follows. |
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Writing Z and T for the shift-invariant and tail o-fields, respectively,
in R*, we note that Z C 7. Thus, for any sequence of random variables
€= (&,&,...) we have I, = £'7 C £'T. By Kolmogorov’s 0-1 law the
latter o-field is trivial when the &, are independent. If they are even i.i.d.
and integrable, then Theorem 9.6 yields n=1(&; + -+ - +&,) — F& a.s. and in
L', in agreement with Theorem 3.23. Hence, the last theorem contains the
strong law of large numbers.

Our next aim is to extend the ergodic theorem to continuous time. We
may then consider a family of transformations 7; on S, t > 0, satisfying
the semigroup or flow property Tsyy = TT;. A flow (T;) on S is said to be
measurable if the mapping (z,t) — Tz is product measurable from S xR to
S. The invariant o-field T now consists of all sets I € S such that 7,7'1 = I
for all ¢. A random element & in S is said to be (T})-stationary if T;£ 4 & for
all t > 0.

Theorem 9.8 (continuous-time ergodic theorem) Fix a measurable space S,
let (T3) be a measurable flow on S with invariant o-field Z, and let € be a (T;)-
stationary random element in S. Consider a measurable function f: S — R
with f(§) € LP for some p > 1. Then as t — oo,

O [ F(8as - BIF@IET] as and in I, 0

Proof: We may clearly assume that f > 0. Writing X, = f(T:£), we get
by Jensen’s inequality and Fubini’s theorem

t p "t t
E ‘t’l/ Xds| < Et’l/ XPds = t*l/ EXPds = EX? < co.
0 0 0

Thus, to see that the time averages in (1) converge a.s. and in L,, it suffices to
apply Theorem 9.6 to the function g(x) = f; f(T.z)ds and the shift T = Tj.

To identify the limit 7, fix any I € Z, and conclude from the invariance
of I and the stationarity of £ that

E[f(Ti€); £ € I = E[f(T.€); T.§ € 1] = E[f(§); § € 1].
By Fubini’s theorem and the established L!-convergence,
t
E[Xy;,E€ell=FE {t’l/ Xds; £ € I} — Elnp; £ €1).
0
Thus, E[n|¢1Z] = E[Xo|¢7'Z] ass., and it remains to show that 7 is a.s.

¢~ 17-measurable. This is clear since

r+n
n = lim limsup n~" Xsds a.s. O
T—00

n—oo T
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Next we shall see how the LP-convergence in Theorem 9.6 can be extended
to higher dimensions. As in Lemma 9.1 for d = 1, any stationary array X
indexed by Zi can be written as
KXoy = FTF - T59€), (a,. .. ka) € Z4, (2)
where £ is a random element in some measurable space (5,S), and T, ..., Ty
are commuting measurable transformations on S that preserve the distribu-
tion = P o &7t The invariant o-field Z now consists of all sets in S that
are invariant under Ti,...,T}.

Theorem 9.9 (multivariate mean ergodic theorem) Let (Xy) be given by (2)
in terms of some random element £ in S, some commuting, Pof~1-preserving
transformations Ty, ...,T; on S, and some measurable function f: S — R
with f(&) € LP for somep > 1. Write T for the (T, ..., Ty)-invariant o-field
i S. Then as ny,...,ng — o0,

() S e Y Xepow > BT in D (3)

k1<ny kqg<ng

Proof: For convenience we may write (3) in the form [n]™* >, Xi —
E[f(&)|¢Z), where k = (ki,...,ka), n = (n1,...,nq), and [n] = ny---ng.
The result will be proved by induction on d. If it holds in dimensions < d—1,

then in the d-dimensional case there exist some 7,7, ... € LP with
), X =y in P, j € Zy, (4)

where k' = (kq,...,kq) and n’ = (ng,...,ng), and the convergence holds

as na,...,ng — 0o. The sequence (n);) is again stationary, and so the one-

dimensional result yields m™"'>;_,,n; — 1 in L? for some 1 € L?. Noting
that the rate of convergence in (4) is independent of 7, we get by Minkowski’s
inequality, as nq,...,nqg — 0o,

[ 2 X =,

< 175 Xowr = ), +|

-1
™ Zj<n1nj o an -0,

We may finally deduce the a.s. relation n = E[f(£)|¢7'Z] in the same way as
for Theorem 9.8. ad

We turn to another main topic of this chapter, the decomposition of an
invariant distribution into ergodic components. For motivation, consider the
setting of Theorem 9.6 or 9.9, and assume that S is Borel, to ensure the
existence of regular conditional distributions. Writing n = P[¢ € -|€71Z], we
get

Pot ' = EP[tc |¢T] = Ey = /mPon—l(dm). (5)
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Furthermore, for any I € Z we note that nI = P[{ € I|¢7'Z] = 1{¢ € I}
a.s., and so n/ = 0 or 1 a.s. If the exceptional null set can be chosen to be
independent of I, we may conclude that 7 is a.s. ergodic, and (5) gives the
desired ergodic decomposition of = P o ¢~1. Though the suggested result
is indeed true, a rigorous proof is surprisingly hard.

Theorem 9.10 (ergodicity via conditioning, Farrell, Varadarajan) Let S,
Ty,...,Ty, & and T be such as in Theorem 9.9, and let S be Borel. Then
the random measure n = P[§ € -|€7'I] is a.s. invariant and ergodic under
Ty,...,Ty.

Our proof is based on a lemma involving the empirical distributions n, =

fin(§, -), where

pin(s, B) =n~? Z Z IB(leln-des), BeS, neN.

ki<n kq<n

Note that 7,B £l nB for every B € § by Theorem 9.9. A class C C S is
said to be (measure) determining if a probability measure on S is uniquely
determined by its values on C.

Lemma 9.11 (ergodicity via sample means) Assume for some countable
determining class C C S and subsequence N' C N that n,B — P{¢ € B}
a.s. along N’ for all B € C. Then £ is ergodic.

Proof: By Theorem 9.9 we have P{{ € B} =B a.s. for all B € C. Since
C is countable and determining, it follows that Po&~! = 5 a.s. Letting [ € Z,
we get a.s.

P{¢ eI} =nl = PlEeI|l¢'T] =1,(¢) € {0,1}.
Hence, the left-hand side is either 0 or 1, which shows that £ is ergodic. O

Proof of Theorem 9.10: Since S is Borel, we may choose a countable
determining class C C S. For any B € C and i € {1,...,d}, we have a.s.

7]T;13 = P[TZ§ S B|IE] = P[g € B|I§] =B,

where Z; = ¢7'Z. Thus, n is a.s. invariant.

By Theorem 9.9 and Lemma 3.2 together with a diagonal argument, we
may next choose a subsequence N’ C N such that n,B — nB a.s. along N’
for every B € C. Using Theorem 5.4, we get along N’

1= Pn,B = nB|Z| = n{s € S; pn(s,B) - nB} as., BeC.

The asserted a.s. ergodicity of 7 now follows by Lemma 9.11. O
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As we have seen, (5) gives a decomposition of the invariant distribution
i = Po¢ ! into ergodic components. The next result shows that the decom-
position is unique; it further characterizes the ergodic measures as extreme
elements in the convex set of invariant measures.

To explain the terminology, recall that a subset M of a linear space is
said to be convex if emy + (1 — ¢)mg € M for all my, my € M and ¢ € (0,1).
In that case, we say that an element m € M is extreme if any relation
m = cmy + (1 —c)mgy with my, mgy, and ¢ as above implies m; = my = m. For
sets of measures p on some measurable space (S, S), we define measurability
with respect to the o-field induced by all evaluation maps g : p +— ubB,
BeS.

Theorem 9.12 (ergodic decomposition, Krylov and Bogolioubov) Let Ty,
..., Ty be commuting measurable transformations on some Borel space S.
Then the (T4, ..., Ty)-invariant probability measures on S form a convex set
M whose extreme elements are precisely the ergodic measures in M. More-
over, every measure p € M has a unique representation p = [ muv(dm) with
v restricted to the class of ergodic measures.

Proof: The set M is clearly convex, and Theorem 9.10 shows that every
measure i € M has a representation [ mv(dm), where v is restricted to the
class of ergodic measures. To see that v is unique, introduce a regular version
n = p]-|Z], and fix a determining class C C S. By Theorem 9.9, there exists
a subsequence N’ C N such that p,B — nB a.s. u along N’ for all B € C.
Thus,

m{s € S; un(s,B) = n(s,B), Be€C} =1 ae. v, (6)

again with convergence along N’. Since v is restricted to ergodic measures,
(6) remains true with n(s, B) replaced by mB, and since C is determining we
obtain m{s; n(s,-) =m} =1 a.e. v. Hence, for any measurable set A C M,

pln € A} = [m{n € A}p(am) = [ 1a(m)v(dm) = vA,

which shows that v = pon™L.

To prove the equivalence of ergodicity and extremality, fix any measure
€ M with ergodic decomposition [mv(dm). First assume that p is ex-
treme. If it is not ergodic, then v is nondegenerate, and we may write
v = cv; + (1 — ¢)ry for some 3Ly and ¢ € (0,1). Since p is extreme,
we get [muvi(dm) = [muy(dm), and so v; = vy by the uniqueness of the
decomposition. The contradiction shows that u is ergodic.

Next let p be ergodic, so that v = ¢, and assume p = cuy + (1 — ¢)po
with p, e € M and ¢ € (0,1). If p; = [muv;(dm) for i = 1,2, then ¢, =
cv1 + (1 — ¢)vp by the uniqueness of the decomposition. Hence, v; = vy = ¢,
and so 1 = po, which shows that p is extreme. o
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Our next aim is to prove a subadditive version of Theorem 9.6. For
motivation and later needs, we begin with a simple result for nonrandom
sequences. A sequence ¢y, o, ... € Rissaid to be subadditive if ¢,y < ety
for all m,n € N.

Lemma 9.13 (subadditive sequences) For any subadditive sequence cy, ¢,
... €R, we have

. Cy . .C
lim — = inf — € [—00,00).
n—00 n, n o n

Proof: Tterating the subadditivity relation, we get for any k,n € N
cn < [n/E]ck + ok < [n/kjck + 1V - Voep.

Noting that [n/k] ~ n/k as n — oo, we get limsup,,_,..(¢,/n) < ¢/k for all
k, and so

.+ C . . pC . C . . C
inf = < liminf = < limsup — < inf 2. O
non n—oo  n n—oo N n.on

We turn to the more general case of two-dimensional arrays c;z, 0 <
J < k, which are said to be subadditive if ¢, < com + Cm, for all m < n.
For arrays of the form c;; = cx—;, the present definition reduces to the
previous one. Also note that subadditivity holds trivially for arrays of the
form ¢ = ajp1 + -+ + ag.

We shall extend the ergodic theorem to subadditive arrays of random
variables X5, 0 < j < k. Recall from Theorem 9.6 that, when X,,, =
Nj+1+- - -+ for some stationary and integrable sequence of random variables
M1, then Xy, /n converges a.s. and in L'. A similar result holds for general
subadditive arrays (X ;) whenever they are jointly stationary, in the sense
that (Xji1641) 2 (X;x). To allow a wider range of applications, we shall
prove the result under the slightly weaker assumptions

( X2k, Xok 3k, - - -) L (Xoes Xb2ks - ), k€N, (7)
(X1 Xiepg2s - - -) L (Xo,1, Xog2,---), ke N. (8)

For reference, we may restate the subadditivity condition

XO,n < XO,m + X’m,n> 0<m<n. (9)

Theorem 9.14 (subadditive ergodic theorem, Kingman) Let (Xmn) be a
subadditive array of random variables satisfying (7) and (8), put &, = Xo,
and assume that BE€T < co. Then &,/n converges a.s. toward some random
variable £ in [—00,00) with B¢ = inf, (B¢, /n) = c. The convergence holds
even in L' when ¢ > —oo. If the sequences in (7) are ergodic, then € is a.s.
a constant.
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Proof (Liggett): By (8) and (9) we have B < nE&F < oo. Let us first
assume ¢ > —o0, so that the X, , are all integrable. Iterating (9) yields

[n/k] n
& n 'Y Xgooegr+n7t Y, X1, mkeN (10)
J=1 j=kn/k]+1

For fixed k the sequence X—1kje, J € N, is stationary by (7 ), and so
Theorem 9.6 yields n~ Z]<n XG—)kjk — & a.s. and in L', where EE, = F¢;.
Hence, the first term in (10) tends a.s. and in L' toward & /k. Similarly,
n 'Y, Xjo1; — & as. and in L', so the second term in (10) tends in the
same sense to 0. Thus, the right-hand side tends a.s. and in L' toward & /k,
and since k is arbitrary we get

limsup(&,/n) < mf(fn/n) £ <00 as. (11)

n—oo

The variables £ /n are clearly uniformly integrable by Proposition 3.12, and
moreover

Elimsup(§,/n) < B¢ < %f(Egn/n) = i%f(Egn/n) =c. (12)

n—oo

To get a lower bound, introduce for each n € N a random variable
KndL(Xinn), uniformly distributed over the set {1,...,n}, and define

flrcb = X"quﬁn+k7 771? = §K71+k - fﬁn"!‘k_l? k€ N.

By (8) we have
(€., )L (&,6,...), neN (13)
Moreover, 7} < Xy tk—1rntk 4 & by (9) and (8), and so the random

variables ()" are uniformly integrable. On the other hand, the sequence
E¢&, ES,, . .. is subadditive, and so Lemma 9.13 yields as n — oo

Ent =n"Y(E&x — E&1) — iI%f(Egn/n) =c¢, keN (14)

In particular, sup,, E|n}!| < oo, and so the sequence 1}, 7%, . . . is tight for each
k. By Theorems 3.29, 4.19, and 5.14 there exist some random variables &,
and 7, such that

n ¢n no,n d
(517527"';77177727"') - (£i7£é7777177727) (15)

along a subsequence. Here (&}) 4 (&) by (13), and by Theorem 5.10 we may
then assume that £, = & for each k.

The sequence 71, 7s, . . . is clearly stationary, and by Lemma 3.11 it is also
integrable. Using (9) we get

77711 +eee 77]? = fnn-ﬁ—k - gﬁn < Xﬂn»'ﬂn,+k = 5}?7



9. Stationary Processes and Ergodic Theory 167

and in the limit n; + - - - + 1, < & a.s. Hence, Theorem 9.6 yields

Enfn > n’lqunn — 7 as. and in L'

for some 7j € L'. In particular, even the variables &, /n are uniformly inte-
grable, and hence so are &,/n. Using Lemma 3.11 and the uniform integra-
bility of the variables (n)* together with (12) and (14), we get

c=limsup Eny < En = E7 < Ehmlnfg— < Ehmbupg— < Ef<e.
n

n—oo n—oo

Thus, &,/n converges a.s., and by (11) the limit equals . By Lemma 3.11
the convergence holds even in L' and E = c. If the sequences in (7) are
ergodic, then &, = E¢, a.s. for each n, and so £ = ¢ a.s.

Now assume instead that ¢ = —oo. Then for each r € Z the truncated
array X, Vr(n —m), 0 < m < n, satisfies the hypotheses of the theo-
rem with ¢ replaced by ¢" = inf,(EE./n) > r, where & = &, V rn. Thus,
&, /n = (&/n) Vr converges a.s. toward some random variable £ with mean
¢, and so &, /n — inf, &" = €. Finally, B¢ = inf, ¢" = ¢ = —o0o by monotone
Convergence. a

As an application of the last theorem, we may derive a celebrated ergodic
theorem for products of random matrices.

Theorem 9.15 (random matrices, Furstenberg and Kesten) Consider a sta-
tionary sequence of random d x d matrices X™ whose elements are strictly
positive with integrable logarithms. Then there exists some random variable
€ such that n='log(X' - X");; — & a.s. and in L* for alli and j.

Proof: First let ¢ = j = 1, and define
Emm = log(X™ . X™)y, 0<m<n.

The array (—&u,,) is clearly subadditive and jointly stationary, and moreover
E|&o1| < oo by hypothesis. Further note that

(X Xn 11 dn 1H maxw

Hence,

fo (’I’L — 1)

k<n k<n i,

and so

n_lEfom <logd+ ZME ’10g Xl < o0,

Thus, by Theorem 9.14 and its proof, there exists some invariant random
variable ¢ with & ,,/n — & a.s. and in L'.
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To extend the convergence to arbitrary i,j € {1,...,d}, we may write
for any n € N

XZ?l(Xi3 . ~-X")11X{Lj+1 (X2 .. ~X"+1)¢j

<
< (XX AT X

Noting that n~"log X}» — 0 a.s. and in L' by Theorem 9.6 and using the sta-
tionarity of (X™) and invariance of £, we obtain n=!log(X?--- X"™),; — ¢
a.s. and in L', and the desired convergence follows by stationarity. O

We shall now consider invariance under transformations other than shifts.
A finite or infinite random sequence & = (&1, o, . . .) in some measurable space
(S,S) is said to be exchangeable if

(s Erar o) 2 (61,60, ) (16)

for all finite permutations ki, ko, ... of the index set I. For infinite I, we
further say that € is spreadable if (16) holds for all subsequences k1 < ko < - - -
of N. Finally, given any random probability measure 1 on S, we say that
¢ is conditionally n-i.i.d. if P[¢ € -|n] = n®! a.s., where the conditioning is
with respect to the o-field generated by all random variables nB, B € S.
The latter property clearly implies that £ is exchangeable. Also note that
any infinite exchangeable sequence is trivially spreadable. We shall prove the
remarkable fact that, for infinite sequences, all three properties are in fact
equivalent.

Theorem 9.16 (infinite exchangeable sequences, de Finetti, Ryll-Nardzew-
ski) Let & = (&) be an infinite random sequence in some Borel space S.
Then & is spreadable iff P[§ € «|n] = n™ a.s. for some random probability
measure 1 on S, in which case 1 s a.s. unique.

Proof: Assume that £ is spreadable, and let n be a regular version of
P[¢; € -|¢7'Z]. Fix any bounded measurable functions fi, fa,... on S and a
bounded Z-measurable function g on S*°. Using the spreadability of £, we
get by Lemma 9.3, Theorem 9.6, and dominated convergence

EHkénfk(fk) 9(&) = EI,_ fr&) 'milzjémfn<§n+j) -9(&)
= B[, /&) - nfa-9(6).

Since 7 is £~ 'Z-measurable, Lemma 1.13 shows that nf, = g,(£) for some
Z-measurable functions g,. We may then proceed by induction to obtain

E1], . fe(&) - 9(€) = ET],_ nfu- 9(6)-

Thus, P[¢ € A|¢7'Z] = n™°A a.s. for any measurable cylinder set A = By X
-+ x B, x5%, and the general relation follows by a monotone class argument.
Finally, P[¢ € -|n] = n™ a.s., since 7 is £ 'Z-measurable.
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To prove the uniqueness of 1, conclude from the law of large numbers and
Theorem 5.4 that

n’lzkgnlB(fk) —nB as., BeS. O

The last result shows that any infinite, exchangeable sequence in a Borel
space is mixed i.i.d., in the sense that Po£~! = En® for some random prob-
ability measure 7. For finite sequences the statement fails, and we need to
replace the i.i.d. sequences by so-called urn sequences, generated by succes-
sive drawing without replacement from a finite set.

To make this precise, fix any measurable space S, and consider a measure
of the form p = Y ;<, ds,, where s1,...,s, € S. The associated factorial
measure " on S™ is defined by

M(n) — Zp(ssopa

where the summation extends over all permutations p = (pi,...,p,) of
1,...,n, and we are writing sop = (sp,,...,5,,). Note that p™ s in-
dependent of the order of sq,...,s, and is measurable as a function of p.

Proposition 9.17 (finite exchangeable sequences) Let &y, ... &, be random
elements in some measurable space, and put & = (&) and n =Y, 0¢,. Then
¢ is exchangeable iff P[¢ € -|n] = n™ /n! a.s.

Proof: Since n is invariant under permutations of &1, ..., &,, we note that
(€ op,n) 4 (&,n) for any permutation p of 1,...,n. Now introduce an
exchangeable random permutation 7 L€ of 1,...,n. Using Fubini’s theorem
twice, we get for any measurable sets A and B in appropriate spaces

P{¢eB,neA} = P{{omeB,neA}
= E[P[ome Blg];n € Al
= E[(n)9™B;ne A a

Just as for the martingale and Markov properties, even the notions of
exchangeability and spreadability may be related to a filtration F = (F,).
Thus, a finite or infinite sequence of random elements £ = (£, &, . . .) is said
to be F-exchangeable if ¢ is F-adapted and such that, for every n > 0, the
shifted sequence 0, = (§,41,&r0, - - .) is conditionally exchangeable, given
Fn. For infinite sequences &, the notion of F-spreadability is defined in a
similar way. (Since those definitions may be stated without reference to
regular conditional distributions, no restrictions need to be imposed on S.)
When F is the filtration induced by &, the stated properties reduce to the
unqualified versions considered earlier.

An infinite sequence £ is said to be strongly stationary or F-stationary if
0.& 2 ¢ for every finite optional time 7 > 0. By the prediction sequence of £
we mean the set of conditional distributions

7 = Pl0,§ € |F), neEZ,. (17)
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The random probability measures 7y, 71, . .. on .S are said to form a measure-
valued martingale if (7, B) is a real-valued martingale for every measurable
set B C S.

The next result shows that strong stationarity is equivalent to exchange-
ability and exhibits an interesting connection with martingale theory.

Proposition 9.18 (strong stationarity) Fixz a Borel space S, a filtration F
on Zy, and an infinite, F-adapted random sequence & in S with prediction
sequence w. Then these conditions are equivalent:

(1) & is F-exchangeable;

(ii) & is F-spreadable;

(iii) & is F-stationary;
)

(iv) 7 is a measure-valued F-martingale.

Proof: Conditions (i) and (ii) are equivalent by Theorem 9.16. Assuming
(ii), we get a.s. for any B € S and n € Z,

E[tps1B|F,] = Pl0n1& € B|F,] = P[0,¢ € B|F,] =m,B,  (18)

which proves (iv). Conversely, (ii) is easily obtained by iteration from the
second equality in (18), and so (ii) and (iv) are equivalent.
Next we note that (17) extends by Lemma 5.2 to

m.B = P[0, € B|F,] as., BeS&™,

for any finite optional time 7. By Lemma 6.13 it follows that (iv) is equivalent
to
P{0,¢§ € B} = Em,B = EnyB=P{{ € B}, BeS>,

which in turn is equivalent to (iii). O

We shall now see how the property of exchangeability extends to a wide
class of random transformations. For a precise statement, we say that an
integer-valued random variable 7 is predictable with respect to a given filtra-
tion F, if the time 7 — 1 is F-optional.

Theorem 9.19 (predictable sampling) Let & = (&1,&,...) be a finite or
infinite F-exchangeable sequence of random elements in some measurable

space S, and let 1,...,T, be a.s. distinct F-predictable times in the index
set of €. Then

Ery e bn) Z (&1 ). (19)

Of special interest is the case of optional skipping, when 71 < 7o < ---. If
Tk = T + k for some optional time 7 < oo, then (19) reduces to the strong
stationarity in Proposition 9.18. In general, we are requiring neither £ to be
infinite nor the 75, to be increasing.
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For both applications and proof, it is useful to introduce the associated
allocation sequence
aj:inf{k;; Tk :]}, jEI,

where I is the index set of £&. Note that a finite value of a; gives the po-
sition of j in the permuted sequence (7). The random times 7, are clearly
predictable iff the «; form a predictable sequence in the sense of Chapter 6.

Proof of Theorem 9.19: First let £ be indexed by I = {1,...,n}, so that

(11,...,7a) and (ayq, ..., ) are inverse random permutations of I. For each
m € {0,...,n}, put o' = a; for all j < m, and define recursively

oy =min(l\ {a",...,a]"}), m<j<n
Then (af?,...,a") is a predictable and F,,_j-measurable permutation of
1,...,n. Since, moreover, o' = oz;-”’l = «a; whenever j < m, Theorem 5.4
yields for any bounded measurable functions fi,..., f, on .S

EIL (&) = EB[ILfar(&)
= EBIL., fop &) B[] ., fep (&)

= EIL. fup @) E|TL, e (€)
= EIL ().

fm—1:|

]:m71:|

fm71:|

Summing over m € {1,...,n} and noting that aj = a; and a? = j for all 7,
we get

Ekak(&k) = Eija] (&) = Ekak(fk)a

which extends to (19) by a monotone class argument.
Next assume that I = {1,...,m} with m > n. We may then extend the
sequence (1) to I by recursively defining

T =min(I \ {m,...,7%}), k>n, (20)
so that 71, ..., 7, form a random permutation of I. Using (20), it is seen by
induction that the times 7,.1,..., 7, are again predictable, so the previous

case applies, and (19) follows.
Finally, assume that I = N. For each m € N we may introduce the
predictable times

w=nl{m <mt+(m+k){n>m}, k=1,...,n,

and conclude from (19) in the finite case that

Errye s o) 2 (61, &) (21)
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As m — oo, we have 7" — 74, and (19) follows from (21) by dominated
convergence. O

The last result yields a simple proof of yet another basic property of
random walks in R, a striking relation between the first maximum and the
number of positive values. The latter result will in turn lead to simple proofs
of the arcsine laws in Theorems 11.16 and 12.11.

Corollary 9.20 (positivity and first maxzimum, Sparre-Andersen) Let &,
.., &, be exchangeable random variables, and put Sy, = & + -+ + &. Then

> 1Sk > 0} £ min{k > 0; S; = max;<, S}

Proof: Put ék = &uky1 for k= 1,...,n, and note that the ék. remain
exchangeable for the filtration Fj, = 0{Sy,,&1,...,&}, £ =0,...,n. Write
Sk =&+ -+ + &, and introduce the predictable permutation

k—1
=Y S < St +(n—k+1)1{S1 >S5}, k=1,....n.

=0

Define &, = 3°; gjl{aj =k} for k = 1,...,n, and conclude from Theorem
9.19 that (&) < (&). Writing S}, = &} + - - - + &, we further note that

n—1 n
min{k > 0; S = max;S}} = > 1{S; < S, } = > 1{S > 0}. m
j=0 k=1

Turning to continuous time, we say that a process X on some real interval
has exchangeable or spreadable increments if, for any disjoint subintervals
(s,t] of equal length, the associated increments X; — X are exchangeable
or spreadable, respectively. Let us further say that the increments of X are
conditionally stationary and independent, given some o-field Z, if the stated
property holds conditionally for any finite set of intervals. Finally, say that
X is continuous in probability if X EN X;as s —t.

The following continuous-time version of Theorem 9.16 characterizes the
exchangeable-increment processes on R;. The much harder finite-interval
case is not considered until Theorem 14.25.

Theorem 9.21 (exchangeable-increment processes, Bihlmann) Let the pro-
cess X on Ry be continuous in probability. Then X has spreadable increments

iff the increments are conditionally stationary and independent, given some
o-field T.

Proof: The sufficiency is obvious, so it is enough to prove that the stated
condition is necessary. Thus, assume that X has spreadable increments.
Then the increments &, over the dyadic intervals I, = 27"(k — 1, k] are
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spreadable for fixed n, so by Theorem 9.16 they are conditionally 7,-i.i.d.
for some random probability measure 7, on R. Using Corollary 2.12 and the
uniqueness in Theorem 9.16, we obtain

$Qn—m

n, =17, as, m<n. (22)

Thus, for any m < n, the increments &, are conditionally n,,-i.i.d. given n,.
Since the o-fields o(n,) are a.s. nondecreasing by (22), Theorem 6.23 shows
that the &,x remain conditionally 7,,-i.i.d. given Z = o {no,n1,. . .}.

Now fix any disjoint intervals Iy, ..., I, of equal length with associated
increments &1, ..., &,. Here we may approximate by disjoint intervals I7*, ...,
I of equal length with dyadic endpoints. For each m, the associated incre-
ments £ are conditionally i.i.d., given Z. Thus, for any bounded, continuous
functions f1,..., fn,

B [T, /(60| 2] = TLe, EUA(EIT) =TT, ELA(EMIT). (23)

Since X is continuous in probability, we have & K8 &, for each k, so (23)
extends by dominated convergence to the original variables £,. By suitable
approximation and monotone class arguments, we may finally extend the re-
lations to any measurable indicator functions f = 1p,. O

Exercises

1. State and prove continuous-time, two-sided, and higher-dimensional
versions of Lemma 9.1.

2. Consider a stationary random sequence £ = (&1,&,...). Show that
the &, are i.i.d. iff & 1L(&, &, .. .).

3. Fix a Borel space S, and let X be a stationary array of S-valued
random elements in S, indexed by N?. Show that there exists a stationary
array Y indexed by Z¢ such that X =Y a.s. on N%

4. Let X be a stationary process on R, with values in some Borel space
S. Show that there exists a stationary process ¥ on R with X 2Y on R,.
Strengthen this to a.s. equality when S is a complete metric space and X is
right-continuous.

5. Consider a two-sided, stationary random sequence £ with restriction
n to N. Show that £ and n are simultaneously ergodic. (Hint: For any
measurable, invariant set I € SZ, there exists some measurable, invariant set
I'e SN with I = S%- x I' as. Po&™1)

6. Establish two-sided and higher-dimensional versions of Lemmas 9.4
and 9.5 as well as of Theorem 9.8.
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7. A measure-preserving transformation 7" on some probability space
(S, S, ) is said to be mizing if p(ANT"B) — pA-uB for all A,B € S.
Prove the counterpart of Lemma 9.5 for mixing. Also, show that any mixing
transformation is ergodic. (Hint: For the latter assertion, take A = B to be
invariant.)

8. Show that it is enough to verify the mixing property for sets in a
generating m-system. Use this fact to prove that any i.i.d. sequence is mixing
under shifts.

9. Fix any a € R, and define T's = s + a (mod 1) on [0,1]. Show that T'
fails to be mixing but is ergodic iff a € Q. (Hint: To prove the ergodicity, let
I € [0,1] be T-invariant. Then so is the measure 1; - A, and since the points
ka are dense in [0, 1], it follows that 1;- A is invariant. Now use Lemma 1.29.)

10. (Bohl, Sierpiriski, Weyl) For any a ¢ Q, let pu, = n~' Y j<,, 6ra, Where
ka is defined modulo 1 as a number in [0,1]. Show that u, = \. (Hint:
Apply Theorem 9.6 to the mapping of the previous exercise.)

11. Prove that the transformation T's = 2s (mod 1) on [0, 1] is mixing.
Also show how the mapping of Lemma 2.20 can be generated as in Lemma
9.1 by means of T

12. Note that Theorem 9.6 remains true for invertible shifts T, with
averages taken over increasing index sets [a,,b,] with b, — a,, — oco. Show
by an example that the a.s. convergence may fail without the assumption of
monotonicity. (Hint: Consider an i.i.d. sequence (&,) and disjoint intervals
[an, by, and use the Borel-Cantelli lemma.)

13. Consider a one- or two-sided stationary random sequence (&) in some
measurable space (S,S), and fix any B € S. Show that a.s. either &, € B°
for all n or &, € B i.o. (Hint: Use Theorem 9.6.)

14. (von Neumann) Give a direct proof of the L2-version of Theorem 9.6.
(Hint: Define a unitary operator U on L?(S) by Uf = foT. Let M denote
the U-invariant subspace of L? and put A = I — U. Check that M+t = Ry,
the closed range of A. By Theorem 1.34 it is enough to take f € M or
f € Ra.) Deduce the general LP-version, and extend the argument to higher
dimensions.

15. In the context of Theorem 9.12; show that the ergodic measures form
a measurable subset of M. (Hint: Use Lemma 1.38, Proposition 3.31, and
Theorem 9.9.)

16. Prove a continuous-time version of Theorem 9.12.
17. Deduce Theorem 3.23 for p < 1 from Theorem 9.14. (Hint: Take
Xinn = |Sn — Sm|?, and note that E|S, |’ = o(n) when p < 1.)

18. Let £ = (&1,&,...) be a stationary sequence of random variables, fix
any B € B(R?), and let x,, be the number of indices k € {1,...,n — d} with
(&, ..., &a) € B. Prove from Theorem 9.14 that ,/n converges a.s. Deduce
the same result from Theorem 9.6, by considering suitable subsequences.
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19. Show by an example that a finite, exchangeable sequence need not be
mixed i.i.d.

20. Let the random sequence ¢ be conditionally n-i.i.d. Show that ¢ is
ergodic iff 7 is a.s. nonrandom.

21. Let £ and 7 be random probability measures on some Borel space such
that EE® = En™. Show that £ < 1. (Hint: Use the law of large numbers.)

22. Let &1, &, ... be spreadable random elements in some Borel space S.
Prove the existence of a measurable function f: [0,1]* — S and some i.i.d.
U(0,1) random variables ¥y, 91, ... such that &, = f(J,9,) a.s. for all n.
(Hint: Use Lemma 2.22, Proposition 5.13, and Theorems 5.10 and 9.16.)

23. Let & = (&,&,...) be an F-spreadable random sequence in some
Borel space S. Prove the existence of some random measure 1 such that, for
each n € Z., the sequence 6™¢ is conditionally n-i.i.d. given F,, and 7.

24. Let &, ..., &, be exchangeable random variables, fix a Borel set B, and
let 7y < --- <7, be the indices k € {1,...,n} with >, ;. & € B. Construct a
random vector (11, ..., 7,) 4 (&1,...,&,) such that &, = as. forall k < v.
(Hint: Extend the sequence (73) to k € (v,n], and apply Theorem 9.19.)

25. Prove a version of Corollary 9.20 for the last maximum.



Chapter 10

Poisson and Pure Jump-Type
Markov Processes

Existence and characterizations of Poisson processes; Cox pro-
cesses, randomization and thinning; one-dimensional uniqueness
criteria; Markov transition and rate kernels; embedded Markov
chains and explosion; compound and pseudo-Poisson processes;
Kolmogorov’s backward equation; ergodic behavior of irreducible
chains

Poisson processes and Brownian motion constitute the basic building blocks
of modern probability theory. Our first goal in this chapter is to introduce the
family of Poisson and related processes. In particular, we construct Poisson
processes on bounded sets as mixed sample processes and derive a variety of
Poisson characterizations in terms of independence, symmetry, and renewal
properties. A randomization of the underlying intensity measure leads to the
richer class of Cox processes. We also consider the related randomizations
of general point processes, obtainable through independent motions of the
individual point masses. In particular, we will see how the latter type of
transformations preserve the Poisson property.

It is usually most convenient to regard Poisson and other point processes
on an abstract space as integer-valued random measures. The relevant parts
of this chapter may then serve at the same time as an introduction to random
measure theory. In particular, Cox processes and randomizations will be
used to derive some general uniqueness criteria for simple point processes
and diffuse random measures. The notions and results of this chapter form
a basis for the corresponding weak convergence theory developed in Chapter
14, where Poisson and Cox processes appear as limits in important special
cases.

Our second goal is to continue the theory of Markov processes from Chap-
ter 7 with a detailed study of pure jump-type processes. The evolution of
such a process is governed by a rate kernel a,, which determines both the rate
at which transitions occur and the associated transition probabilities. For
bounded « one gets a pseudo-Poisson process, which may be described as a
discrete-time Markov chain with transition times given by an independent,
homogeneous Poisson process. Of special interest is the case of compound
Poisson processes, where the underlying Markov chain is a random walk. In

176



10. Poisson and Pure Jump-Type Markov Processes 177

Chapter 17 we shall see how every Feller process can be approximated in a
natural way by pseudo-Poisson processes, recognized in that context by the
boundedness of their generators. A similar compound Poisson approximation
of general Lévy processes is utilized in Chapter 13.

In addition to the already mentioned connections to other topics, we note
the fundamental role of Poisson processes for the theory of Lévy processes
in Chapter 13 and for excursion theory in Chapter 19. In Chapter 22 the
independent-increment characterization of Poisson processes is extended to a
criterion in terms of compensators, and we derive some related time-change
results. Finally, the ergodic theory for continuous-time Markov chains devel-
oped at the end of this chapter is analogous to the theory for discrete-time
chains in Chapter 7, and also to the relevant results for one-dimensional
diffusions obtained in Chapter 20.

To introduce the basic notions of random measure theory, we may fix
a topological space S, which we assume to be locally compact, second-
countable, and Hausdorff (abbreviated as lcscH). We denote the Borel o-field
in S by S. In applications, S is typically an open subset of a Euclidean space
R?, and on a first reading one may assume that S = R?. Write S for the
ring of relatively compact sets in S. By a random measure on S we mean
a locally finite kernel £ from the basic probability space (€2,.4) into (S,S).
Thus, & is a mapping from Q x S to [0, oo] such that {(w, B) is a locally finite
measure in B for fixed w and an [0, co]-valued random variable in w for fixed
B. Here the term locally finite means that £(-, B) < oo a.s. for all B € S.

By Lemma 1.37 it is equivalent to think of £ as a random element in the
space M (S) of locally finite measures on S, equipped with the o-field induced
by all evaluation maps 7g: p +— uB. For convenience we write £B = £(+, B)
and &f = [ fd§ = [ f(s)€(-,ds). The integral £f is measurable, hence an
[0, 0o]-valued random variable, for every measurable function f: S — R,. In
particular, we note that £ f < oo for all f € Cf(S), the space of continuous
functions f:.S — R, with compact support. By monotone convergence, the
intensity E€, given by (E€)B = E(£B), is again a measure on S, although
it may not be o-finite in general.

The following result provides the basic uniqueness criteria for random
measures. Stronger results are given for simple point processes and diffuse
random measures in Theorem 10.9, and related convergence criteria appear
in Theorem 14.16.

Lemma 10.1 (uniqueness of random measures) Let & and n be random
measures on S. Then & < n iff Ee=f = Ee™F for all f € C(S) and also
if

(gBl7a€Bn)g(nBl7aan)a Bl7-'-aBn€‘§7 n € N. (1)

Proof: The sufficiency of (1) is clear from Proposition 2.2. Now assume
that Fe=¢/ = Ee ™ for every f € C};. Since Cj is closed under positive
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linear combinations, Theorem 4.3 yields

d

(fflaaffn) = (nfla"'anfn)a fla~"7f’n ec}t: TLEN

By Theorem 1.1 we get Po &' = Pon~' on F = o{ny; f € Cit}, where
my: > pf, and it remains to show that F contains G = o{mp; B € S}
Then fix any compact set B C S, and choose some functions f,, € Cj
with f, | 1g. Then puf, | uB for every u € M(S), and so the mapping 7p is
F-measurable by Lemma 1.10. Next apply Theorem 1.1 to the Borel subsets
of an arbitrary compact set, to see that 75 is F-measurable for any B € S.
Hence, G C F. O

By a point process on S we mean an integer-valued random measure £.
In this case B is clearly a Z,-valued random variable for every B € S. The
support of ¢ is a locally finite random subset = C S. We say that £ is simple
if each point of E has mass 1, so that ¢B = |[EN B| for all B € S, where | B
denotes the cardinality of the set B. In general, (B > |=N B|, and a simple
approximation shows that £*B = |Z N B| is measurable and hence a simple
point process on S. Point processes may be regarded as random elements in
the space NV (S) € M(S) of locally finite, integer-valued measures on S.

We shall often use partitions of the sample space S. By a dissecting system
we mean an array of Borel sets D,,; C S that form a nested sequence of finite
partitions of S, one for each n, and have the following further property. For
any compact set K C S with open cover {G;}, we assume the existence of
some n such that every set K N D,; is contained in some G;. To construct a
dissecting system, we may start from any countable base Bj, Bs, ..., and let
D,1, Dya, . .. be the partition of S induced by the sets By, ..., B,. It is then
easy to verify the dissecting property. For a simple application, note that if
(Dy;) is dissecting and p € N(S), then Y= ;{ (BN Dyj) A1} — pi* B for every
B € §. In particular, this shows that the mapping p — p* is measurable.

A random measure £ on S is said to have independent increments if
¢By, ..., B, are independent for any disjoint sets By,..., B, € S, n € N.
By a Poisson process on S with intensity measure u € M(S) we mean a
point process £ on S with independent increments such that £B is Poisson
distributed with mean B for every B € S. By Lemma 10.1 the stated condi-
tions specify the distribution of £, which is then determined by the intensity
measure fi.

Results for Poisson and related processes may often be derived by easy
computations involving Laplace functionals. For this purpose we need the
real version of the following formula; the complex version is not required until
Chapter 13.

Lemma 10.2 (characteristic functional) Let & be a Poisson process on S
with intensity p. Then for any measurable function f: S — Ry,

Ee¢ = exp{—p(1 — e /)}. (2)
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If instead f: S — R is measurable with p(|f| A1) < oo, then (2) holds with
f replaced by —if.

Proof: If n is a Poisson random variable with mean ¢, then

(ca)"”

_ —c(1-a)
I =e , a€C.

Ee™ =e¢

Thus, for f = >« axlp, with ay,. .., a, € C and disjoint By, ..., B, € S,
FEe ¥ = Eexp {—Zkak§Bk} = HkEefaka’f

Hk exp{—uBr(1 —e )}

= exp {_ZkﬂBk(l — e_a’“)} = e =),

For general f > 0 we may choose some simple functions f,, > 0 with f, T f
and conclude by monotone convergence that £f, — £f and p(1 — e /) —
u(l —e=f). Formula (2) then follows by dominated convergence from the
version for f,.

Next assume that p(|f|A1) < co. Writing (2) with f replaced by ¢|f| and
letting ¢ | 0, we get by dominated convergence P{¢|f| < oo} =€’ =1, and
so &|f] < oo a.s. Next choose some simple functions f,, — f with |f,| < |f],
and note that |1 —e~%/»| < (|f| A 2) by Lemma 4.14. By dominated conver-
gence we obtain £f,, — f and pu(1 —e™n) — p(1 —e~*). Thus, (2) follows
with f replaced by —if from the version for —if,,. a

To prepare for the construction of a general Poisson process, fix an ar-
bitrary probability measure p on .S, and let 7y, 79, ... be i.i.d. random ele-
ments in S with distribution p. A point process with the same distribution
as £ = Y p<pn 0y, is called a sample process based on p and n. Note that
& = nfiy,, where i, denotes the empirical distribution based on the random
sample 71, ...,7,. Next consider a Z,-valued random variable 1L (~,) with
distribution v. A point process distributed as & = Y-y« 95, is called a mized
sample process based on y and v. -

The following result gives the basic connection between Poisson and mixed
sample processes. Write u[-|B] = u(- N B)/pB for uB > 0.

Proposition 10.3 (Poisson and mized sample processes) Let & be a point
process on some o-finite measure space (S,S,u). Then & is Poisson with
intensity u, iff for every B € S with uB € (0,00), the restriction 1g - £ is a
mized sample process based on the measure |- |B] and the Poisson distribu-
tion with mean uB.

Proof: Fix any B € S with 0 < pB < oo, and define n = > <, 6,,,
where 71,72, ... are i.i.d. p[-|B] and & is an independent Poisson variable
with mean pB. Then Es* = e #B(1=%) and so by Fubini’s theorem

B = Bexp{-Y,_ J(w)} = BB/ = Blule™|B))"
exp{—pB(1 = ple”/| B)} = exp{=pll = /s B}
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By Lemmas 10.1 and 10.2 we may conclude that 7 is Poisson with En = 13-4,
and the asserted equivalence follows since B is arbitrary. O

We may now state the basic existence theorem for Poisson processes. For
this result alone, no regularity conditions are imposed on the space S. Recall
that a measure p on S is said to be diffuse if u{s} =0 for all s € S.

Proposition 10.4 (Poisson existence and simplicity, Kingman, Mecke) For
any o-finite measure space (S, S, ) there exists a Poisson process & on S with
E& =p. When S is Borel, £ is a.s. simple iff p is diffuse.

Proof: We may decompose S into disjoint subsets By, By,... € § with
measures uB, € (0,00). By Corollary 5.18 there exist some independent
mixed sample processes &;,&,... on S such that each &, is based on the
measure - |B,] and the Poisson distribution with mean pB,,. Then Propo-
sition 10.3 shows that each process &, is Poisson with F¢,, = 1p, - u, and so
& =13,¢&, is Poisson with intensity F§ =3, (1, - 1) = p.

To prove the last assertion, it is enough to establish the corresponding
property for mixed sample processes. Then let 71,7, ... be i.i.d. with distri-
bution u. By Fubini’s theorem

Plyi=} = [ nlshulds) = 3 (u{sh?, i 4.

and so the v, are a.s. distinct iff ;1 is diffuse. |

Now return to the setting of an arbitrary lescH space S. We shall intro-
duce two basic constructions of point processes from a given random measure
or point process on S. First consider an arbitrary random measure £ on S.
By a Cox process directed by & we mean a point process 17 on S such that 7
is conditionally Poisson, given £, with E[n|¢] = ¢ a.s.

We next define a v-randomization ¢ of an arbitrary point process & on
S, where v is a probability kernel from S to some lescH space T. As-
suming first that & is nonrandom and equal to m = >, d;,, we may take
¢ = Yk s, > Where the v, are independent random elements in 7" with dis-
tributions v(sg, -). Note that the distribution p,, of ¢ depends only on m. In
general, we define a v-randomization ¢ of £ by the condition P[¢ € -[£] = p¢
a.s. In the special case when 7' = {0,1} and v(s,{0}) = p € [0, 1], we refer
to the point process &, = ((- x {0}) on S as a p-thinning of &.

The following result ensures the existence of Cox processes, randomiza-
tions, and thinnings.

Proposition 10.5 (Cox processes and randomizations) For any random
measure £ on some lcscH space S, there exists a Cox process n directed by &,
defined on a suitable extension of the basic probability space. Similarly, given
any point process & on S and probability kernel v from S to some lcscH space
T, there exists in the same sense some v-randomization ¢ of €.
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Proof: Let p,, denote the distribution of a Poisson process with intensity
m € M(S). For disjoint sets By,..., B, € S we have

mB;)k
pu (VB; = k) = [ P2 cmom,
|

Jj<n j<n

and so the left-hand side is a measurable function of m. In general, the prob-
ability on the left is a finite sum of such products, and so the measurability
remains valid. Since the sets on the left form a 7-system generating the o-
field in NV(S), Lemma 1.37 shows that p is a probability kernel from M(S)
to N(S). The existence of n now follows by Lemma 5.9.

In case of randomizations, we may first assume that 7" = [0,1] and
v(s,-) = A\. For each m € N(S), let p,, denote the distribution of a -
randomization of m. By Lemma 5.9 we need to verify that p is a kernel
from N(S) to N(S x T). It is then enough to show that pn, N;<.{n4; = k;}
is measurable for any measurable rectangles Ay, = By x C, C S x [0,1],
and we may further reduce to the case when By = --- = B, and the sets
Cy, ..., C, are disjoint. The stated probability is then given by a multinomial
distribution, and the desired measurability follows.

For general T' and v, Lemma 2.22 provides a measurable function f :
S x [0,1] — T such that f(s,9) has distribution v(s,-) when ¢ is U(0, 1).
Letting i be a A-randomization of £ and writing g(s,t) = (s, f(s,t)), we may
define ¢ = no ¢g~!, which is clearly a v-randomization of &. O

The following result shows in particular that the Poisson and Cox prop-
erties are preserved under randomizations and thinnings.

Proposition 10.6 (iterated transforms) For any lcscH spaces S, T, and U
and probability kernels p and v from S to T and from SxT to U, respectively,
we have the following:

(i) If n is a Cox process directed by some random measure & on S and ¢
is a p-randomization of n with (1L, then ¢ is again Cox and directed
by €@ p;

(i) if n is a p-randomization of some point process & on S and ¢ is a
v-randomization of n, then C is a p @ v-randomization of €.

Note that the conditional independence in (i) holds automatically when ¢
is constructed by randomization, as in Lemma 5.9. The result will be proved
by means of Laplace functionals, which requires a simple lemma. Here a
kernel p is regarded as an operator, given by uf(s) = [u(s,dt)f(t). We
shall further write fi(s,-) = 05 ® pu(s,-), so that v ® u = v

Lemma 10.7 (Laplace functionals) Consider a Cox process n directed by
&, a p-randomization ¢ of £, and a p-thinning &, of £&. The corresponding
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Laplace functionals are related by

Veu(fr9) = Ye(fH+1—e79), (3)
Pe(f) = ve(—logpie™), (4)
Vee,(f9) = Ye(f —log{l —p(1—e)}). (5)

A comparison of (3) and (5) suggests that, for small p > 0, a p-thinning
should be nearly Cox. The statement will be made precise in Theorem 14.19.

Proof: To prove (3), we note that by Lemma 10.2
wfa”?(fv g) = Eeigfing = EefffE[efng|§}
Ee ¥ exp{—€£(1—e )} =e(f+1—e79).

To prove (4) we may first assume that £ = °; J, is nonrandom. Introducing
random elements 7, in T with distributions p(sg, ), we get

Ue(f) = Be ¥l = Eexp {_Zkf(3k>7'k)}
— HkEe*f(Sk,Tk) — Hkﬂe*f(sk)
= exp)_ log e (si) = exp Elog e

Hence, in general,

Ye(f) = Eexp&log jie = qpe(—log fie™/).

Relation (5) may be either deduced from (4) or derived directly by the same
method. |

Proof of Proposition 10.6: To prove (i), we may conclude from Lemma
10.7 and the conditional independence that

Vene(frg) = Ee S E[e™9|¢,n] = Be S enloshe™
= Ye(pf +1—je™) =ep(f +1—e79).

The result now follows by Lemmas 10.1 and 10.7.
To prove (ii), we may use Lemma 10.7 to obtain

Ye(f) = ty(—logve™ ) = ye(~log five™") = Ye(~log(n@v)e™). O

We now proceed to establish a simple uniqueness property of Cox pro-
cesses and thinnings, which is needed in a subsequent proof.

Lemma 10.8 (uniqueness for Cox processes and thinnings) Ifn andn' are
Cox processes directed by & and &, respectively, then & < & iff n < .
Similarly, if &, and &, are p-thinnings of § and &', respectively, for some

pe(0,1), then § L& iff g, £ ¢,
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Proof: Inverting the first relation in Lemma 10.7, we get for any bounded
measurable function f: S — Ry

ve(tf) = vy(=log(L = tf)), te[0[f]7),

where || f|| = sup, fs. Here the left-hand side is analytic in ¢ € (0, 00), and
so Ye(f) is uniquely determined by v,. The first assertion now follows by
Lemma 10.1. The proof of the second assertion is similar. O

We shall use the Cox transformations and thinnings to establish some
general uniqueness criteria for simple point processes and diffuse random
measures, improving the elementary statements in Lemma 10.1. Related
convergence criteria are given in Proposition 14.17 and Theorems 14.27 and
14.28.

Theorem 10.9 (one-dimensional uniqueness criteria)
(i) Let & and n be simple point processes on S. Then & 4 n iff P{¢B =0}
= P{nB =0} forall B€S.
(i) Let & and n be simple point processes or diffuse random measures on
S, and fix any ¢ > 0. Then & 2 n iff Ee=%B = Fe="8 for all B € S.
(iii) Let & be a simple point process or diffuse random measure on S, and

let 1 be an arbitrary random measure on S. Then & 4 n iff EB < nB
forall BeS.

Proof: (i) Assume the stated condition. The class C of sets {y; uB = 0}
with B € S is clearly a m-system, and so Theorem 1.1 yields Po&~! = Pon~!
on o(C). From the construction of * via dissecting systems, it is further seen
that the mapping p +— p* is o(C)-measurable. Hence, £ = £* 4 nt=n.

(ii) In the diffuse case, let éand 71 be Cox processes directed by ¢£ and cn,
respectively. By dominated convergence, Lemma 10.7 applies with g = oco-1p,
and we get

P{EB=0}=FEe P = e = P{B=0}, BeS.

Since é and 7 are a.s. simple by Proposition 10.4, part (i) yields é 4 7, and
hence & 4 1 by Lemma 10.8. For simple point processes we may use a similar
argument, based on thinnings instead of Cox processes.

(iii) Fix a dissecting system (D,;). Under the stated condition, we get

in the point process case nD,,; € Z4 outside a fixed null set, and it follows
easily that even 7 is a point process. Then (i) yields & 2 7", so for any B € S
we get Be "’ = Fe=¢P = Ee ™ P and therefore nB = n*B a.s. Hence, 7 is
a.s. simple, and so & 4 nt=n.

Next assume that £ is a.s. diffuse. Introduce Cox processes é and 7 as
before, and note that B 4 7B for each B € S. Since € is also a.s. simple



184 Foundations of Modern Probability

by Proposition 10.4, we may conclude as before that fg 7. Hence, & 2 n by

Lemma 10.8. O

As a simple consequence, we get the following characterization of Poisson
processes.

Corollary 10.10 (one-dimensional Poisson criterion, Rényi) Let & be a
random measure on S with £{s} =0 a.s. for all s € S. Then & is Poisson iff
&B is Poisson distributed for every B € S, in which case p = E¢ is locally
finite and diffuse.

Proof: The measure 1 is locally finite and diffuse, since uB = E{B < oo
for all B € S and pu{s} = E{{s} =0 for all s € S. By Proposition 10.4 there
exists some a.s. simple P01sson process n on S with En = u. Since £€B = nB
for every B € S, we get f =7 by Theorem 10.9. |

We proceed to extend the basic definitions to the case of marks. Let us
then fix two lescH spaces S and K, equipped with their Borel o-fields S and
K, respectively. By a K-marked point process on S we mean a point process
¢ on S x K such that £({s} x K) <1 holds identically for all s € S. Note
that the projection (- x K) is not required to be locally finite.

We say that € has independent increments if the point processes £(By X -),

..,&(B, x ) on K are independent for any disjoint sets By, ..., B, € S. We
further say that £ is a Poisson process if it is Poisson in the usual sense on the
product space S x K. The following result characterizes Poisson processes
in terms of the independence property. The result plays a crucial role in
Chapters 13 and 19. A related characterization in terms of compensators is
given in Corollary 22.25.

Theorem 10.11 (independence and Poisson property, Erlang, Lévy) Let &
be a K-marked point process on S such that ({s} x K) = 0 a.s. for all
s € S. Then & is Poisson iff it has independent increments, in which case
E¢ is locally finite with diffuse projections onto S.

The proof will be based on a simple lemma.

Lemma 10.12 (dissection properties) Let & be a simple point process on S
with £{s} = 0 a.s. for all s € S. Fiz a set B € § and a dissecting system
(Dy;), and define B,; = BN D,;. Then
(i) max; (B, V1 —1 a.s.;
Proof: (i) Fix any p € N(S). For each s € B we may choose an open set

G, 3 s with u*G, < 1. By the dissecting property we may next choose n so
large that each set B,; lies in some G,. Then max; p*By; < 1.
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(ii) Fix any ¢ > 0. For each s € B we have P{{{s} > 0} = 0, and
by dominated convergence we may then choose an open set Gy > s with
P{¢(G, > 0} < e. By the dissecting property we may next choose n so large
that each set B,; lies in some G;. Then max; P{{B,; > 0} < ¢. O

Proof of Theorem 10.11: Fix any bounded Borel set B C S x K, and note
that the projection n = (15 - £)(- x K) is a simple point process on S with
independent increments such that n{s} = 0 a.s. for all s € S. Now introduce
a dissecting system (D,,;) of S. By Lemma 10.12 the random variables 7D,
form a null array with max;nD,; V1 — 1 a.s., and so {B =nS = >, nD,;
is Poisson by Theorem 4.7. Since B was arbitrary, the whole process £ is
Poisson by Corollary 10.10. a

The last theorem yields in particular a representation of random measures
with independent increments. A version for general processes on R, will be
proved in Theorem 13.4.

Corollary 10.13 (independent-increment random measures) A random
measure £ on S has independent increments and satisfies £{s} = 0 a.s. for

all s iff oo R
EB:aB—I—/O xn(B xdz), BES, (6)

for some nonrandom, diffuse measure o on S and some Poisson process n
on S x (0,00) with n({s} x (0,00)) =0 a.s. for all s € S and

/OOO(J: A1) En(B x dz) < 0o, BeS. (7)

Proof: Define n = 37, 6,¢5) and note that n may be regarded as a §-
measurable point process on S with marks in (0, c0). Subtracting the atomic
part, we get a diffuse random measure « satisfying (6). If ¢ has independent
increments and £{s} = 0 a.s. for all s, then the corresponding properties hold
for a and 7, and so « is nonrandom by Theorem 4.11 whereas 7 is Poisson by
Theorem 10.11. Furthermore, Lemma 10.2 shows that (7) is necessary and
sufficient for the local finiteness of the integral in (6). o

The next result gives a related characterization by symmetry. Given a
random measure £ and a diffuse measure p on .S, we say that £ is u-symmetric

if o f7! 2 ¢ for every p-preserving mapping f on S.

Theorem 10.14 (symmetric and mized Poisson processes) Fix a diffuse,
locally finite, and unbounded measure j on S, and let £ be a simple point
process on S. Then & is p-symmetric iff it is conditionally Poisson with
intensity measure o, giwen some random variable oo > 0.

Proof: First assume that uB = 0 for some B € §. Fix any a € B¢, and
define f(z) =z on B¢ and f(z) = a on B. Then f is p-preserving, so we get

E€B L ¢o f~1B =0, and therefore B = 0 a.s.
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By Theorem A1.6 we may assume that S is a Borel subset of R,. Let
f be p-preserving on R, and define f = fon f71S and f =a € Son
f~18e. Since po f~15¢ = 0, we note that f is p-preserving on S and that
Eof1S°=0as. Thus, Eof ' =¢o f‘l 4 &, which reduces the discussion
to the case when S =R,.

Next assume that A € § with pA¢ = 0, and let f be p-preserving on A.
Define f = f on A and f(x) =z on A°. Then f is p-preserving on R, ; and
so o f~1 2L ¢ which implies €0 f~1 £ ¢ on A. Since, moreover, £A° = 0 a.s.,
it is equivalent to take S = A. Now define g(z) = inf{t > 0; u[0,t] > x},
and note that g maps bijectively onto the right support A = Nso{t > 0;
plt,t +h) >0} with Ao g~! = p. Since pA° = 0, we may henceforth assume
that u= .

By Theorem 9.21, the increments of £ over dyadic intervals are condi-
tionally stationary and independent, given some o-field Z. By Theorem 4.7
applied to the conditional distribution of all dyadic increments, the latter
are seen to be conditionally Poisson, and so ¢ is conditionally a homoge-
neous Poisson process. The associated rate @ may be constructed as an
Z-measurable random variable, using the law of large numbers, and so it is
equivalent to condition on a. O

Integrals with respect to Poisson processes occur frequently in applica-
tions. The next result gives criteria for the existence of the integrals £f),
& —-&)f, and (£ — pu)f, where £ and £ are independent Poisson processes
with a common intensity measure p. In each case the integral may be defined
as a limit in probability of elementary integrals & f,,, (§ — &) fn, or (§ — 1) fu,
respectively, where the f, are bounded with compact support and such that
|ful < |f] and f, — f. The integral of f is said to ezist if the appropriate
limit exists and is independent of the choice of approximating functions f,.

Theorem 10.15 (Poisson integrals) Let & and &' be independent Poisson
processes on S with a common o-finite intensity measure p, and fix any
measurable function f on S. Then

(i) &f emists iff p(|f] A1) < oo;
(i) (& —¢&)f exists iff u(f2 A1) < oo;
(i) (& —p)f exists iff n(f* A |f]) < oo.

If one of the conditions fails, then the corresponding set of approximating
elementary integrals is not tight.

Proof: (i) If €|f| < oo a.s., then u(|f| A1) < oo by Lemma 10.2. The
converse implication was established in the proof of the same lemma.
(ii) First consider a deterministic counting measure v = Y, ds,, and define
= Y Uids, where ¥q,9s, ... are i.i.d. random variables with P{v) = +1}
By Theorem 3.17 the series 7 f converges a.s. iff vf? < oo, and otherwise

A

1
o
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|71l £ o0 for any bounded approximations f, = 1p, f with B, € S. The re-
sult extends by conditioning to arbitrary point processes v and their symmet-
ric randomizations 7. Now Proposition 10.6 exhibits £ — &’ as such a random-
ization of the Poisson process & 4 &', and by part (i) we have (£ +¢&')f? < oo
a.s. iff u(f2A1) < oo.

(iii) Write f = g+ h, where g = f1{|f| <1} and h = f1{|f| > 1}. First
assume that pug® + plh| = u(f2A|f]) < oo. Since clearly E(Ef — uf)? = uf?,
the integral (£ — p)g exists. Furthermore, £h exists by part (i). Hence, even
(€ —p)f =(&—ng+Eh— ph exists.

Conversely, assume that (§ — p)f exists. Then so does (£ — &) f, and by
part (i) we get ug® + pu{h # 0} = u(f?> A1) < co. The existence of (€ — u)g
now follows by the direct assertion, and trivially even £h exists. Thus, the
existence of ph = (§ — p)g + &h — (€ — p) f follows, and so plh| < oco. ]

A Poisson process € on R, is said to be time-homogeneous with rate ¢ > 0
if E¢ = cA. In that case Proposition 7.5 shows that N; = £[0,¢], ¢ > 0, is
a space- and time-homogeneous Markov process. We shall introduce a more
general class of Markov processes.

A process X in some measurable space (S, S) is said to be of pure jump
type if its paths are a.s. right-continuous and constant apart from isolated
jumps. We denote the jump times of X by 7,75, ..., with the understanding
that 7, = oo if there are fewer than n jumps. By Lemma 6.3 and a simple
approximation, the times 7,, are seen to be optional with respect to the right-
continuous filtration F = (F) induced by X. For convenience we may choose
X to be the identity mapping on the canonical path space 2. When X is
Markov, the distribution with initial state x is denoted by P, and we note
that the mapping x — P, is a kernel from (S, S) to (€, F).

We begin our study of pure jump-type Markov processes by proving an
extension of the elementary strong Markov property in Proposition 7.9. A
further extension appears as Theorem 17.17.

Theorem 10.16 (strong Markov property, Doob) A pure jump-type Markov
process satisfies the strong Markov property at every optional time.

Proof: For any optional time 7, we may choose some optional times o,, >
T 4+ 27" taking countably many values such that o,, — 7 a.s. By Proposition
7.9 we get, for any A € F, N {7 < 00} and B € F,

Pl0,,X € B; A] = E[Px, B; Al (8)
By the right-continuity of X, we have P{X, # X,} — 0. If B depends on
finitely many coordinates, it is further clear that

P({6,,X € B}A{6,X € B}) -0, n— oo.

Hence, (8) remains true for such sets B with o, replaced by 7, and the rela-
tion extends to the general case by a monotone class argument. O
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We shall now see how the homogeneous Poisson processes may be char-
acterized as special renewal processes. Recall that a random variable 7 is
said to be exponentially distributed with rate ¢ > 0 if P{y >t} = e~ for all
t > 0. In this case, clearly By = ¢ 1.

Proposition 10.17 (Poisson and renewal processes) Let & be a simple point
process on Ry with atoms at 1y < 75 < ---, and put 79 = 0. Then & s
homogeneous Poisson with rate ¢ > 0 iff the differences 7, — T,_1 are i.i.d.

and exponentially distributed with mean ¢~ .

Proof: First assume that ¢ is Poisson with rate ¢. Then N; = £[0,¢] is a
space- and time-homogeneous pure jump-type Markov process. By Lemma
6.6 and Theorem 10.16, the strong Markov property holds at each 7,, and
by Theorem 7.10 we get

Tl iTnH -7, UL (71,...,7), ne€N.
Thus, the variables 7,, — 7,,_1 are i.i.d., and it remains to note that
P{m >t} = P{£[0,t] =0} =e“.

Conversely, assume that 71, 75, ... have the stated properties. Consider a
homogeneous Poisson process n with rate ¢ and with atoms at o1 < g9 < - -,
and conclude from the necessity part that (c,) < (7). Hence,

=306, L 5, =1 O

We proceed to examine the structure of a general pure jump-type Markov
process. The first and crucial step is then to describe the distributions
associated with the first jump. Say that a state € S is absorbing if
PA{X =z} =1, that is, if P,{my = 00} = 1.

Lemma 10.18 (first jump) If x is nonabsorbing, then under P, the time 1
until the first jump is exponentially distributed and independent of 0., X.

Proof: Put m = 7. Using the Markov property at fixed times, we get for
any s,t >0

PAr>s+t}=P{r>s, 700, >t} = P{r > s}P{r > t}.

The only nonincreasing solutions to this Cauchy equation are of the form
P {7 >t} = e~ with ¢ € |0, o0]. Since z is nonabsorbing and 7 > 0 a.s., we
have ¢ € (0,00), and so 7 is exponentially distributed with parameter c.

By the Markov property at fixed times, we further get for any B € F,

PAr >t 0. X € B} = P{r>t, (0,X)o0b, € B}
= P {r>1t}P.{0.X € B},

which shows that 71160, X. O
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Writing X, = x when X is eventually absorbed at x, we may define the
rate function ¢ and jump transition kernel u by

o(x) = (E.m)™', p(x,B)=PAX, €B}, z€S BeS.

For convenience we may combine ¢ and p into a rate kernel a(xz, B) =
c(x)p(x, B) or a = cp, where the required measurability is clear from that
for the kernel (P,). Conversely, 1 may be reconstructed from « if we add
the requirement that p(z,-) = ¢, when a(z,-) = 0, conforming with our con-
vention for absorbing states. This ensures that p is a measurable function
of a.

The following theorem gives an explicit representation of the process in
terms of a discrete-time Markov chain and a sequence of exponentially dis-
tributed random variables. The result shows in particular that the distribu-
tions P, are uniquely determined by the rate kernel a. As usual, we assume
the existence of required randomization variables.

Theorem 10.19 (embedded Markov chain) Let X be a pure jump-type Mar-
kov process with rate kernel « = cu. Then there exist a Markov process
Y on Z, with transition kernel p and an independent sequence of i.i.d.,

exponentially distributed random variables vy, Y, ... with mean 1 such that
a.s.
Xt = Yn fOT te [TnaTn+1)7 n e Z+, (9)
where noo
k
Ty = , NEZ. 10
n = C(Yk_l) + ( )

Proof: To satisty (9), put 79 = 0, and define Y,, = X, for n € Z,. In-
troduce some i.i.d. exponentially distributed random variables v{,~3, ... 1L.X
with mean 1, and define for n € N

Yo = (T — Tno1)e(Yo) {71 < 00} +7.,1{c(Y,) = 0}.
By Lemma 10.18, we get for any t > 0, B € S, and x € S with ¢(z) > 0
Py >t Y, € B} = P{nc(z) > t, Y, € B} = e 'u(x, B),

a result that clearly remains true when c¢(z) = 0. By the strong Markov
property we obtain for every n, a.s. on {7, < oo},

Pz[7n+1 > 1, Yn+1 € B|f7'n] = PYn{'Vl >t Y€ B} = eit/‘(YnaB)' (11)

The strong Markov property also gives 7,11 < 00 a.s. on the set {7, < 00,
e(Y,) > 0}. Arguing recursively, we get {c¢(Y,,) = 0} = {741 = o0} a.s., and
(10) follows. Using the same relation, it is also easy to check that (11) re-
mains a.s. true on {7, = oo}, and in both cases we may clearly replace F,,
by G, = Fr, V o{",...,7,}. Thus, the pairs (v,,Y,) form a discrete-time
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Markov process with the desired transition kernel. By Proposition 7.2, the
latter property together with the initial distribution determine uniquely the
joint distribution of Y and (7,,). O

In applications the rate kernel « is normally given, and it is important to
decide whether a corresponding Markov process X exists. As before we may
write a(z, B) = c¢(x)u(z, B) for a suitable choice of rate function ¢: § — R
and transition kernel p on S, where p(z, ) = d, when ¢(z) = 0 and otherwise
p(z, {z}) = 0. If X does exist, it clearly may be constructed as in Theorem
10.19. The construction fails when ¢ = sup, 7, < oo, in which case an
explosion is said to occur at time (.

Theorem 10.20 (synthesis) Fiz a kernel « = cu on S with a(x,{z}) =0,
and consider a Markov chain'Y with transition kernel p and some indepen-
dent, i.i.d., exponentially distributed random variables vy, s, . . . with mean 1.
Assume that 3, yn/c(Yn_1) = 00 a.s. under every initial distribution for'Y.
Then (9) and (10) define a pure jump-type Markov process with rate kernel c.

Proof: Let P, be the distribution of the sequences Y = (V,,) and ' = ()
when Yy = x. For convenience, we may regard (V,T') as the identity mapping
on the canonical space 2 = S* x RY. Construct X from (Y,T') as in (9) and
(10), with X, = s arbitrary for ¢ > sup,, 7,,, and introduce the filtrations
G = (Gn) induced by (Y,7) and F = (F;) induced by X. It suffices to prove
the Markov property P.[0;X € -|F;] = Px,{X € -}, since the rate kernel may
then be identified via Theorem 10.19.

Then fix any t > 0 and n € Z, and define

Kk = sup{k; 7, < t}, B=(t—1)c(Yn)

Put Tm(Y7 F) = {(Y}m"//wrl); k > m}7 (Y/vrl) = Tn+1(Ya F)a and ’}/ = Tn+1-
Since clearly
Fo=G.voly > B} on {x=n}.
it is enough by Lemma 5.2 to prove that
PY' TYe v =B>7Gn,y >8] =P {T(Y,[)e -, v >r}

Now (Y, I") g, (v, 3) because v/ LL(G,, Y’ IV), and so the left-hand side
equals

PIY"\T") €, ~ = B> r|G)
Px[’}/ > ﬂ|gn}

= Px[(Y’7F/) € |gn]

th/ - B3> r‘gn}
th/ > mgn]

as required. O

= (PYn © T_l)e_r>

To complete the picture, we need a convenient criterion for nonexplosion.
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Proposition 10.21 (explosion) Fiz a rate kernel a and an initial state x,
and let (Y,) and (1,) be such as in Theorem 10.19. Then a.s.

Ty — OO iff Zn{c(Yn)}_1 = 00. (12)
In particular, T, — 00 a.s. when x is recurrent for (Y,).

Proof: Write 3, = {¢(Y,_1)}'. Noting that Ee~*" = (1 +u)~! for all
u > 0, we get by (10) and Fubini’s theorem

Bley] = [[,0+uf)™ =exp{-3 log(1 +ub,)} as  (13)

Since 1(r A1) <log(l+4r) < r for all > 0, the series on the right converges
for every u > 0 iff 3°,, B, < oo. Letting « — 0 in (13), we get by dominated
convergence

Pl( <oo|Y]=1 {Znﬁn < oo} a.s.,

which implies (12). If z is visited infinitely often, then the series 3, 8, has
infinitely many terms c;' > 0, and the last assertion follows. O

By a pseudo-Poisson process in some measurable space S we mean a
process of the form X = Y o NV a.s., where Y is a discrete-time Markov
process in S and N is an independent homogeneous Poisson process. Letting
1 be the transition kernel of Y and writing ¢ for the constant rate of N, we
may construct a kernel

a(z, B) = cu(z, B\ {z}), =z €S, BeB(9), (14)

which is measurable since p(z, {x}) is a measurable function of z. The next
result characterizes pseudo-Poisson processes in terms of the rate kernel.

Proposition 10.22 (pseudo-Poisson processes) A process X in some Borel
space S is pseudo-Poisson iff it is pure jump-type Markov with a bounded
rate function. Specifically, if X =Y o N a.s. for some Markov chain'Y with
transition kernel p and an independent Poisson process N with constant rate
¢, then X has the rate kernel in (14).

Proof: Assume that X = YoN with Y and N as stated. Letting 7,79, ...
be the jump times of N and writing JF for the filtration induced by the pair
(X, N), it may be seen as in Theorem 10.20 that X is F-Markov. To identify
the rate kernel «, fix any initial state x, and note that the first jump of X
occurs at the first time 7,, when Y,, leaves x. For each transition of Y, this
happens with probability p, = u(z, {z}¢). By Proposition 10.6 the time until
first jump is then exponentially distributed with parameter cp,. If p, > 0,
we further note that the location of X after the first jump has distribution
w(z, -\ {x})/ps. Thus, « is given by (14).
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Conversely, let X be a pure jump-type Markov process with uniformly
bounded rate kernel a # 0. Put r, = a(z,S) and ¢ = sup, r,, and note that
the kernel

wlz, ) =c Halz,")+ (c—r)0}, x€S,
satisfies (14). Thus, if X’ = Y' o N’ is a pseudo-Poisson process based on

i and ¢, then X’ is again Markov with rate kernel «, so X < X Hence,
Corollary 5.11 yields X =Y o N a.s. for some pair (Y, N) 2 (Y',N'). |

If the underlying Markov chain Y is a random walk in some measurable
Abelian group S, then X =Y o N is called a compound Poisson process. In
this case X — X 1. Xy, the jump sizes are i.i.d., and the jump times are given
by an independent homogeneous Poisson process. Thus, the distribution of
X — X, is determined by the characteristic measure v = cu, where c is the
rate of the jump time process and p is the common distribution of the jumps.
A kernel o on S is said to be homogeneous if a(z, B) = (0, B — z) for all =
and B. Furthermore, a process X in S is said to have independent increments
if Xy — X, 1L{X,; r <s} for any s < t.

The next result characterizes compound Poisson processes in two ways,
analytically in terms of the rate kernel and probabilistically in terms of the
increments of the process.

Corollary 10.23 (compound Poisson processes) For a pure jump-type pro-
cess X in some measurable Abelian group, these conditions are equivalent:
(1) X is Markov with homogeneous rate kernel;
(ii) X has independent increments;
(i) X is compound Poisson.

Proof: If a pure jump-type Markov process is space-homogeneous, then
its rate kernel is clearly homogeneous; the converse follows from the repre-
sentation in Theorem 10.19. Thus, (i) and (ii) are equivalent by Proposition
7.5. Next Theorem 10.19 shows that (i) implies (iii), and the converse follows
by Theorem 10.20. ]

We shall now derive a combined differential and integral equation for the
transition kernels p;. An abstract version of this result appears in Theorem
17.6. For any measurable and suitably integrable function f: S — R, we
define

Theorem 10.24 (backward equation, Kolmogorov) Let « be the rate kernel
of a pure jump-type Markov process on S, and fix any bounded, measurable
function f: S — R. Then T;f(x) is continuously differentiable in t for fized
x, and we have

0

STI@) = [ o d){Tif@y) -Tf @)}, t=0,aes  (19)
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Proof: Put 7 = 7 and let x € S and ¢ > 0. By the strong Markov
property at ¢ = 7 At and Theorem 5.4,

th(l’) = Exf(Xt) = wa((edX)tfo) = Eacthaf(XO')
( )P{T>t}+E [Ti—r f(X7); T < 1]

—tes +/ “ng/ z, dy)T—s f(y),

and so

et T, £ () +/ SCTds/ x, dy)Ts f(y). (16)

Here the use of the disintegration theorem is justified by the fact that X (w, t)
is product measurable on 2 X R, because of the right-continuity of the paths.

From (16) we note that T;f(z) is continuous in ¢ for each z, and so by
dominated convergence the inner integral on the right is continuous in s.
Hence, T;f(x) is continuously differentiable in ¢, and (15) follows by an easy
computation. a

The next result relates the invariant distributions of a pure jump-type
Markov process to those of the embedded Markov chain.

Proposition 10.25 (invariance) Let the processes X and Y be related as
in Theorem 10.19, and fix a probability measure v on S with [cdv < oco.
Then v is tnvariant for X iff c- v is invariant for'Y .

Proof: By Theorem 10.24 and Fubini’s theorem we have for any bounded
measurable function f: S — R

f(Xy) = /f v(dx) Jr/ ds/ (dx) / alx, dy){Tsf(y) — Ts f(x)}.

Thus, v is invariant for X iff the second term on the right is identically zero.
Now (15) shows that T f () is continuous in ¢, and by dominated convergence
this is also true for the integral

Ii= [ vde) [ (e, d){Tif () - Tif @)}, ¢20.

Thus, the condition becomes I; = 0. Since f is arbitrary, it is enough to take
t = 0. The condition then reduces to (va)f = v(cf) or (¢-v)u = ¢- v, which
means that ¢ - v is invariant for Y. O

By a continuous-time Markov chain we mean a pure jump-type Markov
process on a countable state space I. Here the kernels u; may be specified
by the set of transition functions pj; = (i, {j}). The connectivity proper-
ties are simpler than in discrete time, and the notion of periodicity has no
counterpart in the continuous-time theory.
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Lemma 10.26 (positivity) For any i,j € I we have either pﬁj > 0 for all
t>0 orp; =0 for allt > 0. In particular, p}; >0 for all t and i.

Proof: Let ¢ = (gi;) be the transition matrix of the embedded Markov
chain Y in Theorem 10.19. If ¢f; = P;{Y,, = j} = 0 for all n > 0, then clearly
HX; # j} =1 as. P, and so pj; = 0 for all ¢ > 0. If instead ¢f; > 0 for
some n > 0, there exist some states ¢ = 4g,%1,...,%, = j with ¢;,_,;, > 0
for k = 1,...,n. Noting that the distribution of (71, ...,7,4+1) has positive
density [[j<p 1 e > 0 on RT™, we obtain for any t > 0

; LA = o\
Dij > P Z <t< Z H iy, iy, = 0.

k=1 “k—1 k=1 Yik-1 ) k=1

Since pY; = ¢ = 1, we get in particular p!, > 0 for all ¢t > 0. O

A continuous-time Markov chain is said to be irreducible if pj; > 0 for
all i,5 € I and t > 0. Note that this holds iff the associated discrete-time
process Y in Theorem 10.19 is irreducible. In that case clearly sup{t > 0;
X, =j} < oo iff sup{n > 0;Y,, = j} < co. Thus, when Y is recurrent, the
sets {t; X; = j} are a.s. unbounded under P; for all ¢ € I; otherwise, they
are a.s. bounded. The two possibilities are again referred to as recurrence
and transience, respectively.

The basic ergodic Theorem 7.18 for discrete-time Markov chains has an
analogous version in continuous time.

Theorem 10.27 (ergodic behavior) For an irreducible, continuous-time
Markov chain, exactly one of these cases occurs:

(i) There exists a unique invariant distribution v; furthermore, v; > 0 for
all i € I, and for any distribution p on I,

Jim 17,06, — Pl =0, (17
(ii) No invariant distribution exists, and pj; — 0 for alli,j € I.

Proof: By Lemma 10.26 the discrete-time chain X,,, n € Z,, is ir-
reducible and aperiodic. Assume that (X,;) is positive recurrent for some
h > 0, say with invariant distribution v. Then the chain (X,,;/) is positive re-
current for every A’ of the form 27™h, and by the uniqueness in Theorem 7.18
it has the same invariant distribution. Since the paths are right-continuous,
we may conclude by a simple approximation that v is invariant even for the
original process X.

For any distribution p on I we have

< ZZ'LLZZ] |p§] - Vj|'

1By 07 = Pl =[S s 0, — v)Fs
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Thus, (17) follows by dominated convergence if we can show that the inner
sum on the right tends to zero. This is clear if we put n = [t/h] and r = t—nh
and note that by Theorem 7.18

Dol = vl <3037 P — vilwg = 37 v — vl = 0.

It remains to consider the case when (X,p) is null recurrent or transient
for every h > 0. Fixing any ¢,k € I and writing n = [t/h] and r =t — nh as
before, we get

Pig = D2 Pt < P+ 200k = pi + (1= pf),

which tends to zero as t — oo and then h — 0, by Theorem 7.18 and the
continuity of p;. O

As in discrete time, we note that condition (ii) of the last theorem holds
for any transient Markov chain, whereas a recurrent chain may satisfy either
condition. Recurrent chains satisfying (i) and (ii) are again referred to as
positive recurrent and null recurrent, respectively. It is interesting to note
that X may be positive recurrent even when the embedded, discrete-time
chain Y is null recurrent, and vice versa. On the other hand, X clearly has
the same ergodic properties as the discrete-time processes (X,;), h > 0.

Let us next introduce the first exit and recurrence times

~v; = 1inf{t > 0; X, # j}, 7, =inf{t > v;; Xy = j}.

As in Theorem 7.22 for the discrete-time case, we may express the asymptotic
transition probabilities in terms of the mean recurrence times F;7;. To avoid
trivial exceptions, we may confine our attention to nonabsorbing states.

Theorem 10.28 (mean recurrence times) For any continuous-time Markov
chain in I and states i,7 € I with 7 nonabsorbing, we have

o P{r; < oo}

lim p;; = (18)

¢ EyT;

Proof: 1t is enough to take i = j, since the general statement will then
follow as in the proof of Theorem 7.22. If j is transient, then 1{X; = j} — 0
a.s. P;, and so by dominated convergence pz-j = P;{X; = j} — 0. This agrees
with (18), since in this case P;{7; = co} > 0. Turning to the recurrent case,
let C; be the class of states ¢ accessible from j. Then C} is clearly irreducible,
and so p§j converges by Theorem 10.27.

To identify the limit, define

. t
L{:A{sgt;stj}z/o X, = j}ds, >0,
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and let 77" denote the instant of nth return to j. Letting m,n — oo with

m —n| < 1 and using the strong Markov property and the law of large
numbers, we get Pj-a.s.

s m on E;r;  E;T;

By the monotonicity of L7, it follows that t 'L} — (c;E;7;)~! a.s. Hence, by
Fubini’s theorem and dominated convergence,

1 gt E; L} 1
—_ Sd = Jt — R
t /O pJJ 5 t C]‘ Ej’]'j

and (18) follows. O

Exercises

1. Show that two random measures ¢ and 7 are independent iff Ee=¢/=79
= Ee 8/ Ee™ for all f,g € C}. In the case of simple point processes, prove
also the equivalence of P{{B + nC = 0} = P{{B = 0} P{nC = 0} for any
B,C € 8. (Hint: Regard the pair (£,7) as a random measure on 25.)

2. Let &, &, ... be independent Poisson processes with intensity measures
141, f2, - - . such that the measure p = >, py is o-finite. Show that & = > &
is again Poisson with intensity measure p.

3. Show that the class of mixed sample processes is preserved under
randomization.

4. Let £ be a Cox process on S directed by some random measure 7, and
let f be a measurable mapping into some space T such that no f~! is a.s.
locally finite. Prove directly from definitions that £ o f~! is a Cox process on
T directed by 1o f~1. Derive a corresponding result for p-thinnings.

5. Consider a p-thinning 7 of £ and a p’-thinning ¢ of n with {1L,£. Show
that ¢ is a pp/-thinning of &.

6. Let & be a Cox process directed by 1 or a p-thinning of n with p € (0, 1),
and fix two disjoint sets B,C € S. Show that EBULC ift nBUnC. (Hint:
Compute the Laplace transforms. The if assertions can also be obtained from
Proposition 5.8.)

7. Use Lemma 10.7 to derive expressions for P{¢B = 0} when ¢ is a Cox
process directed by 7, a p-randomization of 7, or a p-thinning of 7. (Hint:
Note that Ee %8 — P{¢B =0} ast — 0.)

8. Let & be a p-thinning of 7, where p € (0,1). Show that £ and n are
simultaneously Cox. (Hint: Use Lemma 10.8.)
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9. Let the simple point process & be symmetric with respect to Lebesgue
measure A on [0, 1]. Show that £ is a mixed sample process based on A. (Hint:
Reduce to the case when £[0,1] is a constant, and estimate P{{U = 0} for
finite unions U of dyadic intervals.)

10. Show that the distribution of a simple point process £ on R is not
determined, in general, by the distributions of £1 for all intervals . (Hint: If
€ is restricted to {1,...,n}, then the distributions of all {1 give >y, k(n —
k +1) < n? linear relations between the 2" — 1 parameters.)

11. Show that the distribution of a point process is not determined, in
general, by the one-dimensional distributions. (Hint: If £ is restricted to
{0,1} with £{0} Vv £{1} < n, then the one-dimensional distributions give 4n
linear relations between the n(n + 2) parameters.)

12. Show that Lemma 10.1 remains valid with By, ..., B, restricted to an
arbitrary preseparating class C, as defined in Chapter 14 or Appendix A2.
Also show that Theorem 10.9 holds with B restricted to a separating class.
(Hint: Extend to the case when C = {B € &; (€ +1)dB = 0 a.s.}. Then use
monotone class arguments for sets in S and in M(S5).)

13. Show that Theorem 10.11 remains true for any measurable space K

that admits a partition into measurable sets A;, A, ..., where (- x A,) is
a.s. locally finite for each n. (Hint: Reduce to the case when (- x K) is
a.s. locally finite, fix any disjoint measurable sets By,..., B, C S x K, and

define ny = (1p, - &)(- X K), k < n. Then n,...,n, are independent Poisson,
by Theorem 12.3 applied to the space nS.)

14. Extend Corollary 10.13 to the case when p; = P{&{s} > 0} may be
positive. (Hint: By Fatou’s lemma, ps > 0 for at most countably many s.)

15. Prove Theorem 10.15 (i) and (iii) by means of characteristic functions.

16. Let & and &’ be independent Poisson processes on S with B¢ = E¢' =
w, and let fi, fa,...: S — R be measurable with oo > u(f> A1) — co. Show
that (€ — &) fa] & oo. (Hint: Consider the symmetrization 7 of a fixed

measure v € N'(S) with vf? — oo, and argue along subsequences as in the
proof of Theorem 3.17.)

17. For any pure jump-type Markov process on S, show that P.{rm < t}
= o(t) for all x € S. Also note that the bound can be sharpened to O(t?) if
the rate function is bounded, but not in general. (Hint: Use Lemma 10.18
and dominated convergence.)

18. Show that any transient, discrete-time Markov chain Y can be embed-
ded into an exploding (resp., nonexploding) continuous-time chain X. (Hint:
Use Propositions 7.12 and 10.21.)

19. In Corollary 10.23, use the measurability of the mapping X =Y o N
to deduce the implication (iii) = (i) from its converse. (Hint: Proceed as in
the proof of Proposition 10.17.) Also use Proposition 10.6 to show that (iii)
implies (ii), and prove the converse by means of Theorem 10.11.



198 Foundations of Modern Probability

20. Consider a pure jump-type Markov process on (5, S) with transition
kernels p; and rate kernel a. Show for any z € S and B € S that a(x, B) =
fio(x, B\{z}). (Hint: Take f = 1p\1z} in Theorem 10.24, and use dominated

convergence.)

21. Use Theorem 10.24 to derive a system of differential equations for the
transition functions p;;(¢) of a continuous-time Markov chain. (Hint: Take
f(i) = d;; for fixed j.)

22. Give an example of a positive recurrent, continuous-time Markov
chain such that the embedded discrete-time chain is null recurrent, and vice
versa. (Hint: Use Proposition 10.25.)

23. Establish Theorem 10.27 directly, imitating the proof of Theorem
7.18.



Chapter 11

Gaussian Processes
and Brownian Motion

Symmetries of Gaussian distribution; existence and path proper-
ties of Brownian motion; strong Markov and reflection properties;
arcsine and uniform laws; law of the iterated logarithm; Wiener
integrals and isonormal Gaussian processes; multiple Wiener—Ité
integrals; chaos expansion of Brownian functionals

The main purpose of this chapter is to initiate the study of Brownian motion,
arguably the single most important object in modern probability theory.
Indeed, we shall see in Chapters 12 and 14 how the Gaussian limit theorems
of Chapter 4 can be extended to approximations of broad classes of random
walks and discrete-time martingales by a Brownian motion. In Chapter 16
we show how every continuous local martingale may be represented in terms
of Brownian motion through a suitable random time-change. Similarly, the
results of Chapters 18 and 20 demonstrate how large classes of diffusion
processes may be constructed from Brownian motion by various pathwise
transformations. Finally, a close relationship between Brownian motion and
classical potential theory is uncovered in Chapters 21 and 22.

The easiest construction of Brownian motion is via a so-called isonor-
mal Gaussian process on L*(R,), whose existence is a consequence of the
characteristic spherical symmetry of the multivariate Gaussian distributions.
Among the many important properties of Brownian motion, this chapter
covers the Holder continuity and existence of quadratic variation, the strong
Markov and reflection properties, the three arcsine laws, and the law of the
iterated logarithm.

The values of an isonormal Gaussian process on L?(R,) may be identi-
fied with integrals of L2-functions with respect to the associated Brownian
motion. Many processes of interest have representations in terms of such
integrals, and in particular we shall consider spectral and moving average
representations of stationary Gaussian processes. More generally, we shall
introduce the multiple Wiener—It6 integrals I, f of functions f € L*(R") and
establish the fundamental chaos expansion of Brownian L?-functionals.

The present material is related to practically every other chapter in the
book. Thus, we refer to Chapter 4 for the definition of Gaussian distributions
and the basic Gaussian limit theorem, to Chapter 5 for the transfer theorem,
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to Chapter 6 for properties of martingales and optional times, to Chapter
7 for basic facts about Markov processes, to Chapter 8 for some similarities
with random walks, to Chapter 9 for some basic symmetry results, and to
Chapter 10 for analogies with the Poisson process.

Our study of Brownian motion per se is continued in Chapter 16 with the
basic recurrence or transience dichotomy, some further invariance properties,
and a representation of Brownian martingales. Brownian local time and
additive functionals are studied in Chapter 19. In Chapter 21 we consider
some basic properties of Brownian hitting distributions, and in Chapter 22 we
examine the relationship between excessive functions and additive functionals
of Brownian motion. A further discussion of multiple integrals and chaos
expansions appears in Chapter 16.

To begin with some basic definitions, we shall say that a process X on
some parameter space 1" is Gaussian if the random variable ¢; Xy, +- - -+¢, X3,
is Gaussian for any choice of n € N, t1,...,t, € T, and ¢, ...,c, € R. This
holds in particular if the X, are independent Gaussian random variables. A
Gaussian process X is said to be centered if EX; = 0 for all t € T. We shall
further say that the processes X on Tj, i € I, are jointly Gaussian if the
combined process X = {X}; t € T}, i € I} is Gaussian. The latter condition
is certainly fulfilled if the processes X* are independent and Gaussian.

The following simple facts clarify the fundamental role of the covariance
function. As usual, we assume all distributions to be defined on the o-fields
generated by the evaluation maps.

Lemma 11.1 (covariance function)
(i) The distribution of a Gaussian process X on T is determined by the
functions EX; and cov(Xs, Xy), s,t € T.
(i) The jointly Gaussian processes X on T;, i € I, are independent iff
cov(XL, X)) =0 foralls €Ty andt € Tj, i # j in I.

Proof: (i) Let X and Y be Gaussian processes on T with the same
means and covariances. Then the random variables ¢; X;, + -+ + ¢, X, and
aYy + -+ ¢ Y, have the same mean and variance for any ¢p,...,c, € R
and t1,...,t, € T, n € N, and since both variables are Gaussian, their
distributions must agree. By the Cramér—Wold theorem it follows that
(Xeoo 0 X)) E (V... Y, ) forany ty,....t, € T,neN, andso X £V
by Proposition 2.2.

(ii) Assume the stated condition. To prove the asserted independence, we
may assume I to be finite. Introduce some independent processes Y, i € I,
with the same distributions as the X?, and note that the combined processes
X = (X% and Y = (Y?) have the same means and covariances. Hence, the
joint distributions agree by part (i). In particular, the independence between
the processes Y implies the corresponding property for the processes X*. O

The following result characterizes the Gaussian distributions by a simple
symmetry property.
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Proposition 11.2 (spherical symmetry, Mazwell) Let &,...,&; be i.i.d.
random variables, where d > 2. Then the distribution of (&1,...,&4) is spher-
ically symmetric iff the & are centered Gaussian.

Proof: Let ¢ denote the common characteristic function of &3, ..., &,, and
assume the stated condition. In particular, —&; L &1, and so ¢ is real valued
and symmetric. Noting that s&; +t&s 4 &1V s% + 12, we obtain the functional
equation p(s)e(t) = @(v/s? +t2), and by iteration we get ©"(t) = ¢(t/n)
for all n. Thus, for rational ¢> we have (t) = ¢ for some constant a, and
by continuity the solution extends to all real ¢. Finally, a < 0 since |¢| < 1.

Conversely, assume &p,...,& to be centered Gaussian, and let (7y,. ..,
n4) be obtained from (&,...,&;) by an arbitrary orthogonal transforma-
tion. Then both random vectors are Gaussian, and we note that cov(n;, n;)
= cov(&;, &) for all i and j. Hence, the two distributions agree by Lemma
11.1. O

In infinite dimensions, the Gaussian distribution can be deduced from the
rotational symmetry alone, without any assumption of independence.

Theorem 11.3 (unitary invariance, Schoenberg, Freedman) For any infi-
nite sequence of random variables &1,&, ..., the distribution of (&1,...,&,)
is spherically symmetric for every n > 1 iff the & are conditionally i.i.d.
N(0,0?), given some random variable o* > 0.

Proof: The &, are clearly exchangeable, and so there exists by Theorem
9.16 some random probability measure y such that the &, are conditionally
p-ii.d. given p. By the law of large numbers, we get

pB = lim n_lzkgnl{fk € B} as., BEeB,

which shows that p is a.s. {£3,&, .. .}-measurable. Now conclude from the
spherical symmetry that, for any orthogonal transformation 7" on R?

P[(&1,&) € Bl&, ..., &) = P[T(&,&) € Bl&, ..., &), B e B(R?).

As n — oo, we get u? = p? o T-! a.s. Considering a countable dense set
of mappings T, it is clear that the exceptional null set can be chosen to
be independent of T'. Thus, u? is a.s. spherically symmetric, and so y is a.s.
centered Gaussian by Proposition 11.2. It remains to take 0 = [ 2?u(dx). O

Now fix a separable Hilbert space H. By an isonormal Gaussian process
on H we mean a centered Gaussian process nh, h € H, such that E(nhnk) =
(h, k), the inner product of h and k. To construct such a process 7, we
may introduce an orthonormal basis (ONB) e, es,... € H, and let &,&, . ..
be independent N(0,1) random variables. For any element h = Y, b;e;, we
define nh = 3, b;&;, where the series converges a.s. and in L? since 3, b? < oc.
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The process 7 is clearly centered Gaussian. Furthermore, it is linear, in the
sense that n(ah+bk) = anh+bnk a.s. for all h, k € H and a,b € R. Assuming
that k =3, ¢;e;, we may compute

E(nhnk) = Z bic; B () = Zibici = (h, k

By Lemma 11.1 the stated conditions uniquely determine the distribution
of n. In particular, the symmetry property in Proposition 11.2 extends to a
distributional invariance of  under any unitary transformation on H.

The following result shows how the Gaussian distribution arises naturally
in the context of processes with independent increments. It is interesting to
compare with the similar Poisson characterization in Theorem 10.11.

Theorem 11.4 (independence and Gaussian property, Lévy) Let X be a
continuous process in RY with independent increments. Then X — X is
Gaussian, and there exist some continuous functions b in R? and a in RdQ,
the latter with nonnegative definite increments such that X, — X, is N(b, —
bs, ay — ag) for any s < t.

Proof: Fix any s < t in R; and u € R% For every n € N we may
divide the interval [s, t] into n subintervals of equal length, and we denote the
corresponding increments of uX by &,1,...,&u,. By the continuity of X we
have max; [£,;| — 0 a.s., and so Theorem 4.15 shows that u(X;—X;) = >, &;
is a Gaussian random Varlable. Since X has independent increments, it
follows that the process X — X is Gaussian. Writing b; = EX; — F X, and
a; = cov(X, — Xy), we get E(X, — X,) = EX; — EX, = b, — b, and by the
independence,

0 < cov(X; — X;) =cov(Xy) —cov(Xg) =ar —as, s<t.

The continuity of X yields X KN Xy as s = t, 80 by — by and a; — a;. Thus,
both functions are continuous. O

If the process X in Theorem 11.4 has stationary, independent increments
and starts at 0, then the mean and covariance functions are clearly linear.
The simplest choice in one dimension is to take b = 0 and a; = t, so that X; —
X, is N(0,t — s) for all s < t. The next result shows that the corresponding
process exists, and it also gives an estimate of the local modulus of continuity.
More precise rates of continuity are obtained in Theorem 11.18 and Lemma
12.7.

Theorem 11.5 (existence of Brownian motion, Wiener) There exists a
continuous Gaussian process B in R with stationary independent increments
and By = 0 such that By is N(0,t) for everyt > 0. For any c € (0,1), B is
further a.s. locally Hélder continuous with exponent c.
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Proof: Let n be an isonormal Gaussian process on L?(Ry,\), and de-
fine B; = nljy, t > 0. Since indicator functions of disjoint intervals are
orthogonal, the increments of the process B are uncorrelated and hence in-
dependent. Furthermore, we have ||1(4||> = t — s for any s < ¢, and so
B, — By is N(0,t — s). For any s <t we get

B~ B, £ B, = (t )/ °B, (1)
whence,
E|B, — B,|* = (t — 5)?E|By|° < 00, ¢ >0,
and the asserted Holder continuity follows by Theorem 2.23. O

A process B as in Theorem 11.5 is called a (standard) Brownian mo-
tion or a Wiener process. By a Brownian motion in R? we mean a pro-
cess By = (Bl,..., BY), where B!,..., B¢ are independent, one-dimensional
Brownian motions. From Proposition 11.2 we note that the distribution of
B is invariant under orthogonal transformations of R%. It is also clear that
any continuous process X in R? with stationary independent increments and
Xy = 0 can be written as X; = bt + 0B, for some vector b and matrix o.

From Brownian motion we may construct other important Gaussian pro-
cesses. For example, a Brownian bridge may be defined as a process on [0, 1]
with the same distribution as X; = B, —¢Bj, t € [0,1]. An easy computation
shows that X has covariance function r,; = s(1 —¢),0<s <t <1.

The Brownian motion and bridge have many nice symmetry properties.
For example, if B is a Brownian motion, then so is —B as well as the process
¢ 'B(c*) for any ¢ > 0. The latter transformation is frequently employed
and will often be referred to as a Brownian scaling. We may also note that, for
each u > 0, the processes B,+; — B, are Brownian motions on R, and [0, u],
respectively. If B is instead a Brownian bridge, then so are the processes
—B; and B;_;.

The following result gives some less obvious invariance properties. Fur-
ther, possibly random mappings that preserve the distribution of a Brownian
motion or bridge are exhibited in Theorem 11.11, Lemma 11.14, and Propo-
sition 16.9.

Lemma 11.6 (scaling and inversion) If B is a Brownian motion, then so is
the process t By, whereas (1 —t)Byjq—y) and tBa_y) ) are Brownian bridges.
If B is instead a Brownian bridge, then the processes (1 + t)Byja44) and
(1+ t)Bl/(Ht) are Brownian motions.

Proof: Since all processes are centered Gaussian, it suffices by Lemma
11.1 to verify that they have the desired covariance functions. This is clear
from the expressions s At and (s A ¢)(1 — sV t) for the covariance functions
of the Brownian motion and bridge. a
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From Proposition 7.5 together with Theorem 11.4 we note that any space-
and time-homogeneous, continuous Markov process in R? has the form o B, +
tb+c, where B is a Brownian motion in R?, ¢ is a d x d matrix, and b and c are
vectors in R?. The next result gives a general characterization of Gaussian
Markov processes.

Proposition 11.7 (Gaussian Markov processes) Let X be a Gaussian pro-
cess on some index set T C R, and define ryy = cov(Xs, Xy). Then X is
Markov iff

Touw = Tstltu/Tee, S<t<u in T, (2)

where 0/0 = 0. If X is further stationary and defined on R, then rs; =
ae 57U for some constants a > 0 and b € [0, 00].

Proof: Subtracting the means if necessary, we may assume that £X; = 0.
Now fix any times ¢t < w in T, and choose @ € R such that X| = X, —
aXy L X Thus, a = 14/ when 1y # 0, and if r,; = 0, we may take
a = 0. By Lemma 11.1 we get X/ 11 X;.

First assume that X is Markov, and let s < t be arbitrary. Then
XAl x, X, and so X, 1L x, X/. Since also X; L X! by the choice of a, Propo-
sition 5.8 yields X1l X|. Hence, 5, = arss, and (2) follows as we insert
the expression for a. Conversely, (2) implies X L X for all s < ¢, and so
F, 1L X! by Lemma 11.1, where F;, = 0{X,; s < t}. By Proposition 5.8 it
follows that F; 1l x, X,,, which is the required Markov property of X at ¢.

If X is stationary, then r,; = rs_y0 = 7}s—¢, and (2) reduces to the
Cauchy equation rorgy, = rery, s,t > 0, which admits the only bounded so-
lutions r, = ae™. m|

A continuous, centered Gaussian process on R with covariance function
Ty = %e"” is called a stationary Ornstein—Uhlenbeck process. Such a process
Y can be expressed in terms of a Brownian motion B as Y; = e ‘B(}e*),
t € R. The last result shows that the Ornstein—Uhlenbeck process is essen-
tially the only stationary Gaussian process that is also a Markov process.

We will now study some basic sample path properties of Brownian motion.

Lemma 11.8 (level sets) If B is a Brownian motion or bridge, then
Mt; Bi=u} =0 as, uweR

Proof: Introduce the processes X" = Bing/m, t € Ry or [0,1], n € N, and
note that X' — B! for every ¢. Since each process X™ is product measurable
on Q x Ry or  x [0,1], the same thing is true for B. Now use Fubini’s

theorem to conclude that
EMt; By = u} = /P{Bt —u}dt=0, ueR. 0
The next result shows that Brownian motion has locally finite quadratic

variation. An extension to general continuous semimartingales is obtained in
Proposition 15.18.
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Theorem 11.9 (quadratic variation, Lévy) Let B be a Brownian motion,
and fix anyt > 0 and a sequence of partitions 0 = 1,0 <tp1 < -+ <tpi, =t,
n € N, such that h, = maxg(tor — thr—1) = 0. Then

G = Zk(Btn,k — Btnyk71>2 —t in L% (3)

If the partitions are nested, then also (, — t a.s.

Proof (Doob): To prove (3), we may use the scaling property B, — B; 4
|t — s|'/2B,; to obtain
E¢, = ZkE(Btn,k — Btn,k—l)Q
Zk(tn,k —tox1)EB} =1t,
var((,) = Zkvar(Btmk — B, )’
= > (tux —tag1)*var(BY) < hyt EBy — 0.

For nested partitions we may prove the a.s. convergence by showing that
the sequence ((,) is a reverse martingale, that is,

E[Ci-1 — Gl Cut1, -] =0 as., neN (4)

Inserting intermediate partitions if necessary, we may assume that k,, = n for
all n. In that case there exist some numbers t1,ts,... € [0,¢] such that the
nth partition has division points ¢4, . .., ,. To verify (4) for a fixed n, we may
further introduce an auxiliary random variable ¥ L B with P{¢ = £1} = 1,
and replace B by the Brownian motion

B; - Bs/\tn + 79(33 - Bs/\tn)a S Z 0.

Since B’ has the same sums (,, (. 1,... as B whereas (,_1 — (, is replaced
by (¢, — Cn-1), it is enough to show that E[Y((, — Cu-1)|Cns Cag1,---] = 0
a.s. This is clear from the choice of ¢ if we first condition on (,_1,(,,.... O

The last result implies that B has locally unbounded variation. This
explains why the stochastic integral [ VdB cannot be defined as an ordinary
Stieltjes integral and a more sophisticated approach is required in Chapter 15.

Corollary 11.10 (linear variation) Brownian motion has a.s. unbounded
variation on every interval [s,t] with s < t.

Proof: The quadratic variation vanishes for any continuous function of
bounded variation on [s, ¢]. O

From Proposition 7.5 we note that Brownian motion B is a space-homo-
geneous Markov process with respect to its induced filtration. If the Markov
property holds for some more general filtration F = (F;) —that is, if B is
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adapted to F and such that the process B, = By, — By is independent of
Fs for each s > 0 —we say that B is a Brownian motion with respect to F,
or an F-Brownian motion. In particular, we may take F, = G, VN, t > 0,
where G is the filtration induced by B and N =o{N C 4; A€ A, PA = 0}.
With this construction, F becomes right-continuous by Corollary 6.25.

The Markov property of B will now be extended to suitable optional
times. A more general version of this result appears in Theorem 17.17. As
in Chapter 6, we shall write ;" = F;.

Theorem 11.11 (strong Markov property, Hunt) For any F-Brownian mo-
tion B in RY and a.s. finite F*-optional time T, the process B} = B,y — B,
t > 0, is again a Brownian motion independent of F.

Proof: As in Lemma 6.4, we may approximate 7 by optional times 7, — 7
that take countably many values and satisfy 7, > 7+27". Then F.* C N, Fr,
by Lemmas 6.1 and 6.3, and so by Proposition 7.9 and Theorem 7.10 each
process B = B, 4 — B,,, t > 0, is a Brownian motion independent of
FF. The continuity of B yields B — B; a.s. for every t. By dominated
convergence we then obtain, for any A € Ff and ty,...,%, € Ry, k € N, and
for bounded continuous functions f: R¥ — R,

E[f(Bj,,...,By); Al = Ef(By,,...,By,) - PA.

The general relation P[B’ € -, A] = P{B € -}- PA now follows by a straight-
forward extension argument. t

If B is a Brownian motion in R?, then a process with the same distribution
as |B] is called a Bessel process of order d. More general Bessel processes
may be obtained as solutions to suitable SDEs. The next result shows that
| B| inherits the strong Markov property from B.

Corollary 11.12 (Bessel processes) If B is an F-Brownian motion in R?,
then |B| is a strong F-Markov process.

Proof: By Theorem 11.11 it is enough to show that |B + 2| < |B + y|
whenever |z| = |y|. We may then choose an orthogonal transformation 7' on
R? with Tz = y, and note that

|B+a|=|T(B+x)|=|TB+y|<|B+yl 0

We shall use the strong Markov property to derive the distribution of
the maximum of Brownian motion up to a fixed time. A stronger result is
obtained in Corollary 19.3.

Proposition 11.13 (maximum process, Bachelier) Let B be a Brownian
motion in R, and define M; = sup,, Bs, t > 0. Then

M, LM, —~B 2B t>0.
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For the proof we shall need the following continuous-time counterpart to
Lemma 8.10.

Lemma 11.14 (reflection principle) For any optional time T, a Brownian
motion B has the same distribution as the reflected process

By = Bijp, — (By — Bipr), t>0.

Proof: Tt is enough to compare the distributions up to a fixed time ¢, and
so we may assume that 7 < co. Define Bf = B.x; and B, = B,,; — B;. By
Theorem 11.11 the process B’ is a Brownian motion independent of (7, BT).
Since, moreover, —B’ 4 B, we get (1, B", B’) LA (1, B™,—DB’). It remains to
note that

B,=B[+B, ,,, B=B-B,,, t>0. O

Proof of Proposition 11.13: By scaling it is sufficient to take t = 1. Ap-
plying Lemma 11.14 with 7 = inf{¢; B; = x}, we get

P{M; >z, Blgy}zP{Blz%t—y}, z>yVO0.

By differentiation it follows that the pair (M, By) has probability density
—2¢'(2x — y), where ¢ denotes the standard normal density. Changing vari-
ables, we may conclude that (M, My — By) has density —2¢'(z+y), z,y > 0.
Thus, both M; and M; — By have density 2¢(x), > 0. O

To prepare for the next main result, we shall derive another elementary
sample path property.

Lemma 11.15 (local extremes) The local mazima and minima of a Brow-
nian motion or bridge are a.s. distinct.

Proof: Let B be a Brownian motion, and fix any intervals I = [a,b] and
J =[e,d] with b < c. Write

sup B; — sup By = sup(B; — B..) + (B. — By) — sup(B; — By).

teJ tel teJ tel
Here the second term on the right has a diffuse distribution, and by inde-
pendence the same thing is true for the whole expression. In particular, the
difference on the left is a.s. nonzero. Since I and J are arbitrary, this proves
the result for local maxima. The case of local minima and the mixed case
are similar.

The result for the Brownian bridge B° follows from that for Brownian
motion, since the distributions of the two processes are equivalent (mutually
absolutely continuous) on any interval [0, t] with ¢ < 1. To see this, construct
from B and B° the corresponding “bridges”

X, =B, — §Bt, Y,=B° - §B§, s € 0,4,
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and check that B, 1LX < Y 1l BY. The stated equivalence now follows from
the fact that N(0,t) ~ N(0,¢(1 —¢)) when ¢ € [0, 1). O

The next result involves the arcsine law, which may be defined as the
distribution of ¢ = sin® @ when « is U(0, 27). The name comes from the fact
that

2
P{{<t} = P{\ sina| < \/i} = Zarcsinvt, te€0,1].
T
Note that the arcsine distribution is symmetric around 1, since

. d .
€ =sina=cos’a=1—sinfa=1-¢.

The following celebrated result exhibits three interesting functionals of Brow-
nian motion, all of which are arcsine distributed.

Theorem 11.16 (arcsine laws, Lévy) For a Brownian motion B on [0, 1]
with maximum My, these random variables are all arcsine distributed:

71 =Mt B, >0}; 7 =inf{t; B, = M}; 75=sup{t; B, =0}.

It is interesting to compare the relations 7 4 Ty L1 73 with the discrete-
time versions obtained in Theorem 8.11 and Corollary 9.20. In Theorems
12.11 and 13.21, the arcsine laws are extended by approximation to appro-
priate random walks and Lévy processes.

Proof: To see that 71 < 79, let n € N, and note that by Corollary 9.20
n—lzk<n1{Bk/n > 0} g ’n,—l mln{k 2 O7 Bk/n = maijnBJ/n}

By Lemma 11.15 the right-hand side tends a.s. to 7 as n — oo. To see that
the left-hand side converges to 7, we may conclude from Lemma 11.8 that

Mtelo,1]; B,>0}+XMte[0,1]; B,<0} =1 as.
It remains to note that, for any open set G C [0, 1],

liminf n ! Z

n—»00 k<n

1o(k/n) > AG.

For i = 2, fix any ¢ € [0,1], let £ and n be independent N(0,1), and let
a be U(0,27). Using Proposition 11.13 and the circular symmetry of the
distribution of (£, 7), we get

Pir <t} = P{sup,,(Bs = Bi) > sup>(Bs — Bi)}

P{|Bi| > |By — Bi|} = P{t&* > (1 — t)n*}

2
n _ .2
P{52+772 §t}—P{sm a <t}
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For ¢+ = 3, we may write
P{rs <t} = P{sup,s,Bs <0} + P{inf,B, > 0}

QP{SHpSZt(BS - Bf) < 7Bf} = 2P{|Bl - Bt' < Bf}
P{|B, - B,| < |B/|} = P{m < t}. O

The first two arcsine laws have the following counterparts for the Brow-
nian bridge.

Theorem 11.17 (uniform laws) For a Brownian bridge B with mazimum
M, these random variables are both U(0,1):

7 =Mt B, >0} Ty = inf{t; B, = M;}.

Proof: The relation 7y LA T9 may be proved in the same way as for Brow-
nian motion. To see that 7 is U(0, 1), write (z) = = — [z], and consider for
each u € [0,1] the process B} = B,y — By, t € [0,1]. It is easy to check
that B* £ B for each u, and further that the maximum of B* occurs at
(19 — u). By Fubini’s theorem we hence obtain for any ¢ € [0, 1]

P{TQSt}:/OlP{(Tz—u)gt}du:E)\{u; (ry —u) <t} =t O

From Theorem 11.5 we note that t~°B, — 0 a.s. ast — 0 for any c € [0, 1).
The following classical result gives the exact growth rate of Brownian motion
at 0 and co. Extensions to random walks and renewal processes are obtained
in Corollaries 12.8 and 12.14.

Theorem 11.18 (laws of the iterated logarithm, Khinchin) For a Brownian
motion B in R, we have a.s.

. B, . B,
lim su = lim sup

p ——— G ——
t—0 2t log log(1/t) t—o0 2tloglogt

Proof: The Brownian inversion E’t = 1By of Lemma 11.6 converts the
two formulas into one another, so it is enough to prove the result for t — oc.
Then we note that as u — oo

9 _ 1 42
/ ex/zdxwulf xe Ay = u e /2,
u

u

By Proposition 11.13 we hence obtain, uniformly in ¢ > 0,
P{M, > ut'?} = 2P{B, > ut'/*} ~ (2/7)"2u"e"/?,

where M, = sup,, B,. Writing hy = (2tloglogt)'/?, we get for any r > 1
and ¢ >0

P{M (") > ch(r" ")} < n=/"(logn)~"?, neN.
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Fixing ¢ > 1 and choosing r < c2, it follows by the Borel-Cantelli lemma
that

P{limsup,_,(B;/h;) > c} < P{M(r") > ch(r"') i0.} =0,

which shows that lim sup,_,..(B;/h) <1 a.s.
To prove the reverse inequality, we may write

P{B(r") = B(r"™") > ch(r™)} > n="/0"V(logn)"/?, neN.

Taking ¢ = {(r — 1)/r}'/2, we get by the Borel-Cantelli lemma

B—B, n — B n—1 —1
limsupthit/ > limsup ) (") > (7“ )1/2 a.s.

t—o00 + n—oo h(T") T

The upper bound obtained earlier yields limsup,_, . (—=By/r/ht) < =12 and
combining the two estimates gives

B
limsup — > (1 —r Y2 —p71/2 a5
t—o0 t
Here we may finally let »r — oo to obtain limsup,_, . (B;/h;) > 1 a.s. O

In the proof of Theorem 11.5 we constructed a Brownian motion B from
an isonormal Gaussian process n on L?(Ry, A) such that B, = nlyy a.s. for
all t > 0. If instead we are starting from a Brownian motion B on R, the
existence of an associated isonormal Gaussian process n may be inferred from
Theorem 5.10. Since every function h € L*(R,, \) can be approximated by
simple step functions, as in the proof of Lemma 1.33, we note that the random
variables nh are a.s. unique. We shall see how they can also be constructed
directly from B as suitable Wiener integrals [ hdB. As already noted, the
latter fail to exist in the pathwise Stieltjes sense, and so a different approach
is needed.

As a first step, we may consider the class S of simple step functions of
the form

ht = ngnajl(tj—lytj](t)7 t Z 07

wheren € Z,,0=1ty < --- <t,, and aq,...,a, € R. For such integrands h,
we may define the integral in the obvious way as

wh= [ mdB,=Bh=Y _ B, ~B,.).
Here nh is clearly centered Gaussian with variance
Blnh)? = X2, a3t~ t,) = [~ hide = ],

where ||h|| denotes the norm in L*(Ry,\). Thus, the integration h +— nh =
[ hdB defines a linear isometry from & C L?(R,, \) into L?((2, P).
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Since S is dense in L*(R,, \), we may extend the integral by continuity
to a linear isometry h — nh = [ hdB from L?()\) to L?(P). Here nh is again
centered Gaussian for every h € L*()\), and by linearity the whole process
h — nh is then Gaussian. By a polarization argument it is also clear that
the integration preserves inner products, in the sense that

E(phnk) = /Ooo hekedt = (h, k), hok € LE(\).

We shall consider two general ways of representing stationary Gaussian
processes in terms of Wiener integrals nh. Here a complex notation is conve-
nient. By a complez-valued, isonormal Gaussian process on a (real) Hilbert
space H we mean a process ( = £ + i on H such that ¢ and n are indepen-
dent, real-valued, isonormal Gaussian processes on H. For any f = g + ih
with g, h € H, we define (f = &g — nh + i(Eh + ng).

Now let X be a stationary, centered Gaussian process on R with co-
variance function r;, = E X, X4, s,t € R. We know that r is nonnegative
definite, and it is further continuous whenever X is continuous in probability.
In that case Bochner’s theorem yields a unique spectral representation

Ty :/ e u(dr), teR,

where the spectral measure p is a bounded, symmetric measure on R.

The following result gives a similar spectral representation of the process
X itself. By a different argument, the result extends to suitable non-Gaussian
processes. As usual, we assume that the basic probability space is rich enough
to support the required randomization variables.

Proposition 11.19 (spectral representation, Stone, Cramér) Let X be an
L2-continuous, stationary, centered Gaussian process on R with spectral mea-
sure yu. Then there exists a complex, isonormal Gaussian process ¢ on L*(j)
such that o
X, = 3‘%/ ed¢, a.s., teR. (5)
—00

Proof: Denoting the right-hand side of (5) by Y, we may compute
EYY, = E/(cos sz d&, — sin sx dn,) /(cos tx d¢, — sintx dn,)
= /(COS sz costr — sin sz sintx)p(dr)
= /cos(s —t)x p(dz) = /ei(sft)xu(dx) =Ty

Since both X and Y are centered Gaussian, Lemma 11.1 shows that Y 4 x.
Now both X and ¢ are continuous and defined on the separable spaces L*(X)
and L?(p), and so they may be regarded as random elements in suitable Pol-
ish spaces. The a.s. representation in (5) then follows by Theorem 5.10. O
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Another useful representation may be obtained under suitable regularity
conditions on the spectral measure p.

Proposition 11.20 (moving average representation) Let X be an L?*-con-
tinuous, stationary, centered Gaussian process on R with absolutely contin-
uous spectral measure (. Then there exist an isonormal Gaussian process 1)
on L*(R,\) and some function f € L*(\) such that

X, = /oo fi—sdns a.s., teR. (6)

Proof: Fix a symmetric density g > 0 of u, and define h = g'/2. Then
h € L*()\), and we may introduce the Fourier transform in the sense of
Plancherel,

fo=hs=(2m)"1/? Jim e hydr, s€R, (7)

which is again real valued and square integrable. For each ¢ € R the function
k, = e~ h, has Fourier transform k, = f,_;, and so by Parseval’s relation

Ty = /OO €itzhidx = /OO hzg‘xdl‘ = /DO foS*tdS' (8)

Now consider any isonormal Gaussian process 1 on L*()\). For f as in (7), we
may define a process Y on R by the right-hand side of (6). Using (8), we get
EY,Y;y = r, for arbitrary s,t € R, and so Y LX by Lemma 11.1. Again
an appeal to Theorem 5.10 yields the desired a.s. representation of X. O

For an example, we may consider a moving average representation of
the stationary Ornstein—Uhlenbeck process. Then introduce an isonormal
Gaussian process n on L*(R, \) and define

t
X, = / etdn,, t>0.

The process X is clearly centered Gaussian, and we get

SAL
Tse =B X Xy = / eV Ty = ée‘ls_t|7 s, t €R,

—0o0

as desired. The Markov property of X follows most easily from the fact that
t
X, = et X, +/ e tdn,, s<t.

We proceed to introduce multiple integrals I, = n®" with respect to an
isonormal Gaussian process 1 on a separable Hilbert space H. Without loss of
generality, we may then take H to be of the form L2(S, ). In that case H®"
can be identified with L?(S™, u®"), where u®" denotes the n-fold product
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measure 4 ® - - - ® p, and the tensor product @<, hy, = h1 ® - -+ ® hy, of the
functions hy, ..., h, € H is equivalent to the function hy(t1) - - - hyp(t,) on S™.
Recall that for any ONB ey, ey,... in H, the tensor products &<, ex; with
arbitrary ki, ..., k, € N form an ONB in H®".

We may now state the basic existence and uniqueness result for the inte-
grals I,.

Theorem 11.21 (multiple stochastic integrals, Wiener, Ité) Let n be an
isonormal Gaussian process on some separable Hilbert space H. Then for
every n € N there exists a unique continuous linear mapping I,, : H®" —
L*(P) such that a.s.

I, ® hy = H nhg, hi,...,h, € H orthogonal.

k<n k<n

Here the uniqueness means that I,h is a.s. unique for every h, and the
linearity means that I,(af + bg) = al,f + bl,g a.s. for any a,b € R and
f,g € H®". Note in particular that I;h = nh a.s. For consistency, we define
Iy as the identity mapping on R.

For the proof we may clearly assume that H = L?([0, 1], \). Let &, denote
the class of elementary functions of the form

f=2 6@ Las, (9)
j<m  k<n
where the sets A}, ..., A7 € B[0, 1] are disjoint for each j € {1,...,m}. The
indicator functions 1 4% are then orthogonal for fixed j, and we need to take
J

Lf=> ¢]] nA?, (10)

ji<m  k<n

where nA = nl4. From the linearity in each factor it is clear that the value
of I,,f is independent of the choice of representation (9) for f.

To extend the definition of I,, to the entire space L*(R"}, \*"), we need
two lemmas. For any function f on R’}, we may introduce the symmetrization

f(tla cee 7tn) = (n!)ilzpf(tpm s atpn)7 t17 s 7tn S R+7

where the summation extends over all permutations p of {1,...,n}. The
following result gives the basic L2-structure, which later carries over to the
general integrals.

Lemma 11.22 (isometry) The elementary integrals I,,f defined by (10) are
orthogonal for different n and satisfy

E(Lf)> =nl|lfI> <nlfI’, f €& (11)
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Proof: The second relation in (11) follows from Minkowski’s inequality.
To prove the remaining assertions, we may first reduce to the case when all
sets Aé? are chosen from some fixed collection of disjoint sets By, Bs, . ... For
any finite index sets J # K in N, we note that

EllnB; I[I nBe= ][I EmB;)*> [l EnB; =0.

jeJ keK jeJnK JEJAK

This proves the asserted orthogonality. Since clearly (f,g) = 0 when f and
g involve different index sets, it further reduces the proof of the isometry in
(11) to the case when all terms in f involve the same sets By, ..., B,, though
in possibly different order. Since I,,f = I,f, we may further assume that
f=Qu1p,. But then

E(L.f)* = I,EnBw* = [[AB: = IIf1I* = nl| FI,

where the last relation holds since, in the present case, the permutations of
f are orthogonal. o

To extend the integral, we need to show that the elementary functions
are dense in L*(\®").

Lemma 11.23 (approzimation) The set &, is dense in L*(\®™).

Proof: By a standard argument based on monotone convergence and a
monotone class argument, any function f € L?(A®") can be approximated by
linear combinations of products @;,<, 14, , and so it is enough to approximate
functions f of the latter type. Then divide [0, 1] for each m into 2™ intervals
B,,,; of length 27™, and define

fo=1 3 @lb., (12)

Froemadn k<n

where the summation extends over all collections of distinct indices jy1, ..., Jn
€ {1,...,2m}. Here f,, € &, for each m, and the sum in (12) tends to 1 a.e.
A®". Thus, by dominated convergence f,,, — f in L*(A®™). O

By the last two lemmas, I, is defined as a uniformly continuous map-
ping on a dense subset of L*(A\®"), and so it extends by continuity to all
of L?(A\®"), with preservation of both the linearity and the norm relations
in (11). To complete the proof of Theorem 11.21, it remains to show that
I, ®p<p b = 1 nhy, for any orthogonal functions hy, ..., h, € L*(\). This is
an immediate consequence of the following lemma, where for any f € L2(\®m)
and g € L*(\) we are writing

(f @1 9)(t1,- - 1) = /f(tl,...,tn)g(tn)dtw
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Lemma 11.24 (recursion) For any f € L*(\*") and g € L*(\) withn € N,
we have

Lii(f ®g) = I.f -ng — nl,_i(f 1 g). (13)

Proof: By Fubini’s theorem and the Cauchy—Buniakowski inequality,

IF gl =Ifgl, — IF gl <A gl < 1£1 gl

Hence, the two sides of (13) are continuous in probability in both f and g,
and it is enough to prove the formula for f € &, and g € &;. By the linearity
of each side we may next reduce to the case when f = Q;<, 14, and g = 14,
where Ay,..., A, are disjoint and either AN, Ay, = 0 or A = A;. In the
former case we have f ®; g = 0, so (13) is immediate from the definitions.
In the latter case, (13) becomes

L1 (A% x Ay x -+ x A,) = {(nA)? = ANAInA, ---nA,. (14)

Approximating 142 as in Lemma 11.23 by functions f,, € & with support in
AZ% it is clear that the left-hand side equals I,A2nA;---nA,. This reduces
the proof of (14) to the two-dimensional version I,bA? = (nA)> — AA. To
prove the latter, we may divide A for each m into 2™ subsets B,,; of measure
< 27™ and note as in Theorem 11.9 and Lemma 11.23 that

(1A =32, (0Bi)® + 3, 1Bumi 1Binj — AA + LA® in L2, O

The last lemma will be used to derive an explicit representation of the
integrals I, in terms of the Hermite polynomials pg, p1,.... The latter are
defined as orthogonal polynomials of degrees 0,1,... with respect to the
standard Gaussian distribution on R. This condition determines each p,
up to a normalization, which may be chosen for convenience such that the
leading coefficient equals one. The first few polynomials are then

po(x)=1; pi(z) == pala)=2"—1; ps(z) =2 —3u;

Theorem 11.25 (orthogonal representation, Ité) On a separable Hilbert
space H, let n be an isonormal Gaussian process with associated multiple Wie-

ner—Ito integrals Iy, I, . ... Then for any orthonormal elements ey, ..., ey €
H and integers ny,...,ny, > 1 with sum n, we have
Xn
L@ e;™ = I pu;(ney)-
j<m j<m

Using the linearity of I, and writing h = h/||R]|, it is seen that the stated
formula is equivalent to the factorization

L @ h{™ = [[ L,hi™. hi,....hy € H orthogonal, (15)

j<m j<m
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together with the representation of the individual factors
LR = ||h|"pa(nh), h € H\{0}. (16)

Proof: We shall prove (15) by induction on n. Then assume the rela-
tion to hold for all integrals up to order n, fix any orthonormal elements
h,hi,..., hy, € H and integers k,nq,...,n, € N with sum n + 1, and write
J=Q®j<m hj-@"j. By Lemma 11.24 and the induction hypothesis,

Lua(f @ b)) = L(f @ h*ED) nh— (k= 1)l (f @ 2472
= (In-rs1f) {[k—1h®(k71) -nh — (k — 1)Ik_2h®(’“*2)}
= Inkarlf . Ikh®k

Using the induction hypothesis again, we obtain the desired extension to
]n+1.

It remains to prove (16) for an arbitrary element h € H with ||| = 1.
Then conclude from Lemma 11.24 that

Lyr R = [Lh®" b — nl,_1h®"Y, neN.

Since Iyl = 1 and I;h = nh, it is seen by induction that I,,h®" is a polynomial
in nh of degree n and with leading coefficient 1. By the definition of Hermite
polynomials, it remains to show that the integrals I,h®" for different n are
orthogonal, which holds by Lemma 11.22. |

Given an isonormal Gaussian process 1 on some separable Hilbert space
H, we may introduce the space L?(n) = L*(Q,0{n}, P) of n-measurable
random variables £ with E£? < co. The nth polynomial chaos P, is defined
as the closed linear subspace generated by all polynomials of degree <n in
the random variables nh, h € H. For each n € Z; we may further introduce
the nth homogeneous chaos H,,, consisting of all integrals I, f, f € H®".

The relationship between the mentioned spaces is clarified by the following
result. As usual, we are writing @ and & for direct sums and orthogonal
complements, respectively.

Theorem 11.26 (chaos expansion, Wiener) On a separable Hilbert space
H, let n be an isonormal Gaussian process with associated polynomial and
homogeneous chaoses P,, and H,, respectively. Then the H, are orthogonal,
closed, linear subspaces of L*(n), satisfying

Pn=EPHi, n€y; L*(n) = P Ha. (17)
k=0 n=0

Furthermore, every & € L?(n) has a unique a.s. representation & = Y, I, fn
with symmetric elements f, € H®, n > 0.
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In particular, we note that Hy = Py = R and
Hy=P,OPn1, neN.

Proof: The properties in Lemma 11.22 extend to arbitrary integrands,
and so the spaces H, are mutually orthogonal, closed, linear subspaces of
L*(n). From Lemma 11.23 or Theorem 11.25 it is further seen that H,, C P,.
Conversely, let ¢ be an nth-degree polynomial in the variables nh. We may

then choose some orthonormal elements eq,...,e,, € H such that £ is an
nth-degree polynomial in ney, ..., ne,. Since any power (ne;)* is a linear
combination of the variables po(ne;), . .., pr(ne;), Theorem 11.25 shows that

£ is a linear combination of multiple integrals I f with & < n, which means
that § € @<, Hi. This proves the first relation in (17).

To prove the second relation, let ¢ € L*(n) © @, H,. In particular,
EL(nh)" for every h € H and n € Z,. Since ¥, [nh|"/n! = el € L2 the
series e = Y~ (inh)"/n! converges in L?, and we get & Le™" for every h € H.
By the linearity of the integral nh, we hence obtain for any hy,...,h, € H,
n €N,

E [5 exp Zkgni“knhk} =0, uy,...,u, €R.

Applying the uniqueness theorem for characteristic functions to the distribu-
tions of (nhy,...,nh,) under the bounded measures y* = E[¢*; ], we may
conclude that

El&; (nhy,...,nhy,) € Bl =0, B e B([R").

By a monotone class argument, this extends to E[; A] = 0 for arbitrary
A € o{n}, and since & is n-measurable, it follows that £ = E[¢|n] = 0 a.s.
The proof of (17) is then complete.

In particular, any element ¢ € L?(n) has an orthogonal expansion

5 = anojnfn = anolnfna

for some elements f, € H®" with symmetric versions fn, n € Z,. Now as-
sume that also & = Y, I,,g,. Projecting onto H,, and using the linearity of I,,,
we get I,(gn — f) = 0. By the isometry in (11) it follows that ||, — fu | = 0,
and so G, = fy. O

Exercises

1. Let &,...,&, be iid. N(m,0?). Show that the random variables
E=n1YL& and s2 = (n — 1), (& — €)? are independent and that
(n —1)s L Shen(éx — m)? (Hint: Use the symmetry in Proposition 11.2,
and no calculations.)
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2. For a Brownian motion B, put ¢,, = k27", and define &y, = By, — Bj_1
and & = By, , — 3(Bi,_,,, + Bi,_,,), k,n > 1. Show that the &, are
independent Gaussian. Use this fact to construct a Brownian motion from a
sequence of i.i.d. N(0,1) random variables.

3. Let B be a Brownian motion on [0, 1], and define X; = B, —tB;. Show
that X 11 By. Use this fact to express the conditional distribution of B, given
By, in terms of a Brownian bridge.

4. Combine the transformations in Lemma 11.6 with the Brownian scal-
ing ¢! B(ct) to construct a family of transformations preserving the distri-
bution of a Brownian bridge.

5. Show that the Brownian bridge is an inhomogeneous Markov process.
(Hint: Use the transformations in Lemma 11.6 or verify the condition in
Proposition 11.7.)

6. Let B = (B!, B?) be a Brownian motion in R? and consider some
times ¢, as in Theorem 11.9. Show that >,(B} — B} = )(B}  —Bf )
— 0 in L? or a.s., respectively. (Hint: Reduce to the case of the quadratic

variation.)

7. Use Theorem 6.27 to construct an rcll version B of Brownian motion.
Then show as in Theorem 11.9 that B has quadratic variation [B]; = ¢, and
conclude that B is a.s. continuous.

8. For a Brownian motion B, show that inf{t > 0; B, > 0} = 0 a.s. (Hint:
Conclude from Kolmogorov’s 0-1 law that the stated event has probability
0 or 1. Alternatively, use Theorem 11.18.)

9. For a Brownian motion B, define 7, = inf{t > 0; B; = a}. Compute
the density of the distribution of 7, for a # 0, and show that E7, = oo.
(Hint: Use Proposition 11.13.)

10. For a Brownian motion B, show that Z; = exp(cB; — ¢%*t) is a mar-
tingale for every c. Use optional sampling to compute the Laplace transform
of 7, above, and compare with the preceding result.

11. (Paley, Wiener, and Zygmund) Show that Brownian motion B is a.s.
nowhere Lipschitz continuous, and hence nowhere differentiable. (Hint: If B
is Lipschitz at ¢ < 1, there exist some K, > 0 such that |B, — By| < 2hK for
all 7, s € (t — h,t + h) with h < . Apply this to three consecutive n-dyadic
intervals (r, s) around ¢.)

12. Refine the preceding argument to show that B is a.s. nowhere Holder
continuous with exponent ¢ > 1.

13. Show that the local maxima of a Brownian motion are a.s. dense in
R and that the corresponding times are a.s. dense in Ry. (Hint: Use the
preceding result.)

14. Show by a direct argument that limsup, ¢t /2B, = oo a.s. ast — 0
and oo, where B is a Brownian motion. (Hint: Use Kolmogorov’s 0-1 law.)
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15. Show that the law of the iterated logarithm for Brownian motion at
0 remains valid for the Brownian bridge.

16. Show for a Brownian motion B in R? that the process |B]| satisfies
the law of the iterated logarithm at 0 and oo.

17. Let &,&,,... be i.i.d. N(0,1). Show that limsup,(2logn)~/2¢, =1
a.s.

18. For a Brownian motion B, show that M; = ¢! B, is a reverse martin-
gale, and conclude that t7*B; — 0 a.s. and in LP, p > 0, as t — oco. (Hint:
The limit is degenerate by Kolmogorov’s 0—1 law.) Deduce the same result
from Theorem 9.8.

19. For a Brownian bridge B, show that M; = (1 —t)"1B; is a martingale
on [0,1). Check that M is not L'-bounded.

20. Let I, be the n-fold Wiener—It6 integral w.r.t. Brownian motion B
on R;. Show that the process M; = I,(1p4») is a martingale. Express M in
terms of B, and compute the expression for n = 1,2,3. (Hint: Use Theorem
11.25.)

21. Let n,...,n, be independent, isonormal Gaussian processes on a
separable Hilbert space H. Show that there exists a unique continuous linear
mapping ®j, nx from HE" to L?(P) such that @y nr Qp hi = [1; khx a.s. for
all hy,..., h, € H. Also show that @, 7 is an isometry.



Chapter 12

Skorohod Embedding
and Invariance Principles

Embedding of random variables; approximation of random walks;
functional central limit theorem; law of the iterated logarithm;
arcsine laws; approximation of renewal processes; empirical dis-
tribution functions; embedding and approzimation of martingales

In Chapter 4 we used analytic methods to derive criteria for a sum of inde-
pendent random variables to be approximately Gaussian. Though this may
remain the easiest approach to the classical limit theorems, the results are
best understood when viewed as consequences of some general approximation
theorems for random processes. The aim of this chapter is to develop a purely
probabilistic technique, the so-called Skorohod embedding, for deriving such
functional limit theorems.

In the simplest setting, we may consider a random walk (.S,,) based on
some i.i.d. random variables &, with mean 0 and variance 1. In this case there
exist a Brownian motion B and some optional times 7 < 75 < --- such that
Sp, = B, a.s. for every n. For applications it is essential to choose the 7,, such
that the differences A7, are again i.i.d. with mean one. The step process Sy
will then be close to the path of B, and many results for Brownian motion
carry over, at least approximately, to the random walk. In particular, the
procedure yields versions for random walks of the arcsine laws and the law
of the iterated logarithm.

From the statements for random walks, similar results may be deduced
rather easily for various related processes. In particular, we shall derive a
functional central limit theorem and a law of the iterated logarithm for re-
newal processes, and we shall also see how suitably normalized versions of
the empirical distribution functions from an i.i.d. sample can be approxi-
mated by a Brownian bridge. For an extension in another direction, we shall
obtain a version of the Skorohod embedding for general L?-martingales and
show how any suitably time-changed martingale with small jumps can be
approximated by a Brownian motion.

The present exposition depends in many ways on material from previous
chapters. Thus, we shall rely on the basic theory of Brownian motion as set
forth in Chapter 11. We shall also make frequent use of ideas and results from
Chapter 6 on martingales and optional times. Finally, occasional references

220
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will be made to Chapter 3 for empirical distributions, to Chapter 5 for the
transfer theorem, to Chapter 8 for random walks and renewal processes, and
to Chapter 10 for the Poisson process.

More general approximations and functional limit theorems are obtained
by different methods in Chapters 13, 14, and 17. We also note the close
relationship between the present approximation result for martingales with
small jumps and the time-change results for continuous local martingales in
Chapter 16.

To clarify the basic ideas, we begin with a detailed discussion of the
classical Skorohod embedding for random walks. The main result in this
context is the following.

Theorem 12.1 (embedding of random walk, Skorohod) Let&;,&s, ... be i.i.d.
random variables with mean 0, and put S,, = &+ - -+&,. Then there exists a
filtered probability space with a Brownian motion B and some optional times
0=1 <7 <...suchthat (B,,) 4 (S,) and the differences A1, = T, — Th1

are i.i.d. with EAT, = E€ and E(AT,)? < 4B

Here the moment requirements on the differences Ar, are crucial for
applications. Without those conditions the statement would be trivially true,
since we could then choose B1L(,) and define the 7, recursively by 7, =
inf{t > 7,,_1; B; = S,}. In that case E7,, = co unless &; = 0 a.s.

The proof of Theorem 12.1 is based on a sequence of lemmas. First we
exhibit some martingales associated with Brownian motion.

Lemma 12.2 (Brownian martingales) For a Brownian motion B, the pro-
cesses By, B} —t, and B} — 6tB? + 3t* are all martingales.

Proof: Note that EB, = EB? = 0, EB? = t, and EB} = 3t>. Write F
for the filtration induced by B, let 0 < s < ¢, and recall that the process
By = Byy — By is again a Brownian motion independent of F;. Hence,

E[B}|F,) = E[B? 4+ 2B,B,_, + B. | F,| = B+t — s.

Moreover,
E[BYF,] = E[B!+4B3B, ,+6B>B? ,+4B,B} .+ B} |F.]
= B!+6(t—s)B>+3(t—s)%
and so

E[B} — 6tB}|F.] = B! — 65B2 + 3(s* — 1°). 0
By optional sampling, we may derive some useful formulas.

Lemma 12.3 (moment relations) Consider a Brownian motion B and an
optional time T such that B™ is bounded. Then

EB, =0, Er = EB?, Er? <4EB:. (1)
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Proof: By optional stopping and Lemma 12.2, we get for any ¢ > 0
EB.,, =0, E(rAt)=EB?,, (2)
3E(T At)> + EBL,, = 6E(r At)B2,,. (3)

The first two relations in (1) follow from (2) by dominated and monotone
convergence as t — co. In particular, BT < 0o, so we may take limits even
in (3) and conclude by dominated and monotone convergence together with
the Cauchy—Buniakovsky inequality that

3ET? + EB! = 6ETB? < 6(ET?EBYH)Y/2.

Writing r = (E7%/EBY)Y2, we get 3r> 41 < 6r. Thus, 3(r — 1)? < 2, and
finally, » < 1+ (2/3)Y/2 < 2. |

The next result shows how an arbitrary distribution with mean zero can
be expressed as a mixture of centered two-point distributions. For any a <
0 < b, let v, denote the unique probability measure on {a,b} with mean
zero. Clearly, v, = dp when ab = 0; otherwise,

yab:M, a<0<b.
’ b—a
It is easy to verify that v is a probability kernel from R_ x R, to R. For
mappings between two measure spaces, measurability is defined in terms of
the o-fields generated by all evaluation maps np: p — pB, where B is an
arbitrary set in the underlying o-field.

Lemma 12.4 (randomization) For any distribution p on R with mean zero,
there exists a distribution p* on R_ x Ry with p = [ p*(dx dy)v,,. Here we
may choose p* to be a measurable function of p.

Proof (Chung): Let py denote the restrictions of o to Ry \ {0}, define

l(x) = z, and put ¢ = [ldu, = — [ldu_. For any measurable function
f:R— R, with f(0) =0, we get
o [ran = [uap, [ fap-~ [1an [ ran,

= // — z)p_(dz) s (dy) /fdl/zy,
and so we may take

p*(dx dy) = p{0}doo(da dy) + ¢~ (y — x)p—(dz)py (dy).

The measurability of the mapping p — p* is clear by a monotone class ar-

gument if we note that u*(A x B) is a measurable function of p for arbitrary
A, B € B(R). |

The embedding in Theorem 12.1 will now be constructed recursively, be-
ginning with the first random variable &;.
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Lemma 12.5 (embedding of random variable) Fix a probability measure
on R with mean 0, let the pair (o, 3) have distribution p* as in Lemma 12.4,
and let B be an independent Brownian motion. Then 7 = inf{t > 0; B, €
{a, 8}} is an optional time for the filtration Fy = o{«, 8; Bs, s < t}, and
moreover

PoB ' =y, Er = /xzu(dx), Er? < 4/x4y(d:p).

Proof: The process B is clearly an F-Brownian motion, and it is further
seen as in Lemma 6.6 (ii) that the time 7 is F-optional. Using Lemma 12.3
and Fubini’s theorem, we get

PoB;' = EP[B, € |a,0] = Evap = u,
Er = EE[r|a,fp] = E/xQVa,g(da;) = /xz,u(dx),

Er* = EE[*|a,0] < 4E/x4uaﬁ(d:):) = 4/m4u(dx). O

Proof of Theorem 12.1: Let u be the common distribution of the &,.
Introduce a Brownian motion B and some independent i.i.d. pairs (ay, 5,),
n € N, with the distribution p* of Lemma 12.4. Define recursively the
random times 0 =79 < 74 < --- by

T, =inf{t > 1,1; By — B, , € {an, Gn}}, neN

Here each T, is clearly optional for the filtration F; = o{ay, B, k > 1; B'},
t > 0, and B is an F-Brownian motion. By the strong Markov property at
Tn, the process Bt(n) = B, ++— B,, is then a Brownian motion independent of
Gpn = o{m, By,; k < n}. Since moreover (a1, Bus1) LL(B™,G,), we obtain
(ns1, Bus1, B™) LG, and so the pairs (A7,, AB,,) are ii.d. The remaining
assertions now follow by Lemma 12.5. a

The last theorem enables us to approximate the entire random walk by a
Brownian motion. As before, we assume the underlying probability space to
be rich enough to support any randomization variables we may need.

Theorem 12.6 (approzimation of random walk, Skorohod, Strassen) Let
&1,&, ... be i.i.d. random wvariables with mean 0 and variance 1, and write
S, =&+ -+ &,. Then there exists a Brownian motion B with

t’l/zsup8§t|5[s] ~BJ| 50, t— oo, (4)

and S — B
lim 22 o as 5
s v/2tloglogt s (5)

The proof of (5) requires the following estimate.
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Lemma 12.7 (rate of continuity) For a Brownian motion B in R, we have

B,— B
lim limsup sup | d =0 a.s.

rT oo t<usrt /2tloglogt

Proof: Write h(t) = (2tloglogt)'/2. Tt is enough to show that

B, — Byn
lim limsup ~ sup 1B = Bl =0 as. (6)

il n—oo  4n <t<pntl h(?"n’>

Proceeding as in the proof of Theorem 11.18, we get as n — oo for fixed
r>1landc>0

P {sup;ciyn ni| By = Bin| > ch(r™)} < P{B("(r — 1)) > ch(r")}

< n’cz/(“l)(logn)’lm,

—~

where as before a < b means that a < ¢b for some constant ¢ > 0. If
¢ >r —1, it is clear from the Borel-Cantelli lemma that the lim sup in (6)
is a.s. bounded by ¢, and the relation follows as we let r — 1. m|

For the main proof, we need to introduce the modulus of continuity

w(f,t,h) = sup |fr — fsl, t,h>0.

r,s<t,|r—s|<h

Proof of Theorem 12.6: By Theorems 5.10 and 12.1 we may choose a
Brownian motion B and some optional times 0 = 7 < 7y < --- such that
Sp, = B, as. for all n, and the differences 7,, — 7,—1 are i.i.d. with mean 1.
Then 7,/n — 1 a.s. by the law of large numbers, so 71/t — 1 a.s., and (5)
follows by Lemma 12.7.

Next define

& =sup|rg —s|, t=>0,
s<t

and note that the a.s. convergence 7,,/n — 1 implies ¢;/t — 0 a.s. Fix any
t,h,e > 0, and conclude by the scaling property of B that
P {t*l/ZSupsgt\BT[s] — B,| > g}
< P{w(B,t+ th,th) > et'/*} + P{5, > th}
= P{w(B,1+ h,h) >¢e}+ P{t "6, > h}.

Here the right-hand side tends to zero as ¢ — oo and then h — 0, and (4)
follows. =

As an immediate application of the last theorem, we may extend the law
of the iterated logarithm to suitable random walks.
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Corollary 12.8 (law of the iterated logarithm, Hartman and Wintner) Let
&1,&, ... be i..d. random variables with mean 0 and variance 1, and define
Sp=&+--+&,. Then

Sn
lim sup 1 a.s.

n—oo  +/2nloglogn -
Proof: Combine Theorems 11.18 and 12.6. a

To derive a weak convergence result, let D[0, 1] denote the space of all
functions on [0, 1] that are right-continuous with left-hand limits (rcll). For
our present needs it is convenient to equip D[0,1] with the norm |z| =
sup, |x;| and the o-field D generated by all evaluation maps m;: x — ;. The
norm is clearly D-measurable, and so the same thing is true for the open
balls B,, = {y; ||z — y|| < r}, € D[0,1], » > 0. (However, D is strictly
smaller than the Borel o-field induced by the norm.)

Given a process X with paths in D[0,1] and a mapping f: D[0,1] — R,
we shall say that f is a.s. continuous at X if X & D; a.s., where Dy is the
set of functions x € D[0, 1] where f is discontinuous. (The measurability of
Dy is irrelevant here, provided that we interpret the condition in the sense
of inner measure.)

We may now state a functional version of the classical central limit the-
orem.

Theorem 12.9 (functional central limit theorem, Donsker) Let &;,&s, ... be
i.1.d. random variables with mean 0 and variance 1, and define

Xp=n23¢, tel0o,1], neN.
k<nt
Consider a Brownian motion B on [0,1], and let f: D[0,1] — R be measur-
able and a.s. continuous at B. Then f(X™) % f(B).

The result follows immediately from Theorem 12.6 together with the fol-
lowing lemma.

Lemma 12.10 (approzimation and convergence) Let X1, Xs, ... and Y}, Y5,
... be rell processes on [0,1] with Y, £ Y1 =Y for all n and || X, — Y,|| 50,
and let f : D[0,1] — R be measurable and a.s. continuous at Y. Then

FX) S F(Y).

Proof: Put T = QN [0,1]. By Theorem 5.10 there exist some processes
X! on T such that (X, Y) £ (X,,Y,) on T for all n. Then each X/, is a.s.
bounded and has finitely many upcrossings of any nondegenerate interval,
and so the process X,(t) = X! (t+) exists a.s. with paths in D[0,1]. From
the right continuity of paths, it is also clear that (X,,Y) < (X,,Y,) on [0,1]
for every n.
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To obtain the desired convergence, we note that || X, — Y| < || X, =Y, || &
0, and hence f(X,) £ f(X,) 5 f(Y) as in Lemma 3.3. 0

In particular, we may recover the central limit theorem in Proposition 4.9
by taking f(z) = x; in Theorem 12.9. We may also obtain results that go
beyond the classical theory, such as for the choice f(z) = sup, |z;|. As a less
obvious application, we shall see how the arcsine laws of Theorem 11.16 can

be extended to suitable random walks. Recall that a random variable ¢ is

2

said to be arcsine distributed if ¢ < sin® o, where o is U(0, 27).

Theorem 12.11 (arcsine laws, Erdos and Kac, Sparre-Andersen) Let (S,,)
be a random walk based on some distribution p with mean 0 and variance 1,
and define forn € N

- nilzkgnl{Sk > 0}7
= n'min{k >0; S, = max;<,S;},

= n 'max{k < n; SpS, <0}.

Sﬂw Sﬂm S\L

Then 7. s for i =1,2,3, where 7 is arcsine distributed. The results for
1 = 1,2 remain valid for any nondegenerate, symmetric distribution pi.

For the proof, we consider on D0, 1] the functionals

filr) = MMt e€]0,1]; x> 0},
fo(x) = inf{t € [0,1]; 2 V 2, = sup,, 7.},
fs(x) = sup{t € [0,1]; zx; < 0}.

The following result is elementary.

Lemma 12.12 (continuity of functionals) The functionals f; are measur-
able. Furthermore, fi is continuous at x iff \M{t; x; = 0} = 0, fo is continuous
at x iff x; V xy_ has a unique mazimum, and f3 is continuous at x if 0 is not
a local extreme of x; or x— on (0, 1].

Proof of Theorem 12.11: Clearly, 7i = f;(X") for n € N and i = 1,2, 3,
where
X =n""2S,y, tel0,1], neN.
To prove the first assertion, it suffices by Theorems 11.16 and 12.9 to show
that each f; is a.s. continuous at B. Thus, we need to verify that B a.s.
satisfies the conditions in Lemma 12.12. For f; this is obvious, since by
Fubini’s theorem

1
EMt <1, B, =0} = / P{B, = 0}dt = 0.
0

The conditions for fs and f3 follow easily from Lemma 11.15.
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To prove the last assertion, it is enough to consider 7! since 72 has the
same distribution by Corollary 9.20. Then we introduce an independent
Brownian motion B and define

o, =n""y _ HeBp+(1-¢)S >0}, neN, ee(0,1].

By the first assertion, together with Theorem 8.11 and Corollary 9.20, we
have 0 £ g1 % 7. Since P{S, = 0} — 0, e.g. by Theorem 3.17, we further
note that
limsup |0 — 74| < n 7" > 1{S, = 0} £o.
e—0 k<n
EiY 0, and by
Theorem 3.28 we get 7.1 % 7. O

Hence, we may choose some constants €, — 0 with 05" — 7}

Theorem 12.9 is often referred to as an invariance principle, because the
limiting distribution of f(X™) is the same for all i.i.d. sequences (&) with
mean 0 and variance 1. This fact is often useful for applications, since a
direct computation may be possible for some special choice of distribution,
such as for P{{, = +£1} = 1.

The approximation Theorem 12.6 yields a corresponding result for re-
newal processes, regarded here as nondecreasing step processes.

Theorem 12.13 (approzimation of renewal processes) Let N be a renewal
process based on some distribution p with mean 1 and variance o € (0, 00).
Then there exists a Brownian motion B such that

t72sup [N, — s —0B,| 50, t— o0, (