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Preface

Statistical methods are an important part of the education of any engineering student.
This was formally recognized by the Accreditation Board for Engineering and Technology
(ABET) when, several years ago, education in probability and statistics became an ABET
requirement for all undergraduate engineering majors. Specific topics within the broad field
of probability and statistics were not specified, however, so colleges and universities have
considerable latitude regarding the manner in which they meet the requirement. Similarly,
ABET’s Criteria for Accrediting Engineering Programs, which were to apply to evaluations
during 2001-2002, were not specific regarding the probability and statistics skills that
engineering graduates should possess.

Engineering statistics courses are offered by math and statistics departments, as well
as being taught within engineering departments and schools. An example of the latter is
The School of Industrial and Systems Engineering at Georgia Tech, whose list of course
offerings in applied statistics rivals that of many statistics departments.

Unfortunately, many engineering statistics courses have not differed greatly from math-
ematical statistics courses, and this is due in large measure to the manner in which many
engineering statistics textbooks have been written. This textbook makes no pretense of being
a “math stat book.” Instead, my objective has been to motivate an appreciation of statistical
techniques, and to do this as much as possible within the context of engineering, as many
of the datasets that are used in the chapters and chapter exercises are from engineering
sources. I have taught countless engineering statistics courses over a period of two decades
and I have formulated some specific ideas of what I believe should be the content of an
engineering statistics course. The contents of this textbook and the style of writing follow
accordingly.

Statistics books have been moving in a new direction for the past fifteen years, although
books that have beaten a new path have often been overshadowed by the sheer number of
books that are traditional rather than groundbreaking.

The optimum balance between statistical thinking and statistical methodology can cer-
tainly be debated. Hoerl and Snee’s book, Statistical Thinking, which is basically a book
on business statistics, stands at one extreme as a statistics book that emphasizes the “big
picture” and the use of statistical tools in a broad way rather than encumbering the student
with an endless stream of seemingly unrelated methods and formulas.

This book might be viewed as somewhat of an engineering statistics counterpart to the
Hoerl and Snee book, as statistical thinking is emphasized throughout, but there is also a
solid dose of contemporary statistical methodology.

xvii



xviii PREFACE

This book has many novel features, including the connection that is frequently made (but
hardly ever illustrated) between hypothesis tests and confidence intervals. This connection
is illustrated in many places, as I believe that the point cannot be overemphasized.

I have also written the book under the assumption that statistical software will be used
(extensively). A somewhat unusual feature of the book is that computing equations are kept
to a minimum, although some have been put in chapter appendixes for readers interested
in seeing them. MINITAB is the most frequently used statistical software for college and
university courses. Minitab, Inc. has been a major software component of the Six Sigma
movement and has made additions to the MINITAB software to provide the necessary capa-
bilities for Six Sigma work. Such work has much in common with the field of engineering
statistics and with the way that many engineers use statistics. Therefore, MINITAB is heav-
ily relied on in this book for illustrating various statistical analyses, although JMP from
SAS Institute, Inc. is also used.

This is not intended, however, to be a book on how to use MINITAB or JMP, since books
have been written for that purpose. Nevertheless, some MINITAB code is given in certain
chapters and especially at the textbook Website to benefit users who prefer to use MINITAB
in command mode. Various books, including the MINITAB User’s Guide, have explained
how to use MINITAB in menu mode, but not in command mode. The use of menu mode is
of course appropriate for beginners and infrequent users of MINITAB, but command mode
is much faster for people who are familiar with MINITAB and there are many users who
still use command mode. Another advantage of command mode is that when the online
help facility is used to display a command, all of the subcommands are also listed, so the
reader sees all of the options, whereas this view is not available when menu mode is used.
Rather, the user has to navigate through the various screens and mentally paste everything
together in order to see the total capability relative to a particular command.

There are, however, some MINITAB routines for which menu mode is preferable, due in
part to the many subcommands that will generally be needed just to do a standard analysis.
Thus, menu mode does have its uses.

Depending on how fast the material is covered, the book could be used for a two-semester
course as well as for a one-semester course. If used for the latter, the core material would
likely be all or parts of Chapters 1-6, 8, 11, 12, and 17. Some material from Chapters 7 and
14 might also be incorporated, depending on time constraints and instructor tastes.

For the second semester of a two-semester course, Chapters 7,9, 10, 13, 14, and 15 and/or
16 might be covered, perhaps with additional material from Chapters 11 and 12 that could not
be covered in the first semester. The material in Chapter 12 on Analysis of Means deserves
its place in the sun, especially since it was developed for the express purpose of fostering
communication with engineers on the subject of designed experiments. Although Chapter
10 on mechanistic models and Chapter 7 on tolerance intervals and prediction intervals
might be viewed as special topics material, it would be more appropriate to elevate these
chapters to “core material chapters,” as this is material that is very important for engineering
students. At least some of the material in Chapters 15 and 16 might be covered, as time
permits. Chapter 16 is especially important as it can help engineering students and others
realize that nonparametric (distribution-free) methods will often be viable alternatives to
the better-known parametric methods.

There are reasons for the selected ordering of the chapters. Standard material is covered
in the first six chapters and the sequence of those chapters is the logical one. Decisions
had to be made starting with Chapter 7, however. Although instructors might view this
as a special topics chapter as stated, there are many subject matter experts who believe



PREFACE Xix

that tolerance intervals and prediction intervals should be taught in engineering statistics
courses. Having a chapter on tolerance intervals and prediction intervals follow a chapter on
confidence intervals is reasonable because of the relationships between the intervals and the
need for this to be understood. Chapter 9 is an extension of Chapter 8 into multiple linear
regression and it is reasonable to have these chapters followed by Chapter 10 since nonlinear
regression is used in this chapter. In some ways it would be better if the chapter followed
Chapter 14 since reliability models are used, but the need to have it follow Chapters 8 and
9 seems more important. The regression chapters should logically precede the chapter on
design of experiments, Chapter 12, since regression methods should be used in analyzing
data from designed experiments. Processes should ideally be in a state of statistical control
when designed experiments are performed, so the chapter on control chart methods, Chapter
11, should precede Chapter 12. Chapters 13 and 14 contain subject matter that is important
for engineering and Chapters 15 and 16 consider topics that are generally covered in a wide
variety of introductory type statistics texts. It is useful for students to be able to demonstrate
that they have mastered the tools they have learned in any statistics course by knowing
which tool(s) to use in a particular application after all of the material has been presented.
The exercises in Chapter 17 provide students with the opportunity to demonstrate that they
have acquired such skill.

The book might also be used for self-study, aided by the Answers to Selected Exercises,
which is sizable and detailed. A separate Solutions Manual with solutions to all of the
chapter exercises is also available. The data in the exercises, including data in MINITAB
files (i.e., the files with the . MTW extension), can be found at the website for the text: ftp://
ftp.wiley.com/public/ sci_med/engineering_statistics.

I wish to gratefully acknowledge the support and assistance of my editor, Steve Quigley,
associate editor Susanne Steitz, and production editor Rosalyn Farkas, plus various others,
including the very large number of anonymous reviewers who reviewed all or parts of the
manuscript at various stages and made helpful comments.

THOMAS P. RYAN

Acworth, Georgia
May 2007






CHAPTER 1

Methods of Collecting
and Presenting Data

People make decisions every day, with decision-making logically based on some form of
data. A person who accepts a job and moves to a new city needs to know how long it will
take him/her to drive to work. The person could guess the time by knowing the distance
and considering the traffic likely to be encountered along the route that will be traveled, or
the new employee could drive the route at the anticipated regular time of departure for a
few days before the first day of work.

With the second option, an experiment is performed, which if the test run were performed
under normal road and weather conditions, would lead to a better estimate of the typical
driving time than by merely knowing the distance and the route to be traveled.

Similarly, engineers conduct statistically designed experiments to obtain valuable infor-
mation that will enable processes and products to be improved, and much space is devoted
to statistically designed experiments in Chapter 12.

Of course, engineering data are also available without having performed a designed
experiment, but this generally requires a more careful analysis than the analysis of data
from designed experiments. In his provocative paper, ‘“Launching the Space-Shuttle Chal-
lenger—Disciplinary Deficiencies in the Analysis of Engineering Data,” F. F. Lighthall
(1991) contended that “analysis of field data and reasoning were flawed” and that “staff
engineers and engineering managers ... were unable to frame basis questions of covari-
ation among field variables, and thus unable to see the relevance of routinely gathered
field data to the issues they debated before the Challenger launch.” Lighthall then states
“Simple analyses of field data available to both Morton Thiokol and NASA at launch time
and months before the Challenger launch are presented to show that the arguments against
launching at cold temperatures could have been quantified. . ..” The author’s contention is
that there was a “gap in the education of engineers.” (Whether or not the Columbia disaster
will be similarly viewed by at least some authors as being a deficiency in data analysis
remains to be seen.)

Perhaps many would disagree with Lighthall, but the bottom line is that failure to
properly analyze available engineering data or failure to collect necessary data can endanger
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2 METHODS OF COLLECTING AND PRESENTING DATA

lives—on a space shuttle, on a bridge that spans a river, on an elevator in a skyscraper, and
in many other scenarios.

Intelligent analysis of data requires much thought, however, and there are no shortcuts.
This is because analyzing data and solving associated problems in engineering and other
areas is more of an art than a science. Consequently, it would be impractical to attempt
to give a specific step-by-step guide to the use of the statistical methods presented in
succeeding chapters, although general guidelines can still be provided and are provided
in subsequent chapters. It is desirable to try to acquire a broad knowledge of the subject
matter and position oneself to be able to solve problems with powers of reasoning coupled
with subject matter knowledge.

The importance of avoiding the memorization of rules or steps for solving problems
is perhaps best stated by Professor Emeritus Herman Chernoff of the Harvard Statistics
Department in his online algebra text, Algebra 1 for Students Comfortable with Arithmetic
(http://www.stat.harvard.edu/People/Faculty/Herman_Chernoff/
Herman Chernoff Algebra_l.pdf).

Memorizing rules for solving problems is usually a way of avoiding understanding. Without
understanding, great feats of memory are required to handle a limited class of problems, and there
is no ability to handle new types of problems.

My approach to this issue has always been to draw a rectangle on a blackboard and then
make about 15-20 dots within the rectangle. The dots represent specific types of problems;
the rectangle represents the body of knowledge that is needed to solve not only the types of
problems represented by the dots, but also any type of problem that would fall within the
rectangle. This is essentially the same as what Professor Chernoff is saying.

This is an important distinction that undoubtedly applies to any quantitative subject and
should be understood by students and instructors, in general.

Semiconductor manufacturing is one area in which statistics is used extensively. Inter-
national SEMATECH (SEmiconductor MAnufacturing TECHnology), located in Austin,
Texas, is a nonprofit research and development consortium of the following 13 semicon-
ductor manufacturers: Advanced Micro Devices, Conexant, Hewlett-Packard, Hyundai,
Infineon Technologies, IBM, Intel, Lucent Technologies, Motorola, Philips, STMicroelec-
tronics, TSMC, and Texas Instruments. Intel, in particular, uses statistics extensively.

The importance of statistics in these and other companies is exemplified by the
NIST/ISEMATECH e-Handbook of Statistical Methods (Croarkin and Tobias, 2002), a joint
effort of International SEMATECH and NIST (National Institute of Standards and Technol-
ogy), with the assistance of various other professionals. The stated goal of the handbook,
which is the equivalent of approximately 3,000 printed pages, is to provide a Web-based
guide for engineers, scientists, businesses, researchers, and teachers who use statistical
techniques in their work. Because of its sheer size, the handbook is naturally much more
inclusive than this textbook, although there is some overlap of material. Of course, the for-
mer is not intended for use as a textbook and, for example, does not contain any exercises
or problems, although it does contain case studies. It is a very useful resource, however,
especially since it is almost an encyclopedia of statistical methods. It can be accessed at
www.itl.nist.gov/div898/handbook and will henceforth often be referred to as
the e-Handbook of Statistical Methods or simply as the e-Handbook.

There are also numerous other statistics references and data sets that are available on
the Web, including some general purpose Internet statistics textbooks. Much information,
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including many links, can be found at the following websites: http://www.utexas.
edu/cc/stat/world/softwaresites.htmlandhttp://my.execpc.com/
~helberg/statistics.html. The Journal of Statistics Education is a free, online
statistics publication devoted to statistics education. It can be found at http://www.
amstat.org/publications/jse.

Statistical education is a two-way street, however, and much has been written about
how engineers view statistics relative to their work. At one extreme, Brady and Allen
(2002) stated: “There is also abundant evidence—for example, Czitrom (1999)—that most
practicing engineers fail to consistently apply the formal data collection and analysis
techniques that they have learned and in general see their statistical education as largely
irrelevant to their professional life.” (It is worth noting that the first author is an engineering
manager in industry.) The Accreditation Board for Engineering and Technology (ABET)
disagrees with this sentiment and several years ago decreed that all engineering majors must
have training in probability and statistics. Undoubtedly, many engineers would disagree
with Brady and Allen (2002), although historically this has been a common view.

One relevant question concerns the form in which engineers and engineering students
believe that statistical exposition should be presented to them. Lenth (2002), in reviewing a
book on experimental design that was written for engineers and engineering managers and
emphasizes hand computation, touches on two extremes by first stating that “. . . engineers
just will not believe something if they do not know how to calculate it . . .,” and then stating
“After more thought, I realized that engineers are quite comfortable these days—in fact,
far too comfortable—with results from the blackest of black boxes: neural nets, genetic
algorithms, data mining, and the like.”

So have engineers progressed past the point of needing to see how to perform all calcu-
lations that produce statistical results? (Of course, a world of black boxes is undesirable.)
This book was written with the knowledge that users of statistical methods simply do
not perform hand computation anymore to any extent, but many computing formulas are
nevertheless given for interested readers, with some formulas given in chapter appendices.

1.1 OBSERVATIONAL DATA AND DATA FROM DESIGNED EXPERIMENTS

Sports statistics are readily available from many sources and are frequently used in teaching
statistical concepts. Assume that a particular college basketball player has a very poor free
throw shooting percentage, and his performance is charted over a period of several games
to see if there is any trend. This would constitute observational data—we have simply
observed the numbers. Now assume that since the player’s performance is so poor, some
action is taken to improve his performance. This action may consist of extra practice,
visualization, and/or instruction from a professional specialist. If different combinations of
these tasks were employed, this could be in the form of a designed experiment. In general,
if improvement is to occur, there should be experimentation. Otherwise, any improvement
that seems to occur might be only accidental and not be representative of any real change.

Similarly, W. Edwards Deming (1900-1993) coined the terms analytic studies and
enumerative studies and often stated that “statistics is prediction.” He meant that statistical
methods should be used to improve future products, processes, and so on, rather than simply
“enumerating” the current state of affairs as is exemplified, for example, by the typical use
of sports statistics. If a baseball player’s batting average is .274, does that number tell
us anything about what the player should do to improve his performance? Of course not,
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but when players go into a slump they try different things; that is, they experiment. Thus,
experimentation is essential for improvement.

This is not to imply, however, that observational data (i.e., enumerative studies) have
no value. Obviously, if one is to travel/progress to “point B,” it is necessary to know the
starting point, and in the case of the baseball player who is batting .274, to determine if the
starting point is one that has some obvious flaws.

When we use designed experiments, we must have a way of determining if there has
been a “significant” change. For example, let’s say that an industrial engineer wants to
determine if a new manufacturing process is having a significant effect on throughput.
He/she obtains data from the new process and compares this against data that are available
for the old process. So now there are two sets of data and information must be extracted
from those two sets and a decision reached. That is, the engineer must compute statistics
(such as averages) from each set of data that would be used in reaching a decision. This is
an example of inferential statistics, a subject that is covered extensively in Chapters 4—15.

DEFINITION

A statistic is a summary measure computed from a set of data.

One point that cannot be overemphasized (so the reader will see it discussed in later
chapters) is that experimentation should generally not be a one-time effort, but rather should
be repetitive and sequential. Specifically, as is illustrated in Figure 1.1, exprimentation
should in many applications be a never-ending learning process. Mark Price has the highest
free throw percentage in the history of the National Basketball Association (NBA) at .904,
whereas in his four-year career at Georgia Tech his best year was .877 and he does not even
hold the career Georgia Tech field goal percentage record (which is held by Roger Kaiser
at .858). How could his professional percentage be considerably higher than his college
percentage, despite the rigors of NBA seasons that are much longer than college seasons?
Obviously, he had to experiment to determine what worked best for him.

postulate
model

model criticism collect
— better model? data

analyze data-
consider model
assumptions

Figure 1.1 Repetitive nature of experimentation.



1.2 POPULATIONS AND SAMPLES 5
1.2 POPULATIONS AND SAMPLES

Whether data have been obtained as observational data or from a designed experiment, we
have obtained a sample from a population.

DEFINITION

A sample is a subset of observations obtained from a larger set, termed a population.

To the layperson, a population consists of people, but a statistical population can consist
of virtually anything. For example, the collection of desks on a particular college campus
could be defined as a population. Here we have a finite population and one could, for
example, compute the average age of desks on campus. What is the population if we toss
a coin ten times and record the number of heads? Here the population is conceptually
infinite as it would consist of all of the tosses of the coin that could be made. Similarly,
for a manufacturing scenario the population could be all of the items of a particular type
produced by the current manufacturing process—past, present, and future.

If our sample is comprised of observational data, the question arises as to how the sample
should be obtained. In particular, should we require that our sample be random, or will we
be satisfied if our sample is simply representative?

DEFINITION

A random sample of a specified size is one for which every possible sample of that
size has the same chance of being selected from the population.

A simple example will be given to illustrate this concept. Suppose a population is defined
to consist of the numbers 1, 2, 3, 4, 5, and 6, and you wish to obtain a random sample
of size two from this population. How might this be accomplished? What about listing all
of the possible samples of size two and then randomly selecting one? There are 15 such
samples and they are given below.

12 15 24 34 45
13 16 25 35 46
14 23 26 36 56

Following the definition just given, a random sample of size two from this population is
such that each of the possible samples has the same probability of being selected.

There are various ways to obtain a random sample, once a frame, a list of all of the
elements of a population, is available. Obviously, one approach would be to use a software
program that generates random numbers. Another approach would be to use a random
number table such as Table A at the end of the book. That table could be used as follows.
In general, the elements in the population would have to be numbered in some way. In this
example the elements are numbers, and since the numbers are single-digit numbers, only
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one column of Table A need be used. If we arbitrarily select the first column in the first set
of four columns, we could proceed down that column; the first number observed is 1 and
the second is 5. Thus, our sample of size two would consist of those two numbers.

Now how would we proceed if our population is defined to consist of all transistors of
a certain type manufactured in a given day at a particular facility? Could a random sample
be obtained?

In general, to obtain a random sample we do need a frame, which as has been stated is a
list of all of the elements in the population. It would certainly be impractical to “number”
all of the transistors so that a random sample could be taken. Consequently, a convenience
sample is frequently used instead of a random sample. The important point is that the
sample should be representative, and more or less emulate a random sample since common
statistical theory is based on the assumption of random sampling.

For example, we might obtain samples of five units from an assembly line every 30
minutes. With such a sampling scheme, as is typical when control charts (see Chapter 11)
are constructed, every item produced will not have the same probability of being included
in any one of the samples with this systematic sampling approach, as it is called.

Such a sampling approach could produce disastrous results if, unbeknown to the person
performing the sampling, there was some cyclicality in the data. This was clearly shown in
McCoun (1949, 1974) in regard to a tooling problem. If you imagine data that would graph
approximately as a sine curve, and if the sampling coincided with the periodicity of the
curve, the variability of the data could be greatly underestimated and the trend that would
be clearly visible for the entire set of data would be hidden.

As a second example, assume that every twenty-first unit of a particular product is
nonconforming. If samples of size three happen to be selected in such a way (perhaps every
15 minutes) that one nonconforming unit is included in each sample, the logical conclusion
would be that one out of every three units produced is nonconforming, instead of one out
of twenty-one.

Because of these possible deleterious effects, how can we tell whether or not convenience
samples are likely to give us a true picture of a particular population? We cannot, unless we
have some idea as to whether there are any patterns or trends in regard to the units that are
produced, and we may not know this unless we have a time sequence plot of historical data.

Another point to keep in mind is that populations generally change over time, and the
change might be considerable relative to what we are trying to estimate. Hence, a sample
that is representative today may not be representative six months later. For example, the
racial composition of a particular high school could change considerably in a relatively
short period of time, as could the sentiments of voters in a particular district regarding who
they favor for political office.

Consequently, it is highly desirable to acquire a good understanding of the processes
with which you will be working before using any “routine” sampling procedure.

1.3 VARIABLES

When we obtain our sample, we obtain data values on one or more variables. For example,
many (if not most) universities use regression modeling (regression is covered in Chapters
8 and 9) as an aid in predicting what a student’s GPA would be after four years if the student
were admitted, and use that predicted value as an aid in deciding whether or not to admit the
student. The sample of historical data that is used in developing the model would logically
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have the student’s high school grade point average, aptitude test scores, and perhaps several
other variables.

If we obtained a random sample of students, we would expect a list of the aptitude test
scores, for example, to vary at random; that is, the variable would be a random variable. A
mathematically formal definition of a random variable that is usually found in introductory
statistics books will be avoided here in favor of a simpler definition. There are two general
types of random variables and it is important to be able to distinguish between them.

DEFINITIONS

A random variable is a statistic or an individual observation that varies in a random
manner. A discrete random variable is a random variable that can assume only a
finite or countably infinite number of possible values (usually integers), whereas
a continuous random variable is one that can theoretically assume any value in a
specified interval (i.e., continuum), although measuring instruments limit the number
of decimal places in measurements.

The following simple example should make clear the idea of a random variable. Assume
that an experiment is defined to consist of tossing a single coin twice and recording the
number of heads observed. The experiment is to be performed 16 times. The random variable
is thus the number of heads, and it is customary to have a random variable represented by
an alphabetical (capital) letter. Thus, we could define

X = the number of heads observed in each experiment
Assume that the 16 experiments produce the following values of X:
0211200T121T1HW0T1T1?2@20

There is no apparent pattern in the sequence of numbers so based on this sequence we
would be inclined to state that X (apparently) varies in a random manner and is thus a
random variable.

Since this is an introductory statistics text, the emphasis is on univariate data; that is,
data on a single random variable. It should be kept in mind, however, that the world is
essentially multivariate, so any student who wants to become knowledgeable in statistics
must master both univariate and multivariate methods. In statistics, “multivariate” refers to
more than one response or dependent variable, not just more than one variable of interest;
researchers in other fields often use the term differently, in reference to the independent
variables. The graphs in Section 1.4.4 are for two variables.

1.4 METHODS OF DISPLAYING SMALL DATA SETS

We can enumerate and summarize data in various ways. One very important way is to graph
data, and to do this in as many ways as is practical. Much care must be exercised in the
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use of graphical procedures, however; otherwise, the impressions that are conveyed could
be very misleading. It is also important to address at the outset what one wants a graph to
show as well as the intended audience for the graph.

We consider some important graphical techniques in the next several sections. There
are methods that are appropriate for displaying essential information in large data sets and
there are methods for displaying small data sets. We will consider the latter first.

B EXAMPLE 1.1

The data in Table 1.1, compiled by GaSearch Pricing Data for November 2001, is a sample
of natural gas purchasers in the state of Texas with over 1,500,000 Mcf throughput.

Data
TABLE 1.1 Gas Pricing Data for November 2001
Purchaser Name Average Cost per Mcf
Amoco Production Corp. $2.78
Conoco Inc. 2.76
Duke Energy Trading and Marketing 2.73
Exxon Corporation 2.71
Houston Pipe Line Co. 3.07
Mitchell Gas Services LP 2.95
Phillips Petroleum Co. 2.65
Average Top State of Texas Production 2.79
Discussion

With data sets as small as this one, we really don’t need to rely on summary measures such
as the average because we can clearly see how the numbers vary; we can quickly see the
largest and smallest values, and we could virtually guess the average just by looking at
the numbers. Thus, there is no need to “summarize” the data, although a graphical display
or two could help identify any outliers (i.e., extreme observations) and one such graphical
display of these data is given in Section 1.4.6.

There is, however, a need to recognize that sampling variability exists whenever one
takes a sample from a population, as was done in this case. That is, if a different sample of
gas purchasers had been selected, the largest and smallest values would have been different,
and so would any other computed statistic. Sampling variability is introduced in Chapter 4
and plays an important role in the material presented in subsequent chapters. |

1.4.1 Stem-and-Leaf Display

Few data sets are as small as this one, however, and for data sets that are roughly two to
three times this size, we need ways of summariing the data, as well as displaying the data.
Many college students have had the experience of seeing the final exam scores for their
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class posted on their professor’s office door in a format such as the following.

5/ 0113568
6] 012446778

7] 001223345667899
8| 12233455679

9] 014567

A student who had not been to class for awhile might suffer the double indignation of (1)
not being sure how to read the display, and (2) after being told how to do so, discovering
that he/she made the lowest grade in the class, which is 50. This display is an example of
a stem-and-leaf display, which is a popular and established way of displaying a small-to-
moderate-sized data set. There are many different ways to create a stem-and-leaf display,
depending on the type of data that are to be displayed and what the user wishes to show.
In this example, the “stem” is the tens digit and the “leaf” is the units digit. We may thus
observe that, for example, two students in the class made a 70 on the final exam.

Velleman and Hoaglin (1981, p. 14) discussed an example in which the pulse rates of
39 Peruvian Indians were displayed in a histogram and in a stem-and-leaf display. The
latter revealed that all of the values except one were divisible by four, thus leading to the
conjecture that 38 of the values were obtained by taking 15-second readings and multiplying
the results by 4, with the other value obtained by doubling a 30-second reading resulting
(perhaps) from missing the 15-second mark. Thus, the stem-and-leaf display provided some
insight into how the data were obtained, whereas this information was not provided by the
histogram.

Variations of the basic method of constructing stem-and-leaf displays are given in
Velleman and Hoaglin (1981).

Although stem-and-leaf displays were originally intended to be a pencil-and-paper tool
in an arsenal of exploratory data analysis (EDA) techniques (Tukey, 1977), if we had, say,
80 observations, we would certainly not want to have to manually sort the numbers into
ascending or descending order and then construct the display, or alternatively to construct
the display without first sorting the numbers. Computer use in engineering statistics courses
has been common for the last few decades and, as was emphasized in the Preface, will be
emphasized in this book.

1.4.2 Time Sequence Plot and Control Chart

A time sequence plot is a plot of data against time. Ideally, the time values, which are
plotted on the horizontal axis, should be equally spaced; otherwise the plot is harder to
interpret.

A time sequence plot will often reveal peculiarities in a data set. It is an important
graphical tool that should routinely be used whenever data have been collected over time,
and the time order has been preserved. A convincing argument of the importance of this
type of plot can be found in Ott (1975, pp. 34-36). Specifically, a student completed a
course assignment by recording the amount of time for sand to run through a 3-minute egg
timer. A time sequence plot of the times exhibited a perfect sawtooth pattern, with hardly
any point being close to the median time. This should suggest that the two halves of the
egg timer differed noticeably, a difference that might not be detected when the egg timer
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was used in the intended manner. Since the two halves must differ more than slightly, this
means that at least one of the two halves is not truly a 3-minute egg timer—a discovery
that could be of interest when the timer is applied to eggs instead of sand!

In engineering applications, a time sequence plot is often an invaluable aid in detecting
a change in a process. This is illustrated in the following example. (Note: Datafiles for
all examples and exercises in this text can be found at the text website, ftp://ftp.
wiley.com/public/sci tech.med/engineering statistics.)

B EXAMPLE 1.2

Data

The following are coded data, to save space. Letting W represent one of the coded values, the
original data were given by ¥ = 2 4+ W/10000. The data are transmittance figures collected
during the 1970s from an automatic data acquisition system for a filter transmittance
experiment. The coded values are, in time order: 18, 17, 18, 19, 18, 17, 15, 14, 15, 15, 17,
18, 18, 19, 19, 21, 20, 16, 14, 13, 13, 15, 15, 16, 15, 14, 13, 14, 15, 14, 15, 16, 15, 16, 19,
20, 20, 21, 21, 22, 23, 24, 25, 27, 26, 26, 27, 26, 25, and 24.

Time Sequence Plot

Figure 1.2 is the time sequence plot of the coded data, which was produced using MINITAB,
as were the other graphs in this chapter.

Time Series Plot of Coded Values

28

26

24 -

22

20 +

18

Coded Values

16

14

12

Time

Figure 1.2 Time sequence plot of transmittance data.

Graph Interpretation

The graph shows that there was an upward trend in the coded transmittance values that
becomes apparent in the vicinity of observation number 45. |
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Figure 1.3 Control chart of transmittance data.

In this instance, the change is clear because of the large shift. In other cases, a change
may be much smaller and thus not be so obvious. Consequently, it would be desirable
to use some decision-making criterion. For example, assume that the data represented in
Figure 1.2 were obtained in real time and it was decided to use the first 40 observations to
construct a baseline. That is, the average of those observations was computed and decision
lines greater than and less than the average were constructed such that any point outside
one of the lines would signal a probable shift in the average.

When decision lines are displayed on a time sequence chart and the chart is used for
“control” (such as controlling a manufacturing process), the chart is referred to as a control
chart. (The computation of the decision lines, referred to as control limits, is explained in
Chapter 11.)

Figure 1.3 is the control chart for these data, with the control limits computed using the
first 40 observations.

Here the shift is made even more apparent by the points that fall above the upper control
limit (UCL). As previously stated, for this example control limits are not needed as an aid
to detect the shift, but in manufacturing and in other applications shifts can be small and in
such instances control charts can be an invaluable aid in detecting shifts.

1.4.3 Lag Plot

Either a time sequence plot or a control chart of individual observations can be used to detect
nonrandomness in data. A plot that can be used to identify correlation between consecutive
observations is a lag plot. This is a plot in which observations are lagged by one or more
observations. The original observations are then plotted against the lagged observations.
For example, if we lag the observations by one, we are plotting the second observation
against the first, the third against the second, and so on. If consecutive observations are
correlated, the resulting plot will show a strong linear relationship. Such a relationship is
evident in Figure 1.4, which is a plot of observations lagged by one with the correlation
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Figure 1.4 Lag plot of autocorrelated observations.

between consecutive observations being 0.8. (This is called autocorrelation and is discussed
in more detail in Section 8.2.6.1.) That is, the ith observation is plotted on the vertical axis
and the (i — 1)st observation is plotted on the horizontal axis. [An autocorrelation of 0.8 is a
high positive correlation, meaning that the relationship between consecutive observations is
not far from being a functional relationship. A high negative correlation (say, —0.8) would
result if consecutive observations were far apart, fluctuating up and down.]

If consecutive observations were uncorrelated, the plot would exhibit a random config-
uration. Observations might be correlated at something other than one unit apart, however,
so a plot such as Figure 1.4 is not sufficient for detecting autocorrelation. A graphical
method for detecting such relationships is given in Section 8.2.6.1. Figure 1.4 is also a type
of scatter plot, which is covered in the next section.

1.4.4 Scatter Plot

Both a time sequence plot and a control chart are forms of a scatter plot. The latter is
a frequently used graph that is a two-dimensional plot with a vertical axis label and a
horizontal axis label. With a time sequence plot, time is always the horizontal axis label
and the measurement of interest is the vertical axis label. Of course, these are the same
labels for a control chart. In general, the labels on a scatter plot can be anything.

A rule of thumb that should be followed regarding graphical displays is that the amount
of information per square inch of the display should be maximized. By “maximize” we
don’t mean putting everything imaginable in the display, as there would be essentially no
information if the display were so cluttered that it was practically unreadable. U.S. News
and World Report has an annual issue in which they provide statistics on colleges and
universities, including the schools that it rates as its top 50 national universities. We would
expect to see a configuration of points with a negative slope if we plot the 75th percentile
SAT score for each school on the vertical axis against the school’s acceptance rate on the



1.4 METHODS OF DISPLAYING SMALL DATA SETS 13

1600 { 1 2
o2
o
° 7
8 9
° o138 “w 10 12
"E 1500 . o °® 1f11 i .16
8 2.1 2.0 9° A 2.2
& 28 2.3 2530 26
s ®» 33 229 o 31e
5 ] 34 [ X ) ] 35
~ 1400 L4 ° 36 L
ke 43Z 39 o 3.8
[ ]
@ :?1 42
[ ]
43 o
475 %4 46
1300 oo 48 o © 49
d °
T T T T T T T T
10 20 30 40 50 60 70 80

Acceptance Rate

Figure 1.5 Data on top 50 national universities for 2002.

horizontal axis. We know that should happen, so constructing a scatter plot that has such
a configuration of points does not tell us anything we don’t already know. Labeling the
plotted points would provide additional information, especially for schools that lie apart
from the other schools. Of course, there would not be sufficient space on the graph to list
the name of each school, but a number would require much less space, although that isn’t
a perfect solution.

Figure 1.5 shows the graph, with the numbers denoting the rank of the school in terms
of 75th percentile SAT score for the 49 schools in the top 50 (actually 52 schools be-
cause 5 schools tied for 48th place), for which the SAT test is the primary aptitude
test. These data are from the 2002 rankings. The graph was produced with MINITAB
code that is listed at the textbook website: ftp://ftp.wiley.com/public/
sci_tech.med/engineering statistics.

The numbers denote the ranks of the schools in terms of the 75th percentile SAT score.
Although some of the numbers are difficult to read, it is not hard to determine what the
number is, and of course the datafile could be used to resolve any ambiguities. (The schools
are not listed either here or in the file, 75-25PERCENTILES2002 .MTW, at the Wiley
website so as to avoid discussions about individual universities, although a few schools are
mentioned later in regard to unusual data points. U.S. News and World Report no longer
provides complete online data on schools free of charge. Some information, including the
ranking of the top 50 national universities, is still available without charge, however, and the
interested reader can obtain the data for the current year online at the magazine website.)

We would expect to see the smallest numbers in the upper-left portion of the graph and
the largest numbers in the lower-right portion. We do see that, but we see one point (#22)
that is noticeably apart from the other points, although the vertical spread of the points
is obviously much greater at high acceptance rates than at low acceptance rates—as we
would expect. If we extend a horizontal line from point #22, we see that the line will go
through points 19-21, and that these points are well removed from point #22. That is, all
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four points have the same 75th percentile SAT score but the acceptance rate for the school
corresponding to point #22 differs greatly from the acceptance rates for schools 19-21. A
scatter plot can be used to identify outliers and outliers are sometimes bad data points. One
would have to ask if this point is in fact a bad data point or simply part of the pattern of
increased spread at high acceptance rates.

There are various other ways to construct scatter plots; good references on the construc-
tion of graphical displays that maximize the informational content, as well as graphical
displays in general, are Tufte (1990, 1997, 2001). A compact way to show multiple scatter
plots is through the use of a scatterplot matrix, which is illustrated in Section 9.4.1.

1.4.5 Digidot Plot

The usefulness of a stem-and-leaf display should be apparent, but such a display does
not show the time order of the data. A runner who is preparing for a race would not find
a stem-and-leaf display that showed his times for the past three months to be nearly as
meaningful as a display that showed when he registered each of the times. Obviously he
would want to see progress leading up to the race, so having the running times in sequence
would be of paramount importance. Similarly, a major league manager would have little
use for a stem-and-leaf display of a player’s weekly batting average over the course of the
season without knowing how performance varied over the days and weeks of the season.
For these and many other scenarios, it is very important that the time sequence of
events be indicated, and in fact a time sequence plot will be of much greater value than a
stem-and-leaf display or any other type of display that does not show the time sequence.
The two types of displays can be used together, however, and Hunter (1988) developed
a plot, which he termed a digidot plot, that is a combination of a time sequence plot and a
stem-and-leaf display. Unfortunately, the plot is not widely available in statistical software.

1.4.6 Dotplot

Another way to display one-dimensional data is through the use of dot diagrams. A dotplot
is simply a display in which a dot is used to represent each point. Figure 1.6 is a dotplot of
the data that were given in Example 1.1.

Dotplot of Avg$/mcf
|I [ ] T [ ] [ ] T 20 T T T [ ] T T [ ] |
2.64 2.70 2.76 2.82 2.88 2.94 3.00 3.06
Avg$/mcf

Figure 1.6 Dotplot of Example 1.1 data.
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As stated in Example 1.1, when there is only a small number of observations (8 in this
case), we can “see” the data reasonably well without any visual aids. However, Figure 1.6
shows that the two largest numbers are clearly separated from the rest of the data (and from
themselves)—facts that may or may not have been obvious just by looking at the list of
numbers.

Multiple dotplots are also useful, as the following example illustrates.

B EXAMPLE 1.3

Study Description

Mitchell, Hegeman, and Liu (1997) described a gauge reproducibility and repeatability
study, using data that were collected by a process engineer at Texas Instruments.

Purpose

Operator effect is one of the focal points in such studies (see Chapter 13) and this study
involved three operators. The pull strength in grams of a single wire was measured, using
10 wires for each operator. A multiple dotplot can provide a picture of how the operators
compared and the multiple dotplot is shown in Figure 1.7.

Dotplot for Strength
Operator
[ [ o
1 [ ] (] (] S & 6 [ ]
[ ] [ ] : (I ] [ ] [ ] [ ] [ ]
T T — T ? T = s T = 7
9.2 9.6 10.0 10.4 10.8 11.2 11.6
Strength

Figure 1.7 Dotplot for pull strength.

Graphical Analysis and Conclusion

The plot in Figure 1.7 shows that the operators are quite comparable. |

A dotplot does have some limitations, however. In particular, we would not want to
use it if we have a large number of observations [Box, Hunter, and Hunter ((1978), p. 25)
suggest at most 20 observations], as the dots would tend to run together and give rather poor
resolution. We also cannot accurately determine the individual values from the diagram,
which simply shows us the relationship between the numbers for a small set of numbers.



16 METHODS OF COLLECTING AND PRESENTING DATA
1.5 METHODS OF DISPLAYING LARGE DATA SETS

The graphical techniques described in Section 1.4 break down when there are much more
than 100 data values. Specifically, the dotplot will become blurred, the stem-and-leaf display
will have too many leaves, and there will be resolution problems with the digidot plot since a
large number of leaves will compress the plot horizontally and thus compress the horizontal
axis of the time sequence plot portion of the display.

So other methods are needed and are presented in the following sections.

1.5.1 Histogram

A histogram is probably the most commonly used way of displaying data. Simply stated,
a histogram is a bar chart with the height of the “bars” representing the frequency of each
class after the data have been grouped into classes. (For example, the classes might be
10-19, 20-29, 30-39, and 4049, and the classes along with the accompanying frequencies
would constitute the frequency distribution.)

Selection of the classes is nontrivial and should be given some thought, as one objective
in using a histogram is to try to gain insight into the shape of the distribution for the
population of data from which the sample has been obtained. As shown by Scott (1979),
however, we need to know the shape of that distribution in order to construct the classes in
such a way that the histogram will be likely to reflect the distribution shape. (This should
be intuitively apparent.) Of course, this presents a Catch-22 problem because if we knew
the shape of the distribution, we wouldn’t be using a histogram to try to gain insight into
that shape!

If no such a priori information is available, this is a problem about which we should not
be overly concerned, but we should nevertheless recognize that the shape of the histogram
might be a misleading indicator of the shape of the distribution of the population values.
We should also recognize that a histogram is “random” if it is constructed from data in a
random sample. That is, if we take another sample we will have a second histogram with a
shape that is at least slightly different from the first histogram, even if the same number of
classes is used for each histogram.

If at all possible, we would like to use “natural” class intervals. For example, if data in
the sample ranged from 10 to 99, we might use 10-19, 20-29, 30-39, ..., 90-99 as the
class intervals, provided that the sample size was sufficiently large. Specifically, this would
make sense if the sample size was approximately 100 or more, but would be illogical if the
sample size were only 50. Why? If we have too many classes, there may be some empty
classes. Sizable gaps between numbers would almost certainly not exist in a population, so
we would not want a histogram constructed from a sample to exhibit gaps.

A reasonable approach would be to use a rule of thumb for determining the number of
classes, and then perhaps alter that number slightly, if necessary, to permit natural intervals.
One rule that works reasonably well is called the “power-of-2 rule”: for n observations we
would use a classes with 24~ < n < 24, Thus, for n = 100 we have 2° < 100 < 27, so
that seven classes would be used. Another rule of thumb that has been advanced is to let
the number of classes equal /7, but this will produce a large number of classes when n
is well in excess of 100. At the other extreme, Terrell and Scott (1985) suggested that the
number of classes be (212)'3. The number of classes that will result from the use of this rule
will generally be one less than the number that results from using the power-of-2 rule for
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Figure 1.8 Histogram of Example 1.2 data with six classes.

moderate values of n. Each of these two rules seems preferable to having the number of
classes equal /7.

Since we will not likely be constructing a histogram by hand, the natural question to
ask is: Why not just let the software that we are using determine the number of classes?
Unfortunately, this is not necessarily a good idea. We will use the data given in Example
1.2 to illustrate why this is the case. (Admittedly, this is not a large data set, but it is useful
later for making an important point.)

Use of the power-of-2 rule leads to the selection of six classes, and the histogram
with this number of classes is given in Figure 1.8, with the class midpoints shown on the
horizontal axis and the class frequencies on the vertical axis. It is also possible to display
the relative frequency (percentage) on the vertical axis. This will be desirable in many
applications, but if such an approach were used, it would be desirable to show the total
number of observations somewhere on or near the display. The reason for this is if the
histogram appears to have too many classes (as evidenced by at least one class with a zero
frequency) or too few classes, the reader will want to compare the number of observations
with the number of classes and see if the latter conforms with one of the suggested rules of
thumb.

Note that the rectangles are “‘joined,” even though there is a gap between the end of
intervals such as 10—19, 20-29, and so on. (For example, 19.5 is not accounted for with these
intervals.) Technically, histograms are generally constructed using the class boundaries,
which are defined as the average of adjacent class limits (e.g., 29.5 is the average of 29
and 30). Class boundaries are not possible values, so there is no question about what to do
if a value is on a boundary since that cannot happen. More specifically, if the data are in
integers, the boundaries will be in tenths; if the data are in tenths, the boundaries will be in
hundredths, and so on.

The histogram shows the data to be “skewed.” That is, the class with the largest frequency
is not in the center. Instead, the data are “right skewed,” meaning that the data “tail off” on
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Figure 1.9 Histogram of Example 1.2 data without the number of classes fixed.

the right. (If the tail were on the left, the data would be left skewed. The latter occurs much
less frequently than does right-skewed data and is rather uncommon.)

Compare the histogram in Figure 1.8 with the histogram in Figure 1.9, with the latter
constructed using MINITAB, but without specifying the number of classes.

This histogram has a jagged appearance because there are too many classes. The his-
togram also has three peaks, but the population from which the data were obtained almost
certainly does not have a distribution with three peaks. Therefore, the histogram is mis-
leading in regard to the shape of the population distribution.

In general, histograms can also be very misleading regarding the symmetry of a dis-
tribution, especially for only a moderate number of observations. Minitab, Inc. gives nine
examples of histograms of data from a particular symmetric distribution (a normal dis-
tribution, covered in Section 3.4.3) in the online MINITAB User’s Guide, with eight of
the histograms exhibiting asymmetry. (A symmetric distribution is such that the distribu-
tion of values above the mean is a mirror image of the distribution of values below the
mean.)

Histograms can also be constructed with unequal class intervals and with open-ended
classes (e.g., “less than 10”). Indeed, classes with unequal width will often be necessary.
Consider two scenarios: (1) we want to use a histogram of the starting salaries of civil
engineering graduates in 2006, and (2) we want to use a histogram of the salaries of
employees at General Motors in 2006.

For the second scenario, what is going to happen if we try to use equal class intervals? If
we take the number of employees and divide by the number of classes we decide on so as
to give us the approximate class width, we will have some empty classes and other classes
with one or two observations because of the high salaries of the top executives. In general,
empty classes mean that too many classes were used, as indicated previously. Furthermore,
in this case the classes will also be too wide in the center of the histogram because the
highest salary is used in determining the class width.
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Figure 1.10 Histogram with unequal class widths and unequal areas.

Clearly, this is not the way that the histogram should be constructed. We know that there
are some very extreme salaries at GM, just as there are at any large company, so we don’t
need to have a histogram prove this to us. Instead, we should be interested in the distribution
of the rest of the salaries, and we don’t want the extreme salaries to alter our view of those
salaries. Therefore, a class such as “over $200,000” would be desirable and perhaps also
classes of unequal widths.

When classes of unequal widths are used, a decision must be made as to how the heights
of the rectangles will be determined. That is, should the heights represent frequencies?
Consider the histogram in Figure 1.10. The class frequencies are 9, 10, and 11, respectively,
but the middle class appears to be much larger than the other two classes because the area
of the rectangle is almost twice the area of each of the other two rectangles. Compare the
histogram in Figure 1.10 with the one in Figure 1.11.

This histogram is constructed to make the areas of the rectangles have their proper rela-
tionships by taking into consideration the widths of the classes relative to the frequencies.
More specifically, this is a “density histogram” such that the total area is 1.

There is nothing wrong with the first of the two histograms as long as the user understands
what it represents, but certainly the second histogram will generally be preferable. See
Nelson (1988) for additional comments on constructing histograms with unequal class
widths.

The construction of a histogram in the popular statistical software JMP for something
other than the default number of classes requires manually altering the number by sliding
a cursor, as the number of classes cannot be specified directly.

Histograms can also be constructed using frequencies of individual values. Velleman
and Hoaglin (1981) provided a histogram of the chest measurements of 5738 Scottish
militiamen; the measurements were recorded to the nearest inch and ranged from 33 to 48
inches. With only 16 different values (33—48) there is certainly no need to group them into
classes, and, in fact, the “power-of-2” rule would specify 13 classes anyway. We would
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Figure 1.11 Histogram with unequal class widths but equal areas.

expect such anthropometric measurements to be roughly normally distributed, and the
histogram did have that general shape.

Histograms have many engineering uses. For example, when used in process capability
studies, specification limits (i.e., tolerance limits) can be displayed on a histogram to show
the portion of the data that exceeds the specifications. Ishikawa (1976) displayed these as
dotted vertical lines.

1.5.2 Boxplot

Another way to provide a picture of a set of data is through use of a boxplot. The plot derives
its name from the fact that the middle half of a set of data is depicted by the region between
the top and bottom of a box (rectangle). Thus, the top of the box (if the software displays the
box vertically, some software products display the box horizontally) is the 75th percentile
(equivalently the third quartile, Q3) and the bottom of the box is the 25th percentile (the first
quartile, Q). A horizontal line is drawn at the 50th percentile (equivalently the median and
second quartile, 05). Vertical lines are then drawn from the box to the largest and smallest
observations. These lines might be viewed as “whiskers”; hence, the other name for the
plot is the box-and-whiskers plot. There are several ways to construct a boxplot and the
method just described has been termed a skeletal boxplot by Velleman and Hoaglin (1981,
p. 66).

We will use the data given in Example 1.2, as this will illustrate an important point.
Figure 1.6 showed the data to be skewed, yet the boxplot of the data given in Figure 1.12
suggests a symmetric distribution.

How do we rectify the conflicting signals from the histogram and boxplot? The data are
indeed skewed, as the reader is asked to show in Exercise 1.4 by constructing a dotplot.
What is not apparent from the boxplot is the number of observations that are above the box
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Figure 1.12 Boxplot of the Example 1.2 data.

(i.e., greater than Q3). There are 11 such observations, whereas there are only 8 observations
below Q.

So how do we interpret the boxplot? Does Figure 1.12 imply that the middle half of the
data are symmetric? Actually, the middle half is highly asymmetric as Q| = 14, 0, = 15,
and Q3 = 19, whereas for the full data set the numbers are 15, 18, and 21.25, respectively.
Thus, a boxplot constructed using the middle half (observations 13—-37) would suggest that
the middle half is highly skewed since the midline would be much closer to Q; than to
Q3. The fact that there are more observations above Q3 than below Q; for the full data set
tends to bring the midline up (relative to the boxplot for half the data) and create the false
impression that the full data set is symmetric.

Thus, a boxplot cannot be relied on to suggest symmetry or asymmetry because we don’t
know how many points are outside the box. The data might be symmetric except for one
large observation, or there might be several more observations above O3 than below Q.

There are other variations of boxplots that are more sophisticated and provide more
information than skeletal boxplots. Two uses of these other types of boxplots deserve
special mention: (1) the determination of outliers (i.e., extreme observations) and (2) the
comparison of groups. The latter will be illustrated in the chapter on design of experiments
(Chapter 12); the former can be illustrated as follows.

Assume that the largest observation in the Example 1.2 data had been 47 instead of
27. As such, the point would be almost twice the next largest value and would thus be
suspect. Clearly, a decision criterion is needed for classifying an observation as an extreme
observation or not. The difference O3 — O, termed the interquartile range in Chapter 2,
is a measure of the variability in the data. If a large observation is far above Q3 relative to
the variation, then it should be classified as an extreme observation. Therefore, the decision
rule is of the form Q3 + k(Q3 — Q1), with the value of & to be selected. Two values of k are
typically used: 1.5 and 3.0. An observation is considered to be mildly outlying if it exceeds
03 4+ 1.5(Q3 — Qy) oris less than Q; — 1.5(Q3 — Qy), and is considered to be an extreme
outlying observation if it is outside the computed values when 1.5 is replaced by 3.0.

For the present example, O3 — O = 21.25 — 15 = 6.25, and 47 is greater than O3 +
k(Q3 — Q1) = 21.25 + 6.25k regardless of whether & is 1.5 or 3.0. Thus, 47 is an extreme
outlying observation.
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When outlier detection methods are presented, there is generally the tacit assumption
that the distribution of possible values is symmetric and at least approximately bell-shaped.
Often, however, the distribution will be strongly skewed. When this is the case, extreme ob-
servations will not be uncommon and cannot be considered outliers. Statistical distributions
are covered in Chapter 3.

1.6 OUTLIERS

An extreme (i.e., outlying) observation is generally called an outlier. It is not easy to define
an outlier in mathematical terms, even for one-dimensional data, and it is very difficult
to define outliers for multidimensional data. As stated by Rousseeuw and Van Zomeren
(1990), “Outliers are an empirical reality, but their exact definition is as elusive as the exact
definition of a cluster (or, for that matter, an exact definition of data analysis itself).” We
want to detect outliers, but it is not possible to provide a general rule for how outliers
should be handled once they have been detected. One thing is certain: we do not want to
automatically discard them. A good example of the harm this has caused in regard to the
South Pole ozone depletion problem is described in Section 1.3.3.14.8 of the e-Handbook
(Croarkin and Tobias, 2002), as it is stated therein that ozone depletion over the South Pole
would have been detected years earlier if outliers had not been discarded automatically by
the data collection and recording system.

1.7 OTHER METHODS

Of the methods presented so far in this chapter, which one probably is used the most
frequently in a publication like USA Today? The answer is undoubtedly a histogram (or bar
chart), but there is another method, not yet discussed in this chapter, that is probably used
more often than a histogram. A pie chart can be used for either a small or large amount
of data since what is displayed are percentages, such as the percentage of all crimes by
category, with “other” being one of the categories. When used with “other” as one of the
categories, a pie chart is thus similar to a Pareto chart. The latter can be viewed as an
“ordered histogram,” with the labels for the bars being qualitative rather than quantitative.
For example, the datafile Exh_gc . MTW comes with MINITAB and contains data on defects
and causes of them, in addition to other information. Figure 1.13 is a graph that shows the
major causes of defects for that dataset.

Note the line in the top part of the display, which shows the cumulative frequencies.
This of course is not used with a histogram and is often not used with a Pareto chart. A
graph of cumulative frequencies has been called an ogive.

Another chart that has considerable potential for engineering applications is a muli-vari
chart. This is a chart that depicts the variability in whatever is being charted relative to
certain selected factors and is thus a way of identifying the factors that affect variation.

A multi-vari chart can be used to considerable advantage in the analysis of data from
designed experiments as it can show the factors that are contributing the most to the
variability of the response variable. The chart is discussed in certain books on quality
improvement (e.g., see Ryan, 2000, Section 11.7).
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Pareto Chart for Defects
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Figure 1.13 Pareto chart of defects.

1.8 EXTREMELY LARGE DATA SETS: DATA MINING

Very large datasets can be compiled with our present data collection capabilities. Specifi-
cally, datasets with over one million data values are routinely maintained. How can such
huge datasets be portrayed graphically, if at all? Many users of graphical techniques make
the mistake of using common graphical methods for large data sets. What would a time
sequence plot look like if applied to 500 observations when there is considerable vari-
ability? It would essentially be a blur and thus be of virtually no value. Obviously, any
type of plotting display will not work with very large data sets. A histogram would work,
however, provided that a user was content with the power-of-2 rule. For example, that rule
would specify 20 classes for a data set with a million observations, whereas the /n rule
would suggest 1,000 classes! (This illustrates the statement made in Section 1.5.1 that the
latter rule specifies too many classes when n is large.) Even with a smaller data set of 500
observations, there would be a considerable discrepancy as the /7 rule would specify 23
classes, whereas the power-of-2 rule would specify 9 classes.

Because of the difficulty in working with huge data sets, such data sets must generally
be sampled. Huge data sets with observations on many characteristics do present sampling
challenges, however. This general problem is essentially unsolved. Data mining, as it is
called, has become an immensely popular field, with many jobs available for “data miners”
both in industry and in academia, software that has been developed for data mining, and
even data mining competitions. Readers who wish additional information on data mining
should visit, in particular, the website www . kdnuggets . com.

1.9 GRAPHICAL METHODS: RECOMMENDATIONS

The emphasis in this chapter has been on graphical methods. The appropriate type(s) of
graphs to use in particular situations depends primarily on the number of observations that
are to be plotted and whether or not data have been collected over time. If the latter is
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true, then data should be plotted over time in some manner. Possible candidates would then
be a time sequence plot and a digidot plot. If there is only a small number of univariate
observations, a dotplot can be very useful if the data are not collected over time, and the
individual values might be shown in a stem-and-leaf display. A control chart, which is a
type of time sequence plot, is used for data collected over time and the objective is to
determine if processes are in control.

For large datasets, a histogram is a common choice, although it is judicious not to use a
large number of classes as this could result in some classes having few, if any, observations.
If so, a distorted picture of the shape of the population from which the data came would
likely result. Similarly, too few classes should also be avoided as this could also obfuscate
the shape: for example, a histogram with only one class (impractical of course) has no
shape. Considerable space was devoted to illustrating possible problems along these lines
in Section 1.5.1 because histograms are extensively used and it isn’t always wise to rely
on software, without intervention, to guide histogram construction. Use of the power-of-2
rule generally gives good results.

For bivariate data, the scatter plot is the most frequently used graph and various en-
hancements, such as was illustrated in Figure 1.5, add to its utility. When there are more
than two variables of interest, a Pareto chart can be useful for spotlighting the “vital few
and trivial many.” This chart can be used very effectively in analyzing data from designed
experiments.

1.10 SUMMARY

In this chapter we introduced some terminology that is needed for subsequent chapters, and
we focused attention on graphical methods for displaying one-dimensional (i.e., univariate)
and two-dimensional data. The graphical methods that were presented are the ones that
are most commonly used for low-dimensional data. There is one other popular graphical
technique, probability plotting, that is introduced in Chapter 3. Other specialized methods
for displaying and analyzing data will be introduced in later chapters. The general rule
in constructing graphical displays is to plot the data in as many different ways as seems
meaningful, recognizing that as more meaningful graphical displays are constructed, more
discoveries are apt to be made about the data. The reader should also bear in mind that
this chapter is just an introduction to the most frequently used graphical methods. There is
also the need to display data in higher dimensions and continuing advances in computing
capabilities make this possible.
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EXERCISES

Note: The data in the following exercises, including data in MINITAB files (i.e., the
files with the .MTW extension), can be found at the website for the text: ftp://
ftp.wiley.com/public/sci_tech.med/engineering statistics. This
also applies to the other chapters in this book.

1.1. Given below are the earned run averages (ERAs) for the American League for
1901-2003 (in ERAMC.MTW), with the years 1916 and 1994 corrected from the
source, Total Baseball, 8th edition, by John Thorn, Phil Birnbaum, and Bill Deane,
since those two years were obviously in error. (The league started in 1901.)

Construct a time sequence plot, either by hand or using software such as MINITAB,
or equivalently a scatter plot with ERA plotted against Year. Does the plot reveal a
random pattern about the overall average for these 103 years, or does the plot indicate
nonrandomness and/or a change in the average?
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Year 1901 1902 1903 1904 1905 1906 1507 1908 1909 1910
ERA 3.66 3.57 2.96 2.6 2.65 2.69 2.54 2.39 2.47 2.51

Year 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920
ERA 3.34 3.34 2.93 2.73 2.93 2.82 2.66 2.77 3.22 3.79

Year 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930
ERA 4.28 4.03 3.98 4.23 4.39 4.02 4.14 4.04 4.24 4.64

Year 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940
ERA 4.38 4.48 4.28 4.5 4.45 5.04 4.62 4.79 4.62 4.38

Year 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950
ERA 4.15 3.66 3.29 3.43 3.36 3.5 3.71 4.29 4.2 4.58

Year 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960
ERA 4.12 3.67 3.99 3.72 3.96 4.16 3.79 3.77 3.86 3.87

Year 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970
ERA 4.02 3.97 3.63 3.62 3.46 3.43 3.23 2.98 3.62 3.71

Year 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980
ERA 3.46 3.06 3.82 3.62 3.78 3.52 4.06 3.76 4.21 4.03

Year 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990
ERA 3.66 4.07 4.06 3.99 4.15 4.17 4.46 3.96 3.88 3.9

Year 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000
ERA 4.09 3.94 4.32 4.80 4.71 5.00 4.57 4.65 4.86 4.91

Year 2001 2002 2003
ERA 4.47 4.46 4.52

1.2. Consider the data given in Example 1.2. As stated in that example, the values that
were used to produce the time sequence plot in Figure 1.2 were coded values, not the
actual values. Would the plot have looked any different if the actual values had been
used? Explain. Use appropriate software to produce the time sequence plot using the
actual data and compare the results.

1.3. Construct a dotplot for the data in Example 1.2.

1.4. The sample datafile EXAM.MTW in MINITAB contains the grades on each of two
exams for a small graduate statistics class of 8 students. The data are given below.

Row Exam 1 Exam 2

1 89 83
2 56 77
3 78 91
4 88 87
5 94 99
6 87 80
7 96 85
8 72 75
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1.5.

1.6.

Construct a dotplot of the grades for each exam. Does either dotplot reveal anything
unusual? Is a dotplot a good graphical procedure for identifying unusual observa-
tions? Explain.

Statistical literacy is important not only in engineering but also as a means of ex-
pression. There are many statistical guffaws that appear in lay publications. Some
of these are given in the “Forsooth” section of RSS News (Royal Statistical So-
ciety News) each month. Others can be found online at Chance News, whose
website is at the following URL: http://www.dartmouth.edu/~chance/
chance news/news.html. The following two statements can be found at the
latter website. Explain what is wrong with each statement.

(a) Migraines affect approximately 14% of women and 7% of men, that’s one-fifth
the population (Herbal Health Newsletter Issue 1).

(b) Researchers at Cambridge University have found that supplementing with vita-
min C may help reduce the risk of death by as much as 50% (Higher Nature
Health News No. HN601, 2001).

(Comment: Although the errors in these two statements should be obvious, misstate-

ments involving statistical techniques are often made, even in statistics books, that

are not obvious unless one has a solid grasp of statistics.)

Consider the following salary survey data as compiled by Human Resources Program
Development and Improvement (HRPDI), which was current as of October 1, 2002.

Number of Number of

Companies  Employees in Mean Average
Job Title Responding Position Salary
Engineering lab assistant 153 822 $20, 887
Electronics tech 119 2,266 25,476
Hardware engineer 116 806 39, 889
Civil engineering 218 3,998 51,211
Civil engineering supervisor 110 720 68,993
Mechanical engineer 201 2,104 50, 998
Mechanical engineering supervisor 182 785 67,322
Chemical engineer 165 1,765 61, 839
Chemical engineering supervisor 141 307 83,292
Electrical engineer 100 905 51, 899
Electrical engineering supervisor 87 174 71, 884
Vice president, engineering 217 270 149, 002

(a) What type of graph would you use to display job title and mean average salary?
Be specific.

(b) Note that the average of the average salaries was given: that is, the average
salary was determined for each company and then averaged over the companies.
Assume that you were asked to estimate the total payroll for a company that
employs 8 civil engineers. What would your estimate be if you were not told
how many civil engineers work for a particular company? Would it be practical
to provide such an estimate?
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1.7. Consider Figure 1.5. The data are as follows (in 75-25PERCENTILES2002 . MTW):

SAT 75th acceptance SAT 25th

Row percentile rate percentile
1 1540 12 1350
2 1580 11 1410
3 1550 16 1380
4 1580 13 1450
5 1560 16 1410
6 1560 13 1360
7 1490 23 1310
8 1500 26 1300
9 1510 13 1310
10 1520 21 1330
11 1490 44 1280
12 1470 33 1290
13 1510 23 1310
14 1450 30 1290
15 1490 16 1290
16 1480 32 1300
17 1460 45 1300
18 1460 31 1270
19 1430 34 1270
20 1450 26 1200
21 1410 39 1200
22 1400 55 1220
23 1460 36 1280
24 1400 29 1170
25 1380 49 1220
26 1410 26 1240
27 1340 37 1130
28 1410 41 1230
29 1370 38 1160
30 1450 22 1280
31 1420 29 1250
32 1420 48 1220
33 1400 34 1210
34 1410 50 1240
35 1390 32 1220
36 1450 71 1240
37 1365 46 1183
38 1420 57 1250
39 1290 63 1060
40 1275 57 1070
41 1330 79 1130
42 1270 78 1050
43 1290 48 1080
44 1350 36 1150
45 1370 73 1180
46 1290 66 1070
47 1290 47 1090
48 1310 62 1090
49 1390 73 1210



EXERCISES 29

1.8.

1.9.

1.10.

1.11.

1.12.

(a) Construct the graph of the acceptance rate against the 75th percentile SAT score
with the latter on the horizontal axis. Is the slope exactly the same as the slope
of Figure 1.5? Explain why the slope should or should not be the same.

(b) Construct the graph of the 25th percentile SAT score against the acceptance rate
with the former on the vertical axis. (The data on the 25th percentile are in the
third column in the file.) Does the point that corresponds to point #22 in Figure
1.5 also stand out in this graph?

(¢) Compute the difference between the 75th percentile and 25th percentile for each
school and plot those differences against the acceptance rate. Note that there are
two extreme points on the plot, with differences of 250 and 130, respectively.
One of these schools is for a prominent public university and the other is a
private university, both in the same state. Which would you guess to be the
public university?

A boxplot is constructed for a set of data. The top of the box is at 68.3 and the bottom
of the box is at 34.8. What is the numerical value of the interquartile range? Interpret
it.

Consider different amounts of one-dimensional data. What graphical display would
you recommend for each of the following numbers of observations: (a) 10, (b) 100,
and (c) 1000?

Should points be connected in a time sequence plot? Why or why not?

The following numbers are the first 50 of 102 chemical data measurements of color
from a leading chemical company that were given in Ryan (2000): 0.67, 0.63, 0.76,
0.66, 0.69, 0.71, 0.72, 0.71, 0.72, 0.72, 0.83, 0.87, 0.76, 0.79, 0.74, 0.81, 0.76, 0.77,
0.68, 0.68, 0.74, 0.68, 0.68, 0.74, 0.68, 0.69, 0.75, 0.80, 0.81, 0.86, 0.86, 0.79, 0.78,
0.77,0.77, 0.80, 0.76, 0.67, 0.73, 0.69, 0.73, 0.73, 0.74, 0.71, 0.65, 0.67, 0.68, 0.71,
0.69, and 0.73.

(a) What graphical display would you suggest if it was suspected that there may be
some relationship between consecutive measurements (which would violate one
of the assumptions of the statistical methods presented in later chapters)?

(b) Construct the display that you suggested in part (a). Do consecutive observations
appear to be related?

Lewis, Montgomery, and Myers (Journal of Quality Technology, July 2001, Vol.

33, pp. 265-298) gave some data on advance rate from a drill experiment, with

the data having been previously analyzed by other authors using different ap-

proaches. The data are as follows: 1.68, 1.98, 3.28, 3.44, 4.98, 5.70, 9.97, 9.07,

2.07, 2.44, 4.09, 4.53, 7.77, 9.43, 11.75, and 16.30. These data were collected

under different experimental conditions (i.e, they are not all from the same

population).

(a) Construct a dotplot for the data. Without knowing anything about the exper-
imental conditions under which the data were obtained, can any preliminary
conclusions be drawn? (More sophisticated methods of analyzing such data are
given in Chapter 12.)
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1.14.

1.15.

1.16.

1.17.

1.18.
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(b) Construct a boxplot. Does the plot indicate the presence of an outlier? How
well-determined are the top and bottom of the box relative to what the top and
bottom would be for a population of data values? (that is, how well-determined
are the 25th and 75th percentiles from 16 data values?)

This exercise illustrates how the choice of the number of intervals greatly influences
the shape of a histogram. Construct a histogram of the first 100 positive integers for
the following numbers of classes: 3, 4, 6, 7, 10, and 12. (The number of classes can
be specified in MINITAB, for example, by using the NINT subcommand with the
HIST command, and the sequence MTB>SET C1, DATA>1:100, DATA>END
will place the first 100 integers in the first column of the worksheet.) We know that
the distribution of numbers is uniform over the integers 1-100 because we have one
of each. We also have the same number of observations in the intervals 1-9, 10-19,
20-29, and so on. Therefore, the histograms should theoretically be perfectly flat.
Are any of the histograms flat? In particular, what is the shape when only three
classes are used? Explain why this shape results. What does this exercise tell you
about relying on a histogram to draw inferences about the shape of the population of
values from which the sample was obtained?

State the population(s) that would correspond to each of the following samples, if in

fact a population exists. If a population does not exist, explain why.

(a) The batting average of a particular player for one season.

(b) The number of votes cast for Al Gore in the 2000 presidential election.

(¢) The number of votes cast for Al Gore in Vermont in the 2000 presidential election.

(d) A student’s randomly selected test score from among the student’s test scores in
a statistics course.

(e) The number of nonconforming transistors of a certain type produced by a specific
company on a given day.

Explain why consecutive observations that are correlated will be apparent from a
digidot plot but not from a dotplot, histogram, stem-and-leaf display, scatter plot, or
boxplot. Is there another plot that you would recommend for detecting this type of
correlation? Explain.

Chart your driving time to school or work for a month. Do any of the plotted points
seem to deviate significantly from the other points? If so, is there an explanation
for the aberrant points? Can a manufacturing process “explain” why it is out of
control? Then what should be added to a time sequence plot to detect problems when
inanimate objects are involved?

Construct a boxplot of your driving times from the previous exercise. Do any of your
times show as an outlier? If the box doesn’t exhibit approximate symmetry, try to
provide an explanation for the asymmetry.

If we had a sample of n = 1000 observations, which of the graphical displays
presented in the chapter would be potentially useful and which ones should be
avoided?
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1.19.

1.20.

1.21.

1.22.

Given in file NBA2003 . MTW are the scoring averages for the top 25 scorers in the
National Basketball Association (NBA) in 2002. The data are given below.

Name Scoring Average
1 Tracy McGrady 32.1
2 Kobe Bryant 30.0
3 Allen Iverson 27.6
4 Shaquille 0O’Neal 27.5
5 Paul Pierce 25.9
6 Dirk Nowitzki 25.1
7 Tim Duncan 23.3
8 Chris Webber 23.0
9 Kevin Garnett 23.0
10 Ray Allen 22.5
11 Allan Houston 22.5
12 Stephon Marbury 22.3
13 Antawn Jamison 22.2
14 Jalen Rose 22.1
15 Jamal Mashburn 21.6
16 Jerry Stackhouse 21.5
17 Shawn Marion 21.2
18 Steve Francis 21.0
19 Glenn Robinson 20.8
20 Jermaine 0O’'Neal 20.8
21 Ricky Davis 20.6
22 Karl Malone 20.6
23 Gary Payton 20.4
24 Antoine Walker 20.1
25 Michael Jordan 20.0

What type of graphical display would you recommend for displaying the data?
Construct the display, but before doing so, would you expect the averages to exhibit
asymmetry? Why or why not?

Compute and list in juxtaposition the number of classes for a histogram using the
power-of-2 rule and the square root rule for n = 50, 100, 200, 300, 400, 500, and
1000. What pattern or relationship do you observe? (Construct a scatter plot if the
pattern is not apparent.) Name one (bad) thing that could happen if the square root
rule were used with n = 500.

With a conventional scatter plot, two variables are displayed—one on the vertical
axis and one on the horizontal axis. How many variables were displayed in the scatter
plot in Figure 1.5? Can you think of how additional variables might be displayed?

Use statistical software to first generate 100 observations from a particular sym-
metric distribution (a normal distribution covered in Chapter 3), and then construct
the histogram. The following sequence of MINITAB commands, for example, will
accomplish this: MTB>RAND 100 C1l MTB> HIST C1. Do this ten times. How
many of your histograms are symmetric? What does this suggest about relying on a
histogram to determine whether or not a population has a symmetric distribution?
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A data set contains 25 observations. The median is equal to 26.8, the range is 62,
Q) = 16.7, and O3 = 39.8. What is the numerical value of the interquartile range?

When would the interquartile range have greater value as a measure of variability
than either the range or the standard deviation?

Would a histogram of the data given in Exercise 1.1 be a meaningful display? Why
or why not?

Assume that you work for a company that makes ball bearings of various sizes
and you want to sample periodically from the total number of each type that are
manufactured in a day. Would it be practical to take a random sample? Explain. If
not, what type of sample would you expect to take?

What graphical display discussed in this chapter would be best suited for showing
the breakdown of the number of Nobel Prize winners by country for a specified time
period?

A Pareto chart can be used for many purposes. Use the baseball salary data in file
EX1-28ENGSTAT .MTW to construct a Pareto chart using players’ positions as the
categories. Are the results what you would expect?

Toss a coin twice and record the number of tails; then do this nine more times. Does
the string of numbers appear to be random?

In their paper, “Criminal Violence of NFL Players Compared to the General Popula-
tion” (Chance, 12(3), pp. 12—15, Summer 1999), Alfred Blumstein and Jeff Benedict
presented data that demonstrated that the violent crime rate among professional foot-
ball players is actually less than that among other males of the same age and race. Was
this an observational study or could it have been an experiment? Explain. (Source:
http://www.amstat.org/publications/chance/123.nflviol.
pdf.)

In an article in the Winter 2001 issue of Chance magazine, Derek Briggs found that
SAT and ACT preparation courses had a limited impact on students’ test results,
contrary to what companies that offer these courses have claimed. Read this article
and write a report explaining how an experiment would have to be conducted be-
fore any claim of usefulness of these courses could be made. (Source: http://
www.amstat .org/publications/chance/141.briggs.pdf.)

Given in file BASKETO03 .MTW are the team 3-point field goal percentages for all
NCAA Division I teams at the end of the 2002-2003 season. Construct a scatter
plot of the field goal percentage against the average number of shot attempts per
game. Does there appear to be a relationship between these two variables? Would
you expect a relationship to exist? Could the individual schools be designated in
some manner on the plot? If so, how would you construct the plot?

The following data are frequency distributions of weights of cars and trucks
sold in the United States in 1975 and 1990. (Source: U.S. Environmental
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Protection Agency, Automotive Technology and Full Economic Trends through 1991,
EPA/AA/CTAB/91-02, 1991.)

(a)

(b)
(]

(d)

1.34. Co

WT WT(@L) WT@U) CA75 TR75 CA90 TRO0

1750 1625 1875 0 0 1 0
2000 1875 2125 105 0 109 0
2250 2125 2375 375 0 107 0
2500 2375 2625 406 0 1183 34

2750 2625 2875 281 204 999 45
3000 2875 3250 828 60 3071 428
3500 3250 3750 1029 55 2877 784
4000 3750 4250 1089 1021 1217 1260
4500 4250 4750 1791 386 71 797

5000 4750 5250 1505 201 0 457
5500 5250 5750 828 59 1 46
6000 5750 6250 0 1 0 32

Variable Names:

WT: Weight in pounds, class midpoint
WT(L): Weight in pounds, class lower limit
WT(U): Weight in pounds, class upper limit
CA75: Cars sold, 1975 (thousands)

TR75: Trucks sold, 1975 (thousands)
CA90: Cars sold, 1990 (thousands)

TR90: Trucks sold, 1990 (thousands)

Compare the distributions of CA75 and CA90 by constructing a histogram of
each. Comment on the comparison. In particular, does there appear to have been
a significant change in the distribution from 1975 to 1990? If so, what is the
change? (In MINITAB, the histograms can be constructed using the CHART
command with the C1*C2 option; that is, CHART C1 C2 with C1 containing
the data and C2 being a category variable, and these two column numbers being
arbitrary designations.)

Construct the histograms for TR75 and TR90 and answer the same questions as
in part (a).

Having constructed these four histograms, is there any problem posed by the fact
that the intervals are not of equal width? In particular, does it create a problem
relative to the 1975 and 1990 comparisons? If so, how would you correct for the
unequal widths? If necessary, make the appropriate correction. Does this affect
the comparison?

In view of the small number of observations, would it be better to use another
type of graphical display for the comparison? If so, use that display and repeat
the comparisons.

nstruct a dotplot for the data in Table 1.1. Do any of the values appear to be

outliers? Explain.



34

1.35.

1.36.

1.37.

1.38.

1.39.

1.40.

METHODS OF COLLECTING AND PRESENTING DATA

Use appropriate software, such as MINITAB, or Table A in the back of the book to
generate three samples of size 20 from the first 50 positive integers. Compare the
three samples. Is there much variability between the three samples? If so, would you
have anticipated this amount of variability?

Assume that you want to take a sample of 200 Scholastic Aptitude Test (SAT)
total scores at your university and use the distribution of the sample observations to
represent the distribution of all of the SAT scores. Would you simply take a random
sample from the list of all students, or would you use some other approach?

Consider the Lighthall (1991) article that was discussed at the beginning of the
chapter. If you are presently taking engineering courses, can you think of data that
should be collected and analyzed on some aspect in an engineering discipline, but
that are usually not collected and analyzed? Explain.

The datafile DELTALATE . DAT contains the number of minutes that each of the

566 Delta flights departing from Hartsfield International Airport in Atlanta (now

Hartsfield—Jackson International Airport) was late on June 30, 2002, with a nega-

tive value indicating the number of minutes that the flight departed early. (source:

Department of Transportation.)

(a) Construct a histogram of the data, using the power-of-2 rule to determine the
number of classes. Comment on the shape of the histogram. In particular, is the
shape unexpected? Explain.

(b) Construct a boxplot. Note the large number of observations that are spotlighted
as outliers. Would you recommend that all of these points be investigated, or
should a different outlier-classification rule be used in light of the shape of the
histogram in part (a)? Explain.

(c) Construct a dotplot. What is one major advantage of the dotplot relative to the
histogram for this type of data, regarding what we would like to glean from the
display?

Given the following stem-and-leaf display,

31 2 2 45 7
41 3 57 79
512 456 89 9
61 3 3 4 7 8

determine the median.

The data in CLINTON . MTW contain a conservative score/rating that had been as-

signed to each U.S. senator at the time of the Senate votes on perjury and obstruction

of justice alleged against former president Bill Clinton. (See impeach.txt at

http://www.amstat.org/publications/jse/jse_data.archive.

html for variable descriptions.)

(a) What graphical display would you use to show the overlap of scores between
Democrats and Republicans? Would any other displays suffice?

(b) Construct the display.
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55.6
50.6

1.44.

1.45.

1.46.
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Scatter plots of binary data have limited value. To see this, use the CLINTON . MTW
datafile and construct a scatter plot of each senator’s conservatism score against
whether or not the person is a first-time senator. Does the plot show any relationship
between the two plotting variables? If not, how would the plot have appeared if there
were a strong relationship between the variables?

Relative to the preceding exercise, the graphing of binary variables becomes even
more problematic when both variables are binary. Using the CLINTON . MTW data
set, construct a scatter plot using the vote on each of the two questions, perjury and
obstruction of justice, as the plotting variables.

(a) Is the plot of any value when counts of each point are not shown? Explain.

(b) Construct a table of the counts (if using MINITAB in command mode, use the
TABLE command with two columns specified). Is this a preferred substitute to
constructing a scatter plot with two binary variables? Explain.

The file BASKETBALL . MTW contains the NCAA Division 1 highest yearly men’s
team field goal percentages from 1972 through 2002, which are given below (the
years go across the rows):

52.7 53.0 54.7 53.7 54.5 54.6 55.5 57.2 56.4 656.1
55.2 54.8 56.1 54.1 54.6 656.6 53.3 53.5 53.6 52.2
51.7 52.8 52.0 51.8 52.3 50.0 51.1 50.1

(a) Construct either a time series plot of the data or a scatter plot using the year
(72, 73, etc.) on the horizontal axis. What type of pattern, if any, would you
expect the graph to exhibit? Does the graph appear different from what you
expected?

(b) Determine (from an Internet search if necessary) the underlying cause, if any, for
the configuration of plotted points. If a cause was discovered, how would you
recommend that the graph be reconstructed to show a change?

Figure 1.4 was a lag plot for observations that were positively correlated. What
should be the general appearance of the plot (of lag one) when observations (a) have
a high negative correlation and (b) are uncorrelated?

What chart would you use (and in fact is used by brokerage companies) to show an
investor the breakdown of the total value of his/her stock portfolio into the dollar
value of the component parts (plus cash, if applicable)?

The material in Exercises 46—50 appeared in the “Forsooth” section of RSS News, a
publication of the Royal Statistical Society, being chosen selectively by the editorial
staff from various published sources. The statements therein illustrate mistakes made
in the presentation and interpretation of data, and some examples are given in the
following problems.

The proper presentation of data is obviously important. The following example made
the “Forsooth!” section of the June 2001 issue of RSS (Royal Statistical Society)
News, as an example of something that went wrong.
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Top 50 highest vehicle theft rates by city in 2000

CITY NO. OF THEFTS THEFT RATE
Phoenix 29, 506 976.1
Miami 20, 812 956.6
Detroit 40, 685 909.2
Jersey City 4,502 814.4
Tacoma 5,565 807.9

(The vehicle theft rate is the number of stolen vehicles divided by the city’s

population, then divided again by 100,000.) (Original source: http://www.

insure.com/auto/thefts/cities401.html.)

(a) First, what is wrong with the numbers?

(b) If the intent was to show the number of thefts in each city for each 100,000
people, what should have been the theft rate for Phoenix?

(¢) How would you have presented the data so as to facilitate an easy comparison of
the cities?

The following statement appeared in the June 2001 issue of RSS News. “The number
of official investigations into accidents on building sites is expected to have risen by
more than 200 per cent in the last five years while routine inspections have fallen by
in excess of 100 per cent over the same period, a Commons written reply showed.”.
(Original source: The Times, April 2001.) What is wrong with the statement?

The following statement appeared in the February 2002 issue of RSS News: “A rail
route takes up four times less land than a motorway.” (Original source: “Railtrack
advert at Euston Station,” December 2001.) What is the error in this statement?

The following statement appeared in the January 2002 issue of RSS News: “A skilled
teacher in a state school can tell if a child is troubled because of difficulties in
the family; an experienced teacher will say if more than half the classroom have a
problem, from divorce to drug abuse, then it materially affects the education of the
other half.” (Source: Spectator, June 30, 2001.) What is wrong with this statement?

According to folklore, there will be a long winter if a groundhog sees its shadow on
Groundhog Day. The “representative” in the Atlanta area for this event is a groundhog
named Gen. Beauregard Lee. The caption for a picture that appeared in the February
3, 2003 edition of the Atlanta Journal and Constitution stated, in part: “Lee, who
didn’t see his shadow on Sunday morning, has a 99% forecast accuracy rate”. The
average lifespan for a groundhog in captivity is 10 years. Is there anything wrong
with the picture caption?

Why are “percent unfavorable” and “percent favorable” not both needed as columns
in a table?

The following eight resistivity measurements for wires were given by Gunst (Quality
Progress, October 2002): 0.141, 0.138, 0.144, 0.142, 0.139, 0.146, 0.143, 0.142. If
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you were greatly concerned about the possibility of outliers in data sets such as this
one, what graphical display would you use to try to detect and spotlight an outlier?

The following numbers are grades for a particular class on a test that I gave over 20
years ago: 98, 96, 94, 93, 93, 91, 91, 90, 88, 88, 85, 84, 84, 83, 82, 81, 79, 79, 78,
78, 78,78, 76,75, 75,74, 74,73, 72, 67, 67, 65, 63, 63, 62, 62, 58, 54, 49, and 44.
Indicate what graphical display you would use for each of the following objectives,
and then construct each display.
(a) You want to see if there are any large gaps between certain scores. (Of course,
here the scores are ordered, but numbers won’t always be ordered when received.)
(b) You want to obtain an idea of the shape of the distribution of the scores.

There are many ways to construct a stem-and-leaf display. Explain how you would
construct such a display, in particular, how the stems would be constructed, if you
had a sample of 50 numbers that ranged from 1.12 to 1.98.

Assume that someone has constructed a time sequence plot for a particular manufac-
turing process, but without a constant time increment given on the horizontal axis.
If a time sequence plot for a similar manufacturing process (same product) was also
constructed, could the two plots be meaningfully compared? Explain.

Although not discussed in this chapter, it is possible to construct a scatter plot so as
to easily show the largest and smallest values for each of the two plotted variables.
Give one way that this could be done.

Do finite populations occur and are they of interest in your field of engineering or
science? If so, give three examples; if not, explain why they do not occur.

You are shown a histogram that has two empty classes. What would you recommend
to the person who constructed the histogram?

Consider the 75th percentile SAT scores for the data given in Exercise 1.7. What
would you expect for the shape of a histogram of these scores? Construct a histogram
of the scores using 8 classes. Is the shape what you expected?

Give an example of what would be an enumerative study in your field, and give an
example with the same subject matter that would be an analytic study.

To illustrate a stem-and-leaf display that is more sophisticated than the one given
in Section 1.4.1, use MINITAB (or other software) to generate 100 random integers
between 1 and 10, with the integers all being equally likely to be selected. The
MINITAB command for a stem-and-leaf display is STEM. Use that (or other software)
to produce a stem-and-leaf display of these 100 random integers. Is the appearance
of the display unexpected? Explain. If MINITAB was used, interpret the numbers to
the left of the display.

Consider the 25th percentile SAT scores for the data given in Exercise 1.7. If you
wanted to construct a graphical display that would spotlight any outliers with small
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values, what display would you use? Construct that display for these data. Are there
any outliers? Explain.

The distribution of grade-point averages (GPAs) for all 1,999 sorority members
during the second semester of the 2001-2002 academic year at Purdue University
was shown by a histogram to be highly left-skewed.

(a) Five classes were used for the histogram. Would you suggest that more or
fewer classes be used in an effort to present a clear picture of the shape of the
distribution? If you believe that a different number should be used, how many
class intervals would you suggest?

(b) With the highest GPA being 3.222, the lowest 2.538, Q; and Q3 being 3.148 and
2.839, respectively, would you expect the distribution to still be left-skewed if a
different number of classes had been used? Explain.

(c) It was stated in Section 1.5.1 that data are generally not left-skewed, and indeed
the distribution of GPAs for members of a fraternity that semester was close to
being symmetric. In particular, the highest GPA was 3.130 and the value of QO3
was 2.7535, with the difference between these two numbers being much greater
than for sorority members. What graphical device would you use (which was
not used at the Purdue website) to show the difference in the distributions for
fraternity and sorority members, especially the difference in skewness?

The U.S. Consumer Product Safety Commission reported in an October 23, 2002
memorandum (http://www.cpsc.gov/library/toydth01 .pdf) that for
2001, 79% (202,500) of the estimated number of toy-related injuries were sustained
by children under the age of 15; 30% (77,100) were under the age of 5.

(a) What were the number of toy-related injuries for children at least 15 years old
and the total number of injuries?

(b) What graphical display would you suggest be used to show breakdown of toy-
related injuries among these age groups?

Consider the statistics for teams in the National Basketball Association (NBA) that are
available at http://www.nba.com/index.html and at http://sports.
espn.go.com/nba/statistics?stat=teamstatoff&season=2003
&seasontype=2.

(a) Construct a scatter plot of overall field goal percentage versus 3-point field
goal percentage for the 29 teams. Would we expect the scatter plot to show a
relationship? Why or why not?

(b) Constructascatter plot of 3-point field goal percentage versus 2-point percentage,
after performing the appropriate calculations to obtain the 2-point percentages.
Does the scatter plot show a relationship, and if so, is the relationship expected?

(c) Construct a boxplot of the average number of 3-point field goal attempts per
game for the 29 teams. Does the boxplot show any outlier teams? Explain.

Critique the following statement made by a plant manager: “I know there are only
five possible causes of nonconforming tesla coil capacitors in my plant, so I’ve told
my people not to bother with constructing Pareto charts for that nonconforming data,
as I can certainly obtain the information that I need from the numbers; a Pareto chart
really wouldn’t add anything.”
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What can a time sequence plot of individual observations reveal that could be at least
partially hidden in a time sequence plot of averages of 5 observations (as in quality
control work)?

Consider a histogram with short rectangle heights not close to the extremes of the
data. What does that signify?

Name three engineering continuous random variables that you would expect to result
in a moderately skewed distribution if 100 values were obtained on each variable.
Name three discrete random variables that relate to a company’s clerical operations
that you would also expect to be skewed. Should any of these variables be left-skewed
(tail to the left) or should they all be right-skewed?

Explain why a class frequency should not be the sole determinant of the height of a
rectangle in a histogram when the class intervals are of unequal widths.

The Browser Summary report for hits to the U.S. Geological Survey website for
November 2002 showed Internet Explorer accounted for 69.59% of the hits, 7.30%
for Netscape, 4.14% for Inktomi Search, and 4.13% for Googlebot, in addition to
the percentages for 29 other browsers. What graphical display given in this chapter
would seem to be best suited for displaying this information?

A graph very similar to the one given below appeared in the Atlanta Journal-
Constitution on January 28, 2003. The graph showed the number of applicants
(the top line) and the number of applicants accepted (the bottom line) at a lo-
cal university over a period of several years. The objective of the graph was
to show that admission to the school is becoming more difficult over time.
Does the increasing distance between the lines over time actually show this,
however? Given the objective, would you have constructed the same type of
graph differently, or would you have used a different type of graph? Explain.
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Consider the data given in Exercise 1.7. Plot the 75th percentile scores against
the 25th percentile scores and then plot the 25th percentile scores against the 75th
percentile scores.

(a) Compare the configuration of points and comment. Would you expect the plots
to differ by very much? Explain.

(b) In general, under what conditions would you expect a plot of Y versus X to differ
noticeably from a plot of X versus Y?

A student in your engineering statistics class intends to study for the final exam solely
by memorizing rules for working each of the many different types of problems that
were presented in the course. What would be your advice for him or her?

Would you recommend that a pie chart be constructed with 50 “slices”? Why or why
not? In particular, assume that there are 50 different causes of defects of a particular
product. If a pie chart would not be suitable for showing this breakdown, what type
of graph would you recommend instead?

Assume that you work in the Office of the Dean of Student Affairs at a large southern
university. The dean would like to look at the difference between the average GPA for
female students who are in sororities and female students who are not in a sorority,
relative to the difference between the GPA for male students who are in fraternities
and those who are not in fraternities, and to look at the numbers over time. What
type of graph would you recommend and how should the graph be constructed? Be
specific.

The Boise Project furnishes a full irrigation water supply to approximately
400,000 acres of irrigable land in southwestern Idaho and eastern Oregon (see
http://www.usbr.gov/dataweb/html/boise.html). The following
data are from that website.

Year Actual Area Irrigated (Acres) Crop Value (Dollars)

1983 324,950 168,647,200
1984 327,039 149,081,226
1985 325,846 135,313,538
1986 320,843 151,833,166
1987 309,723 153,335,659
1988 308,016 157,513,694
1989 326,057 185,990,361
1990 323,241 177,638,311
1991 323,241 177,145,462
1992 325,514 182,739,499

What graphical display (if any) would you use to determine if there seems to be a
relationship between area irrigated and crop value over time? Does there appear to
be a relationship between the two?

The following intervals are used by the National Water and Climate Center of the
U.S. Department of Agriculture in giving its weather map streamflow forecasts as a
percentage of the average: >150, 130-150, 110-129, 90-109, 70-89, 50-69, <50.
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Note that there are two open-ended intervals and the others do not have a constant
width. Would you suggest any changes in the format, or do you believe this is the
best choice? Explain.

One of the sample datafiles that comes with MINITAB, MASSCOLL .MTW in the
STUDNT12 subdirectory of datafiles, contains various statistics for the 56 four-year
colleges and universities in Massachusetts in 1995. Consider the variable Acceptance
Rate, with the following data:

%$Accept
76.9718 23.0590 80.8571 79.6253 56.7514 67.2245 76.7595
47.1248 64.4166 74.4921 65.5280 67.9552 71.3197 56.4796
76.4706 79.2636 84.8980 66.4143 85.8000 73.1537 55.9285
83.8279 74.3666 15.6149 87.3786 81.1475 33.3801 77.7890
73.0000 85.0737 90.0000 64.2994 71.3553 91.2429 90.1639
79.7382 77.9661 57.0000 54.6325 71.3453 63.0828 78.5886
47.3470 85.9814 66.8306 77.5919 75.9157 43.1433 84.9324
89.1515 69.3548 78.9989 83.9599 29.7420 83.5983 68.9577

1.80.

If you wanted to show the distribution of this variable over the 56 schools and spotlight

extreme observations, what graphical technique would you employ? Produce the

graph and comment. Over the years there have been suspicions (not necessarily for

Massachusetts) that self-reporting of certain statistics such as average SAT score has

resulted in exaggerated numbers being reported.

(a) Recognizing that there are many different variables in this datafile, how would
you check to determine if any of the numbers looked out of line?

(b) Which pair of variables would you expect to have the strongest linear relation-
ship? Check your answer by constructing all possible scatter plots. (This can be
done in MINITAB by using the command MATR followed by the columns for
which the set of scatter plots is to be constructed.

One of the sample datafiles that comes with MINITAB is UTILITY .MTW, which is
in the STUDENT1 subdirectory. The data in the fourth column (given below) show a
family’s electricity bill for approximately four years.

KWH $

82.02 133.98 114.47 97.25 75.44 51.33 73.71 101.27
90.93 65.10 58.22 82.32 165.55 173.02 116.76 144.09
100.00 45.64 79.46 71.61 104.83 49.26 57.72 106.04
125.97 194.22 146.50 93.35 90.33 32.17 56.63 78.61
71.37 71.97 99.88 93.84 151.96 184.62 110.06 113.21
79.44 61.88 77.05 74.61

Construct the appropriate plot to show the cost of electricity over time for this family.
What do you conclude from the graph?

1.81. One of the sample datafiles that comes with MINITAB is GAGELIN.MTW. The

dataset is reprinted with permission from the Measurement Systems Analysis



42

METHODS OF COLLECTING AND PRESENTING DATA

Reference Manual (Chrysler, Ford, General Motors Supplier Quality Requirements
Task Force). Five parts were selected by a plant foreman that covered the expected
range of measurements and each part was randomly measured 12 times by an oper-
ator. The data are given below.

Row Part Master Response
1 1 2 2.7
2 1 2 2.5
3 1 2 2.4
4 1 2 2.5
5 1 2 2.7
6 1 2 2.3
7 1 2 2.5
8 1 2 2.5
9 1 2 2.4
10 1 2 2.4
11 1 2 2.6
12 1 2 2.4
13 2 4 5.1
14 2 4 3.9
15 2 4 4.2
16 2 4 5.0
17 2 4 3.8
18 2 4 3.9
19 2 4 3.9
20 2 4 3.9
21 2 4 3.9
22 2 4 4.0
23 2 4 4.1
24 2 4 3.8
25 3 6 5.8
26 3 6 5.7
27 3 6 5.9
28 3 6 5.9
29 3 6 6.0
30 3 6 6.1
31 3 6 6.0
32 3 6 6.1
33 3 6 6.4
34 3 6 6.3
35 3 6 6.0
36 3 6 6.1
37 4 8 7.6
38 4 8 7.7
39 4 8 7.8
40 4 8 7.7
41 4 8 7.8
42 4 8 7.8
43 4 8 7.8
44 4 8 7.7
45 4 8 7.8
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Row Part Master Response
46 4 8 7.5
47 4 8 7.6
48 4 8 7.7
49 5 10 9.1
50 5 10 9.3
51 5 10 9.5
52 5 10 9.3
53 5 10 9.4
54 5 10 9.5
55 5 10 9.5
56 5 10 9.5
57 5 10 9.6
58 5 10 9.2
59 5 10 9.3
60 5 10 9.4

What graphical device would you use to show the variability in measurements by
the operator relative to the reference value for each part that is given in the adjacent
column? Be specific. Would a histogram of the measurements show anything of
value? Explain.

1.82. One of the sample datafiles that comes with MINITAB is EMPLOY . MTW, which
gives the number of employees in three Wisconsin industries, Wholesale and Retail
Trade, Food and Kindred Products, and fabricated Metals, measured each month
over five years.

Row Trade Food Metals

1 322 53.5 44 .2
2 317 53.0 44.3
3 319 53.2 44 .4
4 323 52.5 43 .4
5 327 53.4 42.8
6 328 56.5 44 .3
7 325 65.3 44 .4
8 326 70.7 44 .8
9 330 66.9 44 .4
10 334 58.2 43.1
11 337 55.3 42.6
12 341 53.4 42.4
13 322 52.1 42.2
14 318 51.5 41.8
15 320 51.5 40.1
16 326 52.4 42.0
17 332 53.3 42.4
18 334 55.5 43.1
19 335 64.2 42.4
20 336 69.6 43.1
21 335 69.3 43.2
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Row Trade Food Metals

59 392 60.
60 396 57.

49.
48.

22 338 58.5 42.8
23 342 55.3 43.0
24 348 53.6 42.8
25 330 52.3 42.5
26 326 51.5 42.6
27 329 51.7 42.3
28 337 51.5 42.9
29 345 52.2 43.6
30 350 57.1 44 .7
31 351 63.6 44.5
32 354 68.8 45.0
33 355 68.9 44.8
34 357 60.1 44.9
35 362 55.6 45.2
36 368 53.9 45.2
37 348 53.3 45.0
38 345 53.1 45.5
39 349 53.5 46.2
40 355 53.5 46.8
41 362 53.9 47.5
42 367 57.1 48.3
43 366 64.7 48.3
44 370 69.4 49.1
45 371 70.3 48.9
46 375 62.6 49.4
47 380 57.9 50.0
48 385 55.8 50.0
49 361 54.8 49.6
50 354 54.2 49.9
51 357 54.6 49.6
52 367 54.3 50.7
53 376 54.8 50.7
54 381 58.1 50.9
55 381 68.1 50.5
56 383 73.3 51.2
57 384 75.5 50.7
58 387 66.4 50.3

5 2

7 1

Construct a time sequence plot for Food. Can the pattern of points be easily explained?

1.83. It was stated in Exercise 1.1 that there were two errors in the source from which the
data were obtained. For that type of data, what method(s) would you use to try to
identify bad data points?



CHAPTER 2

Measures of Location and Dispersion

To most people the word “location” refers to a position of some sort, especially in terms
of geography, such as a particular geographical location. The expressions “this would be a
good location for our business” and “his fastball had good location” (such as spoken by a
baseball announcer) are common expressions in which the word is used.

The word is used similarly in statistics as the numerical value of a location parameter
determines where the population distribution is positioned along the number line. The pop-
ulation mean, denoted by 11, is one location parameter. If we had a finite population that was
small enough so that it was computationally practical to compute the mean, it would be com-
puted by summing all of the elements in the population and dividing by the number of such
elements. It is rare when a population is small enough so as to make this practical, however.

We might also consider the population median as a measure of location. This is the
number such that approximately 50% of the values in the population are above it and ap-
proximately 50% are below it. The mode, the most frequently occurring value, is sometimes
mentioned as a location parameter, but some distributions are bimodal. In general, the mode
is not a good measure of location.

Although we may speak conceptually of the mean and mode of a population, we generally
won’t know their numerical values unless the population is narrowly defined.

The terms dispersion and variability are used interchangeably. They each refer to the
spread of values from the center (location) of the data. The population standard deviation
is denoted by o, and of course it is not practical to calculate it except in a rare case of a
small finite population. We may still define it, however, as

for a population of size N. The square of this quantity, denoted by o2, is the population
variance.

Although o and o are commonly used measures of variability, the magnitude of o
generally depends on the magnitude of the numbers in the population. For example, let the
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population be defined as the number of 10-year-old male children in a small city. Assume
that a member of this population who is 5 feet tall has his height recorded as 5.00 feet
and also as 60 inches, and similarly for the other members of the population. What will
be the relationship between the value of the standard deviation when height is recorded in
inches (call it o ;) versus the standard deviation when height is recorded in feet (call it 05)?
Obviously, 0| > o, because the heights in inches will have greater spread than the heights
in feet. It is easy to show by substituting in the expression for o (as the reader is asked to
do in Exercise 2.5) that o1 = 120;.

This suggests that if we wanted to compare, say, the variability of 10-year-old males
in this particular city with the heights of 15-year-old males, some adjustment would be
necessary, even when both measurements are recorded in inches. The adjustment consists
of dividing the standard deviation by the mean (i.e., o/u) and this is called the population
coefficient of variation. Such an adjustment permits the comparison of (relative) variability
for different populations.

It is worth noting, however, that we cannot make definitive statements about the rela-
tionship between two standard deviations based solely on the magnitude of the numbers
in the respective populations. For example, if we added the number 100 to the heights
(in inches) of every 10-year-old, all of the resultant numbers would be greater than the
heights of the 15-year-olds. Yet, the value of o for the resultant numbers is the same as
the value of o for the original numbers. (The reader is asked to show the general relation-
ship in Exercise 2.6.) In general, however, the larger the numbers, the larger the standard
deviation.

Another measure of variability is the range. It might seem logical to define the population
range as the largest number in the population minus the smallest number. This typically
isn’t done, however, as “largest minus smallest” is used in defining the sample range, not
the population range. Actually, it would be impossible to define a population range in many
instances anyway as there is no explicit upper bound in certain applications. For example, if
nonconformities on printed circuit boards (PCBs) are modeled with a Poisson distribution
(see Section 3.3.3), the random variable can assume any positive integer. Of course, in some
instances, such as SAT scores, the population range is known or at least can be closely
approximated.

2.1 ESTIMATING LOCATION PARAMETERS

Since location parameters can only rarely be computed, they must be estimated. The term
“estimators of location” is short for estimating a location parameter. We would logically
estimate a population mean with a sample mean (average), a population median with a
sample median, and so on. (Estimation is discussed further in Chapter 4.) Thus, we obtain
a sample and compute various sample statistics, each of which is used to estimate the
corresponding population parameter. (Recall the definition of a statistic in Section 1.1.)
Often they are “mixed,” such as when a population standard deviation is estimated using
sample ranges, as is done in quality improvement work.

We find averages all around us: a baseball player has a batting average, a punter in
football has a punting average, there is the Dow Jones Industrial Average, an engineer is
interested in average cycle times, and so on.
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DEFINITION

The sample mean (average) of n observations xj, X2, ... , X, is the sum of the
observations divided by n: that is,

M:

Xi

Xt Xodee X

X = =
n

I
: —

The sample average X is a statistic that is read “x-bar.” The Greek letter Y _ is read as
(capital) sigma and is used to indicate summation. Specifically, what lies to the right of )
is to be summed. The letter 7 in X; is a subscript, which in this case varies from 1 to n. The
number at the bottom of Y indicates where the summation is to start, and the number (or
symbol) at the top indicates where it is to end. (Please note that sometimes a capital letter
will be used to represent a statistic and sometimes a lowercase letter will be used, depending
partly on personal preference in each context and on the desire to have the symbols stand
out. An example of this are the two symbols, capital and lowercase, used on this page to
denote the sample average.)

Thus, the average for the sample
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could be expressed as
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X1+ Xo+ X5+ X4+ X5

5
1+ 13+15+17+19

5

=15.0

Another type of average that is frequently used in industry to estimate location is a
moving average, which is also referred to as a rolling average. As a simple example,
assume that we have the following 15 observations: 5.3,5.1,4.9,4.5,4.8,4.1,3.9,4.4,3.7,
5.0,4.7,4.6,4.2,4.0, and 4.3. A moving average of size 5 would then be the average of
observations 1-5, 2-6, 3-7, and so on, so that the moving averages would be 4.92, 4.68,
4.44,.... A moving average is generally used to smooth out the data while portraying
“current” estimates of location.

The dispersion counterpart to a moving average is a moving range, which is discussed
in Section 2.2.

Another possibility would be to use the median, which is the middle value (after the
numbers have been arranged in ascending order) if the sample consists of an odd number of
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observations, as it does in this case. Thus, the median is 15. If the sample had consisted of
these five numbers plus the number 21, there would then not be a single middle number, but
rather two middle numbers. The median would then be defined as the average of the two
middle values, which in that case would be 16. Thus, when there is an even number of obser-
vations, the median will always be a number that is not observed unless the two middle num-
bers happen to be the same. That might seem strange but it should be remembered that the
objective is to estimate the middle value of the population from which the sample was drawn.

DEFINITION

The sample median is the middle value in an ordered list of an odd number of
observations. If the number is even, the median is defined as the average of the two
middle values.

For this example the average is also 15, so the average and the median have the same
value. This will usually not be the case, however. In fact, the average might not even be
close to the center of the sample when the values are ordered from the smallest to largest
observation. For the sample

28 39 40 50 97

the average (50.8) is between the fourth and fifth numbers, so it is not particularly close
to the middle value. This is the result of the fact that one observation, 97, is considerably
larger than the others. Thus, although the average is often referred to as a measure of center
or measure of central tendency, it often will not be very close to the middle of the data.

Consequently, during the past twenty years, in particular, there has been considerable
interest in the statistical community in developing estimators that are insensitive to extreme
observations (numerical values that differ considerably from the others in the sample; i.e.,
outliers). The median is one such estimator (although not developed within the past twenty
years), and for this simple example there is a considerable difference between the median,
40, and the average, 50.8. So which is a better measure of “center”? Stated differently, which
number best represents a typical value? Certainly the median will always be in the center
of the sample, but whereas the mean and median will be the same when the distribution
of population values is symmetric, this will not be true when the distribution is skewed.
(Distributions are discussed in detail in Chapter 3.) Specifically, if the distribution is right
skewed (i.e., the tail of the asymmetric distribution is on the right), the mean will exceed
the median. Conversely, the relationship is reversed when the data are left skewed, but as
mentioned in Section 1.5.1, left-skewed data are rather uncommon. Although the sample
mean is often a better estimator of the population mean than is the sample median, the
result of the comparison in a particular case depends on the shape of the distribution. For
this example we might go with the median to represent a typical observation in the absence
of any external information.

The choice between median and mean becomes easier for the following scenario. If
we wanted a number to represent a typical salary at a small company, which would we
prefer to use, the median or the mean? Even at a small company, the salaries of the top
executives will far exceed the salary of a typical worker, so the executive salaries will pull the
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average above the median, with the result that the average may not well-represent a typical
salary. Note that the salary example is also an example of a right-skewed distribution. Of
course, a left-skewed distribution for this scenario would mean that not very many workers
would have a low salary, with most workers having an above average salary. Because of
federal minimum wage regulations and high executive salaries in general, a company with
a left-skewed salary distribution would be extremely rare.

Professional organizations such as the American Statistical Association and Western
Mine Engineering, Inc. give salary distributions that are obtained from sample surveys.
Such distributions are invariably skewed, at least slightly, as a salary distribution (or any
other type of distribution) that is perfectly symmetric would be extremely rare.

B EXAMPLE 2.1

The Western Mine Engineering, Inc. website gives various statistics on its union and non-
union mines, in addition to listing reports that can be purchased.

Data

The following vacation data in days per year relative to years of service were part of the
2004 Annual Mining Cost Service U.S. Mine Labor Survey Wage and Benefit Summary
Surface and Underground Coal, Metal, and Industrial Mineral Mines.

Days of Vacation

Union Mines Non-union Mines

Years of Service Interval Average Interval Average

1yr 5-16 8 0-15 8
3yr 9-16 12 0-15 9
Syr 10-16 13 0-17 12

10 yr 14-21 17 0-22 16

15 yr 14-26 19 0-27 17

20 yr 16-29 22 0-27 18

25+ yr 20-30 24 0-30 19

Analysis

As expected, the non-union mines have the widest intervals for the various years of service.
If we add the lower and upper end points of each interval, then divide by 2 and compare
that number with the average, we can see whether or not the data are skewed within each
interval. We can see that there is considerable skewness for the non-union mines, with the
degree of skewness increasing with years of service, whereas there is hardly any skewness
for the union mines. |

For highly skewed distributions with extreme observations, a trimmed average would be
an alternative to the median if the objective is to give a typical value such as a typical salary.
If, for example, 10% of the observations in a sample are trimmed from each end (after the
observations have been ordered), extreme observations, which could have a considerable
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effect on the average of all of the observations, would thus be deleted. If there are no
extreme observations, such “trimming” should have very little effect on the average. For
example, if the smallest and largest values are deleted from the sample

11 13 15 17 19
the average remains unchanged, but if the same trimming is done for the sample
28 39 40 50 97

the average changes from 50.8 to 43.0.

Extreme observations might very well be values that have been recorded incorrectly.
In any event, they are not typical observations unless a distribution is extremely skewed
or has “heavy tails” (see Chapter 3). If the trimming is not done haphazardly, but rather
some trimming procedure is consistently applied, a better estimate of the center of the
corresponding population is apt to result.

2.2 ESTIMATING DISPERSION PARAMETERS

Just as we cannot compute the values of location parameters, we similarly cannot compute
the values of dispersion parameters. So we must estimate them.

Variation (dispersion) is unavoidable, as there is “natural” variation in almost everything.
Is your driving time to work or school precisely the same every day? Of course not. It will
depend on factors such as weather conditions and traffic conditions. Assume that your time
varies slightly for a particular week, but at the beginning of the second week an accident
on the expressway causes you to be 30 minutes late for work. Your travel time for that day
is not due to natural, random variation, but rather to an “assignable cause”—the accident.

With statistical procedures, in general, and control charts (Chapter 11) in particular, a
primary objective is to analyze components of variability so that variability due to assignable
causes can be detected. If you are the “unit” that is being “measured” for travel time, you
know why you were late for work and can thus explain the cause. A ball bearing, however,
cannot explain why its diameter is considerably larger than the diameter of the preceding
500 ball bearings that have rolled off the assembly line. Thus, statistical procedures are
needed to spotlight the abnormal variation and, we hope, to enable the contributing factor(s)
to be pinpointed.

Before we can speak of normal and abnormal variation, however, we must have one
or more objective measures of variation. The simplest such measure is the sample range,
which is defined to be the largest observation in a sample minus the smallest observation.
(Note that in the field of statistics the range is a number, not an interval.) For the sample

11 13 15 17 19

the range is 8. It should be observed that only two of the five values are used in obtaining
this number; the other three are essentially “thrown away.” Because of its simplicity and
ease of calculation by hand, the range has been used extensively in quality control work,
but with modern computational aids there is no need to use a statistic that is computed from
only two of the observations in a sample.

Another type of range that has been used extensively in quality control work is the moving
range. Analogous to a moving average, a moving range is computed from “moving” groups
of data, with a moving range of two observations being most frequently used. For the above
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example of five observations, the moving ranges of size 2 would be 2, 2, 2, and 2 since there is
adifference of 2 in the consecutive observations. The absolute value of the difference is what
is actually used, so if the 17 and 15 were switched, the moving ranges would be 2, 4, 2, and
4. The use of moving ranges in quality control/improvement work, with the average moving
range being used as a measure of variability, is discussed and illustrated in Section 11.5.

Although the range and moving range have the advantage of simplicity, the range is
wasteful of information and will be inferior to good measures of variability that use all
of the observations. Similarly, the average moving range is also not the best measure of
variability, especially when data are correlated.

It is also worth noting that the sample range is not used to estimate the population
range. This is because it is very difficult to estimate extreme population percentiles with
sample data, and the largest and smallest observations are the most extreme of all! More
specifically, assume that a population consists of 10,000 numbers and we obtain a random
sample of 30. Do you think the largest of the 30 numbers would be anywhere near the
largest of the 10,000 numbers? Historically, the sample range has been used to estimate
the population standard deviation, but it should be apparent that any estimator that uses
only two observations in a sample is going to be inferior to an estimator that uses all of the
observations. This is discussed further in Section 11.5.

I stated in the Preface that this book is written under the assumption that its readers will
be using statistical software for data analysis. Therefore, simple methods that are amenable
to hand computation will not be recommended over more efficient, but involved, procedures
when they can both be handled with approximately equal ease on a computer.

If we were to start from scratch and devise a measure of variability that uses all of the
sample observations, it would seem logical that we should construct a measure that shows
how the data vary from the average. If we wanted to construct a measure of variability, we
might artempt to use Y - (X; — X). However, it can be shown that this sum will equal
zero for any sample. This is due to the fact that some of the deviations (X; — X) will be
positive whereas others will be negative, and the positive and negative values add to zero.
For the present sample of five numbers,

5 —

2 (Xi = X)

i=1
=—4-2+0+2+4
=0

One obvious way to eliminate the negative deviations would be to square all of the devia-
tions, and this is what is done.

DEFINITION

The sample variance, S2,is usually defined as

3 (X, — %)

Szzi:I
n—1

with the sample standard deviation S = ~/ §2.




52 MEASURES OF LOCATION AND DISPERSION

A few authors have chosen to divide by # instead of n — 1. Arguments can be given in
support of each choice, but a discussion of the merits of each is delayed until Section 4.4.2.
The form with a divisor of n — 1 is what will be used in this book.

If we were to compute S using a calculator, we would prefer a computationally simpler
form than the one given above. The problem with the latter is that the deviation of each
observation from the mean must be computed. The numerator of S* can also be written as

Yxi-(>L, X)z/n, as the reader is asked to show in Exercise 2.9.

The sample variance is the (natural) estimator of the population variance mentioned
at the beginning of the chapter. Furthermore, it is a “good” estimator in the sense that if

we had an extremely large population and computed S? for each of the (5) samples,

the average of the S? values would be (essentially) equal to o%. (Technically, equality
holds only for an infinite population; the finite population correction factor, shown in
Section 4.2.2, must be used to adjust for a finite population.)

As indicated previously, it could be shown that S? can also be calculated as

s _ XX (LX) /n

S
n—1
For the same sample of five numbers,
> (X =%
SZ — i=1
n—1
5
S (X; — 15)°
i=1
4
(=P (0 + (2P 4+ @)
o 4
_ 40
T4
=10

The sample variance is not as intuitive as the sample range, nor is it in the same unit of
measurement. If the unit of measurement is inches, the range will be in inches but the
variance will be in inches squared. This is not sufficient cause for discarding the variance
in favor of the range, however.

Another measure of variability that is in terms of the original units is the sample standard
deviation, which is simply the square root of the sample variance and which estimates o.
It does not estimate o in quite the same way that S? estimates o2, however. That is, the

average of (Z) values of S would not be essentially equal to o. In quality control work,

S is divided by a constant so as to produce a better estimator of o, whereas the constant
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is ignored in other methodological applications. We will follow convention in both cases.
Therefore,

is the sample standard deviation. For this example, § = +/10 = 3.16. The standard deviation
is also not as intuitive as the range but will generally be of the same order of magnitude as
the average deviation between the numbers, although there is no direct relationship between
the two measures. Thus, with the (ordered) numbers

11 13 15 17 19

the deviation between each pair of adjacent numbers is 2, so the average deviation is also 2.
Therefore, a standard deviation of 3.16 is well within reason; a value of, say, 31.6 or 0.316
should lead us to check our calculations. This can be helpful as a rough check, regardless
of the calculating device that is used to obtain the answer, as numbers are often entered
incorrectly into a computer.

Since o is estimated by s and p is estimated by X, it might seem logical that the population
coefficient of variation, o/u, would be estimated by s/x. In fact, this is what is done and
the latter quantity is termed the sample coefficient of variation. (We note in passing that
substituting the usual individual estimators into quotients or products isn’t always a good
idea as the estimator formed by the quotient or product might not have the best properties.)

It is important to note that the variance, standard deviation, and range are greatly
influenced by outliers. To see this, consider a sample of five numbers consisting of 10, 20,
30, 40, and 50. The variance can be seen to be 250, so the standard deviation is \/ﬁ = 15.8.
If the 50 is misrecorded as 150, the variance is 3,250 and the standard deviation is 57. Only
one number is different, yet the variance is much larger and the standard deviation is 3.6
times what it is without the error. Similarly, the range would be misreported as 140, which
is much larger than the correct value of 40. The interquartile range (IQR), the difference
between the third and first quartiles of the ordered data (O3 — Q; in the usual notation)
would not be affected, and in general will not be affected by outliers.

Similarly, the IQR could be used to estimate o, dividing by the appropriate constant
that makes the estimator of o unbiased. (Unbiasedness is a property of estimators that is
discussed in Section 4.2.1.) There is disagreement in the literature on how the interquartile
range is defined, however (e.g., to interpolate or not interpolate), and the unbiasing constant
of course depends on the definition that is used. For example, Rocke (1989) does not
interpolate but acknowledges that his definition of the IQR for control chart applications
differs from most definitions, which do involve interpolation.

Because of the large effect that a single erroneous number can have on the computations,
bad data points should be identified and removed before a variance or standard deviation is
computed. Alternatively, a trimmed variance and/or trimmed standard deviation might be
computed. These would be the counterparts to a trimmed mean and would be computed in
the usual way after trimming a prespecified percentage of observations off each end. These
statistics are part of a body of statistics known as robust statistics. Some statistical software
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and computing environments provide trimmed variances and trimmed standard deviations,
such as S-Plus.

We may note that the magnitude of the (conventional) variance will not automatically
be influenced by the magnitude of the numbers, although this will generally be the case, as
was stated previously. Specifically, the variance is unaffected if we add 1000 to each of the
numbers 10, 20, 30, 40, and 50, as the reader is asked to show in Exercise 2.2. This is not
true if a number is multiplied times each of the original numbers, however. In general, let
the original numbers be denoted by X and the transformed numbers be given as Y = a + bX.
We obtain the average, variance, and standard deviation of Y as Y = a + bX, Si =b*S2,
and S, = |b|S,, respectively. To solve for the average, variance, and standard deviation of
X, we would just solve these equations. That is, X = (1/b)(Y — a), Sf = (l/bz)Sf,, and
Sy = (1/1b])S,. The following two examples illustrate the mechanics involved.

B EXAMPLE 2.2

These results for Y = a + bX are quite useful. To illustrate, the data given in Exercise
2.66 contain decimal fractions. If someone decided to compute the standard deviation of
those grade-point averages using software, it would be easier to enter the numbers without
the decimal points, have the software compute the standard deviation of those numbers,
and then make the appropriate adjustment. Specifically, the standard deviation would be
(1/100) times the standard deviation of the numbers that were entered without the decimal
points. |

B EXAMPLE 2.3

Data

This method of coding numbers can be used very efficiently when there is very little variation
in the numbers. For example, S. Liu and R. G. Batson in their paper “A Nested Experi-
mental Design for Gauge Gain in Steel Tube Manufacturing” [Quality Engineering, 16(2),
269-282, 2003-2004] gave 20 measurements in a gauge repeatability and reproducibility
study for each of the two operators and the averages were given for each operator. We will
use the data for the first operator and that is given below.

Computing the Average

For the first operator, six of the numbers were 0.043, thirteen were 0.044, and one was
0.045. The average is obviously very close to 0.044, so that would be one choice for “a”
in the coding equation. Since the sum of the deviations below 0.044 is 0.006 and the sum
above 0.044 is 0.001, the average deviation is thus —0.005/20 = —0.00025. The average
of the 20 numbers is thus 0.044 — 0.00025 = 0.04375. With practice this can be done very
quickly, in much less time than it takes to enter the numbers in a calculator.

Computing the Standard Deviation

The standard deviation or variance can be calculated almost as easily. It doesn’t matter what
number is subtracted from the original numbers since the standard deviation and variance
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are unaffected by that choice. So subtracting 0.044 from each number and then multiplying
by 1,000, we obtain six numbers that are — 1, thirteen that are 0, and one number that is +1.
The variance of those numbers is (7 — (—5)2/20)/19 = 115/380 = 0.303, so the variance
of the original numbers is 0.303 x 10~% = 0.000000303 and the standard deviation is the
square root of that number. Although this requires more work than computing the average,
it still can be done very quickly with practice.

Although coding greatly simplifies these computations, we would like to be able to
compute these statistics with software as much as possible. Given below is the MINITAB
output for the data in this example. The statistics are produced by using the DESC command
with appropriate subcommands, with in this case the mean, standard deviation, variance,
median, and interquartile range having been requested. (No subcommands would have
been needed if the third and first quartiles would have been sufficient, as is indicated in
Section 2.5, with the user then computing the interquartile range from the two numbers.)

Descriptive Statistics: C1

Variable Mean StDev Variance Median I0R
C1l 0.043750 0.000550 0.000000303 0.044000 0.001000

Another measure of variation, which is used for two variables such as two process
characteristics, is covariance. This is a measure of how two random variables “co-vary.”
For variables X and Y, the sample covariance is given by

n J— —
> (X~ X~ 7)

i=1
Sey =

n—1

Note that if ¥ were replaced by X, this would produce the sample variance, S?, given
previously. If S,, were divided by the square root of the products of the sample variances
for X and Y, this would produce the sample correlation coefficient—a unit-free statistic
whose value must lie between —1 and +1, inclusive. A value of +1 would result if all of
the points could be connected by a straight line with a positive slope; a value of —1 would
occur if all of the points could be connected by a straight line with a negative slope. Neither
extreme case could be expected to occur in practice, however. Correlation is covered in
more detail in Chapter 8.

There are a few other measures of variability that are occasionally used, but the range,
interquartile range, variance, and standard deviation are the ones that have been used most
frequently for a single variable, and these are the ones that will be used in this book, with
emphasis on the variance and standard deviation. The correlation coefficient is frequently
given when there are two variables, and covariance is used in Section 9.1, with correlation
covered in Section 8.3.

2.3 ESTIMATING PARAMETERS FROM GROUPED DATA

In the previous sections it was assumed that the data were not grouped. Often, however,
the raw data will not be available to everyone involved in using the data to make decisions,
especially since there are now extremely large datafiles that are routinely being used in many
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applications of statistics. Assume that a histogram has been constructed from a frequency
distribution (as discussed in Section 1.5.1), and it is desired to know (or estimate) the
average of the data values. Without the raw data, it isn’t possible to compute the average,
but it can be estimated. This is done by using the midpoint of each class interval to represent
all of the observations within the interval. Specifically,

k
> [i(MP);

¥* i=1

= X
;fi

with (MP); denoting the midpoint of the ith class and f; denoting the correspond-
ing frequency. This is actually a weighted average, with the weights being the class
frequencies.

This estimate will work well if observations within each interval are approximately
uniformly distributed in the population (the continuous uniform distribution is given in
Section 3.4.2) and will also work well when the histogram is approximately symmetric
relative to its center. If the histogram is skewed, however, skewness in class intervals on
opposite sides of the mean will not necessarily be offsetting. Using the midpoint for an
interval is similar to computing the median for the interval, and the mean and median
will differ, perhaps considerably, if the data are at least moderately skewed within the
interval.

Estimating the variance or standard deviation from grouped data presents an additional
problem since the use of midpoints leads to an inflated estimate of the population variance.
If the population from which the grouped data were obtained can be represented by a
distribution that is continuous and has “tails” of at most moderate size (such as normal
distributions given in Section 3.4.3), the following procedure should provide a reasonable
approximation to what the calculation of the sample variance would be if the raw data were
available. First, compute the sample variance using the midpoints as if they were the raw
observations. Second, subtract from this result w?/12, with w denoting the width of each
interval. (Of course, this rule approximation can’t be used if the last class is open-ended
and/or there are classes of unequal widths.)

Thus, the approximated sample variance is

k —*
> (fiMP), — X7y )
w
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with f;, (MP);, and X" as previously defined. This is known as Sheppard’s correction. How
well the approximation works will vary over datasets, and there is no guarantee that the
approximation will be in the right direction for a particular dataset, as the reader is asked
to show in Exercise 2.58. Overall, however, the approximation is considered to work well.
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B EXAMPLE 24

Consider the data in Example 1.2 and assume that you have been presented a histogram of
the data, such as in Figure 1.8. The frequencies and the class midpoints for the six classes
shown in that graph are given below.

Class midpoint Frequency
12 3
15 18
18 12
21 7
24 5
27 5

Using this frequency distribution, the average value is then estimated as

k
> [i(MP),
¥ i=1
X =—F
; fi
3(12) + 18(15) 4 12(18) + 7(21) + 5(24) + 5(27)
a 50
_ o
50
= 18.48

and the sample variance is estimated as

k k 2
> fi(MPY: — (Z ff(MP)i> fn
2 — i=1 i=1 _wr

B n—1 12

3127+ 4+527) 924 3
o 49 12
= 18.50 — 0.75 = 17.75

2.4 ESTIMATES FROM A BOXPLOT

Since we may estimate ; and o from grouped data, it is natural to ask whether we may
estimate these parameters from other summarizations of data, such as a boxplot. Just as
is the case with grouped data, we must also make assumptions about the population of
data values that have been sampled in obtaining the data for the boxplot. If the midline
on the plot is approximately halfway between the endpoints of the box, we could use
the median as a rough estimate of w. Since the difference between those endpoints is the
interquartile range, we could use that difference in providing a rough estimate of o. In
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doing so, however, we must make a particular distributional assumption, which might not
be a plausible assumption. We return to this issue in Section 4.6.

2.5 COMPUTING SAMPLE STATISTICS WITH MINITAB

The basic statistics described in this chapter can be computed using the DESC(ribe) com-
mand in MINITAB or in menu mode by selecting “Basic Statistics” from the menu and then
selecting “Display Descriptive Statistics.” The output includes the mean, trimmed mean
(with 5% trimmed off each end), median, standard deviation, maximum, minimum, 25th
percentile (first quartile, Q1), and 75th percentile (third quartile, O3). MINITAB does not
provide estimates of the mean and standard deviation for grouped data.

2.6 SUMMARY

One way to characterize a probability distribution (covered in Chapter 3) is to give its pa-
rameters or, more realistically, to estimate those parameters since they will almost certainly
be unknown. The population mean, variance, and standard deviation are generic parameters
in the sense that their estimates can be used in describing any set of data. In one case (the
normal distribution), i and o do appear explicitly in the function that represents the distri-
bution, and these are the mean and standard deviation, respectively. Generally, this is not
the case, however, with the mean and variance being functions of the parameters that appear
explicitly in the probability function. In those cases, the objective is the same: to estimate
the unknown parameters and to estimate the mean, variance, and/or standard deviation.

Although simple statistics such as X are the ones most frequently used, it is important to
recognize that robust statistics such as the trimmed mean, trimmed variance, and trimmed
standard deviation will generally be superior to their untrimmed counterparts in the presence
of extreme observations. Estimation is discussed in more detail in Chapter 4.

We should also keep in mind that in this age of extremely large data sets and data mining,
there are challenges in data summarization and data visualization that of course were not
envisioned when simple statistics were used extensively and were deemed adequate. Clearly,
we would not want to compute the average of 10 million observations, even if we have
the capability of doing so as those 10 million observations would almost certainly come
from a mixture of distributions with different means. Therefore, we should keep in mind
the computing environment at the time and the objectives that exist in particular situations
regarding parameter estimation.

REFERENCE
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EXERCISES

2.1. The following are six measurements on a check standard, with the check standard
measurements being resistivities at the center of a 100 ohm - cm wafer: 96.920,
97.118, 97.034, 97.047, 97.127, and 96.995.



EXERCISES 59

2.2.

2.3.

24.

2.5.

2.6.

2.7.

2.8.

2.9.

(a) Compute the average and the standard deviation of the measurements.

(b) Couldthe average have easily been computed without having to enter the numbers
as given in a computer or calculator (e.g., by entering integers in a calculator)?
Explain.

(¢) Similarly, assume that one wished to compute the variance without using the
numbers as given. Could this be done?

Show that the sample variance and sample standard deviation are unaltered when
1000 is added to each of the numbers 10, 20, 30, 40, and 50. Explain why the
variance and standard deviation are unchanged, supporting your argument by using
the formulas for the variance and standard deviation.

A “batting average” was mentioned in Section 2.1 as being one type of average.
What is being averaged when a batting average is computed? Is this what sportswrit-
ers and baseball fans think about being averaged to obtain a batting average?
Explain.

A department of six faculty members each rank three job candidates with 1 being
the highest rank. An average rank is computed for each applicant. Assume that there
are no ties. What must be the average of the three average ranks?

Show by appropriate substitution in the expression for o that the value of o for
heights in inches for some population is 12 times the value of ¢ when height is
measured in feet (and fractions thereof).

Show that the value of o is unchanged if a constant is added to every number in a
population.

We can always compute an average of a group of numbers, but we also need to ask
whether or not the average will make any sense. For example, the following numbers
are provided by Western Mine Engineering, Inc. (www . westernmine . com); they
represent the operating cost indices for surface mines in the United States from 1988
to 2000: 85.5,90.4, 95.7, 97.7, 98.7, 99.0, 100.0, 102.4, 105.7, 107.0, 106.7, 108.7,
113.5.

(a) Compute the average of these 13 numbers.

(b) Does this number estimate some population parameter? If so, what is it?

(¢) Compute the standard deviation of the numbers. What is the unit of measurement
for the standard deviation?

Can the mean of the data represented by Figure 1.8 be estimated using only Figure
1.8? If so, obtain the estimate of the mean. Since the histogram is skewed, would
you expect your estimate to be reasonably close to the actual mean? Explain.

Show that

n

=

n n 2
X, —X)P =Y X?— (Z X,») [
1 i=1 i=1

i=



60

2.10.

2.11.

2.12.

2.13.

2.14.

2.15.

2.16.

2.17.

2.18.

MEASURES OF LOCATION AND DISPERSION

In statistics compiled by the Major League Baseball Players Association for the
year 2000, 126 starting pitchers (with 19 or more starts) had an average salary of
$3,064,021, whereas 165 relief pitchers (10 or fewer starts and 25 or more relief
appearances) had an average salary of $1,220,412. Assume that you want to compare
the variability of salaries of starting pitchers versus relief pitchers. Could you simply
compute their respective standard deviations and compare them? Explain.

For the data described in Exercise 2.10, assume that you want to construct a boxplot
to summarize the salaries of starting pitchers. You are not given the raw data but you
are given 10 summary statistics.

(a) Which statistics do you need in order to construct the boxplot?
(b) Would a boxplot be an appropriate choice for a graphical display given the
number of observations and the nature of the data?

Find the mean, median, and range for the following numbers: 5, 8, 3,4, 7, 2, 9.

Let k denote the standard deviation for a sample of 25 numbers.

(a) If each number is multiplied by 100, what is the standard deviation of the new
set of numbers, as a function of k?

(b) Is the coefficient of variation affected by this multiplication? Explain.

Given the following data for X and Y, each expressed as a function of some number
a, express the sample variance of Y as a function of the sample variance of X:

X:a,a+1, a+2, a+3
Y :25a+2, 2.5a+45, 2.5a+17, 2.5a + 9.5

Assume that you work for a company with 500 employees and you have to fill out a
report on which you will give the typical salary for an employee with the company.
What statistic will you use for this purpose? Would your answer be any different if
the company had 50 employees, or 5,000 employees?

Consider the following (small) population of numbers: 2, 5, 7, 8, 9. Compute the
sample variance for each of the 10 different samples of size 3, then compute the
variance for the population. Now compute the average of those 10 sample variances.
Does the average equal the population variance? What adjustment must be made
so that the average will be equal to the population variance? (Don’t attempt the
adjustment; simply state what must be done.)

Many instructors compute summary statistics on test scores and provide these to the
class or post the results outside the instructor’s office door. If the variance of the
test scores is given, what is the unit for that measure? Would you recommend that
an instructor use the variance or standard deviation as the measure of variability, or
perhaps some other measure?

Assume that you have a sample of size 2 and the range is V/8 . Determine the standard
deviation.



EXERCISES 61

2.19.

2.20.

2.21.

2.22.

2.23.

2.24.

2.25.

2.26.

Assume that a random variable is measured in inches. Which of the following will
not be in inches: (a) mean, (b) variance, and (c) standard deviation?

Compute the median for the following sample of 10 numbers: 23, 25, 31, 43, 32, 32,
19, 27, 41, and 22.

A sample of 50 observations is modified by dividing each number by 3 and then
subtracting 75: that is, Y = X/3 — 75, with X representing the original observations.
If s7 = 1.2, what is s ?

If for a sample of size 20, ngl X; — 7)2 < 19, which will be larger, the standard
deviation or the variance?

Purchasing shares of company stocks became affordable (in terms of commissions)
for the average person some years ago with the advent and popularity of online
brokerages. If an investor buys 200 shares of JBL at 28.40 in December, 100 shares
at 27.64 in January, and 150 shares at 25.34 in March, (a) what was the total amount
that the investor paid for the stock, and (b) what was the average price paid for
the 450 shares that were purchased? If 200 additional shares were bought in June
at that average price, would the average for the 650 shares change? Why or why
not?

The shipping department of a leading high technology company ships out 234 units
of a product on the first day of a 5-day work week. If the number of units shipped
increases each day for the five days, the average number of units shipped per day over
the five days must be at least equal to what number? If no more than 400 units could
be shipped in a day, but shipments increased each day, what is the largest number
that the average number of shipments could be?

Once when I was a graduate student, a fellow graduate student wanted to know the
average grade he assigned for a particular semester. Assume that the grades were 14
A’s, 24 B’s, 26 C’s, 10 D’s, and 4 F’s. (This was 30 years ago, in the days before
grade inflation.) Computing the overall average in one’s head, as I did, is a type of
“lightning calculation,” as it is called. Letting A, B, C, D, and F be designated by 4,
3,2, 1, and 0, respectively, compute the average grade assigned in your head if you
can do so; otherwise, use a calculator.

The following is (modified) MINITAB output for a sample of 50 observations:

Descriptive Statistics: C2

Variable N Average Median Minimum Maximum Q1 Q3
c2 50 20.560 21.000 10.000 30.000 15.750 26.000

(a) What does the relationship between the median and the average suggest about
the symmetry of the data?

(b) What would the relationship between the median and mean have been if the data
had been right skewed (i.e., the tail of the distribution were on the right)?
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For a normal distribution (see Section 3.4.3), the variance of S? is 20 /(n — 1). Thus,
if o2 is much greater than, say, 20, the variance of 52 will be greater, for practical
sample sizes, than the parameter that it is trying to estimate. What does this suggest
about the choice of sample size when the population variance is believed to be large?

The summary data given by Western Mine Engineering, Inc. (www.
westernmine.com) from its 2001 Annual Mine Cost Service U.S. Mine La-
bor Survey included the following. For the 117 non-union mines in the survey, the
range for Paid Life Insurance Coverage was SK—120K, with an average of 39K. Since
the average differs greatly from the middle of the interval, would the IQR have given
a better or worse picture of the variability of the coverages? Explain.

Assume two datasets, with the second one obtained by multiplying each number in
the first dataset by 0.9. If the coefficient of variation of the first dataset is a, what is
the coefficient of variation for the second dataset as a multiple of a?

Find the median of the following numbers: 1.94, 2.96, 4.9, 4.12, 6.87.

The following definition of a statistic is given at an Internet site: “any number
calculated from sample data, describes a sample characteristic.” Can we accept this
definition and still speak of the variance of a statistic? Explain.

Consider the data in the file delta.dat, which contains data on number of min-
utes that Delta flights departing from Atlanta departed late on June 30, 2002. If
you want to use a measure to represent the typical number of minutes that a Delta
flight from Atlanta departed the gate late on June 30, 2002, would you use the
average, median, or trimmed average? Or, since these three numbers differ consid-
erably for this dataset, would you use the interquartile range or some other mea-
sure? Explain. If the average were used, what is the population parameter that it
would estimate and thus what is the population? Or is there an obvious population?
Explain.

An employee needs to perform a quick calculation to find the average of 50 numbers,
all of which are of the form 6.32xx. To simplify the computation, she visually
multiplies each number by 10,000 and then subtracts 63,200 from the transformed
number, thus leaving the “xx” part in integer form. If the average of the transformed
numbers is 42.8, what is the average of the original numbers?

Show that > /_, (x; — a)?* is minimized when a = X.

Assume that n = 40 and Z?=1 (x —a)? =612.Ifa = ¥ + 3, what is the numerical
value of Y1, (x —X)*?

Find the average and the median of the following numbers: 5, 8, 3, 4, 7, 2, 9.

The sample variance (s?) is found to be 35.6 for a sample of 25 observations. If each
of the original numbers were multiplied by 20 and then 10 was subtracted from each
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of the transformed numbers, what would be the value of s? for the transformed set
of 25 numbers?

Explain what is wrong, if anything, with the following statement: “The coefficient
of variation for a population with a mean of 25 and a standard deviation of 5 is
5/25 = 0.2.” Is the statement correct? Explain.

Which would be more adversely affected by outliers, the sample standard deviation,
s, or a statistic defined as >/, |x; — X|/4/n ? Explain. Which statistic would you
recommend for general use?

Assume that we have a set of numbers a;,i = 1,2, ..., 50 . Explain why the sample
variance of these numbers is the same as the variance of the numbers that result after
each number is multiplied by —1.

Assume that we have 100 numbers and subsequently put them in ascending order.

(a) Explain how the median would be computed.

(b) If each of these 100 ordered numbers were multiplied by 1.5, what would be the
relationship between the median of these transformed numbers and the median
of the original numbers?

Consider a set of ten observations measured in yards. What will be the unit of
measurement for the sample variance?

Construct a sample of size 3 for which the sample variance exceeds the mean.

List three units of measurement commonly found in engineering for which the
square of the measurement would not have any physical meaning. What measure of
variability would you recommend for each of these cases?

A set of data is transformed to make the data easier to work with. If the sample
variance for the original data was 125.67 and the sample variance of the transformed
data was 1.2567, what transformation was used? Could there be more than one
answer to this question? Explain.

Explain why a few very large values in a sample would cause the mean to be larger
than the median.

Assume you are given a sample of six numbers that are deviations of each original
number from the average of the numbers. One of the numbers was given with the
wrong sign, however. If the numbers are 2.3, 3.1, 4.2, —5.2, and 1.8, which number
has the wrong sign?

Consider a sample of 10 positive numbers. If each number is greater than the
square of the number, the average of the numbers must be less than what
number?
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Determine the median from the following stem-and-leaf display (given in
Section 1.4.1).
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If the numbers in Exercise 2.49 are all multiplied by —1, what is the numerical value
of the third quartile for the new set of numbers?

If the standard deviation of a set of 50 numbers is 6.23, what will be the standard
deviation of the transformed numbers if each number is multiplied by 100 and then
600 is subtracted from each number that results from the multiplication?

Assume that 17 is the value of Q; in a sample of 15 numbers and Q3 = 87. If
the distribution of these numbers is symmetric about the median and the data are
transformed using the transformation y* = a + by, with the statistics given above
being for y, what is one possible combination of ¢ and b if the median of y* is 8?

Assume that an engineering statistics class consists of 25 men and 10 women. If the
median height of the women is 65.4 inches and the median height of the men is 71.6
inches, can the median height for the men and women combined be determined?
Why or why not?

How would you describe a sample of 25 observations if the median was much closer
to Q3 than to Oy, with Q3 not being much greater than the median?

Consider the following sample of 24 observations: 10, 12, 13, 15, 18, 21, 24,
27, 29, 32, 33, 35, 36, 38, 42, 44, 45, 46, 48, 49, 51, 52, 53, and 56. Compute
the mean and the standard deviation of the ungrouped data. Then put the data in
classes of 10-19, 20-29, 30-39, 4049, and 50-59 and compute the estimated mean
and estimated standard deviation from the grouped data. Compare the results and
comment.

Assume that a manufacturing manager uses the coefficient of variation to essentially
define an acceptable value of o for each process by comparing the coefficient of
variation for each process to the coefficient of variation of a standard, well-behaved
process. If the latter has o/ = 0.42, to what value must o be reduced for a second
process to meet this standard if the mean of 16 is considered desirable and the present
value of o is estimated to be 8.3?

Cornell [ASQC Statistics Division Newsletter, 14(1), 11-12, 1994] explained, in a
lighthearted article, how a person could maximize the octane rating of the gas in
his or her tank for a given cost, or conversely, minimize the cost for a given octane
rating. Sample three service stations in your neighborhood and for each service
station determine the mixture of 87, 89, and 92 (or 93) octane that you should put
in your car to maximize the octane rating for a $15 purchase. (Assume for the sake
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of the illustration that a mixture of different octanes won’t harm your engine.) Then
determine how to obtain an octane rating of 88 for the lowest cost. Note that the
problem involves weighted averages.

Apply Sheppard’s correction to the calculation of the sample variance for the follow-
ing dataset of 223 numbers consisting of the integers 1-100 plus the integers 20—80,
30-70, and 40-60, with the respective integers placed in four classes of equal widths.
Compare the corrected value with the actual value and comment. If you consider the
corrected value to be inferior to the uncorrected value, do you consider the problem
to be that too few classes are used? Comment.

The American Statistical Association conducts salary surveys of its mem-
bers. The results are published and are also available at the ASA website
http://www.amstat.org/profession/salarysurvey.pdf. Assume
that you want to analyze the variability in the salary of full professors at research
universities and you want to see how the variability changes over time (i.e., over
surveys). The individual salaries are not given, however, so a variance or standard
deviation could not be computed. Furthermore, the class intervals (i.e., for the num-
ber of years at the rank of full professor) are unequal and the last class is open-ended
(e.g., 33 or more years). The frequencies of each class are given, in addition to, Q1,
0>, and Q3. Given this limited information, how would you compare the variability
in the salaries over time?

Assume a department of five employees. Three of them are above the average age for
the department by 1, 4, and 2 years, respectively; one person is equal to the average
and the other person is younger than the average.

(a) Can the average age be determined? Explain.

(b) What is the variance of their ages?

As an exercise, a student computes the average of three numbers. One number is
two units above the average and another number is equal to the average. What is the
standard deviation of the three numbers?

Assume that you wish to compare the month-to-month variability in advertising
expenditures for a large company and a small company in a particular city. What
statistic would you use for the comparison?

Obtain the most recent salary information for professionals in your major field and,
assuming it is in the form of class intervals with corresponding class frequencies,
describe the distribution. Is the distribution at least close to being symmetric in regard
to years in the profession? Explain.

Compute the sample covariance between X and ¥ when (X, Y¥) = (1, 3), (2, 7), (4,
8), (5,2), and (6, 4).

Consider the (ordered) sample observations: 2, 8, 23, 24, 28, 32, 34, 38, 42, 44,
45, 55, 58, 61, 65, 68, 71, 72, 98, and 99. Compute the sample variance with
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10% trimming (from each end), and compare this number with the sample variance
computed without trimming. Comment.

Grade summaries for the second semester of the 2001-2002 academic year at Purdue
University were available online at the time of writing. Given below are the average
grade-point averages (GPA) for each type of engineering major and the number of
students with each major. Determine the overall average GPA for all engineering
majors.

Major Number Average GPA
Freshman engineering 1924 2.613
Aero & Astro 370 2.868
Chemical 379 2.984
Civil 399 2.938
Construction 142 2.886
Land surveying 6 2.804
Industrial 460 2.844
Interdisciplinary 87 2.886
Materials 60 2.962
Mechanical 784 2.862
Nuclear 71 2.871

The average of 10 numbers is 100. If the numbers 79 and 89 are removed from the
group of numbers and the average of the eight remaining numbers is computed, what
is the average of those numbers?

A company computes its average advertising expenditure (in thousands) by averaging
over its seven divisions. The average is 168. Two of the divisions subsequently report
that they believe they may have reported erroneous figures. The figures that they
reported were 162 and 174. Consequently, if the average is temporarily reported
using only the other five divisions, explain why the previously reported average will
be unchanged.

The following statistics were given at the website for the U.S. Geological Survey
(USGS), with the numbers pertaining to the USGS External Server and the statistics
being for one particular month during the last quarter of 2002.

Successful requests 14,744,979
Average successful requests per day 491,522
Successful requests for pages 1,471,649
Average successful requests for pages per day 49,057

(a) Can the month for which the statistics were given be determined? If so, what is
the month? If the month cannot be determined, explain why not.

(b) The averages are obviously rounded to the nearest integer. What was the units
digit in each number before they were each rounded, if this can be determined?
If it cannot be determined, explain why.
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You are given the following 15 observations: 6.2, 6.8, 6.7,7.0,7.3,7.5,7.1,7.6,7.7,
7.2,7.5,7.17,7.8,8.0,and 7.9.

(a) Compute the moving averages of size 5 and the moving ranges of size 2. Is there
any advantage to using the moving averages instead of the overall average as an
estimate of “current” location for this dataset?

(b) In general, how many moving averages of size k and how many moving ranges
obtained from “moving” groups of size w will there be for n observations?

Can a sample of size 2 be constructed for which the standard deviation and the
variance are the same? If so, construct the sample. If it is not possible, explain why
it can’t be done.

The interquartile range is used by many organizations. The U.S. Energy Information
Administration in a report for the year 2000 (that at the time of writing is available at
http://www.eia.doe.gov/cneaf/coal/cia/html/dlp0lpl.html)
gave the interquartile range and average mine price for coal (in dollars per short ton)
by state and by mine type (underground and surface) for coal-producing states and
regions. The following numbers were given for underground mines in Kentucky.
[As stated at that website, average mine price is calculated by dividing the total free
on board (f.o.b.) mine value of the coal produced by the total production.]

Average Mine Price Interquartile Range
Total $24.31 $3.46
Eastern 25.32 2.09
Western 21.42 1.85

Explain why the interquartile range is so much greater for the entire state than it is
for either the eastern or western parts of the state.

Construct a sample of 10 observations for which the range is twice the interquartile
range.

If a symmetric distribution of quiz scores for a small class has a mean of 8 and an
interquartile range of 2, what is the score above which 25% of the scores fell?

The average salary paid to all employees in a company is $50,000. The average annual
salaries paid to male and female employees were $52,000 and $42,000, respectively.
Determine the percentage of males and females employed by the company.

Show that the numerator of the expression for the covariance given in Section 2.2 is
equivalentto > XY — (X X YY) /n.



CHAPTER 3

Probability and Common
Probability Distributions

In Chapter 1 we saw how the distribution of the observations in a sample could be captured
with a histogram. It is also important to consider the distribution of population values,
as inferential procedures are based on the distribution that is assumed. In this chapter we
present the distributions that are frequently used in engineering applications.

Probability calculations and distributions of probability are an integral part of
engineering-based systems, as explained and illustrated by, for example, Haimes (2004).
The author makes the important point that the “risk of extreme and rare events is misrep-
resented when it is solely measured by the expected value of risk” (p. 34). Thus, what is
needed is the distribution of probability over the possible outcomes, not just an indication
of what should happen “on average.” In software engineering, it is useful to be able to
approximate the number of bugs per thousand lines of code, as illustrated by Haimes (2004,
p. 614).

Efficient use of probability distributions is important in various types of engineering
work. For example, Hess (2004) laments the fact that particle size distributions are often
not well-presented and discusses remedies for the problem.

Statistical distributions (i.e., the distribution of one or more random variables) are also
frequently referred to as probability distributions, so to understand these distributions
and the inferential procedures on which they are based, we must first study probability.
After that, many common continuous and discrete statistical distributions are presented.
Both types of distributions are used extensively in engineering. For example, semiconductor
technology development and manufacture are often concerned with continuous random
variables (e.g., thin-film thickness and electrical performance of transistors), as well as
discrete random variables (e.g., defect counts and yield).

3.1 PROBABILITY: FROM THE ETHEREAL TO THE CONCRETE

During a typical day many of us will hear statements that are probability-type statements,
although the word “probability”” might not be used. One example (statement 1) is a weather
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forecast in which a meteorologist states: “There is a 10% chance of rain tomorrow.” What
does such a statement actually mean? For one thing, it means that, in the opinion of
the meteorologist, it is very unlikely that rain will fall tomorrow. Contrast that with the
following statement (statement 2): “If a balanced coin is tossed, there is a 50% chance that
a head will be observed.” Disregarding for the moment that the coin could land on its edge
(an unlikely possibility), there are two possible outcomes, a head or a tail, and they are
equally likely to occur. Finally, consider the following statement (statement 3): “I found a
slightly bent coin in the street. I am going to toss this coin 500 times and use the results
of this experiment to determine an estimate of the likelihood of obtaining a head when the
coin is tossed once. Thus, if I observe 261 heads during the 500 tosses, I estimate there is
a52.2% (=261/500) chance of observing a head when the coin is tossed once.”

There are some important differences between these three statements. Statement 1 has
to be at least somewhat subjective since it is not possible to repeat tomorrow 500 times
and observe how many times it rains, nor is it possible to know the exact likelihood of
rain as in the case of the balanced coin. The second and third statements are illustrative
examples of the two approaches that will be discussed in succeeding chapters: (1) acting
as if the assumption is valid (i.e., the coin is balanced) and (2) not making any assumption
but rather collecting data and then drawing some conclusion from the analysis of that data
(e.g., from the 500 tosses of the coin). The latter approach is obviously preferable if there
is any question as to whether or not the assumption is valid, and if the consequences of
making a false assumption are considerable. Unfortunately, statistical assumptions are often
not checked and the consequences can be extreme. Methods for checking assumptions are
illustrated in succeeding chapters. In general, assumptions should always be checked unless
there is prior information to suggest that the assumption is valid.

The word probability has not as yet been used in this section; instead percent chance has
been used. The two terms can be thought of as being virtually synonymous, however. The
first statement that was given (the weather forecast) is essentially a subjective probability
statement. Statement 2 could be expressed concisely as

1
P(head) = 2

which is read as “the probability of a head equals 1/2” on a single toss of the balanced coin.
Thus, a 50% chance is equivalent to a probability of one-half.

Just as percentages must range from O to 100, the probability of some arbitrary “event”
(such as observing a head) must be between 0 and 1. An “impossible event” (such as rolling
a seven on a single die) would be assigned a probability of zero. The converse is not true,
however: if an event is assigned a probability of zero, it does not mean that the event is
an impossible event. As mentioned previously, a coin could land on its edge (and most
assuredly will if it is tossed enough times), but we customarily assign a probability of zero
to that possible event.

With statement 3, no probability was assumed; instead, it was “estimated.” In practice,
this is customary since practical applications of probability go far beyond tossing a balanced
coin or rolling a single die. In this instance, the probability of observing a head on a single
toss of the misshapen coin was estimated by tossing the coin a large number of times
and counting the number of heads that was observed. Are 500 tosses adequate? That
depends on the degree of accuracy required in estimating the true probability. The idea of
determining the number of trials in an experiment from a stated error of estimation will
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not be pursued here, but is discussed in subsequent chapters, especially Section 5.8. In
general,

X
—— p asn—> oo
n

with x denoting the number of times that the event in question occurs, n denoting the
number of trials, and p being the true probability that the particular event will occur on
a single trial. The symbol — should be read as “approaches” and n — oo designates the
number of trials becoming large without bound.

3.1.1 Manufacturing Applications

How can these concepts be applied in a manufacturing environment? Assume that a partic-
ular plant has just opened and we want to estimate the percentage of nonconforming units
of a particular product that the process is producing. How many items should we inspect?
We would certainly hope that the percentage of nonconforming units is quite small. If it
is, and if we were to inspect only a very small number of units, we might not observe any
nonconforming units. In that case our estimate of the percentage of nonconforming units
produced would be zero (i.e., x/n = 0), which could certainly be very misleading. At the
other extreme, we could inspect every unit that is produced for a particular week. This
would be rather impractical, however, if the production item happened to be steel balls and
thousands of them were produced every week. Consequently, a compromise would have to
be struck so that a practical number of items would be inspected. For a reasonable number
of items to be inspected, the percentage of nonconforming items that the process is pro-
ducing could then be estimated by dividing the number of nonconforming units observed
by the total number of items that were inspected (i.e., x/n). That is, we are using a relative
frequency approach.

DEFINITION

In the relative frequency approach to probability, the probability of some event is
estimated by the number of times that the event occurred in # trials, divided by 7.

3.2 PROBABILITY CONCEPTS AND RULES

The preceding section contained a discussion of the different ways of viewing probability. In
this section we consider basic probabilistic concepts and rules for determining probabilities.
In the preceding section the word “event” was used in regard to the coin-tossing example.
We compute probabilities for events, so events must obviously be clearly defined. But first
we must have an experiment—such as tossing a coin. This leads to the sample space, which
is the collection of all possible outcomes. For example, if the experiment is to toss a coin,
there are two possible outcomes: head and tail and the sample space for the experiment
could be denoted as S = {head, tail}.
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DEFINITIONS

In general, the sample space for an experiment contains all possible values of a
random variable, which can be listed only if the sample space is finite. An event
contains one or more elements of the sample space.

Thus, if the experiment were to roll a single die and the event is an even number, then
P(event) = 3/6 = 1/2. Thus, the event contains three elements of the sample space and is
said to be a composite event. In both of these examples the relative frequency definition
of probability was invoked. That is, the probability of the event is the number of times the
event can be expected to occur “relative” to the set of possible outcomes.

There are rules for determining probabilities associated with multiple events. To use a
simple illustration, assume that the experiment consists of tossing a coin and rolling a die
and we want the probability of observing a 6 on the die and a head on the coin. Does the
outcome of the coin toss have any influence on the outcome of the roll of the die? Obviously
not, so the events are independent. That is, the outcome for one part of the experiment has no
effect on the outcome for the other part. In general, with A and B denoting two independent
events, P(A and B), which we can represent equivalently as P(A N B) or P(AB), is given by

P(Aand B) = P(A) P(B) 3.1)

DEFINITION

Two events, A and B, are independent if the occurrence or nonoccurrence of one of
them has no effect on the probability of occurrence of the other one. Then

P(ANB) = P(A)P(B).

Thus, for the experiment consisting of rolling a die and tossing a coin, P(head on coin
and 6 on die) = P(head on coin) x P(6 on die) = (1/2)(1/6) = 1/12. If we listed the sample
space for the experiment, we would see that there are 12 possible, equally likely outcomes,
and we want the probability of one of those outcomes occurring. Thus, the probability is
1/12. Of course, outcomes of an experiment will not always be equally likely, but when
they are, the answer is both easy to compute and intuitive.

If we want the probability of at least one of the two events occurring, we obviously
need a new formula. If two events cannot occur at the same time, it stands to reason
that the probability of either one of them occurring should be the sum of their respective
probabilities. That is, P(A or B), which is often written P(A U B), is given by P(Aor B) =
P(A) + P(B). For example, if we toss a single coin and A = coin is ahead and B = coin is a
tail, clearly P(Aor B) = P(A)+ P(B) = 1/2 + 1/2 = 1 since these are the two possible
outcomes, and the probability associated with the entire sample space is 1. (Of course, a
coin could land on its edge—and will eventually if we toss it an enormous number of times,
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as stated previously—but the probability of this occurrence is infinitesimally small and is
therefore taken to be zero. This illustrates the fact that an event that is assigned a probability
of zero is not necessarily an impossible event, as stated previously, but an impossible event,
such as the probability of observing a 7 on a die, does have a probability of zero.)

When we set out to determine P(A or B), we start with the general expression given in
the following definition.

DEFINITION

For any two events A and B, P(Aor B) = P(A) + P(B) — P(A and B) with P(A and
B) determined by whether A and B are independent or dependent.

The numerical value of P(A and B) will be determined by the relationship between the
two events. As indicated previously, if the two events cannot occur simultaneously, then
the right side simplifies to P(A) + P(B), which implies that P(A and B) = 0. The latter is
expressed in the following definition.

DEFINITION

If two events are mutually exclusive (i.e., they cannot occur simultaneously), the
probability of their simultaneous occurrence is 0. Relative to independence, we may
think of mutually exclusive as being a form of dependency.

If, however, the events can occur together—as in the example with a die and a coin—then
P(A and B) is nonzero. For that experiment, P(A and B) = P(A) P(B) because the events
were independent. When the two events are independent, P(A or B) becomes

P(AorB) = P(A) + P(B) — P(A)P(B) (3.2)

For example, P(headora6) = P(head) + P(6) — P(headanda6) =1/2+1/6 — 1/12 =
7/12. That is, if we count the number of elements in the sample space that have either a
head or a 6, we will see that the number is 7: the six that occur with a head, including a 6 on
the die, plus a 6 or the die occurring with a tail. Note that if we didn’t subtract P(A N B),
we would be counting one point in the sample space twice, namely, {head, 6}, since the
point is part of the sample space corresponding to both events A and B.

The reader will encounter the term joint probability in a few places in subsequent chapters
(suchasin Section4.4.1), so we can mention that P(head and a 6) in the preceding illustration
is a joint probability in that it is the probability of the joint occurrence of two events. In
general, a joint probability is the probability of the occurrence of two or more events.

Two events need not be either mutually exclusive or independent, with mutually exclusive
being a form of dependence, as stated previously. Let P(B|A) represent the probability that
event B occurs given that event A has occurred. For mutually exclusive events, P(B|A) = 0,
but the probability won’t necessarily be zero when two events are dependent. For example,
assume that we roll a die and it rolls out of sight. Someone locates the die and states that the
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outcome was at most a 4. Let B denote “3 on the die” and A denote “at most 4 on the die.”
Then it should be apparent that P(B|A) = 1/4. What has happened is the sample space has
been reduced from six possible outcomes to four by conditioning on what was observed.

This is an example of a conditional probability problem, and for this example we can
easily reason out the answer without having to formally compute it. This will not always
be the case, however. Therefore, we need to consider how P(B|A) is computed in such
situations. Specifically,

P(Aand B)
P(B|A) = W 3.3)

To see that this represents a reduced sample space, we use the relative frequency definition
of probability so that P(A and B) = n(A and B)/N, the number of elements in the sample
space in the intersection of statements A and B divided by the number of elements in the sam-
ple space (N). If we define P(A) similarly, we can see that the expression for P(B|A) reduces
to n(A and B)/n(A). Then the notion of a reduced sample space becomes readily apparent.

If we solve for the numerator in the fraction of Eq. (3.3), we obtain P(A and B) =
P(A) P(B|A). This is often referred to as the multiplication rule, which is simply the way
that we obtain P(A and B) when the events are neither independent nor mutually exclusive.
It then follows that one applicable expression for P(A or B) is

P(AorB)=P(A)+ P(B)— P(A) P(B|A)

As an example, let’s say that you as a student have two final exams on the same day.
You would like to study at least 20 hours for each exam, but there is hardly enough
time available to do so, and you will not begin studying for the second exam until you
have finished studying for the first exam. Let A = study 20 hours for first exam, let B =
study 20 hours for second exam, and P(B|A) = .10. If P(A) = .60 and P(B) = .20, then
P(AorB) = .60+ .20 — (.60)(.10) = .74. Of course, the logical question to ask is: “Can
we determine P(B) without knowing whether or not A has occurred?” We can always
construct such examples, but do they make any sense? Clearly, there are instances in which
it is logical to determine both P(B) and P(B|A) when we have a clearly defined sample
space. But such problems exist more in textbooks than in real life. In this example, the
student might be able to guess at P(B) a priori, but it would obviously be easier to determine
P(B|A). Of course, there are ways to solve practical probability problems using prior data,
without having to rely too heavily on judgment. Engineering problems of this nature are
addressed in Section 3.2.1.1.

3.2.1 Extension to Multiple Events

Solving practical problems often involves working with more than two events. The rules
for two events given in the preceding section can be extended to more than two events. For
example, if we wanted to obtain P(A U B U C), we would compute itas P(AUB UC) =
P(A)+ P(B)+ P(C)—P(ANB)—P(ANC)—PBNC)+ P(ANBNC). In gen-
eral, for k events Ay, A,, ..., Ag,

k k
P(A1UA2~-~UAk)=ZP(Ai)—ZP(AiﬂA_,-)—G-

i=1 i<j
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with the signs alternating. Similarly, if there is joint independence of the events, then
P(AiNAy---NAy) = P(A)P(A) ... P(Ar)

3.2.1.1 Law of Total Probability and Bayes’ Theorem
The law of total probability is an important result that is used in Bayes’ theorem, which in
turn can be used to solve some important engineering problems.

We will illustrate both Bayes’ theorem and the law of total probability with the following
example.

B EXAMPLE 3.1

Setting

Assume that there is a stage in a particular manufacturing process in which a unit of
production can go through any one of three identical machines. Measurements are made at
the next stage of the production process to determine if the unit is still in conformance with
standards after the processing stage in which it passes through one of the three machines.
Each of the machines has an operator, and although the machines are identical, the operators
of course are not. A process engineer finds a nonconforming unit at the start of the morning
shift. This is cause for alarm since nonconforming units are observed rather infrequently and
especially would not be expected to occur at the start of a shift. In particular, nonconforming
units have comprised only 0.015%, 0.022%, and 0.018% of the units produced by machines
1, 2, and 3, respectively. Since the operator for the second machine is relatively new, that
machine produces only 28% of the total output, compared to 34% and 38% for machines
1 and 3, respectively. If a machine is not functioning properly, that should be detected as
quickly as possible, but which machine should be checked first?

Determining Conditional and Unconditional Probabilities

The answer probably isn’t obvious. (Actually, we can answer the question without per-
forming any probability calculations, as will be explained later, but the direct way to solve
the problem is to use a probabilistic approach.) We have observed a nonconforming unit,
so we will let that event be represented by N, and will let M|, M, and M3 denote the three
machines. We need to convert the given percentages into probabilities and we can do that
as follows. We have P(M) = .34, P(M;) = .28, and P(M3) = .38 from the output per-
centages that were given for each machine. Furthermore, we also have P(N|M;) = .00015,
P(N|M,) = .00022, P(N|M3) = .00018. We need to determine P (M;|N) fori=1,2, and
3, and first check the machine that corresponds to the highest probability.

Note that what we need to determine is the reverse of what we are given, as we were
given P (N |M;) and we are trying to find P(M |N;). Where do we begin? The logical starting
point is to use what we have learned. That is, we can use Eq. (3.3), which leads to

P(M;NN)

P(M;|N) = PN

An obvious problem that we face at this point is that we were not given either of the
two components in this fraction. Consequently, we have to solve for them. Using the
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1ILH 2,H 3,H
4.H 5. H 6, H
LT 2,T 3,T
4T s, H 6,T

Figure 3.1 Illustration of law of total probability.

multiplication rule presented in Section 3.2, we have
P(M; N N)= P(N|M;)P(M;)

and for each value of i we know the probability for each expression on the right-hand side
because that information was given. Now we must determine P(N), and the solution is not
obvious. A graph may help, so consider Figure 3.1, which relates to the example with the
die and coin.

The set H, which is represented by the first two rows of the table, would represent a head
when the coin is tossed. Clearly if a head results, it must occur with eithera 1, 2, 3,4, 5, or
6 and if we add together the areas represented by H N1, H N2,..., H N6, we obtain H.

When we convert this to a probability statement, we obviously have

P(H)=PHN)+PHN2)+--+ P(HNG)

This illustrates the law of total probability, which states that if an event must occur with
one and only one of a set of mutually exclusive events, and one of these mutually exclusive
events must occur, the sum of the probabilities of the intersections must equal the first
event. This is both intuitively apparent and can be seen from Figure 3.1.

Computing the Bayes Probabilities

If we apply this result to the machine problem, we thus have that P(N) = Z?:l P(N N M;).
Since P(N N M;) = P(N|M;)P(M;), when we put the pieces together we have

POMIN) = P(N|M;)P(M;)

= (3.4)
2iz1 PINIM)P(M;)

Performing the calculations using the probabilities given in the preceding section shows
that the three probabilities, for i = 1, 2, and 3, are .28, .34, and .38, respectively. Therefore,
machine #3 is the one that should be checked first.

I stated previously that we could reach this conclusion rather quickly, and in fact without
having to do any extensive calculations. It is clear that machine #3 is more likely than
machine #1 since #3 has both a higher proportion of nonconforming units and accounts for
more of the output. So it is between #2 and #3. The latter accounts for a higher fraction of
the output but the former has a higher proportion of nonconforming units. But .38/.28 >
.00022/.00018, so “clearly” the numbers point to machine #3. If P(N|M3) had been .000162
instead of .00018, then the two ratios would have been .38/.28 = .00022/.000162 = 1.36,
and we would have had P(M3|N) = P(M,|N) = .35. |
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This is not to suggest that problems of this type should be solved in the ad hoc manner
just described. Rather, the intent is to try to provide some insight into what is going on
“behind the scenes.” The formal way to work the problem is to work it the first way; that
is, to use Bayes’ theorem, which is what is given in Eq. (3.4). (The theorem was originally
given in a paper by the Reverend Thomas Bayes, who presented it to the Royal Society in
1763.)

DEFINITION

Bayes’ Theorem

Assume a collection of mutually exclusive and exhaustive events A;,i = 1,2, ..., k,
such that all of these events have a probability greater than zero of occurring and one
of the A; must occur. Then for any other event B for which P(B) > 0,

P(AiNB) _ P(BIA)
P(B) ¥ P(B|A)P(A)

P(Ai|B) =

Bayes’ theorem has considerable applicability to problems in engineering and science.
Other applications include medical applications, in which one might want to know the
probability that a person has a particular disease given that a person tests positive with a
particular test, using information about the effectiveness of the test when a person does
have the disease. In all problems in which Bayes’ theorem is applicable, we are trying to
determine the reverse of what is given, and we are usually going backward in time. For
example, with the nonconforming units example, we were computing the probability that
the unit came from a particular machine, after the unit had already been observed.

3.3 COMMON DISCRETE DISTRIBUTIONS

A discrete random variable was defined in Section 1.3. When we speak of the distribution
of a discrete random variable, we are referring to how the total probability of 1.0 for
any statistical distribution (also called a probability distribution) is distributed among the
possible values of the random variable. That is, for each manner in which a random variable
might be defined, there is a probability distribution for that random variable, which for a
discrete random variable is called a probability mass function (pmf’).

DEFINITION

A probability mass function (pmf’) is a function with nonnegative values that gives
the probability for each of the possible values of a discrete random variable.
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The cumulative distribution function (cdf) gives the cumulative probability up to a
specified value of the random variable. (Note that this term is used rather than “cumulative
mass function.”) This concept will be illustrated later.

For example, when a coin is tossed, the total probability of one is distributed equally
over the two possible outcomes, head and tail, so that P(head) = P(tail) = .50. If X =
outcome on the toss, with head = 1 and tail = 0, we have

f(x):% x=0,1

as the probability mass function. This is the simplest probability distribution or probability
mass function and is called the discrete uniform distribution (mass function). A random
variable generally has more than two possible values, however, with the total probability of
one being spread over all possible values in accordance with the likelihood of occurrence
of each possible value.

B EXAMPLE 3.2

A random variable assumes the values —1, 0, and 1 with probabilities k/4, k, and k/2,
respectively. What is the value of k?

Solution  Since the probabilities must sum to one, it follows that (7/4)k = 1sok = 4/7.
Thus, the probabilities are 1/7, 4/7, and 2/7, respectively. [ |

Now assume that we have
1
f()C)=;L x=1,2,34

The cumulative distribution function, F'(x), would be obtained as F'(x) = ZI (1/4), so that
F(1)=1/4,F2)=2/4,F(3)=3/4,and F(4) = 1.

In the sections that follow, we present the most common discrete distributions of the
hundreds that exist. As you study these distributions, it is very important to keep in mind that
these distributions serve only as models of reality; they do not capture reality exactly. Only
in textbook examples can we even begin to contemplate the possibility that the distributions
that are used do indeed capture reality. Even then, there are questions that must be addressed.
For example, is P(head) really .5 even though the head and shoulders that are on a penny
would seemingly cause it to be heavier than the tail side, which doesn’t have anything that
is raised? (For a dissenting opinion, see Gelman and Nolan (2002).) Furthermore, could
we toss a penny exactly the same way each time so that the probabilities are what they are
assumed to be? For nonconforming units, if one unit is nonconforming in coming off an
assembly line, is the probability that the next unit is nonconforming likely to be unaffected
by what has just been observed? Not likely, even though this is often assumed. If we decide
that there is a dependency, what is the nature of the dependency and how do we model it?

The important point is that we can never assume that the distribution we are using is
appropriate, even though it might seem as though it must be appropriate. When we select
a distribution we are making an assumption, and assumptions in statistics must almost
always be checked. This point cannot be overemphasized and indeed will be repeated often
throughout the remainder of the book.
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Accordingly, when a distribution is presented, methods of testing the adequacy of the fit
(to a scenario or to data) will be discussed.

3.3.1 Expected Value and Variance

We often need to know the expected value and variance (and/or standard deviation) for a
discrete random variable, as well as for a continuous random variable. We can think of
expected value as being a long-term average, as well as being our best guess as to what
should happen on a single outcome, if the expected value is a possible outcome.

To illustrate, if a basketball player is fouled and shoots two free throws, how many would
we expect him to make? Since the events of shooting each free throw are independent (at
least that is the logical assumption), we can use Eq. (3.1) to determine the probability
that he makes both free throws, and also compute the probability that he misses both free
throws. If he is a 70% free-throw shooter, it follows that the probability that he makes both
free throws is (.70)(.70) = .49, and the probability that he misses both free throws is thus
(-30)(.30) = .09. It follows then that the probability of him making one of the two is 1 —
.09 — .49 = 42. Thus, our best guess as to what would happen on a single pair of free
throws is that he makes both of them.

But if we define the random variable as X = number of free throws made out of the pair
attempted, the expected value of X, written E(X), is not 2. Rather, E(X) is, for a discrete
random variable, a weighted average of the possible outcomes of X, with the weights being
the probabilities associated with the possible outcomes. Thus, for this example, E(X) =
0(.09) 4 1(.42) + 2(.49) = 1.40. Thus, if this player were to be fouled in the act of shooting
avery large number of times, we would expect that the average of the number of free throws
made for every pair attempted would be approximately 1.40. Note that 1.40 is 70% of 2,
which is as we would expect since he is a 70% free-throw shooter. That is, on average he
scores 70% of the possible number of points when he shoots the pair of free throws.

DEFINITION
Formally, we obtain the expected value of a discrete random variable as
E(X)=>Y xP(x)
X

with the sum going over all possible values of X and P(x) denoting the probability
that x is observed. The E(X) is denoted by 1.

In the discrete case, expected value should be very intuitive if we view it as a long-term
(expected) average. If we roll a die and do it a million times, the average number of spots
observed over the one million rolls will be virtually 3.5, which is also the average of the
integers 1-6. If we toss two coins, we would expect to observe one head, this being both
the expected value as well as what we would expect for a particular toss of the two coins
since the expected value is, in this case, also a possible value.
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B EXAMPLE 3.3

The number of memory chips, M, that are needed in a personal computer depends on the
number of applications programs, A, that the owner intends to run simultaneously. Assume
that the probability distribution of A, P(A), over all owners is given by

P(a)=0.0575—a) a=1,234

What is the expected number of applications programs, with the expectation of course
going over all owners?

Solution

4 4 4
E(A) =) al0.05(7.5 —a)] =0.375 > a — 0.05 _ a?

a=1 a=1 a=1
= 0.375(10) — 0.05(30) = 2.25

If 4 chips are required to run two programs simultaneously and 6 chips are required for
three programs, a new computer owner who isn’t sure what her needs will be would be
wise to have at least 6 memory chips. |

Expected value for a continuous random variable follows the same general principle,
but not the same mechanics since the outcomes are infinite and thus cannot be enumerated.
Expected value for continuous random variables is discussed in Section 3.4.1.

To find the variance of a random variable, denoted by o2, we would want to measure
the spread of the possible values about 1. Accordingly, we define 0> = E(X — p)?. For
a discrete random variable, E(“anything”) = ) _(“anything”)P(x). That is, whatever ex-
pression we are taking the expected value of becomes the expression before P(x) in the
summation. It can be shown that E(X — n)? = E(X?) — (E(X))?, as the reader is asked
to show in Exercise 3.20. The second expression is generally easier to use since the mean
doesn’t have to be subtracted from each possible value of X.

The standard deviation, o, is of course the square root of the variance.

DEFINITION

The variance of a random variable, either discrete or continuous, is given by o=
E(X — w)*. In the discrete case, this is computed as either Y (X — w)*P(x) or

> X2P(x) — (Z X P(x))z, with each sum over all possible values of the random
variable X. The standard deviation, o, is the square root of the variance.

It is important to distinguish between the type of mean and variance discussed in Chapter
2, which were for a sample and a population, and the mean and variance of a probability
distribution. If we had a finite population, there is the possibility, at least conceptually, of
computing the population mean and variance. In this chapter we are concerned with the
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mean and variance of a random variable for an underlying probability distribution. We
obviously cannot determine the mean and variance of a random variable that has a certain
distribution without using the function that represents the distribution, whereas we can
calculate a population mean or variance, if practical, without reference to any probability
distribution. Thus, a sample mean, population mean, and the mean of a random variable
that has a certain probability distribution are all quite different, and of course this is also
true for a variance.

3.3.2 Binomial Distribution

This is one of the most frequently used discrete distributions. It is presented in detail in this
section because of its wide applicability and also because it is used with control charts and
other statistical procedures that are presented in later chapters.

The binomial distribution can be used when the following conditions are met.

1. When there are two possible outcomes (e.g., heads and tails). These outcomes are
arbitrarily labeled success and failure, with the outcome that is labeled “success”
being the one for which one or more probabilities are to be calculated. There is no
intended connotation of good versus bad. For example, if probabilities for various
numbers of nonconforming items are to be computed, “nonconforming” is labeled
“success.”

2. There are n trials (such as n tosses of a coin) and the trials are independent. The
trials are called Bernoulli trials, being named for a prominent mathematician, James
Bernoulli (1654—1705), who proposed his binomial distribution that was later pub-
lished in 1713. The independence assumption means that the probability of an out-
come for a particular trial is not influenced by the outcome of any preceding trials.
Furthermore, the probability of a success on a single trial does not vary from trial to
trial.

Clearly, a coin-tossing experiment conducted to determine the true probability of the
coin landing on “heads” meets these requirements. Recall the discussion at the beginning
of Section 3.3, which suggests that such an experiment might indeed be necessary, rather
than just assuming that the probability is .50. Nevertheless, for the sake of illustration we
shall assume that the probability is .50. The probabilities of observing 0, 1, and 2 heads
will now be obtained in a somewhat heuristic manner. It should be apparent that whatever
happens on the second toss of the coin is independent of the outcome on the first toss. As
discussed in Section 3.2, when two events are independent, the probability of both of them
occurring is equal to the product of their separate probabilities of occurrence. Thus, if H
represents a head on the first toss and H, represents a head on the second toss, then

P(H, and H>) = P(H,)P(H>)
= (1/2)(1/2)
=1/4

Similarly, it could be shown that the probability of two tails (zero heads) equals 1/4. One
head could be observed in one of two ways, either on the first toss (followed by a tail) or
on the second toss (preceded by a tail). Since the probability for each sequence is 1/4, the
probability of observing one head is equal to the sum of those two probabilities, which is 1/2.
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If we define the random variable X as
X = number of heads observed

we can put these probabilities together to form the probability distribution of X. If we let
P(X) represent “the probability of X (with X assuming the three different values), we then
have the following:

Thus, if this experiment were repeated an extremely large number of times, we would
theoretically expect that 1 head would occur 50% of the time, 2 heads would occur 25% of
the time, and 0 heads would also occur 25% of the time.

Assume that 16 Bernoulli trials were conducted and the observed numbers for O, 1,
and 2 heads were 5, 7, and 4, respectively. Obviously, these are close to the theoretical
frequencies of 4, 8, and 4, respectively. Although the theoretical frequencies constitute our
“best guess” of what should occur, we should not be surprised if the observed frequencies
differ somewhat from the theoretical frequencies. In fact, it may be apparent that the
observed frequencies could never equal the theoretical frequencies unless the number of
experiments was a multiple of 4. (If the number of experiments is not a multiple of 4, the
theoretical frequencies for O heads and 2 heads would not be an integer.) Even if the number
of experiments is a multiple of 4, we should not expect the observed frequencies to be equal
to the expected frequencies because of random variation. The important point, however, is
that the difference between the observed and theoretical frequencies should become very
small as the number of experiments becomes very large.

The way that the probabilities were found for the coin-tossing experiment would certainly
be impractical if the number of tosses, 7, was much larger than two. In virtually any practical
application, n will be much larger than two, so there is clearly a need for a general formula
that can be used to obtain binomial probabilities. The following symbols will be used.

p = the probability of observing a success on a single trial

1 — p = the probability of not observing a success on a single trial (i.e., a failure)
n = the number of trials
x = the number of successes for which the probability is to be calculated

Regardless of the size of n, it is easy to find P(x) when x = 0 or x = n. There is only one way
to observe either no successes or all successes. Therefore, since the trials are independent,
P(n) is simply p multiplied by itself » times (i.e., p"). Similarly, P(0) = (1 — p)". It is by
no means obvious, however, what P(x) equals when x is equal to neither O nor n.

If we wanted the probability of x successes followed by n — x failures, that would clearly
be

pr—=pr (3.5)
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If, instead, we just wanted the probability of x successes without regard to order, the
answer would obviously be larger than what would be produced by Eq. (3.5). For example,
if you tossed a coin 10 times, there are many different ways in which you could observe 4
heads and 6 tails, one of which would be 4 heads followed by 6 tails.

. .. (n .
In general, the number of ways that x successes can be observed in # trials is (x ), which

is defined as

n n!
(x) = Xl —x)! (3.6)

where n! =1-2-3-4...n. Forexample, if » = 5 and x = 3, then

5\ 5!
3) 7 32
120

—(6)(2)
=10

If such computation is to be done by hand (although hand computation is rather old-
fashioned, in general), it is easier to first simplify the quotient by dividing the larger of the
two numbers in the denominator into the numerator. Thus,

50 1.2.3.4.5

— = =4-5=20
3! 1-2.3

so that

5! 20
—=—=10
312! 2

By putting Eq. (3.5) together with Eq. (3.6), we have the following general expression
for the probability of x successes in # trials:

P(x) = ( Z) p(1—pr (3.7)

Although it was easy to find the probabilities of observing 0, 1, and 2 heads without
using Eq. (3.7), the direct approach would be to use the latter. Thus, we could have found
the probability of observing one head as follows:

P(1) = (f) (5)'(.5)"

= 2(.5)(.5)
=.5
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Note that if we were to attempt to determine the probability of 2 heads as

2
<2) (:5)%(.5)°

2
m(-ZS)(l)

PQ2)

we would have to know what to do with 0!. It is defined to be equal to one, and it should be
apparent that if it were defined in any other way, we would obtain an incorrect answer for
this example! Specifically, we know that P(2) = (.5)(.5) = .25; therefore, we must have

2!
P@) = 55;(29M

1(.25)(1)
=25

which will result only if 0! is defined to be equal to one, as it is.

B EXAMPLE 34

Problem Statement

A practical problem might be to determine the probability that a lot of 1000 capacitors
contains no more than one nonconforming capacitor, if as in the very recent past, 1 out of
every 100 capacitors produced is nonconforming. There are clearly two possible outcomes
(conforming and nonconforming), but are the “trials” independent so that the probability
of any particular capacitor being nonconforming does not depend on whether or not any
of the previously produced capacitors were nonconforming? This is the type of question
that must be addressed for any manufacturing application, and applications of the binomial
distribution, in general.

Assumption, Model, and Computations

If this assumption is not valid, the binomial distribution would be of questionable value as
a model for solving this problem. For this example we shall assume that the assumption
is valid. The words no more than one indicate that we should focus attention upon 0
nonconforming units and 1 nonconforming unit and add the two probabilities together. Thus,

P(O) = (10000> (01)0(.99)100
— (.99)1000
=.000043

and

P(1) = (10100> (.01)!(.99)*

=.000436
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Therefore, the probability of no more than one nonconforming unit in a lot of 1000 capacitors
15 .000043 4 .000436 = .000479.

Both of these individual probabilities are quite small, but that is due primarily to the
fact that X (= the number of nonconforming capacitors) could be any one of 1001 numbers
(0-1000). Therefore, we should not expect any one probability to be particularly high. M

If the binomial distribution is a probability distribution (as it is), all of the probabilities
will add to one. It can be shown with some algebraic manipulation that

: n X n—x __

for any combination of n and p. The key is recognizing that the sum represents the binomial
expansion [1 + (1 — p)]", and of course this expression is obviously equal to 1. (You should
recall that for the coin-tossing experiment with n = 2 and p = 1/2, the probabilities were
1/4, 1/2, and 1/4, which obviously do add to 1.) It should also be noted that the binomial
distribution is a discrete probability distribution because the random variable X can assume
only integer values.

Expected value for a binomial distribution was indirectly illustrated in Section 3.3.1, but
we would like to obtain £(X) without having to enumerate all of the possible values of X,
as was done in that example. Therefore, we need a simpler way of determining E(X) for
the binomial distribution, and similarly for other distributions.

There are two commonly used ways of obtaining the expected value, one of which is
quite easy to use. The Bernoulli trials that were mentioned previously correspond to the
Bernoulli distribution. A Bernoulli random variable has two possible outcomes: 0 and 1.
If we let O represent failure and 1 represent success, the expected value of the Bernoulli
random variable is (1)(p) + (0)(1 — p) = p. Since the trials are independent, it follows
that for the sum of » independent trials,

E(X)=np

For the coin-tossing experiment, n = 2 and p = 1/2, so, np = 1 and for the capacitor
example, n = 1000 and p = .01, so np = 10. Thus, the theoretical results coincide with what
common sense would tell us. If we consider a second capacitor example with n = 500 and
p = .0133 (one divided by 75), then np = 6.67. This last result was probably not obvious.
Note that E(X) for the binomial distribution will not always be an integer, although X itself
must always be an integer.

This should not seem incongruous, however, because E(X) is simply the theoretical
“average” value of X and should be very close to the actual average value of X if a binomial
experiment were repeated a very large number of times.

The concept of variance of a random variable, as discussed in Section 3.3.1, is very
important in statistics, in general, and particularly so for the control charts that will be
presented in later chapters. You will recall that the sample variance, S?, was introduced in
Section 2.2. It was calculated from the data in a sample and is a sample statistic. The use of
sample statistics to estimate population parameters is one of the primary uses of statistics.
Such estimation will be done extensively in constructing control charts in later chapters,
as well as in the other statistical procedures to be presented. [See Chapter 4 for various
methods of obtaining (point) estimators. ]
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B EXAMPLE 3.5

Problem Statement

A modem transmits one million bits. Each bit is O or 1 and the bit values are indepen-
dent. Assume that the probability each bit is successfully transmitted is .999. What is the
probability that at most 900 bits are not successfully transmitted?

Solution In the not-so-distant past this type of problem would be worked by approxi-
mating the binomial probability using a normal distribution (see Section 3.4.3) because of
the extremely large sample size. Today there is no need to do that as we can use MINITAB
or other statistical software to obtain the answer directly, and using MINITAB we obtain
.00069. So the probability is quite small and the probability that, say, at most 100 bits are
not successfully transmitted is of course much smaller. |

The variance for a probability distribution is somewhat different, however, in that it is
not calculated from data. Such a variance will henceforth be denoted by either Var(X) or,
as in Section 3.3.1, by o2, which is understood to represent o> if X is the only random
variable that is being discussed at the time.

We will introduce the concept of a covariance between two random variables. If X is
a binomial random variable, we may obtain its variance in the following way, and relate
it to one of the expressions previously given for a discrete random variable. Recall from
Section 3.3.1 that for an arbitrary random variable, W, the variance of W is defined as
E(W?) — (E(W))?, with EW?) =Y w?*P(W =w)and EW) =Y wP(W = w).

The covariance between two random variables, say, W and Y, is similarly defined as
E(WY) — E(W)E(Y). This is often written as Cov(W, Y) or as o,. Covariance measures
the manner in which two random variables “co-vary,” as was stated in Section 2.2 when the
sample covariance was introduced. Note that if Y is replaced by W, we obtain the expression
for Var(W). Thus, we might say, perhaps somewhat trivially, that this is what we obtain
when a variable “co-varies” with itself. A positive covariance means that as one variable
increases (decreases), the other variable increases (decreases). With a negative covariance,
one variable increases (decreases) while the other variable decreases (increases). Note that
the sample covariance, sy, given in Section 2.2 is computed from data and is thus different
from the covariance between two random variables.

Although correlation is discussed in some detail in Section 8.3, we will mention at this
point that the population or theoretical correlation, p,,, between two random variables X
and W is defined as p,, = 0y /(0:0y). (Note that, if W = X, we obtain p,,, = 1 since
Ory = axz. This means that a random variable is perfectly correlated with itself, a fact that
should be intuitively obvious.)

For a Bernoulli random variable, it can easily be seen that £ (W?) = P, so the variance
of a Bernoulli variable is p — p> = p(1 — p). We can then find the variance of a binomial
random variable by using the same general approach as was used for determining the
mean. That is, the variance of a binomial random variable is n times the variance of
the corresponding Bernoulli variable. Thus, for the binomial random variable we have
Var(X) =np(l — p).

Note that this does not depend on any sample data, only on the sample size. It was shown
previously that the E(X) for the binomial distribution is quite intuitive, but the Var(X) cannot
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be explained in a similar manner. The square root of the Var(X) can, however, be explained
in the following manner. If p is close to 1/2 and 7 is at least 15 or 20, then

P [E(X) —3/Var(X) < X < E(X) + 3\/Var(X)] —0.99

In words, we would expect the value of X to fall between the two endpoints of the interval
almost all of the time. Thus, the square root of the variance (i.e., the standard deviation)
can be combined with the mean to determine an interval that should contain X with a high
probability. The standard deviation for a probability distribution thus measures the spread
of the possible values of a random variable, whereas the sample standard deviation, S, is a
measure of the spread of the actual values of a random variable that are observed in a sample.

The binomial distribution has been used extensively in quality improvement work.
For example, it is used in constructing p charts and np charts (i.e., control charts) that
are presented in Chapter 11. There are many other types of applications, including the
following.

B EXAMPLE 3.6

Problem Statement

A memory module consists of nine chips. The device is designed with some redundancy
so that it works even if one of its chips is defective, but not more than one. Assume that
the chips function (or not) independently and that each chip contains four transistors and
functions properly only when all of its transistors work. A transistor works with probability
.995, independent of any other transistor. What is the probability that a chip works? What
is the probability that the memory module works?

Solution  Since the transistors are independent, the probability that a chip works is the
probability that all four transistors work, which is (.995)* = .98 because of the independence.
The memory module will work if at most one chip is defective. The probability that no chip
is defective is (.98)* = .834 since the chips function independently. The probability that

one chip is defective is the binomial probability (?) (.02)'(.98)® = .153. The probability
that the memory module will work is thus .834 4-.153 = .987. |

3.3.2.1 Testing for the Appropriateness of the Binomial Model

Recall the discussion in the preceding section regarding observed and expected frequencies.
If the binomial model is inappropriate, we would expect the two sets of frequencies to differ
considerably. Accordingly, one test for the appropriateness of the binomial model would
be to compare the observed and expected frequencies. Just because a random variable
has two possible outcomes does not mean that the binomial distribution is an appropriate
model. In particular, the true variance might be greater than the binomial variance, which can
occur when observations are correlated. A simple way to check this is to compare np(1 — p)
with Y (x — X)?/n, with the two computations performed over at least a few dozen samples.
(Here p denotes the average of the sample proportions, averaged over the samples, and
X denotes the average number of nonconforming units, also averaged over the samples.)
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The two values will almost certainly not be equal but should not differ by an order of
magnitude.

3.3.3 Hypergeometric Distribution

This distribution, like the binomial distribution, has been used extensively in sampling in-
spection work. The two distributions are similar in that both assume two possible outcomes.
They differ, however, in that the hypergeometric distribution is applicable when sampling
is performed without replacement. The following example is used for illustration.

B EXAMPLE 3.7

Problem Statement

Assume it is known that a lot of 1000 condensers contains 12 nonconforming condensers.
What is the probability of observing at most one nonconforming condenser when a random
sample of 50 is obtained from this lot?

Solution Why can’t the binomial distribution be used to solve this problem, using,
p =12/1000 = .012, n = 50, and x < 1? Note the subtle difference between this example
and the example with the 1000 capacitors that was used to illustrate the binomial distribution.
For the latter there was no sampling from a stated finite population; it was simply a
matter of determining the probability of observing at most one nonconforming unit in
1000 when it is known (or assumed) that p = .01. For the current problem, however, we
cannot say that the probability is .012 that any condenser in the random sample of 50
condensers is nonconforming. This is because the probability of any particular condenser
being nonconforming depends on whether or not the previously selected condenser(s)
were nonconforming. For example, the probability that the second condenser selected is
nonconforming is 12/999 if the first condenser selected is conforming, and 11/999 if the
first condenser is nonconforming.

Therefore, the binomial distribution cannot be used since p is not constant. We can,
however, deduce the answer using the same type of heuristic reasoning as was used for the
coin-tossing problem in the section on the binomial distribution. First, how many different
samples of size 50 are possible out of 1000? Of that number, how many will contain at
most one nonconforming unit? The answer to the first question is

1000 _ 1000!
50 ) 50!950!

This is analogous to the earlier example concerning the number of possible ways of obtain-
ing one head in two tosses of a balanced coin, which was

2\ 2!
1) 1

Thus, the two tosses were, in essence, partitioned into one for a head and one for a tail. For
the current problem, the 1000 condensers are partitioned into 50 that will be in the sample
and 950 that will not be in the sample.



88 PROBABILITY AND COMMON PROBABILITY DISTRIBUTIONS

1000

How many of these ( i

) samples will contain at most one nonconforming unit?

There are (102) (95%8) ways of obtaining zero nonconforming units and (?) (94898) ways

of obtaining exactly one nonconforming unit. Therefore, the probability of having at most
one nonconforming condenser in the sample of 50 is

($)C)=() )
(%)

The combinatorics in the numerator [such as (12) and (988>] are multiplied together

0 50
because of a counting rule that states that if one stage of a procedure can be performed
in M ways and another stage can be performed in N ways, the two-stage procedure can
be performed in MN ways. For this example we can think of the number of ways of
obtaining 0 nonconforming units out of 12 as constituting one stage, and the number of
ways of obtaining 50 good items out of 988 as the other stage. Of course, the sample is not
collected in two stages, but the sample can be viewed in this manner so as to determine the
number of ways that zero nonconforming units can be obtained. (Note the analogy with two
independent events, whose probability of simultaneous occurrence is equal to the product
of the probabilities of the occurrence of each one.) |

The general form for the hypergeometric distribution is as follows:

D N—-D
P( ) X n—x
X)) = —7——7—F7—7——
N
n
where N represents the number of items in the finite population of interest, D represents
the number of items in the population of the type for which a probability is to be calculated
(nonconforming units in the previous example), and N — D represents the number of items

of the other type (e.g., conforming units) that are in the population. The sample size is
represented by n, of which x are of the type for which the probability is to be calculated,

x =max(0,n — N + D), 1,2,...,min(n, D)

and n — x are of the other type. D must be at least as large as x, otherwise (?) would

be undefined, and, obviously, x cannot exceed n. Thus, x cannot exceed the minimum of n
and D [i.e., min(n, D)]. Similarly, x cannot be negative, but the smallest possible value of
x is not zero because N — D must not be less than n — x. Thus, N — D > n — x, so that
x>n— N+ D. Of course, n — N + D could be negative for a given combination of #,
N, and D, so the lower bound on x is thus x > max(0,n — N + D).

3.3.4 Poisson Distribution

This distribution can be used when dealing with rare events. One application in semicon-
ductor manufacturing would be to examine the number of chips that fail on the first day of
operation. The distribution has also been used in quality improvement work to construct
control charts for “nonconformities,” which have also been called defects. (A product can
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have one or more nonconformities without being proclaimed a “nonconforming unit,” so
the terms are not synonymous. Specifically, a very minor nonconformity might be consid-
ered almost inconsequential. See also the discussion in Section 11.7.2.) Other applications
include queueing theory and queues (i.e., waiting lines) in various places, including doc-
tors’ waiting rooms. There is a long list of other applications, including incoming calls at
a switchboard, counts of the numbers of victims of specific diseases, the distribution of
plants and animals in space, and number of misprints in a text.

The Poisson distribution is similar to the binomial distribution in that it is also a discrete
distribution. In fact, it can be used to approximate binomial probabilities when 7 is large
and p is small.

Specifically, if we again consider the binomial distribution

P() = (Z) p(1=py

and let n — oo and p — 0 in such a way that np remains constant (=A, say), it can be
shown that
7AAX

lim P(x) =

n—oo

x=0,1,2,... (3.8)

with “lim” being short for “limit.” The letter e represents the nonrepeating and nontermi-
nating mathematical constant 2.71828. . ., and the right-hand side of Eq. (3.8) is the Poisson
distribution, with A representing the mean of X. Since this distribution can be obtained as
a limiting form of the binomial distribution as n — oo and p — 0, it stands to reason that
it should be possible to use the Poisson distribution to approximate binomial probabilities,
when 7 is large and p is small, and obtain a reasonably good approximation (if a computer
is not available to produce the exact answer, which would be the simplest and most direct
approach).

The Poisson distribution is a valuable distribution in its own right; it is not just for approx-
imating binomial probabilities. The distribution is named for Simeon Poisson (1781-1840),
who presented it as a limit of the binomial distribution in 1837. It was stated earlier that the
Poisson distribution is used as a basis for constructing control charts for nonconformities.
Before the distribution can be applied in a physical setting, however, it must be determined
whether or not the assumptions for the distribution are at least approximately met. These
assumptions will be illustrated with the following example.

B EXAMPLE 3.8

Problem Statement

Assume that sheets of steel are being produced in a manufacturing process and the random
variable X is the number of surface scratches per square yard. Before it can be claimed that
X is a Poisson random variable, the following questions must be addressed.

1. Do the scratches occur randomly and independently of each other?

2. Is the possible number of scratches per square yard quite large (theoretically it should
be infinite)?

The second question might be answered in the affirmative, but perhaps not the first
one. If there are quite a few surface scratches on one section of steel, we might expect to
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observe a sizable number of scratches on adjacent sections. Or perhaps not. One important
point to keep in mind about modeling nonconformities, however, is that clustering may
occur. If so, then the Poisson distribution is inappropriate and some type of modified
Poisson distribution must be used. The need for such a modification has been increasingly
discussed in the statistical literature during the past ten years. See also the discussion in
Fang (2003), for example.

In any event, for this problem and for other practical problems our objective should
be to determine whether or not a particular distribution can logically serve as a model
(and nothing more) for physical phenomena under investigation. We can rarely expect
all of the assumptions to be met exactly; we can only hope that they are approximately
satisfied. We should be concerned, however, if there is evidence of a radical departure
from the assumptions, and our concern should lead us to seek alternative approaches to the
problem. |

B EXAMPLE 3.9

Problem Statement

A disk server receives requests from many client machines, with the probability that the
server receives k requests within a 10-millisecond interval modeled by a Poisson distribution
with a mean of 0.9. What is the probability that three requests are received during a 10-
millisecond interval?

Solution

P(X = 3) = exp(—0.9)(0.9)* /3! = .049. -

3.3.4.1 Testing for the Appropriateness of the Poisson Model

As with the binomial distribution and other distributions, we should test the appropriateness
of the Poisson distribution whenever its use as a model is contemplated. As with the binomial
distribution, the Poisson variance may understate the variance of the random variable that
is being modeled. Oftentimes this occurs because of clustering.

A simple, but somewhat crude, method for comparing the observed sample variance
with the Poisson variance was given by Snedecor and Cochran (1974, p. 198). Using
a goodness-of-fit approach, covered formally in Section 15.3, ¥ = Zle (c; —©)?/c is
distributed approximately as chi-square with (k — 1) degrees of freedom, where k denotes
the number of independent samples, ¢; represents the count in each sample, and ¢ denotes the
average of those counts. (The chi-square distribution is covered in Section 3.4.5.1.) Since
the sample variance of c is s? = fozl (¢; — ) /(k — 1), and ¢ is the estimator of both the
Poisson mean and Poisson variance, it follows that Y = (k — 1)(sample variance)/(estimator
of Poisson variance). To illustrate, if a sample of k = 10 counts is 5, 8,7,2,4,5, 3,2, 5, and
6, then ¢ = 4.70, s? = 4.01, and Y = 9(4.01)/(4.70) = 7.68. Since P(Y < 7.68) = .4332
using the chi-square approximation, there is no reason to doubt that the sample variance
can be represented by the Poisson variance. (Our conclusion would have been different if
the probability had been quite small, say, less than .05.)

How good is this approximation? Well, the approximation is based on the assumed
adequacy of the normal approximation to the Poisson distribution. That approximation is



3.3 COMMON DISCRETE DISTRIBUTIONS 91

generally assumed to be adequate when the Poisson mean is at least 5, although it is shown
in Chapter 11 that for control chart purposes this rule of thumb is inadequate. Here the
mean is only 4.70, but since the mean and variance differ very little, a formal test seems
unnecessary.

3.3.5 Geometric Distribution

Inrecent years this distribution has been used as an alternative to the binomial distribution, in
particular, and also as an alternative to the Poisson distribution. The need for the geometric
distribution is discussed and illustrated in Section 11.3.

The geometric distribution is frequently referred to as a “waiting time” distribution. This
can be illustrated by contrasting the geometric distribution with the binomial distribution
when a single success is considered. With the binomial distribution, the single success
could occur on the first trial, the nth trial, or any trial in between.

The geometric distribution is the appropriate distribution when the probability is obtained
of the single success occurring on the nth trial. (If there is interest in, say, the probability of
the kth success occurring on the nth trial, with £ greater than one, the appropriate distribution
is the negative binomial distribution, which we will not present here.)

In order for the first success to occur on the nth trial, the first n — 1 trials must obviously
result in failure. The probability of that occurring is (1 — p)"~'. Therefore, we multiply this
component by the probability of obtaining a success so as to obtain the probability mass
function as

Pmy=1-p)'p n=12...

with n denoting the number of trials that occur before the first success is observed (on the
nth trial). Thus, 7 is the random variable for the geometric distribution. The distribution for
n depends solely on p. If p is small, the mean of 7 is large, and conversely. It can be shown
that the mean is 1/p and the variance is (1 — p)/p>.

B EXAMPLE 3.10

Problem Statement

Assume that a quality engineer oversees the inspection of a certain product that a company
has had great difficulty producing defect-free. One hundred items are inspected at the
beginning of each shift and a worker reports finding a bad unit on the 12th unit that is
inspected. The engineer suspects a problem because only 3% of the units had been declared
bad and thus unacceptable in recent weeks.

Analysis

If the probability of an unacceptable unit were truly .03, the probability that the first such
unit were observed on the 12th item inspected is

P(12) = (0.97)!'(.03) = .0215
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This is a small probability but the engineer would probably be more interested in the
probability of observing a bad unit by the 12th unit inspected. That probability can be
shown to be .306 by computing the probabilities for each possible value of #n and summing
all of the probabilities. Since .306 is not a small probability, the value of p might be .03,
but a quick check of the equipment would probably be desirable. |

3.4 COMMON CONTINUOUS DISTRIBUTIONS

A continuous probability distribution is such that the random variable can assume any value
along a continuum, and such a distribution is called either a probability density function
or a probability distribution function. Either way, the abbreviation is pdf. Analogous to
the discrete case, the corresponding cumulative distribution function (cdf) is obtained as
F(x)= ff « J()dx with f(x) denoting the pdf.

For example, if X = height of an adult human being, then X can assume any value
between, say, 24 inches and 108 inches (Goliath’s estimated height). Although a person
might actually be 68.1374136 inches tall, that person is not likely to ever have his or
her height recorded as such. Thus, random variables that are continuous are, in essence,
“discretized” by the use of measuring instruments. Height, for example, is usually not
recorded to an accuracy greater than one-fourth of an inch.

3.4.1 Expected Value and Variance

The concepts of expected value and variance also apply to continuous distributions, but
the expressions are different. Specifically, summation is replaced by integration, so that
EX)= f x f(x)dx, where f(x) denotes the function that represents the probability dis-
tribution, and the limits of integration are over the range of X for which the distri-
bution is defined. Other expected value expressions, such as E(X?), are defined analo-
gously. For example, E(X 2= f x2 f(x)dx. Recall from Section 3.3.1 that E(*anything”)
= ) . (“anything”)P(x). (Similarly, for a continuous random variable we have
E(“anything”) = [ (“anything”)f (x) dx.

In particular, let g(x) denote an arbitrary function of x. Then E(g(x)) = f g(x) f(x)dx.
If g(x) is of the form g(x) = a + bx, then certain general results can be obtained, as the
reader is asked to show in Exercise 3.21. These results apply whether a distribution is
continuous or discrete.

Although the median of a probability distribution is used less often than the mean, the
median, x, is defined such that f_“;o f(x)dx =0.5.

3.4.2 Determining Probabilities for Continuous Random Variables

Probabilities for a discrete distribution can be obtained simply by inserting the value of the
random variable for which the probability is desired into the probability mass function, if
the probability is not actually given by the pmf, which occurs when the latter is a constant.
A continuous random variable does not have a finite number of possible values, however,
so a nonzero probability cannot be obtained for any one value.

Therefore, probabilities can be obtained only for an interval of possible values.
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DEFINITION

Probabilities for a continuous variable are obtained by integrating the probability
density function, f(x), over the range given in a probability statement. That is, P(a <
X <b)=[" f(x)dx.

For example, for a continuous uniform distribution defined on the interval (0, 1), f(x) =
1 and thus P(0.25 < X < 0.50) = [;55 (1)dx = 0.50 — 0.25 = .25. This answer should
be intuitively apparent since the probability statement covers one-fourth of the range of

possible values of the random variable and the probability is uniform over that interval.

3.4.3 Normal Distribution

It is somewhat unfortunate that any statistical distribution is called “normal,” since this
could easily create the false impression that this distribution is “typical” and the other
hundreds of distributions are “atypical.”

As Geary (1947) pointed out decades ago, there is no such thing as a normal distribution
in practice, but a normal distribution (also sometimes called a Gaussian distribution) is
often used to approximate the actual (unknown) distribution of many random variables.
The equation for the distribution is given by

(v — 2 2
"W 20 -0 <X <00

fx) =

o2

where it denotes the mean of the distribution, o represents the standard deviation, 7 is the
mathematical constant 3.14159. . ., and —oc0 < x < o0 indicates that the random variable
X can assume any real number. The latter should tell you that we are simply using a model
of reality because no real-life random variable is going to assume values that approach plus
infinity or minus infinity.

The fact that measurements, aptitude test scores, and so on have a lower bound greater
than zero does not mean that a normal distribution cannot serve as an adequate model,
however.

It should be noted that there is actually not just one normal distribution since there is a
different normal distribution for each combination of 1 and o, so there is theoretically an
infinite number of distinct normal distributions. The value of o determines the shape of the
distribution, and the value of © determines the location. This is illustrated in Figures 3.2

1y =50 Hp =60

Figure 3.2 Two normal distributions with different means.



94 PROBABILITY AND COMMON PROBABILITY DISTRIBUTIONS

Figure 3.3 Three normal distributions with the same mean and different variances.

and 3.3. [The height of the curve at any point x is given by f(x), but this is usually not of
any practical interest.]

In practice, ;1 and o are seldom known and must be estimated. A normal distribution
has some important properties, as illustrated in Figure 3.4. The number in each section of
the curve denotes the area under the curve in that section. For example, 0.34134 represents
the area under the curve between p and p + o, which is also the area between p and u
— o since the curve is symmetric with respect to p. That is, the shape of the distribution
above u is the mirror image of the shape of the distribution below ., as stated previously.
Stated differently, if we could fold one half of the distribution on top of the other half, the
halves would coincide. The total area under the curve equals one, which corresponds to a
total probability of one, with 0.5 on each side of u.

The reader should make note of the fact that the area between . — 30 and i + 30 is
0.9973 [= 2(0.34134 4 0.13591 + 0.02140)]. Thus, the probability is only 1 — 9973 =
.0027 that a value of the random variable will lie outside this interval. This relates to the
“3-sigma limits” on control charts, which are discussed in Chapter 11.

The areas given in Figure 3.4 can be determined from Table B in the Appendix of Statis-
tical Tables. That table is for a particular normal distribution specifically, the distribution
with 4 = 0 and o = 1. This distribution results when the transformation

X_
z=2"HF

(o2

is used with X ~ N (i, 0%) and “~” is read as “has,” meaning that the random variable
X has the indicated distribution, which in this case is a normal (V) distribution with the
indicated parameters.

.02140 .13591 .13591 .02140

u—-3c uw—2c u-oc u u+o w+20 u+3c

Figure 3.4 Areas under a normal curve.
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Subtracting the mean of a random variable and dividing by its standard deviation is the
way that a random variable is standardized. That is, if the distribution of X were known,
then the distribution of the standardized random variable would have a distribution of the
same name except that the mean would be zero and the standard deviation would be one.
Thus, in the present context, the transformation produces the standard normal distribution
with © = 0 and ¢ = 1, with the value of Z being the number of standard deviations that the
value of the random variable X is from . The transformation must be used before probabil-
ities for any normal distribution can be determined (unless some computing device is used).

B EXAMPLE 3.11

Assumption and Problem Statement

To illustrate, suppose that a shaft diameter has (approximately) a normal distribution with
= 0.625 (feet) and o = 0.01. If the diameter has an upper specification limit of 0.65, we
might wish to estimate the percentage of shafts whose diameters will exceed 0.65, in which
case a nonconformity will result.

Solution Since 0.65 = u + 2.50, we can see from Figure 3.4 that the percentage will
be less than 2.275% since this would be the percentage for the area under the curve beyond
1+ 20 . Specifically, we need to determine the shaded area given in Figure 3.5.

1=0.625 1L +2.56 = 0.65

Figure 3.5 Distribution of shaft diameters.

By using the transformation

X —
z=2"H
o
we obtain
0.65 — 0.625
=——=125
0.01

Note that this z-value (which is given in lowercase to differentiate it from the random
variable Z) is the number of standard deviations that the value of X is from . This will
always be the case, as indicated previously.

We can now say that the probability of observing a z-value greater than 2.5 is the same
as the probability of observing a shaft diameter in excess of 0.65. Thus, we need only
determine the shaded area in Figure 3.6.
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p=0 L+256=25

Figure 3.6 Standard normal distribution.

Since this shaded area does not cover ; = 0, we must look up the area for z = 2.5 in
Table B and subtract it from 0.5000. We thus obtain 0.5000 — 0.49379 = 0.00621. Putting
all of this together we obtain

P(X > 0.65) = P(Z > 2.5) = .00621

Thus, we expect approximately 0.621% of the shafts to not be in conformance with
the diameter specification. (The probability is approximate rather than exact since a distri-
bution was assumed that was approximately normal.) In subsequent chapters we will use
expressions such as z, to denote the standard normal distribution with an upper tail area
of «/2. Therefore, in this example z goe2; = 2.5. [ |

Of course, we could also obtain this numerical result using statistical software, as
illustrated for this problem in Section 3.4.3.1.

If there had been a lower specification limit, another z-value would have been calculated
and the area obtained from that value would be added to 0.00621 to produce the total
percentage of nonconforming shaft diameters. For example, if the lower specification limit
were 0.61, this would lead to a z-value of —1.5 and an area of 0.06681. The total percentage
would then be 6.681% 4 0.621% = 7.302%.

In determining areas under the z-curve, it is generally desirable (such as on class tests)
to shade in the appropriate region(s) before going to Table B. This will lessen the chances
of making an error such as subtracting a number from 0.5000 for a problem in which the
number should instead be added to 0.5000.

The determination of probabilities using the normal distribution should be accomplished
in accordance with the following step-by-step procedure:

1. Transform the probability statement on X to the equivalent statement in terms of Z
by using the transformation

2. Shade in the appropriate region(s) under the z-curve as determined from the proba-
bility statement on Z.

3. Find the area(s) in Table B and obtain the answer in accordance with the following:

It should also be noted that P(Z = a) = 0 for any value of a. Thus, it is not possible to
determine the probability that a shaft will have a diameter of, say, 0.640 feet; a probability
can be determined only for an interval. This is true for any continuous distribution.
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General Form of the Probability Statement Action to Be Taken

1.P(a<Z < b) (a<0,b>0) Look up the area in the table for z = —a and
z = b and add the two areas together to
obtain the answer

2.P(a<Z <b) 0 <a<b) Look up the area for z = a and subtract it
from the area for z = b.

3.P(a<Z <b) (a<b<0) Look up the area for z = —b and subtract it
from the area for z = —a.

4. P(Z > a) (a > 0) Look up the area for z = a and subtract it
from 0.5

5. P(Z > a) (a <0) Look up the area for z = —a and add it to 0.5.

6. P(Z < a) (a > 0) Look up the area for z = a and add it to 0.5.

7. P(Z < a) (a <0) Look up the area for z = —a and subtract it
from 0.5.

8.P(Z >aorZ <b) (@a>0,b <0) Lookuptheareaforz=aandz= —b, add
the two areas together and subtract the sum
from 1.0.

3.4.3.1 Software-Aided Normal Probability Computations
Although itis easy to use a normal table to determine probabilities, it is of course easier to use
statistical software. Any statistical software can be used to determine normal probabilities.
One advantage in using software is that it isn’t necessary to first convert to the standard
normal distribution.

For example, the problem posed in Section 3.4.1 of determining the probability of a
shaft exceeding 0.65 feet when normality is assumed with u = 0.625 and o = 0.01 can be
determined using standard statistical software such as MINITAB.

3.4.3.2 Testing the Normality Assumption

The most commonly used method of testing for normality is to construct a normal prob-
ability plot. This is essentially a plot of the observed frequencies against the expected
frequencies under the assumption of normality. The use of a normal probability plot is
illustrated in Section 6.1.2. Histograms are also frequently used, but as stated in Section
1.5.1, a histogram is not a reliable indicator of the shape of a population distribution, as the
shape of a histogram is strongly dependent on the number of classes that are used, with the
optimum number of classes dependent on the shape of the (unknown) distribution.

3.4.4 ¢-Distribution

Consider the transformation

s _X—n (3.9)
o/Jn

which is the standardization of the statistic X, and which is what we would use in computing
a probability for X as compared with computing a probability for X, under the assumption
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of normality, as was done in Section 3.4.1. That is, Z as given in Eq. (3.9) also has the
standard normal distribution when X has a normal distribution.

If o were unknown, however, which is the usual case, and we use s instead, we then
have a statistic and its distribution that have not yet been discussed.

That distribution is the ¢-distribution, which is often referred to as Student’s t-distribution.
“Student” was the pseudonym used by W. S. Gosset (1876—1937) for the statistical papers
that he wrote while employed as a brewer at St. James’ Gate Brewery in Dublin, Ireland.
According to one version of the story, the brewery had a rule that prohibited its employees
from publishing papers under their own names, hence the need for a pseudonym.

Gosset worked with small samples, often in situations in which it was unreasonable to
assume that o was known. He was also concerned with probability statements on X instead
of on X. Thus, he was more interested in, say, P(Y > a) than P(X > a). At the time of
his work (circa 1900), it was well known that if X has a normal distribution with mean
w and variance o2, then Z defined in Eq. (3.9) has a normal distribution with & = 0 and
o = 1. This stems from the fact that X ~ N(u, az/n) when X ~ N(u, 0%). Thus, X is
“standardized” in Eq. (3.9) by first subtracting its mean (which is the same as the mean of
X), and then dividing by its standard deviation. This is the same type of standardization
that was used for X in obtaining Z = (X — ) /o. The fact that the mean of X is the same
as the mean of X is a theoretical result that can easily be established by taking the expected
value of X. Specifically,

E(XX/n)=1/n)3 E(X) = 1/n)nw) = p

This result can easily be demonstrated for a finite population, as in the following example.
Assume that a (small) population consists of the numbers 1, 2, 3, and 4 and we want to find
the average of the sample averages in which the averaging is performed over all possible
samples of size two. We would then obtain the results given in Table 3.1.

There are six possible samples of size 2 and the average of the six values of X is 2.5.
Notice that this is also the average of the numbers 1, 2, 3, and 4. This same result would be
obtained for samples of any other size, as well as for finite populations of any other size.

It should also be observed that there is slightly less variability in the X values than
in the X values. For infinite populations (or approximately for finite populations that are
extremely large)

with n denoting the sample size.

TABLE 3.1 Sample Averages

Sample X

1.5
2.0
2.5
2.5
3.0
35

DR N =
AR WA LN
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When 7 is large (say, n > 30), the sample standard deviation, s, can be used as a substitute
for o in Eq. (3.9) so as to produce

L=

and Z will then be approximately normally distributed with ¢ = 0 and o> = 1. This will
not be true when 7 is small, however, so the distribution of the right-hand side of Eq. (3.10)
must be addressed for small-to-moderate sample sizes.

Gosset’s 1908 paper, entitled “The Probable Error of a Mean,” led to the ¢-distribution
in which

(3.10)

= Xon (3.11)
s/ ‘
although his paper did not exactly give Eq. (3.11). The equation for the distribution is
—n/2
1 I'(n/2) < t? )
1) = 1+ —00 <t <00
F® (= Dr I'l(n — 1)/2] n—1

although the equation is not generally needed and will not be used in this book. (I" refers
to the gamma function.)

What will be needed (and used) in subsequent sections of this book is the fact that it
can be shown that a ¢-distribution results when a N(0, 1) random variable is divided by a
chi-square random variable (see Section 3.4.5.1) that has been divided by its degrees of
freedom, with the #-statistic having the same degrees of freedom as the chi-square random
variable. That is

N, 1)

VX2

with x?2 denoting a chi-square random variable with v degrees of freedom. Unlike the
standard normal distribution and other normal distributions, the shape of the #-distribution
depends on the sample size, or more specifically on the degrees of freedom. The dependence
of the shape on the sample size is illustrated in Figure 3.7, and it can be shown mathemati-
cally that the ¢-distribution approaches the standard normal distribution as n — oo. There
is very little difference in the two distributions when n > 30, so Eq. (3.10) might be used
in place of Eq. (3.11).

by

(3.12)

Standard
“<. normal

0

Figure 3.7 Student’s z-distribution for various 7.
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Table C is used for the ¢-distribution. Unlike the table for the standard normal distribution
(Table B), Table C cannot be used to determine probabilities for the ¢-distribution. Its uses
will be illustrated in later chapters.

It is worth noting that the #-distribution arises not only when averages are used, but also
for other statistics. In general,

-6
=

Sg

where 0 denotes an arbitrary parameter to be estimated, 9 is the estimator based on a
sample, and sz is the sample estimator of o7. Of course, it follows from what was stated
earlier that, strictly speaking, 6 must have a normal distribution in order for the 7-statistic
to have a ¢-distribution, but in practice this works out okay as long as 0 is approximately
normally distributed.

The degrees of freedom for t are determined by the degrees of freedom for s5. Loosely
speaking, a degree of freedom is used whenever a parameter is estimated. The 7-statistic
in Eq. (3.11) has n — 1 degrees of freedom; other #-statistics can have fewer degrees of
freedom for fixed . In subsequent chapters, we will use expressions such as to 7,2, ,, denote
a t-variate with v degrees of freedom and a tail area of «/2. Thus, #3525 denotes a variate
from a ¢-distribution with 18 degrees of freedom and a tail area of 0.025.

3.4.5 Gamma Distribution

The gamma distribution is actually a family of distributions represented by the equation

flx) = a=le= /B x>0 (3.13)

—X
BT ()

for which « > 0 and B > 0 are parameters of the distribution and I' refers to the gamma
function. Almost all distributions do not have the mean and/or standard deviation given as
parameters (unlike the “normal” distribution), and the gamma distribution is typical in this
regard. The mean of a gamma random variable is 8 and the variance is a 8.

The gamma distribution is used in various applications, including queuing applications
and birth—death processes. It is also often used as a prior distribution in Bayesian applica-
tions, including Bayesian reliability estimation. (Reliability analysis is covered in Chapter
14.) Special cases of the gamma distribution are used more extensively, however, and those
special cases are considered in the next two sections.

3.4.5.1 Chi-Square Distribution

This distribution is a special case of the gamma distribution. Specifically, the chi-square
distribution is obtained by letting « =r/2 and 8 = 2 in Eq. (3.13), with r denoting the
degrees of freedom of the chi-square distribution. That is, the distribution is given by

1
_ -2
fx) = 2"/21"(r/2)x e x>0

This distribution plays a central role in statistics because, for example, the square of a
standard normal random variable has a chi-square distribution with one degree of freedom,
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Chi-square Distributions for 3, 5, and 6 Degrees of Freedom
0.25 Variable
—3
—-=-5
0.20 6
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Figure 3.8 Chi-square distributions for 3, 5, and 6 degrees of freedom.

and the sum of the squares of & independent normal random variables has a chi-square
distribution with degrees k of freedom. (Degrees of freedom are lost when parameters are
estimated, as indicated previously, so estimating the mean of a normal distribution will
cause a chi-square distribution with k£ degrees of freedom to have k — 1 degrees of freedom
when such estimation is used.)

The chi-square distribution will be involved in the methods that are presented in subse-
quent chapters.

Since the chi-square distribution is a gamma distribution, the mean must be « 8, which
simplifies to r, the degrees of freedom. Similarly, the variance of 8> simplifies to 2r. The
shape of a chi-square distribution depends on r, as shown in Figure 3.8, with the distribution
approaching a normal distribution as r increases.

3.4.5.2 Exponential Distribution
If we let « = 1 in Eq. (3.13), we obtain the exponential distribution, which historically has
been used extensively in the fields of life testing and reliability, although it does not play
quite so dominant a role in those areas today. It does, however, serve as a model in life
testing and reliability for items subjected to random fatal shocks and for the time to failure
for a complex system of nonredundant components. In queuing problems, it serves as a
model for the waiting time for the arrival of the next customer or the time between arrivals,
and in time-and-motion studies it can serve as a model for the time to complete a task.
The role of the exponential distribution in reliability analysis is discussed further and
illustrated in Chapter 14.
The equation for the distribution is

I _
flx) = ‘Ee /B x>0 (3.14)
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Three Exponential Distributions
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Figure 3.9 Exponential distributions with means of 2, 4, and 8.

with 8 denoting the mean of the distribution because, of course, «f = (1) = B. Similarly,
the variance is « 8% = (1)8? = B2. The shape of the distribution depends on the mean, B,
as shown in Figure 3.9.

When the mean is small, such as 2, most of the probability will be concentrated near
zero. This ceases to be true as the mean increases, as illustrated by Figure 3.9.

3.4.6 'Weibull Distribution

Like an exponential distribution, Weibull distributions have been used extensively in life
testing and reliability. In particular, a Weibull distribution is often used to model the tensile

strength of materials, especially brittle materials such as boron and carbon. The equation
for the (two-parameter) distribution is

F) = Blalx/a)yfte @@ x50

with ¢ > 0 and B > 0 denoting the parameters of the distribution; the former is the
scale parameter and the latter is the shape parameter. (There is also a three-parameter
Weibull distribution when a location parameter is used.) As with other distributions, the
shape of a Weibull distribution depends on the values of the parameters. When f =1, a
Weibull distribution reduces to an exponential distribution. The mean and the variance of
the Weibull distribution are given by (o)I'[(8 + 1)/8] and (@H{T(B+2)/8] — (LB +
1)/B1)?}, respectively, with I'(-) denoting the gamma function, as stated previously.

As with certain other distributions, the Weibull distribution has been written in an
alternative form in the literature, namely,

fx) = ot,B(oex)ﬂ_]e_(o"")/3 x>0
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References on how a Weibull distribution can be used in quality improvement work
include Berrettoni (1964), and the role that the Weibull distribution plays in reliability
analysis is discussed in Chapter 14. See also the applications in Murthy, Xie, and Jiang
(2004).

B EXAMPLE 3.12

It is important to realize that some of these distributions, such as the Weibull distribution,
are not just of academic interest. Lee and Matzo (1998) give leakage data from 94 randomly
selected fuel injectors. Eighty-five of the injectors have leakage, and these are to be used
in determining the leakage distribution. A histogram of the data using the power-of-2 rule
to determine the number of classes is given in Figure 3.10. We can see that the histogram
is highly skewed.

Histogram of Leakage

40

30

Frequency
N
o
1

—‘—I—l
T T T
0.00 0.57 1.14 1.71 2.28 2.85 3.42 3.99
Leakage

Figure 3.10 Histogram of leakage data.
|

Other distributions that are used less frequently in life testing and reliability are presented
and discussed briefly in Chapter 14, in addition to the distribution that is covered in the
next section.

3.4.7 Smallest Extreme Value Distribution

This is a less common distribution that is included in this chapter because it is mentioned
in Chapter 14 and because it has considerable utility as a reliability distribution. It is
also covered here because it is related to the Weibull distribution and has often been
used to analyze Weibull data. An extreme value of course can be either large or small,
and it is the smallest extreme value distribution that is useful in reliability applications
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(Chapter 14), such as the electrical strength of materials, as the largest extreme value
distribution is seldom used in failure data analysis (Chapter 14).
The pdf is

1
f() = 5 expl(y = 2)/8] - exp{—expl(y — 2)/3]} —00<y=<o0

where A is the location parameter that can assume any value, and § is the scale parameter,
which must be positive. It can be shown that log(Y) has a Weibull distribution.

The mean and variance of the extreme value distribution are A — 0.57728 and 1.64582,
respectively.

3.4.8 Lognormal Distribution

This is another distribution that has considerable utility in reliability analysis and which is
accordingly discussed in that context in Chapter 14. The pdf is given by

FO) = {1/12n) *yolyexp{—[log(y) — ul*/20?}  y >0

with p denoting the mean of log(Y) and o denoting the standard deviation of log(Y). Thus,
these are not the parameters of Y. The mean and variance of Y are exp(u + o2/2) and
exp(2i0 + o?)[exp(o?) — 1], respectively. (This is the two-parameter lognormal distribu-
tion; there is also a three-parameter lognormal distribution.)

The lognormal and normal distributions are related in that log(Y) has a normal distribu-
tion when Y has a lognormal distribution. The distribution will have different appearances
for different combinations of u and o. Figure 3.11 shows three lognormal distributions.
The distribution with the highest peak has 4 = 1 and o = 1; the distribution with the next
highest peak has © = 2 and o = 2; and the other distribution has & = 3 and o = 2. Notice
that the distributions differ considerably even though the parameter values do not differ
greatly.

3.4.9 F Distribution

This is another distribution that plays a prominent role in statistical theory and applications.
If two independent chi-square random variables are each divided by their respective degrees
of freedom, and a fraction is formed from these two fractions, the result is a random variable
that has an F distribution. That is,

x&l/vl

xi/vz

Fy., = 0 < F <o0)

with v and v, denoting the degrees of freedom for each of the chi-square random variables,
which are also the numerator and denominator degrees of freedom, respectively, for the
random variable denoted here by F' (which has an F distribution).

The shape of the distribution depends on v; and v,, so, as with the other distributions
discussed in this chapter, there is not a single F distribution, but rather a family of such
distributions. Three of these distributions are given in Figure 3.12, with the distribution
with the highest peak having (v;, v;) = (5, 30); with the second highest peak being (3, 20),
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Three lognormal distributions
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Figure 3.11 Three lognormal distributions.

and the other being (4, 15). Notice that small changes in v; and moderate changes in v,
have very little effect on the distribution.

Table D at the end of the book gives the values of F for different combinations of v; and
v, as well as for « = 0.01 and 0.05, with o denoting the upper tail area (the upper tail is
the only one that is used in most statistical procedures).

It is worth noting the relationship between the ¢-distribution and the F-distribution, as
this relationship is used in Section 12.2.1.2. Consider the square of the #-statistic in Eq.
(3.12):

2
tf::gﬁKngD- (3.15)
X5 /v
We recognize that the denominator is in the form of the denominator of the F-statistic, so
we need only show (or accept) that the numerator has a chi-square distribution with one
degree of freedom. As stated in Section 3.4.5.1, the square of a standard normal random
variable is a chi-square random variable with one degree of freedom. (The proof of this
result is straightforward but is beyond the intended scope of this book.) Since the numerator
is a chi-square random variable with one degree of freedom, it follows that tf is F1,; that
is, the square of the 7-statistic is an F-statistic that has an distribution with one degree of
freedom for the numerator and v degrees of freedom for the denominator.
A result that is sometimes useful is

1

Fovm = F
I—a,v2,1;

Using this result, lower-tail F-values can easily be obtained from upper-tail F-values. For
example, assume that we need F gs54.2¢. This is equal to 1/F ¢s5264 = 1/5.7635 = 0.1735,
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Three F distributions
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Figure 3.12 Three F distributions.

with o denoting the upper tail area. Of course, computational aids such as this are not as
important in today’s computing environment as they were decades ago, but they can still
be useful on occasion.

3.5 GENERAL DISTRIBUTION FITTING

The fitting of probability distributions is a lost art, and consequently the best-known
distributions are apt to be fit to data, or even worse, simply assumed to be adequate,
when a distribution that is “between” two common distributions might be the best choice.

A continuous distribution is usually characterized by its first four moments, with mo-
ments being, by definition, either central moments or noncentral moments. The rth non-
central population moment is defined as E(X"), with the corresponding central moment
defined as E(X — p)". Thus, “central” means moments about the mean, with noncentral
moments being moments about zero. Thus, E(X) = pu is the first noncentral moment and
E(X — p)?* = o2 is the second central moment.

The third and fourth (central) moments are E(X — u)® and E(X — p)*, respectively.
These measure the skewness and the kurtosis, respectively, although they are generally made
into unit-free number expressions by dividing the third moment by (2)*? and dividing
the fourth moment by (o2)>. These expressions are generally denoted by /B, and S,
respectively. The former is a measure of the extent to which the distribution departs from
a symmetric distribution, and the latter is a measure of how “peaked” a distribution is,
although the measure is also a function of whether the tails of the distribution are heavy or
not. For a normal distribution, /8; = 0 and 8, = 3.0.
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The moments for a distribution can be determined most efficiently by using the moment
generating function for a distribution, provided that the moment generating function exists.
The function is obtained, for both discrete and continuous distributions, by computing
E(e™). Moment generating functions are covered in books on mathematical statistics but
will not be pursued here.

The first two sample moments are the sample mean and the sample variance, respectively.
Although the skewness and kurtosis sample statistics are defined as Y_ (x — ¥)?/n and
3" (x — X)*/n, respectively, they, like their population counterparts, are made into unit-free
numbers by dividing by (s*)*? and (s?)?, respectively. (Note that the divisor for each of these
is n and not the n — 1 that is used for the sample variance. In general, the divisor for sample
moments is 7; the sample variance being the exception.). Values of these statistics that are,
for a large sample, close to 0 and 3.0, respectively, would suggest fitting a distribution that
is close to a normal distribution.

The selection of a distribution must necessarily be done with the aid of a computer, and
there are software packages available for this purpose. It is better to use a computer-aided
distribution fitting approach than to restrict one’s attention to commonly used distributions
that might not provide a good fit to a particular set of data.

After a distribution is selected by matching sample moments with population moments,
confirmation can be made by using a probability plot, which was mentioned previously. The
plot, which is illustrated in Section 6.1.2 in testing for a normal distribution, is a graphical
way of determining if the sample data match up well with what would be expected if the
data had come from the hypothesized distribution. There are various ways of constructing a
probability plot, but the general idea is to see if the sample data are close to the percentiles
of the distribution that is under consideration. Probability paper was used decades ago,
with the points plotted by hand on the paper. The percentiles of the distribution on the
vertical axis would be appropriately scaled and if the ordered sample data matched up well
with those percentiles, the data would plot almost as a straight line. Now we generally use
computers in place of probability paper and Figures 6.1 and 6.2 are computer-generated
normal probability plots that are of the probability paper type. Probability plots can also
easily be constructed for many other distributions, and MINITAB provides the capability
for constructing such a plot for 13 other distributions.

3.6 HOW TO SELECT A DISTRIBUTION

There are certain guiding principles that can be followed in selecting a probability distri-
bution in a particular application, and for a student to determine which distribution to use
on a test problem.

A distinction must be made between when to use the binomial distribution and when
to use the Poisson distribution. One main difference is that the largest possible value of
the binomial random variable is the sample size, whereas there is no upper bound on the
largest possible value of the Poisson random variable. A binomial distribution can be used
when there are Bernoulli trials with two possible outcomes for each trial, and although we
can use the Poisson distribution to model, say, the number of defects, we do not have an
inspection unit that is declared to either have or not have a defect. So there is no Bernoulli
trial.

Among the other discrete distributions, it is also necessary to distinguish between the
hypergeometric distribution and the binomial distribution. There are two possible outcomes
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in practical applications of each, but with the former, sampling is done without replacement
from a finite population, which is not the case with the binomial distribution. There is
also a subtle difference between the geometric distribution and the binomial distribution,
with the former being a waiting time distribution. Clearly, there is a difference between the
probability of observing the first defective capacitor on the fourth capacitor examined (a
geometric distribution problem), and the probability of observing one defective capacitor
in the first four that are examined.

The picture is somewhat different with continuous distributions, as some distributions
come into play primarily from a theoretical perspective as being distributions of functions of
sample statistics, whereas other distributions are used for modeling. Whereas the wording
of a problem or objective can determine which discrete distribution to use, it is somewhat
different with continuous distributions. Subject-matter knowledge will often guide the
selection of a distribution, as in reliability work. Although the term “normal distribution”
suggests that this distribution is used more than any other continuous distribution, which is
undoubtedly true as normality or approximate normality is assumed when many statistical
procedures are used, there are many situations, including reliability work, when a skewed
distribution is required. The ¢-distribution results when normality is assumed for individual
observations, so it is tied-in with the normal distribution.

3.7 SUMMARY

The choice of which distribution to select for the purpose of determining probabilities such
as those given in this chapter and for other purposes depends to a great extent on how much
accuracy is required as well as the availability of tables and/or software.

Many statistical methods are based on the assumption of a normal distribution for
individual observations and in the case of regression analysis (Chapters 8 and 9), the
error term in a regression model is assumed to have a normal distribution. Similarly, all
of the control charts presented in Chapter 11 have an implicit assumption of either a
normal distribution (approximately) or the adequacy of the approximation of the normal
distribution to another distribution. The consequences of making such an assumption when
the assumption is untenable will vary from chart to chart, and in general from statistical
method to statistical method. This is discussed in subsequent chapters.

In general, distribution fitting is quite important, although it is somewhat of a lost art.
Using as many as the first four sample moments (mean, variance, and standardized skewness
and kurtosis), one or more distributions could be fit to the data and tested for the quality
of the fit. The testing can be performed using numerical measures such as goodness-of-fit
tests (see Chapter 16) and by constructing probability plots, as in Chapter 6.

Many probability distributions were presented in this chapter. These are not simply
of academic interest as some of them are used extensively in engineering. For example,
even extreme value distributions (see Section 3.4.7), which are generally not presented in
introductory statistics texts, are used frequently in practice. An example is the paper by
J.-H. Lin and C. C. Wen “Probability Analysis of Seismic Pounding of Adjacent Buildings”
(Earthquake Engineering and Structural Dynamics, 30, 1339-1357, 2001). One of the
major findings of their study is that the Type I extreme value distribution provides a good fit
to the probability distribution of the required separation distance to avoid pounding under
certain earthquake motions. (There is one Type I extreme value distribution for the largest
value and one for the smallest value.)
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EXERCISES

3.1. Whatis the numerical value of P(B|A) when A and B are mutually exclusive events?

3.2. Show algebraically why P(M3|N) had to be equal to P(M,|N) in the modified ex-
ample in Section 3.2.1.1 due to the fact that P(N|M,)/P(N|M3) = P(M3)/P(M>).

3.3. A survey shows that 40% of the residents of a particular town read the morning
paper, 65% read the afternoon paper, and 10% read both.

(a) What is the probability that a person selected at random reads the morning or
the afternoon paper, or both?

(b) Now assume that the morning and afternoon papers are subsequently com-
bined, as occurred with the Atlanta papers in February 2002, with the paper
delivered in the morning. If the paper doesn’t lose (or gain) any subscribers,
can the probability that a person selected at random receives the single paper
be determined? If so, what is the probability? If not, explain why not.

3.4. A system is comprised partly of three parallel circuits. The system will function
at a certain point if at least two of the circuits are functioning. If the circuits
function independently and the probability that each one is functioning at any point
in time is .9, what is the probability that the system is functioning (relative to those
circuits)?

3.5. Given P(A) =0.3, P(B) =0.5,and P(A|B) = 0.4, find P(BIA).

3.6. A die is rolled and a coin is tossed. Find the probability of obtaining a 1, 3, 4, or 6,
and a head or a tail.
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Give an example of a discrete random variable and indicate its possible values.
Then assign probabilities so as to create a probability mass function.

A company produces 150,000 units of a certain product each day. Think of this
as a sample from a population for which 0.4% of the units are nonconforming.
Letting X denote the number of nonconforming units per day, what is the nu-
merical value of 02? (Assume that the units are independent, but as a practical
matter does it seem as though one could automatically assume this? Why or why
not?)

Given the probability density function f(x)=4x,1 < x < +/1.5, determine
P10<X <1.1).

Assume a normal distribution with a known standard deviation, with 34% of the
observations contained in the interval u =+ a. If the standard deviation is reduced
by 50% and the mean is unchanged, what percentage of observations will lie in the
interval u 4 a?

Assume that the amount of time a customer spends waiting in a particular su-
permarket checkout lane is a random variable with a mean of 8.2 minutes and a
standard deviation of 1.5 minutes. Suppose that a random sample of 100 customers
is observed.

(a) Determine the approximate probability that the average waiting time for the
100 customers in the sample is at least 8.4 minutes.
(b) Explain why only an approximate answer can be given.

A random variable X has a normal distribution with a mean of 25 and a variance of
15. Determine a such that P(X < a) = .9850.

A balanced coin is tossed six times. What is the probability that at least one head is
observed?

Let X, X, be a random sample of size n = 2 from a discrete uniform distribution
withf(x) = 1/4,x=1,2,3,4. LetY = X| — X,. Determine the mean and variance
of Y.

Explain how you might proceed to determine a continuous distribution that provides
a good fit to your set of data.

The probability that a customer’s order is shipped on time is .90. A particular
customer places three orders, and the orders are placed far enough apart in time
that they can be considered to be independent events. What is the probability that
exactly two of the three orders are shipped on time?

Explain what is wrong with the following statement: “The possible values of a
binomial random variable are 0 and 1.”

Given P(A|B) = .4, P(B|A) = .3, and P(A) = .2, determine P(B).
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Quality improvement results when variation is reduced. Assume a normal distribu-
tion with a known standard deviation, with 34% of the observations contained in
the interval p % a. If the standard deviation is reduced by 20% but the mean is not
kept on target and increases by 10% from g, obtain if possible the percentage of
observations that will lie in the interval p & a? If it is not possible, explain why the
number cannot be obtained.

Show that E(X — p)* = E(X?) — (E(X))*.
Show that E(a + bX) = a + bE(X) and Var(a + bX) = b*Var(X).

Given: f(x) = 3x? 0<x<l.

(a) Graph the function.

(b) On the basis of your graph, should P(0 < X < 0.5) be less than .5, equal to .5,
or greater than .57 Explain.

(c) Answer the same question for E(X).

(d) Compute P(0 < X < 0.5).

(e) Determine E(X).

A company employs three different levels of computer technicians, which it des-
ignates with classifications of A, B, and C. Thirty percent are in classifications A
and B, and 40% are in C. Only 20% of the “A” technicians are women, whereas the
percentages for B and C are 30% and 35%, respectively. Assume that one technician
has been selected randomly to serve as an instructor for a group of trainees. If the
person selected is a man, what is the probability that he has a B classification?

Assume that flaws per sheet of glass can be represented by a Poisson distribution,
with an average of 0.7 flaws per sheet. What is the probability that a randomly
selected sheet of glass has more than one flaw?

Assume that you use a random number generator to generate an integer from the
set of integers 14 and the selection is truly random. Let X represent the value of
the selected integer and compute Var(X).

Explain, mathematically, why the variance of a random variable is nonnegative
when the possible values of a random variable (either discrete or continuous) are all
negative. [An example would be f(x) = 1/5,x = —6, —4, —3, —2, —1.] What would
be the nature of the distribution of a random variable that has a zero variance?

If a die is rolled three times, give the probability distribution for the number of twos
that are observed.

In a throw of 12 dice, let X; denote the number of dice that show j. Find E(X ).

You are contemplating investing in a particular stock tomorrow and one of your
brokers believes there is a 40% chance that the stock will increase over the next few
weeks, a 20% chance that the price will be essentially unchanged, and a 40% chance
that the price will decline. You ask another broker and she gives you 35%, 30%,
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and 35%, respectively, for the three possible outcomes. Assume that you accept
these percentages. If X = the outcome under the first broker’s judgment and ¥ =
the outcome under the second broker’s judgment, which random variable has the
smaller variance? What course of action would you follow?

Critique the following statement. “I don’t see how we can assume that any random
variable in an engineering application has a normal distribution because the range
of any practical engineering variable will not be minus infinity to plus infinity, yet
this is the range of any normal distribution.”

Assume that time to fill an order for condensers of all types at a particular company
is assumed to have (roughly) a normal distribution. As a result of an influx of new
employees, it is claimed that the mean time has increased but not the variance, and
the distribution is still approximately normal. Critique the following statement: “The
distribution of times may appear to have the same variance, but if the distribution is
normal, the variance must have decreased because the increase in time has moved
the distribution closer to a conceptual upper boundary on time to fill an order (say,
2 months), so that the range of possible times has decreased and so has the variance.”

Let the probability mass function (pmif) of X be given by

x PX = x)
5 1/4
6 1/4
7 1/4
8 1/4

Let Y = X + 6. Give the pmf of Y and determine E(Y).

If X and Y are independent random variables, o> = 14, ay2 =20, E(X) = 20, and
E(Y) = 40, what must be the numerical value of E(XY)?

A balanced coin is flipped n times. If the probability of observing zero heads is
1/64, what is the probability of observing n heads?

Assume that X ~ N(u = 50, 02 = 16).

(a) Determine P(X > 55).

(b) Determine P(X = 48).

(c) Determine the lower bound on how large the sample size must have been if
P(X > 51) < .06681.

Critique the following statement: “People always say that aptitude test scores, such
as SAT scores, have a normal distribution, but that can’t be right because test scores
are discrete and the normal distribution is a continuous distribution.”

The following question was posed on an Internet message board: “If I have three
machines in a department that have the potential to run for 450 minutes per



EXERCISES 113

3.38.

3.39.

3.40.

341.

3.42.

3.43.

3.44.

3.45.

3.46.

day, but on average each one runs for only 64 minutes, what is the probability
of them all running at the same time?” The person wanted to know if one of
the machines could be replaced, this being the motivation for the question. Can
this answer be determined, and will the computed probability address the central
issue?

Three construction engineers are asked how long a particular construction project
should take to complete. If we assign equal weight to their estimates, and those
estimates are 256 days, 280 days, and 245 days, respectively, can a probability
distribution be formed from this information? If so, what is the name of the dis-
tribution? In particular, is the distribution discrete or continuous? If X denotes the
time to complete the project, what is E(X)?

The term “engineering data” is often used in the field of engineering to represent
relationships, such as the following relationship: tensile strength (ksi) = 0.10 +
0.36(CMMH), with CMMH denoting “composite matrix microhardness.” If we
wanted to model tensile strength in a particular application by using an appropriate
statistical distribution, would the relationship between tensile strength and CMMH
likely be of any value in selecting a distribution? What information must be known,
in general, before one could attempt to select a model?

A two-stage decision-making process is in effect. In the first stage, one of two
possible courses of action (A; and A,) is to be taken, and in the second stage there
are three possible courses of action (Bj, B, and Bj3). If each of the two possible
courses of action has an equal chance of occurring in the first stage and B3 has a
probability of .40 of being selected with the other two being equally likely, what is
the probability of A; and either B or B3 being selected if the course of action in the
second stage is independent of the selection in the first stage?

Which one of the four moments discussed in the chapter is in the original unit of
measurement?

What is always the numerical value of the first population moment about the mean?
If P(A|B) = P(A), show that P(B|A) must equal P(B).

Determine the second moment about the mean for the continuous uniform distribu-
tion defined on the unit square in Section 3.4.2.

Given: f(x)=1/4 0<x <4
(a) Show that this is a probability density function.
(b) Sketch the graph of the function. Is this one of the distribution types covered in

the chapter? Explain.
(¢) Determine Var(X).

Explain why moments for a normal distribution can be computed directly using
integration, but probabilities under a normal curve cannot, in general, also be
computed using integration.
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Given the following pdf, determine E(X) and the variance:

X |2 4 6 7
PX)|1/4 1/3 1/6 1/4

Assume an arbitrary pmf, f(x). Show that Var(x) cannot be negative.

Assume that you are given (most of) a pmf.. If you were given the following, explain
why the listed probabilities could not be correct:
X ‘ 1 2 3 4 5
PX)|1/8 1/4 1/3 172 ?

With Z ~ N(0, 1), find zy such that P(Z > zy) = .8849.

Assume that in a very large town, 20% of the voters favor a particular candidate
for political office. Assume that five voters are selected at random for a television
interview and asked for their preferences. If they express their preferences indepen-
dently, what is the probability that at most one of them will indicate a preference
for the other candidate?

Assume a binomial distribution and let a denote the probability of zero successes
in a particular application. Express the probability of one success as a function of
a.

Consider a binomial distribution problem with P(X = n) = 1/128. Whatis P(X =
0)? Can there be more than one answer? Explain.

Explain the conditions under which the binomial distribution would be inappropriate
even when there are only two possible outcomes.

Given the following probability mass function—f(x) = a, 2 < x < 8—determine
the numerical value of a.

Why does the standard normal distribution have shorter tails than the 7-distribution?
Stated differently, why does Z = (X — )/ (6/+/n) have less variability than

=X = w/s/ym)?

Assume that X ~ N(u =20,0 =3).If Y =2X — 8:

(a) What are the mean and variance of Y?

(b) Would your answers be different if you weren’t asked to assume normality?
Explain.

Critique the following statement: “For a random sample of size n, the possible
values of a Poisson random variable are O through n.”

Given: f(x) =4x3,0 < x < a:
(a) What must be the value of « for the function to be a pdf?
(b) Explain why E(X) is not midway between O and a.
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When a variable is standardized, what will be the mean of the standardized variable?

The August 2, 2000 edition of People’s Daily stated that, according to a national
survey of 4,000 people, 91.6% of Chinese are in favor of amending the existing
Marriage Law. Approximate the probability that out of 5 randomly selected Chinese
from the same population to which the survey was applied, at least 4 will favor an
amendment. Why is this an approximation and not an exact value?

Western Mine Engineering, Inc. conducts surveys to obtain data on the operations

of mines in the United States and elsewhere. In their 2002 survey of 180 U.S.

mines, all 82 of the union mines indicated that workers’ medical insurance was

either partially or completely paid by the company, with 97 of the non-union mines
indicating that the company paid the insurance.

(a) If you obtained a random sample of five of the 180 U.S. mines that paid all or
part of their workers’ medical insurance, what is the probability that at least
three of the mines in your sample were non-union mines?

(b) If you randomly selected one of the 180 U.S. mines, what is the probability that
it was a non-union mine?

(¢) If you randomly select two mines (without replacement from the 180 mines),
what is the probability that one is a union mine and the other is a non-union
mine?

(d) If you randomly selected one of the 180 mines and discovered that you have
obtained one that pays all or part of the medical insurance, what is the probability
that the mine you selected was a non-union mine?

Acceptance sampling methods are used in industry to make decisions about whether
to accept or reject a shipment, for example. Assume that you have a shipment of 25
condensers and you decide to inspect 5, without replacement. You will reject the
shipment if at least one of the five is defective.

(a) In the absence of any information regarding past or current quality, does this
appear to be a good decision rule?

(b) What is the probability of rejecting the shipment if the latter contains one bad
condenser?

Give two reasons why the function f(x) = x, —1 < x < 1, could not be a probability
density function (pdf).

Consider the function f(x) = x> with the range of the function as defined in Exercise
3.64. Is this a pdf? Explain.

Explain why a sample size does not come into play when computing Poisson
probabilities, unlike the case with binomial probabilities.

There is a 25% chance that a particular company will go with contractor A for
certain work that it needs to have done, and a 75% chance that it will go with
contractor B. Contractor A finishes 90% of his work on time and contractor B
finishes 88% of his work on time. The work that the company wanted done was
completed on time, but the identity of the contractor was not widely announced.
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What is the probability that the contractor selected for the job was contractor
A?

Assume that two random numbers are generated from the standard normal distri-
bution.

(a) What is the probability that they both exceeded 1.60?
(b) What is the probability that at most one of the two numbers was less than
1.87?

Assume that one of the eight members of the customer service department of a
particular retailer is to be randomly selected to perform a particular unsavory task.
Numbers are to be generated from the unit uniform distribution [i.e., f(x) = 1,
0 < x < 1]. The employees are assigned numbers 1-8 and the first random number
is assigned to employee #1, the second random number to employee #2, and so on.
The first employee whose assigned random number is greater than 0.5 is assigned
the task.

(a) What is the probability that employee #4 is picked for the job?

(b) What is the probability that no employee is selected and the process has to be

repeated?

Engineers frequently define their data interval as the mean plus and minus the
standard deviation.

(a) Under the assumption of normality, what percentage of values in the population
would this cover if the reference had been to u and o?

(b) Since the reference is actually to X =+ s, what is the probability that for a sample
of 30 observations the interval given by X & s will be exactly the same as the
interval given by u £+ o?

Bayes’ theorem is often covered in engineering statistics courses. A student is

skeptical of its value in engineering, however, and makes the following statement

after class one day: “In working a Bayes problem, one is generally going backward

in time. I am taking another class that is covering the contributions of W. Edwards

Deming. He claimed that ‘statistics is prediction,” which obviously means that we

are moving forward in time. I don’t see how any statistical tool that takes us back

in time can be of any value whatsoever.”

(a) How would you respond to this student?

(b) If possible, give an application of Bayes’ theorem from your field of engi-
neering or science. If you are unable to do so, do you agree with the student?
Explain.

Consider the pdf f(x) =cx+d, —-1<x<1.

(a) Is it necessary to know the value of ¢ in order to solve for d? If so, explain why;
if not, solve for the value of d.

(b) If P(0.2 < X < 0.8) can be determined from the information that is given,
obtain the probability. If not, explain why the probability cannot be obtained.

(¢) Obtain E(X) as a function of c.

Assume X ~ N(u, o) . Obtain E(X?) as a function of 4 and o2.
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In answering questions on a multiple-choice exam, a student either knows the
answer or guesses, with the probability of guessing correctly on each question
being 0.25 since each question has four alternatives. Let p denote the probability
that the student knows the answer to a particular question.

(a) If a student answered the question correctly, what is the probability that the
student guessed, as a function of p?
(b) Show that, even though p is unknown, the probability cannot exceed one.

Assume that 10 individuals are to be tested for a certain type of contagious illness
and a blood test is to be performed, initially for the entire group. That is, the blood
samples will be combined and tested, as it is suspected that no one has the illness,
so there will be a cost saving by performing a combined test. If that test is positive,
then each individual will be tested. If the probability that a person has an illness
is .006 for each of the 10 individuals, can the probability that the test shows a
positive result be determined from the information given? If not, what additional
information is needed?

A computer program is used to randomly select a point from an interval of length

M, starting from 0 (M > 0).

(a) (Harder problem) Let the point divide the interval into two segments and deter-
mine the probability that the ratio of the shorter to the longer segment is less
than .20.

(b) Let X denote the value that will result when the computer program is used and
now assume that the interval begins at A and ends at B. Determine Var(X) as a
function of A and B.

Becoming proficient at statistical thinking is more important than the mastery
of any particular statistical technique. Consider the following. There are certain
organizations that have limited their memberships to males and have not had female
members. A person applies for membership with his or her height indicated, but
gender not filled in. Since the name “Kim” can signify either a man or a woman,
the membership committee is unsure of the gender of an applicant with this first
name. The person’s height is given as 5ft 7%in. The mean heights of all men and
all women are of course known (approximately), and assume that the standard
deviations are also known approximately. Assume that heights are approximately
normally distributed for each population and explain how the methods of this chapter
might be used to determine whether the applicant is more likely a woman or a man.

A department has six senior faculty members and three junior faculty members. The
membership of a departmental committee of size 3 is to be determined randomly.
What is the probability that at most one junior faculty member is selected to be on
the committee?

Service calls come to a maintenance center in accordance with a Poisson process at
arate of A = 2.5 calls every 5 minutes. What is the probability that at least one call
comes in 1 minute?

A random variable has a normal distribution with a mean of 0. If P(X > 10) =.119,
what is the numerical value of o ?
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The lifetime of a device has an exponential distribution with a mean of 100 hours.
What is the probability that the device fails before 100 hours have passed? Explain
why this probability differs considerably from .5 even though the mean is 100.

Assume that a particular radio contains five transistors and two of them are defective.
Three transistors are selected at random, removed from the radio, and inspected.
Let X denote the number of nonconforming transistors observed and determine the
probability mass function of X.

Assume that X has an exponential distribution with a mean of 80. Determine the
median of the distribution.

(Harder problem) Demonstrate the memoryless property of an exponential distri-
bution by showing that the probability that a capacitor will function for at least 100
more hours does not depend on how long it has been functional.

Assume that all units of a particular item are inspected as they are manufactured.
What is the probability that the first nonconforming unit occurs on the 12th item
inspected if the probability that each unit is nonconforming is .01?

Assume that a particular automotive repair facility doubles as an emission testing
station, and the manager believes that arrivals for emission testing essentially follow
a Poisson distribution with a mean of 3 arrivals per hour. The station can handle
this many arrivals, but it cannot, for example, handle 6 arrivals in an hour. What is
the probability of the latter occurring?

Consider a particular experiment with two outcomes for which the binomial distri-
bution seemed to be an appropriate model, with p = 1/8. The probability of n — 1
successes is equal to 350 times the probability of n successes. What is the numerical
value of n?

What is the probability that a 6 is observed on the eighth roll of a die when a die is
rolled multiple times?

(Harder problem) Two students in your engineering statistics class decide to test
their knowledge of probability, which has very recently been covered in class. They
each use MINITAB or other statistical software to generate a number that has a
continuous uniform distribution over a specified interval. The first student uses
the interval 0-3 and the second student uses the interval 0—1. Before the random
numbers are obtained, the students compute the probability that the first student’s
number will be at least twice the second student’s number.

(a) What is that probability?

(b) What is the probability after the random numbers have been obtained? Explain.
(c) What is the probability that the maximum of the two numbers is at most 1/2?
(d) What is the probability that the minimum of the two numbers is at least 1/4?7

A power network involves substations A, B, and C. Overloads at any of these
substations might result in a blackout of the entire system. Records over a very long
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period of time indicate that if substation A alone experiences an overload, there is
a 1% chance of a network blackout, with the percentages for B and C being 2%
and 3%, respectively. During a heat wave there is a 55% chance that substation A
alone will experience an overload, with the percentages for stations B and C being
30% and 15%, respectively. (Although two or more substations have failed, this has
happened so rarely that we may use 0% as the percentage of the time that it has
occurred, as that is the number to the nearest integer.) A blackout due to an overload
occurred during a particular heat wave. What is the probability that the blackout
occurred at substation A?

You notice that only 1 out of 20 cars that are parked in a particular tow-away
zone for at least 10 minutes is actually towed. Because of very bad weather, you
are motivated to park your car as close as possible to a building in which you have
short, 10—15-minute meetings for two consecutive days. You decide to take a chance
and park in the tow-away zone for your meetings on those two days. You decide,
however, that if your car is towed on the first day that you won’t park there on the
second day. What is the probability that your car will be towed? (Have you made
an assumption in working the problem that might be unrealistic? Explain.)

Phone messages come to your desk at a rate of 3 per hour. Your voice mail isn’t
working properly and since your secretary is off for the day, you are afraid that you
will miss a call if you step out of your office for 15 minutes.

(a) Can the probability of this occurring be determined from the information that
is given? Why or why not?

(b) Would it be possible to assume that the calls have a binomial distribution? Why
or why not?

(c) Work the problem under the assumption of a Poisson distribution with a mean
of 2 calls per hour. Is this a reasonable assumption?

Two students in a statistics class are told that their standard scores (i.e., z-scores as
in Section 3.4.3 except that X and s are used instead of u and o, respectively) on a
test were 0.8 and —0.2, respectively. If their grades were 88 and 68, what were the
numerical values of X and s?

Consider the value of 7 g,5. Determine, using software if appropriate, the value of
« in z,p such that the z-value is equal to #1;_gps.

Consider the probability statement P(2z4/5 > zg) = .236 , with z ~ N(0, 1). De-
termine the numerical value of z;. What is the numerical value of «?

A probability problem that gained nationwide attention several years ago was related
to the game show “Let’s Make a Deal.” The following question was posed in the
“Ask Marilyn” column in Parade magazine in 1990:

Suppose you are on a game show, and you'’re given the choice of three doors. Behind one
door is a car; behind the others, goats. You pick a door, say, #1, and the host, who knows
what’s behind the doors, opens another door, say, #3, which has a goat. He says to you
“Do you want to pick door #2?” Is it to your advantage to switch choice of doors?
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The question can be answered using probability, but the question confounded a large
number of people who initially thought that they knew the answer, but in fact they
did not. What is your answer? If you wish to compare your answer and reasoning
with the “final word” on the matter that appeared in the statistical literature, you
are invited to read “Let’s Make a Deal: The Player’s Dilemma” (with commentary),
by J. P. Morgan, N. G. Chaganty, R. C. Dahiya, and M. J. Doviak, The American
Statistician, 45(4), 284-289, 1991.

3.97. A department with seven people is to have a meeting and they will all be seated
at a round table with seven chairs. Two members of the department recently had
a disagreement, so it is desirable that they not be seated next to each other. If
this requirement is met but the seating is otherwise assigned randomly, how many
possible seating arrangements are there and what is the probability associated with
any one of those arrangements?

3.98. An engineering consulting firm has two projects (which we will label as A and B)
that it wants to work on in a forthcoming week, and because of limited resources
it can work on only one project at a time. Project A will require more time than
project B, and it is possible that neither project will be completed in a week. Let
P(B|A) denote the probability that project B is completed within a week given that
project A has been completed, and similarly define P(A|B). The head of the firm
does not understand conditional probability and simply wants to know the chances
of both projects being completed within the week.

(a) Can that be determined from what is given? Why or why not? Explain.
(b) Can this be determined if either P(A) or P(B) is known, without conditioning
on the occurrence or nonoccurrence of the other event? Explain.

3.99. Given that P(X = 1) = 2P(X = 4), complete the following table and determine the
expected value of X.
x |14 6
P _ 1/6

3.100. Assume that X ~ N(u, 02). If © = 19 and P(X < 22.5) = .63683, determine o .



CHAPTER 4

Point Estimation

The remaining chapters are devoted to statistical inference, that is, making inferences about
population parameters from sample statistics. We begin our discussion of inference with
point estimation and then proceed into interval estimation and hypothesis tests, which are
covered in subsequent chapters.

4.1 POINT ESTIMATORS AND POINT ESTIMATES

We begin by making the important distinction between point estimators and point estimates.
The former are statistics whereas the latter are the numerical values of statistics. That is, X
is a point estimator of 1, and if a sample of 100 observations is taken and X is computed
to be 86.4, then the latter is the point estimate, which is often denoted by a lowercase
letter (e.g., X). It is important to distinguish between the two terms because the expression
“properties of point estimates” doesn’t make any sense because a number cannot have any
statistical properties, such as having a variance.

4.2 DESIRABLE PROPERTIES OF POINT ESTIMATORS

A point estimate will almost certainly not be equal to the parameter value that it serves to
estimate, but we would hope that it would not deviate greatly from that number. Furthermore,
although in most applications of statistics we usually take only one sample within a short
time period, if we were to take a second sample we would hope that the second estimate
would not differ greatly from the first estimate. This can be accomplished by taking a large
sample.

4.2.1 Unbiasedness and Consistency

We would also hope that, from a purely conceptual standpoint, if we kept taking samples
of increasing size (50, 100, 500, etc.), the difference between the point estimate and the
population value would approach zero. If so, then the estimator is consistent. Obviously,
this is a desirable property.
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Although multiple samples are sometimes taken, such as when control charts are used
(see Chapter 11), we need properties that apply directly to a single sample. One such
property is unbiasedness. Consider an arbitrary estimator, 0, of some parameter ¢ (mean,
variance, proportion, etc.). If the expected value of 0 [i.e. E(O)] is equal to 6, then 0 is
an unbiased estimator of 6. (Expected value was illustrated in Sections 3.3.1 and 3.4.1.)
Unbiasedness can also be viewed as a limiting result in that if the number of samples of a
fixed size becomes large, then the average of the 6 values becomes arbitrarily close to 6.
For example, let’s assume that our population consists of the first ten positive integers. We
select a sample of five numbers from this population, with repeat numbers allowed, and
compute the average of the five numbers. We then repeat this process a very large number
of times and compute the average of the averages. That number should be extremely close
to 5.5, the average of the ten numbers in the population. (Recall this type of illustration
in Section 3.4.4.) Again, we are not particularly interested in what happens when many
samples are taken if we are just going to take a single sample, but unbiasedness does apply
to a single sample. Specifically, if we take only one sample, our best guess as to what the
average of the five numbers will be is the same 5.5, although the actual average may differ
more than slightly from 5.5.

Although unbiasedness is a desirable property, there will be instances in which other
properties should receive greater consideration, especially when the bias is small.

Bias is even ignored when some statistical methods are used, and in such cases the bias is
usually small. For example, under the assumption of a normal distribution, s> is an unbiased
estimator of o2, but s is a biased estimator of o. When confidence intervals are computed
(e.g., see Chapter 5), the bias is ignored. The bias is adjusted for, however, when control
chart methods (Chapter 11) are used, since if E(s) = ao, it then follows that E(s/a) = o.
If the value of a is very close to 1, the bias might be ignored, although in typical control
chart applications a is not very close to 1. Strictly speaking, the bias adjustment is made
under the assumption that one has the right model for the observations, such as using a
normal distribution as a model. Similarly, one speaks of unbiased estimators in regression
analysis (Chapter 8), but the estimators are unbiased in general only if the postulated model
is correct, which isn’t likely to happen.

Therefore, although we may speak conceptually of unbiased and biased estimators, from
a practical standpoint estimators in statistics are often biased simply because the postulated
model is incorrect, and such estimators cannot be made unbiased in the absence of strong
prior information.

4.2.2 Minimum Variance

There will often be multiple estimators of a parameter that are unbiased. To give a simple
illustration, assume that we are to take a sample of four observations from an unknown
population for the purpose of estimating the population mean. Consider two estimators, X
and X*:

Y_X1+X2+X3+X4 X*_X1+2X2+2X3+X4
B 4 B 6

with X, X», X3, and X4 denoting the random variables whose realizations are the four
numbers in the sample.
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Since E(X) = u, the expected value of a sum is the sum of the expected values
[ie., EQ_x;) =Y E(x;)], and the expected value of a constant times a random vari-
able is the constant times the expected value of the random variable, as the reader
was asked to show in Exercise 3.21 [e.g., EQ_x;/n) = (1/n)E(Q_ x;)], it follows that
E(X) = u. By applying the same rules for expected values, we can also show that
E(X*) = u.

These results are summarized below.

RULES FOR EXPECTED VALUES

1. E(X) = u, the population mean.
2. E(aX)=aE(X).

3. E(constant) = constant.

4. EQ I X)) =" E(X)).

Since both estimators are unbiased, which one is better? Of course, on the surface X*
seems to be a rather nonsensical estimator since the four random variables have unequal
weights, but in the use of robust statistics (mentioned in Section 2.2), observations will
typically have unequal weights. Such weighting is generally performed after the data have
been obtained, however.

If the X; are independent, as they will be when arandom sample is obtained, Var(}_ X;) =
3" Var(X;). Combining this result with Var(aW) = a*Var(W) for any random variable W
(as the reader was asked to show in Exercise 3.21), it follows that Var(X) = o>/4 and
Var(X*) = 502/18, with o denoting Var(X). Thus, X has a slightly smaller variance
and is the better estimator (as we would have logically guessed). The general result is
Var(X) = o?/n.

It should be noted that this result is actually an “infinite population” result. If a sample is
obtained from a finite population and the population is small (not a common occurrence), it
is necessary to multiply this result by afinite population correction factor (fpc). Specifically,
the fpc is given by /(N — n)/(N — 1), with N denoting the population size and n denoting
the sample size. Note that the numerical value of the fpc will be close to 1.0 (and thus
have no effect), when »n is small relative to N. The usual recommendation is to not use
the fpc whenever n/N < 0.05. Since N is generally quite large (and often unknown), this
requirement is usually met.

These results (for the infinite or large sample case) are summarized below.

RULES FOR VARIANCES

Let X, X,,..., X, represent a sequence of independent random variables,
such as the random variables corresponding to the observations in a sample of
size n.

Using the following rules, we can obtain the variance of any function of a random
variable:
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1. Var(aX;) = a*Var(X;).

2. Var(}o!_ X)) = Y1, Var(X)).
3. Var(constant) = 0.

4. Var(constant + X) = Var(X).

We may note that the right-hand side of the equation in Rule #2 has an additional term,
2 Z{;II I}:z Cov(X;, X ), when the X; are not independent.

4.2.3 Estimators Whose Properties Depend on the Assumed Distribution

For this simple example we didn’t need to assume a distribution in the process of determining
which estimator had the smaller variance. That won’t be the case, in general, however. For
example, let’s assume that we wanted to compare the sample median with the sample mean
as an estimator of the population mean. In general, if we choose to use the sample median as
a statistic, we would assume that this estimates the population median, which is the same as
the population mean in the case of a symmetric distribution. The sample mean and sample
median are both unbiased for a symmetric distribution, but the sample median is a biased
estimator of the population mean for asymmetric distributions. This logically follows from
the fact that the population mean and median are different for such distributions.

Since it is well known that the sample mean is the minimum variance unbiased estimator
(MVUE) for the mean of a population that is normally distributed, it follows that the sample
median must have a larger variance than the sample mean for that distribution. It is not true,
however, that we would always prefer the mean over the median for an arbitrary symmetric
distribution, as with a heavy-tailed, symmetric distribution extreme values could easily
occur that would have a large effect on the sample mean, especially for a small sample,
and cause it to be a poor estimate of the population mean. So the sample median could be
a better choice for an arbitrary heavy-tailed distribution.

4.2.4 Comparing Biased and Unbiased Estimators

In Section 4.2.2 we compared two unbiased estimators in terms of their respective variances.
In such a situation we will want to use the estimator with the smaller variance, but what if
we have to choose between a biased estimator and an unbiased estimator? Unless the biased
estimator has a larger variance than the unbiased estimator, the choice may not be obvious.
Consequently, there is a need for a comparison yardstick that incorporates both bias and
variance. That yardstick is the mean squared error of an estimator, defined as E (/9\— 6)?
for an arbitrary estimator 6. With some al gebra we obtain

E@ -0 =E@—E@®)+E®) -0 R
=E([0 — EO))* +2[E®©®) — 0110 — E(®)] + [E©®) — 6]

which results from squaring the expression on the right-hand side as a binomial. Then, when
the expected value operator is applied to each of the three terms, the middle term drops out
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because the factor [E(@) — 6] is a constant, and E@ — E®)) = E®) — E®) = 0. Thus,
we have

EG@—602=E®—E®)*+[E®) -0
= Var(0) + [Bias(®)]?
= MSE(9)

with MSE denoting “mean squared error.”

If an estimator is unbiased, the bias term disappears and the mean squared error is
then simply the variance. Since expected value means “average,” E (& — E(9))* is thus the
average squared deviation of 6 from its average.

There is obviously no need to use the MSE criterion when comparing two unbiased
estimators, as that would reduce to comparing their variances. Instead, the criterion should
be used for comparing two biased estimators and for comparing a biased estimator with an
unbiased estimator.

As the reader is asked to show in Exercise 4.2, if the divisor of X* as defined in
Section 4.2.2 is changed so that the divisor is 10 instead of 6, then X* has a smaller
variance than X, but that advantage is more than offset by the large squared bias when, for
example, 1 = 10 and o> = 4. Therefore, X has the smaller mean squared error.

4.3 DISTRIBUTIONS OF SAMPLING STATISTICS

Statistical distributions were covered in Chapter 3. These give the distribution of the total
probability over the possible values of the random variable, which is the same as the
distribution of the random variable for a sample of size one.

Of course, in practice we don’t take samples of size one, so we need to consider the
distributions of sample statistics for arbitrary sample sizes. Knowledge of these distributions
is needed more for later chapters than for this chapter, but the concept is introduced here
because the variability of sample statistics is inherent in material that is presented in later
sections of this chapter.

Assume that X ~ N(u, 02). Then what is the distribution of X? If the sample obser-
vations are independent, it can be shown that X ~ N (i, 2/n), where the result for the
mean and the variance was established previously in Section 3.4.4 and can also be obtained
using the rules in Section 4.2.2, but not for the distribution of the statistic. The fact that
X has a normal distribution can be shown using moment generating techniques (beyond
the scope of this book), whereas the mean and variance can be obtained using the rules in
Section 4.2.2, as the reader is asked to show in Exercise 4.1.

An important point of this result is that the variance of X decreases as the sample size
increases. Of course, this is desired as we don’t want any estimator that we use to have a
large variance. We do have to pay a price for high precision as sampling costs money and
the larger the sample, the higher the cost.

The estimator of the standard deviation of X is generally termed the standard error,
which is the term applied to the estimated standard deviation of any statistic. Such usage
is not universal, however, and some authors refer to such an estimator as the estimated
standard error. We will follow convention and not use the latter term. This result is stated
formally in Section 4.5. The concept of a point estimator and its standard error are central
to statistical inference.
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4.3.1 Central Limit Theorem

As has been stated repeatedly, we generally will not know the distribution of the random
variable with which we are concerned, and if we don’t know the distribution of a random
variable X, we don’t know the distribution of X either. This is more of a problem in
interval estimation and hypothesis testing than it is in point estimation, but it can also create
problems in point estimation. This is because, as discussed later in Sections 4.4.1 and 4.4.2,
in using a method for parameter estimation such as the method of maximum likelihood, we
have to be able to specify the distribution of X in order to use the method.

It was indicated initially in the section on the ¢-distribution (Section 3.3.4) that X ~
N(u,o%/n) when X ~ N(u, 02). When the distribution of X is unknown (the usual case),
the distribution of X is, of course, also unknown, as stated previously. When the sample
size is large, however, the distribution of X will be approximately normal. How large must
the sample size be? That depends on the shape of the distribution of X. If the distribution
differs very little from a normal distribution (e.g., a chi-square distribution with a moderate
number of degrees of freedom), a sample size of 15 or 20 may be sufficient. At the other
extreme, for distributions that differ greatly from a normal distribution (e.g., an exponential
distribution), sample sizes in excess of 100 will generally be required.

Stated formally, if X, X»,..., X, constitute a sequence of independent random vari-
ables (not necessarily identically distributed) with means w;, ws,..., i, and variances
012, 022, R 0,12, then

n n

in—zm

7 _ i=] i=1

approaches the standard normal distribution [i.e., N(0, 1)] as n approaches infinity. We may
alternatively express the result in terms of the sample average.

Let’s first assume that the X; are not identically distributed. The theorem leads to the
assumption of approximate normality for at least a moderate sample size if there are no
dominant effects among the X;. This often happens in quality improvement work, in which
a particular effect may result from the summation, loosely speaking, of many small effects.
When we take a random sample, the X; will all have the same distribution (and of course
there are no dominant effects).

4.3.1.1 Ilustration of Central Limit Theorem

We will illustrate the Central Limit Theorem in the following way. We need a random
variable with a known, nonnormal distribution so that we can see how normality is ap-
proached as the sample size increases. Assume that we want to simulate the roll of a single
die 1000 times. Since each outcome is equally likely, the appropriate distribution is the
discrete uniform distribution (see Section 3.3). Simulating 1000 tosses of the die produces
the empirical distribution shown in Figure 4.1.

The distribution starts becoming bell-shaped when the average outcome of only two
tosses of the die is computed and this is done 1000 times, as shown in Figure 4.2, and
the normal distribution shape starts coming into view in Figure 4.3 when the average of
ten tosses is computed, and so on. The student is asked to similarly see the Central Limit
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Distribution of 1000 Tosses of a Fair Die
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Figure 4.1 One thousand tosses of a single die.

Theorem in action in Exercise 4.22 by using the Java applet that is indicated, or by using
the MINITAB macro that will produce various graphs, including the three that are given
here.

The Central Limit Theorem has unfortunately been misused in practice: one exam-
ple is that it has been cited as forming the underlying foundation for many of the con-
trol charts that are presented in Chapter 11. It is shown in that chapter, however, that
the “normal approximations” that are used for determining the control limits for several
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Figure 4.2 The average of two tosses of the die, performed 1,000 times.
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Distribution of 1000 Averages of
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Figure 4.3 The average of ten tosses of the die, performed 1,000 times.

charts will often be inadequate because the sample sizes that are typically used are too
small.

4.3.2 Statistics with Nonnormal Sampling Distributions

Although the distributions of many statistics approach a normal distribution as n approaches
infinity, the rate of convergence could be sufficiently slow that “asymptotic normality”
(i.e., approaching normality as n goes to infinity) really isn’t relevant. In particular, the
sampling distribution of the standard deviation or variance of a sample from a normal
population will not be particularly close to normality for any practical sample size. This
problem is even more acute (and perhaps intractable) for such measures of variability
when sampling from nonnormal populations. Accordingly, the appropriate distribution will
have to be used for statistical intervals and hypothesis tests such as those given in subse-
quent chapters. When the distribution is unknown, bootstrap methods are often used (see
Section 5.7).

44 METHODS OF OBTAINING ESTIMATORS

Three commonly used methods of obtaining point estimators are presented in each of the
next three subsections.

4.4.1 Method of Maximum Likelihood

One method of obtaining point estimators is to obtain them in such a way as to maximize
the probability of observing the set of data that has been observed in the sample. Although
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this may sound like a play on words, the concept is intuitively appealing. Therefore, it is
not surprising that Casella and Berger (1990, p. 289) stated. “The method of maximum
likelihood is, by far, the most popular technique for deriving estimators.” Other prominent
statisticians have made similar statements.

To understand what a maximum likelihood estimator is, we first need to understand the
concept of a likelihood function. The latter is simply a joint probability (as discussed briefly
in Section 3.2). For example, assume that we want to obtain the maximum likelihood

estimator of A in the Poisson distribution. If we let X, X»,..., X,, denote the random
variables whose realizations are x;, xp,..., X,, the joint probability P(X; = x1, X, =
X2, ..., X, = Xx,)1is given by

PXi=x1, X2 =x, ...

=
I
=
I

i

T
~~
=
<

which is the likelihood function. It is generally easier to work with the natural logarithm
(log) of the likelihood function. Since the log of a product is the sum of the logs, we thus
have the log(likelihood function) given by

n —A 3 Xi n
> log <g> =" [log(e™) + log(A)x; — log(x;!)]

i=1 (x)! i=1

Taking the derivative of this expression with respect to A and setting it equal to zero, we
obtain

1~
_ _ =0
n+)LZx

i=1

Solving this equation for A, we then obtain = (3/_, x;) /n = ¥. This result is unsur-
prising because A is the mean of the Poisson distribution and we are thus estimating the
population (distribution) mean by the sample mean.

B EXAMPLE 4.1

Sometimes maximum likelihood estimators cannot be obtained by using calculus. To il-
lustrate, consider the continuous uniform distribution defined on « and §, which is given
by

1
f(,x):ﬂ a<x<§p
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The likelihood function is

PXi=x,Xo=x2,.... Xy =x,) = ﬁf(xi)
i=1
_ 1
(B

Since the likelihood function is not a function of data, it is obvious that we cannot obtain the
maximum likelihood estimators of & and g8 by direct means. We can see that the likelihood
function will be maximized when 8 — « is made as small as possible. By definition of the
pdf, « can be no larger than the smallest observation in a sample of size n and similarly
B cannot be smaller than the largest observation. Therefore, the maximum likelihood
estimators are 3: Xmax and O = Xpin. [ |

Maximum likelihood estimators do not always exist (i.e., the likelihood function may
not have a finite maximum), and when they do exist the estimator may be biased, as the
reader will observe in Exercise 4.3. It is generally straightforward to convert such estimators
to unbiased estimators, however. (Also see Exercise 4.3 for an example of this.) It should
also be kept in mind that maximum likelihood estimators are “distribution dependent.”
That is, we cannot simply obtain the maximum likelihood estimator of 1, the mean for
an arbitrary distribution, as we must specify the distribution and for some distributions the
mean is a product of parameters (such as the gamma distribution). So we are limited to
obtaining maximum likelihood estimators for parameters in the distribution. Furthermore,
if we specify the distribution to be a normal distribution, for example, we are immediately
starting out “wrong” since the actual distribution is almost certainly not going to be the
same as the specified distribution. Good and Hardin (2003) decry the extensive use of
maximum likelihood. The bottom line is that the method of maximum likelihood should be
used with caution.

4.4.2 Method of Moments

Another point estimation method is the method of moments. The name is derived from the
fact that with this approach the sample moments are equated to the corresponding population
moments. These are “moments about the origin,” with the mth population moment defined
as E(X™). The corresponding sample moments are defined as > X” /n for a sample of size
n. Thus, for equating first moments we have > X/n = E(X) = u. Therefore, the method
of moments estimator of 1 is X = }_ X/n. Note that this result does not depend on the
specification of a particular probability distribution. For a normal distribution the mean of
course is denoted by ., whereas for a Poisson distribution, for example, the mean is X.
We generally want to estimate at least the mean and variance of a distribution (and
also the third and fourth moments if we are trying to fit a continuous distribution, in
particular, to a set of data). When we go beyond the first moment, the estimation becomes
nontrivial. For example, let’s assume that we wish to estimate o>. We need E(X?). By
definition, E(X — u)*> = o2, and using the algebraic simplification that the reader was
asked to derive in Exercise 3.20, we obtain E(X?) = u? + o2. Equating this to the second
sample moment and using X as the estimator of x, as shown above, we obtain > X%/n =

X + o2, Substituting Y~ X /n for X and solving for o2, we obtain (after slight algebraic
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simplification),

~2 _ Z(X—Y)2
Gl =" ")
n

We observe that this is (7 — 1)S?/n, with S? denoting the sample variance. Note that we
obtain this result without making any distributional assumption. If we wish to determine
the properties of this estimator, we of course have to specify a distribution, which in turn
specifies what o2 represents in terms of the parameters of the distribution.

For example, if we assume a normal distribution, we can show, as the reader is asked to
do in Exercise 4.29, that $2 is an unbiased estimator of o2, so that the method of moments
estimator is thus biased and in fact is the same as the maximum likelihood estimator.
Of course, an unbiased estimator can easily be obtained from this estimator simply by
multiplying 52 by n/(n — 1).

If we assume a Poisson distribution, the method of moments estimator of A is X, but
problems ensue if we try to estimate the variance, as the reader will observe in Exercise 4.4,
since the mean and the variance are the same but the method doesn’t take that into account.

The method of moments is a viable alternative to maximum likelihood when maximum
likelihood is intractable, and it has been used extensively in various areas of engineering,
such as control theory, and in other fields, including econometrics. For example, Rao
and Hamed (2000) provide extensive coverage of the method of moments and maximum
likelihood as being important tools in statistical hydrology for use by hydrologists and
engineers.

4.4.3 Method of Least Squares

A frequently used estimation method is the method of least squares. This is the standard
method of estimating the parameters in a regression model (see Section 8.2.2). In general,
with this method parameters are estimated such that the sum of the squared deviations of
the observations from the parameter that is being estimated is minimized.

B EXAMPLE 4.2

For example, in estimating a mean we would minimize )  (x — u)>. We might guess
that X would be the least squares estimator of u simply because it is the custom-
arily used estimator. It is easy to show that it is indeed the least squares estimator.
Specifically, we start with 3" (x — X + X — 1)’, which is obviously equivalent to the
original expression. Then we group the four terms into (x — X) and (X — ) and square
the newly created expression as a binomial. The middle term vanishes because Y (x — X)

X-w=X-np >(x— X) = 0 since the sum of deviations about the mean is zero,
as was shown in Section 2.2. The expression thus simplifies to Y (x — Y)z +n(X — ).

. . . . . =2
Since the last term is nonnegative, the smallest possible value for the sum is Y x—X),
which results if i is replaced by its estimator, X . |

Least squares estimators in regression analysis, which is one of the most widely used
statistical techniques, are discussed in detail in Chapter 8.
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4.5 ESTIMATING oy

Consider an arbitrary estimator 6 and an arbitrary distribution. For common distributions,
it isn’t difficult to obtain closed-form expressions for 6 and for its standard deviation, the
estimate of which is called the standard error, as stated previously.

DEFINITION

The estimator of the standard deviation of a statistic is generally referred to as the
standard error. This definition is not universal, however, and some authors use the
term estimated standard error to represent what herein is designated as the standard
error.

A standard error has an interpretation that is similar to the interpretation of a sample
standard deviation: it is an estimate of the variability of the estimator 'in repeated sampling
from a fixed population. In many, if not most, applications the population is not fixed, how-
ever, and interpretation of a standard error is difficult if there are major, short-term changes
in a population. Good and Hardin (2003, p. 95) discuss the standard error, concluding that
it is not a meaningful measure unless the statistic for which the standard error is being
calculated has a normal distribution.

For many distributions a closed-form expression is not possible, however. Under such
conditions, standard errors are often obtained using bootstrapping, which is a resampling
procedure. Specifically, one acts as if the sample is really the population and obtains
repeated samples from the original sample. An estimator of interest, 0, is then used for each
sample, producing a series of estimates and an empirical distribution of 0, from which a
standard error can be estimated.

Although bootstrapping is a popular procedure, we should keep in mind that in using
the procedure one is trying to generate new data from the original data, something that,
strictly speaking, is impossible. For this reason bootstrapping is somewhat controversial.
Nevertheless, bootstrapping often provides good results, depending on the purpose and the
sample size.

As an example of when bootstrapping won’t work, consider a sample of size 10 and
the objective of estimating the first percentile of the distribution for the population from
which the data were obtained. We can obtain as many samples of a given size, such as
5, as we want to, but we should not expect to be able to obtain a good estimate of the
first percentile. More specifically, if we recognize that the smallest observation in a sample
of size 10 essentially gives us the 10th percentile of the sample, how can we expect to
obtain subsamples from this sample that has such a minimum value and expect to be able
to estimate a much smaller percentile (the first) of a population?

In general, bootstrapping won’t work unless the sample observations line up in such a
way as to be representative of the population for the stated objective. We will generally
need about a thousand observations in order to be able to obtain a good estimate of the first
percentile, so only an extremely unusual sample of size 10 would give us any chance of
obtaining a good estimate when sampling from that sample.
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See Section 5.7 for additional information and an example on bootstrapping. See also
Efron and Gong (1983) and a more recent, but slightly more rigorous article by Efron (2002),
as well as the critical view found in Young (1994) and the accompanying discussion.

4.6 ESTIMATING PARAMETERS WITHOUT DATA

Occasionally, there is a need to estimate a parameter before a sample is taken, perhaps
to make a certain decision or judgment. For example, we may need an estimate of o.
If the distribution were symmetric and we knew that virtually all observations should
be contained in the interval u &+ ko, then if we had a good idea of the endpoints of the
interval—the difference of which we will call L = X ,.x — Xmin—then we could estimate
o as 0 = L/2k. Note that we don’t need to know j in order to obtain such an estimate.
We simply need to know the largest and smallest values that the random variable will
generally be, and to have a good idea of the value of k. Normal distributions were covered
in Section 3.4.3 and for such distributions k = 3.

There are various other ways to estimate o, such as from the interquartile range and
from probability plots.

B EXAMPLE 4.3

Recall the data that were used in Section 1.4.4 (which are in Exercise 1.7). The SAT score
values for O and Q3 are reported by colleges and universities and are published in an annual
issue of U.S. News and World Report. These score percentiles could be used to estimate o
for a normal distribution if we were willing to assume that the scores are approximately
normally distributed (which would seem to be a reasonable assumption). The 75th percentile
for a normal distribution is at u + 0.67450 and the 25th percentile is at u — 0.67450. It
follows that the interquartile range, O3 — Q;, equals p 4+ 0.6745¢0 — (u — 0.67450) =
1.34900 . Therefore, it follows that an estimate of o is given by (Q3 — Q1)/1.3490, or as
0.713(Q3 — Q1). For example, if Q; = 1160 and Q3 = 1280, 0 would be estimated as
(1280 — 1160)/1.3490 = 88.96. Is this really a large sample approximation since we are
acting as if the sample interquartile range is equal to the population interquartile range?
That depends on how we define the population. If our interest centers only on a given year,
then we have the population, assuming that the numbers were reported accurately.
Similarly, o could be estimated using other percentiles, if known, of a normal distribu-
tion, and in a similar way o, could be estimated in general when X does not have a normal
distribution if similar percentile information were known. |

4.7 SUMMARY

Parameter estimation is an important part of statistics. Various methods are used to estimate
parameters, with least squares and maximum likelihood used extensively. The appeal of the
former is best seen in the context of regression analysis (as will be observed in Chapter 8),
and maximum likelihood is appealing because maximum likelihood estimators maximize
the probability of observing the set of data that, in fact, was obtained in the sample. For
whatever estimation method is used, it is desirable to have estimators with small variances.
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The best way to make the variance small is to use a large sample size, but cost considerations
will generally impose restrictions on the sample size. Even when data are very inexpensive,
a large sample size could actually be harmful as it could result in a “significant” result in a
hypothesis test that is of no practical significance. This is discussed further in Section 5.9.
In general, however, large sample sizes are preferable.
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EXERCISES

4.1. Show that the mean and variance of X are w and o2 /n, respectively, with p and o2
denoting the mean and variance, respectively, of X. Does the result involving the
mean depend on whether or not the observations in the sample are independent?
Explain. Is this also true of the variance? Is there a distributional result that must be
met for these results to hold, or is the result independent of the relevant probability
distribution?

4.2. Show that X as given in Section 4.2.2 has a smaller mean squared error than X* =
(X1 42X, +2X3+ X4)/10 when 1 = 10 and o> = 4. Assume that the variance
of individual observations is the variance of the yield for a manufacturing process
and the plant manager believes that the variance can be reduced. Assume that the
variance is subsequently reduced to 2 but the mean is also reduced. For what values
of the mean would X still have a smaller mean squared error? Comment.

4.3. Critique the following statement: “I see an expression for a maximum likelihood
estimator for a particular parameter of a distribution that I believe will serve as an
adequate model in an application I am studying, but I don’t see why a scientist should
be concerned with such expressions as I assume that statistical software can be used
to obtain the point estimates.”

4.4. Obtain the method of moments estimator for the variance of a Poisson random
variable. Comment.
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4.5.

4.6.

4.7.

4.8.

4.9.

4.10.

4.11.

Assume that X ~ N(u = 20, 0> = 10) and consider the following two estimators
of u, each computed from the same random sample of size 10:

= 21121 c;x; with x1, x2, . . ., x10 denoting the observations in the sample, and

¢ =02 i=12,...,5
=0, i=6,7,...,10

and [, = 2}21 k;x; with the x; as previously defined and

ki=0.10 for i=1,2,...,9
=0 for i =10

(a) Determine the variance of each estimator.

(b) Is each estimator biased or unbiased? Explain.

(¢) Is there a better estimator? If so, give the estimator. If not, explain why a better
estimator cannot exist.

The amount of time that a customer spends in line at a particular post office is a
random variable with a mean of 9.2 minutes and a standard deviation of 1.5 minutes.
Suppose that a random sample of 100 customers is observed.

(a) Determine the approximate probability that the average waiting time for the 100
customers in the sample is at least 9.4 minutes.
(b) Explain why only an approximate answer can be given.

Assume that X ~ N(10, o).

(a) Obtain the maximum likelihood estimator for o2.
(b) Is the estimator unbiased? Explain. If biased, what must be done to convert it to
an unbiased estimator?

In Exercise 4.7, the mean of a normal distribution was assumed known, for simplicity.
Generally, neither the variance nor the mean will be known. Accordingly, obtain the
maximum likelihood estimators for both the mean and the variance for a normal
distribution.

Assume that a sample of 10 observations has been obtained from a population
whose distribution is given by f(x) = 1/5,x =1, 2, 3, 4, 5. If possible, obtain the
maximum likelihood estimator of the mean of this distribution. If it is not possible,
explain why it isn’t possible.

Obtain the maximum likelihood estimator for the variance of the Poisson distribution.
Is the estimator biased or unbiased? Explain. If biased, can an unbiased estimator be
obtained? If so, how would that be accomplished?

Assume that a random variable has a distribution with considerable right skewness
(i.e., the tail of the distribution is on the right). Describe as best you can what the
distribution of the sample mean will look like relative to the distribution of X.
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4.12.

4.13.

4.14.

4.15.

4.16.

4.17.

4.18.

4.19.

4.20.

4.21.

4.22.

POINT ESTIMATION

What is the variance of the point estimate 25.4 obtained from a sample of n = 100?
Suppose that an average is being updated by sequentially adding observations to the
original sample of size 100. What is the variance of the average of the estimate 25.4
and the average of the next 100 observations?

Assume that a random variable has a distribution that is approximately normal. It
would be rare for an observation from the population that has this distribution to be
either larger than 120 or smaller than 30. Using only this information, what would
be your estimate of 2?

Consider a random sample of size 2 from an arbitrary population and let L =

a)xy + arxp.

(a) Give one set of possible values for @; and a; such that L will be an unbiased
estimator of (.

(b) Among the class of unbiased estimators, what choice of @; and a, will minimize
the variance of L?

Given f(x) = 2x, 0 < x < 1, determine the method of moments estimator of w if
possible. If it isn’t possible, explain why.

Is the sample mean a consistent estimator of the population mean? Explain.

Assume that X ~ N (20, 25). If 1,000 samples are produced in a simulation exercise
and the range of the X values is 47.3 to 52.8 but the sample size was not recorded,
what would be your “estimate” of the sample size?

Explain what an unbiased estimator is and also explain why unbiasedness is a desir-
able property of an estimator.

Explain the difference between an estimate and an estimator.

Under the assumption of a normal distribution, £ (s%) = o2, but E(s) # o. A student
offers the following explanation for this phenomenon: “This is easy to explain because
the expected value operator is a linear operator and you can’t take the square root
of a linear operator and still expect to have a linear operator. In fact, it is not even
possible to take the square root of a linear operator.” Do you agree? Explain.

Consider the standard normal distribution in Section 3.4.3. Obtain a random sample of
25 from that distribution, using MINITAB or other software. We know that o = 0.2.
Obtain 1,000 (bootstrap) samples of size 10 and estimate o%. (It will be necessary to
write a macro in MINITAB to accomplish this.) Comment on your results relative to
the known value.

The best way to see the Central Limit Theorem at work is to use one of the Java
applets that are available on the Web. There are many such applets and as of this
writing one of the best can be found at http://www.maths.soton.ac.uk/
teaching/units/malcé6/links/samplingapplet/samplingapplet
.html. Use all of the options that are available at that site to produce histograms
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4.23.

4.24.

4.25.

4.26.

4.27.

4.28.

4.29.

based on different-sized samples from each of the three distributions: normal,
exponential, and uniform. Note how the shape of the histogram changes as the
sample size changes for a given distribution. At what size sample would you say that
the distribution of the sample mean appears to be approximately normal for each
distribution? Do you agree with the number of classes that were used in constructing
each of the histograms? If you disagree, do you believe that your conclusions
about the minimum sample sizes necessary for approximate normality would have
been different if a different number of classes had been used? (If for some reason
this particular applet is no longer available, do the exercise on an applet that is
available.)

Can the maximum likelihood estimator of § for the exponential distribution given
in Section 3.4.5.2 be obtained using the approach illustrated in Section 4.4.17 If
s0, obtain the estimator. If not, explain why not and determine if the estimator can
otherwise be determined.

Assume it is known that certain capacitor measurements hardly ever exceed 2.6
inches or are less than 1.8 inches. If it can be further assumed that the measurements
are approximately normally distributed, what would be an estimate of o2?

Is it possible to obtain the method of moments estimators for the mean and variance
of the continuous uniform distribution (see Section 3.4.2) defined on the interval
(0,1)? If so, obtain the estimators; if not, explain why it isn’t possible.

It is believed that averages of five observations from a particular manufacturing

process rarely exceed 6.5 or are less than 3.4.

(a) Could we use this information to determine the corresponding extremes for
individual observations? Explain.

(b) Could this determination be made if approximate normality were assumed for
the individual observations? Explain.

(¢) If the individual observations were approximately normally distributed, what
would be the approximate value of ©?

A store decides to conduct a survey regarding the distribution of men and women that
visit the store on Saturdays. A particular Saturday is chosen and an employee is told
to record a “1” whenever a man enters the store and a “2” whenever a woman enters.
Let X denote the number of women who enter the store. Can Var(X) be determined
based on this information? If so, what is the variance? If not, explain why the variance
cannot be obtained.

Suppose you are told that for some estimator X of the Poisson parameter A, E ) =
ni/(n —1).

(a) Is A a biased or unbiased estimator of A? Why or why not?

(b) What can be said when # is large?

Show that S2 is an unbiased estimator of o2 when a normal distribution is assumed.
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4.30.

4.31.

4.32.

4.33.

4.34.

4.35.

4.36.

4.37.

POINT ESTIMATION

Explain why there is no maximum likelihood estimator for the parameters of the
pdf f(x) =x/8,0 < x < 4. Does the maximum likelihood estimator exist for w,?
Why or why not?

Show that Y "'_, (x; — @)? is minimized when ¢ = X. Does this mean that X is thus
the least squares estimator of w,? Explain.

Consider the following computer output, which was used in Exercise 2.26:

Descriptive Statistics: X
Variable N Average Median Minimum Maximum 01 Q3
X 50 20.560 21.000 10.000 30.000 15.750 26.000

If this is all you were given and you needed an estimate of o, could you obtain an
estimate from this information? If so, how good do you think the estimate would be?
If it isn’t possible to obtain the estimate, what minimal additional information would
you need in order to be able to produce an estimate?

Consider the information given in Exercise 1.63.

(a) What must be assumed in order to estimate o for the fraternity GPA using any
method given in this chapter? Does such an assumption seem plausible? If so,
what would be the estimate? If the assumption seems implausible, explain why.

(b) Couldthe same approach be used to estimate the standard deviation of the sorority
GPA? Explain.

Generate a sample of size 20 from the discrete uniform distribution, with the dis-
tribution defined on the integers 1-10. Then generate 10,000 bootstrap samples of
size 10 from the “population” of observations in the sample of size 20. Compute the
mean for each of the 10,000 samples and determine the standard error of the mean.
Compare this result with the actual standard deviation of the mean (i.e., o%), which
you will need to determine. How does the standard error of the mean compare to the
standard deviation of the mean?

Explain why the maximum likelihood estimator of the mean of a normal distribution
has the same variance as the method of moments estimator.

Suppose that X and Y are random variables that represent an insurer’s income from
two different types of life insurance policies, with X and Y being independent. If
py = 55,000, u, = 41,000, o, = 400, and o, = 300, what is the variance of the
insurer’s average income for the two policies?

A manager is considering giving employees in her division a 4% cost-of-living raise
plus a flat $600 bonus in addition to the raise. Assume that the employees in her
division currently have a mean salary of $43,000 with a standard deviation of $2,000.
What will be the new mean and the new standard deviation after both the raise and
the bonus?
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4.38.

4.39.

4.40.

4.41.

4.42.

4.43.

4.44.

4.45.

At the end of Section 4.7 it was stated that large samples are preferable. Accordingly,
critique the following statement: “I don’t see why experimenters don’t always use
very large samples in an effort to minimize the variance of their estimators.”

Explain why there is no maximum likelihood estimator for the pdf f(x) =1,
0<x<l.

Consider the pdf f(x) = (¢ + Dx%, 0 < x < 1, ¢ > 0. Obtain the maximum like-
lihood estimator of « if possible. If this is not possible, explain why not.

Assume that you are a supermarket manager and you want to obtain some idea of the
variability in the amount of time required to check out a customer in the express lane
once the customer reaches the front of the line compared to the amount of time for
customers in the lanes that do not have a limit on the number of items. You know from
past data that customers in the other lanes have an average of 29.8 items, whereas
customers in the express lane have an average of 8.9 items. If the estimate of the
standard deviation for the other lanes is 2.2 minutes, what would be the estimate of
the standard deviation for the express lane, or is it possible to even obtain an estimate
from this information? Explain.

A sample of 35 items is obtained and it is believed that the Poisson distribution is
an adequate model for the data. If the sum of the data values is 234.6, what is the
estimate of the variance for this Poisson distribution?

Data in a population database that are in inches are converted to centimeters. What
is the variance of the new data as a function of the variance of the old data?

Can we speak of the standard error of an estimator without specifying a probability
distribution? Explain.

Information given at the Energy Information Administration website
(www . eia.doe.gov) showed that in 2000 the interquartile range for underground
mines in Alabama was $22.54 per short ton. Assuming a normal distribution, could
o be estimated from this information? If so, what would be the estimate? If not,
explain why an estimate cannot be obtained.



CHAPTER 5

Confidence Intervals and Hypothesis
Tests—One Sample

Point estimators of parameters and the standard errors of those estimators were covered in
Chapter 4. In this chapter we use point estimators and their standard errors in constructing
confidence intervals and hypothesis tests.

By a confidence interval we mean an interval that will very likely contain the unknown
value of the parameter for which the interval has been constructed. This is termed an interval
estimate, as contrasted with a point estimate. By a hypothesis test we mean a test of an
unknown, hypothesized value of a parameter or a test of a distributional assumption.

It is important to see the direct connection between each type of interval estimate and
the corresponding hypothesis test, so that relationship will be illustrated and discussed
throughout the chapter. It is also important to recognize the various incorrect ways in which
the results can be stated. For example, we can’t speak of the probability that a hypothesis
is true because what we are hypothesizing is fixed, such as a distributional assumption,
a value for a parameter, or the equality of two parameters. In classical (non-Bayesian)
statistics, as is presented in this book, probability statements are made only about random
variables. Improper statements about hypothesis testing and other types of misstatements
are discussed by Gunst (2002), and the reader is referred to that paper for additional reading.

5.1 CONFIDENCE INTERVAL FOR p: NORMAL DISTRIBUTION,
o NOT ESTIMATED FROM SAMPLE DATA

We will begin with the simplest case: a confidence interval for the mean of a normal
distribution with o assumed known. Assume that we want to construct a 95% confidence
interval. What does this provide? It provides the following: if we were to construct 100
such intervals, our best guess as to the number we would expect to contain the mean is
95. (If we performed such an experiment once, the number probably wouldn’t be 95, but
if we performed the experiment many times and averaged the results, the average of the
outcomes would be very close to 95, and might be, say, 94.9.) Figure 5.1 shows what the
outcomes might be for part of one such experiment.

Modern Engineering Statistics By Thomas P. Ryan
Copyright © 2007 John Wiley & Sons, Inc.
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Figure 5.1 Confidence intervals (random) and the mean (fixed).

Of course, we are going to construct only one interval, so can we say that we are 95%
confident that our interval will contain the mean? We can make such a statement as long as
we haven’t already obtained a sample and constructed the interval, because once we have
the interval it either contains the mean or it does not. That is, loosely speaking, it is either
a “0% interval or a 100% interval.” We don’t know which it is because we don’t know the
value of the mean, and if we did know that value we of course would not have to construct
an interval estimate! Thus, a 95% confidence interval does not provide an interval that will
contain the mean 95% of the time.

This leads to the following definition of a confidence interval.

DEFINITION

A 100(1 — )% confidence interval for some parameter 6 is an interval, often of the
general form 6 £ (Z or t)sz, which before the data are collected and the interval is
constructed, has a probability of 1 — « of containing 6, provided that the assumptions
are true.

Here “Z or #” means that we will be using either the standard normal distribution or the
t-distribution. As stated, we will initially assume that X ~ N (u, o?) and that we desire to
construct a confidence interval for y. The corresponding point estimator is X, as stated
previously, and we will use X in constructing a confidence interval. We will also assume
that o is known. Such an assumption is usually unrealistic (as is the normality assumption,
of course) because it is unlikely that we would know the population standard deviation but
not know the population mean, but this provides a starting point and we will later relax
these assumptions.

From Section 3.4.4 we know that

>

—

o//n
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has the standard normal distribution. Therefore, it follows that

P Zyn < _M<Z =1 6.1
—Zapn < —— < Z, =1l—-« .
2 o//n 2

with Z,, denoting the standard normal variate such that «/2 is the area under the standard
normal curve to the right of the value of Z,», for a selected value of «. In order to obtain a
confidence interval for , we simply have to perform the appropriate algebra on the double
inequality so that u is in the center of the interval. Multiplying across the double inequality
by o/4/n, then subtracting X, and finally dividing by —1 (which of course reverses the
direction of each inequality) produces

P(X — Zopo/n < <X+ Zopo/Jn)=1—«a (5.2)

Thus, the lower limit, which will be written L.L., is at the left of the double inequality, and
the upper limit, which will be written U L., is on the right.

A relatively narrow interval would obviously be desirable, and a very wide interval
would be of little value. The width, W, of the interval is definedas W =U.L. — L.L. =
2Zy o/ /1, as the reader can observe from Eq. (5.2). With o assumed to be known and
fixed in this section, the width is thus a function of Z and n. The higher the degree of
confidence, the larger the value of Z. Specifically, if we want a 95% confidence interval,
then « = .05 and /2 = .025. From Table B we can see that Z,, = 1.96. Similarly, if
a = .01, Z,p = 2.575; and if « = .10, Z,;, = 1.645. These results are summarized as
follows:

Degree of Confidence (%) Z

90 1.645
95 1.96
99 2.575

Of course, using the smallest of these Z-values so as to minimize the width of a confidence
interval wouldn’t really accomplish anything: we would then have the lowest degree of
confidence that the interval we will construct will contain the parameter value. A small
interval width could be created in a non-artificial way by using a large sample size, but
taking samples costs money, and usually the larger the sample, the greater the cost, as stated
in previous chapters.

5.1.1 Sample Size Determination

One approach would be to specify a desired width for the interval, then solve for n and
decide whether or not that value of » is financially feasible. Since W = 2Z,,0/+/n, it
follows that n = (2Z, 20/ W)>.

Alternatively, we might wish to construct a confidence interval such that we have a
maximum error of estimation of the population parameter, with the specified probability.
Since X is in the center of the interval, it follows that the maximum error of estimation is
U.L.—X =X — L.L., and we will represent this difference by E. (We say the maximum
error of estimation because the value of E is clearly the greatest possible difference between
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X and p with the stated probability since the endpoints of the interval form our interval
estimate for w.) Thus, E = W/2, so we could equivalently solve for n in terms of E, which
produces 1 = (Zy0/E)>.

5.1.2 Interpretation and Use

Proper interpretation of a confidence interval is important, as well as proper use of confi-
dence intervals in statistical inference. The latter can be defined in the following manner.

DEFINITION

Statistical inference refers to the use of sample data to make statements and decisions
regarding population parameters, which are generally unknown.

When we construct a confidence interval, we are using one form of statistical inference,
as we use a probability statement that involves a population parameter in making a statement
about the parameter. We know that before we take a sample and construct the interval, the
probability is (1 — «) that the interval we are about to construct will contain the population
value, provided that our assumptions are true. This is the proper way to explain a confidence
interval because, as stated previously, once we have constructed the interval, the interval
either contains the parameter or it does not. That is, we can no longer speak of 100(1 —
)% confidence, as our “degree of confidence” is either 0% or 100%, and we don’t know
which it is.

From a practical standpoint, we will never be able to construct an exact 100(1 — a)%
confidence interval because our assumptions will almost never be true. That may sound
like a profound statement, but its validity can easily be established. As was explained in
Section 3.4.3, there is no such thing as a normal distribution in practice, so by assuming
normality we are guaranteeing that we will not have a 100(1 — «)% confidence interval
right off the bat. Furthermore, even if o is assumed to be known in a particular application,
it is not going to be known exactly, so this further erodes our “confidence.”

Another possible problem concerns the manner in which the sampling is performed. The
construction of a confidence interval assumes that a random sample has been obtained, and
there is the matter of how the population is defined and viewed.

Consider the following example, which is motivated by a practical, and undoubtedly
common, problem that I encountered.

B EXAMPLE 5.1

Problem Statement

A common manufacturing problem is that the tops of bottles are put on too tightly during
the manufacturing process so that elderly people, in particular, may have great difficulty
removing the tops. In about 1996, a well-known manufacturer of apple juice (which would
probably prefer not to have its name mentioned here!) experimented with its manufacturing



144 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS—ONE SAMPLE

process, with one end result being that the author of this book, a competitive weightlifter,
was unable to remove the top without virtually having to knock it off. This experience
was reported to the company, and the public relations person who handled the complaint
mentioned the change in the manufacturing process. I was “rewarded” with three coupons
that enabled me to purchase three more bottles of the product at a reduced price. That did
little good, however, because if I couldn’t remove the top of one bottle, I probably wasn’t
going to be able to remove the top of each of three more bottles!

How was this problem handled at the manufacturing end? That isn’t known to this writer,
but in time the top became easier to remove. We might surmise how the company would
approach the problem.

What should be the first step? Take a sample, right? How many observations? Let X
denote the amount of pressure required to remove the top. (Note: Torque may be a more
appropriate measure, but we will use pressure as a simplification.) If the company has
never addressed this problem before, and additionally does not know anything about the
distribution of X over the bottles that it manufactures, it would be very difficult to construct
a confidence interval for p, the average amount of pressure required to remove the top. We
might take a sample of n = 50 bottles and appeal to the Central Limit Theorem (Section
4.3.1), but 50 could be well short of what is needed if the distribution of X is highly skewed.

Take a Sample

Let’s assume that the company decides to play it safe and takes a sample of 100 bottles. If
we are going to construct a confidence interval, we need to have a random sample. That
is, each possible sample of size 100 should have the same probability of being selected.
However, in order to take a random sample, we need to enumerate the elements of the
population, which forces us to first define the population. If our sample is obtained on one
particular day, the population would logically be defined as all of the bottles produced on
that day. But could a list of those items (a frame, in sampling terminology) be constructed?
If constructing such a list would be impossible or at least inconvenient, a random sample
could not be taken. Strictly speaking, a sample that is not a random sample would invalidate
the probability statement that was the starting point in obtaining the general expression for
a confidence interval, which has already been invalidated by the fact that we don’t know
the distribution of X!

Distributional Assumption

We can extricate ourselves from this predicament by rationalizing that the distribution of
X for samples of size 100 is probably very close to a normal distribution, and by trying
to take a sample that is “almost as good as a random sample.” Specifically, if we take a
convenience sample, such as selecting 10 items at the beginning of each hour for 5 hours,
we would hope that our convenience sample is almost as good as a random sample in terms
of the values of X being randomly determined.

Under certain conditions that will not be the case, however, as observations made close
together in time will often be correlated, depending on what is being measured. Furthermore,
if we begin sampling without a frame and are sampling from a population that isn’t finite,
we technically would not be obtaining a random sample from a single population if we
continued the sampling for very long as populations change over time. Thus, we would
eventually be sampling from two or more populations with a sampling scheme that could
consequently have some undesirable properties.
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Analysis

Assume that the process engineers believed that o = 3 (approximately), and for the sample
of size 100 it is found that X = 21.84 (pounds of pressure). Assuming approximate nor-
mality (we don’t have enough observations to have a very powerful test for it, anyway), we
thus have the following for a 95% confidence interval:

LL.=X—Zypo/Jn
= 21.84 — 1.96(3)/+/100
=21.25

UL.= Y‘f‘ Za/zo’/ﬁ
= 21.84 + 1.96(3)/+/100
=22.43

(Note that U.L. + L.L. = 2X. This serves as a check that the numbers have been listed
correctly, but does not guarantee that both values are correct. It simply tells us that either

both numbers are incorrect or they are both correct.)

Interpretation of Confidence Interval

What is the proper interpretation of this interval? For the population that was sampled (on
the selected day), we believe that the mean for all bottles on that day is somewhere between
21.25 and 22.43. If the machines are supposed to be set so that 20 pounds of pressure
is needed to remove the tops, then the process is (apparently) out of control because the
interval does not cover 20. When we reach such a conclusion, we are using a confidence
interval to test a hypothesis, and as stated at the beginning of the chapter, the relation-
ship between confidence intervals and hypothesis tests will be stressed throughout this
chapter. |

We will return to this example later in the chapter and discuss it in the context of
hypothesis testing.

5.1.3 General Form of Confidence Intervals

Confidence intervals that are constructed using either Z or ¢ are all of the same general
form, and recognizing this makes the study of confidence intervals easier.

Two-sided confidence intervals that utilize either the #-distribution or the standard normal
distribution are always of the form

6 + t(or Z)o5(or 07)

where 6 denotes an arbitrary parameter to be estimated, 6 is the corresponding point
estimator of that parameter, and s7 is the estimated standard deviation of the point estimator.

The confidence interval that was constructed in Example 5.1 was of this form since 6 =
w, 6 =X, and 05 = o/+/n. (Although prior knowledge might be used in estimating o,
as in that example, o will generally have to be estimated from recent data, so that 6; =
G //n = s/+/n will be the typical case.)

Confidence intervals are not always symmetric about 6, however. One example is a
confidence interval for o2 (using the chi-square distribution) with s> not being in the
middle of the interval. Such intervals will be illustrated later.
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5.2 CONFIDENCE INTERVAL FOR p: NORMAL DISTRIBUTION,
o ESTIMATED FROM SAMPLE DATA

Although prior information to suggest an estimate of o is often available, it is more common
for o to be estimated from sample data. When that occurs, the appropriate distribution is
no longer the standard normal distribution. Rather, the #-distribution is used, as indicated in
Section 3.4.4. Thus, relative to Section 5.1.3, the “¢ or Z” part is ¢. Therefore, a confidence
interval for the mean is of the form

X Lty ao15//n
H EXAMPLE 5.2

Objective and Assumption

Assume that we wish to construct a 99% confidence interval for w, and we believe that the
population from which we will obtain a sample is approximately normal.

Sample and Confidence Interval

We obtain a sample of size 25, with X = 28.6 and s = 4.2. The confidence interval is then
28.6 +2.7969(4.2//25) = 28.6 + 2.2375,s0 L.L. = 26.36 and U.L. = 30.84. [ |

Although it is certainly not imperative that software be used for such simple computa-
tions, it is nevertheless somewhat easier. The general recommendation is to use Z in place
of ¢ for large sample sizes, but there is no need to do that when software is available.

5.2.1 Sample Size Determination

In general, the width of the interval, W = 21,2 ,—15/ /1, depends on the sample size in
two different ways, as n appears in two places. (This expression for W is obtained in the
same general algebraic way as the expression for W using Z that was given in Section 5.1.)
This creates a problem in trying to solve for n because the solution is a function of #, which
itself is a function of n. There is not a simple solution to this problem—unless we use
software. This will be illustrated shortly.

One suggested approach is to take a small pilot sample, compute s, then use trial-and-
error to try to arrive at a value for n as a function of ¢. That is a risky approach, however,
because the variance of s is a function of 7, so s will have a large variance if a small pilot
sample is used. More specifically, the value of s that might be used to solve for n could
differ considerably from the value of s that results when the sample of size 7 is obtained.
If the latter is much larger than the pilot sample value of s, this means that a larger sample
should have been taken. In general, problems with sample size determination for the case
when the #-statistic should be used make such a determination by hand calculation rather
impractical.

Fortunately, we can avoid such headaches because there are readily available “Internet
calculators” that can be used for this purpose. For example, for the sake of simplicity let’s
assume that o = 1 and we want a 95% confidence interval with the (maximum) error of
estimation to be 0.5. Russ Lenth has developed a Java applet that can be used for this purpose,
which is available at http://www.stat.uiowa.edu/~rlenth/Power/. (Select
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“CI for the mean.”) Other applets for sample size determination may also be available on
the Web.

The use of the applet produces n = 17.76. We generally round sample sizes up, regardless
of the value of the decimal fraction, so that the interval will not have less than the desired
degree of confidence. Accordingly, n = 17.76 rounds up to 18 and the degrees of freedom
for ¢ is thus 17. Then ¢ 25,17 = 2.1098, and solving for n = (to/E)? = [(2.1089)(1)/0.5]* =
17.805, which differs only slightly from what the applet provided.

Sample size/power determinations can also be made, of course, using various software,
although in JMP and MINITAB, for example, sample size is determined in accordance with
a specified power to detect a change of a specified amount from a hypothesized parameter
value.

To reiterate what was indicated in Section 3.4.4, the fact that we are using the value of a
t-variate in constructing the interval doesn’t mean that the normal distribution is not in-
volved. Rather, the individual observations must be assumed to have come from a population
with a normal distribution, and in general the random variable that is in the numerator of
the #-statistic must have a normal distribution. If that is not the case, the coverage proba-
bility for the confidence interval (such as .95) will not be what is assumed. This is because
ﬁ(Y — w)/s does not have a ¢-distribution when X does not have a normal distribution.
This is not a serious problem, however, as long as there is not more than a slight deviation
from normality. See, for example, the discussion in Moore and McCabe (2002) and Pearson
and Please (1975).

5.3 HYPOTHESIS TESTS FOR pn: USING Z AND ¢

Historically, hypothesis tests and confidence intervals have almost always been presented
in different chapters in statistics textbooks. That is, different types of confidence intervals
are presented together, as are different types of hypothesis tests. A different approach is
taken in this text because confidence intervals and hypothesis tests are related. In fact, they
are almost like different sides of a coin. Therefore, it is important for readers to understand
this relationship, which would be harder to portray if confidence intervals and hypothesis
tests were presented in different chapters.

5.3.1 Null Hypotheses Always False?

The reader should understand at the outset that hypothesis tests have some glaring weak-
nesses, and these should be understood. Indeed, various writers have claimed that null
hypotheses are always false, so testing a hypothesis is nonsensical. (A null hypothesis
is the hypothesis that is being tested. Except when a hypothesis of a specific probability
distribution is being tested, the null hypothesis is what we doubt to be true, which is why
we test it.)

Let’s examine this claim. Assume that we have some normal distribution and we wish to
test the hypothesis that . = 50.25. Since the random variable can assume any real number,
how likely is it that the average of the numbers in the population is exactly 50.25, or is
exactly any number? Thus, we know that our hypothesis is false for almost any number that
we might select, unless the hypothesized value is recorded only to the nearest integer (e.g.,
nearest inch) or in general to the nearest whole number. If we know that the hypothesized
value is false, why would we bother to test it?
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Obviously, we would not have the same problem if we hypothesized that the mean was
at most 50, or that it was at least 50, so that we weren’t specifying a single value. We do
get into some trouble when we use a null hypothesis that specifies more than a single value
for the parameter being tested, however, as is explained in Section 5.3.2.

So it isn’t true that all null hypotheses are false, but they will be false when testing
distributional assumptions, and they will almost certainly be false whenever population
parameters are not rounded to the nearest integer.

If the null hypothesis is a specified distribution, the hypothesis will almost always be
wrong, since “all models are wrong, but some are useful,” as stated by G. E. P. Box.

Of course, if we are going to construct a confidence interval or hypothesis test, we should
check our assumption of a normal distribution (or whatever distribution is assumed). But,
as has been stated previously in this chapter and in Section 3.4.3, there is no such thing as
a normal distribution in practice, so why should we bother to perform such a test?

Actually, the apparent absurdity of performing certain hypothesis tests is tempered
somewhat by the realization that we need some idea of how close our hypothesis is to
being met, and a hypothesis test will more or less gives us this information. Thus, if the
distribution is relatively close to a normal distribution, a test for normality will likely not
lead to rejection of the hypothesis (unless the sample size is extremely large—more about
this later), and of course no great harm will occur in most applications of statistical tests
if the actual distribution is close to the assumed normal distribution when normality is
assumed.

Therefore, although hypothesis tests have been in ill-repute for many years [e.g., see
Tukey (1991) and Nester (1996)], they are not likely to go away anytime soon. Consequently,
we have to live with them, but we need to understand that they do have serious limitations,
and frequently a different approach will be preferred. For example, Reeve and Giesbrecht
(1998) stated “Many questions that are answered with hypothesis testing could be better
answered using an equivalence approach.” (The latter is used with dissolution tests.)

5.3.2 Basic Hypothesis Testing Concepts

The process of hypothesis testing begins with the hypothesis that is to be tested, and of
course this must be determined before a sample is taken. This is a statement, such as a
statement about a parameter, that we doubt, as stated previously. Therefore, we wish to test
it. We do not test statements that we believe to be true since hypothesis testing can never
be used to prove a hypothesis. Therefore, if we fail to reject the null hypothesis, we do not
say that we accept it. Rather, we say that we failed to reject it. This is a subtle difference,
but an important one.

We can only “disprove” a null hypothesis, with a specified (small) probability of being
wrong when we reject it. However, when we test the assumption of a normal distribution,
we hope that we don’t reject the hypothesis for that would force us to use a different
inferential approach, such as a nonparametric (distribution-free) test. Nonparametric tests
are covered in Chapter 16.

The hypothesis that we test is termed the null hypothesis (denoted as Hy), and the
statement that we believe to be true is termed the alternative hypothesis (denoted as H,).
Thus, if we reject the null hypothesis, we accept the statement that we believe to be true
when we constructed the test. For example, universities that report high SAT scores for
entering freshmen while simultaneously reporting a moderately high acceptance rate might
be suspected of inflating the former. Assume that Greenwood University (fictitious), a
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private university, reports that their average SAT score is 1306. A publication that ranks
universities has reason to believe that this number is too high, and so it dispatches certain
members of its staff to look into the matter. There would be no point in the “investigators”
contacting the Registrar’s Office and asking for the average SAT score because if the
university is in fact inflating the number, the Registrar’s Office would probably just give
that number.

Therefore, the investigators decide to take a sample, and they try their best to take a
relatively random sample to test the null hypothesis, with Hy: © = 1306 and H, : u <
1306. This would be called a “lower-tailed” test because H, would logically be rejected
in favor of H, only if the value of the test statistic, which will be illustrated shortly, was
sufficiently far into the lower (left) tail of the distribution of the test statistic such that it
would be unlikely to observe a value as small or smaller than what was observed if H
were true. If the alternative hypothesis had been i > 1306, then the test would have been
an upper-tailed test and a large value of the test statistic would lead to rejection of H. This
should become clear with the examples that follow.

They select 100 current students for a survey and one of the questions is the student’s
SAT score. Assuming that all of the answers to the SAT question were truthful, the results
were X = 1293 and s = 36.

Which statistic do we use? We don’t know o, so technically we should use #, provided
that we can assume that SAT scores are approximately normally distributed. In general,
we would expect aptitude test scores to be approximately normally distributed, so the
assumption of approximate normality in this case seems quite reasonable.

Tables of the 7-distribution don’t generally go as high as 99 degrees of freedom, however,
which is what we have here since n — 1 = 99. Of course, we could use computer software
and if we did so we would find only a small difference between the #-values and the
corresponding Z-values. Therefore, we could use Z as a (satisfactory) approximation and
proceed as follows. We want to compute P(X < 1293) because the alternative hypothesis
is that < 1306 (i.e., the inequality signs are the same).

Pictorially, we have Figure 5.2.

We want to convert this to the corresponding graph for Z with Z defined as Z =
(X — 11)/(s/+/n). Then we have approximately the curve in Figure 5.3, with the —3.61
resulting from the following computation:

X—pu
s/n
1293 — 1306

36/100
= —3.61

7 =

That is, —3.61 on the Z-curve corresponds to approximately 1293 on the curve for X, with
this being approximate because the distribution of X was not specified, so the distribution
of X is also unknown but is probably close to a normal distribution because of the large
sample size.

If we computed P(Z < —3.61), since the alternative hypothesis is “less than,” we would
be obtaining the probability under the assumption that the null hypothesis is true, since
we are using 1306 in place of w. That is, we would be actually computing the conditional
probability P(Z < —3.61|u = 1306), which equals .0002, using Table B, or .000153 if a
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1293 1306

Figure 5.2 Approximate distribution of X with . = 1306.

computer is used. If we used a computer and used the 7-distribution, we would also obtain
.0002 (actually .000242). Thus, the difference is very small in absolute terms and is also
inconsequential relative to the decision that would be made.

To summarize what we have done to this point, we have stated the null and alternative
hypotheses, decided on the test statistic (Z£), and computed the value of the test statistic

-3.61 0

Figure 5.3 Standard normal curve.
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—1.645 0

Figure 5.4 Rejection region for one-sided test with @ = .05 and normality assumed.

using the data in the sample. We haven’t attempted to reach a decision yet, however, and
that is the next step. The conditional probability of .0002 means that there is only a 2 in
10,000 chance of obtaining a Z-value this small or smaller when the null hypothesis is true.

This conditional probability is also called the p-value for the test, which is defined
and discussed extensively in Section 5.8.1. For this example, there is strong evidence, in
the form of a small p-value, that favors the alternative hypothesis. (Note: In this type of
application the null hypothesis could conceivably be true because we should regard the
average, which almost certainly would not be an integer, as being rounded to the nearest
integer. This then creates a finite number of possible values for the mean, one of which is
the correct value.)

In order to reach the type of decision that was reached in the preceding example, the
decision-maker must have some threshold value in mind for the conditional probability.
That is, we have to decide when the conditional probability is small enough to lead us to
reject the null hypothesis. The old approach to hypothesis testing was to state explicitly
the threshold value as either a probability or as a value of the test statistic, and then either
compare the conditional probability to the threshold probability, or compare the threshold
value of the test statistic to the observed value of the test statistic (or even state the threshold
value in the unit of measurement).

Since we have a directional alternative hypothesis (meaning either less than or greater
than), we might reject Hy when the conditional probability is less than, say, .05, or equiva-
lently when the value of the Z-statistic is less than —1.645. That is, a value of the Z-statistic
less than —1.645 would fall in the rejection region, which would be defined by this upper
bound, as shown in Figure 5.4.

The .05, which is the area under the normal curve to the left of —1.645, is the (approxi-
mate) probability of observing a value of the Z-statistic that is less than —1.645 when the
null hypothesis is true. That is, 5% of the time the null hypothesis would be incorrectly
rejected. These concepts are discussed in more detail in Section 5.8.
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If H, had been greater than rather than less than, the threshold value for the Z-statistic
would have been +1.645 rather than —1.645, again assuming that the threshold value for
the conditional probability is .05.

If the alternative hypothesis had been H,: u # 1306 (i.e., a two-sided test so that Hy
would be rejected for either a small value of Z or a large value of Z), the critical values for
Z would have been £1.96, assuming a threshold probability, which is generally denoted as
a, of .05. (The numerical value of « is the probability of rejecting the null hypothesis when
it is true; see Section 5.8.) Relationships of this type are related to the short table given in
Section 5.1 since a two-sided hypothesis test with a specified value of « relates directly
to the corresponding confidence interval with the same value of «, and, for example, a
one-sided hypothesis test with & = .05 corresponds to a 90% confidence interval.

Consider the null hypothesis being in the form Hy : u© < . Can we then determine, for
example, P(Z > 2.21 | u < 100)? No, because in order to compute the probability we must
condition on a value of u, and we can’t do that if we are not hypothesizing a particular
value of . (For example, we can’t compute a value of Z by writing “X — <100 in the
numerator of the expression for Z.) Obviously, the only way we can obtain one number for
Z is to use a specific value for p. Doing so means that we are conditioning on that value of
W in the probability statement, not on a range of values for u.

Of course, an extreme value of Z relative to u = 100 would be even more extreme if ©
were less than 100. So although we technically can’t speak of a specific value of « when
the null hypothesis contains an interval (and would thus have to speak of a maximum or
minimum value), we can still carry out the test as if we had a point value rather than an
upper bound or a lower bound.

5.3.3 Two-Sided Hypothesis Tests Vis-a-Vis Confidence Intervals

It was stated at the beginning of the chapter that the relationship between confidence
intervals and hypothesis tests would be stressed and illustrated throughout the chapter.
Therefore, we now show that we could have tested the hypothesis in the preceding example
by constructing a confidence interval.

Assume for the sake of illustration that o is known and consider Eq. (5.1). Since this
was the starting point for constructing the 100(1 — «)% confidence interval, if we have a
two-sided hypothesis test (i.e., the alternative hypothesis is “z£”) with a significance level
of o, we would suspect that the confidence interval will not contain the hypothesized value
if the value of the test statistic does not fall between —Z,, and Z,,. That is, the inequality
that is used in constructing the confidence interval is immediately violated. Let Zy and 1o
denote the numerical value of the test statistic and the hypothesized mean, respectively, and
assume that Zy > Z,, so that the null hypothesis is rejected “on the high side.” Then by
solving the inequality

X — o
> Zo:/2

o/n

for 1o, we obtain

e o
o <X —Zyp—F

Jn



5.3 HYPOTHESIS TESTS FOR p: USING Z AND ¢ 153

Thus, if we reject Hy on the high side (i.e., a positive value for the test statistic), the
hypothesized value of the mean lies below the lower limit of the confidence interval. If H
had been rejected on the low side (i.e., a negative value for the test statistic), uo would
have been above the upper limit of the confidence interval, as the reader is asked to show
in Exercise 5.2.

Similarly, if the null hypothesis is not rejected, the confidence interval must contain the
hypothesized value, as the reader is asked to show in Exercise 5.3, and if the confidence
interval contained the hypothesized value, then the null hypothesis would not be rejected.

Because of this direct relationship between hypothesis tests and confidence intervals,
which holds for almost all hypothesis tests (as will be seen later in the chapter), we could
test a hypothesis by constructing the corresponding confidence interval. Indeed, this would
be the preferred way of doing it because a confidence interval provides more information
than the hypothesis test, in addition to providing the same information that a hypothesis
test provides.

B EXAMPLE 5.3

Sample and Assumption

A machine part has a nominal value of 50 millimeters for its diameter. Fifty parts are
inspected and the average diameter is 50.7 millimeters. It has generally been assumed that
o = 0.3 millimeter and it is understood that the distribution of diameters is approximately
normal.

Confidence Interval

A 95% confidence interval on the mean diameter is 50.7 £ 1.96(0.3)/+/50 = 50.7 +
0.08 = (50.62, 50.78). Since the interval does not include 50, we would conclude that
the mean has changed and this would have been the conclusion had a two-sided hypothesis
test been performed with a = .05. |

5.3.4 One-Sided Hypothesis Tests Vis-a-Vis One-Sided Confidence Intervals

The same type of relationship exists between a one-sided (i.e., directional) hypothesis test
and a one-sided confidence interval. The latter has not been presented to this point in the
chapter and might be better termed a one-sided confidence bound or limit since either the
upper limit will be infinity or the lower limit will be minus infinity depending on whether
it is a lower bound or an upper bound, respectively. Thus, since only one limit will be a
finite number, it would be best not to refer to it as an interval.

There are many scenarios for which a one-sided confidence bound is needed rather than
a two-sided interval. For example, a person would likely be interested in the average miles
per gallon, averaged over different types of driving for, say, the first five years of driving
anew car. A confidence interval for that average (mean) would be useful, but obviously it
would be the lower limit that is of interest, as a mean near the upper limit would probably
be viewed as a “bound.” Using a simulator to obtain the mileage data, one might thus
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construct the lower bound, which would be of the form

— o
uw>X—-—2Zy—

NG
(Note that Z,, is used rather than Z,, since this is a one-sided bound.)

A 100(1 — )% one-sided confidence bound for u with ¢ assumed known corresponds
to a one-sided hypothesis test with either Hy: i > o and H,: o < o, Ho: t < poand Hy: o
> o, or Ho: i = o and either H,: t < o or Hy: 0 > . Note the possible forms for Hy,
with and without an equal sign (only). The form of the hypothesis test and the conclusion
that is reached do not depend on whether the null hypothesis contains an inequality or not.
If an old car is taken in for an emissions test as required by a particular state, we might view
the “null hypothesis” in that case as the maximum allowable value, such as the upper bound
(i.e., “<”) on nitric oxide emission. If the car fails the test, the “alternative hypothesis”
of “>" is accepted. Strictly speaking, this is not a classical example of a hypothesis test
since only one reading is obtained, but it does have some of the elements of a hypothesis
test since testing apparatus are often in need of repair and the level of nitric oxide depends
on various factors, including how hot the motor was at the time of the test. So there is an
element of variation and thus the possibility of reaching the wrong conclusion, just as there
is with a classical test.

We should not use “<” or “>" alone in the form of the null hypothesis. This is because
we cannot, for example, substitute “<50” in a test statistic; we obviously must substitute a
number, not an inequality.

Consider a hypothesis test of the form Hy: u > po and H,: u < o and we do not reject
Hy. This would correspond to an upper confidence bound, as we would expect. To see this,
we observe that

Y—Mo

o//n

2 _Za

when the null hypothesis is not rejected. Solving this inequality for uy produces po <
X + Z, o/+/n. Thus, 11 is less than the upper bound on 1 and is therefore an “acceptable”
value of wu, which corresponds to the null hypothesis being “accepted” (or properly stated,
“not rejected,” as explained earlier).

Conversely, if this null hypothesis had been rejected, then “>" in the Z-statistic inequality
would be replaced by “<” and the second inequality would be 1o > X + Z, o/+/n. That
is, o would be an unacceptable value for u because it exceeded the upper bound for u.
Thus, @y would be rejected by both the hypothesis test and the confidence interval, and of
course the signals must be the same.

The illustration of the other combination of the null and alternative hypotheses would
proceed similarly, and this combination would correspond to the miles per gallon example.
Specifically, the alternative hypothesis would be H,: i > o and rejecting the null hypoth-
esis in favor of this alternative hypothesis would result in o < X — Z, 0/+/n. That is, the
lower confidence limit would exceed ¢, so the latter would not be a possible value for ©
(with the stated probability, of course). Conversely, if the null hypothesis were not rejected,
this would resultin g > X — Zy 0 /+/n. That is, ;o would exceed the lower limit and thus
be an acceptable value since it is within the “interval” (lower limit, infinity).
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Therefore, for the miles per gallon example, testing Ho: ;& > 25 and not rejecting it
would be the same as concluding that 25 is greater than the lower limit, since uo = 25. If
we reject the null hypothesis, we are saying that 25 is less than the lower limit, so 25 is not a
likely possible value. If 25 is the smallest acceptable value by manufacturing specifications,
then we don’t want to reject this null hypothesis.

Of course, our estimate of w is X, so when we go from XtoX —Z,0 //n, we are
simply going below X by an amount that reflects the sampling variability of X on the side
of X in which we are interested, and similarly for the upper limit.

5.3.5 Relationships When the ¢-Distribution is Used

The relationships between confidence intervals and hypothesis tests that exist when Z is used
also exist when ¢ is used. That is, for two-sided hypothesis tests and two-sided confidence
intervals, Z,, is replaced by #,». , — 1, and for one-sided tests and one-sided intervals, Z,, is
replaced by t, , — 1. [Note: The degrees of freedom for ¢ is not always n — 1, as the degrees
of freedom for # is the degrees of freedom on which the estimate of o gyyigic is based, with the
latter defined for the specific procedure that is used and the statistic (not the test statistic)
that is employed.]

5.3.6 When to Use ¢ or Z (or Neither)?

This is a question that students and practitioners must address. Some instructors (such
as this author) have been known to not give any partial credit on tests when the wrong
statistic is used, as this is somewhat analogous to starting on a trip by driving in the wrong
direction, which would obviously prevent one from reaching the desired destination unless
the misdirection were corrected.

Table 5.1, which applies to a confidence interval or hypothesis test for 1, should prove
helpful.

The first two cases are clear-cut, although unrealistic. If the distribution were normal and
o were known, then the standard normal distribution is the exact distribution. For the next
two cases, the proper statistic is ¢ but Z could be used as a substitute if n were large. This is
not a robustness issue (i.e., not a matter of being sensitive or insensitive to departures from
assumptions) and so the user could determine when large is “large enough.” For example,
let’s assume that n = 125, o is unknown, and a 95% confidence interval is desired. We

TABLE 5.1 Choice of Test Statistic

Distribution Sample Size o Test Statistic
Normal Large Known z

Normal Small Known Z

Normal Large Unknown Zort
Normal Small Unknown t

Unknown Large Known Z

Unknown Large Unknown Z

Unknown Small Known Neither

Unknown Small Unknown Neither
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know that if we use Z, the value of Z we will use is 1.96. The following MINITAB output
shows that the corresponding #-value is 1.9793.

Inverse Cumulative Distribution Function
Student’s t distribution with 124 DF

P (X <= x) X
0.9750 1.9793

If a user were then to compute 2(1.9793 — 1.96)sx, this would provide the difference of
the widths of the confidence intervals, with the interval using ¢ being the wider interval. In
most cases this difference is likely to be inconsequential.

The next two cases do involve robustness considerations. If we don’t know the distri-
bution (the usual case), then we don’t know what test statistic to use. If 0 were known,
then the Central Limit Theorem applies when the sample size is “large.” Of course, what is
sufficiently large depends on the shape of the parent population. See the robustness results
given in Moore and McCabe (2002) and Pearson and Please (1975). When o is unknown,
we should obtain a good estimate of it with a large sample. Here the Central Limit The-
orem does not directly apply since ¢ is unknown, but we could still invoke it with the
understanding that it applies only approximately.

The last two cases in Table 5.1 will frequently occur, especially when sampling is
expensive. If we have a small sample and we know nothing about the distribution, then we
can’t use either ¢ or Z. Instead, we must use a corresponding nonparametric approach (see
Section 16.2.3), or perhaps a bootstrap approach (Section 5.7). The former, which is also
called a distribution-free approach, is the more conservative approach. The latter might
provide better results in a particular application but could also be riskier, depending on the
size of the initial sample and the shape of the parent population.

5.3.7 Additional Example

We will illustrate the connection between hypothesis tests and confidence intervals with
the following example.

B EXAMPLE 54

Sample

Light emitting diodes (LEDs) are expected to revolutionize the lighting industry by greatly
increasing the lifespan of various lighting devices. Assume that accelerated testing (Section
14.3) has produced lifetimes of 100 lighting displays of a particular type with X = 76.5
and s = 6.25 (units are 1,000 hours).

Hypothesis Test and Assumption

It is desired that the average lifetime be greater than 75 (000), so the manufacturer uses the
data that have been collected to test this hypothesis, with Hy: u <75 and H,: 0 > 75. It
is decided to initially assume that the distribution of X is probably reasonably close to a
normal distribution because of the large sample size, and then proceed on that assumption.
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Computations

Invoking the large-sample approximation, the test statistic is thus
X —
7 — o
s//n
_ 76575

6.25/4/100
= 2.40

Conclusion

The company would like to see clear evidence that the average is greater than 75, and it
would prefer to see a p-value less than .01. The p-value can easily be shown (such as by
using Table B) to be .0082. Thus, the evidence would be deemed to be sufficient.

Alternative Approach

A more useful approach would be to construct a lower bound on the lifespan, and the desired
upper bound on the p-value as stated by the company corresponds to a 99% lower bound on
the lifespan. We “know” that the lower bound will slightly exceed 75 because the p-value was
slightly less than .01. Numerically, the lower bound is 76.5 — 2.326(6.25/+/100) = 75.05.

Thus, the result is essentially what we expected. The hypothesis test and confidence
interval gave us the same message, but the confidence interval gave us the message in the
units that were of interest, rather than in terms of a probability. |

5.4 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS
FOR A PROPORTION

In this section we consider confidence intervals and hypothesis tests for a proportion, such
as the proportion of transistors produced by a company that are out of tolerance. It was
shown in Section 3.3.2 that the variance of the binomial random variable is np(1 — p). This
variance is typically used in constructing confidence intervals and hypothesis tests. Implicit
in the derivation of the variance is the assumption of a constant value of p, in addition
to the assumption of independent observations. Both assumptions may be questionable in
a practical application and should therefore be checked. Obviously, the first assumption
could be checked only if multiple samples are obtained, but generally only one sample is
obtained when a confidence interval or hypothesis test is constructed.

A simple, heuristic way of checking the first assumption would be to plot the observations
(successes and failures, ones and zeros) in a single sample over time. Time might then be
blocked into equal-sized intervals and p computed within each interval. If the values of p
differ greatly, then p is probably not constant. Similarly, if the zeros and ones do not appear
to be occurring randomly, the observations are probably not independent. A simple test for
the adequacy of the binomial distribution assumption in a particular application was given
in Section 3.3.2.1. Tests such as that one (or even simple visual tests) should be employed
rather than just assuming that the binomial distribution is an adequate model in a particular
application.
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For the sake of simplicity, however, we shall assume in this section that the binomial
assumption is adequate. As stated previously, when we construct a confidence interval using
Z or t, the confidence interval for some parameter 6 is always of the form (when o3 is not
assumed known) 8 % (Z or 1)o5.

The use of either Z or ¢ implies that normality in some form is being assumed: either
a normal distribution or the adequacy of a normal approximation. The normal approxima-
tion to the binomial distribution can be written A = (X — np)/+/np(1 — p), which equals
(p — p)//p(d = p)/n if we divide numerator and denominator by n. (Note: If binomial
probabilities were approximated, +0.5 and/or —0.5 would be added to X, depending on the
form of the probability statement.) If the normal approximation approach were applied to
confidence intervals, a confidence interval for p would be obtained as

P £ Zopyp(l = Dp)/n (5.3)

(Note that we must assume the use of 7 instead of o7 because the latter is a function of
p and if we knew p we wouldn’t need to construct a confidence interval for it.)

This approach using Eq. (5.3) is the most frequently used approach, but only when the
parameter is close to 0.5 is the interval likely to be adequate. Rules of thumb are often
given in terms of the numerical values of np and n(1 — p), with the idea that the interval
will be adequate when each of the two products exceeds either 5 or 10. The value of p more
strongly determines the adequacy of the interval than does either np or n(1 — p), however.

5.4.1 Approximate Versus Exact Confidence Interval for a Proportion

So is there a better way to construct the confidence interval? Clopper and Pearson (1934)
presented an exact approach for obtaining the interval, but Agresti and Coull (1998) showed
in their article, “Approximate Is Better than “Exact” for Interval Estimation of Binomial
Proportions,” that the exact Clopper—Pearson approach isn’t the best way to construct the
interval. Specifically, they showed that, for n < 100, with the exact approach the coverage
probability may be considerably higher than 1 — «. For example, an “exact” 95% confidence
interval is guaranteed to be at least 95%, but might actually be a 98% interval if n is very
small (e.g., 15), and can be noticeably larger than 95%—such as 96.5%—even when n =
100. Certainly, this sounds paradoxical, but this “error” in the exact approach is due in part
to the fact that the binomial distribution is discrete rather than continuous, with cumulative
probabilities taking large jumps when # is small, and smaller jumps when # is large.

As is being stressed in this chapter and in the next chapter, there is a direct connection
between confidence intervals and hypothesis tests, so it would be logical to use a confidence
interval for p that corresponds to the test of Hy: p = po versus H,: p # po. The test statistic
that is generally used to test H is

P — Po

v po(l — po)/n

with the value of Z compared with £Z, . This might seem to be as objectionable as using Z
to construct the interval because p does not have a normal distribution. It is approximately
normally distributed when 7 is large, however. But what about when 7 is small; should ¢ be
used instead of Z? There is no “s-test” for a proportion because the individual observations
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must have a normal distribution, at least approximately, for a ¢-test to be used, but here the
individual observations have a binomial distribution.

The confidence interval given earlier in this section does not correspond to this hypothesis
test because the estimated standard deviation of p'is used in the confidence interval, whereas
the standard deviation under H is used in the hypothesis test. Thus, this is a rare exception
in which we do not have a direct correspondence between the confidence interval and the
corresponding hypothesis test, and this is due to the fact that the standard deviation of the
estimator of the parameter is a function of the parameter. The hypothesis test, by definition,
must be a function of the hypothesized value of the parameter, whereas the confidence
interval utilizes an estimate of the parameter obtained from a sample.

The method recommended by Agresti and Coull (1998) and by Brown, Cai, and
DasGupta (2001), and originally given by Wilson (1927), is to use the form of the confi-
dence interval that corresponds to this hypothesis test. That is, solve for the two values of
Po (5ay, Pupper and piower) that result from setting Z = Z,,» and solving for pg = pypper, and
then setting Z = —Z,, and solving for py = piower. Although this might sound complicated,
the appropriate expressions can be obtained by straightforward but slightly tedious algebra.
Such algebraic manipulation isn’t necessary, however, as the appropriate expressions are
given in various sources. Specifically, we have

P+ 22 /20 + 2 [P = D)/ + 22 /40

U.L. 5
1+za/2/n

(5.4a)

P+z/2n — Za/z\/ﬁ(l = P)/n+z5p/4n*
L L — (5.4b)
1+z§/2/n

This approach can be substantiated on the grounds that it corresponds to the large-
sample hypothesis test and is also supported by the research of Agresti and Coull (1998).
We illustrate it with the following example.

B EXAMPLE 5.5

A company has been having serious problems with scrap and rework so one of its quality
engineers decides to investigate a particular process. A sample of 150 items is taken on
a particular day and an alarmingly high percentage, 16%, is found to be nonconforming
(i.e., defective). The engineer decides to construct a 95% confidence interval on the true
proportion of defective units at that time, realizing that point estimates do vary. The
computations proceed as follows.

P+ Zi/z/Zi’l + Za/z\/ﬁ(l —p)/n+ Z§/2/4n2
1—1—23/2/72

16+ (1.96)2/2(150) + 1.96,/.16(.84)/150 + (1.96)2/4(150)?
1+ (1.96)2/150

UL.=

0.2457

=0.2395
1.0256
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P+z2,/2n — za/g\/ﬁ(l — P)/n + 22, 4
1—|—zi/2/n

LL. =

16+ (1.96)2/2(150) — 1.96,/.16(.84)/150 + (1.96)%/4(150)?
1+ (1.96)2/150

_0.1256

= =0.1224
1.0256

The 16% defective rate was very troublesome and the upper limit of the confidence
interval was even more so, thus necessitating corrective action. [ |

One advantage of this procedure is that its worth does not depend strongly on the
value of n and/or p. In addition to the fact that the standard approach is unsatisfactory
from the standpoint of coverage probabilities, there is a distinct possibility that the lower
limit may not exist. Clearly, a proportion cannot be negative, and a lower limit of zero
would also be meaningless since that is the lower limit by definition. The computed lower
limit with the standard approach given in Eq. (5.3) will not be positive, however, unless
P > 1.96/(n + 1.96%). Notice that the larger 7 is, the more likely the inequality will be
satisfied, in general. However, if n were only, say, 30, then p > .0579 is required in order
to have a lower limit. In many applications, such as quality improvement applications, we
would expect p to be small (.01 or less), so we might need a very large sample in order
to have a positive lower limit with the standard approach. Obtaining a negative computed
lower limit for something that cannot be negative should cause us to question the approach
that is being used.

We do much better with the improved approach, as the computed lower limit can
never be negative, regardless of the value of n, as the reader is asked to show in
Exercise 5.17.

As stated previously, if we wanted to construct a one-sided confidence limit, such
as a lower limit, we would simply replace Z,, by Z, in the expression for the up-
per or lower limit, whichever is desired. For example, we might want an upper bound
on the proportion of time that one or more components of an electrical system fail
to function properly, or an upper bound on the percentage of nonconforming units of
a certain type, or an upper bound on the percentage of units that have one or more
nonconformities.

Since the confidence interval given by Egs. (5.4a) and (5.4b) stems from the large-sample
hypothesis test, we should keep in mind that it can perform poorly in situations for which
the normal approximation will have difficulty. In particular, estimating tail probabilities
for a nonnormal distribution can be difficult, yet when we work with hypothesis test
endpoints we are in the tails of the distribution, especially when a 99% confidence interval is
desired.

We observe that the width of the confidence interval, which we will not write explicitly
here, is a function of p, which of course we will not have until we have taken a sample.
Thus, as with almost all of the other confidence intervals in this chapter, it is not particularly
practical to solve for n. A crude approach would be to substitute .5 for p, which will
maximize 7.
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5.5 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS FOR 62 AND ¢

The confidence intervals presented for u thus far in the chapter (using Z or using ¢) are
symmetric about the point estimator of the parameter. This is also true for the standard
way of obtaining a confidence interval for p but is not true for the improved approach that
was given in Section 5.4.1. The reason that almost all of these intervals are symmetric is
that the distribution that is used in producing the intervals is itself symmetric. Certainly,
whenever the form of the interval is 8 4 W 285, with W here denoting an arbitrary variate,
the confidence interval will obviously be symmetric about 6 because of the “+”.

We cannot, however, simply choose to use this form when constructing any confidence
interval because the form will depend on the relevant distribution theory. To illustrate,
consider a confidence interval for o>. To obtain the confidence interval we use the chi-
square distribution because

(n—1S? 2

o2 i

as the reader is asked to show in Exercise 5.59.
Therefore, it follows that

n—1S?

2
= < —l-a
o2 — Xn—l,l—a/2>

P (Xr%—l,a/Z =
From this starting point, we simply need to manipulate the form so that o2 will be in the
middle of the double inequality. Doing the appropriate algebra produces

P((n DS o O I)S)=1—a (5.5)

2 — 2
Xn—l,l—a/2 Xn—l,ct/Z

so that the expression on the left gives the lower limit and the expression on the right
gives the upper limit. Here the values of x? are the values of the variate with a cumulative
probability of «/2 and 1 — «/2, respectively.

The width of the interval of course is given by the difference between the two fractions
in Eq. (5.5). Note, however, that if we tried to solve for n for a specified width, we would
have the same type of problem as encountered previously for other types of intervals: the
x?2 value depends on 7 and we won’t have a value for s until we have taken a sample. Thus,
solving for n so as to have a confidence interval with a specified width is not practical.

We will use the following example to illustrate the construction of the interval.

B EXAMPLE 5.6

Objective and Sample

A leading personal computer manufacturer is interested in the variance of the time that
its customer service personnel take to respond to customers at the company’s “Internet
chat” facility at its website. So a sample of 100 records is obtained with the objective of
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constructing a confidence interval for the variance of the time, as a high variance would
suggest that perhaps some customer service personnel are not responding promptly.

Sample, Assumption, and Computation

The 100 response times have a variance of 123.9 seconds squared. If we assume that
the response times are approximately normally distributed, we can construct the 95%
confidence interval as

_ (n— DS 99(123.9)

L.L.=— = =955
Koiiap 128422

_(n—1)S*  99(123.9)
B Xet ap T 73.361

U.L. =167.2

Alternative Approach

Now assume that the company decides it would rather have a confidence interval for o
instead of for 0’2, as the company would prefer not to lose the unit of measurement. How
should the company proceed?

The relevant distribution is then the chi distribution, as the square root of a random
variable that has a chi-squared distribution has a chi distribution, as we might expect. We
need not be concerned with this distribution, however, as the endpoints of the confidence
interval for o would simply be the square roots of the endpoints of the interval for Eq. (5.5).

Therefore, for this example we have L.L. = 9.77 and U.L. = 12.93. |

B EXAMPLE 5.7

Consider a circuit that constructs the sum of two binary numbers (i.e., a full adder). The
time to stabilization of the sum after inputs change and the carries propagate from the least
significant bit to the most significant bit is a random variable because the inputs are variable
and the capacitances will also vary. Assume that the time can be modeled by a normal
distribution. Five measurements are taken and the values are: 47.2, 50.9, 46.3, 45.1, and
47.4 nanoseconds. Would it be possible or practical to construct a confidence interval or at
least obtain a point estimate for the variance based on the information given?

Solution  Since normality was stated, a confidence interval for o2 can be obtained
using the chi-square distribution. The sample variance can be shown to be 4.697. It follows
that the 95% confidence interval on the population variance is

_ (n— DS 4(4.697)

L.L.=- =
Xiiiap 11,1433

= 1.686

_(n—1DS?  4(4.697)

U.L. =
X371, w2 0.4844

= 38.786
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Notice that this is an extremely wide interval relative to the magnitude of the sample
variance, so the practical value of a confidence interval of this width might have to be
questioned. Of course, the culprit is the small sample size, so a larger sample might have
to be taken to obtain a confidence interval that is of acceptable width. |

5.5.1 Hypothesis Tests for 62 and o

If we wanted to test Hy: 0> = 002, we would compute

—1)s?
= % (5.6)
0

and compare the computed value against the appropriate value(s) of x?_,, which, as with
other distributions, depends on the value of « and whether or not the test is one-sided, and
of course additionally depends on the value of n. Note that Eq. (5.6) was the starting point
for deriving the confidence interval for o2,

To illustrate, assume that the variability of a measured characteristic in a manufacturing
process has purportedly been improved, but the plant manager would like to see hard
evidence of that. There are two ways in which one might proceed. If a future comparison
of the old process versus the new process had been planned, a sample of items from the
old process might have been taken, for comparison with a sample from the new process.
The methodology for this scenario would then be that given in Section 6.4. If the old
process had not been sampled, however, then the best that could be done would be to
take a sample from the new process, compute S, and compare that with records that
suggest what the variance was under the old process. The latter would then be taken as the
hypothesized value and we would hope that we could reject that value with a one-sided
hypothesis test, which would suggest that the variability of the process had indeed been
reduced.

Assume that records indicate that o> was approximately 2.86, but no sample was taken
from the previous process. A sample of 100 items is obtained from the new process and S>
= 2.43. Could the difference between 2.86 and 2.43 be due to sampling variability, or does
this likely constitute evidence that the process has indeed been improved? Thus, we want
to test Hy: 02 = 2.86 versus H,: 02 < 2.86.

As with the other test scenarios, we could indirectly test this hypothesis by constructing a
one-sided confidence bound, or directly by performing the hypothesis test. Since confidence
intervals are more informative, we will construct the confidence bound. We want an upper
bound on o2, and we hope that the upper bound is below 2.86. The form of the upper bound
is

2 _ (n—1S?

2
anl.ot

UL.o

Although we might not be interested in doing so in a particular situation, a variation of
what has been presented so far in this chapter regarding the relationship between confidence
intervals and hypothesis tests would be to solve for the degree of confidence (i.e., solve
for ) such that the upper bound on the confidence interval is 2.86. This value of o would
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also be the p-value for the hypothesis test. This would be an indirect way of solving for the
p-value.

Solving for x;_, , involves only algebra, but then software would have to be used to
determine «. The degree of confidence is then 100(1 — «)%. Setting the upper bound equal
to 2.86 and solving for X;i Las WE thus obtain

(n—1S?

2
Xn—l,(x

=2.86

so that

, _ (n—1s?
Xn-ta = T g6
99(2.43)
T 286
= 84.1154

We can solve for o using MINITAB, for example, by specifying this cumulative proba-
bility for a chi-square distribution with 99 degrees of freedom. Doing so gives o = .1428,
so 1 — o = .8572. Thus, the 85.72% upper bound would be 2.86. Of course, we generally
use a higher degree of confidence than this, so our upper bound with a higher degree of
confidence would exceed the hypothesized value, which we would thus not be able to reject
with one of the commonly used values of «. Therefore, we cannot reject the null hypothesis.

If we had performed a conventional hypothesis test with, say, « = .05, we would have
computed the value of the X2 test statistic, which the reader can observe is the 84.1154
that we have already obtained and compared that with Xr%—l,.OS’ which can be shown to be
77.0463.

Since 2 cumed > Xeiiea and is thus not in the rejection region, we would fail to reject
the null hypothesis. If we want to use a p-value approach, the p-value is .1428 (which of
course we already obtained), so we would fail to reject Hy since this number is greater than
.05. Thus, we must conclude that there is no statistical evidence that the process variability
has been reduced.

Again, the reason for going through all of these computations (not all of which were
necessary in working the problem) is to show that a hypothesis test and the corresponding
confidence interval are essentially different sides of a coin, as stated previously.

5.6 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS
FOR THE POISSON MEAN

Let X denote the number of nonconformities, for example, for a specified area of opportunity,

and let A denote the corresponding mean. The confidence interval that is probably the most
widely used is

X+ ZypVX (5.7)
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which is of the general form 0+ Zsz that was mentioned previously. An argument can
certainly be made, however, that if we are going to use the large-sample hypothesis test that
is of the form

then at least in the case of large samples we should invert this hypothesis test to obtain
the corresponding confidence interval, just as was done in the binomial case. Doing so
produces the interval

2X + 225+ Zapy| 25 +4X
(5.8)

2

The simplest types of confidence intervals are the ones that are going to be used the most
often, and although the interval given by Eq. (5.8) is not as simple as the interval given by
Eq. (5.7), it is easier to justify. Barker (2002) considered the Eq. (5.8) interval in addition
to eight other confidence interval forms in a comparison study for the case when A < 5 and
found that in the case of 95% confidence intervals, this form for the interval comes closer
to maintaining the 95% coverage probability than does any other closed-form interval.

Therefore, this interval might be used for both large and small values of A. See also the
method given by Schwertman and Martinez (1994) and the methods that were reviewed by
Sahai and Khurshid (1993).

B EXAMPLE 5.8

Problem Statement and Sample

A company’s vice president for quality improvement is concerned about the sudden ap-
pearance of surface blemishes on the company’s flat panel displays. Accordingly, she asks
that a sample of 500 such displays be obtained during March, and it is found that 23 have
surface blemishes. This provides her with some idea of the magnitude of the problem, but
she asks that a confidence interval additionally be constructed.

Confidence Interval and Conclusion

Using Eq. (5.8), the 95% confidence interval is (3.83, 46.03). If the sample taken was a
representative sample, this provides an indication of the number of surface blemishes that
can be expected per 500 units. If much of this interval would be considered unacceptable
by management, then corrective action should be taken.

Notice that the interval obtained using Eq. (5.8) is symmetric about X + Z2 12/2, not
symmetric about X. [ |
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5.7 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS WHEN
STANDARD ERROR EXPRESSIONS ARE NOT AVAILABLE

Let 6 denote an arbitrary parameter, with 6* denoting an arbitrary estimator. A closed-
form expression for s is necessary in order to calculate confidence intervals and perform
hypothesis tests using an equation, such as those presented in previous sections. As stated in
Section 4.5, such expressions are easily obtained for estimators presented in textbooks, but
in many applications it will not be possible to obtain the necessary expression. Consequently,
bootstrap methods have become popular (in some quarters) during the past ten to fifteen
years.

There are different types of bootstrap approaches, but the general idea is as follows. A
sample is taken and a thousand or more subsamples of the same size as the original sample
are taken from this sample, with replacement, acting as if the sample were the population.
For k subsamples, 0* is computed for each subsample and the standard error of 6* is then
computed as

k o~ o~
> [6F — ave.(6%)]?
i=1

o k—1

There is no set number for k that is agreed on, but the U.S. Food and Drug Admin-
istration, for example, has recommended k = 2,000 (see http://www.fda.gov/
cder/bioequivdata/statproc.htm) as part of its bioequivalence guidelines.

For a 100(1 — «)% confidence interval, the endpoints of the interval are given by the
a/2 and 1 — «/2 percentiles of the distribution of the @* that has been generated from the
bootstrapping. This is a nonparametric bootstrap approach as no distribution assumption is
involved. There is also a parametric bootstrap and various alternative approaches, as stated
previously.

B EXAMPLE 5.9

Statistical Approach

In his paper, “Confidence Intervals for the Mean of Non-normal Data” (Quality and Relia-
bility Engineering International, 17, pp. 257-267, 2001), F. K. Wang gave an example of
a scenario where a bootstrap confidence interval would be warranted, although Wang did
not construct the interval(s). The following data were stated as being two random samples
from an accounting firm in Taiwan.

Accounts receivable (unit = NT$1,000):
510, 2684, 2907, 3165, 3553, 3640, 7267, 13571
Accounts payable (unit = NT$1,000) :

819, 1272, 4857, 5047, 6617, 9324, 14597, 21904,
38824, 42409, 48056, 51818
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Transformation

Wang tested each sample for normality and concluded “these two data [sic] are non-normal.”
He then proceeded to construct a confidence interval for each mean using a normal theory
approach, a Box—Cox transformation (to normality) approach, and a bootstrap approach. He
concluded that the bootstrap approach produced the superior results because the confidence
intervals using that approach had the smallest width among the three intervals constructed
for each of the two population parameters.

Before we proceed to construct a bootstrap confidence interval for the accounts receivable
population mean and the accounts payable population mean, a few comments are in order.
First, it isn’t practical to test for normality with such small samples, as any test for normality
will have low power to detect a departure from normality because of the small sample sizes.
Furthermore, any small sample from a normal population is going to look nonnormal simply
because there aren’t enough observations for a histogram of the data to be mound-shaped.
Of course, we know that (exact) normality doesn’t exist in practice anyway, as has been
emphasized.

That said, the degree of departure from normality for these populations undoubtedly
depends on the mixture of large, medium, and small firms and more weight should be
placed on that than the information from small samples.

With these issues in mind, we will proceed to construct the bootstrap confidence intervals
and compare the results with those given by Wang (2001).

Computations

Using 1,000 bootstrap samples, we obtain 2505.88 as the 2.5 percentile of the averages
and 7503.88 as the 97.5 percentile, so that the width of the interval is 4998. Note that the
midpoint of the interval, 5004.88, is considerably above the average value of 4662. This
shows the influence of an extreme observation, 13,571, as that value is greater than the
average by a much larger amount than the smallest value, 510, is below the average. In
general, bootstrapping will fail when outliers are present. We don’t know whether or not
the extreme value is a valid data point. If it is a valid data point, then it is suggestive of a
skewed distribution.

Wang constructed the confidence interval as the average of the bootstrap averages plus
and minus 1.96 times the standard error of the averages, thus acting as if the bootstrap
averages were normally distributed. The distribution is skewed, however, because of the
outlier. Consequently, Wang’s confidence interval (2831.6, 8168.4) differs considerably
from the interval given in the preceding paragraph.

For the other sample, the 95% bootstrap confidence interval is (10,358.3, 31,567.0) and
the distribution of the bootstrap averages is reasonably close to exhibiting perfect symmetry.
The lower limit differs considerably from the lower limit in Wang’s interval, however, as
his interval was (11,326.2, 32,069.6). |

The success of the bootstrap approach obviously depends on how well the initial sample
represents the population. Obviously, the larger the sample, the more likely that it will be
reasonably representative of the population. Not surprisingly, the only theoretical support
for bootstrapping methods are asymptotic results (i.e., as the size of the initial sample
approaches infinity).

In essence, the user of bootstrap methods is acting as if the original sample contains
more information than it actually does contain. It is not possible to increase the amount of
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information in a sample, but in essence that is what the user is trying to do. Thus, although
bootstrap methods have been used successfully in many applications, they do have a
somewhat shaky foundation and should be used cautiously, except in certain applications
where they are known to fail and thus should not be used at all. In particular, they generally
fail when the population distribution is markedly skewed. See Davison and Hinkley (1997)
and Efron and Tibshirani (1993) for an introduction to bootstrap methods and bootstrap
confidence intervals. See also Chernick (1999) for, in particular, a discussion of six common
myths about bootstrapping. The references given in Section 4.5 of this text may also be of
interest.

5.8 TYPEIAND TYPE II ERRORS

When we test a hypothesis and reach a conclusion, we will have made either one of two
possible correct decisions, or one of two possible incorrect decisions, depending on the
decision that we made. Specifically, there are two possible decisions, reject or not reject the
null hypothesis, and the null hypothesis could be either true or false, although as indicated
in Section 5.3.1, null hypotheses that are true will not be encountered very often. There
are thus four possible combinations of decisions and outcomes, as is indicated in the table
below.

Decision
Not Reject Reject
. True | Correct Incorrect
Null Hypothesis
False | Incorrect Correct

This characterization of the four possibilities, although standard, is almost too simplistic
since, as stated previously, null hypotheses will generally be false. If we fail to reject the
null hypothesis, that may mean that it is “almost true,” or it may mean that we simply used a
sample size that was too small. Sample size determination was discussed in Section 5.1, for
example, but it has not been discussed in this chapter in the context of hypothesis testing.
In general, the sample size used for hypothesis testing should be sufficient to detect, with
a stated probability, the smallest difference that is considered to be consequential between
the true state of nature and what is hypothesized.

For example, assume that our null hypothesis is Hy: . = 50 but in reality, u = 50.3. The
fact that we are testing ; = 50 means that we doubt that value, but if u were 50.3 we might
not care that we failed to reject 50! That is, the difference between 50.0 and 50.3 might
not be of practical significance. Assume, however, that the difference between 50 and 51
is of practical significance, so that if the mean were really 51, we would want to reject 50
and thus detect this difference with a specified probability. Let’s assume that we want to
detect the difference with probability .90. How large a sample should we take to accomplish
this?

The question that we are asking relates to the power of the test. That is, how powerful is
our test at detecting specified differences from what we have hypothesized? For simplicity,
let’s assume that we have a one-sided test with « = .05, and we will further assume
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Figure 5.5 Distribution of X for hypothesized mean (50) and true mean (51).

normality and that o = 2. Then the test statistic will be

_X-u
SN
X — 50
2/Jn

We then want to solve for n such that P(Z > 1.645 | u = 51) = .90. It is important to note
that we are conditioning on ;. = 51 because we are assuming this to be the true value.
Before we continue further, it will be helpful to use a graph as a reference point, and the
relevant graph is given in Figure 5.5.

Using this graph as a guide to allow us to see the null distribution and the assumed
distribution, we can solve for 7 (the derivation is given in the chapter Appendix) as

nz(aaa+zmy
M1 — Ko
2(1.645 + 1.28155)\ >
- < 51— 50 )

= 34.26

which we would round up to 35 so as to have at least the power that we desired. It is helpful
if the reader can understand the mechanics, but we don’t need to perform calculations such
as these every time we want a power calculation. Instead, there are software packages we
can use for these computations. For example, the following is the MINITAB output with
the sequence of commands that produced the output given at the textbook website. Notice
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that the probability (“power”) is slightly greater than .90 since the sample size was rounded
up.

Power and Sample Size
1-Sample Z Test

Testing mean = null (versus > null)
Calculating power for mean = null + difference
Alpha = 0.05 Assumed standard deviation = 2

Difference Sample Size Target Power Actual Power
1 35 0.9 0.905440

The reason the probability is labeled “power” in the last section of the output is because
this is in reference to the power of the test. We clearly want to have a test and sample size
that will detect a significant departure from the hypothesized value with a high probability,
which means high or good power. The symbol used to denote power is generally 1 —
B. Since this is the probability of rejecting the null hypothesis when it is false, B is the
probability of failing to do so and failing to reject a false null hypothesis is termed a Type
II error. The other type of error, rejecting the null hypothesis when it is true, is termed a
Type I error. The probability of the latter occurring is equal to the significance level, «,
that is selected by the user if a classical hypothesis testing approach is used. If not, then a
“p-value,” as discussed previously and in more detail in the next section, is computed, and
the user decides whether or not the value is small enough to reject the null hypothesis.

5.8.1 p-Values

DEFINITION

A p-value is the probability that the value of the test statistic is at least as extreme,
relative to the null hypothesis, as the value that was observed, when the null hypothesis
is true.

For example, assume that we test Hy: u = 50 versus H,: n # 50, we assume normality,
and the value of the Z-statistic is 2.01. The P(Z > 2.01 | u = 50) = .0222. This is a
two-sided test and if we used « = .05, we would reject Hy if Z > 1.96 or Z < —1.96. Since
the calculated Z-value is close to one of these two numbers, we would expect the p-value
to be close to .05. When we have a two-sided test, the words “at least as extreme” in the
definition of a p-value refer to either a large or small (extreme) value of the test statistic.
Accordingly, the probability given above is doubled because Z = —1.96 is as extreme as
Z = 1.96. Therefore, the p-value for this example is .0444 and we reject Hy. (If the need
to double the probability to obtain the p-value isn’t clear, note that if we didn’t double the
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probability, we would have to compare it with /2 instead of with «. Otherwise, we would
reach the wrong conclusion if, for example, o were .05 and the probability were .03.)

We should note that a p-value is a random variable because it is determined by the value
of the test statistic, which is a random variable. If we obtained a second sample, we would
almost certainly have a different p-value, just as the second sample will almost certainly
differ from the first sample. The extent to which p-values would vary over successive
samples would depend on the extent to which the values of the test statistics would vary
over those samples, which will in turn depend on the sample size that is used. This is
something that should be kept in mind when p-values are reported and decisions are made
based on p-values.

We should also note that a p-value can exceed .50 for a one-sided test, as the value of the
test statistic could be in the opposite direction from the alternative hypothesis. For example,
consider the hypotheses Hy: i = 50 versus H,: u < 50. If the sample mean exceeds 50,
the p-value will exceed .50. Of course, a p-value for a two-sided test will be much larger
than .50 if the sample mean is close to 50.

When a decision is made based on the p-value, the user must obviously have some
threshold value in mind, and that value might indeed be .05. The advantage of using a
p-value is that the classification of a p-value as “large” or “small” does not depend on what
test was performed or what test statistic was used. The use of p-values is well established,
especially on computer output.

A p-value is frequently defined as “the smallest significance level that will result in the
null hypothesis being rejected.” Such a definition is potentially confusing, however, as a
p-value and a significance level are unrelated concepts, and a person can (and probably
should) discuss one without discussing the other. Clearly, one could take a classical approach
to hypothesis testing and make a decision without ever computing a p-value. Similarly, a
decision can be made from a p-value without specifying a significance level. Furthermore,
a p-value is a function of the data; a significance level is specified by an experimenter and
is independent of the data. Since the two concepts are essentially unrelated, it is best not to
relate them.

Nevertheless, if one insists on relating the two concepts, the following statement, which
is a (necessary) modification of a statement that has appeared in the literature can be
made: “If one repeatedly applies a statistical procedure at a specific significance level to
distinct samples taken from the same population and if the null hypothesis were true and
all assumptions were satisfied, then the p-value will be less than or equal to the significance
level with the proportion of time that this occurs given by the significance level.”

There is some confusion among users of p-values as to what it represents. It does not
represent the probability of the null hypothesis being true or false because in the frequentist
approach to statistics (the standard approach), no probabilities are assigned to possible
values of a parameter.

Although there is no direct mathematical relationship between « and 8 (i.e., we cannot
solve for one given the other), in general, there is a monotonic relationship between them.
That is, if one is increased, the other will decrease. Consider the example given at the start
of this section. The value of 1 — B, the power, was specified as .90 for © = 51, so the
probability of committing a Type II error is 1 — .90 = .10. Thus, the probabilities for the
two types of errors are different for this example, as they will be for virtually every example.
The probabilities will be very close if the true parameter value is extremely close to the
hypothesized value, as 1 — B will “converge” to @ as we move the true parameter value
closer to the hypothesized value. This should be clear because the probability of rejecting a
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true hypothesis is 1 — «, so the probability of rejecting an “almost true” hypothesis is then
very close to 1 — «. Thus, failing to reject means that 8 is very close to 1 — (1 — @) = .

What would the probability of a Type II error have been if o had been .01 instead of .05?
Would the probability be higher or lower? Consider the two distributions for X given in
Figure 5.2. If « were decreased, the Z-value that would be used in determining the dividing
line for rejecting or not rejecting the null hypothesis in terms of X would increase. This
would then cause the cutoff value in terms of X to increase and thus move closer to the true
value of = 51. Thus, there would be a smaller area under the curve for the true distribution
that is above the cutoff value, so 8 would increase and 1 — 8 would thus decrease.

This is an example of what happens in general with Type I and Type Il error probabilities,
as they move in opposite directions. For a fixed value of n, if one is increased (decreased),
the other will decrease (increase). For a fixed value of o, we can increase the value of
1 — B by increasing the sample size, as the reader is asked to show in Exercise 5.4.

5.8.2 Trade-off Between Error Risks

This raises an interesting question: Which type of error should we try hardest to avoid
making? Consider a courtroom setting in which a person is charged with committing
a crime. The null hypothesis is that the person on trial is innocent (recall that the null
hypothesis is what we doubt, in general, and of course a person is considered to be innocent
until proven guilty). It would be unthinkable to incarcerate an innocent person (a Type I
error), but it would also be highly undesirable to fail to convict a guilty person (a Type II
error). Obviously, « is not going to be specified for such a scenario because we don’t have
a statistical hypothesis. However, it should be apparent that if we require extremely strong
evidence before we convict someone (“beyond a shadow of a doubt”) then we run the risk of
failing to convict a person who is guilty. So the same general type of relationship between
the Type I and Type II errors exists for this scenario as when a statistical hypothesis is used.
[Readers interested in discussions of Type I and Type II errors in the judicial process are
referred to Feinberg (1971) and Friedman (1972).]

5.9 PRACTICAL SIGNIFICANCE AND NARROW INTERVALS:
THE ROLE OF n

Solving for n so as to have a confidence interval of a specified width was discussed and
illustrated in Section 5.2.1, and the impracticality of trying to do it for certain other types
of confidence intervals was discussed in subsequent sections.

In general, considerable care should be exercised in the selection of n in hypothesis
testing. If n is too large, a hypothesis test will generally be too sensitive in that the null
hypothesis will be rejected when the true value of the parameter differs only slightly, and
immaterially, from the hypothesized value. Thus, statistical significance can result in the
absence of practical significance. Consequently, sample size might be determined in such
a way as to essentially equate the two, as has been advocated.

Another way to address this issue is to provide some built-in protection with the form of
the null hypothesis. For example, assume that we are virtually certain that a new manufac-
turing process is superior to the old process in terms of process yield, but we suspect that the
difference might be small. To guard against the possibility of rejecting the null hypothesis
when the difference is small, the null hypothesis could be constructed to have the general
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form Hy: < o + 8, so that the alternative hypothesis is H,: u > po + 8, with § suitably
chosen. This same idea would apply when two samples are involved, representing perhaps
data from a new process and a standard process, with the onus on the new process to be
better than the standard process by an amount § in terms of, say, process yield. This is
discussed at the beginning of Chapter 6. Some would argue that this is the way every null
hypothesis should be constructed, with the value of § chosen by the scientist/practitioner.
If Hy: u < no + & were used, o + 8§ would of course replace (g in the numerator of the
test statistic.

The situation is different in confidence interval construction, however. The narrower the
interval, the more valuable is the interval. We would love to be able to estimate parameters
with little or no error, and we can achieve a small error of estimation with a large sample
size. An interval that is narrow solely because 7 is large would be problematic when a
confidence interval is being used to test a hypothesis, however, as then we have exactly the
same type of problem as in hypothesis testing. We see the narrowness of the interval when
we construct it, but if we used a regular hypothesis testing approach we would not as easily
ascertain that the hypothesis was rejected because of the large sample size.

Of course, a narrow interval comes with a price, as the larger the sample size, the greater
is the cost of obtaining the sample.

5.10 OTHER TYPES OF CONFIDENCE INTERVALS

The emphasis in this chapter has been mostly on showing the connection between one-sided
confidence bounds and one-sided hypothesis tests for a single sample, as the scenario in
most of the examples motivated the use of a one-sided bound. Commonly used confidence
intervals have been covered, but not some lesser known but potentially important inter-
vals. Accordingly, in this section we briefly survey other important types of confidence
intervals.

One such confidence interval is an interval on the probability that a critical value of some
sort is exceeded, such as a specified number of equipment malfunctions during a certain
time period, or a confidence interval on the probability that the diameter of a ball bearing
exceeds a certain value. This is often referred to as a confidence interval on an exceedance
probability. The latter are often used in engineering.

Such an interval relates somewhat to the idea of constructing a confidence interval for
a process capability index (discussed in Chapter 11), which is essentially a confidence
interval on the distance that the closest of two tolerance limits is to p (assuming that there
are two limits), with observations outside the tolerance limits being unacceptable. Tolerance
intervals are discussed in Chapter 7.

An approach that is conceptually similar is to obtain a confidence bound for a probability.
For example, assume that a person has an old car and he isn’t sure if it will pass the annual
emissions test that it must undergo. He wonders whether he should have it checked out
by his mechanic before he takes it to a testing station, so as to perhaps save himself the
embarrassment of having his vehicle fail the test. He is concerned about one particular
component of the test, so he does some research and discovers that 84% of the cars that
are of the type that he owns pass the test on the first attempt. Since this is a reasonable
percentage, he is tempted to just go ahead and have the test; then see his mechanic later,
if necessary. He realizes that he has a point estimate and having had a statistics course or
two, he wonders how much uncertainly is built into this number. Therefore, he would like
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to see a lower confidence bound on the percentage, and then take his chances if the bound
is at least 75%.

It might seem as though this is nothing more than a lower confidence bound on the
binomial parameter, and indeed that would be one way to approach the problem. It wouldn’t
be the best way, however, because when we use that approach, we are ignoring the possibility
that continuous data might have been dichotomized to obtain the binary data. Since the
original data would contain much more information than the binary data, it would be better
to use the original data.

To illustrate the difference, we can consider the simple example of tossing a coin and
computing the proportion of heads, or consider a scenario of the proportion of patients who
are free from heart disease for the five years after exhibiting strong signs of susceptibility to
heart disease. In each case we have two possible outcomes. Similarly, we have two possible
outcomes if we are interested in the proportion of work days that a particular employee
arrives late. The difference is that in the last two scenarios there is an underlying continuous
distribution, namely, the distribution of time that patients in aggregate are free from heart
disease and the distribution of arrival times at work, respectively, whereas with the first
example there is no underlying distribution.

The exceedance probability can be computed simply by using whatever distribution is
assumed. For example, a surface temperature of 200 degrees Fahrenheit for a particular
manufactured device might be viewed as critical, and so we are interested in the proportion
of units for which the temperature exceeds this value, hoping that the proportion is small. If
we took a very large sample, we could substitute X for u and s for o, and then approximate
the exceedance probability using a Z-statistic as in Section 3.4.3, provided that degrees
Fahrenheit can be assumed to be (approximately) normally distributed, as we will assume
for the sake of illustration.

For example, if X = 186, s = 5.1, and n = 350, we would approximate the exceedance
probability as ®[(200 — 186)/5.1)] = ®(2.745) = .9970, with ®(-) denoting the cumulative
standard normal probability for the indicated value. If we wanted, say, a lower confidence
bound on the proportion, it would be necessary to use special tables that were given in
Odeh and Owen (1980).

With 350 observations we should at least be able to obtain a general idea of the shape
of the distribution of population values. If we had a much smaller sample size (say, 85), it
would be unwise to try to make any distributional assumption based on the distribution of
the 85 numbers. In that case, Egs. (5.4a) and (5.4b) could be used, with this being essentially
a nonparametric approach because modeling of the 85 sample observations is not being
attempted.

5.11 ABSTRACT OF MAIN PROCEDURES

Population Mean. When a confidence interval for a population mean is to be constructed
or a hypothesis test performed, the user/student must decide whether ¢ or Z should
be used. The conditions under which one or the other or neither should be used
were summarized in Table 5.1. Of course, approximate normality of the observations
should exist before 7 or Z is used, with closeness to normality that is needed dependent
on the sample size.
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Population Proportion. The choice between alternative approaches is different when a
confidence interval or hypothesis test for a population proportion is used, as ¢ is not
used under any conditions. Instead, there are various options that are available and
the recommended approach for a confidence interval is to use Egs. (5.4a) and (5.4b),
with the form of the hypothesis test given near the beginning of Section 5.4.1.

These methods are based on the assumption that the binomial distribution is an
appropriate model. This means, in particular, that the variability in the random variable
is adequately represented by the binomial variance.

Population Standard Deviation and Variance. Confidence intervals and hypothesis
tests for a population standard deviation or variance are obtained using the chi-square
distribution. Again, approximate normality must be assumed, with the assumption
being more critical than when inference is made regarding the population mean since
any departure from normality is squared, loosely speaking. The confidence interval
for o2 is obtained using Eq. (5.5), and the hypothesis test is performed using Eq.
(5.6). Of course, the endpoints of a confidence interval for ¢ are obtained simply by
taking the square root of the endpoints of the interval for o2.

Poisson Mean. The confidence interval is obtained by using Eq. (5.8) and the hypothesis
test is performed using the Z-statistic that immediately precedes it. Of course, the
Poisson distribution assumption should be checked before proceeding.

5.12 SUMMARY

It is important to note the direct relationship between hypothesis tests and confidence
intervals, and also to understand the general form for these tests and intervals whenever
t or Z (or something else) is used. Without this understanding, the many different types
of confidence intervals and hypothesis tests presented herein and in other textbooks might
appear to be simply an endless stream of unrelated methods.

It is also desirable to understand the weaknesses of hypothesis testing so that these tests
can be viewed in the proper light. Because of the direct relationship between confidence
intervals and hypothesis tests, it might seem that these weaknesses must also be shared
by confidence intervals. That isn’t true, however. A decision about a hypothesis is reached
whenever a hypothesis test is used, but this is not necessarily the case when a confidence
interval is constructed, unless the interval is constructed for the express purpose of testing
the hypothesis. That is, the confidence interval approach gives both the interval and the
result of a test, if desired. Even when used for hypothesis testing, a confidence interval is
superior to a hypothesis test because the interval is in the original units and the effect of a
possibly too large sample can be seen in the narrowness of the interval.

Despite the considerable amount of criticism that hypothesis tests have received in recent
years, they are not likely to go away since p-values are ingrained in statistical output and
whenever a p-value is observed, a decision is apt to be made that is based at least partly on
that value.

Confidence intervals should definitely receive preference, however, and there are various
types of confidence intervals that have important applications in engineering and in other
disciplines beyond the standard types of confidence intervals that are presented in textbooks.
Some of these types of intervals were discussed briefly in Section 5.10; other types can be
found in Hahn and Meeker (1991) and in the statistics literature.
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APPENDIX: DERIVATION
The sample size formula given in Section 5.8 can be derived as follows. The power in

detecting the true mean of 51 is to be .90, so that B = .10. Since this is a one-sided
(upper-tailed) test, we thus have the following probability statement:

P(X < po+ Zgo//nlp =) =10

so that the appropriate algebra produces

X — o — i ,
Pl <z, + 2= E ju=w)=.10
<a/ﬁ < Lat o//n =1 )

with ®(-) denoting the cumulative normal pdf. Thus,

Ze+ M T go110) = 071 (8) = 2,
o//n
Solving the equation
Mo — '
A
+ o/s/n P

for n produces the equation that was given in Section 5.8.
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EXERCISES

5.1. Show that the form of a confidence interval for u with o estimated from a small
sample is as was given in Section 5.2 by using the same general starting point as was
used in Section 5.1 and then deriving the expression for the interval.

5.2. Show that if a two-sided hypothesis test for Hy: n© = o with significance level «,
normality, and an assumed known o is rejected and the value of the test statistic is
negative, o must lie above the upper limit of a 100(1 — «)% two-sided confidence
interval.

5.3. Show that if a two-sided hypothesis test for Hy: it = o with significance level o and
normality and an assumed known o is not rejected, then the corresponding 100(1 —
)% confidence interval must contain fig.

5.4. Consider a two-sided hypothesis for the mean of a normal distribution and show that
for a fixed value of « and a fixed true mean that is different from the hypothesized
mean, the value of 1 — B will increase as n increases.

5.5. Assume that a sample of 64 observations will be obtained from a population that
has a normal distribution. Even though o is unknown, the practitioner decides to
obtain a 95% confidence interval for p using Z (i.e., using 1.96). What is the actual
probability that the interval will contain p? (Note: You may find it necessary to use
appropriate software in working this problem.)
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5.6.

5.7.

5.8.

5.9.

5.10.

5.11.

5.12.

5.13.

CONFIDENCE INTERVALS AND HYPOTHESIS TESTS—ONE SAMPLE

In constructing confidence intervals, it is important to know what the population is
and to know whether or not we have a random sample from some (stable) population.
Accordingly, assume that a person uses the salaries for all second basemen on major
league teams, computing the average and standard deviation of those salaries. If a
95% confidence interval were constructed, what would it be a confidence interval
for, if anything? In particular, what is the population?

One of my professors believed that students should take four times as long to finish
one of his exams as it took him to complete it. He completes a particular exam in
15 minutes, so he reasons that the students should complete the exam in 60 minutes.
(The students are allowed 70 minutes.) Assume that each of 40 students in a class
writes down the length of time that it took to complete the first test. The times are as
follows, to the nearest minute: 55, 61, 58, 64, 66, 51, 53, 59, 49, 60, 48, 52, 54, 53,
46, 64, 57, 68,49, 52, 69, 60, 70, 51 50, 64, 58, 44, 63, 62, 59, 53, 48, 60, 66, 63, 45,
64, 67, and 58. A student complains that the test was too long and didn’t provide her
sufficient time to look over her work. (Assume that 5 minutes should be sufficient
for doing so, and this time was now included in the professor’s estimate.) Perform
the hypothesis test and state your conclusion.

Why do we say that we “fail to reject H(” rather than saying that we “accept Hy”? If
we don’t reject it, then what else are we going to do other than accept H since only
two hypotheses, the null and alternative hypotheses, are under consideration?

An experimenter constructs a 95% two-sided confidence interval for u, using a
sample size of 16. Normality of the individual observations is assumed and the
population standard deviation is unknown. The limits are: lower limit = 14, upper
limit = 24. If instead of constructing the confidence interval, the experimenter had
tested Ho: i = 10 against H,: p # 10 using o =.05, what was the numerical value
of the test statistic?

Complete the following sentence. A p-value is the probability of
one word).

(more than

Given a particular data set, would a null hypothesis for a two-sided test that is rejected
by one data analyst using o« = .01 also be rejected by another analyst using o = .05 if
each person used the same test procedure so that the only difference was «? (Assume
that no errors are made.) Now assume that the analyst who used o = .01 did not
reject the null hypothesis. Can the outcome be determined for the other analyst who
used o = .05? Explain.

Assume that a student constructs, using simulated data from a known distribution
with known parameter values, two hundred 99% two-sided confidence intervals for
some parameter 6. If this experiment is then repeated 1,000 times, what number
would be our best estimate of the number of intervals that contain 6? Would you
expect to actually see this number?

Assume that Hy: u = 25 is rejected in favor of H,: u # 25 using o = .01. Assume
further that a 99% two-sided confidence interval is subsequently constructed using
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5.14.

5.15.

5.16.

5.17.

5.18.

5.19.

5.20.

5.21.

the same set of data that was used to test the hypothesis. If the value of the appropriate
test statistic was negative, the upper limit of the confidence interval must have been
(Use either “greater than” or “less than” as part of

your answer.)

Can a sample variance ever be at least approximately in the center of a confidence
interval for o-2? Explain.

Assume that your driving time to school/work is (approximately) normally distributed
and you wish to construct a confidence interval for your (long-term) average driving
time. So you record the time for 10 consecutive days and find that the average is 23.4
minutes and the standard deviation is 1.2 minutes. If you wish to construct a 99%
confidence interval for what your average driving time would be for a very long time
period, what assumption will you have to make? With that assumption, what is the
interval?

Show that the lower limit given by Eq. (5.4b) can never be negative. (Hint: The com-

puted lower limit is nonnegative if p + 23/2/271 > za/z\/ﬁ(l —p)/n+ 22/2/4;12 .
Start from this point and then perform the appropriate algebra.)

An experimenter performs a hypothesis test of Hy: 0 = g versus H,: i > (o, using
a sample of size 100, and obtains a p-value of .05. Since this is a borderline value, the
test is repeated and the absolute value of the test statistic is greater than with the first
test. Knowing only this information, what course of action would you take/suggest?

An engineer sought to reduce the variability of roundness measurements over work
pieces and believes that he has succeeded. State one hypothesis test that could be
used, giving both the null and alternative hypotheses. Must any assumption be made
in order to perform the test? If so, state the assumption(s) and indicate how to test
the assumption(s).

A process engineer decides to estimate the percentage of units with unaccept-
able flatness measurements. A sample of size 100 is obtained and a 95% con-
fidence interval is obtained using the standard approach: p & Z,,,+/p(1 — p)/n.
The computed lower limit is negative, which causes the engineer to proclaim that
constructing such an interval is a waste of time since a proportion cannot be nega-
tive. Explain to the engineer why the lower limit is negative and suggest a superior
approach, if one is available.

An experimenter performs a two-sided test of Hy: © = po and obtains Z =
1.87. Determine the p-value. What would the p-value have been if the test were
one-sided?

Explain why we cannot state, for example, that “we are 95% confident that pu is
between 45.2 and 67.8.”
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Critique the following statement: “Why should we settle for a 95% confidence interval
instead of a 100% confidence interval. The latter would remove all doubt and would
surely be more useful.”

An experimenter decides to construct a 95% confidence interval for u and starts to
use ¢ because o is unknown. Someone else in her department informs her that she
could use Z because the sample size is n = 36. What will be the numerical difference
between the widths of the two confidence intervals if s = 12.1?7

The following data have been simulated from a nonnormal distribution:

.30071 1.58192 —0.42940 —0.11641 —0.19029 —1.28538 1.09995
.21649 0.05247 0.10919 0.21804 —0.58013 0.70508 1.23839

1.94917 2.41419 —0.38660 0.10442 —0.49846 1.81957 —0.73201

.14199 —0.11403 0.24233 0.45994 0.74652 2.02368 —1.96190

1.65069 —1.82210

5.25.

5.26.

5.27.

5.28.

5.29.

Does a test for nonnormality impart the correct message? (This can be performed
in MINITAB, for example, by constructing a normal probability plot.) Could a
confidence interval for w still be constructed, using methodology given in this chapter,
despite the nonnormality? If so, construct the 95% interval. Would such an interval
be a 95% confidence interval? Explain.

A 99% confidence interval for p is desired that has width 0.04. Can such an interval
be constructed? Explain.

A 90% confidence interval for p is to be constructed with a specified width. If o is
unknown, can this be accomplished? Since o is generally unknown, what would you
recommend to practitioners who want to construct confidence intervals of specific
widths?

Assume that a 95% confidence interval is to be constructed for u. If n =41, s = 10,
and normality is assumed, we know that we could use either Z (as an approximation)
or ¢ in constructing the interval. If Z is used and the width of the confidence interval
is @, what would be the width of the interval, as a multiple of a, if ¢ had been used
instead of Z?

Given a particular data set, if a hypothesis is rejected by one data analyst using «
= .01 and a two-sided test, would it also be rejected by another analyst using o =
.05 and a one-sided test if each person used the same test procedure so that the only
difference was a? (Assume that no errors are made.) Explain.

I once had a student who could not understand the concept of a p-value, despite
several different ways in which I tried to explain it. Consider one of your relatives
who has never taken a statistics course (assuming that you have such a relative), and
try to give a more intuitive definition than was given in Section 5.8.
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Critique the following statement. “I am going to perform a study in which I compare
computer chips produced by Intel with those produced by Applied Micro Devices
(AMD). I will prove with a hypothesis test that the two companies produce the same
percentage of defective chips.”

The planet Saturn has a relative mass that is 95 times the relative mass of the planet
Earth. Does this mean that the difference in relative masses is statistically significant?
In general, what does “statistically significant” mean in the context of hypothesis
testing?

Assume that we fail to reject Hy: i = 28 for a two-tailed test when X = 32 and o0 =
9 and approximate normality can be assumed.

(a) Did this likely occur because the sample size was too small? Explain.

(b) What is the largest value that n could have been if a decision was made to reject
Hy only if the p-value was less than .05?

(c) What would you recommend to the experimenter about sample size choice?

If 3000 samples of n = 30 and n = 99 are generated from a particular right-skewed
distribution, what relationship should be observed for:

(a) The distribution of the sample averages for the two sample sizes.
(b) The average of the 3000 sample averages for the two sample sizes.

Consider a 99% confidence interval for A using Eq. (5.7). For what values of X
will the lower limit be negative? Will a 99% confidence interval constructed using
Eq. (5.8) have a lower limit that is negative for all or part of the range of X values
for which the use of Eq. (5.7) produces a negative lower limit? Explain. Since A is
positive, by definition, what would your analysis suggest to the user who wants to
avoid a useless lower limit?

Consider Example 5.1 in Section 5.1.2. Explain why a normal distribution is not
automatically ruled out as a possible model for the amount of pressure required to
remove the bottle top just because no one will be exerting a negative amount of
pressure to remove the top, but negative values are included in the range of possible
values for any normal distribution.

In the Winter 1999 issue of Chance magazine (http://www.amstat.org/
pressroom/cookies.pdf), Brad Warner and Jim Rutledge described an ex-
periment performed by students in an introductory statistics course in answer to
a challenge posed by Nabisco, Inc., with the company asking (perhaps as a mar-
keting/advertising ploy) for the most creative way of determining that there are at
least 1,000 chips in every 18-ounce bag of their chocolate chip cookies. There are
various ways in which this problem can be tackled (including assuming a particular
distribution for the number of chips in each bag versus not making any distributional
assumption), and one approach would be to construct a confidence interval on an
exceedance probability, as discussed in Section 5.10. Read the article and write a
report of the analysis that was performed. Do you agree with the method of analysis?
If not, what would you have done differently?
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An important aspect of the use of statistical methods is selecting the appropriate
tool for a stated objective. Assume that a company has to meet federal requirements
regarding the stated weight of its breakfast cereal. If that weight is 24 ounces, why
would we not want to take a sample and test Hy: i = 24? Instead of this, what would
you suggest that the company do in terms of methodology presented in this chapter?

Assume that we are testing Hy: 02 = 20 versus H,: 02 > 20 and s> = 24, with n =
65. Obtain the p-value.

Assume that the width of a 95% small-sample confidence interval for p is 6.2 for
some sample size. Several months later the same population is sampled and another
95% confidence interval for p is constructed, using the same sample size, and the
width is found to be 4.3. What is the ratio of the earlier sample variance to the more
recent sample variance?

The importance of processes being in control when designed experiments are used is
stressed in Chapter 12. Assume that a 99% confidence interval for i with o assumed
to be known has been constructed, but then, unbeknownst to the experimenters, there
is a 10% increase in the mean. If this had been known shortly after the confidence
interval had been constructed, how would the endpoints of the interval have to be
adjusted in order to keep the degree of confidence at 99%?

Assume that a sample of n = 100 observations was obtained, with ¥ = 25 and s2
= 10. Based solely on this information, would it be practical to construct a 90%
confidence interval for ©? Why or why not?

A sample of n = 100 items is obtained with the following results: ¥ = 100 and s> =
16. What would be the numerical value of the estimate of o+?

Two practitioners each decide to take a sample and construct a confidence interval for
W, using the ¢-distribution. If one constructs a 95% interval and the other constructs
a 99% interval, explain how the widths of the two intervals could be the same.

An experimenter intends to construct a 95% confidence interval for p that has a

width of 2. If a sample of the necessary size is obtained and X = 50:

(a) What will be the upper limit of the interval if o = 4 and this is used in constructing
the interval?

(b) Based on the information that is given, will the interval be exactly a 95% confi-
dence interval? Would it be exactly a 95% confidence interval if normality were
assumed?

(¢) If the interval turned out to be (49, 51), would the probability be .95 that this
interval contains p if normality is assumed?

Assume that we computer-generate 10,000 lower 95% confidence bounds for p.

(a) What would be the best guess of the number of bounds that do exceed p?

(b) Would the expected number of bounds that exceed p be more likely to equal the
actual number if only 1000 intervals had been constructed? Why or why not?
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A company produces 150,000 units of a certain product each day. Think of this as a

sample from a population for which 0.4% of the units are nonconforming.

(a) Letting X denote the number of nonconforming units per day, what is the numer-
ical value of 02? (Assume that the units are independent.)

(b) Is it practical to construct a confidence interval for the true proportion of noncon-
forming units since 0.4% is quite small? If so, construct the interval (if possible).
If not, explain why it is not practical or possible to construct the interval.

If Hy: u = 40 was rejected in favor of H,: n < 40 with the random variable X
assumed to have (approximately) a normal distribution, n = 16, s = 5, and « = .05,
the value of the test statistic (¢ or Z) must have been less than

An experimenter wishes to estimate i (with X) so as to have a maximum possi-
ble error of estimation equal to 3 with probability .9544. (The odd number is for
mathematical simplicity.) If o = 15, how large must the sample be?

The following explanation of a confidence interval is given on the Web
(http://onlineethics.org/edu/ncases/EE18.html): “If we per-
formed a very large number of tests, 95% of the outcomes would lie in the indicated
95% bounded range.” Do you consider this to be an acceptable explanation of a
confidence interval? Explain. If not, how would you modify the wording?

Assume that a sample of 16 observations is obtained and the software that is used
shows that X = 8 and s = 2.

(a) Assuming approximate normality, construct a 95% confidence interval for w.

(b) If the scientist whose data you used later contended that the interval is too wide
and asked that the interval be constructed to be exactly one unit in width, how
would you reconstruct the interval if you had to use the same data?

(¢) How would you proceed if resources allowed you to take a new sample?

Assume that a 99% confidence interval is constructed for u with an assumed known
value of o = 2. What is the variance of the width of the interval?

Assume that Ho: p = 50 is tested against H,: < 50 and a sample of size 100
has X = 53.8. If s = 3.8 and you were asked to write a report of the result of the
hypothesis test, what would you state?

State three hypotheses that would be useful to test in your area of engineering
or science and, if possible, test one of those hypotheses by taking a sample and
performing the test.

What would you recommend to an experimenter who wished to determine how large
a sample to take to construct a confidence interval for p of a specified width but had
no idea as to the shape of the population from which the sample will come?

A company report shows a 95% confidence interval for p with the limits not equidis-
tant from p. A manager objects to the numbers, claiming (at least) one of them must
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be wrong. Do you agree? Explain. If not, what would be your explanation to the
manager?

Consider the following exercise. You are tutoring a student in your class who doesn’t
understand confidence intervals. To help drive home exactly what a confidence
interval is and how it works, you decide to generate samples from the standard
normal distribution and construct 95% confidence intervals for the mean, which of
course is zero.

(a) Which of the following would you expect to come closest to having 95% of the
intervals contain the mean of zero—1000 samples of size 10 or 100 samples of
size 100?

(b) Which will have the greatest average width—the 1000 intervals with a sample
size of 10 or the 100 intervals with a sample size of 100?

As stated in Section 5.1, a confidence interval can be constructed to have a maximum
error of estimation with a stated probability, with this maximum error of estimation
being the half-width of the interval.

(a) Explain, however, why a confidence interval for anormal mean can be constructed
to have a specified half-width without the use of software or trial-and-error only
if o is known.

(b) Explain how the expected half-width would be determined when o is unknown
and n = 16.

As stated by Hahn and Meeker (1991, p. viii), the wrong type of interval is often used
in practice. At a consultant’s website one finds the words “confidence intervals of
targeted materials categories.” Explain why the type of intervals alluded to probably
aren’t confidence intervals.

Show that (n — 1)s?/0 has a chi-square statistic.

A political pollster surveys 50 registered Republicans in Cobb County in Georgia

and, among other things, she asks them their age. The average age for people in her

sample is 43, with a standard deviation of 12.

(a) If the pollster were to use this information to construct a confidence interval,
what population parameter would she be estimating? Be specific.

(b) Would you question the wisdom of constructing an interval based solely on the
information stated in this problem?

The heat involved in calories per gram of a cement mixture is approximately normally
distributed. The mean is supposed to be 90 and the standard deviation is known to
be (approximately) 2. If a two-sided test were performed, using n = 100, what value
of X would result in a p-value for the test of .242? What decision should be reached
if this p-value resulted from the test?

Suppose it is desired to test that the melting point of an alloy is 1200 degrees Celsius.
If the melting point differs from this by more than 20 degrees, the composition will
have to be changed. Assume normality and that ¢ is approximately 15. What decision
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would you reach if a sample of 100 alloys were obtained and the average melting
point were 1214?

A machine is supposed to produce a particular part whose diameter is in the interval
(0.0491 inch, 0.0509 inch). To achieve this interval, it is desired that the standard
deviation be at most 0.003 inch. It is obvious that some machines cannot meet this
requirement and will be replaced. It is not clear whether one particular machine
should be replaced or not as a sample of 100 observations had a standard deviation
of 0.0035 inch. This is higher than the target value but the difference could be due
to sampling variation. Test the null hypothesis that the standard deviation for this
machine is at most 0.003, bearing in mind that management has decided that a p-value
less than .01 will motivate them to replace the machine, and assuming that evidence
suggests that the part diameters are approximately normally distributed.

There are various Internet scams, including various versions of the “Nigeria scam,”

with people in the United States being promised large amounts of money if they

assist the party, who is ostensibly in Nigeria, to move millions of dollars out of that

country into the United States. Let’s say that you want to construct a confidence

interval for the percentage of people who are duped by this scam.

(a) Does this seem like a workable project? In particular, how would you go about
obtaining the data?

(b) Would you expect Eq. (5.3) to be adequate for this purpose, or would the use of
Egs. (5.4a) and (5.4b) probably be necessary?

Assume that a 95% confidence interval for @ with o assumed known is of width W.
What would be the width of a 99% confidence interval for u, using the same data,
as a function of W?

A motorist wishes to estimate the average gas mileage of her car using a 95%
confidence interval with the confidence interval to be 2 units wide. If the standard
deviation is known to be approximately 3:

(a) Explain in words what the standard deviation of 3 means in this context.

(b) Determine how many tanks of gas must be used in constructing the confidence
interval.

(¢) What assumption(s) did you make in working part (b)?

An experimenter performs a hypothesis test for the mean of an assumed normal
distribution, using a one-sided test (greater than). If o is assumed to be 4.6, the mean
of a sample of 100 observations is 22.8, and the p-value for the test is .06681, what
is the sign of (x — u) and what was the magnitude of the difference?

A city near a government weapons clean-up site is concerned about the level of
radioactive by-products in its water supply. Assume that the EPA limit on naturally
occurring radiation is 5 picocuries per liter of water. A random sample of 25 water
specimens has a mean of 4.75 and a standard deviation of 0.82. We would like to be
able to show that the mean level for the population is actually below 5. If we assume
approximate normality, do these data allow us to reject the null hypothesis in favor
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of this alternative hypothesis? Explain. If we don’t reject the null hypothesis, is that
really a problem for this scenario? Explain.

Assume that a confidence interval for the mean is to be constructed and the
t-value should be used instead of the Z-value because o is unknown. Consider
the difference between the z-value and the Z-value for a 95% confidence interval
versus the difference between the two for a 90% interval. Which difference will
be greater? For which will the percentage difference, relative to the ¢-value, be the
larger? What does this suggest, if anything, about using Z-values as approximations
for r-values when confidence intervals are constructed?

The Rockwell hardness index of steel is determined by pressing a diamond point into
the steel and measuring the depth of penetration. Assume that for a certain type of
steel, the standard deviation of the Rockwell hardness index is 7.4. A manufacturer
claims that its steel has an average hardness index of at least 65. A sample of 64 units
of steel is obtained and the average Rockwell hardness value is found to be 61.8.
Assume normality of the index measurements.

(a) If the manufacturer’s claim is tested by constructing a one-sided confidence
bound, should it be an upper bound or a lower bound? Explain.

(b) For the appropriate type of confidence bound, what is the degree of confidence
such that the bound is 65?

The specifications for a certain type of surveillance system state that the system

will function for more than 12,000 hours with probability of at least .90. Fifty such

systems were checked and eight were found to have failed before 12,000 hours.

These sample results cast some doubt on the claim for the system.

(a) State Hy and H, and perform the appropriate test after first stating what the
assumptions are for the test, if any.

(b) Construct the confidence bound that corresponds to this test and comment on the
results.

The diameter of extruded plastic pipe varies about a mean value that is determined by
a machine setting. If the standard deviation of the diameter is known to be about 0.08
inch, how large a sample must be taken so that the point estimator of the population
mean will differ from the population mean by at most 0.02 inch with probability .99?

A 95% confidence interval is constructed for ¢« as a means of testing a null hypothesis.
If the hypothesized value was exactly in the center of the interval, what would have
been the value of the test statistic if a hypothesis test had been performed?

A large-sample test of Hy: ;= 50 resulted in Z = 1. If a 95% confidence interval
for u had been constructed instead, what would have been the distance, in units of
o, of the upper limit from the hypothesized value?

Several years ago D. J. Gochnour and L. E. Mess of Micron Technology, Inc. patented
a method for reducing warpage during application and curing of encapsulated mate-
rials on a printed circuit board. Assume that the company has found that the warpage
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with the standard method has had a mean of 0.065 inch and before the method was
patented the scientists wanted to show that their method has a smaller mean. They
decide to construct a one-sided confidence bound, hoping that the bound will be less
than 0.065. They took a sample of 50 observations and found that X = 0.061, with
s =0.0018.

(a) What assumption(s), if any, must you make before you can construct the bound?
Since assumptions must be tested, can the assumption(s) be tested with 50
observations? Explain.

(b) Make the necessary assumption(s), construct the bound, and draw a conclusion.

A company produces a resistor that is designed to have a mean of 100 ohms and a
standard deviation of 2 ohms. There is some evidence that suggests the mean is not
being met, although the target value for the standard deviation appears to be very
close to the actual deviation. A two-sided confidence interval for the mean is to be
constructed, but one member of the team who designed the resistor wants to be able
to estimate the mean with a maximum error of estimation of 0.5 ohm with probability
.95. Determine the number of observations that should be used in constructing the
95% confidence interval.

Indoor swimming pools are known to have poor acoustic properties. The goal is to
design a pool in such a way that the mean time that it takes a low-frequency sound
to die down is at most 1.3 seconds with a standard deviation of at most 0.6 second.
Data from a study to test this hypothesis were given by Hughes and Johnson’s article,
“Acoustic Design in Nanatoriums” (The Sound Engineering Magazine, pp. 34-36,
April 1983). The simulated data were as follows:

1.8 2.8 4.6 5.3 6.6
3.7 5.6 0.3 4.3 7.9
5.0 5.3 6.1 0.5 5.9
2.5 3.9 3.6 2.7 1.3
2.1 2.7 3.8 4.4 2.3
3.3 5.9 4.6 7.1 3.3

Analyze the data relative to the stated objective.

Assume that you encounter a confidence interval for the population mean of arandom
variable such as a trace contaminant, which of course cannot be negative, but the
lower limit of the interval is well below zero. What is the likely cause of the problem
and what would you do to correct it?

Consider Example 5.4 in Section 5.3.7. Would you have proceeded differently in
working that problem? In particular, would you have made the distributional as-
sumption that was made in that example or would you have tested that assumption?
Would you have proceeded differently in terms of the distributional assumption if
the objective had been to construct a confidence interval or bound on o2 rather than
a confidence bound on the mean? Explain.
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Explain why a confidence interval for a population mean would not be the appropriate
interval to construct to show compliance to government regulations regarding the
extent to which a pollutant level can deviate from a nominal value. Is there any type
of confidence interval that would be suitable for that objective? Explain.

Explain why a p-value is not the probability that the null hypothesis is correct.

Using appropriate software, simulate 100 observations from the standard normal
distribution [i.e., N(0, 1) distribution], and construct a 95% confidence interval for
the known mean of 0. Do this 1000 times. (It is easy to write code to do this.) What
percentage of the intervals contained zero? Repeat nine more times. Did any of the
percentages equal 95, exactly? If not, does this mean that when we construct a 95%
confidence interval, it really isn’t a 95% interval? Explain.

In a random sample of 400 industrial accidents for a large company over a period
of time, it was found that 231 accidents were due to unsafe working conditions.
Construct a 99% confidence interval for the true proportion of accidents due to
unsafe conditions for that time period. Address the validity of this interval if these
400 accidents occurred over a period of, say, 25 years.

Consider the data that were given in Exercise 5.24. What would be the outcome if
we tested the hypothesis that the data have come from a population with a mean of
zero, using o =.05? If we fail to reject the hypothesis, what is the largest value of
the hypothesized mean for a two-sided test that would result in rejection of the null
hypothesis with a positive value of the test statistic? Similarly, what is the smallest
value of the hypothesized mean that would lead to rejection of the null hypothesis on
the low end? Answer these same two questions if a one-sided test had been used (i.e.,
greater than for the first question and less than for the second question). Assume «
is the same for each of these questions.

Assume that a large-sample test of Hy: u = 35 against H,: u < 35 is performed and
Z = 1.35. What is the p-value?

Assume that two engineers jointly conduct an experiment to determine if a particular

process change affects the average process yield. One prefers to specify a significance

level and selects .05, while the other prefers to take a more modern approach and
reach a decision based on the p-value.

(a) If this experiment were conducted a large number of times and if the null hy-
pothesis were true, what proportion of times would the p-value be less than the
specified value for the significance level?

(b) Of course, the experiment will be conducted only once, however, and now assume
that the null hypothesis is false. Can the probability that the p-value is less than
the significance level of .05 be determined? If so, what is the probability? If not,
explain why the determination cannot be made.



CHAPTER 6

Confidence Intervals and Hypothesis
Tests—Two Samples

There are many instances in which there is a need to use a two-sample procedure. For
example, a new and improved manufacturing process might be compared with the standard
process in terms of process yield or in terms of the percentage of nonconforming units; or
the variances of the two processes might be compared to see if process variability has been
reduced; or the lifetimes of a new, improved light bulb may be compared with a standard
light bulb in a reliability test; or the respective strengths of two materials may be compared;
and so on.

As in the case of a single sample, we could construct a confidence interval or equivalently
test a hypothesis. As in the case of single-sample hypothesis tests, we need to adopt a
realistic view. That is, when we test whether two process yields are equivalent, we know
almost certainly that they are not equal before we even obtain a sample from each process.
Therefore, what we are really trying to see is whether there is more than a small difference.
If so, then we will likely be able to reject the hypothesis of equality.

Therefore, it makes sense to test whether one parameter is greater than another parameter
by a certain amount. For example, we might be interested in testing whether the yield of
a new process is greater than the yield of the standard process by a specified amount, §.
That is, we might test Hy: o — g = 8 versus Hy: pp — > 8, with u, being the mean
for the new process. Since the alternative hypothesis is equivalent to py > ) + 8, if we
reject Hy in favor of H;, we would conclude that the new process yield exceeds the old
process yield by at least some desired amount. Since test statistics are constructed under
the assumption that the null hypothesis is true, § would be used in the numerator of the
statistic. This is illustrated in Section 6.1.1.

6.1 CONFIDENCE INTERVALS AND HYPOTHESIS TESTS
FOR MEANS: INDEPENDENT SAMPLES

The discussion in Chapter 5 regarding the mechanics of confidence intervals and hypothesis
tests for the mean of one population extends in a natural way to samples from each of two
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populations. That is, we can use a confidence interval to test a hypothesis; we have to decide
whether to use ¢ or Z, and so on. There are a few additional wrinkles, however, as will be
explained in subsequent sections.

6.1.1 Using Z

The confidence intervals and hypothesis tests when Z is the test statistic have the same
general form as was emphasized in Chapter 5. That is, the confidence intervals are of the
form 6 + Z 4255 (or o) and the hypothesis tests are of the form Z = (/9\— 6o)/sg (or op),
with 6 denoting the hypothesized value of 6.

Since two samples are involved, 6 will obviously be defined differently from the way
it is defined in the one-sample case. The logical starting point is to define 8 and 6 and
then everything will follow logically from there. If the means, p; and w,, of each of two
populations with normal distributions were equal, then p; — u, = 0. The logical choice
then is to let & = w; — wy, and under the null hypothesis of equal population means, 0 =
0 so that 8y = 0 is the hypothesized value. Then 6 =1, — M. With samples taken from
two separate populations, the samples will be independent. [A method for nonindependent
(paired) samples is given in Section 6.2.] It then follows that Var(it; — itp) = Var(ii;) +
Var(ity) = Var(x) + Var(xy) = 012 /n1+ 022 /n» since the population means are of course
estimated by the respective sample means.

If the population variances were known, the test statistic would be

-6
7= 0
oG
X1—%X2—0

af/nl +022/n2

After the Z-statistic is computed, the subsequent steps are the same as in the one-sample
case. That is, the p-value could be computed and a decision could be based on that value.

B EXAMPLE 6.1

Hypotheses and Data

Toillustrate, assume that Hy: ;11 — wy = 3and H,: 1 — pp < 3. Samples of 65 and 75 have
been taken from the two populations, and the variances are assumed to be 012 = 13.2 and
022 = 15.4. The corresponding sample means are X; = 71.2 and X, = 69.6, respectively.

Computations

The value of the test statistic is then obtained as
X;—Xx2)—3
7 _ (X1 —X2)
of/ni+o3/n
B (71.2 —69.6) — 3
~ J13.2/65 + 15.4/75

=-2.19
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Conclusion

Since P(Z < —2.19|u; — ur = 3) = .014, the sample data provide moderately strong
evidence that seems to contradict the null hypothesis, so we conclude that the mean of the
first population is less than the mean of the second population plus 3. |

In this example the data were in the “right direction” relative to the alternative hypothesis,
in that the Z-statistic was negative instead of positive. What if the Z-statistic had been
positive? If it were more than slightly greater than zero, that would not be surprising as
this would simply support the null hypothesis. But a Z-statistic that is significantly greater
than zero should be cause for concern as this could mean that there could be some bad
data or outliers that are good data, as experimenters would be expected to know the proper
inequality relationship between two population means if they differed considerably. In any
event, the null hypothesis would not be rejected because the numerical value of the test
statistic would have the wrong sign from what would be needed to reject the null hypothesis.

If the inequality relationship between the sample means was totally unexpected, could
the alternative hypothesis be changed before the analysis is performed? The reader is asked
to explain why this cannot be done in Exercise 6.23.

From past discussions, the form of the corresponding confidence interval should be
apparent. As in the one-sample case, it is of the form emphasized in Chapter 5. That is, the
confidence intervals are of the form 6 & Z,, /2 55 (or o), as stated at the beginning of this
section. So with normality assumed for each population, the variances assumed known, and
the sample sizes either small or large, the confidence interval for ; — u, would have the

form
(X1 —X2) £ ZoppnJoi/n1 + 03 /0y 6.1

As in the one-sample case, we should recognize that the variances will generally be un-
known. The question then arises as to whether or not Z can still be used, and if so, under
what conditions it can be used. Recall Table 5.1 in Chapter 5, which indicated when Z
should be used. If we extend the results in that table to two samples, then we would use Z
if we knew that the sample data were from two normal populations and the variances were
known, as in this section, and also in the case when we have (approximate) normality and
unknown variances, but two large samples. In the latter case we would use

(X1 — X2) £ Zojpy/s7/n1 4 83/ n2 (6.2)

Consider the other two cases in Table 5.1 when Z would be used. If the population dis-
tributions are unknown, but the variances are known (an unlikely scenario), we would
use Eq. (6.1) if we had large samples (because of the Central Limit Theorem), and
we would use Eq. (6.2) if we had large samples but the variances are unknown. As in
Table 5.1, the minimum sample sizes for the samples to be declared “large” depends on
the shape of the distributions for the two populations, so a simple rule of thumb cannot be
given, beyond stating that the oft-mentioned minimum sample size of 30 for each sample
should be adequate as long as there is no more than a small-to-moderate departure from
normality for the two populations.
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6.1.2 Using ¢

If the two populations have (approximately) normal distributions, the variances are un-
known, and the sample sizes are not large, then we would use the z-distribution. Unlike the
one-sample case, however, we have to choose between the exact (also called “pooled” and
independent sample) ¢-test and the approximate t-test. More specifically, the statistic

X1 —Xx2)—0
1/512/}11 +s§/n2

does have not a z-distribution, and for that reason it is denoted by #* instead of ¢, and the
test is called an approximate #-test. In order to use an exact ¢-test, we have to assume that
the variances are equal, or that the ratio of the variances is known. (The latter is not likely
to be of any real help, however, because if we don’t know the variances, we are not likely
to know their ratio either.)

The statistic #* has approximately a ¢-distribution with degrees of freedom calculated as

t* =

_ (s7/m + s3/n2)?
(s3/n)2/(ny — 1)+ (s3/n2)%/(ny — 1)

d.f.

Of course, the variances are almost certainly not going to be equal, but fortunately they
need not be equal in order to use the exact t-test, although the test statistic is constructed
under the assumption that the variances are equal. The statistic is given by

L G—F)-0
SX1-X%2
(x1—x2)—0

spv/ 1/ny+1/ny
with

=D+ =D
r ny+n, —2

denoting the “pooled” variance, which is obviously a weighted average of the two sample
variances, with each variance weighted by the respective degrees of freedom. Thus, slz7 =057
is the estimator of the assumed common population variance o} = 0} = 0.

Both of these tests are based on the assumption that observations within each sample are
independent, as well as on independence between the two samples.

The approximate test is, as we would expect, more conservative than the exact test as a
larger difference between the sample means is needed to produce a significant result.

The exact test can be used under certain conditions. Although normality of the two
population distributions is assumed, the test is not undermined by a slight-to-moderate
departure from normality. Good and Hardin (2003) state in their book, which is recom-
mended reading for anyone who uses statistical methods, that nonnormality is generally
not a problem with which to be concerned as long as the sample sizes are at least 12. Of
course, major departures from normality will require larger sample sizes.
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The assumption of equal variances can be more troublesome, however, as the exact ¢-test
is undermined when the variances are unequal and the sample sizes differ considerably,
especially when one of the sample sizes is small.

The logic behind this recommendation becomes apparent when we consider the condi-
tions that would cause ¢ and * and their respective degrees of freedom to differ. If n; =
ny, then ¢+ = * and their respective degrees of freedom (d.f.) would then be equal
only if s> = s3. Thus, if we had the unlikely scenario that the sample variances were
the same and additionally the sample sizes were the same (more likely), the tests are
equivalent.

Depending on the difference between the sample variances and the difference, if any,
in the sample sizes, it will often be desirable to test for equal variances. The selection of a
particular test must be carefully made, however, because some tests for equal variances are
highly sensitive to nonnormality, whereas the exact ¢-test itself is not sensitive to nonnor-
mality. The hypothesis test of equal variances might be rejected when one of these sensitive
tests is used, but the reason for the rejection could simply be moderate nonnormality. If
the population variances were approximately equal and the nonnormality were not severe
enough to undermine the exact -test, the user could be needlessly pointed in the wrong
direction.

Therefore, a test for equal variances that is not overly sensitive to nonnormality should
be considered, if a test is used at all. There are several such tests, including the test
proposed by Layard (1973). Another well-known test is one given by Levene (1960), which
is used later in this section. Cressie and Whitford (1986) gave recommendations on the
use of two-sample #-tests in the presence of unequal variances, concluding that the latter is
generally not a problem unless the variances differ considerably and the sample sizes are
also considerably different. See also Posten, Yeh, and Owen (1982).

Since the approximate #-test is also undermined by more than moderate nonnormality
because the ¢-distribution is still being used, it is necessary to check for (approximate)
normality of the two populations using each of the two samples.

B EXAMPLE 6.2

Problem Statement

We will use the camshaft dataset that comes with the MINITAB software to illustrate these
concepts. The file is CAMSHAFT . MTW and contains sample camshaft length measurements
from each of two suppliers and from all of the camshafts used at an automobile assembly
plant. Since the company was concerned about quality control, we might test that the
average length of camshafts provided by the two suppliers is the same. Of course, we
would perform this test only if we had reason to believe that the average lengths were
not the same, since we can never prove the null hypothesis in hypothesis testing, as stated
previously. Thus, as emphasized in Chapter 5, the null hypothesis is a statement that we
doubt, except when testing a distributional assumption.

Preliminary Computations

The plant measured five camshafts of each type in each of four daily shifts and this was done
for five work days. Thus, there are 100 measurements for each supplier, and preliminary

